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This dedication to my parents is offered as a permanent gift to my family,
so that my parents’ basic history may not be lost.

To my Father—who loved me

 Theodore James Shorack (August 20, 1904-July 31, 1983) Charleston, WV

» With only a third-grade education, he taught me that mathematics is fun.

* Effie, Minnesota; the Aleutian Islands; Eugene, Oregon. Homesteader, boxer, carpenter
and contractor. He loved the mathematics of his carpenter’s square.

* He loved his children with all his being.

To my Mother—who praised me

* Marcella (Blaha) Shorack (November 4, 1902—April 25, 1987) St. Paul, MN

* “What you don’t have in your head, son, you’ll have to have in your feet”

« Effie, Minnesota; Battle Creek, Michigan; Flagstaff, Arizona; Eugene, Oregon. Home-
steader and dedicated teacher. She had a heart for her troubled students.

* She cared dearly about whom and what her children would become.

Theodore J. Shorack and Marcella (Blaha) Shorack, wed 6/12/1929

We, their descendents, are entrusted with their memory.
1. Theodore James Shorack Jr. (1929-1966; Vietnam pilot, my boyhood hero) and Elva
(Buehler) Shorack (1925)

Candace (1953).
Helen (1989)—Vietnam
Kathleen (1955), and Walter Petty (1953)
Elizabeth (1987), Angela (1990)
Theodore IIT (or Todd) (1957), and Karie (Lott) Shorack (1960)
Theodore IV (1985), Wesley (1988)
John (1960), and Birgit (Funck) Shorack (1958)
Johanna (1990), Marna (1993), John Mark (1995)
2. Charlene (or Chari) Rose Boehnke (1931-2012) and George Boehnke (1931-2014)
Michael (1956), and Betsy Foxman (1955)
David (1985), Kevin (1987), Richard (1989)
Richard (1958-1988)
Barbara (1961), and Terrance Aalund (1952)
Katherine (1989), Daniel (1991), Gary (1995)

3. Roger Allen Shorack (1934) daughter Stefani (1968)
and Heather (Cho) Shorack (1949)

4. Galen Richard Shorack (1939; the author) and Marianne (Crabtree) Shorack (1938);
Sandra Ney Wood (1943)

Galen (or GR) (1964), and Lanet (Benson) Shorack (1967)
Nikolai (1999), Luca (2002), Nadia (2005)
Bart (1966), and Kerri (Winkenweder) Shorack (1968)
Landon (1995), Kyle (1998), Titus (2001)
Matthew (1969), and Julie (Mitchell) Shorack (1969)
(Isaac (1999), Thomas (2000), Alexia (2001))—Uganda, Tessa (2005)



My grandparents’ generation
* Peter Shorack and Anna Mili¢i (immigrants from Miliéa Celo, near the Plitvice Lakes)
(They married in 1890, and came to the US in 1898.)
Nicholas died by age 10
Annie wed Ivan Harrington (Archie (wed Ellen; 5) +9)
William wed Kate (William Jr. (wed Virginia; 2))
Amelia wed Charlie Lord
Theodore James Shorack (my father)
Jenny wed Godfrey Knight (5)

Frank Blaha Jr. (Chicago 3/24/1893, cooper) and Marcella Nekola (immigrant from the
Prague area as a child)

Marcella Barbara Blaha (my mother)

Marie (1904) wed Carlos Halstead (Carlos, Gilbert, Christine)
George (1906) (my father’s dear friend) wed Carmen Jirik

Julia (1908) wed Lyle Dinnell

Nan (1911) (first child born on the Effie, Minnesota homestead)
Rose (1913)

Helen (1916)

Carol (twin) (1918) wed Ashley Morse (Leigh (wed Kent; 2), Laurel)
Don (twin) (1918) wed Jean Dora

Frank J. Blaha Sr. (1850, lumber mill and railroad) wed Rose Hfda (1852) 1/30/1872. They
had immigrated separately to the USA in their 20s; he from the Prague area (Frank Jr. (my
mother’s father, homesteader), James (married Aunt Anna Nekola, printer), Joseph, Agnes.).
Frank Jr. was an inept farmer, but he enjoyed his books and raised educated daughters.

Thomas Nekola (wagon maker in the Prague area) married Mary Tomések. (Barbara,
Anna (married Uncle James), Marcella (my mother’s mother), Albert, Pete, Frances)

Peter Shorack (an only child) seems to have been “on the move” when he arrived in Miliéi,
but his origin is unclear. Was he fleeing a purge in the east (he said) or Austro-Hungarian
conscription (his wife said)? His parentage is unknown. He died from alcohol when my father
was nine.

Anna Mili¢i was the fourth of five children of Maximo and Martha Mili¢i. Maximo
(appropriately 6°9”) came to the USA, but fled home when two attackers did not survive.
Later, his neighbors there banded together and killed him with pitchforks. Anna visited Mili¢i
with her children when my father was five, but had to leave her children there for one year.
She had hidden enough to get herself home, thus thwarting Peter’s efforts to strand his family.
A hard woman in most ways, she used her gun to run off robbers (when linguistic Peter was
running a railroad gang) and poachers (after she was alone on the homestead).

My father worked in logging camps as a young kid; his mother and older brother would not
allow him to go to school. He hopped a freight when he was bigger, but “hammer toes” allowed
him to negate his mistake of an army enlistment. Back home, he trained religiously as a boxer
and a fighter. He thus “survived” his older brother, boxed the county fairs with George,
defended his interests in my mother, won two professional fights (but lost two teeth), fought
(with some success) for his full winter logging earnings (each spring the same companies would
go bankrupt, leaving their debts unpaid). WW II construction work on the Al-Can Highway
and in the Aleutian Islands gave him the nestegg to get us out of that country. With boxing



and the gym for entertainment, he lived entirely off a whiskey allotment sold late in each
month, every full paycheck came home—and he learned carpentry. On to Oregon! After ten
years, he was building his own houses on speculation, in spite of his financial raw fear common
to so many of that depression generation. But that gave his sons jobs to go to college, and he
sent his daughter. He took incredible pride in even the smallest of the accomplishments of any
of us. Part of him died with my brother, flying cover on a pilot pickup. My mother provided
the stability in our family, not an easy task. She provided the planning, tried to challenge us,
watched for opportunities to expand our horizons. A shy woman, she defended the value of her
son’s life by following the anti-Vietnam circuit and challenging all speakers. Her’s was the
quiet consistency that I better appreciated after having a family of my own.



Preface

This is a heavily reworked and considerably shortened version of the first edition of this text.
Especially, considerable “extra” material and background material have now been either
removed or moved to the appendices. Moreover, some important rearrangement of chapters
has taken place to facilitate its intended use as a text.

Chapters 1-5 provide the measure-theoretic mathematical foundation for the rest of the
text. Then Chapter 6 (Distribution and Quantile Functions) and Chapter 7 (Independence
and Conditional Expectation) hone some tools geared to probability theory. Appendix A (see
page 417) provides a brief introduction to elementary probability theory that could be useful
for some mathematics students (This Appendix A begins on page 417). A very useful version
of this text could end at this page; omit Sections 10.5-10.9, and greatly slim down or eliminate
the later parts of Chapters 7 and 13 (intentionally paired), Chapters 12 and 15 (again,
intentionally paired), Chapter 6, Chapter 11, and Chapter 14.

The classical weak law of large numbers (WLLN) and strong law of large numbers (SLLN)
as presented in Sections 8.2-8.4 are particularly complete, and they also emphasize the
important role played by the behavior of the maximal summand. Presentation of good
inequalities is emphasized in the entire text, and Chapter 8 is a good example. (Also, there is a
very general collection of characterizations of the WLLN in Section C.1, that is then spe-
cialized carefully to the context of the behavior of the sample variance as an estimator. This
Appendix C will also be appealed to in the optional Sections 10.5 (for a very general CLT for
sums of row independent rvs) and 10.6 (where the domain of attraction of the Normal dis-
tribution is characterized via many very different looking equivalent conditions)).

The classical central limit theorem (CLT) and its Lindeberg, Liapunov, and Berry—Esseen
generalizations are presented in Chapter 10 using the characteristic function (chf) methods
introduced in Chapter 9. Many statistical applications also appear in Chapter 10.

A form of the most general CLT for “negligible pieces” is found in the optional Section 10.5,
along with a more statistical variant. This is specialized to the iid case in Section 10.6—where
many versions of necessary and sufficient conditions are presented. These Section 10.6 vari-
ants are justified primarily in Sections C.1-C.3. Conditions for both the weak bootstrap and
the strong bootstrap are also developed in Section 10.8, and a universal bootstrap CLT based
on light trimming of the sample is presented in Section 10.9. This approach emphasizes a
statistical perspective. Gamma and Edgeworth approximations appear at the end of Chapter
11. The early parts of Chapter 11 deal with infinitely divisible and stable rvs. One of the main
objectives in this second edition is to make it easier for many instructors to pick and choose
from such topics (All references to the Stein method in the first edition have been removed
because of a basic problem with that presentation.)



X PREFACE

Both the distribution function (dfF(.)) and the quantile function (qf K(-) = F~'(-)) are
emphasized throughout (quantile functions are important to statisticians). In Chapter 6,
much general information about both dfs, qfs, and the Winsorized variance is developed. The
text includes presentations showing how to exploit the inverse transformation X = K (&) with
¢ =2 Uniform(0, 1). In particular, Section C.6 inequalities relating the qf and the Winsorized
variance to some empirical process results of Chapter 12 are used in Chapter 15 of this text to
treat trimmed means and L-statistics, rank and permutation tests, and sampling from finite
populations (Even more of this appears in the first addition of this text).

Chapter 13 provides quite a strong set of results for martingales. (The first edition includes
even more topics and examples. Especially, there is a nice treatment of predictable variation.)

Chapter 14 considers convergence in law on more general metric spaces.

I have learned much through my association with David Mason, and I would like to
acknowledge that here. Especially (in the context of this text), Theorem 12.10.3 is a beautiful
improvement on Theorem 12.10.2, in that it still has the potential for necessary and sufficient
results. I really admire the work of Mason and his colleagues. It was while working with David
that some of my present interests developed. In particular, a useful companion to Theorem 12.
10.3 is knowledge of quantile functions. Section 6.6 and Appendix C owe a debt to what I have
compiled and produced on that topic while working on various applications, partially with
David.

Jon Wellner has taught from several versions of this text. In particular, he typed an earlier
version and thus gave me a major critical boost. That head start is what turned my thoughts
to writing a text for publication. The Hoffman—Jorgensen inequalities in Section 8.10 came
from him. He has also formulated a number of exercises, suggested various improvements, and
offered good suggestions and references regarding predictable processes. My thanks to Jon for
all of these contributions (Obviously, whatever problems may remain lie solely with me.)

My thanks go to John Kimmel for his interest in the first version of this text, and for his
help and guidance through the various steps and decisions.

This is intended as a textbook, not as a research manuscript. Accordingly, it is somewhat
lightly referenced. There is a section at the end that contains some discussion of the literature.

Galen R. Shorack
Seattle, Washington
July 2015
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Comment: Some sections and chapters (plus, some subsections, or theorems, or even a few
particular paragraphs in a proof in Chapters 1-5, etc.) in the body of this text are marked with
the °-symbol. This is done if at most a moderate portion of the material therein will be
required later, and if the decision on whether or not to include it can be postponed until the
need or the desire arises. Such material should seldom be omitted entirely. The *—symbol is
used to indicate that at least some users of this text will be likely to omit these parts due to
time constraints or choice. Hopefully, all instructors will have time for at least some of these
sections. In either the %-case or the -case, an instructor could be reasonably lax on the details
while discussing the importance, and leaving the details to self study by students with the
capacity and interest. (A “-ed exercise is more substantial.)



Use of This Text

The University of Washington is on the quarter system, so my description will reflect this fact.
My thoughts are offered as a potential guide to an instructor. They certainly do not comprise
an essential recipe.

The reader will note that the exercises are interspersed within the text. It is important to
read all of the exercises as they are encountered (even if they are not written up), as most
of them contain some worthwhile contribution to the story.

Chapters 1-5 provide the measure-theoretic background that is necessary for the rest of the
text. Many of our students have had at least some kind of an undergraduate exposure to part
of this subject. Still, it is important that I present the key parts of this material rather
carefully. I feel it is useful for all of them.

Chapter 1 (measures; 5 lectures)

Emphasized in my presentation are generators, the monotone property of measures, the
Carathéodory extension theorem, completions, the approximation lemma, and the corre-
spondence theorem. Presenting the correspondence theorem carefully is important, as this
allows one the luxury of merely highlighting some proofs in Chapter 5. [The minimal mono-
tone class theorem of Section 1.1, claim 8 of the Carathédory extension theorem proof, and
most of what follows the approximation lemma in Section 1.2 would never be presented in my
lectures.] {I always assign Exercises 1.1.1 (generators), 1.2.1 (completions), and 1.2.3 (the
approximation lemma). Other exercises are assigned, but they vary each time.}

Chapter 2 (measurable functions and convergence; 4 lectures)

I present most of Sections 2.1, 2.2 and 2.3. Highlights are preservation of g-fields, measura-
bility of both common functions and limits of simple functions, induced measures, convergence
and divergence sets (especially), and relating —, to — (especially, reducing the first to the
second by going to subsequences). I then assign Section 2.4 as outside reading and Section 2.5
for exploring. [I never lecture on either Section 2.4 or 2.5.] {I always assign Exercises 2.2.1
(specific o-fields), 2.3.1 (concerning —,.), 2.3.3 (a substantial proof), and 2.4.1 (Slutsky’s
theorem).}

Chapter 3 (integration; 7 lectures)

This is an important chapter. I present all of Sections 3.1 and 3.2 carefully, but Section 3.3 is
left as reading, while some of the Section 3.4 inequalities (C,, Holder, Liapunov, Markov, and
Jensen) are done carefully. I do Section 3.5 carefully as far as Vitali’s theorem, and then assign
the rest as outside reading. {I always assign Exercises 3.2.1-3.2.2 (only the zero function), 3.3.3
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(differentiating under the integral sign), 3.5.1 (substantial theory), and 3.5.7 (the Scheffé
theorem).}

Chapter 4 (Radon—Nikodym; 2 lectures)

I present ideas from Section 4.1, sketch the Jordan—-Hahn decomposition proof, and then give
the proofs of the Lebesgue decomposition, the Radon—Nikodym theorem, and the change of
variable theorem. These final two topics are highlighted. The fundamental theorem of calculus
of Section 4.4 is briefly discussed. [I would present only bits of Section 4.3. (especially, an
interpretation of (4.1.1)). {I always assign Exercises 4.2.1 (manipulating Radon—-Nikodym
derivatives), 4.2.7 (mathematically substantial), and 4.4.1, 4.4.2, and 4.4.4 (so that the stu-
dents must do some outside reading in Section 4.4 on their own).}

Chapter 5 (Fubini; 2 lectures)

The first lecture covers Sections 5.1 and 5.2. T always discuss/prove Theorem 5.1.2 (product
measure) and Theorem 5.1.3 (Fubini, with the Tonelli corollary). Proving Proposition 5.2.1 is
a must. The remaining time is spent on Section 5.3. [I rarely lecture from Section 5.4, but I do
assign it for outside perusing.] {I always assign Exercises 5.3.1 (measurability in a countable
number of dimensions) and 5.4.1 (the finite-dimensional field).}

The mathematical tools have now been developed. In Chapters 6 and 7, we learn about
some specialized probabilistic tools. The presentation of one of the main classic topics of
probability theory then commences in Chapter 8.

Chapter 6 (distribution functions (dfs) and quantile functions (qfs); 4 lectures)

This chapter is quite important to this text. Sections 6.1-6.4 should be covered. Skorokhod’s
theorem in Section 6.3 must be done carefully. Section 6.5 should be left as outside reading.
[Lecturing from Section 6.6 is purely optional, and I would not exceed one lecture.] {I always
assign Exercises 6.1.1 (it exhibits a simple continuous df in two dimensions that does not have
a density), 6.3.1 (F~!(-) is left continuous), 6.3.3 (change of variable), and 6.4.2 (for practice
working with X = K(&)) . Consider lecturing on Theorem 6.6.1 (the infinite variance case).}

Chapter 7 (conditional expectation; 2 lectures)

The first lecture covers Sections 7.1 and 7.2. It highlights Proposition 7.1.1 (on the preservation
of independence), Theorem 7.1.2 (extending independence from n-systems), and Kolmogorov’s
0-1 law. The other lecture (which could be postponed until just prior to taking up martingales)
provides some discussion of the definition of conditional probability in Section 7.4, includes
proofs of several parts of Theorem 7.4.1 (properties of conditional expectation). It might also
briefly discuss the Definition 7.5.1 of regular conditional probability. [I never lecture on Sec-
tions 7.3 or 7.5.] {I always assign Exercises 7.1.2 and 7.1.3 (they provide routine practice with
the concepts), Exercise 7.4.1 (discrete conditional probability), Exercise 7.4.3 (repeated
stepwise smoothing in a particular example), and part of Exercise 7.4.4 (proving additional
parts of Theorem 7.4.1).}

Chapter 8 (laws of large numbers (LLNs) and inequalities; 3 lectures for now)

Since we are on the quarter system at the University of Washington, this leaves me 3 lectures
to spend on the law of large numbers in Chapter 8 before the Christmas break at the end of the
autumn quarter. In these first 3 lectures, I do Sections 8.1 and 8.2 with Khinchine’s weak law
of large numbers (WLLN), Kolmogorov’s inequality only from Section 8.3, and at this time I
present only Kolmogorov’s strong law of large numbers (SLLN) from Section 8.4. {I always
assign Exercises 8.1.1 (Cesaro summability), 8.2.1 (it generates good ideas related to the
proofs), 8.2.2 (as it practices the important O,(-) and o,(-) notation), 8.4.4 (the substantial
result of Marcinkiewicz and Zygmund), 8.4.7 (random sample size), and at least one of the
alternative SLLN proofs contained in 8.4.8-8.4.10.}

At this point at the beginning of the winter quarter, the instructor will have his/her own
opinions about what to cover. I devote the winter quarter to the weak law of large numbers
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(WLLN), an introduction to the law of the iterated logarithm (LIL), and various central limit
theorems (CLTs). That is, the second term treats material from Chapters 8-10, with others
optional. I will now outline my choices.

Chapter 8 (LLNs, inequalities, LIL, and series; 6 lectures)

My lectures cover Section 8.3 (symmetrization inequalities and Lévy’s inequality for the
WLLN, and the Ottovani—Skorokhod inequality for series), Feller’s WLLN from Section 8.4,
the Glivenko—Cantelli theorem from Section 8.5, the LIL for normal rvs in Proposition 8.6.1,
the strong Markov property of Theorem 8.7.1, and the two series Theorem 8.8.2. [I do not
lecture from either of Section 8.9 or 8.10 at this time.] {I always assign Exercise 8.6.1 (Mills’
ratio).}

Chapter 9 (characteristic functions (chfs); 8 lectures)

Sections 9.1 and 9.2 contain the classic results that relate to deriving convergence in distri-
bution from the convergence of various integrals. I also cover Sections 9.3-9.8. {I always
assign Exercises 9.3.1 and 9.3.3(a) (deriving specific chfs) and 9.4.1 (Taylor series expansions
of the chf).}

Chapter 10 (CLTs via chfs; 6 lectures)

The classical CLT, the Poisson limit theorem, and the multivariate CLT make a nice lecture.
The chi-square goodness-of-fit Example 10.1.1 and/or the median Example 10.3.3 make a
lecture of illustrations. Chf proofs of the usual CLTs are given in Section 10.2 (Section 9.7 on
Esseen’s theorem could have been left until now). Other examples from either Section 10.2 or
10.3 could now be chosen, and Example 10.3.4 (weighted sums of iid rvs) is my first choice.
[The chi-square goodness-of-fit Example 10.1.1 could motivate a student to read from Sec-
tions A.3 and A.4.]

At this stage, I still have at least 7 optional lectures at the end of the winter quarter and
about 12 more during the spring quarter. In the other 16 lectures of the spring quarter, I feel it
appropriate to consider Brownian motion in Chapter 12 and then martingales in Chapter 13
(in a fashion to be described below). Let me first describe some possibilities for the optional
lectures, assuming that the above core was covered.

Chapter 10 (bootstrap)

Both Sections 10.8 and 10.9 on the bootstrap require also Sects 6.5 and 6.6.

Chapter 10 (domain of normal attraction of the Normal df)

The converse in Theorem 10.6.1 of the classical CLT Theorem 10.1.1 requires the Giné—Zinn
symmetrization inequality and the Khinchine inequality of Section 8.3, and the Paley—Zyg-
mund inequality of Section 3.4.

Chapter 11 (infinitely divisible and stable laws)

First, Section 11.1 (infinitely divisible laws) is independent of the rest, including Section 11.2
(stable laws). The theorem stated in Section 11.4 (domain of attraction of stable laws) would
require methods of Section C.4 to prove, but the interesting exercises are accessible without
this.

Chapters 8 and 10, and Appendiz C' (domain of attraction of the Normal df)

Combining the Section 8.3 subsection on maximal inequalities of another ilk, Sections 6.6,
Sections 10.5-10.6, and Sections C.1-C.3 makes a nice unit. Lévy’s asymptotic normality
condition (ANC) of (10.6.19) for a rv X has some prominence. In Section C.2, purely geometric
methods plus Cauchy—Schwarz are used to derive a multitude of equivalent conditions. In the
process, quantile functions are carefully studied. In Theorem 10.6.1, the ANC is seen to be
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equivalent to conditions equivalent to having a WLLN for the rv X2, and in this context, many
additional equivalent conditions are again presented.

Chapter 10 (higher-order approximations)
The local limit theorem in Section 10.4 can be done immediately for continuous dfs, but it also
requires Section 9.8 for discrete dfs. The expansions given in Section 11.5 (Gamma approxi-
mation) and 11.6 (Edgeworth approximation) also require (9.6.22).

Assorted topics suitable for individual reading
Suppose that Chapter 12 has been covered. Consider the Chapter 15 examples on Trimmed
and Winsorized means, L-statistics, and linear rank R-statistics (with finite sampling). Con-
vergence in distribution on the line is presented in Sections 9.1 and 9.2, which could be
extended to metric spaces in Chapter 14. Sections 13.8 (counting process martingales) and
13.9 (martingale CLTs) are possible once the earlier parts of this chapter are covered.

The primary topics for the spring quarter are Chapter 12 (Brownian motion and elemen-
tary empirical processes) and Chapter 13 (martingales).

Chapter 12 (Brownian motion; 6 lectures)
I discuss Section 12.1, sketch the one proof of Section 12.2 and carefully apply that result in
Section 12.3, and treat Section 12.4 carefully (as I believe that at some point a lecture should be
devoted to a few of the more subtle difficulties regarding measurability). I am a bit cavalier
regarding Section 12.5 (strong Markov property), but I apply it carefully in Sections 12.6, 12.7,
and the Theorem 12.8.1. T assign Section 12.9 as outside reading. [I do not lecture on Theo-
rem 12.8.2.] {I always assign Exercises 12.1.2 (on (C,C)), 12.3.1 (various transforms of
Brownian motion), 12.3.3 (integrals of Normal processes), 12.4.1 (properties of stopping
times), 12.7.3(a) (related to embedding a rv in Brownian motion), and 12.8.2 (the LIL via
embedding).}

Chapter 13 (martingales; 10 lectures)
I cover much of the first seven sections. {I always assign Exercises 13.1.4 (a counting process
martingale), 13.3.2 (a proof for continuous time mgs), and both 13.3.7 and 13.3.9 (on L,-
convergence). }

Appendiz A (elementary probability; 0 lectures)
Sections A.1 and A.2 were written to provide background reading for those graduate students
in mathematics who lack an elementary probability background. Sections A.3 and A.4 allow
graduate students in statistics to read some of the basic multivariate results in appropriate
matrix notation. [I do not lecture from this appendix.] {But I do assign Exercises A.1.8 (the
Poisson process exists) and A.2.1 (ii) (so that the convolution formula is refreshed).}

Useful topics that appear only in the 1st edition of this text

Appendiz (maximum likelihood estimation (or, MLE))
I see MLE as being of considerable interest in conjunction with statistical pursuits, rather
than as a direct part of a course on probability theory. This is available in Appendix A of the
first edition. Other topics are also treated only in Appendix A of the first edition, such as
careful development of the Gamma function and the derivative of its logarithm—with
applications to maximum likelihood estimation. Chapter 16 in the first edition goes beyond
the present Chapter 15 in the depth and breadth of its coverage of applications of the con-
vergence of empirical processes.
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means “is distributed as”
means “is defined to be”
= b @ c means that |[a —b| < ¢

» =a Va means “asymptotically equal” in the sense that U, =V, —, 0
2

IR

>

>~ (u,0*) means that X has mean yu and variance ¢
X = F(u, 6%) means that X has df F with mean u and variance ¢>

X, is the “sample mean” and X, is the “sample median”

(Q, A, 1) and (Q, A, P) denote a measure space and a probability space
0[C] denotes the o-field generated by the class of sets C

F(X) denotes X~'(B), for the Borel sets B and B = ¢[B, { + o0}, {—oc}]
¢ will always refer to a Uniform(0, 1) rv

/" means “nondecreasing” and T means “strictly increasing”

14(+) denotes the indicator function of the set A

“df” refers to a distribution function F(-)

“qf” refers to the left continuous quantile function K(-) = F~!(-)

The “tilde” symbol denotes Winsorization

The “hé&fek” symbol denotes Truncation

A(+) and A, (-) will refer to Lebesgue measure on the line R and on R,
See page 119 for “dom(a,d’)”

Brownian motion S, Brownian bridge U, and the Poisson process N
The empirical df F, and the empirical df G, of Uniform(0,1) rvs

~- is associated with convergence in the LIL (see page 176)

“mg” refers to a martingale

“smg” refers to a submartingale

> means “>” for a submartingale and it means for a martingale

The symbol “ 2" is paired with “s-mg” in this context.

Prominence
Important equations are labeled with numbers to give them prominence. Thus, equations
within a proof that are also important outside the context of that proof are numbered. Though
the typical equation in a proof is unworthy of a number, it may be labeled with a letter to help
with the “bookkeeping.” Likewise, digressions or examples in the main body of the text may
contain equations labeled with letters that decrease the prominence given to them.
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Integral signs and summation signs in important equations (or sufficiently complicated
equations) are large, while those in less important equations are small. It is a matter of
assigned prominence. The most important theorems, definitions, and examples have been
given titles in boldface type to assign prominence to them. The titles of somewhat less
important results are not in boldface type. Routine references to theorem 10.4.1 or definition
7.3.1 do not contain capitalized initial letters. The author very specifically wishes to down-
grade the prominence given to this routine use of these words. Starting new sections on new
pages allowed me to carefully control the field of vision as the most important results were
presented.



Chapter 1

Measures

1 Basic Properties of Measures

Motivation 1.1 (The Lebesgue integral) The Riemann integral of a continuous function f (we
will restrict attention to f(x) > 0 on a < x < b for convenience) is formed by subdividing the
domain of f, forming approximating sums, and passing to the limit. Thus the mth Riemann

sum for fab f(z) dx is defined as

(1) RS, = Z @) [Tmi — Tm,i-1],

where a = Ty < Tyt < -+ < Ty, = b (with 2, ;-1 < 2, < @4y for all ¢) satisfy mesh,,, =
max|Tmi — Tm,i—1] — 0. Note that z,,; — zp,;—1 is the measure (or length) of the interval
[Tm.,i—1, Tmi], while f(xF,;) approximates the values of f(z) for all @, ;-1 < 2 < x,,; (at least
it does if fis continuous on [a, b]). Within the class C* of all nonnegative continuous functions,
this definition works reasonably well. But it has one major shortcoming. The conclusion
f; fn(z)dx — f; f(x) dzx is one we often wish to make if f,, “converges” to f. However, even
when all f,, are in CT and f(z) = lim f,(x) actually exists, it need not be that fis in C* (and
thus f; f(x)dxr may not even be well-defined) or that f: fo(z)de — f; f(x)dx (even when
it is well defined).

A different approach is needed. (Note figure 1.1.)

The Lebesgue integral of a bounded and nonnegative function is formed by subdividing
the range. Thus the mth Lebesgue sum for f; f(z)dx is defined as

mam
k-1 k-1 k
— 1 : < -

(2) LS, = E 5 X measure ({x g = flx) < 5 }) ,

k=1

and ff f(x) dx is defined to be the limit of the LS, sums as m — oo. For what class M of
functions f can this approach succeed? The members f of the class M will need to be such
that the measure (or length) of all sets of the form

® ot o< )

can be specified. This approach leads to the concept of a o-field A of subsets of [a, b] that are
measurable (that is, we must be able to assign to these sets a number called their “length”),
(© Springer International Publishing AG 2017 1

G.R. Shorack, Probability for Statisticians, Springer Texts in Statistics,
DOI 10.1007/978-3-319-52207-4 1
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and this leads to the concept of the class M of measurable functions. This class M of mea-
surable functions will be seen to be closed under passage to the limit and all the other oper-
ations that we are accustomed to performing on functions. Moreover, the desirable property

f: fu(x)de — f: f(z) dz for functions f, “converging” to fwill be broadly true. O

.

Lmo Tmi o Tmi-1 Tmi o Tmm
Riemann sums
The domain of f(-) is equally divided.

1
2"1,

Lebesgue sums
The range of f(-) is equally divided.

Figure 1.1 Riemann sums and Lebesgue sums.

Definition 1.1 (Set theory) Consider a nonvoid class A of subsets A of a nonvoid set 2.
(For us, 2 will be the sample space of an experiment.)

(a) Let A¢ denote the complement of A, let AU B denote the union of A and B, let AN B
and AB both denote the intersection, let A\ B = AB¢ denote the set difference, let AAB =
(A°BUAB®) denote the symmetric difference, and let () denote the empty set. The class of all
subsets of Q will be denoted by 2. Sets A and B are called disjoint if AB = (), and sequences
of sets A,, or classes of sets A; are called disjoint if all pairs are disjoint. Writing A + B or
Y17 A, will also denote a union, but will imply the disjointness of the sets in the union. As
usual, A C B denotes that A is a subset of B. We call a sequence A,, increasing (and we will
nearly always denote this fact by writing A,, /") when A,, C A, for all n > 1. We call the
sequence decreasing (denoted by A,, \) when A,, D A, 41 for all n > 1. We call the sequence
monotone if it is either increasing or decreasing. Let w denote a generic element of Q2. We
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will use 14(+) to denote the indicator function of A, which equals 1 or 0 at w according as
weAorw¢ A

(b) A will be called a field if it is closed under complements and unions. (That is, A and B
in A requires that A° and AU B be in A.) [Note that both Q and @ are necessarily in A, as
A was assumed to be nonvoid, with Q2 = AU A¢ and 0 = Q€]

(¢) A will be called a o-field if it is closed under complements and countable unions. (That
is, A, Ay, As, ... in A requires that A¢ and U°® A,, be in A.)

(d) A will be called a monotone class provided it contains U®A,, for all increasing sequences
A, in A and contains N{°A4,, for all decreasing sequences A,, in A.

(e) (2, A) will be called a measurable space provided A is a o-field of subsets of .

(f) A will be called a 7-system provided ABis in A for all 4 and B in A; and A will be called
a T-system when  in A is also guaranteed.

If Ais a field (or a o-field), then it is closed under intersections (under countable inter-
sections); since AB = (A° U B¢)¢ (since N A4,, = (U AS)). Likewise, we could have used
“intersection” instead of “union” in our definitions by making use of AU B = (A°N B¢)¢ and
UPA, = (NPAS)C. (This used De Morgan’s laws.)

Proposition 1.1 (Closure under intersections)

(a) Arbitrary intersections of fields, o-fields, or monotone classes are fields, o-fields, or
monotone classes, respectively.

[For example, F = N{F, : Fq is a field under consideration} is a field.]

(b) There is a minimal field, o-field, or monotone class generated by (or, containing) any
specified class C of subsets of ). Call C the generators. For example,

(4) o[C] = N{Fa : Fu is a o-field of subsets of Q for which C C F,}

is the minimal o-field generated by C (that is, containing C).
(¢) A collection A of subsets of 2 is a o-field if and only if it is both a field and a monotone
class.

Proof. (c) (&)U A, = UP(UTAE) ) = UB,, € A since the B,, are in A and are /.
Everything else is even more trivial. ]

Exercise 1.1 (Generators) Let C; and Cy denote two collections of subsets of the set Q. If
Cy C 0[Cy] and Cy C oCs), then o[Cy1] = o[C3]. Prove this important fact.

Definition 1.2 (Measures and events) Consider a measurable space (€2,.4) and a set
function p : A — [0, oo] (that is, u(A4) > 0 for each A € A) having () = 0.
(a) Now A is a o-field and if p is countably additive (abbreviated c.a.) in that

(5) 1 <Z An> = Z u(Ay) for all disjoint sequences A, in A,
n=1 n=1

then p is called a measure (or, equivalently, a countably additive measure) on (2, A). The
triple (9, A, i) is then called a measure space. We call u finite if u(2) < co. We call u o-finite
if there exists a measurable decomposition of Q as Q@ =3 7°Q,, with Q,, € A and p(Q,) < 0o
for all n. The sets A in the o-field A are called events.

[Even if A is not a o-field, we will still call © a measure on (2,.4), when (5) holds for all
sequences A,, € A for which > °A,, is in A. We will not, however, use the term “measure



4 CHAPTER 1. MEASURES

space” to describe such a triple. We will consider below measures on fields, on certain 7-
systems, and on some other collections of sets. A useful property of a collection of sets is that
along with any sets Ai,..., Ay it also includes all sets of the type By = A Aj_, --- ASAT;
then UT Ay, = > By, is easier to work with.]

(b) Of less interest, call p a finitely additive measure (abbreviated f.a.) on (Q,.A) if

(6) It (Z1 Ak) = Zl 1(Ag)
for all disjoint sequences Ay, in A for which Y] Ay is also in A.

Definition 1.3 (Outer measures) Consider a set function p* : 22 — [0, o00].
(a) Suppose that u* also satisfies the following three properties.

Null: p*(0) = 0.

Monotone: p*(A) < p*(B) for all A C B.

Countable subadditivity: p* (7" A,) < > (A,) for all sequences A,,.
Then p* is called an outer measure.

(b) An arbitrary subset A4 of  is called p*-measurable if

(7) w(T) = W (TA) + p* (TA°) for all subsets T C €.

Sets T" used in this capacity are called test sets.
(c) We let A* denote the class of all p*-measurable sets, that is,

(8) A*={A€2?: Ais p*-measurable} .

[Note that A € A* if and only if p*(T") > pu*(T'A) + p*(TA°) for all T C Q, since the other
inequality is trivial by the subadditivity of u*.]

Motivation 1.2 (Measure) In this paragraph we will consider only one possible measure p,
namely the Lebesgue-measure generalization of length. Let C; denote the set of all intervals
of the types (a, b], (—oo, b], and (a, +00) on the real line R, and for each of these intervals
I we assign a measure value p(I) equal to its length, thus b — a, 00,00 in the three special
cases. All is well until we manipulate the sets in Cy, as even the union of two elements in Cjy
need not be in C;. Thus, C; is not a very rich collection of sets. A natural extension is to let
Cr denote the collection of all finite disjoint unions of sets in C;, where the measure p(A4) we
assign to each such set A is just the sum of the measures (lengths) of all its disjoint pieces.
Now Cp is a field, and is thus closed under the elementary operations of union, intersection,
and complementation. Much can be done using only Cr and letting “measure” be the “exact
length.” But Cr is not closed under passage to the limit, and it is thus insufficient for many of
our needs. For this reason the concept of the smallest o-field containing C, labeled B = ¢[Cr],
is introduced. We call B the Borel sets. But let us work backwards. Let us assign an outer
measure value p*(A) to every subset A in the class 27 of all subsets of the real line R. In
particular, to any subset A we assign the value p*(A) that is the infimum of all possible
numbers Y~ u(A,), in which each A,, is in the field Cr (so that we know its measure) and
in which the A,,’s form a cover of A (in that A C U®A,,). Thus each number Y “u(A4,) is a
natural upper bound to the measure (or generalized length) of the set A, and we will specify
the infimum of such upper bounds to be the outer measure of A. Thus to each subset A of
the real line we assign a value p*(A) of generalized length. This value seems “reasonable,”
but does it “perform correctly”? Let us say that a particular set A is p*-measurable (that
is, it “performs correctly”) if p*(T) = p*(T'A) + p*(T'A°) for all subsets T of the real line
R—that is, if the A versus A¢ division of the line divides every subset T" of the line into two
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pieces in a fashion that is pu*-additive. This is undoubtedly a combination of reasonableness
and fine technicality that took some time to evolve in the mind of its creator, Carathéodory,
while he searched for a condition that “worked.” In what sense does it “work”? The collection
A* of all p*-measurable sets turns out to be a o-field. Thus the collection A* is closed under
all operations that we are likely to perform; and it is big enough, in that it is a o-field that
contains Cp. Thus we will work with the restriction p*|A* of u* to the sets of A* (here, the
vertical line means “restricted to”). This is enough to meet our needs (and it turns out to be
exactly the maximal possible stopping point).

There are many measures other than length. For an " and right-continuous function F on
the real line (called a generalized df) we define the Stieltjes measure of an arbitrary interval
(a, b] (with —co < a <b < 0)in C; by pr((a, b)) = F(b) — F(a), and we extend it to sets
in Cr by adding up the measure of the pieces. Reapplying the previous paragraph, we can
extend pp to the pj-measurable sets. It is the important Carathéodory extension theorem
that will establish that all Stieltjes measures (including the case of ordinary length, where
F(z) = z, as considered in the first paragraph) can be extended from Cr to the Borel sets B.
That is, all Borel sets are p*-measurable for every Stieltjes measure. One further extension is
possible, in that every measure can be completed” (see the end of section 1.2). We note here
only that when the Stieltjes measure pp associated with the generalized df F'is “completed,”
its domain of definition is extended from the Borel sets B (which all Stieltjes measures have
in common) to a larger collection BMF that depends on the particular F. It is left to section
1.2 to simply state that this is as far as we can go. That is, except in rather trivial special
cases (especially, mass at only countably many points), we find that BMF is a proper subset
of 2%, (Otherwise, it is typically impossible to try to define the measure of all subsets of
in a suitable fashion.) O

Example 1.1 (Some examples of measures, informally)

(a) Lebesque measure:

Let A(A) denote the length of A.

(b) Counting measure:

Let #(A) denote the number of “points” in A (or the cardinality of A).

(¢c) Unit point mass:

Let 6,,(A) = 14(w,), assigning measure 1 or 0 to 4 as w, € A or not.

(x) Rigorous proof that these are measures will follow from theorem 1.3.1 below. O

Example 1.2 (Borel sets)

(a) Let Q@ = R and let C consist of all finite disjoint unions of intervals of the types
(a, b], (—o0, b], and (a, +00). Clearly, C is a field. Then B = o[C] will be called the
Borel sets (or the Borel subsets of R). Let p(A) be defined to be the sum of the lengths of
the intervals composing A, for each A € C. Then p is a (c.a.) measure on the field C, as will
be seen in the proof of theorem 1.3.1 below.

(b) If (22, d) is a metric space and U = {all d-open subsets of 2}, then B = o[U/] will be called
the Borel sets or the Borel o- field.

(c) If (22, d) is (R, |-|) for absolute value |- |, then o[C] = o[U] even though C # U. (This
claim is true, since C C o[U] and U C o[C] are clear. Then, use exercise 1.1.)

(d) Let R = [~00, = oo] denote the extended real line; let B = o[B, {—oc}, {+o0}].

(e) For any interval I C [~oo, oo, let By ={BNI:Be€B}=BnNI. O

Proposition 1.2 (Monotone properties of measures) Let (€2, A, ) denote a measure
space. (Of course, u(A) < u(B) for A C Bin A.) Let A;, Ay, ... be in A.
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(a) If A,, C A,41 for all n, then

(9) U Ap) = lim p(Ay).

n—oo

(b) If u(A,,) < oo for some ng, and A,, D A, 41 for all n, then

(10)  p(),_, An) = Jim ju(An).

n—oo

(Letting © denote the real line R, letting A,, = [n, c0), and letting u denote either Lebesgue
measure or counting measure, we see the need for some requirement.)
(¢) (Countable subadditivity) Whenever Ay, Az, ... and U®A,, are all in A, then

pJ, A <D u(Ar) ;
(d) All this also holds true for a measure on a field (via the same proofs).

Proof. (a) Now,
(U A,) = N(ZTO(An\Anfl)) with Ag = 0)

(p) Z (A \An—1) by c.a.
=lim Y " A\ A1)

=lim u(Z: (A\Ax—1))  byfa.
(@  =limp(A,).
(b) Without loss of generality, redefine 41 = Ay = --- = A,,. Let B, = A1\ A4, so that

the sets B,, are /', with B; = (). Draw a picture of concentric circles of decreasing radaii to
represent the general decreasing sets A,,. Then locate the sets B, in this picture, and note
that they are indeed increasing. It is pictorially clear that A; N (NS, A4, )¢ = U B,,. Thus,

lim u(By) = p(UpZy Bn) by (a)
= p(A1 N (NT7AR)°)
(r) = (A1) — p(NpZiAn)

On the other hand,
lim p(By) = lim{u(Ar) — p(An)}  byfa.

(s) = (A1) = Tim p(Ay).

Equate the quantities in (r) and (s); since u(A;) < 0o, we can cancel it to obtain the equality
w(NA,) = lim, u(Ay).

(c) Let By = Ay, By = AjA§, ..., B = AyA§_ | --- AS. Then these newly defined sets By,
are disjoint, and U}_; Ay = >°}'_, Bi. Hence [a technique worth remembering]

) wlJ_ A0 =p_ B = B
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where Uk*l A = Zklek is /forBy, = ApAj_, -+ A

n

< ) mlAx)
o0
(t) < ) w(Ag) by monotonicity.
Let n — oo in (11), and use part (a) to get the result. O

Definition 1.4 (liminf and limsup of sets) Let

limA, =", Nien Ak = Up; Bn  (where B, = (=, Ak is /)

12
(12) = {w: w is in all but finitely manyA,,’s} = {w: w € A, a.b.f.},

where we use a.b.f. to abbreviate in all but finitely many cases. Let

ImA, =N,2, Ure,, Ac = Moo, Bn (where B, ==, Aris \)

13
(13) = {w : w is in an infinite number of A,’s} = {w : w € A, i.0.},

where we use i.0. to abbreviate infinitely often.

(It is important to learn to read these two mathematical equations in a way that makes
it clear that the verbal description is correct.) It is verbally trivial that we always have
lim A,, C lim A,,. Define

(14) lim 4,, =lim A,, whenever lim A,, = lim A,,.

We also let liminf A,, = lim A4,, and limsup A,, = lim A,,, giving us alternative notations.

Proposition 1.3 Clearly, lim A,, equals U A,, when A,, is an " sequence, and lim A,, equals
N A, when A, is a \, sequence.

Exercise 1.2 (a) Now p(liminfA,) < liminfu(A,) is always true.
(b) Also, limsup p(A,) < p(limsup A,) holds if pu(2) < co. (Why the condition?)

Definition 1.5 (lim inf and lim sup of numbers)  Recall that for real number sequences a,,
one defines lim a,, = lim inf a,, and lim a,, = lim sup a,, by

(15) liminf,, . a, = lim, o (infx>, ax) = sup,,>; (infr>, a) and

limsup,, ., @n = limy, oo (SUPy>,, ax) = infp>1(supys, ax),

and these yield the smallest limit point and the largest limit point, respectively, of the sequence
Q-

Definition 1.6 (Continuity of set functions) A set function p defined on some class of subsets
A of a non-void set € is continuous from below (or, from above) if p(lim A,) = lim pu(A,)
for all sequences A, in  that are /" to a set in A (or, for all sequences A, in  that
are \ to a set in A, with at least one u(A,) finite). Call ;1 continuous in case it is continuous
both from below and from above. If lim u(A,,) = pu(A) whenever A, \, 4, then pu is said to
be continuous from above at this particular A in A, etc.

The next result is often used in conjunction with the Carathéodory extension theorem of
the next section. View it as a converse to the proposition 1.2.



8 CHAPTER 1. MEASURES

Proposition 1.4 (Continuity of measures) If a finitely additive measure p on either a field
or o-field is either continuous from below or has ;(€2) < oo and is continuous from above at
(), then it is a countably additive measure.

Proof.  Suppose first that p is continuous from below. Then

(5 4) 30
(a) = lim u(Z?Ak) by continuity from below
(b) = lim ZTM(A’C) by f.a. (where we used only that A is a field)
(c) = Zl 1(Ak),
giving the required countable additivity. Thus p is c.a. on A.

Suppose next that 4 is finite and is also continuous from above at (). Then f.a. (even if A
is only a field) gives

I (ZTOAk> =p (Z?Ak> +p (ZZOHA’“) = ZZLN(Ak) +p (Z::_lAk)
(@) = u(A) +0,

where p(3°0 1 Ar) — p(P) = 0 by continuity from above at @, since 3> Ap \, 0 and p is
finite. That is, this f.a. measure is also c.a., and hence it is a measure. O

Definition 1.7 (“Little oh,” “big oh,” and “at most” ®) We write:

(16) an =0(ry) i ap/rp — 0,
a, = O0(r,) if limla,/r,| < (some M) < oo.
We write

(17) ap, =bp Dep i ap —byp| < cp.

This last notation allows us to string inequalities together linearly, instead of having to start
a new inequality on a new line. (I use it often.)

Exercise 1.3 (7-systems and A-systems) Consider a measurable space (2, A). A class D
of subsets is called a A-system if it contains the space  and all proper differences (A\ B, when
B C A with both A, B € D) and if it is closed under monotone increasing limits. (Recall
that a class is called a w-system if it is closed under finite intersections, while 7-systems are
also required to contain €2.)

(a) The minimal A\-system generated by a class C is denoted by A[C]. Show that A[C] is equal
to the intersection of all A-systems containing C.

(b) A collection A of subsets of € is a o-field if and only if it is both a 7-system and a
A-system.

(c) Let C be a m-system and let D be a A-system. Then C C D implies that o[C] C D. Note
(or, show) that this follows from (19) below.
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Proposition 1.5 ° [Dynkin’s 7-A theorem| Let p and p/ be two finite measures on the
measurable space (€2, A). Let C be a 7-system, where C C A. Then

(18)  pu = ' on the 7-system C implies p = p'on o[C].

Proof.  (The author never includes this proof or the next one in lectures.) ~ We first show
that on any measurable space (2, A) we have

(19)  o[C] = A[C] when C is a w-system of subsets of A.

Let D = A[C]. By the easy exercise 1.3(a)(b), it suffices to show that D is a 7-system (that
is, that A, B € D implies AN B € D). We first go just halfway; let

(a) Ec={AeD: AC € D}, for any fixed C' € C.

Then C C &c, and € E¢. Also, for A, B € E¢ with B C A and for C' € C we have (since
both AC and BC' are in D) that (A\B)C = (AC\BC') € D, so that A\B € &x. Finally, if
A, is /' in Ec, then A,C'is /" in D; so A = lim A,, has AC € D, and A € . Thus ¢ is
a A-system containing C. Thus £ = D, since D was the smallest such class. We have thus
learned of D that

(b) AC e Dforall C € C, for each A e D.
To go the rest of the way, we define
(c) Fp={Ae€D:AD € D}, for any fixed D € D.

Then C C Fp, by (b), and Q € Fp. Also, for A, B € Fp with B C A and for D € D we
have (since both AD and BD are in D) that (A\B)D = (AD\BD) € D, so that A\B € Fp.
Finally, if A, is / in Fp, then A,D is /' in D; so A =1lim A,, has AD € D, and A € Fp.
Thus Fp is a A-system containing C. Thus Fp = D, since D was the smallest such class. We
have thus learned of D that

(d) AD e D for all A € D, for each D € D.

That is, D is closed under intersections; and thus D is a w-system. Thus (19) holds.

We will now demonstrate that G = {4 € A : u(A) = y/(A)} is a A-system on Q. First,
Q € G, since Q2 is in the 7-system C. Second, when A C B are both in G we have the equality
(since p(A) and p'(A) are finite)

(e)  wB\A) = u(B) — u(A) = p/(B) — '(A) = i (B\A),

giving B\A € G. Finally, let A,, / A with all A,,’s in G. Then proposition 1.2(i) yields the
result

() n(A) = limp(A,) = lim ' (4,) = #/(A),

so that A € G. Thus G is a A-system.
Thus the collection G on which ¢ = p’ is a A-system that contains the 7-system C.
Applying (19) shows that o[C] C G. O
The previous result is very useful in extending the verification of independence from small
classes of sets to larger ones. The next proposition is used for both Fubini’s theorem and the
existence of a regular conditional probability distribution. It could also have been used below
to give an alternate proof of uniqueness in the Carathéodory extension theorem.
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Proposition 1.6 *(Minimal monotone class; Halmos)* The minimal monotone class M =
m[C] containing the field C and the minimal o-field o[C] generated by the same field C satisfy

(20)  m[C] =0o[C] when Cis a field.

Proof.  Since o-fields are monotone classes, we have that o[C] D M. If we now show that
M is a field, then proposition 1.1(c) will imply that o[C] C M.
To show that M is a field, it suffices to show that

(a) A, B in M implies AB, A°B, AB® are in M.

Suppose that (a) has been established. We will now show that (a) implies that M is a field.
Complements: Let A € M, and note that Q € M, since C C M. Then A,Q € M implies
that A = A°Q € M by (a).
Unions: Let A, B € M. Then AU B = (A°N B°)° € M.
Thus M is indeed a field, provided that (a) is true. It thus suffices to prove (a).

For each A € M, let Mg ={BeM : AB, A°B, AB® € M}. Note that it suffices to
prove that

(b) My =M for each fixed A € M.
We first show that
(c) M 4 is a monotone class.

Let B, be monotone in My, with limit set B. Since B, is monotone in My, it is also
monotone in M, and thus B = lim,, B, € M. Since B,, € My, we have AB,, € M, and
since AB,, is monotone in M, we have AB = lim,, AB,, € M. In like fashion, A°B and AB¢
are in M. Therefore, B € M 4, by definition of M 4. That is, (¢) holds.

We next show that

(d) My =M for each fixed A € C.

Let A € Cand let C € C. Then A € Mg, since C is a field. But A € M if and only if
C € My, by the symmetry of the definition of M 4. Thus C C M 4. That is,C C M4 C M,
and M 4 is a monotone class by (c). But M is the minimal monotone class containing C, by
the definition of M. Thus (d) holds. But in fact, we shall now strengthen (d) to

(e) Mp =M for each fixed B € M.

The conditions for membership in M imposed on pairs A, B are symmetric. Thus for A € C,
the statement established above in (d) that B € M(= M) is true if and only if A € Mp.
Thus C C Mp, where Mp is a monotone class. Thus Mp = M, since (as was earlier noted)
M is the smallest such monotone class. Thus (e) (and hence (a)) is established. O
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2 Construction and Extension of Measures

Definition 2.1 (Outer extension) Let Q be arbitrary. Let u be a c.a. measure on a field C
of subsets Q. For each A € 2% define

(1) w*(A) = inf {iu(An) A C [j A, with all 4,, € C} .

n=1

(This p* will turn out to be an outer measure on the class 22.) Now, p* is called the outer
extension of p. The sequences Ay, As, ... are called Carathéodory coverings. (There is always
at least one covering of every subset A, since Q € C.)

Theorem 2.1 (Carathéodory extension theorem) Let p be a c.a. measure on a field C.
Then the p* of (1) is a measure on the class A* of y*-measurable sets (as defined in (1.1.7)),
and A* is necessarily a o-field. Moreover, o[C] C A* The c.a. measure y is extended from C
to be a c.a. measure on A* simply by defining

(2) w(A) = p*(A) for each A in A*.
If i is o-finite on C, then the extension (2) of u to A* is unique and is also o-finite.

Comment: Later, exercise 2.1 will extend p to a “completed” o-field Au- When p is o-finite
on C, corollary 3 and proposition 2.1 below will then imply that A* = fl# and that this is
the largest possible o-field to which p can be uniquely extended.

Proof. The proof proceeds by a series of claims.

Claim 1: p* is an outer measure on (£2,2%).
Null: Now, p*(0) = 0, since 0,0, ... is a covering of (.
Monotone: Let A C B. Then every covering of Bis also a covering of A. Thus u*(A) < u*(B).
Countably subadditive: Let all A,, C £ be arbitrary. Let ¢ > 0. For each A, there is a
covering {A,x : k > 1} such that

(3) Z:OM(AM) < ' (A,) +€/2", since p*(A,) is an infimum.

[The choice of a convergent series (like €/2™) that adds to € is an important technique for the
reader to learn.] Now U, A,, C U, (UgA,k). Thus (since p* is monotone)

U, A < 0, U, Aw) <307 ilAne)

since the A,;’s form a covering of the set U Uk Ak
<3 A /2 = Y (A +e. by (3)

But € > 0 was arbitrary, and thus p*(U,, An) < >, 1" (An).

Claim 2: p*|C = p (that is, u*(C) = p(C) for all C € C), and C C A*.
Let C € C. Then p*(C) < u(C), since C, 0,0, ... is a covering of C. For the other direction, we
let Ay, As,...1in C be any covering of C. Since 4 is c.a. on C, and since U (A4, NC) = C € C,
we have from proposition 1.1.2(c) that

H(C) = (U (A, N C) <3 (A1 C) <3 (A,
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and thus p(C) < p*(C). Thus pu(C) = p*(C). We next show that any C' € C is also in A*.
Let C € C. Let € > 0, and let a test set T' be given. There exists a covering {A4,,}3° C C of T'
such that

(a) w(T) +e> Zoo (4,) since p*(7T) is an infimum
=2 H(CA) + 3
since p is c.a. on C with C and An inC

(b) > p*(CT) + p*(C°T)  since C'A,, covers CT and C°A,, covers C°T.

But € > 0 is arbitrary. Thus C' € A* Thus C C A*.

Claim 3: The class A* of p*-measurable subsets of ) is a field that contains C. Now,
A € A* implies that A¢ € A*: The definition of p*-measurable is symmetric in A and A°€.
And A, B € A* implies that AB € A*: For any test set T' C €2 we have the required inequality

w*(T) = W (TA) + p* (TA°) since A € A*
= u"(TAB) + pu*(TAB®) + p*(TA°B) + p* (T A°B°)
since B € A" with test set T'A and with test set T A°
> u(TAB) + " (TAB® +TA°B+TAB°) = u*(TAB) + u*(T(AB)°)

since p* is countably subadditive. As the reverse inequality is trivial,
(c) w (T) =" (TAB) + u*(T(AB)°), givingAB € A™.

Thus A* is a field.
Claim 4: p* is a f.a. measure on A*.
Let A, B € A* be disjoint. Finite additivity follows from

WA+ B) = i (A+ B)A) + 1" (A + B)AY)
since A € A" with test set A+ B

(d)  =p"(A) +p7(B).

Trivially, u*(A4) > 0 for all sets A. And p*(0) = 0 was shown in the first claim.

Claim 5: A* is a o-field, and it contains o[C].
It suffices to show that A = > “A, € A* whenever all A, € A*, since A* is a field. Now,
B, =" A, € A*, since A* is a field. Using B,, € A* for the first step,

p(T) = p*(TBn) + p(TBy) = p*(T'Bn) + p (T A%)
since p* is monotone and B;, D A°

= W (TBa)A) + 0" (TB)AS) + 1" (TA?)  as Ay € A”
W (TAy) + p* TZnAk ) + p* (T A°)
= A (TAY) + i (T(Y) A As) + ™ (T(Y) Ar) AS) + i (TA°)
p*(TAL) + p* (T Ag) + p*( TZ Ag) + (T A°)
(e) ZT (TAg) + p*(TA°).



2. CONSTRUCTION AND EXTENSION OF MEASURES 13

Letting n — oo gives

(f) W (@) =) w(TAR) + ' (TA)
(g) > p*(TA)+ p*(TA%)  since p* is countably subadditive.

Thus A € A*.

Claim 6: p* is c.a. on A*.
Replace T by A = Y °A,, in (f) to get p*(A) > > °u*(A,), and then countable subadditivity
gives the reverse inequality.

Claim 7: When g is a finite measure, its extension u* to A* is unique.
Let v denote any other extension of y to A*. Let A in A*. For any Carathéodory covering
Ay, Ag, ... of A (with the A,’s in C), countable subadditivity gives

V(A) S P(UFAL) <3 0(An) = 3 plAn),
since pt = v on A. Thus (recall the definition of p* in (1))
(h) v(A) < p*(A) forall Ae A*.
Note that the measures p* and v on A* also satisfy
() () +V(A) = p(Q) = 1 () = " (A) + i (4°)
for all A in A* (using Q € A for v(Q2) = p*(2)). Since (h) gives both
) vA)<p(A) and (A% < (A7)
(where all four of these terms are finite), we can infer from (i) that
(k) v(A)=p*(A) forall Ae A*.

This gives the uniqueness of p* on A*

Claim 8: Uniqueness of u* on A* also holds when p is a o-finite measure on C. Label
the sets of the measurable partition as D,,, and let Q,, = Z?Dk so that ©Q,, " Q. Claim 7
establishes that

Q) v(AQ,) = p*(AQ,) forall Ae A".
It follows that
(m) v(A) = lirrln v(AQ,) by proposition 1.1.2
= lim " (AQ,) by (1)
(n) = u*(A) by proposition 1.1.2,
completing the proof. In fact, the following corollary was established. |

Corollary 1  The p*-measurable sets A* of (1.1.7) were shown to contain ¢[C]. Thus we
can now view the c.a. measure p on the field C has having been extended uniquely to the
(useful and intelligible) o-field o[C], or as having been extended to the (less intelligible, but
at least as large) o-field A*. (We seek clarity.)
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Questions When we extended our measure p from the field C to the o-field A*, did we
actually go beyond o[C]? Can we go further? Corollary 2 and Corollary 3 will show that we
can always “complete” 1 on o[C], and in so doing extend it to (an obviously useful) o-field
named Au’ that is still contained in A*. Proposition 2.1 will show that there are definite
limitations to extension (the most famous example being the “Lebesgue sets” of proposition

2.3). In doing so, proposition 2.1 will imply that A* = A,,, which now gives us a very useful
interpretation of A*.

Definition 2.2 (Complete measures) Let (2, A, u) denote a measure space. If u(A) =
0, then A is called a null set. We call (Q, A, ) complete if whenever we have A C (some B)
€ A with p(B) = 0, we necessarily also have A € A. (That is, all subsets of sets of measure
0 are required to be measurable.)

Exercise 2.1 (Completion) Let (92, A, ) denote a measure space. Show that
(4) A, ={A: A C AC Ay with 4, Ay € A and pu(Az\A;) = 0}

(5) ={AUN: A€ A and N C (some B) € A having u(B) = 0}

(6) ={AAN:Aec A, and N C (some B) € Ahaving u(B) = 0},

and that A# is a o-field. Define fi on fl# by

(1) AAUN) = u(4)

for all A € A and for all N C (some B) € A having u(B) = 0. Show that (2, A,, i) is a
complete measure space for which i|A = pu. (Note: A proof must include a demonstration
that definition (7) leads to a well-defined fi. That is, whenever A; U N7 = A3 U No we must
have p(Ay) = u(Asz), so that i(A; UNy) = i(As U Na).)

Definition 2.3 (Lebesgue sets) The completion of Lebesgue measure on (R, B, A) is still
called Lebesgue measure, and it is still denoted by A. The resulting completed o-field B of
the Borel sets B is called the Lebesgue sets.

Corollary 2 When we complete a measure p on a o-field A, this completed measure fi is
the unique extension of u to A,. (It is typical to denote such extensions by p also (rather
than by [i), and to always make such extensions automatically.)

Corollary 3  (Thus when we begin with a o-finite measure p on a field C, both the extension
to A = 0[C] and the further extension to A, = 6[C|, are unique.) Here, we note that all sets
in /Alu = ¢[C], are in the class A* of p*-measurable sets. (Proposition 2.1 below will imply

that A, = A*.)

Proof.  Consider corollary 2 first. Let v denote any extension to A;r We will demonstrate
that

(a) V(AUN) = p(A) forall Ae A, and all null sets N

(that is, v = f1). Assume not. Then there exist sets A € A and N C (some B) in A with
#(B) = 0 such that v(AUN) > u(A) (necessarily, v(AUN) > v(A) = u(A)). For this A and
N we have
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wA) =v(A) <v(AUN)=v(AU(A°N)) where A°N C A°B = (null)
(b) =v(A)+v(A°N) <v(A)+v(B)

since v is a measure on the completion

(c) = u(A) + p(B) since v is an extension of p.

Hence p(B) > 0, which is a contradiction. Thus the extension is unique.

We now turn to corollary 3. Only the final claim needs demonstrating. Suppose A is in
6[C],. Then A = A’ UN for some A’ € A and some N satisfying N C B with u(B) = 0.
Since A* is a o-field, it suffices to show that any such N is in A*. Since p* is subadditive
and monotone, we have

() p*(T) < p*(TN) + " (TN®) = 1" (TN°) < 1 (D),

because p*(TN) = 0 follows from using B, (0, ... to cover TN. Thus equality holds in this
last equation, showing that N is p*-measurable. O

Exercise 2.2 Let p and v be finite measures on (2, A).

(a) Show by example that A, and A, need not be equal.

(b) Prove or disprove each half: Au = A, iff 4 and v have identical null sets.

(c) Give an example of an LS-measure p on R (see section 1.3) for which Bu =2f

Exercise 2.3 (a) Replace the sets A, in the field C used in definition (1) by the disjoint
sets B, = A,AS_;--- A5A] (which are also in C), to show that this definition could have
insisted on using disjoint sets A,,.

(b) (Approximation lemma; Halmos) Let the o-finite measure u on the field C be
extended to A = o][C]; also refer to this extension as pu. Show that for each A € A (or

A,) having p(A) < oo, and for each € > 0,
(8) w(AAC) < € for some set C' € C.

(Hint. Truncate the sum in (1.2.1) to define C.)

(¢) If u(A) = oo, then (8) can fail, even in a simple case—with a bad choice for C. Let p denote
counting measure on the integers. Now C = {C : C or C° is finite} is a field. Determine o[C].
Show that (8) fails for the set 4 of even integers.

Definition 2.4 (Regular measures on metric spaces) Let d denote a metric on 2, let A denote
the Borel sets, and let p be a measure on (€2, A). Suppose that for each set A in flu, and for
every € > 0, one can find an open set O, and a closed set C, for which both C. C A C O, and
#(ON\Ce) < e. Suppose also that if 1(A) < oo, one then requires that the set C, be compact.
Then p is called a regular measure. (Note exercise 1.3.1 below. Contrast its content with

(8).)

Exercise 2.4 (Nonmeasurable sets) Let § consist of the sixteen values 1, ..., 16. (Think
of them arranged in four rows of four values.) Let

Cy ={1,2,3,4,5,6,7,8}, Cy = {9,10,11,12,13,14, 15,16},
Cs ={1,2,5,6,9,10,13,14}, C4 = {3,4,7,8,11,12,15,16}.

Let C denote the field generated by {Cy, Ca, C5, C4}, and let A = o[C].
(a) Show that A = o[C] # 2%. (Note that 2 contains 2'6 = 65,536 sets.)
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(b) Let u(C;) = ,1 <i < 4, with u(C1C3) = 1. Show A, = A, with 2* = 16 sets.
(c) Let u(C;) = %,i = 2,3,4, with 4(C2Cy) = 0. Show that A, has 210 = 1024 sets.
(d) Illustrate proposition 2.1 below in the context of this exercise.

Proposition 2.1 (Not all sets need be measurable) Let p be a measure on A = o[C], with C
a field. If B ¢ A,, then there are infinitely many measures on o[A, U {B}] that agree with
won C. (Thus the o-field /Al# is as far as we can go with the unique extension process. We
merely state this observation for reference, without proof. Note exercise 2.4d.)

Proposition 2.2 (Not all subsets are Lebesgue sets) There is a subset D of R that is not
in the Lebesgue sets By. (This will require the axiom of choice.)

Proof. Define the equivalence relation ~ on elements of [0, 1) by  ~ y if z—y is a rational
number. Use the axiom of choice to specify a set D that contains exactly one element from
each equivalence class. Now define D, = {z + x (modulo 1) : x € D} for each rational z in
[0,1), so that [0,1) = > D, represents [0, 1) as a countable union of disjoint sets. Moreover,
all D, must have the same outer measure; call it a. Assume D = Dy is measurable. But then
1=X[0,1)) =>>, AX(D.) = _agivesonly > _a =0 (when a =0) and ) a = oo (when
a > 0) as possibilities. This is a contradiction. Thus D ¢ Ba. O

Exercise 2.5 Just understand the sketch above, noting that D = )" D, (with disjoint sets
D, for the rationals z).

Proposition 2.3 (Not all Lebesgue sets are Borel sets) There necessarily exists a set A €
B\ \B that is a Lebesgue set but not a Borel set.

Proof. This proof follows exercise 6.3.4 below; it requires the axiom of choice. ([l
Exercise 2.6 Every subset A of Q having p*(A4) =0 is a p*-measurable set.
Exercise 2.7 * Show that the Carathéodory theorem can fail if u is not o-finite.

Coverings

Earlier in this section we encountered Carathéodory coverings.

Exercise 2.8 * (Vitali covering) (a) We say that a family V of intervals I is a Vitali covering
of a set D if for each x € D and each € > 0 there exists an interval I € V for which = € I and
AI) <e.

(b) (Vitali covering theorem) Let D C R have outer Lebesgue measure A*(D) < oco. Let V
be a collection of closed intervals that forms a Vitali covering of D. Then there exists a finite
number of pairwise disjoint intervals (Iy, ..., I,) in V whose Lebesgue outer measure \*
satisfies

@ A (D\Z:;l Ij) <e

(Compare this “nice approximation” of a set to the nice approximations given in exercise
2.3 and in definition 2.4.) [Lebesgue measure A will be formally shown to exist in the next
section, and A\* will be discussed more fully.] [Result (9) will be useful in establishing the
Lebesgue result that increasing functions on R necessarily have a derivative, except perhaps
on a set having Lebesgue measure zero.|
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Exercise 2.9 * (Heine-Borel) If {U; : t € T} is an arbitrary collection of open sets that
covers a compact subset D of R, then there exists a finite number of them Uy, ..., U,, that
also covers D.

The familiar Heine—Borel result will be frequently used. It is stated here only to contrast
it with the important new ideas of Carathéodory and Vitali coverings.
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3 Lebesgue—Stieltjes Measures

At the moment we know only a few measures informally. We now construct the large class
of measures that lies at the heart of probability theory.

Definition 3.1 (Lebesgue—Stieltjes measure) A measure p on the real line R assign-
ing finite values to finite intervals is called a Lebesgue—Stieltjes measure. (The measure
pon (R, 2%) whose value u(A) for any set A equals the number of rationals in A is not
a Lebesgue—Stieltjes measure.)

Definition 3.2 (gdf) A finite / function F on R that is right-continuous is called a gen-
eralized df (to be abbreviated gdf). Then F_(-) = lim, ~.F(y) denotes the left-continuous
version of F. The mass function of F is defined by

AF()=F()—F_), while F(a, b] = F(b)— F(a) forall a<b

is called the increment function of F. Identify gdfs having the same increment function. Only
one member F of each equivalence class so obtained satisfies F_(0) = 0, and this F can (and
occasionally will) be used as the representative member of the class (also to be called the
representative gdf).

Example 3.1 We earlier defined three measures on (R, B) informally.

(a) For Lebesgue measure A, a gdf is the identity function F(z) = z.

(b) For counting measure, a gdf is the greatest integer function F'(z) = [z].

(c) For unit point mass at o, a gdf is F'(x) = 15, ) (). O

Theorem 3.1 (Correspondence theorem; Loéve) The relationship
(1) w((a, b)) = F(a, b foral —oo<a<b< 400
establishes a 1-to-1 correspondence between the Lebesgue—Stieltjes measures 1 on B and the

set of representative members of the equivalence classes of generalized dfs. (Each such p
extends uniquely to B, —but it is still labeled as 1, not f.)

Notation 3.1 We formally establish some notation that will be used throughout. Impor-
tant classes of sets include:

(2) Cr = {all intervals (a, b], (—o0, b], or (a, +00) : —00 < a < b < +00}.

(3) Cr = {all finite disjoint unions of intervals inC;} = (a field).

(4) B = o[Cr] = (the o-field of Borel sets).

(5) B,, = (the o-field B completed for the measure ).

(6)  B=olB, {—oc}, {+ool] and B, =oalB,, {—oo}, {+oo}]. 0

Proof.  Given a LS-measure pu, define the increment function F(a, b] via (1). We clearly
have 0 < F'(a, b] < oo for all finite a,b, and F'(a, b] — 0 as b\, a, by proposition 1.1.2. Now
specify F_(0) =0, F(0) = n({0}), F(b) = F(0)+F(0, b] for b > 0, and F(a) = F(0)—F(a, 0]
for a < 0. This F(-) is the representative gdf.

Given a representative gdf, we define p on the collection Z of all finite intervals (a, b] via
(1). We will now show that u is a well-defined and c.a. measure on this collection Z of finite
intervals.
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Nonnegative: p > 0 for any (a, b], since F'is /.
Null: p(0) =0, since @ = (a, a] and F(a, a] = 0.
Countably additive on Z: Let I = (a, b] = > "I, =Y {"(an, b,]). We must show

() (Y L) =D nll).

First, we will show that > "u(Iy) < u(I). Fix n. Then >[Iy C I, so that (relabel if
necessary, so that Ip,..., I, is a left-to-right ordering of these intervals)

() Y =Y Far byl < Fla. b = (D).

Letting n — oo in (b) gives the first claim.

Next, we will show that p(I) < >7°u(Ix). Suppose b—a > € > 0 (the case b—a = 0 is trivial,
as u(@) =0). Fix 6 > 0. For each k > 1, use the right continuity of F to choose an €, > 0 so
small that

(c) F(bg, bp + €] < 0/2%, and define J;, = (ag, cx) = (ag, by + €x).

These Jj, form an open cover of the compact interval [a + €, ], so that some finite number
of them are known to cover [a + €, b], by the Heine-Borel theorem. Sorting through these
intervals one at a time, choose (aj, ¢1) to contain b, choose (as, ¢2) to contain aq, choose
(a3, c3) to contain as,... ; finally (for some K), choose (ax, ck) to contain a + e. Then
(relabeling the subscripts, if necessary)

K K K
Fla+e b] < Flag, a] < Zl Flak, cx] < Zl F(ak, bk]‘f'zl 6/2"

(d) <3 ulh) +o.

Let 6\, 0 and then € N\, 0 in (d) to obtain the second claim (and the truth of (a)) as

() w(I)=Fla, 0] <> "p(l),

We will now show that p is a well-defined c.a. measure on the given field Cp. If A =
> nIn € Cp with each I, of type (a, b, then we define u(A) = >, p(I,). If we also have
A=>"1I, then we must show (where the subscripts m and n could take on either a finite
or a countably infinite number of values) that

() 3wl =3 I = u(A).

Now, I, =ANI, =5 1,1, and I, = Al, = I I, so p is well defined by

@ 3 )= S wlad) =3 3 (0 = u(L) = p(A).

The c.a. of p on Cg is then trivial; if disjoint A,, = > I, for each n, it then follows that
Finally, a measure 1 on Cp determines a unique measure on B, as is guaranteed by the
Carathéodory extension of theorem 1.2.1. O
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Exercise 3.1 (Calculating Lebesgue—Stieltjes measure) (i) Consider a gdf F'on R and
its associated Lebesgue-Stieltjes measure pup on (R,Cr), for the field Cx of (3). Show that we
can replace the definition of the outer extension ;}, to the Borel o-field B in the Carethéodory
fashion of (1.3.1) by

u}(A)Zinf{Zoo (F(dn) — Flen)) - Aczzil(cn,dn]}

n=1

for countable unions of disjoint subintervals (¢, d,] of R. Show also that

(1) pp(A) = inf {Zm (F(dn) — F(ep)): AC Z;(cn,dn}} for all A € By, .

n=1

(This gives a very concrete visualization of how the ppr measure of an arbitrary subset of R
is formed—and this approach is the same for every Lebesgue—Stieltjes measure pp on R.)

(ii) Let I denote any subinterval of the real line R. Let F' denote any fixed gdf on I. (Now
F(z) =xisa gdf on R itself, F(z) =1—e *isagdfon [0, o), and F(z) =1/(1 —z) -1
is a gdf on [0,1).) Define ur((a, b)) = F(b) — F(a) for all @ < b with a and b in I. Let
By ={BnNI:Bec B} Itis still true that the right hand side of (7) gives the value of pp(A)
for every A in the completion of the o-field B;. That is, taking the infimum over disjoint
intervals of the type (a, b| is suffficient.

Definition 3.3 (Absolutely continuous dfs) Say that a gdf F on an interval I is absolutely
continuous if for all € > 0 there exists a d. > 0 for which

(8) Z::llF(dk) — F(ex)| <€ provided Z:Zl(dk —cp) < 0

whenever n > 1 and all of the intevals (¢, di] are mutually disjoint subintervals of I. (Note
that the first and third dfs in part (ii) of the previous exercise are absolutely continuous,
while the third one is continuous but not even uniformly continuous.)

Exercise 3.2 (All LS-measures on (R, B) are regular) Show that all Lebesgue—Stieltjes mea-
sures on (R, B) are regular measures (see definition 1.2.4). (Use the open intervals J,, in the
theorem 3.1 proof.)

Probability Measures, Probability Spaces, and DF's

Definition 3.4 (Probability distributions P(-) and dfs F(-))

(a) In probability theory we think of 2 as the set of all possible outcomes of some experiment,
and we refer to it as the sample space. The individual points w in  are referred to as the
elementary outcomes. The measurable subsets A in the collection A are referred to as events.
A measure of interest is now denoted by P; it is called a probability measure, and must satisfy
P(Q) = 1. We refer to P(A) as the probability of A, for each event A in Ap. The triple
(Q, A, P) (or (£, Ap, 13), if this is different) is referred to as a probability space.

(b) An ' right-continuous function F on R having F(—o0) = lim,_,_ o F(z) = 0 and
F(400) = lim,—.1o F(x) = 1 is called a distribution function (which we will abbreviate
as df). (For probability measures, setting F'(—oo) = 0 is used to specify the representative
df.)

Corollary 1 (The correspondence theorem for dfs) Defining P(-) on all intervals (a,b] via
P((a, b]) = F(b) — F(a) for all —oo < a < b < 400 establishes a 1-to-1 correspondence
between probability distributions P(-) on (R, B) and dfs F(-) on R.
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Exercise 3.3 Prove this trivial corollary.

Remark 3.1 (Density functions) Those probability distributions that have an absolutely
continuous df will turn out be be exactly those probablity distributions that have a “density
function” f. Moreover, F’ will always exist for any df F (except perhaps on a set of Lebesgue
measure 0), but it will serve as a density function only for the absolutely continuous dfs.
Moreover, in chapter 4 we will also learn to think of a “probability mass function” as a
density with respect to counting measure. O



Chapter 2

Measurable Functions
and Convergence

1 Mappings and o-Fields

Notation 1.1 (Inversg images) Suppose X denotes a function mapping some set €2 into
the extended real line R = RU{+oc}; we denote this by X : @ — R. Let X and X~ denote
the positive part and the negative part of X, respectively:

1) X*w)= { g““’) iefls‘f’(‘*’) =0,

S
i
S
I

{ —X(w) if X(w) <0,
0 else.

Note that

(3) X=X"-X" and |X|=XT+X =X+2X" =2X"-X.
We also use the following notation:

(4) X=r]=X"!r)={w: X(w) =7} for all real r,

(5) [X € B]= X Y(B)={w: X(w) € B} for all Borel sets B,

(6) X YB)={X"YB): BeB}

We call these the inverse images of r, B, and B, respectively. We let

(7) B =o[B, {+o00}, {—o0}].
Inverse images are also well-defined when X : Q — ' for arbitrary sets  and . O

For A,B € Q we define AAB = AB°U A°B and A\B = AB°. There is use for the
notation
(© Springer International Publishing AG 2017 23

G.R. Shorack, Probability for Statisticians, Springer Texts in Statistics,
DOI 10.1007/978-3-319-52207-4 2



24 CHAPTER 2. MEASURABLE FUNCTIONS AND CONVERGENCE

@) X[l = sup | X(w)],
weN
and we will also reintroduce this sup norm in other contexts below.

Proposition 1.1 (Basics of inverse images) Let X : @ — Q and YV : ' — Q". Let T
denote an arbitrary index set. Then for all A, B, A; C €’ we have

9 X 'BY)=[xX"1B)", X7HA\B) = X1 (A\X1(B),

—1 _ -1 —1 _ —1
(1) X (UteTAt) - teTX (4e) X (nteTAt> N tETX (A2).
For all sets A C Q| the composition Y o X satisfies
(1) (YoX)™'(4) = X{(Y~1(4)) = XTo¥1(A).

Proof.  Trivial. O

Proposition 1.2 (Preservation of o-fields) Let X : Q — Q. Then:

(12) A= X"!(a o-field A" of subsets of Q') = (a o-field of subsets of Q).
(13) X Yo[C']) = o[ X 1] for any collection C’ of subsets of €'.

(14) A = {A": X YA € (a specific o-field A of subsets of Q)}
= (a o-field of subsets of Q).

Proof. Now, (12) is trivial from proposition 1.1. Consider (14). Now:

(a) A e A implies X ~1(A") € A
implies X ~1(A¢) = [X1(A)]ce A implies A" € A/,

(b) A,’se A implies X 1(A/) se A
implies X (U, A,) =U,X 1(4,) € A implies (J,, 4], € A'.

This gives (14). Consider (13). Using (12) gives

(c) X 1(o]C']) =(a o-field containing X ~(C")) D o[X~(C")].

Then (14) shows that

(d) A/ ={A": X7 1(A) € o[X~1(C")]} =(a o-field containing C") D ¢[C’], so that (using
first o[C'] € A’ from (d), and then the definition of A’ in (d))

(e) X~ 1(o[C']) c X~ HA) C o[XH(C)).

Combining (c) and (e) gives (13). [We will apply (13) below to obtain (2.2.6).] O

Roughly, using (12) we will restrict X so that F(X) = X~!(B) c A for our original
(€, A, i), so that we can then “induce” a measure on (R,B). Or, (14) tells us that the
collection A’ is such that we can always induce a measure on (£',.A"). We do this in the next
section. First, we generalize our definition of Borel sets to n dimensions.
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Example 1.1 (Euclidean space) Let
R,=Rx---xR={(r1,...,mn): eachr; isin R}.

Let U,, denote all open subsets of R,,, in the usual Euclidean metric. Then

(15) B, = o[U,] is called the class of Borel sets of R,,.

Following the usual notation, By X -+ X By, = {(b1,...,b,) : b1 € By,...,b, € By}
Now let

(16) Hé_lBEBx X B=o[{By X+ x B, : all B; are in B}].
Now consider
(17)  o[{(cocsm1] X+ X (200, 7n] : all r; are in R}].

Note that the three o-fields of (15), (16), and (17) are equal. Just observe that each of
these three classes generates the generators of the other two classes, and apply exercise 1.1.1.
(Surely, we can define a generalization of area Ay on (Rg, B2) by beginning with A\o(B; x By) =
A(B1) X A(Bs) for all By and Bs in B, and then extending to all sets in B2. We will do this
in theorem 5.1.1, and we will call it Lebesgue measure on two-dimensional Euclidean space.
This clearly extends to A, on (R, B,).) O
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2 Measurable Functions

We seek a large usable class of functions that is closed under passage to the limit. This
is the fundamental property of the class of measurable functions. Propositions2.2 and 2.3
below will show that the class of measurable functions is also closed under all of the standard
mathematical operations. Thus, this class is sufficient for our needs.

Definition 2.1 (Simple functions, etc.) Let the measure space (9, A, 1) be given and fixed
throughout our discussion. Consider the following classes of functions. The indicator function
14(-) of the set A C  is defined by

1 ifweA,
(1) la(w) = {0 else.

A simple function is of the form

(2) X(w) = zn:xilAi (w) for zn:Ai =Q withall A; €A, and z; €R.
i=1 1

An elementary function is of the form

(3) X(w) = imi]‘Ai (w) for i A; = Qwith all A; € A, and z; € R.
i=1

i=1

Definition 2.2 (Measurability) Suppose that X : Q — Q', where (Q,.4) and (€, A’) are
both measurable spaces. We then say that X is A’-A-measurable if X~1(A’) C A. We also
denote this by writing either

(4) X:(QA) = (QA) or X:(QA4Ap — (QA)

(or even X : (Q,Apu) — (@, A, ) for the measure /' “induced” on (€, A") by the
mapping X, as will soon be defined). In the special case X : (Q,.4) — (R, B), we simply call
X measurable; and in this special case we let F(X) = X ~(B) denote the sub o-field of A
generated by X.

Proposition 2.1 (Measurability criteria) Let X : Q — R. Suppose o[C] = B.
Then measurability can be characterized by either of the following:

(5) X is measurable if and only if X (C) C A.
(6) X is measurable if and only if X ~!([—oc,z]) € A for all z € R.

Note that we could replace [—oo, z] by any one of [—oo, ), [z, +00], or (z, +00].

Proof.  Consider (5). Let X !(C) C A. Then
(a) X YB)=X"1(cC)) =] X1(0)] by proposition 2.1.2
(b) C A since X71(C) C A, and A is a o-field.

The other direction is trivial. Thus (5) holds. To demonstrate (6), we need to show that B
satisfies
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(c)  o[{[-o0,2]: 2 € R}] = B=0[B,{—00}, {+o0}].

Since B = ¢[C;] for C; as in (1.3.2) and since

(d) (av b] = [—OO, b} N [—OO, a]c7 [_007 b) = U<1>o[_007 b— 1/77‘]7
(e) {_OO} = ﬂn[—OO, —TL], {+OO} = nn[_ooan]cv etc.,

the equality (c) is obvious. The rest is trivial.

27

O

Proposition 2.2 (Measurability of common functions) Let X,Y, and X,,’s be mea-
surable functions. Consider ¢X with ¢ > 0,—X, inf X,,, sup X,,, liminf X,,, limsup X,,,
lim X, if it exists, X2, X £V if it is well-defined, XY where 0 - 0o = 0, X/Y if it is well-
defined, X+, X~ |X|, and the composite g(X) for a continuous g and for any measurable

function g. All of these are measurable functions.

Proposition 2.3 (Measurability via simple functions)
(7) Simple and elementary functions are measurable.

X : Q — R is measurable if and only if

X is the limit of a sequence of simple functions.
Moreover:

) If X > 0 is measurable, then X is
9
the limit of a sequence of simple functions that are >0 and .

The X,,’s and Z,,’s that are defined in (10) and (12) below are important.

Proof. The functions in proposition 2.2 are measurable, as is now shown.

(a) [eX <z]=[X <z/d, [-X <a]=[X > —z].

(b) [inf X, <2z]=U[X, <z], sup X,, = —inf(—X,,).

(¢) liminf X,, = sup(ggf Xk), limsup X,, = — liminf(—X,,).

(d) lim X, = liminf X, provided that lim X, (w) exists for all w.

(6) [X?<a]l=[-Vr<X<Val=[X<Van[X < —Va]

Each of the sets where X or Y equals 0, 00, or —oo is measurable; use this below.

(f) X >Y]=U,{X >r>Y :risrational}, so [X > Y] is a measurable set.

So, [ X +Y >z =[X >2z-Y] € Asince z — Y is trivially measurable.

(Here [X = oco] N [Y = —o0] = 0 is implied, as X + Y is well defined. Etc., below.)
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(g0 X-Y=X+(-Y) and XY =[(X+Y)?—(X-Y)?)/4
(h)  X/Y =X x(1/Y),

since [1/Y < 2] = [Y > 1/z] for z > 0 in case Y > 0, and for general Y one can write
% = %1[y>0] — 7—1},1[y<0] with the two indicator functions measurable.

(i) Xt=XVO0and X~ =(—X)VO0.

For g measurable, (go X)™*(B) = X 1(¢7*(B)) ¢ X '(B) C A. Then continuous g are
measurable, since
4] g Y(B) = g !(ofopen sets]) = o[g~!(open sets)] C ofopen sets] C B, and both
g ({+o0}) and g~ ({—oc0}) are a (possibly void) subset of {—o0, +00}. Now apply the result
for measurable g.

We now prove proposition 2.3. Claim (7) is trivial. Consider (8). Define simple functions
X, by

n2™
k-1
(10)  Xp =) on * {1[’“273§X<2%] - 1[%S—X<2%]}
=1
+ X {lxsn] = l=x>n] }-

Since | X, (w) — X(w)| < 27" for | X (w)| < n, we have
(k) Xp(w) = X(w) asn— oo for each w € .

Also, the nested subdivisions k/2™ cause X,, to satisfy
Q) X, /" when X > 0.
We extend proposition 2.3 slightly by further observing that

(11) X, — X|| =0 asn— oo, if X is bounded.

Also, the elementary functions

are always such that

(13) (Zn — X) X lj—ooex<oq)ll £1/2" =0 asn — oo. 0

Proposition 2.4 (The discontinuity set is measurable; Billingsley) If (M,d) and (M’ ,d’)
are metric spaces and ¢ : M — M’ is any function (not necessarily a measurable function),
then the discontinuity set of ¢ defined by
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(14) Dy ={x € M : ¢ is not continuous at z}

is necessarily in the Borel o-field B, (that is, the o-field generated by the d-open subsets of M).

Proof. Let

Acs={r e M :d(x,y) < d,d(z,z) <6 and

(®) d' (Y (y),1(z)) > e for distinct y,z € M}.

Note that A, s is an open set, since {u € M : d(x,u) < dp} C Acs will necessarily occur if
do = {0 — [d(x,y) V d(z, z)]}/2; that is, the y and z that work for x also work for all w in M
that are sufficiently close to z. (Note: The y that worked for  may have been z itself.) Then

(b) Dy = Uﬁlﬂ;‘ilAEiﬁj € Ba,

where €1, €2,... and 01, d2, ... both denote the positive rationals, since each A, s is an open
set. ]

Induced Measures

Example 2.1 (Induced measures) We now turn to the “induced measure” previewed
above. Suppose X : (Q, A, u) — (', A"), so that X is A’-A-measurable. We define px = 1/
by

(15)  px(A) = (A)=w(X1(A")  foreach A’ € A

Then pux = ' is a measure on (', A’) called the induced measure. This is true, since we
verify that

(@) p/(0) =pX7H0)) = u®) =0, and

p ST AL) = p (XTI AL)) = (7 XH(AY)
(b) =307 m(XTH(AL)) = 2077 /' (A).

Note also that

(€)  w'(Q)=pX~HL)) = p(Q).

Thus if i is a probability measure, then so is pux = p’. Note also that we could regard X as
an A’-F(X)-measurable transformation from the measure space (Q, F(X), u) to (', A", ux).

Suppose further that F is a generalized df on the real line R, and that pg(-) is the
associated measure on (R, B) satisfying pup((a,b]) = F(b) — F(a) for all @ and b (as was
guaranteed by the correspondence theorem (theorem 1.3.1)). Thus (R, B, up) is a measure
space. Define

(16) X(w)=w for all w € R.

Then X is a measurable transformation from (R, B, ) to (R, B) whose induced measure jx
is equal to pp. Thus for any given df F' we can always construct a measurable function X
whose df is F. |
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Exercise 2.1 Suppose (2, A) = (Rg, Bs), where By denotes the o-field generated by all
open subsets of the plane. Recall that this o-field contains all sets B x R and R x B for all
B € B; here By x By = {(r1,r2) : 1 € By,r2 € Ba}. Now define measurable transformations
X1((r1,72)) = r1 and Xo(r1,73)) = 2. Then define Z; = (X? + X2)Y/? and Z, = sign(X; —
Xs), where sign(r) equals 1, 0,—1 according as r is > 0,= 0,< 0. The exercise is to give
geometric descriptions of the o-fields F(Z,), F(Z2), and F(Z1, Z3).

Proposition 2.5 (The form of an F(Z)-measurable function) Suppose that Z is a mea-
surable function on (£2,.A) and that Y is F(Z)-measurable. Then there must exist a measur-
able function g on (R, B) such that Y = ¢g(Z).

Proof. (The approach of this proof is to consider indicator functions, simple functions,
nonnegative functions, general functions. This approach will be used again and again. Learn
it!) Suppose that ¥ = 1p for some set D € F(Z), so that Y is an indicator function that is
F(Z)-measurable. Then we can rewrite Y as Y = 1p = 1z-1(p) = 15(Z) = g(Z), for some
B € B that depends on D, where g(r) = 1p(r). Thus the proposition holds for indicator
functions. It holds for simple functions, since when all B; € B,

Y =3 "cilp, => 1" cilz-yp,) =21 cilp,(Z) = g(Z).

Let Y > 0 be F(Z)-measurable. Then there do exist “simple J(Z)-measurable functions Y,
such that Y = lim,, lfn = lim,, g,(Z) for the simple B-measurable functions g,. Now let
g = lim g,,, which is B-measurable, and note that Y = g(Z). For general Y = Y+ — Y~ use

g=9"—g". O

Exercise 2.2 (Measurability criterion) Let C denote a 7T-system of subsets of . Let V
denote a vector space of functions; that is, X +Y € V and aX € V for all X|Y € V and all
a € R—and, all the usual elementary facts hold.

(a) Suppose that:
(17)  1lc eV forall Cel.

(18) IfA, /A withly, €V, thenly e V.

Show that 14 € V for every A € o[C].

(b) It then follows trivially that every simple function
m . .

(19) X, = Zl a;ly, isinV;

here m > 1, all ; € R, and Y." A; = Q with all A; € o[C].

(¢) Now suppose further that X,, / X for X,,’s as in (19) implies that X € V. Show that V
contains all o[C]-measurable functions.
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3 Convergence

Convergence Almost Everywhere

Definition 3.1 (—,..) Let X1, Xs,... denote measurable functions on (2, A4, i) to (R, B).
Say that the sequence X,, converges almost everywhere to X (denoted by X,, —,. X as
n — oo) if for some N € A for which u(N) = 0 we have X, (w) — X(w) as n — oo for
all w ¢ N. If for all w ¢ N the sequence X, (w) is a Cauchy sequence, then we say that
the sequence X,, mutually converges a.e. and denote this by writing X,, — X,;, —4.. 0 as
m An — oco. (Here, m An = min(m,n).)

Exercise 3.1 Let X;, Xo,... be measurable functions from (£, A, i) to (R, B).
(a) If X, =g X, then X = X a.e. for some measurable X.

(b) If X,, —4.. X and p is complete, then X itself is measurable.

Proposition 3.1 A sequence of measurable functions X,, that are a.e. finite converges a.e.
to a measurable function X that is a.e. finite if and only if these functions X, converges mutu-
ally a.e. (Thus we can redefine such functions on null sets and make them everywhere finite
and everywhere convergent and/or follow the convention of corollary 2 to the Carethéodory
theorem 1.2.1 and automatically complete every measure.)

Proof. The union of the countable number of null sets on which finiteness or convergence
fails is again a null set N. On N€¢, the claim is just a property of the real numbers. |

Proposition 3.2 (The convergence and divergence sets are measurable) Consider
the finite measurable functions X, X1, Xo, ... (perhaps redefined on null sets to achieve this);
thus, they are B-A-measurable. Then the convergence and mutual convergence sets are
measurable. In fact, the convergence set is given by

oo oo o0

(1) (X, — X] = ﬂUﬂbX X|<HEA,

k=1n=1m=n

and the mutual convergence set is given by

oo oo oo

(2) X —Xm—0l=(J N [|Xm—Xn|<H € A

k=1n=1m=n
Proof.  Just read the right-hand side of (1) as, for all e = 1/k > 0 there exists an n such
that for all m > n we have |X,,(w) — X(w)| < 1/k. (Practice saying this until it makes
sense. ) O

Taking complements in (1) allows the divergence set to be expressed via

oo o0 oo

(3) x.-x=UUN U [|X - X|> }EUAk with Ay /in k,
k=1

k=1n=1m=n

o0 oo
(4) Ag = ﬂ _1D;m7 and the Dy, = U ([ X = X[ > 1/k] are N\ inn.
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Proposition 3.3 Consider finite measurable X,’s and a finite measurable X on
any (2, A, p). (i) We have

Xn —a.e. (such an X) iff X, —Xm —ae 0 iff
(5) “(ﬂnzlum:n“Xm —X,|>¢)=0, foralle>0.

(A finite limit X (w) exists if and only if the Cauchy criterion holds; and we want to be able
to check for the existence of a finite limit X (w) without knowing its value.)
(ii)(Most useful criterion for —,.) On any (Q, A, 1), we have

X,, — a.e. (some finite measurable X) provided

6) u (U::nuxm ~ X > e]) —0,for all € > 0, iff

(7) w(| max | X — Xn| > €]) <€ for all N > n > (some n,),for all € > 0.

Proof. Use proposition 1.1.2 on the " sets in the mutual convergence analog of the sets
Aj in (3) to obtain (5). Then the intersection of sets in (5) is a subset of each set in the
intersection; thus (6) yields (5). Finally, the sets in (7) increase to the set in (6); so use
proposition 1.1.2 yet again. (Replace X, by X in (5), (6), and (7) and require u(Q) < oc.
Then the converse that (5) implies (6) holds, as the events in (6) are then “\ .) O

Remark 3.1 (Additional measurability for convergence and divergence) Suppose we still
assume that X;, Xs,... are finite measurable functions. Then the following sets are seen
to be measurable:

[w: X, (w) = X(w) € R¢ = [liminf X,, < limsup X,,]

(8) = U ational »liminf X,, <7 < limsup X,,| € A,
(9) [limsup X,, = +o0] = ﬂooil[lim sup X, > m] € A.

These comments reflect the following fact: If X, (w) does not converge to a finite
number, then there are several different possibilities; but these interesting events are all
measurable. O

Convergence in Measure

Definition 3.2 (—,) A given sequence of measurable and a.e. finite functions Xy, Xo, ...
is said to converge in measure to the measurable function X taking values in R (to be denoted
by X,, —, X as n — oo) if

(10)  w([|Xn—X|>¢)—0 asn — oo, for all € > 0.

(Such convergence implies that X must be finite a.s., as
[1X] = o] « { U 11Xkl = o] } U[1 X0 = X| > ]

shows.) We say that these X,, converge mutually in measure, which we denote by writing
X — Xy = 0as mAn — oo, if u([| Xm — Xp| >€]) = 0as m An — oo, for each € > 0.
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Proposition 3.4 (a) If X,, —, X and X,, —, X, then X = X a.e.
(b) On a complete measure space, X = X on N¢, for a null set N.

Proof. Foralle>0

(2) (X = X| 2 2€) < w([| X0 = X| 2 €]) + p([|Xn — X| 2 €]) = 0,

giving u([|X — X| > ¢]) = 0 for all € > 0. Thus

(b)  w(X # X)) = pUlIX = X| = 1/K) < X7u(X - X[ > k) = 370,

as claimed. 0O

Exercise 3.2 (a) Show that in general —, does not imply —g.c..
(b) Give an example with £(Q) = oo where —,_.. does not imply —,,.

Theorem 3.1 (Relating —, to —,.) Let X and X1, X»,... be measurable and finite a.e.
functions. The following are true.

(11) X, —a.e (such an X) if and only if X, — X —ae O.
(12) X, —, (such an X) if and only if X, — X,,, —, 0.
(13)  Let pu(€2) < oco. Then X,, —¢.. (such an X) implies X,, —, X.

(14)  (Riesz) If X,, —, X, then for some nj we have X,,, —,. X. (See (16)).

(Reducing —, to — a.e. by going to subsequences) Suppose ;(£2) < co. Then

(15) Xy —u X if and only if
15
each subsequence n’ has a further n” on which X,,» —,... (such an X).

Proof. Now, (11) is proposition 3.1, and (12) is exercise 3.3 below. Result (13) comes from
the elementary observation that

(@) [ Xn = X| =€) < (U [1Xm = X| = €]) — 0, by (6).

To prove (14), choose ny T such that
(b)  u(Ar) = p((|Xn, — X[ >1/2"]) <1/2%,

with p([| X, — X| > 1/2*]) < 1/2* for all n > nj. Now let
(¢)  Bm=Uj—,, Ak, so that u(B,,) <Y ;o 27k <1/2m-1

On B¢, = N7 A¢ we have |X,,, — X| < 1/2* for all k > m, so that
(d) | X, (W) — X(w)] <1/2% — 0 as k — oo, for each w € BS,,

with p(B,,) < 1/2™~1. Since convergence occurs on each B, we have
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(e) X, (w)— X(w)ask — oo for eachw e C =J0-_, B¢

m=1"m>

where B,,, = Jre,,, Ay is \, with ((-_,By) C (every By,). So

(£)  w(C) = p(N_yBm) < limsup u(B,,) < lim1/2m~ 1 =0,

completing the proof of (14).
(Comment on exercise 3.3: When X,, —, X, analogy with (a) gives

(16)  pu({| X — Xn| > 1/2F1) < 1/2F for all m,n > (some ny).

Thus A, = { [X,, — Xp,,,| > 1/2F} has P(Ag) < 1/2F for all k. In analogy with the
first paragraph, prove the a.s. convergence of the X,,, to some X on this subsequence by
considering

(17) |X7lk - an| < |(Xnk - Xnk+1) +e (Xné—l - X”e)|'

Then show that the whole sequence converges in measure to this X.)
Consider the unproven half of (15). Suppose that every n’ contains a further n” as claimed
(with a particular X). Assume that X,, —, X fails. Then for some ¢, > 0 and some n’

(g)  limy, p([|Xn — X| > €)) = (some a,) > 0.

But we are given that some further subsequence n’ has X,,» —,. X, and thus X,,» —, X
by (13), using u(€2) < co. Thus

(h)  limp p([[ X — X[ > €0]) = 0;
but this is a contradiction of (g). O

Exercise 3.3 Asin (12), show that X,, —, X if and only if X,, — X,, —, 0. (Hint. Adapt
the proof of (16).)

Exercise 3.4 (a) Suppose that p() < oo and ¢ is continuous a.e. px (that is, g is
continuous except perhaps on a set of 1x measure 0). Then X,, —,, X implies that g(X,,) —,
9(X).

(b) Let g be uniformly continuous on the real line. Then X,, —, X implies that g(X,,) —,
g(X). (Here, p(2) = oo is allowed.)

Exercise 3.5 (a) (Dini) Consider continuous transformations X,, from a compact space
2 to R for which X,,(w) / X (w) for each w € Q, where X is continuous. Then X,, converges
uniformly to X on Q.(Likewise, if X,,(w) \, X(w) for all w.)

(b) In general, a uniform limit of bounded and continuous functions X, is also bounded and
continuous.
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4 Probability, RVs, and Convergence in Law

Definition 4.1 (Random variable and df) (a) A probability space (2, A, P) is just a
measure space for which P(2) = 1. Now, X : (Q, A, P) — (R, B) will be called a random
variable (to be abbreviated rv); thus it is a B-A-measurable function. If X : (Q, A4, P) —
(R, B), then we will call X an extended rv.

(b) The distribution function (to be abbreviated df) of a rv is defined by

(1) Fx(z)=P(X <) for all —oo <z < o0.
We recall that F' = F'x satisfies
(2) Fis ' and right continuous, with F'(—o0) = 0 and F'(+o00) = 1.

We let Cr denote the continuity set of F' that contains all points at which F' is continuous.
(That F' " is trivial, and the other three properties all follow from the monotone property of
measure, since (co,x] = No—,(—oc,z + a, for every possible sequence
an \, 0,0, (=00, —n] =0, and |J,—,(—o0,n] = R.)

(¢) If Fis /" and right continuous with F(—oo) > 0 and F(4o00) < 1, then F' will be called
a sub df.

(d) The induced measure on (R, B) (or (R, B)) will be denoted by Px. It satisfies
(3) Px(B)=P(X Y(B)=P(X€B) forall BeB

(for all B € B if X is an extended rv). We call this the induced distribution of X. We use the
notation X = F' to denote that the induced distribution Px(-) of the rv X has df F.

(e) We say that rvs X,, (with dfs F},) converge in distribution or converge in law to a rv X,
(with df Fp) if

(4) F,(x) = P(X, <z)— Fy(z) = P(Xo < ) at each x € Cp,.
We abbreviate this by writing either X,, —4 Xo, F,, —a Fo, or L(X,,) — L(Xp).

Notation 4.1  Suppose now that {X,, : n > 0} are rvs on (92, 4, P). Then it is customary
to write X,, —, X, (in place of X,, —, Xo) and X,, —4.5. Xo (as well as X, —4.. Xo). The

[19ee))

'p” is an abbreviation for in probability, and the “a.s.” is an abbreviation for almost surely.
Anticipating the next chapter, we let Eg(X) denote [ ¢(X)du, or [ g(X)dP when p is a
probability measure P. We say that X,, converges to Xq in rth mean if E|X,, — Xo|" — 0.
We denote this by writing X,, —, Xo or X,, —,,. Xo. O

Proposition 4.1 Suppose that the rvs X = F and X,, = F, satisfy X,, —, X. Then
X, —a4 X. (Thus, X,, —,.s X implies that X,, —4 X.)

Proof. (This result has limited importance. But the technique introduced here is useful;
see exercise 4.1 below.) Now,

(a) F.(t)=P(X,<t)<P(X<t+e)+P(X,—X|>e)
(b) < F(t+¢€) + € for all n > some n,.

Also,

F,(t)=P(X, <t)>P(X <t—eand |X, — X| <e€) = P(AB)
A)—P(B°)=F(t—e) —P(|X,, — X|>¢)

t—¢)—¢  forn > (some n.).
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Thus for n > (n. V n.) we have
() F(t—e)—e<limF,(t) <limF,(t) < F(t+e) +e.

If ¢ is a continuity point of F', then letting ¢ — 0 in (c) gives F,(t) — F(t). Thus
F, —4 F. O

The following elementary result is extremely useful. Often, one knows that X,, —4 X,
but what one is really interested in is a slight variant of X,,, rather than X, itself. The next
result was designed for just such situations.

Definition 4.2 (Type) Two rvs X and Y are of the same type if Y = aX +b.

Theorem 4.1 (Slutsky) Suppose that X,, —4 X, while the rvs Y;, —, a and Z,, —, b as
n — oo (here X,,,Y,,, and Z, are defined on a common probability space, but X need not
be). Then

(5) U, =Y, x X, +7Z, —wqgaX +b as n — o0.

Exercise 4.1 Prove Slutsky’s theorem. (Hint. Recall the proof of proposition 4.1. Then
write U, = (Y,, — a)X,, + (Z, — b) + aX,, + b where Y;, —a —, 0 and Z,, — b —, 0. Note also
that P(|X,| > (some large M.)) < € for all n > (some n.).)

Exercise 4.2 Let c be a constant. Show that X,, —4 c if and only if X,, —, c.

Remark 4.1 Suppose X;, Xo,... are independent rvs with a common df F. Then X,, —4
X for any rv Xy having df F'. However, there is no rv X for which X,, converges to X in the
sense of —4 5, —p, or —,. (Of course, we are assuming that X is not a degenerate rv (that
is, that pp is not a unit point mass).) O
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5 Discussion of Sub o-Fields *

Consider again a sequence of rvs X1, Xo,... where each quantity X,, is a measurable trans-
formation X, : (2,4, P) — (R, B, Px, ), and where Px, denotes the induced measure. Each
rv X, is B-F(X,,)-measurable, with F(X,,) a sub o-field of .A. Even though the intersection
of any number of o-fields is a o-field, the union of even two o-fields need not be a o-field. We
thus define the sub o-field generated by X1, ..., X, as

(1) F(X1,....X,) =olUp_, F(X)] =X"Y(B,) for X, = (X4,...,X,),

where the equality will be shown in the elementary proposition 5.2.1 below.
Note that F(Xi,...,X,) € F(X1,...,X,, Xnt1), so that these necessarily form an
increasing sequence of o-fields of A. Also, define

= F(X):

(2) f(Xl,XQ,...)EO'[ k1

It is natural to say that such X,, = (Xy,...,X,,)" are adapted to the F(X,...,X,,). In fact,
if /1 C Fy C -+ is any sequence of o-fields for which F(X7,...,X,) C F, for all n, then we
say that the X,,’s are adapted to the F,,’ s.

Think of (X7, ..., X,,) as the amount of information available at time n from X1, ..., X,;
that is, you have available for inspection all of the probabilities

(3) P((X1,...,Xn) € By) = P((X1,...,X0) " "(Bn)) = Pix,....x,)(Bn),

for all Borel sets B,, € B,,. Rephrasing, you have available for inspection all of the probabilities

(4) P(A), forall A € F(Xy,...,X,).

At stage n+1 you have available P(A) for all A € F(X7, ..., X,, Xp4+1); that is, you have more
information available. (Think of F,\F(Xj,...,X,) as the amount of information available
to you at time n that goes beyond the information available from X, ..., X,,; perhaps some
of it comes from other rvs not yet mentioned, but it is available nonetheless.)

Suppose we are not given rvs, but rather (speaking informally now, based on your general
feel for probability) we are given joint dfs F,(z1,...,x,) that we think ought to suffice to
construct probability measures on (R, ;). In (2.2.16) we saw that for n = 1 we could just
let (Q,A, 1) = (R,B,ur) and use X (w) = w to define a rv that carried the information in
the df F. How do we define probability measures P, on (R,,B,) so that the coordinate rvs

(5) Xi(wi, .. wp) = wi for all (wy,...,wn) € Ry,
satisfy
(6) P(Xy <z,...,Xpn <) =Fy(zg,...,2,) for all (x1,...,2,) € Ry,

and thus carry all the information in F,? Chapter 5 will deal with this construction. But
even now it is clear that for this to be possible, the F,’s will have to satisfy some kind of
consistency condition as we go from step n to n + 1. Moreover, the consistency problem
should disappear if the resulting X,,’s are “independent.”

But we need more. We will let R, denote all infinite sequences w1, ws, ... for which each
w; € R. Now, the construction of (5) and (6) will determine probabilities on the collection

B, x HZC:”HR of all subsets of R, of the form

BnXHZin+1R
={(w1,-yWnyWnt1y--) i (Wiy.o . wn) € Bpywi € R for k > n+ 1},

(7)
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with B,, € B,,. Each of these collections is a o-field (which within this special probability
space can be denoted by F(X1,...,X,)) in this overall probability space (Rso, Boo, Peo), for
some appropriate Bo.,. But what is an appropriate o-field By, for such a probability measure
P,? At a minimum, B,, must contain

®  o|U_ {B.xII_,. B} = |U_ 7. x0)].

and indeed, this is what we will use for B,,. Of course, we also want to construct the measure
P, on (Rs, Bso) in such a way that

(9) Py (H:Zl(—oo,xk] X HZO:”_HR) = Fp(z1,...,2p) forallm >1
and for all x1,...,x, in R. The details are given in chapter 5.

Until chapter 5 we will assume that we are given the rvs X1, X, ... on some (Q, A, P), and
we will need to deal only with the known quantities F (X1, ..., X,,) and F(X1, Xo,...) defined
in (1) and (2). This is probability theory: Given (2,4, P), we study the behavior of rvs
X1, X, ... that are defined on this space. Now contrast this with statistics: Given a physical
situation producing measurements X1, Xo, . . ., we construct models {( R, Boo, P2) : 0 € O}
based on various plausible models for FY(z1,...,z,), § € O, and we then use the data
X1, Xs,... and the laws of probability theory to decide which model 6y € © was most likely
to have been correct and what action to take. In particular, the statistician must know that
the models to be used are well-defined.

We also need to extend all this to uncountably many rvs {X; : t € T}, for some interval T'
such as [a,b], or [a,0), or [a, ], or (—00,0),.... We say that rvs X; : (Q, A, P) — (R, B)
for t € T are adapted to an sequence of o-fields F; if Fy C F; for all s <t with both s,t € T
and if each X; is F;-measurable. In this situation we typically let Ry = HteTRt and then
let

(10) ftzf(XS:sgt)Ea[UX;l(B):sgtandSET] forall t € T.

This is also done in chapter 5 (where more general sets T are, in fact, considered).

The purpose in presenting this section here is to let the reader start now to become
familiar and comfortable with these ideas before we meet them again in chapter 5 in a more
substantial and rigorous presentation. (The author assigns this as reading at this point and
presents only a very limited amount of chapter 5 in his lectures.)

Exercise 5.1 (a) Show that the class C = {X; ' (B1)N{X; ' (B2) : Bi, By € B} is a T-system
that generates the o-field F (X7, X5).

(b) Recall the Dynkin 7-\ theorem, and state its implications in this context.

(c) State an extension of this part (a) to F(X1,...,X,) and to F(X1, Xa,...).
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Chapter 3

Integration

1 The Lebesgue Integral

Let (€2, A, i) be a fixed measure space and let X, Y, X,,, ... denote measurable functions from
(A, ) to (R,B). If @ = Y A; where Ay,..., A, are in A, then A;,..., A, is called a
partition (or measurable partition) of .

Definition 1.1 (Lebesgue integral [ Xdpor [X) If X =Y " 2;14, > 0 is a simple
function (where all z; > 0 and A44,..., A, is a partition of Q), then

1) / Xdp =Y (4.

(We must verify that this is well defined. That is, we must show that the value assigned to
J X dp in (1) is independent of the representation of X that is specified.) If X > 0, then

(2) /Xdu = sup {/Yd,u :0<Y < X and Y is such a simple function} .

For general measurable X,

() /sz/xﬂm—/xw%

provided that at least one of [ X dy and [ X~ dy is finite. We let
L1 =L1(Q,Ap) ={X: [|X]|du < o},
(4) LTEET(97A7M)E{X6£1:XZOL
Ly =L QA pn) =L () ={X: [|X|"dp < oo}, foreachr>0;
in each of these definitions we agree to identify X and X’ whenever X = X’ a.e. pu. If
X (which is not measurable) equals a measurable Y on a set A having pu(A¢) = 0, then

J X dp= [Ydu. (Clearly, [ X du is not affected by the choice of Y or A.)
If X is measurable and [ X du is finite, then X is called integrable. For any A € A,

(5) AXWE/XM@.

We also use the notation (especially in proofs, to save space)

(6) /X = /Xdu = (the integral of X) = EX = (the expectation of X).
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For ordinary Lebesgue measure p on R, we often write [ X du = [ X (r)dr

It will now be demonstrated that the definition (1) makes sense and that [ X dpu satisfies
the following elementary properties.

Proposition 1.1 (Elementary properties of the integral) It holds that definition 1.1
of the integral is unambiguous. Now suppose that the functions X and Y are measurable,
that [ X dp and [Y du are well-defined, and that their sum (the number [ X du+ [V dp)
is a well-defined number in [—oo, +00]. Then

(1) /(XJrY)du:/Xdqu/Ydu and /chu:c/Xdu,

(8) 0<X<Y implies Og/Xd,ug/Ydu.

Proof. Case I: Consider simple functions X > 0 and Y > 0.

Claim 1: Defining [ X du = > ["z;uu(A;) for such simple functions X = > "z;14, makes
J X dp well-defined for these simple functions.

Suppose that we also have X = >1'z; lc;. Then

(a) Zl 1mlzn Z Zj2:11‘4icj’

so that z; = z; if A;C; # 0. Thus

ZZ zipu(A Z mzzn (AC5) = Zzlzjzlxiﬂ(x‘licj)

= ZZ 12 zJu (A:Cy) since z; = z; if p(A;C;j) >0
N ijlzjzi:l'u iC5) = Z:lejﬂ(cj);

and since the two extreme terms that represent the two different definitions of the quantity
J X du are equal, we see that [ X du is well-defined.
Claim 2: The integral behaves linearly for such simple functions.

Suppose X = > 1"2;14, and Y = > Ty;1p,. Then X +Y = >1">"1(x; + y;)1a,5,- We thus
have

JX +Y)dp = 37377 (i + y;)u(Ai By)
=YY (4B + YD i AiBy)
=D my mABy) + Z”yjzmum B))
:ZT%‘M +Z yiu(B;) = [Xdu+ [Y du,

which establishes the additivity for simple functions.

Claim 3: For any measurable X > 0, it is also trivial that [¢X = ¢ [ X in (7). This holds
since Y < X if and only if ¢Y < ¢X, with [¢Y = ¢ [Y for simple V.

Claim 4: So too, the monotonicity in (8) is trivial for any measurable 0 < X <Y.
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The proof of linearity for general X > 0 and Y > 0 is included in the proof of the monotone
convergence theorem (MCT) (that is, the first theorem of the next section). That is, we will
prove the MCT using only Claims 1, 3, and 4. Then we will use the MCT and Claim 2 to
obtain the linearity of the integral for any functions X > 0 and Y > 0.

Case 2: The final linearity step is then trivial. Just write X = X+ - X~ andY =Y+ - Y~
and do algebra. |

Notation 1.1 Let F' denote a generalized df and let up denote the associated Lebesgue—
Stieltjes measure. Suppose that g is an integrable function on R. We will then freely use the
notation

(9) /R o(2)dF(z) = / o) dpir (). -

R
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2 Fundamental Properties of Integrals

Theorem 2.1 (MCT, monotone convergence theorem) Suppose that X, ~ X
a.e. for measurable functions X,, > 0 a.e. Then

(1) Og/Xndu//Xdu.

Corollary 1 For X > 0, the simple X,, in (2.2.10) satisfy [ X, du ~ [ X dp.

Proof. By redefining on null sets if necessary, we may assume that X,, /~ X for all w.
Thus X is measurable, by proposition 2.2.2. Also, [ X, is , and so a = lim [ X,, exists in
[0, c0]. Moreover, X,, < X implies [ X,, < [ X; and so we conclude that a = lim [ X, < [ X.

Let Y =>""¢; 1p, be an arbitrary simple function satisfying 0 <Y < X. Fix 0 <6 < 1.
Then note that A, = [X,, > 0Y] /' Q (since 0 <Y < X on [X = 0] and 0 < Y < X on
[X > 0] are both trivial). Claims 3 and 4 of the proposition 3.1.1 proof give (for any simple
function Y = Y "["¢;1 D, as above)

(a) G/YxlAn:/GYxlAng/anlAng/Xnga, while

(b) 0/Y X1y, = 92chP(DjAn) - HZTCjP(Dj) _ g/y

using P(D;A,) — P(D,) by proposition 1.1.2. Let # — 1 in (a) and (b) to obtain [Y < a.
Since 0 <Y < X is arbitrary, this gives [ X <a =lim [ X,,. O

Proof. We now return to the linearity of the integral for general measurable functions
X>0andY >0. Let X,, /* X andY,, /Y for the measurable simple functions of (2.2.10).
Then X,, +Y, / X +Y. Thus the MCT twice, the linearity of the integral for simple
functions, and then the MCT again give the general linearity of the integral via

JX+[Y =lim [ X, +1im [V, =lim([ X, + [V,)

(a) =lim [(X, +Y,) by simple function linearity
(b) = [(X+Y) by the MCT.
In general, combine the integrals of X, X~ YT, and Y~ appropriately. O

Theorem 2.2 (Fatou’s lemma) For X,,’s measurable,
(2) /@Xn dp < @/Xn du, provided that X,, > 0 a.e. for all n.

Proof. Redefine on null sets (if necessary) so that all X,, > 0. Then

(3) Y, = ér>1f X, /' lim X,,, or lim X,, = limY,, with Y,, 7,
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so that

(a) /@Xn = /limYn = lim/Yn by the MCT
(b) :@/Yn glg/Xn since Y, < X,,. O

Theorem 2.3 (DCT, dominated convergence theorem) Let |X,| <Y a.e. for all n,
for some dominating function Y € L1; and suppose either (i) X,, —4. X or (ii)) X, —, X.
Then

(4) /|X7L—X\du—>0 as n — 0o (that is, X, —¢, X).
(If (sup,,>1 |Xn|) is integrable, then it is a suitable dominating function.)

Corollary 1  Note that (4) implies both
(5) /Xn dp — /Xd,u (that is, EX, — EX) and

(6) sup | X dup — / X du| — 0.
AcA

Proof. (i) Suppose that X,, —,. X. Then Z, = |X,, — X| =4 0. (Here, 0 < Z,, <
2Y a.s., where both of the functions 0 and 2Y are in £;.) Now apply Fatou’s lemma to the
rvs 2Y — Z,, > 0, and conclude that

(a) J2Y —0) = [lim(2Y — Z,) <lim [(2Y — Z,) by Fatou

= lim(f 2 — [ Z,)

(7) = [2v —Tim [ Z,.
Hence, lim [ Z, < [0 =0 (as [2Y is finite). Combining the two results gives
(b)  0<lim[Z, <lim[Z, <0;

so lim [ Z,, = 0, as claimed.

(ii) Suppose X,, —, X. Let a = MI Z, > 0. Let n’ be a subsequence such that
[Zy — a. But Z, —, 0, so theorem 2.3.1 gives a further subsequence n” such that
Zy —q.e. 0, while we still have [ Z,» — a. But [ Z,» — 0 by case (i). Thus a = 0. Thus

(c) ogm/znzazo,orfzn—)o.

(iii) Consider the corollary. We have
@) i X = [ X =] (X = X)T = (X = X)7)[ < [1X = X[ =0

uniformly in all A € A. O
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Theorem 2.4 [Y "X, du=> 7" [ X,du if X,, >0 a.e., for all n.

Proof. Note that 0 < Z,, = > 7Xy, / Z = > "X a.e., and now apply the MCT to the
Z,'s. O

Theorem 2.5 (Absolute continuity of the integral) Fix X € £;. Then
(8) / IX|dp—0  as  p(A)—0.
A

That is, [, |X|du < €, provided only that u(A) < (an appropriate d.).

Proof. Now, [ | X11x|1<n] / J|X| by the MCT, so we may claim that

(a) /|X|1[‘X|>n] <e€/2 for n > N = (some N).

Thus

O) [ X< [ Xiew + [ XD < N cna) +e2 < e

provided that u(A) <e€/(2N). O

Exercise 2.1 (Only the zero function) Show that
(9) X >0 and /Xdu =0  implies  pu([X >0])=0.

Exercise 2.2 (Only the zero function) (a) Suppose o[C] = A, for a field C. Show that

=0, . . =0 ae,
(10) /AXdu = { >0 forall AeC implies X = { >0 ae

On (R, B, ur), for a generalized df F', we only need (10) for all intervals A = (a, b].

Exercise 2.3 Consider a measure space (€2, A, ). Let po = pulAg for a sub o-field Ag of
A. Starting with indicator functions, show that [ X du = [ X dug for any Aj-measurable
function X. Hint: Consider four cases, as in the next proof.

Definition 2.1 (Induced measure) Suppose that X : (Q, A4, u) — (', A’) is a measur-
able function. Recall from (2.2.15) that

(11) (A = pux(A) = w(X1(A")) for all A" € A,

and g’ is a measure on (', A"), called the induced measure of X.
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Theorem 2.6 (Theorem of the unconscious statistician) (i) The induced measure
px () of the measurable function X : (Q, A, u) — (2, A", nx) determines the induced mea-
sure pu,(x) for all measurable functions g: ', A’) — (R, B).

(ii) (Change of variable) Then

(12) / 9(X(w))du(w) = / g(z) dpx () for all A" € A,
X—I(A/) ’
in the sense that if either side exists then so does the other and they are equal. So,

W [ exede) = [ @@ = [y orneB

Proof. (i) Now, Y = g(X) is measurable. By (2.1.11) and (2.2.5) we see that

(a)  py(B) = pgx)(B) = u([9(X) € B)) = p(X " og ' (B)) = px (9~ (B))

is well-defined, since g~ (B) € A’. Thus the first claim holds.

(i) We only prove the first equality in (12) when A’ = ' and X ~}(Q) = (, since we can
replace g by g x 14/, noting that 14/ (X (w)) = 15104/ (w).
Case 1. g =14/ : Then

(b) flA/(X) dp, = f]_X—l(A/) d/J, = /j,(Xil(A/)) = Nx(A/) = f]-A’ d/j,X
Case 2. g = Y ;" cilar, where YO A} = Q' with A} € A" and all ¢; > 0: Then
Jo(X)dp= [ cila(X)dp =300 ¢i [1a/(X)dp
(c) = Zi:lci J1lardux = [gdux.
Case 3. g > 0: Let g, > 0 be simple with g,, /" g: Then
[ 9(X)dp =1lim [ g,(X)du by the MCT, since g, (X) / g(X)
=lim [ g,, dux by case 2
(d) = [gdux by the MCT.

Case 4. g is measurable, and either [ g(X)" du or [ g(X)~ dp is finite: Using g = g™ — g™,
we note that g(X)T = ¢g*(X) and g(X)~ = g~ (X). Then

J9(X)dp= [g(X)Tdp— [g(X)"du= [g"(X)du— [g~(X)dpu
= [gtdux — [g dux by case 3

(e) = [gdux.
In the arguments (b), (c), (d), (e) one should start from the end that is assumed to exist,
in order to make a logically tight argument. (Note the next exercise.) (|

Exercise 2.4 Let Y = g(X) in the context of the theorem 2.6. Verify the truth of the second
equality in (13).

Exercise 2.5 Let X equal —1,0,1 with probability 1/3 for each possibility. Let g(z) = 2.
Then evaluate both sides in (13), and see why such calculations were performed unconsciously
for years.
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Exercise 2.6 (Integrals as measures) Let X > 0 for some measurable function X on
(©, A). Show that

(14) @A) = [, Xdu forall Ae A

defines a measure ¢ on (2, A). Note that ¢ is a finite measure when X € £1(, A, p).

Exercise 2.7 (Absolutely continuous dfs) Let Z > 0 on R with Z € £;(R, B, \) for the Leb-
segue measure A(-) generalization of length. Then F(z) = [ (—oo,a] Zd\ defines a generalized

df on R. Use the absolute continuity of the integral theorem 2.5 to show that this gdf is
absolutely continuous on R (in the sense of definition 1.3.3).
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3 Evaluating and Differentiating Integrals

Let (R, Bu,u) denote a Lebesgue-Stieltjes measure space that has been completed. If g
is Bj,-measurable, then f(a 0] gdu denotes a Lebesque—Stieltjes integral of g on (a,b]. If F
is a generalized df corresponding to u, then we also use the notation f(a ] gdup. Also,

f: gdF = f(a b g dF will denote the Riemann—Stieltjes integral.

Theorem 3.1 (Equality of LS and RS integrals) Let g be continuous on [a,b]. Then
the Lebesgue—Stieltjes integral and the Riemann—Stieltjes integral are equal. (Since the LS-
integral and the RS-integral are equal, we can continue to evaluate most LS-integrals using
the methods learned in a more elementary calculus.)

Proof.  We first recall the classical setup associated with the definition of the RS-integral.
Consider any sequence of partitions a = x,0 < -+ < Zn, = b such that the partition
Xn = {Znoys Tni,y ... Tun} 18 a refinement of X,,_1 in the sense that X,—; C X,. Then if
mesh,, = maxi<p<n(Tnk — Tnr—1) — 0, and if &%, s are such that x, 1 < 2}, < @pk, We
have

n

(a) gn = Zkzlg(xzk)l(wn,kfhwnk] —g uniformly on [a, b],

since ¢ is (necessarily) uniformly continuous on [a,b]. Thus for all such sequences the LS-
integral of section 3.1 satisfies

f(a7b] gdpp = lim, f(a)b] Gn dip by the DCT, bounded by a constant

=lim ) g(@n)u((@nn-1,@ar]) = MY g(2)) F (@1, Tnk]
(b) = lirrln {a Riemann-Stieltjes sum for the integral of g} = 1171Ln f; gn dF

(c) = {the Riemann—Stieltjes integral of g} = f; gdF,

and this holds for all partitions and s as above, provided only that mesh,, — 0. Thus the
LS-integral fab gdF and the RS-integral are equal for continuous g. O

Exercise 3.1 *(RS-integral compared to LS-integral) We state a few additional facts here,
just for completeness (that are valid when g is more general):

g is RS-integrable with respect to F' if and only if
g is continuous a.e. pp(-).

(1)

@) If g is RS-integrable with respect to F)
then the RS and LS-integrals fabng are equal.

Let D(F) and D(g) denote the discontinuity sets of F' and g. Then
(3) g is not RS-integrable when D(F) N D(g) # 0.

(Conmsider g(-) = 1403(-) and F' = 1 o) regarding (3).)
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Exercise 3.2 Suppose that the improper RS-integral of a continuous function g on R,
defined by RS([ ¢dF) = limg—_so p—oc(RS fabng) exists finitely. Then limg— oo p—oo

(LS fab |gldF") need not be finite. Thus the fact that an improper RS-integral exists does not
imply that the function is LS-integrable. Construct an example on [0, c0).

Exercise 3.3 (Differentiation under the integral sign) (a) Suppose that the function
X(t,-) is an integrable function on (€2, i), for each ¢ € [a,b]. Suppose also that for a.e. w the
partial derivative %X (t,w) exists for all ¢ in the nondegenerate interval [a,b] (use one-sided
derivatives at the end points), and that

%X(t,wﬂ <Y(w) for all t € [a,b], whereY € L;.

Then the derivative and integral may be interchanged, in that

) % /Q X (t,w) dplw) = /Q [;X(t,w)} du(w)  forall £ € [a, 1]

(b) Fix t € (a,b). Formulate hypotheses that yield (4) at this fixed ¢.
Exercise 3.4 and exercise 3.5 below combine to offer a more elementary problem that is
still along the lines of exercise 3.1.

Exercise 3.4 (Continuity on an interval [a, b] implies uniform continuity) Let g denote a
continuous real valued function on a closed interval [a, b]. Show that g is uniformly continuous
on [a,b]. That is, show that for every tiny number € > 0 there exists a number 6. > 0 for
which

(5) [fly) — f(z)] <e whenever |z — y| < Oe.

Exercise 3.5 (Riemann integrability) Let g > 0 denote a continuous real valued function on

a closed interval [a,b]. Let € and d. be as in (5). Let fabg(x) dz denote the area under g.
Show that if mesh,, < J. in the Riemann sum RS,, defined in (1.1.1), then RS,, is so close

to the area fjg(x) dxr that

(6)  [RSm — [ g(x)dz| < e(b— a).



4. INEQUALITIES 49

4 Inequalities

Convexity = We begin by briefly reviewing convexity. A real-valued function f defined on
some interval I of real numbers is convex if

@) fleat (-0 <af@+ (- a)f)
forall z,y in I and all 0 < o < 1.

We will use the following facts. If f is convex on an interval, then f is continuous on the
interior I° of the interval. Also, the left and right derivatives exist and satisfy D(x—) < D(x+)
at each point in the interior I° of the interval. The following is useful. Convexity on the
interval I holds if and only if

@) f((x +9)/2) < [f(x)+ f(y)]/2 for gll x,y in I, provided that
f is also assumed to be bounded (or continuous, or measurable) on I.

(There exist functions satisfying the inequality in (2) that are not continuous, but they are

unbounded in every finite interval. Thus requiring (1) for all 0 < o < 1 is strictly stronger

then requiring it to hold only for o = 1/2.) We need a simple test for convexity (when f is

‘nice’), and so note that f is convex if

(3) f(x)is / foralz el  orif  f’(z)>0forallzel.

We call f strictly conver if strict inequality holds in any of the above. If f is convex, then
there exists a linear function ¢ such that f(x) > ¢(x) with equality at any prespecified z( in
the interior I° of the domain I of f; this function is called the supporting hyperplane. (Call
f concave in — f is convex.) O

Definition 4.1 (Moments) (The following definitions make sense on a general measure
space (9, A, u), Recall, as in (3.1.6), that Er(X) = [ h(X (w)) du(w) = [W(X)du = [ h(X).)
Let

(4) w=px = (the mean of X) = EX. (Note the two different uses of )

Now let

(5) EX* = (kth moment of X), for k > 1 an integer,
(6) E|X|" = (rth absolute moment of X), for r > 0,

(7) | Xl = (rthnorm of X) = {B|X|"}*/" for r >1  (or,E|X|" for r < 1).

The following notation is standard on a probability space (€2, 4, P), where u(Q) =1 :

(8) 0% = Var[X] = E(X — u)? = (the variance of X),
o = StDev[X] = (the standard deviation of X).

We will write X 22 (u,02) (on a probability space) if EX = p and Var [X] = 02 < co. We
will write X = F(u,0?) if X also has df F(-). Further (on a probability space)

9) pr = B(X — p)* = (kth central moment of X), fork > 1,
(10)  Cov[X,Y]=E[(X — ux)(Y — py)] = (the covariance of X andY').

Note that Cov [X, X] = Var[X]. (Probability theory has P(Q) = u(Q) = 1.)
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Throughout this section X and Y will denote measurable functions.

Proposition 4.1 (L; C £,) Let p(Q) < oo. Then £, C £, whenever 0 < r < s.
(So if E|X|* < oo, then E|X|" and EX¥ are finite for all 0 < r k < s.)

Proof. Now, |z|” <1+ |z|*; and integrability is equivalent to absolute integrability. Note
that p(Q2) < oo is used to claim 1 € £;. O

Proposition 4.2  Let u(Q) < co. Then 0% < oo holds if and only if EX? < co. From here
on, we will only refer to o on a probability space; then 02 = EX? — 2.

Proof. Let EX? < oo. Then EX?—p2u(Q) = E(X?)-EQ2u(X—p)—E(1?) = B(X—p)? =
Var[X]. Note that proposition 4.1 was used for EX. Thus () < co was used. Let 02 < oo.
Then E{(X — p)? +2u(X — p) + p?} = EX?. O

Inequality 4.1 (C,-inequality) E|X +Y|" < C,.E|X|" 4+ C.E|Y|",
where C,. =271 for r > 1 and C,, = 1 for 0 < r < 1. (Note, L, is a vector space.)

Proof. There are no restrictions on p. Note that E|X +Y|" < E(|X|+ |Y])".

Case 1. r > 1: Then |z|" is convex in x for x > 0, since its derivative is 1. Thus |[(z+y)/2|" <
[lz|" + |y|"]/2; and now take expectations.

Case 2. 0 < r < 1: Now, |z|" is concave and " forx > 0; just examine derivatives. Thus
|z +y|” — |z|” < |0+ y|” — 0" since the increase from x to = + y can not exceed the increase
from 0 to y, and now take expectations. O

Inequality 4.2 (Holder’s inequality) For r > 1, with 1/r +1/s =1,
(1) [E(XY)| <EXY[<EVIX[EV Y] = | X|[[]Y ]

(ii) Suppose both E|X|" and E[Y|® fall in (0,00). Equality holds in the second half if and
only if |Y|® =, ¢|X|" for some ¢ > 0; then, ¢ = E|Y|*/E|X|". Further, |[EXY| = E| XY if
and only if XY >,. 0or XY <,. 0.

Proof.  The result is trivial if E|X|" = 0 or co. Likewise for E|Y|*. So suppose that both
expectations are in (0, 00). Since f(z) = e” is convex by fact (3), it satisfies (1) with o = 1/r
and 1 —a = 1/s,z = rlogla| and y = slog|b| for some a and b; thus (1) becomes (with
equality if and only if rlog|a| = 2 = y = slog|b|)

1 1 1 1
(12)  exp(=z+ -y) < —e” + —¢’, or
r S T S

Young’s inequality For all a,b we have
|b]*

b
(13)  Jabl < — + Y with equality iff |a|” = |b|* iff [b] = |a//C7Y = |a|" 7L

Now let a = |X|/||X||, and b = |Y|/||Y]s, and take expectations. Equality holds if and
only if (|[Y]/11Y |ls)® =a.e. |X|/|1X]||-)" (that is, all mass is located at equality in (12)) if and
only if

@)  (YP/EY]) =ae (IXI/EIX]T)  (or [Y]* =ae (E[Y]")/EIX]T)X]). O
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Exercise 4.1 (Convexity inequality) Show that
uv' ™ <au+ (1 —a)y forall0 <o <1 and all u,v > 0.
Use this to reprove Hélder’s inequality.

Inequality 4.3 (Cauchy—Schwarz) {E(XY)}? < (E|XY|)? <EX?EY?.

If both EX? and EY? take values in (0,00), then equality holds throughout both of the
inequalities if and only if either Y = aX a.e. or Y = —aX a.e., for some a > 0; in fact,
a? =EY?/EX2. (Only Y2 = cX?a.e. for some ¢ > 0 is required for equality in the rightmost
inequality above.)

Example 4.1 (Correlation inequality) For rvs X and Y (on a probability space) having
positive and finite variances, it holds that

(14) —-1<p<1,
for the correlation p of X and Y defined by

Cov[X, Y]
V/Var[X|Var[Y] 0

Exercise 4.2 Consider rvs X and Y having EX? and EY? in (0,00). Show that

(15)  p=pxy = Corr[X,Y]=

p=+1if and only if X — ux = a(Y — py) a.e. for some a > 0,
p=—1ifand only if X — px = a(Y — py) a.e. for some a < 0.

In fact a® = 0% /o%. Thus p measures linear dependence, not general dependence.

Inequality 4.4 (a) (Liapunov’s inequality) It holds that
(16)  EY"|X|"is /in r for all 7 > 0, provided p(2) = 1.

(b) Let 14(£2) be finite. Then || X ||, < [|X||s x {p(Q)}7~+ for all 0 < r < s.

(c) h(r) =logE|X]|" is convex on [a,b] if X € L, N Ly( 0 < a and any p(2) value).
Proof. (c) Apply Holder to | X[ and |X |1~ with r = 1/a and s = 1/(1 — a) and
obtain the inequality

1

(p) E‘X|(m+(1_a)b < (Eleaa.%)a(E|X|(1—a)b‘ = )1—a

(a) = (BIX|")~(ElX ")

(All expectations are finite if X € £, N Ly; since a < r < b and ¢ > 0 implies that ¢" < e or
¢" < c¢®as c>1orc<1.) Taking logarithms gives the convexity

(r) haa+ (1 — a)b) < ah(a) + (1 — a)h(b).

(b) Finiteness of E|X|® gives the finiteness of E|X|" on (0, b] via proposition 4.1. Then apply
Holder to [X|" -1 with a = £ and L + { =1 (and E1 = p(2)). O



52 CHAPTER 3. INTEGRATION

Exercise 4.3 (Littlewood’s inequality) Define m,. = E|X|". Show that for 0 < r < s <t
we have (write my = E(|X|** - | X|(1=2%) and apply Hélder)

A7) miT <mitmiT" (thus, m3 < m2my).

Inequality 4.5 (Minkowski’s inequality) EY7|X +Y|" < EY"|X|"+EY"|Y|" for all r > 1.
That is, | X + Y|, < || X|» + ||V || for » > 1.

(Recall that || X + Y|, < || Xl + [|[Y]] for 0 < r < 1, by the C,-inequality and (7).)

Thus || - || turns £, into a metric space (if we identify X and X’ when X =, . X’).

Proof.  This is trivial for » = 1. Suppose r > 1, and note that s = r/(r —1). Then for any
measure u we have

(a)  B{X+Y[} <E{X[X +Y["} +E{Y[IX + Y[}

<(1X N+ 1Y [l 11X + Y71 by Hélder’s inequality twice
= (IX[l- + Y [lr) EY*|X + Y079 = (| X, + Y[l EV*| X + Y.

If E|X +Y|" =0, the result is trivial. If not, we divide to get the result. O

Inequality 4.6 (Basic inequality) Let g > 0 be / on [0,00) and even. Then for all mea-
surable X we have

(18) (X=X <Eg(X)/g(N) for all A > 0.

Proof. Now,

(&) Eg(X) = fixon 90 dut fixox 9(X) di > [x55 9(X) dp

(b) > 9\ Jyxisa L= gN)u(|X] = ). O
The next two inequalities are immediate corollaries.

Inequality 4.7 (Markov’s inequality) p(|X]|> A) <E|X|"/A" for all A > 0.

Inequality 4.8 (Chebyshev’s inequality) If E|X| < oo, then

(19)  u(|X — p| > N) < Var[X]/\? for all A > 0.

Inequality 4.9 (Paley—Zygmund) If E|X| < oo for arv X > 0, then

(20)  P(X >)\) > [(EX — \)T]?/EX? for each A > 0.
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Proof. Cauchy—Schwarz, and then rearrangement give the inequality

EX = E(X1jx<y) + E(X1xsy) <A+ VE(X2)P(X > )) O

Inequality 4.10 (Jensen’s inequality) Let X : (Q,A,P) — (I, By, Px), where I any
interval subset of [—o0,00]; thus P(X € I) = 1. Suppose EX is in the interior I° of the
interval I. Let g be convex on I. Then the rv X satisfies

(21)  g(EX) < Eg(X). (Again, P(Q) =1 is required.)

For strictly convex g, equality holds if and only if X = EX a.e.
(Comment. Useful g include ¢" on [0, 00) for any r > 1, [¢|, and —logt on (0,0).)

Proof. Let £(-) be a supporting hyperplane to g(.) at EX. Then

(a)  Eg(X)=E(X)

(b) =/((EX) since £(+) is linear and p(Q2) =1
(c) = g(EX) since g(+) = £(-) at EX.
Now g(X) —¢(X) > 0. Thus Eg(X) = El(X) if and only if g(X) = ¢(X) a.e. u if and only if

X =EX ae. p. ]

Inequality 4.11 (Bonferroni) For any events Ay on a probability space (22, 4, P),
Zizlp(Ai) > P(J,_, A= Zizlp(Ai) - ZZ#J.P(AiAj)

Exercise 4.4 (Winsorized variance) (a) Let the rv X have finite mean pu. Fix ¢, d with
¢ <p<d. Let X equal ¢, X,d according as [X < ¢],[c < X < d],[d < X], and set i = EX.
Show that E|X — i|> < E|X — p|> < B|X — u|2.

(b)* (Chow and Teicher) Given both a rv X with finite mean p and a number r > 1, show
how to choose ¢, d so that E|X — fi|” < E|X — p|".

Exercise 4.5 *(Hardy) Let h € L3(R",B,)) and define H(u) = u™" ;' h(s)ds for u > 0.
Let » > 1. Use the Holder inequality to show that

(22) [T H (u)du < (25)" [, h"(u)du with equality if and only if h =0 a.e.

Let r > 1. Then Zcfo( 12?@) < (Z5)" >, when all 2, > 0.
[Hint. Write H(u) = u™* fo s%s~*ds for some a. Also, first consider z,, \,.]

Exercise 4.6 (Wellner) Let T' = Binomial(n,p), so P(T = k) = <Z> pF(1 — p)"F for

0 < k < n. The measure associated with T has mean np and variance np(1 — p). Then use
inequality 4.6 with g(x) = exp(rz) and r > 0, to show that

(23)  P(T/n > pe) < exp(—nph(e)), where h(e) = e(log(e) — 1) + 1
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Exercise 4.7 (Geometric mean) Show that (z; x - - x 2,)"/" < (21 + - - - + x,,) /n whenever
all z > 0.

Exercise 4.8 * Let X,Y > 0 with XY > 1 and P(Q2) = 1. Show that

(24)  pxxpy =1 and {142 <SE{(1+ X)) < (14 px).
Exercise 4.9 *(Clarkson’s inequality) Let X,Y in £,.(£, .4, ). Show that
(25)  E|X+Y["+EX -Y[ <2 HE|X|"+E|[Y|"}  provided r > 2.

Exercise 4.10 Let £ Log £ denote all measurable X having E{|X|xLog(|X|)} finite, with
Log(z) = (1 Vlogz). Show that £, C £ Log £ C Ly, for all r > 1.

Exercise 4.11  Show that for all a,b we have
(26)  [la] = [bl]" <[la[" = o["]  forr=>1,
with the reverse inequality for 0 < r < 1.

Exercise 4.12 Let (€2, A, ) have p(2) < co. Then P(A) = u(A)/u(2), for all A € A, is a
probability measure P.

(a) Restate Jensen’s inequality (26) in terms of p.

(b) Restate Liapunov’s inequality (16) in terms of .
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5 Modes of Convergence

Definition 5.1 (Modes of convergence) Let X and X,,’s be measurable and a.e. finite
from the measure space (2, A, ) to (R, B).
(a) Recall that X,, converges a.e. to X (denoted by X,, —,. X) if

(1) Xp(w) = X(w) forallwe A, where u(A°) = 0.
(b) Also, recall that X,, converges in measure to X (denoted by X,, —, X) if
(2) plw: | Xn(w) = X ()| >€)) =0 for each € > 0.

)

¢) Now (rigorously for the first time), X,, converges in rth mean to X (denoted by X,, —, X

(3) E|X, - X|"—=0 for X,,)’s and X in L,;

here, r > 0 is fixed. (Note from the C,-inequality that if X,, — X and one of X or X, is in
L, then the other of X,, or X is also in L,.)

Recall from chapter 2 that X,, — a.e. (some a.e. finite X) holds if and only if X,, —
X —ae. 0 as m An — oco. Likewise, in chapter 2 we had X,, —, (some X) if and only if
X, — X —4 0 as m An — co. Next, we will consider X,, —, X.(First, note that X,, —, X
trivially implies X,, —, X, using the Markov inequality.)

Exercise 5.1 (Completeness of £,) (I) Let X,,’s be in any L, for r > 0.
(a) (Riesz—Fischer) X,, —, (some X € £,) if and only if X, —X,, —, 0.

That is, £, is complete with respect to —,.. Prove (a), using (2.3.14). (Show that (L, || - ||.)
is a complete metric space (when r > 0), provided that we identify X and X’ whenever
X = X’ a.e.) (Note theorem 5.8 below regarding separability.)

(IT) Let u(§2) < co. Then:

b) If X,, —» X, then X,, —, X forall 0 <r <s.

(
(c) Show by example that X,, —,_ X does not imply that X,, —,.. X.
(d) Show by example that X,, —, . X does not imply that X,, —,, X.
(Hint: Use Fatou’s lemma in (a) and Holder’s inequality in (b).)

Summary Let X and X,,’s be measurable and a.e. finite (see definition 5.1). Then

X, converges a.e., in measure, or in £, to such an X
(4) if and only if
X, is Cauchy a.e., Cauchy in measure, or Cauchy in L,.
Consequences of Convergence in Distribution on (Q2, A, P)
Notation 5.1 Suppose now that p really denotes a probability measure, and so we will
label it P. Recall that rvs X,, converges in distribution to a rv X (denoted by X, —4 X,

F, —4 F or L(X,) — L(X) with £(-) referring to “law”) when the dfs F' and F,, of the rvs
X and X, satisfy (recall (2.4.4))

(5) F,(z) — F(z) as n — oo for each continuity point x € Cg of F(-).
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[Note that F, = 1[1/n,00) —a F' = 1[0,00), even though F},(0) = 0 -#1 = F(0).] The statement
—¢ will carry with it the implication that F' corresponds to a probability measure P, which
can be viewed as the Px = ux of an appropriate rv X. O

Theorem 5.1 (a) (Helly-Bray) Consider the rvs X and X,, on some (2, A4, P). Suppose
F,, —4 F, and suppose that ¢ is bounded and is continuous a.s. F'. Then

© [ =Egx) = [gxar— [ gx)aP=Eg(x) = [ gir.
(b) Conversely, Eg(X,,) — Eg(X) for all bounded, continuous g implies F,, —4 F.

Theorem 5.2 (Mann—Wald) Consider the rvs X and X,, on some (2,4, P). Suppose
X, —a X, and let g be continuous a.s. F. Then g(X,,) —4 g(X).

Proof.  We ask for a proof for continuous g in the next exercise, but we give a “look-ahead”
proof now. (See theorem 6.3.2 below for the Skorokhod proof.)
Skorokhod If X,, —4 X,, then the rvs Y,, = F,;! on ([0, 1], Bjy, jP = A) have

(7) Y,2 X, foralln >0 and especially Y, — Y, as. P(-).
Thus A; = {w:Y,(w) = Y,(w)} has P(A4;) = 1. Also,
(a) P(A3) = P({w : g is continuous at Y,(w)})

(b) = Py, ({y : ¢ is continuous at y}) = Py, (Cy) = Px(Cy) = 1.
Thus A= A; N Ay = A1 NY, 1(C,) has P(A) = 1. Especially,

(¢) g(Yn(w)) — g(Yo(w)) for allw € A,  with P(A) = 1.

Since ¢ is bounded, applying the DCT to (7) gives the Helly—Bray claim that

(d) /ngn = /gdupn = /g(Yn)dPH /g(Yo)dP: /gdupo = /ngo.

We note additionally that since (7) implies ¢g(Y,) —as 9g(Y,), it also implies
9(Yn) —a g(Ys). Since g(X,,) = g(Y,,) for all n, we can also conclude that g(X,) —a g(X,).
This argument did not use the boundedness of g, and so proves the Mann—Wald theorem.
Theorem 3.2.6 was used twice in (d). (Proving Helly-Bray as indicated in the next exercise
would have been possible now, but the proof based on Skorokhod’s theorem is more in keeping
with the spirit of this book. The Helly—Bray theorem will be used later in this section, in
proving Vitali’s theorem.)

Consider the converse. Let g.(-) equal 1, be linear, equal 0 on (—oo, 2z — €], on [z — €, 2],
on [z,00); and let h.(-) equal 1, be linear, equal 0 on (—oo,x], on [z,z + €], on [z + €, 00),
with g. and he both continuous. (Let G = {all such g. and h.}.) Then

Fo(r —€) <Ege(X,) = limE g.(X,,) < lim F, ()

(e) <Tim F,(2) <EmEh(X,) = Bh(X,) < Fo(z +¢),

so that F,(z) — F,(x) at all continuity points of F'. O
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Definition 5.2 (Determining class) Let G denote a collection of bounded and continuous
functions g on the real line R. If for any rvs X and Y the condition

Eg(X) =Eg(Y) for all g € G implies X 2V,

then call G a determining class. (The proof of the converse half of Helly-Bray exhibited one
such class of particularly simple functions. See also section 9.1 for further examples which
will prove particularly useful.)

Exercise 5.2 (a) Prove the Helly—Bray result [ gdF, — [ gdF for all bounded and con-
tinuous g, without appeal to theorem 6.3.2 of Skorokhod. (Truncate the real line at large
continuity points =M of F, and then use the uniform continuity of g on the interval [—M, M]
to obtain a simple proof in this case. Note exercise 9.1.1.)

(b) Alter your proof to be valid when g is bounded and merely continuous a.s. pp.

General Moment Convergence on (0, A, 1)

Theorem 5.3 (Moment convergence under —,) Let X,, —, X ;7> 0. Then
(8)  E[X,|["— E[X]".

Moreover, X, —, Xt X —, X, and |X,,| —, | X|. (See also exercise 9.1.1.)

Proof. Let (Q, A, u) be arbitrary and 0 < r < 1. The C,-inequality gives
(a) E|X,|" <E|X, — X|"+ E|X|" and E|X|" <E|X — X,,|" + E|X,,|",
so that

9) |E| X, |" —E|X|"| <E|X, — X|" — 0 when0 < r < 1.

Suppose r > 1. Then using Minkowski’s inequality twice (as in (a)) gives
(10)  |EY"|X,|" —EY"|X|"| < EY"|X, — X" — 0, when r>1.

Combining (9) and (10) shows that E|X,,|” — E|X|". (Recall exercise 5.1(b).)
Now, |X;F — X ]| equals | X,, — X[, |X,, —0],]0— X|,[0—0] just as [X,, > 0, X > 0][X,, >0,
X < 0],[X, < 0,X >0],[X, <0, X < 0]. Thus

(11) X, = X7 <X, - X, and [X,; - X7 < |X, - X|

also. Hence X, —, X, so that E(X;[)" — E(X™)". Likewise for X, . Cross-product terms
are 0, since X1 (w)X ™ (w) = 0; so if r = k is integral, then

(b)  EX; =EX))"+ (-)"E(X,)" - E(X")" + (-)'E(X )" = E(X"). 0
Uniform Integrability and Vitali’s Theorem

Definition 5.3 (Uniformly integrable) A collection of measurable X;’s is called integrable
if sup, E|X;| < oo. Further, a collection of rvs {X; : t € T'} is said to be uniformly integrable
(which is abbreviated w.i.) if

(12)  supE{|X¢| x Ijjx,;>n} — 0 as A — oc.
teT

The functions X,, () = 21(_,2 2 (t) on (R, B, A) are u.i. but they are not integrable. We will
see below that u.i. implies ‘integrable’ when p(2) < oco.
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Remark 5.1 (Dominated X;’s are u.i.)  Suppose these | X;| < Ya.s. forsome Y € £;. Then
these X;’s are integrable, in that sup, E|X;| < EY < co. But, more is true. For some null
sets Ny, we have [|X;| > A] C [|[Y] > AJUN,. It follows that p(|X¢| > X) < u([Y] > A) — 0
uniformly in ¢ as A — oo (use Markov’s inequality). Then for each fixed t,

f[\XtIZA] | X¢|du < f[IY\Z/\] Y du — 0 uniformly intas A — oo

by the absolute continuity of the integral of Y in theorem 3.2.5. Thus:

(13)  TIfall |[X;| <Y for some Y € £y, then these X;’s are uniformly integrable. O

Exercise 5.3 (a) Now EY = [ P(Y >y)dy = [;°[1 — F(y)] dy for any rv Y > 0 with df
F (as will follow from Fubini’s theorem below). Sketch a proof.

(b) In fact, this formula can also be established rigorously now. Begin with simple functions
Y and sum by parts. Then apply the MCT for the general result.

(c) Use the result of (a) to show that for Y > 0 and A > 0 we have

f[ygx] YdP =AP(Y > \) + f;o P(Y > y)dy. (Draw pictures.)

(d) Suppose there is a Y € £ such that P(|X,,| > y) < P(Y > y) for all y > 0 and all n > 1.
Then use (c¢) to show that {X,, : n > 1} is uniformly integrable.

Exercise 5.4 (Uniform integrability criterion) If sup, E|X;|" < M < oo for some
r > 1, then the X,’s are uniformly integrable. (Compare this to theorem 5.6 of de la Vallée
Poussin below, by letting G(z) = z".)

Theorem 5.4 (Uniform absolute continuity of integrals) Let () < co. A family of
measurable X;’s is uniformly integrable if and only if both

(14)  sup;E|X¢| < (some M) < oo (the collection is integrable), and
(15)  p(A) < 6. implies supt/ | Xt dp < € (uniform absolute continuity).
A

Note: () < oo is needed only to show that u.i. implies (14).
Proof.  Suppose these conditions hold. Then Markov’s inequality and (14) give
(a) w(| Xt > A) <E|Xy |/ < sup,E[X|/A < de uniformly in ¢
for A large enough. Then (15) applied to the sets [| X:| > )] yields (12). (Note that p(Q) < oo
was not used.)

Suppose the u.i. condition (12) holds. If u(A) < §, then

(b)  JalXeldp = [, 1Xel X Lyx,j<ny dpe+ [ 1Xe] % Lyix, >0 dp

(¢) SAX p(A) + [ XLy, s dn < e/2+€/2=¢ using (12)
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for a sufficiently large fixed A and for 6 < €/(2X). (We have not yet used u(Q) < oo.)
Moreover, for A large enough, (12) again gives

(d) E|X:| < Au(9Q) + fHthzk] | X dpp < Ap(2) +1 for all ¢;
thus the collection is integrable. Thus (15) holds. O

Theorem 5.5 (Vitali) (i) Let u(€2) < oo and r > 0. Suppose that X, —, X. The
following are equivalent (where only (16) implies (17) and (20) uses u(92) < 00):

(16)  {|X,|" : n > 1} are uniformly integrable.

17 |1 X, = X|» — 0. (Only X or X,,’s in L, is required; by (9) or (10)).
(18)  E[Xa|" — E[X|" < oc.

(19)  lim, E|X,|” < E|X]|" < .

(20)  The uniform absolute continuity of (15) holds for the | X,,|", and X € L,.

(ii) Let 1(2) = oo and 7 > 1. Suppose X,, = ora.e. X with all X, in £,.

(a) Then (17), (18), and (19) are equivalent—and they imply (16).

(b) Suppose the uniform absolute continuity of (15) holds for the |X,|". Suppose for each
€ > 0 there exists a set A, having p(Ac) < oo for which sup,, [,c [Xn|" dp < € (compare this
with (14)). These two hold true if and only if (17)—(19) hold. ‘

Corollary 1 (£,-convergence) Let p(2) < oo. Let r > 0. Let all X,, € £,. Then
X, —» X(or,E|X,, — X|" — 0) if and only if both X,, —, X and one (hence both) of the
two families of functions {|X,|” : n>1} or {|X,, — X|":n > 1} is ud.

Remark 5.2 (Vitali’s theorem) Let X,, —, X throughout, with p(€) arbitrary. Fatou and
X, —g.c. X on some further subsequence n’ of any n’ always yield

(21)  E|X|" = Elim |[Xo|" < imE|Xp|" < TmE| X, |” < TmE|X,.|".
So Vitali (ii)(a) yields E|X,,|” — E|X|" < oo, if » > 1. Vitali thus gives (for r > 1)

(22) E|X, — X|"— 0 ifand onlyif E|X,|" — E|X|" (any u(92) value)
if and only if (in case p(§2) < oo) the rvs {|X,,|" : n > 1} are u.i. O

Exercise 5.5 Consider Vitali’s theorem. In the proof that follows we will show that (17)

= (18) = (19) = (16) and (20) = (16) for r > 0 and any u(Q2) value.

(p) Prove Vitali’s (ii)(a) that (19) implies (17) when r > 1. (See exercise 5.10.)

(q) Prove the “true” Vitali theorem in (ii)(b). (Find a hint in exercise 5.10.)

(r) Give an example to demonstrate the implication that just (16) can hold in (ii).

(s) Note that ¢ € [0, 00) may replace n € {1,2,...} in all of Vitali’s theorem.

(t) Let r > 1. Let X,, —, X, where |X,,|" <Y, with Y,, —, Y and E|Y,,| — E|Y]| provides a

bound. Show that X,, —, X.

Proof.* Suppose (16); show (17). Now, X,,; —, s X for some subsequence by theorem 2.3.1.
Thus E|X|" = E(lim | X,/|") < ImE|X,/|" < M < co using Fatou and (14). Thus X € L,.
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The C,-inequality gives | X,, — X|" < C.{|X,|" + | X|"}. The |X,, — X|" are easily shown u.i.
as in the theorem 5.4 proof. So for large n,

) E[X, — X[" = E{|X, — X|" x 1x, —x|>q} + E{|Xn — X|" x 1x, - x )<}

(k) <e+e€ x u(Q) (only here (and for E|X|" finite) was p(2) < oo needed);

the € in (k) is from (15), since p(|X,, — X| > €) — 0 by hypothesis. Thus (17) holds.

Now (16) implies (20) by theorem 5.4, with X € £, by Fatou (as in the previous paragraph)
and using p(2) < oco. We will not use p(2) < oo again. Next, (20) implies (16) since
p(1Xnl > A) < p(|X, — X| > N2)Up(|X]| > N2) < €+ ¢, by first specifying A\ large
(as X € L,) and then n large (as X,, —, X).

Now, (17) implies (18) by theorem 5.3. Also (18) trivially implies (19).

Suppose (19) holds. Define fy to be a continuous function on [0,00) that equals |z|",0,
or is linear, according as |z|” < A |z|" > A+ 1, or A < |2|” < A+ 1. Then (graphing fi(x)
and 2" on [0,\ + 1]) we have Y,, = fi(X,) —, Y = fu(X) by the uniform continuity of
each fy. (See exercise 2.3.4(b).) Let n’ denote any subsequence of n, and let n” denote a
further subsequence on which X,,» —,. X (see (2.3.14) in theorem 2.3.1 of Riesz). On the
subsequence n’’ we then have

lim,, v f[|Xnu\T>>\+1] | X | dps
= T { [ [ X" dpt = Jyx e gy [ X[ it}

(1) < E|X|" - lim,,, f[\xn,,|r9+1] | X [ dpt by (19)

(m) <E|X|" —lim,, Ef\(X,~) <E|X|"—Ef\(X) by Fatou

(n) < f[IXITZA] | X|"dp — 0 as A — oo, since X € L,.

Thus, lim,, f[\Xn|T>A+1] | X" dp < f[IX\’“ZA] | X|" dy — 0, which implies (16). O

Theorem 5.6 * (de la Vallée Poussin)  Let p(€2) < co. A family of £;-integrable functions
X, is uniformly integrable if and only if there exists a convex function G on [0, c0) for which
G(0) =0,G(x)/x — o0 as © — oo and

(23)  sup, EG(|Xy]) < o0.

Proof. For )\ so large that G(x)/x > ¢ for all z > A\ we have
() Jpyon 1 Xeldi < 1 J oy GUXil)dp < Lsup, EG(Xi]) < e

for ¢ sufficiently large. Thus (23) implies {X; : ¢t € T'} is uniformly integrable.

Now we show that {X; : ¢ € T} u.i. implies (23) for some G. We define G(z) = [, g(y) dy
where (with a sequence b,, /" having by = 0, to be specified below) g(z) = b, for alln <z <
n+1,n > 0. Define a,(t) = u(|X¢| > n). Note,



5. MODES OF CONVERGENCE 61

G(IX) < bip(L < [X] < 2) + (b +b2)n(2 < | X3] < 3) +

(b) —Z bnan(t

Note that G(n + 2) > [n/Z]g([n/Z}) = [n/2]by,, 2], so that G(z)/x — 0o as x — oo. It thus
suffices to choose b, " oo such that sup, >, bnan(t) < co. By the definition of uniform
integrability, we can choose integers ¢, T oo such that

(c) SUD; i1 x, 5, 1 Xt dp < 1/27.
Thus for all ¢t we have
1/2" > f[\X‘\ZCW,] | Xl dp > chniﬂ(i <Xl <i+1)
= Zi:cnzjzlu(z <Xy <i+1)
oo oo (o)
2> D pisIXl<it ) =3 Xl > 5)

@ =3 a0

Thus, interchanging the order of summation,

(e) 1= Z:o, 2 " > suptz Zj . = suptz bja;(t

for b; = (the number of integers n such that ¢, is < j).
While u.i. yields a convex G in (23), u.i. follows from (23) without convexity. O

Exercise 5.6 Consider only the definition of u.i. Do not appeal to Vitali.

(a) Let £ = Uniform(0, 1), and let X,, = (n/logn)lj,1/r)(§) for n > 3. Show that these X,
are uniformly integrable and [ X,dP — 0, even though these rvs are not dominated by any
fixed integrable rv Y.

(b) Let Y, = nli1/n)(§) — nlfi/n,2/m)(§). Show that these Y;, are not uniformly integrable,
but that [Y,,dP — 0. However, [ |Y,|dP +0.

Summary of Modes of Convergence Results

Theorem 5.7 (Convergence implications) Let X and X,,’s be measurable and a.e.
finite. (Note figure 5.1.)

(i) If X, —q.e X and p(Q) < oo, then X,, —,, X.

(ii) If X, —, X, then X, —,.. X on some subsequence n'.

(iii) If X,, —, X, then X,, —, X and {|X,|" : n > 1} are uniformly integrable.
)

(iv) Let 7 > 1. If X;, = ora.e X and ImE|X,|" < E|X|" < oo, then X,, —, X.
Let () < oo. Then X,, —, X and {|X,|": n > 1} are ui. iff X,, —, X.

(v) If X, —, X and p(2) < oo, then X,, —,» X for all 0 <’ <.
(vi) If X,, —p X, then X,, —4 X.

(vii) Let pu(92) < oo. Then X,, —,, X if and only if every subsequence {n'} contains a further
subsequence {n"} for which X,» —4. X.
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5
X, — X X, —p X forall 7 <r
if 4(Q) < o0
| X" wi. 4 3
1 2
X” _>LL»€A X XIL _)M X SOIIle XIL, _)(L(f. X
if 4(Q) < o0
6 /ifu="rP TN\ if u(Q) < o0

X, —qX Every n’ contains an n”
for which X,,» — , . X

Figure 5.1 Convergence implications.

(viii) If X,, —4 X, then Y,, —,. Y for Skorokhod rvs with V,, & X,, and Y & X.

Proof.  See theorem 2.3.1 for (i) and (ii). Markov’s inequality gives (iii) via
WX — X| 2 &) <BIX, — X[/ — 0.

Vitali’s theorem includes both halves of (iv). Holder’s inequality gives (v) via

(a)  E[X, - X|" < {B|X, — X" ED (with B = p(Q));

note also exercise 5.1(b) and the proof of inequality 3.4.4(b). Proposition 2.4.1 gives (vi).
Theorem 2.3.1 then gives (vii). The Skorokhod construction (to appear more formally as
theorem 6.3.2 below) was stated above in (7); (7) gives (viii). O

Exercise 5.7 (Scheffé’s theorem) Let fo, f1, f2,... be > 0 on (£, 4, p).
Prove the following without resort to Vitali. Then prove them via Vitali.
(a) Suppose fQ fndu=1forall n >0, and f,, —4.. fo with respect to u, then

@) swpl [ foda~ [ fadul < [ 1fu foldn—0asn - ox.
AeA A A Q

(Think of this as the uniform convergence of measures with densities f;,.)
(Hint. Integrate (f, — fn)* and (fo — f,)~ separately. Note that (fo — fn)" < fo.)
(b) Show that lim [, fn dp < [, fodp < 00 and fr =4 or a.e. fo is sufficient for (24).
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Approximation of Functions in £, by Continuous Functions*

Let C. denote the class of continuous functions on R that vanish outside a compact set, and
then let Cé‘x’) denote the subclass that has an infinite number of continuous derivatives. Let S,
denote the class of all step functions on R, where such a step function is of the form Y }"y;1 I;
for disjoint finite intervals I;. Further, let F' denote a generalized df, and let pu(-) = pp(-)
denote the associated Lebesgue—Stieltjes measure. Let X denote a measurable function on
(Qa A, :u) = (Rv B, ,UF)'

Theorem 5.8 (The continuous functions are dense in £, (R, B, ur),r > 1)

Suppose throughout that X € L,., for some fixed 1 <r < oco.

(a) (Continuous functions) Then for each € > 0 there is a bounded and continuous function
Y, in C, for which [ |X —Y.|" dup < e. Thus the class C. is e-dense within the class £, under
the || - ||-norm.

(b) We may insist that Y, € i), (The Y, of exercise 5.17 has sup |Ye| < sup |X|.)

(c) (Step functions) Such a close approximation may also be found within the step functions
S., making them e-dense also.

(d) All this extends to rvs on (R, B,) (or on locally compact Hausdorff spaces).

(e) All these spaces L, are separable, provided p is o-finite and A is countably generated (that
is, A = o[C] with C a countable collection of sets).

Proof. Letr =1. Consider only X*. Approximate it by a simple function X, = > z;14,
of (2.2.10) so closely that [|X* — X |dur < €/3. (We can require that all A; C (some
[~ M., M.]) for which f[|X+|>ME] z+ Xt dur < €/3, and that each z; > 0.) Now, the Halmos
approximation lemma of exercise 1.2.3 guarantees sets By, ..., B, made up of a finite disjoint
union of intervals of the form (a,b] (with a and b finite continuity points of F, as in (b) of
the proof of theorem 1.3.1) for which

ur(A;AB;) < €/(3k|x;]), and so X! =) Tzl satisfies
J1Xe— X! dpr < €/3. (note that these B; need not be disjoint).

This X! is the step function called for in part (c). Rewrite this X! = ZTyjlcj with disjoint
C; = (aj,b;]. Now approximate 1lc; by the continuous function W; that equals 0, is linear,
equals 1 according as = € [aj,b;]%, as x € [a;,a; + 0] U [b; — §,b,], as = € [a; +9,b; — d]. (We
require that ¢ be specified so small that the combined pr measure of all 2m sets of the type
z € [aj,a; + 6] and [b; — &,b;] is at most 0 = €/(65_,"y;). Then let Y. = > "¢;W;, which
has [ | X! — Y dur < €/3. Thus [|X —Y|dur < ¢, as called for in part (a). For (b), the
function ¥ (x/J) (where

(25)  Y(x) = Jo xp(=1/((s(1 = 5)))ds for0 <z <1,

Ji exp(—1/((s(1 — s)))ds

with ¢(x) equal to 1 or 0 according as < 0 or & > 1) is easily seen to have an infinite
number of continuous derivatives on R (with all said derivatives equal to 0 when z equals 0
or 1). Use ¢(—x/d) on [aj,a; +d] and ¢(x/d) on [b; — J,b;] to connect values 0 to 1, instead
of linear connections. The result is a function in C°.

For r > 1, write X = X — X~ and use the C,-inequality and |a — b|" < |a" — b"| for
all a,b > 0. For example, make E|XT — Y F|" < E[(XT)" — (Y.")"| < € by the case r = 1.
(Exercise 5.18 asks for a proof of (e).) O
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Miscellaneous Results*

Exercise 5.8 *(—,.,., Egorov; convergence “almost” implies uniform convergence)

(i) We define X,, —,.,. X (which is used as an abbreviation for almost uniform convergence)
to mean that for all € > 0 there exists an A, with p(A.) < € such that X,, —uniformly X on
A¢. Recall (2.3.5) to show

(26) (Egorov)If () < oo and X,, —4.. (some X), then X,, —,.. X.

If | X,,| <Y a.e. for all n where Y € £, with » > 1, then u(Q) < oo is not needed.
(ii) (a) If X, —q.u. X, then both X,, —,. X and X,, —, X.
(b) If X,, —, X, then X,,; —,,. X on some subsequence n’'.

Exercise 5.9 (a) (An integrable function “almost” equals a bounded function) Suppose
1(Q2) € [0,00] and [, |X|dp < oo. Fix € > 0. Show the existence of a set A, with p(A.) < oo
for which both |X| < (some M) on A and [,. |X|du <e.

(b) Let u(2) < oco. Let X be measurable and finite a.e. For any € > 0, specify a finite number
M, and a set A, having p(A¢) < € and | X| < M, on A..

Exercise 5.10 Verify Vitali’s theorem 5.5(ii)(a) when u(Q) = oo is allowed. (Hint. Apply
exercise 5.9, Scheffé’s theorem, absolute continuity of the integral, Egorov’s theorem, and
exercise 3.4.12.)

Exercise 5.11 (¢,-Spaces) Let ) be an arbitrary set and consider the class of all subsets
A. Let u(A) denote the cardinality of A when this is finite, and let it equal oo otherwise.
This is counting measure on ). Let 0 < r < co. Let £,(£2) denote all functions X : Q —p for
which 3 o[X(w)|" < co. Then

@7) X =D X @I forallr > 1,

defines a norm on £, () (see (3.4.7) for 0 < r < 1). This is just a special case of an L,-space,
and it is important enough to deserve its specialized notation. Show that

(28) 4. Clsforall0<r <s<oo.
This set inclusion is proper if ) has infinitely many points.

Exercise 5.12 (An added touch) Let a,, > 0 satisfy > [“a, < co. Show that there neces-
sarily exists a sequence ¢, | oo for which Y [cpa, < co.
The exercises below are presented for “flavor” or as tools, rather than to be worked.

Exercise 5.13 *(Weak L,-convergence; and in L) Let X,,X € L£,, with » > 1. Let
1/r 4+ 1/s = 1 define s for r > 1. Let s = oo when r = 1, and L denotes all bounded
A-measurable Y on Q, and let || X||oo = inf{c: p({w: | X (w)| > ¢}) = 0} denote the essential
supremum of such functions X. Let s = 1 when r = oo. (The following results can be
compared with Vitali’s theorem.)

(A) (a) Fix 1 <r < oco. Let X,, —,. X on L£(Q,A, ). Show (via the Holder inequality) that
X, converges weakly in L, (denoted by X,, —,_,, X) in that

(29) [ XnYdp— [ XYdp o forallY e L,.
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That is, X,, —,, X implies X,,)Y —,, XY forall Y € L,.

(b) (Radon—Reisz) Conversely, suppose that X,, —,,_,. X and additionally that the moments
satisfy E|X,,|” — E|X|", where 1 < r < co. Show that X,, —, X.

(B) (c¢) Let X, —=porae -X. Let 1 < r < oo and sup, E|X,,|” < co. Show (29). (Recall
Scheffé’s theorem regarding r = 1.)

(C) (d) (Lehmann) Fix M. Let Far = {X : || X||oo < M < o0}. Let X, X1, Xa,... denote
specific functions in Fjs. Then (29) holds for all Y € £; if and only if (29) holds for all Y in
the subclass {14 : u(A) < co}. (Note also exercise 5.21 below.)

Exercise 5.14* (a) L(9,0[{all open sets}], u) is a complete metric space under the
essential sup norm || - || whenever Q is a locally compact Hausdorff space.

(b) The set S, of simple functions that vanish off of compact sets is dense in this complete
metric space (Lo, || - [|oo). (Recall theorem 5.8.)

(¢) No family of continuous functions is dense in (Lo ([0, 1], B, A), || - |ls), and the space L
is not separable under the norm || - || -

Exercise 5.15 *(Lusin) Suppose X,, —4. X, with yu being o-finite on (92, A). Determine
a measurable decomposition Q = Ay + A; + As + -+ for which u(4g9) = 0 and X,, — X
uniformly on each of A1, Ao, .. ..

Exercise 5.16 * (Lusin; any meaurable function is “almost” continuous)

Let X be an (R, B) measurable function on R.

(a) Let € > 0. Show that there exists a continuous function Y, on R and a closed set D, such
that A\(D¢) < e and X =Y, on D..

(b) Show that a function X : R — R is B-measurable if and only if there exists a sequence
of continuous function Y,, : R — R for which Y,, —,.. X.

(Hint. (a) Begin with simple functions like those in (2.2.10). Consider each [n,n + 1] sepa-
rately. Apply Egorov’s theorem.)

Exercise 5.17 *(Lusin) Let X be measurable on (€, A4, 1), where Q is a locally compact
Hausdorff space (every point has a neighborhood whose closure is compact, such as the real
line R with the usual Euclidean metric) and A = o[{open sets}]. Suppose X (w) = 0 for
all w € A°, where u(A) < oo. Let € > 0. Then there exists Y, where Y.(w) = 0 for all
w € B¢, with the set B compact, and where Y, is continuous, sup |Ye¢| < sup|X]|, and p({w :
X(w) # Ye(w)}) < e. (Again, a measurable function is “almost equal” to a continuous
function.) (Note exercise B.1.14 below.)

Exercise 5.18 *  Prove the separability of £, in theorem 5.8(e).

Exercise 5.19 *(Halmos) Let (2, A, 1) be o-finite. For each Ay, Ag in A define p(A1, A2) =
(A1 AAy). We agree to identify all members of the equivalence classes of subsets A = {A’
: p(A, A”) = 0. Let Ay denote the collection of all of these equivalence classes A that satisfy
H(A) < oo.

(a) Show that (A, p) is a metric space.

(b) Show that the metric space (Ao, p) is separable whenever A = ¢[C] for some countable
collection C (that is, whenever A is countably generated).

Definition 5.4 (Dominated families of measures) Suppose that M is a family of measures
on some (2, A) having p < po for some o-finite measure (2, A4, o). Denote this by M < g,
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and say that M is dominated by pp. Show that there exists a probability distribution P, on
(Q, A) for which p < Py for all € M; that is, for which M <« Fy. (Note definition 4.1.3.)

Exercise 5.20 *(Berger) Let P denote a collection of probability measures P on the mea-
surable space (2, 4). Suppose A = o|C] for some countable collection C; that is, A is countably
generated. Let dry denote the total variation metric on P; see exercise 4.2.10 below. Show
that

(30) P is dominated if and only if (P,dry) is a separable metric space.

(For example, let P denote all Poisson(A) distributions on 0,1,2,... having A > 0. The
countable collection of distributions with A rational is dense in (P,drv).)
(Hint. Use the previous exercise.)

Exercise 5.21 *(Lehmann) Suppose that (€2, .4, ) is o-finite and A is countably generated.
Let @ denote the set of all A-measurable ¢ for which 0 < ¢(w) < 1 for all w € Q. Consider
an arbitrary sequence ¢, € ®. Show that a subsequence n’ and a function ¢ € ® must exist
for which

(1) Joydwfdu — foéf du for all f € L1(QA,p).

(That is, ¢py —w—r, @, Or ¢, converges weakly in £q to ¢ in the sense of (29)). (Hint. By
exercise 5.13(d) it suffices to verify (31) for all f =14 with u(A4) < c0.)



Chapter 4

Derivatives via Signed Measures

0 Introduction

In a typical calculus class the derivative F(z) of a function F' at z is defined as the limit of the
difference quotients [F'(z + h) — F(x)]/h as h — 0. One of the major theorems encountered is
then the Fundamental Theorem of Calculus that expresses F' as the integral of its derivative
(with this result formulated on some mterval [a, b] with respect to ordinary Lebesgue measure
d\ = dz). We can thus write F'(x) f F’(y) dy under appropriate hypothesis on F'.
In the context of an elementary probablhty class we let f = F’ and rewrite the fundamental
result as P([a,z]) = f[a,w] fw)dy = [T f(y)dy for all a < x < b, or even as

(1) P(A)= [, f(y)dy for all events A of the form [a, z].

Let us now turn this order around and begin by defining one function ¢ as the “indefinite
integral” of another function X, and do it on an arbitrary measure space (€2, A, u). Thus for
a fixed X € £41(, A, ), define

(2)  (A)=[,Xdu  forall Ac A

As in exercise 3.2.6 (and as example 1.1 will show), if X > 0 then this ¢ is a measure on
(Q,A). In general ¢(A) = [, Xdp = fA X*dp— [, X~ dpis the difference of two measures,
and is thus called a s1gned measure.” As (2) suggests, we can think of X as a derivative of
the signed measure ¢ with respect to the measure p. This is the so called “Radon-Nikodym
derivative.” In this context it is possible to formulate important general questions that have
clean conclusions via straight forward and/or clever proofs. This is done in section 4.1 and
section 4.2, and this gives us most of what we need as we go forward. But before going on,
in section 4.3 and section 4.4 we relate this new approach back to the more familar approach
represented by (1). Of course, the f in (1) must equal the Radon—Nikodym derivative (viewed
in the new context); but much is gained by this new perspective.

(© Springer International Publishing AG 2017 67
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1 Decomposition of Signed Measures

Definition 1.1 (Signed measure) A signed measure on a o-field (or a field) A is a set
function ¢ : A — (—o0,+00] for which ¢(0) = 0 and ¢(>_ A,) = > ¢(A,) for all countable
disjoint sequences of 4,,’s in A (requiring > A, in A in the case of a field). When additivity
is required only for finite unions, then ¢ is called a finitely additive (f.a.) signed measure.
(If ¢ > 0, then ¢ is a measure or f.a. measure.) If |¢(Q2)] < oo, then ¢ is called finite.
If Q@ = > °Q, with all components 2,, € A and all values |¢(Q,)| < oo, then ¢ is called
o-finite.

Proposition 1.1 (Elementary properties) (i) If ¢(A) is finite and B C A, then ¢(B) is
finite. Thus ¢(Q2) finite is equivalent to ¢(A) being finite for all A € A.

)
(i) If [¢(3°7" An)| < oo, then Y [°[¢p(An)] < oo (so, it is absolutely convergent).
(%) Theorem 1.1 below will show that ¢(A) > (some M) > —oo, for all A € A.

Proof. (i) Now,

(a) (a finite number) = ¢p(A) = ¢(B) + ¢(A \ B)

implies that ¢(B) and ¢(A \ B) are both finite numbers.

(i) Let A} equal A, or 0 as ¢(A4,) is > 0 or < 0. And let A, equal A,, or 0 as ¢(A,)
is < 0or > 0. Then > ¢(A}) = (> AfF) < oo by (i), since Y A} C > A,. Likewise,
> o(A;) = (> A;). Now, convergent series of numbers in [0,00) may be rearranged at
will. Thus Y- [¢(An)| = > d(A}) — > o(A;,) is finite. O

Example 1.1 (The prototypical example) Let X be measurable. Then
(1) o(A) = / X dp is a signed measure if X~ € L.
A

Note that ¢ is finite if X € £1. Also, ¢ is o-finite if X is a.e. finite and pu is o-finite.

Proof. Now, ¢(0) = [, Xdu= [ X -1gdu= [0du=0. Also,
(a) p(A) = [ XTdp— [, X dp>— [, X du>— [ X dp>—o0
for all A € A. Finally,

(YT A = feq X=Js4 XT =[5, X with the X~ -term finite

=2, Xt =2, X by the MCT, twice
(b) =220, X = [, XT) =20 [, X =220 6(An),
Thus ¢ is a signed measure.
Note that [¢p(A)| =] [, X| < [, |X] < [|X] < oo forall A, if X € L;.

Let Q =" €, be a measurable decomposition for the o-finite . Then the sets 2, =
QpyNm <X <m+1] and Q, 100 = Q, N[X = £o0], for n > 1 and for all integers m, is a
decomposition showing ¢ to be o-finite. O
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Definition 1.2 (Continuous signed measure) A signed measure ¢ is continuous from below
(above) if p(lim A,,) = lim ¢(A,,) for all 4,, " (for all A,, \, with at least one ¢(A,,) finite).
We call ¢ continuous in case it is continuous both from below and from above.

Proposition 1.2 (Continuity of signed measures)

A signed measure on either a field or a o-field is countably additive and continuous. Con-
versely, if a finitely additive signed measure on either a field or o-field is either continuous
from below or is finite and continuous from above at @), then it is a countably additive signed
measure.

Proof.  This result has nearly the same proof as does the corresponding result for measures;
see proposition 1.1.4. O

Exercise 1.1 (a) Actually write out all details of the proof of proposition 1.2.
(b) If ¢ and v are signed measures, then so is ¢ + 1.

Theorem 1.1 (Jordan—Hahn decomposition) Let ¢ be a signed measure on the measur-
able space (£2,.4), having events A. Then € can be decomposed into events as 2 = QT +Q~,
where

(2) O is apositive setfor ¢, in that ¢(A) > 0 for all events A C Q7

(3) O is anegative setfor ¢, in that ¢(A) < 0 for all events A C Q.

Trivially, we obtain measures on the measurable space (€2, .A) via the definitions

(1) A =HANQT) and ¢ (A)=—p(ANQT)  (with o= 6" —¢7),

with ¢ a measure and ¢~ a finite measure on (2, .4). Of course, 7 (Q7) =0 and ¢~ (2F) =
0. We will call ¢+, ¢, and |¢|(-) = ¢ + ¢~ the positive part, the negative part, and the total
variation measure associated with ¢; thus

(5) 16l() =T () + 07 (") is the total variation measure on (€, A),
Moreover, the following relationships hold:

6 ¢t (A) =sup{¢(B): BC A, B € A},
() 4—(4) = —inf{6(B): BC A B € A

Exercise 1.2  Identify ¢, ¢7,|4|, and |¢|(Q) in the context of the prototypical situation
of example 1.1. Be sure to specify QT and Q.

Proof.* Let us note first that (6) follows from the previous parts of the theorem. If B C A
then ¢(B) = ¢(BQT) + ¢(BQ™) < ¢(BOQT) = ¢T(B) < ¢1(A), while equality is actually
achieved for the particular subset AQ". Thus, (6) holds.

Consider claims (2) and (3). Let B denote some set having ¢(B) < 0. [That ¢(B) > —o0
is crucial; this proof will not work on the positive side.] (If no such set exists, let QT = Q,
giving |¢| = ¢T = ¢ and ¢~ = 0.) We now show that

(a) B contains a negative set C.

If B is a negative set, use it for C. If not, then we will keep removing sets Ay with ¢(Ax) > 0
from B until only a negative set C is left. We will remove disjoint sets Ay with ¢(Ag) > 1
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as many times as we can, then sets with ¢(Ay) > 1 as many times as we can, . . . . To this

2
end, let

n1 = min{i : ¢(A;) > 1/i for some A; C B, with A; € A},

(b) ng = min{i : ¢(Ag) > 1/i for some Ay C B\ 25;11 A;, with A, € A}

(If (n1,m2,...) = (1,1,1,1,2,.. then some Ay has ¢p(Ag) > 1for 1 <k < 4,% < ¢(Ag) < 1 for
k=5, ..) Let C = B\ ), Aj, where the union is infinite (unless the process of choosing ny’s

terminates); note that only finitely many Ay exist for each 1/i [else proposition 1.1(i) would
be violated]. The c.a. of ¢ then gives

©  0>6(B)=¢(C) + 2k 6(Ar) = $(C) > —o0.

Moreover, C is a negative set, since no subset can have measure exceeding 1/i for any i. Now
we know that we have at least one negative set. So we let

(d) d = inf{¢(C) : C is a negative set } < 0, and define Q= = U, Cy,

where C}, denotes a sequence of negative sets for which ¢(C}) \, d. Replace these C}, by Cr =
U’fC’j; these are /" sets with O~ = U,C}, and with ¢(é’k) . d. Now, €~ is also a negative set
(else one of the C’s would not be), and thus ¢(27) > d, because it must exceed the infimum
of such values. But ¢(Q2~) < d also holds, since ¢(27) = ¢(Ci) + #(Q\Cr) < #(Cy) for all
k gives ¢p(27) < d. Thus ¢(Q~) = d; so, d must be finite. Then QT is a positive set, since
if p(A) < 0 for some A C QF, then the set O~ U A would have ¢(AU Q™) < d (which is a
contradiction). O

Exercise 1.3 The set QT is essentially unique, in that if Qf and QF both satisfy the
theorem, then |¢|(Q] AQF) = 0.

Lebesgue Decomposition

Definition 1.3 (Absolute continuity of measures) Let p and ¢ denote a measure and
a signed measure on a o-field A. Call ¢ absolutely continuous with respect to p, denoted by
¢ < u, if p(A) =0 for each A € A having u(A) = 0. We say ¢ is singular with respect to p,
denoted by ¢ L p, if there exists a set N € A for which p(N) = 0 while |¢|(N¢) = 0.

Exercise 1.4 Let u be a measure and let ¢ be signed measures on (£2,.4). Show that the
following are equivalent: (a) ¢ < p. (b) ¢ < p and ¢~ < p. (c) |¢| < p.

Theorem 1.2 (Lebesgue decomposition) Let u denote any o-finite measure on the mea-

surable space (2, A). Let ¢ be any other o-finite signed measure on this space (€2,.A). Then
there exists a unique decomposition of ¢ with respect p as

(7) ¢ = Gac + Os where Gac L i and ¢g L p,

with ¢4 and ¢, being o-finite signed measures. Moreover,

(8)  ue(A) = / Zodp  forall Ac A
A

for some finite A-measurable function Zy, which is unique a.e. p.
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Proof. By o-finiteness and the Jordan-Hahn decomposition, we need only give the proof
if u and ¢ are finite measures; just separately consider (;S;gn and ¢ (n=1,2,...) for a joint
o-finite decomposition Q2 = 377 Q,, of p and |¢|. (To give the details would be pedantic.)
We now establish the existence of the decomposition in the reduced problem when ¢ and pu
are finite measures. Let

(a) Z2={2:Z2>0,Z¢cLyand [, Zdu<¢(A)forall Ac A}.

Now, Z # (), since Z =0 is in Z.
Case 1. ¢ < u: The first step is to observe that

(b) 71,75 € Z implies Z1 V Z5 € Z.

With A ={w e A: Z1(w) > Z3(w)} and Ay = AAS, we have

(C) fA(Zl \ Z2) d/,& = fAl Zl du + ng Zg du S ¢(A1) + ¢(A2) = ¢(A)

Thus (b) holds. Now choose a sequence Z,, € Z such that

(d) JoZndp — c=supyez o Zdp < supyez ¢(Q) < ¢() < oc.

We may replace Z,, by Z, =71V VZ,in (d). These Z, in (d) are an " sequence of
functions. Then let Zy = lim Z,,. The MCT then gives (for any A € A)

(e) [y Zodp=1m [, Z,dp < limp(A) < ¢(4), sothat Zo€ Z, and

() Jo Zodp = lim [, Zndp = c¢ < 00, showing that Zg > 0 is a.e. finite.

(Redefine Zy on a null set so that it is always finite.)
We now define

(2) Gac(A) = [, Zodp  and  ¢s(A) = ¢(A) — ¢ac(A) for all A € A.

Then ¢, is a finite measure, which can be seen by applying example 1.1 with ¢ finite; and
Pac <K p. Moreover,

(h) ¢SE¢—¢ac20

(since Zy € Z), so that ¢ is a finite measure by exercise 1.1. If ¢4(Q) = 0, then ¢ = dqc
and we are done, with ¢, = 0. (In the next paragraph we verify that ¢, = 0 always holds in
Case 1; that is, we will verify that ¢5(Q2) = 0.)

°Assume ¢4(€2) > 0. Then (since p(€2) is finite) there is some 6 > 0 for which

(i) ¢s(€) > Ou().
Let Q7 and Q~ denote the Jordan—Hahn decomposition for ¢* = ¢, — u. Then

() w(Q) >0 must follow (while (i) is being assumed).
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(Assume (j) is not true, so that p(Q%) = 0. This implies ¢ac(QF) = [, Z, dp = 0. Tt further
implies that ¢5(QT) = 0 (since ¢s = ¢ — ae <K p, as ¢ K p is assumed for Case 1 and as
Gac < 1 is obvious from example 4.1.1). But ¢4(21) = 0 contradicts (i) by implying that

$s(Q) — 0u(Q) = ¢"(2) = —¢7(Q7) + ¢7(Q7)

(k)  =-¢"(Q7) +[os(QF) - 0u(QT)] = —¢"(Q7) < 0.

Thus (j) must also hold, under the assumption made above that inequality (i) holds.) Now,
s (AQT) > Ou(AQT) (by the definition of Q* below (i)). Thus (as ¢s > 0 by (h) gives the
inequality ¢s(AQ™) > 0),

P(A) = Pac(A) + 6s(A) = [4 Zodp + ¢s(AQT) + ¢5(AQ7)
> [ Zodp+ ¢s(AQT)
>[4 Zodp + Opu(AQT) as Q7T is a positive set for ¢* = ¢, — Ou
1) = [ (Zo +010y) dp for all A € A.

This implies both Zy = Zy + 0lg, € Z and fQ Zodp = ¢+ 0u(QF) > c. But this is a
contradiction. Thus ¢45(€2) = 0. Thus ¢ equals ¢, and satisfies (8), and the theorem holds
in Case 1. The a.s. p uniqueness of Zy follows from exercise 3.2.2. (This also establishes the
Radon-Nikodym theorem below.)

°Case 2. General ¢: Let v = ¢ + p, and note that both ¢ < v and y < v. Then by
Case 1 we can infer that

(m) o(A) = /AXdl/ and pu(A) = /AYdV forall Ae A

for finite v-integrable functions X > 0 and Y > 0 that are unique a.e. v. Let D = {w :
Y (w) = 0}, and then D¢ = {w : Y(w) > 0}. Define

(Il) 05 (A) = ¢(AD) and ¢ac(A) = qb(ADC)

Now u(D) = [, Y dv = [,,0 dv =0, and (n) gives ¢5(D°) = ¢(D°D) = ¢(0) = 0; thus ¢, L
f- I pae << p? Let p(A) = 0. Then pu(AD) = 0. Then by (m), 0 = u(AD) = [, e Y dv;
and thus Y = 0 a.e. v in AD®, by exercise 3.2.1. But Y > 0 on AD®, and so v(AD®) = 0.
Then (n) and (m) give ¢u.(A) = p(AD°) = [, e X dv =0, since v(AD) = 0. So, u(A) =0
implies ¢q.(A) = 0. Thus ¢g. < p.

Consider the uniqueness of the decomposition. If ¢ = ¢uc + ds = bge + s, then 1 =
Gac — Pac = b5 — ¢ satisfies both 1 L p and 1 < p. Thus ¢ = 0. ]

Exercise 1.5 Verify the following elementary facts for signed measures ¢1, 2, ¢ and a
measure g on some measurable space (€2,.4).

(a) If ¢1 < p and ¢ < p, then ¢y + ¢ < p

(b) If ¢1 L pand ¢o L p, then ¢y + o L

(¢) If ¢ < pand ¢ L u, then ¢ = 0. (This was used in the previous proof.)
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2 The Radon—Nikodym Theorem

Recall that the absolute continuity ¢ < @ means that

(1) $(A) =0 whenever p(A)=0with A€ A.
Theorem 2.1 (Radon—Nikodym) Suppose both the signed measure ¢ and the measure

w are o-finite on a measurable space (£2,.4). Then ¢ < p if and only if there exists uniquely
a.e. p a finite-valued A-measurable function Zy on €2 for which

2) $(A) = /A Zodp  for all A€ A

Moreover, ¢ is finite if and only if Z; is integrable.

The function Zy of (2) is often denoted by [%] (or, more commonly by %), so that we
also have the following very suggestive notation:

o(A) = / [jjj m for all A € A.

We call Zy the Radon—Nikodym derivative (or the density) of ¢ with respect to .

Proof. The Lebesgue decomposition theorem shows that such a Zy necessarily exists. The
sufficiency is just the trivial example 4.1.1. The “moreover” part is also a trivial result.

Theorem 2.2 (Change of variable theorem) Let p < v where p and v are o-finite
measures on (2, A). If [ X du has a well-defined value in [—o0, 00|, then

(3) / Xdp = / {Z ] dv  forall A e A,

One useful special case results from
b b
(4) / fdG = / fg dH, with G = /g dH for a generalized df H,

where g > 0 on (a, b] is measurable, and where we agree that ff = f(a )

Proof. Casel. X =15, for B € A: Then the Radon—Nikodym theorem gives

(a) Jilpdp = pn(AB) = fAB :fAlg[Z—l:]dv.

Case 2. X =) | ¢;1p,, for a partition B;: Case 1 and linearity of the integral give
n n d du
(b) fAXd:u:Zizl CifA lp,du =73 CifA 1, [ dV_fA J dv.
Case 3. X > 0: Let X, > 0 be simple functions that / to X. Then the MCT twice gives

() JaXdp=Tm [, X,du=lim [, X,, d =[aX
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Case 4. X measurable and at least one of X, X~ in £;: Then
fAXd,u: fAX+dﬂ_fAXid,“

(d) = [ X% dy — [, X~ [%]dv = [, X[%]dv,
so long as one of [, X dp and [, X~ dy is finite. O

Exercise 2.1 (Derivative of a sum, and a chain rule) Let x4 and v be o-finite measures on
(Q, A). Let ¢ and 1 be o-finite signed measures on (2,.4). Then

(5) d(d)_'_d))] — {dé] + {ch//} a.e. [t if p < pand ¢ < p,
] _ dg) [ |

(6) _du} = [d#} {du} a.e. v if g < pand p <K v.

Show that [%] = /[j’}holdsae pand a.e. vif p < vand v < p.

Note that theorem 3.2.6 (of the unconscious statistician) is another change of variable
theorem. That is, if X : (2, 4) — (2,4) and g : (2, A) — (R, B), then

(7) / g(X)dp= / gdux = / ydpigx)(y) for all B € B,
(goX)~1(B) 9-1(B) B

when one of the these integrals is well-defined. (See also exercise 6.3.3 below.)

Exercise 2.2 Let P, 2 denote the N(u,o?) distribution. Let P have the density f =
[dP/d)] with respect to Lebesgue measure A for which f > 0.

(a) Show that A < P with density 1/f.

(b) Show that P, 1 < Py and compute [dP, 1/dPy1].

(c) Show that P ,2 < Py,1 and compute [dP ,2/dPy 1].

(d) Compute [dP/dPy 1] and [dFy,1/dP] when P denotes the Cauchy distribution.

Exercise 2.3 Flip a coin. If heads results, let X be a Uniform(0, 1) outcome; but if tails
results, let X be a Poisson (A) outcome. The resulting distribution on R is labeled ¢.

(a) Let u denote Lebesgue measure on R. Find the Lebesgue decomposition of ¢ with respect
to this p; that is, write ¢ = @uc + Ps.-

(b) Let p be counting measure on {0,1,2,...}. Find the Lebesgue decomposition of ¢ with
respect to this p.

(If need be, see the definitions of various distributions in chapter 9.)

Exercise 2.4 Let p be a o-finite measure on (£, .A). Define ¢(A) = [, X dp forall A e A
for some p-integrable function X. Show that

|p[(A) = [, |X[dp forall Aec A
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Exercise 2.5 (Alternative definition of absolute continuity) Let ¢ be finite and let u be
o-finite, for measures on (£2,.4). Then ¢ < p if and only if for every € > 0 there exists J, > 0
such that u(A) < d. implies |¢|(A) < e. Show that if ¢ is not finite, then the claim could fail
(even if  is a finite measure); give an example.

Exercise 2.6 (Domination) If pq, po,... are finite measures on some (£2,.A4), then there
exists a finite measure p on (€2,.A) such that u < p for each k > 1.

Exercise 2.7 (Halmos) Suppose pi1, ft2, ... and vy, vs, ... are finite measures on some (€2, A)
for which u, < vy, for each k > 1. Suppose also that

p(A) = lim S () and p(4) = lim S0, ()
for all A € A. Show that the following hold a.e. v:

(A kg vi)/dv] /1 and (A3, pw)/dv] /" [dp/dv], and

O S /T, ] — [dufdu),

These can be thought of as theorems about Radon—Nikodym derivatives, about absolute
continuity of measures, or about change of variables.

Exercise 2.8 Let A denote the collection of all subsets A of an uncountable set 2 for which
either A or A€ is countable. Let u(A) denote the cardinality of A. Define ¢(A) to equal 0
or oo according as A is countable or uncountable. Show that ¢ < pu. Then show that the
Radon—Nikodym theorem fails in this non o-finite case.

Exercise 2.9 For a o-finite measure p and a finite measure v on (€2, 4), let
d(A) = u(A) —v(A) for all A € A.

(a) Show that ¢ is a signed measure. (b) Show that
P(A) = [,(f —g)dp+v),

for measurable functions f and g with g € £7 (1 +v). (Note example 4.1.1.)
(c) Determine ¢, ¢~, and |¢|; and determine |¢|(Q) in case u is also a finite measure.

Exercise 2.10 (Total variation distance between probability measures) Define P and @ to
be probability measures on (0, A).
(a) Show that the total variation distance dpy (P, Q) between P and @) satisfies

) drv(P.Q) = fsupaca [P(A) ~ QA)} = 5 [ Ip — aldu

for any o-finite measure g dominating both P and @ (that is, P < p and Q < p).

(b) Use part (a) to show that dpy (P, Q) = |P — Q|(€2)/2.

(c) Note specifically that the choice of dominating measure p does not affect the value of
dry (P, Q). (Note section 14.2 below.)
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Exercise 2.11 (Hellinger distance between probability measures) Let P and @) denote prob-
ability measures on (€2,.4). Define the Hellinger distance H(P, Q) by

(10)  HP.Q)= 3 [P - Vi dn

for any measure p dominating both P and (. Show that the choice of dominating measure
w does not affect the value of H(P, Q). (Note section 14.2 below.)

Exercise 2.12 Let ¢ be a o-finite signed measure. Define
(11) [ Xd¢ = [ XdopT — [ Xdg~
when this is finite. Show that | [ Xd¢| < [ |X|d|¢]| .

Exercise 2.13 Let (Q,.A) be a measurable space, and let M denote the collection of all
finite signed measures p on (Q,.A). Let ||u|| = |p|(). Thus ||u1 — pe|| = |1 — p2](2). Show
that (M, ||- is a complete metric space.

Exercise 2.14 *(Loéve) Suppose X1, Xo,... are integrable on (Q, A, ). Define ¢,(A4) =
J 4 X dpfor all A € A, and suppose ¢,,(A) converges to a finite number for all A € A. Define
|9[n(A) = [, |Xn|dp. Then sup,, |¢[,(Q) < co. Moreover,

(12)  sup,|é|n(4) — 0 as either pu(A4) — 0 or A\, 0.
Finally, there exists an integrable function X (that is unique a.e. p) for which

(13)  ¢n(A) — o(A) = [, Xdu for all A € A.

Exercise 2.15 (Likelihood ratios) Let P and @ denote any two measures on some o-finite
measure space (€, A, 1). Suppose that P << g and @Q << p. Show that
g lP/d _ (dP/A(P + Q)

[dQ/du]  [dQ/d(P + Q)
except on a p-null set (which is also a (P + Q)-null set). This means that the “likelihood
ratio” on the right hand side of (14) (that appears in various statistical settings) can always
be replaced by the one on the left hand side. (In a statistical situation where P and @
are probability measures, the right hand side is always defined—even if, say, P is absolutely
continuous and @ is discrete.)
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3 Lebesgue’s Theorem

Theorem 3.1 (Lebesgue) (a) Suppose F' is any " function on [a,b]. Then F has an
integrable derivative F” that exists and is finite a.e. A on [a, b].

(b) If F'is / on R, then F’ exists a.e. A on R and is integrable on any finite [a, b].

Proof. *Consider the Dini derivates

D F(z) = limsup,, o, [F(z + h) — F(z)]/h,
D™ F(x) = limsup, o, [F(x) — F(x — h)]/h,
D, F(z) = liminf, oy [F(x + h) — F(z)]/h,
D_F(z) =liminfy_ o [F(x) — F(x — h)]/h.

Trivially, DY F(z) > D, F(z) and D™ F(z) > D_F(z). All four derivates having the same
finite value is (of course) the definition of F' being differentiable at x, with the common value
called the derivative of F at x and being denoted by F'(x). Let

A={z:DV'F(z) > D_F(x)}

(a) = UATS = U{x :DTF(z) >s>r>D_F(z)},

where the union is over all rational r and s. To show that A(A) = 0, it suffices to show that
all A,.; have outer Lebesgue measure zero, in that \*(A,s) = 0. To this end, let U be an open
set for which A,; C U with A(U) < A*(A,s) + €. For each z € A,; we can specify infinitely
many and arbitrarily small h for which [z — h,z] C U and [F(x) — F(z — h)]/h < r. This
collection of closed intervals covers A, in the sense of Vitali (see exercise 1.2.8). Thus some
finite disjoint collection of them has interiors It = (x1 — h1,21),- -, Iy = (T — hin, T4n) for
which B, = A, N (X%, I;) has \*(B,s) > A\*(A,s) — e. Then

(b)  EL[F(wi) = Fai = ha)] < v 350 hi <7 AU) <7 (Ars) + €.

For each y € B, we can specify infinitely many and arbitrarily small h for which [y, y + h] C
(some I;) and [F(y+h)— F(y)]/h > s. This collection covers B, in the sense of Vitali. Thus
some finite disjoint collection of them has interiors J1 = (y1,y1 + h1)s ..o Jn = Yn, Yn + hn)
for which C,s = B,s N (Z;-Lzl J;) has A*(Crs) > A*(B,s) — €. Then

(© S +hy) — F(wy)] > s X0, by > s (Br) — o] > s]A%(A,4) — 24,

Moreover, since the disjoint union of the J;’s is a subset of the disjoint union of the I;’s,
results (b) and (c) yield

rN(Ars) + € > 300 [F(@i) — F(zi — hi)
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(d) = XFy + hy) = Fly)] > s\ (Ars) — 2¢]

for every € > 0. That is, rA*(A4,5) > sA\*(A,s). But r < s. Thus A*(4,s) = 0 for all

rational 7 and s. Thus A*(4) = 0. Analogously, A({x : D~ F(z) > DiF(z)}) = 0. So

D~ F(x) > D_F(x) > DYF(z) > D.F(z) > D" F(x) a.e. \. Thus F’ exists a.e. A.
Important: Read this paragraph. The measurable function difference quotients

(e) D,F(z) =n[F((z+1/n) ANb) — F(2)]

on [a,b] converge a.e. A to F’'(x) on [a,b], so that F’(x) is measurable. Applying Fatou’s
lemma to the D, F' (which are > 0, since F is ) gives

) [PF(z)d\(z) = [lim D, F(z)|dA(z) < lim [° D, F(x)dA(z)

() = lim [ n[F((z + 1/n) Ab) — F(z)]d\(z)
() = lim [/ " nF(b)dA (@) — [“T" 0P (2)d\ ()]
(i) <Lm{F(b) - F(a+1/n)} < F(b) — Fy(a) < F(b) — F(a), asis F /.

Thus F’ is integrable, and hence F” is also finite a.e. A. (We now present this last fact as a
corollary, since situations with strict inequality are very revealing.) ]

Corollary 1 (a) Suppose F is an /' function on [a,b], with —co < a < b < co. Then F’
exists a.e. A and

1) [P F(z)d\(z) < F(b) — F(a).

So, F' is differentiable a.e. A, and its derivative F” is finite a.e. A and satisfies (1).
(b) If F'is any df on R, then F” exists a.s. A on R. So let a and b become infinite in (1) to
obtain [ F'(z)dA(z) < F(co) — F(—00) =1—-0=1.

The Lebesgue singular df in example 6.1.1 below will show that equality need not hold
in equation (1); this continuous df is constant valued on a collection of disjoint intervals of
total length 1. (An example in Hewitt and Stromberg (1965, p. 278) shows that F'(z) = 0
is possible for a.e. x, even with a | F.) Equality also fails for any discrete distribution that
places any mass in (a,b]. This is the point of the following exercise.

Exercise 3.1 (Distributions can be discrete, singular, or absolutely continuous)

(a) Let Fp denote the discrete distribution on [0, 1] that puts mass 1/(n + 1) at each of the
n+ 1 points i/n for 0 < i < n. Graph Fp, and calculate F}, from your graph. Then show
that [, Fp(z)dA(z) = 0.

(b) Let F¢o denote the Lebesgue Singular df associated with the Cantor set; see example 6.1.1
below. What is the value of F/, at all points interior to the “flat spots”? Now show that
[ Fl(x)d\(z) = 0.

(¢) Show that [0 F’(x)dA(z) =1 for the Uniform (0,1) df—which has a density.
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Theorem 3.2 °(Term-by-term differentiation of series) Let g be / on [a, b] for each k > 1,
and suppose that S,,(z) = >"}'_, gx(2) converges at © = a and z = b. Then S,,(z) — S(z) for
all  in [a, ], for some finite-valued measurable function S(x). Mainly, S’(-) exists a.s. A and
is given by

(2)  S'2) =) gila)
k=1

Corollary 1  If the power series S(z) = Y77 | an(z—a)™ converges absolutely for z = a+R,
then for all |z — a] < R we may differentiate S(z) term by term. Moreover, this is true for
any number of derivatives of S.

Proof. Note that S, (a) is a convergent sum. Now write

Sy (x) = Sn(a) + [Sn(x) — Sn(a)] = Sn(a) + Zzzl[gk(x) - gr(a)].

Since " sequences bounded above converge, the convergence at * = a and x = b gives
convergence at all = in the interval. We may replace g (x) — gx(a) by gr(x) and then assume
all g > 0 on [a,b] with gi(a) = 0. Since S and all S,, are /, the derivatives S’ and all S],
exist a.e. A by theorem 3.1 (of Lebesgue). Now,

(a)  Sp(x) < Shpq(x) < §'(2) ae. N
both essentially follow from

(b) S(a:—&-h})L—S(x):S(x—i-h ngx—i-h gk ()

n+1
< Sp(z+ h) — Sn(x)
- h
From (a) we see (without having made use of gx(a) = 0) that

(c) S/ () converges a.e. A with lim S, < 5" a.e. \.

Because S, /7, it suffices to show that S/, —, .. S’ for some subsequence n;. Since S, (b) /
S(b), we may specify n; so large that 0 < S( ) — Sp, (b) < 27% and then

(d) 0= S(@) = Su (@) =20 11 96(x) < 320011 k() = S(b) — S, (b) <277,
for all z € [a,b]. Thus

(@ 0<YES0) — Su (@] X527 =1 foralla € [a.b],

where the series in (e) has summands

() hi(z) = S(x) — Sy, (x) that are /" in .

Thus conclusion (c) also applies to these h;’s (not just the gx’s), and we conclude from (c)
that the series

(g) T = Zn ) h; converges a.e. \.
i
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But a series of real numbers can converge only if its nth term goes to 0; that is,
(h) S'(x) — Sy, (x) = hi(z) = 0 a.e. \.
As noted above, this suffices for the theorem. O

Exercise 3.2 Prove the corollary.

Example 3.1 (Taylor’s expansion) Suppose ¢(-) is defined in a neighborhood of a. Let z*
denote a point somewhere between x and a. Let

3)  Pi(z) =g(a) + g (a)(z —a),

(4) Py(x) = Pi(2) + ¢"(a)(z —a)?/2!,

(5) Py(z) = Py(z) + ¢ (a)(z — a)?/3),. ..,

6)  Ru(z) =[9(x) —g(a)]/(x —a) or g'(a), as  wFaor x=a,

(7) Ry(z) = 2![g(x) — Py(x)]/(z —a)* or g¢"(a), as x#a or x=a,
(8) R3(x) = 3l[g(x) — P2(2)]/(z —a)® or ¢"(a), as x#a or r=a.

Then I'Hospital’s rule gives (provided ¢'(a), ¢"(a), "' (a), ... exist, respectively)
(9) lim Ry (z) = g'(a) = Ri(a),

/ _p! / o
(10)  tim Rafa) = tim SOD gy SO0 ) (),

2!g'(x) — Py(x)] g"(x) - Py(x)

Jim Ry (w) = lim @—ap  amT T,
" o
(11) i @) —9"(@) ¢""(a) = Rs(a).

r—a Tr—a

Thus we find it useful to use the representations (with ¢*)(a) abbreviating that ¢g*)(-) exists
at a, and with g(¥)(-) abbreviating that ¢g*)(x) exists for all  in a neighborhood of a)

[ Pue) + [Ra(@) — ¢(@)](= — a) if ¢/(a),
(12) “@{auruﬂﬂww%mu—w ifg(),
Py(z) + [Ro(2) — g"(a)(x — a)/2!  if ¢"(a),
(13)  g(2) = { Poa) +[g"(z") — ¢ (@))(z — a)2/2!
= Pi(z) + ¢ (") (x - a)2/2! if (),
Py(2) + [Ro() — g"(a))(x — a)*/3!  if ¢"(a),
(14)  ga) =14 Ps(a)+[g"(z") - ¢ (@))(x — a)*/3
= Pa(w) + g"'(2*)(x — a)? /3! if g/ (-). =

Exercise 3.3 (a) Show that if ¢”(x) exists, then

. 1
(15)  ¢"(z) = limp—o 5 {g(x + h) = 29() + g(x = M)}
(b) An analogous result holds for any g% (z).

Exercise 3.4%  Prove the Vitali covering theorem. (See exercise 1.2.8.)
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Exercise 3.5 Let f(z) = Y. apz®/ 377 bya® in some interval. Suppose that all ay, by, > 0
and ay /by, 7. Then f/(z) > 0 for all = in that interval. (This result is useful in conjunction
with the monotone likelihood ratio principle.)
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4 The Fundamental Theorem of Calculus

Definition 4.1 (Bounded variation) Let F denote a real-valued function on [a,b]. The
total variation of F over [a,b] is defined by

VIF =V F

(1) ESUp{Z F(xk)—F(xk_1)|:a5x0<x1<-~-<xnzb,n21}.
k=1

We say that F is of bounded variation (BV') on [a,b] if V?F < co. (Note the VP F is a measure
of the “total amount of wiggle” of F over [a,b].)

It is clear that
(2) VYF =V‘F + VPF for a < ¢ <band F of BV,

Definition 4.2 (Absolutely continuous functions) A real-valued function F' on any
subinterval I of the line R is said to be absolutely continuous if for all € > 0 there exists a
dc > 0 such that

n

(3) > |F(dy) = F(er)| < € whenever > (di — k) < 5
k=1 k=1

with n > 1 and with disjoint subintervals (cg,dy] contained in I (This implies that the
“wiggle” of F' over a combined length must be small if F' is not given much combined length
in which to wiggle.)

Definition 4.3 (Lipschitz condition) A real-valued function F on any subinterval I of R is
said to be Lipschitz if for some finite constant M we have

(4) |F(y) — F(z)| < M|y —x| forall z and y in I.

We first establish some elementary relationships among the Lipschitz condition, absolute
continuity, bounded variation, and the familiar property of being . These concepts have
proven to be important in the study of differentiation. We will soon proceed further in
this direction, and we will also consider the relationship between ordinary derivatives and
Radon—Nikodym derivatives. We first recall from theorem 1.3.1 (the correspondence theorem)
that every generalized df F' can be associated with a Lebesgue-Stieltjes measure pup via

pr((ab]) = F(b) — F(a).

Proposition 4.1 (The basics) Let A denote Lebesgue measure.

(i) If F is of BV on [a, b], then

(5) F(x) = Fi(z) — Fa(z) with Fy(z) = V'F and Fy(z) = VSF — F(x)

both being  on [a,b]. Also, F' = F] — F} a.e. A, with F| and Fj both integrable.

(ii) If F is absolutely continuous, then it is of BV. The F; and F; in (i) are both absolutely
continuous and .

(iii) Lipschitz functions are absolutely continuous.

Proof.  Consider (i). Now, F(z) = VI F is obviously ,; use (2). Then F; is also 7, since
for x < y we have

Fy(y) = Fa(x) = [V/F = F(y)] = [Vi'F — F(2)]
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Since Fy and F, are /', their derivatives F] and F} exist a.e. X and are integrable by theorem
4.3.1 (Lebesgue’s theorem).

Consider (ii). Let F(-) be absolutely continuous. We will first show that such an F' is of BV.
Let € = 1 with its é1, and choose n so large that the equally spaced values a = xyp < z1 <
-+ < x, = b have mesh = (b —a)/n < §;. Then (2) yields

(b) VabF = 22:1 ‘/[Ik—l,ka]F S ZZ:I 1= 5

and thus F' is of BV. We must still show that Fj is absolutely continuous if F' is. So we
suppose that F is absolutely continuous, and specify that >} (dx — cx) < 8. /2 for some choice
of n,ci’s, and di’s. We now use these same n, ¢, di, to verify that Fj is absolutely continuous.
Well, for each fixed k& with 1 < k& < n and the tiny number €/(2n), the definition of the BV
of F gives

(c) Fi(dy) = Fi(er) = Vigg,an F < 2725 [Fank,;) = Flankj—1)| + (¢/2n)
for some choice of ¢, = ap k0 < - < Gp,k,m, = di. These add to give

>onet [Fi(d) — Fi(er)|l = Y h—i Ve F = Viae Fl = 2 rei Viewa) F
(d) <D Q07 [F (ank j) — Fan k,j-1)] + (e/2n))

(€  <(/2)+(e/2)=¢
by absolute continuity of F', since it follows from above that
(f) Dbt gt (@n g = @nggj—1) = 25 (di — cx) < 0o

Consider (iii). Being Lipschitz implies absolute continuity with §. = ¢/M. a

Exercise 4.1 (Jordan-Hahn type analog of proposition 4.1i) For F of BV on [a,b], let
Ft(z)=VIF" and F~(x) = V*F~, where

VEFE = sup{3p_ [F(ap) — Flap-_1)|* ra=mp < - <z, =2,n > 1}

Verify that ' — F(a) = F* — F~ with F'* and F~ both / (an alternative to (5)). (Note
how the F of proposition 4.1i corresponds to the total variation measure.)

Example: Let F(z) equal 2,2 — z,z — 4 on [0, 1], [1, 3], [3, 4]. Determine the decomposition
of (5) for this F', as well as the decomposition of this exercise.
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Exercise 4.2  Let f be continuous on [a,b], and define F(z) = [ f(y) dy for each a < x <
b. Then F is differentiable at each z € (a,b) and F' = f on (a,b). (Since f is continuous,
we need only the Riemann integral. Can we extend this to the Lebesgue integral? Can we
reverse the order, and first differentiate and then integrate? The next theorem answers these
important questions.)

Theorem 4.1 (Fundamental theorem of calculus) (i) Let F' be absolutely continuous
on [a,b], and let A denote Lebesgue measure. Then F” exists a.e. A and

x
(6) F(z) — F(a) = / F'd\ for all z € [a,b]; also, F' = {d:;} a.e. \.
a

(i) If F(z) — F(a) = [] f dX for some [ that is integrable with respect to A on [a,b], then F

is absolutely continuous on [a, b]. Moreover, f = F’ = [‘Z‘—/\F] a.e. \.

Remark 4.1 (a) The fundamental theorem of calculus can be summarized by saying that
F' is absolutely continuous if and only if it is the integral of its derivative. The ordinary
derivative F” is, in fact, also a Radon-Nikodym derivative of the signed measure pp naturally
associated with F'; see the proof of theorem 4.2 below.

(b) If F'is / on [a,b], then the derivative F’ exists a.e. A on [a,b] and is integrable with
respect to Lebesgue measure A and fab F'(x)d\(z) < F(b) — F(a); see (4.3.1). The Lebesgue
singular df F of (6.1.9) below yields a strict inequality, as does any discrete dstribution on
(a, b]; recall exercise 4.3.2.

(c¢) The Lipschitz condition represents “niceness with a vengeance,” as it guarantees that all
difference quotients are uniformly bounded. O

Proof.  Consider the converse. If F(z) = F(a) + [ f(y)dy for a < x < b, then F
is absolutely continuous by the absolute continuity of the integral theorem. Then F' is of
bounded variation on [a, b] and F’ exists a.e. A in [a, b], by proposition 4.1(ii). Moreover, F’
is integrable, using (4.3.1). But does F' = f a.e. \?

Case 1: Suppose |f| is bounded by some finite M on [a,b]. We could consider f* and
f~ separately, but we will simply assume without loss of generality that f > 0. Then the
difference quotient D, F'(x) = nf;H/n f(y)dy of F also satisfies |D, F| < M on (a,b), and
D, F(z) — F'(z) a.e. Applying the DCT (with dominating function identically equal to M)
once for each fixed = € (a,b) gives

[P F'(y)dy = [ lim D, F(y) dy = lim [" n[F(y + 1/n) — F(y)]dy
= lim[n [“T" F(y)dy —n [T P(y) dy)
= F(z) — F(a) by continuity of F'

(a) = [7 fy)dy.

Thus F'(y) = f(y) a.e. on [a,b], by the a.e. uniqueness of the Radon—Nikodym derivative
(which is ultimately exercise 3.2.2).
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Case 2: Suppose f is integrable. Again, f > 0 may be assumed. Let f,(-) = n A f(-), with
f—fn>0. Now, f: fn has derivative f,, a.e. on [a,b], by case 1. Thus

0)  F) = [ 1) dy = L 7 fuly)dy + 2 [T 0) — Fa@ldy > fula) +0
a.e. A on [a,b] (for each n > 1). Hence F'(x) > f(x) a.e. on [a,b]. Thus

(€  [PF(zx)de> [ f(z)de = F(b) — F(a), whichis > [’ F/(z)dx

by (4.3.1). The two inequalities in (c¢) combine to give

@  [F'(x) - f(@)dz =0  with F'(z) — f(z) > 0 ae.,

so that F/ = f a.e. on [a,b] by exercise 3.2.1.

Consider the direct half when F is absolutely continuous on [a,b]. Without loss, suppose
that F'is ' (by proposition 4.1(ii)), so that F’ exists a.e. on [a,b] (see theorem 4.3.1) and
that F’ is integrable (see (4.3.1)). Use

(e) pr((a,x]) = F(x) — F(a) for all x € [a, ]

and the correspondence theorem to associate a Lebesgue—Stieltjes measure pp with F' (which
is a generalized df). We will show that urp << A in theorem 4.2 below. Then the Radon—
Nikodym will give

() F(z) — F(a) = [ fd\  for all z € [a,b], with f = [dur/dN].

Now apply the converse half of the fundamental theorem of calculus to conclude that F’ =
f=ldur/dN a.e. on [a,b]. O

Theorem 4.2 (Densities) (i) Let F' be /" and absolutely continuous on some subinterval
[a,b] of R. Then the Lebesgue-Stieltjes measure pp (as in (e) above) satisfies both pp < A
(name its Radon—Nikodym derivative [dug/d)]), and also

(7) F(z) — F(a) = [ fdX for all z € [a,b], with f = [dup/d\] =q... F'.

(ii) Mainly, let F' be absolutely continuous on every finite subinterval of I (with I any fixed
interval in R), and fix @ anywhere in I. Then (7) holds for all z in I.

Proof. (i) Let 4 = pup and fix the finite interval [a,b]. Given € > 0, let 6. > 0 be as in
the definition (3) of absolute continuity. Let A € B be a subset of [a,b] having A\(A4) < d./2.
Recalling our definition (1.2.1) of A via Carathéodory coverings, we can claim that Lebesgue
measure satisfies

(a) AMA) =inf{> " AX(By): AC > | B, for B,’s in the field Cp}.

We replaced the A,,’s of (1.2.1) by the disjoint sets B, = A, AS_; --- ASAS. Note that each
B, is in Cx, and thus equals a finite union of intervals of the type (c,d], while B, then
adds at most a finite number of additional such intervals. Thus

(b) A cC Y F(en,dy), where > (d,, — ¢n) < AM(A) + 6./2 < 4.
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Thus (using absolutely continity of F' to obtain the first € in (d))

(©  up(A) < pr(SE (e dul) = 5 wp((ensdal) = S F(dn) — Flen)
@) =l - Flen)] < lme=e

since 1" (dy, — ¢n) < 8c. Thus pr(A) < € when A(A) < 6./2, so that up(A) = 0 whenever
A(A) = 0. Now apply Radon—Nikodym to obtain the f exhibited in (7).

(ii) Now, let F' be /" and absolutely continuous on all finite subintervals of I, and fix any a in
the interval I. Applying (7) to finite intervals I,, = [ay, b,] /' I, the MCT gives up(A) =0
whenever A(4) =0, for any A € BNI. Thus pup < A O

Exercise 4.3 (Absolutely continuous dfs) Let F' be 7, right continuous and bounded on
R, with F(—o0) = 0. Define pr via pup((a,b]) = F(b) — F(a) for all a < b. Show that pp < A
if and only if F' is an absolutely continuous function on R.

Exercise 4.4 (a) Show that the composition g(h) of two absolutely continuous functions
is absolutely continuous when h is monotone.

(b) Show that g(h) need not be absolutely continuous without restrictions on h.

(c) Define a continuous function on [0, 1] that is not absolutely continuous.

(d) The functions g + h and g - h are absolutely continuous when both f and g are.

Exercise 4.5% Suppose that h : [a,b] — (0,00) is absolutely continuous on [a, b]. Show that
log h is also absolutely continuous on [a, b].

Exercise 4.6* (Another characterization of absolute continuity)

(a) F' is Lipschitz on [a,b] iff F' is differentiable a.e. X on [a,b] with F” bounded.
(b) Absolutely continuous functions on R map B into B and null sets into null sets.
(¢) A continuous function of BV is absolutely continuous iff it maps B into B.

Example 4.1 (Change of variable; densities of transformed rvs) Let X be a rv on
(Q, A, P) with df Fx < A\ = (Lebesgue measure) and density fx. Let

(8) Y = g(X) where g~ is 1 and absolutely continuous.

Then

Fy(y)=P(Y <y)=Pg(X)<y)=P(X <g'(y) = Fx(g~'(v)),

where the composition Fy = Fx(g~!) of these absolutely continuous functions is absolutely
continuous (by exercise 4.4a). So the fundamental theorem of calculus tells us that Fy is the
integral of its derivative. We can then compute this derivative from the ordinary chain rule.
Thus

b b
Fy®) - (@) = [ Fine) = [ 1Pl 0) 5007 0)1dA0)

for all @ < b. Thus Fy < A\ with density

9 frly) = fx (g‘l(y))%g‘l(y)

on the real line. Call (d/dy)g—'(y) the Jacobian of the transformation. O
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Exercise 4.7 Let = log1/X where the rv X is distributed uniformly on [0, 1], with df Fx(x)
equal to 0, z, 1 according as x is in (—o0, z], (0, 1], (1, 00). We say that X has the Uniform(0, 1)
distribution. Determine the df and density of ¥ = log1/X. It is called the Exponential(1)
distribution.

Exercise 4.8 Use your exposure to a more elementary version of probability to come up
with three more examples of elementary change of variable results of the type presented in
the previous exercise.

Exercise 4.9 (Specific step functions that are dense in £5) Let h € £5([0, 1], B, A). Consider
the following two approximations to h(-). Let

=m [/, h(s)ds and By, (£) = h(i/(m + 1)
for (1 —1)/m <t <i/m and m > 1. Show that:

(10)  hy — has. and  Lo.
(11) Ay — hoas. and Ly provided that his /.

(Hint. Show that 0 < [ (A, — h)2dt = [, (k> — h2,)dt, and then

i (£) = m(i/m — ) [/ hs/(i/m — 1)}
+m(t— (i —1)/m) {f(iq)/mhd‘g/(t_ (i—1)/m)} — h(t) as.

Alternatively, use the fact that the continuous functions are dense in Ls.)



Chapter 5

Measures and Processes on
Products

1 Finite-Dimensional Product Measures
Definition 1.1 (Product spaces) Let (£2,.4) and (£, A") be measurable spaces. Define

(1) A x A" = o[F] where F = {Z(Al x Al):m>1, A; € Aand A € A’},

i=1
(2) Fo={Ax A" : Ac AandA’' € A'}.

Here A x A’ = {(w,w’) : we A, ' € A’}, which is called a measurable rectangle. The o-field
A x A" = o[F] is called the product o-field. (2 x @', A x A’) is called the product measurable
space. The sets A x Q" and Q x A" are called cylinder sets.

Proposition 1.1 F is a field.

See figure 1.1, and write the displayed union as a union of sets disjoint in Fy. Perhaps, start
with decomposing  into the 2% disjoint sets By N ---N By, where each B; equals A; or A§
(and with 22 analogous Bf N --- N B}). Then sum disjoint subsets from the 2% possible cross
products.

Figure 1.1 The field F.

Theorem 1.1 (Existence of the product measure) Let (2,4, ) and (', A, v) be o-finite
measure spaces. Define ¢ on the field F via

(3) o) (Z(A’ X A;)) = ZM(Ai) x v(A}) for disjoint sets A; x A

i=1 i=1

(© Springer International Publishing AG 2017 89
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Then ¢ is a well-defined and o-finite measure on the field 7. Moreover, ¢ extends uniquely
to a o-finite measure, called the product measure and also denoted by ¢, on (2 x ', 4 x A").
Even when completed, this measure is still unique and is still referred to as the product
measure ¢.

Proof.  (See the following exercise; it mimicks the proof of the correspondence theorem.
Here, Fy and F play the roles of all finite intervals Z and the field Cg. Although the proof
asked for in exercise 1.1 below is “obvious,” it still requires much tedious detail.) We will
give a better proof herein very soon. |

Exercise 1.1  Verify that ¢ is well-defined on Fy, and that ¢ is countably additive on Fy.
Then verify that ¢ is well-defined on F, and that ¢ is countably additive on F. Thus ¢ is a
o-finite measure on F, so that the conclusion of theorem 1.1 follows from the Carathéodory
extension of theorem 1.2.1 and its corollary.

Exercise 1.2 * Use induction to show that theorem 1.1 extends to n-fold products.

Example 1.1 (Lebesgue measure in n dimensions, etc.) (a) We define

(Rn,B,) = Hn (R,B) and (Rn,By) = Hn

i=1 i:1(R’ B)
to be the n-fold products of the real line R with the Borel sets B and of the extended real
line R with the o-field B = o[B, {+00}, {—00}], respectively. Recall from example 2.1.1 that
B, = o[U,], where U,, denotes all open subsets of R,,. We will refer to both B,, and B,, as the
Borel sets.

(b) Let A denote Lebesgue measure on (R,B), as usual. We extend \ to (R,B) by the

convention that A({+o0}) = 0 and A({—o0}) = 0. Then

@ (RuBu) =[]

1=

(RBA) and (Ra, By M) =[] (BB
provides us with a definition of n-dimensional Lebesgue measure A, as the natural general-
ization of the concept of volume. It is clear that

(5) (Rm X RnaBm X B'ru)\m X )\n) = (Rm+n78m+n7)\m+n)7

and that this holds on the extended Euclidean spaces as well. (It is usual not to add the "
symbol in dealing with the completions of these particular measures.)

(c) Now, A is just a particular Lebesgue—Stieltjes measure on (R, B). Any Lebesgue—Stieltjes
measure pup on (R,B) or (R,B) yields an obvious n-fold product on either (R,,B,) or
(R,,B,), which could appropriately be denoted by pp X --- X up. Further, we will let 7,
denote the field consisting of all finite disjoint unions of sets of the form I; x --- x I, where
each Iy, is of the form (a,b], (—o0,b] or (a,+o0c0) when considering (R, B,) (or of the form
(a,b], [~00,b], or (a,+0o] when considering (R, B,)). (That is, in the case of (R,,B,) there
is the alternative field F,, that also generates the o-field B,,; and this F,, is made up of simpler
sets than is the field B x - -+ x B used in definition 1.1.)

(d) The Halmos approximation lemma now shows that if (up X -+ x pup)(A) < oo and if
€ > 0 is given, then (up x -+ x pup)(AAC,) < € for some C. in (the simpler field) F,,. That
is, the simpler field gives us a nicer conclusion in this example, because its sets C are simpler.
(Or, use A in the field F of (1) in place of C..) O

Exercise 1.3  Any Lebesgue—Stieltjes measure pup, X -+ X pp, on (R,,B,), in example 1.1,
is a regular measure. Show this for n = 2 (appeal to theorem 1.3.1).
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Definition 1.2 (Sections) (a) Let X denote a function on Q x €'. For each w in , the
function X, () on € defined by X, (w') = X (w,w’) for each w’ in Q' is called an w-section of
X(-,-). An w'-section X,y of X(-,-) is defined analogously.

(b) Let C be a subset of 2 x €. For each w in ©, the set C,, = {w’ : (w,w’) is in C} is called
the w-section of C. An w’-section of C' is defined analogously.

Theorem 1.2 (Product measure) Let (9,4, 4) and (€, A',v) denote finite measure
spaces. Let C € A x A’. Then:

(6) Every C, € A and every C,, € A whenever C € 4 x A,
(7) o(C) = / wu(Copr)dr(w') = / v(C,)du(w) for every C € A x A',
/ Q

and this ¢ is exactly the product measure ¢ = p x v of theorem 1.1.

Exercise 1.4 (An elementary illustation) Let C' denote the set in 2-dimensional space R
enclosed by the two curves y = x and y = 22 on [0,1]. Draw a picture of C' on an ordinary
(z,y)-axes system that represents Rs.

(I)(a) First, use ordinary introductory calculus to evaluate the area of C.

(IT) Answer the following in the context of the Product Measure Theorem.

(b) Evaluate (and describe—possibly, via a picture) the sections C, and C,—for the appro-
priate measures p and v. Then valuate v(C;) and p(Cy).

(c) Use the results of (b) to evaluate the area of C in two different ways.

Proof.  We first show (6). This result is trivial for any C' in Fy, or any C in F (and for
CC). Now let S denote the class of all sets C' in A x A’ for which (6) is true. Then S is
trivially seen to be a o-field, using

(a) (UnCh)w =UnCh . and (C°), = (Cur)".

But since F C S, we have that A x A" = g[F] equals S.
Consider (7). Note that if the sets C,, converge monotonically to some set C, then 1¢,
converges monotonically to 1o and

(b) every section of 1, converges monotonically
to the corresponding section of 1¢.

Let M denote the collection of all sets C' in A x A’ for which (7) holds. Clearly, M contains
Fo and F. We now use (b) to show that M is a monotone class; it will then follow by
proposition 1.1.6 that M = o[F] = A x A’. Let C,, denote a sequence of sets in the class M
that converge monotonically (we will consider only the / case, since we only need to take
complements in the Y\, case), and we give the name C to the limiting set. Since 1¢, " 1¢,
the function 1¢ is (A x A’)-measurable, and thus every section of 1¢ is measurable by (6).
Now, for fixed w’ the number h(w') = u(Cy) = [, 1, (w) du(w) is (by the MCT and (b))
the , limit of the sequence of numbers h,(w') = u(Cr o) = [, 1c, . (W) du(w), for each o’
in €. Thus the function h on € is the limit of the functions h,, on '; and since C,, is in
M, the functions h,, are A’-measurable by (7); thus h is A’-measurable by proposition 2.2.2.
Moreover, the fnite /" numbers ¢(C,,) are bounded above by u(Q)r(€'), and thus converge
to some number; call it ¢(C'). That is,
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(c) o(C) = lirrln o(Cp) = lim {/ lo, , (w)du(w)}dv(w') since C,, € M
QJQ

n

(d) = lim hpdv = / {lim h,, } dv = hdv by the MCT and h,, /' h
noJoy Q " Q
/ {/ lc,, (W)} dr(w') by the definition of h
o Ja

@ = / (C) (),

(Since ¢(C) is finite, we see that h is v-integrable. Thus h(w’) is finite for a.e. [v]w’.) The
argument for each fixed w is symmetric, and it gives the second equality in (7). Thus C' is in
M, making M the monotone class A x A’; and (b) holds. (Thus the result (7) holds for the
set function ¢. But is ¢ a measure?)

In this paragraph we will show that the product measure ¢ of theorem 1.1 exists, and
is defined by (e). To this end, let Dy, Do, ... be pairwise disjoint sets in A x A", and let
Cn =Y 1Dy / C=37 Dy Then linearity of both single integrals shows (in the second
equality) that

(0 DT 6Dy =1im > 6(Dy) = lim (Y Dy) = lim 6(Cy)

(8) = 63" D), by (c) through (e)

so that ¢ is c.a., and a measure on A x A’. We have just verified that the product measure
of (3) exists on A x A’, and is given by (7). That is, we have just proven theorem 1.1
and given the representation (7) for ¢(C). Note that the product measure ¢ also satisfies

»(C) = foQ’ lo(w,w")do(w,w’). O

Exercise 1.5  Give the details to verify that Y1 ¢(Dy) = ¢(>_] Dy) in line (f) of the proof
above of the product measure theorem.

Theorem 1.3 (Fubini) Let (2,4, u) and (', A’,v) be o-finite measure spaces. Let ¢ =
pxvon (QxQ Ax A"). Suppose that X (w,w’) is ¢-integrable (i.e., X~1(B) Cc A x A" and
foQ’ X d¢ is finite). Then:

(8) All w'-sections X,/ () of X are A-measurable functions on €.
(9) For a.e. [v] fixed w’,  the function X, (-) = X(-,w’) is p-integrable.

(10)  The function h(w / X ) is a v-integrable function of w'.
(11) / X (w, w")dd(w,w) / / X(w,w) dp(w)] dv(w') = / h(w') dv(w').
QxQ/ Q7 ’

(Setting X equal to 1¢ in (11) for C € A x A’ shows how the value ¢(C) of the product
measure ¢ at C' was defined as an iterated integral; recall (7).)

Corollary 1 (Tonelli) Let X be A x A’-measurable and suppose either

(12) /[/|X|d4 dv < oo or /{/|Xdu} dp<oo or X >0.
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Then the claims of Fubini’s theorem are true, including

(13) /Xd(b=/|:/Xd,u] duz/{/Xdu] dps.

Corollary 2 (1 x v null sets) A set C'in A x A" is (u X v)-null if and only if almost every
w-section of C is a v-null set. That is, for C € A x A’ we have

(14)  puxv(C)=0 ifandonlyif v(C,) =0 fora.e. [p] win Q.

Proof. By using the o-finiteness of the two measures to decompose both Q and ', we
may assume in this proof that both p and v are finite measures. We begin by discussing only
measurability questions.

We will first show that

(a) all w'-sections of an (A x A’)-measurable function X are A-measurable.
The previous theorem shows that

(b) all w’-sections X of X are A-measurable
whenever X = 1¢ for some C € A x A’.

Now let X denote any (A x A’)-measurable function. Then for any B in B,
(c) X;Y(B)={w: X(w,)) € B} ={w: (w,) € X B)}

is the w’-section of the indicator function of the set C'= X ~!(B); so (b) shows that any
arbitrary w’-section of this X is A-measurable, and so establishes (a) and (8).

We now turn to all the other claims of the Fubini and Tonelli theorems. By theorem 1.2
they hold for all (A x A’)-measurable indicator functions. Linearity of the various integrals
shows that the theorems also hold for all simple functions. Applying the MCT to the various
integrals shows that the theorems also hold for all (A4 x A")-measurable X > 0. Then linearity
of the integral shows that the theorems also hold for all X for whichever of the three integrals
exists finitely (the double integral or either iterated integral).

Corollary 2 follows immediately by applying (13) and exercise 3.2.2 (only the zero function)
to the integral of the function 1. O

Corollary 3  All this extends naturally to n dimensions.

Example 1.2 (Summing infinite series) (i) (One-dimensional infinite series) We can
think of

(a) ZOO an  as /QXd,u: E(X) on (Q,A,p),

n=0

where Q = {0,1,2,...}, A = {all subsets of Q} = 2, i1 denotes counting measure, and X (n) =
an. Well,

0) X =30 el = e+ Y e = [ X dur [ X an
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Now let 7 denote any one-to-one transform that maps 2 onto 2. Then an arbitrary rearrange-
ment of the sequence a, can be written as a.(,). Appealing to the definition in (3.1.2) for
the value of fQ X T dp (which was given there as having the value Sup{fQ Ydu:0<Y < XT,
with Y a simple fuction}; and noting that 0 <Y < X% if and only if 0 <Y, < X, where
Xr(n) = X(n(n))), we see that the values of

(c) ano ay = /Q Xtdp= /Q XTdpy= ano a:(n) for any 1-1 transform 7.

Thus the values of

<+ + < = -
(d) ano riny = /QX dp and ano riny = /QX du
have the same values for every m. Thus, for every m,
Ym0 Onn) = Jo X dp = [o Xdp = [o XTdp— [ X~ dp
= Z ap — Z an = Z Qn-
n=0 n=0 n=0

That is, for every one-to-one transformation 7 of {0,1,2,...} onto {0,1,2,...},

(15) Z r(n) = (one fixed number) Z an (provided Z lan| < o0).
= n=0

(ii) (Two-dimensional infinite series) Likewise, for any 1-1 transform 7 of Q x Q onto itself,

we have
Z Z{all m,n} Ar(m,n)
= Z Z{all m,n} TF(’UL n) Z Z{all mon} 7\'(m n) — (One fixed number)
= Zm 0 Z G, n} - Zmzo[znzo m n]

(16) = Z lz am,n] (provided Z [Z | n|] < 00)

m=0 Ln=0 m=0 n=0
(7) - Z:OZO[Z: o Yhm—k +Z n=0 Zk n+1 k]

(including (17) to have one specific useful alternative formulation exhibited). Note that the
conclusion (16) is also explicitly supplied by Tonelli.
(iii) This clearly extends to multi-dimensional arrays. ]

Exercise 1.6 (Fubini’s (11) can fail if X is not ¢-integrable) Let Q = (0,1) and ' = (1, 00),

both equipped with the Borel sets and Lebesgue measure.
(i) Let f(z,y) =e ¥ —2e 2% for allz € 2 = (0,1) and y € Q' = (1,00). Show that:

(a) /01[/1oc Fay) dyldz = /01 %[e_”‘ — e dgis >0,

(b) [m[/olf(wvy)dm]dy=/loo;[6‘2y—6‘y]dy is <0.
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(ii) Why does Fubini’s theorem fail here? (Solve f(x,y) = 0, and use this to divide the domain
of f. Integrate over each of these two regions separately.)
(iii) Construct another example of this type.

Example 1.3 (Application to conditional expectation in probability and statistics) Con-
sider the measure space (Rg, B2, A2) = (R X R, B x B, A X A) in the product measure theorem
context; thus ¢ = \g is two-dimensional Lebesgue measure. Next, consider Fubini’s theorem,
replacing X (w,w’) in that result by

(18)  g(x, ) fy|x==(y) fx(x) forall (z,y) € Ry =Q

as in an elementary probability class. Continuing in the probabilistic context, think of fx(-)
as the marginal density of X, of fy|x—,(-) as the conditional density of Y given that X =z,
and of g(X,Y) as a random function whose expectation you would like to evaluate. Tonelli
gives

Eg(X,Y) = /R 9, 9) Fy 1x—a () Fx (2) e, )

- / { / 9(2.9) fr 1 x—e ) A @)} x (2)dA(z)
R R
19 = /R {B((X,Y)|X = 2)} fx ()dA(x) = E{E(g(X,Y)[X)}

provided the iterated integral of |g(x,y)| is finite. This shows how an elementary conditional
model with dependent rvs can fit into the Lebesgue integral context. (To treat an elementary
version of discrete rvs, just replace two-dimensional Lebesgue measure Ay by two-dimensional
counting measure on the set of pairs (m,n) with m,n > 0.) Mainly, this example shows one
way that some dependent models can be treated in the context of the product measure theorem
using a “base measure” ¢ = p X v that seemingly can only be associated with independendent
rvs. (The Lebesgue integral allows us to treat absolutely continuous, discrete, and singular
distributions simultaneously via the expectation operation E{-}. This effect will be extended
to a general treatment of conditional expectation in chapter 7.) O
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2 Random Vectors on (2, A4, P)

We will now treat measurable functions from a probability space (2,4, P) to a Euclidean
space (Ry,,B,), with n > 1. Let x = (z1,...,2,)" denote a generic vector in the Euclidean
space R,.

Definition 2.1 (Random vectors) Suppose X = (X1,...,X,)" is such that X: Q — R,
is B,,-A-measurable. Then X is called a random vector (which is also abbreviated rv). Define
the joint distribution function (or just df) of X by

F(x) = Fx,,.ox, (@1, m) = PO X6 < i),

Write x <y to denote that x; < y; for all 1 < i < n; and now define the basic rectangles (x,y]
= xI_,(z;,y;] whenever x <y. Let

(1) F(x,y] = P(ﬂn 1[:@ < X; <y]) forallx<y.

Proposition 2.1 (Measurability) Now, X = (X1,...,X,)" : Q@ — R, or R, is such that

B-A-measurable

X is B,-A-measurable 3
s B-A-measurable.

B.-A-measurable if and only if each X; is {

Thus, a random vector is measurable if and only if each coordinate rv is measurable.

Proof.  We give the details for finite-valued functions. (=) Now,

[Xi < @i = X; 1 ((—o00,24))
:X_I(RX"'XRX(*OO#W]XRX"'XR)EA.

(<) Also, [X < x| =N, [X; < ;] € A, since each X; is measurable, where
o[Hy] = o[{all (—o0,21] X -+ X (—00,2,]}] = By.
Moreover, using (2.1.12) for the final equality,
F(Xn) = X1 (Ba) = X, (0[Ha]) = o[X7H (Ha)] € A,
with the set inclusion shown in the first line. That is, X~ *(B,) C A. O
Exercise 2.1 (Joint df) A joint df F' is /" and right continuous and satisfies

(2) All F(zq,...,2i—1,—00,Zit1,-..,Zn) =0 and F(oo,...,00) =1,

F(Jil, ey Li—1, +OO,331'+1, e ,an)
(3) = I, X X X (T T 1, T 1, o T)
forall j=1,...,n and x1,...,Z,.

Exercise 2.2 Suppose F': R, — R is / and right continuous and satisfies (2) and (3).
Then there exists a unique probability measure P = Pr on B,, that satisfies

(4) P((x,y]) = F(x,y] forallx<y.
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This is a generalization of the correspondence theorem to n > 1. Now note that the
identity function X(w) = w, for each w € R, is a random vector on (R, B,,) that has as its
joint df the function F' above. Thus, given any joint df F', there is a random vector X having
F' as its joint df. This is in the spirit of example 2.2.1.

Definition 2.2 (Joint density of rvs) Let X = (Xy,...,X,)’ denote a rv. Define P, (B) =
P(X € B) for all B € B,,, so that P,, defines the induced distribution of X on (R, B,). Let
An denote Lebesgue measure on (R,,B,). If P, < A, then a finite-valued Radon-Nikodym
derivative f,, = dP, /d\, exists (and is unique a.e. \,,) for which

(5) P(XEB):/ ---/fn(xl,...,a:n)dxl><~--><dxn for all B € B,,.
B

When this is true, f,,(---) is called the joint density (or, the density) of the rv X. (For one-
dimensional rvs, we often denote the distribution, df, and density of X by Px(-), Fx(-), and
fx (). For two-dimensional rvs (X,Y)’, we often use Px y (-), Fx y(-,-), and fxy(-,).)

Exercise 2.3 (Marginal densities) Suppose that (X1, ..., X,) has the induced distribution
P,, and P, < )\, with joint density f, (as in the previous definition). Let 1 <i; < --- <
im <mn, with m <n, and let 1 <7 <--- < jp—m <n denote the complementary indices.
Show that the induced distribution P,, of (X;,,...,X;, ) satisfies P,, < A,,, and that its
joint density is given by

(6) fm(l‘i17 "'7xi7n) :/ .../ fn(x17""xn) dx]l X X dxjnf'm

on R,,. We also call f,, the marginal density of (X;,,..., X, ).

Exercise 2.4 (Lebesgue-Stieltjes measures on (R3,B2)) (i) Let F be a gdf on Rs.
Using the notation of definition 2.1, let

(7) pr((c,b]) = F(c,d] forall c <din Ry,

in parallel with the correspondence theorem 1.3.1 and exercise 1.3.1. Show that
(8) ,U,F(A) = 1nf{z F(Ck, dk] : AC Z(Ck, dk]} for all A € BHF
k=1 k=1

for countable unions of disjoint subrectangles (ci,d;] of Ry. As in definition 1.3.3, call F
absolutely continuous if for all € > 0 there exists a §. > 0 for which

(9) > F(ck,di] < e provided > Xa((ck,di]) < 4
k=1 k=1

whenever n > 1 and all of the subrectangles (c, dy] of Re are mutually disjoint. Here, A2(+)
is the Lebesgues-Stieltjes measure generalization of area with F(x) = x.

(ii) State and prove the two-dimensional analogs of exercise 3.2.6 (integrals as measures) and
exercise 3.2.7 (absolutely continuous dfs).
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3 Countably Infinite Product Probability Spaces®

We now begin to carry out the program discussed in section 2.5. That is, we will extend the
notion of rvs and product probability measures to a countably infinite number of dimensions.

Notation 3.1 (R and B) Let
(1) ROOEHOO_lRE{(xl,xQ,...):xneRfor all n > 1}.

Let I denote an interval of the type (¢, d], (—o0,d], (¢, +00), or (—o0,0). An n-dimensional
rectangle will mean any set of the form Iy x --- x I,, x R x R x ---, where each interval I;
is of the type above. A finite-dimensional rectangle is an n-dimensional rectangle, for some
n > 1. A cylinder set is defined as a set of the form B, x R x R x --- with B, in B,, for
some n > 1. Thus:

(2) Cr = {all finite-dimensional rectangles}

={ x- - xI,x RxRx---:n>1all I; as above},
(3) Cr = {all finite disjoint unions of finite-dimensional rectangles},
(4) Coo = {all cylinder sets} ={B, X RxRx --- : n>1, B, € B,}.

Both Cr and Co, are fields, and a trivial application of exercise 1.1.1 shows that
(5) B = 0[Cr] = 0[Cr] = 0[Coo]-

Thus, extending a measure from C; to By, will be of prime interest to us. We first extend the
criterion for measurability from n dimensions to a countably infinite number of dimensions.

Proposition 3.1 (Measurability on B) (a) Now, X = (X1, Xa,...) : Q@ — Ry is Boo-A-
measurable if and only if each X,, is B-A-measurable.

(b) If X is Buo-A-measurable and if (i1,42,...) is an arbitrary sequence of integers, then
Y = (Xiy, Xiys .- .) 18 Boo-A-measurable.

Exercise 3.1 Prove proposition 3.1.

Notation 3.2 We will use the notation

(6) F(X) =X '(B) and F(X;, Xi,,...) =Y ' (Bx) = o[ | X' (B)]

n=1
to denote the minimal sub o-fields of A relative to which the quantities X; and Y =
(Xi,,X,,,...) are measurable.

Now suppose that P, is a probability measure on (R,,, B, ), for each n > 1. The question
is: When can we extend the collection {P,, : n > 1} to a measure on (R, Boo)? Reasoning
backwards to see what conditions the family of finite-dimensional distributions should satisfy
leads to the following definition.

Definition 3.1 (Consistency) Finite-dimensional distributions {(R,,, By, Pn)}52, are consis-
tent if for every n > 1, every By,..., B, € B, and every 1 < i < n,

(7) Pnfl((Xl,...,Xifl,XiJrl,...,Xn) € By x---xBj_1 X Bi+1"' X Bn)
:Pn((Xl,...,Xifl,Xi,XiJrh...,Xn) €B; x---xBj_1 xRx Bi+1 X oo XBn)
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Theorem 3.1 (Kolmogorov’s extension theorem) An extension of any consistent fam-
ily of probability measures {(Ry, By, Py)}o2, to a probability P(-) on (R, Bs) necessarily
exists, and it is unique.

We will first summarize the main part of this proof as a separately stated result that seems
of interest in its own right.

Theorem 3.2 ° ((Rx, Bs) extension theorem; Breiman) Let P on C; satisfy:

(a) P>0and P(Rx) = 1.

(b) If D =370, D; for n-fold rectangles D and Dj, then P(D) = 371" P(D;).

(c) If D denotes any fixed n-dimensional rectangle, then there exists a sequence of compact n-
dimensional rectangles D; for which D; , D and P(D;) ,/ P(D). (That is, P is well-defined
and additive on n-dimensional rectangles and satisfies something like continuity from below.)
Then there exists a unique extension of P to By,

Proof.* (Recall the continuity result of proposition 1.1.3.) Now,

Cr = {all finite disjoint unions of finite-dimensional rectangles}

) = {a field generating B }.
For A=37\"D; € Cp, define P(A) =377, P(D;). ,

First, we will show that P is well-defined on Cp. Let A=) 1"D; = >"1" D;. Now, D} =
DLA=Y"D,D; and D; = D;A=Y""D,D). Thus

(@ PA)=Y"PD)=3" P(ZT/ DD =" Z P(D;D})

(r) :ZTZT (D, N D;) Z P} DN D;) ZTP(D%):P(A).

Next, we will show that P is f.a. on Cr. So we let Aq,...,A,, € Cr be such that A =
> 1" A; € Cp also. Then, writing A; = >°7" D;; with D;1,..., D;,,, disjoint,

() PA =P A) =P > Dy) =3 S (D) = Y P(A),

(using condition (b) in each of the last two equalities), since P is well-defined.

We will now show that P is continuous from above at (). Let A,’s in Cr be such that
Ap \, 0. We must show that P(A,) N\, 0. Assume not. Then P(A,) \, € > 0; and by going
to subsequences, we may assume that A, = A% x [ 1 It, where each A7 is a finite union
of disjoint rectangles (repeat some members of the sequence if necessary in order to have
A* C R,). By condition (c), choose B} C A% such that B} is a finite union of compact
disjoint rectangles in R,, with

n+1 *
(t) P(A,\B,) < €/2"*1 where B, = B} x Hn+1

Let C, =N} Br = C;; x HZOH R, with C} compact in R,, (the B,’s need not be \, but the
C,’s are). Then we observe that C,, \ ), since C,, C B,, C A, with A, \, 0; but we also

have P(C,,) > €/2, since

(W) P(A\C,) < ZZZI P(A\By) < Zzzl P(A\By) < ZZL /2" < /2.
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But C,, \\with P(C,) > €/2 for all n is not compatible with the conclusion that C,, \ 0:

Let XM e €y, ..., x" e C,, ..., where x(") = (:cgn),xé”), ...). Choose an initial subsequence

N; such that mgNl) — (some 1) € Cf; then choose a further subsequence Ny such that

(x(lNZ), xéNZ)) — (some (z1,22)) € C3;.... Along the diagonal subsequence, say N, we have

oc;N) — xj, for all j. Now, x = (x1,22,...) € Cy for all n. Hence C,, 0. But this is a
contradiction, and thus allows us to claim that P(4,) \, 0 for any A,’s in Cr that satisfy
An N\ 0.

Now apply the continuity of measures in proposition 1.1.3, and then apply the Carathéodory

extension of theorem 1.2.1 to complete the proof. O

Proof.* We now turn to the Kolmogorov extension theorem. The P defined by
(v) PBy x-++XxB,Xx:--)=P,(By X+ XBp)=PFPpin(Br1 X+ XB, xRX---XR)

is a well-defined f.a. probability on C; = {all finite-dimensional rectangles}; this follows from
the consistency condition (7). Thus (a) and (b) of theorem 3.2 hold.

We will now verify (c¢). Fix n. Let D,, be an arbitrary but fixed n-dimensional rectangle.
It is clearly possible to specify compact n-dimensional rectangles D,,; for which D,; /" D,
as j — oco. Write Dj = Dy x [[°y R and D = D,, x [[*{ R, so that D; / D. Thus, by
the continuity of signed measures in proposition 1.1.4,

(w) P(Dj) = Po(Dnj) / Po(Dn) = P(D),
since P, is a measure on (R,,B,). Thus (c) holds. The conclusion follows from theorem 3.2.

Example 3.1 (Coordinate rvs) Once consistent probability measures P,(-) on (R,,B,)
have been extended to a probability measure P(:) on (Rs,Bs), it is appropriate then to
define X, (z1,x2,...) = xy, for each n > 1. These are rvs on the probability space (22, B, P) =
(Roo, Boo, P). Moreover,

P((X1,...,X,) € By) = P(X1,....Xn)"Y(B,)) = P(X (B, x HZ"H R))
(8) = P(B, x HZOH R) = P,(B,)

for all B, € B,,. We thus have a realization of X = (X1, Xs,...): Q@ — R, that is By-A-
measurable, and each (Xi,...,X,) induces the distribution P, on (R,,B,). This is the
natural generalization of example 2.2.1 and the comment below exercise 5.2.2. (]

Theorem 3.3 (The finite dimensional dfs define probability theory)

Let X = (X1, Xs,...)" denote any random element on (Rw., Bso). Then Px can be determined
solely by examination of the finite-dimensional distributions of X. Also, whether or not there
exists a finite rv X such that X,, converges to X in the sense of —, s, —,, =, or —4 can be
similarly determined.

Proof.  Let C denote the 7-system consisting of R, and of all sets of the form [} (—oo, z;]
X HZOH R, for some n > 1 and all z; € R. The finite-dimensional distributions (even the
finite-dimensional dfs) determine P, on C, and hence on By, = o[C] (appeal to Dynkin’s
-\ theorem of proposition 1.1.5). To emphasize the fact further, we now consider each
convergence mode separately.

—4: Obvious.
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—,: E|X,, — X|" — 0 if and only if E|X,, — X,,|" < € for all n,m > some N..
—p: X, —p X if and only if P(|X,, — X,,| > €) < € for all n,m > some N..
—a.s.: Xp — a.s. X if and only if

1=PUy N, [| X — Xn| <¢€]) foralle>0

= limlij{fnP(ﬁ%:n[\Xm - X, <€)= limli}{fn{a function of Fx, . xu}-
n n
The proof is complete O

Example 3.2 (Equivalent experiments) Perhaps I roll an ordinary die n times with the
appearance of an even number called “success.” Perhaps I draw a card at random n times,
each time from a freshly shuffled deck of standard playing cards, with “red” called “success.”
Perhaps I flip a fair coin n times with “heads” called “success.” Note that (X1,...,X,) has
the same distribution in all three cases. Thus, if I report only the data from one of these
experiments, you can not hope to determine which of the three experiments was actually
performed. These are called equivalent experiments. (]



102 CHAPTER 5. MEASURES AND PROCESSES ON PRODUCTS

4 Random Elements and Processes on (2, 4, P) ¢

Definition 4.1 (Projections and finite-dimensional subsets) Let My denote a collection of
functions that associate with each ¢ of some set 7' a real number denoted by either x; or z(t).
(T is usually a Euclidean set such as [0,1], R, or [0,1] x R. The collection My is often a
collection of “nice” functions, such as the continuous functions on 7'.) For each integer k and
all (t1,...,t,) in T we let my, 4, denote the projection mapping of My into k-dimensional
space Ry defined by

W) m o (2) = (@), ()

.....

called a finite-dimensional subset of M.

Exercise 4.1 Show that the collection M% of all finite-dimensional subsets of Myt is nec-
essarily a field. (This is true no matter what collection My is used.)

Definition 4.2 (Measurable function spaces, finite-dimensional distributions, random ele-
ments, and normal processes) We let M7 denote the o-field generated by the field M%.. We
call MY and Moy the finite-dimensional field and the finite- dimensional o-field, respectively.
Call the measurable space (Mp, Mr) a measurable function space over T.

Given any probability space (£2,.4, P) and any measurable space (0%, A4*), an A*-A-
measurable mapping X : Q — Q* will be called a random element. We denote this by X :
(QA) — (Q,A") or by X : (Q,4,P) — (Q*, A*), or even by X : (2, 4, P) — (Q*, A*, P*),
where P* denotes the induced probability on the image space.

A random element X : (2, A, P) — (Mp, My, P*) in which the image space is a mea-
surable function space will be called a process. The finite-dimensional distributions of a
process are the distributions induced on the (Rg,By) by the projection mappings m, 4 :
(Mp, My, P*) — (Ry, Bi). If all of the finite-dimensional distributions of a process X are
multivariate normal (see section 9.3 below), then we call X a normal process.

Definition 4.3 (Realizations and versions) If two random elements X and Y (possibly from
different probability spaces to different measurable function spaces) have identical induced
finite-dimensional distributions, then we refer to X and Y as different realizations of the same
random element and we call them equivalent random elements. We denote this by agree-
ing that

XYy means that X and Y are equivalent random elements.

(We will see in chapter 12 that a process called Brownian motion can be realized on both the
(Rpo,13, Bpo,17) of (3) and (C,C), where C' = Cjg 1) denotes the space of all continuous functions
on [0,1] and C = Cj ;) denotes its finite-dimensional o-field.)

If X and Y are defined on the same probability space and P(X; =Y;) =1 for all t € T,
then X and Y are called versions of each other. (In chapter 12 we will see versions X and Y
of Brownian motion where X : (2, A, P) — (R 1], Bjo,11) and Y : (2, A, P) — (Cjo,1)Clo,1])-
Of course, this X and Y are also different realizations of Brownian motion.

Definition 4.4 (Finite-dimensional convergence, —sq) Suppose X, X1, X5,... denote
processes with image space (Mp, Mr). If the convergence in distribution

@) T (Xn) = (X (b)), Xn () —a (X (8, X () = 7ty (X)

holds for all £ > 1 and all ¢1,...,¢, in 7T, then we write X,, —¢q X as n — 0o, and we say
that the finite-dimensional distributions of X,, converge to those of X.
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The General Stochastic Process

Notation 4.1 (R, Br)) We now adopt the convention that
(3) (Rr, Br) denotes the measurable function space with Ry = HteT R,

where each R; is a copy of the real line. Thus Ry consists of all possible real-valued functions
on T, and By is the smallest o-field with respect to which all 7; are measurable. We call
a process X : (£, A, P) — (Rp,Br) a general stochastic process. We note that a general
stochastic process is also a process. But we do not yet know what Br looks like.

A set Br € Br is said to have countable base tq,to,. .. if

(4) Br = 7r;171t2 (Beo) for some Boo € Boo;

yeee

here B is the countably infinite-dimensional o-field of section 5.3. Let B¢ denote the class
of countable base sets defined by

(5) Be ={ Br € By : Br has a countable base}.
(Recall F(X1, Xo,...) and F(X, : s < t) measurability from section 2.5.) O

Proposition 4.1 (Measurability in (R7,Br)) Now, B¢ is a o-field. In fact, Be is the small-
est o-field relative to which all m; are measurable; that is,

(6) Br = Be.
Also (generalizing proposition 5.2.1),

(7) X is Bp-A-measurable if and only if X, is B-.A-measurable for each t € T.

Proof.  Clearly, Br is the smallest o-field containing Be; so (6) will follow from showing
that B is a o-field. Now, C is closed under complements, since 7., (Bso)¢ =7, %, (BS).
Suppose that By, Bs,... in B¢ have countable bases 17,75, ..., and let Ty = US_;T},,. Then
using the countable set of distinct coordinates in Tp, reexpress each By, as B, = 77%01 (B)
for some B;° € By. Then UX_, B, = w}ol(Uf?f:lBgf) is in Be. Thus B is closed under
countable unions. Thus B¢ is a o-field.

Now to establish (7): Suppose X is Br-A-measurable. Then

(a) X, YB)=Xx"Yn'(B) €A for BeB,

so that each X; is B-A-measurable. Suppose that each X is B-A-measurable. Then exercise

5.3.1 shows that (X, Xy,,...) is Beo-A-measurable for all sequences ti,to,... of elements
of T. That is, X *(Bc) C A. Since By = B¢, we thus have X ~1(Br) C A, and hence X is
Br-A-measurable. O

Remark 4.1 (Consistency of induced distributions in (Rr,Br)) Any general stochastic
process X : (Q, A, P) — (Ry,Br) has a family of induced distributions

(8) Py . (Bx)= P(X'o ﬂ—t:ltk (Bg)) for all By € By,
forall k> 1 and all ¢1,...,tx € T. These distributions are necessarily consistent in the sense
that
9) Pl 4, (Bix - X Bio1 X RX Biyy X -+ X By)
=Pl titisente (B X o X By X Biy1 X -+ X By)
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forall k > 1,all By,...,By e B,all 1 <i<k,and all ¢1,...,t; € T. (The next result gives a
converse. It is our fundamental result on the existence of stochastic processes with specified
distributions.) O

Theorem 4.1 (Kolmogorov’s consistency theorem) Given a consistent set of distribu-
tions as in (9), there exists a distribution P on (Rr, Br) such that the identity map X (w) = w,
for all w € Ry, is a general stochastic process X : (Ry, Br, P) — (Rp,Br) whose family of
induced distributions is the Py, of (9).

Exercise 4.2 Prove theorem 4.1. (Define P*(B) = P(?Til(B)) for B € B¢ and each count-
able subset T; of T'. Use notational ideas from the proof of proposition 4.1 to show easily that
P*(+) is well-defined and countably additive.)

Example 4.1 (Comment on (Rjo 1}, B,11)) The typical function x in Rz has no smoothness
properties. Let T'= [0, 1] and let C denote the subset of Rjg 1 that consists of all functions
that are continuous on [0, 1]. We now show that

(10)  C ¢ Bjoa-

Let (£, A, P) denote Lebesgue measure on the Borel subsets of [0,1]. Let {(w) = w. Now
let X : (Q,A, P) — (Rjo,1], Bjo,1)) via X¢(w) =0 for all w € Q and for all t€T. Let Y :
(0, A, P) — (Rjo,1), Bpo,1)) via Yi(w) = 114} (€(w)). Now, all finite-dimensional distributions of
X and Y are identical. Note, however, that [w: X(w) € C] = Q, while [w : Y(w) € C] = 0.
Thus C cannot be in Bjg ;- O

Smoother Realizations of General Stochastic Processes

Suppose now that X is a process of the type X : (2, A, P) — (R, Br, P*). As the previous
example shows, X is not the unique process from (£, A, P) that induces the distribution P*
on (Rp, Br). We now let My denote a proper subset of Ry and agree that M denotes the o-
field generated by the finite-dimensional subsets of M. Suppose now that X (w) € My for all
w € Q. Can X be viewed as a process X : (Q, A, P) — (Mg, Mr, 13) such that (Mr, Mr, 13)
has the same finite-dimensional distributions as does (Rr, By, P*) ? We now show that the
answer is necessarily yes. Interesting cases arise when the functions of the My above have
smoothness properties such as continuity. The next result is very important and useful.

Theorem 4.2 (Smoother realizations of processes) Consider an arbitrary measurable
mapping X : (2, 4, P) — (Rp, Br, P*).

(i) Let M7 C Ry. Then we can view X as a process X : (Q, A) — (Mg, Mr) if and only if
every sample path X.(w) = X (-,w) is in My and every X;(-) = X (¢,-) is a random variable.
(ii) Let X(©2) C My C Ry. Then X : (Q, A, P) — (Mg, M, P). where the finite- dimen-

sional distributions of (Mg, Mr, P) are the same as those of (Rr, Br, P*).
(iii) Comment: All this is true even when My is not in the class Br.

Proof. (i) («=) Note first that My N Br = My (recall definition 4.2). Moreover, when
X (2) € My, it necessarily follows that

X_l(./\/lT) = X_l(MT ﬂBT) = X_l(MT) ﬂX_l(BT) =0 ﬂX_l(BT)

@) — X~ 1(Br).
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Since each X; is a v, we have X ~1(B) C A by (7). Thus X (Mr) C A, and we see that X
is indeed an M7 — A— measurable mapping from Q to Mp. Note further that the natural
pairs of generator sets (m;, ", ((—00,71] X -+ x (—00,r]) in B, or ", ((—oo,ri] x -+ x
(—o0, 7)) N Mr in M) have the same inverse images under X; thus the finite dimensional
distributions induced from (2, 4) to (Rr,Br) and to (Mr, M) are identical.

(=) Clearly, X : Q — My implies X : Q — Ryp. Also, for any ¢t € T and any B € B,

X Ya Y B)) = X Y (Mr N7 Y(B)) since X : Q@ — My
S Xﬁl(./\/lT) since Mt = My N Br

(b) e A since X is Mp—.A — measurable.

Thus each X, is a rv, and so X is By — A—measurable by (7).
(ii) This is now clear, and it summarizes the most useful part of this theorem. ]

Exercise 4.3 Let M denote any non-void class of subsets of 2, and let M denote any
non-void subset. Show that

(11)  oMINM =oMn M].

Remark 4.2 It is interesting to consider the case where Mr is a countable or finite set.

The resulting (M, Mp, P) is the natural probability space. a



Chapter 6

Distribution and Quantile
Functions

1 Character of Distribution Functions

Let X : (Q, A, P) — (R, B, Px) be a rv with distribution function (df)Fx, where
(1) Fx(z) = P(X <z)= Px((—00,z]) for — oo < = < 0.

Then F = F'x was seen earlier to satisfy

(2) Fis ' and right continuous, with F'(—oo) = 0 and F'(+00) = 1.

Because of the proposition below, any function F' satisfying (2) will be called a df. (If F' is
/", right continuous, 0 < F(—00), and F'(+00) < 1, we earlier agreed to call F' a sub-df. As
usual, F(a,b] = F(b) — F(a) denotes the increments of F', and AF(z) = F(x) — F_(z) =
F(z) — F(x—) is the mass of F at x.)

(a) Call F' discrete if F is of the form F(-) = 3, bj1[a; o0)(-) With >, b; = 1, where the a;
form a non-void finite or countable set. Such measures pr have Radon-Nikodym derivative
> bjl{a;y(+) with respect to counting measure on the a;’s.

(b) A df F is called absolutely continuous if F(-) = [ f(y)dA(y) for some f > 0 that
integrates to 1 over R. The corresponding measure has Radon-Nikodym derivative f with
respect to Lebesgue measure A; this f is also called a probability density. Moreover, F' is an
absolutely continuous function and the ordinary derivative F’ of the df F exists a.e. A and
satisfies F/ = f as A.

(¢) A df F is called singular if pup(N¢) =0 for a A-null set N.

Proposition 1.1 (There exists an X with df F') If F satisfies (2), then there exists a
probability space (2, 4, P) and arv X : (Q, A, P) — (R, B) for which the df of X is F. We
write X = F.

(© Springer International Publishing AG 2017 107
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Proof. Example 2.2.1 shows that X (r) =r on (R, B, ) is one example. O

Theorem 1.1 (Decomposition of a df) Any df F' can be decomposed as
(3) F:Fd+Fc:Fd+Fs+Fac:(Fd+FS)+Faca

where Fy, F,, Fs, and F,. are the unique sub-dfs of the following types (unique among those
sub-dfs equal to 0 at —o0):

(4) Fy is a step function of the form 37 b;1(,; o) (With allb; > 0).
(5) F, is continuous.

(6) F, and Fs + Fy are both singular with respect to Lebesgue measure .

) = [ o fac(y) dA(y)
(7) for some f,. > 0 that is finite, measurable, and unique a.e. A,

and this F,.(-) is absolutely continuous on the whole real line.

Proof. Let {a;} denote the set of all discontinuities of F', which can only be jumps; and
let b; = F(a;) — F_(a;). There can be only a countable number of jumps, since the number
of jumps of size exceeding size 1/n is certainly bounded by n. Now define Fy = Zj bilia; 00
which is obviously , and right continuous, since Fy(x,y] < F(x,y] \, 0 as y \, = (the
inequality holds, since the sum of jump sizes over every finite number of jumps between a and
b is clearly bounded by F'(z,y|, and then just pass to the limit). Define F, = F' — F,;. Now,
F.is /, since for < y we have F.(z,y] = F(z,y] —Fa(x,y] > 0. Now, F. is the difference
of right-continuous functions, and hence is right continuous; it is left continuous, since for
x /"y we have

(a)  Folw, y] = F(o.] ~ Spen <y by = F-(4) — F(£) = Sy oy by = 0-0=0.

We turn to the uniqueness of Fy. Assume that F. + Fy = F = G, + G4 for some other
Gy = Z b; j1[a, ,00) With distinct a;’s and Z ; < 1. Then Fy — G4 = G, — F. is continuous.
If Gy ;é Fy, then either some jump point or some jump size disagrees. No matter which
disagrees, at some a we must have

(b) AFd(a) - AGd(a) 75 0,

contradicting the continuity of G. — F, = F; — G4. Thus G4 = F4, and hence F, = G.. This
completes the first decomposition.

We now turn to the further decomposition of F.. Associate a measure p. with F, via
te((—00, x]) = F.(x). Then the Lebesgue decomposition theorem shows that p. = ps + fae,
where ps(B) = 0 and pq.(B€) = 0 for some B € B; we say that us and p,. are orthogonal.
Moreover, this same Lebesgue theorem implies the claimed uniqueness and shows that f,.
exists with the uniqueness claimed. Now, Fu.(z) = prac(( f_ fac(y) dy is continu-
ous by Fue(2,y] < pac(z,y] = 0asy — zorasz — y. Thus F Fc F,.is con‘mnuous7 and
Fy(z) = ps((—o00,z]). In fact, F,. is absolutely continuous on R by the absolute continuity of
the integral. (Now F, = F, + F,. decomposes F. with respect to A, while F' = (F;+ Fy) + F,.
decomposes F' with respect to \.) O

Example 1.1 (Lebesgue singular df)  Define the Cantor set C by

(8) C={zrel0,1]:2=>"",2a,/3", with all a, equal to 0 or 1}.
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(Thus the Cantor set is obtained by removing from [0, 1] the open interval (3, 2) at stage one,

then the open intervals (§,2) and (£, $) at stage two, ....) Finally, we define F' on C by

©) P, 20,/3") = X a,/2".
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Figure 1.1 Lebesgue singular function.

Now note that {F(z) : « € C} = [0,1], since the right-hand side of (9) represents all of
[0,1] via dyadic expansion. We now define F' “linearly” on C° (the first three “components”
are shown in figure 1.1 above). Since the resulting F' is  and achieves every value in [0, 1],
it must be that F' is continuous. Now, F' assigns no mass to the “flat spots” whose lengths

sums to 1 since % + % + 2% 4= 1i/2:j3 = 1. Thus F is singular with respect to Lebesgue

measure A, using A(C°) = 1 and pup(C°¢) = 0. Call this F' the Lebesgue singular df. (The
theorem in the next section shows that removing the flat spots does, even for a general df F,
leave only the essentials.) We have, in fact, shown that

(10)  F:C —[0,1]is 1-1,is T,and is continuous; so F~':[0,1] — Cis 1 — 1. O

Exercise 1.1 Let X = N(0,1) (as in (A.1.22) below), and let ¥ = 2X.

(a) Is the df F(-,-) of (X,Y) continuous?

(b) Does the measure purp on Ry have a density with respect to two-dimensional Lebesgue
measure? (Hint. Appeal to corollary 2 to Fubini’s theorem.)

Exercise 1.2  Show that the Cantor set C is perfect (thus, each z € C' is an accumulation
point of C) and totally disconnected (between any ¢; < ¢o in C' there is an interval that lies
entirely in C°). (Note that the cardinality of C' equals that of [0,1]. At which points is 1¢(+)
continuous?

Definition 1.1 Two rvs X and Y are said to be of the same type if Y = a X + b for some
a > 0. Their dfs are also said to be of the same type.
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2 Properties of Distribution Functions

Definition 2.1 The support of a given df F' = Fx is defined to be the minimal closed set
C having P(X € C) = 1. A point x is a point of increase of F if every open interval U
containing = has P(X € U) > 0. A realizable t-quantile of F, for 0 < ¢ < 1, is any value z for
which F(z) =t. (Such a z need not exist.) Define U; to be the maximal open interval of x’s
for which F'(z) =t (this flat spot will be an interval, since F'is ).

Theorem 2.1 (Jumps and flat spots) Let C' denote the support of F. Then:

(a) C = (Ugereq Ur)© is a closed set having P(C) = 1.

(b) C is equal to the set of all points of increase.

(¢c) C is the support of F.

(d) F has at most a countable number of discontinuities, and these discontinuities are all
discontinuities of the jump type.

(e) F has an at most countable number of flat spots (the nonvoid U,’s). These are exactly
those t’s that have more than one realizable ¢-quantile.

(We will denote jump points and jump sizes of F' by a;’s and b;’s. The ¢ values and the A(Uy)
values of the multiply realizable ¢-quantiles will be seen in the proof of proposition 6.3.1 below
to correspond to the jump points ¢; and the jump values d; of the function K(-) = F~1(-),
and there are at most countably many of them.)

Proof.* (a) For each ¢ there is a maximal open interval Uy (possibly void) on which F' equals
t, and it is bounded for each 0 < ¢ < 1. Now, P(X € U;) = 0 using proposition 1.1.2. Note
that C' = (UU)¢ is closed (since the union of an arbitrary collection of open sets is open).
Hence C° = Up<i<1U; = U(an, by,), where (aq,01), ... are (at most countably many) disjoint
open intervals, and all those with 0 < ¢ < 1 must be finite. Now, by proposition 1.1.2, for the
finite intervals we have P(X € (an,b,)) = lim._o P(X € [a,+¢€,b,—¢]) = lim._0 = 0, where
P(X € [an+¢€,b,—€]) = 0 holds since this finite closed interval must have a finite subcover by
Uy sets. If (ap,b,) = (—00,by,), then P(X € (—00,b,)) =0, since P(X € [-1/¢,b, —¢]) =0
as before. An analogous argument works if (a,,b,) = (an,00). Thus P(X € C°) = 0 and
P(X € C) = 1. Note that the Uy’s are just the (an, b,)’s in disguise; each U; C some (ay, by,),
and hence Uy = that (ay,b,). Thus U, is nonvoid for at most countably many ¢’s.

(b) Let € C. We will now show that it is a point of increase. Let U denote a neigh-
borhood of z, and let ¢ = F(x). Assume P(U) = 0. Then z € U C U, C C¢, which
is a contradiction of x € C. Thus all points x € C' are points of increase. Now suppose
conversely that z is a point of increase. Assume z ¢ C. Then x € some (an,by,) having
P(X € (an,by,)) =0, which is a contradiction. Thus « € C. Thus the closed set C is exactly
the set of points of increase.

(c) Assume that C' is not the minimal closed set having probability 1. Then P(C) = 1
for some closed C' C C. Let € C\C and let t = F(z). Since C° is open, there is an open
interval V,, with z € V, c C¢ and P(X € V,) =0. Thus « € V, C (some U;) C C° So
x ¢ C, which is a contradiction. Thus C' is minimal.

So, (d) and (e) follow. See also the summary following proposition 6.3.1. O
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3 The Quantile Transformation

Definition 3.1 (Quantile function) For any df F(-) we define the quantile function (qf)
(which is the inverse of the df) by

(1) K(t)=F ' (t) =inf{z: F(z) >t} for 0 <t < 1.

Figure 3.1 The df F(-) and the qf K(-) = F~1(-).

Theorem 3.1 (The inverse transformation) Let

(2) X=KE=F1), where ¢ 2 Uniform(0, 1).
The following are all true.

(3) (X <z]=[¢ < F(x)] for every real x.
(4) Iix<] = lig<r on R, for every w.
(5) X=K()=F ') has df F.

(6) Iix<()) = Lig<r_ () on R, for a.e. w;

failure occurs if and only if £(w) equals the height of a flat spot of F.

Proof. Fix an arbitrary z. Now, ¢ < F(z) implies X = F~1(¢) < x by (1). If
X = F71(¢) <, then F(z +¢) > £ for all € > 0; so right continuity of F implies F(z) > &.
Thus (3) holds; (4) and (5) are then immediate.

If {(w) = ¢ where t is not in the range of F, then (6) holds. If {(w) = t where F(z) =t
for exactly one z, then (6) holds. If {(w) = t where F(z) = t for at least two distinct 2’s,
then (6) fails; theorem 6.2.1 shows that this can happen for at most a countable number of
t’s. (Or: Graph a df F' that exhibits the three types of points ¢, and the rest is trivial with
respect to (6), since the value of F' at any other point is immaterial. Specifically, (6) holds
for w unless F has a flat spot at height ¢ = {(w). Note figure 3.1.) O
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Definition 3.2 (Convergence in quantile) Let K, denote the qf associated with df F,,,
for each n > 0. We write K,, —4 K¢ to mean that K, (t) — Koy(t) at each continuity point
t of Ko in (0,1). We then say that K, converges in quantile to Ky, or K, converges in
distribution to K.

Proposition 3.1 (Convergence in distribution equals convergence in quantile)
(7) F, -4 F if and only if K, —4 K.

Proof. Suppose F,, —4 F. Let t € (0,1) be such that there is at most one value x having
F(z) =t (that is, this is not a multiply realizable t-quantile). Let z = F~1(¢).

First: We have F(z) < t for © < z, where z will always denote a continuity point of F'.
Thus F,(z) < t for n > (some N,). Thus F,;'(t) > z for n > N,. Thus liminf F,, (t) > z,
when o < z is a continuity point of F. Thus liminf F};(#) > 2, since there are continuity
points x that ' z. Second: We also have F(z) > ¢t for z < z, with 2 a continuity point.
Thus F,(z) > t, and hence F,;(t) < x for n > (some N,). Thus limsup F,, *(t) < x. Thus
limsup F,; () < z, since there are continuity points  that \, z. Thus K, (t) = F,1(t) —

z = K(t). The proof of the converse is virtually identical. O
Exercise 3.0 Give the proof of the converse for the previous proposition.

Summary F,!(t) — F~1(¢) for all but at most a countably infinite number of ¢’s (namely,
for all but those t’s that have multiply realizable t-quantiles; these correspond to the heights
of flat spots of F', and these flat spot heights ¢ are exactly the discontinuity points of K).

Exercise 3.1 (Left continuity of K) Show that K(t) = F~!(t) is left continuous on (0, 1).
(Note that K is discontinuous at ¢ € (0, 1) if and only if the corresponding U; is nonvoid (see
theorem 6.2.1). Likewise, the jump points ¢; and the jump sizes d; of K(.) are equal to the
t values and the A(U;) values of the multiply realizable ¢-quantiles. We earlier agreed to use
a; and b; for the jump points and jump sizes of the associated df F'.)

Exercise 3.2 (Properties of dfs) (i) For any df F we have
FoF '(t)>t forall 0 <t <1,

and equality fails if and only if ¢ € (0,1) is not in the range of F' on [—oo, 00].
(ii) (The probability integral transformation) If X has a continuous df F, then F(X) &
Uniform(0, 1). In fact, for any df F,

P(F(X)<t)<t forall0 <t <1,

with equality failing if and only if ¢ is not in the closure of the range of F'.
(iii) For any df F' we have

FloF(z)<uz for all —oo <z < o0,
and equality fails if and only if F(y) = F(x) for some y < . Thus
P(F'oF(X)#X)=0 whenever X = F.

(iv) If F is a continuous df and F(X) = Uniform(0, 1), then X = F.
(v) Graph Fo F~! and F~1 o F for the df F in figure 6.3.1.
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Proposition 3.2 (The randomized probability integral transformation) Let X
denote an arbitrary rv. Let F' denote its df, and let (a;, b;)’s denote an enumeration of what-
ever pairs (jump point, jump size) the df F possesses. Let n1,72,... denote iid
Uniform(0, 1) rvs (that are also independent of X). Then both

(8) £ =F(X) =32, binjl{x=a,) = Uniform(0, 1) and
(9 X =F"1(&)=K(«)

(We have reproduced the original X from a Uniform(0, 1) rv that was defined using both X
and some independent extraneous variation. Note figure 3.1.)

Proof. We have merely smoothed out the mass b; that F(X) placed at F(a;) by sub-
tracting the random fractional amount 7;b; of the mass b;. ]

Exercise 3.3 (Change of variable) Let Y 2 G and X = H~}(Y) @ F, where H is / and
right continuous on the real line with left-continuous inverse H !
(a) Use the theorem of the unconscious statistician to conclude that

(10) f(_oo H )] m(H™1)dG = f(_oo ;M dF for measurable functions m > 0,

since (H™1)"Y((—oo,z]) = {t: H1(t) <2} = {t : t < H(z)} as in (3). Check it.
(b) Let G = I,H = F, and Y = ¢ = Uniform(0, 1) above, for any df F. Let g denote any
measurable function. Then (via part (a), or via (2) and (3)), show that

F(x _ 1 —
1)y g(F @) dt = [ g dF, and  [p  g(F ' (&) dt= [, . g dF.
(¢) Exercise 3.5.3(b) established (13). Still, now use (6.4.1) below to verify both
(12)  Jiom ¥ dFixi(y) = [y P(IX| > y)dy — xP(IX| > ) and
(13) f[z o) Y dF|X‘(y) =zP(|X|>x)+ fz P(|X] > y)dy even if infinite

Interpret formulas (12)—(13) in terms of various shaded areas shown in figure 8.4.1. Do the
same for (11) when g(y) =y and X > 0.

Exercise 3.4 Let h be measurable on [0,1]. Then
(14) [ h(FdF < [ h(tyde < [ h(F)dF ifh /.
Reverse the inequalities if A \..

Proof. We finally prove proposition 1.2.3. Let D be a subset of [0, 1] that is not Lebesgue
measurable; its existence is guaranteed by proposition 1.2.2. Let B = F~1(D) for the
Lebesgue singular df F. Then (6.1.10) shows that B is a subset of the Cantor set C. Since
MC) =0 and B C C, then B is a Lebesgue set with A\(B) = 0; that is, B € By. We now
assume that B is Borel set (and seek a contradiction). Now F~! is measurable by (6.1.10),
and so (F~1)~1(B) € B. But

(a) (FYHY ' B)={r:F'(r)eBy={r:F*(r)e FFY(D)} =D ¢ B,

since F~! is one-to-one on [0,1]. This is a contradiction. Thus B € By\B. O
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The Elementary Skorokhod Construction Theorem

Let Xo, X1, X5,... beiid F. Then X,, —4 Xo, but the X,, do not converge to X, in the
sense of —, 5., —p, or — r. However, whenever X,, —4 Xj, it is possible to replace the X,’s
by rvs Y,, having the same (marginal) dfs, for which the stronger result Y,, —, . Yo holds.

Theorem 3.2 (Skorokhod) Suppose that X,, —4 Xo. Define {(w) = w for each w €
[0,1] so that £ = Uniform (0,1) on (22,4, P) = ([0,1],8N[0,1], A), for Lebesgue measure .
Let F,, denote the df of X,,, and define Y,, = F,,; 1(£) for all n > 0. Let Dg, denote the at
most countable discontinuity set of Ky. Then both

Y, =K, =F ()= X, =F, foralln>0 and

n

(15)
Yo(w) — Yo(w) forallw ¢ Dg,.

Proof. This follows trivially from Proposition 3.1. ]

Exercise 3.5 (Wasserstein distance) Let k = 1 or 2. Define

Fr={F:Fisadf, and [|z|FdF(z) < oo}, and
d(Fr, Fo) = { [y |F7(t) — Fy t(t)|F dty/* for all Fy, Fy € Fy.

(a) Show that all such (Fy,dy) spaces are complete metric spaces, and that

dx(Fp, Fo) — 0 (with all {F,}3° € Fi) if and only if

16
( ) Fn —d FO and Mpk = f |x|den(x) — Mok = f ‘.73|de0(33) € (0700)

(The 1vs Y,, = F;1(€) of (15) satisfy Y, —, Yo if E|Y,|F — E|Yp|* € (0,00).)
(b) Apply this to the empirical df F,, and gf of iid F' rvs X1, Xo,... to conclude
(17) fol [F-1(t) — F71(t)]F dt —4.c .0 iff %Z? |X;|F —a.e EIX|F < oo;

note (3.5.22). (Refer this to the SLLN later.)
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4 Integration by Parts Applied to Moments

Integration by Fubini’s theorem or “integration by parts” formulas are useful in many con-
texts. Here we record a few of the most useful ones.

Integration by Parts

Proposition 4.1 (Integration by parts formulas) Suppose that both the left-
continuous function U and the right-continuous function V' are monotone functions. Then
for any a < b we have both

(1) U+(b)V(b)U(a)V_(a)/[ b]UdVJr/[ b]VdU and

2 UGV - U@)V(a) = /

Udv + / vV du,
(a,b] la,b)

where U, (z) = lim , U(y) and V_(z) = hmy/x (y). (Symbolically, written as d(UV) =
U_dV + V,dU, it implies also that [hd(UV) = [h[U_dV + V, dU] for any measurable
h>0.)

o <)

Figure 4.1 Integration by parts.

Proof. We can apply Fubini’s theorem at steps (a) and (b) to obtain

S
=

) = U@)[V(b) = Vo(a)] = [y {fay AU} AV

i) S iz <1 (@,9) + iy (2, y)] dU () dV (y)

anlU@) = Ula)]dV (y) + f[a b] (z) — V_(a)] dU (z)
(a)[V(b) —

Ji,
S UdV = U(@)[V (b 0)] + fi VAU = V_(@)[U(b) — U(a)).

—
&)
S~—"
I

Algebra now gives (1). Add U(a)[V(b) — V_(a)] + V_(a)[U+(b) — U(a)] to each side of (1) to
obtain (2). O

Exercise 4.1 How should the left side of (1) be altered if we replace [a,b] in both places
on the right side of (1) by (a,b), or by (a,b],or by [a,b)? (Just plug in ay or a_ as well as
b+ or b_ on both sides of the equation d(UV) = U_dV + V,dU so as to include or exclude
that endpoint; this will give the proper formulation.)

Useful Formulas for Means, Variances, and Covariances

If ¢ = Uniform(0, 1) and F is an arbitrary df, then the rv X = F~1(¢) has df F.
Thinking of X as F~!({) presents alternative ways to approach problems.
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We will do this often! Note that this X = F~!(¢) satisfies both
3 X= F't)dlgey — and X = / z dljx <y,
(0,1) B 00,00 B

where 1[¢<y is a random df that puts mass 1 at the point ¢(w) and l[x<z) is a random
df that puts mass 1 at the point x. If X has a finite mean pu, then (depending on
which representation of X we use)

(4) = / F=(t)dt and = / x dF(x)
(0,1) (—00,00)

Moreover, when g is finite we can combine the two previous formulas to write
(6)  X—p= [ Flt)d(lgzy—1)=- / (le<y — ) AF (1)
(0,1) (0,1)

or
6 X-p= /( e~ F@) = /( (i~ Fa@) e

The first formula in each of (5) and (6) is trivial; the second follows from integration
by parts. For example (5) is justified by [tF~1(t)] < ’fo s)ds| — 0ast — 0

when E| X | = fo |F=L(t)|dt < oo and the analogous result (1— t)F Yt) - 0ast — 1.
For (6), we note that z[1 — F(z)] < f(woo y dF(y) — 0 as x — oo if E|X| < c0. So
Fubini’s theorem would seem to give (using E|X| < oo for (5)) that,

= -5 (s <f] — !
(7) Var [X] =E {/(071)(1[539] )YdF ™ ( )/(0’1)(1[5_} t)dF (t)}

@ = B = g~ ar ) ar
(8) = / / [s At — st]dF~1(s)dF (1) (true, even if E|X| = 00).
0,1) J(0,1)

(In fact, see exercise 4.2 and (6.6.2) to rigorize the steps of the proof of (7)—(8), even
when E|X| = co.) The parallel formula (via the same type of argument) is

(9) Var[X / / (x ANy) — F(z)F(y)] dz dy (even if E|X| = o0),

starting from (6). Of course, we already know, when E(X?) < oo, that

1 o)
(10) Var[X}:/O [F~Y(t) — p)*dt  and Var[X]:/ (z — p)? dF (x).

—00
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Proposition 4.2 (Other formulas for means, variances, and covariances)

(i) If X > 0 has df F, then

(11) /OOOP(X>a:)da::EX:/OOO(1—F(x))dx and EX:/OIF_l

(ii) If E|X| < oo, then

0 0o 1
(12) E(X):—/ F(x)dw—i—/o (l—F(:c))dac:/O F7(t) dt.

—0o0

(iii) Let » > 0. If X > 0, then

o] o] 1
(13) /0 P(X" > 2)dz = B(X") = /0 ra™1(1 - F(z)) dz = /O (P ()]"dt

In fact, one of the two integrals is finite if and only if the other is finite.
(iv) Let (X,Y) have joint df F with marginal dfs Fx and Fy. Let G and H be /
and left continuous. Then

(14)  Cov [G(X), H(Y)| = / h / " [Fa,y) - Fx(a)Fy (y)) dG(z) dH(y)

whenever this covariance is finite. Note the special case G = H = I for Cov [X,Y].
Hint. Without loss, G_(0) = G4+(0) = H_(0) = H,(0). Make use of the fact that
x) = f[o 00) Ljo,)(8) dG—(s) in the first quadrant, etc.

(v) Let K be / and left continuous and & = Uniform(0, 1) (perhaps K = h(F~!) for
an /" left-continuous function h, and for X = F~1(¢) for a df F). When finite,

(15)  Var [K / / [s Nt — st]dK(s) dK(t) and

(16)  Var [K / / (A y) — F(x)F(y)] dh(z) dh(y) = Var[h(X)]
follow from (8) and (14).

(vi) If X > 0 is integer-valued, then

(17 EX=,P(X>k) and EX2=3° (2%k—1)P(X > k).
Exercise 4.2 (Winsorized X) Let X, = Kuu(€), where € = Uniform( 1).
Here, K, o equals K (a), K(t), K(1—a') accordingas 0 < t < a,a <t < 1—d',1—-a’ <

t < 1. We say that X has been Winsorized outside (a,1 — a')
(a) Use the Fubini/Tonelli combination (as above) to check that

B(KGq(€) - <E<f<a @ (€))* = Var[Ko, (€)]
_fo fo (a,1—a’) 1(a1 a’)( )(SAt—St)dK(S)dK(t);

essentially, obtain (8) for Xaﬂ/. Then let (aVa') — 0, and apply the MCT, to obtain
(7) for general X. (Use (6.6.2) to see that (8) holds even if E|X| = oc0.)
(b) Establish (9) using similar methods.
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Exercise 4.3 (a) Prove formulas (11)—(13). [Hint. Use integration by parts.]
(b) Prove the formula (14).

Exercise 4.4 Prove the formulas in (17).
Exercise 4.5 Give an extension of (13) to arbitrary rvs.

Exercise 4.6 (a) Use Fubini and use integration by parts to show twice that for
arbitrary F' and for every z > 0 we have

(18) [,y dF(y) =2 [{tP(X > t)dt — 2*P(X > ).
(b) Verify (6.3.12) and (6.3.13) once again, with the current methods.

Exercise 4.7 (Integration by parts formulas) We showed in proposition 4.1 earlier
that d(UV) = U_dV + V,dU (with left continuous U and right continuous V).
(i) Now show (noting that dU_ = dU..) that

(19)  dU*=d(U_Uy) =U_dU + UydU = (2U + AU) dU for AU=U—-U_.
(ii) Apply proposition 4.1 to 1 = U - (1/U) to obtain
(20)  d(1/U)=—{1/(U+U-)}dU = —{1/(U(U + AU))} dU.
(iii) Show by induction that for k = 1,2,... we have
(21)  dU* = (g UiukTithau.
Exercise 4.8 Show that for an arbitrary df F we have
(22)  d(F/(1=F))={1/((1 - F)(1 - F_))}dF.
Exercise 4.9 For any df F' we have
[[F(x+0) — F(z)|dz =6 for each 6 > 0.

Exercise 4.10 (Stein) Suppose X = (0 o?) with df F. Then g(z) = [°ydF(y)/o?
is a density. (And g(z) = — [*__ydF(y)/o? is also true.)

Exercise 4.11  (a) Show that [;°{P(|X| > z)}"/2dz < oo implies EX? < oo.

(b) Show that { [;°{P(|X| > z)}'/? dz < -Z5||X ||, for any r > 2, so that the integral
on the left is finite whenever X € L, for any r > 2.

Hint. Verify (a) when X is bounded, via (13) and Markov. Then apply the MCT.
Consider (b). Bound [;° = [5+ [7° < ¢+ [ via Markov, and then choose “¢” to
minimize the bound.
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5 Important Statistical Quantities’

Notation 5.1 (Trimming, Winsorizing, and Truncating, and dom(a,a’))
First, let dom(a,a’) denote [0,1 —a') if X > 0, or (a,1] if X < 0,0r (a,1 — d’)

otherwise. Let K’a,a/(‘) denote K (-) Winsorized outside the domain of Winsorization
dom(a,a’). Thus when X takes both positive and negative values and we suppose
that “a” and “a’” are specified so small that K (a) <0 < K(1 —d’), it follows that

Ka,a/(t) equals K+(G),K(t>,K(1 - CL’)
asO<t§a,a<t<1—a',1—a'§t<1

(1)

(while a = 0 and K (a) = K(0) if X >0, etc). Let & denote a Uniform(0, 1) rv. Let
(2) fi(a, a/) = jik (a, a/) = Ef{a a( fo aa’ (

which is the (a, a’)Winsorized mean of the rv K (), and let

5%(a,d’) = 6%(a,d') = Var|K, fo t)dt — fi(a,a’)?
(3) = Jo Jols At —st] dKa,a,(s) dKa,a,( )
denote the (a, a’)-Winsorized variance (recall (6.4.8)). For general X, let
(@) A =pae),  5%a)=6%(ae),  and  Ka() = Kaa();

but ji(a) = fip, if X >0, etc.
We now let 0 <k, <n— k’ < n denote integers, and then let

(5) an = kp/n  and a, =k /n, so that 0 <a, <1—a, <1.
Let K, (-) denote K (-) Winsorized outside dom(ay, al,). Let
fin = ﬂK(ama%) = faln_aﬁ K(t) dt, fin = ﬂK(am a;L) = ﬂn/(l —an — a“;L) )

(6) ~ ~ ! % 1 5
fin = firc(an, ay) = pg, = BEKL(§) = [y Ka(t) dt,

so that fi,, is the (an,a;l)-Trimrped mean, fi, is the (a,,a,)-Winsorized mean, and
fin, is herein called the (ay, a),)-Truncated mean of the rv K(§). Then let

(7) 52 = 6% (ap,al,) = a%(n = Var[K,(£)] = fol fol [s At — st]dK,(s) dK,(t)

denote the (ay, a;l)—Winsorized variance. When they are finite, the mean p and vari-
ance o satisfy
e

g ==K = 2dF@) = B(X) = BK(O).

=0k =[] fo sAt—st]dK(s)dK(t) = EX? — 2 = EK?(§) — p?.
Let a. = inf{t : K(t) > 0}, and let ap = a. A (1 —a.). (But a. =0 if X > 0, and
a.=1if X <0.) Now, (K — ji,)" and (K — f1,,)~ denote the positive and negative
parts of K — [i,, and let

9)  Kn=[K—fn] and Kj=—[(K— ) P+ (K~ @) on(0,1).
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In this context, we may wish to assume that both

(10)  (kn AK}) — o0 and (an V aj,) — 0;

and perhaps we will also assume

(11)  a,/a, — 1 and /or (kp — K,/ (kn AN KL) — 0

We will refer to ki, ki, as the trimming/ Winsorizing numbers and ay,, a,, as the trim-
ming/
Winsorizing fractions. Describe the case of (10) as slowly growing to oo.

Suppose X1, ..., Xy, is an iid sample with df F and qf K. Let X1 <--- < X
denote the order statistics (that is, they are the ordered values of X,1,..., Xup).
Let K, (.) on [0, 1] denote the empirical qf that equals X, on ((i — 1)/n,i/n], for
1 < < n, and that is right continuous at zero. Now let
(12) X,=- ZXM (0,0) and S%= 1 zn:(Xnk — X,)? =o% (0,0)

"=

denote the sample mean and the “sample variance.” We also let

1 n—k;, n—~k/,
(13)  Xn=— X = i, (an, dl) ann_k - > X,
i=k,+1 i=k,+1
1 n—k!,
(14) Xn = — ann:k”Jrl + Z an + k;Lank;L — ,aKn (an,a;)
i=k,+1

denote the sample (an, ay,)- Truncated mean, the sample (an, ay,)- Trimmed mean, and
the sample (a,, a;,)-Winsorized mean. Let X1y - Xpon denote the (an, al) Winsorized
order statistics, whose empirical gf is K,,. Now note that

- 1 - - .
i=1 i=1
denote the sample (an,al,)Winsorized variance. Let
(16) &2=62/(1-ay, —dl,)? and 52 = §2/(1 —a, —d,)>

Of course, X,,, Sy, Xn, S,, estimate s O, [in, 0n. We also define the standardized forms
of these estimators as
\/H(Xn - M) 7 \/H(X'n — /jn) \/ﬁ(Xn B /ln)
_ and Zn

o On On

1 Z, =
and the Studentized forms of these estimators as

(18) T, = _7 and T, = \/E(X? = /in) = \/E(XF _’an).

(The first formula for T,, is for statistical application, while the second formula is for
probabilistic theory.)
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We define the sample median X, to equal Xn:nt1)/2 08 (X2 + Xnimjat1)/2,
according as n is odd or even.

Representing RVs
We will often assume that the independent rvs X,1,..., X, having df F and qf K

are defined in terms of iid Uniform(0, 1) rvs &,1, ..., &wm (as above (6.4.3)) via
(19) Xk = K(&ur) = F (&) for 1 <k <n.
As one alternative, we start with data rvs Xi,...,X,, that are iid K and then

define Uniform(0,1) rvs &£7,...&7 via (6.3.8). Then the rvs
(200 Xp=F &) (as in (6.3.9)) are just the original X}’s.

This device in (20) can be useful. In this context, let £2., < --- < £2.,, denote the order
statistics of the iid Uniform(0, 1) rvs £ of (20). Let R, = (Rp1, ..., Rnn)’ denote the
ranks of these £9,...,£2, and let D,, = (Dy1, ..., Dy,)" denote their antiranks. Thus
the rank vector R, is a random permutation of the vector (1, 2, ...,n)" while D,, is
the inverse permutation. These satisfy

(21) &b, =&k and & =&R,,

We will learn later that

(22)  (&.4,---,&0.,) and (Rpi,...,Ry,) are independent random vectors.
Using the rvs £ of this paragraph corresponds (when forming the rank vector of data

X}, coming from a discontinuous df) to breaking ties at random in forming the ranks.
Such notation is sometimes used throughout the remainder of this book. O

The Empirical DF

Notation 5.2 (Empirical dfs and processes) Let X1, Xo,... be iid with df F’
and qf K. The empirical df F,, of (X1,...,X,) is defined by

1
(23) Fp(x)=-— Z Lo,z (Xk) = Zl[XkQ: for —oo < x < o0.

3

This is a step function on the real line R that starts at height 0 and jumps by height
1/n each time the argument reaches another observation as it moves from left to right
along the line. We can think of F,, as an estimate of F'. The important study of the
empirical process

(24)  Ep(z) = n[F,(x) — F(2)] forze R

will allow us to determine how this estimator IF,, of F' performs.
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We also let &1, &2, ... be iid Uniform(0, 1), with true df the identity function I on
[0, 1] and with uniform empirical df

1
(25) ) = o Z Lo, (&k) = Z Lie, <4 for 0 <t <1.

The corresponding uniform empirical process is given by
(26)  U,(t) = Vn[Gu(t) — 1] for ¢t € [0,1].

If we now define an iid F sequence X1, Xo,... via X = F~1(&) = K(&,), then the
empirical df and empirical process of these (X7,...,X,,) satisfy

(Fp, — F) = [Gy(F)—I(F)Jon R and E,=TU,(F)on R,

27
@7) valid for every w,

as follows by (6.3.3). (If we use the &}’s of (6.3.8), then the IF,, on the left in (22) is
everywhere equal to the F,, of the original X}’s.) Thus our study of properties of E,,
can proceed via a study of the simpler U, which is then evaluated at a deterministic
F. (Recall also in this regard theorem 5.3.3 about probability being determined by
the finite dimensional distributions.) O
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6 Infinite Variance’

Whenever the variance is infinite, (1) will show that the Truncated variance 52 domi-
nates the square ji% of the Truncated mean. The same is true in the Winsorized case,
as in (2). Let K, o denote K Winsorized outside (a,1 —a’).

Theorem 6.1 (Gnedenko—Kolmogorov) Every nondegenerate qf K satisfies
(1) lim sup{fal_a’ |K(t)| dt}?/ fal_a/ K2(t)dt =0 whenever EK?(£) = oo,

aVva' —0

(2) Var[f(a,a/ (5)]/EI~(§a () —1las(avad)—0 whenever EK?(£) = oo.

Proof.  Let h > 0 be continuous, symmetric about ¢ = 1/2,7 tooco on [1/2, 1),
and suppose it satisfies C}, = fo h2(t)dt < co. Let b= 1—a’. Then Cauchy-Schwarz
provides the bound

() (K@ = {f; @K @/R@] > < [ ) dt [ 0)/h%(0)] db
Fix ¢ = ¢, so close to zero that Ch/hQ(c) < e. Fix ¢, and let a V@’ — 0. Then

(2K )] dty?/ [P K (t)dt < Oy [P0 /h2(0)] dt/ [P K2t

e g2 2(¢t
(b) gch{fchgfi/2) + fﬂ;if 0 }/f K2(t
(c) < CR{ IO K2(t) dt/h?(1)2)}) [P K2 () dt + €
(d) < 2e for a and b near enough to 0 and 1, since EK?(€) = oo.
Then (2) follows from [aK 4 (a) +d'K(1 —a')]?/[aK%(a) + d K*(1 —d')] — 0 O

Exercise 6.1 (Comparing contributions to the variance) Let K(.) be arbitrary. Estab-
lish the following elementary properties of qfs (of non-trivial rvs):

_ : 2
(a) limsup[aK? (a) + ' K*(1 — d)]/5* { =0 B < oo,

aVva' —0

<1 if EK?(¢) = 0.

{ < oo always,

(b) lim sup fal_a, K2(t)dt/5? <1 if EK2(¢) = oo.

ava'—0
@ tmswldrs@+dR-ae {20 g
@ tmsup [ K (0] e/ {58 T
() E@/SEEE'KW (©)l/a { 7 iaflvéa[?g’(g) .
Exercise 6.2 Let 0 < r < s. Show that for every nondegenerate qf K we have

(3 lmsup{ [ K@ Ay [V K(@)FdE=0 i EIK ()] = .
avVa —0
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Exercise 6.3 (An added touch) Let K > 0 be \, on(0,1) with fo t)dt < .
There exists a positive \, function h(-) on (0,1) with h(t) — oo as t — O for which

fo t)dt < co. (Note exercise 3.5.12.)

Proposition 6.1 Let X have sth absolute moment E|X|* = oo, and let 0 < r < s.
Let [X|s =1 =310 [ Xk|® for did rvs Xy, Xy, ... distributed as X, etc. Then

(4) (X)X 5 —as. O (using the following remark 6.1).
Remark 6.1 It is useful to give this proof now even though it will not be until the

SLLN (theorem 8.4.2) that we prove E|X|* < oo yields | X|$ —,. E|X]°. Likewise,
E|X|® = 0o yields | X | —q.s. 00. These will be used in the proofs below.

Proof. We follow the proof of Gnedenko-Kolmogorov’s theorem 6.6.1, as we give
the proof of (4) for s = 2 and r = 1. Let K,, denote the empirical qf. Let h be

positive, continuous, symmetric about t = %,T tooo on [%, 1) and suppose it satisfies

Ch = fo h2(t)dt < co. Define a = 1 —b = 1/(2n). Then Cauchy-Schwarz gives the
bound

(Jy Ka(8)] dt)? = (J, h(2) Jh(®)dt)? < [ B3 (t) dt [T (6)/12(2)] dt
(2) = Cn [, K2 (¢ )/h2()]

Let ¢ = c. be fixed so close to zero that C/h?(c) < €/8. Then

{ S X/ < 4{ ) [Ka (1)) di)?/ X3
(the “4” comes from the definition of a and b,

which gives only half of the two end intervals)

<40, [VK2(t) /(1) dt/XE by (a)

SR A ()R
®) < 4Ch { h2(1/2) T h2(c) /X2
4C c AC o
(C) <13 ( h fl K2 )dt/X2}+ (h) {X%/X%}
(d) % + 5 l=¢ for all n exceeding some n,,

using remark 6.1 for Xig —qa.s. 00 in the final step. (Thus the numerator of the leading
term in (c) converges a.s. to a finite number, while the denominator has an a.s. limit
exceeding 2/e times the numerator.) d

Exercise 6.4 (a) Prove proposition 6.1 for general 0 < r < s.
(b) Now for iid rvs, (4) implies that —, 0 as well. Hence, —, 0 is immediate if
Xn1y ..., Xpp are iid as X, for each n. Be clear on this.
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Proposition 6.2 (Equivalent versions of negligibility)
For any vector X = (X71,...,X,,), let

1 _ -
(5) D? = [max;<j<p E|Xk — X,/ 52 where S%2 = X2 — (X,,)?

n —

Let X1, Xo,... beiid as X, and set X= (X1,...,X,,)". Then

n

1 _
6 D2 —,s 0 if and only if max<p<n — X2/ X2 =45 0.
SkEm k n

Let Xp1,..., Xpn be iid as X, for each n > 1. Set X= (X,1,..., Xu,). Then
1 _
(7) D2 —~,0 if and only if [max)<g<n EXZ,C]/X% —p 0.

Proof.  Consider (6). Note that

2

(a) D2 =< max|

{1 = (X0)?/X3}.

\/nX2 \/nﬁ

Since 0 < (X,,)2/X2 < 1 always holds by the Liapunov inequality, we have

(b) | Xa|/\/nX2 < 1/v/n —q 0 always holds for all rvs.

Thus the second term in the numerator always goes to zero for all rvs (independent,
or not). Consult remark 6.1 for the following two claims. The denominator of (a)
converges a.s. to 1 —0 = 1 if EX? = oo (by (4)), while the denominator of (a)
converges a.s. to (1 — E2X/EX?) < 1 if EX? < co. Thus D2(w) — 0 for a.e. fixed
(X1(w), X2(w), ...) if and only if the lead term in the numerator of (a) goes to zero
for a.e. fixed w; that is, if and only if [max | X}|]/{nX2}'/2 — 0 for a.e. fixed w. This
gives (6). Then (7) follows analogously using exercise 6.4b. O

Proposition 6.3 Let X > 0 with EX® = oo have df F' and gf K. The rth partial
absolute moment M, is defined on [0, 1] by

®)  M.(t)= [} K" (u)du= ['m(u)du, where m,(t)=[K(1—1)]".
Then, for 0 < r < s,

(9) tms(t)/Mg(t) — 0 implies tm,(t)/M,(t) — 0.

(Sections C.2-C.3) contain a good deal more in the spirit of (1)—(3) and (9).)

Proof. Raising to a power increases a maximum more than an average, and so

tmp(t) _ tKT(1-t)  _ t K5(1 —1t)  tm(t)
M.(t) Jug "1 —u)du = 11 1tft1 K5(1—u)du  M(t)

(10)

for all ¢ so close to 1 that K (1 —t) > 1. This establishes (9). O
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The CLT and Slowly Varying Functions®

Let Xy, ..., Xpp be iid with df F' and qf K = F~!. The central limit theorem (CLT)
states that Z, = /n[X,, — u]/o —q N(0,1) when o2 is finite. In this case

(11) K3 (ct)VK*(1—ct)]/o? = 0ast — 0, for each fixed ¢ > 0;

extend the calculation just below (6.4.6) to the second moment case to see this.
What if 02 is infinite? Let ¢ denote a Uniform(0, 1) rv. Let X = K(¢), so that X

has df F. Let X (a) = K,4(€), with mean fi(a) = fol Ka,a(t) dt and variance
(12)  &%(a) = [ [ylr As—rs]dKqa(r) dRKaq(s),

which increases to 02 as a \, 0, whether o is finite or infinite. This expression makes
no reference to any mean (such as p or fi(a)). This is nice! It turns out that

(13)  Zn = i{ X — i(1/n)}/5(1/n) —a N(O, 1)
if and only if

(14)  t[K%(ct) v K*(1 —ct)]/5%(t) — 0 ast — 0, for each fixed ¢ > 0.
This (14) holds if and only if 52(¢) does not grow too fast; that is, if and only if
(15)  &2(ct) /5% (t) — 1 ast — 0, for each fixed ¢ > 0.

It is appropriate to examine such slow variation of 5%(t) in the infinite-variance case.
We shall do so very carefully in appendix C, in both the df domain and the quantile
domain. Often this slow variation question is examined in the context of the CLT and
is treated in the context of the general theory of slowly varying functions. But the
equivalence of similar conditions in appendix C will follow from a careful treatment
of the easier WLLN and treating slowly varying functions in an elementary fashion
from simple pictures and a dash of Cauchy-Schwarz. The connection to the CLT (16)
will not be made until the optional sections 10.5-40.6. To use this CLT one might
verify the limited contribution of the tails, via (18) or (17), and then claim (16), (20),
and (19).

Theorem 6.2 (A studentized CLT) Let X1, ..., X, be row independent, all with
nondegenerate df F'. Conditions (14) and (15) are each equivalent to the conditions
below.

(16)  vi{ X — i(1/)}/5(1/n) —a N(0,1).
(17)  R(z) = 2°P(|X| > x)/f[y2<$]y2dF(y) —0 asz— 0.
(18) Ulx) = f[y2<$]y2 dF(y) satisfies U(cx)/U(z) — 1, for each ¢ > 0.
1 . 1 —
1 D, = 2\ Xk — Xnll/Sn . , ~X21/X2 .
(19) [ax | Xng — Xn[l/Sn —p 0. Or, [max -~ Xop]/ X5 —, 0
(20)  S%/5%(1/n) —, 1. Or, X2 /ury —p 1,
where uy, = U(w1,) for the (1 — 1/n)-quantile z1, of |X|. These claims imply
the Studentized result /n{X, — i(1/n)}/S, —4 N(0,1), which easily leads to an

asymptotically valid confidence interval for fi(1/n).) (See theorem 10.6.1 for a list
containing many more equivalent versions.)



Chapter 7

Independence and Conditional
Distributions

1 Independence

The idea of independence of events A and B is that the occurrence or nonoccurrence of A
has absolutely nothing to do with the occurrence or nonoccurrence of B. It is customary to
say that A and B are independent events if

(1)  P(AB) = P(A)P(B).

Classes C and D of events are called independent classes if (1) holds for all A € C and all
B € D. We need to define the independence of more complicated collections.

Definition 1.1 (Independence) Consider a fixed probability space (€2, .4, P).
(a) Consider various sub o-fields of A. Call such o-fields Ay, ..., A, independent o-fields if
they satisfy

(2) P(Ain---nA,) =TI} P(4) whenever A; € A; for 1 <i <n.

The o-fields Ay, As, ... are called independent o-fields if A, ..., A, are independent for each
n > 2. (Use this definition for arbitrary classes A1, ...,A,, too.)
(b) Rvs X1,..., X, are called independent rvs if the o-fields F(X;) = X, 1(B), for 1 <i < n,

7

are independent. Rvs X7, Xs,... are called independent rvs if Xy,...,X,, are independent
for each n > 2.
(c) Events Ay,..., A, are called independent events if the o-fields o[A4],...,0[A,] are inde-

pendent o-fields; here note that
(3) U[Ai] = {¢a AzaA;Q}

The next exercise is helpful because it will relate the rather formidable definition of inde-
pendent events in (3) back to the simple definition (1).

Exercise 1.1 (a) Show that P(AB)= P(A)P(B) if and only if {0, A, A°, Q} and
{0, B, B¢,Q} are independent o-fields. [Thus we maintain the familiar (1).]
(b) Show that Ay,..., A, are independent if and only if

k
whenever 1 < i1 < --- < i <nwith 1 <k <n.
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Remark 1.1 When discussing a pair of possibly independent events, one should draw the
Venn diagram as a square representing ) divided into half vertically (with respect to A, A€)
and into half horizontally (with respect to B, B€) creating four cells (rather than as the
familiar two-circle picture). Also, if one writes on the table the probability of each of the
four combinations AB, AB¢, A°B, A°B¢, one has the contingency table superimposed on the
picture. (See figure 1.1) [This extends to two partitions (A1,...,4,,) and (By,..., By,), but

not to three events.] O
A A(:
B P(AB) P(A°B)
Be P(ABY) P(A°Be)

Figure 1.1 The 2 x 2 table.

Theorem 1.1 (Expectation of products) Suppose X and Y are independent rvs for
which ¢g(X) and h(Y") are integrable. Then g(X)h(Y') is integrable, and

5)  Elg(X)h(Y)] = Eg(X)EA(Y).

Proof. The assertion is obvious for g =14 and h=15. Now hold g =14 fixed, and
proceed through simple and nonnegative h. Then with h held fixed, proceed through simple,
nonnegative, and integrable g. Then extend to integrable h. O

Proposition 1.1 (Extending independence on w-systems)
(a) Suppose the m-system C and a class D are independent. Then

o[C] and D are independent.

(b) Suppose the m-systems C and D are independent. Then
o[C] and o[D] are independent o-fields.

(¢c) If C4,...,C, are independent m-systems (see (2)), then
olCi],...,0[C,] are independent o-fields.

Proof. (a) Fix D € D, and define

(i) Cp ={A€o[C]: P(AD) = P(A)P(D)}.

We now demonstrate that Cp is a A-system (that trivially contains C). Trivially, Q € Cp. If
A,B € Cp with A C B, then

P((A\B)D) = P(AD\ BD) = P(AD) — P(BD)
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(i) = P(A)P(D) — P(B)P(D) = P(A\ B)P(D);
and this implies that A\ B € Cp. If A,, / A with all 4,, € Cp, then
(k)  P(AD) = P(lim A, D) = lim P(A, D) = lim P(A,,)P(D) = P(A)P(D);

and this implies that A € Cp. Thus Cp is a A-system, and it trivially contains the m-system C.
Thus Cp D A[C] = o]C], using (1.1.19) for the equality. Finally, this is true for every D € D.

Just apply part (a) to the m-system D and the arbitrary class o[C] to obtain (b). Part (c)
is left to exercise 1.3. ]

Theorem 1.2 Let X;,Xs,... be independent rvs on (2, A, P). Let i = (41,42, ...) and
i = (j1,72,...) be disjoint sets of integers. (a) Then

(6) F(Xiy, Xiy,...) and F(X,,, Xj,,...) are independent o-fields.
(b) This extends immediately to countably many disjoint sets of integers.

Corollary 1 (Preservation of independence)

Any rvs hi(X;,, Xy, .. .), ha(X;,, Xj, - . ), ... (that are based on disjoint sets of the underlying
independent rvs X} ) are themselves independent rvs, for any choice of the B-B.,-measurable
functions hq, ha, . . ..

Proof. Let C denote all sets of the form C = [X;, € By,...,X; € B,], for some m > 1
and for By,..., By, in B. Let D denote all sets of the form D = [X;, € B{,..., X, € B]]
for some n >1 and sets Bj,...,B), in B. Both C and D are 7-systems, while o[C] =
F(Xi,, Xiy,...) and o[D] = F(X,,, X,,,...). In fact, F(Xi,, Xip,...) =X ' (Bso) = X;*
(0[Cx]) = 0[X; 1 (Cx)] = o[C]. Thus

(p)  P(CND)=PHMNZIi[Xi € B} N{NZ1[X5, € BlI})

=T, P(X;, € Bp) 1, P(Xj, € B)) by independence

= P(Nj—,[Xs, € Bi])P(N-1[X;, € B]]) by independence
(a) = P(C)P(D),
so that C and D are independent classes. Thus ¢[C] and o[D] are independent by proposition
1.1(b), as is required for (6). The extension to countably many disjoint sets of indices is done
by induction using proposition 1.1(c¢), and is left to the exercises. (The corollary is imme-
diate.) O

Exercise 1.2 Prove theorem 1.2(b).

Exercise 1.3 Prove proposition 1.1(c).

Criteria for Independence

Theorem 1.3 The rvs (Xy,...,X,) are independent rvs if and only if

(7) Fx, . x,(x1,...,2n) = Fx,(x1) -+ Fx, (v,,) forall zy,...,2,.
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Proof. Clearly, independence implies that the joint df factors. For the converse we
suppose that the joint df factors. Then for all z1,...,x, we have

P(Xlgxl,,Xngxn):P(Xlgxl)P(Xngxn) .

That is, the classes C; = {[X; < ;] : #; € R} are independent, and they are w-systems, with
o[C;] = F(X;). Independence of Xi,..., X, then follows from proposition 1.1(c). O

Exercise 1.4 Rvs X,Y that take on only a countable number of values are independent
if and only if P([X = ;][Y = b;]) = P(X = a;)P(Y = b;) for all ¢, j.

Exercise 1.5 Show that rvs X, Y having a joint density f(.,.) are independent if and
only if the joint density factors to give f(z,y) = fx(z)fy (y) for a.e. x,y.

Remark 1.2 That rv’s X,Y are independent if and only if their characteristic function
factors appears as theorem 9.5.3 of Section 9. O
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2 The Tail o-Field

Definition 2.1 (The tail o-field) Consider an arbitrary random element X = (X1, X»,...)
from (Q,4,P) to (Roo,Bs). Then 7 =", F(X,, Xnt1,...) is called the tail
o-field, and any event D € T is called a tail event.

Theorem 2.1 (Kolmogorov’s 0-1 law) If X1, X3, ... are independent rvs, then P(D)
equals 0 or 1 for all tail events D in the tail o-field 7.

Proof. Fix a set D € 7, and then note that D € F(X) = X"1(B,). By the Halmos
approximation lemma of exercise 1.2.3 and the introduction to section 2.5, there exists an
integer n and a set D,, in the nth member of U,, F(X1,..., X;n) = Up X, (B) = (a field)
such that P(D,AD) — 0. Thus both P(D N D,) — P(D) and P(D,,) — P(D) occur. Hap-
pily, D € T C F(X,41,...). so that D and D,, € F(Xq,...,X,) are independent. Hence

P%(D) « P(D)P(D,) = P(DN D,) — P(D),
yielding P?(D) = P(D). Thus P(D) =0 or 1. 0

Remark 2.1 (Sequences and series of independent rvs converge a.s., or almost
never) Note that for any Borel sets By, Bs,... in B,

(1) [X,, € By, i.0.] equals lim[X,, € B,] =, Ur_, [Xm € B] €T,
since U o_, [ Xom € By) € F(X,,...). Also,

@[Xn € Bn} = Uf;l ﬂ::n[Xm € BM] = (ﬂff:l Uronozn[Xm € Bfn])c
(2) = (lim[X,, € BE))* € 7.

Note also that

w : X,(w)— (some finite X (w))]°=[w : X,(w) - (some finite X (w))]
(3) = Uiz Mozt Unmnlw [ X (w) = X (@) > 1/k] € (U2, T) = 7.
Likewise, if S, = > "1, X;, then

[w : Sp(w) — (some finite S(w))]*

(4) = Uiz Mzt Unmnlw = 13535, Xi(w)| > 1/k] € T,
The following result has thus been established. O
Theorem 2.2 Sequences and series of independent rvs can only converge either a.s. or

almost never.

The Symmetric o-Field

Definition 2.2 (Symmetric sets) Let m denote any mapping of the integers onto them-
selves that (for some finite n) merely permutes the first n integers. Let X = (X1, Xo,...) be
Boo-measurable, and set X; = (Xr(1), Xr(2),---). Then A= X~Y(B) for some B € By, is
called a symmetric set if A=X_1(B) for all such 7. Let S denote the collection of all
symmetric sets.
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Exercise 2.1 (Hewitt-Savage 0-1 law)

Let X = (X3, Xo,...) have iid coordinates Xj.

(a) Show that P(A) equals 0 or 1 for every A in S.

(b) Show that S is a o-field, called the symmetric o-field.

(¢) Show that the tail o-field 7 is a subset of the symmetric o-field S.

(d) Give an example where T is a proper subset of S.

(Hint. Use the approximation lemma of exercise 1.2.3 as it was used above.)
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3 Uncorrelated Random Variables

Recall from definition 3.4.1 that X = (u,0?) denotes that the rv X on a probability space
(2, A, P) has mean p and a variance o2 that is assumed to be finite.

Definition 3.1 (Correlation) If Xi,..., X, have finite variances, then we call them uncor-
related if Cov[X;, X;] = E{(X; — EX;)(X,; — EX;)} = 0 for all ¢ # j. Define the dimension-
less quantity

Cov[X;, X,
Corr[X;, X;] = ov| i}
Var[X;|Var[X}]
to be the correlation between X; and X;. If X = (Xy,...,X,), then the n X n covariance
matriz of X is defined to be the matrix ¥ = |[o;;]| whose (7, j)th element is 0;; = Cov[X;, X;].

Proposition 3.1 Independent rvs with finite variances are uncorrelated.

Proof. Now,

() Cov [X,Y] = BI(X — ux)(Y — )] = B(X — ux)E(Y — jy) =0-0=0,

where

(b) 0 < {Cov [X,Y]}? < Var[X] Var [Y] < o0

by Cauchy—Schwarz. |
Note from (b) (or recall from (3.4.14)) that

(1) | Corr [X,Y]| <1 for any X and Y having finite variances.

Proposition 3.2 If (Xi,..., X,,) are uncorrelated and X; & (y;,0?), then

(2) iale = (iaiui,ia?(f?) .
1 1 1

In particular, suppose X1, ..., X,, are uncorrelated (p,0?). Then

(3) E%ZX ( 2) while  v/n(Xn — p)/o = (0,1),

provided that 0 < o0 < co. Moreover

n

> XY bVl =Cov [y ai(X; —px,), Y bi(Y; — py,)
i=1 j=1 i=1 j=1

m n

(4) —ZZazb Cov [X;,Y;].

1=15=1
Note that if
(5) Y = AX, then Ey = AZXA/.

Proof. This is all trivial. O
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4 Basic Properties of Conditional Expectation °

The Lebesgue integral is a widely applicable tool that extended the value of the Reimann
approach. It allows more general “heavy duty results.” So too, we now need to extend and
rigorize our elementary approach to conditional expectation, in a way that keeps the useful
results intact. (Illustrations follow the definitions.)

Definition 4.1 (Conditional expectation) Let (€, A, P) denote a probability space. Let

D denote a sub o-field of A. Let Y be a rv on (€, A, P) for which E|Y| < co. By E(Y|D)(+)
we mean any D-measurable function on 2 such that

(1) /DE(Y|D)(w) dP(w) = /DY(w) dP(w) for all D e D.

Such a function exists and is unique a.e. P, as is seen below; we call this the conditional
expectation of Y given D. If X is another rv on (2, A, P), then

(2)  EY|X)(w) = EY[F(X))(w);
we recall that F(X) = X ~(B) for the Borel subsets B of the real line R.

Justification of definition 4.1. Let E|Y| < co. Define a signed measure v on D by
(a) v(D)= [, Y dP for all D € D.

Now, v is a signed measure on (2, D) by example 4.1.1, and the restriction of P to D (denoted
by P|D) is another signed measure on (£, D). Moreover, that v <« P|D is trivial. Thus the
Radon—Nikodym theorem guarantees, uniquely a.e. P|D, a D-measurable function h such that
(recall exercise 3.2.3 for the second equality)

(b)  w(D)= [, hd(P|D) = [,hdP  forall D€ D.

Now, being D-measurable and unique a.s. P|D implies that the function h is unique a.s. P.
Define E(Y|D) = h. Radon—Nikodym derivatives are only unique a.e., and any function that
works is called a version of the Radon—Nikodym derivative. (]

Proposition 4.1  Suppose that Z is a rv on (£2,.4) that is F(X)-measurable. Then there
exists a measurable function g on (R, B) such that Z = g(X).

Proof. This is just proposition 2.2.5 again. ]

Notation 4.1 Since E(Y|X) = E(Y|F (X)) is F(X)-measurable, the previous proposi-
tion shows that h = E(Y|X) = ¢g(X) for some measurable function g on (R, B). The theorem
of the unconscious statistician gives fx*l(B) g(X)dP = fB g dPx, where we have written the

general set D € F(X) as D = X~ (B) for some B € B. Thus we may define E(Y|X = z) =
g(x) to be a B-measurable function on R for which

(3) /BE(Y\X =) dPx(z) = /XI(B) Y(w)dP(w) for all B € B.

This function E(Y | X = z) exists and is unique a.s. Px, as above. In summary:

(4) If g(x) =E(Y | X =2), then h(w) =E(Y | X)(w) = g(X(w)). O
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Definition 4.2 (Conditional probability) Since P(A) =El4 for standard probability,
define the conditional probability of A given D, denoted by P(A|D), by

(5)  P(AD) =E(1a|D).
Equivalently, P(A|D) is a D-measurable function on € satisfying

(6) P(ANnD) = / P(A|D)dP for all D € D,
D

and it exists and is unique a.s. P. Also,
P(A|X) = P(A|F(X)) .
Thus P(A|X)(w) = g(X (w)), where g(z) = P(A|X = z) is a B-measurable function satisfying

(1)  P(ANX"Y(B)) = /BP(A|X —2)dPx(z)  forall B € B.

This function exists and is unique a.s. Px.

Discussion 4.1 (Discrete case; the elementary treatment)  Given that the event B has
occurred (with P(B) > 0), how likely is it now for the event A to occur. The classic elementary
approach defines the conditional probability of A given B by P(A|B) = P(AB)/P(B). Thus
we have taken a revisualized view of things, while regarding B as the updated sample space.
For any event B, only that portion AB of the event A is relevant (as B was known to
have occurred). Thus all that matters is the probabilistic size P(AB) of AB relative to
the probabilistic size P(B) of B. The resulting P(-|B) is a probability distribution over
Ap={AB: Ac A}.
For discrete rvs X and Y with mass function p(-,-) this leads to

Pyix=s(y) = pl,y)/px (@), for each a for which px (x) # 0,

for the conditional mass function. It is then natural to define

E(p(Y)|X =2) =3 , ¥(y)py|x==(y), for each x with px(z) # 0
when E|¢(Y)| < co. It is then elementary to show that E(Y) = E(E(4(Y)|X)). O

Exercise 4.1 (“Discrete” conditional probability; the general treatment) Suppose
Q =3, D;, and then define D = ¢[Dy, Dy, ...]. Show that (whether the summation is finite
or countable) the different expressions needed on the different sets D; of the partition D can
be combined together via

®  Pap) =Y S,

where (just for definiteness) PP(?D%) = P(A) if P(D;) = 0. For general Y € £; show that the

function E(Y|D) takes the form

(9) E(Y|D):Z{P(1Di)/DinP} 1p,,

with the term in braces defined to be 0 if P(D;) = 0 (just for definiteness). (We note that the
standard elementary approach to conditional probability is, in the discrete case, embedded
within (8) and (9)-but it sits in there “differently.”)
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(a)
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Figure 4.1 Conditional probability and conditional expectation

Example 4.1 Let an urn consist of six balls identical except for the numbers 1, 2, 2,
3, 3, 3. Let X; and X5 represent a sample of size two drawn with replacement, and set
Y = X5 and S = X; + X,. Consider figure 4.1 above. In the figure (a) we see the sample
space Q of (X1, X5) with the values of S superimposed, while the figure (b) superimposes the
probability function on the same representation of . In the figure (c¢) we picture the five
“diagonal sets” that generate D = S~!(B). The three-part figure (d) depicts P(Y = i|D)(-)
as a D-measurable function on € for each of the three choices [Y = 1],[Y = 2], and [V = 3]
for A, while the figure (e) depicts E(Y|D)(w) as a D-measurable function. (Had we used
the elementary definition of P(Y =:|S = k) as a function of y for each fixed k, then the
conditional distributions would have been those shown along the five diagonals in the figure
(f), while E(Y'|S = k) is shown at the end of each diagonal.) O
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Remark 4.1 It will be seen that (with A and A;’s regarded as fixed)

(10) O0<P(AD)<1 a.s. P,
(12) P@D)=0 a.s. P,
(13) A C Ay implies P(A,|D) < P(As|D) as. P.

(To see these, just apply parts (16)(monotonicity) and (17)(MCT) of theorem 4.1 appearing
below.) These properties remind us of a probability distribution. O

Discussion 4.2 (Continuous case; the elementary treatment) For discrete rvs, the conditional
distribution is specified by

glylr) =PY =yl X =2)=PY =yand X =z)/P(X = x).

(This is in line with discussion 4.1.) One “natural approximation” of this approach for
continuous rvs considers

g(ylz) = lim [ O Py (ry)de/ [ fx(r) dr.

But making this approach rigorous fails without sufficient smoothness, and leads to a tedious
and limited theory. So elementary texts just suggest the even more blatant and “less rigorous”
imitation of the discrete result via

fXY(fU y)AmAy . fX,Y(%y)Ay
[x(z)Ax fx(x)

Discussion 4.3 suggests that the general approach of this section should ultimately lead to
this same elementary result in the case when densities do exist.

Moreover, if (x(t),y(t)),a <t < b, parametrizes a smooth curve (imagine a circle about
the origin, or a line of slope 135°), it is definition 4.2 that leads rigorously to formulas of the

type

9(ylz) Dy =

f((t),y(t))y/(de/dt)? + (dy/dt)>

5 fora<t<b
Jo F@®),y(@))/(dz/dt')? + (dy/dt’)>d
for the conditional density at the point ¢ given that one is on the curve. |
Discussion 4.3 (Continuous case; the general treatment) Let us consider the current

approach to conditional probability. We will illustrate it in a special case. Let A € By denote
a two-dimensional Borel set. Let T = T(X) = (X? + X3)/2, so that T =t defines (in the
plane Q = R,) the circle Cy = {(21,22) : 2} + 23 = t?}. Let B € B denote a one-dimensional
Borel set of t’s, and then let D =T71(B) = U{C; : t € B}. Requirements (6) and (7) (in a
manner similar to exercise 4.1, but from a different point of view than used in discussion 4.1)
become

P(AD) = P(AN(U{C, : t € B} = foe, teB} P(A|T)(x) dPx(x)
= [Licrueny ha() dPx(X) = [ 9a(t) dPr(t) = [ P(A|T = t) dPr(t).

So if g4(.y is given a value at ¢ indicating the probabilistic proportion of A N C; that belongs to
A (or h(x) is given this same value at all x € C}), then the above equation ought to be satisfied.
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(When densities exist, such a value would seem to be ga(t) = [, 1a(x)px(x)dx/ [, px(x)dx,
while h4(x) = ga(T(x)) would assign this same value at each x € C.) The requirements (1)
and (2) become

fu{Ct:teB} YdP = fU{Ct:tEB} h(x fB g(t) dPr(t

(When densities exist, the value E(Y|T'=t)=g(t) = [, YV x)dx/ [, p(x)dx seems
appropriate, with h(x) assigning this same value for all x in Cy. )

The reader is urged to draw an (z1, z2)-plane to serve as the sample space for X = (X1, X»)
and a half line [0, 00) to serve as a sample space for T' = (X7 + X2)'/2. Then any D = F(T)
measurable function, such as g4 (t) = P(A|T = t), leads to the function hs(x) = ga(T(x)) =
ga(t) that is a constant on every circle Cy in the (1, 22)-plane. Picture this on your diagram.
We need to guarantee that our specific guess for the function ha(x) = ga(t) = P(A|T =1t)
works—that is, (6) and (7) hold. Happily, theorems in section 7.5 can be summarized by
saying that in all the old standard problems we need not bother. When we fix ¢, the function
P(A|T =t) = ga(t) behaves just like the old probability distributions over all of the sets A
in A. Great! So why are we doing this? The answer is by analogy. We already knew how
to take the expectation of a function of a rv that has a density (we used an integral), or a
mass function (we used a summation), but by this point we have learned how to rigorously
do all cases at once using only the expectation sign format E(-) (whether the distribution is
absolutely continuous, discrete, singular, or a mixture of these). It can be very useful to learn
how do general cases for conditional expectation as well. To this end we will now call on John
Wayne and the cavalry (and this has the distinct look of the Halmos-Savage approach via a
Radon-Nikodym derivative) and the bullets can be found in the upcoming theorem 4.1. O

Exercise 4.2 (A) (i) Mimic discussion 4.2 in case T' = X7 + X5, instead.

(ii) Make up another interesting example.

(B) (iii) Repeat example 4.1 and the accompanying figure, but now in the context of sampling
without replacement.

(iv) Make up another interesting example.

Exercise 4.3 Let Y be arv on some (€2, .4, P) that takes on the eight values 1, ..., 8 with
probabilities 1/32, 2/32, 3/32, 4/32,15/32,4/32,1/32, 2/32, respectively. Let C = F(Y), and
let C; = [YZZ] and p; = P(CZ) for 1 <i<8. Let D= O'[{Cl 4+ C5,Co + Cg,C3 + C7,Cy +
Cs},E=c[{C1+ Ca+ Cs5 + C4,C5 + Cy + C7 + Cs}] and F = {Q,0}.

(a) Represent 2 as a 2 x 4 rectangle having eight 1 x 1 cells representing C1,...,Cy in the
first row and Cj,...,Cs in the second row. Enter the appropriate values of Y (w) and p; in
each cell, forming a table. Evaluate E(Y).

(b) Evaluate E(Y'|D). Present this function in a similar table. Evaluate E(E(Y'|D)).

(c) Evaluate E(Y|€). Present this function in a similar table. Evaluate E(E(Y|E)).

(d) Evaluate E(Y'|F). Present this function in a similar table. Evaluate E(E(Y|F)).

Theorem 4.1 (Properties of conditional expectation) Let X,Y,Y, be integrable
rvs on (€2, 4, P). Let D be a sub o-field of A. Let g be measurable. Then for any versions of
the conditional expectations, the following hold:

14

15
16
17

(Linearity) E(aX + bY|D) = aE(X|D) + bE(Y|D) a.s. P (or,a.s. (P|D)).
EY = E[E(Y|D)].
(Monotonicity) X <Y a.s. P implies E(X|D) < E(Y|D) a.s. P.

)
)
)
) (MCT)If0<Y, /Yas. P, then E(Y,|D) / E(Y|D) as. P.

(
(
(
(
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(18)  (Fatou) If 0 <Y, a.s. P, then E(limY,,|D) < limE(Y,|D) a.s. P.
(19)  (DCT) If all |Y,,| < X and Y,, —,., Y, then E(Y,|D) —. E(Y|D).
(20) Y is D-measurable and XY € £1(P), then E(XY|D) =, . YE(X|D).
(21) If #(Y) and D are independent, then E(Y|D) = EY a.s. P.
(22)  (Stepwise smoothing). If D C £ C A, then E[E(Y|E)|D] = E(Y|D) a.s. P.
(23)  If F(Y, X;) is independent of F(X32), then E(Y|X1, X5) = E(Y|X1) a.s. P.
(24)  C,,Holder, Liapunov, Minkowski, and Jensen inequalities hold for E(:|D).
Jensen: g(E(Y|D)) <,.s. E[g(Y)|D] for g convex with g(Y") integrable.
(25)  Letr >1.1f Y, —., Y, then E(Y,|D) —,v E(Y|D). In fact,

E[E(X|D) - E(Y[D)[" <E|X —Y[".
(26)  hp(-) is a determination of E(Y|D) if and only if

E(XY) = E(Xhp) for all D-measurable rvs X.
(27) If P(D)=0 or1 for all D € D, then E(Y|D) =EY a.s. P.

Proof.° We first prove (14). Now, by linearity of expectation,

[, [a B(X|D) + bE(Y|D)]dP = a [, B(X|D)dP + b [, B(Y|D) dP
(a) =af[,XdP+b[,YdP by definition of E(X|D), etc.
= [pla X +bY]dP for all D € D, as required.

To prove (15), simply note that
(b)  EY = [, YdP = [,E(Y|D)dP = E[E(Y|D)].
For (16), use (14) for the first step of
[, {E(Y|D) — E(X|D)}dP = [, E(Y — X|D)dP
(c) = fD(Y —X)dP =v(D) >0 is a measure v(-)

Then E(Y|D) — E(X|D) is a Radon—Nikodym derivative of v(-) and so is > 0 a.s.
Statement (17) follows easily from (16), since we have

(d) E(Y,|D) <E(Y,+1|D) <E(Y|D)a.s., for all n.
Thus lim,, E(Y,,|D) exists a.s., and

(€)  [,ImE(Y,|D)dP =lim [, E(Y,|D)dP by the MCT

=lim [, Y, dP = [, Y dP by the MCT

= [, E(Y|D)dP;

and we can appeal to the uniqueness of Radon—-Nikodym derivatives, or apply exercise 3.2.2.
Now we use (16) and (17) to prove (18). Thus

E(limY,,|D) = E(lim égf Y% D) by the definition of lim
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() = li}Ln E(égi YD), a.s., by the MCT of (17)
< lirrln éga E(Y%|D) by the monotonicity of (16)
= lim E(Y,,|D) by the definition of lim.
To prove (19), apply the Fatou of (18) to Y,, + X to get
E(Y|D) 4+ E(X|D) = E(X +Y|D) = E(lim(X +Y,,)|D)
()  <ImE(X +Y,|D) = lmE(Y,|D) + E(X|D).
Canceling the a.e. finite E(X|D) from both ends of (g) gives
E(Y[D) < lm E(Y, D) < Fm B(Y, /D) ;
(h) <E(Y|D) by applying the Fatou of (18) again, to X —Y,,.

To prove (20) we proceed through indicator, simple, nonnegative, and then general func-
tions, and each time we apply exercise 3.2.2 at the final step.
Case 1: Y = 1p«. Then

[, YE(X|D)dP = [, 1p-E(X|D)dP = [, .. B(X|D)dP
= [prp. XdP = [ 1p.XdP = [, YX dP = [, B(Y X|D)dP.
Case 2: Y =3 V" a;1p,. Then
[, YE(X|D)dP = " a; [, 1p,B(X|D) dP
=>"1ai[plp,XdP by case 1
= [, YXdP = [, E(YX|D)dP.

Case 3: Y > 0. Let simple functions Y,, /'Y where Y,, > 0. Suppose first that X > 0. Then
we have

[, E(YX|D)dP = [, E(lim, Y, X|D) dP
= [, lim, E(Y,X|D)dP by the MCT of (17)
= [ lim, Y, E(X|D) dP by case 2
— [, YE(X|D)dP by the MCT.

For general X, use X = X — X~ and the linearity of (14).
Case 4: General Y. Just write Y =Y+ - Y~
To prove (21), simply note that for each D € D one has

[, E(Y|D)dP = [, Y dP = [1pY dP = E(1p)E(Y)
— P(D)E(Y) = [, E(Y)dP
and apply exercise 3.2.2. Assertion (22) is proved by noting that

[, E[E(Y|€)|D]dP = [, E[Y|€]dP = [, Y dP since D €D C &
— [, E(Y|D)dP.
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The integrands of the two extreme terms must be equal a.s. by the exercise 3.2.2.
Consider (23). Now,

F(X1,X2)=0[D=DyNDy=X;Y(B1)N Xy (By) : By, By € B.
Let D = Dy N Dy be any one of the generators of F(X1, X5). Then
(D)= [LE(Y|X1,X3)dP = [, YdP = [1p,1p,Y dP
= [1p, [, Y dP = [1p,dP [, E(Y|X1)dP = [1p,1p,E(Y|X;)dP
= fD E(Y‘Xl)dp = VQ(D) .
Since v; and vy are measures on F (X7, X2) that agree on all sets in the 7-system consisting
of all sets of the form D = Dy N Dy, they agree on the o-field F(X;, X2) by the Dynkin 7—\

theorem. Thus the integrands satisfy E(Y | X1, Xo) = E(Y|X1) a.s.
We next prove (25), leaving most of (24) and (26) to the exercises. We have

E[E(Y,|D) - E(Y[D)|" = E[E(Y, - Y|D)["

(i) < E[E(]Y,, = Y|"|D)] by the conditional Jensen inequality of (24)
=E|Y,-Y|" by (15)
— 0.

To prove (27), note that for all D € D we have

()  [pE(Y|D)dP = [,YdP = {OE(Y) gggg; _ (1)} = [, E(Y)dP.

(Durrett) We now turn to the Jensen inequality of (24). The result is trivial for linear g.
Otherwise, we define

(k) C ={(c,d) : ¢,d are rational, and ¢(x) = cx + d < g(z) for all z in I},
and observe that
Q) g(x) = sup,y . gec(cx +d) for all z € I°;

this follows from the supporting hyperplane result (below (3.4.3)). For any fixed cx + d for
which (¢,d) € C with cz + d < g(x) on all (a,b) we have

(m)  E(g(X)|D) > E(cX +d|D) = cE(X|D)+d as. by (16).

Hence (as the union of a countable number of null sets is null), (1) and (m) give

(28)  E(g(X)ID) = supyy o accAE(X|D) + d} = g(E(X|D)) as.

since (inf I) < E(X|D) < (sup ) a.s. (since E(X) € I° was asumed in (3.4.21)). O

Exercise 4.4 Prove (26) and the rest of (24), in theorem 4.1.

Exercise 4.5 (Dispersion inequality) Suppose that X and Y are independent rvs with
py = 0. Let r > 1. Show that | X + Y| is more dispersed than X in that

(29)  E|X|"<E|X+Y][" (or, E|X + py|" < E|X 4+ Y|" more generally).

(Hint. Use Fubini on the induced distribution in (Ra, B2) and then apply Jensen’s inequality
to g.(y) = |x + y|” to the inner integral. Note also exercise 8.2.3 below.)
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Exercise 4.6 (a) Let P denote the Uniform (—1,1) distribution on the Borel subsets B
of Q=[-1,1]. Let W(w) = |w|, X (w) = w? Y(w) =w?, and Z(w) =w*. Fix A € B. Show
that versions of various conditional probabilities are given by

P(AIW)(w) = P(A|X)(w) = P(A]Z)(w) = 3{1a(w) + La(-w)} on Q,
while P(A|Y)(w) = 14(w) on Q.

Exercise 4.7 Determine P(A|W)(w), P(A|X)(w), P(A]Y)(w), and P(A|Z)(w) for
W,X,Y, and Z as in exercise 4.6 when P has the density 1 — |z| on ([-1,1], B).

Exercise 4.8 Determine P(A|W)(w), P(A]X)(w), and P(A|Y)(w) for W, X, and Y as
in exercise 4.6 when P has density 1 — 2 on (0,1] and 2(1 — 22) on [-1,0].
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5 Regular Conditional Probability *

For fixed A, the function P(A|D)(-) is a D-measurable function on  that is only a.s. unique.
We wish that for each fixed w the set function P(:|D)(w) were a probability measure. But for
each disjoint sequence of A;’s there is a null set where (7.4.10)—(7.4.12) may fail, and there
typically are uncountably many such sets. The union of all such null sets need not be null.
In the most important special cases, though, we may assume that P(:|D)(w) behaves as we
would like, where the nonuniqueness of P(A|D)(-) also provides the key, by allowing us to
make whatever negligible changes are required. (For added useful generality, we will work on
a sub o-field A of the basic o-field A.)

Definition 5.1  We will call P(A|D)(w) a regular conditional probability on a sub o-field A
of the o-field A, given the o-field D, if

(1) for each fixed A € A, the function P(A|D)(-) of w satisfies definition 4.2,
(2) for each fixed w, P¥(:|D) = P(-|D)(w) is a probability measure on A.
Exercise 5.1 Verify that the discrete conditional probability of exercise 7.4.1 is a regular

conditional probability.

When a regular conditional probability exists, conditional expectation can be computed
by integrating with respect to conditional probability, and we first show this general theorem
5.1. In theorem 5.2 and beyond we shall show specifically how to construct such conditional
probabilities in some of the most important examples.

Theorem 5.1 Let P(A|D)(w) be a regular conditional probability on A, and let ¥ €
L1(, A, P). Then a version of the conditional expectation of Y given D is formed by setting

(3) E{Y|D}Hw /Y )dP¥(w'|D), for each fixed w.

Proof. If Y =14, then (3) follows from
() [YdP(D) = [14dP*({D) = [, dP*(/|D) = P*(AID) = P(AID)(w)
(b) =4.s. B{Y|D}(w), no matter which version of the latter is used,
with the various steps true by definition. Thus (3) is trivial for simple functions Y. If
Y > 0 and Y,, are simple functions for which Y,, /' Y, then for any version of the conditional
expectation function E(Y'|D)(-) we have
[Y (') dP*(w'|D) = lim [ Y, (') dP*(w'|D)
(c) =a.s. IME{Y,|D}(w) =a.s. B{Y[D}(w)

using the MCT (ordinary, and of (17)) in the first and last steps.  Finally, let
Y=Yt-Y". O
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Regular conditional probabilities need not exist; the null sets on which things fail may
have a nonnull union. However, if Y : (2, 4) — (R, B) is a rv, then things necessarily work
out on (R, B), and this will be generalized to any “Borel space.” We will now start from
scratch with regular conditional probability, and will choose to regard it as a measure over
the image o-field.

Definition 5.2 (Borel space) If a 1-to-1 bimeasurable mapping ¢ from (M, G) to a mea-
surable subset B, of (R, ) exists, then (M, G) is called a Borel space.

Exercise 5.2 (a) Show that (R, B,) is a Borel space.

(b) Show that (R, Bso) is a Borel space.

(¢) The spaces (C,C) and (D, D) to be encountered below are also Borel spaces.

(d) Let (M,d) be a complete and separable metric space having Borel sets M, and let M, €
M. Then (My, My N M) is a Borel space.

(This exercise is the only mathematically difficult part of the chapter that we have encountered
so far.)

Definition 5.3 (Regular conditional distribution) Suppose that Z: (2, A) — (M,G). Let
A=Z71G), and let D be a sub o-field of A. Then Pz(G|D)(w) will be called a regular
conditional distribution for Z given D if

for each fixed G € G,
the function Pz(G|D)(-) is a version of P(Z € G|D)(-) on €,

for each fixed w € ),
the set function Pz(-|D)(w) is a probability distribution on (M, G);

(5)

and Py (:|D) = Pz(-|D)(w) will be used to denote this probability distribution.

Theorem 5.2 (Existence of a regular conditional distribution) Suppose Z : (2, A)
— (M, G) with (M,G) a Borel space. Then the existence of a regular conditional probability
distribution P¥(G|D) = Pz(G|D)(w) is guaranteed.

Proof. Case 1: Suppose first that Z : (2, 4) — (R,B). Let r1,rs,... denote the set
of rational numbers. Consider P(Z < r;|D) and note that except on a null set N, all of the
following hold:

(a) ri <rj implies P(Z < r;|D) < P(Z < rj|D).

(b)  lim P(Z<n|D) = P(Z<rD).
() lim P(Z<r[D)=PEQD)=1
@ | lm_ P(Z<n[D)=POP) =0,

Now define, for an arbitrary but fixed df Fp,

lim,. P(Z <r;|D)(w) ifwéN,

(e) F(z|D)(w) = {FO(Z) ifwe N.
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Then for every w, the function F(:|D)(w) is a df. Also, (e) and the DCT of theorem 7.4.1
show that F'(z|D)(-) is a version of P(Z < z|D)().

Now extend P(Z < |D)(w) to a distribution (labeled Py (B|D)(w)) over all B € B via the
correspondence theorem. We now define

() M ={C e B: Pz(C|D) is a version of P(Z € C|D)}.

Now, M contains all (a,b] and all >.7"(a;, b;], and M is closed under monotone limits. Thus
M = B, by the minimal monotone class result of proposition 1.1.6, completing the proof in
this case.

Case 2: Let Y =¢(Z), so Y is a rv. Thus a regular conditional distribution Py (B|D)
exists by case 1. Then for G € G, define Pz (G|D) = Py (¢(G)|D). O

Example 5.1 (Elementary conditional densities) Suppose that

P((X,Y)€ By) = / /f(a:,y) dx dy for all By € By,
B

where f >0 is measurable; and then f(z,y) is called the joint density of X,Y (or, the
Radon-Nikodym derivative dP/d)\;). Let Bo = B x R, for all B € B. We can conclude that
Px < A = (Lebesgue measure), with

R

we call fx(z) the marginal density of X. We first define

_ J f@y)/fx () for all & with fy (x) # 0,
(™) 9(ylz) = { an arbitrz);ry density fo(y) for all z with fi (z)=0

and then define
(8) PYeAX =x)= / g(ylx)dy for A€ B.
A
Call g(y|x) the conditional density of Y given X = x, and this P(Y € A|X = z) will now be

shown to be a regular conditional distribution (if modified appropriately on the set where
fx(xz) =0). Moreover, if E|h(Y)| < oo, then

O EOIX =2} = [ hwata)dy as. Px.

Thus (8) (also written as (10)) fulfills theorem 5.2, and (9) will be seen to fulfill theorem 5.3.
(Note that this example also holds for vectors = € R,,, and y € R,,.) a
Proof. By Fubini’s theorem,

(a) P(XeB)= ffoRf:cy)dﬂcxdy—foR (z,y)dyldx = [, fx(z)

Moreover, Fubini’s theorem tells us that fx(x) is B-measurable. B
Let S = {z: fx(x) # 0}. We may assume that (2, A) = (R, Bz). Let A=Y (B). We
will verify that (7.4.6) holds. For A € B and for [V € A] € A= R x B, we note that for all
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B € B we have (writing f(z) for fx(x))
LQMN@MMMM&@)
= s[4 9(yle) dylf = [pnslfa 222 dy) f (2) da
= Jprsl/a (@) dy] dilf—ffoAfx y)(dz x dy)
=P((X,Y) € Bx A)=P([Y € AJn X~1(B))

(b) = [, P(Y € A|X = z)dPx ().

(c) PY eAlX=x)=[,9(ylx)dy  as. Px,
and so g(y|z) works as a version. Now, for any fixed set A € B we note that

(10) [, 9le)dy =1s(z) x [[, f(z,y)dy [ f(2)] + 1se(z) x [, fo(y)

is a measurable function on (R, B). It is clear that for each fixed x the function of (10) acts
like a probability distribution. Thus (10) defines completely a regular conditional probability
distribution.

Suppose that E|h(Y)| < oco. Then (9) holds since

Jslr Mx@w& = Jonsl/r y@@H)m
mes rh()f(z:y) dy Jde = [p fR fla,y) dy] de
= J S5 ) :L“,y)(dﬂC x dy)
(d) ff*l(B) y)dPxy (z,y) = [ E((Y)|X = z) dPx (). 0
Theorem 5.3 (Conditional expectation exists as an expectation) Given a mea-

surable mapping Z : (2, 4) — (M,S), where (M,S) is a Borel space, consider a transforma-
tion ¢ : (M, S) — (R, B) with E|¢p(Z)| < co. Then a version of the conditional expectation
of ¢(Z) given D is formed by setting

(11)  E{6(Z)|D}(w /¢ )dP% (/D) for all w.

Proof. Apply theorem 5.1 to the regular conditional distribution of theorem 5.2. ]

Theorem 5.4 (A most useful format for conditional expectation) Suppose that
X: (QAP)— (M,G1) and Y : (Q, A, P) — (Ms,G2) (with Borel space images). Then
(X,Y): (A P)— (M x My, Gy x Go). Also (as above)

(12)  a regular conditional probability P(A|X = z) exists,

for sets A€ A=Y 1(Gy) C A and for z € M;. Let E|h(X,Y)| < co. (a) Then
(13)  EMRX V)X =2)= [, Mz,y)dPylX =) as.

(b) If X and Y are independent, then

(14)  E(W(X,Y)|X =z) =E(h(z,Y)) as.
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Exercise 5.3 Prove theorem 5.4 above. (Give a separate trivial proof of (14).) Hint.
Begin with indicator functions h = 1¢, 1a,.

Example 5.2 (Sufficiency of the order statistics) Let Xy,..., X, be iid with df F
in the class F. of all continuous dfs. Let T'(x) = (zp.1, ..., Tnm) denote the vector of ordered
values of x, and let 7 = {x : Zp.1 <+ < .y }. Exercise 5.5 below asks the reader to verify
that Pr(T'(X) € T) = 1forall F € F.. Let X denote those x € R,, having distinct coordinates.
Let A and B denote all Borel subsets of X and 7, respectively. Then D = T~!(B) denotes
all symmetric subsets of A (in that x € D C D implies 7(x) € D for all n! permutations (x)

of x). Let dPI(,n)() denote the n-fold product measure dF(-) x --- x dF(-) Suppose ¢(-) is
P;,n)—integrable. Then define

(]‘5) ¢0 (X) = % Zall n! permutations ¢(7T(X))’

which is a D-measurable function. Since PI(,") is symmetric, for any symmetric set D € D we
have

[p () AP (x) = [, ¢(w(x)) P (x)  for all n! permutations (-)
(16) = [, do(x)dPYV(x)  for every D € D.
But this means that
(17)  Ep{o()|THx) = go(x)  as. PPV,

Now, for any A € A, the function 14(-) is Plgn)-integrable for all F' € F.. (Thus conclusion
(14) can be applied.) Fix F € F.. For any fixed A € A we have

PEAIT)) = B (LaGOITH0) = 1 S 1 1a(x()

(the # of times 7(x) is in A)
n! '

(18) =

Note that the right-hand side of (15) does not depend on the particular F' € F., and so T is
said to be a sufficient statistic for the family of distributions F.. (Note discussion 4.3 once
again.) |

Example 5.3 (Ranks) Consider the ranks R,, = (Ry1, - .., Rnn) and the antiranks D,, =
(Dp1, ..., Dpy)’ in a sample from some F' € F, (see the previous example, and (6.5.22)). Let
[I,, denote the set of all n! permutations of (1,...,n). Now, R, takes on values in [, when
F € F. (since ties occur with probability 0). By symmetry, for every F' € F. we have

19)  PM(R, =1)=1/n! for each r e [],, .

Note that X is equivalent to (T, R,,), in the sense that each determines the other. Note also
that

(20) T and R, are independent rvs (for each fixed F € F.),
in that for all B € B = (the Borel subsets of 7) and for all 7 € [[,, we have

P(IT € B] and [R,, =1])
= { 5} % Jroa gyt dPSY (x) = {P{ Ry, = 1)} x P(T € B)
(21) = P(R, =1) x P"(T € B),
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since P(R,, = 1) does not depend on the particular F' € F.. Since the ranks are independent
of the sufficient statistic, they are called ancillary rvs. (Note that D,, is also equally likely
distributed over ], , and that it is distributed independent of the order statistics 7'.) ]

Exercise 5.4 Suppose that the n observations are sampled from a continuous distribu-
tion F. Verify that with probability one all observations are distinct. (Hint. Use corollary 2
to theorem 5.1.3.)

Exercise 5.5 Suppose X1,...,X, are iid Bernoulli (p) rvs, for some p € (0,1). Let
T = Y7 Xj, denote the total number of successes. Show that this rv 7' is sufficient for this
family of probability distributions (that is, T is “sufficient for p”).

Exercise 5.6 Let & and & be independent Uniform(0, 1) rvs. Let © =27&; and YV =
—logé&. Let R=(2Y)"2. Now let Z; = Rcos©® and Z, = Rsin©. Determine the joint
distribution of (Y,0) and of (71, Z3).



Chapter 8

WLLN, SLLN, LIL, and Series

0 Introduction

This is one of the classically important chapters of this text. The first three sections of it are
devoted to developing the specific tools we will need. In the second section we also present
Khinchin’s weak law of large numbers (WLLN), which can be viewed as anticipating both
of the classical laws of large numbers (LLNs). Both the classical weak law of large numbers
(Feller’s WLLN) and classical strong law of large numbers (Kolmogorov’s SLLN) are pre-
sented in section 8.4, where appropriate negligibility of the summands is also emphasized.
This section is the main focus of the chapter. Some applications of these LLNs are given in
the following section 8.5 Then we branch out. The law of the iterated logarithm (LIL), the
strong Markov property, and convergence of infinite series are treated in sections 8.6 — 8.8.
The choice was made to be rather specific in section 8.4, with easy generalizations in sec-
tion 8.8. The usual choice is to begin more generally, and then specialize. Martingales (mgs)
are introduced briefly in section 8.9, both for limited use in chapter 12 and so that the
inequalities in the following section 8.10 can be presented in appropriate generality.
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1 Borel-Cantelli and Kronecker lemmas

The first three sections will develop the required tools, while applications will begin with the
LLNs (the first of which appears in section 8.2). We use the notation

(1) [4, i.0] = [w:w € A, infinitely often] = (77, Ur-_, Ap = lim, A,.

This concept is important in dealing with convergence of various random elements. The
following lemmas exhibit a nice dichotomy relative to sequences of independent events.

Lemma 1.1 (Borel-Cantelli lemma) For any events A,,
(2) > P(Ay) <0 implies P(A,i.0.) =0.
n=1

Lemma 1.2 (Second Borel-Cantelli lemma) For a sequence of independent events
A1, Ao, ..., we have the converse that

(3) > P(A,) =00  implies  P(A,i0)=1

Thus independent events Ay, Ao, ... have P(4,, i.0.) equal to 0 or 1 according as Y ;" P(A,)
is finite or infinite.

Proof.  We use proposition 1.1.2 freely. Now,

(a) P(A,i0.) = P(lim, ;" Ap) = lim,, P(U," Ap) <lim,, Y °P(A,,) =0

whenever Y [°P(A,,) < co. Also,

P(m A = P MisaAs) = lima P0G, A5)

= lim,, limy PN} _, AS,)
(b) = lim,, limy [[Y_,[1 — P(4,,)] by independence
(c) < lim,, limy exp(=3N_ P(4,,)) sincel — x < exp(—=x)
(d) = lim,, exp(—Y_~_, P(A;,)) = lim,, exp(—o0) = lim,, 0 = 0,
using > " P(A,) = o0. O

Remark 1.1 (Kolmogorov’s 0-1 law) In theorem 7.2.1 we considered the tail o-field
T =2, F(Xn, Xnt1, ...) of an arbitrary sequence of independent rvs X, Xo,.... We
learned that P(D) = 0or 1forall D € 7. (Here, let X,, = 14, and obtain the characterization
via the finiteness of > [°P(A,) at the end of lemma 1.2. The tail event in question is
(X, =110]) O
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Lemmas About Real Numbers

An important bridge going from the convergence of series to the convergence of averages
is provided by Kronecker’s lemma. (An alternative bridge is provided by the monotone
inequality (8.10.1) (note also inequality 8.4.10).)

Lemma 1.3 (Kronecker’s lemma) (a) Let b, > 0 and " co. For 21, x2,... real,

n

1 n
4 T — (some real r implies — brxr — 0.
@ S ) gl 53 by

(b) So, Y-j_,a/k — (some real 7) implies 37"z — 0.

Proof. Let s = Z’ij with sg = 0 and by = 0. Summing by parts gives

(a) g Tbrak = gy b(sk — sk-1) = o200 (0k = bis1)sk + 5obasn

by, — bp_
(b) =Y larsgk—1 + s, where ap= ok Tkl > 0with Y Tag =1

bn
(¢)

=S Tag(sp—1 —7) + (sn — 7).

Since |s — r| < € for all k > (some N.), we have

@ =T < S Jan(sior = 1)+ S alan(seor =)l + s — 7]
N,
“(br, — bi— -1 -

@ <= Oebela sl ) be ez

< 3e for n sufficiently larger than V..

[Since Y @ — r, we must have z;, — 0. Note that Y [ bgx)/b, puts large weight only on
the later terms.] O

Lemma 1.4 (Convergence of sums and products) Suppose a € [0, o0, all constants
cni > 0, and m,, = [maxy<g<n Cui] — 0. Then

(5) H (1 —cp) — e if and only if Z Cnk — Q.
k=1

Proof. We will write a = b® ¢ to mean that |a — b| < ¢. For m,, <1/2,

(6) log H?(l —Cnk) = Z? log(1 —cnk) = *Z?an @ Z?Cik =—-(1s mn)Z?an

via an expansion of log(1 + x). This yields the result, as m,, — 0. |
Exercise 1.1 (Cesaro summability) If s, = Y_)_ 2 — 7, then 2370 s — 7.

Exercise 1.2 Let all a,, > 0. Suppose Zfoanbn < 00 holds whenever Zfobi < oo with all
b, > 0. Show that >""a2 < oo.



152 CHAPTER 8. WLLN, SLLN, LIL, AND SERIES

Exercise 1.3 (Toeplitz) Let an, (for 1 < k < k,, with k,, — o00) be such that: (i) For every

fixed k, we have an, — 0. (ii) Z:ll\anﬂ < ¢ < o0, for every n. Let ), = Z:llankmk.
Then
(a) r, — 0  implies  al — 0.

If Zﬁ’;lank — 1, then

(b) Ty — T implies x

n T

In particular, if b, = >_}'_,a; /" oo, then

(c) T, — x finite entails Y, arzy/b, — .

[This exercise will not be employed anywhere in this text.]
Exercise 1.4 Show that

(7) l—z<e®<1-—z/(1+x) for all x > 0.
Exercise 1.5 Let X1,...,X,, be independent rvs. (i) Show that

g SEPIXil > 0/l PP > )
< Prmax () = P(maxi<p<n | Xn| > ) <> P(|Xk| > x)for all z > 0.

(ii) So whenever pyax(z) = P(maxi<p<n [X,| > z) < 1, then

(9)  IXTP(Xk] > 7) < pmax < X1 P Xk| > 7).
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2 Truncation, WLLN, and Review of Inequalities

Truncated rvs necessarily have moments, and this makes them easier to work with. But it is
crucial not to lose anything in the truncation.

Definition 2.1 (Khinchin equivalence) Two sequences of rvs X7, Xs,... and Y7,Y5,... for
which Y7 | P(X,, #Y,,) < co are called Khinchin equivalent.

Proposition 2.1 (i) Let Xy, Xo,... and Y3, Y5,... be Khinchin equivalent rvs.
(a) If X,, =45 (somerv X), then Y, —, (the same rv X).

)IES, =Y 1 Xk —as (somerv S), then T}, = >°Yy —4.. (some rv T).

)

(b
(c) If S, /by, —4.s. (some rv U) and b,, — oo, then T), /b, —4.s. (the same rv U).
(ii) Of less interest, —, may replace —,.,. in (a), (b), and (c).

Proof. The Borel-Cantelli lemma gives P(X,, #Y,, i.0.) = 0; or

(p) Xn(w) =Y, (w) for all n > (some n(w)) holds true for a.e. w.

Thus the a.s. statements for X,, and S, are trivial. Moreover, since X, (w) = Y, (w) for all
n > (some fixed n(w) ), we have

Sn_ Snw) T = Snw) _ nw) T Tn =Taw) _ Snw) = Tnw) n T,

(@) 5= by - by - by by
(r) =o(l)+T,/b,

using b,, — 0.

Since a sequence (such as X,,, S, or S, /b,) converges in probability if and only if each
subsequence n’ contains a further subsequence n” on which the convergence is a.s., the in
probability statements follow directly from the a.s. statements. O

Inequality 2.1 (Sandwiching E|X|) For any rv X we have

W) S PXIzn) <EX| = [ PIX] >0 b <3 P(X| 2 )

If X is a rv with values 0,1,2, ..., then
(oo}

(2) =Y P(X >n)
n=1

Proof. If X >0, then EX = fooo[l — F(x)]dz by (6.4.11); consult figure 2.1. If X > 0 is
integer valued, then

E(X) =Y kP(X =k) =00 8 P(X = k)
(a) =300 P(X >n).

For the greatest integer function [-], an arbitrary rv satisfies

(b) (XD <X <[X]]+1.
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Moreover, (a) shows that
() ElX)) =20 PX] 2 n) = 3202, P(IX| = n),
while (consult figure 2.1 again)

(@)  E{IX[+1} =375 P(X] 2 n) +1 =32, P(IX] = n) + P(IX| 2 0). 0

Figure 2.1 The moment E|X| = [;°[1 — Fx|(z)] d is sandwiched.

Example 2.1 (Truncating and Winsorizing) Let X1, X5, ... beiid as X. Let us truncate
and Winsorize the rv X,, by defining

(3) Xn = Xn X 1[\X"|<n] and Xn = —nX l[XnS*’ﬂ] + Xn X 1[|X,L\<n] +n X I[ann].
From (2) we see that

n E|X| < o0 if and only if  [° P(|X| > t)dt < oo iff
SP(X, # X,) <oo  ifand only if 3 °P(X, # X,) < oo,

so that these X,,’s and Xn’s are Khinchin equivalent to the X,,’s if and only if the absolute
moment E|X| < co. (Do not lose sight of this during the SLLN.) O

Proof.  Using inequality 2.1, then iid, and then the Borel-Cantelli lemmas, we obtain that
E|X| < oo if and only if Y [°P(|X| > n) < oo if and only if Y [°P(|X,| > n) < oo if and
only if P(|X,,| > ni.o.) = 0. This gives (4), as well as the additional fact that

(5) E|X| < o0 if and only if P(|X,| >nio.)=0 for X,’siid asX.
This final fact (5) is a useful supplementary result. Recall (6.4.11). O

Exercise 2.1 (a) Show EX? = 2 [“2P(|X| > z)dz = > ;7 ,(2k — 1)P(|X| > k) for an
integer valued rv X > 0. (Let 7(x) = 2P(]X| > z).) Thus, for any rv X,

(6) EX? <oo iff [[TaP(IX|>z)dx<oco iff 37 nP(|X|>n)< cc.

(b) Now let X1, Xo,... beiid as X. Let X,, or Xn result when X, is truncated or Winsorized

outside either [—y/n, \/n] (or, (—y/n, /n)). Show

EX? < oo if and only if

these new X,,’s and Xn’s are Khinchin equivalent to the X,,’s.
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Khinchin’s WLLIN

We begin with an easy result that illustrates our path rather clearly.

Theorem 2.1 (i) (WLLN; Khinchin) Let X7,..., X, be iid with mean p. Then
(8) Xp —p 1t and X, =, B

(In fact, X, — f“an] dFx(z) —, 0 if and only if 2zP(|X| > z) — 0 as z — oc.
Note that zP(]X| > x) — 0 as  — oo can hold even if E(X) fails to exist.)
(ii) (More general WLLN) Suppose that X1, ..., X, are independent. Then

(9) Xn —EX, —, 0 holdsif 30" B{|Xuklljc meix, ) —0 forall e>0.
This condition holds if the rvs {X,; :n > 1 and 1 < k < n} are uniformly integrable.

Proof.  (ii) Truncate these rvs via Y, = X,k X ln<X,n<n)s and define the means i, =
E(Y,x). Then define ji,, = >} pni/n. We will show that

(a) Y, = fin —p 0, provided L3 TE {| X, ] Lieym<|Xnel<n)t — 0 for all € > 0.
Chebyshev gives

— 1
P(Yo = jin| = €) < 535 Var[Yiu] < o X B

1 n
= kaﬂE{Yfk(lnxugez\/m + L2 | Xpnl<n]) }

1 n n
(b) S22 Zk:1€4” + #ZK‘ZIE{YHQ]C1[62\/ﬁ<‘Xnk|§’l’L])
I
(c) <+ %Zk:lEﬂXnk|1[62\/ﬁ<\Xnk|§n])
(d) < 2¢? for all n > (some n.),by (9).

So, Y, — [in —, when the average in (b) converges to 0 (which is slightly weaker than requiring
the condition in (9)); that is, (a) holds. Then X,, — fi,, —, 0 since

(e) P(X, #Y,) < P(maxi<p<n | Xnk| > n) < S TP(|Xpk] > n)

(f) < %Z?Eﬂxnkuwxnk”}

Finally, E(X,,) — ji, — 0 is exactly the conclusion in (g); so X, — E(X,,) — 0.
(i) In this iid case with finite mean, the condition (9) is satisfied and E(X,,) = p. In fact,

Xy, —,u; use Vitali, since X, —p p and the X,,’s are uniformly integrable by exercise 8.4.16
below. The rest of (i) is justified in theorem 8.4.1 below. O

Remark 2.1 There are two natural ways to proceed to improve Khinchin’s WLLN in the
iid case. One way is to obtain the conclusion X,, —.,. p; and this is done in Kolmogorov’s
SLLN (theorem 8.4.2 below). Another way is to continue to relax the assumption of a finite
mean and center differently; and this is done in Feller’s WLLN (theorem 8.4.1 below). (Other
possibilities and other approaches will be outlined in the exercises of section 8.4.)

In section 8.3 we will develop a number of inequalities (so called “maximal inequali-
ties”) to help us to the stated goal. (At the end of this section the reader could go directly
to section 8.4, and then go back to section 8.3 for the inequalities as they are needed.)
(Also, at the end of section 8.3 we improve on the technique used in the proof of the Khint-
chine WLLN to obtain the truncation inequality to be used in the WLLN in section 8.4
below.) O
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Review of General Inequalities from Measure Theory

Having completed the transition from measure theory to probability theory, we take this
opportunity to restate without comment a few of the most important inequalities presented
earlier. (See the proof of theorem 2.1 for the Khinchin inequality below.)

Inequality 2.2 (Review) Let X and Y be rvs on a probability space (2, A, P). Then:

(10)  Cy-inequality:  E|X +Y|" < C{E|X|" +E|Y|"} forr >0, C, =20V)-L,

(11)  Holder: E|XY| < (E|X|")Y"(E|Y]*)Y/* for r>1, and L +1 =1.

(12)  Liapunov: (E|X|")"is /inr, for r > 0.

(13)  Markov: P(X| >\ <E|X|"/\" for all A > 0, when r > 0.

(14)  Dispersion: EX|"<EX+Y|" if independence, py =0, and r > 1.

(15) Jensen: g(EX) <Eg(X) if g is convex on an interval I C R
having P(X € I) =1 and a finite EX € I°.

(16)  Littlewood: mi™T <ml7PmiT" for 0 <r < s <t, with m, = E|X]".

(17)  Minkowski: EV"|X +Y|" < +EY" X[+ EY|Y[" forallr > 1.

(18) ehinchin: P(|Xp = fin] 2 €) < €+ 22307 fia ymaixp |1 XnkldP

for independent X, with pins, = E(Xpxlx,,,|<n])-

Definition 2.2 (“Big oh,,” and “little oh,,” =,, ~, and * at most” &)

(a) We say that Z,, is bounded in probability [and write Z,, = O,(1) ] if for all € > 0 there
exists a constant M, for which P(|Z,| > M) < e for all n > (some n.). For a sequence a,,
we write Z, = Op(ay) if Z,/a, = Op(1); and we say that Z, is of order a,, in probability.
(b) If Z,, —, 0, we write Z,, = 0,(1). We write Z,, = op(a,) if Z,/a, — 0.

(¢) This notation (without subscript p) was also used for sequences of real numbers z,, and
a,. For example, z, = o(ay) if z,/a, — 0. (Note that o(a,) = op(an).)

(d) Write U,, =, V,, if U,, = V,, —, 0; and call U,, and V,, asymptotically equal. (This is
effectively a passage to the limit that still allows n to appear on the right-side.)

(e) We write a,, ~ b, if a,, /b, — 1.

(f) We write a = b&cif [a—b| < c. (This can be used in the same fashion as 0,(-), but it allows
one to keep track of an absolute bound on the difference. Especially, it allows inequalities to
be strung together more effectively.)

Exercise 2.2 IfV,, = O,(1) and ,, = 0,(1) are rvs on the same (Q, A, P), then v,,V,, —, 0.
Exercise 2.3 Let X and Y be independent rvs, and let » > 0. Then
(19)  E|X +Y|"is finite if and only if E|X|" and E[Y|" are finite.

That is, (X +Y) € £, if and only if both X € £, and Y € L,, for any r > 0. Hint. Condition
on Y =y. Or, note the symmetrization inequality 8.3.2 below.

Exercise 2.4 Let a, > 0 be /. Show that for any rv X we have

(200 XnPlan-1 < [X[ <an) =37 P(IX] 2 an-1).
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3 Maximal Inequalities and Symmetrization®’

Sums of independent random variables play an important role in probability and statistics.
Our goal initially in this section is to develop probability bounds for the maximum of the first
n partial sums. Such inequalities are called mazimal inequalities. The most famous of these
is Kolmogorov’s inequality. For symmetric rvs, Lévy’s inequality is an extremely clean and
powerful version of such a maximal inequality; it does not require the underlying rvs to have
any moments. Neither does the Ottavani—Skorokhod inequality, which is true for arbitrary
rvs, though it is not nearly as clean. (Recall (2.3.7) which shows that S, —,.s. (some rv S)
if and only if P(max,<m<n |Sm — Sn| > €) < ¢ for all N > n > (some n.).)

Inequality 3.1 (Kolmogorov) Let X;, Xs,... be independent, with X; = (0, o7). Let
S =X1+ -+ Xi. Then

< 2 — 2 2
(1y P (@3& |Sk| > >\> < Var[S,]/A ; o2/X* for all A > 0.

1s contains ebyshev’s inequality that n| = < Var|$, or a > 0.
Thi ins Chebyshev’s i li hat P(|S A Var[S,] /A2 f 1IA>0

Proof. Let Ay = [maxi<;<x|S;| <A < [Sk]], so that A =Y A = [maxi<p<p [Sk| > Al
Thus k is the first index for which |Sy| exceeds A; call k the first passage time. Then
Var[S,] = [S3dP > [, S2dP =37 fAk [(Sn — Sk) + Sk]?dP
= Z? f[(Sn — Sk)21Ak + (Sn — Sk)QSklAk + SzlAk}dP
(a) > >0 [J0dP +E(S, — Sk)E(2Sk1a,) + [, S2dP] by independence
(b) > >0+ 0" (a number) + fAk A2dP) =Y UN2P(Ay) = N2P(A). O

Definition 3.1 (Symmetric rvs) A rv X is called symmetric if X =2 —X. Note that this
is equivalent to its df satisfying F(—z) = 1 — F_(x) for all z > 0. Suppose X = X' are
independent rvs; then X* = X — X’ is called the symmetrization of the initial rv X.

Definition 3.2 (Medians) Let X be an arbitrary rv. Then m = median(X) is any number
for which P(X > m) > % and P(X < m) > 1. [One median of the symmetrization X* of
any rv X is always 0. And (2) below shows that the tails of X*® behave roughly the same as
do those of X.]

Inequality 3.2 (Symmetrization inequality) Let X°* = X — X’ where X = X’ with X
and X’ independent. Let > 0 and let a be any real number. Then both

27 P(|X — median(X)| > \) < P(|X*| > \) < 2P(]X —a| > \/2) and

2
@) 27'E|X — median(X)|” < E|X*|" < 2'""E|X —al".

We may replace > by > in the three events in the upper half of (2).

Proof. Let m = median(X). Now, the first inequality comes from

P(X* > \) = P[(X —m) — (X' =m) > |
(a) >PX-m>ANPX' -=m<0)>PX—-—m>\))/2
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The second inequality holds, since for any real a,

P(X*| 2 \) = P(|(X —a) - (X' —a)| > A)
(b) < P(IX —a| > \/2) + P(IX' —a| > A\/2) = 2P(|X — a| > \/2).

Plug (2) into (6.4.13) for the moment inequalities. O

Inequality 3.3 (Lévy) Let Xi,...,X, be independent and symmetric rvs. Now define,
S, = X1+ -+ X,,. Then both

(3) P (1211?2( [Sk| > )\) <2P(|Sp| > A) forall A >0 and

1<k<n

(4) P(max | X 2)\> <2P(|S,| > A) for all A > 0.
Thus, 2E|Sn|r > {E(maxlgkgn |Sk|r) vV E(maxlgkgn |Xk|r)}, for each r > 0.

Proof. Let Ay = [maxi<;j<r S < A < Si] for 1 < k < n, so that k is the smallest index
for which S exceeds A. Then

() P(Su> )= Yi, P(A 0[Sy > M) > SIP(A: 0[S, > Si))

(5) = > 1 P(Ar)P(Sn — S) > 0)

by independence of X1,..., X} from Xyi1,..., X,
(b) > SUP(A)/2 by symmetry
(C) = P(maxlgkgn Sk > /\)/2

Combine this with the symmetric result, and achieve the first claim.
Now let Ay = [maxi<;j<k |X;| < A < |Xg[] for 1 <k <n. Fix k. Let S =2X;,—S,, 2 S,
and note that 2X\ < 2|X| < [S,| 4+ |S2| on Ai. Moreover,

(d)  P(Ar) < P(Ap N [[Sn| = A) + P(Ax N [IS3] = Al) = 2P(Ax N [[Sn] = A]).

So summing on k gives P(A) < 2P(AN[|S,| > A]) < 2P(|S,] > ).
See Feller(1966) proof: Let M = Xy, where K = min{k : | X}| = maxi<;<, | X;|}. Let
T =S, — Xk. Then, for all four choices of + or — signs, the rvs (=M, £7T) have the same
distribution. Then we require both
PM>XN)<PM>X and T >0)+P(M >Xand T <0)
(e) =2P(M > Xand T > 0)
() <2P(M+T >\ =2P(S, > \)

O

and the symmetric result. [See exercise 3.2 below for more on (4).]

~d

Remark 3.1 Kolmogorov’s inequality is a moment inequality. Since the rv S,,/StDev][S,]
(0,1) is often approximately normal (27)~'/2 exp(—2/2) on the line, and since

P(IN(0,1)| = N) :A o \/lz?exp(—xQ/Q) dx < \/E/}\oo gexp(—x2/2) dx

(6) < \/ 2+ exp(—A?/2) for all A > 0,

both Lévy’s inequality and the Ottaviani—Skorokhod inequality to follow offer the hope of a
much better bound. (]
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Inequality 3.4 Let Sy = X; + -+ + X} for independent rvs Xj.
(Ottaviani-Skorokhod) For all 0 < ¢ < 1 we have

for A >0

P(|Sn]| > c))
P I1>2) <
(7) (1?}?%(71 [9| = )\> ~ [1 —maxi<g<n P(|Sn — Sk| > (1 — c)A)]

< 2P(|Sn| = ) for all A > v/2 StDev[S,,]/(1 — ¢).

(Etemadi) Alternatively,

(8) P(maxlgkgn |Sk| > 4)\) < 4max1§k§n P(|Sk| > )\) for all A > 0.

Hence, E(maxi<j<p [Sk|") < 4" maxi<x<, E|Sk|" for each r > 0. (See (8.2.13).)

Proof. Let Aj, = [Sl <A, ooy, Skl < A, Sk > )\], so that ZZ:lAk = [maxlgkgn Sy > )\]

Thus k is the smallest index for which Sy exceeds A. (This is now the third time we have
used this same trick.) Note that

(a) a = miny<p<n P(|Sn — Skl < (1 —c¢)N)

(b) =1—maxi<g<n P(|Sn — Sk| > (1 —¢)A)
>1—maxj<gp<n Var[S, — Si]/[(1 — c)A]? by Chebyshev’s inequality
> 1-Var[S,]/[(1 — c)A]?

(c) >1 if A > v/2 StDev[S,]/(1 - ¢)

allows us to “improve” (7) to (8). Meanwhile, (7) comes from

(d)  axPmaxice<n Sk > A) < 31 P(ISn — Skl < (1= 0)A)P(A)

(e) =3 P(AN[|Sh — Sk| < (1 —0)A]) by independence
(f) < P(Sp > c).
Combining (f) and (b) with the analogous result for —S,, completes the proof. O

Exercise 3.1 Prove Etemadi’s inequality.

Exercise 3.2 Consider independent rvs X; = X;, — X, for 1 < k < n, with all X}, and
X, independent, and with each X; = Xj. Let my, denote a median of Xy, and let a denote

any real number. Let A > 0 and r > 0. Show that both:
2_1P(max|X;€ —mg| > A) < P(max |X;| > A) < 2P(max | Xy —al > \/2).
27 'BE(max | X} — my|") < E(max |X}|") < 2'7"E(max | X} — a|").

(9)

[Also, 27! P(max | X| > \) < P(|S5| > \) < 2P(|S,,—a| > A\/2) (for any real a), by inequality
3.3 and inequality 3.2.]
Inequalities for Rademacher RVs*

Inequality 3.5 (Symmetrization; Giné—Zinn) Let X1,..., X,, beiid rvs, and let ey, .. .,
€, denote an independent sample of iid Radamacher rvs (that satisfy P(e, = +1) = %) Then

Zeka

k=1

1 m
>2)\>§ sup 2P<‘ﬁ;)@ >)\> for all A > 0.

1<m<n

1
(10) P (ﬁ
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Proof. By conditioning on the Rademacher rvs we obtain

(@) PV e Xy| > 2))
< P(”71/2|Zk:ek:1€ka| > )\) + P(nil/Z‘Zk:ek:_lekXﬂ > )\)
S EEP(n_1/2|Zk:ek:1Xk| > )‘> + E€P<n_1/2‘2k:5k:71‘xk‘ > /\)

(b) < 25upp,<, P(n 2T X > N)

< 25upy,<,, P(m™ 27 X > N
(c) < 28Up,,>q Pm™ Y20 X > N, as required. O
Exercise 3.3 (a) (Khinchin inequality) Suppose €1, ...,¢, are iid Rademacher rvs. Let
ai,...,a, be real constants. Then

(1) A(SFaR)Y? < (B[S awer]") " < B(Trad)V2, for cach 7> 1,

for some constants A, and B,.. Establish this for r = 1, with A; = 1/\/§ and B; = 1. [Hint.
Use Littlewood’s inequality with r, s, ¢ equal to 1, 2, 4.]
(b) (Marcinkiewicz—Zygmund inequality) For X7, ..., X,, independent 0 mean rvs,

(12)  (AA)"E(CTXR)? <E[XTXk|" < (2B,)"E(XC7X2)"/2, for each r > 1.

Exercise 3.4 Let X1,...,X,, be independent with 0 means, and independent of the iid
Rademacher rvs €1,...,¢,. Let ¢ be /" and convex on R. Then

B (127 erXkl/2) < Bo(I37 Xkl) < E@ (23 ex Xel).

[Hint. The left side is an average of terms like E¢(|> ) ex (X, — EX}.)|/2), for independent
X, = X}, and with each e equal to £1.]

Weak Negligibility, or Maximal Inequalities of Another Ilk*

Discussion 3.1 (Weak negligibility) Let Y,1,...,Y,, be independent rvs having dfs
Fa,...,Fy,. Let 0 > 0 be given. For any € > 0, let pS, = P(|Y,k| > €). Now, the maximum
Max,, = [maxi<k<n |Yni|] satisfies

(13)  1—exp(—y_1p5) < 1—T17(1 = p,) = P(Max, > €) < 377p5,.

[The equality uses (] Af = [ Ak, and the first bound follows from the inequality 1 — 2 <
exp(—x).] This gives (so does exercise 8.1.5) the standard result that

(14)  Max, —, 0 if and only if nP,(e) = > 7p5, — 0 for all € > 0.

Define zg,, by requiring [—Zon, Zon] to be the smallest interval that is both closed and
symmetric to which F,, = Y [F,;/n assigns probability at least 1—0/n. Let P,(z) =
LIS P(|Yyk| > 2) denote the average tail probability, and then let K, denote the qf of the

df 1 — P,(-). Note the quantile relationship zg, = K,(1 — 6/n). Note that K, (1 —0/n) =
inf{z:1—-P,(x) >1—0/n} =inf{z: P,(z) <0/n}. Thus

(15)  nP(e) < 0 if and only if K,(1-6/n)<e.
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Fix 0 <e <1and 0 <6 <1, and suppose that we are considering all n exceeding some 7. g.
Conclusions (14) and (15) give (the seemingly new emphasis)

(16)  Max,, —, 0 if and only if g, = K,(1—0/n) - 0forall 0 <6 <1. O

Discussion 3.2 (Weak negligibility in the LLN context) Let v, > 0 be constants.
Applying the previous paragraph to the rvs |Y,,x|/nv, (whose average df has the (1 — 6/n)th
quantile xg, /nv,) gives the equivalencies

(17) M, /v, = | max; %|Ynk@/un —, 0,

(18) Ton /Ny — 0 forall0 <6 <1,
(19) > VP(|Ynk|/nv, >€) — 0  forall 0<e<1.

The truncated absolute moment uy, = f“szl ] ly|dE, (y) as well as the Winsorized absolute

moment U1, = Uip + 21, Py (x1,) are among the potential choices for v, that could lead to
X, /vn —p 1 for independent arrays X,1,..., Xy, on [0, 0o0). (Here x1,, means the quantile
Zgn, with 0 = 1.) 0

Inequality 3.6 (Daniels’ equality)  With high probability there is an upper linear bound
on the uniform empirical df G,,. That is, for each 0 < A < 1,

(20) P(G,(t) <t/Aforall0<t<1)= P& > Ae/nfor1<k<n)=1-A

Proof. (Robbins) The vector of Uniform(0, 1) order statistics ({n.1, ...&nm) has joint
density n! on its domain 0 < t; < --- < t,, < 1. Thus

(a) P(Gy(t) <t/Afor 0 <t <1)=P(&x > Ae/nfor 1 <k <n)

1 ptp t t
(c) = nl(L — ATl =1 -\, O

n!

Inequality 3.7 (Chang’s inequality) With high probability there is a lower linear bound on
the uniform empirical df G,,. That is, for all A > 1, we have

(21)  P(II/G; e, <A)=P(Gu(t) >t/ on all of [0, 1]) > 1 —2X%e .

(This provides a nice symmetry with the previous inequality; see Chapter 12.)

Truncation Inequalities

Let X,1,..., Xnn be independent Fy,. .., F,,, with P, (z) = %Z?P(|Xnk| > z). Note that
1 — P,(+) is the average df of the rvs [X,1|,...,|Xun/|, and recall from above (15) that zg,
denotes the 1 — 6/n quantile of this df (for any 0 < 6 < 1). Let 7,(z) = zP,(z). Let
X, = 131 X0k], W be arv with df F,, and let

(22)  pgn = f[lylgwen] ydF,(y) and  wug, = f[lyléwen] ly| dF, (y).
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Inequality 3.8 (Truncation inequality I) For row independent X1, ..., X,n,

_ 1 n

(23) P<|Xn—uen|zewn)gg(?j;n)w for all € > 0.
_ 1 n

(24) P<||X\n—wn\zeumgg(?j;en)w for all € > 0.

Proof.  Let Y, = Xpx X 1)x,,,|<c, for some ¢, > 0. Then for any v, > 0,

(a)  P(IXn—E(Yn)l > evn) < zpp Var [Vy] + XV P(Vr # Xok)
(25) < WEZTE(Yan) + npn(cn) < ﬁ% f[\y\gcn] y2 an(y) + npn(cn)
c, 1

f|y|<cn Yl dFn(y) +nPy(cn).

= 2,2
Vi N

To obtain (23), set ¢, = zg, and v, = ug, in (b) (which uses E(Y,,) = fton), and then observe
that [, 1<pp1 Y7 AFn(y) < Tonuon- D

Inequality 3.9 (Truncation inequality II) For row independent X,1,..., X,,, define
Yok = Xuk X 1[x,,,|<n)> and then let fi,, = E(Y;,). Then (for any 0 < e < 1)

(26)  P(|Xn —jin| =€) < 2 Jio.m aPy(z)de = 3 Jio.n Tn(@) da.

Proof. From line (25) in the previous proof (with ¢, =n and v, = 1) one gets
(n)

(b) = egi f[o ] yP ( )dy — }%2 P.(n) +nP,(n) (integrating by parts)

© = 2 o Pa) d@2/2) — (5 — DnPu(n) < = Jo - uPaly) dy.

(@) P(X, il 2 ) < ZHL [ y2dPu(y) + 0P,

762

Exercise 3.5 Write out the (nearly identical) details for the proof of (24).

Exercise 3.6 Show that X,, — [i,, —p 0 in the context of the previous inequality provided
sup{7,(z) : €2y/n <z <n} — 0.
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4 The Classical Laws of Large Numbers, LLNs

It is now time to present versions of the laws of large numbers under minimal hypotheses. The
weak law of large numbers (WLLN) will establish —,, while the strong law of large numbers
(SLLN) will establish —, .. of a sample average X,,.

Theorem 4.1 (WLLN; Feller) Let X,1,...,X,, beiid with df F' and qf K, for each n.
Let X,, = (Xpn1 + -+ Xun)/n. The following are equivalent:

(1) X, — i —p 0 for some choice of constants fi,.
(2) T(x) =2P(|X|>2)—0 (true, iff 75 (z) = 2P(XT > ) — 0).
(3) HIFS O]+ [FH 1 =)} — 0 (true, 1PftF‘X|( —t) —0).
= l
@ Ma= [ max Xl =0
When (1) holds, possible choices include p, = f[_n n]xdF(;v),l/n = 11/;1/71 K(t)dt, and

m,, = median(X,,). If E|X| < oo, then (1) holds with ,, = u = EX.

Theorem 4.2 (SLLN; Kolmogorov) Let X, Xy, Xo,... be iid rvs. Then:

(5) E|X| < oo implies X, —4, p=EX.

(6) E|X| =00 implies lim|X,, |= oo as.

(7) E|X| <oo iff lim|X, | < oo as. iff X, —,, (some rv).

(8)  ElX[<oo iff M,=[; max |Xkl] —as. 0 iff Z=—o 0 iff M, —g, 0.

Conditions (4) and (8) show the sense in which these LLNs are tied to the size of the
maximal summand. This is an important theme, do not lose sight of it. We now give a
symmetric version of condition (4). (See also exercises 4.18-4.21.)

Theorem 4.3 (The maximal summand) Let X,1,..., X,,,n > 1, be iid row independent
rvs with df F. We then let X?, = X,,;, — X/, denote their symmetrized versions. Fix r > 0.
[Most important is r = 1.] Then

(9) T(z)=2"P(|X|>2)—0 iff 7°()=2"P(|X°|>z)—0 iff

= _ 3 1 s T
(10) [112132( 11X, — a|"] =, 0 for all/some a iff [fgnggn X5k =5 0.

Proof.  We first consider the SLLN. Let Y,, = X, X 1||x, |<y), for the iid X,,’s.
Suppose F|X| < oo. Using inequality 8.2.1 in the second step and iid in the third, we
obtain

(a) p=EX is finite iff E|X|<oo iff 7 P(|X|>n)< oo
iff > P(| X, >n) <o it > P(Y, #X,) <o
(b) iff the X,,’s and Y,,’s are Khinchin equivalent rvs.

Comment Recall that E|X| = [;° P(|X| > y) dy and (see (6.3.12))

(@) w00 de\Xl( ) =xP(|X]|>x)+ [ P( \X|>y)dy; S0
(17) f[ ydFx|(y fo (|1X| >y)dy — xP(|X]| > x)
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Thus X,, —4. i wherever Y, —,., p, by proposition 8.2.1(c). So we now make the
definitions p,, = EY,, and 02 = Var[Y,,]. Then we can write

(C) Yn = [Z?(Y%_Nz)/n]"’ﬂm where fi,, = (Nl +"'+Mn)/n_)u

by the Cesaro summability exercise 8.1.1 (since u,, = EY,, = f(fn ny T dF(z) — p by the DCT

with dominating function given by |z|). It thus suffices to show that Y (Y; — y1;)/n —4.s. 0.
By Kronecker’s lemma it thus suffices to show that

(d) Zn =30 (Yi— ;) /i —q.. (somerv Z).
But Z,, —,.. (some Z), by proposition 2.3.3, if for all € > 0 we have

pon = P(maxpy<m<N | Zm — Zn| > €)
(e) = P(maxp<men [0, 41 [(Yi — pi) /i]] > €) — 0.

Kolmogorov’s inequality yields (e) via
. —2 N . _o=N .
PnN <e QZn—i-lvar[(n - ,Uz)/’l] =€ 221’7,—‘,—10.1'2/12

(f) <€y 02)it forall N

—0 as n — oo,
provided that
(2) Yoy /n? =300 VarlY, — pn]/n? < oo
Now, this last is seen to be true via the following Kolmogorov argument that

VAV — ol < SEBYR /0 = S [,y 0 A (@)
= Z?ZZ:l f[k—1§|a:|<k] x? dF (x)/n?

(h) = e Yok nE f[k—1§|x|<k] v? dF (x)
(i) < Zl?;12f[k71g|x|<k] z? dF(x)/k
since o0, 1/n? < [7(2/2?)dx = 2/k
() <A oo 7] AF (@)
(k) =2E|X]| < o0.

Thus we do have Z,, —,., (some v Z), and so X,, — 4.5 p.
Suppose E|X| = co. Then the “sandwich” inequality 8.2.1 gives

Q) Yoot o P(Xn| > nC) =307 JP(|X|/C >n) > E|X/C| = oo for all C >0,
so that applying the second Borel-Cantelli lemma to (1) gives
(m) P(|X,| >nCio.)=1 for all C > 0 (and hence for all large C' > 0).

Since S, = Sp_1 + X, (m) implies (using the fact that |S,| < nC/2 and |X,,| > nC yields
|Sn—1] > nC/2 > (n —1)C/2) that

(n) P(|S,] >nC/21i0.)=1 forall C > 0.



166 CHAPTER 8. WLLN, SLLN, LIL, AND SERIES

That is, lim |S,,|/n > C/2 a.s. for all C. That is, lim |S,|/n = co a.s.

Thus (5)—(7) hold. [Apply Vitali with exercise 4.16 below for X,, —,, p in (7). If
X, — L4 (some rv W), then X, —p W—and the averages X,, are w.i. by Vitali. Thus EX
is finite.]

Consider (8). Suppose M,, —4.s. 0. Then a.s. for all n > (some n,,) we have

(o) [max;<p<n | Xk|]/n <€, and hence | X,|/n <e.

We merely repeat this last statement, writing

(p) Ap = [|Xn]/n > €] satisfies P(A,i.0.) = P(|X,|/n>¢io0.)=0.

Thus inequality 8.2.1 (by applying iid, and then the second Borel-Cantelli) gives
(@) EIX|/e=BIX/e < S50 PIX/d 2 n) = Y5 P(IXul/n > €) < oc.

Conversely, suppose E|X| < co. Then S,,/n —,.s. 1 by the SLLN. Since

X, S, — —1[S,-1—-(n—-1
) Xn _ npon { n—1—(n )M]_,_'u_nm_0_1.04_0:07
n n n n—1 n

we have a.s. that
(s) | Xn|/n<e for all n > (some n,,).

Thus for all n exceeding some even larger n/, we have

X k| Xk X X
(11) {max M}—[max~kq§[ max |k|]\/[max kw
1<k<n 1 1<k<nn k 1<k<n, n E>n. |k
(t) < n~'[ a fixed number depending on w] 4+ ¢ < 2¢ using (s),

where we will have to increase the specification on n/, for (t). Thus M,, —,.s. 0.
Finally, note exercise 4.17 for M,, —,, 0 if and only if E|X| < cc.
From (6.4.11) we see (note figure 4.1) that

(12)  E|X|<oo iff [CP(X|>az)de<oc iff [} |F(t)]dt < oo 0
Remark 4.1 Suppose X1, ..., X,, are independent, with X; = (0,02). Then

Sp=X1+-+ X, 2(0, YX70?), while X, =5,/n2(0, > ]0?/n?).
Chebyshev’s nequality and Kolmogorov’s inequality give, respectively,

2

(b) P(maxi<g<y |Sk| > A) < Var[S,]/\? for all A > 0.

(13) (a) P(|Sn] = A) < Var[S,]/A% =31 02/A% for all A > 0,

For X1, Xa, ... iid (g, 0?), the inequality (13)(a) gives X,, —, 1, by Chebyshev’s inequality.
But the WLLN conclusion X, —p p should not require the variance o2 to be finite, as this
cheap proof based on (13)(a) requires. Indeed, Khintchine’s WLLN of theorem 8.2.1 didn’t.
Exercise 4.8 below outlines one very cheap proof of the SLLN using “only” the Borel-Cantelli
lemma, and exercise 4.9 outlines a slightly improved version that also uses Kolmogorov’s
inequality. Kolmogorov’s proof of the full SLLN made the key step of incorporating trunca-
tion. Exercise 4.10 describes an elementary way to avoid use of Kronecker’s lemma. ([
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Proof.  Consider the WLLN. Suppose (2) holds. Define Y,z = Xy X 1jx,,,|<n) and p, =
EY,, = f[_n ] 2 dF(x). Now (using integration by parts for (b)),
P(1% = pin] > ) = P(I%, — BT, > ¢)
2 2

(14) < — T(x)de = —

< — 5 xP(|X| > z)dr for all 0 < e <1,
ne [0,n] ne [0,n]

by the truncation inequality (8.3.26). (Note (6.4.18).) Note that 7(z) < x, and choose M > 0
so large that 7(z) < €3/4 for x > M. Apply this to (14) for

(a) 25 [y T(x)dz < 22{f0 J:dx+fM4d}<M+ <e
for all n > 2M?/e3. Combining (14) and (a), it follows that
(b) P(| X, —pn| >€) <€ for n > (some N).

Thus X,, — ft, —p 0. We also have X,, — median(X,,) —, 0, since the symmetrization
inequality 8.3.2 gives

(15)  P(|X,, — median(X,,)| > €) < 4P(|X,, — pin| > €/2) — 0

[The acceptability of the third exhibited choice for the centering constant is left to exercise
4.1 below.] In any case, we have shown that (2) implies (1).

The equivalence of (2) and (3) follows. Note figure 4.1, bearing in mind that (a V b) <
a+b<2(aVb) for the definitions a = 77 (z) = 2P(X* > z) and b=7"(2) = J:P(X_ > ).
Figure 4.1 thus shows that 77 (x) — 0 holds if and only if ¢|F~*(t)| — 0, that 77 (z) — 0
holds if and only if t|F~1(1—¢#)| — 0, and that 7(z) — 0 holds if and only if tF|X\( —t) — 0.

Consider the equivalence of (4) and (2). We know from (8.3.14) that M,, —, 0 if and only
if nP(|X| > en) — 0 for all € > 0, that is, if and only if 7(en) = enP(|X| > en) — 0 for all
€ > 0. Thus M,, —, 0 if and only if 7(z) — 0 as z — oc.

We still neeed to show that (1) implies (2), but we’ll wait a paragraph for this.

Consider next theorem 4.3. We will only provide a proof with » = 1 (we may just replace
|X| by |Y| = |X]|", after raising | X| to the power r). Now, 7x(z) — 0 implies 7°(x) — 0
by the right-hand side of inequality 8.3.2 with @ = 0, while the left-hand side then gives
Tx—med () — 0. The equivalence of (4) and (2) then gives max | X,; — med|/n —, 0, which
trivially gives max |X,x|/n —, 0, which gives 7x(z) — 0 by the equivalence of (4) and (2).
This completes theorem 4.3.

Finally, we prove that (1) implies (2). Suppose that there exist some constants ,un such
that S,/n — pn = Xy — pin —p 0. Let S5 = S, — S),, where S/, = X/, 4+ X
with X/, = X, and with X,;’s and X s independent. Thus S“’/n —p 0. Then Ms =
maxi<k<n | X2.|/n —p 0 by the (8.3.4) Lévy inequality. Thus 7%(z) — 0 by theorem 4.3, and
hence 7(x) — 0 by theorem 4.3. O

Exercise 4.1  Verify that the choice vy, = fl b/m K(t)dt (for any 0 < § < 1) also works
in the WLLN as a centering constant in (1). Thc most natural choice is

(16) o= [ K (b dt.

We have just seen that good inequalities lead to good theorems! In sections 8.9 and 12.11
we will add to our growing collection of good inequalities. Some will be used in this text, and
some will not. But the author thinks it important to illustrate these possibilities.



168 CHAPTER 8. WLLN, SLLN, LIL, AND SERIES

Exercise 4.2* When E|X| = oo, the SLLN above showed that lim,, | X,,| = co a.s. Show the
following stronger result. If X7, Xs,... are iid with E|X| = oo, then

mn—»oo ‘Xn - Cn‘ =a.s. X
for every sequence of constants ¢,,. (Note exercise 4.23 below.)

Exercise 4.3 (Erickson) (a) If EX~ < oo but EXT = oo, then limS,/n =, -+oc.
(b) (Kesten)™ If both EXT = oo and EX™ = oo, then either S, /n —4s 00,5, /n —4s —00,
or both lim S, /n = co and lim S, /n = —o0.

Exercise 4.4 (Marcinkiewicz—Zygmund) Let X;, X5, ... be iid. Let 0 < r < 2. Establish
the equivalence

n
Z(Xk —¢) =45 0 for some c.
k=1

(17) E|X|" < if and only if

nl/r

If so, then ¢ = EX when 1 < r < 2, while ¢ is arbitrary (so ¢ = 0 works) when 0 < r < 1.
[Hint. Truncate via Y, = X;, X 1}x, |<p1/r] in a SLLN type proof.]

Exercise 4.5% (Feller) Let X;, X5, ... be iid with E|X| = co. If a,,/n T, then

=0 a.s.,
= 00 a.s.,

< 00,
= 0.

(18)  lim|S,|/a, = { according as Y - P(|X,| > a,) = {

[Note that P(|X,| > a, i.0.) equals 0 or 1 as Y [°P(|X,,| > a,) is finite or infinite.]
Exercise 4.6  Clarify the overlap between (17) and (18).

Exercise 4.7 (Random sample size) (a) Let X1, Xo,... be iid with 7(z) — 0 as z — oc.
Let N,, > 0 be any integer-valued rv satisfying N,,/n —, ¢ € (0,00). Then

(19)  Sn, /Ny — pn, —p 0, forp, = f[fn . xdF(x).

(b) Suppose X1, X, ... areiid and y = EX is finite. Let N,, > 0 be any positive integer-valued
rv satisfying N,,/n —,.s. ¢ € (0,00). Then

(20) SNn/Nn —a.s. M-

Exercise 4.8 (A weak SLLN) (a) For X,i,...,X,, independent (or, uncorrelated) with
Xnk =2 (0, 02,) and all 02, < (some M) < oo, we have X,, — .. 0.

Hint. Show that P(|S,| > ne) < M/(ne?), so that P(|X,2| = |S,2/n?| > 0 i.0.) = 0. Then
show that the “block maximum”

A, = maXn2 <r<(n+1)2 |Sk - Sn2|

has EAZ < 2nE{|S(,41)2-1 — Sp2[*} < 4n?M, so that P(A,/n* > €i0.) =0.
(b) Use Kolmogorov’s inequality to obtain EA2 < 2nM, under independence.
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Exercise 4.9 Let X,,1,...,X,, be row independent rvs (here, merely uncorrelated is much
harder to consider) with means 0 and having all EX %, < (some M) < oo.
(a) (Cantelli’s inequality) Verify that X,, = S,/n = (Xp1 + - + Xnn)/n satisfies

P(|S,] > \) <3Mn?/A* for all A > 0.

(b) (A very weak SLLN) Show that under these circumstances X,, —,.s. 0.

Exercise 4.10 (Alternative proof of the SLLN)  Apply either the Hdjek-Rényi inequality
(inequality 8.10.3) or the monotone inequality (inequality 8.10.1) as a replacement for the use
of the Kronecker lemma in the SLLN proof.

Exercise 4.11 (St. Petersburg paradox) Let X3, X5, ... be iid rvs for which P(X = 2™) =
1/2™ for m > 1. Show that S,/a, —1 = (S, — b,)/a, —p 0 for b, = nlogp,.on and
an = nlogp,eon also. Hint. Let Yor = Xilix, <nlog,, ., n- (While S, /a, —, 1 was just
called for, it can also be shown that S,/a, —4.s. ©0.

Exercise 4.12% (Spitzer) Let X, X1, Xo,... be iid. Establish the following claim.

(21) E(X)=0for X € £ iff > LP(|S,] > ne) < 00 for all e > 0.

n=1n

Exercise 4.13 If Xy, X5, ... are iid Exponential(l), then lim X,,/logn = 1 a.s. and X,,.,/
logn — 1 a.s.

Exercise 4.14 If Xy, X, ... are iid N(0, 1), then X,,.,/v/2logn —, 1.

Exercise 4.15 (a) Does the WLLN hold for the Cauchy distribution?
(b) Does the WLLN hold if P(|X| > x) = e/[2z1og z] for x > e, X symmetric?
(¢) Make up one more example of each of these two types.

Exercise 4.16 (Uniform integrability of sample averages) Let X, Xs,... be iid, and let
X, = (X1 +--+ X,)/n. Then the rvs {X,, : n > 1} are uniformly integrable if and only if
the rvs {X,, : n > 1} are uniformly integrable. (Relate this to the SLLN result in (7).) (We
only need independence for u.i. X3’s to yield u.i. X,,’s.)

Exercise 4.17 (a) Let row independent rvs X,,1,. .., X,, be iid with the df F(-). Let F
have finite mean p = EX. We know M,, = [maxi<g<n | Xnk|/n] —p 0 by the WLLN. Trivially,
EM, < E|X|. Show that

1
(22) EM,, = Emaxi<ip<n —|Xnkl]] = 0 (that is, M,, —,, 0).
="="n
(b) Let X1, X3,... be iid. Show that E|X| < co if and only if M,, —, 0.

Exercise 4.18 (Negligibility for r = 1, a.s.) (i) Let X, Xy, X5,... be iid rvs. Let r > 0
(with » = 1 the most important case). Prove that the following are equivalent:

(23)  E|X|" < 0.

(24) My, = [ maxi<p<n [ Xi|"] —ass. 0.

(25)  EM,, — 0.
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(ii) Since E|X|" < oo if and only if the symmetrized rv X — X’ has E[X — X'|” < oo (by
exercise 8.2.3), we can add three analogous equivalences for iid symmetric rvs distributed as
X - X"

Exercise 4.19* (Maller—Resnick; Kesten) For a sequence of iid rvs X, X1, Xo,... let X,, =
(X1+4 -+ X,,)/n and let My, = [% maxi<k<n | Xg|]. Then (difficult)

(26)  Mi,/|Xn| —as 0 if and only if 0 < |[EX| < oo.

Exercise 4.20 (Negligibility for » = 2, a.s.) (i) Let X, X, Xo,... be iid rvs (that are not
identically equal to 0). Let r > 0 (with » = 2 the most important case). Prove that the
following are equivalent (you should use the difficult (26) for (30)):

27) E|X|" < occ.

28) M,, = [% maxi<k<n | Xk|"] —a.s. O.
29)  EM,, — 0.

30) Mrn/[%z?p(kr] —a.s. 0.

ii) When r = 2, we may add the equivalent condition (by (6.6.6))

31)  Dp = [y maxich<n(Xe — Xn)?l/[5 05021 (X = Xn)?] —as. 0.

~ o~ o~ o~ —~ —~

iii) Again (by (8.2.18)), E|X|" < oo if and only if E|X — X'|" < o0.

Exercise 4.21 (Neglibility, in probability) Let X1, ..., X, beiid F, forn > 1. Let X & F.
Let r > 0. Prove that the following are equivalent:

(32)  yP(X|">y)—0 as y — oo.

(33)  2"P(X|>2z)—0 as & — oo.

(34) 2"P(|IX - X'| >x)—0. as £ — 00, here X andX’ are iid F.
(35) 2" P(|X — (some ‘a’)| > z) — 0. Then any ‘a’ works; so med(X) works.
(36) M,, = [% maxi<p<n | Xnk|"] —p 0. (Any | X, — a|” may replace | X,x|".)
(37)  EMS, = E[-5 maxi<jp<n | X — 0 forall 0 < < 1.

In case r > 1 (and especially for r = 2) add to this list the equivalent condition

1

Because (34) is included in this list, the iid X,,;’s may be replaced by iid symmetrized X7, ’s
in (32), (33), and (36)—(38). Moreover

(39) E|[XP<oc for all 0 < p < r whenever (33) holds.

The remaining problems in this subsection are mainly quite substantial. They are here for
“flavor.” Some also make good exercises for section 8.8. (Some of the martingale inequalities
found in section 8.10 should prove useful (here and below).)

Exercise 4.22%* (Kesten) Let X, Xs,... be iid as X > 0, with E|X| = co. Then

— X
(40)  lim

n—1

= o0 a.s.
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Exercise 4.23* (Chow—Robbins) Let X3, Xs,... be iid as X, with E|X| = co. Let b, > 0
denote any sequence. Then

(41) either him@ =0a.s. or H@ = oo a.s.

Exercise 4.24* Suppose > “E|X,,|” < co for some 7 > 0. Show that X,, —,.s. 0.
Exercise 4.25% (Hsu—Robbins; Edros) Let X, X, Xs, ... be iid rvs. Then

EX =0 and Var[X] < co if and only if
Yoo (P(ISh| > en) < oo for all € > 0.

(42)
Exercise 4.26* Let X1, Xo,... be independent with 0 means. Let » > 1. Then
(43)  Sp/n —as and 2o, 0 whenever S JE|X P/t < .

Exercise 4.27* Let X, X, Xo,... be iid. Let Logz =1V logz. (a) Show that

(44) E(|X|Log™*(|X])) < o0 if and only if
E{sup,,>1 ([ Xn|/n)} < 00 if and only if ~ E{sup,,»;(|Sx|/n)} < oo.
(b) Show that for each r > 1,

(45)  E|X|" < if and only if  E{sup,>;(|Sx|"/n")} < cc.

Exercise 4.28% (Stone) Let X, X1, X5, ... be iid nondegenerate rvs with 0 means. Let S,, =
X1+ -+ X,. Then

(46)  lim, S, /v/n =4 - + 00 and lim, S,./vVn =q.s . — 00.

Generalizations of the LLNs
Our results allow simple generalizations of both the WLLN and SLLN.
Theorem 4.4 (General WLLN and SLLN) Let X;, Xs,... be independent. Then

(47) 1oR/0h =0 implies 37 (Xi — 1) /bn — 0,
(48) Dot /b2 < oo with b, /oo implies ST(Xk — 1) /bn —as. 0.

Proof.  The first claim is immediate from Chebyshev’s inequality. Also, (f) in the SLLN
proof shows that

(49) Coi/bi < oo implies D7 (Xk — pr)/bk —a.s. (some rv S).

Then Kronecker’s lemma gives Y | (Xy — px)/bn —a.s. 0. (This result is often the starting
point for a development of the SLLN.) (]
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Exercise 4.29* (More general WLLN) Let X,i,...,X,, be independent, and set S, =
Xp1+ -+ X, Truncate via Yy, = X, X 11Xk <bals for some b, > 0 having b,, /" co. Let
Lnk and O'Elk denote the mean and variance of Y,,;,. Then

(50)  Sp/bp —p 0
if and only if we have all three of
(51) 2 P(1 Xkl > ba) — 0, 21 Hnke /b — 0, and Z?Uik/b% — 0.

[The converse is a substantial problem.]
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5 Applications of the Laws of Large Numbers
Let X1, X5,... beiid F. Let F,, denote the empirical df of X1,...,X,, given by

1 n

(1) F.(z) =F,(z,w) = — E L —oo,a) (Xk(w — E lix,<s for all real z.

n <
"= k=1

Theorem 5.1 (Glivenko-Cantelli) We have

(2) IF, — F|| = bup HF»,L(JZ) — F(z)] =45 0 as n — 00.

—oco<T<

[This is a uniform SLLN for the random function F,(-).]

Proof. Let Xj = F~1(§) for k > 1 be iid F, with the &’s iid Uniform (0, 1). Let G,
denote the empirical df of the first n of these &;’s, and let F,, denote the empirical df of the
first n of these X}’s. Let I denote the identity function. Then

(3) (F, — F) =[G,(F) — I(F)] on (—oo, 00) for every w

by (6.3.4). Thus by theorem 5.3.3, it will suffice to prove the result in the special case of
uniform empirical df’s G,’s. (Recall the remark in bold above (6.4.3) that the representation
of X as F~1(§) allows alternative ways to approach problems. Moreover, using the ék’s of
(6.3.8) gives us back the original X}’s.)

Now, Gn(k/M) —k/M —, 0 as n — oo for 0 < k < M by the SLLN applied to the iid
Bernoulli (k/M) rv’s 1jg 5/an(&:). We now assume that M is so large that 1/M < e. Then
for (k—1)/M <t <k/M, with 1 <k < M, we have both

()  Gult)—t < Gp(k)— it
(b)  Gu(t) =t = Ga(5) — 5

These combine to give

(c) supo< i<t [Gn(t) — t| < maxo<k<n [Gnlag) — 3711 + 77
(d) —as. 0+ 1/M < e

Since € > 0 is arbitrary, we have shown that supy<,<; |G, (t) — | —4.. 0. That is,

(4) [Fn = Fl| = [|Gn(F) = F|| < [|Gn = I|| —a.s. 0,
as claimed. O
Exercise 5.1 Let &,1,...,& denote any row independent Uniform (0,1) rvs, and let all

Xk = F7Y(&,p) for a fixed df F. Let F,, and G,, denote the empirical dfs of the nth rows of
these two arrays. Show that (2) still holds.

Example 5.1 (Weierstrass approximation theorem) If f is continuous on [0, 1], then there
exist polynomials B,, such that ||B,, — f|| = supg<;<1 [Bn(t) — f(t)| — 0 as n — oo.

Proof. (Bernstein) Define the Bernoulli polynomials

(5) Zf( )( )tk(l—t) for0<t<1
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(a) =Ef(T/n) where T = Binomial(n,t).

Since f is continuous, f is bounded by some M, and f is uniformly continuous on [0, 1] having
|f(z) — f(y)|] < € whenever |z — y| < .. Then

[F(t) = Bu(t)] = |4 _olf () — flk/n)] ()R (1 — t) ]

< (ke ket <.y SAMe| + 3k y>5.) Samel

(b) <e+2MP(|T/n—t| > d.) by uniform continuity of f
< e+ 2Mt(1 —t)/nd? for all ¢ (by Chebyshev)
(c) < e+ 2M/4nd? < 2 for n > some N, forall 0 <t < 1.

As the choice of N, does not depend on ¢, the convergence is uniform. Note that this is just
an application of a weak form of the WLLN (that is, of the Chebyshev inequality). O

Example 5.2 (Borel’s normal numbers) A number z in [0, 1] is called normal to base d if
when expanded to base d, the fraction of each of the digits 0,...,d —1 converges to 1/d. The
number is normal if it is normal to base d for each d > 1. We are able to conclude that

a.e. number in [0, 1] is normal with respect to Lebesgue measure \.

[Comment: % = 0.010101... in base 2 is normal in base 2, but % = 0.1000... in base 3 is
not normal in base 3.] [This was a historically important example, which spurred some of the
original development.|

Proof. Let (2, A, P)=([0,1], BN[0, 1], A). Let

(a) w=>"Bu(w)/d" define rvs B, Ba, ...

Note that the f,’s are iid discrete uniform on 0,1,...,d — 1. Thus, letting n,x = 1 or 0
according as (3, = k or 3, # k, we have

(b)  MAar) =A{w T e — 1/d}) =1
by the SLLN. Thus A4 = mz;(l)Ad,k has A(44) = 1; that is, a.e. w in [0, 1] is normal to base
d. Then trivially, A = (2, A4 has A(A) = 1. And so, a.e. w in [0, 1] is normal. O

Example 5.3 (SLLN for random sample size) Let N,, be positive-integer valued rvs for
which N,,/n —4.5. ¢ € (0, 00), and let X7, X5, ... be iid with mean pu.
(a) Then

(6) SN, /N —as. JL-Casn— oo.
(b) If X3, X5,... are iid Bernoulli(p) and N,(w) = min{k : Si(w) = n}, then the waiting
times N,, satisfy N, /n —,.5 1/p.

Proof. (a) Now, S,,/n —, s p by the SLLN, and thus N,, —,.s. co implies Sn, /Ny, —a.s. -
Thus

SN, /n= (SN, /Nn)(Nn/n) —as. k-,

using N,, —4.5. o0 by ¢ > 0.
(b) We also have (since p = p)

1= SNn/n = (SNn/Nn)(Nn/n)v S0 Nn/n = 1/(SNn/Nn) —a.s. 1/D,
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completing the proof. Note that we could also view N, as the sum of n iid Geometric(p) rvs,
and then apply the SLLN. (]

Exercise 5.2 (Monte Carlo estimation) Let A : [0,1] — [0, 1] be continuous.

(i) Let Xx = lpn(e,)>0,), Where &1,&2,...01,0,,... are iid Uniform (0,1) rvs. Show that
this sample average is a strongly consistent estimator of the integral; that is, show that
Xn —as. fol h(t)dt.

(ii) Let Yy = h(&,). Show that Y, —a.. [, h(t) dt.

(iii) Evaluate Var[X,,| and Var[Y,], and compare them.
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6 Law of the Iterated Logarithm

Theorem 6.1 (LIL; Hartman—Wintner; Strassen) Let X, Xo,... be iid rvs. Consider
the partial sums S,, = X1 +--- + X,,.
(a) If EX = 0 and 02 = Var[X] < oo, then

Sy
1 li —_—
L o nSEEO 2nloglogn
(b) In fact,

Sn

=0 a.s., while lim inf ————— = —0 a.s.

n—oo \/2nloglogn

Sn
Vv2nloglogn Tas.

[That is, for a.e. w the limit set of S,,/v/2nloglogn is exactly [—o, o] |.
(¢c) Conversely, if

(2)

[—o, o].

@) Tmeml
v2nloglogn

Theorem 6.2 (The other LIL; Chung) If X;, Xo, ... are iid (0, ¢2), then

< 00 a.8., then EX =0 and ¢? < oo.

. 1Skl _
(4) himlrrgl%éx/ﬂoglogn\/ﬁa =7/2 as.
[We state this for fun only, as it has seen little application.]

Versions of both theorems are also known for cases other than iid. The classical proof
of theorem 6.1 in full generality begins with truncation, and then carefully uses exponential
bounds for bounded rvs. A more modern proof relies upon Skorokhod embedding of the
partial sum process in Brownian motion. This general proof is outlined in the straightforward
exercise 12.8.2; after embedding is introduced. But the proof below for the special case of
normal rvs contains several of the techniques used in the classical proof of the general case
(and in other related problems). And it is also a crucial component of the general case in
exercise 12.8.2.

Proposition 6.1 Let Z;,Z5,... be iid N(0,1) rvs. Let S, = Z1 + -+ Z, and b, =
V2loglogn. Then limsup,,_, . Sn/v/nb, =1 a.s.

Proof. Let e > 0. We will use the exponential bound
(5) exp[—(1+€)A?/2] < P(S,/vn > \) <exp[—(1 —e)A?/2]  forall A > A
(for some \.) [see Mills’ ratio exercise 6.1 below], and the Lévy maximal inequality

(a) P(11<nkaé< Sk > A) <2P(S, > ) for all A > 0.

Let ny = [a*] for a > 1; a sufficiently small a will be specified below. Now,

Ay = Unk,lgmgnk [Sm = vVm(1 + 2€)by,]

[Mk—1
(b) C nk,?’é%{gnk Sm > (1 + 26) nkbnkls/nkil s
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since y/n is / and b, is ; so that for k sufficiently large,

(¢) P(A) <2P < S /1 > (1 + QG)ankl) by (a)

1 1-—
gzap<zuex1+2@2‘bkgk> by (5)
a
< 2exp(—(1+¢)logk) = 2/k' e for a sufficiently close to 1
(d) = (kth term of a convergent series).

Thus P(Ay 1.0.) =0 by Borel-Cantelli. Since € > 0 is arbitrary, we thus have

(e) lim sup < 1 as.

Since (e) is true, on any subsequence ny — oo we can claim that
() P(Ay i0.) =0, including when n; = [a*] for a huge.

We must now show that the lim in (e) is also > 1 a.s. We will still use ny = [a*], but a
will be specified sufficiently large below. We write S, = Sy, , + (Sny — Sn,_,), so that

Snk o Nk—1 <b’ﬂk—1> Snlc—l + Snk - Snk—l
k

V1icbn, N n NS V/Ticbn,
1 Snkfl + S”lk B Snk—l

h ~—"1-
( ) \/a \ nk—lb’nk,1 V nkbnk

Now, the independent events

() Br=[Sm — Su_, > (1 - 26)\/figbn,] = [

(2)

S - Snk 1 (1 — 26)\/nkbnk

Vg —ng—1 Mg — N1
have
6) P(B}) > ex —ia+@u—%F—Jﬁ—w2 by (5)
! =P Ty ng —ng—1 " Y
1 1
> exp(fi(l +€)(1 — 2¢)? 2(1+ 6) 2log k)
a—
> exp(—(1 —€)logk) for a sufficiently large
(k) = 1/k'7¢ = (kth term of a series with an infinite sum),

so that P(Bj i.0.) = 1 by the second Borel-Cantelli lemma. But P(Aj; i.0.) = 0 and
P(By, i.0.) = 1 means that
Q) P(A{ N By i.0.) =1.
Moreover, on A§ N By, we have, using (h), (i), and the symmetric version of (f),

S - (I1+2¢)(1+4¢)
\/nkbnk N \/a

for the constant a specified sufficiently large. Thus, even focusing only on the subsequence
ng in (f) with this large a = a, since € > 0 was arbitrary,

(m)

T (1—26)> (1 3¢)

(n) lim sup >1as.

n— oo N On,,

Combining (e) and (n) gives the proposition. O
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Exercise 6.1 (Mills’ ratio) Show that for all A > 0

©) 52 s RN/ < PINOD) > ) < - exp(-X2/2),

which can be rewritten as

1
7 ——d(\) <1 —P(N) < —p(A
M o) <1-80) < 160V
where ¢ and ® denote the standard normal N(0,1) density and df, respectively. Show (5)
follows from this. This is the end of this exercise.
(x) For a standardized rv Z,,, one might then hope that as \,, — o0

(8) exp(—(1+ €,)A5/2) < P(Zy > M) < exp(—(1 — €,)A5/2),

as was applied in (5). [This clean exponential bound for normal rvs was the key to the simple
LIL proof in proposition 6.1. The classic Hartman—Wintner proof uses truncation to achieve
a reasonable facsimile of this in other cases.]

(%) (Ito-McKean) It is even true that for all A > 0 there are the tighter bounds

A) < 1—®(N) A).

2 2
) < el

Exercise 6.2 In place of (¢) in the LIL proof of proposition 6.1, use Mills’ ratio to bound
P(A,) = P(S,/v/n > (1 +2¢)y/2logn). Use that bound directly to show that limsup |S,|/
(vnyv2logn) < la.s. [This “poor” result will show the value of using the “block of indices”
in the definition of Ay in the proof we gave.]

Exercise 6.3 Let arbitrary events A, and B, satisfy P(4,, i.0.) =0 and P(B, i.0.) = 1.
Show that P(AS N B, i.0.) =1 (as in (1) above).
Summary Suppose X, X1, Xs,... are iid (u, 1). Then:

n X _
o) Z=m el oy e sLN.
n X _
(11) i (X = p) —as 0 forall 1 <r <2 by Marcinkiewicz—Zygmund.

nl/r

Dot (X — )
== - -1,1 by the LIL.
2nloglogn “as [T 1] v e

Suppose we go all the way to y/n in the denominator. Then the classical CLT gives

(12)

n X _
(13) 2t Xk 1) —q N(0,1) by the CLT,

Vvn
even though we have divergence to +oo for a.e. w (by the LIL). ]
Exercise 6.4 (rth mean convergence theorem) Let X, X1, Xo,... be iid, and consider the

partial sums S, = X7 + -+ X,,. Let 0 < r < 2 (and suppose EX = 0 in case 1 < r < 2).
The following are equivalent:

(a) E|X|" < 0.

(b)  Sp/nt/T —, 0.

(¢) E|Sa|" = o(n).

(d)  E(maxi<p<n [Sk|") = o(n).

Hint. For (a) and (b) imply (c), use the Hoffmann-Jorgensen (8.10.6) below.



7. STRONG MARKOV PROPERTY FOR SUMS OF IID RVS 179

7 Strong Markov Property for Sums of IID RVs
Let Xl,Xz, ... be iid and let Sn = Xl + -4 Xn Let S= (51,52,..).

Definition 7.1  The integer valued rv N is a stopping time for the sequence of rvs S, So, . ..
if [N=Fk] e F(S1, ..., Sg) for all k> 1. It is elementary that

(1) Fn=F(Sp:k<N)
(2) ={AcFS): AN[N =k] € F(S1,...,S) for all k > 1} = (ao-field),

since it is clearly closed under complements and countable intersections. (Clearly, [N = k]
can be replaced by [N < k] in the definition of Fy in (2).)

Proposition 7.1 Both N and Sy are Fy-measurable.

Proof. Now, to show that [N < m| € Fy we consider [N < m] N[N = k] equals [N = k]
or (J, both of which are in F(S); this implies [N < m| € Fy. Likewise,

(a) [Sv <2]N[N =k =[S, <z|N[N =k] € F(S1, ..., Sk),
implying that [Sy < z] € Fy. O

Theorem 7.1 (The strong Markov property) If N is a stopping time, then the incre-
ments continuing from the random time

(3) ngSN+k_SN, k‘Zl,

have the same distribution on (Roo, Bso) as does Si,k > 1. Moreover, defining S =
(51,52, ...),

(4) F(S) = F(S1,S,, ...) is independent of Fy (hence of N and Sy).

Proof. Let B€ By, and A € Fy. Now,

(a) P([SeBINA)=32 P(S€BNnAN[N = n))
_Zn 1P( Sn+1 Sn7 Sn+2_Sna ) EB]Q(Aﬂ[N:n]))
with AN[N =n] € F(Sy, ..., Sn)

[(

[

=21 P([(Snt1 = Sny Spto2 = S, ...) € B)P(AN[N = n])
= P(Se B2 P(AN[N =n])

(b) = P(S € B)P(A).

Set A =Q in (b) to conclude that S = S. Then use P(S € B) = P(S € B) to rewrite (b) as

(c) P([S € Bln A) = P(S € B)P(A),

which is the statement of independence. O

Exercise 7.1 (Manipulating stopping times) Let N; and N denote stopping times relative
to an " sequence of o-fields Ay C Ay C ---. Show that Ny A No, N1 V No, N1 + Ny, and
N, =1 are all stopping times.
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Definition 7.2  Define waiting times for return to the origin by

Wi =min{n: S, =0} with Wi = +00 if the set is empty,

(5)

Wi = min{n > Wj_1 : S, =0} with Wi, = 400 if the set is empty.

Then define Ty, = Wy, — Wy_1, with Wy = 0, to be the interarrival times for return to the
origin.

Proposition 7.2 If P(S, =01i.0.) =1, then T} Ty, ... are well-defined rvs and are, in fact,
iid.

Proof. Clearly, each Wy is always an extended-valued rv, and the requirement P(S, =
0 i.0.) = 1 guarantees that Wy (w) is well-defined for all k¥ > 1 for a.e. w.

Now, T} = W is clearly a stopping time. Thus, by the strong Markov property, T} is
independent of the rv SW = § with kth coordinate S,gl) =S, = Sty +r — St, and S
S =~ §. Thus T, is independent of the rv S® with kth coordinate S’I(cz) = SY(T?M — 51}12) =
St +Tyik — Sy 4m, and S@) = §1) =~ S. Continue with S®) etc. [Note the relationship to
interarrival times of a Bernoulli process.] U

Exercise 7.2 (Wald’s identity) (a) Suppose X1, Xs,... are iild with mean p, and N is a
stopping time with finite mean. Show that S,, = X7 + --- + X, satisfies

(6)  ESy = uEN.

(b) Suppose each X}, equals 1 or —1 with probability p or 1 — p for some 0 < p < 1. Then
define the rv N = min{n : S,, equals —a or b}, where a and b are strictly positive integers.
Show that N is a stopping time that is a.s. finite. Then evaluate the mean EN. [Hint.
[N > k] € F(S1,...,5—1), and is thus independent of X}, while Sy = 337 Xp1n>x)]
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8 Convergence of Series of Independent RVs

In section 8.4 we proved the SLLN after recasting it (via Kronecker’s lemma) as a theorem
about a.s. convergence of infinite series. In this section we consider the convergence of
infinite series directly. Since the convergence set of a series is a tail event (recall remark
7.2.1), convergence can happen only with probability 0 or 1. Moreover, the first theorem
below seems to both limit the possibilities and broaden the possible approaches to them. All
proofs are given at the end of this section.

Theorem 8.1 Let X, Xs,... be independent. Then, for some rv .S, we have

(1) SnEiXk —>a.5,5 iff iXk HPS iff iXk —d S.
k=1 k=1 k=1

[We will show the first equivalence now, and leave the second until exercise 10.2.10.]

Theorem 8.2 (The 2-series theorem) Let X;, X5,... be independent rvs for which
Xi 2 (g, 0f). Let S, =31, Xy and So, = > p_; (Xk — pur)- (2) Then

(2) ;Mk — p and Zkzla,% <oo imply S,= Zklek —a.s. (some 1v S).

Of course, in this situation Sy, —4.5. So =S — pu. Moreover,
(3) ES=p=5%7"m Var[S]=0?=% 72,08, and S, —g, S

(b) Further, if all | X| < (some c¢), then (including converses) both:

(4) Son = Z(Xk — fik) —a.s. (some 1v Sp) if and only if Z o} < oo0.
k=1 k=1

(5) S, = Xk —a.s (somerv S) iff Zuk — u and ZJ% < 0.
k=1 k=1 k=1

If a series is to converge, the size of its individual terms must be approaching zero. Thus
the rvs must be effectively bounded. Thus truncation should be particularly effective for
demonstrating the convergence of series.

Theorem 8.3 (The 3-series theorem) Let X, X5,... be independent rvs.

(a) Define X,ic) to be the trimmed X}, that equals X or 0 as |X;| < c or as |Xg| > ¢. Then
the series

(6) Sn ZXk —q.s. (some rv S)
k=1

if and only if for some ¢ > 0 the following three series all converge:

P(Xp|>¢), M=) Valx{”], 1L=Y EX\.
1 k=1 k=1

WK

(7) I.=

B
Il

(b) The condition (7) holds for some ¢ > 0 if and only if it holds for all ¢ > 0.
(c) If either I, IL., or III. diverges for any ¢ > 0, then Y ,_, X} diverges a.s.
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Example 8.1 Suppose X;, Xo,... are independent and are uniformly bounded. They are

assumed to be independent of the iid Rademacher rvs €y, ..., €,. Then
(8) r166 Xk —a.s. (somerv S) if and only if Yoo 0% < 00.
Moreover, S 2 (0, ;2 02). [This is immediate from the 2-series theorem.] O

Exercise 8.1  Suppose X1, Xo,... are iid with P(X), = 0) = P(X; = 2) = 3. Show that
Zzlek/?)k —a.s. (some S), and determine the mean, variance, and the name of the df Fg
of S. Also determine the characteristic function of S (at some point after chapter 9).

Exercise 8.2 (a) Show that Zzzlaka —a.s. (some S) when X1, Xo,... are independent
with X}, = Uniform(—Fk, k) for & > 1, and where 0 < a < 1.
(b) Evaluate the mean and the variance (give a simple expression) of S.

Exercise 8.3 Let X, Xo,... be arbitrary rvs with all X, > 0 a.s. Let ¢ > 0 be arbitrary.
Then > 2 \E(X\ A ¢) < oo implies that Y ,_; X —4.. (some rv S). The converse holds for
independent rvs.

Exercise 8.4 (a) Let Z;, Z5,... be iid N (0, 1) rvs. Show that
SoveilZ3 1 + 23] /28 —as. (some rv),
S o1 2k /2] = (some 1v),

and determine (if possible) the mean, variance, and distribution of the limiting rvs.
(b) Let Y1,Ya,... be iid Cauchy(0,1) rvs. Does Y ;2 ,V;/2F —, 5 (some rv)? If so, what is
the distribution of the limit?

Proofs®

Proof.  Consider theorem 8.1. Now, —, . always implies —,. So we turn to the converse.
Suppose S,, —, S (which is equivalent to S,, —S,, —, 0). To establish S,, —4.s., it is enough
to verify (2.3.7) that for all ¢ > 0 and 6 > 0 we have

9) P( max |S,, —Sy| >€) <0 for all n > (some n¢g).
n<m<N

But Ottaviani—Skorokhod’s inequality 10.3.4 gives

(a) P(maXnSMSN |Sm — Sn| > €) = P(maxn<mSN |Z7T+1Xk| > €)
) < PUSY Xl 2 /21 - maxcmen PSS Xl > ¢/2)]
() < P(ISy = Sul = €/2)/[1 — maxy<men P(|Sm — S| > €/2)]
(d) =o(1)/[1—0o(1)] <0 for all n, N > (some neg),

using Sy — S, —, 0 for (d). Thus (9) holds, and S,, —4.s. (some rv S’). The a.s. limit S’
equals S a.s. by proposition 2.3.4. O

Proof. Consider theorem 8.2, part (a): We first verify (2). By theorem 8.1, to estab-
lish that Sy, —a.s (some S) we need only show that Sy, — So,, —p 0. But this follows
immediately from Chebyshev’s inequality, since

P(|So0.m — Son| > €) < Var[So.m — Son]/e® < Zzo+1a£/e2 <e€
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for all sufficiently large n. Thus (2) holds, since S,, = So,n + fin-
We next verify (3) that Var[S] = Var[Sy] = 0% and ES = u. Fatou gives

(e)  E(S3) =E(limS3,)=E(limS7,) <lmE(S5,) =lm} o} = o?,
and E(S?) > o2 since

() B(S5) = B{(ZY (X — m)*} + B{(Z05 (X — m))?} 2 B(SE,) — o

(as the two rvs are independent, the first has mean 0, and both have finite variance (as
follows from (e)). Thus E(S§) = 0. Inasmuch as both Sy, —a. So and E(S3,) —
E(S?), the Vitali theorem gives Sy, —,, So. Then exercise 3.5.1b and Vitali show that
E(Sy) = UmE(Sp,) = im0 = 0. As S = Sy + u, we have ES = E(Sy + u) = p and
Var[S] = Var[Sy] = E(S3) = 02 = > "0}. O

The proof of part (b) of the 2-series theorem above will require a converse of Kolmogorov’s
inequality that is valid for bounded rvs.

Inequality 8.1 (Kolmogorov’s other inequality) Consider independent zero-mean rvs Xj,
and set S, = X7 +---+ X}, for 1 < k < n. Suppose | Xj| < (some M) < oo for all k. Then

(1) Plmax [Sg[ <A) < (A + M)? /S h_j02  forall A> 0.

Proof. Let Ay = [maxi<;<k |[S;| < A < |Sk|]. Let M,, = [maxi<g<n |Sk|]. We give another
first passage argument. Thus

(a) E{Silz’fAk} = 20 B{Sh1a} = B[Sk + (S0 — S)J1a}

=>T{E(S714,) + 20+ P(Ax)E(S, — Sg)*} by independence

(b) <A+ M)QZT;P(Ak) + Z?P(Ak)Z?:kJAUJQ‘
(c) <{(A+ M)? + Var[S,]}(1 — P(M,, < \)),

where in step (b) we take advantage of |Sk| < |Sk—1|+|Xk| < A+ M on A;. We also note that

(d) E{Silzmk} =ES; — E{Siljar,<n} 2 Var[S,] — A2P(M, < )

using |S,| < A on the event [M,, < A] to obtain (d). Combining (c) and (d) and doing algebra
gives

(€ POL=N= G s vaS =2 = Vs, O

Proof. Consider Theorem 8.2, part(b): Consider first the forward half of (4). Since
So.n —a.s. (some rv Sp), for some sufficiently large A we have

(a) 0 < P(sup,, |So.n| < A)

= limy P(maxi<p<n |[So.n| < A) since measures are monotone
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(b) <limy(A+¢)? /SN o? by Kolmogorov’s other inequality 8.1

() =(A+0)?/X7 0}

Then (c) implies that Y "0? < co. Conversely, > °07 < oo implies by (2) that So., —a.s.
(some rv Spy). So, both halves of (4) hold.

Consider (5). Again, (2) gives the converse half. Consider the forward half. Suppose that
Sn —a.s. S. The plan is first to symmetrize, so that we can use (4) to prove (5). Let X,,’s
be independent, and independent of the X,,’s with X/ = X,: then X? = X,, — X/ denotes
the symmetrized rv. Since — a.s. depends only on the finite-dimensional distributions, the
given fact that S, —4., S implies that the rv S}, = Y X}, —4.. (some rv S’) = S. We can
thus claim that

(d) Se=31Xi —as S5=5-09

Now, |X§| < 2¢; thus (d) and (4) imply that Y ;" Var[X$] < co. Thus

(@ Yo=Y VarXsl/2 < .

Now, (e) and (2) imply that Y7 (X — pux) — a.s. (some rv Sp) with mean 0. Thus

() 0me = 27Xk = 27 (X — )] —as. S = So.

Thus S = Sy + p with g = > uy convergent, and the forward half of (5) holds. O

Proof.  Consider the 3-series theorem. Consider (a) and (b) in its statement: Suppose that
the 3 series converge for at least one value of ¢. Then II and IIT imply that ZTX,EC) —as.
by (2). Thus Y Xk —q.s. by proposition 8.2.1, since I < oo implies that X7, Xo,... and
Xl(c)7 XQ(C)7 ... are Khinchin equivalent sequences.

Suppose that > 7' Xy —4. - Then for all ¢ > 0 we have P(|X,| > ¢ i.0.) = 0, so that
I < oo holds for all ¢ > 0 by the second Borel-Cantelli lemma. Thus Z?X ]gc) —q.s. for all e,
since I < oo implies that X l(c), XQ(C), ... and X7, Xs,... are Khinchine equivalent sequences.
Thus II < oo and IIT < oo for all ¢ by the 2-series theorem result (4).

Consider (c). Kolmogorov’s 0-1 law shows that S,, either converges a.s. or else diverges
a.s.; and it is not convergent if one of the three series fails to converge. O

Ls-Convergence of Infinite Series, and A.S. Convergence*

Exercise 8.5 (Lo-convergence of series) Let X7, X5, ... be independent rvs in Lo, where X},
has mean puj and variance U,%. Then the sum S, = X; + --- + X,, has mean m,, = Zzzlﬂ’k
and variance v2 = > °;'_,07. Show that

(11) S, —,, (somerv S) ifand only if m, — (some u) and v2 — (some o?).
If S, —¢, S, then ES = p and Var[S] = o2.

Exercise 8.6 (Chow—Teicher) Let X3, Xs,... be iid with finite mean. Suppose the series of
real numbers > ay converges, where the |ag| are uniformly bounded. Show that
Y larXy —a.s. (somerv S).
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Other Generalizations of the LLNs*

Exercise 8.7 The following (with » = 1) can be compared to theorem 8.4.4. If X, X5, ...
are independent with 0 means, then

(12) Y E[X,|*"/n™t! < oo for some 7 >1 implies S,/n—,;. 0.

Exercise 8.8 (Chung) Here is an even more general variation on theorem 8.77. Suppose
that ¢ > 0 is even and continuous, and either ¢(z)/z / but ¢(x)/x? \, or else ¢(z) /
but ¢(x)/xz \,. Let b, /" co. Let X1, Xs,... be independent with 0 means. Then

Sor B (Xy)/d(bn) < 00 implies both

13
(13) S 1 Xn/bp —as. (somerv) and Y ) Xp/b, —q. 0.

The WLLN is taken up again in sections 10.1 and 10.2, after the characteristic function
tool has been introduced in chapter 9.
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9 DMartingales

Definition 9.1 (Martingales) (a) Consider the sequence of rvs Sp,Ss,... defined on a
probability space (€2, A, P) and adapted to an /' sequence of o-fields A; C Ay C ---. Call it
a martingale (abbreviated mg) if E|S;| < oo for all k, and

(1) E(Sk|Ai) =as. S; for all i < k in the index set.

If (Sk, Ag),k > 1is a mg, then the increments X = Si — Sk_1 are called the martingale
differences.

(b) Let I denote a subinterval of the extended real line R. A collection {S; : t € I'} of rvs on
some (9, A, P) that is adapted to an  family of o-fields {A; : ¢ € I} is called a martingale
if E|S¢| < oo for all ¢t € I, and

(2) E(S¢|A;) =a.5. Sy forallr <tin I.
(c) If “="is replaced by “ >” in either of (1) or (2), then either of {S : k > 1} or {S; : t € I}

is called a submartingale (or submg).

Example 9.1 (The prototypical example) Let X7,..., X, denote independent rvs with
0 means, and set S, = X; + -+ + X} and Ay = o[Xy, ..., Xj] for 1 < k < n. Then the
sequence of partial sums satisfies

(3) (Sk; Ar),1 <k <mn, is a mg,
while (provided X, also has finite variance o3)
(4) (8%, Ap),1 <k <mn, is a submg.
The first claim is trivial, and the second holds, since
E(Si|A;) = E{S? +25,(S), — Si) + (Sk — Si)*| A}
(a) > 57 + 28, E{S — Si]A;} +0=S?+0+0= 57,
using (7.4.20) and (7.4.16). O

Exercise 9.1 (Equivalence) (a) Show that (S;, A;),t € I, is a martingale if and only if all
E|S;| < oo and

(5) / Sth:/ S, dP for all A, € A, and all r <t with r, ¢t € I.
A, A,
(b) For a submartingale, just replace “=" by “>” in (5).

Notation 9.1 We will use the following notational system:

mg and = for a martingale.
(6) submg and > for a submartingale.
s-mg and = for a s-mg (mgorsubmg, asthe case may be).

Thus (S, As),t € I, is a s-mg if and only if all E[S;| < oo and

(7) / SidP = / S,.dP forall A, € A,, and for all » <¢ with r, t € I. 0
A, A,

Exercise 9.2 Turn (57, Ag),1 < k < n into a martingale in (4) by centering it appropriately.
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10 Maximal Inequalities, Some with ~ Boundaries °

Inequality 10.1 (Monotone inequality) For arbitrary rvs Xi,..., X,, and for constants
0<by <---<b, welet S, =Xq +---+ X, and obtain

S
(1) <max |k> < 2 max
1<k<n by 1<k<n

If all X; > 0, then we may replace 2 by 1. [This also holds in higher dimensions, when
properly formulated. See Shorack and Smythe(1976).]

Proof.  Define by = 0, Xo = 0,Y; = X;/b;, and T = 5_;_,Y;. Then
k k j k
(a) Sk = Zj:lbjATj = Zj:lAszgzlAbi =2 iz Tinbi,
where Ab; = b; — b1, AT} = T; — Tj—1, and Ty, = Zf:zY] As Zle(Abi/bk) = 1 with
each Ab; /b, > 0, we have

o) (e sil/n ) < (s (S8 Tl G0/m) )

(c) < max | max [Ty since an average does not exceed the maximum
1<k<n \1<i<k

@ <2 ).

1<k<n

Note that 1 can replace 2 in step (d) if all X; > 0. O

Martingale Maximal Inequalities

Inequality 10.2 (Doob) Let (Sk, Ax),1 < k < n, be a submg and define the maximum
Mn = MaXji<i<n Sk. Then

2)  AP(M, >\ < / S,dP <ES <E[S,| forall A >0,
(M, 2]

(3) P(My > ) < inf E(e")/e™  for all A > 0.

If (Sk, Ak),1 < k < n is a zero-mean mg with all of the variances ES? < oo, then we can
conclude that (5%, Ax),1 < k <n is a submg. This allows the maximum to be bounded by

(4) P(M, > \) < Var[S,]/\? for all A > 0.

[This last is Kolmogorov’s inequality, valid for zero-mean mgs.]

Proof.  Since E(S,|Ax) > Sk a.s. by the definition of a submg, we have
(a) fAk S, dP = fAk E(S,|Ag) dP > fAk S, dP for all A} € A

by (7.4.1) in the definition of conditional expectation. Now let

(b) A, = [max1§j<k Sj <A< Sk],
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so that k is the first index for which Sy is > A. Then
AP(M,, > \) = )\Z?P(Ak) < Z? fAk Sy dP

(c) <37 fAk S, dP using (a)
(d) = f[anx} S, dP < f[anA] Stdp < [ SHdP < [|S,|dP,

as claimed. In a s-mg context, these are called “first passage time” proofs. To this end, set
7 equal to k on Ay, for 1 <k < n, and set 7 equal to n+ 1 on (3> 7 Ax)¢. Then 7 is the first
passage time to the level A.

That {(exp(rSk),Ar), 1 < k < n} is also a submg for any r» > 0 follows from Jensen’s
inequality for conditional expectation with an " g(-) via

(e) E(e"5[A;) = E(gr(Sk)[A4)) Za.s - gr(E(Skl A7) 2 g:(S;) = €.

Applying Doob’s first inequality (2) to (e) gives (3). [This is often sharper than (2), though
it requires the existence of the moment generating function Eexp(rS,,).] When (S, Ax) is a
mg, then (S,%, Ay) is also a submg (by another application of the same Jensen’s inequality),
so applying (2) to the latter submg gives (4). O

N, be a mg with all ES;, = 0.

Inequality 10.3 (H4ajek—Rényi) Let (S, Ax),1 < k <
--- < bpy. Then

Let X, = S, — Si,_1 have variance Ui. Let 0 < b <

n N
4
(5) P( %a§N|Sk|/bk > /\> < 2 {Zai/bi—k Z U%/bi} for all A > 0.
== k=1

k=n-+1

Proof. (We give the proof for independent rvs.) The monotone inequality bounds the
maximum partial sum via

(6) < max |Sk|/bk> < 2( max
n<k<N n<k<N

Applying Kolmogorov’s inequality (4) to (6) gives

k
+ >y =
i=n—+1

Sn
bn

(@) P (mN el /e > A) < (\2) H{Var[S, /bu] + A,y VarlXe] /07

(b) = (4/N){X 102 /02 + S0 o2 b2}

(A more complicated proof can eliminate the factor 4.) O

Exercise 10.1 To complete the proof of the Hijek-Rényi inequality for mgs, one can show
that Ty, = S, /b, + ZZ+1Xi/bi is such that (T}, Ak),n < k < N, is also a mg, and that
Var[Ty] is equal to the right-hand side of (b). Do it.

Inequality 10.4 (Birnbaum—Marshall) Let (S(¢), A(¢)),0 < t < 0, be a mg having
S(0) = 0,ES(t) = 0, and v/(t) = ES?(t) finite and continuous on [0, ]. Suppose that paths
of S are right (or left) continuous. Let ¢(-) > 0 on (0, 6] be /" and right (or left) continuous.
Then

6
(7) P(||S/qllf > \) < 4x2/0 [q(t)]2dv/(t)  for all A > 0.
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Proof.  Because of right (or left) continuity and S(0) = 0, we have

() PUIS/alls < X) = P( max 15(6i/2")|/a(6i/2") < A for all n > 1)

=lim P (02%}2{" S(0i/2™)|/q(0i)2™) < /\> by proposition 1.2.2
> lim{1 — 4507 B[S2(6i/2") — S2(6(i — 1)/2")]/4*(6i/2")} Dy (5)
= 14\ lim 07 ¢7%(0i/2") v/ (0i/2") — v/(0(i — 1)/2")]

(b) —1—4\"2 [Yg(t)]2dv/(t)  using the MCT. O

Inequality 10.5 (Doob’s £,-inequality) (i) Let (Sk, Ag), for 1 < k < n, be a submg.
Consider M,, = maxj<p<n S,:. Let r > 1. Then

®)  EM; < (E)"E{(S)"}

(ii) Let (Sk, Ax),1 <k <n, be amg. Let M,, = maxi<x<y |Sk|. Let » > 1. Then

) EM; < (GE)"E{|S.["}-

r—1
Proof. Now, (S:,Ak), for 1 < k < n, is also a submg, by the conditional version of
Jensen’s inequality. (Or, refer to (13.1.7) below.) [Refer to (13.1.5) for case (ii).] Thus in

case (i) we have

(a) EM) = [ZrA\""'P(M, > X\)d\ by (6.4.13)

(b) < AT INTIE{S 1, > 0} dA by Doob’s inequality 10.2

Mﬂ
(c) =E{S; / rA""2d\} by Fubini
0

= RS (:5)Mp ')

r—1

(d) < CE)(E{SH DY E{M DD/ by Holder’s inequality,

r—1

where r~! + 57! = 1 implies that s = r/(r — 1). So

(e)  (EMpTUTYr < (—

L ESH)

n

which gives the results. (Just change S; to |S,| for case (ii).) O

Hoffmann—Jorgensen Inequalities®

The following inequalities show that “in probability” control of the overall sum and of the
maximal summand actually gives control of moments of sums of independent rvs.
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Inequality 10.6 (Hoffmann—Jorgensen, probability form). Let Xi,..., X, be independent
rvs, and let Sy, = X7 + -+ X for 1 <k <n. Let A\, > 0. Then

< 2 : .
(10)  P(max [Si| > 3A+n) < {P(max |Sk| > A)}" + P(max [Xi| > n)

If the X,’s are also symmetric, then both

< 2 ;
(1) P(max [Se|>3A+n) < {2P(1Sa| > M} + P(max |X;| >n)  and
(12)  P(|Sn] > 20 +1) < {2P(|Sn| > )} + P(max |Xi| > n).

Inequality 10.7 (Hoffmann—Jorgensen, moment form). Let the rvs Xi,..., X,, be indepen-
dent, and let S, = X7 + -+ + X}, for 1 < k < n. Suppose that each X; € L,.(P) for some
r > 0. Then

(13) E ( max |Sk|r) < 2(4tg)" +2-4'E ( max |Xi|r> ,
1<k<n 1<i<n

where tg = inf{t > 0 : P(maxi<x<n |Sk| >t) <1/(2-47)}.
If the X,;’s are also symmetric, then

(14)  E[Su|" <2(3to)" +2-3"E <113a<x |X,;|T> :

where to = inf{t > 0: P(|S,| >t) <1/(8-3")}.

Proof. Consider inequality 10.6. Let 7 = inf{k < n : [Sk| > A}. Then [r = k| depends
only on X1,..., Xy, and [maxg<, [Sk| > A = Yp_,[r = k]. On [r = k],|S;| < A if j < k,
and for j > k,

(@) 1951 = [S) = Sk + Xi 4+ Sp—a] < A+ [Xp| +[Sj = Sl;

hence

(b)  maxicjcn [S;] < A+ maxicicn [ Xi| + maxp<jn [Sj — Skl

Therefore, by independence,

P(T = k, maxj<k<n |Sk| > 3\ + 7])

(c) < P(r =k, maxi<;<n | Xi| > 1) + P(1 = k)P(maxg<j<n |S; — Sk| > 2A).
But maxy<;<n |S; — Sk| < 2maxi<g<p |Sk|, and hence summing over &k on both sides yields

(d)  P(max|Si| > 3A+n) < P(max |X;| > n) + {P(max|S| > 1)}

The second inequality follows from the first by Lévy’s inequality 8.3.3.
For the symmetric case, first note that

(e) 1Sn] < [Sk—1] + | Xk| + [Sn — Skl
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so that

P(r =k, |Su] > 27+ 1)

(f) < P(T = kj, maxi<;<n |X1| > 7’]) + P(T = k)P(|Sn — Sk| > )\)7
and hence summing over k then yields

P(|Sn] > 2X +1)
(g) < P(max|.X;| > n) + P(r,glgg |Sk| > /\)P(r@}f |Sn — Sk| > N).

The third inequality again follows from Lévy’s inequality.
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]

Proof.  Counsider inequality 10.7. Here is the proof of (14); the proof of (13) is similar. Let

u > to. Then, using (12) for (i),

h) E[S, " =3"(fy + [7)P(|Sn| > 3t)d(t" by (6.4.13).

(
(i)
(

Since 4-3"P(|Sy,| > u) < by our choice of u, applying (6.4.13) again (to (j)) gives

1
(k) E|S,|" < (3u)" + ZE|S,|" + 3"E( max |X;|").
2 1<i<n
Simple algebra now gives (14).

Exercise 10.2 Provide the details in the case of (13)

)
< (Bu)" +4-3" [ P(|Su] > 1)%d(t") + 3" [ P(maxi<i<y | Xi| > t)d(t")
j) < (Bu)" +4-3"P(|Sn] > u) [° P(|ISn| > t)d(t") + 3"E(maxi <i<n | X;i|").



Chapter 9

Characteristic Functions
and Determining Classes

1 Classical Convergence in Distribution

Definition 1.1 (Sub-dfs) (a) Suppose we have rvs X,, = F,, and X. We now wish to allow
the possibility that X is an extended rv. In this case, we assume that H is a sub-df (we will
not use the notation F' in this context), and we will write X = H. The interpretation in the
case of an extended rv X is that H(—o0) = P(X = —o0), H(z) = P(—0c0 < X < z) for all
—00 <z < o0, and 1 — H(+o0) = P(X = 400). The set Cy of all points at which H is
continuous is called the continuity set of H.

(b) If F,,(z) — H(x) as n — oo at each © € Cy of a sub-df H, then we say that X,, (or F},)
converges in sub-df to X (or H), and we write X,, —sq X(or F,, —sq H) as n — oo. [What
has happened in the case of sub-df convergence is that amounts H(—o0) and 1 — H(400) of
mass have escaped to —oco and +00, respectively.]

(c) We have agreed that F,,, F', etc. denote a bona fide df, while H,, H, etc. may denote
a sub-df. Thus F,, —4 F (with letter F' rather than letter H) will still imply that the limit
is necessarily a bona fide df. [The next definition provides a condition that guarantees (in a
totally obvious way,on R at least) that any possible limit is a bona fide df]

Definition 1.2 (Tightness) A family P of distributions P on R is called tight if for each
€ > 0 there is a compact set (which for one-dimensional rvs is just a closed and bounded set)
K. with

(1) PK)=P(XeK)>1—c¢ for all dfs P € P.

Theorem 1.1 (Helly—Bray) If F,, —4 F and g is bounded and continuous a.s. ', then
the expectations satisfy

(2) /ngn =FEg(X,) — Eg(X) = /ng.
Conversely, if (2) holds for all bounded continuous g, then F,, —4 F.

[Thus F,, —4 F if and only if [ gdF, — [ gdF for all bounded and continuous g.]
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Theorem 1.2 (Continuous mapping theorem; Mann—Wald) Suppose that X,, —4 X
and suppose that g is continuous a.s. F.. Then ¢g(X,,) —q4 9(X).

How do we establish that F,, —4 F'?7 We have the necessary and sufficient condition of
the Helly-Bray theorem 1.1 (presented earlier as theorem 3.5.1). (We should now recall our
definition of the determining class used in the context of the proof of theorem 3.5.1.) We can
also show convergence in distribution of more complicated functions of rvs via Mann-Wald’s
continuous mapping theorem 1.2 (presented earlier as theorem 3.5.2); an example is given by

Zy —q Z implies that Z2 —g Z% = 2
where g(z) = 22. The concept of tightness was introduced above to guarantee that any
possible limit is necessarily a bona fide df. This becomes more important in light of the next
theorem.

Theorem 1.3 (Helly’s selection theorem) Let Fy, Fy, ... be any sequence of dfs. There
necessarily exists a subsequence F;,; and a sub-df H for which F,,, —¢4 H. If the subsequence
of dfs is tight, then the limit is necessarily a bona fide df.

Corollary 1  Let Fp, Fs, ... be any sequence of dfs. Let H be a fixed sub-df. Suppose every
sd-convergent subsequence {F } satisfies F,,; —4 (this same H). Then the whole sequence
satisfies F,, —s4 H. (Here is an alternative phrasing. Suppose every subsequence n’ contains
a further subsequence n” for which F,,» converges in distribution to this one fized sub-df H.
Then the whole sequence satisfies F,, —sq H.)

Proof. Let r1,7r2,... denote a sequence which is dense in R. Using Bolzano-Weierstrass,
choose a subsequence ni; such that F,,  (r1) — (some a1). A further subsequence ny; also
satisfies F,,,(r2) — (some ag). Continue in this fashion. The diagonal subsequence n;;
converges to a; at r; for all ¢ > 1. [This Cantor diagonalization technique is important. Learn
it!] Define H, on the r;’s via H,(r;) = a;. Now define H on all real values via

(a) H(x) =inf{H,(r;) : r; > x};

this H is clearly is /" and takes values in [0,1]. We must now verify that H is also right-
continuous, and that F, ;. —s¢ H. That is, the diagonal subsequence, which we will now

refer to as n’, is such that F,,, = Foy = Fy,

—sd H.
The monotonicity of H, trivially gives inf,~ , H(y) > H(z). Meanwhile,

(b) H(x) > Hy(rs,) — ¢ for some x < r_ that is sufficiently close tox

(c) > H(y) —¢ for any x < y < 7y,

yields inf,\ » H(y) < H(x). Hence inf,\ , H(y) = H(x), and H is right continuous.
We next show that F,/ (z) = F,,,(z) — H(z) for any 2 € Cy. Well,

J

(d) Fy, (rg) < Fy (x) < Fy (re) for allry, < x < ry.

’
J
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Passing to the limit on j gives

(e) H,(rg) < @Fn; (x) < an; (x) < Hy(re) for all 7, < o < 7y.
Now let 7 " « and ry \, = in (e) to get

() lim; F () = H(x) for all z € Cy (that is, Fot —sd H).

Consider the corollary. Fact: Any bounded sequence of real numbers contains a convergent
subsequence; and the whole original sequence converges if and only if all subsequential limit
points are the same. Or, if every subsequence a, s contains a further subsequence a,~ that
converges to the one fixed number a,, then we have a,, — a,. We effectively showed above
that every subsequence F), contains a further subsequence F,~ for which

F,»(z) — (the same H(z)) for each fixed x € Cy.

Thus the whole sequence has F,,(z) — H(z) for each « € Cp. So, F,, —sq H. ]

Exercise 1.1 (Convergence of expectations and moments)
(a) Suppose F,, —¢q4 H and that both F,,_(a) — H_(a) and F),(b) — H(b) for some constants
—00 < a<b<ooin Cy having H(a) < H(b). Then

(3) f[a’b]g dF,, — f[a’b] g dH forall g € Clyyp = {g: g is continuous on [a,b]}.
Moreover, if F,, —, 4 H, then

(4) JgdF, — [gdH for all g € Cy,

where Cy = {g : ¢ is continuous on R and g(z) — 0 as || — oo}.

(b) Suppose F,, —4 F and g is continuous on the line. Suppose |g(x)|/¥(x) — 0 as || — oo,

where ¢ > 0 has [¢dF, < K < oo for all n. Then [ gdF, — [ gdF.
(c) If E|X,|™ < (some M) < oo for all large n, then F,, —4 F implies that

(5) E|X,|” — E|X|” and EXF - EXF* for 0 <r <rgand 0 <k < 7.
(d) Let g be continuous. If F,, —,q H, then liminf [ |g|dF,, > [|g|dH.
[Actually, g continuous a.s. H suffices in (a), (b), and (d) above.]

Exercise 1.2 (Pdlya’s lemma) If F,, —4 F for a continuous df F, then
(6) [ Er = F[| — 0.
Thus if F,, —4 F with F continuous and z,, — x, then F,,(z,) — F(z).

Exercise 1.3 (Verifying tightness) Suppose X,, = F,,. Show that {F,, : n > 1} is tight if
either

(a) ImE|X,|" < oo for some r > 0, or

(b) Fn —d F.
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Equivalent Definitions of Convergence in Distribution

The condition Fy,(x) — F(x) can be rewritten both as P, ((—o0,z]) — P((—00,z]) as well
as El(_o0,2)(Xn) — El(_o2(X). Thus —4 is reduced to computing expectations of the
particularly simple function 1(_ ,; but these simple functions have the disadvantage of being
discontinuous.

Definition 1.3 (Closure, interior, and boundary) The closure of B is defined to be B =
N{C : B C C and C is closed}, while B = U{ U : U C B and U is open} is called the interior
of B. These have the property that B is the smallest closed set containing B, while B is the
largest open set contained within B. The boundary of B is defined to be 0B = B\B°. A set
B is called a P-continuity set if P(OB) = 0. (These definitions are valid on a general metric
space, not just on R.)

Theorem 1.4 (—, equivalencies) Let F, Fy, Fy, ... be the dfs associated with the proba-
bility distributions Py, Ps,.... Let Cj denote all bounded, continuous functions g on R, and
then let C, denote all bounded and uniformly continuous functions g on R. The following
are equivalent:

(7) Fy —q I

(8) F,(x) — F(x) for all z in a dense set.

(9) Eg(X,) = [gdF, — [gdF =Eg(X) for all g in C.

(10) fngn — [gdF for all g in Cy,.

(11) lim P,(B) < P(B) for all closed sets B.

(12) lim P,,(B) > P(B) for all open sets B.

(13) lim P,,(B) = P(B) for all P-continuity sets B.

(14) lim P, (I) = P(I) for all (even unbounded) P-continuity intervals I.
(15) L(F,,F)—0 for the Lévy metric L (see below).

Exercise 1.4 That (7)-(10) are equivalent is either trivial, or done previously. Cite the
various reasons. Then show that (11)—(15) are also equivalent to — .

Exercise 1.5 (Lévy’s metric) For any dfs F' and G define (the 45° distance between F'
and G)

(16) LF, G)=inf{e>0: F(x —¢) —e <G(zx) < F(zx+¢)+e forallz}.

Show that L is a metric and that the set of all dfs under L forms a complete and separable
metric space. Also show that F,, —4 F is equivalent to L(F,,, F) — 0.
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Convergence of Types

Definition 1.4 (Type) When Y = (X — b)/a for some a # 0, we say that X and Y are of
the same type. [Suppose that X,, —4 X where X is not degenerate. Then if a,, — a # 0 and
b, — b, we know from Slutsky’s theorem that (X,, — b,)/an, —q Y = (X —b)/a.]

Theorem 1.5 (Convergence of types) Suppose (X, —by)/an, —¢ X = F,and (X,,—5,)/
an, —q Y =2 G, where a, > 0,a, > 0, and both X and Y are nondegenerate. Then there
exists a > 0 and a real b such that

(17) an/cy, — (some positive a) and (Bn — bp)/an — (some real b)
and Y = aX 4 b (or, equivalently, F'(z) = G(az + b) for all z).

Remark 1.1  The classical CLT implies that if X1, Xa, ... are iid (0,0?), then S,,/\/n —4
N(0,1). The above theorem tells us that no matter how we normalize S,,, the only possible
nondegenerate limits in distribution are normal distributions. Moreover, if S, /a, —4 (some
rv), the limiting distribution can be nondegenerate only if a,, /+/n — (some constant) € (0, c0).

Exercise 1.6 (Proof of the convergence of types theorem) Prove theorem 1.5 on the con-
vergence of types.

[Hint. Start with continuity points z < 2’ of the df G and then continuity points y,y’ of the
df F for which F(y) < G(z) < G(z') < F(y'). Then for all n large enough one will have
any +bp < anr + By < an’ + Bn < any’ + by ]

Higher Dimensions

If X, X1, X5, ... are k-dimensional random vectors with dfs F, Fy, Fy, .. ., then we say that
X, converges in distribution to X if

(18)  Fp(z) — F(x) for all x € C,

just as in one dimension.

The Helly—Bray theorem, the Mann—Wald theorem, Helly’s selection theorem, and Polya’s
lemma all hold in &k dimensions; generalizations of the other results also hold. Moreover, if
X/, denotes the first j coordinates of X,,, with 1 < j < k, then X,, —4 X implies X/, —4 X'.

Exercise 1.7 Prove the k-dimensional Helly—Bray theorem (along the lines of exercise
3.5.2) using Helly’s selection theorem and Pdlya’s lemma. Prove that X, —4 X implies
X] —aq X'. After reading Section 2, prove the k-dimensional version of the Mann—Wald
theorem.

Exercise 1.8 Prove that theorem 1.4 holds in k& dimensions.

See also theorem 9.5.2 and theorem 10.1.3 below.
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2 Determining Classes of Functions

We can approximate the functions 1(_ .1(-) to an arbitrary degree of accuracy within various
classes of particularly smooth functions. Within these classes of functions we do not have
to worry about the continuity of the limiting measure at z, and this will make these classes
more convenient. Indeed, the specialized class H® below is of this type.

Definition 2.1 (Determining class) A collection G of bounded and continuous functions
g is called a determining class if for any choice of dfs F' and F, the requirement that [ g dF =

[ gdF for all g € G implies F = F.

Definition 2.2 (Various classes of smooth functions) (i) Let C (let Cy) [let C,,] denote
the class of continuous (bounded and continuous) [bounded and also uniformly continuous]

functions on R. Let C’ék) (let CZEOO)) denote the subclasses with & (with all) derivatives
bounded and continuous.

(ii) An extra c on these classes will indicate that all functions vanish outside some compact
subset of R.

(iii) Let Cy denote the subclass of C' that converge to 0 as |z| — 0.

(iv) Let H° denote the class of all h, . with z real and € > 0; here h, (z) equals 1, is linear,
equals 0 according as x is in (—o00, z|,is in [z, 2 + €], is in [z + €, 00) (this class was introduced
in the proof of the Helly—Bray theorem 3.5.1).

(v) Let G° denote the class of all continuous functions g, with @ < b and € > 0; here g, p ()
equals 0, is linear, equals 1 according as z is in (—oo,a—¢€] U[b+¢,00), isin [a—e, a]U[b, b+ €],
is in [a, b].

Theorem 2.1 (Criteria for —4; a kinder and gentler Helly—Bray)
(i) Let Fy, Fy,... be tight. Let G be a determining class.
(a) If [ gdF, — (some #,) for each g € G, then F,, —4 F. Further, #, = [ gdF.
(b) Conversely: If F,, —4 F, then [ gdF, — [ gdF for each g € .
(ii) Each of the various classes Cy, Cy, Cpy, C’ék) with k> 1, C’b(oo)7 H°, and GV is a determining
class.
(iil) So, too, if we add an extra subscript ¢ to the various C-classes in (ii). (That is, we require
they take on the value 0 outside some compact subset of R.)
[For some proofs in the literature, functions g with sharp corners are unhandy.|

Exercise 2.1 Prove the previous theorem.

Exercise 2.2 (Higher dimensions) Show that the natural extension of each of the results of
this section to Ry, is valid.

Exercise 2.3 Exhibit at least one more determining class.
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Moments as a Determining Class for a Moment Unique Limit

Theorem 2.2 (CLT via moments; Fréchet-Shohat) (a) Suppose F is the unique df having
the specific finite moment values py = fx’“ dF(x), for all integers k > 1. Then F,, —4 F
whenever

(1) g = [ ¥ dF,(z) — = [ 2F dF () for all k > 1.

(b) Any normal df is determined by its moments.

Proof. Let n’ denote an arbitrary subsequence. By the Helly selection theorem we have
F,n —¢q H for some further subsequence n”” and some sub-df H. However, lim E|X,,|? < oo,
so that {F}, : n > 1} is tight by Markov’s inequality. Thus H is a bona fide df, and F,,» —4 H.
Also, for all k> 1

[ 2k dF(z) =lim [ 2% dF,» (z) by hypotheses

(a) = [z dH (z) by exercise 1.1(c) of Section 9.

Thus [z dH(x) = [ 2% dF(z) for all k > 1; and since only F has these moments, we conclude
that H = F. Thus F,» —4 F. Moreover, F,» —, (this same F') on any such convergent
subsequence n’’ Thus F,, —4 F, by the corollary to theorem 1.3 of Section 9. See exercise 2.6
of Section 9 for part (b) of the theorem. O

In general, moments do not determine a distribution uniquely; thus {#* : k > 1} is not
a determining class. This is shown by the following exercise.
Exercise 2.4* (Moments need not determine the df; Heyde) Suppose that the rv log X =
N(0,1); thus
fx(x) = x_le_(1°g$)2/2/\/2ﬂ' for z > 0.

For each —1 < a <1, let Y, have the density function

fay) = fx ()1 + asin(27 logy)] for y > 0.

Show that X and each Y, have exactly the same moments. [Knowing that these particular
distributions have this property is not worth much; it is knowing that some dfs have this
property that matters.]

Though we have just seen that moments do not necessarily determine a df, it is often true
that a given df F' is the unique df having its particular moments (name them {u; : k& > 1}).
Here is an “exercise” giving various sufficient conditions.

Exercise 2.5 (When moments do determine a df) Suppose either of the following conditions
hold:

(a) Tim || Y%k < o0
(b) Z:Ou%tzk/@k)! < o0 in some interval of ¢ values.

Then at most one df F' can possess the moment values py = [ 2% dF(z). [Wait to prove this
until it appears again as part of exercise 6.1 of Section 9.
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Comment. A condition for convergence due to Carleman Y [° ,uz_kl/ ¥ — 50 has often been

claimed to be necessary and sufficient. It is not. See Stoyanov (1977; p. 113).
Exercise 2.6 Show that the N(0,1) distribution is uniquely determined by its moments.

Summary The methods of this section that establish — 4 by verifying the moment condition
that Eg(X,) — Eg(X) for all functions ¢ in a given determining class G can be extended
from the present setting of the real line to more general settings; note Chapter 15. This
chapter now turns to the development of results associated with the particular determining
class G = {g:(-) = €'’ : t € R}. The resulting function is called the characteristic function of
the rv X. The rest of Chapter 9 includes a specialized study of the characteristic function.
Chapter 10 will apply this characteristic function tool to the CLT. O
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3 Characteristic Functions, with Basic Results
Elementary Facts

Definition 3.1 (Characteristic function) Let X be an arbitrary rv, and let F' denote
its df. The characteristic function of X (abbreviated chf) is defined (for all t € R) by

o(t) = ox(t) = Be™ = [7 e dup(x

:f th dF )
(1) = f cos(tx) dF (x —l—zf sin(tz) dF (x).

With dF replaced by hdu, we call this the Fourier transform of the signed measure hd u.
(We note that the chf ¢x (t) exists for —oo < t < oo for all rvs X, since |e®X ()| <1 for all ¢
and all w.)

Proposition 3.1 (Elementary properties) Let ¢ denote an arbitrary chf.

(a) ¢(0) =1 and [§(t)| < 1 for all t € R.

(b) Pax+(t) = ¢Pox (at) for all ¢ € R.

(c) P x, ( H ¢X when X1,...,X,, are independent.

(d) ox(t) = dx(—t) = ¢_x(t) = EcostX — iEsintX for all t € R.

(e) ¢ is real-valued if and only if X = —X.

() |p(-)]* is a chf  [of the rv X* = X — X', with X and X’ iid with chf ¢].
(g) @(+) is uniformly continuous on R.

Proof. Now, (a), (b), (c), and (d) are trivial. (e) If X = — X then ¢px = ¢x; so Py is real.
If ¢ is real, then ¢x = dx = ¢_x; so X = —X by the uniqueness theorem below. (f) If X
and X' are independent with characteristic function ¢, then ¢x_x» = dxd_x = ¢p = |¢|>.
For (g), we noto that for all ¢,

6t + h) — 6(1)] = | [[expt+)® —cite] dF ()

(a) /|e””|\emw 1] dF (z /|e’h”” 1]dF(z) — 0

as h — 0, by the DCT with dominating function 2.
The converse of (c) is false. Let X; = X5 and X3 be two iid Cauchy(0, 1) rvs. We will

see below that ¢cauchy(t) = exp(—[t[), giving dox, (t) = dx,+x,(t) = dx,+x,(t) for all t. O
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Motivation 3.1 (Proving the CLT via chfs) In this chapter we present an alternative
method for establishing F,, —4 F. It is based on the fact (to be demonstrated below) that
the complex exponential functions e’ on R, indexed by ¢t € R, form a limit determining class.
Saying this another way, the chf ¢ determines the distribution P, or the df F'(or the density
f,if there is one). Thus (as is shown in the continuity theorem below) we can establish that
F,, —4 F by showing that ¢,(-) — ¢(-) on R. Indeed, using just the elementary properties
listed above, it is trivial to give an informal “proof” of the classical CLT. Thus, we begin by
expanding the chf of one rv X as

(a) Dx—py vn(t) = dx—u(t/Vn) = Ecit(X—m/vn
(b) B+ (X )+ WY (X — 1022+ oft?/m)}

=1+ i—tE(X —u) + @E(X —w)?/2+o(t?*/n)
Vn n

(c) =14+0—t*0?/2n+ o(t*/n) = 1 — t*[0* 4 o(1)]/2n.
(In section 6 we will make such expansions rigorous, and in section 7 we will estimate more

carefully the size of the errors that were made.)
Then the standardized sum of the iid rvs Xy,..., X, is

(d) Zp = Xn — p) = 27 (X — p)/V/m,
and it has chf

(e) 02, (t) = [Th1 (x4 -y v (t) = [O(x )/ ym ()"
() ={1- W}” L, o—t20/2
() = ¢n(0,02)(t) as will be shown below.

Since ¢z, () — ¢z(+) on R, where Z = N(0,1), the uniqueness theorem and the continuity
theorem combine to guarantee that Z, —4 Z. In principle, this is a rather elementary way
to prove the CLT.

Think of it this way. To have all the information on the distribution of X, we must know
P(X € B) for all B € B. We have seen that the df F' also contains all this information, but it
is presented in a different format; a statistician may well regard this F' format as the “tabular
probability calculating format.” When a density f exists, it also contains all the information
about P; but it is again presented in a different format, which the statistician may regard as
the “distribution visualization format.” We will see that the chf presents all the information
about P too. It is just one more format, which we may well come to regard as the “theorem
proving format”. ]
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Table 3.1 Some Important Characteristic Functions

Distribution Density Chf

Binomial(n, p) Z pE(l—p)F for0<k<n [L+p(—1)"
Poisson(\) e \F k! for k>0 exp(A(e’ — 1))
GeometricF(p) pg"; for k>0 p(1 — get)~!
Normal(p, 02) e~ (@=m*/20* |\ /ors on R exp(itu — o?t?/2)
Exponential(6) e=*/%/gon Rt (1—itg)~1
Chisquare(n) x (/2 =1e=2/2 /[on/2T (n /2)] (1 — 2it)="/?
Gamma(r, 0) " 1e=®/? /07T (r)] on R* (1 —ith)~"
Uniform(0, 1) 1[0’1{ (x) [exp(it) — 1] /it
Double Exp(6) e~ 12179 /29 1/(1+ 6%t2)
Cauchy(0, 1) 1/[m(1 + 2?)] eIt

de la Vallée Poussin (1 — cosz)/(mz?) on R [1—[t]] x 11 L1 (t)
Triangular(0, 1) 1= [z]] X 1j_q 11() 2(1 — cost)/(t?) on R

Review of Some Useful Complex Analysis

A function f is called analytic on a region (a connected open subset of the complex plane) if
it has a derivative at each point of the region; if it does, then it necessarily has derivatives
of all orders at each point in the region. If zy is an isolated singularity of f and f(z) =
S an(z — 20)" + Yom_ bu(z — z0) 7", then k = (the residue of f at z) = by. Thus if f
has a pole of order m at zy (that is, b, = 0 for n > m in the expansion above), then g(z) =
(2= 20)"f(2) = b+ +b1(2 = 20)™ L+ 30" an(z — 20)™F™ has by = g™~V (20)/(m — 1)\
Thus

(2) by = k = (residue of f at zp) {= lim (z — z0)f(z) for a simple pole at zp}.

z—20
We also note that a smooth arc is described via equations © = ¢(t) and y = ¢ (¢) fora <t <b
when ¢’ and ¢’ are continuous and not simultaneously zero. A contour is a continuous chain
of a finite number of smooth arcs that do not cross the same point twice. Closed means

that the starting and ending points are identical. (See Ahlfors (1953, pp. 102, 123) for what
follows.)

Lemma 3.1 (Residue theorem) If f is analytic on a region containing a closed contour C,

except for a finite number of singularities z1,..., z, interior to C at which f has residues
k1, ..., ky,, then (for counterclockwise integration over C')

=0 if f is analytic,
(3) / f(z)dz = ZMZ ks { = 2mi(z — 2,) f(20) for one simple pole at z,.

Lemma 3.2 Let f and g be functions analytic in a regions 2. Suppose that f(z) = g(z) for
all z on a set S that has an accumulation point in 2. We then have the equality f(z) = g(z)
for all z € Q. (That is, f is determined on 2 by its values on S. So if there is a Taylor series
representation f(z) = Y_7% an(z — 2,)7 valid on some disk interior to €, then the coefficients
a1, as,... determine f on all of Q.)
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Evaluating Various Characteristic Functions

Example 3.1 (Derivation of the Cauchy(0, 1)chf) Let C' denote the upper semicircle cen-
tered at the origin with radius R parametrized counterclockwise; and let A (for arc) denote
C without its base. Let ¢t > 0. The Cauchy chf is approached via

itz
(a) /C h dz = /Cf(z) dz =2mi - (2 — 20) f(20) (with z, = 1)
(b) 2mi - (2 — 1) o - for t > 0

=2m-(z—1 — e . '
(14 iz)(1 —i2) le=i
It further holds that
et R itz it

© /cmdz‘/_Rde/AWW

0 eitw

since the second integral in (b) is bounded in absolute value by
%fAﬁdzz%ﬁﬂ'R*}O as R — oo.

Since the Cauchy is symmetric, ¢(—t) = ¢(t) = exp(—|t|); or, integrate the contour clockwise

when ¢t < 0. The tabular entry has been verified. That is,

(4) o(t) = exp(—|[t]), for all ¢, gives the Cauchy(0,1) chf. O

Example 3.2 (Derivation of the N(0,1) chf) Let X be N(0,1). Then

o) = [~ em”\/%e*ﬁ/zdx.

— 00

Let us instead think of ¢ as a function of a complex variable z. That is,
6(2) = [, e e 2da.

Let us define a second function ¢ on the complex plane by

(b) P(z) = e /2,

Now ¢ and @ are analytic on the whole complex plane. Let us now consider the purely
imaginary line z = ¢y. On this line it is clear that

Wliy) = e/,
and since elementary calculations show that

liy) = [T e e 2 = "2 ¥ o em (et 2y = o2,

we have ¢ = ¢ on the line z = 4y. Thus lemma 3.2 implies that ¢(z) = ¢(z) for all z in the
plane. Thus ¢(t) = ¢ (t) for all real z = ¢. That is,

(5) o(t) = exp(—t*/2), for all real ¢, gives the N(0,1) chf.

(A similar approach works for the gamma distribution in exercise 3.3 below.) (|
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Exercise 3.1 Derive the N(0,1) chf via the residue theorem. Then extend to N(u,
[Hint. Let C denote a closed rectangle of height ¢ with base [—R, R] on the z-axis.]

Exercise 3.2 (a) Derive the Poisson (A) chf (by summing power series).
(b) Derive the GeometricT (p)chf.
(¢) Derive the Bernoulli(p), Binomial(n, p), and NegBiT(m, p) chfs.

Exercise 3.3 (a) Derive the Gamma(r, 6)chf. [Hint. Note example 3.2.]
(b) Derive the Exponential(f) and Chisquare(n), and Double Exponential(d) chfs.

Exercise 3.4 Derive the Logistic(0, 1) chf.
Hint. Use the lemma 3.2 approach.

Exercise 3.5 Show that the real part of a chf (or Re ¢(+)) is itself a chf.

Exercise 3.6  Let ¢ be a chf. Show that 1 [ ¢(tu)du is a chf.

205

a?).
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4 Uniqueness and Inversion

For the chf to be a useful tool, there must be a l-to-1 correspondence between dfs and chfs. The
fact that this is so is called the uniqueness theorem. We give a simple proof of the uniqueness
theorem at the end of this subsection. But the simple proof does not establish an inversion
formula that expresses the df as a function of the chf. In order to establish an inversion
formula, we will need some notation, and an inversion formula useful for other purposes will
require a hypothesis on the chf that is strong enough to allow some useful simplification.

Let U denote a rv with continuous density fy(+) and let W denote a rv with a bounded and
continuous density fu (-) and with chf ¢w (+); and suppose we are lucky enough to determine
a complementary pair that (for some constant ¢) satisfy the relationship

(1) fu(t) =cow(—t) for all real ¢. (Complementary pair)

We give three examples of such pairs. Let Z = N(0,1),T = Triangular(0, 1), and let D have
the de la Vallée Poussin density. Then examples of (1) are

(2) U=7 and W =2, with ¢ = 1/v2m,
(3) U=T and W = D, with ¢ =1,
(4) U=D and W =T, with ¢ = 1/27.

(The Cauchy(0, 1) and the Double Exponential(0, 1) then lead to two additional complemen-
tary pairs.) (The beauty of this is that we can nearly eliminate the use of complex analysis.)
(In all such examples we have 2wcfy (0) = 1.)

An arbitrary rv X, having df Fx(:) and chf ¢x(-) may not have a density. Let us recall
from the convolution formula (A.2.2) that (if U has a density) a slightly perturbed version
X, of X is smoother than X, in that

(5) X, = X + aU always has a density f,(-); and X, —¢ X asa — 0

by Slutsky’s theorem, since aU —, 0 as @ — 0. Thus F(-) = lim F,,(-) at each point in the
continuity set Cr of F. This is the key to the approach we will follow to establish an inversion
formula.

Theorem 4.1 (Uniqueness theorem) Every df on the line has a unique chf.

Theorem 4.2 (Inversion formula) If an arbitrary rv X has df Fx () and chf ¢x(-) we
can always write

T2
(6) Fx(ra) — Fx(r) = lin})/ faly)dy for all 1 < rg in Cpy,
where the density f,(:) of the rv X, = X + aU of (5) [with U as in (1)] is given by

(7) faly) = /OO e dx (v)efw (av) dv for all y € R.

— 00
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Theorem 4.3 (Inversion formula for densities) If arv X has a chf ¢x(-) that satisfies
the integrability condition

(®) / 7 léx(8)] dt < oo,

then X has a uniformly continuous density fx(-) given by

9) I[x(z) = % /jo e M (t) dt.

Remark 4.1 The uniqueness theorem can be restated as follows: The set of complex
exponentials G = {e"® for x € R : t € R} is a determining class. This is so because knowing
all values of ¢ x (t) = Ee!X allows the df F to be determined, via the inversion formula. [J

Proof.  From the convolution formula (A.2.2) and X, = X + aU we have
faly) = [5 2 fu(¥55) dFx (x)

(a) =c[7 bow(%5Y) dFx(x) by (1)
= (c/a) [2o, [2o €79/ iy (w) dw dFx ()
= (c/a) [Z_e7/e fyr(w) [7_ e/ dFx (x)dw by Fubini

(b) = (c/a) [Z e %Ox (w/a) fw (w) dw = ¢ [7 e ¥ dx (v) fw (av) dv.

Since X, —4 X, at continuity points r < ro of F' we have (with X, = F,,(-))

(c) Fx(ra) — Fx(r) = iigb{Fa(ﬁ) —Fu(r)} = ilg%)/rf faly) dy

This establishes theorems 4.1 and 4.2.

The particular formula given in (c¢) might look useless, but the mere fact that one can
recover Fx from ¢x via some formula is enough to establish the important property of
uniqueness. (See exercise 4.3 for some utility for (7).) We now turn to theorem 4.3, in which
we have added a hypothesis that allows the previous formula to be manipulated into a simple
and useful form.

Suppose that (8) holds, so that applying the DCT to (b) (using a constant times |¢x (-)]
as a dominating function) gives [recall the hypothesis on the fu (-) of (1)] as a — 0 that

(d)  faly) = fy) = [efw(0)] [T e ¥ ox (v) dv,

since fy is bounded and is continuous at 0. Note that uniform continuity of f follows from
the bound

[f(y + 1) = f(y)l = [efw O)]] [7 e @MY — e ]gx (v) dv|

(e) <efw ()] [75 e —1]|gpx (v)] dv — 0 ash — 0,
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by applying the DCT (with dominating function 2¢|| fw|||¢x(:)|). The uniform convergence
of f, to f on any finite interval involves only an |fw (0) — fw (av)| term under the integral
sign. That f really is the density of Fx follows from applying this uniform convergence in
(¢) to obtain

(f) Fx(r2) = Fx(r1) =/ f(y)dy
1
The conclusion (9) holds since specifying U = W = Z gives

(2) [efw(0)] = 1/(27) (as it always must). 0

Esseen’s inequality 9.7.1 below provides an important extension of theorem 4.2 by showing
that if two chfs are sufficiently close over most of their domain, then the corresponding dfs
will be uniformly close over their entire domain.

Exercise 4.1 Show that setting W = Z in line (c) of the previous proof leads, for any rv
X, to the alternative inversion formula

1 0 e*”‘w _ efztrl
(10) Fx(ro) — Fx(ry) = hm %/ _—it¢X(t)e*a2t2/2 dt

at all continuity points 1 < r9 of Fx(-). [This is one possible alternative to (6).]

Exercise 4.2  Derive the chf of the Triangular(0, 1) density on the interval [—1, 1] (perhaps,
add two appropriate uniform rvs). Then use theorem 4.3 to derive the chf of the de la Vallée
Poussin density, while simultaneously verifying that the non-negative and real integrable
function (1 — cosx)/(mx?) really is a density. Following section 6, determine E|X| when X
has the de la Vallée Poussin density.

Exercise 4.3 (Kernel density estimator) Since the rv X having df Fx(-) and chf ¢x(+)
may not have a density, we choose instead to estimate the density f,(-) of (5) and (7) using

) d@=e [ oo a) d
[where fu(-) = céw(—) and where we now insist that uy = 0 and o is finite] with the
empirical chf ¢x () defined by

e} n

~ . 1 .
12 = ite F P it X f _ )
(12) bx(t)= [ edF@ =Y e or — o0 <t < 00

— 0 =1

(a) Verify that fa() is actually a kernel density estimator, meaning that it can be expressed
as

W A1 [ (L) ar }1;1 (=),

[This has statistical meaning, since we are averaging densities centered at each of the
observations.]
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(b) Show that f,(z) is always unbiased (in that it has mean f,(z)) and has a finite variance
we can calculate; thus for all z € R we can show that

(14) Efa(w) = fa(),

; 11 [ T—y
1) valhol= 3 { [ REarm - 1hEP
n la® J_ a
(¢c) Supposing that Fx(-) has a density f(-) € CéZ), determine the order of the mean squared
error

(16) MSE{ fu()} = Bias®{ fu(2)} + Varlfu(2)] = {E(fu(2)) — f()}* + Var[fa(2)]

of f,(x), viewed as an estimator of f(z). (It is intended that you rewrite (16) by expanding
fa(z) in a Taylor series in “a” (valid for f(-) € C’éz)), and then analyze the magnitude of (16)
for values of “a” near 0. It might also be useful to relabel fy(-) by ¥ now so that your work
refers to any kernel density estimator, right from the beginning. This will avoid “starting
over” in part (f).) Show that this MSE expression is of order n=4/5 for f(-) € C’IEQ) when a is
of order n=1/5, and that this is the minimal attainable order.

(d) Note that the choice U = Z (or U = T) leads to an f,(-) that is the sum of n normal (or
triangular) densities that are centered at the n data points and that have a scale parameter
directly proportional to a.

(e) Obtain an expression for lim,_oa*5 MSE {f,(z)} in terms of f(z), f'(z), and f”(x)
when a = n~!/® (and obtain it for both of the choices U = Z and U = T).

(f) We could also motivate the idea of a kernel density estimator based on (13) alone. How
much of what we have done still carries over for a general kernel? What properties should
a good kernel exhibit? What can you prove in this more general setting? (Now, for sure,
replace fy by a function labeled 1. A simple sentence that specifies the requirements on
should suffice.)

Exercise 4.4 Use the table of chfs above to show in what sense the sums of independent
Binomial, Poisson, NegBiT, Normal, Cauchy, Chisquare and Gamma rvs have distributions
that again belong to the same family. (Recall section A.2, noting that chfs have allowed the
complicated operation of convolution of dfs or densities to be replaced by the simple operation
of multiplication of chfs.)
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5 The Continuity Theorem

Theorem 5.1 (Continuity theorem for chfs; Cramér—Lévy) (i) If ¢,, — ¢ where ¢ is
continuous at 0, then ¢ is the chf of a bona fide df F' and F,, —4 F.
(ii) F,, —q4 F implies ¢,, — ¢ uniformly on any finite interval [t| < T.

Inequality 5.1 (Chf bound on the tails of a df) For any df F' we have

(1) P(X|>A) <7\ [, 1 = Realg(t)]dt  for all A > 0.
Proof. Now,
(a) A fl/A 1 — Real ¢(t)] dt = A fl//\ [ [1 = cos(ta)] dF (z) dt

= [~ )\f [1 — cos(tz)] dt dF ()

= [ {1 — S | g ()

= [ 1 — e dF(2)

> [iayazyll = sin(@/A)/(@/A)] dF (z)

(b) — infy o1 — sin(y) /5] P(X] > A) = [1 — sin(1)] P(1X] > )

() = (1585..)P(IX| = A) = P(|X| = \)/7,

as claimed. (It may be interesting to compare this to the Chebyshev inequality.) [This idea
will be carried further in (10.5.9) and (10.5.10).] O

Proof.  Consider theorem 5.1. (i) The uniqueness theorem for chfs shows that the collec-
tion G of complex exponential functions form a determining class, and the expectations of
these are hypothesized to converge. It thus suffices (by the kinder and gentler Helly—Bray
theorem (theorem 9.2.1(i)(a))) to show that {F,, : n > 1} is tight. Now,

1/x

(@) Ty oo P(|Xn] > A) < Ty oo 7A [172[1 = Real ¢, (8)] dt

— 70 [ [1 = Real ¢(t)] dt

by the DCT, with dominating function 2
(b) —0 as\— oo,

so that {F, : n > 1} is tight.
(ii) Now replacing X,, —4 X by versions Y;, —,.s. Y (and using Skorokhod’s construction)
gives for |t| < T that

(© 6a0) = 610)] < [ 167 = | ap
S /|e7it(Yn_Y) _ 1|dP

< /sup‘t|§T|e“(Y"7Y) —1|dP
(d) -0 as sup{|it(Y,, = Y)|: t| < T} <T)Y,-Y|—0
by the DCT, with dominating function 2. O
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Higher Dimensions
If Xy,..., Xy are rvs on (Q, A, P), then the Bi-A-mapping X = (X1, ..., X) from Q to Ry
induces a measure Px on (Ry, Bi). The characteristic function of X is

(2) ox(t) = Ee'X = el Xt +0Xi] for t = (ty,... 1) € Ry.

Without further explanation, we state simply that the uniqueness theorem (that {g; =
exp(it’x) for all x € R, : t € R,} is a determining class) and the Cramér-Lévy continu-
ity theorem still hold, based on minor modifications of the previous proof. We also remark
that all equivalences of —4 in theorem 1.1 are still valid. But we now take up an extremely
useful approach to showing convergence in distribution in higher dimensions.

The characteristic function of the one-dimensional linear combination X'X is

(3) P5x(t) = EelthXat Xl for ¢ € R.

Comparison of this with (2) shows that knowing the joint chf ¢x (t) for all t € Ry, is equivalent
to knowing the one-dimensional chf ¢y, (t) for all £ € R and X € Ry, for which [A| = 1. This
immediately yields the following useful result.

Theorem 5.2 (Cramér—Wold device) If X, = (Xp1,..., Xnk) satisfy

(4) $xx, () = d5x(t)  forallt € R and for each X € Ry,

then X,, —4 X. (It suffices to show (4) for all unit vectors X in Ry.) [In fact, we only require
that X'X,, —4 X'X for all such A (no matter what method we use to show it), as such a result
implies (4).]

Theorem 5.3 T};e rvs Xq,..., X, are independent if and only if the joint chfs satisfy
ox(t1, .-, te) =11 ox, (t:).

Exercise 5.1* Prove the claims made below (2) for the n-dimensional chf ¢x.

Exercise 5.2 Prove theorem 5.3.
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6 Elementary Complex and Fourier Analysis

Lemma 6.1 (Taylor expansions of log(1+ z) and e*) [Note that log z is a many-valued
function of a complex z = re®; any of (logr) +i[0 + 27wm] for m = 0,41, +2, ... will work for
log z. However, when we write log z = logr + i6, we will always suppose that —7 < 6 < 7.
Moreover, we denote this unique determination by Log z; this is the principal branch.] The
Taylor series expansion of Log (1 + z) gives

m—1 k—1_k /5 _ L \k—1k
. Log(L+2) = 3 (1R Lk = [ (1Rt
2™ 2 2™
< =l )<
< m(1+|z|+|z|+ )*m(1—|z\)
for |z| < 1. Thus
(2) Log (14 2) — 2| < |22/(2(1 — 0)) for |2| <6< 1.

From another Taylor series expansion we have for all z that

z m—1 [e%S) m oo |z|d i 2l el
(3) e — Sp 2R R = | 0, 2R < el ey R sy < B

Lemma 6.2 (Taylor expansion of e¢?) Let m >0 and 0 < <1 (and set the constant
Koo =2, below). Then for all real ¢ we have

i nes (i)F
=2 !

k=0

52! °

=m0 201+ 0)0+0) 7 = Kong

t|m+6.

(4)

Proof.  The proof is by induction. For m = 0 we have both |e* — 1| < 2 < 2|t/2|° for
[t/2| > 1, and (since fot ietsds = fot(z cos s —sins)ds = et — 1)

(@) et —1] < | [ieinds| < [iTds =] <2/t/21  for [t/2] < 1;

0

so that (4) holds for m = 0. We now assume that (4) holds for m — 1, and we will ver-
ify that it thus holds for m. We again use e — 1 = i fot e**ds and further note that
PSS (s R R ds = Sy (iR /R [ sFds = 307 (i) /K! to obtain

e = SSait)* k| = [i fy e = SR (is)" /] ds

(b) < Kpn-1s O‘tl sm1H0 s by the induction step
() = Koot .
[See Chow and Teicher (1997).] (The next inequality is immediate.) O

Inequality 6.1 (Moment expansion inequality) Suppose E|X|™% < oo for some m > 0
and 0 < 6 < 1. Then

™k
(5) O %EX’“ < K s [t TOE|X | for all .
k=0
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Some Alternative Tools

Lemma 6.3 (The first product lemma) For all n > 1, let complex B,1, ..., B, satisfy the
following conditions:

(a) Bn =310k — B asn— oo.

(b) On = [maXISkSnlﬁnk” =0

(c) M, =37_,|0nk| satisfies 6,M, — 0.

Then (compare this with the stronger Lemma 8.1.4, which requires all 5,5 > 0)

(6) H1+6nk ) — e’ asn— oo

Proof.  When 0 < §, < 1 (and we are on the principal branch), (2) gives

(p) |ZZ:1LOg (1 + ﬁnk> - Zzz1ﬁnk| < ZZ:llﬁnle < 0, M, — 0.

(q) w1 Log(1+ Bur) — B as n — o0.

Moreover, (q) shows that

(r)  ITaci (1 + Bur) = exp(Log(ITj—; (1 + Buk))) = exp(3oi_; Log(1 + Bur))

— exp(f),
and this gives (6). [See Chung (1974).] (Recall lemma 8.1.4.) O
Lemma 6.4 (The second product lemma) If zq,..., 2, and wy,...,w, denote complex num-

bers with modulus at most 1, then

n n n
sz—Hw §Z|zk—wk|.
k=1 k=1

k=1
Proof.  This is trivial for n = 1. We will use induction. Now,

(7)

(a) T 2 = Tl el < Lzl [T 2 = TTRC wi] + 2 = wal [T e
(b) <Mt e - 113 1wk]+|zn wal T < 070 e — w4 20 — wa
by the induction step. [See most newer texts.] O

Inequality 6.2 (Moment expansions of chfs) Suppose 0 < E|X|™ < oo for some m > 0.
Then (for some 0 < g(t) < 1) the chf ¢ of X satisfies

m . k
(8) ‘q’)(t) - Z %EX’“ < %\t|mE|X\mg(t) where g(t) — 0 as t — 0.
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Proof.  Use the real expansions for sin and cos to obtain

(a) et = cos(tx) + isin(tr) = Yp) (1“) + (m) [cos(01tz) + isin(fatx)]

(b) =3 ”]f,) (m) [cos(01tx) + isin(fatz) — 1].

Here, we have some 01,6, with 0 < |6;] V |02 < 1. Then (8) follows from (b) via

(9) lim; o E|X ™ [cos(01tX) — 1 4 isin(02tX)]| = 0,

by the DCT with dominating function 3|X|™. [See Breiman (1968).] O

Inequality 6.3 (Summary of useful facts) Let X = (0,02). Result (8) then gives the
highly useful

1 3
lp(t) — (1 — 5027?2)\ < 502t2g(t) where g(t) — 0ast — 0,
with 0 < g(t) < 1 Applying this and (5) gives (since K21 = ¢, and since K11 = 3 allows
L 0%t? to replace 2 o?t%g(t))
L 5 L oo, 1 31413
(10) lp(t) — (1 — 5 )| < 5 t“ A 6E|X| |t] for all t € R.

Exercise 6.1 (Distributions determined by their moments)

(a) Suppose that E[X|* < co. Then the nth derivative ¢(")(-) is a continuous function given

by ¢ (t) = i"E(X"e"X), so that EX™ = i~"¢(")(0).

(b) The series () = > o (it )*E(X*)/k! has radius of convergence R = 1/(eL), where
= Timy, |pe|* /k = Timy (B| X |F)VF /= hmul/mc (2k); use the root test.

( ) The series in (b) has the same R > 0if Y7o pox t2%/(2k)! < 0o for some ¢ > 0.

(d) The series (b) converges for |t| < r if and only if Eexp(¢|X|) < oo for |t| < r if and only

if E exp(tX) < oo for |t| <7

(e) If the radius of convergence in (b) is strictly positive, then the distribution having the

stated moments is uniquely determined by its moments p.

(f) Show that the Normal(0, 1) distribution is uniquely determined by its moments.

(g) Show that any Gamma(r, 1) distribution is uniquely determined by its moments.

(h) Show that it is valid to expand the mgs of Normal(0, 1) and Gamma(r,1) to compute

their moments. Do it.

Exercise 6.2 (a) If ¢”(0) is finite, then o2 is finite. Prove this.
(b) In fact, if ¢(2%)(0) is finite, then EX?* < co. Prove this.
(*) Appeal to Exercise 3.3.

Exercise 6.3 (Bounds on (1 — a/n)™) (i) Use (1+t) <et<1/(1—t)for0 <t <1at
t = z/n to show that

0<e™—(1-=-)"< - for 0 <z <n.
(ii) (Hall and Wellner) Show that

2e7? < nsgp()) e — (1= a/n)"1jgn(z)| < (2+n"")e? foralln > 1.
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Results from Fourier Analysis

On some occasions we will need to know the behavior of ¢(t) for |t] large.

Lemma 6.5 (Riemann-Lebesgue lemma) If [ |g(z)|dz < oo, then
(11) / eg(x)dr — 0 ast— oo.

Proof. Now, ¥ = {w > ¢il(a, b,] ¢ @i, bi,¢; € Rand m > 1} is dense in £; by theorem
3.5.8; that is, if [7 )\ dz < oo, then there exists 1) € ¥ such that [~ [g — ¢|dz < e.
Thus y(t) = | /7, m x) dx| satisfies

Y(8) <[22 e lg(@) — (@)| do + | [ e () dal

m bi itx
(a) <e+ 7 lall [, € dal.

It thus suffices to show that for any a,b in R we have

b
(12) / e dr — 0 as |t| — oo.

a

A quick picture of sines and cosines oscillating very fast (and canceling out over the interval)
shows that (12) is trivial. (Or write e!*® = cos(tz) + isin(tz) and compute the integrals.) [J

Lemma 6.6 (Tail behavior of chfs)
(i) If F has density f with respect to Lebesgue measure, then |¢p(¢)| — 0 as [t] — oo.
(ii) If F has n + 1 integrable derivatives f, f/,..., f® on R, then

(13) "lo()] =0 as [t] — oo
Proof.  The fact that |¢(¢)] — 0 as |[t| — oo follows from the Reimann-Lebesgue lemma,

since f is integrable. Since f is absolutely continuous and a density, it follows that that
f(z) — 0 as x| — co. Then use

t) = [e' f(z)dx = [ f(x)d(e™ /it)
() = (e"*/it) f( — [ e f'(x) dx/(it)
(b) =—[e"f'(x)dx/(it) with f'() € Ly,
using f(z) — 0 as |z| — oo in going from (a) to (b). (Note exercise 6.4 below.) Applying
the Riemann-Lebesgue lemma to (b) gives |t]||¢(t)| — 0 as |¢t| — co. Keep on integrating by

parts and applying the Riemann-Lebesgue lemma. (|

Exercise 6.4 Verify lemma 6.2(ii) when n = 1.
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Other Alternative Tools®

Then chf always exists, so it can always be used. However, if X > 0 or if X is integer valued,
then Laplace transforms or probability generating functions offer more elementary tools.

Exercise 6.5* (Laplace transform) Let ' denote the class of all dfs F' having F_(0) = 0.
For any df F € F* we define the Laplace transform L of F by

(14)  L(\) =Ee ™ = [[FedF(x) for A > 0.

(a) Establish an analogue of proposition 3.1(a), (b), (c), and (g).

(b) (Uniqueness) Show that each df in F* has a unique Laplace transform.

(c) (Continuity) Let X,, 2 F,, € F*. If L,(\) — (some L(\)) for all A > 0 with L(-) right
continuous at 0, then L is the Laplace transform of a df ' € FT for which the convergence
in distribution F,, —4 F holds.

(d) Establish analogues of inequality 6.1 on moment expansions.

Exercise 6.6* (Probability generating function) Let F! denote the class of all dfs F' assigning
mass 1 to the integers 0,1,2,.... For any df F € F! we define the probability generating
function g of F by

(15) g(z) =E 2% = ZZO:Opk P for all complex z having |z| < 1.

(a) Establish an analogue of proposition 3.1.

(b) (Uniqueness) Show that each df F in F! has a unique generating function.

(c) (Continuity) Let X,, = F,, € F!. If g,,(2) — (some g(z)) for all |z| < 1 with g(-) continuous
at 1, then g is the generating function of a df F' in F T for which F,, —4 F.

Exercise 6.7° (Cumulant generating function) The cumulant generating function ¥ x(-) of
arv X is defined by

(16) ¥x (t) = Log ¢x(t) = Log E(e"),

and is necessarily finite for t-values in some neighborhood of the origin.

(a) Temporarily suppose that all moments of X are finite. Let u = E(X — p)* denote the
k-th central moment, for k¥ > 1. Then when g = EX = 0 and with 02 = uy, we have the
formal expansion

ox(t) =1 —1t20%/2 4 (it)>uz /3! + (it) g /4! + - =1+ 2.
Verify that further formal calculations based on this yield
Yx(t) =Log dx(t) =Log (1+2)=2—22/2+2%/3+ -
— (it)2p2/2! 4 (i) /31 + (i) (4 — 3uB) AL + -

(it)202 /20 + (it)3 s /3! + t* (g — 30%) /41 + - --

Do ity /5L,

r\
-
~J

2

|

/\
-
o0

N
M1l
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where £ is called the jth cumulant of X. Note that for independent rvs X,..., X,
(19) (the jth cumulant of Y, _, Xx) = > _, (the jth cumulant of Xj),

which is nice. Then verify that in the iid case, the third and fourth cumulants of the stan-
dardized rv Z,, = /n(X,, — p)/o are

(200 n/VA=(s/o¥)Vi and  a/n = (uaot — 3)/n,

where 7 measures skewness and 7, measures tail heaviness. [This is particularly nice; it
shows that the effect (on the distribution of X,,) of skewness disappears at rate 1/,/n, while
the effect of tail heaviness disappears at rate 1/n.]

(b) Finally, if only E|X|™ < oo for some m > 1 is known, show that in a sufficiently small
neighborhood of the origin

(21) () = 2oiak; (i) /5! < cmlt]™EIX[ ™0 (1),
where d,,,(¢) \, 0 as t \, 0, and
(22)  |o(t) — X7 k(i) /5] < @nlt/mEIX|™

for some universal constant ¢,,. The exercise is to establish carefully that all of this is true.
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7 Esseen’s Lemma

Let G denote a fixed function having G(—oc) = 0, G(+00) = 1, having derivative g on the
real line for which |g(-)| is bounded by some constant M, having [~ xg(z) dz = 0, and then
let ¥(t) = ffooo e g(z) dr. Let F denote a general df having mean 0, and let ¢ denote its
characteristic function. We wish to estimate ||F' — G|| = sup_ -, |[F(2) — G(z)| in terms
of the distance between ¢ and ¥. Roughly speaking, the next inequality says that if ¢ and
are sufficiently close over most of their domain, then ||F' — G| will be small. [In the initial
application of this Esseen’s lemma, we will take G, g, to be the N(0,1)df, density, and chf.
In this context, the constant of (1) is 24||g||/m = 24M /7 = 24/(v/277) = 3.047695 . . . ]

Inequality 7.1 (Esseen’s lemma) Let F' and G be as above. For any a > 0 we have the
uniform bound

(1) ||F7G|\§%/a |M|dt+24”g”,

Ta

—a

Proof.  The key to the technique is to smooth by convolving F' and G with the df H,
whose density h, and characteristic function v, are given by

2) ha@):l—#;g%) on R and %(t):{

1—1t|/a if |t| <a,
0 if [t] > a.

This h, is the density of V/a, when V has the de la Vallée density. Let F, and G, denote
the convolutions of F' and G with H,, for “a” large. We will now show that

(3) I1F = G| < 2[[Fa — Gal| + 24|g]l/ (ma).

Let A =F —G. Now, A(z) = Ay(x) and A_(z) exist for all z; thus there exists z, such
that either D = [|[F — G|| = |A(z,)] or D = |A_(z,)|. Without loss of generality, we suppose
that D = |A(x,)|(just replace X,Y by — X, —Y if not). Note figure 7.1. Without loss of
generality, we act below as though A(z,) > 0, and we let z, > z,. (If A(z,) < 0, then let
zo < T,). Now, since F'is /" and g is bounded by M, we have

D
Azo—a) > D/2+ Mz for o] <e= ——,
(a) (20 — ) > D/2+4 Mx or x| <e oYi

where e = D/2M and z, = z, + €. Trivially (since D was the supremum),
(b) Az —2x) > —D for |z| > e.

Thus, with A, = F, — G, using (a) and (b) gives

(c) [Fo — Gall = Aa(z0) = [T, Alzo — 2)ha(z) dz by the convolution formula
(d) > [€.[D/2+ Mz]hy(z) de — D f[|$|>6] he(z) dx
=(D/2)[1 - f[|x|>e] he(z) dz]+ M -0—D f[lﬂf|>6] he(z) dz

since xh,(z) is odd
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= (D/2) = (3D/2) [;,1oq ha(x) dz > (D/2) — (12M /ra)

() = [[F = G/2 = (12M/ma),
(which is (3)), since

() ‘[HCE|>E] ho(z) do <2 [(2/maz?) dow = 4/(wae) = 8M/(waD).

o) z
Figure 7.1 Bounds for Esseen’s lemma

We now bound ||F, — G,l||. By the Fourier inversion formula, F, and G, have bounded
continuous “densities” that satisfy

(4) fa(@) = ga(x) = [7, e [p(t) — 9 ()]7a(t) dt/(2m).
From this we suspect that
(5) Do) = 5 [ e =0

That the integrand is a continuous function that equals 0 at ¢ = 0 (since F and G have
0 “means,” inequality 6.1 gives this) makes the right-hand side well-defined, and we may
differentiate under the integral sign by the DCT [with dominating function 7,(-)] to get the
previous equation (4). Thus A,(x) can differ from the right-hand side of (5) by at most a
constant; but this constant is 0, since obviously A, (z) — 0 as |z| — oo, while the right-hand
side does the same by the Riemann-Lebesgue lemma. Equation (5) gives

(6) |Aa(2)] < 3= [, |M| dt for all z.

Combining (3) and (6) gives (1). O
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Corollary 1 (Stein) Suppose that instead of convolving F' and G with the H, of (2), we
convolve with an arbitrary df H instead. In this situation we obtain

(7) |F =Gl <2(|F+H—G*H| +8|lg|E[H()].
Proof.  Picking up at line (d) of the previous proof (with Y 2 H), we obtain
(d) |F+«H—-GxH| > f[—e,e] [D/2+ My]dH (y) — DP(|Y] > €)

> (D/2)[1—=P(]Y| >e)]— ME|Y| — DP(|Y] > ¢)

> (D/2)— (3D/2)P(|Y| > ¢€) — ME|Y]|
(e) > (D/2) — AME]Y|
using Markov’s inequality and e = D/2M in the last step. (|
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8 Distributions on Grids*

Definition 8.1 We say that a rv X is distributed on a grid if there exist real numbers a, d
such that the probabilities p, = P(X = a + nd) satisfy > _p, = 1. We call d the span of
the grid. The mazimal span is sup{|d| : |d| is a span}.

Proposition 8.1 If ¢y # 0, the following are equivalent:

(a) |(to)| = 1.
(b) |¢| has period to; that is, |¢(t + ntg)| = |¢(t)] for all n and t¢.
(¢) The rv X is distributed on a grid of span d = 27 /ty.

Proof.  Suppose that (a) holds. Then ¢(ty) = e’ for some real a. That is, [ e'°* dF(z) =
e, or [et0r=®) dF(z) = 1. Taking real parts gives

(p) ffooo[l — cos(tox — a)] dF(z) = 0.

Since the integrand is nonnegative for all X, this means that

(@) 1 —cos(toxr —a) =0 as. I
that is,
(r) toX —a€{2rm:m=0,£1,£2,...} a.s.

That is, X € {a/to + (27/to)m : m = 0,£1,£2, ...} a.s.; so (c¢) holds.
Suppose (c) holds. Then (b) holds, since

|¢(t+ nt0)| _ |Zfr<;=—oo pmei(tJrnto)(aerm)‘
_ |ei(t+nt0)a‘|2i>s=_oo pmei(t+nt0)dm|
_ ‘222700 pmei(t+27rn/d)dm|
(s) = [ e oo Pme €T = [0 pret e | = |¢(t)].
Suppose that (b) holds. Then
(t) 1= 19(0)] = [$(0 + ton)| = $(0 + to1)| = |(to)],
so that (a) holds. O

Corollary 2 If a =0 in (c), then we may replace |¢| by ¢ in (a) and (b), and proposition
8.1 will still hold.

Proposition 8.2 One of the following possibilities must hold:
(d) |p(t)| < 1 for all ¢t # 0.

(e) |p(t)] < 1for 0 <t < 2n/d and |¢(2w/d)| = 1. Thus, X has maximal span d.

() |p(t)| = 1 for all t. And so ¢(t) = €' for all t and P(X = a) = 1, for some a.



222 CHAPTER 9. CHARACTERISTIC FUNCTIONS AND DETERMINING CLASSES

Proof.  Clearly, either (d), (e), or (f) holds, or else |¢(t,)| = 1 for some sequence ¢,, — 0.
In this latter case, |¢(mt, )| = 1 for all m, for each n by proposition 8.1. Since {mt,, : n >
1,m = 0,%1,+2,...} is dense in R and since ¢, and thus |¢|, is continuous, we must have
case (f) again. It remains to establish the consequences of (e) and (f).

Consider (e). Proposition 8.1 shows that (e) holds if and only if both d is a span and no
number exceeding d is a span.

In the case of (f), we have |p(t1)| = 1 = |¢(t2)| for some t; and to having t1/to = (an
irrational number). But |¢(t1)] = 1 and |¢(t2)| = 1 imply that both 27/¢; and 27 /ty are
spans. Thus if at least two points have positive mass, then the distance between them must
equal my2m/t; for some integer m; and it must equal mo27/te for some integer mo. That
is, 2wmy /t; = 2wmg /ta, or t1/ty = mq/mo = (a rational number). This contradiction shows
that there can be at most one mass point a. O

Exercise 8.1 (Inversion formula for distributions on a grid) Let X be distributed on a grid
with p, = P(X = a +dn). Then ¢(t) = 3> pne’*(@tdm) Show that

1 p _ A (t)e et ag
" 2m —Tr/d -
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9 Conditions for ¢ to Be a Characteristic Function®

Example 9.1 Now, for a > 0,

F!(z) = [1 — cos(ax)]/(raz?) forz e R
is a de la Vallée Poussin density function with chf

Balt) = (1= /)] _aq)(t) forteR.

Let F, denote the df. Then
= F 3 S " — -
F ZI:pZFal with p; >0, lel 1, and 0<a; < < anp

is a df with characteristic function

¢ = ZTpld)al

Thus any even function ¢ > 0 with ¢(0) = 1 whose graph on [0, 00) is a convex polygon is a
chf. ]

Proposition 9.1 (Pélya) Let ¢ > 0 be an even function with ¢(0) = 1 whose graph on
[0,00) is convex and |. Then ¢ is a chf.

Proof.  Pass to the limit in the obvious picture, using the continuity theorem to complete
the proof. 0

Bochner’s theorem below gives necessary and sufficient conditions for a function to be a
chf. We merely state it, as a background fact. Its proof can be found in a number of the
standard texts.

Definition 9.1 A complex-valued function ¢(-) on R is nonnegative definite if for any finite
set T' and any complex-valued function h(-) we have

(1) S o fls = DR(A(E) > 0.

Theorem 9.1 (Bochner) A complex-valued function ¢(+) is a chf if and only if it is non-
negative definite and continuous.



Chapter 10

CLTs via Characteristic
Functions

0 Introduction

The classical CLT states that if Xy, Xo, ... are iid (u,0?), then
(1) V(X — i) —q N(0,0?) as n — oo.
This chapter will also consider the following generalizations.

(i) Triangular arrays of row-independent non-iid rvs X1, ..., X,, for n > 1. Liapunov,
Lindeberg-Feller (and the optional General CLT theorem 10.5.1).

(ii) The rate of convergence of such dfs to the limiting df, via Berry—Esseen.
(iii) The multidimensional CLT.

(iv) Random sample sizes, sample quantiles, and many other examples.

(v) Non-normal limits (both the degenerate WLLN and a Poisson limit).
(vi) Convergence of the density functions as well (the local CLT 10.4.1).

(vii) Necessary and sufficient conditions for the optional statistically formulated CLT 10.5.2
for triangular arrays of row independent rvs.

(viii) See also the optional theorems 10.6.1, 10.7.1, 10.8.1, 10.9.1, and 10.9.2 for some best
possible results for iid rvs and for bootstrap samples. Theorem 10.6.1 develops the
domain of attraction D(Normal) of the Normal distribution.

In chapter 11 we consider situations that lead to stable and infinitely divisible rvs as limits.
Edgeworth and other approximations are also considered there. Section 13.9 includes a dis-
cussion of martingale CLTs. Chapter 15 has sections on asymptotic normality of trimmed
means, of L-statistics, and of R-statistics (the latter includes a finite sampling CLT). The
proofs of some optional results above require knowledge of Sections C.1-C.4. The chapter 15
examples require an inequality in Sections C.6.
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1 Basic Limit Theorems

The goal of this section is to use a chf approach to present the classical central limit theorems
for sums of iid random variables in R and in Rj. We also compare and contrast the central
limit theorem with the Poisson limit theorem.

The Classical CLT

Theorem 1.1 (Classical CLT) For each n > 1, let X,1,..., X, be iid F(u,0?); this
denotes that the df F'(.) of the X,;’s has mean p and finite variance o2, Define the total
T, = X,1 + -+ X, and the average X,, = T,,/n. Then as n — oo,

(1) VA=) = = (T =) = = S (X — ) —a N(O, 02).
Proof. Now, for fixed ¢ we have (with 0 < g(¢) < 3/2 and ¢(t) — 0 as t — 0)

(a) O %n—p) () = ims D=y v () = Tlhea [0 s -t/ /1))

Tt : (2 "o (] by inequality 9.6.2
pr— —_— — — J ——— . .
AW 7)o y inequality

(b) :{1—"jf+’ixa2g<\;ﬁ>r.

The first product lemma 9.6.3 with 6 = —¢%¢2/2 trivially applies. Thus

—o2t2/2

(c) Sz, —w(t) —e = ON(0,02) (1),

using table 9.1.1. Thus /n(X,, — p) —4 N(0,02) by the Cramér-Lévy continuity theorem
9.5.1 and the uniqueness theorem 9.4.1.

Had we chosen to appeal to the second product lemma 9.6.4 instead, we would have instead
claimed that

|6 (%, (8) = (1 = o2¢%/2n)"|
(d) = ITie1 @ Xy (t) = [Tiey (1 — 0?2 /2n)]|
(e) < ket [Py (t) — (1 = 0%t /21)]
() < Yoho1(tP/n)og(t//n) = t2a*g(t/\/n) — 0.

But (1—02t%/2n)" — exp(—0?t?/2) = dn(0,02)(t), so the continuity theorem and the unique-
ness theorem again complete the proof. O

Degenerate Limits

Exercise 1.1 (WLLN, or classical degenerate convergence theorem) For each n >
17, let X,1,...,Xn, be iid with finite mean pu. Use chfs to show the WLLN result that
X, —p pas n — oo. Equivalently,

(2) X, —a (the degenerate distribution with mass 1 at p).
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The Classical PLT

Theorem 1.2 (Classical Poisson limit theorem; the PLT) For each n > 1, suppose
that X1, ..., X, are independent Bernoulli (A,) rvs for which the values of the parameters
satisfy A\, = D7 Mk — A € (0, 00) while [maxi<g<, Ani] — 0. (This is true if Ay = -+ =
Ann = Ap/n for alln, with A,, — ). Then

(3) T, =X,1+ -+ Xpn —q Poisson(\) as n — 0o.
Proof.  From table 9.1.1 we have ¢y, , (t) = 1 + A (e?® —1). Thus

(@) o1, (1) = [Ty @ (8) = [l [+ Ani(e” — 1))

(b) — exp(A(e — 1)) by the first product lemma 9.6.3
(C) = éPOisson()\) (t) by table 13.1.1.
Now apply the Cramér-Lévy continuity theorem and the uniqueness theorem. O

Exercise 1.2 (Poisson local limit theorem)  Show that

(4) P(T,, = k) — P( Poisson(\) = k) asn — oo, for k=0,1,...,
when \,; = -+ = A\, in the PLT. Show that this implies

(5)  drv(Pa, P)=sup{|P(A) - P(A)| : A€ B} =0,

where T,, 2 P,, and Poisson(\) & P. [Exercise 12.5.4 will improve this.]

Exercise 1.3  Show that if Ty = Poisson()\), then (Tx—\)/v/X —4 N(0,1) as the parameter
A — 00.

A Comparison of Normal and Poisson Convergence

Exercise 1.4 (a) Suppose the hypotheses of the classical CLT hold. Show that

1
(6) M, = Lr<nkaé<n ﬁ|Xn;€ - /,L|:| —p 0.

(b) Suppose the hypotheses of the classical PLT hold. Show that

= 1 — —A
(7) M, = Lrgnl?%(ank] —4 Bernoulli(1 —e™").

(*) There is something fundamentally different regarding the negligibility of the corresponding
terms in these two cases! The CLT involves summing many tiny pieces, but the PLT arises
from very occasionally having a “large” piece.

Remark 1.1  Let Y,,...,Y,, be independent. Let pS, = P(|Yni| > €). Recall equation
(8.3.14) for the conclusion

(8) M, = [121/?%(71 Ynk@ —p 0 if and only if ;p;k — 0 for all e > 0.
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This was proved via the (8.3.13) inequality
(9)  1—exp(= 20, py) < P(M, > €) < S0 6, .
The Multivariate CLT

Theorem 1.3 (Classical multivariate CLT) Let X, = (Xp1,...,Xn)’,n > 1, be a
sequence of iid (i, 3) random vectors. Then

1 < .
(10) iz > (Xj = i) —a Nk(0,%) as n — oo.
j=1

Proof. For any X € Ry, the rvs

(a)  Y;=X(X;—ji) = (0, XEX) are iid for j = 1,... n.
Thus the classic CLT gives

(b) VnY, —4 N(0, N'SX).

That is, Z, =n~ /231 (X; — ji) satisfies

(©) by, (B) = dymy, (t) = exp(-=NEXL/2).

Now, if Z 22 N, (O, ¥), then N'Z = N(0, X'SX) ; and hence

(d) ¢, (t) = exp(—=NTXt2/2).

Thus (c) and (d) give @5, (1) — ¢, (t) for all t € R, for each X € Ri. Thus the Cramér—
Wold theorem (theorem 9.5.2) shows that Z,, —4 Z. |

Exercise 1.5 (Empirical process; Doob) Let U,, = /n|G,, — I] be the uniform empirical
process of sections 6.5 and 12.10, and let U denote the Brownian bridge of (A.4.13). Show
that U, — ;4 U as n — oo; that is, show that for any set of points 0 < t; < --- <t <1 we
have

(Un(t1),...,Upn(tr)) —a (U(t1),...,Utg)) as n — 00.

(Essentially, all results in chapter 12 derive from this example—via a suggestion of Doob
(1949).)

Exercise 1.6 (Partial sum process of iid rvs) Let S,, denote the partial sum process of
iid (0,1) rvs (see (11) below) and let S denote Brownian motion (as in (A.4.12)) Show that
S —fa S as n — oo. [Hint. Set things up cumulating from the left, and then transform.
Or note that the random element you must consider can be written in a form equivalent to
something simpler. Or use the Cramér—Wold device. One of these methods is much simpler
then the others.]


http://dx.doi.org/10.1007/978-3-319-52207-4_12
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Exercise 1.7 (Partial sum process) Suppose that X,1,..., X,, are independent (0,02,)
and satisfy Lindeberg’s condition (10.2.11) below. Define S,, on [0, 1] via

2 2
1) Su(t) =% Xpi/snm  for 2ok << ZEHL g o<
=1 2 2
nn Snn

with 2, = Zf 102, and s2;, = 0. Show that S,, — ¢4 S, where S denotes Brownian motion.
(Only attempt thls problem following theorem 10.2.2.)

Example 1.1 (Chisquare goodness of fit statistic) Suppose Q = Zle A;. Now let
X1,..., X, beiid on (2,.4) with all p; = P(X € A;) > 0. Let

(12) N, = Z 14,(X;) = (the number of X,’s that fall in A;) for1 <i<k.

(a) Now, (Zyj,. .., Zy;)', with Z;; = (14,(X;) — pi)//Pi, has mean vector O and covariance
matrix ¥ = |[oy]| with oy = 1 — p; and oy = —/pipir for i # i’

(b) Thus W,, = >°1 Z;/v/n —a W = N, (0, X) as n — oo, by theorem 1.3.

(¢) The usual chisquare goodness of fit statistic is

k k
—np;)? (Observed; — Expected,)?
13 )= =
(13) ; ; Expected,
=W/ W, —,4 W'W by the Mann-Wald theorem
(14) = (GW)'(GW) = Chisquare(k — 1);

here G is k x k and orthogonal with first row \/p’, so that GXG' = G[I — \/pV/p' ]G’ =
I—-(1,0,...,0)(1,0,...,0). This has diagonal elements (0,1,1,...,1) with all off-diagonal
elements 0, and then GW = N (O, GXG’) (by (7.3.5) and (A.3.6)). We also use (A.1.29) for
(16). [If a value of Expected is unknown, it should be replaced by an appropriate estimator
Expected.] (See exercise 10.3.26 below.) (This statistic is just a quadratic form.) O

Exercise 1.8* [Independence in an I x J table]  Suppose both ) = Zle A; and Q =
ijl B, represent partitions of Q.
(a) Let Pij = P(AZBJ) = Pi-P-j, where pi- = P( i) and b = P(B ) Let

N;; = (the number of iid observations X1, ..., X,, that fall in A;B;).

Let p;. = Z'jjzl N;j/n and p.; = Zle N;j/n. Show that

(15) Q¢ = Zle ijl (Nij — npi.p.;)?/(npi.p.;) —aq Chisquare((I —1)(J — 1)).

(b) Let p;); = P(Ai|B;). Let n=n.; +---+n.;. For each 1 < j < J, let N;; = (the number
of iid P(:|B;) observations X{j), e ,X%) that fall in A;B;). Let p;; = ijl N;j/n.;. Show
that when o[Ay,..., As] and o[By, ..., By are independent, the chisquare statistic satisfies

(16) Qb =11y Yo/ (Nig — nyii;)?/(npayj) —a Chisquare((I — 1)(J — 1))

asny A---Anjy— oo.
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(*) Suppose that both sets of marginal totals ni.,...,n;. and n.1,...,n.; are fixed, and
that both sum to n. Suppose that n balls are assigned to the I.J cells at random without
replacement, subject to the side conditions on the marginal totals stated above. Let N
denote the number assigned to the (7, j)-th cell. It holds that

(17 Q= Zle ijl(Nij —n;.n.;/n)?/(nin;./n) —4 Chisquare((I — 1)(J — 1))

as (n1. A---Anp)A(naA---Any) — oco. [Suppose I = 5 different social groups are at
work in broadcasting, where the sum of the I group sizes n;. of our data is n = 250. The
number whose salaries fall in each decile (thus J = 10) of the observed salaries is necessarily
n.; = n/J = 25. The statistic in (17) can be used to test for independence of group and
salary level.] O

Limiting Distributions of Extremes

Exercise 1.9 (a) Let &,1,...,&nn be iid Uniform(0, 1) rvs. Then the sample minimum
Enem satisfies n&,., — Exp(1).

(b) Now, &,.p, is the sample maximum. Determine the joint asymptotic distribution of ng,.1
and n(1 — &.n)-

Exercise 1.10 (Special cases of Gnedenko’s theorem) Let X,,., be the maximum of an iid
sample X1,..., X, from F(-)- Then:

(&) P(X,., —logn <y) — exp(—e™Y) for all y € R,
a

when 1 — F(z) = e for x > 0.

Pn*X,., <y) — exp(—|y|*) for all y < 0,

b
(b) when 1 — F(z) = |z|* for —1<2<0, withb>0.

P(Xn:n/nl/a S y) — eXp(—y_a) for all y > 0,
when 1 — F(z) = 1/z% for x > 1, with a > 0.

(¢)

[Distributions that are “suitably similar” to these prototypes yield the same limiting results,
and these limits are the only possible limits.]
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2 Variations on the Classical CLT

Notation 2.1 Let X,;,1 < k < n for each n > 1, be row-independent rvs having means
Lnk and variances O—%k’ and let v, = E| X, — unk|3 < oo denote the third absolute central
moments. Let

(1) sdp, = /> h_ 0% and Yo = D peq Yrks and let

Let ¢pi(-) denote the chf of (X,k — tink)/sdy. O

Theorem 2.1 (Rate of convergence in the CLT) Consider the rvs above. The df Fz
of the standardized Z,, is uniformly close to the N(0,1) df ®, in that

(3)  |IFz, — @] <13 y/sd;.
Corollary 1 (Liapunov CLT)
(4) Zn —a N(0,1) whenever 7, /sd}, — 0.

Corollary 2 (Berry—Esseen for iid rvs) Let X,1,..., X,, be iid rvs with df F(u,o?)
having v = E|X — pu|® < co. Then

87
o3yn’

Proof. Here we first give a delicate proof of the rate of convergence to normality in (3)
based on Esseen’s lemma (with (4) shown to be a corollary to this proof). [A rather simple
proof of (4) is asked for in exercise 2.4 below.] Without loss, we assume that all p,; = 0.
Now, let a = sd? /,; and assume throughout that a > 9 (note that (3) is meaningless unless
a > 13). (Recall that @ = b @ ¢ means |a — b| < ¢.) Note that

®)  Fz, -2 <

[62,(8) = /2| = |TT_y dua(t) — 7012

< t?/2 ‘e{zzzl Log ¢k (1)} +1%/2 _ 1‘

(6) = e‘t2/2|ez -1 < e_t2/