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• Peter Shorack and Anna Miliči (immigrants from Miliča Celo, near the Plitvice Lakes)
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Amelia wed Charlie Lord
Theodore James Shorack (my father)
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George (1906) (my father’s dear friend) wed Carmen Jirik
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Frank Jr. was an inept farmer, but he enjoyed his books and raised educated daughters.

Thomas Nekola (wagon maker in the Prague area) married Mary Tomǎsek. (Barbara,
Anna (married Uncle James), Marcella (my mother’s mother), Albert, Pete, Frances)
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Anna Miliči was the fourth of five children of Maximo and Martha Miliči. Maximo
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and the gym for entertainment, he lived entirely off a whiskey allotment sold late in each
month, every full paycheck came home—and he learned carpentry. On to Oregon! After ten
years, he was building his own houses on speculation, in spite of his financial raw fear common
to so many of that depression generation. But that gave his sons jobs to go to college, and he
sent his daughter. He took incredible pride in even the smallest of the accomplishments of any
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Preface

This is a heavily reworked and considerably shortened version of the first edition of this text.
Especially, considerable “extra” material and background material have now been either
removed or moved to the appendices. Moreover, some important rearrangement of chapters
has taken place to facilitate its intended use as a text.

Chapters 1–5 provide the measure-theoretic mathematical foundation for the rest of the
text. Then Chapter 6 (Distribution and Quantile Functions) and Chapter 7 (Independence
and Conditional Expectation) hone some tools geared to probability theory. Appendix A (see
page 417) provides a brief introduction to elementary probability theory that could be useful
for some mathematics students (This Appendix A begins on page 417). A very useful version
of this text could end at this page; omit Sections 10.5–10.9, and greatly slim down or eliminate
the later parts of Chapters 7 and 13 (intentionally paired), Chapters 12 and 15 (again,
intentionally paired), Chapter 6, Chapter 11, and Chapter 14.

The classical weak law of large numbers (WLLN) and strong law of large numbers (SLLN)
as presented in Sections 8.2–8.4 are particularly complete, and they also emphasize the
important role played by the behavior of the maximal summand. Presentation of good
inequalities is emphasized in the entire text, and Chapter 8 is a good example. (Also, there is a
very general collection of characterizations of the WLLN in Section C.1, that is then spe-
cialized carefully to the context of the behavior of the sample variance as an estimator. This
Appendix C will also be appealed to in the optional Sections 10.5 (for a very general CLT for
sums of row independent rvs) and 10.6 (where the domain of attraction of the Normal dis-
tribution is characterized via many very different looking equivalent conditions)).

The classical central limit theorem (CLT) and its Lindeberg, Liapunov, and Berry–Esseen
generalizations are presented in Chapter 10 using the characteristic function (chf) methods
introduced in Chapter 9. Many statistical applications also appear in Chapter 10.

A form of the most general CLT for “negligible pieces” is found in the optional Section 10.5,
along with a more statistical variant. This is specialized to the iid case in Section 10.6—where
many versions of necessary and sufficient conditions are presented. These Section 10.6 vari-
ants are justified primarily in Sections C.1–C.3. Conditions for both the weak bootstrap and
the strong bootstrap are also developed in Section 10.8, and a universal bootstrap CLT based
on light trimming of the sample is presented in Section 10.9. This approach emphasizes a
statistical perspective. Gamma and Edgeworth approximations appear at the end of Chapter
11. The early parts of Chapter 11 deal with infinitely divisible and stable rvs. One of the main
objectives in this second edition is to make it easier for many instructors to pick and choose
from such topics (All references to the Stein method in the first edition have been removed
because of a basic problem with that presentation.)



Both the distribution function ðdfFð:ÞÞ and the quantile function ðqf Kð�Þ � F�1ð�ÞÞ are
emphasized throughout (quantile functions are important to statisticians). In Chapter 6,
much general information about both dfs, qfs, and the Winsorized variance is developed. The
text includes presentations showing how to exploit the inverse transformation X � KðnÞ with
n ffi Uniform(0, 1). In particular, Section C.6 inequalities relating the qf and the Winsorized
variance to some empirical process results of Chapter 12 are used in Chapter 15 of this text to
treat trimmed means and L-statistics, rank and permutation tests, and sampling from finite
populations (Even more of this appears in the first addition of this text).

Chapter 13 provides quite a strong set of results for martingales. (The first edition includes
even more topics and examples. Especially, there is a nice treatment of predictable variation.)

Chapter 14 considers convergence in law on more general metric spaces.
I have learned much through my association with David Mason, and I would like to

acknowledge that here. Especially (in the context of this text), Theorem 12.10.3 is a beautiful
improvement on Theorem 12.10.2, in that it still has the potential for necessary and sufficient
results. I really admire the work of Mason and his colleagues. It was while working with David
that some of my present interests developed. In particular, a useful companion to Theorem 12.
10.3 is knowledge of quantile functions. Section 6.6 and Appendix C owe a debt to what I have
compiled and produced on that topic while working on various applications, partially with
David.

Jon Wellner has taught from several versions of this text. In particular, he typed an earlier
version and thus gave me a major critical boost. That head start is what turned my thoughts
to writing a text for publication. The Hoffman–Jorgensen inequalities in Section 8.10 came
from him. He has also formulated a number of exercises, suggested various improvements, and
offered good suggestions and references regarding predictable processes. My thanks to Jon for
all of these contributions (Obviously, whatever problems may remain lie solely with me.)

My thanks go to John Kimmel for his interest in the first version of this text, and for his
help and guidance through the various steps and decisions.

This is intended as a textbook, not as a research manuscript. Accordingly, it is somewhat
lightly referenced. There is a section at the end that contains some discussion of the literature.

Galen R. Shorack
Seattle, Washington
July 2015
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Use of This Text

The University of Washington is on the quarter system, so my description will reflect this fact.
My thoughts are offered as a potential guide to an instructor. They certainly do not comprise
an essential recipe.

The reader will note that the exercises are interspersed within the text. It is important to
read all of the exercises as they are encountered (even if they are not written up), as most
of them contain some worthwhile contribution to the story.

Chapters 1–5 provide the measure-theoretic background that is necessary for the rest of the
text. Many of our students have had at least some kind of an undergraduate exposure to part
of this subject. Still, it is important that I present the key parts of this material rather
carefully. I feel it is useful for all of them.

Chapter 1 (measures; 5 lectures)
Emphasized in my presentation are generators, the monotone property of measures, the
Carathéodory extension theorem, completions, the approximation lemma, and the corre-
spondence theorem. Presenting the correspondence theorem carefully is important, as this
allows one the luxury of merely highlighting some proofs in Chapter 5. [The minimal mono-
tone class theorem of Section 1.1, claim 8 of the Carathédory extension theorem proof, and
most of what follows the approximation lemma in Section 1.2 would never be presented in my
lectures.] fI always assign Exercises 1.1.1 (generators), 1.2.1 (completions), and 1.2.3 (the
approximation lemma). Other exercises are assigned, but they vary each time.g

Chapter 2 (measurable functions and convergence; 4 lectures)
I present most of Sections 2.1, 2.2 and 2.3. Highlights are preservation of r-fields, measura-
bility of both common functions and limits of simple functions, induced measures, convergence
and divergence sets (especially), and relating !l to !a:s (especially, reducing the first to the
second by going to subsequences). I then assign Section 2.4 as outside reading and Section 2.5
for exploring. [I never lecture on either Section 2.4 or 2.5.] fI always assign Exercises 2.2.1
(specific r-fields), 2.3.1 (concerning !a:e:), 2.3.3 (a substantial proof), and 2.4.1 (Slutsky’s
theorem).g

Chapter 3 (integration; 7 lectures)
This is an important chapter. I present all of Sections 3.1 and 3.2 carefully, but Section 3.3 is
left as reading, while some of the Section 3.4 inequalities ðCr, Hölder, Liapunov, Markov, and
Jensen) are done carefully. I do Section 3.5 carefully as far as Vitali’s theorem, and then assign
the rest as outside reading. fI always assign Exercises 3.2.1–3.2.2 (only the zero function), 3.3.3



(differentiating under the integral sign), 3.5.1 (substantial theory), and 3.5.7 (the Scheffé
theorem).g

Chapter 4 (Radon–Nikodym; 2 lectures)
I present ideas from Section 4.1, sketch the Jordan–Hahn decomposition proof, and then give
the proofs of the Lebesgue decomposition, the Radon–Nikodym theorem, and the change of
variable theorem. These final two topics are highlighted. The fundamental theorem of calculus
of Section 4.4 is briefly discussed. [I would present only bits of Section 4.3. (especially, an
interpretation of (4.1.1)). fI always assign Exercises 4.2.1 (manipulating Radon–Nikodym
derivatives), 4.2.7 (mathematically substantial), and 4.4.1, 4.4.2, and 4.4.4 (so that the stu-
dents must do some outside reading in Section 4.4 on their own).g

Chapter 5 (Fubini; 2 lectures)
The first lecture covers Sections 5.1 and 5.2. I always discuss/prove Theorem 5.1.2 (product
measure) and Theorem 5.1.3 (Fubini, with the Tonelli corollary). Proving Proposition 5.2.1 is
a must. The remaining time is spent on Section 5.3. [I rarely lecture from Section 5.4, but I do
assign it for outside perusing.] fI always assign Exercises 5.3.1 (measurability in a countable
number of dimensions) and 5.4.1 (the finite-dimensional field).g

The mathematical tools have now been developed. In Chapters 6 and 7, we learn about
some specialized probabilistic tools. The presentation of one of the main classic topics of
probability theory then commences in Chapter 8.

Chapter 6 (distribution functions (dfs) and quantile functions (qfs); 4 lectures)
This chapter is quite important to this text. Sections 6.1–6.4 should be covered. Skorokhod’s
theorem in Section 6.3 must be done carefully. Section 6.5 should be left as outside reading.
[Lecturing from Section 6.6 is purely optional, and I would not exceed one lecture.] fI always
assign Exercises 6.1.1 (it exhibits a simple continuous df in two dimensions that does not have
a density), 6.3.1 ðF�1ð�Þ is left continuous), 6.3.3 (change of variable), and 6.4.2 (for practice
working with X � KðnÞÞ . Consider lecturing on Theorem 6.6.1 (the infinite variance case).g

Chapter 7 (conditional expectation; 2 lectures)
The first lecture covers Sections 7.1 and 7.2. It highlights Proposition 7.1.1 (on the preservation
of independence), Theorem 7.1.2 (extending independence from p-systems), and Kolmogorov’s
0–1 law. The other lecture (which could be postponed until just prior to taking up martingales)
provides some discussion of the definition of conditional probability in Section 7.4, includes
proofs of several parts of Theorem 7.4.1 (properties of conditional expectation). It might also
briefly discuss the Definition 7.5.1 of regular conditional probability. [I never lecture on Sec-
tions 7.3 or 7.5.] fI always assign Exercises 7.1.2 and 7.1.3 (they provide routine practice with
the concepts), Exercise 7.4.1 (discrete conditional probability), Exercise 7.4.3 (repeated
stepwise smoothing in a particular example), and part of Exercise 7.4.4 (proving additional
parts of Theorem 7.4.1).g

Chapter 8 (laws of large numbers (LLNs) and inequalities; 3 lectures for now)
Since we are on the quarter system at the University of Washington, this leaves me 3 lectures
to spend on the law of large numbers in Chapter 8 before the Christmas break at the end of the
autumn quarter. In these first 3 lectures, I do Sections 8.1 and 8.2 with Khinchine’s weak law
of large numbers (WLLN), Kolmogorov’s inequality only from Section 8.3, and at this time I
present only Kolmogorov’s strong law of large numbers (SLLN) from Section 8.4. fI always
assign Exercises 8.1.1 (Cesàro summability), 8.2.1 (it generates good ideas related to the
proofs), 8.2.2 (as it practices the important Opð�Þ and opð�Þ notation), 8.4.4 (the substantial
result of Marcinkiewicz and Zygmund), 8.4.7 (random sample size), and at least one of the
alternative SLLN proofs contained in 8.4.8–8.4.10.g

At this point at the beginning of the winter quarter, the instructor will have his/her own
opinions about what to cover. I devote the winter quarter to the weak law of large numbers
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(WLLN), an introduction to the law of the iterated logarithm (LIL), and various central limit
theorems (CLTs). That is, the second term treats material from Chapters 8–10, with others
optional. I will now outline my choices.

Chapter 8 (LLNs, inequalities, LIL, and series; 6 lectures)
My lectures cover Section 8.3 (symmetrization inequalities and Lévy’s inequality for the
WLLN, and the Ottovani–Skorokhod inequality for series), Feller’s WLLN from Section 8.4,
the Glivenko–Cantelli theorem from Section 8.5, the LIL for normal rvs in Proposition 8.6.1,
the strong Markov property of Theorem 8.7.1, and the two series Theorem 8.8.2. [I do not
lecture from either of Section 8.9 or 8.10 at this time.] fI always assign Exercise 8.6.1 (Mills’
ratio).g

Chapter 9 (characteristic functions (chfs); 8 lectures)
Sections 9.1 and 9.2 contain the classic results that relate to deriving convergence in distri-
bution from the convergence of various integrals. I also cover Sections 9.3–9.8. fI always
assign Exercises 9.3.1 and 9.3.3(a) (deriving specific chfs) and 9.4.1 (Taylor series expansions
of the chf).g

Chapter 10 (CLTs via chfs; 6 lectures)
The classical CLT, the Poisson limit theorem, and the multivariate CLT make a nice lecture.
The chi-square goodness-of-fit Example 10.1.1 and/or the median Example 10.3.3 make a
lecture of illustrations. Chf proofs of the usual CLTs are given in Section 10.2 (Section 9.7 on
Esseen’s theorem could have been left until now). Other examples from either Section 10.2 or
10.3 could now be chosen, and Example 10.3.4 (weighted sums of iid rvs) is my first choice.
[The chi-square goodness-of-fit Example 10.1.1 could motivate a student to read from Sec-
tions A.3 and A.4.]

At this stage, I still have at least 7 optional lectures at the end of the winter quarter and
about 12 more during the spring quarter. In the other 16 lectures of the spring quarter, I feel it
appropriate to consider Brownian motion in Chapter 12 and then martingales in Chapter 13
(in a fashion to be described below). Let me first describe some possibilities for the optional
lectures, assuming that the above core was covered.

Chapter 10 (bootstrap)
Both Sections 10.8 and 10.9 on the bootstrap require also Sects 6.5 and 6.6.

Chapter 10 (domain of normal attraction of the Normal df)
The converse in Theorem 10.6.1 of the classical CLT Theorem 10.1.1 requires the Giné–Zinn
symmetrization inequality and the Khinchine inequality of Section 8.3, and the Paley–Zyg-
mund inequality of Section 3.4.

Chapter 11 (infinitely divisible and stable laws)
First, Section 11.1 (infinitely divisible laws) is independent of the rest, including Section 11.2
(stable laws). The theorem stated in Section 11.4 (domain of attraction of stable laws) would
require methods of Section C.4 to prove, but the interesting exercises are accessible without
this.

Chapters 8 and 10, and Appendix C ðdomain of attraction of the Normal df)
Combining the Section 8.3 subsection on maximal inequalities of another ilk, Sections 6.6,
Sections 10.5–10.6, and Sections C.1–C.3 makes a nice unit. Lévy’s asymptotic normality
condition (ANC) of (10.6.19) for a rv X has some prominence. In Section C.2, purely geometric
methods plus Cauchy–Schwarz are used to derive a multitude of equivalent conditions. In the
process, quantile functions are carefully studied. In Theorem 10.6.1, the ANC is seen to be
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equivalent to conditions equivalent to having a WLLN for the rv X2, and in this context, many
additional equivalent conditions are again presented.

Chapter 10 (higher-order approximations)
The local limit theorem in Section 10.4 can be done immediately for continuous dfs; but it also
requires Section 9.8 for discrete dfs. The expansions given in Section 11.5 (Gamma approxi-
mation) and 11.6 (Edgeworth approximation) also require (9.6.22).

Assorted topics suitable for individual reading

Suppose that Chapter 12 has been covered. Consider the Chapter 15 examples on �Trimmed
and ~Winsorized means, L-statistics, and linear rank R-statistics (with finite sampling). Con-
vergence in distribution on the line is presented in Sections 9.1 and 9.2, which could be
extended to metric spaces in Chapter 14. Sections 13.8 (counting process martingales) and
13.9 (martingale CLTs) are possible once the earlier parts of this chapter are covered.

The primary topics for the spring quarter are Chapter 12 (Brownian motion and elemen-
tary empirical processes) and Chapter 13 (martingales).

Chapter 12 (Brownian motion; 6 lectures)
I discuss Section 12.1, sketch the one proof of Section 12.2 and carefully apply that result in
Section 12.3, and treat Section 12.4 carefully (as I believe that at some point a lecture should be
devoted to a few of the more subtle difficulties regarding measurability). I am a bit cavalier
regarding Section 12.5 (strong Markov property), but I apply it carefully in Sections 12.6, 12.7,
and the Theorem 12.8.1. I assign Section 12.9 as outside reading. [I do not lecture on Theo-
rem 12.8.2.] fI always assign Exercises 12.1.2 (on (C; C)), 12.3.1 (various transforms of
Brownian motion), 12.3.3 (integrals of Normal processes), 12.4.1 (properties of stopping
times), 12.7.3(a) (related to embedding a rv in Brownian motion), and 12.8.2 (the LIL via
embedding).g

Chapter 13 (martingales; 10 lectures)
I cover much of the first seven sections. fI always assign Exercises 13.1.4 (a counting process
martingale), 13.3.2 (a proof for continuous time mgs), and both 13.3.7 and 13.3.9 (on Lr-
convergence).g

Appendix A (elementary probability; 0 lectures)
Sections A.1 and A.2 were written to provide background reading for those graduate students
in mathematics who lack an elementary probability background. Sections A.3 and A.4 allow
graduate students in statistics to read some of the basic multivariate results in appropriate
matrix notation. [I do not lecture from this appendix.] fBut I do assign Exercises A.1.8 (the
Poisson process exists) and A.2.1 (ii) (so that the convolution formula is refreshed).g
Useful topics that appear only in the 1st edition of this text

Appendix (maximum likelihood estimation (or, MLE))
I see MLE as being of considerable interest in conjunction with statistical pursuits, rather
than as a direct part of a course on probability theory. This is available in Appendix A of the
first edition. Other topics are also treated only in Appendix A of the first edition, such as
careful development of the Gamma function and the derivative of its logarithm—with
applications to maximum likelihood estimation. Chapter 16 in the first edition goes beyond
the present Chapter 15 in the depth and breadth of its coverage of applications of the con-
vergence of empirical processes.
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Definition of Symbols

ffi means “is distributed as”
� means “is defined to be”
a ¼ b� c means that ja� bj � c
Un ¼a Vn means “asymptotically equal” in the sense that Un � Vn !p 0
X ffi ðl; r2Þ means that X has mean l and variance r2

X ffi Fðl; r2Þ means that X has df F with mean l and variance r2

�Xn is the “sample mean” and €Xn is the “sample median”
ðX;A; lÞ and ðX;A;PÞ denote a measure space and a probability space
r½C	 denotes the r-field generated by the class of sets C
FðXÞ denotes X�1ð�BÞ, for the Borel sets B and �B � r½B; fþ1g; f�1g	
n will always refer to a Uniform(0, 1) rv
% means “nondecreasing” and " means “strictly increasing”
1Að�Þ denotes the indicator function of the set A
“df ” refers to a distribution function Fð�Þ
“qf ” refers to the left continuous quantile function Kð�Þ � F�1ð�Þ
The “tilde” symbol denotes ~Winsorization
The “háček” symbol denotes Ťruncation
‚ð�Þ and ‚nð�Þ will refer to Lebesgue measure on the line R and on Rn

See page 119 for “domða; a0Þ”
Brownian motion S, Brownian bridge U, and the Poisson process N
The empirical df Fn and the empirical df Gn of Uniform(0,1) rvs
 is associated with convergence in the LIL (see page 176)
“mg” refers to a martingale
“smg” refers to a submartingale
= means “
 ” for a submartingale and it means for a martingale
The symbol “= ” is paired with “s-mg” in this context.

Prominence
Important equations are labeled with numbers to give them prominence. Thus, equations
within a proof that are also important outside the context of that proof are numbered. Though
the typical equation in a proof is unworthy of a number, it may be labeled with a letter to help
with the “bookkeeping.” Likewise, digressions or examples in the main body of the text may
contain equations labeled with letters that decrease the prominence given to them.



Integral signs and summation signs in important equations (or sufficiently complicated
equations) are large, while those in less important equations are small. It is a matter of
assigned prominence. The most important theorems, definitions, and examples have been
given titles in boldface type to assign prominence to them. The titles of somewhat less
important results are not in boldface type. Routine references to theorem 10.4.1 or definition
7.3.1 do not contain capitalized initial letters. The author very specifically wishes to down-
grade the prominence given to this routine use of these words. Starting new sections on new
pages allowed me to carefully control the field of vision as the most important results were
presented.

xxii DEFINITION OF SYMBOLS



Chapter 1

Measures

1 Basic Properties of Measures

Motivation 1.1 (The Lebesgue integral) The Riemann integral of a continuous function f (we
will restrict attention to f(x) ≥ 0 on a ≤ x ≤ b for convenience) is formed by subdividing the
domain of f, forming approximating sums, and passing to the limit. Thus the mth Riemann
sum for

∫ b

a
f(x) dx is defined as

(1) RSm ≡
m∑

i=1

f(x∗
mi)[xmi − xm,i−1],

where a ≡ xm0 < xm1 < · · · < xmm ≡ b (with xm,i−1 ≤ x∗
mi ≤ xmi for all i) satisfy meshm ≡

max[xmi − xm,i−1] → 0. Note that xmi − xm,i−1 is the measure (or length) of the interval
[xm,i−1, xmi], while f(x∗

mi) approximates the values of f(x) for all xm,i−1 ≤ x ≤ xmi (at least
it does if f is continuous on [a, b]). Within the class C+ of all nonnegative continuous functions,
this definition works reasonably well. But it has one major shortcoming. The conclusion∫ b

a
fn(x) dx → ∫ b

a
f(x) dx is one we often wish to make if fn “converges” to f. However, even

when all fn are in C+ and f(x) ≡ lim fn(x) actually exists, it need not be that f is in C+ (and
thus

∫ b

a
f(x) dx may not even be well-defined) or that

∫ b

a
fn(x) dx → ∫ b

a
f(x) dx (even when

it is well defined).
A different approach is needed. (Note figure 1.1.)
The Lebesgue integral of a bounded and nonnegative function is formed by subdividing

the range. Thus the mth Lebesgue sum for
∫ b

a
f(x) dx is defined as

(2) LSm ≡
m2m
∑

k=1

k − 1
2m

× measure
({

x :
k − 1
2m

≤ f(x) <
k

2m

})

,

and
∫ b

a
f(x) dx is defined to be the limit of the LSm sums as m → ∞. For what class M of

functions f can this approach succeed? The members f of the class M will need to be such
that the measure (or length) of all sets of the form

(3)
{

x :
k − 1
2m

≤ f(x) <
k

2m

}

can be specified. This approach leads to the concept of a σ-field A of subsets of [a, b] that are
measurable (that is, we must be able to assign to these sets a number called their “length”),
c© Springer International Publishing AG 2017
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2 CHAPTER 1. MEASURES

and this leads to the concept of the class M of measurable functions. This class M of mea-
surable functions will be seen to be closed under passage to the limit and all the other oper-
ations that we are accustomed to performing on functions. Moreover, the desirable property∫ b

a
fn(x) dx → ∫ b

a
f(x) dx for functions fn “converging” to f will be broadly true. �

xm0 xm1 xm,i -1 xmi xmm

The domain of f(·) is equally divided.

Riemann sums

The range of f(·) is equally divided.
Lebesgue sums

1
2m

Figure 1.1 Riemann sums and Lebesgue sums.

Definition 1.1 (Set theory) Consider a nonvoid class A of subsets A of a nonvoid set Ω.
(For us, Ω will be the sample space of an experiment.)
(a) Let Ac denote the complement of A, let A ∪ B denote the union of A and B, let A ∩ B
and AB both denote the intersection, let A \B ≡ ABc denote the set difference, let A	B ≡
(AcB∪ABc) denote the symmetric difference, and let ∅ denote the empty set. The class of all
subsets of Ω will be denoted by 2Ω. Sets A and B are called disjoint if AB = ∅, and sequences
of sets An or classes of sets At are called disjoint if all pairs are disjoint. Writing A + B or∑∞

1 An will also denote a union, but will imply the disjointness of the sets in the union. As
usual, A ⊂ B denotes that A is a subset of B. We call a sequence An increasing (and we will
nearly always denote this fact by writing An ↗) when An ⊂ An+1 for all n ≥ 1. We call the
sequence decreasing (denoted by An ↘) when An ⊃ An+1 for all n ≥ 1. We call the sequence
monotone if it is either increasing or decreasing. Let ω denote a generic element of Ω. We
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will use 1A(·) to denote the indicator function of A, which equals 1 or 0 at ω according as
ω ∈ A or ω /∈ A.
(b) A will be called a field if it is closed under complements and unions. (That is, A and B
in A requires that Ac and A ∪ B be in A.) [Note that both Ω and ∅ are necessarily in A, as
A was assumed to be nonvoid, with Ω = A ∪ Ac and ∅ = Ωc.]
(c) A will be called a σ-field if it is closed under complements and countable unions. (That
is, A,A1, A2, . . . in A requires that Ac and ∪∞

1 An be in A.)
(d) A will be called a monotone class provided it contains ∪∞

1 An for all increasing sequences
An in A and contains ∩∞

1 An for all decreasing sequences An in A.
(e) (Ω,A) will be called a measurable space provided A is a σ-field of subsets of Ω.
(f) A will be called a π-system provided AB is in A for all A and B in A; and A will be called
a π̄-system when Ω in A is also guaranteed.

If A is a field (or a σ-field), then it is closed under intersections (under countable inter-
sections); since AB = (Ac ∪ Bc)c (since ∩∞

1 An = (∪∞
1 Ac

n)c). Likewise, we could have used
“intersection” instead of “union” in our definitions by making use of A ∪ B = (Ac ∩ Bc)c and
∪∞

1 An = (∩∞
1 Ac

n)c. (This used De Morgan’s laws.)

Proposition 1.1 (Closure under intersections)
(a) Arbitrary intersections of fields, σ-fields, or monotone classes are fields, σ-fields, or
monotone classes, respectively.
[For example, F ≡ ∩{Fα : Fα is a field under consideration} is a field.]
(b) There is a minimal field, σ-field, or monotone class generated by (or, containing) any
specified class C of subsets of Ω. Call C the generators. For example,

(4) σ[C] ≡ ∩{Fα : Fα is a σ-field of subsets of Ω for which C ⊂ Fα}
is the minimal σ-field generated by C (that is, containing C).
(c) A collection A of subsets of Ω is a σ-field if and only if it is both a field and a monotone
class.

Proof. (c) (⇐) ∪∞
1 An = ∪∞

1 (∪n
1Ak) ) ≡ ∪∞

1 Bn ∈ A since the Bn are in A and are ↗.
Everything else is even more trivial. �

Exercise 1.1 (Generators) Let C1 and C2 denote two collections of subsets of the set Ω. If
C2 ⊂ σ[C1] and C1 ⊂ σ[C2], then σ[C1] = σ[C2]. Prove this important fact.

Definition 1.2 (Measures and events) Consider a measurable space (Ω,A) and a set
function μ : A → [0, ∞] (that is, μ(A) ≥ 0 for each A ∈ A) having μ(∅) = 0.
(a) Now A is a σ-field and if μ is countably additive (abbreviated c.a.) in that

(5) μ

( ∞∑

n=1

An

)

=
∞∑

n=1

μ(An) for all disjoint sequences An in A,

then μ is called a measure (or, equivalently, a countably additive measure) on (Ω,A). The
triple (Ω,A, μ) is then called a measure space. We call μ finite if μ(Ω) < ∞. We call μ σ-finite
if there exists a measurable decomposition of Ω as Ω =

∑∞
1 Ωn with Ωn ∈ A and μ(Ωn) < ∞

for all n. The sets A in the σ-field A are called events.

[Even if A is not a σ-field, we will still call μ a measure on (Ω,A), when (5) holds for all
sequences An ∈ A for which

∑∞
1 An is in A. We will not, however, use the term “measure



4 CHAPTER 1. MEASURES

space” to describe such a triple. We will consider below measures on fields, on certain π̄-
systems, and on some other collections of sets. A useful property of a collection of sets is that
along with any sets A1, . . . , Ak it also includes all sets of the type Bk ≡ AkAc

k−1 · · · Ac
2A

c
1;

then ∪n
1Ak =

∑n
1Bk is easier to work with.]

(b) Of less interest, call μ a finitely additive measure (abbreviated f.a.) on (Ω,A) if

(6) μ
(∑n

1
Ak

)
=

∑n

1
μ(Ak)

for all disjoint sequences Ak in A for which
∑n

1Ak is also in A.

Definition 1.3 (Outer measures) Consider a set function μ∗ : 2Ω → [0, ∞].
(a) Suppose that μ∗ also satisfies the following three properties.
Null: μ∗(∅) = 0.
Monotone: μ∗(A) ≤ μ∗(B) for all A ⊂ B.
Countable subadditivity: μ∗(

⋃∞
1 An) ≤ ∑∞

1 μ∗(An) for all sequences An.
Then μ∗ is called an outer measure.
(b) An arbitrary subset A of Ω is called μ∗-measurable if

(7) μ∗(T ) = μ∗(TA) + μ∗(TAc) for all subsets T ⊂ Ω.

Sets T used in this capacity are called test sets.
(c) We let A∗ denote the class of all μ∗-measurable sets, that is,

(8) A∗ ≡ {
A ∈ 2Ω : A is μ∗-measurable

}
.

[Note that A ∈ A∗ if and only if μ∗(T ) ≥ μ∗(TA) + μ∗(TAc) for all T ⊂ Ω, since the other
inequality is trivial by the subadditivity of μ∗.]

Motivation 1.2 (Measure) In this paragraph we will consider only one possible measure μ,
namely the Lebesgue-measure generalization of length. Let CI denote the set of all intervals
of the types (a, b], (−∞, b], and (a, +∞) on the real line R, and for each of these intervals
I we assign a measure value μ(I) equal to its length, thus b − a,∞,∞ in the three special
cases. All is well until we manipulate the sets in CI , as even the union of two elements in CI

need not be in CI . Thus, CI is not a very rich collection of sets. A natural extension is to let
CF denote the collection of all finite disjoint unions of sets in CI , where the measure μ(A) we
assign to each such set A is just the sum of the measures (lengths) of all its disjoint pieces.
Now CF is a field, and is thus closed under the elementary operations of union, intersection,
and complementation. Much can be done using only CF and letting “measure” be the “exact
length.” But CF is not closed under passage to the limit, and it is thus insufficient for many of
our needs. For this reason the concept of the smallest σ-field containing CF , labeled B ≡ σ[CF ],
is introduced. We call B the Borel sets. But let us work backwards. Let us assign an outer
measure value μ∗(A) to every subset A in the class 2R of all subsets of the real line R. In
particular, to any subset A we assign the value μ∗(A) that is the infimum of all possible
numbers

∑∞
n=1μ(An), in which each An is in the field CF (so that we know its measure) and

in which the An’s form a cover of A (in that A ⊂ ∪∞
1 An). Thus each number

∑∞
1 μ(An) is a

natural upper bound to the measure (or generalized length) of the set A, and we will specify
the infimum of such upper bounds to be the outer measure of A. Thus to each subset A of
the real line we assign a value μ∗(A) of generalized length. This value seems “reasonable,”
but does it “perform correctly”? Let us say that a particular set A is μ∗-measurable (that
is, it “performs correctly”) if μ∗(T ) = μ∗(TA) + μ∗(TAc) for all subsets T of the real line
R—that is, if the A versus Ac division of the line divides every subset T of the line into two
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pieces in a fashion that is μ∗-additive. This is undoubtedly a combination of reasonableness
and fine technicality that took some time to evolve in the mind of its creator, Carathéodory,
while he searched for a condition that “worked.” In what sense does it “work”? The collection
A∗ of all μ∗-measurable sets turns out to be a σ-field. Thus the collection A∗ is closed under
all operations that we are likely to perform; and it is big enough, in that it is a σ-field that
contains CF . Thus we will work with the restriction μ∗|A∗ of μ∗ to the sets of A∗ (here, the
vertical line means “restricted to”). This is enough to meet our needs (and it turns out to be
exactly the maximal possible stopping point).

There are many measures other than length. For an ↗ and right-continuous function F on
the real line (called a generalized df) we define the Stieltjes measure of an arbitrary interval
(a, b] (with −∞ ≤ a < b ≤ ∞) in CI by μF ((a, b]) = F (b) − F (a), and we extend it to sets
in CF by adding up the measure of the pieces. Reapplying the previous paragraph, we can
extend μF to the μ∗

F -measurable sets. It is the important Carathéodory extension theorem
that will establish that all Stieltjes measures (including the case of ordinary length, where
F (x) = x, as considered in the first paragraph) can be extended from CF to the Borel sets B.
That is, all Borel sets are μ∗-measurable for every Stieltjes measure. One further extension is
possible, in that every measure can be completed” (see the end of section 1.2). We note here
only that when the Stieltjes measure μF associated with the generalized df F is “completed,”
its domain of definition is extended from the Borel sets B (which all Stieltjes measures have
in common) to a larger collection B̂μF

that depends on the particular F. It is left to section
1.2 to simply state that this is as far as we can go. That is, except in rather trivial special
cases (especially, mass at only countably many points), we find that B̂μF

is a proper subset
of 2R. (Otherwise, it is typically impossible to try to define the measure of all subsets of Ω
in a suitable fashion.) �

Example 1.1 (Some examples of measures, informally)
(a) Lebesgue measure:
Let λ(A) denote the length of A.
(b) Counting measure:
Let #(A) denote the number of “points” in A (or the cardinality of A).
(c) Unit point mass:
Let δω0(A) ≡ 1A(ωo), assigning measure 1 or 0 to A as ωo ∈ A or not.
(∗) Rigorous proof that these are measures will follow from theorem 1.3.1 below. �

Example 1.2 (Borel sets)
(a) Let Ω = R and let C consist of all finite disjoint unions of intervals of the types
(a, b], (−∞, b], and (a, +∞). Clearly, C is a field. Then B ≡ σ[C] will be called the
Borel sets (or the Borel subsets of R). Let μ(A) be defined to be the sum of the lengths of
the intervals composing A, for each A ∈ C. Then μ is a (c.a.) measure on the field C, as will
be seen in the proof of theorem 1.3.1 below.
(b) If (Ω, d) is a metric space and U ≡ {all d-open subsets of Ω}, then B ≡ σ[U ] will be called
the Borel sets or the Borel σ-field.
(c) If (Ω, d) is (R, | · |) for absolute value | · |, then σ[C] = σ[U ] even though C �= U . (This
claim is true, since C ⊂ σ[U ] and U ⊂ σ[C] are clear. Then, use exercise 1.1.)
(d) Let R̄ ≡ [−∞, = ∞] denote the extended real line; let B̄ ≡ σ[B, {−∞}, {+∞}].
(e) For any interval I ⊂ [−∞, ∞], let B̄I ≡ {B ∩ I : B ∈ B̄} = B̄ ∩ I. �

Proposition 1.2 (Monotone properties of measures) Let (Ω, A, μ) denote a measure
space. (Of course, μ(A) ≤ μ(B) for A ⊂ B in A.) Let A1, A2, . . . be in A.
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(a) If An ⊂ An+1 for all n, then

(9) μ(
⋃∞

1
An) = lim

n→∞ μ(An).

(b) If μ(An0) < ∞ for some n0, and An ⊃ An+1 for all n, then

(10) μ(
⋂∞

n=1
An) = lim

n→∞ μ(An).

(Letting Ω denote the real line R, letting An = [n, ∞), and letting μ denote either Lebesgue
measure or counting measure, we see the need for some requirement.)
(c) (Countable subadditivity) Whenever A1, A2, . . . and ∪∞

1 An are all in A, then

μ(
⋃∞

1
Ak) ≤

∑∞
1

μ(Ak) ;

(d) All this also holds true for a measure on a field (via the same proofs).

Proof. (a) Now,
μ(∪∞

1 An) = μ(
∑∞

1 (An\An−1)) with A0 ≡ ∅

=
∑∞

1
μ(An\An−1) by c.a.(p)

= lim
n

∑n

k=1
μ(Ak\Ak−1)

= lim
n

μ(
∑n

k=1
(Ak\Ak−1)) by f.a.

= lim
n

μ(An).(q)

(b) Without loss of generality, redefine A1 = A2 = · · · = An0 . Let Bn ≡ A1\An so that
the sets Bn are ↗, with B1 = ∅. Draw a picture of concentric circles of decreasing radaii to
represent the general decreasing sets An. Then locate the sets Bn in this picture, and note
that they are indeed increasing. It is pictorially clear that A1 ∩ (∩∞

n=1An)c = ∪∞
n=1Bn. Thus,

lim
n

μ(Bn) = μ(∪∞
n=1Bn) by (a)

= μ(A1 ∩ (∩∞
1 An)c)

= μ(A1) − μ(∩∞
n=1An)(r)

On the other hand,

lim
n

μ(Bn) = lim
n

{μ(A1) − μ(An)} by f.a.

= μ(A1) − lim
n

μ(An).(s)

Equate the quantities in (r) and (s); since μ(A1) < ∞, we can cancel it to obtain the equality
μ(∩∞

1 An) = limn μ(An).
(c) Let B1 ≡ A1, B2 ≡ A2A

c
1, . . . , Bk ≡ AkAc

k−1 · · · Ac
1. Then these newly defined sets Bk

are disjoint, and ∪n
k=1Ak =

∑n
k=1Bk. Hence [a technique worth remembering]

(11) μ(
⋃n

k=1
Ak) = μ(

∑n

k=1
Bk) =

∑n

k=1
μ(Bk)
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where
⋃n

k=1
Ak =

∑n

k=1
Bk is ↗ forBk ≡ AkAc

k−1 · · · Ac
1

≤
∑n

1
μ(Ak)

≤
∑∞

1
μ(Ak) by monotonicity.(t)

Let n → ∞ in (11), and use part (a) to get the result. �

Definition 1.4 (liminf and limsup of sets) Let

lim An ≡ ⋃∞
n=1

⋂∞
k=n Ak =

⋃∞
n=1 Bn (where Bn ≡ ⋂∞

k=n Ak is ↗)

= {ω : ω is in all but finitely manyAn’s} ≡ {ω : ω ∈ An a.b.f.} ,
(12)

where we use a.b.f. to abbreviate in all but finitely many cases. Let

(13)
lim An ≡ ⋂∞

n=1

⋃∞
k=n Ak =

⋂∞
n=1 Bn (where Bn ≡ ⋃∞

k=n Ak is ↘)

= {ω : ω is in an infinite number of An’s} ≡ {ω : ω ∈ An i.o.},

where we use i.o. to abbreviate infinitely often.
(It is important to learn to read these two mathematical equations in a way that makes

it clear that the verbal description is correct.) It is verbally trivial that we always have
lim An ⊂ lim An. Define

(14) lim An ≡ lim An whenever limAn = lim An.

We also let lim inf An ≡ lim An and lim supAn ≡ lim An, giving us alternative notations.

Proposition 1.3 Clearly, lim An equals ∪∞
1 An when An is an ↗ sequence, and lim An equals

∩∞
1 An when An is a ↘ sequence.

Exercise 1.2 (a) Now μ(lim infAn) ≤ lim infμ(An) is always true.
(b) Also, lim supμ(An) ≤ μ(lim supAn) holds if μ(Ω) < ∞. (Why the condition?)

Definition 1.5 (lim inf and lim sup of numbers) Recall that for real number sequences an

one defines lim an ≡ lim inf an and lim an ≡ lim sup an by

lim infn→∞ an ≡ limn→∞(infk≥n ak) = supn≥1(infk≥n ak) and

lim supn→∞ an ≡ limn→∞(supk≥n ak) = infn≥1(supk≥n ak),
(15)

and these yield the smallest limit point and the largest limit point, respectively, of the sequence
an.

Definition 1.6 (Continuity of set functions) A set function μ defined on some class of subsets
A of a non-void set Ω is continuous from below (or, from above) if μ(lim An) = limμ(An)
for all sequences An in Ω that are ↗ to a set in A (or, for all sequences An in Ω that
are ↘ to a set in A, with at least one μ(An) finite). Call μ continuous in case it is continuous
both from below and from above. If limμ(An) = μ(A) whenever An ↘ A, then μ is said to
be continuous from above at this particular A in A, etc.

The next result is often used in conjunction with the Carathéodory extension theorem of
the next section. View it as a converse to the proposition 1.2.
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Proposition 1.4 (Continuity of measures) If a finitely additive measure μ on either a field
or σ-field is either continuous from below or has μ(Ω) < ∞ and is continuous from above at
∅, then it is a countably additive measure.

Proof. Suppose first that μ is continuous from below. Then

μ
(∑∞

1
Ak

)
= μ

(
lim

∑n

1
Ak

)

= lim μ(
∑n

1
Ak) by continuity from below(a)

= lim
∑n

1
μ(Ak) by f.a. (where we used only that A is a field)(b)

=
∑∞

1
μ(Ak),(c)

giving the required countable additivity. Thus μ is c.a. on A.
Suppose next that μ is finite and is also continuous from above at ∅. Then f.a. (even if A

is only a field) gives

μ
(∑∞

1
Ak

)
= μ

(∑n

1
Ak

)
+ μ

(∑∞
n+1

Ak

)
=

∑n

1
μ(Ak) + μ

(∑∞
n+1

Ak

)

→
∑∞

1
μ(Ak) + 0,(d)

where μ(
∑∞

n+1Ak) → μ(∅) = 0 by continuity from above at ∅, since
∑∞

n+1Ak ↘ ∅ and μ is
finite. That is, this f.a. measure is also c.a., and hence it is a measure. �

Definition 1.7 (“Little oh,” “big oh,” and “at most” ⊕) We write:

(16)
an ≡ o(rn) if an/rn → 0,

an ≡ O(rn) if lim |an/rn| ≤ (some M) < ∞.

We write

(17) an = bn ⊕ cn if |an − bn| ≤ cn.

This last notation allows us to string inequalities together linearly, instead of having to start
a new inequality on a new line. (I use it often.)

Exercise 1.3 (π-systems and λ-systems) Consider a measurable space (Ω, A). A class D
of subsets is called a λ-system if it contains the space Ω and all proper differences (A\B, when
B ⊂ A with both A, B ∈ D) and if it is closed under monotone increasing limits. (Recall
that a class is called a π-system if it is closed under finite intersections, while π̄-systems are
also required to contain Ω.)
(a) The minimal λ-system generated by a class C is denoted by λ[C]. Show that λ[C] is equal
to the intersection of all λ-systems containing C.
(b) A collection A of subsets of Ω is a σ-field if and only if it is both a π-system and a
λ-system.
(c) Let C be a π-system and let D be a λ-system. Then C ⊂ D implies that σ[C] ⊂ D. Note
(or, show) that this follows from (19) below.
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Proposition 1.5 o [Dynkin’s π-λ theorem] Let μ and μ′ be two finite measures on the
measurable space (Ω, A). Let C be a π̄-system, where C ⊂ A. Then

(18) μ = μ′ on the π̄-system C implies μ = μ′ on σ[C].

Proof. (The author never includes this proof or the next one in lectures.) We first show
that on any measurable space (Ω, A) we have

(19) σ[C] = λ[C] when C is a π-system of subsets of A.

Let D ≡ λ[C]. By the easy exercise 1.3(a)(b), it suffices to show that D is a π-system (that
is, that A, B ∈ D implies A ∩ B ∈ D). We first go just halfway; let

EC ≡ {A ∈ D : AC ∈ D}, for any fixedC ∈ C.(a)

Then C ⊂ EC , and Ω ∈ EC . Also, for A,B ∈ EC with B ⊂ A and for C ∈ C we have (since
both AC and BC are in D) that (A\B)C = (AC\BC) ∈ D, so that A\B ∈ EC . Finally, if
An is ↗ in EC , then AnC is ↗ in D; so A ≡ limAn has AC ∈ D, and A ∈ EC . Thus EC is
a λ-system containing C. Thus EC = D, since D was the smallest such class. We have thus
learned of D that

AC ∈ D for all C ∈ C, for each A ∈ D.(b)

To go the rest of the way, we define

FD ≡ {A ∈ D : AD ∈ D}, for any fixed D ∈ D.(c)

Then C ⊂ FD, by (b), and Ω ∈ FD. Also, for A,B ∈ FD with B ⊂ A and for D ∈ D we
have (since both AD and BD are in D) that (A\B)D = (AD\BD) ∈ D, so that A\B ∈ FD.
Finally, if An is ↗ in FD, then AnD is ↗ in D; so A ≡ lim An has AD ∈ D, and A ∈ FD.
Thus FD is a λ-system containing C. Thus FD = D, since D was the smallest such class. We
have thus learned of D that

AD ∈ D for all A ∈ D, for each D ∈ D.(d)

That is, D is closed under intersections; and thus D is a π-system. Thus (19) holds.
We will now demonstrate that G ≡ {A ∈ A : μ(A) = μ′(A)} is a λ-system on Ω. First,

Ω ∈ G, since Ω is in the π̄-system C. Second, when A ⊂ B are both in G we have the equality
(since μ(A) and μ′(A) are finite)

μ(B\A) = μ(B) − μ(A) = μ′(B) − μ′(A) = μ′(B\A),(e)

giving B\A ∈ G. Finally, let An ↗ A with all An’s in G. Then proposition 1.2(i) yields the
result

μ(A) = lim μ(An) = limμ′(An) = μ′(A),(f)

so that A ∈ G. Thus G is a λ-system.
Thus the collection G on which μ = μ′ is a λ-system that contains the π̄-system C.

Applying (19) shows that σ[C] ⊂ G. �
The previous result is very useful in extending the verification of independence from small

classes of sets to larger ones. The next proposition is used for both Fubini’s theorem and the
existence of a regular conditional probability distribution. It could also have been used below
to give an alternate proof of uniqueness in the Carathéodory extension theorem.
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Proposition 1.6 ∗(Minimal monotone class; Halmos)∗ The minimal monotone class M ≡
m[C] containing the field C and the minimal σ-field σ[C] generated by the same field C satisfy

(20) m[C] = σ[C] when C is a field.

Proof. Since σ-fields are monotone classes, we have that σ[C] ⊃ M. If we now show that
M is a field, then proposition 1.1(c) will imply that σ[C] ⊂ M.

To show that M is a field, it suffices to show that

A,B in M implies AB , AcB,ABc are in M.(a)

Suppose that (a) has been established. We will now show that (a) implies that M is a field.
Complements: Let A ∈ M, and note that Ω ∈ M, since C ⊂ M. Then A,Ω ∈ M implies
that Ac = AcΩ ∈ M by (a).
Unions: Let A,B ∈ M. Then A ∪ B = (Ac ∩ Bc)c ∈ M.
Thus M is indeed a field, provided that (a) is true. It thus suffices to prove (a).

For each A ∈ M, let MA ≡ {B ∈ M : AB, AcB, ABc ∈ M}. Note that it suffices to
prove that

MA = M for each fixed A ∈ M.(b)

We first show that

MA is a monotone class.(c)

Let Bn be monotone in MA, with limit set B. Since Bn is monotone in MA, it is also
monotone in M, and thus B ≡ limn Bn ∈ M. Since Bn ∈ MA, we have ABn ∈ M, and
since ABn is monotone in M, we have AB = limn ABn ∈ M. In like fashion, AcB and ABc

are in M. Therefore, B ∈ MA, by definition of MA. That is, (c) holds.
We next show that

MA = M for each fixed A ∈ C.(d)

Let A ∈ C and let C ∈ C. Then A ∈ MC , since C is a field. But A ∈ MC if and only if
C ∈ MA, by the symmetry of the definition of MA. Thus C ⊂ MA. That is, C ⊂ MA ⊂ M,
and MA is a monotone class by (c). But M is the minimal monotone class containing C, by
the definition of M. Thus (d) holds. But in fact, we shall now strengthen (d) to

MB = M for each fixed B ∈ M.(e)

The conditions for membership in M imposed on pairs A,B are symmetric. Thus for A ∈ C,
the statement established above in (d) that B ∈ M(= MA) is true if and only if A ∈ MB .
Thus C ⊂ MB , where MB is a monotone class. Thus MB = M, since (as was earlier noted)
M is the smallest such monotone class. Thus (e) (and hence (a)) is established. �
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2 Construction and Extension of Measures

Definition 2.1 (Outer extension) Let Ω be arbitrary. Let μ be a c.a. measure on a field C
of subsets Ω. For each A ∈ 2Ω define

(1) μ∗(A) ≡ inf

{ ∞∑

n=1

μ(An) : A ⊂
∞⋃

n=1

An with all An ∈ C
}

.

(This μ∗ will turn out to be an outer measure on the class 2Ω.) Now, μ∗ is called the outer
extension of μ. The sequences A1, A2, . . . are called Carathéodory coverings. (There is always
at least one covering of every subset A, since Ω ∈ C.)

Theorem 2.1 (Carathéodory extension theorem) Let μ be a c.a. measure on a field C.
Then the μ∗ of (1) is a measure on the class A∗ of μ∗-measurable sets (as defined in (1.1.7)),
and A∗ is necessarily a σ-field. Moreover, σ[C] ⊂ A∗ The c.a. measure μ is extended from C
to be a c.a. measure on A∗ simply by defining

(2) μ(A) ≡ μ∗(A) for each A in A∗.

If μ is σ-finite on C, then the extension (2) of μ to A∗ is unique and is also σ-finite.

Comment: Later, exercise 2.1 will extend μ to a “completed” σ-field Âμ. When μ is σ-finite
on C, corollary 3 and proposition 2.1 below will then imply that A∗ = Âμ and that this is
the largest possible σ-field to which μ can be uniquely extended.

Proof. The proof proceeds by a series of claims.
Claim 1: μ∗ is an outer measure on (Ω, 2Ω).

Null: Now, μ∗(∅) = 0, since ∅, ∅, . . . is a covering of ∅.
Monotone: Let A ⊂ B. Then every covering of B is also a covering of A. Thus μ∗(A) ≤ μ∗(B).
Countably subadditive: Let all An ⊂ Ω be arbitrary. Let ε > 0. For each An there is a
covering {Ank : k ≥ 1} such that

(3)
∑∞

1
μ(Ank) ≤ μ∗(An) + ε/2n, since μ∗(An) is an infimum.

[The choice of a convergent series (like ε/2n) that adds to ε is an important technique for the
reader to learn.] Now ∪nAn ⊂ ∪n(∪kAnk). Thus (since μ∗ is monotone)

μ∗(
⋃

n
An) ≤ μ∗(

⋃

n

⋃

k
Ank) ≤

∑

n

∑

k
μ(Ank)

since the Ank’s form a covering of the set
⋃

n

⋃

k
Ank

≤
∑

n
[μ∗(An) + ε/2n] =

∑

n
μ∗(An) + ε. by (3)

But ε > 0 was arbitrary, and thus μ∗(
⋃

n An) ≤ ∑
nμ∗(An).

Claim 2: μ∗|C = μ (that is, μ∗(C) = μ(C) for all C ∈ C), and C ⊂ A∗.
Let C ∈ C. Then μ∗(C) ≤ μ(C), since C, ∅, ∅, . . . is a covering of C. For the other direction, we
let A1, A2, . . . in C be any covering of C. Since μ is c.a. on C, and since ∪∞

1 (An ∩C) = C ∈ C,
we have from proposition 1.1.2(c) that

μ(C) = μ(∪∞
1 (An ∩ C)) ≤

∑∞
1

μ(An ∩ C) ≤
∑∞

1
μ(An),
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and thus μ(C) ≤ μ∗(C). Thus μ(C) = μ∗(C). We next show that any C ∈ C is also in A∗.
Let C ∈ C. Let ε > 0, and let a test set T be given. There exists a covering {An}∞

1 ⊂ C of T
such that

μ∗(T ) + ε ≥
∑∞

1
μ(An) since μ∗(T ) is an infimum(a)

=
∑∞

1
μ(CAn) +

∑∞
1

μ(CcAn)

since μ is c.a. on C with C and An in C
≥ μ∗(CT ) + μ∗(CcT ) since CAn covers CT and CcAn covers CcT.(b)

But ε > 0 is arbitrary. Thus C ∈ A∗ Thus C ⊂ A∗.
Claim 3: The class A∗ of μ∗-measurable subsets of Ω is a field that contains C. Now,

A ∈ A∗ implies that Ac ∈ A∗: The definition of μ∗-measurable is symmetric in A and Ac.
And A,B ∈ A∗ implies that AB ∈ A∗: For any test set T ⊂ Ω we have the required inequality

μ∗(T ) = μ∗(TA) + μ∗(TAc) since A ∈ A∗

= μ∗(TAB) + μ∗(TABc) + μ∗(TAcB) + μ∗(TAcBc)
since B ∈ A∗ with test set TA and with test set TAc

≥ μ∗(TAB) + μ∗(TABc + TAcB + TAcBc) = μ∗(TAB) + μ∗(T (AB)c)

since μ∗ is countably subadditive. As the reverse inequality is trivial,

μ∗(T ) = μ∗(TAB) + μ∗(T (AB)c), givingAB ∈ A∗.(c)

Thus A∗ is a field.
Claim 4: μ∗ is a f.a. measure on A∗.

Let A,B ∈ A∗ be disjoint. Finite additivity follows from

μ∗(A + B) = μ∗((A + B)A) + μ∗((A + B)Ac)

since A ∈ A∗ with test set A + B

= μ∗(A) + μ∗(B).(d)

Trivially, μ∗(A) ≥ 0 for all sets A. And μ∗(∅) = 0 was shown in the first claim.
Claim 5: A∗ is a σ-field, and it contains σ[C].

It suffices to show that A ≡ ∑∞
1 An ∈ A∗ whenever all An ∈ A∗, since A∗ is a field. Now,

Bn ≡ ∑n
1Ak ∈ A∗, since A∗ is a field. Using Bn ∈ A∗ for the first step,

μ∗(T ) = μ∗(TBn) + μ∗(TBc
n) ≥ μ∗(TBn) + μ∗(TAc)

since μ∗ is monotone and Bc
n ⊃ Ac

= μ∗((TBn)A1) + μ∗((TBn)Ac
1) + μ∗(TAc) as A1 ∈ A∗

= μ∗(TA1) + μ∗(T
∑n

2
Ak) + μ∗(TAc)

= μ∗(TA1) + μ∗(T (
∑n

2
Ak)A2) + μ∗(T (

∑n

2
Ak)Ac

2) + μ∗(TAc)

= μ∗(TA1) + μ∗(TA2) + μ∗(T
∑n

3
Ak) + μ∗(TAc)

= · · · =
∑n

1
μ∗(TAk) + μ∗(TAc).(e)
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Letting n → ∞ gives

μ∗(T ) ≥
∑∞

1
μ∗(TAk) + μ∗(TAc)(f)

≥ μ∗(TA) + μ∗(TAc) since μ∗ is countably subadditive.(g)

Thus A ∈ A∗.
Claim 6: μ∗ is c.a. on A∗.

Replace T by A =
∑∞

1 An in (f) to get μ∗(A) ≥ ∑∞
1 μ∗(An), and then countable subadditivity

gives the reverse inequality.
Claim 7: When μ is a finite measure, its extension μ∗ to A∗ is unique.

Let ν denote any other extension of μ to A∗. Let A in A∗. For any Carathéodory covering
A1, A2, . . . of A (with the An’s in C), countable subadditivity gives

ν(A) ≤ ν(∪∞
1 An) ≤

∑∞
1

ν(An) =
∑∞

1
μ(An),

since μ = ν on A. Thus (recall the definition of μ∗ in (1))

ν(A) ≤ μ∗(A) for all A ∈ A∗.(h)

Note that the measures μ∗ and ν on A∗ also satisfy

ν(A) + ν(Ac) = ν(Ω) = μ∗(Ω) = μ∗(A) + μ∗(Ac)(i)

for all A in A∗ (using Ω ∈ A for ν(Ω) = μ∗(Ω)). Since (h) gives both

ν(A) ≤ μ∗(A) and ν(Ac) ≤ μ∗(Ac)(j)

(where all four of these terms are finite), we can infer from (i) that

ν(A) = μ∗(A) for all A ∈ A∗.(k)

This gives the uniqueness of μ∗ on A∗

Claim 8: Uniqueness of μ∗ on A∗ also holds when μ is a σ-finite measure on C. Label
the sets of the measurable partition as Dn, and let Ωn ≡ ∑n

1Dk so that Ωn ↗ Ω. Claim 7
establishes that

ν(AΩn) = μ∗(AΩn) for all A ∈ A∗.(l)

It follows that

ν(A) = lim
n

ν(AΩn) by proposition 1.1.2(m)

= lim
n

μ∗(AΩn) by (1)

= μ∗(A) by proposition 1.1.2,(n)

completing the proof. In fact, the following corollary was established. �

Corollary 1 The μ∗-measurable sets A∗ of (1.1.7) were shown to contain σ[C]. Thus we
can now view the c.a. measure μ on the field C has having been extended uniquely to the
(useful and intelligible) σ-field σ[C], or as having been extended to the (less intelligible, but
at least as large) σ-field A∗. (We seek clarity.)
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Questions When we extended our measure μ from the field C to the σ-field A∗, did we
actually go beyond σ[C]? Can we go further? Corollary 2 and Corollary 3 will show that we
can always “complete” μ on σ[C], and in so doing extend it to (an obviously useful) σ-field
named Âμ, that is still contained in A∗. Proposition 2.1 will show that there are definite
limitations to extension (the most famous example being the “Lebesgue sets” of proposition
2.3). In doing so, proposition 2.1 will imply that A∗ = Âμ, which now gives us a very useful
interpretation of A∗.

Definition 2.2 (Complete measures) Let (Ω, A, μ) denote a measure space. If μ(A) =
0, then A is called a null set. We call (Ω, A, μ) complete if whenever we have A ⊂ (some B)
∈ A with μ(B) = 0, we necessarily also have A ∈ A. (That is, all subsets of sets of measure
0 are required to be measurable.)

Exercise 2.1 (Completion) Let (Ω, A, μ) denote a measure space. Show that

(4) Âμ ≡ {A : A1 ⊂ A ⊂ A2 with A1, A2 ∈ A and μ(A2\A1) = 0}

(5) = {A ∪ N : A ∈ A, and N ⊂ (some B) ∈ A having μ(B) = 0}

(6) = {A	N : A ∈ A, and N ⊂ (some B) ∈ Ahaving μ(B) = 0},

and that Âμ is a σ-field. Define μ̂ on Âμ by

(7) μ̂(A ∪ N) = μ(A)

for all A ∈ A and for all N ⊂ (some B) ∈ A having μ(B) = 0. Show that (Ω, Âμ, μ̂) is a
complete measure space for which μ̂|A = μ. (Note: A proof must include a demonstration
that definition (7) leads to a well-defined μ̂. That is, whenever A1 ∪ N1 = A2 ∪ N2 we must
have μ(A1) = μ(A2), so that μ̂(A1 ∪ N1) = μ̂(A2 ∪ N2).)

Definition 2.3 (Lebesgue sets) The completion of Lebesgue measure on (R, B, λ) is still
called Lebesgue measure, and it is still denoted by λ. The resulting completed σ-field B̂λ of
the Borel sets B is called the Lebesgue sets.

Corollary 2 When we complete a measure μ on a σ-field A, this completed measure μ̂ is
the unique extension of μ to Âμ. (It is typical to denote such extensions by μ also (rather
than by μ̂), and to always make such extensions automatically.)

Corollary 3 (Thus when we begin with a σ-finite measure μ on a field C, both the extension
to A ≡ σ[C] and the further extension to Âμ ≡ σ̂[C]μ are unique.) Here, we note that all sets
in Âμ = σ̂[C]μ are in the class A∗ of μ∗-measurable sets. (Proposition 2.1 below will imply
that Âμ = A∗.)

Proof. Consider corollary 2 first. Let ν denote any extension to Âμ. We will demonstrate
that

ν(A ∪ N) = μ(A) for all A ∈ A, and all null sets N(a)

(that is, ν = μ̂). Assume not. Then there exist sets A ∈ A and N ⊂ (some B) in A with
μ(B) = 0 such that ν(A ∪ N) > μ(A) (necessarily, ν(A ∪ N) ≥ ν(A) = μ(A)). For this A and
N we have
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μ(A) = ν(A) < ν(A ∪ N) = ν(A ∪ (AcN)) where AcN ⊂ AcB = (null)

= ν(A) + ν(AcN) ≤ ν(A) + ν(B)(b)
since ν is a measure on the completion

= μ(A) + μ(B) since ν is an extension of μ.(c)

Hence μ(B) > 0, which is a contradiction. Thus the extension is unique.
We now turn to corollary 3. Only the final claim needs demonstrating. Suppose A is in

σ̂[C]μ. Then A = A′ ∪ N for some A′ ∈ A and some N satisfying N ⊂ B with μ(B) = 0.
Since A∗ is a σ-field, it suffices to show that any such N is in A∗. Since μ∗ is subadditive
and monotone, we have

μ∗(T ) ≤ μ∗(TN) + μ∗(TN c) = μ∗(TN c) ≤ μ∗(T ),(d)

because μ∗(TN) = 0 follows from using B, ∅ ∅, . . . to cover TN . Thus equality holds in this
last equation, showing that N is μ∗-measurable. �

Exercise 2.2 Let μ and ν be finite measures on (Ω, A).
(a) Show by example that Âμ and Âν need not be equal.
(b) Prove or disprove each half: Âμ = Âν iff μ and ν have identical null sets.
(c) Give an example of an LS-measure μ on R (see section 1.3) for which B̂μ = 2R.

Exercise 2.3 (a) Replace the sets An in the field C used in definition (1) by the disjoint
sets Bn ≡ AnAc

n−1 · · · Ac
2A

c
1 (which are also in C), to show that this definition could have

insisted on using disjoint sets An.
(b) (Approximation lemma; Halmos) Let the σ-finite measure μ on the field C be
extended to A = σ[C]; also refer to this extension as μ. Show that for each A ∈ A (or
Âμ) having μ(A) < ∞, and for each ε > 0,

(8) μ(A	C) < ε for some set C ∈ C.

(Hint. Truncate the sum in (1.2.1) to define C.)
(c) If μ(A) = ∞, then (8) can fail, even in a simple case—with a bad choice for C. Let μ denote
counting measure on the integers. Now C ≡ {C : C or Cc is finite} is a field. Determine σ[C].
Show that (8) fails for the set A of even integers.

Definition 2.4 (Regular measures on metric spaces) Let d denote a metric on Ω, let A denote
the Borel sets, and let μ be a measure on (Ω, A). Suppose that for each set A in Âμ, and for
every ε > 0, one can find an open set Oε and a closed set Cε for which both Cε ⊂ A ⊂ Oε and
μ(Oε\Cε) < ε. Suppose also that if μ(A) < ∞, one then requires that the set Cε be compact.
Then μ is called a regular measure. (Note exercise 1.3.1 below. Contrast its content with
(8).)

Exercise 2.4 (Nonmeasurable sets) Let Ω consist of the sixteen values 1, . . . , 16. (Think
of them arranged in four rows of four values.) Let

C1 = {1, 2, 3, 4, 5, 6, 7, 8}, C2 = {9, 10, 11, 12, 13, 14, 15, 16},
C3 = {1, 2, 5, 6, 9, 10, 13, 14}, C4 = {3, 4, 7, 8, 11, 12, 15, 16}.

Let C denote the field generated by {C1, C2, C3, C4}, and let A = σ[C].
(a) Show that A ≡ σ[C] �= 2Ω. (Note that 2Ω contains 216 = 65,536 sets.)
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(b) Let μ(Ci) = 1
2 , 1 ≤ i ≤ 4, with μ(C1C3) = 1

4 . Show Âμ = A, with 24 = 16 sets.
(c) Let μ(Ci) = 1

2 , i = 2, 3, 4, with μ(C2C4) = 0. Show that Âμ has 210 = 1024 sets.
(d) Illustrate proposition 2.1 below in the context of this exercise.

Proposition 2.1 (Not all sets need be measurable) Let μ be a measure on A ≡ σ[C], with C
a field. If B /∈ Âμ, then there are infinitely many measures on σ[Âμ ∪ {B}] that agree with
μ on C. (Thus the σ-field Âμ is as far as we can go with the unique extension process. We
merely state this observation for reference, without proof. Note exercise 2.4d.)

Proposition 2.2 (Not all subsets are Lebesgue sets) There is a subset D of R that is not
in the Lebesgue sets B̂λ. (This will require the axiom of choice.)

Proof. Define the equivalence relation ∼ on elements of [0, 1) by x ∼ y if x−y is a rational
number. Use the axiom of choice to specify a set D that contains exactly one element from
each equivalence class. Now define Dz ≡ {z + x (modulo 1) : x ∈ D} for each rational z in
[0, 1), so that [0, 1) =

∑
zDz represents [0, 1) as a countable union of disjoint sets. Moreover,

all Dz must have the same outer measure; call it a. Assume D = D0 is measurable. But then
1 = λ([0, 1)) =

∑
z λ(Dz) =

∑
z a gives only

∑
z a = 0 (when a = 0) and

∑
z a = ∞ (when

a > 0) as possibilities. This is a contradiction. Thus D /∈ B̂λ. �

Exercise 2.5 Just understand the sketch above, noting that D =
∑

z Dz (with disjoint sets
Dz for the rationals z).

Proposition 2.3 (Not all Lebesgue sets are Borel sets) There necessarily exists a set A ∈
B̂λ\B that is a Lebesgue set but not a Borel set.

Proof. This proof follows exercise 6.3.4 below; it requires the axiom of choice. �

Exercise 2.6 Every subset A of Ω having μ∗(A) = 0 is a μ∗-measurable set.

Exercise 2.7 ∗ Show that the Carathéodory theorem can fail if μ is not σ-finite.

Coverings

Earlier in this section we encountered Carathéodory coverings.

Exercise 2.8 ∗ (Vitali covering) (a) We say that a family V of intervals I is a Vitali covering
of a set D if for each x ∈ D and each ε > 0 there exists an interval I ∈ V for which x ∈ I and
λ(I) < ε.
(b) (Vitali covering theorem) Let D ⊂ R have outer Lebesgue measure λ∗(D) < ∞. Let V
be a collection of closed intervals that forms a Vitali covering of D. Then there exists a finite
number of pairwise disjoint intervals (I1, . . . , Im) in V whose Lebesgue outer measure λ∗

satisfies

(9) λ∗
(
D

∖∑m

j=1
Ij

)
< ε.

(Compare this “nice approximation” of a set to the nice approximations given in exercise
2.3 and in definition 2.4.) [Lebesgue measure λ will be formally shown to exist in the next
section, and λ∗ will be discussed more fully.] [Result (9) will be useful in establishing the
Lebesgue result that increasing functions on R necessarily have a derivative, except perhaps
on a set having Lebesgue measure zero.]
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Exercise 2.9 ∗ (Heine–Borel) If {Ut : t ∈ T} is an arbitrary collection of open sets that
covers a compact subset D of R, then there exists a finite number of them U1, . . . , Um that
also covers D.

The familiar Heine–Borel result will be frequently used. It is stated here only to contrast
it with the important new ideas of Carathéodory and Vitali coverings.
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3 Lebesgue–Stieltjes Measures

At the moment we know only a few measures informally. We now construct the large class
of measures that lies at the heart of probability theory.

Definition 3.1 (Lebesgue–Stieltjes measure) A measure μ on the real line R assign-
ing finite values to finite intervals is called a Lebesgue–Stieltjes measure. (The measure
μ on (R, 2R) whose value μ(A) for any set A equals the number of rationals in A is not
a Lebesgue–Stieltjes measure.)

Definition 3.2 (gdf) A finite ↗ function F on R that is right-continuous is called a gen-
eralized df (to be abbreviated gdf). Then F (·) ≡ limy↗ .F (y) denotes the left-continuous
version of F. The mass function of F is defined by

ΔF (·) ≡ F (·) − F (·), while F (a, b] ≡ F (b) − F (a) for all a ≤ b

is called the increment function of F. Identify gdfs having the same increment function. Only
one member F of each equivalence class so obtained satisfies F−(0) = 0, and this F can (and
occasionally will) be used as the representative member of the class (also to be called the
representative gdf).

Example 3.1 We earlier defined three measures on (R,B) informally.
(a) For Lebesgue measure λ, a gdf is the identity function F (x) = x.
(b) For counting measure, a gdf is the greatest integer function F (x) = [x].
(c) For unit point mass at x0, a gdf is F (x) = 1[x0,∞)(x). �

Theorem 3.1 (Correspondence theorem; Loève) The relationship

(1) μ((a, b]) ≡ F (a, b] for all − ∞ ≤ a ≤ b ≤ +∞

establishes a 1-to-1 correspondence between the Lebesgue–Stieltjes measures μ on B and the
set of representative members of the equivalence classes of generalized dfs. (Each such μ
extends uniquely to B̂μ−but it is still labeled as μ, not μ̂.)

Notation 3.1 We formally establish some notation that will be used throughout. Impor-
tant classes of sets include:

CI ≡ {all intervals (a, b], (−∞, b], or (a, +∞) : −∞ < a < b < +∞}.(2)
CF ≡ {all finite disjoint unions of intervals in CI} = (a field).(3)
B ≡ σ[CF ] ≡ (the σ-field of Borel sets).(4)

B̂μ ≡ (the σ-field B completed for the measure μ).(5)

B̄ ≡ σ[B, {−∞}, {+∞}] and B̄μ ≡ σ[B̂μ, {−∞}, {+∞}].(6) �

Proof. Given a LS-measure μ, define the increment function F (a, b] via (1). We clearly
have 0 ≤ F (a, b] < ∞ for all finite a, b, and F (a, b] → 0 as b ↘ a, by proposition 1.1.2. Now
specify F−(0) ≡ 0, F (0) ≡ μ({0}), F (b) ≡ F (0)+F (0, b] for b > 0, and F (a) = F (0)−F (a, 0]
for a < 0. This F (·) is the representative gdf.

Given a representative gdf, we define μ on the collection I of all finite intervals (a, b] via
(1). We will now show that μ is a well-defined and c.a. measure on this collection I of finite
intervals.
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Nonnegative: μ ≥ 0 for any (a, b], since F is ↗.
Null: μ(∅) = 0, since ∅ = (a, a] and F (a, a] = 0.
Countably additive on I: Let I ≡ (a, b] =

∑∞
1 In ≡ ∑∞

1 (an, bn]. We must show

μ(
∑∞

1
In) =

∑∞
1

μ(In).(a)

First, we will show that
∑∞

1 μ(Ik) ≤ μ(I). Fix n. Then
∑n

1 Ik ⊂ I, so that (relabel if
necessary, so that I1, . . . , In is a left-to-right ordering of these intervals)

∑n

1
μ(Ik) =

∑n

1
F (ak, bk] ≤ F (a, b] = μ(I).(b)

Letting n → ∞ in (b) gives the first claim.
Next, we will show that μ(I) ≤ ∑∞

1 μ(Ik). Suppose b−a > ε > 0 (the case b−a = 0 is trivial,
as μ(∅) = 0). Fix θ > 0. For each k ≥ 1, use the right continuity of F to choose an εk > 0 so
small that

F (bk, bk + εk] < θ/2k, and define Jk ≡ (ak, ck) ≡ (ak, bk + εk).(c)

These Jk form an open cover of the compact interval [a + ε, b], so that some finite number
of them are known to cover [a + ε, b], by the Heine–Borel theorem. Sorting through these
intervals one at a time, choose (a1, c1) to contain b, choose (a2, c2) to contain a1, choose
(a3, c3) to contain a2, . . . ; finally (for some K), choose (aK , cK) to contain a + ε. Then
(relabeling the subscripts, if necessary)

F (a + ε, b] ≤ F (aK , c1] ≤
∑K

1
F (ak, ck] ≤

∑K

1
F (ak, bk] +

∑K

1
θ/2k

≤
∑∞

1
μ(Ik) + θ.(d)

Let θ ↘ 0 and then ε ↘ 0 in (d) to obtain the second claim (and the truth of (a)) as

μ(I) = F (a, b] ≤
∑∞

1
μ(Ik).(e)

We will now show that μ is a well-defined c.a. measure on the given field CF . If A =∑
nIn ∈ CF with each In of type (a, b], then we define μ(A) ≡ ∑

nμ(In). If we also have
A =

∑
mI ′

m, then we must show (where the subscripts m and n could take on either a finite
or a countably infinite number of values) that

∑

m
μ(I ′

m) =
∑

n
μ(In) = μ(A).(f)

Now, I ′
m = A ∩ I ′

m =
∑

nInI ′
m and In = AIn =

∑
mI ′

mIn, so μ is well defined by

∑

m
μ(I ′

m) =
∑

m

∑

n
μ(InI ′

m) =
∑

n

∑

m
μ(InI ′

m) =
∑

n
μ(In) = μ(A).(g)

The c.a. of μ on CF is then trivial; if disjoint An =
∑

mInm for each n, it then follows that
A ≡ ∑

nAn =
∑

n

∑
mInm with μ(A) =

∑
n

∑
mμ(Imn) =

∑
nμ(An).

Finally, a measure μ on CF determines a unique measure on B, as is guaranteed by the
Carathéodory extension of theorem 1.2.1. �
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Exercise 3.1 (Calculating Lebesgue–Stieltjes measure) (i) Consider a gdf F on R and
its associated Lebesgue–Stieltjes measure μF on (R, CF ), for the field CF of (3). Show that we
can replace the definition of the outer extension μ∗

F to the Borel σ-field B in the Carethéodory
fashion of (1.3.1) by

μ∗
F (A) = inf

{∑∞
n=1

(F (dn) − F (cn)) : A ⊂
∑∞

n=1
(cn, dn]

}

for countable unions of disjoint subintervals (cn, dn] of R̄. Show also that

(7) μF (A) = inf
{∑∞

n=1
(F (dn) − F (cn)) : A ⊂

∑∞
n=1

(cn, dn]
}

for all A ∈ B̂μF
.

(This gives a very concrete visualization of how the μF measure of an arbitrary subset of R
is formed–and this approach is the same for every Lebesgue–Stieltjes measure μF on R.)
(ii) Let I denote any subinterval of the real line R. Let F denote any fixed gdf on I. (Now
F (x) = x is a gdf on R itself, F (x) = 1 − e−x is a gdf on [0, ∞), and F (x) = 1/(1 − x) − 1
is a gdf on [0,1).) Define μF ((a, b]) = F (b) − F (a) for all a ≤ b with a and b in Ī. Let
BI ≡ {B ∩ I : B ∈ B}. It is still true that the right hand side of (7) gives the value of μF (A)
for every A in the completion of the σ-field BI . That is, taking the infimum over disjoint
intervals of the type (a, b] is suffficient.

Definition 3.3 (Absolutely continuous dfs) Say that a gdf F on an interval I is absolutely
continuous if for all ε > 0 there exists a δε > 0 for which

(8)
∑n

k=1
|F (dk) − F (ck)| < ε provided

∑n

k=1
(dk − ck) < δε

whenever n ≥ 1 and all of the intevals (ck, dk] are mutually disjoint subintervals of I. (Note
that the first and third dfs in part (ii) of the previous exercise are absolutely continuous,
while the third one is continuous but not even uniformly continuous.)

Exercise 3.2 (All LS-measures on (R,B) are regular) Show that all Lebesgue–Stieltjes mea-
sures on (R,B) are regular measures (see definition 1.2.4). (Use the open intervals Jn in the
theorem 3.1 proof.)

Probability Measures, Probability Spaces, and DFs

Definition 3.4 (Probability distributions P (·) and dfs F (·))
(a) In probability theory we think of Ω as the set of all possible outcomes of some experiment,
and we refer to it as the sample space. The individual points ω in Ω are referred to as the
elementary outcomes. The measurable subsets A in the collection A are referred to as events.
A measure of interest is now denoted by P ; it is called a probability measure, and must satisfy
P (Ω) = 1. We refer to P (A) as the probability of A, for each event A in ÂP . The triple
(Ω,A, P ) (or (Ω, ÂP , P̂ ), if this is different) is referred to as a probability space.
(b) An ↗ right-continuous function F on R having F (−∞) ≡ limx→−∞ F (x) = 0 and
F (+∞) ≡ limx→+∞ F (x) = 1 is called a distribution function (which we will abbreviate
as df). (For probability measures, setting F (−∞) = 0 is used to specify the representative
df.)

Corollary 1 (The correspondence theorem for dfs) Defining P (·) on all intervals (a, b] via
P ((a, b]) ≡ F (b) − F (a) for all −∞ ≤ a < b ≤ +∞ establishes a 1-to-1 correspondence
between probability distributions P (·) on (R,B) and dfs F (·) on R.
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Exercise 3.3 Prove this trivial corollary.

Remark 3.1 (Density functions) Those probability distributions that have an absolutely
continuous df will turn out be be exactly those probablity distributions that have a “density
function” f. Moreover, F ′ will always exist for any df F (except perhaps on a set of Lebesgue
measure 0), but it will serve as a density function only for the absolutely continuous dfs.
Moreover, in chapter 4 we will also learn to think of a “probability mass function” as a
density with respect to counting measure. �



Chapter 2

Measurable Functions
and Convergence

1 Mappings and σ-Fields

Notation 1.1 (Inverse images) Suppose X denotes a function mapping some set Ω into
the extended real line R̄ ≡ R∪{±∞}; we denote this by X : Ω → R̄. Let X+ and X− denote
the positive part and the negative part of X, respectively:

X+(ω) ≡
{

X(ω) if X(ω) ≥ 0,
0 else,(1)

X−(ω) ≡
{ −X(ω) if X(ω) ≤ 0,

0 else.(2)

Note that

(3) X = X+ − X− and |X| = X+ + X− = X + 2X− = 2X+ − X.

We also use the following notation:

(4) [X = r] ≡ X−1(r) ≡ {ω : X(ω) = r} for all real r,

(5) [X ∈ B] ≡ X−1(B) ≡ {ω : X(ω) ∈ B} for all Borel sets B,

(6) X−1(B) ≡ {X−1(B) : B ∈ B}.

We call these the inverse images of r,B, and B, respectively. We let

(7) B̄ ≡ σ[B, {+∞}, {−∞}].

Inverse images are also well-defined when X : Ω → Ω′ for arbitrary sets Ω and Ω′. �

For A,B ∈ Ω we define A	B ≡ ABc ∪ AcB and A\B ≡ ABc. There is use for the
notation
c© Springer International Publishing AG 2017
G.R. Shorack, Probability for Statisticians, Springer Texts in Statistics,
DOI 10.1007/978-3-319-52207-4 2
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(8) ‖X‖ ≡ sup
ω∈Ω

|X(ω)|,

and we will also reintroduce this sup norm in other contexts below.

Proposition 1.1 (Basics of inverse images) Let X : Ω → Ω′ and Y : Ω′ → Ω′′. Let T
denote an arbitrary index set. Then for all A,B,At ⊂ Ω′ we have

(9) X−1(Bc) = [X−1(B)]c, X−1(A\B) = X−1(A)\X−1(B),

(10) X−1
(⋃

t∈T
At

)
=

⋃
t∈T

X−1(At) , X−1
(⋂

t∈T
At

)
=

⋂
t∈T

X−1(At).

For all sets A ⊂ Ω′′, the composition Y ◦ X satisfies

(11) (Y ◦ X)−1(A) = X−1(Y −1(A)) = X−1 ◦ Y −1(A).

Proof. Trivial. �

Proposition 1.2 (Preservation of σ-fields) Let X : Ω → Ω′. Then:

(12) A ≡ X−1(a σ-field A′ of subsets of Ω′) = (a σ-field of subsets of Ω).

(13) X−1(σ[C′]) = σ[X−1(C′)] for any collection C′ of subsets of Ω′.

A′ ≡ {A′ : X−1(A′) ∈ (a specific σ-field A of subsets of Ω)}(14)
= (a σ-field of subsets of Ω′).

Proof. Now, (12) is trivial from proposition 1.1. Consider (14). Now:

(a) A′ ∈ A′ implies X−1(A′) ∈ A
implies X−1(A′c) = [X−1(A′)]c ∈ A implies A′c ∈ A′,

(b) An’s ∈ A′ implies X−1(A′
n)’ s ∈ A

implies X−1(
⋃

nA′
n) =

⋃
nX−1(A′

n) ∈ A implies
⋃

nA′
n ∈ A′.

This gives (14). Consider (13). Using (12) gives

(c) X−1(σ[C′]) =(a σ-field containing X−1(C′)) ⊃ σ[X−1(C′)].

Then (14) shows that

(d) A′ ≡ {A′ : X−1(A′) ∈ σ[X−1(C′)]} =(a σ-field containing C′) ⊃ σ[C′], so that (using

first σ[C′] ⊂ A′ from (d), and then the definition of A′ in (d))

(e) X−1(σ[C′]) ⊂ X−1(A′) ⊂ σ[X−1(C′)].

Combining (c) and (e) gives (13). [We will apply (13) below to obtain (2.2.6).] �

Roughly, using (12) we will restrict X so that F(X) ≡ X−1(B̄) ⊂ A for our original
(Ω,A, μ), so that we can then “induce” a measure on (R̄, B̄). Or, (14) tells us that the
collection A′ is such that we can always induce a measure on (Ω′,A′). We do this in the next
section. First, we generalize our definition of Borel sets to n dimensions.
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Example 1.1 (Euclidean space) Let

Rn ≡ R × · · · × R ≡ {(r1, . . . , rn) : each ri is in R}.

Let Un denote all open subsets of Rn, in the usual Euclidean metric. Then

(15) Bn ≡ σ[Un] is called the class of Borel sets of Rn.

Following the usual notation, B1 × · · · × Bn ≡ {(b1, . . . , bn) : b1 ∈ B1, . . . , bn ∈ Bn}.
Now let

(16)
∏n

i=1
B ≡ B × · · · × B ≡ σ[{B1 × · · · × Bn : all Bi are in B}].

Now consider

(17) σ[{(−∞, r1] × · · · × (−∞, rn] : all ri are in R}].

Note that the three σ-fields of (15), (16), and (17) are equal. Just observe that each of
these three classes generates the generators of the other two classes, and apply exercise 1.1.1.
(Surely, we can define a generalization of area λ2 on (R2,B2) by beginning with λ2(B1×B2) =
λ(B1) × λ(B2) for all B1 and B2 in B, and then extending to all sets in B2. We will do this
in theorem 5.1.1, and we will call it Lebesgue measure on two-dimensional Euclidean space.
This clearly extends to λn on (Rn,Bn).) �
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2 Measurable Functions

We seek a large usable class of functions that is closed under passage to the limit. This
is the fundamental property of the class of measurable functions. Propositions 2.2 and 2.3
below will show that the class of measurable functions is also closed under all of the standard
mathematical operations. Thus, this class is sufficient for our needs.

Definition 2.1 (Simple functions, etc.) Let the measure space (Ω,A, μ) be given and fixed
throughout our discussion. Consider the following classes of functions. The indicator function
1A(·) of the set A ⊂ Ω is defined by

1A(ω) ≡
{

1 if ω ∈ A,
0 else.(1)

A simple function is of the form

(2) X(ω) ≡
n∑

i=1

xi1Ai
(ω) for

n∑
1

Ai = Ω with all Ai ∈ A, and xi ∈ R.

An elementary function is of the form

(3) X(ω) ≡
∞∑

i=1

xi1Ai
(ω) for

∞∑
i=1

Ai = Ω with all Ai ∈ A, and xi ∈ R̄.

Definition 2.2 (Measurability) Suppose that X : Ω → Ω′, where (Ω,A) and (Ω′,A′) are
both measurable spaces. We then say that X is A′-A-measurable if X−1(A′) ⊂ A. We also
denote this by writing either

(4) X : (Ω,A) → (Ω′,A′) or X : (Ω,A, μ) → (Ω′,A′)

(or even X : (Ω,A, μ) → (Ω′,A′, μ′) for the measure μ′ “induced” on (Ω′,A′) by the
mapping X, as will soon be defined). In the special case X : (Ω,A) → (R̄, B̄), we simply call
X measurable; and in this special case we let F(X) ≡ X−1(B̄) denote the sub σ-field of A
generated by X.

Proposition 2.1 (Measurability criteria) Let X : Ω → R̄. Suppose σ[C] = B̄.
Then measurability can be characterized by either of the following:

X is measurable if and only if X−1(C) ⊂ A.(5)

X is measurable if and only if X−1([−∞, x]) ∈ A for all x ∈ R̄.(6)

Note that we could replace [−∞, x] by any one of [−∞, x), [x,+∞], or (x,+∞].

Proof. Consider (5). Let X−1(C) ⊂ A. Then

(a) X−1(B̄) = X−1(σ[C]) = σ[X−1(C)] by proposition 2.1.2

(b) ⊂ A since X−1(C) ⊂ A, and A is a σ-field.

The other direction is trivial. Thus (5) holds. To demonstrate (6), we need to show that B
satisfies
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(c) σ[{[−∞, x] : x ∈ R}] = B̄ ≡ σ[B, {−∞}, {+∞}].

Since B = σ[CI ] for CI as in (1.3.2) and since

(d) (a, b] = [−∞, b] ∩ [−∞, a]c, [−∞, b) =
⋃∞

1 [−∞, b − 1/n],

(e) {−∞} = ∩n[−∞,−n], {+∞} =
⋂

n[−∞, n]c, etc.,

the equality (c) is obvious. The rest is trivial. �

Proposition 2.2 (Measurability of common functions) Let X,Y , and Xn’s be mea-
surable functions. Consider cX with c > 0,−X, inf Xn, supXn, lim inf Xn, lim supXn,
lim Xn if it exists, X2,X ± Y if it is well-defined, XY where 0 · ∞ ≡ 0,X/Y if it is well-
defined, X+,X−, |X|, and the composite g(X) for a continuous g and for any measurable
function g. All of these are measurable functions.

Proposition 2.3 (Measurability via simple functions)

(7) Simple and elementary functions are measurable.

X : Ω → R̄ is measurable if and only if
(8)

X is the limit of a sequence of simple functions.

Moreover:

If X ≥ 0 is measurable, then X is
(9)

the limit of a sequence of simple functions that are ≥ 0 and ↗ .

The Xn’s and Zn’s that are defined in (10) and (12) below are important.

Proof. The functions in proposition 2.2 are measurable, as is now shown.

(a) [cX < x] = [X < x/c], [−X < x] = [X > −x].

(b) [inf Xn < x] = ∪[Xn < x], supXn = − inf(−Xn).

(c) lim inf Xn = sup
n

( inf
k≥n

Xk), lim supXn = − lim inf(−Xn).

(d) lim Xn = lim inf Xn, provided that limXn(ω) exists for all ω.

(e) [X2 < x] = [−√
x < X <

√
x] = [X <

√
x] ∩ [X ≤ −√

x]c.

Each of the sets where X or Y equals 0,∞, or −∞ is measurable; use this below.

(f) [X > Y ] =
⋃

r{ X > r > Y : r is rational}, so [X > Y ] is a measurable set.

So, [X + Y > z] = [X > z − Y ] ∈ A since z − Y is trivially measurable.

(Here [X = ∞] ∩ [Y = −∞] = ∅ is implied, as X + Y is well defined. Etc., below.)
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(g) X − Y = X + (−Y ) and XY = [(X + Y )2 − (X − Y )2]/4.

(h) X/Y = X × (1/Y ),

since [1/Y < x] = [Y > 1/x] for x > 0 in case Y > 0, and for general Y one can write
1
Y = 1

Y 1[Y >0] − 1
−Y 1[Y <0] with the two indicator functions measurable.

(i) X+ = X ∨ 0 and X− = (−X) ∨ 0.

For g measurable, (g ◦ X)−1(B̄) = X−1(g−1(B̄)) ⊂ X−1(B̄) ⊂ A. Then continuous g are
measurable, since

(j) g−1(B) = g−1(σ[open sets]) = σ[g−1(open sets)] ⊂ σ[open sets] ⊂ B̄, and both
g−1({+∞}) and g−1({−∞}) are a (possibly void) subset of {−∞,+∞}. Now apply the result
for measurable g.

We now prove proposition 2.3. Claim (7) is trivial. Consider (8). Define simple functions
Xn by

Xn ≡
n2n∑
k=1

k − 1
2n

×
{

1[ k−1
2n ≤X< k

2n ] − 1[ k−1
2n ≤−X< k

2n ]

}
(10)

+ n × {1[X≥n] − 1[−X≥n]}.

Since |Xn(ω) − X(ω)| ≤ 2−n for |X(ω)| < n, we have

(k) Xn(ω) → X(ω) as n → ∞ for each ω ∈ Ω.

Also, the nested subdivisions k/2n cause Xn to satisfy
(l) Xn ↗ when X ≥ 0.

We extend proposition 2.3 slightly by further observing that

(11) ‖Xn − X‖ → 0 as n → ∞, if X is bounded.

Also, the elementary functions

Zn ≡
∞∑

k=1

k − 1
2n

×
{

1[ k−1
2n ≤X< k

2n ] − 1[ k−1
2n ≤−X< k

2n ]

}
(12)

+ ∞ × {1[X=∞] − 1[X=−∞]}

are always such that

(13) ‖(Zn − X) × 1[−∞<X<∞]‖ ≤ 1/2n → 0 as n → ∞. �

Proposition 2.4 (The discontinuity set is measurable; Billingsley) If (M,d) and (M ′, d′)
are metric spaces and ψ : M → M ′ is any function (not necessarily a measurable function),
then the discontinuity set of ψ defined by
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(14) Dψ ≡ {x ∈ M : ψ is not continuous at x}

is necessarily in the Borel σ-field Bd (that is, the σ-field generated by the d-open subsets of M).

Proof. Let

Aε,δ ≡ {x ∈ M : d(x, y) < δ, d(x, z) < δ and
(a)

d′(ψ(y), ψ(z)) ≥ ε for distinct y, z ∈ M}.

Note that Aε,δ is an open set, since {u ∈ M : d(x, u) < δ0} ⊂ Aε,δ will necessarily occur if
δ0 ≡ {δ − [d(x, y) ∨ d(x, z)]}/2; that is, the y and z that work for x also work for all u in M
that are sufficiently close to x. (Note: The y that worked for x may have been x itself.) Then
(b) Dψ =

⋃∞
i=1

⋂∞
j=1Aεi,δj

∈ Bd,

where ε1, ε2, . . . and δ1, δ2, . . . both denote the positive rationals, since each Aε,δ is an open
set. �

Induced Measures

Example 2.1 (Induced measures) We now turn to the “induced measure” previewed
above. Suppose X : (Ω,A, μ) → (Ω′,A′), so that X is A′-A-measurable. We define μX ≡ μ′

by

(15) μX(A′) ≡ μ′(A′) ≡ μ(X−1(A′)) for each A′ ∈ A′.

Then μX ≡ μ′ is a measure on (Ω′,A′) called the induced measure. This is true, since we
verify that

(a) μ′(∅) = μ(X−1(∅)) = μ(∅) = 0, and

μ′ (
∑∞

1 A′
n) = μ

(
X−1 (

∑∞
1 A′

n)
)

= μ
(∑∞

1 X−1(A′
n)

)
(b) =

∑∞
1 μ(X−1(A′

n)) =
∑∞

1 μ′(A′
n).

Note also that

(c) μ′(Ω′) = μ(X−1(Ω′)) = μ(Ω).

Thus if μ is a probability measure, then so is μX ≡ μ′. Note also that we could regard X as
an A′-F(X)-measurable transformation from the measure space (Ω,F(X), μ) to (Ω′,A′, μX).

Suppose further that F is a generalized df on the real line R, and that μF (·) is the
associated measure on (R,B) satisfying μF ((a, b]) = F (b) − F (a) for all a and b (as was
guaranteed by the correspondence theorem (theorem 1.3.1)). Thus (R,B, μF ) is a measure
space. Define

(16) X(ω) = ω for all ω ∈ R.

Then X is a measurable transformation from (R,B, μF ) to (R,B) whose induced measure μX

is equal to μF . Thus for any given df F we can always construct a measurable function X
whose df is F. �
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Exercise 2.1 Suppose (Ω,A) = (R2,B2), where B2 denotes the σ-field generated by all
open subsets of the plane. Recall that this σ-field contains all sets B × R and R × B for all
B ∈ B; here B1 × B2 ≡ {(r1, r2) : r1 ∈ B1, r2 ∈ B2}. Now define measurable transformations
X1((r1, r2)) = r1 and X2(r1, r2)) = r2. Then define Z1 ≡ (X2

1 + X2
2 )1/2 and Z2 ≡ sign(X1 −

X2), where sign(r) equals 1, 0,−1 according as r is > 0,= 0, < 0. The exercise is to give
geometric descriptions of the σ-fields F(Z1),F(Z2), and F(Z1, Z2).

Proposition 2.5 (The form of an F(Z)-measurable function) Suppose that Z is a mea-
surable function on (Ω,A) and that Y is F(Z)-measurable. Then there must exist a measur-
able function g on (R̄, B̄) such that Y = g(Z).

Proof. (The approach of this proof is to consider indicator functions, simple functions,
nonnegative functions, general functions. This approach will be used again and again. Learn
it!) Suppose that Y = 1D for some set D ∈ F(Z), so that Y is an indicator function that is
F(Z)-measurable. Then we can rewrite Y as Y = 1D = 1Z−1(B) = 1B(Z) ≡ g(Z), for some
B ∈ B̄ that depends on D, where g(r) ≡ 1B(r). Thus the proposition holds for indicator
functions. It holds for simple functions, since when all Bi ∈ B̄,

Y =
∑m

1 ci1Di
=

∑m
1 ci1Z−1(Bi) =

∑m
1 ci1Bi

(Z) ≡ g(Z).

Let Y ≥ 0 be F(Z)-measurable. Then there do exist ↗simple F(Z)-measurable functions Yn

such that Y ≡ limn Yn = limn gn(Z) for the ↗simple B̄-measurable functions gn. Now let
g = lim gn, which is B̄-measurable, and note that Y = g(Z). For general Y = Y + − Y −, use
g = g+ − g−. �

Exercise 2.2 (Measurability criterion) Let C denote a π̄-system of subsets of Ω. Let V
denote a vector space of functions; that is, X + Y ∈ V and αX ∈ V for all X,Y ∈ V and all
α ∈ R—and, all the usual elementary facts hold.

(a) Suppose that:

(17) 1C ∈ V for all C ∈ C.

(18) If An ↗ A with 1An
∈ V, then 1A ∈ V.

Show that 1A ∈ V for every A ∈ σ[C].

(b) It then follows trivially that every simple function

(19) Xn ≡
∑m

1
αi1Ai

is in V;

here m ≥ 1, all αi ∈ R, and
∑m

1 Ai = Ω with all Ai ∈ σ[C].

(c) Now suppose further that Xn ↗ X for Xn’s as in (19) implies that X ∈ V. Show that V
contains all σ[C]-measurable functions.
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3 Convergence

Convergence Almost Everywhere

Definition 3.1 (→a.e.) Let X1,X2, . . . denote measurable functions on (Ω,A, μ) to (R̄, B̄).
Say that the sequence Xn converges almost everywhere to X (denoted by Xn →a.e. X as
n → ∞) if for some N ∈ A for which μ(N) = 0 we have Xn(ω) → X(ω) as n → ∞ for
all ω /∈ N . If for all ω /∈ N the sequence Xn(ω) is a Cauchy sequence, then we say that
the sequence Xn mutually converges a.e. and denote this by writing Xn − Xm →a.e. 0 as
m ∧ n → ∞. (Here, m ∧ n ≡ min(m,n).)

Exercise 3.1 Let X1,X2, . . . be measurable functions from (Ω,A, μ) to (R̄, B̄).

(a) If Xn →a.e. X, then X = X̃ a.e. for some measurable X̃.

(b) If Xn →a.e. X and μ is complete, then X itself is measurable.

Proposition 3.1 A sequence of measurable functions Xn that are a.e. finite converges a.e.
to a measurable function X that is a.e. finite if and only if these functions Xn converges mutu-
ally a.e. (Thus we can redefine such functions on null sets and make them everywhere finite
and everywhere convergent and/or follow the convention of corollary 2 to the Carethéodory
theorem 1.2.1 and automatically complete every measure.)

Proof. The union of the countable number of null sets on which finiteness or convergence
fails is again a null set N . On N c, the claim is just a property of the real numbers. �

Proposition 3.2 (The convergence and divergence sets are measurable) Consider
the finite measurable functions X,X1,X2, . . . (perhaps redefined on null sets to achieve this);
thus, they are B-A-measurable. Then the convergence and mutual convergence sets are
measurable. In fact, the convergence set is given by

(1) [Xn → X] ≡
∞⋂

k=1

∞⋃
n=1

∞⋂
m=n

[
|Xm − X| <

1
k

]
∈ A,

and the mutual convergence set is given by

(2) [Xn − Xm → 0] ≡
∞⋂

k=1

∞⋃
n=1

∞⋂
m=n

[
|Xm − Xn| <

1
k

]
∈ A.

Proof. Just read the right-hand side of (1) as, for all ε ≡ 1/k > 0 there exists an n such
that for all m ≥ n we have |Xm(ω) − X(ω)| < 1/k. (Practice saying this until it makes
sense.) �

Taking complements in (1) allows the divergence set to be expressed via

(3) [Xn → X]c =
∞⋃

k=1

∞⋂
n=1

∞⋃
m=n

[
|Xm − X| ≥ 1

k

]
≡

∞⋃
k=1

Ak with Ak ↗ in k,

where

(4) Ak =
⋂∞

n=1
Dkn, and the Dkn ≡

⋃∞
m=n

[|Xm − X| ≥ 1/k] are ↘ in n.
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Proposition 3.3 Consider finite measurable Xn’s and a finite measurable X on
any (Ω,A, μ). (i) We have

Xn →a.e. (such an X) iff Xn − Xm →a.e. 0 iff

μ(
⋂∞

n=1

⋃∞
m=n

[|Xm − Xn| > ε]) = 0, for all ε > 0.(5)

(A finite limit X(ω) exists if and only if the Cauchy criterion holds; and we want to be able
to check for the existence of a finite limit X(ω) without knowing its value.)
(ii)(Most useful criterion for →a.e.) On any (Ω,A, μ), we have

Xn → a.e. (some finite measurable X) provided

μ
(⋃∞

m=n
[|Xm − Xn| > ε]

)
→ 0, for all ε > 0, iff(6)

(7) μ([ max
n≤m≤N

|Xm − Xn| > ε]) ≤ ε for all N ≥ n ≥ (some nε), for all ε > 0.

Proof. Use proposition 1.1.2 on the ↗ sets in the mutual convergence analog of the sets
Ak in (3) to obtain (5). Then the intersection of sets in (5) is a subset of each set in the
intersection; thus (6) yields (5). Finally, the sets in (7) increase to the set in (6); so use
proposition 1.1.2 yet again. (Replace Xn by X in (5), (6), and (7) and require μ(Ω) < ∞.
Then the converse that (5) implies (6) holds, as the events in (6) are then ↘ .) �

Remark 3.1 (Additional measurability for convergence and divergence) Suppose we still
assume that X1,X2, . . . are finite measurable functions. Then the following sets are seen
to be measurable:

[ω : Xn(ω) → X(ω) ∈ R̄]c = [lim inf Xn < lim supXn]
=

⋃
rational r[lim inf Xn < r < lim supXn] ∈ A,(8)

(9) [lim sup Xn = +∞] =
⋂∞

m=1
[lim supXn > m] ∈ A.

These comments reflect the following fact: If Xn(ω) does not converge to a finite
number, then there are several different possibilities; but these interesting events are all
measurable. �

Convergence in Measure

Definition 3.2 (→μ) A given sequence of measurable and a.e. finite functions X1,X2, . . .
is said to converge in measure to the measurable function X taking values in R̄ (to be denoted
by Xn →μ X as n → ∞) if

(10) μ([|Xn − X| ≥ ε]) → 0 as n → ∞, for all ε > 0.

(Such convergence implies that X must be finite a.s., as

[|X| = ∞] ⊂
{⋃∞

k=1
[|Xk| = ∞]

}
∪ [|Xn − X| ≥ ε]

shows.) We say that these Xn converge mutually in measure, which we denote by writing
Xm − Xn →μ 0 as m ∧ n → ∞, if μ([|Xm − Xn| ≥ ε]) → 0 as m ∧ n → ∞, for each ε > 0.
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Proposition 3.4 (a) If Xn →μ X and Xn →μ X̃, then X = X̃ a.e.
(b) On a complete measure space, X = X̃ on N c, for a null set N.

Proof. For all ε > 0

(a) μ([|X − X̃| ≥ 2ε]) ≤ μ([|Xn − X| ≥ ε]) + μ([|Xn − X̃| ≥ ε]) → 0,

giving μ([|X − X̃| ≥ ε]) = 0 for all ε > 0. Thus

(b) μ([X �= X̃]) = μ(
⋃

k[|X − X̃| ≥ 1/k]) ≤ ∑∞
1 μ(|X − X̃| ≥ 1/k) =

∑∞
1 0,

as claimed. �

Exercise 3.2 (a) Show that in general →μ does not imply →a.e..
(b) Give an example with μ(Ω) = ∞ where →a.e. does not imply →μ.

Theorem 3.1 (Relating →μ to →a.e.) Let X and X1,X2, . . . be measurable and finite a.e.
functions. The following are true.

(11) Xn →a.e. (such an X) if and only if Xn − Xm →a.e. 0.

(12) Xn →μ (such an X) if and only if Xn − Xm →μ 0.

(13) Let μ(Ω) < ∞. Then Xn →a.e. (such an X) implies Xn →μ X.

(14) (Riesz) If Xn →μ X, then for some nk we have Xnk
→a.e. X. (See (16)).

(Reducing →μ to → a.e. by going to subsequences) Suppose μ(Ω) < ∞. Then

Xn →μ X if and only if
(15)

each subsequence n′ has a further n′′ on which Xn′′ →a.e. (such an X).

Proof. Now, (11) is proposition 3.1, and (12) is exercise 3.3 below. Result (13) comes from
the elementary observation that

(a) μ([|Xn − X| ≥ ε]) ≤ μ(
⋃∞

m=n[|Xm − X| ≥ ε]) → 0, by (6).

To prove (14), choose nk ↑ such that

(b) μ(Ak) ≡ μ([|Xnk
− X| > 1/2k]) < 1/2k,

with μ([|Xn − X| > 1/2k]) < 1/2k for all n ≥ nk. Now let

(c) Bm ≡ ⋃∞
k=mAk, so that μ(Bm) ≤ ∑∞

k=m 2−k ≤ 1/2m−1

On Bc
m =

⋂∞
mAc

k we have |Xnk
− X| ≤ 1/2k for all k ≥ m, so that

(d) |Xnk
(ω) − X(ω)| ≤ 1/2k → 0 as k → ∞, for each ω ∈ Bc

m,

with μ(Bm) ≤ 1/2m−1. Since convergence occurs on each Bc
m, we have
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(e) Xnk
(ω) → X(ω) as k → ∞ for each ω ∈ C ≡ ⋃∞

m=1B
c
m,

where Bm =
⋃∞

k=mAk is ↘ with (
⋂∞

m=1Bm) ⊂ (every Bm). So

(f) μ(Cc) = μ(
⋂∞

m=1Bm) ≤ lim supμ(Bm) ≤ lim 1/2m−1 = 0,

completing the proof of (14).
(Comment on exercise 3.3: When Xn →μ X, analogy with (a) gives

(16) μ({|Xm − Xn| ≥ 1/2k}) ≤ 1/2k for all m,n ≥ (some nk).

Thus Ak ≡ { |Xnk
− Xnk+1 | ≥ 1/2k} has P (Ak) ≤ 1/2k for all k. In analogy with the

first paragraph, prove the a.s. convergence of the Xnk
to some X on this subsequence by

considering

(17) |Xnk
− Xn�

| ≤ |(Xnk
− Xnk+1) + · · · + (Xn�−1 − Xn�

)|.

Then show that the whole sequence converges in measure to this X.)
Consider the unproven half of (15). Suppose that every n′ contains a further n′′ as claimed

(with a particular X). Assume that Xn →μ X fails. Then for some εo > 0 and some n′

(g) limn′ μ([|Xn′ − X| > εo]) = (some ao) > 0.

But we are given that some further subsequence n′′ has Xn′′ →a.e. X, and thus Xn′′ →μ X
by (13), using μ(Ω) < ∞. Thus

(h) limn′′ μ([|Xn′′ − X| > εo]) = 0;

but this is a contradiction of (g). �

Exercise 3.3 As in (12), show that Xn →μ X if and only if Xm −Xn →μ 0. (Hint. Adapt
the proof of (16).)

Exercise 3.4 (a) Suppose that μ(Ω) < ∞ and g is continuous a.e. μX (that is, g is
continuous except perhaps on a set of μX measure 0). Then Xn →μ X implies that g(Xn) →μ

g(X).
(b) Let g be uniformly continuous on the real line. Then Xn →μ X implies that g(Xn) →μ

g(X). (Here, μ(Ω) = ∞ is allowed.)

Exercise 3.5 (a) (Dini) Consider continuous transformations Xn from a compact space
Ω to R for which Xn(ω) ↗ X(ω) for each ω ∈ Ω, where X is continuous. Then Xn converges
uniformly to X on Ω.(Likewise, if Xn(ω) ↘ X(ω) for all ω.)
(b) In general, a uniform limit of bounded and continuous functions Xn is also bounded and
continuous.



4. PROBABILITY, RVS, AND CONVERGENCE IN LAW 35

4 Probability, RVs, and Convergence in Law

Definition 4.1 (Random variable and df) (a) A probability space (Ω,A, P ) is just a
measure space for which P (Ω) = 1. Now, X : (Ω,A, P ) → (R,B) will be called a random
variable (to be abbreviated rv); thus it is a B-A-measurable function. If X : (Ω,A, P ) →
(R̄, B̄), then we will call X an extended rv.
(b) The distribution function (to be abbreviated df) of a rv is defined by

(1) FX(x) ≡ P (X ≤ x) for all − ∞ < x < ∞.

We recall that F ≡ FX satisfies

(2) F is ↗ and right continuous, with F (−∞) = 0 and F (+∞) = 1.

We let CF denote the continuity set of F that contains all points at which F is continuous.
(That F ↗ is trivial, and the other three properties all follow from the monotone property of
measure, since (∞, x] =

⋂∞
n=1(−∞, x + an] for every possible sequence

an ↘ 0,
⋂∞

n=1(−∞,−n] = ∅, and
⋃∞

n=1(−∞, n] = R.)
(c) If F is ↗ and right continuous with F (−∞) ≥ 0 and F (+∞) ≤ 1, then F will be called
a sub df.
(d) The induced measure on (R,B) (or (R̄, B̄)) will be denoted by PX . It satisfies

(3) PX(B) = P (X−1(B)) = P (X ∈ B) for all B ∈ B
(for all B ∈ B̄ if X is an extended rv). We call this the induced distribution of X. We use the
notation X ∼= F to denote that the induced distribution PX(·) of the rv X has df F.
(e) We say that rvs Xn (with dfs Fn) converge in distribution or converge in law to a rv X0

(with df F0) if

(4) Fn(x) = P (Xn ≤ x) → F0(x) = P (X0 ≤ x) at each x ∈ CF0 .

We abbreviate this by writing either Xn →d X0, Fn →d F0, or L(Xn) → L(X0).

Notation 4.1 Suppose now that {Xn : n ≥ 0} are rvs on (Ω,A, P ). Then it is customary
to write Xn →p X0 (in place of Xn →μ X0) and Xn →a.s. X0 (as well as Xn →a.e. X0). The
“p” is an abbreviation for in probability, and the “a.s.” is an abbreviation for almost surely.
Anticipating the next chapter, we let Eg(X) denote

∫
g(X)dμ, or

∫
g(X)dP when μ is a

probability measure P . We say that Xn converges to X0 in rth mean if E|Xn − X0|r → 0.
We denote this by writing Xn →r X0 or Xn →Lr

X0. �

Proposition 4.1 Suppose that the rvs X ∼= F and Xn
∼= Fn satisfy Xn →p X. Then

Xn →d X. (Thus, Xn →a.s. X implies that Xn →d X.)

Proof. (This result has limited importance. But the technique introduced here is useful;
see exercise 4.1 below.) Now,

(a) Fn(t) = P (Xn ≤ t) ≤ P (X ≤ t + ε) + P (|Xn − X| ≥ ε)

(b) ≤ F (t + ε) + ε for all n ≥ some nε.

Also,

Fn(t) = P (Xn ≤ t) ≥ P (X ≤ t − ε and |Xn − X| ≤ ε) ≡ P (AB)
≥ P (A) − P (Bc) = F (t − ε) − P (|Xn − X| > ε)
≥ F (t − ε) − ε for n ≥ (some n′

ε).
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Thus for n ≥ (nε ∨ n′
ε) we have

(c) F (t − ε) − ε ≤ lim Fn(t) ≤ lim Fn(t) ≤ F (t + ε) + ε.

If t is a continuity point of F , then letting ε → 0 in (c) gives Fn(t) → F (t). Thus
Fn →d F. �

The following elementary result is extremely useful. Often, one knows that Xn →d X,
but what one is really interested in is a slight variant of Xn, rather than Xn itself. The next
result was designed for just such situations.

Definition 4.2 (Type) Two rvs X and Y are of the same type if Y ∼= aX + b.

Theorem 4.1 (Slutsky) Suppose that Xn →d X, while the rvs Yn →p a and Zn →p b as
n → ∞ (here Xn, Yn, and Zn are defined on a common probability space, but X need not
be). Then

(5) Un ≡ Yn × Xn + Zn →d aX + b as n → ∞.

Exercise 4.1 Prove Slutsky’s theorem. (Hint. Recall the proof of proposition 4.1. Then
write Un = (Yn − a)Xn + (Zn − b) + aXn + b where Yn − a →p 0 and Zn − b →p 0. Note also
that P (|Xn| > (some large Mε)) < ε for all n ≥ (some nε).)

Exercise 4.2 Let c be a constant. Show that Xn →d c if and only if Xn →p c.

Remark 4.1 Suppose X1,X2, . . . are independent rvs with a common df F. Then Xn →d

X0 for any rv X0 having df F . However, there is no rv X for which Xn converges to X in the
sense of →a.s.,→p, or →r. (Of course, we are assuming that X is not a degenerate rv (that
is, that μF is not a unit point mass).) �
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5 Discussion of Sub σ-Fields ∗

Consider again a sequence of rvs X1,X2, . . . where each quantity Xn is a measurable trans-
formation Xn : (Ω,A, P ) → (R,B, PXn

), and where PXn
denotes the induced measure. Each

rv Xn is B-F(Xn)-measurable, with F(Xn) a sub σ-field of A. Even though the intersection
of any number of σ-fields is a σ-field, the union of even two σ-fields need not be a σ-field. We
thus define the sub σ-field generated by X1, . . . , Xn as

(1) F(X1, . . . , Xn) ≡ σ[
⋃n

k=1F(Xk)] = X−1(Bn) for Xn ≡ (X1, . . . , Xn)′,

where the equality will be shown in the elementary proposition 5.2.1 below.
Note that F(X1, . . . , Xn) ⊂ F(X1, . . . , Xn,Xn+1), so that these necessarily form an

increasing sequence of σ-fields of A. Also, define

(2) F(X1,X2, . . .) ≡ σ[
⋃∞

k=1
F(Xk)].

It is natural to say that such Xn = (X1, . . . , Xn)′ are adapted to the F(X1, . . . , Xn). In fact,
if F1 ⊂ F2 ⊂ · · · is any sequence of σ-fields for which F(X1, . . . , Xn) ⊂ Fn for all n, then we
say that the Xn’s are adapted to the Fn’ s.

Think of F(X1, . . . , Xn) as the amount of information available at time n from X1, . . . , Xn;
that is, you have available for inspection all of the probabilities

(3) P ((X1, . . . , Xn) ∈ Bn) = P ((X1, . . . , Xn)−1(Bn)) = P(X1,...,Xn)(Bn),

for all Borel sets Bn ∈ Bn. Rephrasing, you have available for inspection all of the probabilities

(4) P (A), for all A ∈ F(X1, . . . , Xn).

At stage n+1 you have available P (A) for all A ∈ F(X1, . . . , Xn,Xn+1); that is, you have more
information available. (Think of Fn\F(X1, . . . , Xn) as the amount of information available
to you at time n that goes beyond the information available from X1, . . . , Xn; perhaps some
of it comes from other rvs not yet mentioned, but it is available nonetheless.)

Suppose we are not given rvs, but rather (speaking informally now, based on your general
feel for probability) we are given joint dfs Fn(x1, . . . , xn) that we think ought to suffice to
construct probability measures on (Rn,Bn). In (2.2.16) we saw that for n = 1 we could just
let (Ω,A, μ) = (R,B, μF ) and use X(ω) = ω to define a rv that carried the information in
the df F . How do we define probability measures Pn on (Rn,Bn) so that the coordinate rvs

(5) Xk(ω1, . . . , ωn) = ωk for all (ω1, . . . , ωn) ∈ Rn

satisfy

(6) Pn(X1 ≤ x1, . . . , Xn ≤ xn) = Fn(x1, . . . , xn) for all (x1, . . . , xn) ∈ Rn,

and thus carry all the information in Fn? Chapter 5 will deal with this construction. But
even now it is clear that for this to be possible, the Fn’s will have to satisfy some kind of
consistency condition as we go from step n to n + 1. Moreover, the consistency problem
should disappear if the resulting Xn’s are “independent.”

But we need more. We will let R∞ denote all infinite sequences ω1, ω2, . . . for which each
ωi ∈ R. Now, the construction of (5) and (6) will determine probabilities on the collection
Bn × ∏∞

k=n+1R of all subsets of R∞ of the form

(7)
Bn × ∏∞

k=n+1R
≡ {(ω1, . . . , ωn, ωn+1, . . .) : (ω1, . . . , ωn) ∈ Bn, ωk ∈ R for k ≥ n + 1},

http://dx.doi.org/10.1007/978-3-319-52207-4_5
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with Bn ∈ Bn. Each of these collections is a σ-field (which within this special probability
space can be denoted by F(X1, . . . , Xn)) in this overall probability space (R∞,B∞, P∞), for
some appropriate B∞. But what is an appropriate σ-field B∞ for such a probability measure
P∞? At a minimum, B∞ must contain

(8) σ
[⋃∞

n=1

{
Bn ×

∏∞
k=n+1

R
}]

= σ
[⋃∞

n=1
F(X1, . . . , Xn)

]
,

and indeed, this is what we will use for B∞. Of course, we also want to construct the measure
P∞ on (R∞,B∞) in such a way that

(9) P∞
(∏n

k=1
(−∞, xk] ×

∏∞
k=n+1

R
)

= Fn(x1, . . . , xn) for all n ≥ 1

and for all x1, . . . , xn in R. The details are given in chapter 5.
Until chapter 5 we will assume that we are given the rvs X1,X2, . . . on some (Ω,A, P ), and

we will need to deal only with the known quantities F(X1, . . . , Xn) and F(X1,X2, . . .) defined
in (1) and (2). This is probability theory: Given (Ω,A, P ), we study the behavior of rvs
X1,X2, . . . that are defined on this space. Now contrast this with statistics: Given a physical
situation producing measurements X1,X2, . . ., we construct models {(R∞,B∞, P θ

∞) : θ ∈ Θ}
based on various plausible models for F θ

n(x1, . . . , xn), θ ∈ Θ, and we then use the data
X1,X2, . . . and the laws of probability theory to decide which model θ0 ∈ Θ was most likely
to have been correct and what action to take. In particular, the statistician must know that
the models to be used are well-defined.

We also need to extend all this to uncountably many rvs {Xt : t ∈ T}, for some interval T
such as [a, b], or [a,∞), or [a,∞], or (−∞,∞), . . . . We say that rvs Xt : (Ω,A, P ) → (R,B)
for t ∈ T are adapted to an ↗sequence of σ-fields Ft if Fs ⊂ Ft for all s ≤ t with both s, t ∈ T
and if each Xt is Ft-measurable. In this situation we typically let RT ≡ ∏

t∈T Rt and then
let

(10) Ft ≡ F(Xs : s ≤ t) ≡ σ
[⋃

s
X−1

s (B) : s ≤ t and s ∈ T
]

for all t ∈ T.

This is also done in chapter 5 (where more general sets T are, in fact, considered).
The purpose in presenting this section here is to let the reader start now to become

familiar and comfortable with these ideas before we meet them again in chapter 5 in a more
substantial and rigorous presentation. (The author assigns this as reading at this point and
presents only a very limited amount of chapter 5 in his lectures.)

Exercise 5.1 (a) Show that the class C ≡ {X−1
1 (B1)∩{X−1

2 (B2) : B1, B2 ∈ B} is a π̄-system
that generates the σ-field F(X1,X2).

(b) Recall the Dynkin π-λ theorem, and state its implications in this context.

(c) State an extension of this part (a) to F(X1, . . . , Xn) and to F(X1,X2, . . .).

http://dx.doi.org/10.1007/978-3-319-52207-4_5
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Chapter 3

Integration

1 The Lebesgue Integral

Let (Ω,A, μ) be a fixed measure space and let X,Y,Xn, . . . denote measurable functions from
(Ω,A, μ) to (R̄, B̄). If Ω =

∑n
1Ai where A1, . . . , An are in A, then A1, . . . , An is called a

partition (or measurable partition) of Ω.

Definition 1.1 (Lebesgue integral
∫

X dμ or
∫

X) If X =
∑n

i=1xi1Ai
≥ 0 is a simple

function (where all xi ≥ 0 and A1, . . . , An is a partition of Ω), then

(1)
∫

X dμ ≡
n∑

i=1

xiμ(Ai).

(We must verify that this is well defined. That is, we must show that the value assigned to∫
X dμ in (1) is independent of the representation of X that is specified.) If X ≥ 0, then

(2)
∫

X dμ ≡ sup
{∫

Y dμ : 0 ≤ Y ≤ X and Y is such a simple function
}

.

For general measurable X,

(3)
∫

X dμ ≡
∫

X+ dμ −
∫

X− dμ,

provided that at least one of
∫

X+ dμ and
∫

X− dμ is finite. We let

(4)
L1 ≡ L1(Ω,A, μ) ≡ {X :

∫ |X| dμ < ∞},
L+

1 ≡ L+
1 (Ω,A, μ) ≡ {X ∈ L1 : X ≥ 0},

Lr ≡ Lr(Ω,A, μ) ≡ Lr(μ) ≡ {X :
∫ |X|r dμ < ∞}, for each r > 0;

in each of these definitions we agree to identify X and X ′ whenever X = X ′ a.e. μ. If
X (which is not measurable) equals a measurable Y on a set A having μ(Ac) = 0, then∫

X dμ ≡ ∫
Y dμ. (Clearly,

∫
X dμ is not affected by the choice of Y or A.)

If X is measurable and
∫

X dμ is finite, then X is called integrable. For any A ∈ A,

(5)
∫

A

X dμ ≡
∫

X1A dμ.

We also use the notation (especially in proofs, to save space)

(6)
∫

X ≡
∫

X dμ ≡ (the integral of X) ≡ EX ≡ (the expectation of X).
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For ordinary Lebesgue measure μ on R, we often write
∫

X dμ =
∫

X(r) dr.
It will now be demonstrated that the definition (1) makes sense and that

∫
X dμ satisfies

the following elementary properties.

Proposition 1.1 (Elementary properties of the integral) It holds that definition 1.1
of the integral is unambiguous. Now suppose that the functions X and Y are measurable,
that

∫
X dμ and

∫
Y dμ are well-defined, and that their sum (the number

∫
X dμ +

∫
Y dμ)

is a well-defined number in [−∞,+∞]. Then

∫

(X + Y ) dμ =
∫

X dμ +
∫

Y dμ and
∫

cX dμ = c

∫

X dμ,(7)

0 ≤ X ≤ Y implies 0 ≤
∫

X dμ ≤
∫

Y dμ.(8)

Proof. Case 1: Consider simple functions X ≥ 0 and Y ≥ 0.
Claim 1: Defining

∫
X dμ =

∑m
1 xiμ(Ai) for such simple functions X =

∑m
1 xi1Ai

makes∫
X dμ well-defined for these simple functions.

Suppose that we also have X =
∑n

1 zj1Cj
. Then

(a)
∑m

i=1
xi

∑n

j=1
1AiCj

= X =
∑n

j=1
zj

∑m

i=1
1AiCj

,

so that xi = zj if AiCj �= ∅. Thus

∑m

i=1
xiμ(Ai) =

∑m

i=1
xi

∑n

j=1
μ(AiCj) =

∑m

i=1

∑n

j=1
xiμ(AiCj)

=
∑m

i=1

∑n

j=1
zjμ(AiCj) since xi = zj if μ(AiCj) > 0

=
∑n

j=1
zj

∑m

i=1
μ(AiCj) =

∑n

j=1
zjμ(Cj);

and since the two extreme terms that represent the two different definitions of the quantity∫
X dμ are equal, we see that

∫
X dμ is well-defined.

Claim 2: The integral behaves linearly for such simple functions.
Suppose X =

∑m
1 xi1Ai

and Y =
∑n

1yj1Bj
. Then X + Y =

∑m
1

∑n
1 (xi + yj)1AiBj

. We thus
have

∫
(X + Y ) dμ =

∑m
1

∑n
1 (xi + yj)μ(AiBj)

=
∑m

1

∑n

1
xiμ(AiBj) +

∑m

1

∑n

1
yjμ(AiBj)

=
∑m

1
xi

∑n

1
μ(AiBj) +

∑n

1
yj

∑m

1
μ(AiBj)

=
∑m

1
xiμ(Ai) +

∑n

1
yjμ(Bj) =

∫
X dμ +

∫
Y dμ,

which establishes the additivity for simple functions.
Claim 3: For any measurable X ≥ 0, it is also trivial that

∫
cX = c

∫
X in (7). This holds

since Y ≤ X if and only if cY ≤ cX, with
∫

cY = c
∫

Y for simple Y .
Claim 4: So too, the monotonicity in (8) is trivial for any measurable 0 ≤ X ≤ Y .
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The proof of linearity for general X ≥ 0 and Y ≥ 0 is included in the proof of the monotone
convergence theorem (MCT) (that is, the first theorem of the next section). That is, we will
prove the MCT using only Claims 1, 3, and 4. Then we will use the MCT and Claim 2 to
obtain the linearity of the integral for any functions X ≥ 0 and Y ≥ 0.
Case 2: The final linearity step is then trivial. Just write X = X+ − X− and Y = Y + − Y −

and do algebra. �

Notation 1.1 Let F denote a generalized df and let μF denote the associated Lebesgue–
Stieltjes measure. Suppose that g is an integrable function on R. We will then freely use the
notation

(9)
∫

R

g(x)dF (x) ≡
∫

R

g(x) dμF (x). �
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2 Fundamental Properties of Integrals

Theorem 2.1 (MCT, monotone convergence theorem) Suppose that Xn ↗ X
a.e. for measurable functions Xn ≥ 0 a.e. Then

(1) 0 ≤
∫

Xn dμ ↗
∫

X dμ.

Corollary 1 For X ≥ 0, the simple Xn in (2.2.10) satisfy
∫

Xn dμ ↗ ∫
X dμ.

Proof. By redefining on null sets if necessary, we may assume that Xn ↗ X for all ω.
Thus X is measurable, by proposition 2.2.2. Also,

∫
Xn is ↗, and so a ≡ lim

∫
Xn exists in

[0,∞]. Moreover, Xn ≤ X implies
∫

Xn ≤ ∫
X; and so we conclude that a = lim

∫
Xn ≤ ∫

X.
Let Y ≡ ∑m

1 cj1Dj
be an arbitrary simple function satisfying 0 ≤ Y ≤ X. Fix 0 < θ < 1.

Then note that An ≡ [Xn ≥ θY ] ↗ Ω (since 0 ≤ θY ≤ X on [X = 0] and 0 ≤ θY < X on
[X > 0] are both trivial). Claims 3 and 4 of the proposition 3.1.1 proof give (for any simple
function Y =

∑m
1 cj1Dj

as above)

(a) θ

∫

Y × 1An
=

∫

θY × 1An
≤

∫

Xn × 1An
≤

∫

Xn ≤ a, while

(b) θ

∫

Y × 1An
= θ

∑m

1
cjP (DjAn) → θ

∑m

1
cjP (Dj) = θ

∫

Y

using P (DjAn) → P (Dj) by proposition 1.1.2. Let θ → 1 in (a) and (b) to obtain
∫

Y ≤ a.
Since 0 ≤ Y ≤ X is arbitrary, this gives

∫
X ≤ a = lim

∫
Xn. �

Proof. We now return to the linearity of the integral for general measurable functions
X ≥ 0 and Y ≥ 0. Let Xn ↗ X and Yn ↗ Y for the measurable simple functions of (2.2.10).
Then Xn + Yn ↗ X + Y . Thus the MCT twice, the linearity of the integral for simple
functions, and then the MCT again give the general linearity of the integral via

∫
X +

∫
Y = lim

∫
Xn + lim

∫
Yn = lim(

∫
Xn +

∫
Yn)

= lim
∫

(Xn + Yn) by simple function linearity(a)

=
∫

(X + Y ) by the MCT.(b)

In general, combine the integrals of X+,X−, Y +, and Y − appropriately. �

Theorem 2.2 (Fatou’s lemma) For Xn’s measurable,

(2)
∫

lim Xn dμ ≤ lim
∫

Xn dμ, provided that Xn ≥ 0 a.e. for all n.

Proof. Redefine on null sets (if necessary) so that all Xn ≥ 0. Then

(3) Yn ≡ inf
k≥n

Xk ↗ lim Xn, or lim Xn = lim Yn with Yn ↗,
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so that

(a)
∫

lim Xn =
∫

lim Yn = lim
∫

Yn by the MCT

(b) = lim
∫

Yn ≤ lim
∫

Xn since Yn ≤ Xn. �

Theorem 2.3 (DCT, dominated convergence theorem) Let |Xn| ≤ Y a.e. for all n,
for some dominating function Y ∈ L1; and suppose either (i) Xn →a.e. X or (ii) Xn →μ X.
Then

(4)
∫

|Xn − X| dμ → 0 as n → ∞ (that is, Xn →L1 X).

(If (supn≥1 |Xn|) is integrable, then it is a suitable dominating function.)

Corollary 1 Note that (4) implies both
∫

Xn dμ →
∫

X dμ (that is, EXn → EX) and(5)

sup
A∈A

|
∫

A

Xn dμ −
∫

A

X dμ| → 0.(6)

Proof. (i) Suppose that Xn →a.e. X. Then Zn ≡ |Xn − X| →a.e. 0. (Here, 0 ≤ Zn ≤
2Y a.s., where both of the functions 0 and 2Y are in L1.) Now apply Fatou’s lemma to the
rvs 2Y − Zn ≥ 0, and conclude that

(a)
∫

(2Y − 0) =
∫

lim(2Y − Zn) ≤ lim
∫

(2Y − Zn) by Fatou

= lim(
∫

2Y − ∫
Zn)

(7) =
∫

2Y − lim
∫

Zn.

Hence, lim
∫

Zn ≤ ∫
0 = 0 (as

∫
2Y is finite). Combining the two results gives

(b) 0 ≤ lim
∫

Zn ≤ lim
∫

Zn ≤ 0;

so lim
∫

Zn = 0, as claimed.
(ii) Suppose Xn →μ X. Let a ≡ lim

∫
Zn ≥ 0. Let n′ be a subsequence such that∫

Zn′ → a. But Zn′ →μ 0, so theorem 2.3.1 gives a further subsequence n′′ such that
Zn′′ →a.e. 0, while we still have

∫
Zn′′ → a. But

∫
Zn′′ → 0 by case (i). Thus a = 0. Thus

(c) 0 ≤ lim
∫

Zn = a = 0, or
∫

Zn → 0.

(iii) Consider the corollary. We have

(d) | ∫
A

Xn − ∫
A

X| = | ∫
A
((Xn − X)+ − (Xn − X)−)| ≤ ∫ |Xn − X| → 0

uniformly in all A ∈ A. �
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Theorem 2.4
∫ ∑∞

1 Xn dμ =
∑∞

1

∫
Xn dμ if Xn ≥ 0 a.e., for all n.

Proof. Note that 0 ≤ Zn ≡ ∑n
1Xk ↗ Z ≡ ∑∞

1 Xk a.e., and now apply the MCT to the
Zn’s. �

Theorem 2.5 (Absolute continuity of the integral) Fix X ∈ L1. Then

(8)
∫

A

|X| dμ → 0 as μ(A) → 0.

That is,
∫

A
|X| dμ < ε, provided only that μ(A) < (an appropriate δε).

Proof. Now,
∫ |X|1[|X|≤n] ↗ ∫ |X| by the MCT, so we may claim that

(a)
∫

|X|1[|X|>n] ≤ ε/2 for n ≥ N ≡ (some Nε).

Thus

(b)
∫

A

|X| ≤
∫

A

|X|1[|X|≤N ] +
∫

|X|1[|X|>N ] ≤ N × μ(A) + ε/2 ≤ ε,

provided that μ(A) ≤ ε/(2N). �

Exercise 2.1 (Only the zero function) Show that

(9) X ≥ 0 and
∫

X dμ = 0 implies μ([X > 0]) = 0.

Exercise 2.2 (Only the zero function) (a) Suppose σ[C] = A, for a field C. Show that

(10)
∫

A

X dμ =
{

= 0,
≥ 0 for all A ∈ C implies X =

{
= 0 a.e.,
≥ 0 a.e.

On (R,B, μF ), for a generalized df F , we only need (10) for all intervals A = (a, b].

Exercise 2.3 Consider a measure space (Ω,A, μ). Let μ0 ≡ μ|A0 for a sub σ-field A0 of
A. Starting with indicator functions, show that

∫
X dμ =

∫
X dμ0 for any A0-measurable

function X. Hint: Consider four cases, as in the next proof.

Definition 2.1 (Induced measure) Suppose that X : (Ω,A, μ) → (Ω′,A′) is a measur-
able function. Recall from (2.2.15) that

(11) μ′(A′) ≡ μX(A′) = μ(X−1(A′)) for all A′ ∈ A′,

and μ′ is a measure on (Ω′,A′), called the induced measure of X.
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Theorem 2.6 (Theorem of the unconscious statistician) (i) The induced measure
μX(·) of the measurable function X : (Ω,A, μ) → (Ω′,A′, μX) determines the induced mea-
sure μg(X) for all measurable functions g: Ω′,A′) → (R̄, B̄).
(ii) (Change of variable) Then

(12)
∫

X−1(A′)
g(X(ω)) dμ(ω) =

∫

A′
g(x) dμX(x) for all A′ ∈ A′,

in the sense that if either side exists then so does the other and they are equal. So,

(13)
∫

X−1(g−1(B))

g(X(ω)) dμ(ω) =
∫

g−1(B)

g(x) dμX(x) =
∫

B

y dμY (y) for B ∈ B̄.

Proof. (i) Now, Y ≡ g(X) is measurable. By (2.1.11) and (2.2.5) we see that

(a) μY (B) = μg(X)(B) = μ([g(X) ∈ B]) = μ(X−1 ◦ g−1(B)) = μX(g−1(B))

is well-defined, since g−1(B) ∈ A′. Thus the first claim holds.
(ii) We only prove the first equality in (12) when A′ = Ω′ and X−1(Ω′) = Ω, since we can

replace g by g × 1A′ , noting that 1A′(X(ω)) = 1x−1(A′)(ω).
Case 1. g = 1A′ : Then

(b)
∫

1A′(X) dμ =
∫

1X−1(A′) dμ = μ(X−1(A′)) = μX(A′) =
∫

1A′ dμX .

Case 2. g =
∑n

i=1ci1A′
i
, where

∑n
i=1A

′
i = Ω′ with A′

i ∈ A′ and all ci ≥ 0: Then
∫

g(X) dμ =
∫ ∑n

i=1ci1A′
i
(X) dμ =

∑n
i=1ci

∫
1A′

i
(X) dμ

(c) =
∑n

i=1
ci

∫
1A′

i
dμX =

∫
g dμX .

Case 3. g ≥ 0: Let gn ≥ 0 be simple with gn ↗ g: Then
∫

g(X) dμ = lim
∫

gn(X) dμ by the MCT, since gn(X) ↗ g(X)
= lim

∫
gn dμX by case 2

(d) =
∫

g dμX by the MCT.

Case 4. g is measurable, and either
∫

g(X)+ dμ or
∫

g(X)− dμ is finite: Using g = g+ − g−,
we note that g(X)+ = g+(X) and g(X)− = g−(X). Then

∫
g(X) dμ =

∫
g(X)+ dμ − ∫

g(X)− dμ =
∫

g+(X) dμ − ∫
g−(X) dμ

=
∫

g+ dμX − ∫
g− dμX by case 3

(e) =
∫

g dμX .

In the arguments (b), (c), (d), (e) one should start from the end that is assumed to exist,
in order to make a logically tight argument. (Note the next exercise.) �

Exercise 2.4 Let Y ≡ g(X) in the context of the theorem 2.6. Verify the truth of the second
equality in (13).

Exercise 2.5 Let X equal −1, 0, 1 with probability 1/3 for each possibility. Let g(x) = x2.
Then evaluate both sides in (13), and see why such calculations were performed unconsciously
for years.
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Exercise 2.6 (Integrals as measures) Let X ≥ 0 for some measurable function X on
(Ω,A). Show that

(14) φ(A) ≡ ∫
A

X dμ for all A ∈ A

defines a measure φ on (Ω,A). Note that φ is a finite measure when X ∈ L1(Ω,A, μ).

Exercise 2.7 (Absolutely continuous dfs) Let Z ≥ 0 on R with Z ∈ L1(R,B, λ) for the Leb-
segue measure λ(·) generalization of length. Then F (x) ≡ ∫

(−∞,x]
Zdλ defines a generalized

df on R. Use the absolute continuity of the integral theorem 2.5 to show that this gdf is
absolutely continuous on R (in the sense of definition 1.3.3).
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3 Evaluating and Differentiating Integrals

Let (R, B̂μ, μ) denote a Lebesgue–Stieltjes measure space that has been completed. If g

is B̂μ-measurable, then
∫
(a,b]

g dμ denotes a Lebesgue–Stieltjes integral of g on (a, b]. If F

is a generalized df corresponding to μ, then we also use the notation
∫
(a,b]

g dμF . Also,
∫ b

a
g dF ≡ ∫

(a,b]
g dF will denote the Riemann–Stieltjes integral.

Theorem 3.1 (Equality of LS and RS integrals) Let g be continuous on [a, b]. Then
the Lebesgue–Stieltjes integral and the Riemann–Stieltjes integral are equal. (Since the LS-
integral and the RS-integral are equal, we can continue to evaluate most LS-integrals using
the methods learned in a more elementary calculus.)

Proof. We first recall the classical setup associated with the definition of the RS-integral.
Consider any sequence of partitions a ≡ xn0 < · · · < xnn ≡ b such that the partition
Xn ≡ {xn0, xn1, . . . , xnn} is a refinement of Xn−1 in the sense that Xn−1 ⊂ Xn. Then if
meshn ≡ max1≤k≤n(xnk − xn,k−1) → 0, and if x∗

nk’s are such that xn,k−1 < x∗
nk ≤ xnk, we

have

(a) gn ≡
∑n

k=1
g(x∗

nk)1(xn,k−1,xnk] → g uniformly on [a, b],

since g is (necessarily) uniformly continuous on [a, b]. Thus for all such sequences the LS-
integral of section 3.1 satisfies

∫
(a,b]

g dμF = limn

∫
(a,b]

gn dμF by the DCT, bounded by a constant

= lim
n

∑n

1
g(x∗

nk)μ((xn,k−1, xnk]) = lim
n

∑n

1
g(x∗

nk)F (xn,k−1, xnk]

(b) = lim
n

{a Riemann–Stieltjes sum for the integral of g} = lim
n

∫ b

a
gn dF

(c) = {the Riemann–Stieltjes integral of g} =
∫ b

a
g dF,

and this holds for all partitions and x∗′
nks as above, provided only that meshn → 0. Thus the

LS-integral
∫ b

a
g dF and the RS-integral are equal for continuous g. �

Exercise 3.1 ∗(RS-integral compared to LS-integral) We state a few additional facts here,
just for completeness (that are valid when g is more general):

g is RS-integrable with respect to F if and only if
g is continuous a.e. μF (·).(1)

If g is RS-integrable with respect to F,

then the RS and LS-integrals
∫ b

a
g dF are equal.

(2)

Let D(F ) and D(g) denote the discontinuity sets of F and g. Then

(3) g is not RS-integrable when D(F ) ∩ D(g) �= ∅.

(Consider g(·) ≡ 1{0}(·) and F ≡ 1[0,∞) regarding (3).)
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Exercise 3.2 Suppose that the improper RS-integral of a continuous function g on R,
defined by RS(

∫
g dF ) ≡ lima→−∞,b→∞(RS

∫ b

a
g dF ) exists finitely. Then lima→−∞,b→∞

(LS
∫ b

a
|g|dF ) need not be finite. Thus the fact that an improper RS-integral exists does not

imply that the function is LS-integrable. Construct an example on [0,∞).

Exercise 3.3 (Differentiation under the integral sign) (a) Suppose that the function
X(t, ·) is an integrable function on (Ω, μ), for each t ∈ [a, b]. Suppose also that for a.e. ω the
partial derivative ∂

∂tX(t, ω) exists for all t in the nondegenerate interval [a, b] (use one-sided
derivatives at the end points), and that

| ∂

∂t
X(t, ω)| ≤ Y (ω) for all t ∈ [a, b], where Y ∈ L1.

Then the derivative and integral may be interchanged, in that

(4)
d

dt

∫

Ω

X(t, ω) dμ(ω) =
∫

Ω

[
∂

∂t
X(t, ω)

]

dμ(ω) for all t ∈ [a, b].

(b) Fix t ∈ (a, b). Formulate hypotheses that yield (4) at this fixed t.
Exercise 3.4 and exercise 3.5 below combine to offer a more elementary problem that is

still along the lines of exercise 3.1.

Exercise 3.4 (Continuity on an interval [a, b] implies uniform continuity) Let g denote a
continuous real valued function on a closed interval [a, b]. Show that g is uniformly continuous
on [a, b]. That is, show that for every tiny number ε > 0 there exists a number δε > 0 for
which

(5) |f(y) − f(x)| < ε whenever |x − y| < δε.

Exercise 3.5 (Riemann integrability) Let g ≥ 0 denote a continuous real valued function on
a closed interval [a, b]. Let ε and δε be as in (5). Let

∫ b

a
g(x) dx denote the area under g.

Show that if meshm < δε in the Riemann sum RSm defined in (1.1.1), then RSm is so close
to the area

∫ b

a
g(x) dx that

(6) |RSm − ∫ b

a
g(x) dx| < ε(b − a).
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4 Inequalities

Convexity We begin by briefly reviewing convexity. A real-valued function f defined on
some interval I of real numbers is convex if

(1)
f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y)
for all x, y in I and all 0 ≤ α ≤ 1.

We will use the following facts. If f is convex on an interval, then f is continuous on the
interior Io of the interval. Also, the left and right derivatives exist and satisfy D(x−) ≤ D(x+)
at each point in the interior Io of the interval. The following is useful. Convexity on the
interval I holds if and only if

(2)
f((x + y)/2) ≤ [f(x) + f(y)]/2 for all x, y in I, provided that
f is also assumed to be bounded (or continuous, or measurable) on I.

(There exist functions satisfying the inequality in (2) that are not continuous, but they are
unbounded in every finite interval. Thus requiring (1) for all 0 ≤ α ≤ 1 is strictly stronger
then requiring it to hold only for α = 1/2.) We need a simple test for convexity (when f is
‘nice’), and so note that f is convex if

(3) f ′(x) is ↗ for all x ∈ I or if f ′′(x) ≥ 0 for all x ∈ I.

We call f strictly convex if strict inequality holds in any of the above. If f is convex, then
there exists a linear function � such that f(x) ≥ �(x) with equality at any prespecified x0 in
the interior Io of the domain I of f ; this function is called the supporting hyperplane. (Call
f concave in −f is convex.) �

Definition 4.1 (Moments) (The following definitions make sense on a general measure
space (Ω,A, μ), Recall, as in (3.1.6), that Eh(X) =

∫
h(X(ω)) dμ(ω) =

∫
h(X) dμ =

∫
h(X).)

Let

(4) μ ≡ μX ≡ (the mean ofX) ≡ EX. (Note the two different uses of μ)

Now let:

EXk ≡ (kth moment of X), for k ≥ 1 an integer,(5)
E|X|r ≡ (rth absolute moment of X), for r > 0,(6)

‖X‖r ≡ (rth norm ofX) ≡ {E|X|r}1/r for r ≥ 1 (or,E|X|r for r < 1).(7)

The following notation is standard on a probability space (Ω,A, P ), where μ(Ω) = 1 :

σ2 ≡ Var[X] ≡ E(X − μ)2 = (the variance ofX),
σ ≡ StDev[X] ≡ (the standard deviation ofX).(8)

We will write X ∼= (μ, σ2) (on a probability space) if EX = μ and Var [X] = σ2 < ∞. We
will write X ∼= F (μ, σ2) if X also has df F (·). Further (on a probability space)

μk ≡ E(X − μ)k ≡ (kth central moment of X), for k ≥ 1,(9)
Cov[X,Y ] ≡ E[(X − μX)(Y − μY )] = (the covariance of X andY ).(10)

Note that Cov [X,X] = Var[X]. (Probability theory has P (Ω) ≡ μ(Ω) = 1.)
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Throughout this section X and Y will denote measurable functions.

Proposition 4.1 (Ls ⊂ Lr) Let μ(Ω) < ∞. Then Ls ⊂ Lr whenever 0 < r < s.
(So if E|X|s < ∞, then E|X|r and EXk are finite for all 0 ≤ r, k ≤ s.)

Proof. Now, |x|r ≤ 1 + |x|s; and integrability is equivalent to absolute integrability. Note
that μ(Ω) < ∞ is used to claim 1 ∈ L1. �

Proposition 4.2 Let μ(Ω) < ∞. Then σ2 < ∞ holds if and only if EX2 < ∞. From here
on, we will only refer to σ2 on a probability space; then σ2 = EX2 − μ2.

Proof. Let EX2 < ∞. Then EX2−μ2μ(Ω) = E(X2)−E(2μ(X−μ))−E(μ2) = E(X−μ)2 =
Var[X]. Note that proposition 4.1 was used for EX. Thus μ(Ω) < ∞ was used. Let σ2 < ∞.
Then E{(X − μ)2 + 2μ(X − μ) + μ2} = EX2. �

Inequality 4.1 (Cr-inequality) E|X + Y |r ≤ CrE|X|r + CrE|Y |r,
where Cr = 2r−1 for r ≥ 1 and Cr = 1 for 0 < r ≤ 1. (Note, Lr is a vector space.)

Proof. There are no restrictions on μ. Note that E|X + Y |r ≤ E(|X| + |Y |)r.
Case 1. r > 1: Then |x|r is convex in x for x ≥ 0, since its derivative is ↑. Thus |(x+y)/2|r ≤
[|x|r + |y|r]/2; and now take expectations.
Case 2. 0 < r ≤ 1: Now, |x|r is concave and ↗ forx ≥ 0; just examine derivatives. Thus
|x + y|r − |x|r ≤ |0 + y|r − 0r since the increase from x to x + y can not exceed the increase
from 0 to y, and now take expectations. �

Inequality 4.2 (Hölder’s inequality) For r > 1, with 1/r + 1/s = 1,

(11) |E(XY )| ≤ E|XY | ≤ E1/r|X|rE1/s|Y |s = ‖X‖r‖Y ‖s.

(ii) Suppose both E|X|r and E|Y |s fall in (0,∞). Equality holds in the second half if and
only if |Y |s =a.e. c|X|r for some c > 0; then, c = E|Y |s/E|X|r. Further, |EXY | = E|XY | if
and only if XY ≥a.e. 0 or XY ≤a.e. 0.

Proof. The result is trivial if E|X|r = 0 or ∞. Likewise for E|Y |s. So suppose that both
expectations are in (0,∞). Since f(x) = ex is convex by fact (3), it satisfies (1) with α ≡ 1/r
and 1 − α = 1/s, x ≡ r log |a| and y ≡ s log |b| for some a and b; thus (1) becomes (with
equality if and only if r log |a| = x = y = s log |b|)

(12) exp(
1
r
x +

1
s
y) ≤ 1

r
ex +

1
s
ey, or:

Young’s inequality For all a, b we have

(13) |ab| ≤ |a|r
r

+
|b|s
s

with equality iff |a|r = |b|s iff |b| = |a|1/(s−1) = |a|r−1.

Now let a = |X|/‖X‖r and b = |Y |/‖Y ‖s, and take expectations. Equality holds if and
only if (|Y |/‖Y ‖s)s =a.e. (|X|/‖X‖r)r (that is, all mass is located at equality in (12)) if and
only if

(a) (|Y |s/E|Y |s) =a.e. (|X|r/E|X|r) (or |Y |s =a.e. (E|Y |s)/E|X|r)|X|r). �
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Exercise 4.1 (Convexity inequality) Show that

uαv1−α ≤ αu + (1 − α)v for all 0 ≤ α ≤ 1 and all u, v ≥ 0.

Use this to reprove Hölder’s inequality.

Inequality 4.3 (Cauchy–Schwarz) {E(XY )}2 ≤ (E|XY |)2 ≤ EX2EY 2.
If both EX2 and EY 2 take values in (0,∞), then equality holds throughout both of the
inequalities if and only if either Y = aX a.e. or Y = −aX a.e., for some a > 0; in fact,
a2 = EY 2/EX2. (Only Y 2 = cX2 a.e. for some c > 0 is required for equality in the rightmost
inequality above.)

Example 4.1 (Correlation inequality) For rvs X and Y (on a probability space) having
positive and finite variances, it holds that

(14) −1 ≤ ρ ≤ 1,

for the correlation ρ of X and Y defined by

(15) ρ ≡ ρX,Y ≡ Corr[X,Y ] ≡ Cov[X,Y ]
√

Var[X]Var[Y ]
. �

Exercise 4.2 Consider rvs X and Y having EX2 and EY 2 in (0,∞). Show that

ρ = +1 if and only if X − μX = a(Y − μY ) a.e. for some a > 0,

ρ = −1 if and only if X − μX = a(Y − μY ) a.e. for some a < 0.

In fact a2 = σ2
Y /σ2

X . Thus ρ measures linear dependence, not general dependence.

Inequality 4.4 (a) (Liapunov’s inequality) It holds that

(16) E1/r|X|r is ↗ in r for all r ≥ 0, provided μ(Ω) = 1.

(b) Let μ(Ω) be finite. Then ‖X‖r ≤ ‖X‖s × {μ(Ω)} 1
r − 1

s for all 0 < r < s.
(c) h(r) ≡ log E|X|r is convex on [a, b] if X ∈ La ∩ Lb( 0 < a and any μ(Ω) value).

Proof. (c) Apply Hölder to |X|αa and |X|(1−α)b with r = 1/α and s = 1/(1 − α) and
obtain the inequality

(p) E|X|αa+(1−α)b ≤ (E|X|αa· 1
α )α(E|X|(1−α)b· 1

1−α )1−α

(q) = (E|X|a)α(E|X|b)1−α.

(All expectations are finite if X ∈ La ∩ Lb; since a ≤ r ≤ b and c > 0 implies that cr ≤ cb or
cr ≤ ca as c ≥ 1 or c ≤ 1.) Taking logarithms gives the convexity

(r) h(αa + (1 − α)b) ≤ αh(a) + (1 − α)h(b).

(b) Finiteness of E|X|b gives the finiteness of E|X|r on (0, b] via proposition 4.1. Then apply
Hölder to |X|r · 1 with a = s

r and 1
a + 1

b = 1 (and E1 = μ(Ω)). �
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Exercise 4.3 (Littlewood’s inequality) Define mr ≡ E|X|r. Show that for 0 ≤ r ≤ s ≤ t
we have (write ms = E(|X|λs · |X|(1−λ)s), and apply Hölder)

(17) mt−r
s ≤ mt−s

r ms−r
t (thus, m3

2 ≤ m2
1m4).

Inequality 4.5 (Minkowski’s inequality) E1/r|X +Y |r ≤ E1/r|X|r +E1/r|Y |r for all r ≥ 1.
That is, ‖X + Y ‖r ≤ ‖X‖r + ‖Y ‖r for r ≥ 1.
(Recall that ‖X + Y ‖r ≤ ‖X‖r + ‖Y ‖r for 0 < r ≤ 1, by the Cr-inequality and (7).)
Thus ‖ · ‖r turns Lr into a metric space (if we identify X and X ′ when X =a.e. X ′).

Proof. This is trivial for r = 1. Suppose r > 1, and note that s = r/(r − 1). Then for any
measure μ we have

(a) E{|X + Y |r} ≤ E{|X||X + Y |r−1} + E{|Y ||X + Y |r−1}
≤ (‖X‖r + ‖Y ‖r) ‖|X + Y |r−1‖s by Hölder’s inequality twice

= (‖X‖r + ‖Y ‖r) E1/s|X + Y |(r−1)s = (‖X‖r + ‖Y ‖r)E1/s|X + Y |r.

If E|X + Y |r = 0, the result is trivial. If not, we divide to get the result. �

Inequality 4.6 (Basic inequality) Let g ≥ 0 be ↗ on [0,∞) and even. Then for all mea-
surable X we have

(18) μ(|X| ≥ λ) ≤ Eg(X)/g(λ) for all λ > 0.

Proof. Now,

(a) Eg(X) =
∫
[|X|≥λ]

g(X) dμ +
∫
[|X|<λ]

g(X) dμ ≥ ∫
[|X|≥λ]

g(X) dμ

(b) ≥ g(λ)
∫
[|X|≥λ]

1 dμ = g(λ)μ(|X| ≥ λ). �

The next two inequalities are immediate corollaries.

Inequality 4.7 (Markov’s inequality) μ(|X| ≥ λ) ≤ E|X|r/λr for all λ > 0.

Inequality 4.8 (Chebyshev’s inequality) If E|X| < ∞, then

(19) μ(|X − μ| ≥ λ) ≤ Var[X]/λ2 for all λ > 0.

Inequality 4.9 (Paley–Zygmund) If E|X| < ∞ for a rv X ≥ 0, then

(20) P (X > λ) ≥ [(EX − λ)+]2/EX2 for each λ > 0.
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Proof. Cauchy–Schwarz, and then rearrangement give the inequality

EX = E(X1[X≤λ]) + E(X1[X>λ]) ≤ λ +
√

E(X2)P (X > λ) �

Inequality 4.10 (Jensen’s inequality) Let X : (Ω,A, P ) → (I,BI , PX), where I any
interval subset of [−∞,∞]; thus P (X ∈ I) = 1. Suppose EX is in the interior Io of the
interval I. Let g be convex on I. Then the rv X satisfies

(21) g(EX) ≤ Eg(X). (Again, P (Ω) = 1 is required.)

For strictly convex g, equality holds if and only if X = EX a.e.
(Comment. Useful g include tr on [0,∞) for any r ≥ 1, |t|, and − log t on (0,∞).)

Proof. Let �(·) be a supporting hyperplane to g(.) at EX. Then

(a) Eg(X) ≥ E�(X)

(b) = �(EX) since �(·) is linear and μ(Ω) = 1

(c) = g(EX) since g(·) = �(·) at EX.

Now g(X) − �(X) ≥ 0. Thus Eg(X) = El(X) if and only if g(X) = �(X) a.e. μ if and only if
X = EX a.e. μ. �

Inequality 4.11 (Bonferroni) For any events Ak on a probability space (Ω,A, P ),

∑n

i=1
P (Ai) ≥ P (

⋃n

i=1
Ai) ≥

∑n

i=1
P (Ai) −

∑∑

i	=j
P (AiAj) .

Exercise 4.4 (W̃insorized variance) (a) Let the rv X have finite mean μ. Fix c, d with
c ≤ μ ≤ d. Let X̃ equal c,X, d according as [X ≤ c], [c < X ≤ d], [d < X], and set μ̃ ≡ EX̃.
Show that E|X̃ − μ̃|2 ≤ E|X̃ − μ|2 ≤ E|X − μ|2.
(b)∗ (Chow and Teicher) Given both a rv X with finite mean μ and a number r ≥ 1, show
how to choose c, d so that E|X̃ − μ̃|r ≤ E|X − μ|r.

Exercise 4.5 ∗(Hardy) Let h ∈ L2(R+,B, λ) and define H̄(u) = u−1
∫ u

0
h(s)ds for u > 0.

Let r > 1. Use the Hölder inequality to show that

(22)
∫ ∞
0

H̄r(u)du ≤ ( r
r−1 )r

∫ ∞
0

hr(u)du with equality if and only if h = 0 a.e.

Let r > 1. Then
∑∞

1 ( 1
n

∑n
1xk)r ≤ ( r

r−1 )r
∑∞

1 xr
n when all xn ≥ 0.

[Hint. Write H̄(u) = u−1
∫ u

0
h(s)sαs−αds for some α. Also, first consider xn ↘.]

Exercise 4.6 (Wellner) Let T ∼= Binomial(n, p), so P (T = k) =
(

n
k

)

pk(1 − p)n−k for

0 ≤ k ≤ n. The measure associated with T has mean np and variance np(1 − p). Then use
inequality 4.6 with g(x) = exp(rx) and r > 0, to show that

(23) P (T/n ≥ pε) ≤ exp(−nph(ε)), where h(ε) ≡ ε(log(ε) − 1) + 1.
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Exercise 4.7 (Geometric mean) Show that (x1 ×· · ·×xn)1/n ≤ (x1 + · · ·+xn)/n whenever
all xk ≥ 0.

Exercise 4.8 ∗ Let X,Y ≥ 0 with XY ≥ 1 and P (Ω) = 1. Show that

(24) μX × μY ≥ 1 and {1 + μ2
X}1/2 ≤ E{(1 + X2)1/2} ≤ (1 + μX).

Exercise 4.9 ∗(Clarkson’s inequality) Let X,Y in Lr(Ω,A, μ). Show that

(25) E|X + Y |r + E|X − Y |r ≤ 2r−1{E|X|r + E|Y |r} provided r ≥ 2.

Exercise 4.10 Let L Log L denote all measurable X having E{|X|×Log(|X|)} finite, with
Log(x) ≡ (1 ∨ log x). Show that Lr ⊂ L Log L ⊂ L1, for all r > 1.

Exercise 4.11 Show that for all a, b we have

(26) ||a| − |b||r ≤ ||a|r − |b|r| for r ≥ 1,

with the reverse inequality for 0 < r < 1.

Exercise 4.12 Let (Ω,A, μ) have μ(Ω) < ∞. Then P (A) ≡ μ(A)/μ(Ω), for all A ∈ A, is a
probability measure P .
(a) Restate Jensen’s inequality (26) in terms of μ.
(b) Restate Liapunov’s inequality (16) in terms of μ.
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5 Modes of Convergence

Definition 5.1 (Modes of convergence) Let X and Xn’s be measurable and a.e. finite
from the measure space (Ω,A, μ) to (R̄, B̄).
(a) Recall that Xn converges a.e. to X (denoted by Xn →a.e. X) if

(1) Xn(ω) → X(ω) for all ω ∈ A, where μ(Ac) = 0.

(b) Also, recall that Xn converges in measure to X (denoted by Xn →μ X) if

(2) μ([ω : |Xn(ω) − X(ω)| ≥ ε]) → 0 for each ε > 0.

(c) Now (rigorously for the first time), Xn converges in rth mean to X (denoted by Xn →r X
or Xn →Lr

X) if

(3) E|Xn − X|r → 0 for Xn’s and X in Lr;

here, r > 0 is fixed. (Note from the Cr-inequality that if Xn − X and one of X or Xn is in
Lr, then the other of Xn or X is also in Lr.)

Recall from chapter 2 that Xn → a.e. (some a.e. finite X) holds if and only if Xn −
Xm →a.e. 0 as m ∧ n → ∞. Likewise, in chapter 2 we had Xn →μ (some X) if and only if
Xn − Xm →μ 0 as m ∧ n → ∞. Next, we will consider Xn →r X.(First, note that Xn →r X
trivially implies Xn →μ X, using the Markov inequality.)

Exercise 5.1 (Completeness of Lr) (I) Let Xn’s be in any Lr, for r > 0.

(a) (Riesz–Fischer) Xn →r (some X ∈ Lr) if and only if Xn − Xm →r 0.

That is, Lr is complete with respect to →r. Prove (a), using (2.3.14). (Show that (Lr, ‖ · ‖r)
is a complete metric space (when r > 0), provided that we identify X and X ′ whenever
X = X ′ a.e.) (Note theorem 5.8 below regarding separability.)
(II) Let μ(Ω) < ∞. Then:

(b) If Xn →s X, then Xn →r X for all 0 < r ≤ s.

(c) Show by example that Xn →Lr
X does not imply that Xn →a.e. X.

(d) Show by example that Xn →a.e. X does not imply that Xn →L1 X.

(Hint: Use Fatou’s lemma in (a) and Hölder’s inequality in (b).)
Summary Let X and Xn’s be measurable and a.e. finite (see definition 5.1). Then

Xn converges a.e., in measure, or in Lr to such an X

if and only if(4)
Xn is Cauchy a.e., Cauchy in measure, or Cauchy in Lr.

Consequences of Convergence in Distribution on (Ω,A, P )

Notation 5.1 Suppose now that μ really denotes a probability measure, and so we will
label it P . Recall that rvs Xn converges in distribution to a rv X (denoted by Xn →d X,
Fn →d F or L(Xn) → L(X) with L(·) referring to “law”) when the dfs F and Fn of the rvs
X and Xn satisfy (recall (2.4.4))

(5) Fn(x) → F (x) as n → ∞ for each continuity point x ∈ CF of F (·).

http://dx.doi.org/10.1007/978-3-319-52207-4_2
http://dx.doi.org/10.1007/978-3-319-52207-4_2
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[Note that Fn ≡ 1[1/n,∞) →d F ≡ 1[0,∞), even though Fn(0) = 0 →/ 1 = F (0).] The statement
→d will carry with it the implication that F corresponds to a probability measure P , which
can be viewed as the PX = μX of an appropriate rv X. �

Theorem 5.1 (a) (Helly–Bray) Consider the rvs X and Xn on some (Ω,A, P ). Suppose
Fn →d F , and suppose that g is bounded and is continuous a.s. F . Then

(6)
∫

gdFn = Eg(Xn) =
∫

g(Xn)dP →
∫

g(X)dP = Eg(X) =
∫

gdF.

(b) Conversely, Eg(Xn) → Eg(X) for all bounded, continuous g implies Fn →d F .

Theorem 5.2 (Mann–Wald) Consider the rvs X and Xn on some (Ω,A, P ). Suppose
Xn →d X, and let g be continuous a.s. F . Then g(Xn) →d g(X).

Proof. We ask for a proof for continuous g in the next exercise, but we give a “look-ahead”
proof now. (See theorem 6.3.2 below for the Skorokhod proof.)
Skorokhod If Xn →d Xo, then the rvs Yn ≡ F−1

n on ([0, 1],B[0, 1]P ≡ λ) have

(7) Yn
∼= Xn for all n ≥ 0 and especially Yn → Yo a.s. P (·).

Thus A1 ≡ {ω : Yn(ω) → Yo(ω)} has P (A1) = 1. Also,

(a) P (A2) ≡ P ({ω : g is continuous at Yo(ω)})

(b) = PYo
({y : g is continuous at y}) = PYo

(Cg) = PX(Cg) = 1.

Thus A ≡ A1 ∩ A2 = A1 ∩ Y −1
o (Cg) has P (A) = 1. Especially,

(c) g(Yn(ω)) → g(Yo(ω)) for all ω ∈ A, with P (A) = 1.

Since g is bounded, applying the DCT to (7) gives the Helly–Bray claim that

(d)
∫

g dFn ≡
∫

g dμFn
=

∫

g(Yn)dP →
∫

g(Yo)dP =
∫

g dμFo
≡

∫

g dFo.

We note additionally that since (7) implies g(Yn) →a.s. g(Yo), it also implies
g(Yn) →d g(Yo). Since g(Xn) ∼= g(Yn) for all n, we can also conclude that g(Xn) →d g(Xo).
This argument did not use the boundedness of g, and so proves the Mann–Wald theorem.
Theorem 3.2.6 was used twice in (d). (Proving Helly–Bray as indicated in the next exercise
would have been possible now, but the proof based on Skorokhod’s theorem is more in keeping
with the spirit of this book. The Helly–Bray theorem will be used later in this section, in
proving Vitali’s theorem.)

Consider the converse. Let gε(·) equal 1, be linear, equal 0 on (−∞, x − ε], on [x − ε, x],
on [x,∞); and let hε(·) equal 1, be linear, equal 0 on (−∞, x], on [x, x + ε], on [x + ε,∞),
with gε and hε both continuous. (Let G ≡ {all such gε and hε}.) Then

Fo(x − ε) ≤ E gε(Xo) = lim E gε(Xn) ≤ lim Fn(x)

(e) ≤ lim Fn(x) ≤ lim Ehε(Xn) = Ehε(Xo) ≤ Fo(x + ε),

so that Fn(x) → Fo(x) at all continuity points of F . �
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Definition 5.2 (Determining class) Let G denote a collection of bounded and continuous
functions g on the real line R. If for any rvs X and Y the condition

Eg(X) = Eg(Y ) for all g ∈ G implies X ∼= Y,

then call G a determining class. (The proof of the converse half of Helly–Bray exhibited one
such class of particularly simple functions. See also section 9.1 for further examples which
will prove particularly useful.)

Exercise 5.2 (a) Prove the Helly–Bray result
∫

g dFn → ∫
g dF for all bounded and con-

tinuous g, without appeal to theorem 6.3.2 of Skorokhod. (Truncate the real line at large
continuity points ±M of F , and then use the uniform continuity of g on the interval [−M,M ]
to obtain a simple proof in this case. Note exercise 9.1.1.)
(b) Alter your proof to be valid when g is bounded and merely continuous a.s. μF .

General Moment Convergence on (Ω,A, μ)

Theorem 5.3 (Moment convergence under →r) Let Xn →r X, r > 0. Then

(8) E|Xn|r → E|X|r.
Moreover, X+

n →r X+,X−
n →r X−, and |Xn| →r |X|. (See also exercise 9.1.1.)

Proof. Let (Ω,A, μ) be arbitrary and 0 < r ≤ 1. The Cr-inequality gives

(a) E|Xn|r ≤ E|Xn − X|r + E|X|r and E|X|r ≤ E|X − Xn|r + E|Xn|r,
so that

(9) |E|Xn|r − E|X|r| ≤ E|Xn − X|r → 0 when 0 < r ≤ 1.

Suppose r ≥ 1. Then using Minkowski’s inequality twice (as in (a)) gives

(10) |E1/r|Xn|r − E1/r|X|r| ≤ E1/r|Xn − X|r → 0, when r ≥ 1.

Combining (9) and (10) shows that E|Xn|r → E|X|r. (Recall exercise 5.1(b).)
Now, |X+

n −X+| equals |Xn −X|, |Xn −0|, |0−X|, |0−0| just as [Xn ≥ 0,X ≥ 0][Xn ≥ 0,
X < 0], [Xn < 0,X ≥ 0], [Xn < 0,X < 0]. Thus

(11) |X+
n − X+| ≤ |Xn − X|, and |X−

n − X−| ≤ |Xn − X|
also. Hence X+

n →r X+, so that E(X+
n )r → E(X+)r. Likewise for X−

n . Cross-product terms
are 0, since X+(ω)X−(ω) = 0; so if r = k is integral, then

(b) EXk
n = E(X+

n )k + (−1)kE(X−
n )k → E(X+)k + (−1)kE(X−)k = E(Xk). �

Uniform Integrability and Vitali’s Theorem

Definition 5.3 (Uniformly integrable) A collection of measurable Xt’s is called integrable
if supt E|Xt| < ∞. Further, a collection of rvs {Xt : t ∈ T} is said to be uniformly integrable
(which is abbreviated u.i.) if

(12) sup
t∈T

E{|Xt| × 1[|Xt|≥λ]} → 0 as λ → ∞.

The functions Xn(t) ≡ 1
n1[−n2,n2](t) on (R,B, λ) are u.i. but they are not integrable. We will

see below that u.i. implies ‘integrable’ when μ(Ω) < ∞.
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Remark 5.1 (Dominated Xt’s are u.i.) Suppose these |Xt| ≤ Y a.s. for some Y ∈ L1. Then
these Xt’s are integrable, in that supt E|Xt| ≤ EY < ∞. But, more is true. For some null
sets Nt, we have [|Xt| ≥ λ] ⊂ [|Y | ≥ λ] ∪ Nt. It follows that μ(|Xt| ≥ λ) ≤ μ(|Y | ≥ λ) → 0
uniformly in t as λ → ∞ (use Markov’s inequality). Then for each fixed t,

∫
[|Xt|≥λ]

|Xt| dμ ≤ ∫
[|Y |≥λ]

Y dμ → 0 uniformly in t as λ → ∞

by the absolute continuity of the integral of Y in theorem 3.2.5. Thus:

(13) If all |Xt| ≤ Y for some Y ∈ L1, then these Xt’s are uniformly integrable. �

Exercise 5.3 (a) Now EY =
∫ ∞
0

P (Y ≥ y) dy =
∫ ∞
0

[1 − F (y)] dy for any rv Y ≥ 0 with df
F (as will follow from Fubini’s theorem below). Sketch a proof.
(b) In fact, this formula can also be established rigorously now. Begin with simple functions
Y and sum by parts. Then apply the MCT for the general result.
(c) Use the result of (a) to show that for Y ≥ 0 and λ ≥ 0 we have

∫
[Y ≥λ]

Y dP = λP (Y ≥ λ) +
∫ ∞

λ
P (Y ≥ y) dy. (Draw pictures.)

(d) Suppose there is a Y ∈ L1 such that P (|Xn| ≥ y) ≤ P (Y ≥ y) for all y > 0 and all n ≥ 1.
Then use (c) to show that {Xn : n ≥ 1} is uniformly integrable.

Exercise 5.4 (Uniform integrability criterion) If supt E|Xt|r ≤ M < ∞ for some
r > 1, then the Xt’s are uniformly integrable. (Compare this to theorem 5.6 of de la Vallée
Poussin below, by letting G(x) = xr.)

Theorem 5.4 (Uniform absolute continuity of integrals) Let μ(Ω) < ∞. A family of
measurable Xt’s is uniformly integrable if and only if both

suptE|Xt| ≤ (some M) < ∞ (the collection is integrable), and(14)

μ(A) < δε implies supt

∫

A

|Xt| dμ < ε (uniform absolute continuity).(15)

Note: μ(Ω) < ∞ is needed only to show that u.i. implies (14).

Proof. Suppose these conditions hold. Then Markov’s inequality and (14) give

(a) μ(|Xt| ≥ λ) ≤ E|Xt|/λ ≤ suptE|Xt|/λ < δε uniformly in t

for λ large enough. Then (15) applied to the sets [|Xt| ≥ λ] yields (12). (Note that μ(Ω) < ∞
was not used.)

Suppose the u.i. condition (12) holds. If μ(A) < δ, then

(b)
∫

A
|Xt| dμ =

∫
A

|Xt| × 1[|Xt|<λ] dμ +
∫

A
|Xt| × 1[|Xt|≥λ] dμ

(c) ≤ λ × μ(A) +
∫ |Xt|1[|Xt|≥λ] dμ ≤ ε/2 + ε/2 = ε using (12)
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for a sufficiently large fixed λ and for δ ≤ ε/(2λ). (We have not yet used μ(Ω) < ∞.)
Moreover, for λ large enough, (12) again gives

(d) E|Xt| ≤ λμ(Ω) +
∫
[|Xt|≥λ]

|Xt| dμ ≤ λμ(Ω) + 1 for all t;

thus the collection is integrable. Thus (15) holds. �

Theorem 5.5 (Vitali) (i) Let μ(Ω) < ∞ and r > 0. Suppose that Xn →μ X. The
following are equivalent (where only (16) implies (17) and (20) uses μ(Ω) < ∞):

{|Xn|r : n ≥ 1} are uniformly integrable.(16)
‖Xn − X‖r → 0. (Only X or Xn’s in Lr is required; by (9) or (10)).(17)
E|Xn|r → E|X|r < ∞.(18)

limn E|Xn|r ≤ E|X|r < ∞.(19)
The uniform absolute continuity of (15) holds for the |Xn|r, and X ∈ Lr.(20)

(ii) Let μ(Ω) = ∞ and r ≥ 1. Suppose Xn →μ or a.e. X with all Xn in Lr.
(a) Then (17), (18), and (19) are equivalent—and they imply (16).
(b) Suppose the uniform absolute continuity of (15) holds for the |Xn|r. Suppose for each
ε > 0 there exists a set Aε having μ(Aε) < ∞ for which supn

∫
AC

ε
|Xn|r dμ ≤ ε (compare this

with (14)). These two hold true if and only if (17)–(19) hold.

Corollary 1 (Lr-convergence) Let μ(Ω) < ∞. Let r > 0. Let all Xn ∈ Lr. Then
Xn →r X(or,E|Xn − X|r → 0) if and only if both Xn →μ X and one (hence both) of the
two families of functions {|Xn|r : n ≥ 1} or {|Xn − X|r : n ≥ 1} is u.i.

Remark 5.2 (Vitali’s theorem) Let Xn →μ X throughout, with μ(Ω) arbitrary. Fatou and
Xn′′ →a.e. X on some further subsequence n′′ of any n′ always yield

(21) E|X|r = E lim |Xn′′ |r ≤ lim E|Xn′′ |r ≤ lim E|Xn′′ |r ≤ lim E|Xn|r.

So Vitali (ii)(a) yields E|Xn|r → E|X|r < ∞, if r ≥ 1. Vitali thus gives (for r ≥ 1)

E|Xn − X|r → 0 if and only if E|Xn|r → E|X|r (any μ(Ω) value)
if and only if (in case μ(Ω) < ∞) the rvs {|Xn|r : n ≥ 1} are u.i.(22) �

Exercise 5.5 Consider Vitali’s theorem. In the proof that follows we will show that (17)
⇒ (18) ⇒ (19) ⇒ (16) and (20) ⇒ (16) for r > 0 and any μ(Ω) value.
(p) Prove Vitali’s (ii)(a) that (19) implies (17) when r ≥ 1. (See exercise 5.10.)
(q) Prove the “true” Vitali theorem in (ii)(b). (Find a hint in exercise 5.10.)
(r) Give an example to demonstrate the implication that just (16) can hold in (ii).
(s) Note that t ∈ [0,∞) may replace n ∈ {1, 2, . . .} in all of Vitali’s theorem.
(t) Let r ≥ 1. Let Xn →μ X, where |Xn|r ≤ Yn with Yn →μ Y and E|Yn| → E|Y | provides a
bound. Show that Xn →r X.

Proof.∗ Suppose (16); show (17). Now, Xn′ →a.s. X for some subsequence by theorem 2.3.1.
Thus E|X|r = E(lim |Xn′ |r) ≤ lim E|Xn′ |r ≤ M < ∞ using Fatou and (14). Thus X ∈ Lr.
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The Cr-inequality gives |Xn − X|r ≤ Cr{|Xn|r + |X|r}. The |Xn − X|r are easily shown u.i.
as in the theorem 5.4 proof. So for large n,

(j) E|Xn − X|r = E{|Xn − X|r × 1[|Xn−X|>ε]} + E{|Xn − X|r × 1[|Xn−X|≤∈]}

(k) ≤ ε + εr × μ(Ω) (only here (and for E|X|r finite) was μ(Ω) < ∞ needed);

the ε in (k) is from (15), since μ(|Xn − X| ≥ ε) → 0 by hypothesis. Thus (17) holds.
Now (16) implies (20) by theorem 5.4, with X ∈ Lr by Fatou (as in the previous paragraph)

and using μ(Ω) < ∞. We will not use μ(Ω) < ∞ again. Next, (20) implies (16) since
μ(|Xn| ≥ λ) ≤ μ(|Xn − X| ≥ λ/2) ∪ μ(|X| ≥ λ/2) < ε + ε, by first specifying λ large
(as X ∈ Lr) and then n large (as Xn →μ X).

Now, (17) implies (18) by theorem 5.3. Also (18) trivially implies (19).
Suppose (19) holds. Define fλ to be a continuous function on [0,∞) that equals |x|r, 0,

or is linear, according as |x|r ≤ λ, |x|r ≥ λ + 1, or λ ≤ |x|r ≤ λ + 1. Then (graphing fλ(x)
and xr on [0, λ + 1]) we have Yn ≡ fλ(Xn) →μ Y ≡ fλ(X) by the uniform continuity of
each fλ. (See exercise 2.3.4(b).) Let n′ denote any subsequence of n, and let n′′ denote a
further subsequence on which Xn′′ →a.e. X (see (2.3.14) in theorem 2.3.1 of Riesz). On the
subsequence n′′ we then have

limn′′
∫
[|Xn′′ |r>λ+1]

|Xn′′ |r dμ

= limn′′{∫ |Xn′′ |r dμ − ∫
[|Xn′′ |r≤λ+1]

|Xn′′ |r dμ}

(l) ≤ E|X|r − limn′′
∫
[|Xn′′ |r≤λ+1]

|Xn′′ |r dμ by (19)

(m) ≤ E|X|r − limn′′ Efλ(Xn′′) ≤ E|X|r − Efλ(X) by Fatou

(n) ≤ ∫
[|X|r≥λ]

|X|r dμ → 0 as λ → ∞, since X ∈ Lr.

Thus, limn

∫
[|Xn|r>λ+1]

|Xn|r dμ ≤ ∫
[|X|r≥λ]

|X|r dμ → 0, which implies (16). �

Theorem 5.6 ∗ (de la Vallée Poussin) Let μ(Ω) < ∞. A family of L1-integrable functions
Xt is uniformly integrable if and only if there exists a convex function G on [0,∞) for which
G(0) = 0, G(x)/x → ∞ as x → ∞ and

(23) supt EG(|Xt|) < ∞.

Proof. For λ so large that G(x)/x ≥ c for all x ≥ λ we have

(a)
∫
[|Xt|≥λ]

|Xt| dμ ≤ 1
c

∫
[|Xt|≥λ]

G(|Xt|) dμ ≤ 1
c supt EG(|Xt|) < ε

for c sufficiently large. Thus (23) implies {Xt : t ∈ T} is uniformly integrable.
Now we show that {Xt : t ∈ T}u.i. implies (23) for some G. We define G(x) =

∫ x

0
g(y) dy

where (with a sequence bn ↗ having b0 = 0, to be specified below) g(x) ≡ bn for all n ≤ x <
n + 1, n ≥ 0. Define an(t) ≡ μ(|Xt| ≥ n). Note,
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EG(|Xt|) ≤ b1μ(1 ≤ |Xt| < 2) + (b1 + b2)μ(2 ≤ |Xt| < 3) + · · ·

(b) =
∑∞

n=1
bnan(t).

Note that G(n + 2) ≥ [n/2]g([n/2]) = [n/2]b[n/2], so that G(x)/x → ∞ as x → ∞. It thus
suffices to choose bn ↗ ∞ such that supt

∑∞
1 bnan(t) < ∞. By the definition of uniform

integrability, we can choose integers cn ↑ ∞ such that

(c) supt

∫
[|Xt|≥cn]

|Xt| dμ ≤ 1/2n.

Thus for all t we have

1/2n ≥ ∫
[|Xt|≥cn]

|Xt| dμ ≥ ∑∞
i=cn

i μ(i ≤ |Xt| < i + 1)

=
∑∞

i=cn

∑i

j=1
μ(i ≤ |Xt| < i + 1)

≥
∑∞

j=cn

∑∞
i=j

μ(i ≤ |Xt| < i + 1) =
∑∞

j=cn

μ(|Xt| ≥ j)

(d) =
∑∞

j=cn

aj(t).

Thus, interchanging the order of summation,

(e) 1 =
∑∞

n=1
2−n ≥ supt

∑∞
n=1

∑∞
j=cn

aj(t) = supt

∑∞
j=1

bjaj(t)

for bj ≡ (the number of integers n such that cn is ≤ j).
While u.i. yields a convex G in (23), u.i. follows from (23) without convexity. �

Exercise 5.6 Consider only the definition of u.i. Do not appeal to Vitali.
(a) Let ξ ∼= Uniform(0, 1), and let Xn ≡ (n/ log n)1[0,1/n](ξ) for n ≥ 3. Show that these Xn

are uniformly integrable and
∫

XndP → 0, even though these rvs are not dominated by any
fixed integrable rv Y .
(b) Let Yn ≡ n1[0,1/n](ξ) − n1[1/n,2/n](ξ). Show that these Yn are not uniformly integrable,
but that

∫
YndP → 0. However,

∫ |Yn|dP →/ 0.

Summary of Modes of Convergence Results

Theorem 5.7 (Convergence implications) Let X and Xn’s be measurable and a.e.
finite. (Note figure 5.1.)

(i) If Xn →a.e. X and μ(Ω) < ∞, then Xn →μ X.

(ii) If Xn →μ X, then Xn′ →a.e. X on some subsequence n′.

(iii) If Xn →r X, then Xn →μ X and {|Xn|r : n ≥ 1} are uniformly integrable.

(iv) Let r ≥ 1. If Xn →μ or a.e. X and lim E|Xn|r ≤ E|X|r < ∞, then Xn →r X.
Let μ(Ω) < ∞. Then Xn →μ X and {|Xn|r: n ≥ 1} are u.i. iff Xn →r X.

(v) If Xn →r X and μ(Ω) < ∞, then Xn →r′ X for all 0 < r′ < r.

(vi) If Xn →p X, then Xn →d X.

(vii) Let μ(Ω) < ∞. Then Xn →μ X if and only if every subsequence {n′} contains a further
subsequence {n′′} for which Xn′′ →a.e. X.
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Xn a.e. X Some Xn′ a.e. X

Xn r X Xn r′ X for all r′ ≤ r

Xn µ X

Xn d X Every n′ contains an n
for which Xn˝ → a.e. X

1

6

2

3

if µ(Ω) < ∞

5

if µ(Ω) < ∞

|Xn|r u.i.  4

if µ = P 7 if µ(Ω) < ∞

Figure 5.1 Convergence implications.

(viii) If Xn →d X, then Yn →a.e. Y for Skorokhod rvs with Yn
∼= Xn and Y ∼= X.

Proof. See theorem 2.3.1 for (i) and (ii). Markov’s inequality gives (iii) via

μ(|Xn − X| ≥ ε) ≤ E|Xn − X|r/εr → 0.

Vitali’s theorem includes both halves of (iv). Hölder’s inequality gives (v) via

(a) E|Xn − X|r′ ≤ {E|Xn − X|r′(r/r′)}r′/r(E1)1−r′/r, (with E1 = μ(Ω));

note also exercise 5.1(b) and the proof of inequality 3.4.4(b). Proposition 2.4.1 gives (vi).
Theorem 2.3.1 then gives (vii). The Skorokhod construction (to appear more formally as
theorem 6.3.2 below) was stated above in (7); (7) gives (viii). �

Exercise 5.7 (Scheffé’s theorem) Let f0, f1, f2, . . . be ≥ 0 on (Ω,A, μ).
Prove the following without resort to Vitali. Then prove them via Vitali.
(a) Suppose

∫
Ω

fn dμ = 1 for all n ≥ 0, and fn →a.e. fo with respect to μ, then

(24) sup
A∈A

|
∫

A

fn dμ −
∫

A

fo dμ| ≤
∫

Ω

|fn − fo| dμ → 0 as n → ∞.

(Think of this as the uniform convergence of measures with densities fn.)
(Hint. Integrate (fo − fn)+ and (fo − fn)− separately. Note that (fo − fn)+ ≤ fo.)
(b) Show that lim

∫
Ω

fn dμ ≤ ∫
Ω

fo dμ < ∞ and fn →μ or a.e. fo is sufficient for (24).
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Approximation of Functions in Lr by Continuous Functions∗

Let Cc denote the class of continuous functions on R that vanish outside a compact set, and
then let C

(∞)
c denote the subclass that has an infinite number of continuous derivatives. Let Sc

denote the class of all step functions on R, where such a step function is of the form
∑m

1 yj1Ij

for disjoint finite intervals Ij . Further, let F denote a generalized df, and let μ(·) ≡ μF (·)
denote the associated Lebesgue–Stieltjes measure. Let X denote a measurable function on
(Ω,A, μ) = (R,B, μF ).

Theorem 5.8 (The continuous functions are dense in Lr(R,B, μF ), r ≥ 1)
Suppose throughout that X ∈ Lr, for some fixed 1 ≤ r < ∞.
(a) (Continuous functions) Then for each ε > 0 there is a bounded and continuous function
Yε in Cc for which

∫ |X −Yε|r dμF < ε. Thus the class Cc is ε-dense within the class Lr under
the ‖ · ‖r-norm.
(b) We may insist that Yε ∈ C

(∞)
c . (The Yε of exercise 5.17 has sup |Yε| ≤ sup |X|.)

(c) (Step functions) Such a close approximation may also be found within the step functions
Sc, making them ε-dense also.
(d) All this extends to rvs on (Rn,Bn) (or on locally compact Hausdorff spaces).
(e) All these spaces Lr are separable, provided μ is σ-finite and A is countably generated (that
is,A = σ[C] with C a countable collection of sets).

Proof. Let r = 1. Consider only X+. Approximate it by a simple function Xε =
∑κ

1xi1Ai

of (2.2.10) so closely that
∫ |X+ − Xε| dμF < ε/3. (We can require that all Ai ⊂ (some

[−Mε,Mε]) for which
∫
[|X+|≥Mε]

x + X+ dμF < ε/3, and that each xi > 0.) Now, the Halmos
approximation lemma of exercise 1.2.3 guarantees sets B1, . . . , Bn made up of a finite disjoint
union of intervals of the form (a, b] (with a and b finite continuity points of F , as in (b) of
the proof of theorem 1.3.1) for which

(p)
μF (Ai�Bi) < ε/(3κ|xi|), and so X ′

ε ≡ ∑κ
1xi1Bi

satisfies

∫ |Xε − X ′
ε| dμF < ε/3. (note that these Bi need not be disjoint).

This X ′
ε is the step function called for in part (c). Rewrite this X ′

ε =
∑m

1 yj1Cj
with disjoint

Cj = (aj , bj ]. Now approximate 1cj by the continuous function Wj that equals 0, is linear,
equals 1 according as x ∈ [aj , bj ]c, as x ∈ [aj , aj + δ] ∪ [bj − δ, bj ], as x ∈ [aj + δ, bj − δ]. (We
require that δ be specified so small that the combined μF measure of all 2m sets of the type
x ∈ [aj , aj + δ] and [bj − δ, bj ] is at most θ ≡ ε/(6

∑m
1 yj). Then let Yε ≡ ∑m

1 cjWj , which
has

∫ |X ′
ε − Yε| dμF < ε/3. Thus

∫ |X − Yε| dμF < ε, as called for in part (a). For (b), the
function ψ(x/δ) (where

(25) ψ(x) ≡
∫ 1

x
exp(−1/((s(1 − s)))ds

∫ 1

0
exp(−1/((s(1 − s)))ds

for 0 ≤ x ≤ 1,

with ψ(x) equal to 1 or 0 according as x ≤ 0 or x ≥ 1) is easily seen to have an infinite
number of continuous derivatives on R (with all said derivatives equal to 0 when x equals 0
or 1). Use ψ(−x/δ) on [aj , aj + δ] and ψ(x/δ) on [bj − δ, bj ] to connect values 0 to 1, instead
of linear connections. The result is a function in C

(∞)
c .

For r > 1, write X = X+ − X− and use the Cr-inequality and |a − b|r ≤ |ar − br| for
all a, b ≥ 0. For example, make E|X+ − Y +

ε |r ≤ E|(X+)r − (Y +
ε )r| < ε by the case r = 1.

(Exercise 5.18 asks for a proof of (e).) �
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Miscellaneous Results∗

Exercise 5.8 ∗(→a.u.,Egorov; convergence “almost” implies uniform convergence)
(i) We define Xn →a.u. X (which is used as an abbreviation for almost uniform convergence)
to mean that for all ε > 0 there exists an Aε with μ(Aε) < ε such that Xn →uniformly X on
Ac

ε. Recall (2.3.5) to show

(26) (Egorov)If μ(Ω) < ∞ and Xn →a.e. (some X), then Xn →a.u. X.

If |Xn| ≤ Y a.e. for all n where Y ∈ Lr with r > 1, then μ(Ω) < ∞ is not needed.
(ii) (a) If Xn →a.u. X, then both Xn →a.e. X and Xn →μ X.
(b) If Xn →μ X, then Xn′ →a.u. X on some subsequence n′.

Exercise 5.9 (a) (An integrable function “almost” equals a bounded function) Suppose
μ(Ω) ∈ [0,∞] and

∫
Ω

|X| dμ < ∞. Fix ε > 0. Show the existence of a set Aε with μ(Aε) < ∞
for which both |X| ≤ (some Mε) on Aε and

∫
Ac

ε
|X| dμ < ε.

(b) Let μ(Ω) < ∞. Let X be measurable and finite a.e. For any ε > 0, specify a finite number
Mε and a set Aε having μ(Ac

ε) < ε and |X| ≤ Mε on Aε.

Exercise 5.10 Verify Vitali’s theorem 5.5(ii)(a) when μ(Ω) = ∞ is allowed. (Hint. Apply
exercise 5.9, Scheffé’s theorem, absolute continuity of the integral, Egorov’s theorem, and
exercise 3.4.12.)

Exercise 5.11 (�r-Spaces) Let Ω be an arbitrary set and consider the class of all subsets
A. Let μ(A) denote the cardinality of A when this is finite, and let it equal ∞ otherwise.
This is counting measure on Ω. Let 0 < r < ∞. Let �r(Ω) denote all functions X : Ω →R for
which

∑
ω∈Ω|X(ω)|r < ∞. Then

(27) ‖X‖r = {
∑

ω∈Ω
|X(ω)|r}1/r, for all r ≥ 1,

defines a norm on �r(Ω) (see (3.4.7) for 0 < r < 1). This is just a special case of an Lr-space,
and it is important enough to deserve its specialized notation. Show that

(28) �r ⊂ �s for all 0 < r < s < ∞.

This set inclusion is proper if Ω has infinitely many points.

Exercise 5.12 (An added touch) Let an ≥ 0 satisfy
∑∞

1 an < ∞. Show that there neces-
sarily exists a sequence cn ↑ ∞ for which

∑∞
1 cnan < ∞.

The exercises below are presented for “flavor” or as tools, rather than to be worked.

Exercise 5.13 ∗(Weak Lr-convergence; and in L∞) Let Xn,X ∈ Lr, with r ≥ 1. Let
1/r + 1/s = 1 define s for r > 1. Let s = ∞ when r = 1, and L∞ denotes all bounded
A-measurable Y on Ω, and let ‖X‖∞ ≡ inf{c : μ({ω : |X(ω)| > c}) = 0} denote the essential
supremum of such functions X. Let s = 1 when r = ∞. (The following results can be
compared with Vitali’s theorem.)
(A) (a) Fix 1 ≤ r < ∞. Let Xn →r X on L(Ω,A, μ). Show (via the Hölder inequality) that
Xn converges weakly in Lr (denoted by Xn →w−Lr

X) in that

(29)
∫
Ω

XnY dμ → ∫
Ω

XY dμ for all Y ∈ Ls.
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That is, Xn →Lr
X implies XnY →L1 XY for all Y ∈ Ls.

(b) (Radon–Reisz) Conversely, suppose that Xn →w−Lr
X and additionally that the moments

satisfy E|Xn|r → E|X|r, where 1 < r < ∞. Show that Xn →Lr
X.

(B) (c) Let Xn →μ or a.e .X. Let 1 < r < ∞ and supn E|Xn|r < ∞. Show (29). (Recall
Scheffé’s theorem regarding r = 1.)
(C) (d) (Lehmann) Fix M . Let FM ≡ {X : ‖X‖∞ ≤ M < ∞}. Let X,X1,X2, . . . denote
specific functions in FM . Then (29) holds for all Y ∈ L1 if and only if (29) holds for all Y in
the subclass {1A : μ(A) < ∞}. (Note also exercise 5.21 below.)

Exercise 5.14 ∗ (a) L∞(Ω, σ[{al1 open sets}], μ) is a complete metric space under the
essential sup norm ‖ · ‖∞ whenever Ω is a locally compact Hausdorff space.
(b) The set Sc of simple functions that vanish off of compact sets is dense in this complete
metric space (L∞, ‖ · ‖∞). (Recall theorem 5.8.)
(c) No family of continuous functions is dense in (L∞([0, 1],B, λ), ‖ · ‖∞), and the space L∞
is not separable under the norm ‖ · ‖∞.

Exercise 5.15 ∗(Lusin) Suppose Xn →a.e. X, with μ being σ-finite on (Ω,A). Determine
a measurable decomposition Ω = A0 + A1 + A2 + · · · for which μ(A0) = 0 and Xn → X
uniformly on each of A1, A2, . . ..

Exercise 5.16 ∗ (Lusin; any meaurable function is “almost” continuous)
Let X be an (R,B) measurable function on R.
(a) Let ε > 0. Show that there exists a continuous function Yε on R and a closed set Dε such
that λ(Dc

ε) < ε and X = Yε on Dε.
(b) Show that a function X : R → R is B-measurable if and only if there exists a sequence
of continuous function Yn : R → R for which Yn →a.e. X.
(Hint. (a) Begin with simple functions like those in (2.2.10). Consider each [n, n + 1] sepa-
rately. Apply Egorov’s theorem.)

Exercise 5.17 ∗(Lusin) Let X be measurable on (Ω,A, μ), where Ω is a locally compact
Hausdorff space (every point has a neighborhood whose closure is compact, such as the real
line R with the usual Euclidean metric) and A = σ[{open sets}]. Suppose X(ω) = 0 for
all ω ∈ Ac, where μ(A) < ∞. Let ε > 0. Then there exists Yε, where Yε(ω) = 0 for all
ω ∈ Bc, with the set B compact, and where Yε is continuous, sup |Yε| ≤ sup |X|, and μ({ω :
X(ω) �= Yε(ω)}) < ε. (Again, a measurable function is “almost equal” to a continuous
function.) (Note exercise B.1.14 below.)

Exercise 5.18 ∗ Prove the separability of Lr in theorem 5.8(e).

Exercise 5.19 ∗(Halmos) Let (Ω,A, μ) be σ-finite. For each A1, A2 in A define ρ(A1, A2) =
μ(A1�A2). We agree to identify all members of the equivalence classes of subsets A ≡ {A′

: ρ(A,A′) = 0. Let A0 denote the collection of all of these equivalence classes A that satisfy
μ(A) < ∞.
(a) Show that (A0, ρ) is a metric space.
(b) Show that the metric space (A0, ρ) is separable whenever A = σ[C] for some countable
collection C (that is, whenever A is countably generated).

Definition 5.4 (Dominated families of measures) Suppose that M is a family of measures μ
on some (Ω,A) having μ � μ0 for some σ-finite measure (Ω,A, μ0). Denote this by M � μ0,
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and say that M is dominated by μ0. Show that there exists a probability distribution P0 on
(Ω,A) for which μ � P0 for all μ ∈ M; that is, for which M � P0. (Note definition 4.1.3.)

Exercise 5.20 ∗(Berger) Let P denote a collection of probability measures P on the mea-
surable space (Ω,A). Suppose A = σ[C] for some countable collection C; that is, A is countably
generated. Let dTV denote the total variation metric on P; see exercise 4.2.10 below. Show
that

(30) P is dominated if and only if (P, dTV ) is a separable metric space.

(For example, let P denote all Poisson(λ) distributions on 0, 1, 2, . . . having λ > 0. The
countable collection of distributions with λ rational is dense in (P, dTV ).)
(Hint. Use the previous exercise.)

Exercise 5.21 ∗(Lehmann) Suppose that (Ω,A, μ) is σ-finite and A is countably generated.
Let Φ denote the set of all A-measurable φ for which 0 ≤ φ(ω) ≤ 1 for all ω ∈ Ω. Consider
an arbitrary sequence φn ∈ Φ. Show that a subsequence n′ and a function φ ∈ Φ must exist
for which

(31)
∫
Ω

φn′f dμ → ∫
Ω

φf dμ for all f ∈ L1(Ω,A, μ).

(That is, φn′ →w−L1 φ, or φn′ converges weakly in L1 to φ in the sense of (29)). (Hint. By
exercise 5.13(d) it suffices to verify (31) for all f = 1A with μ(A) < ∞.)



Chapter 4

Derivatives via Signed Measures

0 Introduction

In a typical calculus class the derivative F ′(x) of a function F at x is defined as the limit of the
difference quotients [F (x+h)−F (x)]/h as h → 0. One of the major theorems encountered is
then the Fundamental Theorem of Calculus that expresses F as the integral of its derivative
(with this result formulated on some interval [a, b] with respect to ordinary Lebesgue measure
dλ = dx). We can thus write F (x) − F (a) =

∫ x

a
F ′(y) dy under appropriate hypothesis on F .

In the context of an elementary probability class we let f ≡ F ′ and rewrite the fundamental
result as P ([a, x]) =

∫
[a,x]

f(y) dy =
∫ x

a
f(y) dy for all a ≤ x ≤ b, or even as

(1) P (A) =
∫

A
f(y) dy for all events A of the form [a, x].

Let us now turn this order around and begin by defining one function φ as the “indefinite
integral” of another function X, and do it on an arbitrary measure space (Ω,A, μ). Thus for
a fixed X ∈ L1(Ω,A, μ), define

(2) φ(A) =
∫

A
Xdμ for all A ∈ A.

As in exercise 3.2.6 (and as example 1.1 will show), if X ≥ 0 then this φ is a measure on
(Ω,A). In general φ(A) ≡ ∫

A
X dμ =

∫
A

X+ dμ− ∫
A

X− dμ is the difference of two measures,
and is thus called a “signed measure.” As (2) suggests, we can think of X as a derivative of
the signed measure φ with respect to the measure μ. This is the so called “Radon–Nikodym
derivative.” In this context it is possible to formulate important general questions that have
clean conclusions via straight forward and/or clever proofs. This is done in section 4.1 and
section 4.2, and this gives us most of what we need as we go forward. But before going on,
in section 4.3 and section 4.4 we relate this new approach back to the more familar approach
represented by (1). Of course, the f in (1) must equal the Radon–Nikodym derivative (viewed
in the new context); but much is gained by this new perspective.

c© Springer International Publishing AG 2017
G.R. Shorack, Probability for Statisticians, Springer Texts in Statistics,
DOI 10.1007/978-3-319-52207-4 4

67



68 CHAPTER 4. DERIVATIVES VIA SIGNED MEASURES

1 Decomposition of Signed Measures

Definition 1.1 (Signed measure) A signed measure on a σ-field (or a field) A is a set
function φ : A → (−∞,+∞] for which φ(∅) = 0 and φ(

∑
An) =

∑
φ(An) for all countable

disjoint sequences of An’s in A (requiring
∑

An in A in the case of a field). When additivity
is required only for finite unions, then φ is called a finitely additive (f.a.) signed measure.
(If φ ≥ 0, then φ is a measure or f.a. measure.) If |φ(Ω)| < ∞, then φ is called finite.
If Ω =

∑∞
1 Ωn with all components Ωn ∈ A and all values |φ(Ωn)| < ∞, then φ is called

σ-finite.

Proposition 1.1 (Elementary properties) (i) If φ(A) is finite and B ⊂ A, then φ(B) is
finite. Thus φ(Ω) finite is equivalent to φ(A) being finite for all A ∈ A.
(ii) If |φ(

∑∞
1 An)| < ∞, then

∑∞
1 |φ(An)| < ∞ (so, it is absolutely convergent).

(∗) Theorem 1.1 below will show that φ(A) ≥ (some M) > −∞, for all A ∈ A.

Proof. (i) Now,

(a) (a finite number) = φ(A) = φ(B) + φ(A \ B)

implies that φ(B) and φ(A \ B) are both finite numbers.
(ii) Let A+

n equal An or ∅ as φ(An) is ≥ 0 or < 0. And let A−
n equal An or ∅ as φ(An)

is ≤ 0 or > 0. Then
∑

φ(A+
n ) = φ(

∑
A+

n ) < ∞ by (i), since
∑

A+
n ⊂ ∑

An. Likewise,∑
φ(A−

n ) = φ(
∑

A−
n ). Now, convergent series of numbers in [0,∞) may be rearranged at

will. Thus
∑ |φ(An)| =

∑
φ(A+

n ) − ∑
φ(A−

n ) is finite. �

Example 1.1 (The prototypical example) Let X be measurable. Then

(1) φ(A) ≡
∫

A

X dμ is a signed measure if X− ∈ L1.

Note that φ is finite if X ∈ L1. Also, φ is σ-finite if X is a.e. finite and μ is σ-finite.

Proof. Now, φ(∅) =
∫

∅ X dμ =
∫

X · 1∅ dμ =
∫

0 dμ = 0. Also,

(a) φ(A) =
∫

A
X+ dμ − ∫

A
X− dμ ≥ − ∫

A
X− dμ ≥ − ∫

Ω
X− dμ > −∞

for all A ∈ A. Finally,

φ(
∑∞

1 An) =
∫
ΣAn

X =
∫
ΣAn

X+ − ∫
ΣAn

X− with the X−-term finite

=
∑ ∫

An
X+ − ∑ ∫

An
X− by the MCT, twice

(b) =
∑

(
∫

An
X+ − ∫

An
X−) =

∑ ∫
An

X =
∑∞

1 φ(An).

Thus φ is a signed measure.
Note that |φ(A)| = | ∫

A
X| ≤ ∫

A
|X| ≤ ∫ |X| < ∞ for all A, if X ∈ L1.

Let Ω ≡ ∑
n Ωn be a measurable decomposition for the σ-finite μ. Then the sets Ωnm ≡

Ωn ∩ [m ≤ X < m + 1] and Ωn,±∞ ≡ Ωn ∩ [X = ±∞], for n ≥ 1 and for all integers m, is a
decomposition showing φ to be σ-finite. �
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Definition 1.2 (Continuous signed measure) A signed measure φ is continuous from below
(above) if φ(lim An) = lim φ(An) for all An ↗ (for all An ↘, with at least one φ(An) finite).
We call φ continuous in case it is continuous both from below and from above.

Proposition 1.2 (Continuity of signed measures)
A signed measure on either a field or a σ-field is countably additive and continuous. Con-
versely, if a finitely additive signed measure on either a field or σ-field is either continuous
from below or is finite and continuous from above at ∅, then it is a countably additive signed
measure.

Proof. This result has nearly the same proof as does the corresponding result for measures;
see proposition 1.1.4. �

Exercise 1.1 (a) Actually write out all details of the proof of proposition 1.2.
(b) If φ and ψ are signed measures, then so is φ + ψ.

Theorem 1.1 (Jordan–Hahn decomposition) Let φ be a signed measure on the measur-
able space (Ω,A), having events A. Then Ω can be decomposed into events as Ω = Ω+ +Ω−,
where

(2) Ω+ is a positive set for φ, in that φ(A) ≥ 0 for all events A ⊂ Ω+,

(3) Ω− is anegative set for φ, in that φ(A) ≤ 0 for all events A ⊂ Ω−.

Trivially, we obtain measures on the measurable space (Ω,A) via the definitions

(4) φ+(A) ≡ φ(A ∩ Ω+) and φ−(A) ≡ −φ(A ∩ Ω−) (with φ = φ+ − φ−),

with φ+ a measure and φ− a finite measure on (Ω,A). Of course, φ+(Ω−) = 0 and φ−(Ω+) =
0. We will call φ+, φ−, and |φ|(·) ≡ φ+ +φ− the positive part, the negative part, and the total
variation measure associated with φ; thus

(5) |φ|(·) ≡ φ+(·) + φ−(·) is the total variation measure on (Ω,A),

Moreover, the following relationships hold:

(6)
φ+(A) = sup{φ(B) : B ⊂ A,B ∈ A},
φ−(A) = − inf{φ(B) : B ⊂ A,B ∈ A}.

Exercise 1.2 Identify φ+, φ−, |φ|, and |φ|(Ω) in the context of the prototypical situation
of example 1.1. Be sure to specify Ω+ and Ω−.

Proof.∗ Let us note first that (6) follows from the previous parts of the theorem. If B ⊂ A
then φ(B) = φ(BΩ+) + φ(BΩ−) ≤ φ(BΩ+) = φ+(B) ≤ φ+(A), while equality is actually
achieved for the particular subset AΩ+. Thus, (6) holds.

Consider claims (2) and (3). Let B denote some set having φ(B) < 0. [That φ(B) > −∞
is crucial; this proof will not work on the positive side.] (If no such set exists, let Ω+ ≡ Ω,
giving |φ| = φ+ = φ and φ− ≡ 0.) We now show that

(a) B contains a negative set C.

If B is a negative set, use it for C. If not, then we will keep removing sets Ak with φ(Ak) > 0
from B until only a negative set C is left. We will remove disjoint sets Ak with φ(Ak) ≥ 1
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as many times as we can, then sets with φ(Ak) ≥ 1
2 as many times as we can, . . . . To this

end, let

(b)

n1 ≡ min{i : φ(A1) ≥ 1/i for some A1 ⊂ B, with A1 ∈ A},
. . .

nk ≡ min{i : φ(Ak) ≥ 1/i for some Ak ⊂ B\∑k−1
j=1 Aj , with Ak ∈ A}

. . . .

(If (n1, n2, . . .) = (1, 1, 1, 1, 2, .. then some Ak has φ(Ak) ≥ 1 for 1 ≤ k ≤ 4, 1
2 ≤ φ(Ak) < 1 for

k = 5, ...) Let C ≡ B\∑
k Ak, where the union is infinite (unless the process of choosing nk’s

terminates); note that only finitely many Ak exist for each 1/i [else proposition 1.1(i) would
be violated]. The c.a. of φ then gives

(c) 0 > φ(B) = φ(C) +
∑

k φ(Ak) ≥ φ(C) > −∞.

Moreover, C is a negative set, since no subset can have measure exceeding 1/i for any i. Now
we know that we have at least one negative set. So we let

(d) d ≡ inf{φ(C) : C is a negative set } < 0, and define Ω− ≡ ∪kCk,

where Ck denotes a sequence of negative sets for which φ(Ck) ↘ d. Replace these Ck by C̃k ≡
∪k

1Cj ; these are ↗ sets with Ω− = ∪kC̃k and with φ(C̃k) ↘ d. Now, Ω− is also a negative set
(else one of the Ck’s would not be), and thus φ(Ω−) ≥ d, because it must exceed the infimum
of such values. But φ(Ω−) ≤ d also holds, since φ(Ω−) = φ(C̃k) + φ(Ω−\C̃k) ≤ φ(C̃k) for all
k gives φ(Ω−) ≤ d. Thus φ(Ω−) = d; so, d must be finite. Then Ω+ is a positive set, since
if φ(A) < 0 for some A ⊂ Ω+, then the set Ω− ∪ A would have φ(A ∪ Ω−) < d (which is a
contradiction). �

Exercise 1.3 The set Ω+ is essentially unique, in that if Ω+
1 and Ω+

2 both satisfy the
theorem, then |φ|(Ω+

1 �Ω+
2 ) = 0.

Lebesgue Decomposition

Definition 1.3 (Absolute continuity of measures) Let μ and φ denote a measure and
a signed measure on a σ-field A. Call φ absolutely continuous with respect to μ, denoted by
φ � μ, if φ(A) = 0 for each A ∈ A having μ(A) = 0. We say φ is singular with respect to μ,
denoted by φ ⊥ μ, if there exists a set N ∈ A for which μ(N) = 0 while |φ|(N c) = 0.

Exercise 1.4 Let μ be a measure and let φ be signed measures on (Ω,A). Show that the
following are equivalent: (a) φ � μ. (b) φ+ � μ and φ− � μ. (c) |φ| � μ.

Theorem 1.2 (Lebesgue decomposition) Let μ denote any σ-finite measure on the mea-
surable space (Ω,A). Let φ be any other σ-finite signed measure on this space (Ω,A). Then
there exists a unique decomposition of φ with respect μ as

(7) φ = φac + φs where φac � μ and φs ⊥ μ,

with φac and φs being σ-finite signed measures. Moreover,

(8) φac(A) =
∫

A

Z0 dμ for all A ∈ A

for some finite A-measurable function Z0, which is unique a.e. μ.
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Proof. By σ-finiteness and the Jordan–Hahn decomposition, we need only give the proof
if μ and φ are finite measures; just separately consider φ+

Ωn
and φ−

Ωn
(n = 1, 2, . . .) for a joint

σ-finite decomposition Ω =
∑∞

1 Ωn of μ and |φ|. (To give the details would be pedantic.)
We now establish the existence of the decomposition in the reduced problem when φ and μ
are finite measures. Let

(a) Z ≡ {Z : Z ≥ 0, Z ∈ L1 and
∫

A
Z dμ ≤ φ(A) for all A ∈ A}.

Now, Z �= ∅, since Z ≡ 0 is in Z.

Case 1. φ � μ: The first step is to observe that

(b) Z1, Z2 ∈ Z implies Z1 ∨ Z2 ∈ Z.

With A1 ≡ {ω ∈ A : Z1(ω) > Z2(ω)} and A2 ≡ AAc
1, we have

(c)
∫

A
(Z1 ∨ Z2) dμ =

∫
A1

Z1 dμ +
∫

A2
Z2 dμ ≤ φ(A1) + φ(A2) = φ(A).

Thus (b) holds. Now choose a sequence Zn ∈ Z such that

(d)
∫
Ω

Zn dμ → c ≡ supZ∈Z
∫
Ω

Z dμ ≤ supZ∈Z φ(Ω) ≤ φ(Ω) < ∞.

We may replace Zn by Z̃n ≡ Z1 ∨ · · · ∨ Zn in (d). These Z̃n in (d) are an ↗ sequence of
functions. Then let Z0 ≡ lim Z̃n. The MCT then gives (for any A ∈ A)

(e)
∫

A
Z0 dμ = lim

∫
A

Z̃n dμ ≤ lim φ(A) ≤ φ(A), so that Z0 ∈ Z, and

(f)
∫
Ω

Z0 dμ = lim
∫
Ω

Z̃n dμ = c < ∞, showing that Z0 ≥ 0 is a.e. finite.

(Redefine Z0 on a null set so that it is always finite.)
We now define

(g) φac(A) ≡ ∫
A

Z0 dμ and φs(A) ≡ φ(A) − φac(A) for all A ∈ A.

Then φac is a finite measure, which can be seen by applying example 1.1 with c finite; and
φac � μ. Moreover,

(h) φs ≡ φ − φac ≥ 0

(since Z0 ∈ Z), so that φs is a finite measure by exercise 1.1. If φs(Ω) = 0, then φ = φac

and we are done, with φs ≡ 0. (In the next paragraph we verify that φs ≡ 0 always holds in
Case 1; that is, we will verify that φs(Ω) = 0.)

oAssume φs(Ω) > 0. Then (since μ(Ω) is finite) there is some θ > 0 for which

(i) φs(Ω) > θμ(Ω).

Let Ω+ and Ω− denote the Jordan–Hahn decomposition for φ∗ ≡ φs − θμ. Then

(j) μ(Ω+) > 0 must follow (while (i) is being assumed).
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(Assume (j) is not true, so that μ(Ω+) = 0. This implies φac(Ω+) =
∫
Ω+

Zo dμ = 0. It further
implies that φs(Ω+) = 0 (since φs = φ − φac � μ, as φ � μ is assumed for Case 1 and as
φac � μ is obvious from example 4.1.1). But φs(Ω+) = 0 contradicts (i) by implying that

φs(Ω) − θμ(Ω) ≡ φ∗(Ω) = −φ∗(Ω−) + φ∗(Ω+)

(k) = −φ∗(Ω−) + [φs(Ω+) − θμ(Ω+)] = −φ∗(Ω−) ≤ 0.

Thus (j) must also hold, under the assumption made above that inequality (i) holds.) Now,
φs(AΩ+) ≥ θμ(AΩ+) (by the definition of Ω+ below (i)). Thus (as φs ≥ 0 by (h) gives the
inequality φs(AΩ−) ≥ 0),

φ(A) = φac(A) + φs(A) =
∫

A
Z0 dμ + φs(AΩ+) + φs(AΩ−)

≥ ∫
A

Z0 dμ + φs(AΩ+)

≥ ∫
A

Z0 dμ + θμ(AΩ+) as Ω+ is a positive set for φ∗ ≡ φs − θμ

(l) =
∫

A
(Z0 + θ1Ω+) dμ for all A ∈ A.

This implies both Zθ ≡ Z0 + θ1Ω+ ∈ Z and
∫
Ω

Zθ dμ = c + θμ(Ω+) > c. But this is a
contradiction. Thus φs(Ω) = 0. Thus φ equals φac and satisfies (8), and the theorem holds
in Case 1. The a.s. μ uniqueness of Z0 follows from exercise 3.2.2. (This also establishes the
Radon–Nikodym theorem below.)

oCase 2. General φ: Let ν ≡ φ + μ, and note that both φ � ν and μ � ν. Then by
Case 1 we can infer that

(m) φ(A) =
∫

A

X dν and μ(A) =
∫

A

Y dν for all A ∈ A

for finite ν-integrable functions X ≥ 0 and Y ≥ 0 that are unique a.e. ν. Let D ≡ {ω :
Y (ω) = 0}, and then Dc = {ω : Y (ω) > 0}. Define

(n) φs(A) ≡ φ(AD) and φac(A) = φ(ADc).

Now μ(D) =
∫

D
Y dν =

∫
D

0 dν = 0, and (n) gives φs(Dc) = φ(DcD) = φ(∅) = 0; thus φs ⊥
μ. Is φac << μ? Let μ(A) = 0. Then μ(ADc) = 0. Then by (m), 0 = μ(ADc) =

∫
ADC Y dν;

and thus Y = 0 a.e. ν in ADc, by exercise 3.2.1. But Y > 0 on ADc, and so ν(ADc) = 0.
Then (n) and (m) give φac(A) = φ(ADc) =

∫
ADC X dν = 0, since ν(ADc) = 0. So, μ(A) = 0

implies φac(A) = 0. Thus φac � μ.

Consider the uniqueness of the decomposition. If φ = φac + φs = φ̄ac + φ̄s, then ψ ≡
φac − φ̄ac = φ̄s − φs satisfies both ψ ⊥ μ and ψ � μ. Thus ψ ≡ 0. �

Exercise 1.5 Verify the following elementary facts for signed measures φ1, φ2, φ and a
measure μ on some measurable space (Ω,A).
(a) If φ1 � μ and φ2 � μ, then φ1 + φ2 � μ
(b) If φ1 ⊥ μ and φ2 ⊥ μ, then φ1 + φ2 ⊥ μ
(c) If φ � μ and φ ⊥ μ, then φ ≡ 0. (This was used in the previous proof.)
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2 The Radon–Nikodym Theorem

Recall that the absolute continuity φ � μ means that

(1) φ(A) = 0 whenever μ(A) = 0 with A ∈ A.

Theorem 2.1 (Radon–Nikodym) Suppose both the signed measure φ and the measure
μ are σ-finite on a measurable space (Ω,A). Then φ � μ if and only if there exists uniquely
a.e. μ a finite-valued A-measurable function Z0 on Ω for which

(2) φ(A) =
∫

A

Z0 dμ for all A ∈ A.

Moreover, φ is finite if and only if Z0 is integrable.

The function Z0 of (2) is often denoted by [dφ
dμ ] (or, more commonly by dφ

dμ ), so that we
also have the following very suggestive notation:

φ(A) =
∫

A

[
dφ

dμ

]

dμ for all A ∈ A.

We call Z0 the Radon–Nikodym derivative (or the density) of φ with respect to μ.

Proof. The Lebesgue decomposition theorem shows that such a Z0 necessarily exists. The
sufficiency is just the trivial example 4.1.1. The “moreover” part is also a trivial result.

Theorem 2.2 (Change of variable theorem) Let μ � ν where μ and ν are σ-finite
measures on (Ω,A). If

∫
X dμ has a well-defined value in [−∞,∞], then

(3)
∫

A

X dμ =
∫

A

X

[
dμ

dν

]

dν for all A ∈ A,

One useful special case results from

(4)
∫ b

a

f dG =
∫ b

a

fg dH, with G ≡
∫

a

g dH for a generalized df H,

where g ≥ 0 on (a, b] is measurable, and where we agree that
∫ b

a
≡ ∫

(a,b]
.

Proof. Case 1. X = 1B , for B ∈ A: Then the Radon–Nikodym theorem gives

(a)
∫

A
1B dμ = μ(AB) =

∫
AB

[
dμ

dν
] dν =

∫
A

1B [
dμ

dν
] dν.

Case 2. X =
∑n

1 ci1Bi
, for a partition Bi: Case 1 and linearity of the integral give

(b)
∫

A
X dμ =

∑n
i=1 ci

∫
A

1Bi
dμ =

∑n
1 ci

∫
A

1Bi
[
dμ

dν
] dν =

∫
A

X[
dμ

dν
] dν.

Case 3. X ≥ 0: Let Xn ≥ 0 be simple functions that ↗ to X. Then the MCT twice gives

(c)
∫

A
X dμ = lim

∫
A

Xn dμ = lim
∫

A
Xn[

dμ

dν
] dν =

∫
A

X[
dμ

dν
] dν.
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Case 4. X measurable and at least one of X+,X− in L1: Then

∫
A

X dμ =
∫

A
X+ dμ − ∫

A
X− dμ

(d) =
∫

A
X+[dμ

dν ] dν − ∫
A

X−[dμ
dν ] dν =

∫
A

X[dμ
dν ] dν,

so long as one of
∫

A
X+ dμ and

∫
A

X− dμ is finite. �

Exercise 2.1 (Derivative of a sum, and a chain rule) Let μ and ν be σ-finite measures on
(Ω,A). Let φ and ψ be σ-finite signed measures on (Ω,A). Then

(5)
[
d(φ + ψ)

dμ

]

=
[
dφ

dμ

]

+
[
dψ

dμ

]

a.e. μ if φ � μ and ψ � μ,

(6)
[
dφ

dν

]

=
[
dφ

dμ

]

·
[
dμ

dν

]

a.e. ν if φ � μ and μ � ν.

Show that [dμ
dν ] = 1/[ dν

dμ ] holds a.e. μ and a.e. ν if μ � ν and ν � μ.

Note that theorem 3.2.6 (of the unconscious statistician) is another change of variable
theorem. That is, if X : (Ω,A) → (Ω̄, Ā) and g : (Ω̄, Ā) → (R̄, B̄), then

(7)
∫

(g◦X)−1(B)

g(X)d μ =
∫

g−1(B)

g dμX =
∫

B

y dμg(X)(y) for all B ∈ B,

when one of the these integrals is well-defined. (See also exercise 6.3.3 below.)

Exercise 2.2 Let Pμ,σ2 denote the N(μ, σ2) distribution. Let P have the density f ≡
[dP/dλ] with respect to Lebesgue measure λ for which f > 0.

(a) Show that λ � P with density 1/f.
(b) Show that Pμ,1 � P0,1 and compute [dPμ,1/dP0,1].
(c) Show that P0,σ2 � P0,1 and compute [dP0,σ2/dP0,1].
(d) Compute [dP/dP0,1] and [dP0,1/dP ] when P denotes the Cauchy distribution.

Exercise 2.3 Flip a coin. If heads results, let X be a Uniform(0, 1) outcome; but if tails
results, let X be a Poisson (λ) outcome. The resulting distribution on R is labeled φ.
(a) Let μ denote Lebesgue measure on R. Find the Lebesgue decomposition of φ with respect
to this μ; that is, write φ = φac + φs.
(b) Let μ be counting measure on {0, 1, 2, . . .}. Find the Lebesgue decomposition of φ with
respect to this μ.
(If need be, see the definitions of various distributions in chapter 9.)

Exercise 2.4 Let μ be a σ-finite measure on (Ω,A). Define φ(A) ≡ ∫
A

X dμ for all A ∈ A
for some μ-integrable function X. Show that

|φ|(A) =
∫

A
|X| dμ for all A ∈ A.
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Exercise 2.5 (Alternative definition of absolute continuity) Let φ be finite and let μ be
σ-finite, for measures on (Ω,A). Then φ � μ if and only if for every ε > 0 there exists δε > 0
such that μ(A) < δε implies |φ|(A) < ε. Show that if φ is not finite, then the claim could fail
(even if μ is a finite measure); give an example.

Exercise 2.6 (Domination) If μ1, μ2, . . . are finite measures on some (Ω,A), then there
exists a finite measure μ on (Ω,A) such that μk � μ for each k ≥ 1.

Exercise 2.7 (Halmos) Suppose μ1, μ2, . . . and ν1, ν2, . . . are finite measures on some (Ω,A)
for which μk � νk for each k ≥ 1. Suppose also that

μ(A) = lim
n→∞

∑n
k=1 μk(A) and ν(A) = lim

n→∞
∑n

k=1 νk(A)

for all A ∈ A. Show that the following hold a.e. ν:

(8)
[d(

∑n
k=1 νk)/dν] ↗ 1 and [d(

∑n
k=1 μk)/dν] ↗ [dμ/dν], and

[d
∑n

k=1 μk/d
∑n

k=1 νk] → [dμ/dνk].

These can be thought of as theorems about Radon–Nikodym derivatives, about absolute
continuity of measures, or about change of variables.

Exercise 2.8 Let A denote the collection of all subsets A of an uncountable set Ω for which
either A or Ac is countable. Let μ(A) denote the cardinality of A. Define φ(A) to equal 0
or ∞ according as A is countable or uncountable. Show that φ � μ. Then show that the
Radon–Nikodym theorem fails in this non σ-finite case.

Exercise 2.9 For a σ-finite measure μ and a finite measure ν on (Ω,A), let

φ(A) ≡ μ(A) − ν(A) for all A ∈ A.

(a) Show that φ is a signed measure. (b) Show that

φ(A) =
∫

A
(f − g) d(μ + ν),

for measurable functions f and g with g ∈ L+
1 (μ + ν). (Note example 4.1.1.)

(c) Determine φ+, φ−, and |φ|; and determine |φ|(Ω) in case μ is also a finite measure.

Exercise 2.10 (Total variation distance between probability measures) Define P and Q to
be probability measures on (Ω,A).
(a) Show that the total variation distance dTV (P,Q) between P and Q satisfies

(9) dTV (P,Q) ≡ {supA∈A |P (A) − Q(A)|} =
1
2

∫ |p − q| dμ

for any σ-finite measure μ dominating both P and Q (that is, P � μ and Q � μ).
(b) Use part (a) to show that dTV (P,Q) = |P − Q|(Ω)/2.
(c) Note specifically that the choice of dominating measure μ does not affect the value of
dTV (P,Q). (Note section 14.2 below.)
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Exercise 2.11 (Hellinger distance between probability measures) Let P and Q denote prob-
ability measures on (Ω,A). Define the Hellinger distance H(P,Q) by

(10) H2(P,Q) ≡ 1
2

∫
[
√

p − √
q]2 dμ

for any measure μ dominating both P and Q. Show that the choice of dominating measure
μ does not affect the value of H(P,Q). (Note section 14.2 below.)

Exercise 2.12 Let φ be a σ-finite signed measure. Define

(11)
∫

Xdφ =
∫

Xdφ+ − ∫
Xdφ−

when this is finite. Show that | ∫ Xdφ| ≤ ∫ |X|d|φ| .

Exercise 2.13 Let (Ω,A) be a measurable space, and let M denote the collection of all
finite signed measures μ on (Ω,A). Let ‖μ‖ ≡ |μ|(Ω). Thus ‖μ1 − μ2‖ = |μ1 − μ2|(Ω). Show
that (M, ‖· is a complete metric space.

Exercise 2.14 *(Loève) Suppose X1,X2, . . . are integrable on (Ω,A, μ). Define φn(A) ≡∫
A

Xn dμ for all A ∈ A, and suppose φn(A) converges to a finite number for all A ∈ A. Define
|φ|n(A) ≡ ∫

A
|Xn| dμ. Then supn |φ|n(Ω) < ∞. Moreover,

(12) supn|φ|n(A) → 0 as either μ(A) → 0 or A ↘ ∅.

Finally, there exists an integrable function X (that is unique a.e. μ) for which

(13) φn(A) → φ(A) ≡ ∫
A

X dμ for all A ∈ A.

Exercise 2.15 (Likelihood ratios) Let P and Q denote any two measures on some σ-finite
measure space (Ω,A, μ). Suppose that P << μ and Q << μ. Show that

(14)
[dP/dμ]
[dQ/dμ]

=
[dP/d(P + Q)]
[dQ/d(P + Q)

except on a μ-null set (which is also a (P + Q)-null set). This means that the “likelihood
ratio” on the right hand side of (14) (that appears in various statistical settings) can always
be replaced by the one on the left hand side. (In a statistical situation where P and Q
are probability measures, the right hand side is always defined—even if, say, P is absolutely
continuous and Q is discrete.)
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3 Lebesgue’s Theorem

Theorem 3.1 (Lebesgue) (a) Suppose F is any ↗ function on [a, b]. Then F has an
integrable derivative F ′ that exists and is finite a.e. λ on [a, b].

(b) If F is ↗ on R, then F ′ exists a.e. λ on R and is integrable on any finite [a, b].

Proof. ∗Consider the Dini derivates

D+F (x) ≡ lim suph→0+[F (x + h) − F (x)]/h,

D−F (x) ≡ lim suph→0+[F (x) − F (x − h)]/h,

D+F (x) ≡ lim infh→0+[F (x + h) − F (x)]/h,

D−F (x) ≡ lim infh→0+[F (x) − F (x − h)]/h.

Trivially, D+F (x) ≥ D+F (x) and D−F (x) ≥ D−F (x). All four derivates having the same
finite value is (of course) the definition of F being differentiable at x, with the common value
called the derivative of F at x and being denoted by F ′(x). Let

A ≡ {x : D+F (x) > D−F (x)}

(a) ≡
⋃

r,s

Ars ≡
⋃

r,s

{x : D+F (x) > s > r > D−F (x)},

where the union is over all rational r and s. To show that λ(A) = 0, it suffices to show that
all Ars have outer Lebesgue measure zero, in that λ∗(Ars) = 0. To this end, let U be an open
set for which Ars ⊂ U with λ(U) < λ∗(Ars) + ε. For each x ∈ Ars we can specify infinitely
many and arbitrarily small h for which [x − h, x] ⊂ U and [F (x) − F (x − h)]/h < r. This
collection of closed intervals covers Ars in the sense of Vitali (see exercise 1.2.8). Thus some
finite disjoint collection of them has interiors I1 ≡ (x1 − h1, x1), . . . , Im ≡ (xm − hm, xm) for
which Brs ≡ Ars ∩ (

∑m
i=1 Ii) has λ∗(Brs) > λ∗(Ars) − ε. Then

(b)
∑m

i=1[F (xi) − F (xi − hi)] < r
∑m

i=1 hi ≤ rλ(U) < r[λ∗(Ars) + ε].

For each y ∈ Brs we can specify infinitely many and arbitrarily small h for which [y, y + h] ⊂
(some Ii) and [F (y +h)−F (y)]/h > s. This collection covers Brs in the sense of Vitali. Thus
some finite disjoint collection of them has interiors J1 ≡ (y1, y1 + h1), . . . , Jn ≡ (yn, yn + hn)
for which Crs ≡ Brs ∩ (

∑n
j=1 Jj) has λ∗(Crs) > λ∗(Brs) − ε. Then

(c)
∑n

j=1[F (yj + hj) − F (yj)] > s
∑n

j=1 hj ≥ s[λ∗(Brs) − ε] > s[λ∗(Ars) − 2ε].

Moreover, since the disjoint union of the Jj ’s is a subset of the disjoint union of the Ii’s,
results (b) and (c) yield

r[λ∗(Ars) + ε] >
∑m

i=1[F (xi) − F (xi − hi)]
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(d) ≥ ∑n
j=1[F (yj + hj) − F (yj)] > s[λ∗(Ars) − 2ε]

for every ε > 0. That is, rλ∗(Ars) ≥ sλ∗(Ars). But r < s. Thus λ∗(Ars) = 0 for all
rational r and s. Thus λ∗(A) = 0. Analogously, λ({x : D−F (x) > D+F (x)}) = 0. So
D−F (x) ≥ D−F (x) ≥ D+F (x) ≥ D+F (x) ≥ D−F (x) a.e. λ. Thus F ′ exists a.e. λ.

Important: Read this paragraph. The measurable function difference quotients

(e) DnF (x) ≡ n[F ((x + 1/n) ∧ b) − F (x)]

on [a, b] converge a.e. λ to F ′(x) on [a, b], so that F ′(x) is measurable. Applying Fatou’s
lemma to the DnF (which are ≥ 0, since F is ↗) gives

(f)
∫ b

a
F ′(x)dλ(x) =

∫ b

a
[lim DnF (x)]dλ(x) ≤ lim

∫ b

a
DnF (x)dλ(x)

(g) = lim
∫ b

a
n[F ((x + 1/n) ∧ b) − F (x)]dλ(x)

(h) = lim [
∫ b+1/n

b
nF (b)dλ(x) − ∫ a+1/n

a
nF (x)dλ(x)]

(i) ≤ lim{F (b) − F (a + 1/n)} ≤ F (b) − F+(a) ≤ F (b) − F (a), as is F ↗ .

Thus F ′ is integrable, and hence F ′ is also finite a.e. λ. (We now present this last fact as a
corollary, since situations with strict inequality are very revealing.) �

Corollary 1 (a) Suppose F is an ↗ function on [a, b], with −∞ ≤ a ≤ b ≤ ∞. Then F ′

exists a.e. λ and

(1)
∫ b

a
F ′(x)dλ(x) ≤ F (b) − F (a).

So, F is differentiable a.e. λ, and its derivative F ′ is finite a.e. λ and satisfies (1).
(b) If F is any df on R, then F ′ exists a.s. λ on R. So let a and b become infinite in (1) to
obtain

∫ ∞
∞ F ′(x)dλ(x) ≤ F (∞) − F (−∞) = 1 − 0 = 1.

The Lebesgue singular df in example 6.1.1 below will show that equality need not hold
in equation (1); this continuous df is constant valued on a collection of disjoint intervals of
total length 1. (An example in Hewitt and Stromberg (1965, p. 278) shows that F ′(x) = 0
is possible for a.e. x, even with a ↑ F .) Equality also fails for any discrete distribution that
places any mass in (a, b]. This is the point of the following exercise.

Exercise 3.1 (Distributions can be discrete, singular, or absolutely continuous)
(a) Let FD denote the discrete distribution on [0, 1] that puts mass 1/(n + 1) at each of the
n + 1 points i/n for 0 ≤ i ≤ n. Graph FD, and calculate F ′

D from your graph. Then show
that

∫ 1

0
F ′

D(x)dλ(x) = 0.

(b) Let FC denote the Lebesgue Singular df associated with the Cantor set; see example 6.1.1
below. What is the value of F ′

C at all points interior to the “flat spots”? Now show that
∫ 1

0
F ′

C(x)dλ(x) = 0.

(c) Show that
∫ ∞

−∞ F ′(x)dλ(x) = 1 for the Uniform (0, 1) df—which has a density.



3. LEBESGUE’S THEOREM 79

Theorem 3.2 o(Term-by-term differentiation of series) Let gk be ↗ on [a, b] for each k ≥ 1,
and suppose that Sn(x) ≡ ∑n

k=1 gk(x) converges at x = a and x = b. Then Sn(x) → S(x) for
all x in [a, b], for some finite-valued measurable function S(x). Mainly, S′(·) exists a.s. λ and
is given by

(2) S′(x) =
∞∑

k=1

g′
k(x).

Corollary 1 If the power series S(x) ≡ ∑∞
n=1 an(x−a)n converges absolutely for x = a+R,

then for all |x − a| < R we may differentiate S(x) term by term. Moreover, this is true for
any number of derivatives of S.

Proof. Note that Sn(a) is a convergent sum. Now write

Sn(x) = Sn(a) + [Sn(x) − Sn(a)] = Sn(a) +
∑n

k=1[gk(x) − gk(a)].

Since ↗ sequences bounded above converge, the convergence at x = a and x = b gives
convergence at all x in the interval. We may replace gk(x) − gk(a) by gk(x) and then assume
all gk ≥ 0 on [a, b] with gk(a) = 0. Since S and all Sn are ↗, the derivatives S′ and all S′

n

exist a.e. λ by theorem 3.1 (of Lebesgue). Now,

(a) S′
n(x) ≤ S′

n+1(x) ≤ S′(x) a.e. λ;

both essentially follow from

(b)
S(x + h) − S(x)

h
=

Sn(x + h) − Sn(x)
h

+
∞∑

n+1

gk(x + h) − gk(x)
h

≥ Sn(x + h) − Sn(x)
h

.

From (a) we see (without having made use of gk(a) = 0) that

(c) S′
n(·) converges a.e. λ with lim S′

n ≤ S′ a.e. λ.

Because S′
n ↗, it suffices to show that S′

ni
→a.e. S′ for some subsequence ni. Since Sn(b) ↗

S(b), we may specify ni so large that 0 ≤ S(b) − Sni
(b) < 2−i, and then

(d) 0 ≤ S(x) − Sni
(x) =

∑∞
ni+1 gk(x) ≤ ∑∞

ni+1 gk(b) = S(b) − Sni
(b) < 2−i,

for all x ∈ [a, b]. Thus

(e) 0 ≤ ∑∞
i=1[S(x) − Sni

(x)] ≤ ∑∞
i=1 2−i = 1 for all x ∈ [a, b],

where the series in (e) has summands

(f) hi(x) ≡ S(x) − Sni
(x) that are ↗ in x.

Thus conclusion (c) also applies to these hi’s (not just the gk’s), and we conclude from (c)
that the series

(g) T ′
n ≡

∑n

i=1
h′

i converges a.e. λ.
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But a series of real numbers can converge only if its nth term goes to 0; that is,

(h) S′(x) − S′
ni

(x) = h′
i(x) → 0 a.e. λ.

As noted above, this suffices for the theorem. �

Exercise 3.2 Prove the corollary.

Example 3.1 (Taylor’s expansion) Suppose g(·) is defined in a neighborhood of a. Let x∗

denote a point somewhere between x and a. Let

P1(x) ≡ g(a) + g′(a)(x − a),(3)

P2(x) ≡ P1(x) + g′′(a)(x − a)2/2!,(4)

P3(x) ≡ P2(x) + g′′′(a)(x − a)3/3!, . . . ,(5)
R1(x) ≡ [g(x) − g(a)]/(x − a) or g′(a), as x �= a or x = a,(6)

R2(x) ≡ 2![g(x) − P1(x)]/(x − a)2 or g′′(a), as x �= a or x = a,(7)

R3(x) ≡ 3![g(x) − P2(x)]/(x − a)3 or g′′′(a), as x �= a or x = a.(8)

Then l’Hospital’s rule gives (provided g′(a), g′′(a), g′′′(a), . . . exist, respectively)

lim
x→a

R1(x) = g′(a) = R1(a),(9)

lim
x→a

R2(x) = lim
x→a

g′(x) − P ′
1(x)

x − a
= lim

x→a

g′(x) − g′(a)
x − a

= g′′(a) = R2(a),(10)

lim
x→a

R3(x) = lim
x→a

2![g′(x) − P ′
2(x)]

(x − a)2
= lim

x→a

g′′(x) − P ′′
2 (x)

x − a

= lim
x→a

g′′(x) − g′′(a)
x − a

= g′′′(a) = R3(a).(11)

Thus we find it useful to use the representations (with g(k)(a) abbreviating that g(k)(·) exists
at a, and with g(k)(·) abbreviating that g(k)(x) exists for all x in a neighborhood of a)

g(x) =
{

P1(x) + [R1(x) − g′(a)](x − a) if g′(a),
P1(x) + [g′(x∗) − g′(a)](x − a) if g′(·),(12)

g(x) =

⎧
⎨

⎩

P2(x) + [R2(x) − g′′(a)](x − a)/2! if g′′(a),
P2(x) + [g′′(x∗) − g′′(a)](x − a)2/2!
= P1(x) + g′′(x∗)(x − a)2/2! if g′(·),

(13)

g(x) =

⎧
⎨

⎩

P3(x) + [R2(x) − g′′(a)](x − a)3/3! if g′′′(a),
P3(x) + [g′′′(x∗) − g′′′(a)](x − a)3/3!
= P2(x) + g′′′(x∗)(x − a)3/3! if g′(·).

(14)
�

Exercise 3.3 (a) Show that if g′′(x) exists, then

(15) g′′(x) = limh→0
1
h2

{g(x + h) − 2g(x) + g(x − h)}.

(b) An analogous result holds for any g(2k)(x).

Exercise 3.4* Prove the Vitali covering theorem. (See exercise 1.2.8.)
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Exercise 3.5 Let f(x) =
∑∞

0 akxk/
∑∞

1 bkxk in some interval. Suppose that all ak, bk > 0
and ak/bk ↑. Then f ′(x) > 0 for all x in that interval. (This result is useful in conjunction
with the monotone likelihood ratio principle.)
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4 The Fundamental Theorem of Calculus

Definition 4.1 (Bounded variation) Let F denote a real-valued function on [a, b]. The
total variation of F over [a, b] is defined by

V b
a F ≡ V[a,b]F

≡ sup
{

n∑

k=1

|F (xk) − F (xk−1)| : a ≡ x0 < x1 < · · · < xn ≡ b, n ≥ 1
}

.(1)

We say that F is of bounded variation (BV ) on [a, b] if V b
a F < ∞. (Note the V b

a F is a measure
of the “total amount of wiggle” of F over [a, b].)

It is clear that

(2) V b
a F = V c

a F + V b
c F for a ≤ c ≤ b and F of BV.

Definition 4.2 (Absolutely continuous functions) A real-valued function F on any
subinterval I of the line R is said to be absolutely continuous if for all ε > 0 there exists a
δε > 0 such that

(3)
n∑

k=1

|F (dk) − F (ck)| < ε whenever
n∑

k=1

(dk − ck) < δε

with n ≥ 1 and with disjoint subintervals (ck, dk] contained in I. (This implies that the
“wiggle” of F over a combined length must be small if F is not given much combined length
in which to wiggle.)

Definition 4.3 (Lipschitz condition) A real-valued function F on any subinterval I of R is
said to be Lipschitz if for some finite constant M we have

(4) |F (y) − F (x)| ≤ M |y − x| for all x and y in I.

We first establish some elementary relationships among the Lipschitz condition, absolute
continuity, bounded variation, and the familiar property of being ↗. These concepts have
proven to be important in the study of differentiation. We will soon proceed further in
this direction, and we will also consider the relationship between ordinary derivatives and
Radon–Nikodym derivatives. We first recall from theorem 1.3.1 (the correspondence theorem)
that every generalized df F can be associated with a Lebesgue-Stieltjes measure μF via
μF ((a, b]) ≡ F (b) − F (a).

Proposition 4.1 (The basics) Let λ denote Lebesgue measure.
(i) If F is of BV on [a, b], then

(5) F (x) = F1(x) − F2(x) with F1(x) ≡ V x
a F and F2(x) ≡ V x

a F − F (x)

both being ↗ on [a, b]. Also, F ′ = F ′
1 − F ′

2 a.e. λ, with F ′
1 and F ′

2 both integrable.
(ii) If F is absolutely continuous, then it is of BV. The F1 and F2 in (i) are both absolutely
continuous and ↗.
(iii) Lipschitz functions are absolutely continuous.

Proof. Consider (i). Now, F1(x) = V x
a F is obviously ↗; use (2). Then F2 is also ↗, since

for x ≤ y we have

F2(y) − F2(x) = [V y
a F − F (y)] − [V x

a F − F (x)]
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(a) = V y
x F − [F (y) − F (x)] ≥ 0.

Since F1 and F2 are ↗, their derivatives F ′
1 and F ′

2 exist a.e. λ and are integrable by theorem
4.3.1 (Lebesgue’s theorem).

Consider (ii). Let F (·) be absolutely continuous. We will first show that such an F is of BV.
Let ε = 1 with its δ1, and choose n so large that the equally spaced values a ≡ x0 < x1 <
· · · < xn ≡ b have mesh ≡ (b − a)/n < δ1. Then (2) yields

(b) V b
a F =

∑n
k=1 V[xk−1,xk]F ≤ ∑n

k=1 1 = n;

and thus F is of BV. We must still show that F1 is absolutely continuous if F is. So we
suppose that F is absolutely continuous, and specify that

∑n
1 (dk − ck) < δε/2 for some choice

of n, ck’s, and dk’s. We now use these same n, ck, dk to verify that F1 is absolutely continuous.
Well, for each fixed k with 1 ≤ k ≤ n and the tiny number ε/(2n), the definition of the BV
of F gives

(c) F1(dk) − F1(ck) = V[ck,dk]F <
∑mk

j=1 |F (an,k,j) − F (an,k,j−1)| + (ε/2n)

for some choice of ck ≡ an,k,0 < · · · < an,k,mk
≡ dk. These add to give

∑n
k=1 |F1(dk) − F1(ck)| =

∑n
k=1 |V[a,dk]F − V[a,ck]F | =

∑n
k=1 V[ck,dk]F

(d) ≤ ∑n
k=1(

∑mk

j=1 |F (an,k,j) − F (an,k,j−1)| + (ε/2n))

(e) ≤ (ε/2) + (ε/2) = ε

by absolute continuity of F , since it follows from above that

(f)
∑n

k=1

∑mk

j=1(an,k,j − an,k,j−1) =
∑n

k=1(dk − ck) < δε/2.

Consider (iii). Being Lipschitz implies absolute continuity with δε = ε/M. �

Exercise 4.1 (Jordan–Hahn type analog of proposition 4.1i) For F of BV on [a, b], let
F+(x) ≡ V x

a F+ and F−(x) ≡ V x
a F−, where

V x
a F± ≡ sup{∑n

k=1[F (xk) − F (xk−1)]± : a ≡ x0 < · · · < xn ≡ x, n ≥ 1}.

Verify that F − F (a) = F+ − F− with F+ and F− both ↗ (an alternative to (5)). (Note
how the F1 of proposition 4.1i corresponds to the total variation measure.)
Example: Let F (x) equal x, 2 − x, x − 4 on [0, 1], [1, 3], [3, 4]. Determine the decomposition
of (5) for this F , as well as the decomposition of this exercise.
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Exercise 4.2 Let f be continuous on [a, b], and define F (x) =
∫ x

a
f(y) dy for each a ≤ x ≤

b. Then F is differentiable at each x ∈ (a, b) and F ′ = f on (a, b). (Since f is continuous,
we need only the Riemann integral. Can we extend this to the Lebesgue integral? Can we
reverse the order, and first differentiate and then integrate? The next theorem answers these
important questions.)

Theorem 4.1 (Fundamental theorem of calculus) (i) Let F be absolutely continuous
on [a, b], and let λ denote Lebesgue measure. Then F ′ exists a.e. λ and

(6) F (x) − F (a) =
∫ x

a

F ′dλ for all x ∈ [a, b]; also, F ′ =
[
dμF

dλ

]

a.e. λ.

(ii) If F (x) − F (a) =
∫ x

a
f dλ for some f that is integrable with respect to λ on [a, b], then F

is absolutely continuous on [a, b]. Moreover, f = F ′ = [dμF

dλ ] a.e. λ.

Remark 4.1 (a) The fundamental theorem of calculus can be summarized by saying that
F is absolutely continuous if and only if it is the integral of its derivative. The ordinary
derivative F ′ is, in fact, also a Radon–Nikodym derivative of the signed measure μF naturally
associated with F ; see the proof of theorem 4.2 below.
(b) If F is ↗ on [a, b], then the derivative F ′ exists a.e. λ on [a, b] and is integrable with
respect to Lebesgue measure λ and

∫ b

a
F ′(x)dλ(x) ≤ F (b) − F (a); see (4.3.1). The Lebesgue

singular df F of (6.1.9) below yields a strict inequality, as does any discrete dstribution on
(a, b]; recall exercise 4.3.2.
(c) The Lipschitz condition represents “niceness with a vengeance,” as it guarantees that all
difference quotients are uniformly bounded. �

Proof. Consider the converse. If F (x) ≡ F (a) +
∫ x

a
f(y) dy for a ≤ x ≤ b, then F

is absolutely continuous by the absolute continuity of the integral theorem. Then F is of
bounded variation on [a, b] and F ′ exists a.e. λ in [a, b], by proposition 4.1(ii). Moreover, F ′

is integrable, using (4.3.1). But does F ′ = f a.e. λ?

Case 1: Suppose |f | is bounded by some finite M on [a, b]. We could consider f+ and
f− separately, but we will simply assume without loss of generality that f ≥ 0. Then the
difference quotient DnF (x) ≡ n

∫ x+1/n

x
f(y) dy of F also satisfies |DnF | ≤ M on (a, b), and

DnF (x) → F ′(x) a.e. Applying the DCT (with dominating function identically equal to M)
once for each fixed x ∈ (a, b) gives

∫ x

a
F ′(y) dy =

∫ x

a
lim DnF (y) dy = lim

∫ x

a
n[F (y + 1/n) − F (y)]dy

= lim[n
∫ x+1/n

x
F (y) dy − n

∫ a+1/n

a
F (y) dy]

= F (x) − F (a) by continuity of F

(a) =
∫ x

a
f(y) dy.

Thus F ′(y) = f(y) a.e. on [a, b], by the a.e. uniqueness of the Radon–Nikodym derivative
(which is ultimately exercise 3.2.2).
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Case 2: Suppose f is integrable. Again, f ≥ 0 may be assumed. Let fn(·) ≡ n ∧ f(·), with
f − fn ≥ 0. Now,

∫ x

a
fn has derivative fn a.e. on [a, b], by case 1. Thus

(b) F ′(x) =
d

dx

∫ x

a
f(y) dy = d

dx

∫ x

a
fn(y) dy + d

dx

∫ x

a
[f(y) − fn(y)]dy ≥ fn(x) + 0

a.e. λ on [a, b] (for each n ≥ 1). Hence F ′(x) ≥ f(x) a.e. on [a, b]. Thus

(c)
∫ b

a
F ′(x) dx ≥ ∫ b

a
f(x) dx = F (b) − F (a), which is ≥ ∫ b

a
F ′(x) dx

by (4.3.1). The two inequalities in (c) combine to give

(d)
∫ b

a
[F ′(x) − f(x)] dx = 0 with F ′(x) − f(x) ≥ 0 a.e.,

so that F ′ = f a.e. on [a, b] by exercise 3.2.1.
Consider the direct half when F is absolutely continuous on [a, b]. Without loss, suppose

that F is ↗ (by proposition 4.1(ii)), so that F ′ exists a.e. on [a, b] (see theorem 4.3.1) and
that F ′ is integrable (see (4.3.1)). Use

(e) μF ((a, x]) ≡ F (x) − F (a) for all x ∈ [a, b]

and the correspondence theorem to associate a Lebesgue–Stieltjes measure μF with F (which
is a generalized df). We will show that μF << λ in theorem 4.2 below. Then the Radon–
Nikodym will give

(f) F (x) − F (a) =
∫ x

a
fdλ for all x ∈ [a, b], with f ≡ [dμF /dλ].

Now apply the converse half of the fundamental theorem of calculus to conclude that F ′ =
f ≡ [dμF /dλ] a.e. on [a, b]. �

Theorem 4.2 (Densities) (i) Let F be ↗ and absolutely continuous on some subinterval
[a, b] of R. Then the Lebesgue-Stieltjes measure μF (as in (e) above) satisfies both μF � λ
(name its Radon–Nikodym derivative [dμF /dλ]), and also

(7) F (x) − F (a) =
∫ x

a
fdλ for all x ∈ [a, b], with f ≡ [dμF /dλ] =a.e. F ′.

(ii) Mainly, let F be absolutely continuous on every finite subinterval of I (with I any fixed
interval in R), and fix a anywhere in I. Then (7) holds for all x in I.

Proof. (i) Let μ ≡ μF and fix the finite interval [a, b]. Given ε > 0, let δε > 0 be as in
the definition (3) of absolute continuity. Let A ∈ B be a subset of [a, b] having λ(A) < δε/2.
Recalling our definition (1.2.1) of λ via Carathéodory coverings, we can claim that Lebesgue
measure satisfies

(a) λ(A) = inf{∑∞
n=1 λ(Bn) : A ⊂ ∑∞

n=1 Bn for Bn’s in the field CF }.

We replaced the An’s of (1.2.1) by the disjoint sets Bn ≡ AnAc
n−1 · · · Ac

2A
c
1. Note that each

Bn is in CF , and thus equals a finite union of intervals of the type (c, d], while Bn+1 then
adds at most a finite number of additional such intervals. Thus

(b) A ⊂ ∑∞
1 (cn, dn], where

∑∞
1 (dn − cn) < λ(A) + δε/2 < δε
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Thus (using absolutely continity of F to obtain the first ε in (d))

(c) μF (A) ≤ μF (
∑∞

1 (cn, dn]) =
∑∞

1 μF ((cn, dn]) =
∑∞

1 [F (dn) − F (cn)]

(d) = lim
m

∑m
1 [F (dn) − F (cn)] ≤ lim

m
ε = ε,

since
∑m

1 (dn − cn) < δε. Thus μF (A) < ε when λ(A) < δε/2, so that μF (A) = 0 whenever
λ(A) = 0. Now apply Radon–Nikodym to obtain the f exhibited in (7).
(ii) Now, let F be ↗ and absolutely continuous on all finite subintervals of I, and fix any a in
the interval I. Applying (7) to finite intervals In ≡ [an, bn] ↗ I, the MCT gives μF (A) = 0
whenever λ(A) = 0, for any A ∈ B ∩ I. Thus μF � λ. �

Exercise 4.3 (Absolutely continuous dfs) Let F be ↗, right continuous and bounded on
R, with F (−∞) = 0. Define μF via μF ((a, b]) = F (b)−F (a) for all a < b. Show that μF � λ
if and only if F is an absolutely continuous function on R.

Exercise 4.4 (a) Show that the composition g(h) of two absolutely continuous functions
is absolutely continuous when h is monotone.
(b) Show that g(h) need not be absolutely continuous without restrictions on h.
(c) Define a continuous function on [0, 1] that is not absolutely continuous.
(d) The functions g + h and g · h are absolutely continuous when both f and g are.

Exercise 4.5* Suppose that h : [a, b] → (0,∞) is absolutely continuous on [a, b]. Show that
log h is also absolutely continuous on [a, b].

Exercise 4.6* (Another characterization of absolute continuity)
(a) F is Lipschitz on [a, b] iff F is differentiable a.e. λ on [a, b] with F ′ bounded.
(b) Absolutely continuous functions on R map B into B and null sets into null sets.
(c) A continuous function of BV is absolutely continuous iff it maps B into B.

Example 4.1 (Change of variable; densities of transformed rvs) Let X be a rv on
(Ω,A, P ) with df FX � λ ≡ (Lebesgue measure) and density fX . Let

(8) Y ≡ g(X) where g−1 is ↑ and absolutely continuous.

Then

FY (y) ≡ P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g−1(y)),

where the composition FY = FX(g−1) of these absolutely continuous functions is absolutely
continuous (by exercise 4.4a). So the fundamental theorem of calculus tells us that FY is the
integral of its derivative. We can then compute this derivative from the ordinary chain rule.
Thus

FY (b) − FY (a) =
∫ b

a

F ′
Y (r)dλ(r) =

∫ b

a

[F ′
X(g−1(r))

d

dr
g−1(r)]dλ(r)

for all a ≤ b. Thus FY � λ with density

fY (y) = fX(g−1(y))
d

dy
g−1(y)(9)

on the real line. Call (d/dy)g−1(y) the Jacobian of the transformation. �
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Exercise 4.7 Let ≡ log 1/X where the rv X is distributed uniformly on [0, 1], with df FX(x)
equal to 0, x, 1 according as x is in (−∞, x], (0, 1], (1,∞). We say that X has the Uniform(0, 1)
distribution. Determine the df and density of Y ≡ log 1/X. It is called the Exponential(1)
distribution.

Exercise 4.8 Use your exposure to a more elementary version of probability to come up
with three more examples of elementary change of variable results of the type presented in
the previous exercise.

Exercise 4.9 (Specific step functions that are dense in L2) Let h ∈ L2([0, 1],B, λ). Consider
the following two approximations to h(·). Let

h̄m(t) ≡ m
∫ i/m

(i−1)/m
h(s)ds and ȟm(t) ≡ h(i/(m + 1))

for (i − 1)/m < t ≤ i/m and m ≥ 1. Show that:

(10) h̄m → h a.s. and L2.

(11) ȟm → h a.s. and L2 provided that h is ↗ .

(Hint. Show that 0 ≤ ∫ 1

0
(h̄m − h)2dt =

∫ 1

0
(h2 − h̄2

m)dt, and then

h̄m(t) = m(i/m − t){∫ i/m

t
h ds/(i/m − t)}

+ m(t − (i − 1)/m){∫ t

(i−1)/m
h ds/(t − (i − 1)/m)} → h(t) a.s.

Alternatively, use the fact that the continuous functions are dense in L2.)



Chapter 5

Measures and Processes on
Products

1 Finite-Dimensional Product Measures

Definition 1.1 (Product spaces) Let (Ω,A) and (Ω′,A′) be measurable spaces. Define

(1) A × A′ ≡ σ[F ] where F ≡
{

m∑
i=1

(Ai × A′
i) : m ≥ 1, Ai ∈ A and A′

i ∈ A′
}

,

(2) F0 ≡ {A × A′ : A ∈ A andA′ ∈ A′}.

Here A × A′ ≡ {(ω, ω′) : ω ∈ A, ω′ ∈ A′}, which is called a measurable rectangle. The σ-field
A × A′ ≡ σ[F ] is called the product σ-field. (Ω × Ω′,A × A′) is called the product measurable
space. The sets A × Ω′ and Ω × A′ are called cylinder sets.

Proposition 1.1 F is a field.
See figure 1.1, and write the displayed union as a union of sets disjoint in F0. Perhaps, start
with decomposing Ω into the 22 disjoint sets B1 ∩ · · · ∩ B4, where each Bi equals Ai or Ac

i

(and with 22 analogous B′
1 ∩ · · · ∩ B′

4). Then sum disjoint subsets from the 24 possible cross
products.

A1

A1
A2

A2

Figure 1.1 The field F .

Theorem 1.1 (Existence of the product measure) Let (Ω,A, μ) and (Ω′,A′, ν) be σ-finite
measure spaces. Define φ on the field F via

(3) φ

(
m∑

i=1

(Ai × A′
i)

)
=

m∑
i=1

μ(Ai) × ν(A′
i) for disjoint sets Ai × A′

i.

c© Springer International Publishing AG 2017
G.R. Shorack, Probability for Statisticians, Springer Texts in Statistics,
DOI 10.1007/978-3-319-52207-4 5
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Then φ is a well-defined and σ-finite measure on the field F . Moreover, φ extends uniquely
to a σ-finite measure, called the product measure and also denoted by φ, on (Ω × Ω′,A × A′).
Even when completed, this measure is still unique and is still referred to as the product
measure φ.

Proof. (See the following exercise; it mimicks the proof of the correspondence theorem.
Here, F0 and F play the roles of all finite intervals I and the field CF . Although the proof
asked for in exercise 1.1 below is “obvious,” it still requires much tedious detail.) We will
give a better proof herein very soon. �

Exercise 1.1 Verify that φ is well-defined on F0, and that φ is countably additive on F0.
Then verify that φ is well-defined on F , and that φ is countably additive on F . Thus φ is a
σ-finite measure on F , so that the conclusion of theorem 1.1 follows from the Carathéodory
extension of theorem 1.2.1 and its corollary.

Exercise 1.2 ∗ Use induction to show that theorem 1.1 extends to n-fold products.

Example 1.1 (Lebesgue measure in n dimensions, etc.) (a) We define

(Rn,Bn) =
∏n

i=1
(R,B) and (R̄n, B̄n) ≡

∏n

i=1
(R̄, B̄)

to be the n-fold products of the real line R with the Borel sets B and of the extended real
line R̄ with the σ-field B̄ ≡ σ[B, {+∞}, {−∞}], respectively. Recall from example 2.1.1 that
Bn = σ[Un], where Un denotes all open subsets of Rn. We will refer to both Bn and B̄n as the
Borel sets.
(b) Let λ denote Lebesgue measure on (R,B), as usual. We extend λ to (R̄, B̄) by the
convention that λ({+∞}) = 0 and λ({−∞}) = 0. Then

(4) (Rn,Bn, λn) ≡
∏n

i=1
(R,B, λ) and (R̄n, B̄n, λn) ≡

∏n

i=1
(R̄, B̄, λ)

provides us with a definition of n-dimensional Lebesgue measure λn as the natural general-
ization of the concept of volume. It is clear that

(5) (Rm × Rn,Bm × Bn, λm × λn) = (Rm+n,Bm+n, λm+n),

and that this holds on the extended Euclidean spaces as well. (It is usual not to add the ∧

symbol in dealing with the completions of these particular measures.)
(c) Now, λ is just a particular Lebesgue–Stieltjes measure on (R,B). Any Lebesgue–Stieltjes
measure μF on (R,B) or (R̄, B̄) yields an obvious n-fold product on either (Rn,Bn) or
(R̄n, B̄n), which could appropriately be denoted by μF × · · · × μF . Further, we will let Fn

denote the field consisting of all finite disjoint unions of sets of the form I1 × · · · × In where
each Ik is of the form (a, b], (−∞, b] or (a,+∞) when considering (Rn,Bn) (or of the form
(a, b], [−∞, b], or (a,+∞] when considering (R̄n, B̄n)). (That is, in the case of (Rn,Bn) there
is the alternative field Fn that also generates the σ-field Bn; and this Fn is made up of simpler
sets than is the field B × · · · × B used in definition 1.1.)
(d) The Halmos approximation lemma now shows that if (μF × · · · × μF )(A) < ∞ and if
ε > 0 is given, then (μF × · · · × μF )(A�Cε) < ε for some Cε in (the simpler field) Fn. That
is, the simpler field gives us a nicer conclusion in this example, because its sets C are simpler.
(Or, use Aε in the field F of (1) in place of Cε.) �

Exercise 1.3 Any Lebesgue–Stieltjes measure μF1 × · · · × μFn
on (Rn,Bn), in example 1.1,

is a regular measure. Show this for n = 2 (appeal to theorem 1.3.1).



1. FINITE-DIMENSIONAL PRODUCT MEASURES 91

Definition 1.2 (Sections) (a) Let X denote a function on Ω × Ω′. For each ω in Ω, the
function Xω(·) on Ω′ defined by Xω(ω′) ≡ X(ω, ω′) for each ω′ in Ω′ is called an ω-section of
X(·, ·). An ω′-section Xω′(·) of X(·, ·) is defined analogously.
(b) Let C be a subset of Ω × Ω′. For each ω in Ω, the set Cω = {ω′ : (ω, ω′) is in C} is called
the ω-section of C. An ω′-section of C is defined analogously.

Theorem 1.2 (Product measure) Let (Ω,A, μ) and (Ω′,A′, ν) denote finite measure
spaces. Let C ∈ A × A′. Then:

Every Cω′ ∈ A and every Cω ∈ A′ whenever C ∈ A × A′,(6)

φ(C) ≡
∫

Ω′
μ(Cω′) dν(ω′) =

∫
Ω

ν(Cω) dμ(ω) for every C ∈ A × A′,(7)

and this φ is exactly the product measure φ = μ × ν of theorem 1.1.

Exercise 1.4 (An elementary illustation) Let C denote the set in 2-dimensional space R2

enclosed by the two curves y = x and y = x2 on [0, 1]. Draw a picture of C on an ordinary
(x, y)-axes system that represents R2.
(I)(a) First, use ordinary introductory calculus to evaluate the area of C.
(II) Answer the following in the context of the Product Measure Theorem.
(b) Evaluate (and describe—possibly, via a picture) the sections Cx and Cy—for the appro-
priate measures μ and ν. Then valuate ν(Cx) and μ(Cy).
(c) Use the results of (b) to evaluate the area of C in two different ways.

Proof. We first show (6). This result is trivial for any C in F0, or any C in F (and for
CC). Now let S denote the class of all sets C in A × A′ for which (6) is true. Then S is
trivially seen to be a σ-field, using

(a) (∪nCn)ω′ = ∪nCn,ω′ and (Cc)ω′ = (Cω′)c.

But since F ⊂ S, we have that A × A′ = σ[F ] equals S.

Consider (7). Note that if the sets Cn converge monotonically to some set C, then 1Cn

converges monotonically to 1C and

every section of 1Cn
converges monotonically

to the corresponding section of 1C .
(b)

Let M denote the collection of all sets C in A × A′ for which (7) holds. Clearly, M contains
F0 and F . We now use (b) to show that M is a monotone class; it will then follow by
proposition 1.1.6 that M = σ[F ] = A × A′. Let Cn denote a sequence of sets in the class M
that converge monotonically (we will consider only the ↗ case, since we only need to take
complements in the ↘ case), and we give the name C to the limiting set. Since 1Cn

↗ 1C ,
the function 1C is (A × A′)-measurable, and thus every section of 1C is measurable by (6).
Now, for fixed ω′ the number h(ω′) ≡ μ(Cω′) =

∫
Ω

1Cω′ (ω) dμ(ω) is (by the MCT and (b))
the ↗ limit of the sequence of numbers hn(ω′) ≡ μ(Cn,ω′) =

∫
Ω

1Cn,ω′ (ω) dμ(ω), for each ω′

in Ω′. Thus the function h on Ω′ is the limit of the functions hn on Ω′; and since Cn is in
M, the functions hn are A′-measurable by (7); thus h is A′-measurable by proposition 2.2.2.
Moreover, the fnite ↗ numbers φ(Cn) are bounded above by μ(Ω)ν(Ω′), and thus converge
to some number; call it φ(C). That is,
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(c) φ(C) ≡ lim
n

φ(Cn) = lim
n

∫
Ω′

{
∫

Ω

1Cn,ω′ (ω) dμ(ω)} dν(ω′) since Cn ∈ M

= lim
n

∫
Ω′

hndν =
∫

Ω′
{lim

n
hn} dν =

∫
Ω′

h dν by the MCT and hn ↗ h(d)

=
∫

Ω′
{
∫

Ω

1Cω′ (ω) dμ(ω)} dν(ω′) by the definition of h

(e) =
∫

Ω′
μ(Cω′) dν(ω′).

(Since φ(C) is finite, we see that h is ν-integrable. Thus h(ω′) is finite for a.e. [ν]ω′.) The
argument for each fixed ω is symmetric, and it gives the second equality in (7). Thus C is in
M, making M the monotone class A × A′; and (b) holds. (Thus the result (7) holds for the
set function φ. But is φ a measure?)

In this paragraph we will show that the product measure φ of theorem 1.1 exists, and
is defined by (e). To this end, let D1,D2, . . . be pairwise disjoint sets in A × A′, and let
Cn ≡ ∑n

1 Dk ↗ C ≡ ∑∞
1 Dk. Then linearity of both single integrals shows (in the second

equality) that

(f)
∑∞

1
φ(Dk) = lim

n

∑n

1
φ(Dk) = lim

n
φ(

∑n

1
Dk) = lim

n
φ(Cn)

(g) = φ(C) = φ(
∑∞

1
Dk), by (c) through (e)

so that φ is c.a., and a measure on A × A′. We have just verified that the product measure
of (3) exists on A × A′, and is given by (7). That is, we have just proven theorem 1.1
and given the representation (7) for φ(C). Note that the product measure φ also satisfies
φ(C) =

∫
Ω×Ω′ 1C(ω, ω′)dφ(ω, ω′). �

Exercise 1.5 Give the details to verify that
∑n

1 φ(Dk) = φ(
∑n

1 Dk) in line (f) of the proof
above of the product measure theorem.

Theorem 1.3 (Fubini) Let (Ω,A, μ) and (Ω′,A′, ν) be σ-finite measure spaces. Let φ =
μ × ν on (Ω × Ω′,A × A′). Suppose that X(ω, ω′) is φ-integrable (i.e., X−1(B̄) ⊂ A × A′ and∫
Ω×Ω′ X dφ is finite). Then:

All ω′-sections Xω′(·) of X are A-measurable functions on Ω.(8)
For a.e. [ν] fixed ω′, the function Xω′(·) = X(·, ω′) is μ-integrable.(9)

The function h(ω′) ≡
∫

Ω

Xω′(ω) dμ(ω) is a ν-integrable function of ω′.(10) ∫
Ω×Ω′

X(ω, ω′)dφ(ω, ω′) =
∫

Ω′
[
∫

Ω

X(ω, ω′) dμ(ω)] dν(ω′) =
∫

Ω′
h(ω′) dν(ω′).(11)

(Setting X equal to 1C in (11) for C ∈ A × A′ shows how the value φ(C) of the product
measure φ at C was defined as an iterated integral; recall (7).)

Corollary 1 (Tonelli) Let X be A × A′-measurable and suppose either

(12)
∫ [∫

|X| dμ

]
dν < ∞ or

∫ [∫
|X| dν

]
dμ < ∞ or X ≥ 0.
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Then the claims of Fubini’s theorem are true, including

(13)
∫

X dφ =
∫ [∫

X dμ

]
dν =

∫ [∫
X dν

]
dμ.

Corollary 2 (μ × ν null sets) A set C in A × A′ is (μ × ν)-null if and only if almost every
ω-section of C is a ν-null set. That is, for C ∈ A × A′ we have

(14) μ × ν(C) = 0 if and only if ν(Cω) = 0 for a.e. [μ] ω in Ω.

Proof. By using the σ-finiteness of the two measures to decompose both Ω and Ω′, we
may assume in this proof that both μ and ν are finite measures. We begin by discussing only
measurability questions.

We will first show that

(a) all ω′-sections of an (A × A′)-measurable function X are A-measurable.

The previous theorem shows that

all ω′-sections Xω′ of X are A-measurable
whenever X = 1C for some C ∈ A × A′.(b)

Now let X denote any (A × A′)-measurable function. Then for any B in B̄,

(c) X−1
ω (B) = {ω : X(ω, ω′) ∈ B} = {ω : (ω, ω′) ∈ X−1(B)}

is the ω′-section of the indicator function of the set C = X−1(B); so (b) shows that any
arbitrary ω′-section of this X is A-measurable, and so establishes (a) and (8).

We now turn to all the other claims of the Fubini and Tonelli theorems. By theorem 1.2
they hold for all (A × A′)-measurable indicator functions. Linearity of the various integrals
shows that the theorems also hold for all simple functions. Applying the MCT to the various
integrals shows that the theorems also hold for all (A × A′)-measurable X ≥ 0. Then linearity
of the integral shows that the theorems also hold for all X for whichever of the three integrals
exists finitely (the double integral or either iterated integral).

Corollary 2 follows immediately by applying (13) and exercise 3.2.2 (only the zero function)
to the integral of the function 1C . �

Corollary 3 All this extends naturally to n dimensions.

Example 1.2 (Summing infinite series) (i) (One-dimensional infinite series) We can
think of

(a)
∑∞

n=0
an as

∫
Ω

X dμ = E(X) on (Ω,A, μ),

where Ω ≡ {0, 1, 2, . . .}, A ≡ {all subsets of Ω} = 2Ω, μ denotes counting measure, and X(n) =
an. Well,

(b) E|X| =
∑∞

n=0
|an| =

∑∞
n=0

a+
n +

∑∞
n=0

a−
n =

∫
Ω

X+ dμ +
∫

Ω

X− dμ.
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Now let π denote any one-to-one transform that maps Ω onto Ω. Then an arbitrary rearrange-
ment of the sequence an can be written as aπ(n). Appealing to the definition in (3.1.2) for
the value of

∫
Ω

X+ dμ (which was given there as having the value sup{∫
Ω

Y dμ : 0 ≤ Y ≤ X+,
with Y a simple fuction}; and noting that 0 ≤ Y ≤ X+ if and only if 0 ≤ Yπ ≤ X+

π , where
Xπ(n) ≡ X(π(n))), we see that the values of

(c)
∑∞

n=0
a+

n =
∫

Ω

X+ dμ =
∫

Ω

X+
π dμ =

∑∞
n=0

a+
π(n) for any 1-1 transform π.

Thus the values of

(d)
∑∞

n=0
a+

π(n) =
∫

Ω

X+ dμ and
∑∞

n=0
a−

π(n) =
∫

Ω

X− dμ

have the same values for every π. Thus, for every π,∑∞
n=0 aπ(n) =

∫
Ω

Xπ dμ =
∫
Ω

X dμ =
∫
Ω

X+ dμ − ∫
Ω

X− dμ

=
∞∑

n=0
a+

n −
∞∑

n=0
a−

n =
∞∑

n=0
an.

(e)

That is, for every one-to-one transformation π of {0, 1, 2, . . .} onto {0, 1, 2, . . .},

(15)
∞∑

n=1

aπ(n) = (one fixed number) =
∞∑

n=0

an (provided
∞∑

n=0

|an| < ∞).

(ii) (Two-dimensional infinite series) Likewise, for any 1-1 transform π of Ω × Ω onto itself,
we have ∑ ∑

{all m,n} aπ(m,n)

=
∑∑

{all m,n} a+
π(m,n) −

∑∑
{all m,n} a−

π(m,n) = (one fixed number)

=
∑∞

m=0
[
∑∞

n=0
a+

m,n] −
∑∞

m=0
[
∑∞

n=0
a−

m,n]

=
∞∑

m=0

[ ∞∑
n=0

am,n

]
(provided

∞∑
m=0

[
∞∑

n=0

|am,n|] < ∞)(16)

=
∑∞

n=0
[
∑n

k=0
ak,n−k] +

∑∞
n=0

[
∑∞

k=n+1
ak,n](17)

(including (17) to have one specific useful alternative formulation exhibited). Note that the
conclusion (16) is also explicitly supplied by Tonelli.
(iii) This clearly extends to multi-dimensional arrays. �

Exercise 1.6 (Fubini’s (11) can fail if X is not φ-integrable) Let Ω = (0, 1) and Ω′ = (1,∞),
both equipped with the Borel sets and Lebesgue measure.
(i) Let f(x, y) = e−xy − 2e−2xy for all x ∈ Ω = (0, 1) and y ∈ Ω′ = (1,∞). Show that:

(a)
∫ 1

0

[
∫ ∞

1

f(x, y) dy]dx =
∫ 1

0

1
x

[e−x − e−2x] dx is > 0.

(b)
∫ ∞

1

[
∫ 1

0

f(x, y) dx] dy =
∫ ∞

1

1
y
[e−2y − e−y] dy is < 0.
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(ii) Why does Fubini’s theorem fail here? (Solve f(x, y) = 0, and use this to divide the domain
of f . Integrate over each of these two regions separately.)
(iii) Construct another example of this type.

Example 1.3 (Application to conditional expectation in probability and statistics) Con-
sider the measure space (R2,B2, λ2) = (R × R,B × B, λ × λ) in the product measure theorem
context; thus φ = λ2 is two-dimensional Lebesgue measure. Next, consider Fubini’s theorem,
replacing X(ω, ω′) in that result by

(18) g(x, y)fY |X=x(y)fX(x) for all (x, y) ∈ R2 = Ω

as in an elementary probability class. Continuing in the probabilistic context, think of fX(·)
as the marginal density of X, of fY |X=x(·) as the conditional density of Y given that X = x,
and of g(X,Y ) as a random function whose expectation you would like to evaluate. Tonelli
gives

Eg(X,Y ) =
∫

R2

g(x, y)fY |X=x(y)fX(x)dλ2(x, y)

=
∫

R

{
∫

R

g(x, y)fY |X=x(y)λ(y)}fX(x)dλ(x)

=
∫

R

{E(g(X,Y )|X = x)}fX(x)dλ(x) = E{E(g(X,Y )|X)}(19)

provided the iterated integral of |g(x, y)| is finite. This shows how an elementary conditional
model with dependent rvs can fit into the Lebesgue integral context. (To treat an elementary
version of discrete rvs, just replace two-dimensional Lebesgue measure λ2 by two-dimensional
counting measure on the set of pairs (m,n) with m,n ≥ 0.) Mainly, this example shows one
way that some dependent models can be treated in the context of the product measure theorem
using a “base measure” φ = μ × ν that seemingly can only be associated with independendent
rvs. (The Lebesgue integral allows us to treat absolutely continuous, discrete, and singular
distributions simultaneously via the expectation operation E{·}. This effect will be extended
to a general treatment of conditional expectation in chapter 7.) �
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2 Random Vectors on (Ω,A, P )

We will now treat measurable functions from a probability space (Ω,A, P ) to a Euclidean
space (Rn,Bn), with n ≥ 1. Let x ≡ (x1, . . . , xn)′ denote a generic vector in the Euclidean
space Rn.

Definition 2.1 (Random vectors) Suppose X ≡ (X1, . . . , Xn)′ is such that X : Ω → Rn

is Bn-A-measurable. Then X is called a random vector (which is also abbreviated rv). Define
the joint distribution function (or just df) of X by

F (x) ≡ FX1,...,Xn
(x1, . . . , xn) = P (

⋂n

i=1
[Xi ≤ xi]).

Write x ≤ y to denote that xi ≤ yi for all 1 ≤ i ≤ n; and now define the basic rectangles (x, y]
≡ ×n

i=1(xi, yi] whenever x ≤ y. Let

(1) F (x, y] ≡ P (
⋂n

i=1
[xi < Xi ≤ yi]) for all x ≤ y.

Proposition 2.1 (Measurability) Now, X ≡ (X1, . . . , Xn)′ : Ω → Rn or R̄n is such that

X is
{ Bn-A-measurable

B̄n-A-measurable if and only if each Xi is
{ B-A-measurable

B̄-A-measurable.

Thus, a random vector is measurable if and only if each coordinate rv is measurable.

Proof. We give the details for finite-valued functions. (⇒) Now,

[Xi ≤ xi] = X−1
i ((−∞, xi])

= X−1(R × · · · × R × (−∞, xi] × R × · · · × R) ∈ A.

(⇐) Also, [X ≤ x] =
⋂n

i=1[Xi ≤ xi] ∈ A, since each Xi is measurable, where

σ[Hn] ≡ σ[{all (−∞, x1] × · · · × (−∞, xn]}] = Bn.

Moreover, using (2.1.12) for the final equality,

F(Xn) ≡ X−1
n (Bn) = X−1

n (σ[Hn]) = σ[X−1
n (Hn)] ⊂ A,

with the set inclusion shown in the first line. That is, X−1(Bn) ⊂ A. �

Exercise 2.1 (Joint df) A joint df F is ↗ and right continuous and satisfies

All F (x1, . . . , xi−1,−∞, xi+1, . . . , xn) = 0 and F (∞, . . . ,∞) = 1,(2)
F (x1, . . . , xi−1,+∞, xi+1, . . . , xn)

= FX1,...,Xi−1,Xi+1,...,Xn
(x1, . . . , xi−1, xi+1, . . . , xn)(3)

for all j = 1, . . . , n and x1, . . . , xn.

Exercise 2.2 Suppose F : Rn → R is ↗ and right continuous and satisfies (2) and (3).
Then there exists a unique probability measure P ≡ PF on Bn that satisfies

(4) P ((x, y]) = F (x, y] for all x ≤ y.
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This is a generalization of the correspondence theorem to n > 1. Now note that the
identity function X(ω) ≡ ω, for each ω ∈ Rn, is a random vector on (Rn,Bn) that has as its
joint df the function F above. Thus, given any joint df F , there is a random vector X having
F as its joint df. This is in the spirit of example 2.2.1.

Definition 2.2 (Joint density of rvs) Let X ≡ (X1, . . . , Xn)′ denote a rv. Define Pn(B) ≡
P (X ∈ B) for all B ∈ Bn, so that Pn defines the induced distribution of X on (Rn,Bn). Let
λn denote Lebesgue measure on (Rn,Bn). If Pn � λn, then a finite-valued Radon-Nikodym
derivative fn ≡ dPn/dλn exists (and is unique a.e. λn) for which

(5) P (X ∈ B) =
∫

B

· · ·
∫

fn(x1, . . . , xn) dx1 × · · · × dxn for all B ∈ Bn.

When this is true, fn(· · · ) is called the joint density (or, the density) of the rv X. (For one-
dimensional rvs, we often denote the distribution, df, and density of X by PX(·), FX(·), and
fX(·). For two-dimensional rvs (X,Y )′, we often use PX,Y (·), FX,Y (·, ·), and fX,Y (·, ·).)

Exercise 2.3 (Marginal densities) Suppose that (X1, . . . , Xn)′ has the induced distribution
Pn, and Pn � λn with joint density fn (as in the previous definition). Let 1 ≤ i1 < · · · <
im ≤ n, with m ≤ n, and let 1 ≤ j1 < · · · < jn−m ≤ n denote the complementary indices.
Show that the induced distribution Pm of (Xi1 , . . . , Xim

)′ satisfies Pm � λm, and that its
joint density is given by

(6) fm(xi1 , . . . , xim
) =

∫ ∞

−∞
· · ·

∫ ∞

−∞
fn(x1, . . . , xn) dxj1 × · · · × dxjn−m

on Rm. We also call fm the marginal density of (Xi1 , . . . , Xim
)′.

Exercise 2.4 (Lebesgue-Stieltjes measures on (R2,B2)) (i) Let F be a gdf on R2.
Using the notation of definition 2.1, let

(7) μF ((c, b]) ≡ F (c, d] for all c ≤ d in R̄2,

in parallel with the correspondence theorem 1.3.1 and exercise 1.3.1. Show that

(8) μF (A) = inf{
∞∑

k=1

F (ck, dk] : A ⊂
∞∑

k=1

(ck, dk]} for all A ∈ B̂μF

for countable unions of disjoint subrectangles (ck, dk] of R̄2. As in definition 1.3.3, call F
absolutely continuous if for all ε > 0 there exists a δε > 0 for which

(9)
∞∑

k=1

F (ck, dk] < ε provided
∞∑

k=1

λ2((ck, dk]) < δε

whenever n ≥ 1 and all of the subrectangles (ck, dk] of R2 are mutually disjoint. Here, λ2(·)
is the Lebesgues-Stieltjes measure generalization of area with F (x) = x.
(ii) State and prove the two-dimensional analogs of exercise 3.2.6 (integrals as measures) and
exercise 3.2.7 (absolutely continuous dfs).
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3 Countably Infinite Product Probability Spaceso

We now begin to carry out the program discussed in section 2.5. That is, we will extend the
notion of rvs and product probability measures to a countably infinite number of dimensions.

Notation 3.1 (R∞ and B∞) Let

(1) R∞ ≡
∏∞

n=1
R ≡ {(x1, x2, . . .) : xn ∈ R for all n ≥ 1}.

Let I denote an interval of the type (c, d], (−∞, d], (c,+∞), or (−∞,∞). An n-dimensional
rectangle will mean any set of the form I1 × · · · × In × R × R × · · · , where each interval Ii

is of the type above. A finite-dimensional rectangle is an n-dimensional rectangle, for some
n ≥ 1. A cylinder set is defined as a set of the form Bn × R × R × · · · with Bn in Bn for
some n ≥ 1. Thus:

CI ≡ {all finite-dimensional rectangles}(2)
= {I1 × · · · × In × R × R × · · · : n ≥ 1, all Ii as above},

CF ≡ {all finite disjoint unions of finite-dimensional rectangles},(3)
C∞ ≡ {all cylinder sets} ≡ {Bn × R × R × · · · : n ≥ 1, Bn ∈ Bn}.(4)

Both CF and C∞ are fields, and a trivial application of exercise 1.1.1 shows that

(5) B∞ ≡ σ[CI ] = σ[CF ] = σ[C∞].

Thus, extending a measure from CI to B∞ will be of prime interest to us. We first extend the
criterion for measurability from n dimensions to a countably infinite number of dimensions.

Proposition 3.1 (Measurability on B∞) (a) Now, X ≡ (X1,X2, . . .)′ : Ω → R∞ is B∞-A-
measurable if and only if each Xn is B-A-measurable.
(b) If X is B∞-A-measurable and if (i1, i2, . . .) is an arbitrary sequence of integers, then
Y ≡ (Xi1 ,Xi2 , . . .)

′ is B∞-A-measurable.

Exercise 3.1 Prove proposition 3.1.

Notation 3.2 We will use the notation

(6) F(Xi) ≡ X−1
i (B) and F(Xi1 ,Xi2 , . . .) ≡ Y−1(B∞) = σ[

∞⋃
n=1

X−1
in

(B)]

to denote the minimal sub σ-fields of A relative to which the quantities Xi and Y ≡
(Xi1 ,Xi2 , . . .) are measurable.

Now suppose that Pn is a probability measure on (Rn,Bn), for each n ≥ 1. The question
is: When can we extend the collection {Pn : n ≥ 1} to a measure on (R∞,B∞)? Reasoning
backwards to see what conditions the family of finite-dimensional distributions should satisfy
leads to the following definition.

Definition 3.1 (Consistency) Finite-dimensional distributions {(Rn,Bn, Pn)}∞
n=1 are consis-

tent if for every n ≥ 1, every B1, . . . , Bn ∈ B, and every 1 ≤ i ≤ n,

(7)
Pn−1((X1, . . . , Xi−1,Xi+1, . . . , Xn) ∈ B1 × · · · × Bi−1 × Bi+1 · · · × Bn)
= Pn((X1, . . . , Xi−1,Xi,Xi+1, . . . , Xn) ∈ B1 × · · · × Bi−1 × R × Bi+1 × · · · × Bn).
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Theorem 3.1 (Kolmogorov’s extension theorem) An extension of any consistent fam-
ily of probability measures {(Rn,Bn, Pn)}∞

n=1 to a probability P (·) on (R∞,B∞) necessarily
exists, and it is unique.

We will first summarize the main part of this proof as a separately stated result that seems
of interest in its own right.

Theorem 3.2 o ((R∞,B∞) extension theorem; Breiman) Let P on CI satisfy:
(a) P ≥ 0 and P (R∞) = 1.
(b) If D =

∑m
j=1 Dj for n-fold rectangles D and Dj , then P (D) =

∑m
1 P (Dj).

(c) If D denotes any fixed n-dimensional rectangle, then there exists a sequence of compact n-
dimensional rectangles Dj for which Dj ↗ D and P (Dj) ↗ P (D). (That is, P is well-defined
and additive on n-dimensional rectangles and satisfies something like continuity from below.)
Then there exists a unique extension of P to B∞.

Proof.∗ (Recall the continuity result of proposition 1.1.3.) Now,

CF ≡ {all finite disjoint unions of finite-dimensional rectangles}
= {a field generating B∞}.

(p)

For A =
∑m

1 Dj ∈ CF , define P (A) ≡ ∑m
j=1 P (Dj).

First, we will show that P is well-defined on CF . Let A =
∑m

1 Dj =
∑m′

1 D′
k. Now, D′

k =
D′

kA =
∑m

1 D′
kDj and Dj = DjA =

∑m′

1 DjD
′
k. Thus

(q) P (A) =
∑m

1
P (Dj) =

∑m

1
P (

∑m′

1
DjD

′
k) =

∑m

1

∑m′

1
P (DjD

′
k)

(r) =
∑m′

1

∑m

1
P (D′

k ∩ Dj) =
∑m′

1
P (

∑m

1
D′

k ∩ Dj) =
∑m′

1
P (D′

k) = P (A).

Next, we will show that P is f.a. on CF . So we let A1, . . . , Am ∈ CF be such that A ≡∑m
1 Ai ∈ CF also. Then, writing Ai =

∑mi

1 Dij with Di1, . . . , Di,mi
disjoint,

(s) P (A) = P (
∑m

1
Ai) = P (

∑m

1

∑mi

1
Dij) =

∑m

1

∑mi

1
P (Dij) =

∑m

1
P (Ai),

(using condition (b) in each of the last two equalities), since P is well-defined.
We will now show that P is continuous from above at ∅. Let An’s in CF be such that

An ↘ ∅. We must show that P (An) ↘ 0. Assume not. Then P (An) ↘ ε > 0; and by going
to subsequences, we may assume that An = A∗

n × ∏∞
n+1 R, where each A∗

n is a finite union
of disjoint rectangles (repeat some members of the sequence if necessary in order to have
A∗

n ⊂ Rn). By condition (c), choose B∗
n ⊂ A∗

n such that B∗
n is a finite union of compact

disjoint rectangles in Rn with

(t) P (An\Bn) < ε/2n+1, where Bn ≡ B∗
n ×

∏∞
n+1

R.

Let Cn =
⋂n

1 Bk ≡ C∗
n × ∏∞

n+1 R, with C∗
n compact in Rn (the Bn’s need not be ↘, but the

Cn’s are). Then we observe that Cn ↘ ∅, since Cn ⊂ Bn ⊂ An with An ↘ ∅; but we also
have P (Cn) ≥ ε/2, since

(u) P (An\Cn) ≤
∑n

k=1
P (An\Bk) ≤

∑n

k=1
P (Ak\Bk) ≤

∑n

1
ε/2k+1 ≤ ε/2.
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But Cn ↘with P(Cn) ≥ ε/2 for all n is not compatible with the conclusion that Cn ↘ ∅:
Let x(1) ∈ C1, . . . , x

(n) ∈ Cn, . . ., where x(n) ≡ (x(n)
1 , x

(n)
2 , . . .). Choose an initial subsequence

N1 such that x
(N1)
1 → (some x1) ∈ C∗

1 ; then choose a further subsequence N2 such that
(x(N2)

1 , x
(N2)
2 ) → (some (x1, x2)) ∈ C∗

2 ; . . .. Along the diagonal subsequence, say N , we have
x

(N)
j → xj , for all j. Now, x = (x1, x2, . . .) ∈ Cn for all n. Hence Cn /↘ ∅. But this is a

contradiction, and thus allows us to claim that P (An) ↘ 0 for any An’s in CF that satisfy
An ↘ ∅.

Now apply the continuity of measures in proposition 1.1.3, and then apply the Carathéodory
extension of theorem 1.2.1 to complete the proof. �

Proof.∗ We now turn to the Kolmogorov extension theorem. The P defined by

(v) P (B1 × · · · × Bn × · · · ) ≡ Pn(B1 × · · · × Bn) = Pm+n(B1 × · · · × Bn × R × · · · × R)

is a well-defined f.a. probability on CI = {all finite-dimensional rectangles}; this follows from
the consistency condition (7). Thus (a) and (b) of theorem 3.2 hold.

We will now verify (c). Fix n. Let Dn be an arbitrary but fixed n-dimensional rectangle.
It is clearly possible to specify compact n-dimensional rectangles Dnj for which Dnj ↗ Dn

as j → ∞. Write Dj = Dnj × ∏∞
n+1 R and D = Dn × ∏∞

n+1 R, so that Dj ↗ D. Thus, by
the continuity of signed measures in proposition 1.1.4,

(w) P (Dj) = Pn(Dnj) ↗ Pn(Dn) = P (D),

since Pn is a measure on (Rn,Bn). Thus (c) holds. The conclusion follows from theorem 3.2.

Example 3.1 (Coordinate rvs) Once consistent probability measures Pn(·) on (Rn,Bn)
have been extended to a probability measure P (·) on (R∞,B∞), it is appropriate then to
define Xn(x1, x2, . . .) = xn, for each n ≥ 1. These are rvs on the probability space (Ω,B, P ) ≡
(R∞,B∞, P ). Moreover,

P ((X1, . . . , Xn) ∈ Bn) = P ((X1, . . . , Xn)−1(Bn)) = P (X−1(Bn ×
∏∞

n+1
R))

= P (Bn ×
∏∞

n+1
R) = Pn(Bn)(8)

for all Bn ∈ Bn. We thus have a realization of X ≡ (X1,X2, . . .): Ω → R∞ that is B∞-A-
measurable, and each (X1, . . . , Xn) induces the distribution Pn on (Rn,Bn). This is the
natural generalization of example 2.2.1 and the comment below exercise 5.2.2. �

Theorem 3.3 (The finite dimensional dfs define probability theory)
Let X = (X1,X2, . . .)′ denote any random element on (R∞,B∞). Then PX can be determined
solely by examination of the finite-dimensional distributions of X. Also, whether or not there
exists a finite rv X such that Xn converges to X in the sense of →a.s.,→p,→r, or →d can be
similarly determined.

Proof. Let C denote the π̄-system consisting of R∞ and of all sets of the form
∏n

1 (−∞, xi]
×∏∞

n+1 R, for some n ≥ 1 and all xi ∈ R. The finite-dimensional distributions (even the
finite-dimensional dfs) determine P∞ on C, and hence on B∞ = σ[C] (appeal to Dynkin’s
π-λ theorem of proposition 1.1.5). To emphasize the fact further, we now consider each
convergence mode separately.
→d: Obvious.
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→r: E|Xn − X|r → 0 if and only if E|Xn − Xm|r < ε for all n,m ≥ some Nε.
→p: Xn →p X if and only if P (|Xn − Xm| > ε) < ε for all n,m ≥ some Nε.
→a.s.: Xn → a.s. X if and only if

1 = P (∪∞
n=1 ∩∞

m=n [|Xm − Xn| ≤ ε]) for all ε > 0

= lim
n

lim
N

P (∩N
m=n[|Xm − Xn| ≤ ε]) = lim

n
lim
N

{a function of FXn,...,XN
}.

The proof is complete �

Example 3.2 (Equivalent experiments) Perhaps I roll an ordinary die n times with the
appearance of an even number called “success.” Perhaps I draw a card at random n times,
each time from a freshly shuffled deck of standard playing cards, with “red” called “success.”
Perhaps I flip a fair coin n times with “heads” called “success.” Note that (X1, . . . , Xn) has
the same distribution in all three cases. Thus, if I report only the data from one of these
experiments, you can not hope to determine which of the three experiments was actually
performed. These are called equivalent experiments. �



102 CHAPTER 5. MEASURES AND PROCESSES ON PRODUCTS

4 Random Elements and Processes on (Ω,A, P ) o

Definition 4.1 (Projections and finite-dimensional subsets) Let MT denote a collection of
functions that associate with each t of some set T a real number denoted by either xt or x(t).
(T is usually a Euclidean set such as [0, 1], R, or [0, 1] × R. The collection MT is often a
collection of “nice” functions, such as the continuous functions on T.) For each integer k and
all (t1, . . . , tk) in T we let πt1,...,tk

denote the projection mapping of MT into k-dimensional
space Rk defined by

(1) πt1,...,tk
(x) ≡ (x(t1), . . . , x(tk)).

Then for any B in the set of all k-dimensional Borel subsets Bk of Rk, the set π−1
t1,...,tk

(B) is
called a finite-dimensional subset of MT .

Exercise 4.1 Show that the collection M0
T of all finite-dimensional subsets of MT is nec-

essarily a field. (This is true no matter what collection MT is used.)

Definition 4.2 (Measurable function spaces, finite-dimensional distributions, random ele-
ments, and normal processes) We let MT denote the σ-field generated by the field M0

T . We
call M0

T and MT the finite-dimensional field and the finite- dimensional σ-field, respectively.
Call the measurable space (MT ,MT ) a measurable function space over T.

Given any probability space (Ω,A, P ) and any measurable space (Ω∗,A∗), an A∗-A-
measurable mapping X : Ω → Ω∗ will be called a random element. We denote this by X :
(Ω,A) → (Ω∗,A∗) or by X : (Ω,A, P ) → (Ω∗,A∗), or even by X : (Ω,A, P ) → (Ω∗,A∗, P ∗),
where P ∗ denotes the induced probability on the image space.

A random element X : (Ω,A, P ) → (MT ,MT , P ∗) in which the image space is a mea-
surable function space will be called a process. The finite-dimensional distributions of a
process are the distributions induced on the (Rk,Bk) by the projection mappings πt1,...,tk

:
(MT ,MT , P ∗) → (Rk,Bk). If all of the finite-dimensional distributions of a process X are
multivariate normal (see section 9.3 below), then we call X a normal process.

Definition 4.3 (Realizations and versions) If two random elements X and Y (possibly from
different probability spaces to different measurable function spaces) have identical induced
finite-dimensional distributions, then we refer to X and Y as different realizations of the same
random element and we call them equivalent random elements. We denote this by agree-
ing that

X ∼= Y means that X and Y are equivalent random elements.

(We will see in chapter 12 that a process called Brownian motion can be realized on both the
(R[0,1],B[0,1]) of (3) and (C, C), where C ≡ C[0,1] denotes the space of all continuous functions
on [0, 1] and C ≡ C[0,1] denotes its finite-dimensional σ-field.)

If X and Y are defined on the same probability space and P (Xt = Yt) = 1 for all t ∈ T ,
then X and Y are called versions of each other. (In chapter 12 we will see versions X and Y
of Brownian motion where X : (Ω,A, P ) → (R[0,1],B[0,1]) and Y : (Ω,A, P ) → (C[0, 1]C[0,1]).
Of course, this X and Y are also different realizations of Brownian motion.)

Definition 4.4 (Finite-dimensional convergence, →fd) Suppose X,X1,X2, . . . denote
processes with image space (MT ,MT ). If the convergence in distribution

(2) πt1,...,tk
(Xn) = (Xn(t1), . . . , Xn(tk)) →d (X(t1), . . . , X(tk)) = πt1,...,tk

(X)

holds for all k ≥ 1 and all t1, . . . , tk in T , then we write Xn →fd X as n → ∞, and we say
that the finite-dimensional distributions of Xn converge to those of X.
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The General Stochastic Process

Notation 4.1 ((RT ,BT )) We now adopt the convention that

(3) (RT ,BT ) denotes the measurable function space with RT ≡
∏

t∈T
Rt,

where each Rt is a copy of the real line. Thus RT consists of all possible real-valued functions
on T , and BT is the smallest σ-field with respect to which all πt are measurable. We call
a process X : (Ω,A, P ) → (RT ,BT ) a general stochastic process. We note that a general
stochastic process is also a process. But we do not yet know what BT looks like.

A set BT ∈ BT is said to have countable base t1, t2, . . . if

(4) BT = π−1
t1,t2,...(B∞) for some B∞ ∈ B∞;

here B∞ is the countably infinite-dimensional σ-field of section 5.3. Let BC denote the class
of countable base sets defined by

(5) BC ≡{ BT ∈ BT : BT has a countable base}.

(Recall F(X1,X2, . . .) and F(Xs : s ≤ t) measurability from section 2.5.) �

Proposition 4.1 (Measurability in (RT ,BT )) Now, BC is a σ-field. In fact, BC is the small-
est σ-field relative to which all πt are measurable; that is,

(6) BT = BC .

Also (generalizing proposition 5.2.1),

(7) X is BT -A-measurable if and only if Xt is B-A-measurable for each t ∈ T.

Proof. Clearly, BT is the smallest σ-field containing BC ; so (6) will follow from showing
that BC is a σ-field. Now, C is closed under complements, since π−1

t1,t2,...(B∞)C = π−1
t1,t2,...(BC

∞).
Suppose that B1, B2, . . . in BC have countable bases T1, T2, . . ., and let T0 = ∪∞

m=1Tm. Then
using the countable set of distinct coordinates in T0, reexpress each Bm as Bm = π−1

T0
(B∞

m )
for some B∞

m ∈ B∞. Then ∪∞
m=1Bm = π−1

T0
(∪∞

m=1B
∞
m ) is in BC . Thus BC is closed under

countable unions. Thus BC is a σ-field.
Now to establish (7): Suppose X is BT -A-measurable. Then

(a) X−1
t (B) = X−1(π−1

t (B)) ∈ A for B ∈ B,

so that each Xt is B-A-measurable. Suppose that each Xt is B-A-measurable. Then exercise
5.3.1 shows that (Xt1 ,Xt2 , . . .) is B∞-A-measurable for all sequences t1, t2, . . . of elements
of T . That is, X−1(BC) ⊂ A. Since BT = BC , we thus have X−1(BT ) ⊂ A, and hence X is
BT -A-measurable. �

Remark 4.1 (Consistency of induced distributions in (RT ,BT )) Any general stochastic
process X : (Ω,A, P ) → (RT ,BT ) has a family of induced distributions

(8) P ∗
t1,...,tk

(Bk) = P (X−1 ◦ π−1
t1,...,tk

(Bk)) for all Bk ∈ Bk

for all k ≥ 1 and all t1, . . . , tk ∈ T . These distributions are necessarily consistent in the sense
that

P ∗
t1,...,tk

(B1 × · · · × Bi−1 × R × Bi+1 × · · · × Bk)(9)

= P ∗
t1,...,ti−1,ti+1,...,tk

(B1 × · · · × Bi−1 × Bi+1 × · · · × Bk)
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for all k ≥ 1, all B1, . . . , Bk ∈ B, all 1 ≤ i ≤ k, and all t1, . . . , tk ∈ T . (The next result gives a
converse. It is our fundamental result on the existence of stochastic processes with specified
distributions.) �

Theorem 4.1 (Kolmogorov’s consistency theorem) Given a consistent set of distribu-
tions as in (9), there exists a distribution P on (RT ,BT ) such that the identity map X(ω) = ω,
for all ω ∈ RT , is a general stochastic process X : (RT ,BT , P ) → (RT ,BT ) whose family of
induced distributions is the P ∗

t1,...,tk
of (9).

Exercise 4.2 Prove theorem 4.1. (Define P ∗(B) = P (π−1
Ti

(B)) for B ∈ BC and each count-
able subset Ti of T . Use notational ideas from the proof of proposition 4.1 to show easily that
P ∗(·) is well-defined and countably additive.)

Example 4.1 (Comment on (R[0,1],B[0,1])) The typical function x in RT has no smoothness
properties. Let T = [0, 1] and let C denote the subset of R[0,1] that consists of all functions
that are continuous on [0, 1]. We now show that

(10) C /∈ B[0,1].

Let (Ω,A, P ) denote Lebesgue measure on the Borel subsets of [0, 1]. Let ξ(ω) = ω. Now
let X : (Ω,A, P ) → (R[0,1],B[0,1]) via Xt(ω) = 0 for all ω ∈ Ω and for all t ∈ T . Let Y :
(Ω,A, P ) → (R[0,1],B[0,1]) via Yt(ω) = 1{t}(ξ(ω)). Now, all finite-dimensional distributions of
X and Y are identical. Note, however, that [ω : X(ω) ∈ C] = Ω, while [ω : Y (ω) ∈ C] = ∅.
Thus C cannot be in B[0,1]. �

Smoother Realizations of General Stochastic Processes

Suppose now that X is a process of the type X : (Ω,A, P ) → (RT ,BT , P ∗). As the previous
example shows, X is not the unique process from (Ω,A, P ) that induces the distribution P ∗

on (RT ,BT ). We now let MT denote a proper subset of RT and agree that MT denotes the σ-
field generated by the finite-dimensional subsets of MT . Suppose now that X(ω) ∈ MT for all
ω ∈ Ω. Can X be viewed as a process X : (Ω,A, P ) → (MT ,MT , P̃ ) such that (MT ,MT , P̃ )
has the same finite-dimensional distributions as does (RT ,BT , P ∗) ? We now show that the
answer is necessarily yes. Interesting cases arise when the functions of the MT above have
smoothness properties such as continuity. The next result is very important and useful.

Theorem 4.2 (Smoother realizations of processes) Consider an arbitrary measurable
mapping X : (Ω,A, P ) → (RT ,BT , P ∗).
(i) Let MT ⊂ RT . Then we can view X as a process X : (Ω,A) → (MT ,MT ) if and only if
every sample path X.(ω) = X(·, ω) is in MT and every Xt(·) ≡ X(t, ·) is a random variable.
(ii) Let X(Ω) ⊂ MT ⊂ RT . Then X : (Ω,A, P ) → (MT ,MT , P̃ ). where the finite- dimen-
sional distributions of (MT ,MT , P̃ ) are the same as those of (RT ,BT , P ∗).
(iii) Comment: All this is true even when MT is not in the class BT .

Proof. (i) (⇐) Note first that MT ∩ BT = MT (recall definition 4.2). Moreover, when
X(Ω) ⊂ MT , it necessarily follows that

X−1(MT ) = X−1(MT ∩ BT ) = X−1(MT ) ∩ X−1(BT ) = Ω ∩ X−1(BT )
= X−1(BT ).

(a)
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Since each Xt is a rv, we have X−1(B) ⊂ A by (7). Thus X−1(MT ) ⊂ A, and we see that X
is indeed an MT − A− measurable mapping from Ω to MT . Note further that the natural
pairs of generator sets (π−1

t1,...,tk
((−∞, r1] × · · · × (−∞, rk]) in BT , or π−1

t1,...,tk
((−∞, r1] × · · · ×

(−∞, rk]) ∩ MT in MT ) have the same inverse images under X; thus the finite dimensional
distributions induced from (Ω,A) to (RT ,BT ) and to (MT ,MT ) are identical.
(⇒) Clearly, X : Ω → MT implies X : Ω → RT . Also, for any t ∈ T and any B ∈ B,

X−1(π−1
t (B)) = X−1(MT ∩ π−1

t (B)) since X : Ω → MT

∈ X−1(MT ) since MT = MT ∩ BT

(b) ∈ A since X is MT −A − measurable.

Thus each Xt is a rv, and so X is BT − A−measurable by (7).
(ii) This is now clear, and it summarizes the most useful part of this theorem. �

Exercise 4.3 Let M denote any non-void class of subsets of Ω, and let M denote any
non-void subset. Show that

(11) σ[M] ∩ M = σ[M ∩ M ].

Remark 4.2 It is interesting to consider the case where MT is a countable or finite set.
The resulting (MT ,MT , P̃ ) is the natural probability space. �



Chapter 6

Distribution and Quantile
Functions

1 Character of Distribution Functions

Let X : (Ω,A, P ) → (R,B, PX) be a rv with distribution function (df)FX , where

(1) FX(x) ≡ P (X ≤ x) = PX((−∞, x]) for − ∞ < x < ∞.

Then F ≡ FX was seen earlier to satisfy

(2) F is ↗ and right continuous, with F (−∞) = 0 and F (+∞) = 1.

Because of the proposition below, any function F satisfying (2) will be called a df. (If F is
↗, right continuous, 0 ≤ F (−∞), and F (+∞) ≤ 1, we earlier agreed to call F a sub-df. As
usual, F (a, b] ≡ F (b) − F (a) denotes the increments of F , and �F (x) ≡ F (x) − F−(x) =
F (x) − F (x−) is the mass of F at x.)

(a) Call F discrete if F is of the form F (·) =
∑

j bj1[aj ,∞)(·) with
∑

j bj = 1, where the aj

form a non-void finite or countable set. Such measures μF have Radon–Nikodym derivative∑
j bj1{aj}(·) with respect to counting measure on the aj ’s.

(b) A df F is called absolutely continuous if F (·) =
∫ .

∞ f(y) dλ(y) for some f ≥ 0 that
integrates to 1 over R. The corresponding measure has Radon-Nikodym derivative f with
respect to Lebesgue measure λ; this f is also called a probability density. Moreover, F is an
absolutely continuous function and the ordinary derivative F ′ of the df F exists a.e. λ and
satisfies F ′ = f as λ.

(c) A df F is called singular if μF (N c) = 0 for a λ-null set N .

Proposition 1.1 (There exists an X with df F ) If F satisfies (2), then there exists a
probability space (Ω,A, P ) and a rv X : (Ω,A, P ) → (R,B) for which the df of X is F . We
write X ∼= F .

c© Springer International Publishing AG 2017
G.R. Shorack, Probability for Statisticians, Springer Texts in Statistics,
DOI 10.1007/978-3-319-52207-4 6
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Proof. Example 2.2.1 shows that X(r) = r on (R,B, μF ) is one example. �

Theorem 1.1 (Decomposition of a df) Any df F can be decomposed as

(3) F = Fd + Fc = Fd + Fs + Fac = (Fd + Fs) + Fac,

where Fd, Fc, Fs, and Fac are the unique sub-dfs of the following types (unique among those
sub-dfs equal to 0 at −∞):

Fd is a step function of the form
∑

j bj1[aj ,∞) (with all bj > 0).(4)

Fc is continuous.(5)
Fs and Fs + Fd are both singular with respect to Lebesgue measure λ.(6)
Fac(·) =

∫ .

−∞ fac(y) dλ(y)

for some fac ≥ 0 that is finite, measurable, and unique a.e. λ,(7)
and this Fac(·) is absolutely continuous on the whole real line.

Proof. Let {aj} denote the set of all discontinuities of F , which can only be jumps; and
let bj ≡ F (aj) − F−(aj). There can be only a countable number of jumps, since the number
of jumps of size exceeding size 1/n is certainly bounded by n. Now define Fd ≡ ∑

j bj1[aj ,∞),
which is obviously ↗ and right continuous, since Fd(x, y] ≤ F (x, y] ↘ 0 as y ↘ x (the
inequality holds, since the sum of jump sizes over every finite number of jumps between a and
b is clearly bounded by F (x, y], and then just pass to the limit). Define Fc = F − Fd. Now,
Fc is ↗, since for x ≤ y we have Fc(x, y] = F (x, y] −Fd(x, y] ≥ 0. Now, Fc is the difference
of right-continuous functions, and hence is right continuous; it is left continuous, since for
x ↗ y we have

(a) Fc(x, y] = F (x, y] − ∑
x<aj≤y bj = F−(y) − F (x) − ∑

x<aj<y bj → 0 − 0 = 0.

We turn to the uniqueness of Fd. Assume that Fc + Fd = F = Gc + Gd for some other
Gd ≡ ∑

j b̄j1[āj ,∞) with distinct āj ’s and
∑

j b̄j ≤ 1. Then Fd − Gd = Gc − Fc is continuous.
If Gd �= Fd, then either some jump point or some jump size disagrees. No matter which
disagrees, at some a we must have

(b) �Fd(a) − �Gd(a) �= 0,

contradicting the continuity of Gc − Fc = Fd − Gd. Thus Gd = Fd, and hence Fc = Gc. This
completes the first decomposition.

We now turn to the further decomposition of Fc. Associate a measure μc with Fc via
μc((−∞, x]) = Fc(x). Then the Lebesgue decomposition theorem shows that μc = μs + μac,
where μs(B) = 0 and μac(Bc) = 0 for some B ∈ B; we say that μs and μac are orthogonal.
Moreover, this same Lebesgue theorem implies the claimed uniqueness and shows that fac

exists with the uniqueness claimed. Now, Fac(x) ≡ μac((−∞, x]) =
∫ x

−∞ fac(y) dy is continu-
ous by Fac(x, y] ≤ μac(x, y] → 0 as y → x or as x → y. Thus Fs ≡ Fc −Fac is continuous, and
Fs(x) = μs((−∞, x]). In fact, Fac is absolutely continuous on R by the absolute continuity of
the integral. (Now Fc = Fs +Fac decomposes Fc with respect to λ, while F = (Fd +Fs)+Fac

decomposes F with respect to λ.) �

Example 1.1 (Lebesgue singular df) Define the Cantor set C by

(8) C ≡ {x ∈ [0, 1] : x =
∑∞

n=1 2an/3n, with all an equal to 0 or 1}.
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(Thus the Cantor set is obtained by removing from [0, 1] the open interval (13 , 2
3 ) at stage one,

then the open intervals (19 , 2
9 ) and (79 , 8

9 ) at stage two, ....) Finally, we define F on C by

(9) F (
∑∞

n=1 2an/3n) =
∑∞

n=1 an/2n.
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Figure 1.1 Lebesgue singular function.
Now note that {F (x) : x ∈ C} = [0, 1], since the right-hand side of (9) represents all of

[0, 1] via dyadic expansion. We now define F “linearly” on Cc (the first three “components”
are shown in figure 1.1 above). Since the resulting F is ↗ and achieves every value in [0, 1],
it must be that F is continuous. Now, F assigns no mass to the “flat spots” whose lengths
sums to 1 since 1

3 + 2
9 + 4

27 + · · · = 1/3
1−2/3 = 1. Thus F is singular with respect to Lebesgue

measure λ, using λ(Cc) = 1 and μF (Cc) = 0. Call this F the Lebesgue singular df . (The
theorem in the next section shows that removing the flat spots does, even for a general df F ,
leave only the essentials.) We have, in fact, shown that

(10) F : C → [0, 1] is 1-1, is ↑, and is continuous; so F−1 : [0, 1] → C is 1 − 1. �

Exercise 1.1 Let X ∼= N(0, 1) (as in (A.1.22) below), and let Y ≡ 2X.
(a) Is the df F (·, ·) of (X,Y ) continuous?
(b) Does the measure μF on R2 have a density with respect to two-dimensional Lebesgue
measure? (Hint. Appeal to corollary 2 to Fubini’s theorem.)

Exercise 1.2 Show that the Cantor set C is perfect (thus, each x ∈ C is an accumulation
point of C) and totally disconnected (between any c1 < c2 in C there is an interval that lies
entirely in Cc). (Note that the cardinality of C equals that of [0, 1]. At which points is 1C(·)
continuous?

Definition 1.1 Two rvs X and Y are said to be of the same type if Y ∼= aX + b for some
a > 0. Their dfs are also said to be of the same type.



110 CHAPTER 6. DISTRIBUTION AND QUANTILE FUNCTIONS

2 Properties of Distribution Functions

Definition 2.1 The support of a given df F ≡ FX is defined to be the minimal closed set
C having P (X ∈ C) = 1. A point x is a point of increase of F if every open interval U
containing x has P (X ∈ U) > 0. A realizable t-quantile of F , for 0 < t < 1, is any value z for
which F (z) = t. (Such a z need not exist.) Define Ut to be the maximal open interval of x’s
for which F (x) = t (this flat spot will be an interval, since F is ↗).

Theorem 2.1 (Jumps and flat spots) Let C denote the support of F . Then:
(a) C ≡ (

⋃
0≤t≤1 Ut)c is a closed set having P (C) = 1.

(b) C is equal to the set of all points of increase.
(c) C is the support of F .
(d) F has at most a countable number of discontinuities, and these discontinuities are all
discontinuities of the jump type.
(e) F has an at most countable number of flat spots (the nonvoid Ut’s). These are exactly
those t’s that have more than one realizable t-quantile.
(We will denote jump points and jump sizes of F by ai’s and bi’s. The t values and the λ(Ut)
values of the multiply realizable t-quantiles will be seen in the proof of proposition 6.3.1 below
to correspond to the jump points cj and the jump values dj of the function K(·) ≡ F−1(·),
and there are at most countably many of them.)

Proof.* (a) For each t there is a maximal open interval Ut (possibly void) on which F equals
t, and it is bounded for each 0 < t < 1. Now, P (X ∈ Ut) = 0 using proposition 1.1.2. Note
that C ≡ (∪tUt)c is closed (since the union of an arbitrary collection of open sets is open).
Hence Cc = ∪0≤t≤1Ut = ∪(an, bn), where (a1, b1), . . . are (at most countably many) disjoint
open intervals, and all those with 0 < t < 1 must be finite. Now, by proposition 1.1.2, for the
finite intervals we have P (X ∈ (an, bn)) = limε→0 P (X ∈ [an+ε, bn−ε]) = limε→0 0 = 0, where
P (X ∈ [an +ε, bn −ε]) = 0 holds since this finite closed interval must have a finite subcover by
Ut sets. If (an, bn) = (−∞, bn), then P (X ∈ (−∞, bn)) = 0, since P (X ∈ [−1/ε, bn − ε]) = 0
as before. An analogous argument works if (an, bn) = (an,∞). Thus P (X ∈ Cc) = 0 and
P (X ∈ C) = 1. Note that the Ut’s are just the (an, bn)’s in disguise; each Ut ⊂ some (an, bn),
and hence Ut = that (an, bn). Thus Ut is nonvoid for at most countably many t’s.

(b) Let x ∈ C. We will now show that it is a point of increase. Let U denote a neigh-
borhood of x, and let t ≡ F (x). Assume P (U) = 0. Then x ∈ U ⊂ Ut ⊂ Cc, which
is a contradiction of x ∈ C. Thus all points x ∈ C are points of increase. Now suppose
conversely that x is a point of increase. Assume x /∈ C. Then x ∈ some (an, bn) having
P (X ∈ (an, bn)) = 0, which is a contradiction. Thus x ∈ C. Thus the closed set C is exactly
the set of points of increase.

(c) Assume that C is not the minimal closed set having probability 1. Then P (C̃) = 1
for some closed C̃ � C. Let x ∈ C\C̃ and let t = F (x). Since C̃c is open, there is an open
interval Vx with x ∈ Vx ⊂ C̃c and P (X ∈ Vx) = 0. Thus x ∈ Vx ⊂ (some Ut) ⊂ Cc. So
x /∈ C, which is a contradiction. Thus C is minimal.

So, (d) and (e) follow. See also the summary following proposition 6.3.1. �
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3 The Quantile Transformation

Definition 3.1 (Quantile function) For any df F (·) we define the quantile function (qf)
(which is the inverse of the df) by

(1) K(t) ≡ F−1(t) ≡ inf{x : F (x) ≥ t} for 0 < t < 1.

F(·)

K(·)

Figure 3.1 The df F (·) and the qf K(·) = F−1(·).

Theorem 3.1 (The inverse transformation) Let

(2) X ≡ K(ξ) ≡ F−1(ξ), where ξ ∼= Uniform(0, 1).

The following are all true.

[X ≤ x] = [ξ ≤ F (x)] for every real x.(3)

1[X≤.] = 1[ξ≤F (·)] on R, for every ω.(4)

X ≡ K(ξ) ≡ F−1(ξ) has df F.(5)

1[X<(·)] = 1[ξ<F−(·)] on R, for a.e. ω;(6)

failure occurs if and only if ξ(ω) equals the height of a flat spot of F .

Proof. Fix an arbitrary x. Now, ξ ≤ F (x) implies X = F−1(ξ) ≤ x by (1). If
X = F−1(ξ) ≤ x, then F (x + ε) ≥ ξ for all ε > 0; so right continuity of F implies F (x) ≥ ξ.
Thus (3) holds; (4) and (5) are then immediate.

If ξ(ω) = t where t is not in the range of F , then (6) holds. If ξ(ω) = t where F (x) = t
for exactly one x, then (6) holds. If ξ(ω) = t where F (x) = t for at least two distinct x’s,
then (6) fails; theorem 6.2.1 shows that this can happen for at most a countable number of
t’s. (Or: Graph a df F that exhibits the three types of points t, and the rest is trivial with
respect to (6), since the value of F at any other point is immaterial. Specifically, (6) holds
for ω unless F has a flat spot at height t ≡ ξ(ω). Note figure 3.1.) �
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Definition 3.2 (Convergence in quantile) Let Kn denote the qf associated with df Fn,
for each n ≥ 0. We write Kn →d K0 to mean that Kn(t) → K0(t) at each continuity point
t of K0 in (0, 1). We then say that Kn converges in quantile to K0, or Kn converges in
distribution to K0.

Proposition 3.1 (Convergence in distribution equals convergence in quantile)

(7) Fn →d F if and only if Kn →d K.

Proof. Suppose Fn →d F . Let t ∈ (0, 1) be such that there is at most one value x having
F (x) = t (that is, this is not a multiply realizable t-quantile). Let z ≡ F−1(t).

First: We have F (x) < t for x < z, where x will always denote a continuity point of F .
Thus Fn(x) < t for n ≥ (some Nx). Thus F−1

n (t) ≥ x for n ≥ Nx. Thus lim inf F−1
n (t) ≥ x,

when x < z is a continuity point of F . Thus lim inf F−1
n (t) ≥ z, since there are continuity

points x that ↗ z. Second: We also have F (x) > t for z < x, with x a continuity point.
Thus Fn(x) > t, and hence F−1

n (t) ≤ x for n ≥ (some Nx). Thus lim supF−1
n (t) ≤ x. Thus

lim supF−1
n (t) ≤ z, since there are continuity points x that ↘ z. Thus Kn(t) = F−1

n (t) →
z = K(t). The proof of the converse is virtually identical. �

Exercise 3.0 Give the proof of the converse for the previous proposition.

Summary F−1
n (t) → F−1(t) for all but at most a countably infinite number of t’s (namely,

for all but those t’s that have multiply realizable t-quantiles; these correspond to the heights
of flat spots of F , and these flat spot heights t are exactly the discontinuity points of K).

Exercise 3.1 (Left continuity of K) Show that K(t) = F−1(t) is left continuous on (0, 1).
(Note that K is discontinuous at t ∈ (0, 1) if and only if the corresponding Ut is nonvoid (see
theorem 6.2.1). Likewise, the jump points cj and the jump sizes dj of K(.) are equal to the
t values and the λ(Ut) values of the multiply realizable t-quantiles. We earlier agreed to use
ai and bi for the jump points and jump sizes of the associated df F .)

Exercise 3.2 (Properties of dfs) (i) For any df F we have

F ◦ F−1(t) ≥ t for all 0 ≤ t ≤ 1,

and equality fails if and only if t ∈ (0, 1) is not in the range of F on [−∞,∞].
(ii) (The probability integral transformation) If X has a continuous df F , then F (X) ∼=
Uniform(0, 1). In fact, for any df F,

P (F (X) ≤ t) ≤ t for all 0 ≤ t ≤ 1,

with equality failing if and only if t is not in the closure of the range of F .
(iii) For any df F we have

F−1 ◦ F (x) ≤ x for all − ∞ < x < ∞,

and equality fails if and only if F (y) = F (x) for some y < x. Thus

P (F−1 ◦ F (X) �= X) = 0 whenever X ∼= F.

(iv) If F is a continuous df and F (X) ∼= Uniform(0, 1), then X ∼= F .
(v) Graph F ◦ F−1 and F−1 ◦ F for the df F in figure 6.3.1.
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Proposition 3.2 (The randomized probability integral transformation) Let X
denote an arbitrary rv. Let F denote its df, and let (aj , bj)’s denote an enumeration of what-
ever pairs (jump point, jump size) the df F possesses. Let η1, η2, . . . denote iid
Uniform(0, 1) rvs (that are also independent of X). Then both

ξo ≡ F (X) − ∑
j bjηj1[X=aj ]

∼= Uniform(0, 1) and(8)

X = F−1(ξo) = K(ξo).(9)

(We have reproduced the original X from a Uniform(0, 1) rv that was defined using both X
and some independent extraneous variation. Note figure 3.1.)

Proof. We have merely smoothed out the mass bj that F (X) placed at F (aj) by sub-
tracting the random fractional amount ηjbj of the mass bj . �

Exercise 3.3 (Change of variable) Let Y ∼= G and X = H−1(Y ) ∼= F , where H is ↗ and
right continuous on the real line with left-continuous inverse H−1.
(a) Use the theorem of the unconscious statistician to conclude that

(10)
∫
(−∞,H(x)]

m(H−1) dG =
∫
(−∞,x]

m dF for measurable functions m ≥ 0,

since (H−1)−1((−∞, x]) = {t : H−1(t) ≤ x} = {t : t ≤ H(x)} as in (3). Check it.
(b) Let G = I,H = F , and Y = ξ ∼= Uniform(0, 1) above, for any df F . Let g denote any
measurable function. Then (via part (a), or via (2) and (3)), show that

(11)
∫ F (x)

0
g(F−1(t)) dt =

∫
(−∞,x]

g dF, and
∫ 1

F−(x)
g(F−1(t)) dt =

∫
[x,∞)

g dF.

(c) Exercise 3.5.3(b) established (13). Still, now use (6.4.1) below to verify both
∫
[0,x]

y dF|X|(y) =
∫ x

0
P (|X| > y) dy − xP (|X| > x) and(12)

∫
[x,∞)

y dF|X|(y) = xP (|X| ≥ x) +
∫ ∞

x
P (|X| ≥ y) dy even if infinite(13)

Interpret formulas (12)–(13) in terms of various shaded areas shown in figure 8.4.1. Do the
same for (11) when g(y) = y and X ≥ 0.

Exercise 3.4 Let h be measurable on [0, 1]. Then

(14)
∫
(−∞,x]

h(F−) dF ≤ ∫ F (x)

0
h(t) dt ≤ ∫

(−∞,x]
h(F ) dF if h ↗ .

Reverse the inequalities if h ↘.

Proof. We finally prove proposition 1.2.3. Let D be a subset of [0, 1] that is not Lebesgue
measurable; its existence is guaranteed by proposition 1.2.2. Let B ≡ F−1(D) for the
Lebesgue singular df F . Then (6.1.10) shows that B is a subset of the Cantor set C. Since
λ(C) = 0 and B ⊂ C, then B is a Lebesgue set with λ(B) = 0; that is, B ∈ B̂λ. We now
assume that B is Borel set (and seek a contradiction). Now F−1 is measurable by (6.1.10),
and so (F−1)−1(B) ∈ B. But

(a) (F−1)−1(B) = {r : F−1(r) ∈ B} = {r : F−1(r) ∈ F−1(D)} = D /∈ B,

since F−1 is one-to-one on [0, 1]. This is a contradiction. Thus B ∈ B̂λ\B. �
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The Elementary Skorokhod Construction Theorem

Let X0,X1,X2, . . . be iid F . Then Xn →d X0, but the Xn do not converge to X0 in the
sense of →a.s.,→p, or → r. However, whenever Xn →d X0, it is possible to replace the Xn’s
by rvs Yn having the same (marginal) dfs, for which the stronger result Yn →a.s. Y0 holds.

Theorem 3.2 (Skorokhod) Suppose that Xn →d X0. Define ξ(ω) = ω for each ω ∈
[0, 1] so that ξ ∼= Uniform (0, 1) on (Ω,A, P ) ≡ ([0, 1],B ∩ [0, 1], λ), for Lebesgue measure λ.
Let Fn denote the df of Xn, and define Yn ≡ F−1

n (ξ) for all n ≥ 0. Let DK0 denote the at
most countable discontinuity set of K0. Then both

(15)
Yn ≡ Kn(ξ) ≡ F−1

n (ξ) ∼= Xn
∼= Fn for all n ≥ 0 and

Yn(ω) → Y0(ω) for all ω /∈ DK0 .

Proof. This follows trivially from Proposition 3.1. �

Exercise 3.5 (Wasserstein distance) Let k = 1 or 2. Define

Fk ≡ {F : F is a df, and
∫ |x|k dF (x) < ∞}, and

dk(F1, F2) ≡ {∫ 1

0
|F−1

1 (t) − F−1
2 (t)|k dt}1/k for all F1, F2 ∈ Fk.

(a) Show that all such (Fk, dk) spaces are complete metric spaces, and that

(16)
dk(Fn, F0) → 0 (with all {Fn}∞

0 ∈ Fk) if and only if

Fn →d F0 and mnk ≡ ∫ |x|k dFn(x) → m0k ≡ ∫ |x|k dF0(x) ∈ (0,∞).

(The rvs Yn ≡ F−1
n (ξ) of (15) satisfy Yn →Lk

Y0 if E|Yn|k → E|Y0|k ∈ (0,∞).)
(b) Apply this to the empirical df Fn and qf of iid F rvs X1,X2, . . . to conclude

(17)
∫ 1

0
[F−1

n (t) − F−1(t)]k dt →a.e .0 iff 1
n

∑n
1 |Xi|k →a.e. E|X|k < ∞;

note (3.5.22). (Refer this to the SLLN later.)

http://dx.doi.org/10.1007/978-3-319-52207-3


4. INTEGRATION BY PARTS APPLIED TO MOMENTS 115

4 Integration by Parts Applied to Moments

Integration by Fubini’s theorem or “integration by parts” formulas are useful in many con-
texts. Here we record a few of the most useful ones.

Integration by Parts

Proposition 4.1 (Integration by parts formulas) Suppose that both the left-
continuous function U and the right-continuous function V are monotone functions. Then
for any a ≤ b we have both

U+(b)V (b) − U(a)V−(a) =
∫

[a,b]

U dV +
∫

[a,b]

V dU and(1)

U(b)V (b) − U(a)V (a) =
∫

(a,b]

U dV +
∫

[a,b)

V dU,(2)

where U+(x) ≡ limy↘x U(y) and V−(x) ≡ limy↗x V (y). (Symbolically, written as d(UV ) =
U−dV + V+dU , it implies also that

∫
h d(UV ) =

∫
h[U−dV + V+dU ] for any measurable

h ≥ 0.)

a

a

b

b

1[x′ < y′]
1[x′ ≥ y′]

Figure 4.1 Integration by parts.

Proof. We can apply Fubini’s theorem at steps (a) and (b) to obtain

[U+(b) − U(a)][V (b) − V−(a)] =
∫
[a,b]

{∫
[a,b]

dU} dV

=
∫
[a,b]

∫
[a,b]

[1[x′<y′](x, y) + 1[x′≥y′](x, y)] dU(x) dV (y)(a)

=
∫
[a,b]

[U(y) − U(a)] dV (y) +
∫
[a,b]

[V (x) − V−(a)] dU(x)(b)

=
∫
[a,b]

UdV − U(a)[V (b) − V−(a)] +
∫
[a,b]

V dU − V−(a)[U+(b) − U(a)].

Algebra now gives (1). Add U(a)[V (b) − V−(a)] + V−(a)[U+(b) − U(a)] to each side of (1) to
obtain (2). �

Exercise 4.1 How should the left side of (1) be altered if we replace [a, b] in both places
on the right side of (1) by (a, b), or by (a, b], or by [a, b)? (Just plug in a+ or a− as well as
b + or b− on both sides of the equation d(UV ) = U−dV + V+dU so as to include or exclude
that endpoint; this will give the proper formulation.)

Useful Formulas for Means, Variances, and Covariances

If ξ ∼= Uniform(0, 1) and F is an arbitrary df, then the rv X ≡ F−1(ξ) has df F .
Thinking of X as F−1(ξ) presents alternative ways to approach problems.
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We will do this often! Note that this X = F−1(ξ) satisfies both

(3) X =
∫

(0,1)
F−1(t) d1[ξ≤t] and X =

∫

(−∞,∞)
x d1[X≤x],

where 1[ξ≤t] is a random df that puts mass 1 at the point ξ(ω) and 1[X≤x] is a random
df that puts mass 1 at the point x. If X has a finite mean μ, then (depending on
which representation of X we use)

(4) μ =
∫

(0,1)
F−1(t) dt and μ =

∫

(−∞,∞)
x dF (x)

Moreover, when μ is finite we can combine the two previous formulas to write

(5) X − μ =
∫

(0,1)
F−1(t) d(1[ξ≤t] − t) = −

∫

(0,1)
(1[ξ≤t] − t) dF−1(t)

or

(6) X − μ =
∫

(−∞,∞)
x d(1[X≤x] − F (x)) = −

∫

(−∞,∞)
(1[X≤x] − F (x)) dx.

The first formula in each of (5) and (6) is trivial; the second follows from integration
by parts. For example, (5) is justified by |tF−1(t)| ≤ | ∫ t

0 F−1(s) ds| → 0 as t → 0
when E|X| =

∫ 1
0 |F−1(t)| dt < ∞, and the analogous result (1−t)F−1(t) → 0 as t → 1.

For (6), we note that x[1 − F (x)] ≤ ∫
(x,∞) y dF (y) → 0 as x → ∞ if E|X| < ∞. So

Fubini’s theorem would seem to give (using E|X| < ∞ for (5)) that,

(7) Var [X ] = E

{∫

(0,1)
(1[ξ≤s] − s) dF−1(s)

∫

(0,1)
(1[ξ≤t] − t) dF−1(t)

}

(a) =
∫

(0,1)

∫

(0,1)
E{(1[ξ≤s] − s)(1[ξ≤t] − t)} dF−1(s) dF−1(t)

(8) =
∫

(0,1)

∫

(0,1)
[s ∧ t − st] dF−1(s) dF−1(t) (true, even if E|X| = ∞).

(In fact, see exercise 4.2 and (6.6.2) to rigorize the steps of the proof of (7)−(8), even
when E|X| = ∞.) The parallel formula (via the same type of argument) is

(9) Var[X ] =
∫ ∞

−∞

∫ ∞

−∞
[F (x ∧ y) − F (x)F (y)] dx dy (even if E|X| = ∞),

starting from (6). Of course, we already know, when E(X2) < ∞, that

(10) Var[X] =
∫ 1

0
[F−1(t) − μ]2 dt and Var[X] =

∫ ∞

−∞
(x − μ)2 dF (x).
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Proposition 4.2 (Other formulas for means, variances, and covariances)
(i) If X ≥ 0 has df F , then

(11)
∫ ∞

0
P (X > x) dx = EX =

∫ ∞

0
(1 − F (x)) dx and EX =

∫ 1

0
F−1(t) dt.

(ii) If E|X| < ∞, then

(12) E(X) = −
∫ 0

−∞
F (x) dx +

∫ ∞

0
(1 − F (x)) dx =

∫ 1

0
F−1(t) dt.

(iii) Let r > 0. If X ≥ 0, then

(13)
∫ ∞

0
P (Xr > x) dx = E(Xr) =

∫ ∞

0
rxr−1(1 − F (x)) dx =

∫ 1

0
[F−1(t)]rdt

In fact, one of the two integrals is finite if and only if the other is finite.
(iv) Let (X, Y ) have joint df F with marginal dfs FX and FY . Let G and H be ↗
and left continuous. Then

(14) Cov [G(X), H(Y )] =
∫ ∞

−∞

∫ ∞

−∞
[F (x, y) − FX(x)FY (y)] dG(x) dH(y)

whenever this covariance is finite. Note the special case G = H = I for Cov [X, Y ].
Hint. Without loss, G−(0) = G+(0) = H−(0) = H+(0). Make use of the fact that
G(x) =

∫
[0,∞) 1[0,x)(s) dG−(s) in the first quadrant, etc.

(v) Let K be ↗ and left continuous and ξ ∼= Uniform(0, 1) (perhaps K = h(F−1) for
an ↗ left-continuous function h, and for X ≡ F−1(ξ) for a df F ). When finite,

Var [K(ξ)] =
∫ 1

0

∫ 1

0
[s ∧ t − st] dK(s) dK(t) and(15)

Var [K(ξ)] =
∫ ∞

−∞

∫ ∞

−∞
[F (x ∧ y) − F (x)F (y)] dh(x) dh(y) = Var[h(X)](16)

follow from (8) and (14).
(vi) If X ≥ 0 is integer-valued, then

(17) EX =
∑∞

k=1 P (X ≥ k) and EX2 =
∑∞

k=1(2k − 1)P (X ≥ k).

Exercise 4.2 (W̃insorized X) Let X̃a,a′ ≡ K̃a,a′(ξ), where ξ ∼= Uniform(0, 1).
Here, K̃a,a′ equals K+(a), K(t), K(1−a′) according as 0 < t ≤ a, a < t < 1−a′, 1−a′ ≤
t < 1. We say that X has been W̃insorized outside (a, 1 − a′)

(a) Use the Fubini/Tonelli combination (as above) to check that

E(K̃2
a,a′(ξ)) − (E(K̃a,a′(ξ))2 = Var[K̃a,a′(ξ)]

=
∫ 1
0

∫ 1
0 1(a,1−a′)(s)1(a,1−a′)(t)(s ∧ t − st) dK(s) dK(t);

essentially, obtain (8) for X̃a,a′ . Then let (a∨a′) → 0, and apply the MCT, to obtain
(7) for general X. (Use (6.6.2) to see that (8) holds even if E|X| = ∞.)
(b) Establish (9) using similar methods.
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Exercise 4.3 (a) Prove formulas (11)–(13). [Hint. Use integration by parts.]
(b) Prove the formula (14).

Exercise 4.4 Prove the formulas in (17).

Exercise 4.5 Give an extension of (13) to arbitrary rvs.

Exercise 4.6 (a) Use Fubini and use integration by parts to show twice that for
arbitrary F and for every x ≥ 0 we have

(18)
∫
[0,x] y

2 dF (y) = 2
∫ x
0 tP (X > t) dt − x2P (X > x).

(b) Verify (6.3.12) and (6.3.13) once again, with the current methods.

Exercise 4.7 (Integration by parts formulas) We showed in proposition 4.1 earlier
that d(UV ) = U−dV + V+dU (with left continuous U and right continuous V ).
(i) Now show (noting that dU− = dU+) that

(19) dU2 = d(U−U+) = U−dU + U+dU = (2U + �U) dU for �U ≡ U − U−.

(ii) Apply proposition 4.1 to 1 = U · (1/U) to obtain

(20) d(1/U) = −{1/(U+U−)} dU = −{1/(U(U + �U))} dU.

(iii) Show by induction that for k = 1, 2, . . . we have

(21) dUk = (
∑k−1

i=0 U i
+Uk−i−1

− ) dU.

Exercise 4.8 Show that for an arbitrary df F we have

(22) d(F/(1 − F )) = {1/((1 − F )(1 − F−))} dF.

Exercise 4.9 For any df F we have
∫

[F (x + θ) − F (x)] dx = θ for each θ ≥ 0.

Exercise 4.10 (Stein) Suppose X ∼= (0, σ2) with df F . Then g(x) ≡ ∫ ∞
x y dF (y)/σ2

is a density. (And g(x) = − ∫ x
−∞ y dF (y)/σ2 is also true.)

Exercise 4.11 (a) Show that
∫ ∞
0 {P (|X| > x)}1/2dx < ∞ implies EX2 < ∞.

(b) Show that {∫ ∞
0 {P (|X| > x)}1/2 dx ≤ r

r−2‖X‖r for any r > 2, so that the integral
on the left is finite whenever X ∈ Lr for any r > 2.
Hint. Verify (a) when X is bounded, via (13) and Markov. Then apply the MCT.
Consider (b). Bound

∫ ∞
0 =

∫ c
0 +

∫ ∞
c ≤ c +

∫ ∞
c via Markov, and then choose “c” to

minimize the bound.
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5 Important Statistical Quantitieso

Notation 5.1 (T̆rimming, W̃insorizing, and Ťruncating, and dom(a, a′))
First, let dom(a, a′) denote [0, 1 − a′) if X ≥ 0, or (a, 1] if X ≤ 0, or (a, 1 − a′)
otherwise. Let K̃a,a′(·) denote K(·) W̃insorized outside the domain of Winsorization
dom(a, a′). Thus when X takes both positive and negative values and we suppose
that “a” and “a′” are specified so small that K+(a) < 0 < K(1 − a′), it follows that

(1)
K̃a,a′(t) equals K+(a), K(t), K(1 − a′)
as 0 < t ≤ a, a < t < 1 − a′, 1 − a′ ≤ t < 1

(while a ≡ 0 and K̃(a) ≡ K(0) if X ≥ 0, etc). Let ξ denote a Uniform(0, 1) rv. Let

(2) μ̃(a, a′) ≡ μ̃K(a, a′) ≡ EK̃a,a′(ξ) ≡ ∫ 1
0 K̃a,a′(t) dt,

which is the (a, a′)-W̃insorized mean of the rv K(ξ), and let

σ̃2(a, a′) ≡ σ̃2
K(a, a′) ≡ Var[K̃a,a′(ξ)] =

∫ 1
0 K̃2

a,a′(t) dt − μ̃(a, a′)2

=
∫ 1
0

∫ 1
0 [s ∧ t − st] dK̃a,a′(s) dK̃a,a′(t)(3)

denote the (a, a′)-W̃insorized variance (recall (6.4.8)). For general X, let

(4) μ̃(a) ≡ μ̃(a, a), σ̃2(a) ≡ σ̃2(a, a), and K̃a(·) ≡ K̃a,a(·);
but μ̃(a) ≡ μ̃0,a if X ≥ 0, etc.

We now let 0 ≤ kn < n − k′
n ≤ n denote integers, and then let

(5) an ≡ kn/n and a′
n ≡ k′

n/n, so that 0 ≤ an < 1 − a′
n ≤ 1.

Let K̃n(·) denote K(·) W̃insorized outside dom(an, a′
n). Let

(6)
μ̌n ≡ μ̌K(an, a′

n) ≡ ∫ 1−ań

an
K(t) dt, μ̌n ≡ μ̌K(an, a′

n) ≡ μ̌n/(1 − an − a′
n) ,

μ̃n ≡ μ̃K(an, a′
n) ≡ μK̃n

≡ EK̃n(ξ) ≡ ∫ 1
0 K̃n(t) dt,

so that μ̌n is the (an, a′
n)-̌Trimmed mean, μ̃n is the (an, a′

n)-W̃ insorized mean, and
μ̌n is herein called the (an, a′

n)-̌Truncated mean of the rv K(ξ). Then let

(7) σ̃2
n ≡ σ̃2

K(an, a′
n) ≡ σ2

K̃n
≡ Var[K̃n(ξ)] =

∫ 1
0

∫ 1
0 [s ∧ t − st] dK̃n(s) dK̃n(t)

denote the (an, a′
n)-W̃insorized variance. When they are finite, the mean μ and vari-

ance σ2 satisfy

(8)
μ ≡ μK =

∫ 1
0 K(t) =

∫
x dF (x) = E(X) = EK(ξ) ,

σ2 ≡ σ2
K =

∫ 1
0

∫ 1
0 [s ∧ t − st] dK(s) dK(t) = EX2 − μ2 = EK2(ξ) − μ2.

Let a. ≡ inf{t : K(t) ≥ 0}, and let ao ≡ a. ∧ (1 − a·). (But a. ≡ 0 if X ≥ 0, and
a. ≡ 1 if X ≤ 0.) Now, (K − μ̃n)+ and (K − μ̃n)− denote the positive and negative
parts of K − μ̃n, and let

(9) K̄n ≡ [K − μ̃n] and K̄2
n ≡ −[(K − μ̃n)−]2 + [(K − μ̃n)+]2 on (0, 1).
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In this context, we may wish to assume that both

(10) (kn ∧ k′
n) → ∞ and (an ∨ a′

n) → 0;

and perhaps we will also assume

(11) a′
n/an → 1 and/or (kn − k′

n)/(kn ∧ k′
n) → 0.

We will refer to kn, k′
n as the trimming/Winsorizing numbers and an, a′

n as the trim-
ming/
Winsorizing fractions. Describe the case of (10) as slowly growing to ∞.

Suppose Xn1, . . . , Xnn is an iid sample with df F and qf K. Let Xn:1 ≤ · · · ≤ Xn:n

denote the order statistics (that is, they are the ordered values of Xn1, . . . , Xnn).
Let Kn(.) on [0, 1] denote the empirical qf that equals Xn:i on ((i − 1)/n, i/n], for
1 ≤ i ≤ n, and that is right continuous at zero. Now let

(12) X̄n ≡ 1
n

n∑

k=1

Xnk = μKn
(0, 0) and S2

n ≡ 1
n

n∑

k=1

(Xnk − X̄n)2 = σ2
Kn

(0, 0)

denote the sample mean and the “sample variance.” We also let

X̌n ≡ 1
n

n−k′
n∑

i=kn+1

Xn:i = μ̌Kn
(an, a′

n) , X̆n ≡ 1
n − kn − k′

n

n−k′
n∑

i=kn+1

Xn:i,(13)

X̃n ≡ 1
n

⎡

⎣knXn:kn+1 +
n−k′

n∑

i=kn+1

Xn:i + k′
nXn−k′

n

⎤

⎦ = μ̃Kn
(an, a′

n)(14)

denote the sample (an, a′
n)-T̆runcated mean, the sample (an, a′

n)-Ťrimmed mean, and
the sample (an, a′

n)-W̃insorized mean. Let X̃n:1, . . . , X̃n:n denote the (an, a′
n)-W̃insorized

order statistics, whose empirical qf is K̃n. Now note that

(15) X̃n =
1
n

n∑

i=1

X̃n:i = μ
K̃n

; let S̃2
n ≡ 1

n

n∑

i=1

(X̃n:i − X̃n)2 = σ2
K̃n

denote the sample (an, a′
n)-W̃insorized variance. Let

(16) σ̆2
n ≡ σ̃2

n/(1 − an − a′
n)2 and S̆2

n ≡ S̃2
n/(1 − an − a′

n)2.

Of course, X̄n, Sn, X̆n, S̃n estimate μ, σ, μ̆n, σ̃n. We also define the standardized forms
of these estimators as

(17) Zn ≡
√

n(X̄n − μ)
σ

and Žn ≡
√

n(X̆n − μ̆n)
σ̆n

=
√

n(X̌n − μ̌n)
σ̃n

,

and the Studentized forms of these estimators as

(18) Tn ≡
√

n(X̄n − μ)
Sn

and Ťn ≡
√

n(X̆n − μ̆n)
S̆n

=
√

n(X̌n − μ̌n)
S̃n

.

(The first formula for Ťn is for statistical application, while the second formula is for
probabilistic theory.)



5. IMPORTANT STATISTICAL QUANTITIESO 121

We define the sample median Ẍn to equal Xn:(n+1)/2 or (Xn:n/2 + Xn:n/2+1)/2,
according as n is odd or even.

Representing RVs

We will often assume that the independent rvs Xn1, . . . , Xnn having df F and qf K
are defined in terms of iid Uniform(0, 1) rvs ξn1, . . . , ξnn (as above (6.4.3)) via

(19) Xnk ≡ K(ξnk) = F−1(ξnk) for 1 ≤ k ≤ n.

As one alternative, we start with data rvs X1, . . . , Xn that are iid K and then
define Uniform(0, 1) rvs ξo

1, . . . ξ
o
n via (6.3.8). Then the rvs

(20) Xk ≡ F−1(ξo
k) (as in (6.3.9)) are just the original Xk’s.

This device in (20) can be useful. In this context, let ξo
n:1 < · · · < ξo

n:n denote the order
statistics of the iid Uniform(0, 1) rvs ξ0k of (20). Let Rn ≡ (Rn1, . . . , Rnn)′ denote the
ranks of these ξo

1, . . . , ξ
o
n, and let Dn ≡ (Dn1, . . . , Dnn)′ denote their antiranks. Thus

the rank vector Rn is a random permutation of the vector (1, 2, . . . , n)’ while Dn is
the inverse permutation. These satisfy

(21) ξo
Dnk

= ξo
n:k and ξo

k = ξo
n:Rnk

.

We will learn later that

(22) (ξo
n:1, . . . , ξ

o
n:n) and (Rn1, . . . , Rnn) are independent random vectors.

Using the rvs ξo
k of this paragraph corresponds (when forming the rank vector of data

Xk coming from a discontinuous df) to breaking ties at random in forming the ranks.
Such notation is sometimes used throughout the remainder of this book. �

The Empirical DF

Notation 5.2 (Empirical dfs and processes) Let X1, X2, . . . be iid with df F
and qf K. The empirical df Fn of (X1, . . . , Xn) is defined by

(23) Fn(x) ≡ 1
n

n∑

k=1

1(−∞,x](Xk) =
1
n

n∑

k=1

1[Xk≤x] for −∞ < x < ∞.

This is a step function on the real line R that starts at height 0 and jumps by height
1/n each time the argument reaches another observation as it moves from left to right
along the line. We can think of Fn as an estimate of F . The important study of the
empirical process

(24) En(x) ≡ √
n[Fn(x) − F (x)] for x ∈ R

will allow us to determine how this estimator Fn of F performs.
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We also let ξ1, ξ2, . . . be iid Uniform(0, 1), with true df the identity function I on
[0, 1] and with uniform empirical df

(25) Gn(t) ≡ 1
n

n∑

k=1

1[0,t](ξk) =
1
n

n∑

k=1

1[ξk≤t] for 0 ≤ t ≤ 1.

The corresponding uniform empirical process is given by

(26) Un(t) ≡ √
n[Gn(t) − t] for t ∈ [0, 1].

If we now define an iid F sequence X1, X2, . . . via Xk ≡ F−1(ξk) = K(ξk), then the
empirical df and empirical process of these (X1, . . . , Xn) satisfy

(27)
(Fn − F ) = [Gn(F ) − I(F )] on R and En = Un(F ) on R,

valid for every ω,

as follows by (6.3.3). (If we use the ξo
k’s of (6.3.8), then the Fn on the left in (22) is

everywhere equal to the Fn of the original Xk’s.)Thus our study of properties of En

can proceed via a study of the simpler Un, which is then evaluated at a deterministic
F. (Recall also in this regard theorem 5.3.3 about probability being determined by
the finite dimensional distributions.) �
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6 Infinite Varianceo

Whenever the variance is infinite, (1) will show that the Ťruncated variance σ̌2 domi-
nates the square μ̌2 of the Ťruncated mean. The same is true in the W̃insorized case,
as in (2). Let K̃a,a′ denote K Winsorized outside (a, 1 − a′).

Theorem 6.1 (Gnedenko–Kolmogorov) Every nondegenerate qf K satisfies

lim sup
a∨a′→0

{∫ 1−a′

a |K(t)| dt}2/ ∫ 1−a′

a K2(t) dt = 0 whenever EK2(ξ) = ∞,(1)

Var[K̃a,a′(ξ)]/EK̃2
a,a′ (ξ) → 1 as (a ∨ a′) → 0 whenever EK2(ξ) = ∞.(2)

Proof. Let h > 0 be continuous, symmetric about t = 1/2, ↑ to ∞ on [1/2, 1),
and suppose it satisfies Ch ≡ ∫ 1

0 h2(t) dt < ∞. Let b ≡ 1 − a′. Then Cauchy–Schwarz
provides the bound

(a) {∫ b
a |K(t)| dt}2 = {∫ b

a h(t)|K(t)/h(t)| dt}2 ≤ ∫ b
a h2(t) dt

∫ b
a [K2(t)/h2(t)] dt.

Fix c ≡ cε so close to zero that Ch/h2(c) < ε. Fix cε, and let a ∨ a′ → 0. Then

{∫ b
a |K(t)| dt}2/ ∫ b

a K2(t) dt ≤ Ch

∫ b
a [K2(t)/h2(t)] dt/

∫ b
a K2(t) dt

≤ Ch

{∫ 1−c
c K2(t) dt

h2(1/2)
+

(
∫ c
a +

∫ b
1−c)K

2(t) dt

h2(c)

}

/
∫ b
a K2(t) dt(b)

≤ Ch{∫ 1−c
c K2(t) dt/h2(1/2)}/

∫ b
a K2(t) dt + ε(c)

< 2ε for a and b near enough to 0 and 1, since EK2(ξ) = ∞.(d)

Then (2) follows from [aK+(a) + a′K(1 − a′)]2/[aK2
+(a) + a′K2(1 − a′)] → 0. �

Exercise 6.1 (Comparing contributions to the variance) Let K(.) be arbitrary. Estab-
lish the following elementary properties of qfs (of non-trivial rvs):

lim sup
a∨a′→0

[aK2
+(a) + a′K2(1 − a′)]/σ̃2

{
= 0 if EK2(ξ) < ∞,
≤ 1 if EK2(ξ) = ∞.

(a)

lim sup
a∨a′→0

∫ 1−a′

a K2(t) dt/σ̃2

{
< ∞ always,
≤ 1 if EK2(ξ) = ∞.

(b)

lim sup
a∨a′→0

{a|K+(a)| + a′|K(1 − a′)|}/σ̃

{
= 0 always,
= 0 if EK2(ξ) = ∞.

(c)

lim sup
a∨a′→0

∫ 1−a′

a |K(t)| dt/σ̃

{
< ∞ always,
= 0 if EK2(ξ) = ∞.

(d)

lim sup
a∨a′→0

E|K̃a,a′(ξ)|/σ̃

{
< ∞ always,
= 0 if EK2(ξ) = ∞.

(e)

Exercise 6.2 Let 0 < r < s. Show that for every nondegenerate qf K we have

lim
a∨a′

sup
→0

{∫ 1−a′

a |K(t)|r dt}s/r/
∫ 1−a′

a |K(t)|s dt = 0 if E|K(ξ)|s = ∞.(3)
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Exercise 6.3 (An added touch) Let K ≥ 0 be ↘ on (0, 1) with
∫ 1
0 K(t) dt < ∞.

There exists a positive ↘ function h(·) on (0, 1) with h(t) → ∞ as t → 0 for which
∫ 1
0 h(t)K(t) dt < ∞. (Note exercise 3.5.12.)

Proposition 6.1 Let X have sth absolute moment E|X|s = ∞, and let 0 < r < s.
Let |X|sn ≡ 1

n

∑n
1 |Xk|s for iid rvs X1, X2, . . . distributed as X, etc. Then

[ |X|rn]s/r/ |X|sn →a.s. 0 (using the following remark 6.1).(4)

Remark 6.1 It is useful to give this proof now even though it will not be until the
SLLN (theorem 8.4.2) that we prove E|X|s < ∞ yields |X|sn →a.s. E|X|s. Likewise,
E|X|s = ∞ yields |X|sn →a.s. ∞. These will be used in the proofs below.

Proof. We follow the proof of Gnedenko–Kolmogorov’s theorem 6.6.1, as we give
the proof of (4) for s = 2 and r = 1. Let Kn denote the empirical qf. Let h be
positive, continuous, symmetric about t = 1

2 , ↑ to ∞ on [12 , 1) and suppose it satisfies
Ch ≡ ∫ 1

0 h2(t) dt < ∞. Define a = 1 − b = 1/(2n). Then Cauchy–Schwarz gives the
bound

(
∫ b
a |Kn(t)| dt)2 = (

∫ b
a h(t)|Kn(t)/h(t)| dt)2 ≤ ∫ b

a h2(t) dt
∫ b
a [K2

n(t)/h2(t)] dt

= Ch

∫ b
a [K2

n(t)/h2(t)] dt.(a)

Let c ≡ cε be fixed so close to zero that Ch/h2(c) < ε/8. Then

{ 1
n

∑n
1 |Xk|}2/X2

n ≤ 4{∫ b
a |Kn(t)| dt}2/X2

n

(the “4” comes from the definition of a and b,

which gives only half of the two end intervals)

≤ 4Ch

∫ b
a [K2

n(t)/h2(t)] dt/X2
n by (a)

≤ 4Ch

{∫ 1−c
c K2

n(t) dt

h2(1/2)
+

(
∫ c
a +

∫ b
1−c)K

2
n(t) dt

h2(c)

}

/X2
n(b)

≤ 4Ch

h2(1/2)
{∫ 1−c

c K2
n(t) dt/X2

n} +
4Ch

h2(c)
· {X2

n/X2
n}(c)

<
ε

2
+

ε

2
· 1 = ε for all n exceeding some nε,(d)

using remark 6.1 for X2
n →a.s. ∞ in the final step. (Thus the numerator of the leading

term in (c) converges a.s. to a finite number, while the denominator has an a.s. limit
exceeding 2/ε times the numerator.) �

Exercise 6.4 (a) Prove proposition 6.1 for general 0 < r < s.
(b) Now for iid rvs, (4) implies that →p 0 as well. Hence, →p 0 is immediate if
Xn1, . . . , Xnn are iid as X, for each n. Be clear on this.
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Proposition 6.2 (Equivalent versions of negligibility)
For any vector X ≡ (X1, . . . , Xn), let

(5) D2
n ≡ [max1≤k≤n

1
n

|Xk − X̄n|2]/S2
n where S2

n ≡ X2
n − (X̄n)2

Let X1, X2, . . . be iid as X, and set X= (X1, . . . , Xn)′. Then

(6) D2
n →a.s. 0 if and only if [max1≤k≤n

1
n

X2
k ]/X2

n →a.s. 0.

Let Xn1, . . . , Xnn be iid as X, for each n ≥ 1. Set X= (Xn1, . . . , Xnn)′. Then

(7) D2
n →p 0 if and only if [max1≤k≤n

1
n

X2
nk]/X2

n →p 0.

Proof. Consider (6). Note that

(a) D2
n =

⎧
⎨

⎩
max | Xk√

nX2
n

− X̄n√

nX2
n

|
⎫
⎬

⎭

2

/{1 − (X̄n)2/X2
n}.

Since 0 ≤ (X̄n)2/X2
n ≤ 1 always holds by the Liapunov inequality, we have

(b) |X̄n|/
√

nX2
n ≤ 1/

√
n →a.s. 0 always holds for all rvs.

Thus the second term in the numerator always goes to zero for all rvs (independent,
or not). Consult remark 6.1 for the following two claims. The denominator of (a)
converges a.s. to 1 − 0 = 1 if EX2 = ∞ (by (4)), while the denominator of (a)
converges a.s. to (1 − E2X/EX2) < 1 if EX2 < ∞. Thus D2

n(ω) → 0 for a.e. fixed
(X1(ω), X2(ω), . . .) if and only if the lead term in the numerator of (a) goes to zero
for a.e. fixed ω; that is, if and only if [max |Xk|]/{nX2

n}1/2 → 0 for a.e. fixed ω. This
gives (6). Then (7) follows analogously using exercise 6.4b. �

Proposition 6.3 Let X ≥ 0 with EXs = ∞ have df F and qf K. The rth partial
absolute moment Mr is defined on [0, 1] by

(8) Mr(t) ≡ ∫ 1−t
0 Kr(u) du =

∫ 1
t mr(u) du, where mr(t) ≡ [K(1 − t)]r.

Then, for 0 < r < s,

(9) tms(t)/Ms(t) → 0 implies tmr(t)/Mr(t) → 0.

(Sections C.2–C.3) contain a good deal more in the spirit of (1)–(3) and (9).)

Proof. Raising to a power increases a maximum more than an average, and so

(10)
tmr(t)
Mr(t)

=
tKr(1 − t)

∫
(t,1] K

r(1 − u) du
≤ t

1 − t

Ks(1 − t)
1

1−t

∫
(t,1] K

s(1 − u) du
=

tms(t)
Ms(t)

for all t so close to 1 that K(1 − t) > 1. This establishes (9). �
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The CLT and Slowly Varying Functions∗

Let Xn1, . . . , Xnn be iid with df F and qf K ≡ F−1. The central limit theorem (CLT)
states that Z̄n ≡ √

n[X̄n − μ]/σ →d N(0, 1) when σ2 is finite. In this case

(11) t[K2
+(ct) ∨ K2(1 − ct)]/σ2 → 0 as t → 0, for each fixed c > 0;

extend the calculation just below (6.4.6) to the second moment case to see this.
What if σ2 is infinite? Let ξ denote a Uniform(0, 1) rv. Let X ≡ K(ξ), so that X

has df F . Let X̃(a) ≡ K̃a,a(ξ), with mean μ̃(a) ≡ ∫ 1
0 K̃a,a(t) dt and variance

(12) σ̃2(a) =
∫ 1
0

∫ 1
0 [r ∧ s − rs] dK̃a,a(r) dK̃a,a(s),

which increases to σ2 as a ↘ 0, whether σ2 is finite or infinite. This expression makes
no reference to any mean (such as μ or μ̃(a)). This is nice! It turns out that

(13) Z̄n ≡ √
n{X̄n − μ̃(1/n)}/σ̃(1/n) →d N(0, 1)

if and only if

(14) t[K2
+(ct) ∨ K2(1 − ct)]/σ̃2(t) → 0 as t → 0, for each fixed c > 0.

This (14) holds if and only if σ̃2(t) does not grow too fast; that is, if and only if

(15) σ̃2(ct)/σ̃2(t) → 1 as t → 0, for each fixed c > 0.

It is appropriate to examine such slow variation of σ̃2(t) in the infinite-variance case.
We shall do so very carefully in appendix C, in both the df domain and the quantile
domain. Often this slow variation question is examined in the context of the CLT and
is treated in the context of the general theory of slowly varying functions. But the
equivalence of similar conditions in appendix C will follow from a careful treatment
of the easier WLLN and treating slowly varying functions in an elementary fashion
from simple pictures and a dash of Cauchy–Schwarz. The connection to the CLT (16)
will not be made until the optional sections 10.5–40.6. To use this CLT one might
verify the limited contribution of the tails, via (18) or (17), and then claim (16), (20),
and (19).

Theorem 6.2 (A studentized CLT) Let Xn1, . . . , Xnn be row independent, all with
nondegenerate df F . Conditions (14) and (15) are each equivalent to the conditions
below.

√
n{X̄n − μ̃(1/n)}/σ̃(1/n) →d N(0, 1).(16)

R(x) ≡ x2P (|X| > x)/
∫
[y2

≤x]y
2dF (y) → 0 as x → ∞.(17)

U(x) ≡ ∫
[y2≤x]y

2 dF (y) satisfies U(cx)/U(x) → 1, for each c > 0.(18)

Dn ≡ [ max
1≤k≤n

1
n

|Xnk − X̄n|]/Sn →p 0. Or, [ max
1≤k≤n

1
n

X2
nk]/X2

n →p 0.(19)

S2
n/σ̃2(1/n) →p 1. Or, X2

n/u1n →p 1,(20)

where u1n = U(x1n) for the (1 − 1/n)-quantile x1n of |X|. These claims imply
the Studentized result

√
n{X̄n − μ̃(1/n)}/Sn →d N(0, 1), which easily leads to an

asymptotically valid confidence interval for μ̃(1/n).) (See theorem 10.6.1 for a list
containing many more equivalent versions.)



Chapter 7

Independence and Conditional
Distributions

1 Independence

The idea of independence of events A and B is that the occurrence or nonoccurrence of A
has absolutely nothing to do with the occurrence or nonoccurrence of B. It is customary to
say that A and B are independent events if

(1) P (AB) = P (A)P (B).

Classes C and D of events are called independent classes if (1) holds for all A ∈ C and all
B ∈ D. We need to define the independence of more complicated collections.

Definition 1.1 (Independence) Consider a fixed probability space (Ω,A, P ).
(a) Consider various sub σ-fields of A. Call such σ-fields A1, . . . ,An independent σ-fields if
they satisfy

(2) P (A1 ∩ · · · ∩ An) =
∏n

1 P (Ai) whenever Ai ∈ Ai for 1 ≤ i ≤ n.

The σ-fields A1,A2, . . . are called independent σ-fields if A1, . . . ,An are independent for each
n ≥ 2. (Use this definition for arbitrary classes A1, . . . ,An, too.)
(b) Rvs X1, . . . , Xn are called independent rvs if the σ-fields F(Xi) ≡ X−1

i (B), for 1 ≤ i ≤ n,
are independent. Rvs X1,X2, . . . are called independent rvs if X1, . . . , Xn are independent
for each n ≥ 2.
(c) Events A1, . . . , An are called independent events if the σ-fields σ[A1], . . . , σ[An] are inde-
pendent σ-fields; here note that

(3) σ[Ai] = {φ,Ai, A
c
i ,Ω}.

The next exercise is helpful because it will relate the rather formidable definition of inde-
pendent events in (3) back to the simple definition (1).

Exercise 1.1 (a) Show that P (AB) = P (A)P (B) if and only if {∅, A,Ac, Ω} and
{∅, B,Bc,Ω} are independent σ-fields. [Thus we maintain the familiar (1).]
(b) Show that A1, . . . , An are independent if and only if

(4) P (Ai1 · · · Aik) =
∏k

j=1 P (Aij )
whenever 1 ≤ i1 < · · · < ik ≤ n with 1 ≤ k ≤ n.

c© Springer International Publishing AG 2017
G.R. Shorack, Probability for Statisticians, Springer Texts in Statistics,
DOI 10.1007/978-3-319-52207-4 7
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Remark 1.1 When discussing a pair of possibly independent events, one should draw the
Venn diagram as a square representing Ω divided into half vertically (with respect to A,Ac)
and into half horizontally (with respect to B,Bc) creating four cells (rather than as the
familiar two-circle picture). Also, if one writes on the table the probability of each of the
four combinations AB, ABc, AcB,AcBc, one has the contingency table superimposed on the
picture. (See figure 1.1) [This extends to two partitions (A1, . . . , Am) and (B1, . . . , Bn), but
not to three events.] �

B

Bc

A Ac

P(AB) P(AcB)

P(ABc) P(AcBc)

Figure 1.1 The 2 × 2 table.

Theorem 1.1 (Expectation of products) Suppose X and Y are independent rvs for
which g(X) and h(Y ) are integrable. Then g(X)h(Y ) is integrable, and

(5) E[g(X)h(Y )] = Eg(X)Eh(Y ).

Proof. The assertion is obvious for g = 1A and h = 1B . Now hold g = 1A fixed, and
proceed through simple and nonnegative h. Then with h held fixed, proceed through simple,
nonnegative, and integrable g. Then extend to integrable h. �

Proposition 1.1 (Extending independence on π-systems)
(a) Suppose the π-system C and a class D are independent. Then

σ[C] and D are independent.

(b) Suppose the π-systems C and D are independent. Then

σ[C] and σ[D] are independent σ-fields.

(c) If C1, . . . , Cn are independent π-systems (see (2)), then

σ[C1], . . . , σ[Cn] are independent σ-fields.

Proof. (a) Fix D ∈ D, and define

(i) CD ≡ {A ∈ σ[C] : P (AD) = P (A)P (D)}.

We now demonstrate that CD is a λ-system (that trivially contains C). Trivially, Ω ∈ CD. If
A,B ∈ CD with A ⊂ B, then

P ((A \B)D) = P (AD \BD) = P (AD) − P (BD)
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(j) = P (A)P (D) − P (B)P (D) = P (A \B)P (D);

and this implies that A \B ∈ CD. If An ↗ A with all An ∈ CD, then

(k) P (AD) = P (limAnD) = lim P (AnD) = lim P (An)P (D) = P (A)P (D);

and this implies that A ∈ CD. Thus CD is a λ-system, and it trivially contains the π-system C.
Thus CD ⊃ λ[C] = σ[C], using (1.1.19) for the equality. Finally, this is true for every D ∈ D.

Just apply part (a) to the π-system D and the arbitrary class σ[C] to obtain (b). Part (c)
is left to exercise 1.3. �

Theorem 1.2 Let X1,X2, . . . be independent rvs on (Ω,A, P ). Let i ≡ (i1, i2, . . .) and
j ≡ (j1, j2, . . .) be disjoint sets of integers. (a) Then

(6) F(Xi1 ,Xi2 , . . .) and F(Xj1 ,Xj2 , . . .) are independent σ-fields.

(b) This extends immediately to countably many disjoint sets of integers.

Corollary 1 (Preservation of independence)
Any rvs h1(Xi1 ,Xi2 , . . .), h2(Xj1 ,Xj2 . . .), . . . (that are based on disjoint sets of the underlying
independent rvs Xk) are themselves independent rvs, for any choice of the B-B∞-measurable
functions h1, h2, . . ..

Proof. Let C denote all sets of the form C ≡ [Xi1 ∈ B1, . . . , Xim ∈ Bm], for some m ≥ 1
and for B1, . . . , Bm in B. Let D denote all sets of the form D ≡ [Xj1 ∈ B′

1, . . . , Xjn ∈ B′
n]

for some n ≥ 1 and sets B′
1, . . . , B

′
n in B. Both C and D are π̄-systems, while σ[C] =

F(Xi1 ,Xi2 , . . .) and σ[D] = F(Xj1 ,Xj2 , . . .). In fact, F(Xi1 ,Xi2 , . . .) = X−1
i (B∞) = X−1

i

(σ[C∞]) = σ[X−1
i (C∞)] = σ[C]. Thus

P (C ∩ D) = P ({
⋂m

k=1[Xik ∈ Bk]} ∩ {
⋂n

l=1[Xjl ∈ B′
l]})(p)

=
∏m

k=1 P (Xik ∈ Bk)
∏n

l=1 P (Xjl ∈ B′
l) by independence

= P (
⋂m

k=1[Xik ∈ Bk])P (
⋂n

l=1[Xjl ∈ B′
l]) by independence

= P (C)P (D),(q)

so that C and D are independent classes. Thus σ[C] and σ[D] are independent by proposition
1.1(b), as is required for (6). The extension to countably many disjoint sets of indices is done
by induction using proposition 1.1(c), and is left to the exercises. (The corollary is imme-
diate.) �

Exercise 1.2 Prove theorem 1.2(b).

Exercise 1.3 Prove proposition 1.1(c).

Criteria for Independence

Theorem 1.3 The rvs (X1, . . . , Xn) are independent rvs if and only if

(7) FX1,...,Xn
(x1, . . . , xn) = FX1(x1) · · · FXn

(xn) for all x1, . . . , xn.
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Proof. Clearly, independence implies that the joint df factors. For the converse we
suppose that the joint df factors. Then for all x1, . . . , xn we have

P (X1 ≤ x1, . . . , Xn ≤ xn) = P (X1 ≤ x1) · · · P (Xn ≤ xn) .

That is, the classes Ci ≡ {[Xi ≤ xi] : xi ∈ R} are independent, and they are π-systems, with
σ[Ci] = F(Xi). Independence of X1, . . . , Xn then follows from proposition 1.1(c). �

Exercise 1.4 Rvs X,Y that take on only a countable number of values are independent
if and only if P ([X = ai][Y = bj ]) = P (X = ai)P (Y = bj) for all i, j.

Exercise 1.5 Show that rvs X,Y having a joint density f(., .) are independent if and
only if the joint density factors to give f(x, y) = fX(x)fY (y) for a.e. x, y.

Remark 1.2 That rv’s X,Y are independent if and only if their characteristic function
factors appears as theorem 9.5.3 of Section 9. �
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2 The Tail σ-Field

Definition 2.1 (The tail σ-field) Consider an arbitrary random element X ≡ (X1, X2, . . .)
from (Ω,A, P ) to (R∞,B∞). Then T ≡

⋂∞
n=1 F(Xn,Xn+1, . . .) is called the tail

σ-field, and any event D ∈ T is called a tail event.

Theorem 2.1 (Kolmogorov’s 0-1 law) If X1,X2, . . . are independent rvs, then P (D)
equals 0 or 1 for all tail events D in the tail σ-field T .

Proof. Fix a set D ∈ T , and then note that D ∈ F(X) = X−1(B∞). By the Halmos
approximation lemma of exercise 1.2.3 and the introduction to section 2.5, there exists an
integer n and a set Dn in the nth member of ∪mF(X1, . . . , Xm) = ∪mX−1

m (Bm) = (a field)
such that P (Dn�D) → 0. Thus both P (D ∩ Dn) → P (D) and P (Dn) → P (D) occur. Hap-
pily, D ∈ T ⊂ F(Xn+1, . . .). so that D and Dn ∈ F(X1, . . . , Xn) are independent. Hence

P 2(D) ← P (D)P (Dn) = P (D ∩ Dn) → P (D),

yielding P 2(D) = P (D). Thus P (D) = 0 or 1. �

Remark 2.1 (Sequences and series of independent rvs converge a.s., or almost
never) Note that for any Borel sets B1, B2, . . . in B,

(1) [Xn ∈ Bn i.o.] equals lim[Xn ∈ Bn] =
⋂∞

n=1

⋃∞
m=n[Xm ∈ Bm] ∈ T ,

since
⋃∞

m=n[Xm ∈ Bm] ∈ F(Xn, . . .). Also,

lim[Xn ∈ Bn] =
⋃∞

n=1

⋂∞
m=n[Xm ∈ Bm] = (

⋂∞
n=1

⋃∞
m=n[Xm ∈ Bc

m])c

= (lim[Xn ∈ Bc
n])c ∈ T .(2)

Note also that

[ω : Xn(ω) → (some finite X(ω))]c = [ω : Xn(ω) � (some finite X(ω))]

=
⋃∞

k=1

⋂∞
n=1

⋃∞
m=n[ω : |Xm(ω) − Xn(ω)| > 1/k] ∈ (

⋃∞
k=1 T ) = T .(3)

Likewise, if Sn =
∑n

i=1 Xi, then

[ω : Sn(ω) → (some finite S(ω))]c

=
⋃∞

k=1

⋂∞
n=1

⋃∞
m=n[ω : |

∑m
i=n+1 Xi(ω)| > 1/k] ∈ T .(4)

The following result has thus been established. �

Theorem 2.2 Sequences and series of independent rvs can only converge either a.s. or
almost never.

The Symmetric σ-Field

Definition 2.2 (Symmetric sets) Let π denote any mapping of the integers onto them-
selves that (for some finite n) merely permutes the first n integers. Let X ≡ (X1,X2, . . .) be
B∞-measurable, and set Xπ ≡ (Xπ(1),Xπ(2), . . .). Then A ≡ X−1(B) for some B ∈ B∞ is
called a symmetric set if A = X−1

π (B) for all such π. Let S denote the collection of all
symmetric sets.
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Exercise 2.1 (Hewitt-Savage 0-1 law)
Let X ≡ (X1,X2, . . .) have iid coordinates Xk.
(a) Show that P (A) equals 0 or 1 for every A in S.
(b) Show that S is a σ-field, called the symmetric σ-field.
(c) Show that the tail σ-field T is a subset of the symmetric σ-field S.
(d) Give an example where T is a proper subset of S.
(Hint. Use the approximation lemma of exercise 1.2.3 as it was used above.)
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3 Uncorrelated Random Variables

Recall from definition 3.4.1 that X ∼= (μ, σ2) denotes that the rv X on a probability space
(Ω,A, P ) has mean μ and a variance σ2 that is assumed to be finite.

Definition 3.1 (Correlation) If X1, . . . , Xn have finite variances, then we call them uncor-
related if Cov[Xi,Xj ] ≡ E{(Xi − EXi)(Xj − EXj)} = 0 for all i �= j. Define the dimension-
less quantity

Corr[Xi,Xj ] ≡ Cov[Xi,Xj ]√
Var[Xi]Var[Xj ]

to be the correlation between Xi and Xj . If X ≡ (X1, . . . , Xn), then the n × n covariance
matrix of X is defined to be the matrix Σ ≡ |[σij ]| whose (i, j)th element is σij ≡ Cov[Xi, Xj ].

Proposition 3.1 Independent rvs with finite variances are uncorrelated.

Proof. Now,

Cov [X,Y ] = E[(X − μX)(Y − μY )] = E(X − μX)E(Y − μY ) = 0 · 0 = 0,(a)

where

0 ≤ {Cov [X , Y ]}2 ≤ Var[X] Var [Y ] < ∞(b)

by Cauchy–Schwarz. �

Note from (b) (or recall from (3.4.14)) that

(1) | Corr [X,Y ]| ≤ 1 for any X and Y having finite variances.

Proposition 3.2 If (X1, . . . , Xn) are uncorrelated and Xi
∼= (μi, σ

2
i ), then

(2)
n∑

1

aiXi
∼=

(
n∑

1

aiμi,
n∑

1

a2
i σ

2
i

)

.

In particular, suppose X1, . . . , Xn are uncorrelated (μ, σ2). Then

(3) X̄n ≡ 1
n

n∑

1

Xi
∼=

(

μ,
σ2

n

)

, while
√

n(X̄n − μ)/σ ∼= (0, 1),

provided that 0 < σ < ∞. Moreover

Cov

⎡

⎣
m∑

i=1

aiXi,

n∑

j=1

bjYj

⎤

⎦ = Cov

⎡

⎣
m∑

i=1

ai(Xi − μXi
),

n∑

j=1

bj(Yj − μYj
)

⎤

⎦

=
m∑

i=1

n∑

j=1

aibj Cov [Xi, Yj ].(4)

Note that if

(5) Y = AX, then ΣY = AΣXA′.

Proof. This is all trivial. �
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4 Basic Properties of Conditional Expectation 0

The Lebesgue integral is a widely applicable tool that extended the value of the Reimann
approach. It allows more general “heavy duty results.” So too, we now need to extend and
rigorize our elementary approach to conditional expectation, in a way that keeps the useful
results intact. (Illustrations follow the definitions.)

Definition 4.1 (Conditional expectation) Let (Ω,A, P ) denote a probability space. Let
D denote a sub σ-field of A. Let Y be a rv on (Ω,A, P ) for which E|Y | < ∞. By E(Y |D)(·)
we mean any D-measurable function on Ω such that

(1)
∫

D

E(Y |D)(ω) dP (ω) =
∫

D

Y (ω) dP (ω) for all D ∈ D.

Such a function exists and is unique a.e. P , as is seen below; we call this the conditional
expectation of Y given D. If X is another rv on (Ω,A, P ), then

(2) E(Y |X)(ω) ≡ E(Y |F(X))(ω);

we recall that F(X) ≡ X−1(B) for the Borel subsets B of the real line R.

Justification of definition 4.1. Let E|Y | < ∞. Define a signed measure ν on D by

ν(D) ≡
∫

D
Y dP for all D ∈ D.(a)

Now, ν is a signed measure on (Ω,D) by example 4.1.1, and the restriction of P to D (denoted
by P |D) is another signed measure on (Ω,D). Moreover, that ν � P |D is trivial. Thus the
Radon–Nikodym theorem guarantees, uniquely a.e. P |D, a D-measurable function h such that
(recall exercise 3.2.3 for the second equality)

ν(D) =
∫

D
hd(P |D) =

∫
D

h dP for all D ∈ D.(b)

Now, being D-measurable and unique a.s. P |D implies that the function h is unique a.s. P .
Define E(Y |D) ≡ h. Radon–Nikodym derivatives are only unique a.e., and any function that
works is called a version of the Radon–Nikodym derivative. �

Proposition 4.1 Suppose that Z is a rv on (Ω,A) that is F(X)-measurable. Then there
exists a measurable function g on (R,B) such that Z = g(X).

Proof. This is just proposition 2.2.5 again. �

Notation 4.1 Since E(Y |X) = E(Y |F(X)) is F(X)-measurable, the previous proposi-
tion shows that h ≡ E(Y |X) = g(X) for some measurable function g on (R,B). The theorem
of the unconscious statistician gives

∫
x−1(B)

g(X) dP =
∫

B
g dPX , where we have written the

general set D ∈ F(X) as D = X−1(B) for some B ∈ B. Thus we may define E(Y |X = x) =
g(x) to be a B-measurable function on R for which

(3)
∫

B

E(Y |X = x) dPX(x) =
∫

X−1(B)

Y (ω) dP (ω) for all B ∈ B.

This function E(Y |X = x) exists and is unique a.s. PX , as above. In summary:

(4) If g(x) ≡ E(Y |X = x), then h(ω) ≡ E(Y |X)(ω) = g(X(ω)). �

http://dx.doi.org/10.1007/978-3-319-52207-4_4
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Definition 4.2 (Conditional probability) Since P (A) = E1A for standard probability,
define the conditional probability of A given D, denoted by P (A|D), by

(5) P (A|D) ≡ E(1A|D).

Equivalently, P (A|D) is a D-measurable function on Ω satisfying

(6) P (A ∩ D) =
∫

D

P (A|D) dP for all D ∈ D,

and it exists and is unique a.s. P . Also,

P (A|X) ≡ P (A|F(X)) .

Thus P (A|X)(ω) = g(X(ω)), where g(x) ≡ P (A|X = x) is a B-measurable function satisfying

(7) P (A ∩ X−1(B)) =
∫

B

P (A|X = x) dPX(x) for all B ∈ B.

This function exists and is unique a.s. PX .

Discussion 4.1 (Discrete case; the elementary treatment) Given that the event B has
occurred (with P (B) > 0), how likely is it now for the event A to occur. The classic elementary
approach defines the conditional probability of A given B by P (A|B) ≡ P (AB)/P (B). Thus
we have taken a revisualized view of things, while regarding B as the updated sample space.
For any event B, only that portion AB of the event A is relevant (as B was known to
have occurred). Thus all that matters is the probabilistic size P (AB) of AB relative to
the probabilistic size P (B) of B. The resulting P (·|B) is a probability distribution over
AB ≡ {AB : A ∈ A}.

For discrete rvs X and Y with mass function p(·, ·) this leads to

pY |X=x(y) ≡ p(x, y)/pX(x), for each x for which pX(x) �= 0,

for the conditional mass function. It is then natural to define

E(ψ(Y )|X = x) ≡
∑

all y ψ(y)pY |X=x(y), for each x with pX(x) �= 0

when E|ψ(Y )| < ∞. It is then elementary to show that E(Y ) = E(E(ψ(Y )|X)). �

Exercise 4.1 (“Discrete” conditional probability; the general treatment) Suppose
Ω =

∑
i Di, and then define D = σ[D1,D2, . . .]. Show that (whether the summation is finite

or countable) the different expressions needed on the different sets Di of the partition D can
be combined together via

(8) P (A|D) =
∑

i

P (ADi)
P (Di)

1Di
,

where (just for definiteness) P (ADi)
P (Di)

≡ P (A) if P (Di) = 0. For general Y ∈ L1 show that the
function E(Y |D) takes the form

(9) E(Y |D) =
∑

i

{
1

P (Di)

∫

Di

Y dP

}

1Di
,

with the term in braces defined to be 0 if P (Di) = 0 (just for definiteness). (We note that the
standard elementary approach to conditional probability is, in the discrete case, embedded
within (8) and (9)–but it sits in there “differently.”)
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P(Y = 1|D)(·)

P(A |D)(·) =

E(Y |D)(·)

P(Y = 2|D)(·) P(Y = 3|D)(·)

k

P(A ∩ Dk) 1Dk
(·)

P(Dk)

Figure 4.1 Conditional probability and conditional expectation

Example 4.1 Let an urn consist of six balls identical except for the numbers 1, 2, 2,
3, 3, 3. Let X1 and X2 represent a sample of size two drawn with replacement, and set
Y = X2 and S = X1 + X2. Consider figure 4.1 above. In the figure (a) we see the sample
space Ω of (X1,X2) with the values of S superimposed, while the figure (b) superimposes the
probability function on the same representation of Ω. In the figure (c) we picture the five
“diagonal sets” that generate D ≡ S−1(B). The three-part figure (d) depicts P (Y = i|D)(·)
as a D-measurable function on Ω for each of the three choices [Y = 1], [Y = 2], and [Y = 3]
for A, while the figure (e) depicts E(Y |D)(ω) as a D-measurable function. (Had we used
the elementary definition of P (Y = ·|S = k) as a function of y for each fixed k, then the
conditional distributions would have been those shown along the five diagonals in the figure
(f), while E(Y |S = k) is shown at the end of each diagonal.) �
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Remark 4.1 It will be seen that (with A and Ai’s regarded as fixed)

0 ≤ P (A|D) ≤ 1 a.s. P,(10)
P (

∑∞
1 Ai|D) =

∑∞
1 P (Ai|D) a.s. P,(11)

P (∅|D) = 0 a.s. P,(12)
A1 ⊂ A2 implies P (A1|D) ≤ P (A2|D) a.s. P.(13)

(To see these, just apply parts (16)(monotonicity) and (17)(MCT) of theorem 4.1 appearing
below.) These properties remind us of a probability distribution. �

Discussion 4.2 (Continuous case; the elementary treatment) For discrete rvs, the conditional
distribution is specified by

g(y|x) ≡ P (Y = y|X = x) ≡ P (Y = y and X = x)/P (X = x).

(This is in line with discussion 4.1.) One “natural approximation” of this approach for
continuous rvs considers

g(y|x) = lim
h→0

∫ x+h

x−h
fX,Y (r, y) dr/

∫ x+h

x−h
fX(r) dr.

But making this approach rigorous fails without sufficient smoothness, and leads to a tedious
and limited theory. So elementary texts just suggest the even more blatant and “less rigorous”
imitation of the discrete result via

g(y|x)�y
.=

fX,Y (x, y)�x�y

fX(x)�x

.=
fX,Y (x, y)�y

fX(x)
.

Discussion 4.3 suggests that the general approach of this section should ultimately lead to
this same elementary result in the case when densities do exist.

Moreover, if (x(t), y(t)), a ≤ t ≤ b, parametrizes a smooth curve (imagine a circle about
the origin, or a line of slope 1350), it is definition 4.2 that leads rigorously to formulas of the
type

f(x(t), y(t))
√

(dx/dt)2 + (dy/dt)2
∫ b

a
f(x(t′), y(t′))

√
(dx/dt′)2 + (dy/dt′)2dt′

for a ≤ t ≤ b

for the conditional density at the point t given that one is on the curve. �

Discussion 4.3 (Continuous case; the general treatment) Let us consider the current
approach to conditional probability. We will illustrate it in a special case. Let A ∈ B2 denote
a two-dimensional Borel set. Let T ≡ T (X) ≡ (X2

1 + X2
2 )1/2, so that T = t defines (in the

plane Ω = R2) the circle Ct ≡ {(x1, x2) : x2
1 + x2

2 = t2}. Let B ∈ B denote a one-dimensional
Borel set of t’s, and then let D ≡ T−1(B) = ∪{Ct : t ∈ B}. Requirements (6) and (7) (in a
manner similar to exercise 4.1, but from a different point of view than used in discussion 4.1)
become

P (AD) = P (A ∩ (∪{Ct : t ∈ B})) =
∫

∪{Ct:t∈B} P (A|T )(x) dPX(x)

≡
∫

∪{Ct:t∈B} hA(x) dPX(×) =
∫

B
gA(t) dPT (t) ≡

∫
B

P (A|T = t) dPT (t).

So if gA(·) is given a value at t indicating the probabilistic proportion of A ∩ Ct that belongs to
A (or h(x) is given this same value at all x ∈ Ct), then the above equation ought to be satisfied.

http://dx.doi.org/10.1007/978-3-319-52207-4_4
http://dx.doi.org/10.1007/978-3-319-52207-4_4
http://dx.doi.org/10.1007/978-3-319-52207-4_4
http://dx.doi.org/10.1007/978-3-319-52207-4_4
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(When densities exist, such a value would seem to be gA(t) =
∫

Ct
1A(x)pX(x)dx/

∫
Ct

pX(x)dx,
while hA(x) = gA(T (x)) would assign this same value at each x ∈ Ct.) The requirements (1)
and (2) become

∫
∪{Ct:t∈B} Y dP =

∫
∪{Ct:t∈B} h(x) dP (x) =

∫
B

g(t) dPT (t).

(When densities exist, the value E(Y |T = t) = g(t) =
∫

Ct
Y (x)p(x) dx/

∫
Ct

p(x) dx seems
appropriate, with h(x) assigning this same value for all x in Ct.)

The reader is urged to draw an (x1, x2)-plane to serve as the sample space for X ≡ (X1,X2)
and a half line [0,∞) to serve as a sample space for T ≡ (X2

1 + X2
2 )1/2. Then any D ≡ F(T )

measurable function, such as gA(t) ≡ P (A|T = t), leads to the function hA(x) = gA(T (x)) =
gA(t) that is a constant on every circle Ct in the (x1, x2)-plane. Picture this on your diagram.
We need to guarantee that our specific guess for the function hA(x) = gA(t) = P (A|T = t)
works—that is, (6) and (7) hold. Happily, theorems in section 7.5 can be summarized by
saying that in all the old standard problems we need not bother. When we fix t, the function
P (A|T = t) = gA(t) behaves just like the old probability distributions over all of the sets A
in A. Great! So why are we doing this? The answer is by analogy. We already knew how
to take the expectation of a function of a rv that has a density (we used an integral), or a
mass function (we used a summation), but by this point we have learned how to rigorously
do all cases at once using only the expectation sign format E(·) (whether the distribution is
absolutely continuous, discrete, singular, or a mixture of these). It can be very useful to learn
how do general cases for conditional expectation as well. To this end we will now call on John
Wayne and the cavalry (and this has the distinct look of the Halmos-Savage approach via a
Radon-Nikodym derivative) and the bullets can be found in the upcoming theorem 4.1. �

Exercise 4.2 (A) (i) Mimic discussion 4.2 in case T ≡ X1 + X2, instead.
(ii) Make up another interesting example.
(B) (iii) Repeat example 4.1 and the accompanying figure, but now in the context of sampling
without replacement.
(iv) Make up another interesting example.

Exercise 4.3 Let Y be a rv on some (Ω,A, P ) that takes on the eight values 1, . . . , 8 with
probabilities 1/32, 2/32, 3/32, 4/32, 15/32, 4/32, 1/32, 2/32, respectively. Let C ≡ F(Y ), and
let Ci ≡ [Y = i] and pi ≡ P (Ci) for 1 ≤ i ≤ 8. Let D ≡ σ[{C1 + C5, C2 + C6, C3 + C7, C4 +
C8}], E ≡ σ[{C1 + C2 + C5 + C6, C3 + C4 + C7 + C8}] and F ≡ {Ω, ∅}.
(a) Represent Ω as a 2 × 4 rectangle having eight 1 × 1 cells representing C1, . . . , C4 in the
first row and C5, . . . , C8 in the second row. Enter the appropriate values of Y (ω) and pi in
each cell, forming a table. Evaluate E(Y ).
(b) Evaluate E(Y |D). Present this function in a similar table. Evaluate E(E(Y |D)).
(c) Evaluate E(Y |E). Present this function in a similar table. Evaluate E(E(Y |E)).
(d) Evaluate E(Y |F). Present this function in a similar table. Evaluate E(E(Y |F)).

Theorem 4.1 (Properties of conditional expectation) Let X,Y, Yn be integrable
rvs on (Ω,A, P ). Let D be a sub σ-field of A. Let g be measurable. Then for any versions of
the conditional expectations, the following hold:

(Linearity) E(aX + bY |D) = aE(X|D) + bE(Y |D) a.s. P (or, a.s. (P |D)).(14)

EY = E[E(Y |D)].(15)
(Monotonicity) X ≤ Y a.s. P implies E(X|D) ≤ E(Y |D) a.s. P.(16)
(MCT) If 0 ≤ Yn ↗ Y a.s. P, then E(Yn|D) ↗ E(Y |D) a.s. P.(17)

http://dx.doi.org/10.1007/978-3-319-52207-4_7
http://dx.doi.org/10.1007/978-3-319-52207-4_4
http://dx.doi.org/10.1007/978-3-319-52207-4_4
http://dx.doi.org/10.1007/978-3-319-52207-4_4
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(Fatou) If 0 ≤ Yn a.s. P, then E(lim Yn|D) ≤ lim E(Yn|D) a.s. P.(18)
(DCT) If all |Yn| ≤ X and Yn →a.s. Y, then E(Yn|D) →a.s. E(Y |D).(19)
If Y is D-measurable and XY ∈ L1(P ), then E(XY |D) =a.s. Y E(X|D).(20)
If F(Y ) and D are independent, then E(Y |D) = EY a.s. P.(21)
(Stepwise smoothing). If D ⊂ E ⊂ A, then E[E(Y |E)|D] = E(Y |D) a.s. P.(22)
If F(Y,X1) is independent of F(X2), then E(Y |X1,X2) = E(Y |X1) a.s. P.(23)
Cr,Hölder, Liapunov, Minkowski, and Jensen inequalities hold for E(·|D).(24)
Jensen: g(E(Y |D)) ≤a.s. E[g(Y )|D] for g convex with g(Y ) integrable.
Let r ≥ 1. If Yn →Lr

Y, then E(Yn|D) →L∇ E(Y |D). In fact,(25)

E|E(X|D) − E(Y |D)|r ≤ E|X − Y |r.
hD(·) is a determination of E(Y |D) if and only if(26)
E(XY ) = E(XhD) for all D-measurable rvs X.

If P (D) = 0 or 1 for all D ∈ D, then E(Y |D) = EY a.s. P.(27)

Proof.o We first prove (14). Now, by linearity of expectation,
∫

D
[a E(X|D) + bE(Y |D)] dP = a

∫
D

E(X|D) dP + b
∫

D
E(Y |D) dP

= a
∫

D
X dP + b

∫
D

Y dP by definition of E(X|D), etc.
=

∫
D

[a X + bY ] dP for all D ∈ D, as required.
(a)

To prove (15), simply note that

EY =
∫
Ω

Y dP =
∫
Ω

E(Y |D) dP = E[E(Y |D)].(b)

For (16), use (14) for the first step of
∫

D
{E(Y |D) − E(X|D)} dP =

∫
D

E(Y − X|D) dP

=
∫

D
(Y − X) dP ≡ ν(D) ≥ 0 is a measure ν(·)(c)

Then E(Y |D) − E(X|D) is a Radon–Nikodym derivative of ν(·) and so is ≥ 0 a.s.
Statement (17) follows easily from (16), since we have

E(Yn|D) ≤ E(Yn+1|D) ≤ E(Y |D) a.s., for all n.(d)

Thus limn E(Yn|D) exists a.s., and

(e)
∫

D
lim
n

E(Yn|D) dP = lim
n

∫
D

E(Yn|D) dP by the MCT

= lim
n

∫
D

Yn dP =
∫

D
Y dP by the MCT

=
∫

D
E(Y |D) dP ;

and we can appeal to the uniqueness of Radon–Nikodym derivatives, or apply exercise 3.2.2.
Now we use (16) and (17) to prove (18). Thus

E(lim Yn|D) = E(lim
n

inf
k≥n

Yk|D) by the definition of lim
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= lim
n

E( inf
k≥n

Yk|D), a.s., by the MCT of (17)(f)

≤ lim
n

inf
k≥n

E(Yk|D) by the monotonicity of (16)

= lim E(Yn|D) by the definition of lim .

To prove (19), apply the Fatou of (18) to Yn + X to get

E(Y |D) + E(X|D) = E(X + Y |D) = E(lim(X + Yn)|D)

≤ lim E(X + Yn|D) = lim E(Yn|D) + E(X|D).(g)

Canceling the a.e. finite E(X|D) from both ends of (g) gives

E(Y |D) ≤ lim E(Yn|D) ≤ lim E(Yn|D) ;

≤ E(Y |D) by applying the Fatou of (18) again, to X − Yn.(h)

To prove (20) we proceed through indicator, simple, nonnegative, and then general func-
tions, and each time we apply exercise 3.2.2 at the final step.
Case 1: Y = 1D∗ . Then

∫
D

Y E(X|D) dP =
∫

D
1D∗E(X|D) dP =

∫
D∩D∗ E(X|D) dP

=
∫

D∩D∗ X dP =
∫

D
1D∗X dP =

∫
D

Y X dP =
∫

D
E(Y X|D) dP.

Case 2: Y =
∑n

1 ai1Di
. Then

∫
D

Y E(X|D) dP =
∑n

1 ai

∫
D

1Di
E(X|D) dP

=
∑n

1 ai

∫
D

1Di
X dP by case 1

=
∫

D
Y X dP =

∫
D

E(Y X|D) dP.

Case 3: Y ≥ 0. Let simple functions Yn ↗ Y where Yn ≥ 0. Suppose first that X ≥ 0. Then
we have

∫
D

E(Y X|D) dP =
∫

D
E(limn YnX|D) dP

=
∫

D
limn E(YnX|D) dP by the MCT of (17)

=
∫

D
limn YnE(X|D) dP by case 2

=
∫

D
Y E(X|D) dP by the MCT.

For general X, use X = X+ − X− and the linearity of (14).
Case 4: General Y . Just write Y = Y + − Y −

To prove (21), simply note that for each D ∈ D one has
∫

D
E(Y |D) dP =

∫
D

Y dP =
∫

1DY dP = E(1D)E(Y )

= P (D)E(Y ) =
∫

D
E(Y ) dP ;

and apply exercise 3.2.2. Assertion (22) is proved by noting that
∫

D
E[E(Y |E)|D] dP =

∫
D

E[Y |E ] dP =
∫

D
Y dP since D ∈ D ⊂ E

=
∫

D
E(Y |D) dP.
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The integrands of the two extreme terms must be equal a.s. by the exercise 3.2.2.
Consider (23). Now,

F(X1,X2) = σ[D ≡ D1 ∩ D2 ≡ X−1
1 (B1) ∩ X−1

2 (B2) : B1, B2 ∈ B].

Let D = D1 ∩ D2 be any one of the generators of F(X1,X2). Then

ν1(D) ≡
∫

D
E(Y |X1,X2) dP =

∫
D

Y dP =
∫

1D11D2Y dP

=
∫

1D2

∫
D1

Y dP =
∫

1D2 dP
∫

D1
E(Y |X1) dP =

∫
1D21D1E(Y |X1) dP

=
∫

D
E(Y |X1) dP ≡ ν2(D) .

Since ν1 and ν2 are measures on F(X1,X2) that agree on all sets in the π̄-system consisting
of all sets of the form D = D1 ∩ D2, they agree on the σ-field F(X1,X2) by the Dynkin π–λ
theorem. Thus the integrands satisfy E(Y |X1,X2) = E(Y |X1) a.s.

We next prove (25), leaving most of (24) and (26) to the exercises. We have

E|E(Yn|D) − E(Y |D)|r = E|E(Yn − Y |D)|r

≤ E[E(|Yn − Y |r|D)] by the conditional Jensen inequality of (24)(i)
= E|Yn − Y |r by (15)
→ 0.

To prove (27), note that for all D ∈ D we have

∫
D

E(Y |D) dP =
∫

D
Y dP =

{
E(Y ) if P (D) = 1
0 if P (D) = 0

}

=
∫

D
E(Y ) dP.(j)

(Durrett) We now turn to the Jensen inequality of (24). The result is trivial for linear g.
Otherwise, we define

C ≡ {(c, d) : c, d are rational, and 	(x) ≡ cx + d ≤ g(x) for all x in I},(k)

and observe that

g(x) = supall c,d∈C(cx + d) for all x ∈ Io;(l)

this follows from the supporting hyperplane result (below (3.4.3)). For any fixed cx + d for
which (c, d) ∈ C with cx + d ≤ g(x) on all (a, b) we have

E(g(X)|D) ≥ E(cX + d|D) = cE(X|D) + d a.s. by (16).(m)

Hence (as the union of a countable number of null sets is null), (l) and (m) give

(28) E(g(X)|D) ≥ supall c,d∈C{cE(X|D) + d} = g(E(X|D)) a.s.

since (inf I) < E(X|D) < (sup I) a.s. (since E(X) ∈ I0 was asumed in (3.4.21)). �

Exercise 4.4 Prove (26) and the rest of (24), in theorem 4.1.

Exercise 4.5 (Dispersion inequality) Suppose that X and Y are independent rvs with
μY = 0. Let r ≥ 1. Show that |X + Y | is more dispersed than X in that

(29) E|X|r ≤ E|X + Y |r (or,E|X + μY |r ≤ E|X + Y |r more generally).

(Hint. Use Fubini on the induced distribution in (R2,B2) and then apply Jensen’s inequality
to gx(y) = |x + y|r to the inner integral. Note also exercise 8.2.3 below.)

http://dx.doi.org/10.1007/978-3-319-52207-4_4
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Exercise 4.6 (a) Let P denote the Uniform (−1, 1) distribution on the Borel subsets B
of Ω = [−1, 1]. Let W (ω) ≡ |ω|,X(ω) ≡ ω2, Y (ω) ≡ ω3, and Z(ω) ≡ ω4. Fix A ∈ B. Show
that versions of various conditional probabilities are given by

P (A|W )(ω) = P (A|X)(ω) = P (A|Z)(ω) = 1
2{1A(ω) + 1A(−ω)} on Ω,

while P (A|Y )(ω) = 1A(ω) on Ω.

Exercise 4.7 Determine P (A|W )(ω), P (A|X)(ω), P (A|Y )(ω), and P (A|Z)(ω) for
W,X, Y , and Z as in exercise 4.6 when P has the density 1 − |x| on ([−1, 1],B).

Exercise 4.8 Determine P (A|W )(ω), P (A|X)(ω), and P (A|Y )(ω) for W,X, and Y as
in exercise 4.6 when P has density 1 − x on (0, 1] and 3

2 (1 − x2) on [−1, 0].
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5 Regular Conditional Probability ∗

For fixed A, the function P (A|D)(·) is a D-measurable function on Ω that is only a.s. unique.
We wish that for each fixed ω the set function P (·|D)(ω) were a probability measure. But for
each disjoint sequence of Ai’s there is a null set where (7.4.10)–(7.4.12) may fail, and there
typically are uncountably many such sets. The union of all such null sets need not be null.
In the most important special cases, though, we may assume that P (·|D)(ω) behaves as we
would like, where the nonuniqueness of P (A|D)(·) also provides the key, by allowing us to
make whatever negligible changes are required. (For added useful generality, we will work on
a sub σ-field Ã of the basic σ-field A.)

Definition 5.1 We will call P (A|D)(ω) a regular conditional probability on a sub σ-field Ã
of the σ-field A, given the σ-field D, if

for each fixed A ∈ Ã, the function P (A|D)(·) of ω satisfies definition 4.2,(1)

for each fixed ω, Pω(·|D) ≡ P (·|D)(ω) is a probability measure on Ã.(2)

Exercise 5.1 Verify that the discrete conditional probability of exercise 7.4.1 is a regular
conditional probability.

When a regular conditional probability exists, conditional expectation can be computed
by integrating with respect to conditional probability, and we first show this general theorem
5.1. In theorem 5.2 and beyond we shall show specifically how to construct such conditional
probabilities in some of the most important examples.

Theorem 5.1 Let P (A|D)(ω) be a regular conditional probability on Ã, and let Y ∈
L1(Ω, Ã, P ). Then a version of the conditional expectation of Y given D is formed by setting

(3) E{Y |D}(ω) =
∫

Y (ω′) dPω(ω′|D), for each fixed ω.

Proof. If Y = 1A, then (3) follows from

∫
Y dPω(·|D) =

∫
1A dPω(·|D) =

∫
A

dPω(ω′|D) = Pω(A|D) = P (A|D)(ω)(a)

=a.s. E{Y |D}(ω), no matter which version of the latter is used,(b)

with the various steps true by definition. Thus (3) is trivial for simple functions Y . If
Y ≥ 0 and Yn are simple functions for which Yn ↗ Y , then for any version of the conditional
expectation function E(Y |D)(·) we have

∫
Y (ω′) dPω(ω′|D) = lim

∫
Yn(ω′) dPω(ω′|D)

=a.s. lim E{Yn|D}(ω) =a.s. E{Y |D}(ω)(c)

using the MCT (ordinary, and of (17)) in the first and last steps. Finally, let
Y = Y + − Y −. �

http://dx.doi.org/10.1007/978-3-319-52207-4_7
http://dx.doi.org/10.1007/978-3-319-52207-4_7
http://dx.doi.org/10.1007/978-3-319-52207-4_7
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Regular conditional probabilities need not exist; the null sets on which things fail may
have a nonnull union. However, if Y : (Ω,A) → (R,B) is a rv, then things necessarily work
out on (R,B), and this will be generalized to any “Borel space.” We will now start from
scratch with regular conditional probability, and will choose to regard it as a measure over
the image σ-field.

Definition 5.2 (Borel space) If a 1-to-1 bimeasurable mapping φ from (M,G) to a mea-
surable subset Bo of (R,B) exists, then (M,G) is called a Borel space.

Exercise 5.2 (a) Show that (Rn,Bn) is a Borel space.
(b) Show that (R∞,B∞) is a Borel space.
(c) The spaces (C, C) and (D,D) to be encountered below are also Borel spaces.
(d) Let (M,d) be a complete and separable metric space having Borel sets M, and let M0 ∈
M. Then (M0,M0 ∩ M) is a Borel space.
(This exercise is the only mathematically difficult part of the chapter that we have encountered
so far.)

Definition 5.3 (Regular conditional distribution) Suppose that Z: (Ω,A) → (M,G). Let
Ã ≡ Z−1(G), and let D be a sub σ-field of A. Then PZ(G|D)(ω) will be called a regular
conditional distribution for Z given D if

(4)
for each fixed G ∈ G,

the function PZ(G|D)(·) is a version of P (Z ∈ G|D)(·) on Ω,

(5)
for each fixed ω ∈ Ω,

the set function PZ(·|D)(ω) is a probability distribution on (M,G);

and Pω
Z (·|D) ≡ PZ(·|D)(ω) will be used to denote this probability distribution.

Theorem 5.2 (Existence of a regular conditional distribution) Suppose Z : (Ω,A)
→ (M,G) with (M,G) a Borel space. Then the existence of a regular conditional probability
distribution Pω

Z (G|D) ≡ PZ(G|D)(ω) is guaranteed.

Proof. Case 1: Suppose first that Z : (Ω,A) → (R,B). Let r1, r2, . . . denote the set
of rational numbers. Consider P (Z ≤ ri|D) and note that except on a null set N , all of the
following hold:

(a) ri ≤ rj implies P (Z ≤ ri|D) ≤ P (Z ≤ rj |D).

(b) lim
rj↘ri

P (Z ≤ rj |D) = P (Z ≤ ri|D).

(c) lim
rj↗∞

P (Z ≤ rj |D) = P (Ω|D) = 1.

(d) lim
rj↘−∞

P (Z ≤ rj |D) = P (∅|D) = 0.

Now define, for an arbitrary but fixed df F0,

(e) F (z|D)(ω) =

{
limrj↘z P (Z ≤ rj |D)(ω) if ω /∈ N,

F0(z) if ω ∈ N.
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Then for every ω, the function F (·|D)(ω) is a df. Also, (e) and the DCT of theorem 7.4.1
show that F (z|D)(·) is a version of P (Z ≤ z|D)(·).

Now extend P (Z ≤ ·|D)(ω) to a distribution (labeled PZ(B|D)(ω)) over all B ∈ B via the
correspondence theorem. We now define

(f) M ≡ {C ∈ B : PZ(C|D) is a version of P (Z ∈ C|D)}.

Now, M contains all (a, b] and all
∑m

1 (ai, bi], and M is closed under monotone limits. Thus
M = B, by the minimal monotone class result of proposition 1.1.6, completing the proof in
this case.

Case 2: Let Y ≡ φ(Z), so Y is a rv. Thus a regular conditional distribution PY (B|D)
exists by case 1. Then for G ∈ G, define PZ(G|D) ≡ PY (φ(G)|D). �

Example 5.1 (Elementary conditional densities) Suppose that

P ((X,Y ) ∈ B2) =
∫

B2

∫

f(x, y) dx dy for all B2 ∈ B2,

where f ≥ 0 is measurable; and then f(x, y) is called the joint density of X,Y (or, the
Radon-Nikodym derivative dP/dλ2). Let B2 ≡ B × R, for all B ∈ B. We can conclude that
PX � λ ≡ (Lebesgue measure), with

(6)
dPX(x)

dλ
= fX(x) ≡

∫

R

f(x, y) dy;

we call fX(x) the marginal density of X. We first define

(7) g(y|x) ≡
{

f(x, y)/fX(x) for all x with fX(x) �= 0,
an arbitrary density f0(y) for all x with fX(x) = 0,

and then define

(8) P (Y ∈ A|X = x) =
∫

A

g(y|x) dy for A ∈ B.

Call g(y|x) the conditional density of Y given X = x, and this P (Y ∈ A|X = x) will now be
shown to be a regular conditional distribution (if modified appropriately on the set where
fX(x) = 0). Moreover, if E|h(Y )| < ∞, then

(9) E{h(Y )|X = x} =
∫ ∞

−∞
h(y)g(y|x) dy a.s. PX .

Thus (8) (also written as (10)) fulfills theorem 5.2, and (9) will be seen to fulfill theorem 5.3.
(Note that this example also holds for vectors x ∈ Rm and y ∈ Rn.) �

Proof. By Fubini’s theorem,

P (X ∈ B) =
∫ ∫

B×R
f(x, y) dx × dy =

∫
B

[
∫

R
f(x, y) dy] dx =

∫
B

fX(x) dx.(a)

Moreover, Fubini’s theorem tells us that fX(x) is B-measurable.
Let S ≡ {x : fX(x) �= 0}. We may assume that (Ω,A) = (R2, B2). Let Ã = Y −1(B). We

will verify that (7.4.6) holds. For A ∈ B and for [Y ∈ A] ∈ Ã ≡ R × B, we note that for all

http://dx.doi.org/10.1007/978-3-319-52207-4_7
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B ∈ B we have (writing f(x) for fX(x))
∫

B
[
∫

A
g(y|x) dy] dPX(x)

=
∫

B
[
∫

A
g(y|x) dy]f(x) dx =

∫
B∩S

[
∫

A
f(x,y)
f(x) dy]f(x) dx

=
∫

B∩S
[
∫

A
f(x, y) dy] dx =

∫ ∫
B×A

f(x, y)(dx × dy)

= P ((X,Y ) ∈ B × A) = P ([Y ∈ A] ∩ X−1(B))

=
∫

B
P (Y ∈ A|X = x) dPX(x).(b)

Thus

(c) P (Y ∈ A|X = x) =
∫

A
g(y|x) dy a.s. PX ,

and so g(y|x) works as a version. Now, for any fixed set A ∈ B we note that

(10)
∫

A
g(y|x) dy = 1S(x) × [

∫
A

f(x, y) dy / f(x)] + 1Sc(x) ×
∫

A
f0(y) dy

is a measurable function on (R,B). It is clear that for each fixed x the function of (10) acts
like a probability distribution. Thus (10) defines completely a regular conditional probability
distribution.

Suppose that E|h(Y )| < ∞. Then (9) holds since
∫

B
[
∫

R
h(y)g(y|x) dy] dPX(x) =

∫
B∩S

[
∫

R
h(y)g(y|x) dy]f(x) dx

=
∫

B∩S
[
∫

R
h(y)f(x, y) dy] dx =

∫
B

[
∫

R
h(y)f(x, y) dy] dx

=
∫ ∫

B×R
h(y)f(x, y)(dx × dy)

=
∫ ∫

x−1(B)
h(y) dPX,Y (x, y) =

∫
B

E(h(Y )|X = x) dPX(x).(d) �

Theorem 5.3 (Conditional expectation exists as an expectation) Given a mea-
surable mapping Z : (Ω,A) → (M,S), where (M,S) is a Borel space, consider a transforma-
tion φ : (M,S) → (R,B) with E|φ(Z)| < ∞. Then a version of the conditional expectation
of φ(Z) given D is formed by setting

(11) E{φ(Z)|D}(ω) =
∫

M

φ(z) dPω
Z (z|D) for all ω.

Proof. Apply theorem 5.1 to the regular conditional distribution of theorem 5.2. �

Theorem 5.4 (A most useful format for conditional expectation) Suppose that
X : (Ω,A, P ) → (M1,G1) and Y : (Ω,A, P ) → (M2,G2) (with Borel space images). Then
(X,Y ) : (Ω,A, P ) → (M1 × M2,G1 × G2). Also (as above)

(12) a regular conditional probability P (A|X = x) exists,

for sets A ∈ Ã ≡ Y −1(G2) ⊂ A and for x ∈ M1. Let E|h(X,Y )| < ∞. (a) Then

(13) E(h(X,Y )|X = x) =
∫

M2
h(x, y) dP (y|X = x) a.s.

(b) If X and Y are independent, then

(14) E(h(X,Y )|X = x) = E(h(x, Y )) a.s.
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Exercise 5.3 Prove theorem 5.4 above. (Give a separate trivial proof of (14).) Hint.
Begin with indicator functions h = 1G11G2 .

Example 5.2 (Sufficiency of the order statistics) Let X1, . . . , Xn be iid with df F
in the class Fc of all continuous dfs. Let T (x) ≡ (xn:1, . . . , xn:n) denote the vector of ordered
values of x, and let T ≡ {x : xn:1 < · · · < xn:n}. Exercise 5.5 below asks the reader to verify
that PF (T (X) ∈ T ) = 1 for all F ∈ Fc. Let X denote those x ∈ Rn having distinct coordinates.
Let A and B denote all Borel subsets of X and T , respectively. Then D ≡ T−1(B) denotes
all symmetric subsets of A (in that x ∈ D ⊂ D implies π(x) ∈ D for all n! permutations π(x)
of x). Let dP

(n)
F (·) denote the n-fold product measure dF (·) × · · · × dF (·) Suppose φ(·) is

P
(n)
F -integrable. Then define

(15) φ0(x) ≡ 1
n!

∑
all n! permutations φ(π(x)),

which is a D-measurable function. Since P
(n)
F is symmetric, for any symmetric set D ∈ D we

have
∫

D
φ(x) dP

(n)
F (x) =

∫
D

φ(π(x)) dP
(n)
F (x) for all n! permutations π(·)

=
∫

D
φ0(x) dP

(n)
F (x) for every D ∈ D.(16)

But this means that

(17) EF {φ(×)|T}(x) = φ0(x) a.s. P
(n)(·)
F .

Now, for any A ∈ A, the function 1A(·) is P
(n)
F -integrable for all F ∈ Fc. (Thus conclusion

(14) can be applied.) Fix F ∈ Fc. For any fixed A ∈ A we have

P
(n)
F (A|T )(x) = EF {1A(x)|T}(x) =

1
n!

∑
all π 1A(π(x))

=
(the # of times π(x) is in A)

n!
.(18)

Note that the right-hand side of (15) does not depend on the particular F ∈ Fc, and so T is
said to be a sufficient statistic for the family of distributions Fc. (Note discussion 4.3 once
again.) �

Example 5.3 (Ranks) Consider the ranks Rn = (Rn1, . . . , Rnn)′ and the antiranks Dn =
(Dn1, . . . , Dnn)′ in a sample from some F ∈ Fc (see the previous example, and (6.5.22)). Let∏

n denote the set of all n! permutations of (1, . . . , n). Now, Rn takes on values in
∏

n when
F ∈ Fc (since ties occur with probability 0). By symmetry, for every F ∈ Fc we have

(19) P
(n)
F (Rn = r) = 1/n! for each r ∈

∏
n .

Note that X is equivalent to (T,Rn), in the sense that each determines the other. Note also
that

(20) T and Rn are independent rvs (for each fixed F ∈ Fc),

in that for all B ∈ B ≡ (the Borel subsets of T ) and for all π ∈
∏

n we have

P
(n)
F ([T ∈ B] and [Rn = r])

= { 1
n!} ×

∫
T −1(B)

n! dP
(n)
F (x) = {P

(n)
F (Rn = r)} xP

(n)
F (T ∈ B)

= P (Rn = r) × P
(n)
F (T ∈ B),(21)

http://dx.doi.org/10.1007/978-3-319-52207-4_6
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since P (Rn = r) does not depend on the particular F ∈ Fc. Since the ranks are independent
of the sufficient statistic, they are called ancillary rvs. (Note that Dn is also equally likely
distributed over

∏
n, and that it is distributed independent of the order statistics T .) �

Exercise 5.4 Suppose that the n observations are sampled from a continuous distribu-
tion F . Verify that with probability one all observations are distinct. (Hint. Use corollary 2
to theorem 5.1.3.)

Exercise 5.5 Suppose X1, . . . , Xn are iid Bernoulli (p) rvs, for some p ∈ (0, 1). Let
T ≡

∑n
1 Xk denote the total number of successes. Show that this rv T is sufficient for this

family of probability distributions (that is, T is “sufficient for p”).

Exercise 5.6 Let ξ1 and ξ2 be independent Uniform(0, 1) rvs. Let Θ ≡ 2πξ1 and Y ≡
− log ξ2. Let R ≡ (2Y )1/2. Now let Z1 ≡ R cos Θ and Z2 ≡ R sinΘ. Determine the joint
distribution of (Y,Θ) and of (Z1, Z2).



Chapter 8

WLLN, SLLN, LIL, and Series

0 Introduction

This is one of the classically important chapters of this text. The first three sections of it are
devoted to developing the specific tools we will need. In the second section we also present
Khinchin’s weak law of large numbers (WLLN), which can be viewed as anticipating both
of the classical laws of large numbers (LLNs). Both the classical weak law of large numbers
(Feller’s WLLN) and classical strong law of large numbers (Kolmogorov’s SLLN) are pre-
sented in section 8.4, where appropriate negligibility of the summands is also emphasized.
This section is the main focus of the chapter. Some applications of these LLNs are given in
the following section 8.5 Then we branch out. The law of the iterated logarithm (LIL), the
strong Markov property, and convergence of infinite series are treated in sections 8.6 – 8.8.
The choice was made to be rather specific in section 8.4, with easy generalizations in sec-
tion 8.8. The usual choice is to begin more generally, and then specialize. Martingales (mgs)
are introduced briefly in section 8.9, both for limited use in chapter 12 and so that the
inequalities in the following section 8.10 can be presented in appropriate generality.
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1 Borel–Cantelli and Kronecker lemmas

The first three sections will develop the required tools, while applications will begin with the
LLNs (the first of which appears in section 8.2). We use the notation

(1) [An i.o.] = [ω : ω ∈ An infinitely often] =
⋂∞

n=1

⋃∞
m=n Am = limn An.

This concept is important in dealing with convergence of various random elements. The
following lemmas exhibit a nice dichotomy relative to sequences of independent events.

Lemma 1.1 (Borel–Cantelli lemma) For any events An,

(2)
∞∑

n=1

P (An) < ∞ implies P (An i.o.) = 0.

Lemma 1.2 (Second Borel–Cantelli lemma) For a sequence of independent events
A1, A2, . . ., we have the converse that

(3)
∞∑

n=1

P (An) = ∞ implies P (An i.o.) = 1.

Thus independent events A1, A2, . . . have P (An i.o.) equal to 0 or 1 according as
∑∞

1 P (An)
is finite or infinite.

Proof. We use proposition 1.1.2 freely. Now,

(a) P (An i.o.) = P (limn

⋃∞
n Am) = limn P (

⋃∞
n Am) ≤ limn

∑∞
n P (Am) = 0

whenever
∑∞

1 P (Am) < ∞. Also,

P ([lim An]c) = P (
⋃∞

n=1

⋂∞
m=nAc

m) = limn P (
⋂∞

m=nAc
m)

= limn limN P (
⋂N

m=nAc
m)

= limn limN

∏N
m=n[1 − P (Am)] by independence(b)

≤ limn limN exp(−
∑N

m=nP (Am)) since 1 − x ≤ exp(−x)(c)
= limn exp(−

∑∞
m=nP (Am)) = limn exp(−∞) = limn 0 = 0,(d)

using
∑∞

1 P (An) = ∞. �

Remark 1.1 (Kolmogorov’s 0-1 law) In theorem 7.2.1 we considered the tail σ-field
T ≡

⋂∞
n=1 F(Xn, Xn+1, . . .) of an arbitrary sequence of independent rvs X1,X2, . . .. We

learned that P (D) = 0 or 1 for all D ∈ T . (Here, let Xn ≡ 1An
and obtain the characterization

via the finiteness of
∑∞

1 P (An) at the end of lemma 1.2. The tail event in question is
[Xn = 1 i.o.].) �
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Lemmas About Real Numbers

An important bridge going from the convergence of series to the convergence of averages
is provided by Kronecker’s lemma. (An alternative bridge is provided by the monotone
inequality (8.10.1) (note also inequality 8.4.10).)

Lemma 1.3 (Kronecker’s lemma) (a) Let bn ≥ 0 and ↗ ∞. For x1, x2, . . . real,

(4)
n∑

k=1

xk → (some real r) implies
1
bn

n∑

k=1

bkxk → 0.

(b) So,
∑n

k=1xk/k → (some real r) implies 1
n

∑n
k=1xk → 0.

Proof. Let sk ≡
∑k

1xj with s0 ≡ 0 and b0 ≡ 0. Summing by parts gives

1
bn

∑n
1 bkxk = 1

bn

∑n
1 bk(sk − sk−1) = 1

bn

∑n−1
0 (bk − bk+1)sk + 1

bn
bnsn(a)

= −
∑n

1aksk−1 + sn where ak ≡ bk − bk−1

bn
≥ 0with

∑n
1ak = 1(b)

= −
∑n

1ak(sk−1 − r) + (sn − r).(c)

Since |sk − r| ≤ ε for all k ≥ (some Nε), we have

∣
∣
∣ 1
bn

∑n
1 bkxk

∣
∣
∣ ≤

∑Nε

1 |ak(sk−1 − r)| +
∑n

Nε+1|ak(sk−1 − r)| + |sn − r|(d)

≤
∑Nε

1 (bk − bk−1)|sk−1 − r|
bn

+ ε(
∑n

Nε+1ak) + ε for n ≥ Nε(e)

≤ 3ε for n sufficiently larger than Nε.

[Since
∑n

1xk → r, we must have xk → 0. Note that
∑n

1 bkxk/bn puts large weight only on
the later terms.] �

Lemma 1.4 (Convergence of sums and products) Suppose a ∈ [0, ∞], all constants
cnk ≥ 0, and mn ≡ [max1≤k≤n cnk] → 0. Then

(5)
n∏

k=1

(1 − cnk) → e−a if and only if
n∑

k=1

cnk → a.

Proof. We will write a = b ⊕ c to mean that |a − b| ≤ c. For mn ≤ 1/2,

(6) log
∏n

1 (1 − cnk) =
∑n

1 log(1 − cnk) = −
∑n

1 cnk ⊕
∑n

1 c2
nk = −(1 ⊕ mn)

∑n
1 cnk

via an expansion of log(1 + x). This yields the result, as mn → 0. �

Exercise 1.1 (Cesàro summability) If sn ≡
∑n

k=1xk → r, then 1
n

∑n
k=1sk → r.

Exercise 1.2 Let all an ≥ 0. Suppose
∑∞

1 anbn < ∞ holds whenever
∑∞

1 b2
n < ∞ with all

bn ≥ 0. Show that
∑∞

1 a2
n < ∞.
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Exercise 1.3 (Toeplitz) Let ank (for 1 ≤ k ≤ kn, with kn → ∞) be such that: (i) For every
fixed k, we have ank → 0. (ii)

∑kn

k=1|ank| ≤ c < ∞, for every n. Let x′
n ≡

∑kn

k=1ankxk.
Then

(a) xn → 0 implies x′
n → 0.

If
∑kn

k=1ank → 1, then

(b) xn → x implies x′
n → x.

In particular, if bn ≡
∑n

k=1ak ↗ ∞, then

(c) xn → x finite entails
∑n

k=1akxk/bn → x.

[This exercise will not be employed anywhere in this text.]

Exercise 1.4 Show that

(7) 1 − x ≤ e−x ≤ 1 − x/(1 + x) for all x ≥ 0.

Exercise 1.5 Let X1, . . . , Xn be independent rvs. (i) Show that

(8)
∑n

1P (|Xk| > x)/[1 +
∑n

1P (|Xk| > x)]
≤ pmax(x) ≡ P (max1≤k≤n |Xn| > x) ≤

∑
P (|Xk| > x)for all x ≥ 0.

(ii) So whenever pmax(x) ≡ P (max1≤k≤n |Xn| > x) ≤ 1
2 , then

(9) 1
2

∑n
1P (|Xk| > x) ≤ pmax ≤

∑n
1P (|Xk| > x).
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2 Truncation, WLLN, and Review of Inequalities

Truncated rvs necessarily have moments, and this makes them easier to work with. But it is
crucial not to lose anything in the truncation.

Definition 2.1 (Khinchin equivalence) Two sequences of rvs X1,X2, . . . and Y1, Y2, . . . for
which

∑∞
n=1P (Xn 
= Yn) < ∞ are called Khinchin equivalent.

Proposition 2.1 (i) Let X1,X2, . . . and Y1, Y2, . . . be Khinchin equivalent rvs.
(a) If Xn →a.s. (some rv X), then Yn →a.s. (the same rv X).
(b) If Sn ≡

∑n
1Xk →a.s. (some rv S), then Tn ≡

∑n
1Yk →a.s. (some rv T ).

(c) If Sn/bn →a.s. (some rv U) and bn → ∞, then Tn/bn →a.s. (the same rv U).
(ii) Of less interest, →p may replace →a.s. in (a), (b), and (c).

Proof. The Borel–Cantelli lemma gives P (Xn 
= Yn i.o.) = 0; or

(p) Xn(ω) = Yn(ω) for all n ≥ (some n(ω)) holds true for a.e. ω.

Thus the a.s. statements for Xn and Sn are trivial. Moreover, since Xn(ω) = Yn(ω) for all
n ≥ (some fixed n(ω) ), we have

Sn

bn
=

Sn(ω) + Sn − Sn(ω)

bn
=

Sn(ω) + Tn − Tn(ω)

bn
=

Sn(ω) − Tn(ω)

bn
+

Tn

bn
(q)

= o(1) + Tn/bn(r)

using bn → ∞.
Since a sequence (such as Xn, Sn or Sn/bn) converges in probability if and only if each

subsequence n′ contains a further subsequence n′′ on which the convergence is a.s., the in
probability statements follow directly from the a.s. statements. �

Inequality 2.1 (Sandwiching E|X|) For any rv X we have

(1)
∞∑

n=1

P (|X| ≥ n) ≤ E|X| =
∫ ∞

0

P (|X| > x) dx ≤
∞∑

n=0

P (|X| ≥ n).

If X is a rv with values 0, 1, 2, . . ., then

(2) E(X) =
∞∑

n=1

P (X ≥ n).

Proof. If X ≥ 0, then EX =
∫∞
0

[1 − F (x)] dx by (6.4.11); consult figure 2.1. If X ≥ 0 is
integer valued, then

E(X) =
∑∞

k=0 k P (X = k) =
∑∞

k=1

∑k
n=1P (X = k)

=
∑∞

n=1

∑∞
k=nP (X = k)

=
∑∞

n=1P (X ≥ n).(a)

For the greatest integer function [·], an arbitrary rv satisfies

(b) [|X|] ≤ |X| ≤ [|X|] + 1.



154 CHAPTER 8. WLLN, SLLN, LIL, AND SERIES

Moreover, (a) shows that

(c) E[|X|] =
∑∞

n=1P ([|X|] ≥ n) =
∑∞

n=1P (|X| ≥ n),

while (consult figure 2.1 again)

(d) E{[|X|] + 1} =
∑∞

n=1P (|X| ≥ n) + 1 =
∑∞

n=1P (|X| ≥ n) + P (|X| ≥ 0). �

1

1
0

F|X|(·)

Figure 2.1 The moment E|X| =
∫∞
0

[1 − F|X|(x)] dx is sandwiched.

Example 2.1 (Ťruncating and W̃insorizing) Let X1,X2, . . . be iid as X. Let us truncate
and Winsorize the rv Xn by defining

(3) X̌n = Xn × 1[|Xn|<n] and X̃n = −n × 1[Xn≤−n] + Xn × 1[|Xn|<n] + n × 1[Xn≥n].

From (2) we see that

(4)
E|X| < ∞ if and only if

∫∞
0

P (|X| > t) dt < ∞ iff
∑∞

1 P (Xn 
= X̌n) < ∞ if and only if
∑∞

1 P (Xn 
= X̃n) < ∞,

so that these X̌n’s and X̃n’s are Khinchin equivalent to the Xn’s if and only if the absolute
moment E|X| < ∞. (Do not lose sight of this during the SLLN.) �

Proof. Using inequality 2.1, then iid, and then the Borel–Cantelli lemmas, we obtain that
E|X| < ∞ if and only if

∑∞
1 P (|X| ≥ n) < ∞ if and only if

∑∞
1 P (|Xn| ≥ n) < ∞ if and

only if P (|Xn| ≥ n i.o.) = 0. This gives (4), as well as the additional fact that

(5) E|X| < ∞ if and only if P (|Xn| ≥ n i.o.) = 0 for Xn’s iid as X.

This final fact (5) is a useful supplementary result. Recall (6.4.11). �

Exercise 2.1 (a) Show EX2 = 2
∫∞
0

xP (|X| > x) dx =
∑∞

k=1(2k − 1)P (|X| ≥ k) for an
integer valued rv X ≥ 0. (Let τ(x) ≡ xP (|X| > x).) Thus, for any rv X,

(6) EX2 < ∞ iff
∫∞
0

xP (|X| > x) dx < ∞ iff
∑∞

n=1nP (|X| ≥ n) < ∞.

(b) Now let X1,X2, . . . be iid as X. Let X̌n or X̃n result when Xn is truncated or Winsorized
outside either [−√

n,
√

n] (or, (−√
n,

√
n)). Show

(7)
EX2 < ∞ if and only if

these new X̌n’s and X̃n’s are Khinchin equivalent to the Xn’s.
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Khinchin’s WLLN

We begin with an easy result that illustrates our path rather clearly.

Theorem 2.1 (i) (WLLN; Khinchin) Let X1, . . . , Xn be iid with mean μ. Then

(8) X̄n →p μ and X̄n →L1 μ.

(In fact, X̄n −
∫
[|x|≤n]

dFX(x) →p 0 if and only if xP (|X| > x) → 0 as x → ∞.

Note that xP (|X| > x) → 0 as x → ∞ can hold even if E(X) fails to exist.)
(ii) (More general WLLN) Suppose that Xn1, . . . , Xnn are independent. Then

(9) X̄n − EX̄n →p 0 holds if 1
n

∑n
k=1E{|Xnk|1[ε

√
n<|Xnk|]} → 0 for all ε > 0.

This condition holds if the rvs {Xnk : n ≥ 1 and 1 ≤ k ≤ n} are uniformly integrable.

Proof. (ii) Truncate these rvs via Ynk ≡ Xnk × 1[−n≤Xnk≤n], and define the means μnk ≡
E(Ynk). Then define μ̄n ≡

∑n
1μnk/n. We will show that

(a) Ȳn − μ̄n →p 0, provided 1
n

∑n
1E {|Xnk| 1[ε

√
n<|Xnk|≤n]} → 0 for all ε > 0.

Chebyshev gives

P (|Ȳn − μ̄n| ≥ ε) ≤ 1
ε2n2

∑n
k=1Var[Ynk] ≤ 1

ε2n2

∑n
k=1E(Y 2

nk)

=
1

ε2n2

∑n
k=1E{Y 2

nk(1[|Xk|≤ε2
√

n] + 1[ε2
√

n<|Xnk|≤n])}

≤ 1
ε2n2

∑n
k=1ε

4n + 1
ε2n2

∑n
k=1E{Y 2

nk1[ε2
√

n<|Xnk|≤n])(b)

≤ ε2 +
1

ε2n

∑n
k=1E{|Xnk|1[ε2

√
n<|Xnk|≤n])(c)

< 2ε2 for all n ≥ (some nε),by (9).(d)

So, Ȳn−μ̄n →p when the average in (b) converges to 0 (which is slightly weaker than requiring
the condition in (9)); that is, (a) holds. Then X̄n − μ̄n →p 0 since

P (X̄n 
= Ȳn) ≤ P (max1≤k≤n |Xnk| > n) ≤
∑n

1P (|Xnk| > n)(e)

≤ 1
n

∑n
1E{|Xnk|1[n<|Xnk|]}(f)

→ 0 by (9).(g)

Finally, E(X̄n) − μ̄n → 0 is exactly the conclusion in (g); so X̄n − E(X̄n) →p 0.
(i) In this iid case with finite mean, the condition (9) is satisfied and E(X̄n) = μ. In fact,
X̄n →L1μ; use Vitali, since X̄n →p μ and the X̄n’s are uniformly integrable by exercise 8.4.16
below. The rest of (i) is justified in theorem 8.4.1 below. �

Remark 2.1 There are two natural ways to proceed to improve Khinchin’s WLLN in the
iid case. One way is to obtain the conclusion X̄n →a.s. μ; and this is done in Kolmogorov’s
SLLN (theorem 8.4.2 below). Another way is to continue to relax the assumption of a finite
mean and center differently; and this is done in Feller’s WLLN (theorem 8.4.1 below). (Other
possibilities and other approaches will be outlined in the exercises of section 8.4.)

In section 8.3 we will develop a number of inequalities (so called “maximal inequali-
ties”) to help us to the stated goal. (At the end of this section the reader could go directly
to section 8.4, and then go back to section 8.3 for the inequalities as they are needed.)
(Also, at the end of section 8.3 we improve on the technique used in the proof of the Khint-
chine WLLN to obtain the truncation inequality to be used in the WLLN in section 8.4
below.) �
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Review of General Inequalities from Measure Theory

Having completed the transition from measure theory to probability theory, we take this
opportunity to restate without comment a few of the most important inequalities presented
earlier. (See the proof of theorem 2.1 for the Khinchin inequality below.)

Inequality 2.2 (Review) Let X and Y be rvs on a probability space (Ω, A, P ). Then:

Cr-inequality: E|X + Y |r ≤ Cr{E|X|r + E|Y |r} for r > 0, Cr ≡ 2(r∨1)−1.(10)

Hölder: E|XY | ≤ (E|X|r)1/r(E|Y |s)1/s for r > 1, and 1
r + 1

s = 1.(11)

Liapunov: (E|X|r)1/ris ↗ in r, for r ≥ 0.(12)
Markov: P (|X| ≥ λ) ≤ E|X|r/λr for all λ > 0, when r > 0.(13)
Dispersion: E|X|r ≤ E|X + Y |r if independence, μY = 0, and r ≥ 1.(14)

(15)
Jensen: g(EX) ≤ E g(X) if g is convex on an interval I ⊂ R

having P (X ∈ I) = 1 and a finite EX ∈ Io.

Littlewood: mt−r
s ≤ mt−s

r ms−r
t for 0 ≤ r ≤ s ≤ t, with mr ≡ E|X|r.(16)

Minkowski: E1/r|X + Y |r ≤ +E1/r|X|r + E1/r|Y |r for all r ≥ 1.(17)

(18)
Khinchin: P (|X̄n − μ̄n| ≥ ε) ≤ ε2 + 1

ε2n

∑n
1

∫
[ε2

√
n<|Xnk|] |Xnk|dP

for independent Xnk with μnk ≡ E(Xnk1|Xnk|≤n]).

Definition 2.2 (“Big ohp,” and “little ohp,” =a, ∼, and “ at most” ⊕)
(a) We say that Zn is bounded in probability [and write Zn = Op(1) ] if for all ε > 0 there
exists a constant Mε for which P (|Zn| ≥ Mε) < ε for all n ≥ (some nε). For a sequence an,
we write Zn = Op(an) if Zn/an = Op(1); and we say that Zn is of order an, in probability.
(b) If Zn →p 0, we write Zn = op(1). We write Zn = op(an) if Zn/an →p 0.
(c) This notation (without subscript p) was also used for sequences of real numbers zn and
an. For example, zn = o(an) if zn/an → 0. (Note that o(an) = op(an).)
(d) Write Un =a Vn if Un − Vn →p 0; and call Un and Vn asymptotically equal. (This is
effectively a passage to the limit that still allows n to appear on the right-side.)
(e) We write an ∼ bn if an/bn → 1.
(f) We write a = b⊕c if |a−b| ≤ c. (This can be used in the same fashion as op(·), but it allows
one to keep track of an absolute bound on the difference. Especially, it allows inequalities to
be strung together more effectively.)

Exercise 2.2 If Vn = Op(1) and γn = op(1) are rvs on the same (Ω,A, P ), then γnVn →p 0.

Exercise 2.3 Let X and Y be independent rvs, and let r > 0. Then

(19) E|X + Y |r is finite if and only if E|X|r and E|Y |r are finite.

That is, (X +Y ) ∈ Lr if and only if both X ∈ Lr and Y ∈ Lr, for any r > 0. Hint. Condition
on Y = y. Or, note the symmetrization inequality 8.3.2 below.

Exercise 2.4 Let an ≥ 0 be ↗. Show that for any rv X we have

(20)
∑∞

1 nP (an−1 ≤ |X| < an) =
∑∞

1 P (|X| ≥ an−1).
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3 Maximal Inequalities and Symmetrizationo

Sums of independent random variables play an important role in probability and statistics.
Our goal initially in this section is to develop probability bounds for the maximum of the first
n partial sums. Such inequalities are called maximal inequalities. The most famous of these
is Kolmogorov’s inequality. For symmetric rvs, Lévy’s inequality is an extremely clean and
powerful version of such a maximal inequality; it does not require the underlying rvs to have
any moments. Neither does the Ottavani–Skorokhod inequality, which is true for arbitrary
rvs, though it is not nearly as clean. (Recall (2.3.7) which shows that Sn →a.s. (some rv S)
if and only if P (maxn≤m≤N |Sm − Sn| ≥ ε) ≤ ε for all N ≥ n ≥ (some nε).)

Inequality 3.1 (Kolmogorov) Let X1,X2, . . . be independent, with Xk
∼= (0, σ2

k). Let
Sk ≡ X1 + · · · + Xk. Then

(1) P

(

max
1≤k≤n

|Sk| ≥ λ

)

≤ Var[Sn]/λ2 =
n∑

k=1

σ2
k/λ2 for all λ > 0.

[This contains Chebyshev’s inequality that P (|Sn| ≥ λ) ≤ Var[Sn]/λ2 for all λ > 0.]

Proof. Let Ak ≡ [max1≤j<k |Sj | < λ ≤ |Sk|], so that A ≡
∑n

1Ak = [max1≤k≤n] |Sk| ≥ λ].
Thus k is the first index for which |Sk| exceeds λ; call k the first passage time. Then

Var[Sn] =
∫

S2
ndP ≥

∫
A

S2
ndP =

∑n
1

∫
Ak

[(Sn − Sk) + Sk]2dP

=
∑n

1

∫
[(Sn − Sk)21Ak

+ (Sn − Sk)2Sk1Ak
+ S2

k1Ak
]dP

≥
∑n

1 [
∫

0 dP + E(Sn − Sk)E(2Sk1Ak
) +

∫
Ak

S2
kdP ] by independence(a)

≥
∑n

1 [0 + 0 · (a number) +
∫

Ak
λ2dP ] =

∑n
1λ2P (Ak) = λ2P (A). �(b)

Definition 3.1 (Symmetric rvs) A rv X is called symmetric if X ∼= −X. Note that this
is equivalent to its df satisfying F (−x) = 1 − F−(x) for all x ≥ 0. Suppose X ∼= X ′ are
independent rvs; then Xs ≡ X − X ′ is called the symmetrization of the initial rv X.

Definition 3.2 (Medians) Let X be an arbitrary rv. Then m ≡ median(X) is any number
for which P (X ≥ m) ≥ 1

2 and P (X ≤ m) ≥ 1
2 . [One median of the symmetrization Xs of

any rv X is always 0. And (2) below shows that the tails of Xs behave roughly the same as
do those of X.]

Inequality 3.2 (Symmetrization inequality) Let Xs ≡ X − X ′ where X ∼= X ′ with X
and X ′ independent. Let r > 0 and let a be any real number. Then both

(2)
2−1P (|X − median(X)| ≥ λ) ≤ P (|Xs| ≥ λ) ≤ 2P (|X − a| ≥ λ/2) and

2−1E|X − median(X)|r ≤ E|Xs|r ≤ 21+rE|X − a|r.

We may replace ≥ by > in the three events in the upper half of (2).

Proof. Let m ≡ median(X). Now, the first inequality comes from

P (Xs ≥ λ) = P [(X − m) − (X ′ − m) ≥ λ]
≥ P (X − m ≥ λ)P (X ′ − m ≤ 0) ≥ P (X − m ≥ λ)/2.(a)
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The second inequality holds, since for any real a,

P (|Xs| ≥ λ) = P (|(X − a) − (X ′ − a)| ≥ λ)
≤ P (|X − a| ≥ λ/2) + P (|X ′ − a| ≥ λ/2) = 2P (|X − a| ≥ λ/2).(b)

Plug (2) into (6.4.13) for the moment inequalities. �

Inequality 3.3 (Lévy) Let X1, . . . , Xn be independent and symmetric rvs. Now define,
Sn ≡ X1 + · · · + Xn. Then both

P

(

max
1≤k≤n

|Sk| ≥ λ

)

≤ 2P (|Sn| ≥ λ) for all λ > 0 and(3)

P

(

max
1≤k≤n

|Xk| ≥ λ

)

≤ 2P (|Sn| ≥ λ) for all λ > 0.(4)

Thus, 2E|Sn|r ≥ {E(max1≤k≤n |Sk|r) ∨ E(max1≤k≤n |Xk|r)}, for each r > 0.

Proof. Let Ak ≡ [max1≤j<k Sj < λ ≤ Sk] for 1 ≤ k ≤ n, so that k is the smallest index
for which Sk exceeds λ. Then

(a) P (Sn ≥ λ) =
∑n

k=1P (Ak ∩ [Sn ≥ λ]) ≥
∑n

1P (Ak ∩ [Sn ≥ Sk])

=
∑n

1P (Ak)P (Sn − Sk ≥ 0)(5)
by independence of X1, . . . , Xk from Xk+1, . . . , Xn

≥
∑n

1P (Ak)/2 by symmetry(b)
= P (max1≤k≤n Sk ≥ λ)/2.(c)

Combine this with the symmetric result, and achieve the first claim.
Now let Ak ≡ [max1≤j<k |Xj | < λ ≤ |Xk|] for 1 ≤ k ≤ n. Fix k. Let So

n ≡ 2Xk −Sn
∼= Sn,

and note that 2λ ≤ 2|Xk| ≤ |Sn| + |So
n| on Ak. Moreover,

(d) P (Ak) ≤ P (Ak ∩ [|Sn| ≥ λ]) + P (Ak ∩ [|So
n| ≥ λ]) = 2P (Ak ∩ [|Sn| ≥ λ]).

So summing on k gives P (A) ≤ 2P (A ∩ [|Sn| ≥ λ]) ≤ 2P (|Sn| ≥ λ).
See Feller(1966) proof: Let M ≡ XK , where K ≡ min{k : |Xk| = max1≤j≤n |Xj |}. Let

T ≡ Sn − XK . Then, for all four choices of + or − signs, the rvs (±M, ±T ) have the same
distribution. Then we require both

P (M ≥ λ) ≤ P (M ≥ λ and T ≥ 0) + P (M ≥ λ and T ≤ 0)
= 2P (M ≥ λ and T ≥ 0)(e)
≤ 2P (M + T ≥ λ) = 2P (Sn ≥ λ)(f)

and the symmetric result. [See exercise 3.2 below for more on (4).] �

Remark 3.1 Kolmogorov’s inequality is a moment inequality. Since the rv Sn/StDev[Sn] ∼=
(0, 1) is often approximately normal (2π)−1/2 exp(−x2/2) on the line, and since

P (|N(0, 1)| ≥ λ) =
∫

[|x|≥λ]

1√
2π

exp(−x2/2) dx ≤
√

2
π

∫ ∞

λ

x

λ
exp(−x2/2) dx

≤
√

2
π

1
λ exp(−λ2/2) for all λ > 0,(6)

both Lévy’s inequality and the Ottaviani–Skorokhod inequality to follow offer the hope of a
much better bound. �
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Inequality 3.4 Let Sk ≡ X1 + · · · + Xk for independent rvs Xk.
(Ottaviani–Skorokhod) For all 0 < c < 1 we have

P

(

max
1≤k≤n

|Sk| ≥ λ

)

≤ P (|Sn| ≥ cλ)
[1 − max1≤k≤n P (|Sn − Sk| > (1 − c)λ)]

for λ > 0(7)

≤ 2P (|Sn| ≥ cλ) for all λ ≥
√

2 StDev[Sn]/(1 − c).

(Etemadi) Alternatively,

(8) P (max1≤k≤n |Sk| ≥ 4λ) ≤ 4max1≤k≤n P (|Sk| ≥ λ) for all λ > 0.

Hence, E(max1≤k≤n |Sk|r) ≤ 41+r max1≤k≤n E|Sk|r for each r > 0. (See (8.2.13).)

Proof. Let Ak ≡ [S1 < λ, . . . , Sk−1 < λ, Sk ≥ λ], so that
∑n

k=1Ak = [max1≤k≤n Sk ≥ λ].
Thus k is the smallest index for which Sk exceeds λ. (This is now the third time we have
used this same trick.) Note that

a ≡ min1≤k≤n P (|Sn − Sk| ≤ (1 − c)λ)(a)
= 1 − max1≤k≤n P (|Sn − Sk| > (1 − c)λ)(b)

≥ 1 − max1≤k≤n Var[Sn − Sk]/[(1 − c)λ]2 by Chebyshev’s inequality

≥ 1–Var[Sn]/[(1 − c)λ]2

≥ 1
2 if λ ≥

√
2 StDev[Sn]/(1 − c)(c)

allows us to “improve” (7) to (8). Meanwhile, (7) comes from

a × P (max1≤k≤n Sk ≥ λ) ≤
∑n

k=1P (|Sn − Sk| ≤ (1 − c)λ)P (Ak)(d)
=
∑n

k=1P (Ak ∩ [|Sn − Sk| ≤ (1 − c)λ]) by independence(e)
≤ P (Sn ≥ cλ).(f)

Combining (f) and (b) with the analogous result for −Sn completes the proof. �

Exercise 3.1 Prove Etemadi’s inequality.

Exercise 3.2 Consider independent rvs Xs
k ≡ Xk − X ′

k, for 1 ≤ k ≤ n, with all Xk and
X ′

k independent, and with each X ′
k

∼= Xk. Let mk denote a median of Xk, and let a denote
any real number. Let λ > 0 and r > 0. Show that both:

(9)
2−1P (max |Xk − mk| ≥ λ) ≤ P (max |Xs

k| ≥ λ) ≤ 2P (max |Xk − a| ≥ λ/2).

2−1E(max |Xk − mk|r) ≤ E(max |Xs
k|r) ≤ 21+rE(max |Xk − a|r).

[Also, 2−1P (max |Xs
k| ≥ λ) ≤ P (|Ss

n| ≥ λ) ≤ 2P (|Sn−a| ≥ λ/2) (for any real a), by inequality
3.3 and inequality 3.2.]

Inequalities for Rademacher RVs∗

Inequality 3.5 (Symmetrization; Giné–Zinn) Let X1, . . . , Xn be iid rvs, and let ε1, . . . ,
εn denote an independent sample of iid Radamacher rvs (that satisfy P (εk = ±1) = 1

2 ). Then

(10) P

(
1√
n

∣
∣
∣
∣
∣

n∑

k=1

εkXk

∣
∣
∣
∣
∣
> 2λ

)

≤ sup
1≤m<n

2P

(∣
∣
∣
∣
∣

1√
m

m∑

k=1

Xk

∣
∣
∣
∣
∣
> λ

)

for all λ > 0.
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Proof. By conditioning on the Rademacher rvs we obtain

P (n−1/2|
∑n

1 εkXk| > 2λ)(a)

≤ P (n−1/2|
∑

k:εk=1εkXk| > λ) + P (n−1/2|
∑

k:εk=−1εkXk| > λ)

≤ EεP (n−1/2|
∑

k:εk=1Xk| > λ) + EεP (n−1/2|
∑

k:εk=−1Xk| > λ)

≤ 2 supm≤n P (n−1/2|
∑m

1 Xk| > λ)(b)

≤ 2 supm≤n P (m−1/2|
∑m

1 Xk| > λ)

≤ 2 supm≥1 P (m−1/2|
∑m

1 Xk| > λ), as required. �(c)

Exercise 3.3 (a) (Khinchin inequality) Suppose ε1, . . . , εn are iid Rademacher rvs. Let
a1, . . . , an be real constants. Then

(11) Ar(
∑n

1a2
k)1/2 ≤ (E|

∑n
1akεk|r)1/r ≤ Br(

∑n
1a2

k)1/2, for each r ≥ 1,

for some constants Ar and Br. Establish this for r = 1, with A1 = 1/
√

3 and B1 = 1. [Hint.
Use Littlewood’s inequality with r, s, t equal to 1, 2, 4.]
(b) (Marcinkiewicz–Zygmund inequality) For X1, . . . , Xn independent 0 mean rvs,

(12) (1
2Ar)rE(

∑n
1X2

k)r/2 ≤ E|
∑n

1Xk|r ≤ (2Br)rE(
∑n

1X2
k)r/2, for each r ≥ 1.

Exercise 3.4 Let X1, . . . , Xn be independent with 0 means, and independent of the iid
Rademacher rvs ε1, . . . , εn. Let φ be ↗ and convex on R. Then

Eφ(|
∑n

1 εkXk|/2) ≤ Eφ(|
∑n

1Xk|) ≤ Eφ(2|
∑n

1 εkXk|).

[Hint. The left side is an average of terms like Eφ(|
∑n

1 ek(Xk − EX ′
k)|/2), for independent

X ′
k

∼= Xk and with each ek equal to ±1.]

Weak Negligibility, or Maximal Inequalities of Another Ilk∗

Discussion 3.1 (Weak negligibility) Let Yn1, . . . , Ynn be independent rvs having dfs
Fn1, . . . , Fnn. Let θ > 0 be given. For any ε > 0, let pε

nk ≡ P (|Ynk| > ε). Now, the maximum
Maxn ≡ [max1≤k≤n |Ynk|] satisfies

(13) 1 − exp(−
∑n

1pε
nk) ≤ 1 −

∏n
1 (1 − pε

nk) = P (Maxn > ε) ≤
∑n

1pε
nk.

[The equality uses
⋂n

1Ac
k = [

⋃n
1 Ak]c, and the first bound follows from the inequality 1 − x ≤

exp(−x).] This gives (so does exercise 8.1.5) the standard result that

(14) Maxn →p 0 if and only if nP̄n(ε) ≡
∑n

1pε
nk → 0 for all ε > 0.

Define xθn by requiring [−xθn, xθn] to be the smallest interval that is both closed and
symmetric to which F̄n ≡

∑n
1Fnk/n assigns probability at least 1 − θ/n. Let P̄n(x) ≡

1
n

∑n
1P (|Ynk| > x) denote the average tail probability, and then let Kn denote the qf of the

df 1 − P̄n(·). Note the quantile relationship xθn = Kn(1 − θ/n). Note that Kn(1 − θ/n) =
inf{x : 1 − P̄n(x) ≥ 1 − θ/n} = inf{x : P̄n(x) ≤ θ/n}. Thus

(15) nP̄n(ε) ≤ θ if and only if Kn(1 − θ/n) ≤ ε.
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Fix 0 < ε ≤ 1 and 0 < θ ≤ 1, and suppose that we are considering all n exceeding some nε,θ.
Conclusions (14) and (15) give (the seemingly new emphasis)

(16) Maxn →p 0 if and only if xθn = Kn(1 − θ/n) → 0 for all 0 < θ ≤ 1. �

Discussion 3.2 (Weak negligibility in the LLN context) Let νn > 0 be constants.
Applying the previous paragraph to the rvs |Ynk|/nνn (whose average df has the (1 − θ/n)th
quantile xθn/nνn) gives the equivalencies

Mn/νn ≡
[
maxk

1
n |Ynk|

]
/νn →p 0,(17)

xθn/nνn → 0 for all 0 < θ ≤ 1,(18)
∑n

1P (|Ynk|/nνn > ε) → 0 for all 0 < ε ≤ 1.(19)

The truncated absolute moment u1n ≡
∫
[|y|≤x1n]

|y|dF̄n(y) as well as the Winsorized absolute
moment ũ1n ≡ u1n + x1nP̄n(x1n) are among the potential choices for νn that could lead to
X̄n/νn →p 1 for independent arrays Xn1, . . . , Xnn on [0, ∞). (Here x1n means the quantile
xθn with θ = 1.) �

Inequality 3.6 (Daniels’ equality) With high probability there is an upper linear bound
on the uniform empirical df Gn. That is, for each 0 < λ < 1,

(20) P (Gn(t) ≤ t/λ for all 0 ≤ t ≤ 1) = P (ξn:k ≥ λk/n for 1 ≤ k ≤ n) = 1 − λ.

Proof. (Robbins) The vector of Uniform(0, 1) order statistics (ξn:1, . . . ξn:n) has joint
density n! on its domain 0 < t1 < · · · < tn < 1. Thus

P (Gn(t) ≤ t/λ for 0 ≤ t ≤ 1) = P (ξn:k ≥ λk/n for 1 ≤ k ≤ n)(a)

=
∫ 1

λ

∫ tn

λ(n−1)/n
· · ·

∫ t3
λ2/n

∫ t2
λ/n

n! dt1 · · · dtn = · · · =(b)

= n!( tn

n! − λtn−1

n! )|1λ = 1 − λ.(c) �

Inequality 3.7 (Chang’s inequality) With high probability there is a lower linear bound on
the uniform empirical df Gn. That is, for all λ ≥ 1, we have

(21) P (‖I/G−1
n ‖1

ξn1
≤ λ) = P (Gn(t) ≥ t/λ on all of [ξn:1, 1]) ≥ 1 − 2λ2e−λ.

(This provides a nice symmetry with the previous inequality; see Chapter 12.)

Truncation Inequalities

Let Xn1, . . . , Xnn be independent Fn1, . . . , Fnn, with P̄n(x) ≡ 1
n

∑n
1P (|Xnk| > x). Note that

1 − P̄n(·) is the average df of the rvs |Xn1|, . . . , |Xnn|, and recall from above (15) that xθn

denotes the 1 − θ/n quantile of this df (for any 0 < θ ≤ 1). Let τ̄n(x) ≡ xP̄n(x). Let
|X|n ≡ 1

n

∑n
1 |Xnk|, Wn be a rv with df F̄n, and let

(22) μθn ≡
∫
[|y|≤xθn]

y dF̄n(y) and uθn ≡
∫
[|y|≤xθn]

|y| dF̄n(y).
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Inequality 3.8 (Truncation inequality I) For row independent Xn1, . . . , Xnn,

P (|X̄n − μθn| ≥ εuθn) ≤ 1
ε2

(
xθn

nuθn
) + θ for all ε > 0.(23)

P (| ¯|X|n − uθn| ≥ εuθn) ≤ 1
ε2

(
xθn

nuθn
) + θ for all ε > 0.(24)

Proof. Let Ynk ≡ Xnk × 1[|Xnk|≤cn] for some cn > 0. Then for any νn > 0,

(a) P (|X̄n − E(Ȳn)| ≥ ενn) ≤ 1
ε2ν2

n
Var [Ȳn] +

∑n
1P (Ynk 
= Xnk)

(25) ≤ 1
ε2ν/2

n

1
n2

∑n
1E(Y 2

nk) + nP̄n(cn) ≤ 1
ε2ν/2

n

1
n

∫
[|y|≤cn]

y2 dF̄n(y) + nP̄n(cn)

(b) ≤ cn

ε2ν2
n

1
n

∫
[|y|≤cn]

|y| dF̄n(y) + nP̄n(cn).

To obtain (23), set cn = xθn and νn = uθn in (b) (which uses E(Ȳn) = μθn), and then observe
that

∫
[|y|≤xθn]

y2 dF̄n(y) ≤ xθnuθn. �

Inequality 3.9 (Truncation inequality II) For row independent Xn1, . . . , Xnn, define
Ynk ≡ Xnk × 1[|Xnk|≤n], and then let μ̌n ≡ E(Ȳn). Then (for any 0 < ε ≤ 1)

(26) P (|X̄n − μ̌n| ≥ ε) ≤ 2
ε2n

∫
[0,n]

xP̄n(x) dx = 2
ε2n

∫
[0,n]

τ̄n(x) dx.

Proof. From line (25) in the previous proof (with cn = n and νn = 1) one gets

P (|X̄n − μ̄n| ≥ ε) ≤ −1
ε2

1
n

∫
[0,n]

y2dP̄n(y) + nP̄n(n)(a)

= 2
ε2n

∫
[0,n]

yP̄n(y) dy − 1
ε2

n2

n P̄n(n) + nP̄n(n) (integrating by parts)(b)

= 2
ε2n

∫
[0,n]

P̄n(y) d(y2/2) − ( 1
ε2 − 1)nP̄n(n) ≤ 2

ε2n

∫
[0,n]

yP̄n(y) dy.(c)

�
Exercise 3.5 Write out the (nearly identical) details for the proof of (24).

Exercise 3.6 Show that X̄n − μ̄n →p 0 in the context of the previous inequality provided
sup{τ̄n(x) : ε2

√
n ≤ x ≤ n} → 0.
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4 The Classical Laws of Large Numbers, LLNs

It is now time to present versions of the laws of large numbers under minimal hypotheses. The
weak law of large numbers (WLLN) will establish →p, while the strong law of large numbers
(SLLN) will establish →a.e. of a sample average X̄n.

Theorem 4.1 (WLLN; Feller) Let Xn1, . . . , Xnn be iid with df F and qf K, for each n.
Let X̄n ≡ (Xn1 + · · · + Xnn)/n. The following are equivalent:

X̄n − μn →p 0 for some choice of constants μn.(1)

τ(x) ≡ xP (|X| > x) → 0 (true, iff τ±(x) ≡ xP (X± > x) → 0).(2)

t{|F−1
+ (t)| + |F−1(1 − t)|} → 0 (true, iff tF−1

|X|(1 − t) → 0).(3)

Mn ≡ [ 1
n max

1≤k≤n
|Xnk|] →p 0.(4)

When (1) holds, possible choices include μn ≡
∫
[−n,n]

x dF (x), νn ≡
∫ 1−1/n

1/n
K(t) dt, and

mn ≡ median(X̄n). If E|X| < ∞, then (1) holds with μn ≡ μ ≡ EX.

Theorem 4.2 (SLLN; Kolmogorov) Let X,X1,X2, . . . be iid rvs. Then:

E|X| < ∞ implies X̄n →a.s. μ ≡ EX.(5)

E|X| = ∞ implies lim |X−
n | = ∞ a.s.(6)

E|X| < ∞ iff lim |X−
n | < ∞ a.s. iff X̄n →L1 (some rv).(7)

E|X| < ∞ iff Mn ≡ [ 1
n max

1≤k≤n
|Xk|] →a.s. 0 iff Xn

n →a.s. 0 iff Mn →L1 0.(8)

Conditions (4) and (8) show the sense in which these LLNs are tied to the size of the
maximal summand. This is an important theme, do not lose sight of it. We now give a
symmetric version of condition (4). (See also exercises 4.18–4.21.)

Theorem 4.3 (The maximal summand) Let Xn1, . . . , Xnn, n ≥ 1, be iid row independent
rvs with df F . We then let Xs

nk ≡ Xnk − X ′
nk denote their symmetrized versions. Fix r > 0.

[Most important is r = 1.] Then

τ(x) ≡ xrP (|X| > x) → 0 iff τs(x) ≡ xrP (|Xs| > x) → 0 iff(9)

[ max
1≤k≤n

1
n |Xnk − a|r] →p 0 for all/some a iff [ max

1≤k≤n

1
n |Xs

nk|r] →p 0.(10)

Proof. We first consider the SLLN. Let Yn ≡ Xn × 1[|Xn|<n], for the iid Xn’s.
Suppose E|X| < ∞. Using inequality 8.2.1 in the second step and iid in the third, we

obtain

μ = EX is finite iff E|X| < ∞ iff
∑∞

n=1P (|X| ≥ n) < ∞(a)
iff

∑∞
n=1P (|Xn| ≥ n) < ∞ iff

∑∞
n=1P (Yn 
= Xn) < ∞

iff the Xn’s and Yn’s are Khinchin equivalent rvs.(b)

Comment Recall that E|X| =
∫∞
0

P (|X| > y) dy and (see (6.3.12))
∫
(x,∞)

y dF|X|(y) = xP (|X| > x) +
∫∞

x
P (|X| > y) dy; so(i)

∫
[0,x]

y dF|X|(y) =
∫ x

0
P (|X| > y) dy − xP (|X| > x).(ii)
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Thus X̄n →a.s. μ wherever Ȳn →a.s. μ, by proposition 8.2.1(c). So we now make the
definitions μn ≡ EYn and σ2

n ≡ Var[Yn]. Then we can write

(c) Ȳn = [
∑n

1 (Yi − μi)/n] + μ̄n, where μ̄n ≡ (μ1 + · · · + μn)/n → μ

by the Cesàro summability exercise 8.1.1 (since μn = EYn =
∫
(−n,n)

x dF (x) → μ by the DCT
with dominating function given by |x|). It thus suffices to show that

∑n
1 (Yi − μi)/n →a.s. 0.

By Kronecker’s lemma it thus suffices to show that

Zn ≡
∑n

i=1(Yi − μi)/i →a.s. (some rv Z).(d)

But Zn →a.s. (some Z), by proposition 2.3.3, if for all ε > 0 we have

pε
nN ≡ P (maxn≤m≤N |Zm − Zn| ≥ ε)

= P (maxn≤m≤N |
∑m

i=n+1[(Yi − μi)/i]| ≥ ε) → 0.(e)

Kolmogorov’s inequality yields (e) via

pε
nN ≤ ε−2∑N

n+1Var[(Yi − μi)/i] = ε−2
∑N

n+1σ
2
i /i2

≤ ε−2∑∞
n+1σ

2
i /i2 for all N(f)

→ 0 as n → ∞,

provided that

(g)
∑∞

n=1σ
2
n/n2 =

∑∞
n=1Var[Yn − μn]/n2 < ∞.

Now, this last is seen to be true via the following Kolmogorov argument that
∑∞

1 Var[Yn − μn]/n2 ≤
∑∞

1 EY 2
n /n2 =

∑∞
1

∫
[|x|<n]

x2 dF (x)/n2

=
∑∞

1

∑n
k=1

∫
[k−1≤|x|<k]

x2 dF (x)/n2

=
∑∞

k=1

∑∞
n=k

1
n2

∫
[k−1≤|x|<k]

x2 dF (x)(h)

≤
∑∞

k=12
∫
[k−1≤|x|<k]

x2 dF (x)/k(i)

since
∑∞

n=k1/n2 ≤
∫∞

k
(2/x2) dx = 2/k

≤ 2
∑∞

k=1

∫
[k−1≤|x|<k]

|x| dF (x)(j)

= 2E|X| < ∞.(k)

Thus we do have Zn →a.s. (some rv Z), and so X̄n →a.s. μ.
Suppose E|X| = ∞. Then the “sandwich” inequality 8.2.1 gives

(l)
∑∞

n=0P (|Xn| ≥ nC) =
∑∞

n=0P (|X|/C ≥ n) ≥ E|X/C| = ∞ for all C > 0,

so that applying the second Borel–Cantelli lemma to (l) gives

(m) P (|Xn| ≥ nC i.o.) = 1 for all C > 0 (and hence for all large C > 0).

Since Sn = Sn−1 + Xn, (m) implies (using the fact that |Sn| < nC/2 and |Xn| ≥ nC yields
|Sn−1| > nC/2 > (n − 1)C/2) that

(n) P (|Sn| ≥ nC/2 i.o.) = 1 for all C > 0.
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That is, lim |Sn|/n ≥ C/2 a.s. for all C. That is, lim |Sn|/n = ∞ a.s.
Thus (5)–(7) hold. [Apply Vitali with exercise 4.16 below for X̄n →L1 μ in (7). If

X̄n → L1 (some rv W ), then X̄n →p W—and the averages X̄n are u.i. by Vitali. Thus EX
is finite.]

Consider (8). Suppose Mn →a.s. 0. Then a.s. for all n ≥ (some nω) we have

(o) [max1≤k≤n |Xk|]/n < ε, and hence |Xn|/n < ε.

We merely repeat this last statement, writing

(p) An ≡ [|Xn|/n ≥ ε] satisfies P (An i.o.) = P (|Xn|/n ≥ ε i.o.) = 0.

Thus inequality 8.2.1 (by applying iid, and then the second Borel–Cantelli) gives

(q) E|X|/ε = E|X/ε| ≤
∑∞

n=0P (|X/ε| ≥ n) =
∑∞

n=0P (|Xn|/n ≥ ε) < ∞.

Conversely, suppose E|X| < ∞. Then Sn/n →a.s. μ by the SLLN. Since

(r)
Xn

n
=

Sn − nμ

n
− n − 1

n

[
Sn−1 − (n − 1)μ

n − 1

]

+
μ

n
→a.s. 0 − 1 · 0 + 0 = 0,

we have a.s. that

(s) |Xn|/n ≤ ε for all n ≥ (some nω).

Thus for all n exceeding some even larger n′
ω we have

(11)
[

max
1≤k≤n

|Xk|
n

]

=
[

max
1≤k≤n

k

n
· |Xk|

k

]

≤
[

max
1≤k≤nω

|Xk|
n

]

∨
[

max
k≥nω

∣
∣
∣
∣
|Xk|
k

∣
∣
∣
∣

]

(t) ≤ n−1[ a fixed number depending on ω] + ε ≤ 2ε using (s),

where we will have to increase the specification on n′
ω for (t). Thus Mn →a.s. 0.

Finally, note exercise 4.17 for Mn →L1 0 if and only if E|X| < ∞.
From (6.4.11) we see (note figure 4.1) that

(12) E|X| < ∞ iff
∫∞
0

P (|X| > x) dx < ∞ iff
∫ 1

0
|F−1(t)|dt < ∞. �

Remark 4.1 Suppose X1, . . . , Xn are independent, with Xi
∼= (0, σ2

i ). Then

Sn ≡ X1 + · · · + Xn
∼= (0,

∑n
1σ2

i ), while X̄n ≡ Sn/n ∼= (0,
∑n

1σ2
i /n2).

Chebyshev’s nequality and Kolmogorov’s inequality give, respectively,

(13)
(a) P (|Sn| ≥ λ) ≤ Var[Sn]/λ2 =

∑n
i=1σ

2
i /λ2 for all λ > 0,

(b) P (max1≤k≤n |Sk| ≥ λ) ≤ Var[Sn]/λ2 for all λ > 0.

For X1,X2, . . . iid (μ, σ2), the inequality (13)(a) gives X̄n →p μ, by Chebyshev’s inequality.
But the WLLN conclusion X̄n →p μ should not require the variance σ2 to be finite, as this
cheap proof based on (13)(a) requires. Indeed, Khintchine’s WLLN of theorem 8.2.1 didn’t.
Exercise 4.8 below outlines one very cheap proof of the SLLN using “only” the Borel–Cantelli
lemma, and exercise 4.9 outlines a slightly improved version that also uses Kolmogorov’s
inequality. Kolmogorov’s proof of the full SLLN made the key step of incorporating trunca-
tion. Exercise 4.10 describes an elementary way to avoid use of Kronecker’s lemma. �
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Proof. Consider the WLLN. Suppose (2) holds. Define Ynk ≡ Xnk × 1[|Xnk|≤n] and μn ≡
EYnk =

∫
[−n,n]

x dF (x). Now (using integration by parts for (b)),

P (|X̄n − μn| ≥ ε) = P (|X̄n − EȲn| ≥ ε)

≤ 2
nε2

∫

[0,n]

τ(x) dx =
2

nε2

∫

[0,n]

xP (|X| > x) dx for all 0 < ε ≤ 1,(14)

by the truncation inequality (8.3.26). (Note (6.4.18).) Note that τ(x) ≤ x, and choose M > 0
so large that τ(x) < ε3/4 for x > M . Apply this to (14) for

(a) 2
nε2

∫ n

0
τ(x) dx ≤ 2

nε2 {
∫M

0
xdx +

∫ n

M
ε3

4 dx} ≤ M2

nε2 + ε
2 ≤ ε

for all n ≥ 2M2/ε3. Combining (14) and (a), it follows that

(b) P (|X̄n − μn| ≥ ε) ≤ ε for n ≥ (some Nε).

Thus X̄n − μn →p 0. We also have X̄n − median(X̄n) →p 0, since the symmetrization
inequality 8.3.2 gives

(15) P (|X̄n − median(X̄n)| ≥ ε) ≤ 4P (|X̄n − μn| ≥ ε/2) → 0.

[The acceptability of the third exhibited choice for the centering constant is left to exercise
4.1 below.] In any case, we have shown that (2) implies (1).

The equivalence of (2) and (3) follows. Note figure 4.1, bearing in mind that (a ∨ b) ≤
a + b ≤ 2(a ∨ b) for the definitions a ≡ τ+(x) ≡ xP (X+ > x) and b ≡ τ−(x) ≡ xP (X− > x).
Figure 4.1 thus shows that τ−(x) → 0 holds if and only if t|F−1(t)| → 0, that τ+(x) → 0
holds if and only if t|F−1(1− t)| → 0, and that τ(x) → 0 holds if and only if tF−1

|X|(1− t) → 0.

Consider the equivalence of (4) and (2). We know from (8.3.14) that Mn →p 0 if and only
if nP (|X| > εn) → 0 for all ε > 0, that is, if and only if τ(εn) = εnP (|X| > εn) → 0 for all
ε > 0. Thus Mn →p 0 if and only if τ(x) → 0 as x → ∞.

We still neeed to show that (1) implies (2), but we’ll wait a paragraph for this.
Consider next theorem 4.3. We will only provide a proof with r = 1 (we may just replace

|X| by |Y | ≡ |X|r, after raising |X| to the power r). Now, τX(x) → 0 implies τs(x) → 0
by the right-hand side of inequality 8.3.2 with a = 0, while the left-hand side then gives
τX−med(x) → 0. The equivalence of (4) and (2) then gives max |Xnk − med|/n →p 0, which
trivially gives max |Xnk|/n →p 0, which gives τX(x) → 0 by the equivalence of (4) and (2).
This completes theorem 4.3.

Finally, we prove that (1) implies (2). Suppose that there exist some constants μn such
that Sn/n − μn = X̄n − μn →p 0. Let Ss

n = Sn − S′
n, where S′

n ≡ X ′
n1 + · · · + X ′

nn

with X ′
nk

∼= Xnk and with Xnk’s and X ′
nks independent. Thus Ss

n/n →p 0. Then Ms
n ≡

max1≤k≤n |Xs
nk|/n →p 0 by the (8.3.4) Lévy inequality. Thus τs(x) → 0 by theorem 4.3, and

hence τ(x) → 0 by theorem 4.3. �

Exercise 4.1 Verify that the choice νθ,n ≡
∫ 1−θ/n

θ/n
K(t) dt (for any 0 < θ ≤ 1) also works

in the WLLN as a centering constant in (1). The most natural choice is

(16) νn ≡
∫ 1−1/n

1/n
K(t) dt.

We have just seen that good inequalities lead to good theorems! In sections 8.9 and 12.11
we will add to our growing collection of good inequalities. Some will be used in this text, and
some will not. But the author thinks it important to illustrate these possibilities.
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Exercise 4.2* When E|X| = ∞, the SLLN above showed that limn |X̄n| = ∞ a.s. Show the
following stronger result. If X1,X2, . . . are iid with E|X| = ∞, then

limn→∞ |X̄n − cn| =a.s. ∞

for every sequence of constants cn. (Note exercise 4.23 below.)

Exercise 4.3 (Erickson) (a) If EX− < ∞ but EX+ = ∞, then lim Sn/n =a.s. +∞.
(b) (Kesten)∗ If both EX+ = ∞ and EX− = ∞, then either Sn/n →as ∞, Sn/n →as −∞,
or both lim Sn/n = ∞ and limSn/n = −∞.

Exercise 4.4 (Marcinkiewicz–Zygmund) Let X1,X2, . . . be iid. Let 0 < r < 2. Establish
the equivalence

(17) E|X|r < ∞ if and only if
1

n1/r

n∑

k=1

(Xk − c) →a.s. 0 for some c.

If so, then c = EX when 1 ≤ r < 2, while c is arbitrary (so c = 0 works) when 0 < r < 1.
[Hint. Truncate via Yn ≡ Xn × 1[|Xn|<n1/r ] in a SLLN type proof.]

Exercise 4.5* (Feller) Let X1,X2, . . . be iid with E|X| = ∞. If an/n ↑, then

(18) lim |Sn|/an =
{

= 0 a.s.,
= ∞ a.s., according as

∑∞
n=1P (|Xn| ≥ an) =

{
< ∞,
= ∞.

[Note that P (|Xn| ≥ an i.o.) equals 0 or 1 as
∑∞

1 P (|Xn| ≥ an) is finite or infinite.]

Exercise 4.6 Clarify the overlap between (17) and (18).

Exercise 4.7 (Random sample size) (a) Let X1,X2, . . . be iid with τ(x) → 0 as x → ∞.
Let Nn ≥ 0 be any integer-valued rv satisfying Nn/n →p c ∈ (0,∞). Then

(19) SNn
/Nn − μn →p 0, for μn ≡

∫
[−n,n]

x dF (x).

(b) Suppose X1,X2, . . . are iid and μ ≡ EX is finite. Let Nn ≥ 0 be any positive integer-valued
rv satisfying Nn/n →a.s. c ∈ (0,∞). Then

(20) SNn
/Nn →a.s. μ.

Exercise 4.8 (A weak SLLN) (a) For Xn1, . . . , Xnn independent (or, uncorrelated) with
Xnk

∼= (0, σ2
nk) and all σ2

nk ≤ (some M) < ∞, we have X̄n →a.s. 0.

Hint. Show that P (|Sn| ≥ nε) ≤ M/(nε2), so that P (|X̄n2 | = |Sn2/n2| > 0 i.o.) = 0. Then
show that the “block maximum”

Δn ≡ maxn2<k<(n+1)2 |Sk − Sn2 |

has EΔ2
n ≤ 2nE{|S(n+1)2−1 − Sn2 |2} ≤ 4n2M , so that P (Δn/n2 > ε i.o.) = 0.

(b) Use Kolmogorov’s inequality to obtain E�2
n ≤ 2nM , under independence.
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Exercise 4.9 Let Xn1, . . . , Xnn be row independent rvs (here, merely uncorrelated is much
harder to consider) with means 0 and having all EX4

nk ≤ (some M) < ∞.
(a) (Cantelli’s inequality) Verify that X̄n ≡ Sn/n ≡ (Xn1 + · · · + Xnn)/n satisfies

P (|Sn| ≥ λ) ≤ 3Mn2/λ4 for all λ > 0.

(b) (A very weak SLLN) Show that under these circumstances X̄n →a.s. 0.

Exercise 4.10 (Alternative proof of the SLLN) Apply either the Hájek–Rényi inequality
(inequality 8.10.3) or the monotone inequality (inequality 8.10.1) as a replacement for the use
of the Kronecker lemma in the SLLN proof.

Exercise 4.11 (St. Petersburg paradox) Let X1,X2, . . . be iid rvs for which P (X = 2m) =
1/2m for m ≥ 1. Show that Sn/an − 1 = (Sn − bn)/an →p 0 for bn ≡ n logBase 2 n and
an ≡ n logBase 2 n also. Hint. Let Ynk ≡ Xk1[Xk≤n logBase 2 n]. (While Sn/an →p 1 was just
called for, it can also be shown that Sn/an →a.s. ∞.)

Exercise 4.12* (Spitzer) Let X,X1,X2, . . . be iid. Establish the following claim.

(21) E(X) = 0 for X ∈ L1 iff
∑∞

n=1
1
nP (|Sn| ≥ nε) < ∞ for all ε > 0.

Exercise 4.13 If X1,X2, . . . are iid Exponential(l), then lim Xn/ log n = 1 a.s. and Xn:n/
log n → 1 a.s.

Exercise 4.14 If X1,X2, . . . are iid N(0, 1), then Xn:n/
√

2 log n →p 1.

Exercise 4.15 (a) Does the WLLN hold for the Cauchy distribution?
(b) Does the WLLN hold if P (|X| > x) = e/[2x log x] for x ≥ e,X symmetric?
(c) Make up one more example of each of these two types.

Exercise 4.16 (Uniform integrability of sample averages) Let X1,X2, . . . be iid, and let
X̄n ≡ (X1 + · · · + Xn)/n. Then the rvs {Xn : n ≥ 1} are uniformly integrable if and only if
the rvs {X̄n : n ≥ 1} are uniformly integrable. (Relate this to the SLLN result in (7).) (We
only need independence for u.i. Xk’s to yield u.i. X̄n’s.)

Exercise 4.17 (a) Let row independent rvs Xn1, . . . , Xnn be iid with the df F (·). Let F
have finite mean μ ≡ EX. We know Mn ≡ [max1≤k≤n |Xnk|/n] →p 0 by the WLLN. Trivially,
EMn ≤ E|X|. Show that

(22) EMn = E[max1≤k≤n
1
n

|Xnk|] → 0 (that is, Mn →L1 0).

(b) Let X1,X2, . . . be iid. Show that E|X| < ∞ if and only if Mn →L1 0.

Exercise 4.18 (Negligibility for r = 1, a.s.) (i) Let X,X1,X2, . . . be iid rvs. Let r > 0
(with r = 1 the most important case). Prove that the following are equivalent:

E|X|r < ∞.(23)

Mrn ≡ [ 1
n max1≤k≤n |Xk|r] →a.s. 0.(24)

EMrn → 0.(25)
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(ii) Since E|X|r < ∞ if and only if the symmetrized rv X − X ′ has E|X − X ′|r < ∞ (by
exercise 8.2.3), we can add three analogous equivalences for iid symmetric rvs distributed as
X − X ′.

Exercise 4.19* (Maller–Resnick; Kesten) For a sequence of iid rvs X,X1,X2, . . . let X̄n ≡
(X1 + · · · + Xn)/n and let M1n ≡ [ 1

n max1≤k≤n |Xk|]. Then (difficult)

(26) M1n/|X̄n| →a.s. 0 if and only if 0 < |EX| < ∞.

Exercise 4.20 (Negligibility for r = 2, a.s.) (i) Let X,X1,X2, . . . be iid rvs (that are not
identically equal to 0). Let r > 0 (with r = 2 the most important case). Prove that the
following are equivalent (you should use the difficult (26) for (30)):

E|X|r < ∞.(27)

Mrn ≡ [ 1
n max1≤k≤n |Xk|r] →a.s. 0.(28)

EMrn → 0.(29)

Mrn/[ 1
n

∑n
1 |Xk|r] →a.s. 0.(30)

(ii) When r = 2, we may add the equivalent condition (by (6.6.6))

(31) D2
n ≡ [ 1

n max1≤k≤n(Xk − X̄n)2]/[ 1
n

∑n
k=1(Xk − X̄n)2] →a.s. 0.

(iii) Again (by (8.2.18)), E|X|r < ∞ if and only if E|X − X ′|r < ∞.

Exercise 4.21 (Neglibility, in probability) Let Xn1, . . . , Xnn be iid F , for n ≥ 1. Let X ∼= F .
Let r > 0. Prove that the following are equivalent:

yP (|X|r > y) → 0 as y → ∞.(32)
xrP (|X| > x) → 0 as x → ∞.(33)
xrP (|X − X ′| > x) → 0. as x → ∞, here X andX ′ are iid F.(34)
xrP (|X − (some ‘a’)| > x) → 0. Then any ‘a’ works; so med(X) works.(35)

Mrn ≡ [ 1
n max1≤k≤n |Xnk|r] →p 0. (Any |Xnk − a|r may replace |Xnk|r.)(36)

EMα
rn = E[ 1

nα max1≤k≤n |Xnk|rα] → 0 for all 0 < α < 1.(37)

In case r > 1 (and especially for r = 2) add to this list the equivalent condition

(38) EM1/r
rn = E[

1
n1/r

max1≤k≤n |Xnk|] → 0.

Because (34) is included in this list, the iid Xnk’s may be replaced by iid symmetrized Xs
nk’s

in (32), (33), and (36)–(38). Moreover

(39) E|X|p < ∞ for all 0 < p < r whenever (33) holds.

The remaining problems in this subsection are mainly quite substantial. They are here for
“flavor.” Some also make good exercises for section 8.8. (Some of the martingale inequalities
found in section 8.10 should prove useful (here and below).)

Exercise 4.22* (Kesten) Let X1,X2, . . . be iid as X ≥ 0, with E|X| = ∞. Then

(40) lim
Xn

Sn−1
= ∞ a.s.
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Exercise 4.23* (Chow–Robbins) Let X1,X2, . . . be iid as X, with E|X| = ∞. Let bn > 0
denote any sequence. Then

(41) either lim
|Sn|
bn

= 0a.s. or lim
|Sn|
bn

= ∞ a.s.

Exercise 4.24* Suppose
∑∞

1 E|Xn|r < ∞ for some r > 0. Show that Xn →a.s. 0.

Exercise 4.25* (Hsu–Robbins; Edrös) Let X,X1,X2, . . . be iid rvs. Then

(42)
EX = 0 and Var[X] < ∞ if and only if
∑∞

n=1P (|Sn| > εn) < ∞ for all ε > 0.

Exercise 4.26* Let X1,X2, . . . be independent with 0 means. Let r ≥ 1. Then

(43) Sn/n →a.s. and L2r
0 whenever

∑∞
n=1E|Xn|2r/nr+1 < ∞.

Exercise 4.27* Let X,X1,X2, . . . be iid. Let Log x ≡ 1 ∨ log x. (a) Show that

(44)
E(|X|Log+(|X|)) < ∞ if and only if
E{supn≥1(|Xn|/n)} < ∞ if and only if E{supn≥1(|Sn|/n)} < ∞.

(b) Show that for each r > 1,

(45) E|X|r < ∞ if and only if E{supn≥1(|Sn|r/nr)} < ∞.

Exercise 4.28* (Stone) Let X,X1,X2, . . . be iid nondegenerate rvs with 0 means. Let Sn ≡
X1 + · · · + Xn. Then

(46) limn Sn/
√

n =a.s . + ∞ and limn Sn/
√

n =a.s . − ∞.

Generalizations of the LLNs

Our results allow simple generalizations of both the WLLN and SLLN.

Theorem 4.4 (General WLLN and SLLN) Let X1,X2, . . . be independent. Then

∑n
1σ2

k/b2
n → 0 implies

∑n
1 (Xk − μk)/bn →p 0,(47)

∑∞
1 σ2

k/b2
k < ∞ with bn ↗ ∞ implies

∑n
1 (Xk − μk)/bn →a.s. 0.(48)

Proof. The first claim is immediate from Chebyshev’s inequality. Also, (f) in the SLLN
proof shows that

(49)
∑∞

1 σ2
k/b2

k < ∞ implies
∑n

1 (Xk − μk)/bk →a.s. (some rv S).

Then Kronecker’s lemma gives
∑n

1 (Xk − μk)/bn →a.s. 0. (This result is often the starting
point for a development of the SLLN.) �
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Exercise 4.29* (More general WLLN) Let Xn1, . . . , Xnn be independent, and set Sn ≡
Xn1 + · · ·+Xnn. Truncate via Ynk ≡ Xnk × 1[|Xnk|≤bn], for some bn > 0 having bn ↗ ∞. Let
μnk and σ2

nk denote the mean and variance of Ynk. Then

(50) Sn/bn →p 0

if and only if we have all three of

(51)
∑n

1P (|Xnk| > bn) → 0,
∑n

1μnk/bn → 0, and
∑n

1σ2
nk/b2

n → 0.

[The converse is a substantial problem.]
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5 Applications of the Laws of Large Numbers

Let X1,X2, . . . be iid F . Let Fn denote the empirical df of X1, . . . , Xn, given by

(1) Fn(x) ≡ Fn(x, ω) ≡ 1
n

n∑

k=1

1(−∞,x](Xk(ω)) =
1
n

n∑

k=1

1[Xk≤x] for all real x.

Theorem 5.1 (Glivenko-Cantelli) We have

(2) ‖Fn − F‖ ≡ sup
−∞<x<∞

‖Fn(x) − F (x)| →a.s. 0 as n → ∞.

[This is a uniform SLLN for the random function Fn(·).]

Proof. Let Xk = F−1(ξ̇k) for k ≥ 1 be iid F , with the ξ̇k’s iid Uniform (0, 1). Let Gn

denote the empirical df of the first n of these ξ̇k’s, and let Fn denote the empirical df of the
first n of these Xk’s. Let I denote the identity function. Then

(3) (Fn − F ) = [Gn(F ) − I(F )] on (−∞, ∞) for every ω

by (6.3.4). Thus by theorem 5.3.3, it will suffice to prove the result in the special case of
uniform empirical df’s Gn’s. (Recall the remark in bold above (6.4.3) that the representation
of X as F−1(ξ) allows alternative ways to approach problems. Moreover, using the ξ̇k’s of
(6.3.8) gives us back the original Xk’s.)

Now, Gn(k/M) − k/M →a.s. 0 as n → ∞ for 0 < k ≤ M by the SLLN applied to the iid
Bernoulli (k/M) rv’s 1[0,k/M ](ξ̇i). We now assume that M is so large that 1/M < ε. Then
for (k − 1)/M ≤ t ≤ k/M , with 1 ≤ k ≤ M , we have both

Gn(t) − t ≤ Gn( k
M ) − k−1

M ≤ Gn( k
M ) − k

M + 1
M and(a)

Gn(t) − t ≥ Gn(k−1
M ) − k

M ≥ Gn(k−1
M ) − k−1

M − 1
M .(b)

These combine to give

sup0≤t≤1 |Gn(t) − t| ≤ [max0≤k≤M |Gn( k
M ) − k

M |] + 1
M(c)

→a.s. 0 + 1/M < ε.(d)

Since ε > 0 is arbitrary, we have shown that sup0≤t≤1 |Gn(t) − t| →a.s. 0. That is,

(4) ‖Fn − F‖ = ‖Gn(F ) − F‖ ≤ ‖Gn − I‖ →a.s. 0,

as claimed. �

Exercise 5.1 Let ξn1, . . . , ξnn denote any row independent Uniform (0, 1) rvs, and let all
Xnk = F−1(ξnk) for a fixed df F . Let Fn and Gn denote the empirical dfs of the nth rows of
these two arrays. Show that (2) still holds.

Example 5.1 (Weierstrass approximation theorem) If f is continuous on [0, 1], then there
exist polynomials Bn such that ‖Bn − f‖ = sup0≤t≤1 |Bn(t) − f(t)| → 0 as n → ∞.

Proof. (Bernstein) Define the Bernoulli polynomials

(5) Bn(t) =
n∑

k=0

f

(
k

n

)(
n
k

)

tk(1 − t)n−k for 0 ≤ t ≤ 1
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(a) = Ef(T/n) where T ∼= Binomial(n, t).

Since f is continuous, f is bounded by some M , and f is uniformly continuous on [0, 1] having
|f(x) − f(y)| < ε whenever |x − y| < δε. Then

|f(t) − Bn(t)| = |
∑n

k=0[f(t) − f(k/n)]
(
n
k

)
tk(1 − t)n−k|

≤ |
∑

{k:|k/n−t|<δε} same| + |
∑

{k:|k/n−t|≥δε} same|
< ε + 2MP (|T/n − t| ≥ δε) by uniform continuity of f(b)

≤ ε + 2Mt(1 − t)/nδ2
ε for all t (by Chebyshev)

≤ ε + 2M/4nδ2
ε ≤ 2ε for n ≥ some Nε, for all 0 ≤ t ≤ 1.(c)

As the choice of Nε does not depend on t, the convergence is uniform. Note that this is just
an application of a weak form of the WLLN (that is, of the Chebyshev inequality). �

Example 5.2 (Borel’s normal numbers) A number x in [0, 1] is called normal to base d if
when expanded to base d, the fraction of each of the digits 0, . . . , d− 1 converges to 1/d. The
number is normal if it is normal to base d for each d > 1. We are able to conclude that

a.e. number in [0, 1] is normal with respect to Lebesgue measure λ.

[Comment: 1
3 = 0.010101 . . . in base 2 is normal in base 2, but 1

3 = 0.1000 . . . in base 3 is
not normal in base 3.] [This was a historically important example, which spurred some of the
original development.]

Proof. Let (Ω, A, P ) = ([0, 1], B ∩ [0, 1], λ). Let

(a) ω =
∑∞

n=1βn(ω)/dn define rvs β1, β2, . . .

Note that the βn’s are iid discrete uniform on 0, 1, . . . , d − 1. Thus, letting ηnk = 1 or 0
according as βn = k or βn 
= k, we have

λ(Ad,k) ≡ λ({ω : n−1∑n
j=1ηjk → 1/d}) = 1(b)

by the SLLN. Thus Ad ≡
⋂d−1

k=0Ad,k has λ(Ad) = 1; that is, a.e. ω in [0, 1] is normal to base
d. Then trivially, A ≡

⋂∞
d=1Ad has λ(A) = 1. And so, a.e. ω in [0, 1] is normal. �

Example 5.3 (SLLN for random sample size) Let Nn be positive-integer valued rvs for
which Nn/n →a.s. c ∈ (0, ∞), and let X1,X2, . . . be iid with mean μ.
(a) Then

(6) SNn
/n →a.s. μ · c as n → ∞.

(b) If X1,X2, . . . are iid Bernoulli(p) and Nn(ω) ≡ min{k : Sk(ω) = n}, then the waiting
times Nn satisfy Nn/n →a.s. 1/p.

Proof. (a) Now, Sn/n →a.s μ by the SLLN, and thus Nn →a.s. ∞ implies SNn
/Nn →a.s. μ.

Thus

SNn
/n = (SNn

/Nn)(Nn/n) →a.s. μ · c,

using Nn →a.s. ∞ by c > 0.
(b) We also have (since μ = p)

1 = SNn
/n = (SNn

/Nn)(Nn/n), so Nn/n = 1/(SNn
/Nn) →a.s. 1/p,
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completing the proof. Note that we could also view Nn as the sum of n iid Geometric(p) rvs,
and then apply the SLLN. �

Exercise 5.2 (Monte Carlo estimation) Let h : [0, 1] → [0, 1] be continuous.
(i) Let Xk ≡ 1[h(ξk)≥Θk], where ξ1, ξ2, . . . Θ1,Θ2, . . . are iid Uniform (0, 1) rvs. Show that
this sample average is a strongly consistent estimator of the integral; that is, show that
X̄n →a.s.

∫ 1

0
h(t) dt.

(ii) Let Yk ≡ h(ξk). Show that Ȳn →a.s.

∫ 1

0
h(t) dt.

(iii) Evaluate Var[X̄n] and Var[Ȳn], and compare them.
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6 Law of the Iterated Logarithm

Theorem 6.1 (LIL; Hartman–Wintner; Strassen) Let X1,X2, . . . be iid rvs. Consider
the partial sums Sn ≡ X1 + · · · + Xn.
(a) If EX = 0 and σ2 ≡ Var[X] < ∞, then

(1) lim sup
n→∞

Sn√
2n log log n

= σ a.s., while lim inf
n→∞

Sn√
2n log log n

= −σ a.s.

(b) In fact,

(2)
Sn√

2n log log n
�a.s. [−σ, σ].

[That is, for a.e. ω the limit set of Sn/
√

2n log log n is exactly [−σ, σ] ].
(c) Conversely, if

(3) lim
|Sn|√

2n log log n
< ∞ a.s., then EX = 0 and σ2 < ∞.

Theorem 6.2 (The other LIL; Chung) If X1,X2, . . . are iid (0, σ2), then

(4) lim max
1≤k≤

√
2 log log n

|Sk|√
nσ

= π/2 a.s.

[We state this for fun only, as it has seen little application.]

Versions of both theorems are also known for cases other than iid. The classical proof
of theorem 6.1 in full generality begins with truncation, and then carefully uses exponential
bounds for bounded rvs. A more modern proof relies upon Skorokhod embedding of the
partial sum process in Brownian motion. This general proof is outlined in the straightforward
exercise 12.8.2, after embedding is introduced. But the proof below for the special case of
normal rvs contains several of the techniques used in the classical proof of the general case
(and in other related problems). And it is also a crucial component of the general case in
exercise 12.8.2.

Proposition 6.1 Let Z1, Z2, . . . be iid N(0, 1) rvs. Let Sn ≡ Z1 + · · · + Zn and bn ≡√
2 log log n. Then lim supn→∞ Sn/

√
nbn = 1 a.s.

Proof. Let ε > 0. We will use the exponential bound

(5) exp[−(1 + ε)λ2/2] ≤ P (Sn/
√

n ≥ λ) ≤ exp[−(1 − ε)λ2/2] for all λ > λε

(for some λε) [see Mills’ ratio exercise 6.1 below], and the Lévy maximal inequality

(a) P ( max
1≤k≤n

Sk ≥ λ) ≤ 2P (Sn ≥ λ) for all λ > 0.

Let nk ≡ [ak] for a > 1; a sufficiently small a will be specified below. Now,

Ak ≡
⋃

nk−1≤m≤nk
[Sm ≥ √

m(1 + 2ε)bm]

⊂
[

max
nk−1≤m<nk

Sm ≥ (1 + 2ε)
√

nk−1

nk
bnk−1

√
nk

]

,(b)
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since
√

n is ↗ and bn is ↗; so that for k sufficiently large,

P (Ak) ≤ 2P

(

Snk
/
√

nk ≥ (1 + 2ε)
√

nk−1

nk
bnk−1

)

by (a)(c)

≤ 2 exp
(

−1
2
(1 − ε)(1 + 2ε)2

1 − ε

a
2 log k

)

by (5)

≤ 2 exp(−(1 + ε) log k) = 2/k1+ε for a sufficiently close to 1
= (kth term of a convergent series).(d)

Thus P (Ak i.o.) = 0 by Borel–Cantelli. Since ε > 0 is arbitrary, we thus have

lim sup
n→∞

Sn√
nbn

≤ 1 a.s.(e)

Since (e) is true, on any subsequence nk → ∞ we can claim that

(f) P (Ak i.o.) = 0, including when nk ≡ [ak] for a huge.

We must now show that the lim in (e) is also ≥ 1 a.s. We will still use nk ≡ [ak], but a
will be specified sufficiently large below. We write Snk

= Snk−1 + (Snk
− Snk−1), so that

Snk√
nkbnk

=
√

nk−1

nk

(
bnk−1

bnk

)
Snk−1√

nk−1bnk−1

+
Snk

− Snk−1√
nkbnk

(g)

∼ 1√
a

· 1 · Snk−1√
nk−1bnk−1

+
Snk

− Snk−1√
nkbnk

.(h)

Now, the independent events

(i) Bk ≡ [Snk
− Snk−1 ≥ (1 − 2ε)

√
nkbnk

] =
[
Snk

− Snk−1√
nk − nk−1

≥ (1 − 2ε)
√

nkbnk√
nk − nk−1

]

have

P (Bk) ≥ exp
(

−1
2
(1 + ε)(1 − 2ε)2

nk

nk − nk−1
b2
nk

)

by (5)(j)

≥ exp(−1
2
(1 + ε)(1 − 2ε)2

(1 + ε)a
a − 1

2 log k)

≥ exp(−(1 − ε) log k) for a sufficiently large

= 1/k1−ε = (kth term of a series with an infinite sum),(k)

so that P (Bk i.o.) = 1 by the second Borel–Cantelli lemma. But P (Ak i.o.) = 0 and
P (Bk i.o.) = 1 means that

(l) P (Ac
k ∩ Bk i.o.) = 1.

Moreover, on Ac
k ∩ Bk we have, using (h), (i), and the symmetric version of (f),

(m)
Snk√
nkbnk

≥ − (1 + 2ε)(1 + ε)√
a

+ (1 − 2ε) ≥ (1 − 3ε)

for the constant a specified sufficiently large. Thus, even focusing only on the subsequence
nk in (f) with this large a ≡ aε, since ε > 0 was arbitrary,

(n) lim sup
n→∞

Snk√
nkbnk

≥ 1 a.s.

Combining (e) and (n) gives the proposition. �
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Exercise 6.1 (Mills’ ratio) Show that for all λ > 0

(6)
λ

λ2 + 1
1√
2π

exp(−λ2/2) < P (N(0, 1) > λ) <
1
λ

1√
2π

exp(−λ2/2),

which can be rewritten as

(7)
λ

λ2 + 1
φ(λ) < 1 − Φ(λ) <

1
λ

φ(λ)

where φ and Φ denote the standard normal N(0, 1) density and df, respectively. Show (5)
follows from this. This is the end of this exercise.
(∗) For a standardized rv Zn, one might then hope that as λn → ∞

(8) exp(−(1 + εn)λ2
n/2) ≤ P (Zn ≥ λn) ≤ exp(−(1 − εn)λ2

n/2),

as was applied in (5). [This clean exponential bound for normal rvs was the key to the simple
LIL proof in proposition 6.1. The classic Hartman–Wintner proof uses truncation to achieve
a reasonable facsimile of this in other cases.]
(∗) (Ito–McKean) It is even true that for all λ > 0 there are the tighter bounds

(9) 2√
λ2+4+λ

φ(λ) < 1 − Φ(λ) < 2√
λ2+2+λ

φ(λ).

Exercise 6.2 In place of (c) in the LIL proof of proposition 6.1, use Mills’ ratio to bound
P (An) ≡ P (Sn/

√
n ≥ (1 + 2ε)

√
2 log n). Use that bound directly to show that lim sup |Sn|/

(
√

n
√

2 log n) ≤ 1 a.s. [This “poor” result will show the value of using the “block of indices”
in the definition of Ak in the proof we gave.]

Exercise 6.3 Let arbitrary events An and Bn satisfy P (An i.o.) = 0 and P (Bn i.o.) = 1.
Show that P (Ac

n ∩ Bn i.o.) = 1 (as in (1) above).
Summary Suppose X,X1,X2, . . . are iid (μ, 1). Then:

∑n
k=1(Xk − μ)

n
→a.s. 0 by the SLLN.(10)

∑n
k=1(Xk − μ)

n1/r
→a.s. 0 for all 1 ≤ r < 2, by Marcinkiewicz–Zygmund.(11)

∑n
k=1(Xk − μ)√
2n log log n

�a.s. [−1, 1] by the LIL.(12)

Suppose we go all the way to
√

n in the denominator. Then the classical CLT gives

(13)
∑n

k=1(Xk − μ)√
n

→d N(0, 1) by the CLT,

even though we have divergence to ±∞ for a.e. ω (by the LIL). �

Exercise 6.4 (rth mean convergence theorem) Let X,X1,X2, . . . be iid, and consider the
partial sums Sn ≡ X1 + · · · + Xn. Let 0 < r < 2 (and suppose EX = 0 in case 1 ≤ r < 2).
The following are equivalent:
(a) E|X|r < ∞.
(b) Sn/n1/r →a.s. 0.
(c) E|Sn|r = o(n).
(d) E(max1≤k≤n |Sk|r) = o(n).
Hint. For (a) and (b) imply (c), use the Hoffmann-Jorgensen (8.10.6) below.
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7 Strong Markov Property for Sums of IID RVs

Let X1,X2, . . . be iid and let Sn ≡ X1 + · · · + Xn. Let S ≡ (S1, S2,..).

Definition 7.1 The integer valued rv N is a stopping time for the sequence of rvs S1, S2, . . .
if [N = k] ∈ F(S1, . . . , Sk) for all k ≥ 1. It is elementary that

FN ≡ F(Sk : k ≤ N)(1)
≡ {A ∈ F(S) : A ∩ [N = k] ∈ F(S1, . . . , Sk) for all k ≥ 1} = (aσ-field),(2)

since it is clearly closed under complements and countable intersections. (Clearly, [N = k]
can be replaced by [N ≤ k] in the definition of FN in (2).)

Proposition 7.1 Both N and SN are FN -measurable.

Proof. Now, to show that [N ≤ m] ∈ FN we consider [N ≤ m] ∩ [N = k] equals [N = k]
or ∅, both of which are in F(S); this implies [N ≤ m] ∈ FN . Likewise,

(a) [SN ≤ x] ∩ [N = k] = [Sk ≤ x] ∩ [N = k] ∈ F(S1, . . . , Sk),

implying that [SN ≤ x] ∈ FN . �

Theorem 7.1 (The strong Markov property) If N is a stopping time, then the incre-
ments continuing from the random time

(3) S̃k ≡ SN+k − SN , k ≥ 1,

have the same distribution on (R∞, B∞) as does Sk, k ≥ 1. Moreover, defining S̃ ≡
(S̃1, S̃2, . . .),

(4) F(S̃) ≡ F(S̃1, S̃2, . . .) is independent of FN (hence of N and SN ).

Proof. Let B ∈ B∞ and A ∈ FN . Now,

P ([S̃ ∈ B] ∩ A) =
∑∞

n=1P ([S̃ ∈ B] ∩ A ∩ [N = n])(a)
=
∑∞

n=1P ([(Sn+1 − Sn, Sn+2 − Sn, . . .) ∈ B] ∩ (A ∩ [N = n]))
with A ∩ [N = n] ∈ F(S1, . . . , Sn)

=
∑∞

n=1P ([(Sn+1 − Sn, Sn+2 − Sn, . . .) ∈ B])P (A ∩ [N = n])
= P (S ∈ B)

∑∞
n=1P (A ∩ [N = n])

= P (S ∈ B)P (A).(b)

Set A = Ω in (b) to conclude that S̃ ∼= S. Then use P (S̃ ∈ B) = P (S ∈ B) to rewrite (b) as

(c) P ([S̃ ∈ B] ∩ A) = P (S̃ ∈ B)P (A),

which is the statement of independence. �

Exercise 7.1 (Manipulating stopping times) Let N1 and N2 denote stopping times relative
to an ↗ sequence of σ-fields A1 ⊂ A2 ⊂ · · · . Show that N1 ∧ N2, N1 ∨ N2, N1 + N2, and
No ≡ i are all stopping times.
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Definition 7.2 Define waiting times for return to the origin by

(5)

W1 ≡ min{n : Sn = 0} with W1 = +∞ if the set is empty,
...

...
Wk ≡ min{n > Wk−1 : Sn = 0} with Wk = +∞ if the set is empty.

Then define Tk ≡ Wk − Wk−1, with W0 ≡ 0, to be the interarrival times for return to the
origin.

Proposition 7.2 If P (Sn = 0 i.o.) = 1, then T1 T2, . . . are well-defined rvs and are, in fact,
iid.

Proof. Clearly, each Wk is always an extended-valued rv, and the requirement P (Sn =
0 i.o.) = 1 guarantees that Wk(ω) is well-defined for all k ≥ 1 for a.e. ω.

Now, T1 = W1 is clearly a stopping time. Thus, by the strong Markov property, T1 is
independent of the rv S̃(1) ≡ S̃ with kth coordinate S̃

(1)
k ≡ S̃k ≡ ST1+k − ST1 and S̃(1) ≡

S̃ ∼= �S. Thus T2 is independent of the rv S̃(2) with kth coordinate S̃
(2)
k ≡ S̃

(1)
T2+k − S̃

(1)
T2

=
ST1+T2+k − ST1+T2 and S̃(2) ∼= S̃(1) ∼= �S. Continue with S̃(3), etc. [Note the relationship to
interarrival times of a Bernoulli process.] �

Exercise 7.2 (Wald’s identity) (a) Suppose X1,X2, . . . are iid with mean μ, and N is a
stopping time with finite mean. Show that Sn ≡ X1 + · · · + Xn satisfies

(6) ESN = μEN.

(b) Suppose each Xk equals 1 or −1 with probability p or 1 − p for some 0 < p < 1. Then
define the rv N ≡ min{n : Sn equals −a or b}, where a and b are strictly positive integers.
Show that N is a stopping time that is a.s. finite. Then evaluate the mean EN. [Hint.
[N ≥ k] ∈ F(S1, . . . , Sk−1), and is thus independent of Xk, while SN =

∑∞
k=1Xk1[N≥k].]
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8 Convergence of Series of Independent RVs

In section 8.4 we proved the SLLN after recasting it (via Kronecker’s lemma) as a theorem
about a.s. convergence of infinite series. In this section we consider the convergence of
infinite series directly. Since the convergence set of a series is a tail event (recall remark
7.2.1), convergence can happen only with probability 0 or 1. Moreover, the first theorem
below seems to both limit the possibilities and broaden the possible approaches to them. All
proofs are given at the end of this section.

Theorem 8.1 Let X1,X2, . . . be independent. Then, for some rv S, we have

(1) Sn ≡
n∑

k=1

Xk →a.s. S iff
n∑

k=1

Xk →p S iff
n∑

k=1

Xk →d S.

[We will show the first equivalence now, and leave the second until exercise 10.2.10.]

Theorem 8.2 (The 2-series theorem) Let X1,X2, . . . be independent rvs for which
Xk

∼= (μk, σ2
k). Let Sn ≡

∑n
k=1 Xk and S0,n ≡

∑n
k=1(Xk − μk). (a) Then

(2)
n∑

k=1

μk → μ and
∑∞

k=1
σ2

k < ∞ imply Sn ≡
∑n

k=1
Xk →a.s. (some rv S).

Of course, in this situation S0,n →a.s. S0 ≡ S − μ. Moreover,

(3) ES = μ ≡
∑∞

k=1μk Var[S] = σ2 ≡
∑∞

k=1 σ2
k, and Sn →L2 S.

(b) Further, if all |Xk| ≤ (some c), then (including converses) both:

S0,n ≡
n∑

k=1

(Xk − μk) →a.s. (some rv S0) if and only if
∞∑

k=1

σ2
k < ∞.(4)

Sn ≡
n∑

k=1

Xk →a.s. (some rv S) iff
n∑

k=1

μk → μ and
∞∑

k=1

σ2
k < ∞.(5)

If a series is to converge, the size of its individual terms must be approaching zero. Thus
the rvs must be effectively bounded. Thus truncation should be particularly effective for
demonstrating the convergence of series.

Theorem 8.3 (The 3-series theorem) Let X1,X2, . . . be independent rvs.
(a) Define X

(c)
k to be the trimmed Xk that equals Xk or 0 as |Xk| ≤ c or as |Xk| > c. Then

the series

(6) Sn ≡
n∑

k=1

Xk →a.s. (some rv S)

if and only if for some c > 0 the following three series all converge:

(7) Ic ≡
∞∑

k=1

P (|Xk| > c), IIc ≡
∞∑

k=1

Var[X(c)
k ], IIIc ≡

∞∑

k=1

EX
(c)
k .

(b) The condition (7) holds for some c > 0 if and only if it holds for all c > 0.
(c) If either Ic, IIc, or IIIc diverges for any c > 0, then

∑n
k=1Xk diverges a.s.
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Example 8.1 Suppose X1,X2, . . . are independent and are uniformly bounded. They are
assumed to be independent of the iid Rademacher rvs ε1, . . . , εn. Then

(8)
∑n

k=1εkXk →a.s. (some rv S) if and only if
∑∞

k=1σ
2
k < ∞.

Moreover, S ∼= (0,
∑∞

k=1σ
2
k). [This is immediate from the 2-series theorem.] �

Exercise 8.1 Suppose X1,X2, . . . are iid with P (Xk = 0) = P (Xk = 2) = 1
2 . Show that∑n

k=1Xk/3k →a.s. (some S), and determine the mean, variance, and the name of the df FS

of S. Also determine the characteristic function of S (at some point after chapter 9).

Exercise 8.2 (a) Show that
∑n

k=1a
kXk →a.s. (some S) when X1,X2, . . . are independent

with Xk
∼= Uniform(−k, k) for k ≥ 1, and where 0 < a < 1.

(b) Evaluate the mean and the variance (give a simple expression) of S.

Exercise 8.3 Let X1,X2, . . . be arbitrary rvs with all Xk ≥ 0 a.s. Let c > 0 be arbitrary.
Then

∑∞
k=1E(Xk ∧ c) < ∞ implies that

∑n
k=1Xk →a.s. (some rv S). The converse holds for

independent rvs.

Exercise 8.4 (a) Let Z1, Z2, . . . be iid N(0, 1) rvs. Show that
∑∞

k=1[Z
2
2k−1 + Z2

2k]/2k →a.s. (some rv),
∑∞

n=1[
∑n

k=1Zk/2n+k] →a.s. (some rv),

and determine (if possible) the mean, variance, and distribution of the limiting rvs.
(b) Let Y1, Y2, . . . be iid Cauchy(0,1) rvs. Does

∑∞
k=1Yk/2k →a.s. (some rv)? If so, what is

the distribution of the limit?

Proofs o

Proof. Consider theorem 8.1. Now, →a.s. always implies →p. So we turn to the converse.
Suppose Sn →p S (which is equivalent to Sm − Sn →p 0). To establish Sn →a.s., it is enough
to verify (2.3.7) that for all ε > 0 and θ > 0 we have

(9) P ( max
n≤m≤N

|Sm − Sn| ≥ ε) < θ for all n ≥ (some nε,θ).

But Ottaviani–Skorokhod’s inequality 10.3.4 gives

P (maxn≤m≤N |Sm − Sn| ≥ ε) = P (maxn<m≤N |
∑m

n+1Xk| ≥ ε)(a)

≤ P (|
∑N

n+1Xk| ≥ ε/2)/[1 − maxn<m≤N P (|
∑m

n+1Xk| > ε/2)](b)

≤ P (|SN − Sn| ≥ ε/2)/[1 − maxn≤m≤N P (|Sm − Sn| > ε/2)](c)
= o(1)/[1 − o(1)] < θ for all n,N ≥ (some nε,θ),(d)

using SN − Sn →p 0 for (d). Thus (9) holds, and Sn →a.s. (some rv S′). The a.s. limit S′

equals S a.s. by proposition 2.3.4. �

Proof. Consider theorem 8.2, part (a): We first verify (2). By theorem 8.1, to estab-
lish that S0,n →a.s. (some S) we need only show that S0,m − S0,n →p 0. But this follows
immediately from Chebyshev’s inequality, since

P (|S0,m − S0,n| ≥ ε) ≤ Var[S0,m − S0,n]/ε2 ≤
∑∞

n+1σ
2
k/ε2 < ε



8. CONVERGENCE OF SERIES OF INDEPENDENT RVS 183

for all sufficiently large n. Thus (2) holds, since Sn = S0,n + μn.
We next verify (3) that Var[S] = Var[S0] = σ2 and ES = μ. Fatou gives

(e) E(S2
0) = E(lim S2

0,n) = E(lim S2
0,n) ≤ lim E(S2

0,n) = lim
∑n

1σ2
k = σ2,

and E(S2
0) ≥ σ2 since

(f) E(S2
0) = E{(

∑n
1 (Xk − μk))2} + E{(

∑∞
n+1(Xk − μk))2} ≥ E(S2

0,n) → σ2

(as the two rvs are independent, the first has mean 0, and both have finite variance (as
follows from (e)). Thus E(S2

0) = σ2. Inasmuch as both S0,n →a.s. S0 and E(S2
0,n) →

E(S2
0), the Vitali theorem gives S0,n →L2 S0. Then exercise 3.5.1b and Vitali show that

E(S0) = lim E(S0,n) = lim 0 = 0. As S = S0 + μ, we have ES = E(S0 + μ) = μ and
Var[S] = Var[S0] = E(S2

0) = σ2 =
∑∞

1 σ2
k. �

The proof of part (b) of the 2-series theorem above will require a converse of Kolmogorov’s
inequality that is valid for bounded rvs.

Inequality 8.1 (Kolmogorov’s other inequality) Consider independent zero-mean rvs Xk,
and set Sk ≡ X1 + · · · + Xk for 1 ≤ k ≤ n. Suppose |Xk| ≤ (some M) < ∞ for all k. Then

(10) P (1 max
≤k≤n

|Sk| ≤ λ) ≤ (λ + M)2/
∑n

k=1σ
2
k for all λ > 0.

Proof. Let Ak ≡ [max1≤j<k |Sj | ≤ λ < |Sk|]. Let Mn ≡ [max1≤k≤n |Sk|]. We give another
first passage argument. Thus

E
{

S2
n1∑n

1Ak

}

=
∑n

1E{S2
n1Ak

} =
∑n

1E{[Sk + (Sn − Sk)]21Ak
}(a)

=
∑n

1{E(S2
k1Ak

) + 2 · 0 + P (Ak)E(Sn − Sk)2} by independence

≤ (λ + M)2
∑n

1P (Ak) +
∑n

1P (Ak)
∑n

j=k+1σ
2
j(b)

≤ {(λ + M)2 + Var[Sn]}(1 − P (Mn ≤ λ)),(c)

where in step (b) we take advantage of |Sk| ≤ |Sk−1|+ |Xk| ≤ λ+M on Ak. We also note that

(d) E{S2
n1∑n

1Ak
} = ES2

n − E{S2
n1[Mn≤λ]} ≥ Var[Sn] − λ2P (Mn ≤ λ)

using |Sn| ≤ λ on the event [Mn ≤ λ] to obtain (d). Combining (c) and (d) and doing algebra
gives

(e) P (Mn ≤ λ) =
(λ + M)2

(λ + M)2 + Var[Sn] − λ2
≤ (λ + M)2

Var[Sn]
.

�

Proof. Consider Theorem 8.2, part(b): Consider first the forward half of (4). Since
S0,n →a.s. (some rv S0), for some sufficiently large λ we have

0 < P (supn |S0,n| ≤ λ)(a)
= limN P (max1≤n≤N |S0,n| ≤ λ) since measures are monotone
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≤ limN (λ + c)2/
∑N

1 σ2
k by Kolmogorov’s other inequality 8.1(b)

= (λ + c)2/
∑∞

1 σ2
k.(c)

Then (c) implies that
∑∞

1 σ2
k < ∞. Conversely,

∑∞
1 σ2

k < ∞ implies by (2) that S0,n →a.s.

(some rv S0). So, both halves of (4) hold.
Consider (5). Again, (2) gives the converse half. Consider the forward half. Suppose that

Sn →a.s. S. The plan is first to symmetrize, so that we can use (4) to prove (5). Let Xn’s
be independent, and independent of the Xn’s with X ′

n
∼= Xn; then Xs

n ≡ Xn − X ′
n denotes

the symmetrized rv. Since → a.s. depends only on the finite-dimensional distributions, the
given fact that Sn →a.s. S implies that the rv S′

n ≡
∑n

1X ′
k →a.s. (some rv S′) ∼= S. We can

thus claim that

Ss
n ≡

∑n
1Xs

k →a.s. Ss ≡ S − S′.(d)

Now, |Xs
n| ≤ 2c; thus (d) and (4) imply that

∑∞
1 Var[Xs

n] < ∞. Thus
∑∞

1 σ2
n =

∑∞
1 Var[Xs

n]/2 < ∞.(e)

Now, (e) and (2) imply that
∑n

1 (Xk − μk) → a.s. (some rv S0) with mean 0. Thus
∑n

1μk = [
∑n

1Xk] − [
∑n

1 (Xk − μk)] →a.s. S − S0.(f)

Thus S = S0 + μ with μ ≡
∑∞

1 μk convergent, and the forward half of (5) holds. �

Proof. Consider the 3-series theorem. Consider (a) and (b) in its statement: Suppose that
the 3 series converge for at least one value of c. Then II and III imply that

∑n
1X

(c)
k →a.s.

by (2). Thus
∑n

1Xk →a.s. by proposition 8.2.1, since I < ∞ implies that X1,X2, . . . and
X

(c)
1 ,X

(c)
2 , . . . are Khinchin equivalent sequences.

Suppose that
∑n

1Xk →a.s. · Then for all c > 0 we have P (|Xn| > c i.o.) = 0, so that
I < ∞ holds for all c > 0 by the second Borel–Cantelli lemma. Thus

∑n
1X

(c)
k →a.s. for all c,

since I < ∞ implies that X
(c)
1 ,X

(c)
2 , . . . and X1,X2, . . . are Khinchine equivalent sequences.

Thus II < ∞ and III < ∞ for all c by the 2-series theorem result (4).
Consider (c). Kolmogorov’s 0-l law shows that Sn either converges a.s. or else diverges

a.s.; and it is not convergent if one of the three series fails to converge. �

L2-Convergence of Infinite Series, and A.S. Convergence∗

Exercise 8.5 (L2-convergence of series) Let X1,X2, . . . be independent rvs in L2, where Xk

has mean μk and variance σ2
k. Then the sum Sn ≡ X1 + · · · + Xn has mean mn ≡

∑n
k=1μk

and variance v2
n ≡

∑n
k=1σ

2
k. Show that

(11) Sn →L2 (some rv S) if and only if mn → (some μ) and v2
n → (some σ2).

If Sn →L2 S, then ES = μ and Var[S] = σ2.

Exercise 8.6 (Chow–Teicher) Let X1,X2, . . . be iid with finite mean. Suppose the series of
real numbers

∑n
1ak converges, where the |ak| are uniformly bounded. Show that∑n

1akXk →a.s. (some rv S).
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Other Generalizations of the LLNs∗

Exercise 8.7 The following (with r = 1) can be compared to theorem 8.4.4. If X1,X2, . . .
are independent with 0 means, then

(12)
∑∞

1 E|Xn|2r/nr+1 < ∞ for some r ≥ 1 implies Sn/n →a.s. 0.

Exercise 8.8 (Chung) Here is an even more general variation on theorem 8.??. Suppose
that φ > 0 is even and continuous, and either φ(x)/x ↗ but φ(x)/x2 ↘ or else φ(x) ↗
but φ(x)/x ↘. Let bn ↗ ∞. Let X1,X2, . . . be independent with 0 means. Then

(13)
∑∞

n=1Eφ(Xn)/φ(bn) < ∞ implies both
∑∞

n=1Xn/bn →a.s. (some rv) and
∑n

1Xk/bn →a.s. 0.

The WLLN is taken up again in sections 10.1 and 10.2, after the characteristic function
tool has been introduced in chapter 9.
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9 Martingales

Definition 9.1 (Martingales) (a) Consider the sequence of rvs S1, S2, . . . defined on a
probability space (Ω,A, P ) and adapted to an ↗ sequence of σ-fields A1 ⊂ A2 ⊂ · · · . Call it
a martingale (abbreviated mg) if E|Sk| < ∞ for all k, and

(1) E(Sk|Ai) =a.s. Si for all i ≤ k in the index set.

If (Sk, Ak), k ≥ 1 is a mg, then the increments Xk ≡ Sk − Sk−1 are called the martingale
differences.
(b) Let I denote a subinterval of the extended real line R̄. A collection {St : t ∈ I} of rvs on
some (Ω,A, P ) that is adapted to an ↗ family of σ-fields {At : t ∈ I} is called a martingale
if E|St| < ∞ for all t ∈ I, and

(2) E(St|Ar) =a.s. Sr for all r ≤ t in I.

(c) If “=”is replaced by “ ≥” in either of (1) or (2), then either of {Sk : k ≥ 1} or {St : t ∈ I}
is called a submartingale (or submg).

Example 9.1 (The prototypical example) Let X1, . . . , Xn denote independent rvs with
0 means, and set Sk ≡ X1 + · · · + Xk and Ak ≡ σ[X1, . . . , Xk] for 1 ≤ k ≤ n. Then the
sequence of partial sums satisfies

(3) (Sk, Ak), 1 ≤ k ≤ n, is a mg,

while (provided Xk also has finite variance σ2
k)

(4) (S2
k, Ak), 1 ≤ k ≤ n, is a submg.

The first claim is trivial, and the second holds, since

E(S2
k|Ai) = E{S2

i + 2Si(Sk − Si) + (Sk − Si)2|Ai}

≥ S2
i + 2SiE{Sk − Si|Ai} + 0 = S2

i + 0 + 0 = S2
i ,(a)

using (7.4.20) and (7.4.16). �

Exercise 9.1 (Equivalence) (a) Show that (St, At), t ∈ I, is a martingale if and only if all
E|St| < ∞ and

(5)
∫

Ar

St dP =
∫

Ar

Sr dP for all Ar ∈ Ar and all r ≤ t with r, t ∈ I.

(b) For a submartingale, just replace “=” by “≥” in (5).

Notation 9.1 We will use the following notational system:

(6)

⎧
⎨

⎩

mg and = for a martingale.
submg and ≥ for a submartingale.
s-mg and � for a s-mg (mg or submg, as the casemay be).

Thus (St,At), t ∈ I, is a s-mg if and only if all E|St| < ∞ and

(7)
∫

Ar

StdP �
∫

Ar

SrdP for all Ar ∈ Ar, and for all r ≤ t with r, t ∈ I. �

Exercise 9.2 Turn (S2
k, Ak), 1 ≤ k ≤ n into a martingale in (4) by centering it appropriately.
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10 Maximal Inequalities, Some with ↗ Boundaries o

Inequality 10.1 (Monotone inequality) For arbitrary rvs X1, . . . , Xn and for constants
0 < b1 ≤ · · · ≤ bn we let Sk ≡ X1 + · · · + Xk and obtain

(1)
(

max
1≤k≤n

|Sk|
bk

)

≤ 2 max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

Xi

bi

∣
∣
∣
∣
∣
.

If all Xi ≥ 0, then we may replace 2 by 1. [This also holds in higher dimensions, when
properly formulated. See Shorack and Smythe(1976).]

Proof. Define b0 = 0,X0 = 0, Yj = Xj/bj , and Tk =
∑k

j=1Yj . Then

(a) Sk =
∑k

j=1bj�Tj =
∑k

j=1�Tj

∑j
i=1�bi =

∑k
i=1Tik�bi,

where �bj ≡ bj − bj−1,�Tj ≡ Tj − Tj−1, and Tik ≡
∑k

j=iYj . As
∑k

i=1(�bi/bk) = 1 with
each �bi/bk ≥ 0, we have

(

max
1≤k≤n

|Sk|/bk

)

≤
(

max
1≤k≤n

{
∑k

i=1|Tik|(�bi/bk)}
)

(b)

≤ max
1≤k≤n

(

max
1≤i≤k

|Tik|
)

since an average does not exceed the maximum(c)

≤ 2
(

max
1≤k≤n

|Tk|
)

.(d)

Note that 1 can replace 2 in step (d) if all Xi ≥ 0. �

Martingale Maximal Inequalities

Inequality 10.2 (Doob) Let (Sk, Ak), 1 ≤ k ≤ n, be a submg and define the maximum
Mn ≡ max1≤k≤n Sk. Then

λP (Mn ≥ λ) ≤
∫

[Mn≥λ]

Sn dP ≤ ES+
n ≤ E|Sn| for all λ > 0,(2)

P (Mn ≥ λ) ≤ inf
r>0

E(erSn)/erλ for all λ > 0.(3)

If (Sk,Ak), 1 ≤ k ≤ n is a zero-mean mg with all of the variances ES2
k < ∞, then we can

conclude that (S2
k,Ak), 1 ≤ k ≤ n is a submg. This allows the maximum to be bounded by

(4) P (Mn ≥ λ) ≤ Var[Sn]/λ2 for all λ > 0.

[This last is Kolmogorov’s inequality, valid for zero-mean mgs.]

Proof. Since E(Sn|Ak) ≥ Sk a.s. by the definition of a submg, we have
∫

Ak
Sn dP =

∫
Ak

E(Sn|Ak) dP ≥
∫

Ak
Sk dP for all Ak ∈ Ak(a)

by (7.4.1) in the definition of conditional expectation. Now let

(b) Ak ≡ [max1≤j<k Sj < λ ≤ Sk],
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so that k is the first index for which Sk is ≥ λ. Then

λP (Mn ≥ λ) = λ
∑n

1P (Ak) ≤
∑n

1

∫
Ak

Sk dP

≤
∑n

1

∫
Ak

Sn dP using (a)(c)

=
∫
[Mn≥λ]

Sn dP ≤
∫
[Mn≥λ]

S+
n dP ≤

∫
S+

n dP ≤
∫

|Sn| dP,(d)

as claimed. In a s-mg context, these are called “first passage time” proofs. To this end, set
τ equal to k on Ak for 1 ≤ k ≤ n, and set τ equal to n + 1 on (

∑n
1Ak)c. Then τ is the first

passage time to the level λ.
That {(exp(rSk),Ak), 1 ≤ k ≤ n} is also a submg for any r > 0 follows from Jensen’s

inequality for conditional expectation with an ↗ g(·) via

E(erSk |Aj) ≡ E(gr(Sk)|Aj) ≥a.s . gr(E(Sk|Aj)) ≥ gr(Sj) = erSj .(e)

Applying Doob’s first inequality (2) to (e) gives (3). [This is often sharper than (2), though
it requires the existence of the moment generating function E exp(rSn).] When (Sk, Ak) is a
mg, then (S2

k, Ak) is also a submg (by another application of the same Jensen’s inequality),
so applying (2) to the latter submg gives (4). �

Inequality 10.3 (Hájek–Rényi) Let (Sk,Ak), 1 ≤ k ≤ N , be a mg with all ESk = 0.
Let Xk ≡ Sk − Sk−1 have variance σ2

k. Let 0 < b1 ≤ · · · ≤ bN . Then

(5) P

(

max
n≤k≤N

|Sk|/bk ≥ λ

)

≤ 4
λ2

{
n∑

k=1

σ2
k/b2

n +
N∑

k=n+1

σ2
k/b2

k

}

for all λ > 0.

Proof. (We give the proof for independent rvs.) The monotone inequality bounds the
maximum partial sum via

(6)
(

max
n≤k≤N

|Sk|/bk

)

≤ 2

(

max
n≤k≤N

∣
∣
∣
∣
∣

Sn

bn
+

k∑

i=n+1

Xi

bi

∣
∣
∣
∣
∣

)

.

Applying Kolmogorov’s inequality (4) to (6) gives

P

(

max
n≤k≤N

|Sk|/bk ≥ λ

)

≤ (λ/2)−2{Var[Sn/bn] +
∑N

k=n+1 Var[Xk]/b2
k}(a)

= (4/λ2){
∑n

1σ2
k/b2

n +
∑N

n+1σ
2
k/b2

k}.(b)

(A more complicated proof can eliminate the factor 4.) �

Exercise 10.1 To complete the proof of the Hájek-Rényi inequality for mgs, one can show
that Tk ≡ Sn/bn +

∑k
n+1Xi/bi is such that (Tk, Ak), n ≤ k ≤ N , is also a mg, and that

Var[TN ] is equal to the right-hand side of (b). Do it.

Inequality 10.4 (Birnbaum–Marshall) Let (S(t), A(t)), 0 ≤ t ≤ θ, be a mg having
S(0) = 0,ES(t) = 0, and ν/(t) = ES2(t) finite and continuous on [0, θ]. Suppose that paths
of S are right (or left) continuous. Let q(·) > 0 on (0, θ] be ↗ and right (or left) continuous.
Then

(7) P (‖S/q‖θ
0 > λ) ≤ 4λ−2

∫ θ

0

[q(t)]−2dν/(t) for all λ > 0.
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Proof. Because of right (or left) continuity and S(0) = 0, we have

P (‖S/q‖θ
0 ≤ λ) = P

(
max

0≤i≤2n
|S(θi/2n)|/q(θi/2n) ≤ λ for all n ≥ 1

)
(a)

= lim P

(

max
0≤i≤2n

|S(θi/2n)|/q(θi/2n) ≤ λ

)

by proposition 1.2.2

≥ lim{1 − 4λ−2∑2n

1 E[S2(θi/2n) − S2(θ(i − 1)/2n)]/q2(θi/2n)} by (5)

= 1 − 4λ−2 lim
∑2n

1 q−2(θi/2n)[ν/(θi/2n) − ν/(θ(i − 1)/2n)]

→ 1 − 4λ−2
∫ θ

0
[q(t)]−2dν/(t) using the MCT.(b) �

Inequality 10.5 (Doob’s Lr-inequality) (i) Let (Sk, Ak), for 1 ≤ k ≤ n, be a submg.
Consider Mn ≡ max1≤k≤n S+

k . Let r > 1. Then

(8) EMr
n ≤ ( r

r−1 )rE{(S+
n )r}.

(ii) Let (Sk, Ak), 1 ≤ k ≤ n, be a mg. Let Mn ≡ max1≤k≤n |Sk|. Let r > 1. Then

(9) EMr
n ≤ ( r

r−1 )rE{|Sn|r}.

Proof. Now, (S+
k ,Ak), for 1 ≤ k ≤ n, is also a submg, by the conditional version of

Jensen’s inequality. (Or, refer to (13.1.7) below.) [Refer to (13.1.5) for case (ii).] Thus in
case (i) we have

EMr
n =

∫∞
0

rλr−1P (Mn > λ) dλ by (6.4.13)(a)

≤
∫∞
0

rλr−1λ−1E{S+
n 1[Mn≥λ]} dλ by Doob’s inequality 10.2(b)

= E{S+
n

∫ Mn

0

rλr−2dλ} by Fubini(c)

= E{S+
n ( r

r−1 )Mr−1
n }

≤ ( r
r−1 )(E{(S+

n )r})1/r(E{Mr
n})(r−1)/r by Hölder’s inequality,(d)

where r−1 + s−1 = 1 implies that s = r/(r − 1). So

(e) (EMr
n)1−(r−1)/r ≤ (

r

r − 1
)(E(S+

n )r)1/r,

which gives the results. (Just change S+
n to |Sn| for case (ii).) �

Hoffmann–Jorgensen Inequalities∗

The following inequalities show that “in probability” control of the overall sum and of the
maximal summand actually gives control of moments of sums of independent rvs.
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Inequality 10.6 (Hoffmann–Jorgensen, probability form). Let X1, . . . , Xn be independent
rvs, and let Sk ≡ X1 + · · · + Xk for 1 ≤ k ≤ n. Let λ, η > 0. Then

(10) P ( max
1≤k≤n

|Sk| > 3λ + η) ≤ {P ( max
1≤k≤n

|Sk| > λ)}2 + P ( max
1≤i≤n

|Xi| > η).

If the Xi’s are also symmetric, then both

P ( max
1≤k≤n

|Sk| > 3λ + η) ≤ {2P (|Sn| > λ)}2 + P ( max
1≤i≤n

|Xi| > η) and(11)

P (|Sn| > 2λ + η) ≤ {2P (|Sn| > λ)}2 + P ( max
1≤i≤n

|Xi| > η).(12)

Inequality 10.7 (Hoffmann–Jorgensen, moment form). Let the rvs X1, . . . , Xn be indepen-
dent, and let Sk ≡ X1 + · · · + Xk for 1 ≤ k ≤ n. Suppose that each Xi ∈ Lr(P ) for some
r > 0. Then

(13) E

(

max
1≤k≤n

|Sk|r
)

≤ 2(4t0)r + 2 · 44E
(

max
1≤i≤n

|Xi|r
)

,

where t0 ≡ inf{t > 0 : P (max1≤k≤n |Sk| > t) ≤ 1/(2 · 4r)}.
If the Xi’s are also symmetric, then

(14) E|Sn|r ≤ 2(3t0)r + 2 · 3rE
(

max
1≤i≤n

|Xi|r
)

,

where t0 ≡ inf{t > 0 : P (|Sn| > t) ≤ 1/(8 · 3r)}.

Proof. Consider inequality 10.6. Let τ ≡ inf{k ≤ n : |Sk| > λ}. Then [τ = k] depends
only on X1, . . . , Xk, and [maxk≤n |Sk| > λ] =

∑n
k=1[τ = k]. On [τ = k], |Sj | ≤ λ] if j < k,

and for j ≥ k,

|Sj | = |Sj − Sk + Xk + Sk−1| ≤ λ + |Xk| + |Sj − Sk|;(a)

hence

max1≤j≤n |Sj | ≤ λ + max1≤i≤n |Xi| + maxk<j≤n |Sj − Sk|.(b)

Therefore, by independence,

P (τ = k, max1≤k≤n |Sk| > 3λ + η)

≤ P (τ = k, max1≤i≤n |Xi| > η) + P (τ = k)P (maxk<j≤n |Sj − Sk| > 2λ).(c)

But maxk<j≤n |Sj − Sk| ≤ 2max1≤k≤n |Sk|, and hence summing over k on both sides yields

P (max
k≤n

|Sk| > 3λ + η) ≤ P (max
i≤n

|Xi| > η) + {P (max
k≤n

|Sk| > λ)2}.(d)

The second inequality follows from the first by Lévy’s inequality 8.3.3.
For the symmetric case, first note that

|Sn| ≤ |Sk−1| + |Xk| + |Sn − Sk|,(e)
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so that

P (τ = k, |Sn| > 2λ + η)

≤ P (τ = k, max1≤i≤n |Xi| > η) + P (τ = k)P (|Sn − Sk| > λ);(f)

and hence summing over k then yields

P (|Sn| > 2λ + η)

≤ P (max
i≤n

|Xi| > η) + P (max
k≤n

|Sk| > λ)P (max
k≤n

|Sn − Sk| > λ).(g)

The third inequality again follows from Lévy’s inequality. �

Proof. Consider inequality 10.7. Here is the proof of (14); the proof of (13) is similar. Let
u > t0. Then, using (12) for (i),

E|Sn|r = 3r(
∫ u

0
+
∫∞

u
)P (|Sn| > 3t)d(tr) by (6.4.13).(h)

≤ (3u)r + 4 · 3r
∫∞

u
P (|Sn| > t)2d(tr) + 3r

∫∞
u

P (max1≤i≤n |Xi| > t)d(tr)(i)
≤ (3u)r + 4 · 3rP (|Sn| > u)

∫∞
u

P (|Sn| > t)d(tr) + 3rE(max1≤i≤n |Xi|r).(j)

Since 4·3rP (|Sn| > u) ≤ 1
2 by our choice of u, applying (6.4.13) again (to (j)) gives

E|Sn|r ≤ (3u)r +
1
2
E|Sn|r + 3rE( max

1≤i≤n
|Xi|r).(k)

Simple algebra now gives (14). �

Exercise 10.2 Provide the details in the case of (13)



Chapter 9

Characteristic Functions
and Determining Classes

1 Classical Convergence in Distribution

Definition 1.1 (Sub-dfs) (a) Suppose we have rvs Xn
∼= Fn and X. We now wish to allow

the possibility that X is an extended rv. In this case, we assume that H is a sub-df (we will
not use the notation F in this context), and we will write X ∼= H. The interpretation in the
case of an extended rv X is that H(−∞) = P (X = −∞), H(x) = P (−∞ ≤ X ≤ x) for all
−∞ < x < ∞, and 1 − H(+∞) = P (X = +∞). The set CH of all points at which H is
continuous is called the continuity set of H.
(b) If Fn(x) → H(x) as n → ∞ at each x ∈ CH of a sub-df H, then we say that Xn (or Fn)
converges in sub-df to X (or H), and we write Xn →sd X(or Fn →sd H) as n → ∞. [What
has happened in the case of sub-df convergence is that amounts H(−∞) and 1 − H(+∞) of
mass have escaped to −∞ and +∞, respectively.]
(c) We have agreed that Fn, F , etc. denote a bona fide df, while Hn,H, etc. may denote
a sub-df. Thus Fn →d F (with letter F rather than letter H) will still imply that the limit
is necessarily a bona fide df. [The next definition provides a condition that guarantees (in a
totally obvious way, on R at least) that any possible limit is a bona fide df.]

Definition 1.2 (Tightness) A family P of distributions P on R is called tight if for each
ε > 0 there is a compact set (which for one-dimensional rvs is just a closed and bounded set)
Kε with

(1) P (Kε) = P (X ∈ Kε) ≥ 1 − ε for all dfs P ∈ P.

Theorem 1.1 (Helly–Bray) If Fn →d F and g is bounded and continuous a.s. F , then
the expectations satisfy

(2)
∫

g dFn = Eg(Xn) → Eg(X) =
∫

g dF.

Conversely, if (2) holds for all bounded continuous g, then Fn →d F.

[Thus Fn →d F if and only if
∫

g dFn → ∫
g dF for all bounded and continuous g.]

c© Springer International Publishing AG 2017
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DOI 10.1007/978-3-319-52207-4 9
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Theorem 1.2 (Continuous mapping theorem; Mann–Wald) Suppose that Xn →d X
and suppose that g is continuous a.s. F . Then g(Xn) →d g(X).

How do we establish that Fn →d F? We have the necessary and sufficient condition of
the Helly–Bray theorem 1.1 (presented earlier as theorem 3.5.1). (We should now recall our
definition of the determining class used in the context of the proof of theorem 3.5.1.) We can
also show convergence in distribution of more complicated functions of rvs via Mann–Wald’s
continuous mapping theorem 1.2 (presented earlier as theorem 3.5.2); an example is given by

Zn →d Z implies that Z2
n →d Z2 ∼= χ2

1

where g(x) = x2. The concept of tightness was introduced above to guarantee that any
possible limit is necessarily a bona fide df. This becomes more important in light of the next
theorem.

Theorem 1.3 (Helly’s selection theorem) Let F1, F2, . . . be any sequence of dfs. There
necessarily exists a subsequence Fn′ and a sub-df H for which Fn′ →sd H. If the subsequence
of dfs is tight, then the limit is necessarily a bona fide df.

Corollary 1 Let F1, F2, . . . be any sequence of dfs. Let H be a fixed sub-df. Suppose every
sd-convergent subsequence {Fn′} satisfies Fn′ →sd (this same H). Then the whole sequence
satisfies Fn →sd H. (Here is an alternative phrasing. Suppose every subsequence n′ contains
a further subsequence n′′ for which Fn′′ converges in distribution to this one fixed sub-df H.
Then the whole sequence satisfies Fn →sd H.)

Proof. Let r1, r2, . . . denote a sequence which is dense in R. Using Bolzano-Weierstrass,
choose a subsequence n1j such that Fn1j

(r1) → (some a1). A further subsequence n2j also
satisfies Fn2j

(r2) → (some a2). Continue in this fashion. The diagonal subsequence njj

converges to ai at ri for all i ≥ 1. [This Cantor diagonalization technique is important. Learn
it!] Define Ho on the ri’s via Ho(ri) = ai. Now define H on all real values via

(a) H(x) = inf{Ho(ri) : ri > x};

this H is clearly is ↗ and takes values in [0, 1]. We must now verify that H is also right-
continuous, and that Fnjj

→sd H. That is, the diagonal subsequence, which we will now
refer to as n′, is such that Fn′ = Fn′

j
= Fnjj

→sd H.

The monotonicity of Ho trivially gives infy↘x H(y) ≥ H(x). Meanwhile,

(b) H(x) > Ho(rκε
) − ε for some x < rκε

that is sufficiently close to x

(c) ≥ H(y) − ε for any x < y < rκε

yields infy↘x H(y) ≤ H(x). Hence infy↘x H(y) = H(x), and H is right continuous.
We next show that Fn′

j
(x) = Fnjj

(x) → H(x) for any x ∈ CH . Well,

(d) Fn′
j
(rk) ≤ Fn′

j
(x) ≤ Fn′

j
(r�) for all rk < x < r�.

http://dx.doi.org/10.1007/978-3-319-52207-4_3
http://dx.doi.org/10.1007/978-3-319-52207-4_3
http://dx.doi.org/10.1007/978-3-319-52207-4_3
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Passing to the limit on j gives

(e) Ho(rk) ≤ lim Fn′
j
(x) ≤ lim Fn′

j
(x) ≤ Ho(r�) for all rk < x < r�.

Now let rk ↗ x and r� ↘ x in (e) to get

(f) limjFn′
j
(x) = H(x) for all x ∈ CH (that is, Fn′

j
→sd H).

Consider the corollary. Fact: Any bounded sequence of real numbers contains a convergent
subsequence; and the whole original sequence converges if and only if all subsequential limit
points are the same. Or, if every subsequence an′ contains a further subsequence an′′ that
converges to the one fixed number ao, then we have an → ao. We effectively showed above
that every subsequence Fn′ contains a further subsequence Fn′′ for which

Fn′′(x) → (the same H(x)) for each fixed x ∈ CH .

Thus the whole sequence has Fn(x) → H(x) for each x ∈ CH . So, Fn →sd H. �
Exercise 1.1 (Convergence of expectations and moments)
(a) Suppose Fn →sd H and that both Fn−(a) → H−(a) and Fn(b) → H(b) for some constants
−∞ < a < b < ∞ in CH having H(a) < H(b). Then

(3)
∫

[a,b]
g dFn → ∫

[a,b]
g dH for all g ∈ C[a,b] ≡ {g : g is continuous on [a, b]}.

Moreover, if Fn →s.d. H, then

(4)
∫

g dFn → ∫
g dH for all g ∈ C0,

where C0 ≡ {g : g is continuous on R and g(x) → 0 as |x| → ∞}.
(b) Suppose Fn →d F and g is continuous on the line. Suppose |g(x)|/ψ(x) → 0 as |x| → ∞,
where ψ ≥ 0 has

∫
ψdFn ≤ K < ∞ for all n. Then

∫
g dFn → ∫

g dF.
(c) If E|Xn|r0 < (some M) < ∞ for all large n, then Fn →d F implies that

(5) E|Xn|r → E|X|r and EXk
n → EXk for 0 < r < r0 and 0 < k < r0.

(d) Let g be continuous. If Fn →sd H, then lim inf
∫ |g|dFn ≥ ∫ |g| dH.

[Actually, g continuous a.s.H suffices in (a), (b), and (d) above.]

Exercise 1.2 (Pólya’s lemma) If Fn →d F for a continuous df F , then

(6) ‖Fn − F‖ → 0.

Thus if Fn →d F with F continuous and xn → x, then Fn(xn) → F (x).

Exercise 1.3 (Verifying tightness) Suppose Xn
∼= Fn. Show that {Fn : n ≥ 1} is tight if

either

(a) lim E|Xn|r < ∞ for some r > 0, or

(b) Fn →d F.
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Equivalent Definitions of Convergence in Distribution

The condition Fn(x) → F (x) can be rewritten both as Pn((−∞, x]) → P ((−∞, x]) as well
as E1(−∞,x](Xn) → E1(−∞,x](X). Thus →d is reduced to computing expectations of the
particularly simple function 1(−∞,x]; but these simple functions have the disadvantage of being
discontinuous.

Definition 1.3 (Closure, interior, and boundary) The closure of B is defined to be B̄ ≡
∩{C : B ⊂ C and C is closed}, while B0 ≡ ∪{ U : U ⊂ B and U is open} is called the interior
of B. These have the property that B̄ is the smallest closed set containing B, while B0 is the
largest open set contained within B. The boundary of B is defined to be ∂B ≡ B̄\B0. A set
B is called a P -continuity set if P (∂B) = 0. (These definitions are valid on a general metric
space, not just on R.)

Theorem 1.4 (→d equivalencies) Let F, F1, F2, . . . be the dfs associated with the proba-
bility distributions P1, P2, . . .. Let Cb denote all bounded, continuous functions g on R, and
then let Cbu denote all bounded and uniformly continuous functions g on R. The following
are equivalent:

(7) Fn →d F.

(8) Fn(x) → F (x) for all x in a dense set.

(9) Eg(Xn) =
∫

g dFn → ∫
g dF = Eg(X) for all g in Cb.

(10)
∫

g dFn → ∫
g dF for all g in Cbu.

(11) lim Pn(B) ≤ P (B) for all closed sets B.

(12) lim Pn(B) ≥ P (B) for all open sets B.

(13) lim Pn(B) = P (B) for all P -continuity sets B.

(14) lim Pn(I) = P (I) for all (even unbounded) P -continuity intervals I.

(15) L(Fn, F ) → 0 for the Lévy metric L (see below).

Exercise 1.4 That (7)–(10) are equivalent is either trivial, or done previously. Cite the
various reasons. Then show that (11)–(15) are also equivalent to →d .

Exercise 1.5 (Lévy’s metric) For any dfs F and G define (the 45o distance between F
and G)

(16) L(F, G) ≡ inf{ε > 0 : F (x − ε) − ε ≤ G(x) ≤ F (x + ε) + ε for allx}.

Show that L is a metric and that the set of all dfs under L forms a complete and separable
metric space. Also show that Fn →d F is equivalent to L(Fn, F ) → 0.
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Convergence of Types

Definition 1.4 (Type) When Y ∼= (X − b)/a for some a �= 0, we say that X and Y are of
the same type. [Suppose that Xn →d X where X is not degenerate. Then if an → a �= 0 and
bn → b, we know from Slutsky’s theorem that (Xn − bn)/an →d Y ∼= (X − b)/a.]

Theorem 1.5 (Convergence of types) Suppose (Xn−bn)/an →d X ∼= F, and (Xn−βn)/
αn →d Y ∼= G, where an > 0, αn > 0, and both X and Y are nondegenerate. Then there
exists a > 0 and a real b such that

(17) an/αn → (some positive a) and (βn − bn)/an → (some real b)

and Y ∼= aX + b (or, equivalently, F (x) = G(ax + b) for all x).

Remark 1.1 The classical CLT implies that if X1,X2, . . . are iid (0, σ2), then Sn/
√

n →d

N(0, 1). The above theorem tells us that no matter how we normalize Sn, the only possible
nondegenerate limits in distribution are normal distributions. Moreover, if Sn/an →d (some
rv), the limiting distribution can be nondegenerate only if an/

√
n → (some constant) ∈ (0,∞).

Exercise 1.6 (Proof of the convergence of types theorem) Prove theorem 1.5 on the con-
vergence of types.

[Hint. Start with continuity points x < x′ of the df G and then continuity points y, y′ of the
df F for which F (y) < G(x) ≤ G(x′) < F (y′). Then for all n large enough one will have
any + bn ≤ αnx + βn ≤ αnx′ + βn ≤ any′ + bn.]

Higher Dimensions

If X,X1,X2, . . . are k-dimensional random vectors with dfs F, F1, F2, . . ., then we say that
Xn converges in distribution to X if

(18) Fn(x) → F (x) for all x ∈ CF ,

just as in one dimension.
The Helly–Bray theorem, the Mann–Wald theorem, Helly’s selection theorem, and Polya’s

lemma all hold in k dimensions; generalizations of the other results also hold. Moreover, if
X ′

n denotes the first j coordinates of Xn, with 1 ≤ j < k, then Xn →d X implies X ′
n →d X ′.

Exercise 1.7 Prove the k-dimensional Helly–Bray theorem (along the lines of exercise
3.5.2) using Helly’s selection theorem and Pólya’s lemma. Prove that Xn →d X implies
X ′

n →d X ′. After reading Section 2, prove the k-dimensional version of the Mann–Wald
theorem.

Exercise 1.8 Prove that theorem 1.4 holds in k dimensions.

See also theorem 9.5.2 and theorem 10.1.3 below.

http://dx.doi.org/10.1007/978-3-319-52207-4_3
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2 Determining Classes of Functions

We can approximate the functions 1(−∞,z](·) to an arbitrary degree of accuracy within various
classes of particularly smooth functions. Within these classes of functions we do not have
to worry about the continuity of the limiting measure at z, and this will make these classes
more convenient. Indeed, the specialized class H0 below is of this type.

Definition 2.1 (Determining class) A collection G of bounded and continuous functions
g is called a determining class if for any choice of dfs F̃ and F , the requirement that

∫
g dF̃ =∫

g dF for all g ∈ G implies F̃ = F.

Definition 2.2 (Various classes of smooth functions) (i) Let C (let Cb) [let Cbu] denote
the class of continuous (bounded and continuous) [bounded and also uniformly continuous]
functions on R. Let C

(k)
b (let C

(∞)
b ) denote the subclasses with k (with all) derivatives

bounded and continuous.
(ii) An extra c on these classes will indicate that all functions vanish outside some compact
subset of R.
(iii) Let C0 denote the subclass of C that converge to 0 as |x| → ∞.
(iv) Let H0 denote the class of all hz,ε with z real and ε > 0; here hz,ε(x) equals 1, is linear,
equals 0 according as x is in (−∞, z], is in [z, z + ε], is in [z + ε,∞) (this class was introduced
in the proof of the Helly–Bray theorem 3.5.1).
(v) Let G0 denote the class of all continuous functions ga,b,ε with a < b and ε > 0; here ga,b,ε(x)
equals 0, is linear, equals 1 according as x is in (−∞, a−ε] ∪ [b+ε,∞), is in [a−ε, a]∪ [b, b+ε],
is in [a, b].

Theorem 2.1 (Criteria for →d; a kinder and gentler Helly–Bray)
(i) Let F1, F2, . . . be tight. Let G be a determining class.

(a) If
∫

g dFn → (some #g) for each g ∈ G, then Fn →d F . Further, #g =
∫

g dF.
(b) Conversely: If Fn →d F , then

∫
g dFn → ∫

g dF for each g ∈ G.

(ii) Each of the various classes C0, Cb, Cbu, C
(k)
b with k ≥ 1, C

(∞)
b ,H0, and G0 is a determining

class.
(iii) So, too, if we add an extra subscript c to the various C-classes in (ii). (That is, we require
they take on the value 0 outside some compact subset of R.)
[For some proofs in the literature, functions g with sharp corners are unhandy.]

Exercise 2.1 Prove the previous theorem.

Exercise 2.2 (Higher dimensions) Show that the natural extension of each of the results of
this section to Rk is valid.

Exercise 2.3 Exhibit at least one more determining class.

http://dx.doi.org/10.1007/978-3-319-52207-4_3
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Moments as a Determining Class for a Moment Unique Limit

Theorem 2.2 (CLT via moments; Fréchet-Shohat) (a) Suppose F is the unique df having
the specific finite moment values μk =

∫
xk dF (x), for all integers k ≥ 1. Then Fn →d F

whenever

(1) μnk ≡ ∫
xk dFn(x) → μk ≡ ∫

xk dF (x) for all k ≥ 1.

(b) Any normal df is determined by its moments.

Proof. Let n′ denote an arbitrary subsequence. By the Helly selection theorem we have
Fn′′ →sd H for some further subsequence n′′ and some sub-df H. However, lim E|Xn|2 < ∞,
so that {Fn : n ≥ 1} is tight by Markov’s inequality. Thus H is a bona fide df, and Fn′′ →d H.
Also, for all k ≥ 1

∫
xk dF (x) = lim

∫
xk dFn′′(x) by hypotheses

(a) =
∫

xk dH(x) by exercise 1.1(c) of Section 9.

Thus
∫

xk dH(x) =
∫

xk dF (x) for all k ≥ 1; and since only F has these moments, we conclude
that H = F . Thus Fn′′ →d F . Moreover, Fn′′ →d (this same F ) on any such convergent
subsequence n′′ Thus Fn →d F , by the corollary to theorem1.3 of Section 9. See exercise 2.6
of Section 9 for part (b) of the theorem. �

In general, moments do not determine a distribution uniquely; thus {xk : k ≥ 1} is not
a determining class. This is shown by the following exercise.

Exercise 2.4∗ (Moments need not determine the df; Heyde) Suppose that the rv log X ∼=
N(0, 1); thus

fX(x) = x−1e−(log x)2/2/
√

2π for x > 0.

For each −1 ≤ a ≤ 1, let Ya have the density function

fa(y) = fX(y)[1 + a sin(2π log y)] for y > 0.

Show that X and each Ya have exactly the same moments. [Knowing that these particular
distributions have this property is not worth much; it is knowing that some dfs have this
property that matters.]

Though we have just seen that moments do not necessarily determine a df, it is often true
that a given df F is the unique df having its particular moments (name them {μk : k ≥ 1}).
Here is an “exercise” giving various sufficient conditions.

Exercise 2.5 (When moments do determine a df) Suppose either of the following conditions
hold:

(a) lim |μk|1/k/k < ∞.

(b)
∑∞

1
μ2kt2k/(2k)! < ∞ in some interval of t values.

Then at most one df F can possess the moment values μk =
∫

xk dF (x). [Wait to prove this
until it appears again as part of exercise 6.1 of Section 9].
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Comment. A condition for convergence due to Carleman
∑∞

1 μ
−1/2k
2k = ∞ has often been

claimed to be necessary and sufficient. It is not. See Stoyanov (1977; p. 113).

Exercise 2.6 Show that the N(0, 1) distribution is uniquely determined by its moments.

Summary The methods of this section that establish →d by verifying the moment condition
that Eg(Xn) → Eg(X) for all functions g in a given determining class G can be extended
from the present setting of the real line to more general settings; note Chapter 15. This
chapter now turns to the development of results associated with the particular determining
class G ≡ {gt(·) ≡ eit : t ∈ R}. The resulting function is called the characteristic function of
the rv X. The rest of Chapter 9 includes a specialized study of the characteristic function.
Chapter 10 will apply this characteristic function tool to the CLT. �

http://dx.doi.org/10.1007/978-3-319-52207-4_15
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3 Characteristic Functions, with Basic Results

Elementary Facts

Definition 3.1 (Characteristic function) Let X be an arbitrary rv, and let F denote
its df. The characteristic function of X (abbreviated chf) is defined (for all t ∈ R) by

(1)
φ(t) ≡ φX(t) ≡ EeitX =

∫ ∞
−∞ eitx dμF (x) =

∫ ∞
−∞ eitx dF (x)

≡ ∫ ∞
−∞ cos(tx) dF (x) + i

∫ ∞
−∞ sin(tx) dF (x).

With dF replaced by h dμ, we call this the Fourier transform of the signed measure hdμ.
(We note that the chf φX(t) exists for −∞ < t < ∞ for all rvs X, since |eitX(ω)| ≤ 1 for all t
and all ω.)

Proposition 3.1 (Elementary properties) Let φ denote an arbitrary chf.

(a) φ(0) = 1 and |φ(t)| ≤ 1 for all t ∈ R.

(b) φaX+b(t) = eitbφX (at) for all t ∈ R.

(c) φΣn
1 Xi

(·) =
∏n

i=1
φXi

(·) when X1, . . . , Xn are independent.

(d) φ̄X(t) = φX(−t) = φ−X(t) = E cos tX − iE sin tX for all t ∈ R.

(e) φ is real-valued if and only if X ∼= −X.

(f) |φ(·)|2 is a chf [of the rv Xs ≡ X − X ′, with X and X ′ iid with chf φ].

(g) φ(·) is uniformly continuous on R.

Proof. Now, (a), (b), (c), and (d) are trivial. (e) If X ∼= −X, then φX = φ̄X ; so φX is real.
If φ is real, then φX = φ̄X = φ−X ; so X ∼= −X by the uniqueness theorem below. (f) If X
and X ′ are independent with characteristic function φ, then φX−X′ = φXφ−X = φφ̄ = |φ|2.
For (g), we note that for all t,
|φ(t + h) − φ(t)| = | ∫ [expi(t+h)x −eitx] dF (x)|

(a) ≤
∫

|eitx||eihx − 1| dF (x) ≤
∫

|eihx − 1| dF (x) → 0

as h → 0, by the DCT with dominating function 2.
The converse of (c) is false. Let X1 ≡ X2 and X3 be two iid Cauchy(0, 1) rvs. We will

see below that φCauchy(t) = exp(−|t|), giving φ2X1(t) = φX1+X2(t) = φX1+X3(t) for all t. �
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Motivation 3.1 (Proving the CLT via chfs) In this chapter we present an alternative
method for establishing Fn →d F . It is based on the fact (to be demonstrated below) that
the complex exponential functions eit. on R, indexed by t ∈ R, form a limit determining class.
Saying this another way, the chf φ determines the distribution P , or the df F (or the density
f, if there is one). Thus (as is shown in the continuity theorem below) we can establish that
Fn →d F by showing that φn(·) → φ(·) on R. Indeed, using just the elementary properties
listed above, it is trivial to give an informal “proof” of the classical CLT. Thus, we begin by
expanding the chf of one rv X as

(a) φ(X−μ)/
√

n(t) = φX−μ(t/
√

n) = Eeit(X−μ)/
√

n

(b) = E{1 +
it√
n

(X − μ) +
(it)2

n
(X − μ)2/2 + o(t2/n)}

= 1 +
it√
n

E(X − μ) +
(it)2

n
E(X − μ)2/2 + o(t2/n)

(c) = 1 + 0 − t2σ2/2n + o(t2/n) = 1 − t2[σ2 + o(1)]/2n.

(In section 6 we will make such expansions rigorous, and in section 7 we will estimate more
carefully the size of the errors that were made.)

Then the standardized sum of the iid rvs X1, . . . , Xn is
(d) Zn ≡ √

n(X̄n − μ) =
∑n

1 (Xk − μ)/
√

n,
and it has chf

(e) φZn
(t) =

∏n
k=1φ(Xk−μ)/

√
n(t) = [φ(X−μ)/

√
n(t)]n

(f) = {1 − t2[σ2+o(1)]
2n }n → e−t2σ2/2

(g) = φN(0,σ2)(t) as will be shown below.

Since φZn
(·) → φZ(·) on R, where Z ∼= N(0, 1), the uniqueness theorem and the continuity

theorem combine to guarantee that Zn →d Z. In principle, this is a rather elementary way
to prove the CLT.

Think of it this way. To have all the information on the distribution of X, we must know
P (X ∈ B) for all B ∈ B. We have seen that the df F also contains all this information, but it
is presented in a different format; a statistician may well regard this F format as the “tabular
probability calculating format.” When a density f exists, it also contains all the information
about P ; but it is again presented in a different format, which the statistician may regard as
the “distribution visualization format.” We will see that the chf presents all the information
about P too. It is just one more format, which we may well come to regard as the “theorem
proving format”. �
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Table 3.1 Some Important Characteristic Functions

Distribution Density Chf

Binomial(n, p)
(

n
k

)
pk(1 − p)n−k; for 0 ≤ k ≤ n [1 + p(eit − 1)]n

Poisson(λ) e−λλk/k!; for k ≥ 0 exp(λ(eit − 1))
GeometricF(p) pqk; for k ≥ 0 p(1 − qeit)−1

Normal(μ, σ2) e−(x−μ)2/2σ2
/
√

2πσ on R exp(itμ − σ2t2/2)
Exponential(θ) e−x/θ/θ on R+ (1 − itθ)−1

Chisquare(n) x(n/2)−1e−x/2/[2n/2Γ(n/2)] (1 − 2it)−n/2

Gamma(r, θ) xr−1e−x/θ/[θrΓ(r)] on R+ (1 − itθ)−r

Uniform(0, 1) 1[0,1](x) [exp(it) − 1]/it
Double Exp(θ) e−|x|/θ/2θ 1/(1 + θ2t2)
Cauchy(0, 1) 1/[π(1 + x2)] e−|t|

de la Vallée Poussin (1 − cos x)/(πx2) on R [1 − |t|] × 1[−1,1](t)
Triangular(0, 1) [1 − |x|] × 1[−1,1](x) 2(1 − cos t)/(t2) on R

Review of Some Useful Complex Analysis

A function f is called analytic on a region (a connected open subset of the complex plane) if
it has a derivative at each point of the region; if it does, then it necessarily has derivatives
of all orders at each point in the region. If z0 is an isolated singularity of f and f(z) =∑∞

n=0 an(z − z0)n +
∑m

n=1 bn(z − z0)−n, then k ≡ (the residue of f at z0) = b1. Thus if f
has a pole of order m at z0 (that is, bn = 0 for n > m in the expansion above), then g(z) ≡
(z − z0)mf(z) = bm + · · ·+ b1(z − z0)m−1 +

∑∞
0 an(z − z0)m+n has b1 = g(m−1)(z0)/(m− 1)!.

Thus

(2) b1 = k = (residue of f at z0) {= lim
z→z0

(z − z0)f(z) for a simple pole at z0}.

We also note that a smooth arc is described via equations x = φ(t) and y = ψ(t) for a ≤ t ≤ b
when φ′ and ψ′ are continuous and not simultaneously zero. A contour is a continuous chain
of a finite number of smooth arcs that do not cross the same point twice. Closed means
that the starting and ending points are identical. (See Ahlfors (1953, pp. 102, 123) for what
follows.)

Lemma 3.1 (Residue theorem) If f is analytic on a region containing a closed contour C,
except for a finite number of singularities z1, . . . , zn interior to C at which f has residues
k1, . . . , kn, then (for counterclockwise integration over C)

(3)
∫

C

f(z)dz = 2πi

n∑
j=1

kj

{
= 0 if f is analytic,
= 2πi(z − zo)f(z0) for one simple pole at zo.

Lemma 3.2 Let f and g be functions analytic in a regions Ω. Suppose that f(z) = g(z) for
all z on a set S that has an accumulation point in Ω. We then have the equality f(z) = g(z)
for all z ∈ Ω. (That is, f is determined on Ω by its values on S. So if there is a Taylor series
representation f(z) =

∑∞
j=0 an(z − zo)j valid on some disk interior to Ω, then the coefficients

a1, a2, . . . determine f on all of Ω.)
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Evaluating Various Characteristic Functions

Example 3.1 (Derivation of the Cauchy(0, 1)chf) Let C denote the upper semicircle cen-
tered at the origin with radius R parametrized counterclockwise; and let A (for arc) denote
C without its base. Let t > 0. The Cauchy chf is approached via

(a)
∫

C

eitz

π(1 + z2)
dz ≡

∫
C

f(z) dz = 2πi · (z − zo)f(zo) (with zo = i)

(b) = 2πi · (z − i)
eitz

π(1 + iz)(1 − iz)

∣∣∣
z=i

= e−t for t > 0.

It further holds that

(c)
∫

C

eitz

π(1 + z2)
dz =

∫ R

−R

eitz

π(1 + x2)
dx +

∫
A

eitz

π(1 + z2)
dz

(d) →
∫ ∞

−∞

eitx

π(1 + x2)
dx + 0 = φ(t) as R → ∞,

since the second integral in (b) is bounded in absolute value by
1
π

∫
A

1
R2−1dz = 1

π
1

R2−1πR → 0 as R → ∞.

Since the Cauchy is symmetric, φ(−t) = φ(t) = exp(−|t|); or, integrate the contour clockwise
when t < 0. The tabular entry has been verified. That is,

(4) φ(t) = exp(−|t|), for all t, gives the Cauchy(0,1) chf. �

Example 3.2 (Derivation of the N(0, 1) chf) Let X be N(0, 1). Then

φ(t) =
∫ ∞

−∞ eitx 1√
2π

e−x2/2dx.

Let us instead think of φ as a function of a complex variable z. That is,

φ(z) =
∫ ∞

−∞ eizx 1√
2π

e−x2/2dx.

Let us define a second function ψ on the complex plane by

(b) ψ(z) ≡ e−z2/2.

Now φ and ψ are analytic on the whole complex plane. Let us now consider the purely
imaginary line z = iy. On this line it is clear that

ψ(iy) = ey2/2,

and since elementary calculations show that

φ(iy) =
∫ ∞

−∞ e−yx 1√
2π

e−x2/2 = ey2/2
∫ ∞

−∞
1√
2π

e−(x+y)2/2dx = ey2/2,

we have ψ = φ on the line z = iy. Thus lemma 3.2 implies that ψ(z) = φ(z) for all z in the
plane. Thus φ(t) = ψ(t) for all real z = t. That is,

(5) φ(t) = exp(−t2/2), for all real t, gives the N(0, 1) chf.

(A similar approach works for the gamma distribution in exercise 3.3 below.) �
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Exercise 3.1 Derive the N(0, 1) chf via the residue theorem. Then extend to N(μ, σ2).
[Hint. Let C denote a closed rectangle of height t with base [−R,R] on the x-axis.]

Exercise 3.2 (a) Derive the Poisson (λ) chf (by summing power series).
(b) Derive the GeometricT(p)chf.
(c) Derive the Bernoulli(p), Binomial(n, p), and NegBiT(m, p) chfs.

Exercise 3.3 (a) Derive the Gamma(r, θ)chf. [Hint. Note example 3.2.]
(b) Derive the Exponential(θ) and Chisquare(n), and Double Exponential(θ) chfs.

Exercise 3.4 Derive the Logistic(0, 1) chf.
Hint. Use the lemma 3.2 approach.

Exercise 3.5 Show that the real part of a chf (or Re φ(·)) is itself a chf.

Exercise 3.6 Let φ be a chf. Show that 1
c

∫ c

0
φ(tu) du is a chf.
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4 Uniqueness and Inversion

For the chf to be a useful tool, there must be a l-to-l correspondence between dfs and chfs. The
fact that this is so is called the uniqueness theorem. We give a simple proof of the uniqueness
theorem at the end of this subsection. But the simple proof does not establish an inversion
formula that expresses the df as a function of the chf. In order to establish an inversion
formula, we will need some notation, and an inversion formula useful for other purposes will
require a hypothesis on the chf that is strong enough to allow some useful simplification.

Let U denote a rv with continuous density fU (·) and let W denote a rv with a bounded and
continuous density fW (·) and with chf φW (·); and suppose we are lucky enough to determine
a complementary pair that (for some constant c) satisfy the relationship

(1) fU (t) = c φW (−t) for all real t. (Complementary pair)

We give three examples of such pairs. Let Z ∼= N(0, 1), T ∼= Triangular(0, 1), and let D have
the de la Vallée Poussin density. Then examples of (1) are

(2) U = Z and W = Z, with c = 1/
√

2π,

(3) U = T and W = D, with c = 1,

(4) U = D and W = T, with c = 1/2π.

(The Cauchy(0, 1) and the Double Exponential(0, 1) then lead to two additional complemen-
tary pairs.) (The beauty of this is that we can nearly eliminate the use of complex analysis.)
(In all such examples we have 2πcfW (0) = 1.)

An arbitrary rv X, having df FX(·) and chf φX(·) may not have a density. Let us recall
from the convolution formula (A.2.2) that (if U has a density) a slightly perturbed version
Xa of X is smoother than X, in that

(5) Xa ≡ X + aU always has a density fa(·); and Xa →d X as a → 0

by Slutsky’s theorem, since aU →p 0 as a → 0. Thus F (·) = lim Fa(·) at each point in the
continuity set CF of F . This is the key to the approach we will follow to establish an inversion
formula.

Theorem 4.1 (Uniqueness theorem) Every df on the line has a unique chf.

Theorem 4.2 (Inversion formula) If an arbitrary rv X has df FX(·) and chf φX(·) we
can always write

(6) FX(r2) − FX(r1) = lim
a→0

∫ r2

r1

fa(y) dy for all r1 < r2 in CFX
,

where the density fa(·) of the rv Xa ≡ X + aU of (5) [with U as in (1)] is given by

(7) fa(y) =
∫ ∞

−∞
e−iyv φX(v)cfW (av) dv for all y ∈ R.
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Theorem 4.3 (Inversion formula for densities) If a rv X has a chf φX(·) that satisfies
the integrability condition

(8)
∫ ∞

−∞
|φX(t)| dt < ∞,

then X has a uniformly continuous density fX(·) given by

(9) fX(x) =
1
2π

∫ ∞

−∞
e−itxφX(t) dt.

Remark 4.1 The uniqueness theorem can be restated as follows: The set of complex
exponentials G ≡ {eitx for x ∈ R : t ∈ R} is a determining class. This is so because knowing
all values of φX(t) = EeitX allows the df F to be determined, via the inversion formula. �

Proof. From the convolution formula (A.2.2) and Xa ≡ X + aU we have

fa(y) =
∫ ∞

−∞
1
afU (y−x

a ) dFX(x)

(a) = c
∫ ∞

−∞
1
aφW (x−y

a ) dFX(x) by (1)

= (c/a)
∫ ∞

−∞
∫ ∞

−∞ ei(x−y)w/afW (w) dw dFX(x)

= (c/a)
∫ ∞

−∞ e−iyw/afW (w)
∫ ∞

−∞ ei(w/a)x dFX(x) dw by Fubini

(b) = (c/a)
∫ ∞

−∞ e−iyw/aφX(w/a)fW (w) dw = c
∫ ∞

−∞ e−iyvφX(v)fW (av) dv.

Since Xa →d X, at continuity points r1 < r2 of F we have (with Xa
∼= Fa(·))

(c) FX(r2) − FX(r1) = lim
a→0

{Fa(r2) − Fa(r1)} = lim
a→0

∫ r2

r1

fa(y) dy.

This establishes theorems 4.1 and 4.2.

The particular formula given in (c) might look useless, but the mere fact that one can
recover FX from φX via some formula is enough to establish the important property of
uniqueness. (See exercise 4.3 for some utility for (7).) We now turn to theorem 4.3, in which
we have added a hypothesis that allows the previous formula to be manipulated into a simple
and useful form.

Suppose that (8) holds, so that applying the DCT to (b) (using a constant times |φX(·)|
as a dominating function) gives [recall the hypothesis on the fW (·) of (1)] as a → 0 that

(d) fa(y) → f(y) ≡ [cfW (0)]
∫ ∞

−∞ e−iyvφX(v) dv,

since fW is bounded and is continuous at 0. Note that uniform continuity of f follows from
the bound

|f(y + h) − f(y)| = [cfW (0)]| ∫ ∞
−∞[e−i(y+h)v − e−iyv]φX(v) dv|

(e) ≤ [cfW (0)]
∫ ∞

−∞ |e−ihv − 1||φX(v)| dv → 0 as h → 0,
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by applying the DCT (with dominating function 2c‖fW ‖|φX(·)|). The uniform convergence
of fa to f on any finite interval involves only an |fW (0) − fW (av)| term under the integral
sign. That f really is the density of FX follows from applying this uniform convergence in
(c) to obtain

(f) FX(r2) − FX(r1) =
∫ r2

r1

f(y) dy.

The conclusion (9) holds since specifying U = W = Z gives

(g) [cfW (0)] = 1/(2π) (as it always must). �

Esseen’s inequality 9.7.1 below provides an important extension of theorem 4.2 by showing
that if two chfs are sufficiently close over most of their domain, then the corresponding dfs
will be uniformly close over their entire domain.

Exercise 4.1 Show that setting W = Z in line (c) of the previous proof leads, for any rv
X, to the alternative inversion formula

(10) FX(r2) − FX(r1) = lim
a→0

1
2π

∫ ∞

−∞

e−itr2 − e−itr1

−it
φX(t)e−a2t2/2 dt

at all continuity points r1 < r2 of FX(·). [This is one possible alternative to (6).]

Exercise 4.2 Derive the chf of the Triangular(0, 1) density on the interval [−1, 1] (perhaps,
add two appropriate uniform rvs). Then use theorem 4.3 to derive the chf of the de la Vallée
Poussin density, while simultaneously verifying that the non-negative and real integrable
function (1 − cos x)/(πx2) really is a density. Following section 6, determine E|X| when X
has the de la Vallée Poussin density.

Exercise 4.3 (Kernel density estimator) Since the rv X having df FX(·) and chf φX(·)
may not have a density, we choose instead to estimate the density fa(·) of (5) and (7) using

(11) f̂a(x) ≡ c

∫ ∞

−∞
e−itxφ̂X(t)fW (at) dt

[where fU (·) = cφW (−·) and where we now insist that μU = 0 and σ2
U is finite] with the

empirical chf φ̂X(·) defined by

(12) φ̂X(t) ≡
∫ ∞

−∞
eitxdFn(x) =

1
n

n∑
j=1

eitXj for − ∞ < t < ∞.

(a) Verify that f̂a(·) is actually a kernel density estimator, meaning that it can be expressed
as

(13) f̂a(x) =
1
a

∫ ∞

−∞
fU

(
x − y

a

)
dFn(y) =

1
n

n∑
j=1

1
a
fU

(
x − Xj

a

)
.

[This has statistical meaning, since we are averaging densities centered at each of the
observations.]
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(b) Show that f̂a(x) is always unbiased (in that it has mean fa(x)) and has a finite variance
we can calculate; thus for all x ∈ R we can show that

(14) Ef̂a(x) = fa(x),

(15) Var[f̂a(x)] =
1
n

{
1
a2

∫ ∞

−∞
f2

U (
x − y

a
) dF (y) − [fa(x)]2

}
.

(c) Supposing that FX(·) has a density f(·) ∈ C
(2)
b , determine the order of the mean squared

error

(16) MSE{f̂a(x)} ≡ Bias2{f̂a(x)} + Var[f̂a(x)] ≡ {E(f̂a(x)) − f(x)}2 + Var[f̂a(x)]

of f̂a(x), viewed as an estimator of f(x). (It is intended that you rewrite (16) by expanding
fa(x) in a Taylor series in “a” (valid for f(·) ∈ C

(2)
b ), and then analyze the magnitude of (16)

for values of “a” near 0. It might also be useful to relabel fU (·) by ψ now so that your work
refers to any kernel density estimator, right from the beginning. This will avoid “starting
over” in part (f).) Show that this MSE expression is of order n−4/5 for f(·) ∈ C

(2)
b when a is

of order n−1/5, and that this is the minimal attainable order.
(d) Note that the choice U = Z (or U = T ) leads to an f̂a(·) that is the sum of n normal (or
triangular) densities that are centered at the n data points and that have a scale parameter
directly proportional to a.
(e) Obtain an expression for lima→0 a4/5 MSE {f̂a(x)} in terms of f(x), f ′(x), and f ′′(x)
when a = n−1/5 (and obtain it for both of the choices U = Z and U = T ).
(f) We could also motivate the idea of a kernel density estimator based on (13) alone. How
much of what we have done still carries over for a general kernel? What properties should
a good kernel exhibit? What can you prove in this more general setting? (Now, for sure,
replace fU by a function labeled ψ. A simple sentence that specifies the requirements on ψ
should suffice.)

Exercise 4.4 Use the table of chfs above to show in what sense the sums of independent
Binomial, Poisson, NegBiT, Normal, Cauchy, Chisquare and Gamma rvs have distributions
that again belong to the same family. (Recall section A.2, noting that chfs have allowed the
complicated operation of convolution of dfs or densities to be replaced by the simple operation
of multiplication of chfs.)
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5 The Continuity Theorem

Theorem 5.1 (Continuity theorem for chfs; Cramér–Lévy) (i) If φn → φ where φ is
continuous at 0, then φ is the chf of a bona fide df F and Fn →d F.
(ii) Fn →d F implies φn → φ uniformly on any finite interval |t| ≤ T.

Inequality 5.1 (Chf bound on the tails of a df) For any df F we have

(1) P (|X| ≥ λ) ≤ 7λ
∫ 1/λ

0
[1 − Realφ(t)] dt for all λ > 0.

Proof. Now,

(a) λ
∫ 1/λ

0
[1 − Real φ(t)] dt = λ

∫ 1/λ

0

∫ ∞
−∞[1 − cos(tx)] dF (x) dt

=
∫ ∞

−∞ λ
∫ 1/λ

0
[1 − cos(tx)] dt dF (x)

=
∫ ∞

−∞{λt[1 − sin(xt)
xt ]}|1/λ

0 dF (x)

=
∫ ∞

−∞[1 − sin(x/λ)
(x/λ) ] dF (x)

≥ ∫
[|x|/λ≥1]

[1 − sin(x/λ)/(x/λ)] dF (x)

(b) = inf [|y|≥1][1 − sin(y)/y]P (|X| ≥ λ) = [1 − sin(1)]P (|X| ≥ λ)

(c) = (.1585 . . .)P (|X| ≥ λ) ≥ P (|X| ≥ λ)/7,

as claimed. (It may be interesting to compare this to the Chebyshev inequality.) [This idea
will be carried further in (10.5.9) and (10.5.10).] �

Proof. Consider theorem 5.1. (i) The uniqueness theorem for chfs shows that the collec-
tion G of complex exponential functions form a determining class, and the expectations of
these are hypothesized to converge. It thus suffices (by the kinder and gentler Helly–Bray
theorem (theorem 9.2.1(i)(a))) to show that {Fn : n ≥ 1} is tight. Now,

(a) limn→∞ P (|Xn| ≥ λ) ≤ limn→∞ 7λ
∫ 1/λ

0
[1 − Real φn(t)] dt

= 7λ
∫ 1/λ

0
[1 − Real φ(t)] dt

by the DCT, with dominating function 2

(b) → 0 as λ → ∞,

so that {Fn : n ≥ 1} is tight.
(ii) Now replacing Xn →d X by versions Yn →a.s. Y (and using Skorokhod’s construction)

gives for |t| ≤ T that

(c) |φn(t) − φ(t)| ≤
∫

|eitYn − eitY | dP

≤
∫

|eit(Yn−Y ) − 1| dP

≤
∫

sup|t|≤T |eit(Yn−Y ) − 1| dP

(d) → 0 as sup{|it(Yn − Y )| : |t| ≤ T} ≤ T |Yn − Y | → 0

by the DCT, with dominating function 2. �
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Higher Dimensions

If X1, . . . , Xk are rvs on (Ω,A, P ), then the Bk-A-mapping X ≡ (X1, . . . , Xk)′ from Ω to Rk

induces a measure PX on (Rk, Bk). The characteristic function of X is

(2) φX(t) ≡ E eit′X = E ei[t1X1+···+tkXk] for t ≡ (t1, . . . , tk)′ ∈ Rk.

Without further explanation, we state simply that the uniqueness theorem (that {gt ≡
exp(it′x) for all x ∈ Rn : t ∈ Rn} is a determining class) and the Cramér-Lévy continu-
ity theorem still hold, based on minor modifications of the previous proof. We also remark
that all equivalences of →d in theorem 1.1 are still valid. But we now take up an extremely
useful approach to showing convergence in distribution in higher dimensions.

The characteristic function of the one-dimensional linear combination �λ′X is

(3) φ
λ′X(t) = E ei[tλ1X1+···+tλkXk] for t ∈ R.

Comparison of this with (2) shows that knowing the joint chf φX(t) for all t ∈ Rk is equivalent
to knowing the one-dimensional chf φ
λ′X(t) for all t ∈ R and �λ ∈ Rk for which |�λ| = 1. This
immediately yields the following useful result.

Theorem 5.2 (Cramér–Wold device) If Xn ≡ (Xn1, . . . , Xnk)′ satisfy

(4) φ
λ′Xn
(t) → φ
λ′X(t) for all t ∈ R and for each �λ ∈ Rk,

then Xn →d X. (It suffices to show (4) for all unit vectors �λ in Rk.) [In fact, we only require
that �λ′Xn →d

�λ′X for all such �λ (no matter what method we use to show it), as such a result
implies (4).]

Theorem 5.3 The rvs X1, . . . , Xk are independent if and only if the joint chfs satisfy
φX(t1, . . . , tk) =

∏k
1 φXi

(ti).

Exercise 5.1∗ Prove the claims made below (2) for the n-dimensional chf φX.

Exercise 5.2 Prove theorem 5.3.
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6 Elementary Complex and Fourier Analysis

Lemma 6.1 (Taylor expansions of log(1 + z) and ez) [Note that log z is a many-valued
function of a complex z = reiθ; any of (log r)+ i[θ +2πm] for m = 0,±1,±2, . . . will work for
log z. However, when we write log z = log r + iθ, we will always suppose that −π < θ ≤ π.
Moreover, we denote this unique determination by Log z; this is the principal branch.] The
Taylor series expansion of Log (1 + z) gives

(1)
|Log(1 + z) −

∑m−1

k=1
(−1)k−1zk/k| = |

∑∞
k=m

(−1)k−1zk/k|

≤ |z|m
m

(1 + |z| + |z|2 + · · · ) ≤ |z|m
m(1 − |z|)

for |z| < 1. Thus

(2) Log (1 + z) − z| ≤ |z|2/(2(1 − θ)) for |z| ≤ θ < 1.

From another Taylor series expansion we have for all z that

(3) |ez − ∑m−1
k=0 zk/k!| = |∑∞

k=m zk/k!| ≤ |z|m ∑∞
j=0

|z|j
j!

j!
(j+m)! ≤ |z|me|z|

m! .

Lemma 6.2 (Taylor expansion of eit) Let m ≥ 0 and 0 ≤ δ ≤ 1 (and set the constant
K0,0 = 2, below). Then for all real t we have

(4)

∣∣∣∣∣eit −
m∑

k=0

(it)k

k!

∣∣∣∣∣ ≤ δ21−δ

(m + δ) · · · (2 + δ)(1 + δ)(0 + δ)
|t|m+δ ≡ Km,δ|t|m+δ.

Proof. The proof is by induction. For m = 0 we have both |eit − 1| ≤ 2 ≤ 2|t/2|δ for
|t/2| ≥ 1, and (since

∫ t

0
ieisds =

∫ t

0
(i cos s − sin s) ds = eit − 1)

(a) |eit − 1| ≤ | ∫ t

0
ieisds| ≤ ∫ |t|

0
ds = |t| ≤ 2|t/2|δ for |t/2| ≤ 1;

so that (4) holds for m = 0. We now assume that (4) holds for m − 1, and we will ver-
ify that it thus holds for m. We again use eit − 1 = i

∫ t

0
eis ds and further note that

i
∑m−1

k=0

∫ t

0
[(is)k/k!] ds =

∑m−1
k=0 (ik+1/k!)

∫ t

0
skds =

∑m
1 (it)k/k! to obtain

∣∣eit − ∑m
k=0(it)

k/k!
∣∣ =

∣∣∣i ∫ t

0

[
eis − ∑m−1

k=0 (is)k/k!
]

ds
∣∣∣

(b) ≤ Km−1,δ

∫ |t|
0

sm−1+δ ds by the induction step

(c) = Km,δ|t|m+δ.

[See Chow and Teicher (1997).] (The next inequality is immediate.) �

Inequality 6.1 (Moment expansion inequality) Suppose E|X|m+δ < ∞ for some m ≥ 0
and 0 ≤ δ ≤ 1. Then

(5)

∣∣∣∣∣φ(t) −
m∑

k=0

(it)k

k!
EXk

∣∣∣∣∣ ≤ Km,δ |t|m+δE|X|m+δ for all t.
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Some Alternative Tools

Lemma 6.3 (The first product lemma) For all n ≥ 1, let complex βn1, . . . , βnn satisfy the
following conditions:
(a) βn ≡ ∑n

1βnk → β as n → ∞.

(b) δn ≡ [max1≤k≤n|βnk|] → 0.

(c) Mn ≡ ∑n
k=1|βnk| satisfies δnMn → 0.

Then (compare this with the stronger Lemma 8.1.4, which requires all βnk ≥ 0)

(6)
n∏

k=1

(1 + βnk) → eβ as n → ∞.

Proof. When 0 < δn ≤ 1
2 (and we are on the principal branch), (2) gives

(p) |∑n
k=1Log (1 + βnk) − ∑n

k=1βnk| ≤ ∑n
k=1|βnk|2 ≤ δnMn → 0.

Thus

(q)
∑n

k=1 Log(1 + βnk) → β as n → ∞.

Moreover, (q) shows that

(r)
∏n

k=1(1 + βnk) = exp(Log(
∏n

k=1(1 + βnk))) = exp(
∑n

k=1 Log(1 + βnk))

→ exp(β),

and this gives (6). [See Chung (1974).] (Recall lemma 8.1.4.) �

Lemma 6.4 (The second product lemma) If z1, . . . , zn and w1, . . . , wn denote complex num-
bers with modulus at most 1, then

(7)

∣∣∣∣∣
n∏

k=1

zk −
n∏

k=1

wk

∣∣∣∣∣ ≤
n∑

k=1

|zk − wk|.

Proof. This is trivial for n = 1. We will use induction. Now,

(a) |∏n
k=1 zk − ∏n

k=1 wk| ≤ |zn|
∣∣∣∏n−1

k=1 zk − ∏n−1
k=1 wk

∣∣∣ + |zn − wn|
∣∣∣∏n−1

k=1 wk

∣∣∣

(b) ≤
∣∣∣∏n−1

k=1 zk − ∏n−1
k=1 wk

∣∣∣ + |zn − wn| · ∏n−1
k=1 1 ≤ ∑n−1

k=1 |zk − wk| + |zn − wn|
by the induction step. [See most newer texts.] �

Inequality 6.2 (Moment expansions of chfs) Suppose 0 < E|X|m < ∞ for some m ≥ 0.
Then (for some 0 ≤ g(t) ≤ 1) the chf φ of X satisfies

(8)

∣∣∣∣∣φ(t) −
m∑

k=0

(it)k

k!
EXk

∣∣∣∣∣ ≤ 3
m!

|t|mE|X|mg(t) where g(t) → 0 as t → 0.
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Proof. Use the real expansions for sin and cos to obtain

(a) eitx = cos(tx) + i sin(tx) =
∑m−1

k=0
(itx)k

k! + (itx)m

m! [cos(θ1tx) + i sin(θ2tx)]

(b) =
∑m

k=0
(itx)k

k! + (itx)m

m! [cos(θ1tx) + i sin(θ2tx) − 1].

Here, we have some θ1, θ2 with 0 ≤ |θ1| ∨ |θ2| ≤ 1. Then (8) follows from (b) via

(9) limt→0E|Xm[cos(θ1tX) − 1 + i sin(θ2tX)]| = 0,

by the DCT with dominating function 3|X|m. [See Breiman (1968).] �

Inequality 6.3 (Summary of useful facts) Let X ∼= (0, σ2). Result (8) then gives the
highly useful

|φ(t) − (1 − 1
2
σ2t2)| ≤ 3

2
σ2t2g(t) where g(t) → 0 as t → 0,

with 0 ≤ g(t) ≤ 1. Applying this and (5) gives (since K2,1 = 1
6 , and since K1,1 = 1

2 allows
1
2 σ2t2 to replace 3

2 σ2t2g(t))

(10) |φ(t) − (1 − 1
2
σ2t2)| ≤ 1

2
σ2t2 ∧ 1

6
E|X|3|t|3 for all t ∈ R.

Exercise 6.1 (Distributions determined by their moments)
(a) Suppose that E|X|n < ∞. Then the nth derivative φ(n)(·) is a continuous function given
by φ(n)(t) = inE(XneitX), so that EXn = i−nφ(n)(0).
(b) The series ψ(t) =

∑∞
0 (it )kE(Xk)/k! has radius of convergence R ≡ 1/(eL), where

L = limk |μk|1/k/k = limk(E|X|k)1/k/k = lim μ
1/2k
2k /(2k); use the root test.

(c) The series in (b) has the same R > 0 if
∑∞

k=0 μ2k t2k/(2k)! < ∞ for some t > 0.
(d) The series (b) converges for |t| < r if and only if E exp(t|X|) < ∞ for |t| < r if and only
if E exp(tX) < ∞ for |t| < r
(e) If the radius of convergence in (b) is strictly positive, then the distribution having the
stated moments is uniquely determined by its moments μk.
(f) Show that the Normal(0, 1) distribution is uniquely determined by its moments.
(g) Show that any Gamma(r, 1) distribution is uniquely determined by its moments.
(h) Show that it is valid to expand the mgs of Normal(0, 1) and Gamma(r, 1) to compute
their moments. Do it.

Exercise 6.2 (a) If φ′′(0) is finite, then σ2 is finite. Prove this.
(b) In fact, if φ(2k)(0) is finite, then EX2k < ∞. Prove this.
(*) Appeal to Exercise 3.3.

Exercise 6.3 (Bounds on (1 − x/n)n) (i) Use (1 + t) ≤ et ≤ 1/(1 − t) for 0 ≤ t < 1 at
t = x/n to show that

0 ≤ e−x − (1 − x

n
)n ≤ x2

n
e−x for 0 ≤ x < n.

(ii) (Hall and Wellner) Show that

2e−2 ≤ n sup
x≥0

|e−x − (1 − x/n)n1[0,n](x)| ≤ (2 + n−1)e−2 for alln ≥ 1.
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Results from Fourier Analysis

On some occasions we will need to know the behavior of φ(t) for |t| large.

Lemma 6.5 (Riemann–Lebesgue lemma) If
∫ ∞

−∞|g(x)| dx < ∞, then

(11)
∫ ∞

−∞
eitxg(x) dx → 0 as t → ∞.

Proof. Now, Ψ ≡ {ψ ≡ ∑m
1 ci1(ai,bi] : ai, bi, ci ∈ R and m ≥ 1} is dense in L1 by theorem

3.5.8; that is, if
∫ ∞

−∞ |g(x)| dx < ∞, then there exists ψ ∈ Ψ such that
∫ ∞

−∞ |g − ψ| dx < ε.
Thus γ(t) ≡ | ∫ ∞

−∞ eitxg(x) dx| satisfies

γ(t) ≤ ∫ ∞
−∞ |eitx||g(x) − ψ(x)| dx + | ∫ ∞

−∞ eitxψ(x) dx|

(a) ≤ ε +
∑m

1 |ci||
∫ bi

ai
eitx dx|.

It thus suffices to show that for any a, b in R we have

(12)
∫ b

a

eitx dx → 0 as |t| → ∞.

A quick picture of sines and cosines oscillating very fast (and canceling out over the interval)
shows that (12) is trivial. (Or write eitx = cos(tx) + i sin(tx) and compute the integrals.) �

Lemma 6.6 (Tail behavior of chfs)
(i) If F has density f with respect to Lebesgue measure, then |φ(t)| → 0 as |t| → ∞.
(ii) If F has n + 1 integrable derivatives f, f ′, . . . , f (n) on R, then

(13) |t|n|φ(t)| → 0 as |t| → ∞.

Proof. The fact that |φ(t)| → 0 as |t| → ∞ follows from the Reimann–Lebesgue lemma,
since f is integrable. Since f is absolutely continuous and a density, it follows that that
f(x) → 0 as |x| → ∞. Then use

φ(t) =
∫

eitxf(x) dx =
∫

f(x)d(eitx/it)

(a) = (eitx/it)f(x)|∞−∞ − ∫
eitxf ′(x) dx/(it)

(b) = − ∫
eitxf ′(x) dx/(it) with f ′(·) ∈ L1,

using f(x) → 0 as |x| → ∞ in going from (a) to (b). (Note exercise 6.4 below.) Applying
the Riemann–Lebesgue lemma to (b) gives |t||φ(t)| → 0 as |t| → ∞. Keep on integrating by
parts and applying the Riemann-Lebesgue lemma. �

Exercise 6.4 Verify lemma 6.2(ii) when n = 1.

http://dx.doi.org/10.1007/978-3-319-52207-4_3
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Other Alternative Toolso

Then chf always exists, so it can always be used. However, if X ≥ 0 or if X is integer valued,
then Laplace transforms or probability generating functions offer more elementary tools.

Exercise 6.5∗ (Laplace transform) Let F+ denote the class of all dfs F having F−(0) = 0.
For any df F ∈ F+ we define the Laplace transform L of F by

(14) L(λ) = Ee−λX =
∫ ∞
0

e−λx dF (x) for λ ≥ 0.

(a) Establish an analogue of proposition 3.1(a), (b), (c), and (g).
(b) (Uniqueness) Show that each df in F+ has a unique Laplace transform.
(c) (Continuity) Let Xn

∼= Fn ∈ F+. If Ln(λ) → (some L(λ)) for all λ ≥ 0 with L(·) right
continuous at 0, then L is the Laplace transform of a df F ∈ F+ for which the convergence
in distribution Fn →d F holds.
(d) Establish analogues of inequality 6.1 on moment expansions.

Exercise 6.6∗ (Probability generating function) Let FI denote the class of all dfs F assigning
mass 1 to the integers 0, 1, 2, . . .. For any df F ∈ FI we define the probability generating
function g of F by

(15) g(z) = E zX =
∑∞

k=0
pk zk for all complex z having |z| ≤ 1.

(a) Establish an analogue of proposition 3.1.
(b) (Uniqueness) Show that each df F in FI has a unique generating function.
(c) (Continuity) Let Xn

∼= Fn ∈ FI . If gn(z) → (some g(z)) for all |z| ≤ 1 with g(·) continuous
at 1, then g is the generating function of a df F in FI for which Fn →d F.

Exercise 6.7o (Cumulant generating function) The cumulant generating function ψX(·) of
a rv X is defined by

(16) ψX(t) ≡ Log φX(t) = Log E(eitX),

and is necessarily finite for t-values in some neighborhood of the origin.
(a) Temporarily suppose that all moments of X are finite. Let μk ≡ E(X − μ)k denote the
k -th central moment, for k ≥ 1. Then when μ = EX = 0 and with σ2 ≡ μ2, we have the
formal expansion

φX(t) = 1 − t2σ2/2 + (it)3μ3/3! + (it)4μ4/4! + · · · ≡ 1 + z.

Verify that further formal calculations based on this yield

ψX(t) = Log φX(t) = Log (1 + z) = z − z2/2 + z3/3 + · · ·

= (it)2μ2/2! + (it)3μ3/3! + (it)4(μ4 − 3μ2
2)/4! + · · ·

(17) = (it)2σ2/2! + (it)3μ3/3! + t4(μ4 − 3σ4)/4! + · · ·

(18) ≡ ∑∞
j=2(it)

jκj/j!,
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where κj is called the jth cumulant of X. Note that for independent rvs X1, . . . , Xn,

(19) (the jth cumulant of
∑n

k=1Xk) =
∑n

k=1 (the jth cumulant of Xk),

which is nice. Then verify that in the iid case, the third and fourth cumulants of the stan-
dardized rv Zn ≡ √

n(X̄n − μ)/σ are

(20) γ1/
√

n ≡ (μ3/σ3)/
√

n and γ2/n ≡ (μ4/σ4 − 3)/n,

where γ1 measures skewness and γ2 measures tail heaviness. [This is particularly nice; it
shows that the effect (on the distribution of X̄n) of skewness disappears at rate 1/

√
n, while

the effect of tail heaviness disappears at rate 1/n.]
(b) Finally, if only E|X|m < ∞ for some m ≥ 1 is known, show that in a sufficiently small
neighborhood of the origin

(21) |ψ(t) − ∑m
j=2κj(it)j/j!| ≤ cm|t|mE|X|mδm(t),

where δm(t) ↘ 0 as t ↘ 0, and

(22) |ψ(t) − ∑m−1
j=2 κj(it)j/j!| ≤ c̄m|t|mE|X|m

for some universal constant c̄m. The exercise is to establish carefully that all of this is true.
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7 Esseen’s Lemma

Let G denote a fixed function having G(−∞) = 0, G(+∞) = 1, having derivative g on the
real line for which |g(·)| is bounded by some constant M , having

∫ ∞
−∞ xg(x) dx = 0, and then

let ψ(t) ≡ ∫ ∞
−∞ eitxg(x) dx. Let F denote a general df having mean 0, and let φ denote its

characteristic function. We wish to estimate ‖F − G‖ = sup−∞<x<∞ |F (x) − G(x)| in terms
of the distance between φ and ψ. Roughly speaking, the next inequality says that if φ and ψ
are sufficiently close over most of their domain, then ‖F − G‖ will be small. [In the initial
application of this Esseen’s lemma, we will take G, g, ψ to be the N(0, 1)df, density, and chf.
In this context, the constant of (1) is 24‖g‖/π = 24M/π = 24/(

√
2ππ) = 3.047695 . . . .]

Inequality 7.1 (Esseen’s lemma) Let F and G be as above. For any a > 0 we have the
uniform bound

(1) ‖F − G‖ ≤ 1
π

∫ a

−a

|φ(t) − ψ(t)
t

| dt +
24||g‖

πa
.

Proof. The key to the technique is to smooth by convolving F and G with the df Ha

whose density ha and characteristic function γa are given by

(2) ha(x) =
1 − cos(ax)

πax2
on R and γa(t) =

{
1 − |t|/a if |t| ≤ a,
0 if |t| > a.

This ha is the density of V/a, when V has the de la Vallée density. Let Fa and Ga denote
the convolutions of F and G with Ha, for “a” large. We will now show that

(3) ‖F − G‖ ≤ 2‖Fa − Ga‖ + 24‖g‖/(πa).

Let Δ ≡ F − G. Now, Δ(x) = Δ+(x) and Δ−(x) exist for all x; thus there exists xo such
that either D ≡ ‖F − G‖ = |Δ(xo)| or D = |Δ−(xo)|. Without loss of generality, we suppose
that D = |Δ(xo)|(just replace X,Y by − X,−Y if not). Note figure 7.1. Without loss of
generality, we act below as though Δ(xo) > 0, and we let zo > xo. (If Δ(xo) < 0, then let
zo < xo). Now, since F is ↗ and g is bounded by M , we have

(a) Δ(zo − x) ≥ D/2 + Mx for |x| ≤ ε =
D

2M
,

where ε ≡ D/2M and zo ≡ xo + ε. Trivially (since D was the supremum),

(b) Δ(zo − x) ≥ −D for |x| > ε.

Thus, with Δa ≡ Fa − Ga, using (a) and (b) gives

(c) ‖Fa − Ga‖ ≥ Δa(zo) =
∫ ∞

−∞ Δ(zo − x)ha(x) dx by the convolution formula

(d) ≥ ∫ ε

−ε
[D/2 + Mx]ha(x) dx − D

∫
[|x|>ε]

ha(x) dx

= (D/2)[1 − ∫
[|x|>ε]

ha(x) dx] + M · 0 − D
∫
[|x|>ε]

ha(x) dx

since xha(x) is odd
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= (D/2) − (3D/2)
∫
[|x|>ε]

ha(x) dx ≥ (D/2) − (12M/πa)

(e) = ‖F − G‖/2 − (12M/πa),

(which is (3)), since

(f)
∫
[|x|>ε]

ha(x) dx ≤ 2
∫ ∞

ε
(2/πax2) dx = 4/(πaε) = 8M/(πaD).

F

G

x

D

x0 z

D/2

ε ε

y = D – Mx

Figure 7.1 Bounds for Esseen’s lemma

We now bound ‖Fa − Ga‖. By the Fourier inversion formula, Fa and Ga have bounded
continuous “densities” that satisfy

(4) fa(x) − ga(x) =
∫ a

−a
e−itx[φ(t) − ψ(t)]γa(t) dt/(2π).

From this we suspect that

(5) Δa(x) =
1
2π

∫ a

−a

e−itx φ(t) − ψ(t)
−it

γa(t) dt.

That the integrand is a continuous function that equals 0 at t = 0 (since F and G have
0 “means,” inequality 6.1 gives this) makes the right-hand side well-defined, and we may
differentiate under the integral sign by the DCT [with dominating function γa(·)] to get the
previous equation (4). Thus Δa(x) can differ from the right-hand side of (5) by at most a
constant; but this constant is 0, since obviously Δa(x) → 0 as |x| → ∞, while the right-hand
side does the same by the Riemann–Lebesgue lemma. Equation (5) gives

(6) |Δa(x)| ≤ 1
2π

∫ a

−a
|φ(t)−ψ(t)

t | dt for all x.

Combining (3) and (6) gives (1). �
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Corollary 1 (Stein) Suppose that instead of convolving F and G with the Ha of (2), we
convolve with an arbitrary df H instead. In this situation we obtain

(7) ‖F − G‖ ≤ 2‖F ∗ H − G ∗ H‖ + 8‖g‖E|H−1(ξ)|.

Proof. Picking up at line (d) of the previous proof (with Y ∼= H), we obtain

(d) ‖F ∗ H − G ∗ H‖ ≥ ∫
[−ε,ε]

[D/2 + My] dH(y) − DP (|Y | > ε)

≥ (D/2)[1 − P (|Y | > ε)] − ME|Y | − DP (|Y | > ε)

≥ (D/2) − (3D/2)P (|Y | > ε) − ME|Y |
(e) ≥ (D/2) − 4ME|Y |
using Markov’s inequality and ε ≡ D/2M in the last step. �
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8 Distributions on Grids∗

Definition 8.1 We say that a rv X is distributed on a grid if there exist real numbers a, d
such that the probabilities pn ≡ P (X = a + nd) satisfy

∑∞
−∞ pn = 1. We call d the span of

the grid. The maximal span is sup{|d| : |d| is a span}.

Proposition 8.1 If t0 �= 0, the following are equivalent:
(a) |φ(t0)| = 1.
(b) |φ| has period t0; that is, |φ(t + nt0)| = |φ(t)| for all n and t.

(c) The rv X is distributed on a grid of span d = 2π/t0.

Proof. Suppose that (a) holds. Then φ(t0) = eiα for some real α. That is,
∫

eit0x dF (x) =
eiα, or

∫
ei(t0x−α) dF (x) = 1. Taking real parts gives

(p)
∫ ∞

−∞[1 − cos(t0x − α)] dF (x) = 0.

Since the integrand is nonnegative for all X, this means that

(q) 1 − cos(t0x − α) = 0 a.s. F ;

that is,

(r) t0X − α ∈ {2πm : m = 0,±1,±2, . . .} a.s.

That is, X ∈ {α/t0 + (2π/t0)m : m = 0,±1,±2, . . .} a.s.; so (c) holds.
Suppose (c) holds. Then (b) holds, since

|φ(t + nt0)| = |∑∞
m=−∞ pmei(t+nt0)(a+dm)|

= |ei(t+nt0)a||∑∞
m=−∞ pmei(t+nt0)dm|

= |∑∞
m=−∞ pmei(t+2πn/d)dm|

(s) = |∑∞
m=−∞ pmeitdm||ei2πnm| = |∑∞

m=−∞ pmeitdmeita| = |φ(t)|.
Suppose that (b) holds. Then

(t) 1 = |φ(0)| = |φ(0 + t0n)| = |φ(0 + t01)| = |φ(t0)|,

so that (a) holds. �

Corollary 2 If a = 0 in (c), then we may replace |φ| by φ in (a) and (b), and proposition
8.1 will still hold.

Proposition 8.2 One of the following possibilities must hold:

(d) |φ(t)| < 1 for all t �= 0.

(e) |φ(t)| < 1 for 0 < t < 2π/d and |φ(2π/d)| = 1.Thus,X has maximal span d.

(f) |φ(t)| = 1 for all t. And so φ(t) = eiat for all t and P (X = a) = 1, for some a.
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Proof. Clearly, either (d), (e), or (f) holds, or else |φ(tn)| = 1 for some sequence tn → 0.
In this latter case, |φ(mtn)| = 1 for all m, for each n by proposition 8.1. Since {mtn : n ≥
1,m = 0,±1,±2, . . .} is dense in R and since φ, and thus |φ|, is continuous, we must have
case (f) again. It remains to establish the consequences of (e) and (f).

Consider (e). Proposition 8.1 shows that (e) holds if and only if both d is a span and no
number exceeding d is a span.

In the case of (f), we have |φ(t1)| = 1 = |φ(t2)| for some t1 and t2 having t1/t2 = (an
irrational number). But |φ(t1)| = 1 and |φ(t2)| = 1 imply that both 2π/t1 and 2π/t2 are
spans. Thus if at least two points have positive mass, then the distance between them must
equal m12π/t1 for some integer m1 and it must equal m22π/t2 for some integer m2. That
is, 2πm1/t1 = 2πm2/t2, or t1/t2 = m1/m2 = (a rational number). This contradiction shows
that there can be at most one mass point a. �

Exercise 8.1 (Inversion formula for distributions on a grid) Let X be distributed on a grid
with pn = P (X = a + dn). Then φ(t) =

∑∞
−∞ pneit(a+dn). Show that

(1) pm =
d

2π

∫ π/d

−π/d

φ(t)e−it(a+dm) dt.
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9 Conditions for φ to Be a Characteristic Function∗

Example 9.1 Now, for a > 0,

F ′
a(x) = [1 − cos(ax)]/(πax2) for x ∈ R

is a de la Vallée Poussin density function with chf

φa(t) = (1 − |t|/a)1[−a,a](t) for t ∈ R.

Let Fa denote the df. Then

F ≡
n∑
1

piFai
with pi ≥ 0,

∑n

1
pi = 1, and 0 < a1 < · · · < an

is a df with characteristic function

φ =
∑n

1
piφai

.

Thus any even function φ ≥ 0 with φ(0) = 1 whose graph on [0,∞) is a convex polygon is a
chf. �

Proposition 9.1 (Pólya) Let φ ≥ 0 be an even function with φ(0) = 1 whose graph on
[0,∞) is convex and ↓. Then φ is a chf.

Proof. Pass to the limit in the obvious picture, using the continuity theorem to complete
the proof. �

Bochner’s theorem below gives necessary and sufficient conditions for a function to be a
chf. We merely state it, as a background fact. Its proof can be found in a number of the
standard texts.

Definition 9.1 A complex-valued function φ(·) on R is nonnegative definite if for any finite
set T and any complex-valued function h(·) we have

(1)
∑

s,t∈T
φ(s − t)h(s)h̄(t) ≥ 0.

Theorem 9.1 (Bochner) A complex-valued function φ(·) is a chf if and only if it is non-
negative definite and continuous.



Chapter 10

CLTs via Characteristic
Functions

0 Introduction

The classical CLT states that if X1,X2, . . . are iid (μ, σ2), then

(1)
√

n(X̄n − μ) →d N(0, σ2) as n → ∞.

This chapter will also consider the following generalizations.

(i) Triangular arrays of row-independent non-iid rvs Xn1, . . . , Xnn for n ≥ 1. Liapunov,
Lindeberg–Feller (and the optional General CLT theorem 10.5.1).

(ii) The rate of convergence of such dfs to the limiting df, via Berry–Esseen.

(iii) The multidimensional CLT.

(iv) Random sample sizes, sample quantiles, and many other examples.

(v) Non-normal limits (both the degenerate WLLN and a Poisson limit).

(vi) Convergence of the density functions as well (the local CLT 10.4.1).

(vii) Necessary and sufficient conditions for the optional statistically formulated CLT 10.5.2
for triangular arrays of row independent rvs.

(viii) See also the optional theorems 10.6.1, 10.7.1, 10.8.1, 10.9.1, and 10.9.2 for some best
possible results for iid rvs and for bootstrap samples. Theorem 10.6.1 develops the
domain of attraction D(Normal) of the Normal distribution.

In chapter 11 we consider situations that lead to stable and infinitely divisible rvs as limits.
Edgeworth and other approximations are also considered there. Section 13.9 includes a dis-
cussion of martingale CLTs. Chapter 15 has sections on asymptotic normality of trimmed
means, of L-statistics, and of R-statistics (the latter includes a finite sampling CLT). The
proofs of some optional results above require knowledge of Sections C.1–C.4. The chapter 15
examples require an inequality in Sections C.6.
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1 Basic Limit Theorems

The goal of this section is to use a chf approach to present the classical central limit theorems
for sums of iid random variables in R and in Rk. We also compare and contrast the central
limit theorem with the Poisson limit theorem.

The Classical CLT

Theorem 1.1 (Classical CLT) For each n ≥ 1, let Xn1, . . . , Xnn be iid F (μ, σ2); this
denotes that the df F (.) of the Xnk’s has mean μ and finite variance σ2. Define the total
Tn ≡ Xn1 + · · · + Xnn and the average X̄n ≡ Tn/n. Then as n → ∞,

(1)
√

n(X̄n − μ) = 1√
n
(Tn − nμ) = 1√

n

∑n
k=1(Xnk − μ) →d N(0, σ2).

Proof. Now, for fixed t we have (with 0 ≤ g(t) ≤ 3/2 and g(t) → 0 as t → 0)

φ√
n(X̄n−μ)(t) =

∏n
k=1 φ(Xnk−μ)/

√
n(t) =

∏n
k=1[φXnk−μ(t/

√
n)]n(a)

=

[

1 − σ2

2

(
t√
n

)2

+
(

t√
n

)2

σ2g

(
t√
n

)]n

by inequality 9.6.2

=
[

1 − σ2t2

2n
+

t2

n
× σ2g

(
t√
n

)]n

.(b)

The first product lemma 9.6.3 with θ = −σ2t2/2 trivially applies. Thus

(c) φ√
n(X̄n−μ)(t) → e−σ2t2/2 = φN(0,σ2)(t),

using table 9.1.1. Thus
√

n(X̄n − μ) →d N(0, σ2) by the Cramér–Lévy continuity theorem
9.5.1 and the uniqueness theorem 9.4.1.

Had we chosen to appeal to the second product lemma 9.6.4 instead, we would have instead
claimed that

|φ√
n(X̄n−μ)(t) − (1 − σ2t2/2n)n|
= |∏n

k=1 φ(Xnk−μ)/
√

n(t) −∏n
k=1(1 − σ2t2/2n)|(d)

≤ ∑n
k=1 |φ(Xnk−μ)/

√
n(t) − (1 − σ2t2/2n)|(e)

≤ ∑n
k=1(t

2/n)σ2g(t/
√

n) = t2σ2g(t/
√

n) → 0.(f)

But (1−σ2t2/2n)n → exp(−σ2t2/2) = φN(0,σ2)(t), so the continuity theorem and the unique-
ness theorem again complete the proof. �

Degenerate Limits

Exercise 1.1 (WLLN, or classical degenerate convergence theorem) For each n ≥
1, let Xn1, . . . , Xnn be iid with finite mean μ. Use chfs to show the WLLN result that
X̄n →p μ as n → ∞. Equivalently,

(2) X̄n →d (the degenerate distribution with mass 1 at μ).
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The Classical PLT

Theorem 1.2 (Classical Poisson limit theorem; the PLT) For each n ≥ 1, suppose
that Xn1, . . . , Xnn are independent Bernoulli (λnk) rvs for which the values of the parameters
satisfy λn ≡ ∑n

k=1 λnk → λ ∈ (0, ∞) while [max1≤k≤n λnk] → 0. (This is true if λn1 = · · · =
λnn = λn/n for all n, with λn → λ). Then

(3) Tn ≡ Xn1 + · · · + Xnn →d Poisson(λ) as n → ∞.

Proof. From table 9.1.1 we have φXnk
(t) = 1 + λnk(eit − 1). Thus

φTn
(t) =

∏n
k=1 φXnk

(t) =
∏n

k=1[1 + λnk(eit − 1)](a)

→ exp(λ(eit − 1)) by the first product lemma 9.6.3(b)
= φPoisson(λ)(t) by table 13.1.1.(c)

Now apply the Cramér–Lévy continuity theorem and the uniqueness theorem. �

Exercise 1.2 (Poisson local limit theorem) Show that

(4) P (Tn = k) → P ( Poisson(λ) = k) as n → ∞, for k = 0, 1, . . . ,

when λn1 = · · · = λnn in the PLT. Show that this implies

(5) dTV (Pn, P ) ≡ sup{|Pn(A) − P (A)| : A ∈ B} → 0,

where Tn
∼= Pn and Poisson(λ) ∼= P . [Exercise 12.5.4 will improve this.]

Exercise 1.3 Show that if Tλ
∼= Poisson(λ), then (Tλ−λ)/

√
λ →d N(0, 1) as the parameter

λ → ∞.

A Comparison of Normal and Poisson Convergence

Exercise 1.4 (a) Suppose the hypotheses of the classical CLT hold. Show that

(6) Mn ≡
[

max
1≤k≤n

1√
n

|Xnk − μ|
]

→p 0.

(b) Suppose the hypotheses of the classical PLT hold. Show that

(7) Mn ≡
[

max
1≤k≤n

|Xnk|
]

→d Bernoulli(1 − e−λ).

(∗) There is something fundamentally different regarding the negligibility of the corresponding
terms in these two cases! The CLT involves summing many tiny pieces, but the PLT arises
from very occasionally having a “large” piece.

Remark 1.1 Let Yn1, . . . , Ynn be independent. Let pε
nk ≡ P (|Ynk| > ε). Recall equation

(8.3.14) for the conclusion

(8) Mn ≡
[

max
1≤k≤n

|Ynk|
]

→p 0 if and only if
n∑

k=1

pε
nk → 0 for all ε > 0.
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This was proved via the (8.3.13) inequality

(9) 1 − exp(−∑n
k=1 pε

nk) ≤ P (Mn ≥ ε) ≤ ∑n
k=1 pε

nk. �

The Multivariate CLT

Theorem 1.3 (Classical multivariate CLT) Let Xn ≡ (Xn1, . . . , Xnk)′, n ≥ 1, be a
sequence of iid (�μ,Σ) random vectors. Then

(10)
1

n1/2

n∑

j=1

(Xj − �μ) →d Nk(O,Σ) as n → ∞.

Proof. For any �λ ∈ Rk the rvs

(a) Yj ≡ �λ′(Xj − �μ) ∼= (0, �λ′Σ�λ) are iid for j = 1, . . . , n.

Thus the classic CLT gives

(b)
√

nȲn →d N(0, �λ′Σ�λ).

That is, Zn ≡ n−1/2
∑n

1 (Xj − �μ) satisfies

(c) φ�λ′Zn
(t) = φ√

nȲn
(t) → exp(−�λ′Σ�λ t2/2).

Now, if Z ∼= Nk(O,Σ), then �λ′Z ∼= N(0, �λ′Σ�λ) ; and hence

(d) φ�λ′Z(t) = exp(−�λ′Σ�λ t2/2).

Thus (c) and (d) give φ�λ′Zn
(t) → φ�λ′Z(t) for all t ∈ R, for each �λ ∈ Rk. Thus the Cramér–

Wold theorem (theorem 9.5.2) shows that Zn →d
�Z. �

Exercise 1.5 (Empirical process; Doob) Let Un ≡ √
n[Gn − I] be the uniform empirical

process of sections 6.5 and 12.10, and let U denote the Brownian bridge of (A.4.13). Show
that Un →fd U as n → ∞; that is, show that for any set of points 0 < t1 < · · · < tk < 1 we
have

(Un(t1), . . . ,Un(tk)) →d (U(t1), . . . ,U(tk)) as n → ∞.

(Essentially, all results in chapter 12 derive from this example—via a suggestion of Doob
(1949).)

Exercise 1.6 (Partial sum process of iid rvs) Let Sn denote the partial sum process of
iid (0, 1) rvs (see (11) below) and let S denote Brownian motion (as in (A.4.12)) Show that
Sn →fd S as n → ∞. [Hint. Set things up cumulating from the left, and then transform.
Or note that the random element you must consider can be written in a form equivalent to
something simpler. Or use the Cramér–Wold device. One of these methods is much simpler
then the others.]

http://dx.doi.org/10.1007/978-3-319-52207-4_12
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Exercise 1.7 (Partial sum process) Suppose that Xn1, . . . , Xnn are independent (0, σ2
nk)

and satisfy Lindeberg’s condition (10.2.11) below. Define Sn on [0, 1] via

(11) Sn(t) =
∑k

i=1 Xni/snn for
s2nk

s2nn

≤ t <
s2n,k+1

s2nn

, 0 ≤ k ≤ n,

with s2nk ≡ ∑k
i=1 σ2

ni and s2n0 ≡ 0. Show that Sn →fd S, where S denotes Brownian motion.
(Only attempt this problem following theorem 10.2.2.)

Example 1.1 (Chisquare goodness of fit statistic) Suppose Ω =
∑k

i=1 Ai. Now let
X1, . . . , Xn be iid on (Ω,A) with all pi ≡ P (X ∈ Ai) > 0. Let

(12) Nni ≡
n∑

j=1

1Ai
(Xj) ≡ (the number of Xj ’s that fall in Ai) for 1 ≤ i ≤ k.

(a) Now, (Z1j , . . . , Zkj)′, with Zij ≡ (1Ai
(Xj) − pi)/

√
pi, has mean vector O and covariance

matrix Σ = |[σii′ ]| with σii = 1 − pi and σii′ = −√
pipi′ for i �= i′.

(b) Thus Wn ≡ ∑n
1 Zj/

√
n →d W ∼= Nk(O,Σ) as n → ∞, by theorem 1.3.

(c) The usual chisquare goodness of fit statistic is

Qn(p) ≡
k∑

i=1

(Nni − npi)2

npi
=

k∑

i=1

(Observedi − Expectedi)2

Expectedi

(13)

= W′
nWn →d W′W by the Mann–Wald theorem

= (GW)′(GW) ∼= Chisquare(k − 1);(14)

here G is k × k and orthogonal with first row
√
p′, so that GΣG′ = G[I − √

p
√
p′ ]G′ =

I − (1, 0, . . . , 0)′(1, 0, . . . , 0). This has diagonal elements (0, 1, 1, . . . , 1) with all off-diagonal
elements 0, and then GW ∼= N(O, GΣG′) (by (7.3.5) and (A.3.6)). We also use (A.1.29) for
(16). [If a value of Expected is unknown, it should be replaced by an appropriate estimator
Êxpected.] (See exercise 10.3.26 below.) (This statistic is just a quadratic form.) �

Exercise 1.8* [Independence in an I × J table] Suppose both Ω =
∑I

i=1 Ai and Ω =
∑J

j=1 Bj represent partitions of Ω.
(a) Let pij ≡ P (AiBj) = pi.p.j , where pi. ≡ P (Ai) and p.j ≡ P (Bj). Let

Nij ≡ (the number of iid observations X1, . . . , Xn that fall in AiBj).

Let p̂i. ≡ ∑J
j=1 Nij/n and p̂.j ≡ ∑I

i=1 Nij/n. Show that

(15) Qa
n ≡ ∑I

i=1

∑J
j=1 (Nij − np̂i·p̂.j)2/(np̂i·p̂.j) →d Chisquare((I − 1)(J − 1)).

(b) Let pi|j ≡ P (Ai|Bj). Let n ≡ n.1 + · · · + n.J . For each 1 ≤ j ≤ J , let Nij ≡ (the number
of iid P (·|Bj) observations X

(j)
1 , . . . , X

(j)
nj that fall in AiBj). Let p̂i|j ≡ ∑J

j=1 Nij/n·j . Show
that when σ[A1, . . . , AI ] and σ[B1, . . . , BJ ] are independent, the chisquare statistic satisfies

(16) Qb
n ≡ ∑I

i=1

∑J
j=1(Nij − nj p̂i|j)2/(nj p̂i|j) →d Chisquare((I − 1)(J − 1))

as n1 ∧ · · · ∧ nJ → ∞.
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(∗) Suppose that both sets of marginal totals n1., . . . , nI . and n.1, . . . , n.J are fixed, and
that both sum to n. Suppose that n balls are assigned to the IJ cells at random without
replacement, subject to the side conditions on the marginal totals stated above. Let Nij

denote the number assigned to the (i, j)-th cell. It holds that

(17) Qc
n ≡ ∑I

i=1

∑J
j=1(Nij − ni.n.j/n)2/(ni.nj ./n) →d Chisquare((I − 1)(J − 1))

as (n1. ∧ · · · ∧ nI .) ∧ (n.1 ∧ · · · ∧ n·J) → ∞. [Suppose I = 5 different social groups are at
work in broadcasting, where the sum of the I group sizes ni. of our data is n = 250. The
number whose salaries fall in each decile (thus J = 10) of the observed salaries is necessarily
n.j = n/J = 25. The statistic in (17) can be used to test for independence of group and
salary level.] �

Limiting Distributions of Extremes

Exercise 1.9 (a) Let ξn1, . . . , ξnn be iid Uniform(0, 1) rvs. Then the sample minimum
ξn:n satisfies nξn:n → Exp(1).
(b) Now, ξn:n is the sample maximum. Determine the joint asymptotic distribution of nξn:1

and n(1 − ξn:n).

Exercise 1.10 (Special cases of Gnedenko’s theorem) Let Xn:n be the maximum of an iid
sample X1, . . . , Xn from F (·)· Then:

(a)
P (Xn:n − log n ≤ y) → exp(−e−y) for all y ∈ R,

when 1 − F (x) = e−x for x ≥ 0.

(b)
P (n1/bXn:n ≤ y) → exp(−|y|b) for all y < 0,

when 1 − F (x) = |x|b for − 1 ≤ x ≤ 0, with b > 0.

(c)
P (Xn:n/n1/a ≤ y) → exp(−y−a) for all y > 0,

when 1 − F (x) = 1/xa for x ≥ 1, with a > 0.

[Distributions that are “suitably similar” to these prototypes yield the same limiting results,
and these limits are the only possible limits.]
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2 Variations on the Classical CLT

Notation 2.1 Let Xnk, 1 ≤ k ≤ n for each n ≥ 1, be row-independent rvs having means
μnk and variances σ2

nk, and let γnk ≡ E|Xnk − μnk|3 < ∞ denote the third absolute central
moments. Let

sdn ≡
√∑n

k=1 σ2
nk and γn ≡ ∑n

k=1 γnk, and let(1)

Zn ≡ 1
sdn

n∑

k=1

[Xnk − μnk].(2)

Let φnk(·) denote the chf of (Xnk − μnk)/sdn. �

Theorem 2.1 (Rate of convergence in the CLT) Consider the rvs above. The df FZn

of the standardized Zn is uniformly close to the N(0, 1) df Φ, in that

(3) ‖FZn
− Φ‖ ≤ 13 γn/sd3

n.

Corollary 1 (Liapunov CLT)

(4) Zn →d N(0, 1) whenever γn/sd3
n → 0.

Corollary 2 (Berry–Esseen for iid rvs) Let Xn1, . . . , Xnn be iid rvs with df F (μ, σ2)
having γ ≡ E|X − μ|3 < ∞. Then

(5) ‖FZn
− Φ‖ ≤ 8 γ

σ3
√

n
.

Proof. Here we first give a delicate proof of the rate of convergence to normality in (3)
based on Esseen’s lemma (with (4) shown to be a corollary to this proof). [A rather simple
proof of (4) is asked for in exercise 2.4 below.] Without loss, we assume that all μnk = 0.
Now, let a ≡ sd3

n/γn; and assume throughout that a ≥ 9 (note that (3) is meaningless unless
a > 13). (Recall that a = b ⊕ c means |a − b| ≤ c.) Note that

∣
∣
∣φZn

(t) − e−t2/2
∣
∣
∣ =

∣
∣
∣
∏n

k=1 φnk(t) − e−t2/2
∣
∣
∣

≤ e−t2/2
∣
∣
∣e{∑n

k=1 Log φnk(t)}+t2/2 − 1
∣
∣
∣

≡ e−t2/2|ez − 1| ≤ e−t2/2|z|e|z| by (9.6.3)(6)

for all z, where

|z| =

∣
∣
∣
∣
∣

n∑

k=1

Log φnk(t) + t2/2

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n∑

k=1

{

Log (1 + [φnk(t) − 1]) − i2t2σ2
nk

2 sd2
n

}∣∣
∣
∣
∣

(a)

≤
∣
∣
∣
∣
∣

n∑

k=1

{

[φnk(t) −
(

1 +
i2t2σ2

nk

2 sd2
n

)

] ⊕ |φnk(t) − 1|2
}∣∣
∣
∣
∣

(7)

provided that |φnk(t) − 1| ≤ 1
2 , using (9.6.2)
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≤ |t|3
6

γn

sd3
n

+
n∑

k=1

(
|t|3/2E|Xnk|3/2

sd3/2
n

K1,1/2

)2

where K2
1,1/2 = 8

9(b)

using (9.6.4) [with m = 2 and δ = 1, then with m = 1 and δ = 1
2 ]

≤ 1
2a |t|3( 199 ) with a ≡ sd3

n/γn(c)

using the Liapunov inequality for (E|Xnk|3/2)2 ≤ γnk. But validity of (7) required that all
|φnk(t) − 1| ≤ 1

2 . However, (9.6.4) with m = 1 and δ = 1 gives

|φnk(t) − 1| ≤ 1
2 t2σ2

nk/sd2
n ≤ 1

2a2/3[γn/sd3
n]2/3 on |t| ≤ a1/3(d)

≤ 1
2 on |t| ≤ a1/3.(e)

Consider for a moment the Liapunov CLT corollary 1 For any fixed t, the bound on |z|
in (c) goes to 0 whenever 1/a = γn/sd3

n → 0. Moreover, (e) always holds when γn/sd3
n → 0,

since (max σ2
nk/sd2

n)3/2 ≤ (max γnk/sd3
n) ≤ (γn/sd3

n) → 0. Thus φn(t) → exp(−t2/2) and
Zn →d N(0, 1) by (6), whenever γn/sd3

n → 0. That is, the Liapunov CLT corollary 1 holds.
[This is already a good CLT!]

We now turn back to theorem 2.1 itself. Since the bound of (c) gives

(f) |z| ≤ 1
2a |t|3 19

9 ≤ 1
4 t2 when |t| ≤ 9

38a (and as a1/3 ≤ 9
38a, if a ≥ 9),

we can claim from(6), (e) and (c) that

(g) |φZn
(t) − e−t2/2| ≤ 19

18a |t|3e−t2/4 ≤ 2
a |t|3e−t2/4 for |t| ≤ a1/3 (when a ≥ 9).

(Having the bound in (g) only over the range |t| ≤ a1/3 is not sufficient for what is too come;
we extend it in the next paragraph.)

Now, |φn(t)|2 is the chf of the symmetrized rv Zs
n ≡ Zn − Z ′

n (and this rv has mean 0,
variance 2, and third absolute moment bounded above by 8γn/sd3

n (via the Cr-inequality)).
Thus

|φZn
(t)| ≤ [|φn(t)|2]1/2 ≤ [1 + 0 − 2t2

2! + |t|3
3! 8γn/sd3

n]1/2

≤ exp(−t2[12 − 2|t|
3 γn/sd3

n]) using 1 − x ≤ e−x(h)

≤ exp(−t2/4) for |t| ≤ (3/8)(sd3
n/γn),(i)

as was desired. This leads to

(j) |φZn
(t) − e−t2/2| ≤ 2e−t2/4 ≤ 2

a |t|3e−t2/4 for a1/3 ≤ |t| ≤ 3
8a.

Key chf inequality Combining (6), (e), (f) and (h) gives (provided a ≥ 9)

(8) |φZn
(t) − e−t2/2| ≤ (2|t|3γn/sd3

n)e−t2/4 for 0 ≤ |t| ≤ 3
8 sd3

n/γn = 3
8a.

We next apply Esseen’s lemma to (8) and get (3). Since we know the variance of a normal
distribution,

‖FZn
− Φ‖ ≤

∫ (3/8)a

−(3/8)a

1
π|t|

2|t|3
a

e−t2/4dt +
3.04769
(3/8)a

(k)

≤ 1
a

[
2
π

∫ ∞

−∞
t2e−t2/4dt +

3.04769
3/8

]

= [8/
√

π + (8/3)3.04769]/a
.= 12.641/a ≤ 13/a.(l)
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In the iid case use K1,1 = 1
2 and β ≡ E|X|3/σ3 = γ/σ3 ≥ 1 in (b), and obtain

|z| ≤ |t|3β
6
√

n
+ n

(
t2σ2

2nσ2

)2

≤ |t|3β
6
√

n
+

t4β2

4n

≤ 5
12

β√
n

|t|3 ≤ 5
12

|t|3 for all |t| ≤ √
n/β,(m)

with (e) necessarily valid. Thus (8) can be replaced in the iid case by

(9) |φZn
(t) − e−t2/2| ≤ 5

12
γ

σ3
√

n
|t|3e−t2/12 on 0 ≤ |t| ≤ √

nσ3/γ;

this yields 8γ/
√

nσ3 when the steps leading to (l) are repeated. �

Theorem 2.2 (Lindeberg–Feller) Let Xn1, . . . , Xnn be row independent, with Xnk
∼=

(μnk, σ2
nk). Let sd2

n ≡ ∑n
1 σ2

nk. The following statements are equivalent:

Zn →d N(0, 1) and [max1≤k≤n P (|Xnk − μnk|/sdn > ε)] → 0.(10)

LF ε
n ≡

n∑

k=1

∫

[|x−μnk|≥ε sdn]

[
x − μnk

sdn

]2
dFnk(x) → 0 for all ε > 0.(11)

[Condition (11) implies that Mn ≡ [max1≤k≤n |Xnk − μnk|/sdn] →p 0, via (10.1.9).]

Proof. (Lindeberg) We prove the sufficiency here, with the necessity considered in the
following separate proof. We note that the moment expansion inequality (found in inequality
9.6.1) gives bounds on βnk(t), where

(12) φnk(t) ≡ 1 + θnk(t) ≡ 1 − σ2
nk

sd2
n

t2

2
+ βnk(t)

defines θnk(t) and βnk(t). Moreover (in preparation for the product lemma)

(13) φZn
(t) =

∏n
k=1 φnk(t) =

∏n
k=1[1 + θnk(t)] =

∏n
k=1

[

1 − σ2
nk

sd2
n

t2

2 + βnk(t)
]

where

(14) θn(t) ≡
n∑

k=1

θnk(t) = − t2

2

n∑

k=1

σ2
nk

sd2
n

+
n∑

k=1

βnk(t) = −t2/2 +
n∑

k=1

βnk(t).

The inequality of (9.6.4) (compare this with (9.6.10), and with (7)) gives
∣
∣
∣
∣
∣

n∑

k=1

βnk(t)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n∑

k=1

[

φnk(t) − 1 − 0 +
σ2

nk

sd2
n

t2

2

]∣∣
∣
∣
∣

(a)

≤
n∑

k=1

∣
∣
∣
∫ {

eit(x−μnk)/sdn −
[
1 + it(x−μnk)

sdn
+ [it(x−μnk)]

2

2 sd2
n

]}
dFnk(x)

∣
∣
∣(15)

≤
n∑

k=1

∫

[|(x−μnk)|<ε sdn]

1
6

∣
∣
∣
∣
it(x − μnk)

sdn

∣
∣
∣
∣

3

dFnk(x)(b)

+
n∑

k=1

∫

[|(x−μnk)|≥ε sdn]

1
2

∣
∣
∣
∣
it(x − μnk)

sdn

∣
∣
∣
∣

2

dFnk(x)(c)
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≤ ε
|t|3
6

[∑n
k=1 σ2

nk

sd2
n

]

+
t2

2

n∑

k=1

∫

[|(x−μnk)|≥ε sdn]

[
x − μnk

sdn

]2
dFnk(x).(16)

Thus normality holds, since the integral in (16) goes to 0 for all ε > 0 by (11).
Note that [max1≤k≤n |θnk(t)|] → 0 as required by the product lemma, since we can use

inequality 9.6.1 on the θnk(t) in (12) to claim that |θnk(t)| ≤ t2

2 σ2
nk/sd2

n, and then use (11)
on the second term below to claim that

σ2
nk/sd2

n ≤ [
∫
[|x−μnk|≤ε sdn]

(x − μnk)2dFnk(x)/sd2
n(d)

+
∫
[|x−μnk|>ε sdn]

(x − μnk)2dFnk(x)/sd2
n

≤ ε2 + o(1) ≤ ε, for n ≥ (some nε).(e) �

Proof. (Feller) We proved sufficiency in the previous proof; we now turn to necessity.
Suppose that condition (10) holds. Applying (9.6.2) [since the easy exercise 10.2.9 below
applied to our uan rvs shows that the terms znk = φnk(t) − 1 converge uniformly to 0 on any
finite interval] gives

|∑n
k=1 Log φnk(t) −∑n

k=1[φnk(t) − 1]| ≤ ∑n
k=1 |φnk(t) − 1|2(17)

≤ [max1≤k≤n |φnk(t) − 1|] × (t2/2) × [
∑n

k=1 σ2
nk/sd2

n] by (9.6.5)(18)

≤ o(1) × (t2/2) × 1 → 0, using (10) via exercise 2.1.(a)

We thus have (for any finite M)

(b) Log
∏n

1 φnk(t) =
∑n

1 [φnk(t) − 1] + o(1), uniformly on any |t| ≤ M.

But we also know that

(c) Log
∏n

1 φnk(t) → −t2/2,

since we have assumed asymptotic normality. [Recall that a = b ⊕ c means that |a − b| ≤ c.]
Combining (b) and (c) shows that for every tiny ε > 0 and every huge M > 0 we have

(19) −t2/2 = Real(−t2/2) = Real{∑n
1 [φnk(t) − 1]} ⊕ ε for |t| ≤ M

for all large n; that is, for n ≥ (some nεM ) we have

(20) t2/2 =
∑n

1

∫
[1 − cos(t(x − μnk)/sdn)]dFnk(x) ⊕ ε on |t| ≤ M.

Define yk ≡ (x − μnk). We further define Ink ≡ [|x − μnk| < ε sdn]. Note that

(d) 0 ≤ 1 − cos(ty/sdn) ≤ (t2y2/2 sd2
n).

Thus for all |t| ≤ M we have for all n ≥ nεM that

(t2/2)
∑n

k=1

∫
Ic

nk
(y2

k/sd2
n)dFnk(x) = (t2/2)[1 −∑n

k=1

∫
Ink

(y2
k/sd2

n)dFnk(x)](e)

= (t2/2) −∑n
k=1

∫
Ink

(t2y2
k/2 sd2

n)dFnk(x)

≤ (t2/2) −∑n
k=1

∫
Ink

[1 − cos(tyk/sdn)]dFnk(x) by (d)(f)
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=
∑n

k=1

∫
Ic

nk
[1 − cos(tyk/sdn)]dFnk(x) ⊕ ε by (20) [the key step](21)

≤ 2
∑n

k=1

∫
Ic

nk
dFnk(x) + ε (= 2

∑n
k=1 P (|Xnk − μnk

sdn
| ≥ ε) + ε = 2

ε2 + ε)(g)

≤ (2/ε2)
∑n

k=1

∫
Ic

nk
(y2

k/sd2
n)dFnk(x) + ε(h)

≤ 2/ε2 + ε.(i)

Specifying t2 = M2 = 4/(ε2 × θ) in (g) (for any fixed 0 < θ < 1) shows that for all n ≥ nεθ

we have

(j) sd−2
n

∑n
1

∫
Ic

nk
y2

kdFnk(x) ≤ ( 2
ε2 + ε) 12ε2θ ≤ 2 θ,

where θ > 0 is arbitrary. Thus, the Lindeberg condition (11) holds. �

Exercise 2.1 (Characterizations of “uan”) The following are equivalent:

|Xnk|’s are uan; that is, [max1≤k≤n P (|Xnk| ≥ ε)] → 0 for all ε > 0.(22)
[max1≤k≤n |φnk(t) − 1|] → 0 uniformly on every finite interval of t’s.(23)
max1≤k≤n E(X2

nk ∧ 1) = max1≤k≤n

∫
(x2 ∧ 1)dFnk(x) → 0.(24)

Exercise 2.2 Phrase a simple consequence of the Liapunov CLT that applies to uniformly
bounded row independent rvs Xnk.

Exercise 2.3 Provide the steps leading to (9) referred to in the Berry–Esseen proof.

Remark 2.1 (Lindeberg’s condition) (i) If Lindeberg’s condition fails, it may still be true
that

(a) Sn/sdn →d N(0, a2) with a2 < 1 and [max1≤k≤n σ2
k/sd2

n] → 0.

Let Y1, Y2, . . . be iid (0, 1) rvs, so that
√

nȲn →d N(0, 1) by the CLT. Now let the rv’s Uk be
independent (0, c2) with Uk equal to −ck, 0, ck with probabilities 1/(2k2), 1 − 1/k2, 1/(2k2).
Since

∑∞
1 P (|Uk| ≥ ε) =

∑∞
1 k−2 < ∞, the Borel–Cantelli lemma shows that for a.e. ω the

rv sequence Uk satisfies Uk �= 0 only finitely often. Thus
√

kŪk →a.s. 0 follows. For n ≥ 1 set
Xn ≡ Yn + Un, and let Sn ≡ X1 + · · · + Xn. Note that sd2

n ≡ Var[Sn] = (1 + c2)n. So, by
Slutsky’s theorem,

Sn/sdn = (
√

nȲn)/
√

1 + c2 + (
√

nŪn)/
√

1 + c2

→d N(0, 1)/
√

1 + c2 + 0 ∼= N(0, 1/(1 + c2))

= N(0, a2) with a2 = 1/(1 + c2) < 1.(b)

(One could also let c =
√

n, and have a = 0 in (b).) Note that [maxσ2
nk/sd2

n] → 0. But, even
so, Lindeberg’s condition fails, since

LF ε
n =

a2

n

∑n
k=1

∫
[|x|≥ε

√
n/a]

x2dFXk
(x)

∼ a2

n

∑

{k:ck≥ε
√

n/a}

(kc)2

k2
+ o(1) ∼ c2

1 + c2
1
n

∑

{k:ck≥ε
√

n/a}
1 → c2

(1 + c2)
> 0;(c)
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the nonzero contribution shown in the last step is due to the Uk’s, whereas we do already
know that the contribution due to the Yk’s is o(1). This example shows that it is possible
to have Xn →d X without having Var[Xn] → Var[X]. Note that Var[N(0, 1)/(1 + c2)] =
1/(1 + c2) < 1 = lim 1 = lim Var[Sn/sdn] (via the Fatou lemma and Skorokhod’s theorem).
(ii) Note that if Xn1

∼= N(0, pn), for some 0 < p < 1,Xnk ≡ 0 for 2 ≤ k ≤ [pn], and
Xnk

∼= N(0, 1) for pn < k ≤ n for independent rvs Xnk, then Sn/sdn →d N(0, 1), while
Lindeberg’s condition fails and [max1≤k≤n σ2

nk/sd2
n] → p > 0. �

Remark 2.2 It is known that the constant 8 in (5) can be replaced by 0.7975. It is also
known in the iid case with E|X|3 < ∞ that the “limiting distribution measure” d(F,Φ) ≡
limn→∞

√
n‖FZn

−Φ‖ exists, and that this measure achieves the bound supF (σ3/γ)d(F, Φ) =
(
√

10+3)/(6
√

2π) = 0.409. This sup is achieved by c[Bernoulli(a)−a], where c = (
√

10−3)/2
and a = (4 − √

10)/2. Thus the constant 0.7975 cannot be greatly improved. Many other
improvements and refinements of the Berry–Esseen theorem are possible. The books by
Bhattacharya and Rao (1976, pp. 110, 240) and Petrov (1977) both give many. We list three
as “exercises” in exercise 2.15 below. �

Exercise 2.4 (Liapunov’s (2 + δ)-CLT) Define γδ
nk = E|Xnk − μnk|2+δ for every value 0 <

δ ≤ 1. Suppose we have Liapunov’s (2 + δ)-condition that

(25)
∑n

k=1 E|Xnk − μnk|2+δ/sd2+δ
n → 0 for some 0 < δ ≤ 1.

Show that 1
sdn

∑n
1 (Xnk − μnk) →d N(0, 1). (Appeal first to (9.6.5). Alternatively, verify

that all LF ε
n → 0.)

Exercise 2.5 Construct an example with iid X1,X2, . . . for which the Lindeberg condition
holds, but for which Liapunov’s (2 + δ)-condition fails for each 0 < δ ≤ 1.

Exercise 2.6 (Liapunov-type WLLN) Let Xn1, . . . , Xnn, n ≥ 1, be a triangular array of
row-independent rvs with 0 means. Then

∑n
k=1 E|Xnk|1+δ/n1+δ → 0 for some 0 < δ ≤ 1

implies that X̄n →p 0 as n → ∞. (Or, mimic the WLLN proof.)

Exercise 2.7 (Pitman) For iid rvs, X̄n →p a holds if and only if φ′(0) = ai.

Exercise 2.8 (i) Show that Lindeberg’s condition that all LF ε
n → 0 implies Feller’s condition

(which is not strong enough to guarantee asymptotic normality) that

(26) [max1≤k≤n σ2
nk]/sd2

n → 0.

(ii) Let Xn1, . . . , Xnn be row independent Poisson (λ/n) rvs, with λ > 0. Discuss which of
Lindeberg–Feller, Liapunov, and Feller conditions holds in this context.
(iii) Repeat part (ii) when Xn1, . . . , Xnn are row independent and all have the probability
density cx−3(log x)−2 on x ≥ e (for some constant c > 0).
(iv) Repeat part (ii) when P (Xnk = ak) = P (Xnk = −ak) = 1/2 for the row independent
rvs. Discuss this for general ak ≥ 0, and present interesting examples.

Exercise 2.9 Let Xn1, . . . , Xnn be row independent, with Xnk
∼= (μnk, σ2

nk). Let Tn ≡
Zn1 + · · · + Znn, and set μn ≡ ∑n

1 μnk = ETn and sd2
n ≡ ∑n

1 σ2
nk = Var[Tn]. The following
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statements are equivalent:

Zn ≡ (Tn − μn)/sdn →d N(0, 1) and [max1≤k≤n σ2
nk]/sd2

n → 0.(27)

LF ε
n ≡ ∑n

k=1

∫
[|x−μnk|≥εsdn]

[x−μnk

sdn
]2dFnk(x) → 0 for all ε > 0.(28)

(Example 11.1.2 below treats the current exercise by a different method.)

Exercise 2.10 Complete the proof of theorem 8.8.1 regarding the equivalence of →d,→p,
and →a.s. for sums of independent rvs.

Exercise 2.11 Formulate a WLLN in the spirit of the Lindeberg–Feller theorem.

Exercise 2.12 Establish the (2 + δ)-analogue of theorem 2.1. [Hint. Use both 2 + δ and
1 + δ/2 moments in line (b) of the theorem 2.1 proof, via lemma 9.6.2.]

Exercise 2.13 Construct a second example satisfying the key property of remark 2.1 (i),
that the limiting variance is not the limit of the variances.

Exercise 2.14 (Large deviations; Cramér)) Let Xn1, . . . , Xnn be iid F . Suppose X ∼= F
has a moment generation function M(t) ≡ E etX that is finite in some neighborhood of the
origin. Let Zn ≡ √

n(X̄n − μ)/σ, and let Z ∼= N(0, 1), Then

(29) P (Zn > xn)/P (Z > xn) → 1 provided xn/n1/6 → 0.

(This exercise is repeated again later as exercise 11.6.6.)

Exercise 2.15* (a) (Petrov) Suppose Xn1, . . . Xnk are row independent rvs for which
Xnk

∼= (0, σ2
nk), and set σ2

n ≡ ∑n
k=1 σ2

nk and Fn(x) ≡ P (Sn/σn ≤ x). Then for some
universal constant C we have

(30) ‖Fn − Φ‖ ≤ C[σ−3
n

∑n
k=1 EX3

nk1[|Xnk|<εσn] + σ−2
n

∑n
k=1 EX2

nk1[|Xnk|≥εσn]].

(b) (Petrov) If E[X2
nkg(Xnk)] < ∞ for 1 ≤ k ≤ n where

(31) g ≥ 0 is even and ↗ for x > 0, and x/g(x) is ↗ for x > 0,

then for some absolute constant C we have the very nice result

(32) ‖Fn − Φ‖ ≤ C
∑n

1 E[X2
nkg(Xnk)]/σ2

ng(σn).

(c) (Nagaev) Bounds on |Fn(x)−Φ(x)| that decrease as |x| → ∞ are given (in the iid case)
in the expression

(33) |Fn(x) − Φ(x)| ≤ C(E|X|3/σ3)/(
√

n(1 + |x|3)) for all real x.

(d) (Bernstein) Let r > 2. Consider row-independent rvs Xn1, . . . , Xnn for which we have
Xnk

∼= (0, σ2
nk). Let Zn ≡ ∑n

k=1(Xnk − μnk)/σn.

(α) Let
∑n

1 E|Xnk|r/σ
r/2
n → 0. Then Zn →d N(0, 1) and E|Zn|r → E|N(0, 1)|r.

(β) The converse holds if [max1≤k≤n σ2
nk/sd2

n] → 0 is also true.
(∗) See Petrov (1975, pp. 118, 113, 125, 103) for (a), (b), (c), and (d).

Exercise 2.16 Beginning with (15), try to obtain the Berry–Esseen bound (but with a
different constant) by appeal to the second product lemma.
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3 Examples of Limiting Distributions o

Example 3.1 (Delta method) (a) Suppose cn[Wn − a] →d V where cn → ∞, and
suppose g(·) is differentiable at a (recall (4.3.6) and (4.3.12)). Then (as in the chain rule
proof of calculus) immediately

(1) cn[g(Wn) − g(a)] =a {g′(a)} · cn[Wn − a] → d{g′(a)} · V.

[Recall that Un =a Vn means that Un − Vn →p 0.]
(b) The obvious vector version of this has the conclusion

(2) cn[g(Wn) − g(a)] =a {∇g(a)} · cn[Wn − a]. �

Example 3.2 (Asymptotic normality of the sample variance) Suppose the rvs X1, . . . ,
Xn are iid (μ, σ2) with μ4 ≡ EX4 < ∞ and σ2 > 0. Then

(3) S2
n ≡ 1

n − 1

n∑

k=1

(Xk − X̄)2 = (the sample variance).

For a useful phrasing of conclusions, define

(4)
Zk ≡ (Xk − μ)/σ ∼= (0, 1) ,

Yk ≡ Z2
k = [(Xk − μ)/σ]2 ∼= (1,

μ4

σ4
− 1) = (1, 2(1 + γ2/2)) ,

where γ2 ≡ (μ4 − 3σ4)/σ4 ≡ (the kurtosis) measures the tail heaviness of the distribution of
X. We will show that as n → ∞ both

√
n[S2

n − σ2] 1√
2σ2 =a

1√
2

√
n[Ȳn − 1] →d N(0, 1 + γ2/2) and(5)

√
n[Sn − σ] 2σ =a

√
n[Ȳn − 1] →d

√
2N(0, 1 + γ2/2).(6) �

Proof. Now,

S2
n

σ2 = 1
n−1

∑n
k=1

(Xk−X̄n)2

σ2 = n
n−1

1
n

∑n
k=1[(

Xk−μ
σ ) − ( X̄n−μ

σ )]2

= n
n−1

1
n

∑n
k=1[Zk − Z̄n]2.(a)

Then note from (a) that

√
n(S2

n − σ2)√
2σ2

=
n

n − 1
1√
2
{√

n(Ȳn − 1) − √
nZ̄2

n} −
√

n√
2(n − 1)

(b)

=a
1√
2

√
n(Ȳn − 1) →d N(0, Var[Y ]/2).(c) �

Exercise 3.1 (a) Determine the joint limiting distribution of
√

n(X̄n −μ) and
√

n(Sn −σ)
in the iid case, where S2

n ≡ [
∑n

1 (Xk − X̄n)2/(n−1)] (Consider the representation of Sn in (6)
as a normed sum of the rvs Yk.) What condition on the moments is required for the result?
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(b) Find the asymptotic distribution of the (appropriately normalized) coefficient of variation
Sn/X̄n in this iid case; that is, consider

√
n(Sn/X̄n − σ/μ). Obtain a useful representation

by appealing to part (a). (Suppose now that all Xk ≥ 0.)
(c) Note that (6) provides a stronger conclusion than just asymptotic normality, in that it
forms a superb starting point for the further asymptotic work in (a) and (b). Note also (13)
below.

Exercise 3.2 (Moments of X̄n and S2
n) Let X1, . . . , Xn be iid. Note/show that (provided

that μ or σ2 is well-defined) X̄n
∼= (μ, σ2) and ES2

n = σ2. Show that (provided that μ3 or μ4

is well-defined):

E(X̄n − μ)3 = μ3
n2 .(7)

E(X̄n − μ)4 = 3σ4

n2 + μ4−3σ4

n3 .(8)

Var [S2
n] = 1

n{μ4 − n−3
n−1σ4} and Cov[X̄n, S2

n] = 1
nμ3.(9)

Exercise 3.3 If X1, . . . , Xn are iid (μ, σ2), then
√

n[X2
n − μ2] →d 2μ × N(0, σ2) (by the

delta method). What is the asymptotic distribution of nX̄2
n when μ = 0?

Exercise 3.4 (Two samples) If
√

m(Sm − θ) →d N(0, 1) as m → ∞ and
√

n(Tn − θ) →d

N(0, 1) as n → ∞ for independent rvs Sm and Tn, then
√

mn
m+n (Sm − Tn) →d N(0, 1) holds

as m ∧ n → ∞. [Hint: Suppose initially that λmn ≡ m/(m + n) → λ ∈ [0, 1]. Use Skorohod
(or, use convolution or chfs) to extend it.] This is useful for the two-sample t-test and F -test.

Exercise 3.5 (Simple linear rank statistics) Let TN ≡ 1√
N

∑N
1 ciaπ(i), where (π(1), . . . ,

π(N)) achieves each of the N ! permutations of (1, . . . , N) with probability 1/N !. Here, the
ci and ai are constants. Show that:

(10)
Eaπ(i) = āN , Var[aπ(i)] = σ2

a ≡ 1
N

∑N
1 (ai − āN )2,

Cov [aπ(i), aπ(j)] = − 1
N−1σ2

a for all i �= j.

(11) 1√
N

ETN = c̄N · āN , Var[TN ] = N
N−1σ2

cσ2
a.

[Hint. Var [
∑N

1 aπ(i)] = 0, as in (A. 1.8).]

Example 3.3 (The median Ẍn) The population median of the distribution of a rv X’s
is any value θ satisfying P (X ≤ θ) ≥ 1

2 and P (X ≥ θ) ≥ 1
2 . Let X1, . . . , Xn be iid with df

F (· − θ), for some θ ∈ R, where F (0) = 1
2 and F ′(0) > 0 exists and exceeds zero. (Thus

Xi
∼= θ + εi, for εi’s that are iid F (·) with a unique median at 0.) The ordered values of

the Xk’s are denoted by Xn:1 ≤ · · · ≤ Xn:n, and are called the order statistics. The sample
median Ẍn is defined to be Xn:m or any point in the interval [Xn:m,Xn:m+1] according as n
equals 2m + 1 or 2m is odd or even. Let X l

n and Xr
n denote the left and right endpoints of

the interval of possible sample medians (of course, X l
n = Xr

n = Xn:m+1 if n = 2m+1 is odd).
Let Ẍn denote any sample median. (a) Then

(12) Z1n ≡ √
n[Ẍn − θ] →d Z1

∼= N(0, 1
4[F ′(0)]2 ).

(b) If F (·) ∼= (μ, σ2) also, then Z2n ≡ √
n[X̄n − (μ + θ)] →d Z2

∼= N(0, σ2).
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(c) In fact, the limiting normal distribution is given by (Z1n, Z2n) → d(Z1, Z2), where the
covariance of the limiting normal distribution is given by

(13) E{[ε − μ] × [1[ε>0] − 1/2]/F ′(0)}. �

Proof. By the event equality [Xr
n − θ ≤ y/

√
n] = [

∑n
1 1[Xi−θ≤y/

√
n] > n/2], we have

P (
√

n[Xr
n − θ] ≤ y) = P (Xr

n − θ ≤ y/
√

n) = P (
∑n

1 1[Xi−θ≤y/
√

n] > n/2)

= P ( 1
n

∑n
1 1[εi≤y/

√
n] > 1/2) since εi ≡ Xi − θ ∼= F (·)(14)

= P ( 1√
n

∑n
1{1[εi>y/

√
n] − 1

2} < 0)

= P (Wn + An < 0).(a)

Here

(15) Wn ≡ 1√
n

∑n
1{1[εi>0] − P (εi > 0)} →d Z1

∼= N(0, p(1 − p))

with p ≡ P (εi > 0) = 1
2 , and (as we will now show)

(16) An ≡ 1√
n

∑n
1{1[εi>y/

√
n] − 1[εi>0]} →p −yF ′(0).

Note that all terms in the summation in An are of the same sign. Then

(b) An →p −yF ′(0±) according as y > 0 or y < 0,

since

EAn =
√

n[P (ε > y/
√

n) − P (ε > 0)] = −y[F (y/
√

n) − F (0)]/[y/
√

n]
→ −yF ′(0±) [provided only that both F ′(0±) exist](c)

and

(d) Var[An] = [F (y/
√

n) − F (0)]{1 − [F (y/
√

n) − F (0)]} → 0.

Thus Wn + An →d Z1 − yF ′(0) via (15), (16), and Slutsky. By →d we then have

P (
√

n[Xr
n − θ] ≤ y) = P (Wn + An < 0)

→ P (Z1 − yF ′(0) ≤ 0) = P (Z1/F ′(0) ≤ y) for each y.(e)

That is,

(f)
√

n[Xr
n − θ] →d Z1/F ′(0) ∼= N(0, p(1 − p)/[F ′(0)]2).

In like fashion, [
√

n[X l
n − θ] ≤ y] = [

∑n
1 1[εi≤y/

√
n] ≥ n/2], so that

(g) P (
√

n[X l
n − θ] ≤ y) = P (

∑n
1 1[εi≤y/

√
n] ≥ n/2) = P (Wn + An ≤ 0).

Thus the same argument as before gives

(h)
√

n[X l
n − θ] →d Z1/F ′(0).
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Now we squeeze the general Ẍn in between, via

(i) P (
√

n[Xr
n − θ] ≤ y) ≤ P (

√
n[Ẍn − θ] ≤ y) ≤ P (

√
n[X l

n − θ] ≤ y), ]

where both ends converge to P (Z1/F ′(0) ≤ y). This completes the proof.
Summary It has been demonstrated that the events (note (15))

(17)
[ω :

√
n(Ẍn(ω) − θ) ≤ y] and [ω : Wn(ω) ≤ yF ′(0)]

differ by a probabilistically negligible amount.

For the joint result, apply (17) and the multivariate CLT to (Wn, Z2n). �

Exercise 3.6 (Joint asymptotic normality of quantiles) For 0 < p < 1, the pth
quantile xp of F is now defined as xp ≡ F−1(p). (a) Show that if F has a derivative F ′(xp) > 0
at xp, then

(18)
√

n[Xn:[np] − xp] →d N(0, p(1 − p)/[F ′(xp)]2) as n → ∞.

(b) Establish joint normality for pi and pj quantiles, where the covariance matrix of the
asymptotic distribution has (i, j)th entry

σij ≡ [(pi ∧ pj) − pipj ]/[F ′(xpi
)F ′(xpj

)].

Write out the analogue of (17), and use it.

Exercise 3.7 What happens when you try to apply (12) to:

(a)F ′(x) = exp(−|x|)/2? or (b) F ′(x) = 1
21[−1,0)(x) + 1

41[0,2](x)?

Show that
√

n[Ẍn − θ] →d (a rv) in both cases. (In case (b) it is not normal.)

Exercise 3.8 Verify (12) both for n = 2m + 1 odd and for n = 2m even.
Hint. Since Xn:m ≤ Ẍn ≤ Xn:m+1,

P (
∑n

1 1[εi≤y/
√

n] > n
2 ]) ≤ P (

√
n(Ẍn − θ) ≤ z) ≤ P (

∑n
1 1[εi≤y/

√
n] ≥ n

2 ]) .

(The right side is an equality when n is odd.)

Exercise 3.9 Consider (with hypothesis as weak as possible) the asymptotic distribution
of (appropriately normalized forms of) both

(19) 1
n

∑n
1 |Xk − X̄n| and 1

n

∑n
1 |Xk − Ẍn|

for iid samples X1, . . . , Xn from a df F (μ, σ2) having median ν.

Exercise 3.10 Let X1,X2, . . . be independent with Xk
∼= Uniform(−k, k). Then establish

that Sn/σn →d N(0, 1).

Exercise 3.11 Determine the limiting distribution of
∑n

k=1(Xk − X2n+1−k)/{∑n
k=1(Xk − X2n+1−k)2}1/2,

where X1,X2, . . . are iid (μ, σ2) rvs. Hint. Think “Slutsky.”
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Exercise 3.12 Determine the .95-quantile of the limiting distribution of

∏n
k=1 U

−Xk/
√

n

k ,

for independent rvs with Xk
∼= Double Exponential(0, 1) and Uk

∼= Uniform(0, 1).

Example 3.4 (Weighted sums of iid rvs) Suppose that rvs Xn1, . . . , Xnn are row inde-
pendent and iid (μ, σ2). Let cn ≡ (cn1, . . . , cnn)′ for n ≥ 1, and set

c̄n ≡ ∑n
k=1 cnk/n and σ2

cn ≡ ∑n
k=1(cnk − c̄n)2/n ≡ SScc/n.

Suppose we have the uan condition

(20) Dc ≡ D(cn) ≡ max1≤k≤n(cnk − c̄n)2
∑n

k=1(cnk − c̄n)2
=

[max1≤k≤n(cnk − c̄n)2/n]
σ2

cn

→ 0

as n → ∞. Then

(21)
n∑

k=1

(cnk − c̄n)√
nσcn

Xnk − μ

σ
→d N(0, 1).

[We need not center the cnk’s if the Xnk’s have mean 0.]

Proof. Without loss of generality, set μ = 0. Now, Lindeberg’s condition holds, as we
demonstrate via

∣
∣
∣
∣
∣
∣

n∑

k=1

∫

[|cnk−c̄n||x|≥εσ
√

nσcn]

[
(cnk − c̄n)
σ
√

nσcn

]2

x2dF (x)

∣
∣
∣
∣
∣
∣

≤ σ−2 · 1 · ∫
[|x|≥εσ/

√
Dc]

x2dF (x) → 0,(a)

since Dc → 0 and
∫

x2dF (x) < ∞. �

The preceding example is useful in regression situations.

Exercise 3.13 (Monte Carlo estimation) Let h : [0, 1] → [0, 1] be a measurable function,
and let θ =

∫ 1

0
h(t)dt. Let X1, Y1,X2, Y2, . . . be iid Uniform(0,1) rvs. Define two different

estimators of θ by

T1n ≡ ∑n
k=1 h(Xk)/n and T2n ≡ ∑n

k=1 1[Xk≤h(Yk)]/n.

(a) Show that both T1n and T2n are unbiased estimators of θ, and determine which estimator
has the smaller variance. Indicate how the variance of each estimator could be estimated.
(b) Determine the joint asymptotic distribution of appropriately normalized forms of T1n and
T2n.

Exercise 3.14 (An analogue of the student-t statistic based on quartiles)
Let X1, . . . , Xn be iid with df F (·). Let m ≡ [n/4], for the greatest integer [·]. Let

Un ≡ Xn:m, Vn ≡ Ẍn ≡ (the median), Wn ≡ Xn:n+1−m
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denote the quartiles and median of the sample. Make appropriate assumptions regarding
F (·).
(a) Determine the joint asymptotic distribution of

(
√

n[Vn − ν],−√
n[Wn − Un − μ])

for appropriately defined μ and ν.

(b) Simplify this if the Xi are symmetrically distributed about 0.
(c) Determine the asymptotic distribution under symmetry of the (student-t like) statistic
(formed from three sample quantiles)

Tn ≡ √
n[Vn − ν]/[Wn − Un].

Exercise 3.15 Let the Xk’s be iid Cauchy(0, 1) in the previous exercise.
(d) Evaluate F (x) = P (X ≤ x) for x ∈ R.

(e) Solve p = F (x) for xp ≡ F−1(p), when 0 < p < 1.

(f) Express your answers to (b) and (c) of the previous exercise in the present context.

Exercise 3.16 (Poisson estimation) Let X1, . . . , Xn be iid Poisson (θ).
(a) Reasonable estimators of θ include the sample mean T1n ≡ X̄n, the sample variance T2n ≡
S2

n, and T3n ≡ ∑n
1 kXk/

∑n
1 k (which puts more emphasis on the more recent observations).

Evaluate lim Var[Tin] for i = 1, 2, 3.

(b) Verify that T4n ≡ X2
n − X̄n/n and T5n ≡ X2

n − X̄n are both unbiased estimators of θ2.
Evaluate lim Var [Tin] for i = 4, 5.

(c) Determine the asymptotic distribution of Dn ≡ √
n[X̄n − S2

n]/X̄n when the observations
really do follow a Poisson distribution.
(d) What is the asymptotic distribution of Dn when the observations Xk actually follow a
NegBiT (r, p) distribution?

Theorem 3.1 (Doeblin’s CLT for a random number of rvs) Consider iid (0, σ2) rvs
X1,X2, . . .. Let {νn}∞

n=1 be integer-valued rvs such that the proportion νn/n →p c ∈ (0,∞)
as n → ∞. Let Tn ≡ X1 + · · · + Xn denote the total. Then

(22) Tνn
/
√

νn →d N(0, σ2).

[Note that νn and X1,X2, . . . need not be independent.]

Proof. Now,

(23)
Tνn√
νn

=

√
[cn]
νn

{
T[cn]
√

[cn]
+

Tνn
− T[cn]

√
[cn]

}

.

Note that T[cn]/
√

[cn] →d N(0, 1) and [cn]/νn = [cn]
cn

c
νn/n →p 1. In the next paragraph we

will show that

(a) (Tνn
− T[cn])/

√
[cn] →p 0.

The theorem then follows from Slutsky’s theorem.
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We now let An ≡ [|Tνn
− T[cn]|/

√
[cn] > ε], and note that

P (An) =
∑∞

k=1 P (An ∩ [νn = k])(b)

=
∑

{k:|k−[cn]|≤ε3cn}
P (An ∩ [νn = k]) +

∑

{k:|k−[cn]|>ε3cn}
P (An ∩ [νn = k])

≡ ∑
1 +

∑
2 .(c)

Since νn/[cn] →p 1, for n sufficiently large we have

∑

2
≤ P (|νn − [cn]| > ε3cn) ≤ P

(

| νn

[cn]
− 1| > ε3

cn

[cn]

)

≤ P

(

| νn

[cn]
− 1| > ε3

)

< ε.(d)

Also, applying Kolmogorov’s inequality twice,
∑

1
≤ P

(

max
|k−[cn]|≤ε3cn

|Tk − T[cn]| > ε
√

[cn]
)

≤ P

(

max
[cn]≤k≤ε3cn

|Tk − T[cn]| > ε
√

[cn]
)

+ P

(

max
[cn]−ε3cn≤k≤[cn]

|Tk − T[cn]| > ε
√

[cn]
)

≤ 2
[cn]+ε3cn∑

k=[cn]+1

Var [Xk]/ε2[cn] ≤ 2ε3cnσ2/ε2[cn]

≤ 4σ2ε for all n sufficiently large.(e)

Combining (d) and (e) into (c) shows P (An) → 0, as required. �

Exercise 3.17 Let V 2
n now denote the sample variance. Show, in the context of Doeblin’s

CLT, that Tνn
/Vνn

→d N(0, 1) as n → ∞.

Exercise 3.18 Prove a version of Doeblin’s theorem for Xnk’s independent but not iid;
assume the Lindeberg condition and νn/n →p c ∈ (0,∞). [Revert to the Liapunov condition,
if necessary.]

Exercise 3.19 (Sample correlation coefficient Rn; Cramér and Anderson) Let us suppose
that

[
Xi

Yi

]

are iid
[[

0
0

]

,

[
1 ρ
ρ 1

]]

for 1 ≤ i ≤ n,

and that the Σ below has finite entries. Consider
√

n[Rn − ρ], where Rn is the sample
correlation coefficient. Thus Rn ≡ SSXY /{SSXXSSY Y }1/2 for the sums of squares SSXY ≡∑n

1 (Xi − X̄n)(Yi − Ȳn), etc.
(a) Reduce the case of general means, variances and covariances to this case.
(b) Note that

(24)

⎡

⎢
⎢
⎣

1√
n

∑n
1XiYi − ρ

1√
n

∑n
1 (X2

i − 1)
1√
n

∑n
1 (Y 2

i − 1)

⎤

⎥
⎥
⎦ →d

⎡

⎣
Z1

Z2

Z3

⎤

⎦ ∼= N(0,Σ)
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with

(25) Σ ≡
⎡

⎣
E(X2Y 2) − ρ2 E(X3Y ) − ρ E(XY 3) − ρ
E(X3Y ) − ρ EX4 − 1 E(X2Y 2 − 1
E(XY 3) − ρ E(X2Y 2) − 1 EY 4 − 1

⎤

⎦ .

(c) Then show that
√

n[Rn − ρ] →d Z1 − ρ
2Z2 − ρ

2Z3
∼= N(0, τ2), and evaluate τ2.

(d) Show that when X and Y are independent, then
√

n[Rn − ρ] →d N(0, 1).
(e) If the (Xi, Yi)′ are jointly normal, show that

(26) Σ =

⎡

⎣
1 + ρ2 2ρ 2ρ

2ρ 2 2ρ2

2ρ 2ρ2 2

⎤

⎦ .

Then simplify the expression for τ2 and obtain

(27)
√

n[Rn − ρ] →d N(0, (1 − ρ2)2).

(f) Show that
√

n[g(Rn) − g(ρ)] →d N(0, 1) for g(t) ≡ 1
2 log( 1+t

1−t ).
(g) Approximating the distribution of

√
n − 3[g(Rn) − g(ρ) − ρ

2(n−1) ] by N(0, 1) yields an
excellent result.
(h) Show that Cov[Xi − X̄n, Yi − Ȳn] = (1 − 1

n )Cov[Xi, Yi].

Exercise 3.20 (Extreme Value quantiles) Let X and X1, . . . , Xn be iid with the Weibull
(α, β) density f(x) = (βxβ−1/αβ) exp(−(x/α)β) on x ≥ 0. Now, (X/α)β ∼= Exponential(l),
and thus Y ≡ log X satisfies

Y ∼= ν + τW where ν ≡ log α and τ ≡ 1/β

and W has the Extreme Value density for minima given by exp(w − ew) on (−∞,∞). Let
Yn:1 ≤ · · · ≤ Yn:n denote the order statistics of the rvs Yk ≡ log Xk. First, let 0 < p1 < p2 < 1,
and then define Un ≡ Yn:[np1] and Vn ≡ Yn:[np2]. We seek values p1 and p2 such that

[ √
n(Vn − ν)√

n(Vn − Un − τ)

]

→d N(O,Σ) .

(a) Let 0 < p < 1. Evaluate yp ≡ F−1
Y (p), fY (yp) and p(1 − p)/f2

Y (yp).
(b) Determine values of p1 and p2 that achieve the objective.
(c) Establish the claimed asymptotic normality, and evaluate Σ both symbolically and
numerically.

Exercise 3.21 (Estimating a common normal mean) Consider independent rvs X1, . . . , Xm

and Y1, . . . , Yn from N(θ, σ2) and N(θ, τ2). When γ ≡ σ2/τ2 is known, the unbiased estimator
of θ that has minimum variance (for all possible values of the parameters within this model)
is known to be

θ̂o ≡ θ̂o,mn ≡ mX̄m+γ·nȲn

m+γ·n .

Define α ≡ αmn ≡ m/(m + γ · n). Let α̂ ≡ α̂mn(S2
X , S2

Y ) depend only on the two sample
variances S2

X ≡ ∑m
1 (Xi − X̄m)2/(m−1) = SSXX/(m−1) and S2

Y ≡ ∑n
1 (Yj − Ȳn)2/(n−1) =

SSY Y /(n − 1), and suppose that α̂ is a rv with values in [0, 1]. We hypothesize that

α̂2/α2 →p 1 as m ∧ n → ∞.
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(All limits below are to be taken as m ∧ n → ∞.) Then define

θ̂ ≡ θ̂mn = α̂X̄n + (1 − α̂)Ȳn,

v2
o ≡ v2

omn ≡ 1
mα2σ2 + 1

n (1 − α)2τ2,

v̂2 ≡ v̂2
mn ≡ 1

mα2S2
X + 1

n (1 − α)2S2
Y ,

V̂ 2 ≡ V̂ 2
mn ≡ 1

m α̂2S2
X + 1

n (1 − α̂)2S2
Y ,

α̃ ≡ α̃mn ≡ (m−1)
(m−1)+(n−1)S2

X/S2
Y

= SSY Y /(SSXX + SSY Y ).

Note that γ̃ ≡ γ̃mn ≡ S2
X/S2

Y →p γ, and α̃2/α2 →p 1 is indeed true.

(a) Show that Eθ̂ = θ.

(b) Show that (θ̂ − θ)/vo →d N(0, 1).

(c) Show that |v̂2 − v2
o |/v2

o →p 0 and |V̂ 2 − v̂2|/v̂2 →p 0.

(d) Thus (θ̂ − θ)/V̂ →d N(0, 1).

(e) Evaluate v2 ≡ v2
mn ≡ Var[θ̂] in terms of Eα̂2 and E(1 − α̂)2.

(f) Determine the distribution of α̃. Does α̃/α →L2 1?

Exercise 3.22 (Exponential estimation) Let X1, . . . , Xn be iid Exponential (θ). The mini-
mum variance estimator of θ is known to be the sample mean X̄n. Another unbiased estimator
of θ is Tn ≡ Ḡn/Γn(1 + 1/n), where Ḡn ≡ (

∏n
1 Xk)1/n denotes the geometric mean of the

observations. Evaluate the limiting ratio of the variances lim Var[X̄n]/Var[Tn].

Exercise 3.23 Let X1, . . . , Xn be iid Poisson(λ). Show the moment convergence E|X̄n −
λ|3 → E|N(0, 1)|3.

Statistical Applications

Exercise 3.24 (Simple linear regression) Consider the simple linear regression model of
(A.3.25); thus we are assuming that

(28) Ynk = γ + βxnk + εk ≡ α + β(xnk − x̄n) + εk for iid rvs εk
∼= (0, σ2)

and for known constants xnk for 1 ≤ k ≤ n. The least squares estimators (LSEs) α̂n and
β̂n of α and β are defined to be those values of a and b that minimize the sum of squares∑n

1 [Ynk − (a + b(xnk − x̄n)]2.
(a) Show that the LSEs are given by

(29)
α̂n = Ȳn and

β̂n =
Σn

1 (xnk − x̄n)Ynk

Σn
1 (xnk − x̄n)2

≡
∑n

k=1
dnkYnk.

(b) Let SSxx ≡ ∑n
1 (xnk − x̄n)2,dn = (dn1, . . . , dnn)′, xn ≡ (xn1, . . . , xnn)′, and

(30) D(xn) ≡
[

max
1≤k≤n

|xnk − x̄n|2
]
/SSxx =

[
max

1≤k≤n
dnk

]
= D(dn).
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Use the Cramér–Wold device and the weighted sums of example 10.3.4 to show that

(31)
[√

n [α̂n − α]√
SSxx [β̂n − β]

]

→d N(O, σ2I), provided that D(dn) = D(xn) → 0

(recall (10.3.20)). [Note also that the LSE β̂n of β is given by β̂n = SSxY /SSxx.]

Definition 3.1 (Noncentral distributions) (a) Let X1, . . . , Xm be independent, and suppose
that Xi

∼= N(θi, σ2). Let θ2 ≡ ∑m
1 θ2i , and define δ via δ2 ≡ θ2/σ2. Show that the quadratic

form

(32) U ≡ ∑m
1 X2

i /σ2 ∼= (Z1 + θ)2 +
∑m

i=2 Z2
i ,

where Z1, . . . , Zm are iid N(0, 1) rvs. Denote this distribution by

(33) U ∼= χ2
m(δ2/2),

and say that U is distributed as noncentral chisquare with m degrees of freedom and noncen-
trality parameter δ.
(b) Let Y ∼= N(θ, 1), U ∼= χ2

m(δ2/2) and V ∼= χ2
n be independent rvs. We define the noncentral

Student-tn(θ) distribution and the noncentral Snedecor-Fm,n(δ2/2) via

(34) Tn(θ) ≡ Y

V/n
∼= Student-tn(θ) and

n

m

U

V
=

U/m

V/n
∼= Snedecor-Fm,n(δ2/2).

(Note that T 2
n(θ) ∼= F1,n(θ2/2).)

Proposition 3.1 (Form of the noncentral distributions) Consider the rvs U, V, and Y of
the previous definition. Let y > 0. (a) The rv U of (32) satisfies

(35) P (χ2
m(δ2/2) > y) =

∑∞
k=0 P (Poisson(δ2/2) = j) × P (χ2

m+2j > y).

Here, Poisson(λ) denotes a Poisson rv with mean λ, and χ2
r denotes an ordinary chisquare rv

with r degrees of freedom.
(b) It is thus trivial that

(36) P (Fm,n(δ2/2) > y) =
∑∞

k=0 P (Poisson(δ2/2) = j) × P (Fm+2j,n > y).

(c) For Cn ≡ 2(n+1)/2Γ(n/2)
√

πn we have

P (Tn(δ) > y)

= 1
cn

∫∞
y

∫∞
0

u(n−1)/2e−u/2 exp(− 1
2 (v(u

n )1/2 − δ)2)du dv.(37)

Exercise 3.25 Prove proposition 3.1.

Exercise 3.26 (Chisquare goodness of fit, again) (a) (Local alternatives) We suppose that
the statistic Qn ≡ Qn(p0) of (10.1.13) is computed, but that in reality the true parameter
vector is now pn ≡ p0 + a/

√
n (with

∑k
1 ai = 0, so that the coordinates pni add to 1). Let

p̂ni ≡ Nni/n estimate pni for 1 ≤ i ≤ k. Show that the vector

(38) Wk×1
n ≡ |[√n(p̂ni − p0i)/

√
p0i ]| →d W + d,
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where W ∼= N(O, I − √
p
√
p′) and di ≡ ai/

√
p0i for 1 ≤ i ≤ k. Thus

(39) Qn = W′
nWn →d Q ≡ (W + d)′(W + d) ∼= χ2

k−1(d
′d/2).

(b) (Fixed alternatives) Suppose that Qn ≡ Qn(p0) is computed, but a fixed p is true. Show
that

(40) 1
nQn →a.s.

∑k
i=1(pi − p0i)2/p0i.

Exercise 3.27 Suppose X ∼= N(�θ,Σ), with rank (Σ) = r. Show that

X′Σ−X = Y ′Y ∼= χ2
r(�θ

′Σ−�θ/2), where(41)

Y ≡ Σ−1/2X = (ΓD−1/2Γ′)X ∼= N

(

Σ−1/2θ,

[
Ir 0
0 0

])

.(42)
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4 Local Limit Theorems o

Recall from Scheffé’s theorem that if fn and f are densities with respect to some dominating
measure μ, then

(1) fn(x) → f(x) a.e. μ

implies that

(2) dTV (Pn, P ) ≡ sup
B∈B

|P (Xn ∈ B) − P (X ∈ B)| → 0 as n → ∞.

Thus convergence of densities implies convergence in total variation distance, which is stronger
than convergence in distribution. We will now establish (1) in a CLT context, for summands
that are either suitably continuous or else are distributed on a grid.

Theorem 4.1 (Local limit theorem, continuous case) Let X,X1,X2, . . . be iid (0, σ2)
with

∫∞
−∞ |φX(t)|dt < ∞. Then Sn/

√
n has a density fn(·) for which

(3) sup
−∞<x<∞

|fn(x) − (1/σ)fZ(x/σ)| → 0 as n → ∞,

for the N(0, 1) density fZ(·)

Theorem 4.2 (Local limit theorem, discrete case) Let X1,X2, . . . be iid (0, σ2) rvs
that take values on the grid a±md for m = 0,±1,±2, . . .. Now let x∗ = (na+md)/(σ

√
n), and

m = 0,±1,±2, . . . denote a possible value of Sn/(σ
√

n), and let pn(x) ≡ P (Sn/(σ
√

n) = x).
Then

sup
−∞<x∗<∞

|(σ√
n/d)pn(x) − fZ(x)| → 0 as n → ∞,(4)

for the N(0, 1) density fZ(·).

Example 4.1 Let X1, . . . , Xn be iid Bernoulli(θ) rvs. Then (by (4))

(5) sup
0≤m<n

√
n

∣
∣
∣
∣
∣
P (Sn = m) − 1

√
nθ(1 − θ)

fZ

(
m − nθ

√
nθ(1 − θ)

)∣
∣
∣
∣
∣
→ 0. �

Exercise 4.1* Verify (5) by direct computation.

Exercise 4.2 Give an example where Xn →d X, but (2) fails.

Proof. Consider theorem 4.1. Without loss of generality we may suppose that σ = 1.
Notice that

(a)
∫ |φSn/

√
n(t)|dt < ∞, since |φSn/

√
n(t)| = |φX(t/

√
n)|n ≤ |φX(t/

√
n|).

Thus the Fourier inversion formula of (9.4.9) gives

(b) fn(y) ≡ fSn/
√

n(y) = (1/2π)
∫∞

−∞ e−ityφSn/
√

n(t)dt.

This same formula also holds for the distribution of a N(0, 1) rv Z. Thus

2π|fn(x) − fZ(x)| ≤ ∫∞
−∞ |φn

X(t/
√

n) − e−t2/2|dt(c)

= (
∫
[|t|≤a]

+
∫
[a<|t|<δ

√
n]

+
∫
[|t|≥δ

√
n]

)|φn
X(t/

√
n) − e−t2/2|dt

≡ I1n + I2n + I3n.(d)
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We first specify δ > 0 so small that |φX(t)| ≤ exp(−t2/4) for |t| ≤ δ. This is possible, since
|φ(t)| = |1 − 0 − t2/2| + |o(t2)| ≤ 1 − t2/4 ≤ exp(−t2/4) in some neighborhood |t| ≤ δ, by
inequality 9.6.2.

Thus for a specified large enough (since |φX(t/
√

n)|n ≤ e−t2/4 for |t| < δ
√

n) we have

(e) I2n ≤ ∫
[|t|>a]

2e−t2/4dt < ε.

For this fixed large a we have

(f) I1n < ε for n ≥ (some n1),

since the Cramér–Lévy theorem implies that the convergence of these chfs is uniform on any
|t| ≤ a.

Now, X is not distributed on a grid (we have a formula for the density). Thus |φX(t)| < 1
for all t �= 0, by proposition 9.8.2. Moreover, |φX(t)| → 0 as |t| → ∞, by the Riemann-
Lebesgue lemma, giving |φX(t)| < (some θ) < 1 for |t| > (some λ). Thus, since θ < 1,

I3n < θn−1
∫∞

−∞ |φX(t/
√

n)|dt +
∫
[|t|>δ

√
n]

e−t2/2dt

=
√

nθn−1
∫∞

−∞ |φX(t)|dt + 2(δ
√

n)−1e−nδ2/2

= o(n−r) for any r > 0 whenever lim|t|→0 |φX(t)| < 1.(6)

< ε for n ≥ (some n2).(g)

Combining (e), (f), and (g) into (d) establishes the claim made in the theorem. �

Proof. Consider theorem 4.2. By the inversion formula (9.8.1) given for distributions
on grids,

(h)
σ
√

n

d
pn(x) =

σ
√

n

d

d

σ
√

n2π

∫ πσ
√

n/d

−πσ
√

n/d

φn
X(t/

√
n)e−itxdt.

By the inversion formula (9.4.9) given for densities,

(i) fZ(x) = (1/2π)
∫∞

−∞ e−t2/2e−itxdt.

Thus

|(σ√
n/d)pn(x) − fZ(x)|(j)

≤ (1/2π)
∫ πσ

√
n/d

−πσ
√

n/d
|φn

X(t/
√

n) − e−t2/2|dt

+ (1/2π)
∫
[|t|>πσ

√
n/d]

e−t2/2dt

= (
∫
[|t|≤a]

+
∫
[a<|t|<δ

√
n]

+
∫
[δ

√
n<|t|<πσ

√
n/d]

)|φn
X(t/

√
n) − e−t2/2|dt(k)

+ o(n−r)

≡ I1n + I2n + I3n + o(n−r).(l)

The proof of theorem 4.1 applies, virtually verbatim; the only thing worthy of note is that
0 < θ < 1 now holds, since πσ

√
n/d is only 1

2 of the period. �
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5 Normality Via W̃insorization and Ťruncation∗

Definition 5.1 (a) Call Xn1, . . . , Xnn weakly negligible (or, strongly negligible) if

(1) Mn ≡ [max1≤k≤n |Xnk|] →p 0 (or, if Mn →a.s. 0).

(b) Call them uniformly asymptotically negligible (or uan) under the weaker

(2) max1≤k≤n P (|Xnk| ≥ ε) → 0 for all ε > 0.

The objective is to now investigate when some version of the CLT holds for uan pieces,
as in (2). (That is, there are to be no monsters among the many, no giants among the
peons, etc., and the law of the mob is to hold sway. These are cute descriptive phrases others
have used to summarize the problem very cleverly.) The results in theorem 5.1 are classical,
while theorem 5.2 and its iid consequences were developed with statistical intent in Shorack
(2000)—and are streamlined herein.

Theorem 5.1 (Asymptotic normality) Let Xn1, . . . , Xnn be independent rvs. Let a > 0
and b be arbitrary. As above, let Mn ≡ [max1≤k≤n |Xnk|]. Fix a truncation constant; let it
be any c > 0. Let X̌nk be the Ťruncated rv that equals Xnk or 0 according as |Xnk| ≤ c or
as |Xnk| > c. The following are equivalent:

(3)
∑n

k=1 Xnk →d N(b, a2) for uan rvs Xn1, . . . , Xnn.

(4)

∑n
k=1 P (|Xnk| ≥ ε) → 0 for all ε > 0 (equivalently, Mn →p 0), while

μ̌n ≡ ∑n
k=1 EX̌nk → b and σ̌2

n ≡ ∑n
k=1 Var[X̌nk] → a2

If (4) holds for one c > 0, then it holds for each c > 0. These results also hold with
W̃insorized quantities X̃nk, μ̃n, σ̃2

n replacing the Ťruncated quantities X̌nk, μ̌n, σ̌2
n. Thus (3)

and the theorem of types imply both σ̃2
n/σ̌2

n → 1 and (μ̃n − μ̌n)/σ̃n → 0. Nor would it have
mattered if we had truncated outside (−c, c) instead of [−c, c].

Corollary 1 Suppose that Yn ≡ ∑n
1 Xnk →d (some rv Y ) for rvs Xnk that are row indepen-

dent and uan. Then

(5) Y has a Normal distribution iff Mn ≡ [ max
1≤k≤n

|Xnk|] →p 0.

Corollary 2 Let the Xnk above be symmetric. Then (3) (with b = 0) holds iff

(6)
∑n

k=1 X2
nk →p a2 for uan rvs Xn1, . . . , Xnn.

Proof. Suppose (4). Then all P (
∑n

1 Xnk �= ∑n
1 X̌nk) ≤ ∑n

1 P (|Xnk| ≥ c) → 0, so that∑n
1 Xnk =a

∑n
1 X̌nk. Thus we need only show that the normalized rv Žn ≡ (

∑n
1 X̌nk −

μ̌n)/σ̌n →d N(0, 1). It suffices to verify that Lindeberg’s ĽF ε
n of (10.2.11) satisfies ĽF ε

n → 0.
We will do so presently. First, note that Mn →p 0, by (8.3.14). Thus [max |X̌nk|] ≤ Mn →p 0
(and [max |X̃nk|] ≤ Mn →p 0). Thus

(a) m̌n ≡ maxk |μ̌nk| ≤ Emaxk |X̌nk| → 0, (and m̃n ≡ maxk |μ̃nk| → 0),
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by the DCT with dominating function “c.” Thus for n ≥ (some nε) we have

(b) m̌n ≤ ε a/8 and σ̌n ≥ a/2 (and m̃n ≤ ε a/8, and σ̃n ≥ a/2).

Then (3) must hold, since the Lindeberg–Feller quantity ĽF ε
n of (10.2.11) satisfies

ĽF ε
n ≡ 1

σ̌2
n

∑n
k=1

∫
[|x−μ̌nk|≥εσ̌n]∩[|x|≤c]

[x − μ̌nk]2dFnk(x)(c)

≤ [ c+εa/8
a/2 ]2

∑n
k=1

∫
[|x−μ̄nk|≥εσ̌n]∩[|x|≤c]

dFnk(x) for n ≥ nε, by (b)(d)

≤ [ c+εa/8
a/2 ]2

∑n
k=1 P (|Xnk| ≥ εa/4) by (b) again(e)

≤ [ c+εa/8
a/2 ]2P (Mn ≥ εa/4) → 0, since Mn →p 0 by (4).(f)

(The exact same bounds for L̃F ε
n in the W̃insorized case hold in (c)–(f), showing that L̃F ε

n →
0.) Thus (4) (for either X̌nk’s or X̃ ′

nks) implies (3).
Suppose that (3) holds. Then

(7)
∑n

1 Xs
nk →d N(0, 2a2) for the symmetrized uan rvs Xs

nk ≡ Xnk − X ′
nk

discussed in section 8.3. Applying the continuity theorem 9.5.1 for chf’s then yields

(g)
∏n

1{1 − [1 − φs
nk(t)]} = φs

n(t) → exp(−a2t2), uniformly on any |t| ≤ M,

as n → ∞. Since the Xs′
nks are symmetric, their chf’s are real valued. Moreover, all (1 −

φs
nk(t)) = E(1 − cos tXs

nk) ≥ 0, and note (10.2.23). Thus lemma 8.1.4 (more powerful than
lemma 9.6.3, for positive numbers) shows that (g) holds if and only if

(8)
∑n

1 E(1 − cos tXs
nk) =

∑n
1 (1 − φs

nk(t)) → a2t2, uniformly on any |t| ≤ M.

Thus for all n ≥ (some nε,M ) we have (recalling that a = b ⊕ c means that |a − b| ≤ c)

1
3a2t3 =

∫ t

0
a2u2du =

∫ t

0

∑n
1 E(1 − cos uXs

nk)du ⊕ ε5 from (8)(h)

=
∫ t

0
{∑n

1

∫∞
−∞(1 − cos ux)dF s

nk(x)}du ⊕ ε5

=
∫∞

−∞{∑n
1

∫ t

0
(1 − cos ux)du}dF s

nk(x) ⊕ ε5 by Tonelli(i)

=
∑n

1

∫∞
−∞{u(1 − sinux

ux )|t0}dF s
nk(x) ⊕ ε5

=
n∑

1

∫ ∞

−∞
t

(

1 − sin tx

tx

)

dF s
nk(x) ⊕ ε5 uniformly on any |t| ≤ M(9)

whenever (8) holds. (Recall the inequality 9.5.1 for “comparison.”) Let t1 = 1 and t2 = 2.
Since 1

2 (8t31 − t32) = 0, subtracting the t2-values of expressions (h) and (9) from 8 times the
t1-values of expressions (h) and (9) gives (for any ε > 0)

0 = 1
2

∑n
1

∫∞
−∞[8(1 − sin x

x ) − 2(1 − sin 2x
2x )]dF s

nk(x) ⊕ ε5(j)

=
n∑

1

∫ ∞

−∞

[

3 − 4 sin x

x
+

sin 2x

2x

]

dF s
nk(x) ⊕ ε5 ≡

n∑

1

∫ ∞

−∞
h(x)dF s

nk(x) ⊕ ε5.(10)

Consider the function h(x) ≡ (3 − 4 sinx
x + sin 2x

2x ). (On [0, 4] the function h increases from 0
to about 4, it then oscillates ever smaller about 3, and eventually converges to 3 at ∞.) The
basic inequality (3.4.18) gives (for all tiny ε > 0)

(k) P (maxk |Xs
nk| ≥ ε) ≤ ∑n

1 P (|Xs
nk| ≥ ε) ≤ 1

h(ε) (
∑n

1 E(h(Xs
nk)) ≤ ε5

h(ε) ,
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since ε5/h(ε) ∼ 10ε as ε ↓ 0 (simply expand sinx and sin 2x in the formula for the function
h(·) in (10)). Thus, (8.3.14) and (k) yield

(11) Ms
n ≡ [max1≤k≤n |Xs

nk|] →p 0. Also, Mn ≡ [max1≤k≤n |Xnk|] →p 0

holds true since [max1≤k≤n |Xnk −m̈nk|] →p 0 follows from Ms
n →p 0 and the symmetrization

inequality (8.3.9), and the uan condition then guarantees that [max1≤k≤n |m̈nk|] → 0. (See
Kallenberg (1997) regarding this vital (11) via (9) and (10). Very nice!) So far, we have
shown that (3) implies (7) and (11). (Note that the “only if” implication in Corollary 1 is
now established as well.)

We now truncate these symmetrized rvs by letting X̌s
nk(c) ≡ Xs

nk · 1[|Xs
nk|≤c] denote Xs

nk

truncated at ±c. Then (for each c > 0) (11) yields

(l) |P (
∑n

1 X̌s
nk(c) ≤ x) − P (

∑n
1 Xs

nk ≤ x)| ≤ ∑n
1 P (|Xs

nk| ≥ c) → 0.

Together with (7) and (11) this implies (for each c > 0) that

(12)
∑n

1 X̌s
nk(c) →d N(0, 2a) and Ms

n = [max1≤k≤n |Xs
nk|] →p 0,

(Note that (�) also shows that the X̃s
nk’s can replace the X̌s

nk’s in (12)). Apply the continuity
theorem to (12) to get

a2t2 ← ∑n
1 E(1 − cos tX̌s

nk(c)) =
∑n

1
1
2 t2E(X̌s

nk(c))2 ⊕∑n
1 t4E(X̌s

nk(c))4(m)

= 1
2 t2

∑n
1 E(X̌s

nk(c))2 ⊕ c2t4
∑n

1 E(X̌s
nk(c))2

= 1
2 t2

∑n
1 E(X̌s

nk(c))2(1 ⊕ 2c2M2) (uniformly on |t| ≤ M).(n)

Let ε > 0 be given. Define cε =
√

ε/2M2. From (m) and (n) (after dividing both sides by
t2/2) the terms V̌ s

n (c) ≡ ∑n
1 E(X̌s

nk(c))2 satisfy

(o) 2a2

1+ε = 2a2/(1 + 2c2εM
2) ≤ V̌ s

n (cε) ≤ 2a2/(1 − 2c2εM
2) = 2a2

(1−ε)

for all n ≥ (some n
(1)
ε,M ). From Ms

n →p 0 we also have for n ≥ (some n
(2)
ε ) that

V̌ s
n (1) = V̌ s

n (cε) ⊕∑n
1 E{(Xs

nk)2 ∧ 1) · 1[cε≤|Xs
nk|]}(p)

= V̌ s
n (cε) ⊕∑n

1 P (|Xs
nk| ≥ cε) = V̌ s

n (cε) ⊕ P (Ms
n ≥ cε)

= V̌ s
n (cε) ⊕ ε.(q)

Combining (o) and (q) with (12) gives (with truncation at c = 1)

(13)
∑n

1 X̌s
nk(1) →d N(0, 2a2),Ms

n = [maxk |Xs
nk|] →p 0, and V̌ s

n (1) → 2a2.

That is, the X̌s
nk(1) satisfy (4). (Since Ṽ s

n (1) can replace V̌ s
n (1) on the left hand side of (p)

(with no other changes in (p)−(q)), “tildes” can replace “checks” in (13).)
Note: The symbol X̌s

nk(1) (symmetrize, and then truncate at c = 1) as well as the symbol
X̌s

nk(1) (truncate at c = 1, and then symmetrize) are henceforth replaced by the symbols X̌s
nk

and X̌s
nk. It is a consequence of (11) that

(14)
∑n

1 X̌s
nk =a

∑n
1 Xs

nk =
∑n

1 (Xnk − X ′
nk) =a

∑n
1 (X̌nk − X̌ ′

nk) =
∑n

1 X̌s
nk.
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From (14) and (13), and (11), we claim that

(15)
∑n

1 X̌s
nk →d N(0, 2a2) and Ms

n →p 0. So E{∑n
1 (X̌s

nk)2} → 2a2

by the argument (begin at (12)) made in previous paragraph—that led to the third claim
made in (13). That is (parallel to (13)), the X̌s

nk also satisfy (4). (So do the X̃s′
nks.)

Since all Var[X̌s
nk] = 2Var[X̌nk], the third claim in (15) plus (11) imply that

(16) σ̌2
n ≡ ∑n

1 σ̌2
nk ≡ Var[

∑n
1 X̌nk] = 1

2 Var [
∑n

1 X̌s
nk] → a2 and Mn →p 0,

while hypothesis (3) gives

(r) (
∑n

1 X̌nk −∑n
1 μ̌nk) + (

∑n
1 μ̌nk) =

∑n
1 X̌nk =a

∑n
1 Xnk →d N(b, a2).

Using only Mn →p 0 (see (11)) we now have

m̌n ≡ max1≤k≤n |μ̌nk| ≤ ε + max1≤k≤n 1 · P (|Xnk| ≥ ε)

≤ ε +
∑n

1 P (|Xnk| ≥ ε) ≤ 2ε for all n ≥ (some nε), by (11),(s)

so m̌n → 0. Thus Mn →p 0 implies that M̌n ≡ [max1≤k≤n |X̌nk − μ̌nk|] satisfies

(17) M̌n →p 0 with m̌n → 0. Moreover, M̃n →p 0 with m̃n → 0

follows from the analogous proof. From hypothesis (3) (and using Mn →p 0 in (11) to replace
Xnk’s by X̌nk’s for the =a in (t)) we have

(t) (
∑n

1 X̌nk −∑n
1 μ̌nk) + (

∑n
1 μ̌nk) =a

∑n
1 Xnk →d N(b, a2).

Note that the hypotheses of (4) hold for rvs X̌nk −μ̌nk (since they have mean 0, since σ̌2
n → a2

by (16), and since M̌n →p 0 by (17)). That is, these adjusted rvs

(18) (X̌nk − μ̌nk) (for 1 ≤ k ≤ n) also satisfy (4), and hence (3)—note that

they are “nicer” than the general rvs to which the Lindeberg-Feller theorem 10.2.2 applies in
that their most extreme values have been truncated. Thus

(u) (
∑n

1 X̌nk −∑n
1 μ̌nk) =

∑n
1 (X̌nk − μ̌nk) →d N(0, a2).

Combining (t) and (u) gives

(v) μ̌n ≡ ∑n
1 μ̌nk → b. Moreover, σ̌2

n =
∑n

1 σ̌2
nk → a2

has already been shown in (16). Thus (3) implies (4) is established with c = 1 for the
rvs Xnk using (v) and Mn →p 0 from (11). The arguments in (q) and (r)−(v) allow any
c > 0 to replace c = 1. This gives (3) implies (4) for any c > 0. The arguments in (r)–
(v) also hold if W̃insorized Xnk’s replace Ťruncated Xnk’s Thus (3) also implies (4) for
W̃insorized Xnk’s. �

Proof. Consider Corollary 1. In light of the remark below (11), the “only if part” of
Corollary 1 has already been established, So suppose that Mn →p 0. Since Yn →d Y , the
symmetrized versions satisfy Y s

n →d Y s ≡ Y − Y ′. That Mn →p 0 (and hence Ms
n →p 0)

means that the versions truncated at c = 1 also satisfy Y̌n ≡ ∑n
1 X̌nk =a Yn →d Y and

Y̌ s
n ≡ Y̌n − Y̌ ′

n →d Y s. Assume a subsequence n′ exsits along which σ̌2
n ≡ Var[

∑n
1 X̌nk] =
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1
2Var[

∑n
1 X̌s

nk] → ∞. Then on this subsequence Y̌ s
n /σ̌n →p 0. But a trivial application of

the Liapunov CLT in (10.2.4) (using γs
n/(sds

n)3 ≤ 2/2σ̌n → 0) yields the contradictory result
that Y̌ s

n /σ̌n →d N(0, 2) on the specified subsequence. Thus lim supn σ̌n < ∞ over the whole
sequence. So now, pick a subsequence n′ on which σ̌n → (some a). Just as in (18), on this
subsequence n′ we can claim that the rvs

(w) (X̌nk − μ̌nk) (for 1 ≤ k ≤ n) also satisfy (4), and hence (3).

So on n′ (using Mn →p 0 for the =a step),

(x)
∑n

1 Xnk − μ̌n =a

∑n
1 X̌nk − μ̌n =

∑n
1 (X̌nk − μ̌nk) →d N(0, a2).

But,
∑n

1 (Xnk − μ̌nk) + μ̌n =
∑n

1 Xnk →d Y is given. Thus μ̌n must converge to some finite
number—name it b, and so the limiting rv Y is N(b, a2). �

Proof. Consider Corollary 2. Let the rvs X̌nk represent the symmetric uan rvs Xnk

truncated at c = a. Define the rvs Wnk via

(19) X2
nk ≡ a2

n Wnk for 1 ≤ k ≤ n.

First, suppose (3) and verify (6). Well, (3) implies (4), giving

(20)
(a) : M2

n = [max1≤k≤n X2
nk] →p 0, μ̌n → b, σ̌2

n → a2, and hence

(b) : V̌n ≡ ∑n
1 E(X̌2

nk) = σ̌2
n → a2 (since all μ̌nk = 0 gives b = 0).

Rewriting (20) in terms of the Wnk’s gives

(21)
(a) : MW

n ≡ [max1≤k≤n
1
n

Wnk] →p 0,

(b) : V̌ W
n ≡ E( 1

n

∑n
1 Wnk · 1[Wnk/n≤1) → 1 (since c = a was used).

In the context of theorem C.1.1 (with r = 1 and νn = 1), the conclusions of (21) become
MW

n /νn = MW
n →p 0 and

(y) ǔW
n /νn ≡ UW

n (n νn)/νn = UW
n (n) = 1

n

∑n
1 E(Wnk · 1[Wnk≤n]) → 1.

That is, condition (C.1.9) holds for the Wnk. Hence the equivalent (C.1.3) gives

(z)
∑n

1 X2
nk/a2 = W̄n = W̄n/νn →p 1 (for the uan rvs Wnk/(n νn) = X2

nk/a2.)

Thus (6) holds. Next, suppose (6) = (z) holds and verify (4)—or its equivalent (3). Basically,
just read (20)–(z) backward. (Still, can we make useful observations on the case of non-
symmetric rvs Xnk? More on this later.) �

Corollary 3 (i) Condition (3) that
∑n

1 Xnk →d N(b, a2) for row independent uan rvs Xn1, . . . ,
Xnn implies (see the proof of theorem 5.1, with μ̌n ≡ ∑n

1 μ̌nk and σ̌2
n ≡ ∑n

1 σ̌2
nk for Ťruncation

at any fixed (‘c’ (say, c = 1) that

μ̌n → b, σ̌2
n → a2, and Mn ≡ {max1≤k≤n |Xnk|}/σ̌n →p 0,

m̌n ≡ {maxk |μ̌nk|}/σ̌n → 0 and M̌n ≡ {maxk |X̌nk − μ̌nk|}/σ̌n →p 0,(22)

Zn ≡ (
∑n

1 Xnk − μ̌n)/σ̌n =a Žn ≡ (
∑n

1 X̌nk − μ̌n)/σ̌n} → N(0, 1).
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(ii) Conversely (and trivially from (4) implies (3)),

(23) M̌n →p 0 for some ‘c’ implies Žn = (
∑n

1 X̌nk − μ̌n)/σ̌n →d N(0, 1).

(iii) The W̃insorized constants

(24) μ̃n ≡ ∑n
1 μ̃nk and σ̃2

n ≡ ∑n
1 σ̃2

nk can replace μ̌n and σ̌2
n in (22)–(23).

(iv) The theorem of types then yields both σ̌2
n/σ̃2

n → 1 and (μ̃n − μ̌n)/σ̃n → 0. All results
hold for any choice of the truncation point “c” of the given rvs Xnk.

Statistical Reformulation of the General CLTs

Notation 5.1 (Weak negligibility in the CLT context) Let Xn1, . . . , Xnn be inde-
pendent rvs with dfs Fn1, . . . , Fnn. Fix θ > 0. Define xθn by requiring [−xθn, xθn] to be
the shortest closed, symmetric interval to which F̄n ≡ 1

n

∑n
1 Fnk assigns probability at least

1 − θ/n. Let P̄n(x) ≡ 1
n

∑n
1 P (|Xnk| > x) denote the average tail probability, and then let

Kn denote the qf of the df 1 − P̄n(·). Note the quantile relationship xθn = Kn(1 − θ/n). Let
Wn denote a rv with the df 1 − P̄n(·).

Let X̃nk denote XnkW̃insorized outside [−xθon, xθon] (commonly, use θo ≡ 1). Let
μ̃nk, σ̃2

nk, and ṽnk be the W̃insorized mean, variance and second moment of X̃nk. Let
X̃n ≡ 1

n

∑n
1 X̃nk. Its average means, variances, and 2nd moments are

(25)
μ̃n ≡ 1

n

∑n
1 μ̃nk, σ̃2

n ≡ 1
n

∑n
1 σ̃2

nk, and ṽn = 1
n

∑n
1 ṽnk = σ̃2

n + 1
n

∑n
1 μ̃2

nk

when W̃insorizing outside [−xθon, xθon], and then let v̌n = 1
n

∑n
1 v̌nk

for Ťruncated 2nd moments instead, etc. Such μ̌n and σ̌n may replace the μ̃n and σ̃n in
the obvious fashion—see corollary 1 below. Applying discussion 8.3.1 to the rvs |Xnk|/√

nσ̃n

(whose average df has (1− θ/n)th quantile xθn/
√

nσ̃n) shows the following conditions for the
weak negligibility of the rvs Xnk/

√
nσ̃n are equivalent:

Mn ≡ [max1≤k≤n |Xnk|]/√
n σ̃n →p 0. (weak negligibility)(26)

xθn/
√

n σ̃n → 0 for all 0 < θ ≤ θo.(27)
∑n

1 P (|Xnk| > ε
√

n σ̃n) → 0 for all 0 < ε ≤ 1.(28)

(These differ from the μ̃nk, μ̃n, σ̃nk, σ̃n in the previous subsection. For example, the truncation
point xθn now depends on n and

√
n is part of a renorming.) �

Theorem 5.2 (Notation for W̃insorization) Consider both Xn ≡ 1
n

∑n
k=1 Xnk and X2

n ≡
1
n

∑n
1 X2

nk for row independent rvs Xnk(1 ≤ k ≤ n). Let (note (25))

Ynk ≡ Xnk/
√

n σ̃n and Mn ≡ [max1≤k≤n |Ynk|],
Ỹnk ≡ (Xnk − μ̃nk)/

√
n σ̃n and M̃n ≡ [max1≤k≤n |Ỹnk|],

m̃n ≡ [max1≤k≤n |μ̃nk|]/√
n σ̃n and M̌v

n ≡ [max1≤k≤n
1
nX2

nk]/v̌n.

(29)

(i) (CLT for the W̃insorized mean) First,

(30) Mn →p 0 implies Z̃n ∼≡ √
n(Xn − μ̃n)/σ̃n →d N(0, 1),

m̃n → 0 and M̃n →p 0. (It need not be that lim σ̃n < ∞.) Conversely,

(31) Z̃n =
√

n(Xn − μ̃n)/σ̃n →d N(0, 1) for uan Ỹnk implies M̃n →p 0.
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If m̃n → 0 also holds (hence the Ynk are uan), then Mn →p 0 also holds. Especially,

(32) Z̃n ≡ √
n[Xn − μ̃n]/σ̃n →d N(0, 1) and m̃n → 0 iff Mn →p 0.

(ii) (Moment estimation) The following claims hold for X2
n.

Z̃n →d N(0, 1) and m̃n → 0 implies X2
n/v̌n →p 1 for uan X2

nk/n v̌n.(33)

X2
n/v̌n →p 1 for uan X2

nk/n v̌n iff M̌v
n →p 0.(34)

(Other results in theorem C.1.1 (with r = 2) can also be recast in this context.)
(iii) (Statistically useful) Let S2

n ≡ X2
n − X̄2

n. Suppose

(35) X̄2
n/v̌n →p 1 for uan X2

nk/n v̌n with lim μ̌2
n/v̌n < 1.

Then all of the following hold.

Mn →p 0, (which is equivalent to Z̃n →d N(0, 1) and m̃n →p 0).(36)

S2
n/σ̃2

n →p 1, and T̃n ∼≡ √
n(X̄n − μ̃n)/Sn →d N(0, 1).(37)

Corollary 1 (CLT for the Ťruncated Mean) All of Theorem 5.2 still holds true when μ̌n

and σ̌n replace μ̃n and σ̃n throughout. Especially,

(38) Žn ≡ √
n[X̄n − μ̌n]/σ̌n →d N(0, 1) and m̌m → 0 iff Mn →p 0.

Here M̌n ≡ [max1≤k≤n |Xnk − μ̌nk|]/√
n σ̌n and m̌n ≡ [max1≤k≤n |μ̌nk|]/√

n σ̌n. (Recall (25)
for μ̌n and σ̌n.) The theorem of types (compare (32) and (38)) yields

(39) σ̌n/σ̃n → 1 and
√

n(μ̃n − μ̌n)/σ̃n → 0 whenever Mn →p 0.

(Condition (35) also yields both of the conclusions stated in (38)—as well as

(40) S2
n/σ̌2

n →p 1 and Ťn ≡ √
n(Xn − μ̌n)/Sn →d N(0, 1).

Proof. For the proof of theorem 5.2, we will need notation similar to that above, for
any θ. For 0 < θ ≤ θ0 let X̃θ

nk denote Xnk Winsorized outside [−xθn, xθn]; then let μ̃θ
nk

and σ̃θ
nk denote the obvious, and define both μ̃θn ≡ 1

n

∑n
1 μ̃θ

nk and σ̃2
θn ≡ 1

n

∑n
1 (σ̃θ

nk)2.
Let X̃θn ≡ 1

n

∑n
1 X̃θ

nk, and let Z̃θn ≡ √
n[X̃θn − μ̃θn]/σ̃θn. Define third central moments

γ̃θ
nk ≡ E|X̃θ

nk − μ̃θ
nk|3, and let γ̃θn ≡ ∑n

1 γ̃θ
nk. Call the rvs Ỹ θ

nk ≡ (X̃θ
nk − μ̃θ

nk)/
√

n σ̃θn the
associated summands, and then let M̃θn ≡ [maxk |Ỹ θ

nk|] denote their maximal summand.
Suppose Mn →p 0 (along with its equivalent (27)). Since all μ̃nk ∈ [−xθ0n, xθ0n] when

W̃insorizing, we have m̃n ≤ xθon/(
√

n σ̃n) → 0 by (27). Further,

(a) M̃n = [max1≤k≤n |Xnk − μ̃nk|]/√
n σ̃n ≤ Mn + xθon/(

√
n σ̃n) →p 0.

(Analogously, when Ťruncating, Mn →p 0 implies both m̌n → 0 and M̌n →p 0.)
Consider (30). So, suppose that Mn →p 0. Let a tiny 0 < ε < 1 be given. Fix 0 < θ <

ε < θ0. Observe that

(b) δn ≡ P (
∑n

1 Xnk �= ∑n
1 X̃θ

nk)) ≤ ∑n
1 P (|Xnk| > xθ,n) ≤ n(θ/n) = θ < ε
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for all n ≥ (some nθ,ε). Thus for all n ≥ nθ,ε) we have

(41) P (Z̃n ≤ z) = P (Z̃θn × (σ̃θn/σ̃n) +
√

n(μ̃θn − μ̃n)/σ̃n ≤ z) ⊕ ε.

(Recall that a = b ⊕ c means |a − b| ≤ c.) Since ‖FZ̄θn
− Φ‖ ≤ 13γ̃θn/

√
nσ̃3

θn by the Berry–
Esseen result (10.2.3), conclusion (30) will follow at once from (41) and the Slutsky theorem
2.4.1 by verifying (42) below. �

Inequality 5.1 (Applying the Liapunov CLT from a Quantile Viewpoint)
Suppose only that Mn →p 0 (hence (27) holds as well). Fix any 0 < θ ≤ θ0. Then

(i)
γ̃θn√
nσ̃3

θn

→ 0, (j)
σ̃2

θn

σ̃2
n

→ 1, (k)
√

n|μ̃θn − μ̃n|
σ̃n

→ 0.(42)

Thus Z̃n =
√

n(X̄n − μ̃n)/σ̃n →d N(0, 1), as claimed in (30).

Proof. For convenience, set θ0 = 1. Note that σ̃n = σ̃1n = σ̃θo,n now holds. Bounding
one power of |X̃θ

nk − μ̃θ
nk|3 by 2 xθn in the integrand of each γ̃θ

nk gives

(43)
γ̃θn√
n σ̃3

θn

≤ 2
xθn√
n σ̃θn

· σ̃2
θn

σ̃2
θn

≤ 2
xθn√
n σ̃n

→ 0,

using (27). Since the probability outside [−x1n, x1n] is at most 1/n,

(44)
√

n|μ̃θn − μ̃n|/σ̃n ≤ xθn/
√

n σ̃n → 0

by (27). We need some notation before turning to (42)(j). Let ṽθn denote the average of
the second moments of the X̃θ

nk, and set ṽn ≡ ṽ1n. Now, F̄n assigns at most 1/n probability
to the complement of the interval [−x1n, x1n], and on [−xθn, xθn] the integrand of ṽθn never
exceeds x2

θn. And so

0 ≤ [σ̃2
θn − σ̃2

n]/σ̃2
θn = {ṽθn − ṽn}/σ̃2

θn − 1
n

∑n
1{(μ̃θ

nk)2 − μ̃2
nk}/σ̃2

θn(45)

= {ṽn ⊕ 1
nx2

θn − ṽn}/σ̃2
θn − 1

n

∑n
1{[μ̃nk ⊕ xθnP (|Xnk| > x1n)]2 − μ̃2

nk}/σ̃2
θn(d)

≤ x2
θn/[n σ̃2

θn] + 2
1
n

n∑

1

{[|μ̃nk|xθnP (|Xnk| > x1n)]/σ̃2
θn}

+ x2
θn

1
n

∑n
1 P 2(|Xnk| > x1n)/σ̃2

θn (where all P 2(·) ≤ P (·))
≤ (1 + 2 + 1){x2

θn/n σ̃2
θn} = 4{x2

θn/n σ̃2
n} → 0(46)

by (27). Thus (42) holds, giving the asymptotic normality of Z̄n in (41) and (30).
This proof of (42)(j) (ending in (46)) also verifies that both

(47) {ṽθn − ṽn}/σ̃2
n → 0 and 1

n

∑n
1{(μ̃θ

nk)2 − μ̃2
nk}/σ̃2

n → 0. �

Proof. We now consider (31) and (32). Suppose

(f) Z̃n =
√

n(X̄n − μ̃n)/σ̃n →d N(0, 1) for uan Ỹnk ≡ (Xnk − μ̃n)/
√

nσ̃.

This (f) is equivalent to
∑n

1 Ỹnk →d N(0, 1) for uan Ỹnk’s. So (31) holds, since

(g) M̃n = [max1≤k≤n |Ỹnk|] = [max1≤k≤n |Xnk − μ̃nk|/√
nσ̃ →p 0

by either theorem 5.1 or its corollary 1. Then (30) and (31) give (32). �
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Proof. Consider (33). As Z̃n →d N(0, 1) for uan summands Ỹnk, corollary 1 to theorem
5.1 implies M̃n = [max1≤k≤n |Ỹnk|] →p 0. Combine this with m̃n → 0 to obtain Mn →p 0,
and hence [max1≤k≤n X2

nk]/n σ̃2
n = M2

n →p 0. Equivalently (by (27)), 1
nx2

θn/σ̃2
n →p 0 for

every 0 < θ ≤ θo. Thus every 1
nx2

θn/ṽn → 0. Since

(j) 0 ← 1
nx2

θn/ṽn = { 1
nx2

θn/v̌n}/(1 ⊕ { 1
nx2

1n/v̌n}), for θ ∈ {1} ∪ (0, 1),

every { 1
nx2

θn/v̌n} → 0. This result that every { 1
nx2

θn/v̌n} → 0 is conclusion (C.1.6) of
theorem C.1.1 (with r = 2 and u1n = v̌n). Thus we can claim conclusion (C.1.4) that
X̄2

n/v̌n →p 1 with the X2
nk/nv̌n being uan. This establishes (33). (All of the results (31),

(32), and (33) hold in the context of corollary 1.) Conclusion (34) holds since (C.1.4) and
(C.1.8) are equivalent conditions in theorem C.1.1. �

Proof. Let us prove (36). Suppose first that only 1
n

∑n
1 X2

nk/v̌n →p 1 for uan rvs
X2

nk/nv̌n, in (35). That is, the conclusion (C.1.4) holds (in theorem C.1.1 (with r = 2, and
the u1n of that theorem equal to our present v̌n)). Thus

(m) M̌v
n ≡ [max1≤k≤n X2

nk]/nv̌n →p 0,

by the equivalence of (C.1.4) with (C.1.8) (see (34)). We next wish to replace v̌n in (m) by
σ̃2

n in order to claim M2
n →p 0 under the hypothesis (35). To do the bookkeeping, we claim

from the equivalence of (C.1.6) with (m) that

(n) x2
θn/n v̌n → 0 for all 0 < θ ≤ 1.

Using (n), we will show that σ̃2
n may replace v̌n in (m) provided that lim σ̃2

n/v̌n > 0. (This
added stipulation makes complete sense. If all rvs Xnk only take on one fixed value ‘c’, then
the average value of the X2

nk’s does indeed “converge” to ‘c2’—but there is no hope of a CLT
as the variance is 0. Still, we did not use this for (m).)

Analogous to (45), we now write

σ̃2
n

v̌n
=

v̌n ⊕ 1
nx2

1n

v̌n
− (μ̌n ⊕ 1

nx1n)2

v̌n
(48)

=
σ̌2

n

v̌n
⊕

1
nx2

1n

v̌n
⊕ 2

x2
1n

n v̌n
⊕ 1

n

1
nx2

1n

v̌n
(using |μ̌n| ≤ x1n)(o)

=
σ̌2

n

v̌n
+ o(1) = 1 − μ̌2

n

v̌n
+ o(1) (using (n), with θ = 1)(p)

> 0 using lim μ̌2
n/v̌n < 1 for the first time in this proof.(49)

Thus Mn →p 0 (by applying (49) to (m), since lim μ̌2
n/v̌n < 1 was assumed in (35)). Thus

all of (36) follows. (Since σ̌2
n/v̌2

n = 1 − μ̌2
n/v̌n, we can also replace v̌n by σ̌2

n in (m) when
lim μ̌2

n/v̌n < 1. Thus (35) implies both conclusions in (38).) �

Proof. Consider (37), when (35) holds. Conclusions from (36) and (33) include

(r) Mn →p 0, Z̄n →d N(0, 1), m̃n → 0, and X̄2
n/v̌n →p 1 for uan X2

nk/n v̌n.

Let ε > 0 be given, and set 0 < θ < ε/2. Then for all n ≥ (some nε), the Ťruncation
inequality (8.3.25) gives

(s) P (|X̄n − μ̌n| ≥ εv̌
1/2
n ) ≤ 1

ε2nv̌n

∫
[|x|≤xθn]

x2dF̄n(x) + θ ≤ x2
θn

ε2nv̌n
+ ε

2 < ε
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for n ≥ nε. By the equivalence of (C.1.4) that X2
n/v̌n →p 1 for uan X2

nk/nv̌n and (C.1.5))
that x2

θn

nv̌n
→ 0 for each 0 < θ ≤ 1), we thus have

(50) (X̄n − μ̌n)/v̌1/2
n →p 0 whenever X2

n/v̌n →p 1 for uan X2
nk/nv̌n.

Then (50) and the final claim in (r) yield

S2
n

σ̌2
n

=
v̌n

σ̌2
n

{(
X2

n

v̌n
− 1) +

v̌n

v̌n
− [(

X̄n − μ̌n

v̌
1/2
n

)2 − 2
μ̌n

v̌
1/2
n

(
X̄n − μ̌n

v̌
1/2
n

) +
μ̌2

n

v̌n
]}(t)

=
v̌n

σ̌2
n

{(op(1)) +
(

v̌n − μ̌2

v̌n

)

− (op(1))2 − 2
μ̌n

v̌
1/2
n

op(1)}(u)

= 1 +
1

1 − μ̌2
n/v̌n

op(1)(1 + op(1) + 2(μ̌2
n/v̌n)1/2)(v)

→p 1, using lim μ̌2
n/v̌n < 1 for the first time in this proof.(w)

Thus (37) (and (40)) follow from (n) and lim μ̌2/v̌n < 1 via

(x)
σ̃2

n

σ̌2
n

=
(v̌n ⊕ 1

nx2
1n) − (μ̌n ⊕ 1

nx1n)2

v̌n(1 − μ̌2
n/v̌n)

= 1 +
op(1)

1 − μ̌2
n/v̌n

→ 1. �

Remark 10.5.1 (Simplification for iid rvs) Any non-degenerate rv X satisfies

(51) lim μ̌2
n/v̌n is less than 1 or equals 0 as σ2

X is finite or is infinite;

use either σ2
X > 0 or (6.6.1). When σ2

X = ∞, theorem 6.6.1 gives both

(52) σ̌2
n/v̌n → 1 and σ̃2

n/ṽn → 1, and so σ̃2
n/σ̌2

n ∼ ṽn/v̌n = 1 − μ̌2
n/v̌n → 1. �
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6 Independent Identically Distributed RVs∗

Notation 6.1 (Magnitude and Percentage W̃insorization) Let F and K be the df and
qf of a non-degenerate rv X. (There is no need for the following theorem if Var[X] is finite.
However, it does apply to this finite variance case as well.)

Magnitude W̃insorization: Let [−xθn, xθn] be the shortest interval symmetric about 0
that contains at least the proportion (1− θ/n) of the X probability. When |X| has df F|X|(·)
and qf K|X|(·) then xθn ≡ K|X|(1−θ/n). We now define the magnitude modified parameters.
The W̃insorized mean and variance notation is

(1) X̃1n
∼= (μ̃1n, σ̃2

1n), where X̃1n denotes X W̃insorized outside [−x1n, x1n].

Define Ťruncated second moments in terms of dfs on [0,∞) and qfs on (0, 1] via

(2) U(x) ≡ ∫
[|y|≤x]

y2dF (y) and V|X|(t) ≡ ∫
[0,1−t]

K2
|X|(s)ds.

Then, let u1n ≡ U(x1n) and v1n ≡ v̌1n ≡ V|X|(1/n) and μ̌1n =
∫
[|y|≤x1n]

ydF (y). The
Winsorized second moment in the present context is ũ1n, where

(3) ũ1n ≡ u1n + x2
1nP (|X| > x1n); this equals ṽ1n ≡ v1n + 1

nK2
|X|(1 − 1/n).

Equality holds in (3) even though u1n ≥ v1n always holds (see theorem C.1.1 (C)). (The
magnitude Ťruncated second moment is denoted by both v1n = v̌1n, so as to connect it more
easily with theorem C.1.1. Let σ̌2

1n ≡ v1n − μ̌2
1n = v̌1n − μ̌2

1n.)

Percentage W̃insorization: W̃insorize an equal proportion “a” from each tail. Let a > 0 be
tiny. We agree that dom(a, a) denotes [0, 1−a), (a, 1], or (a, 1−a) according as X ≥ 0,X ≤ 0,
or otherwise, and that K̃a,a(·) denotes K W̃insorized outside dom(a, a). (For example, when
X takes on both positive and negative values, then K̃a,a(·) equals K+(a),K(t),K(1 − a)
according as t ≤ a, a < t < 1 − a, 1 − a ≤ t. However, there is no need to W̃insorize the
smallest values of X if X ≥ 0, say.) Now (using the representation (6.3.2)), let

(4) X̃(a) ≡ K̃a,a(ξ) ∼= (μ̃(a), σ̃2(a)), with μ̃n ≡ μ̃(1/n) and σ̃2
n ≡ σ̃2(1/n).

Thus the percentage W̃ insorized second moment, mean, and variance (when we Winsorize
outside dom(1/n, 1/n) ) can also be written as ṽn = EK̃2

1/n,1/n(ξ), μ̃n = EK̃1/n,1/n(ξ),

and σ̃2
n ≡ ṽn − μ̃2

n. Also, let v̌n ≡ ∫ 1−1/n

1/n
K2(s)ds ≡ V (1/n), μ̌n =

∫ 1−1/n

1/n
K(s)ds, and

σ̌2
n ≡ v̌n − μ̌2

n denote the Ťruncated moments in this case, where

(5) V (t) ≡ ∫
dom(t,t)

K2(s)ds and m(t) ≡ ∫
dom(t,t)

|K(s)|ds

(for 0 ≤ t ≤ 1/2). Further, define (for 0 ≤ t ≤ 1)

(6) v(t) ≡ [K+(1 − t)]2 + [K−
+ (t)]2 and q(t) ≡ K+(1 − t) + K−

+ (t).

Note that v(t) ≤ q2(t) ≤ 2v(t).

Normed CLT rvs Now define the rvs (Xn1, . . . , Xnn) ≡ (K(ξn1), . . . ,K(ξnn)) for row-
independent Uniform(0, 1) rvs ξn1, . . . , ξnn. They are row-independent rvs with df F and qf
K (as shown in (6.3.2)). Our interest is in both

(7) Z̄n ≡ √
n{X̄n − μ̃n}/σ̃n and Z̄n ≡ √

n{X̄n − μ̃1n}/σ̃1n �
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Theorem 6.1 (CLT for general iid rvs) Let Xn1, . . . , Xnn be row independent iid rvs
with variance in (0,∞]. Possible choices for the constant νn herein include

(8) u1n, ũ1n, σ̃2
1n, and v1n ≡ v̌1n, σ̌2

1n, and vn, ṽn, σ̃2
n, and v̌n, σ̌2

n.

The following conclusions are equivalent.

Z̄n →d N(0, 1)] for either version of W̃insorizing in (7).(9)

S2
n/σ̃2

n ≡ (X2
n − X̄2

n)/σ̃2
n →p 1.(10)

D2
n ≡ [ 1n maxk(Xnk − X̄n)2]/S2

n →p 0.(11)

Mn/X2
n ≡ [max1≤k≤n

1
nX2

nk]/X2
n →p 0.(12)

X2
n/νn = [ 1n

∑n
1 X2

nk]/νn →p 1 if νn is one of u1n, ũ1n, v1n or vn, ṽn, v̌n.(13)

X2
n/νn →p 1 for at least one specific νn > 0 in (8).(14)

Mn/νn →p 0, for any νn as in (8).(15)

nP (X2 > cnνn) → 0 for all c > 0 for any νn as in (8).(16)
Mn/ν′

n →p 0 for any νn > 0 with U(n νn)/νn → 1.(17)

x2
θn/(nνn) → 0 for all 0 < θ ≤ 1, for any νn as in (8).(18)

R(x) ≡ x2P (|X| > x)/U(x) → 0 or R(x−) = x2P (|X| ≥ x)/U(x−) → 0.(19)

r(t) ≡ tK2
|X|(1 − t)/V|X|(t) → 0 or r(t+) = tK2

|X|((1 − t)+)/V!X!(t) → 0.(20)

Moreover, μ̌n or μ̌1n can replace μ̃n or μ̃1n in the definition of Z̄n in (7). Then, by the theorem
of types,

(21) σ̃n/σ̃1n → 1,
√

n(μ̌n − μ̃n)/σ̃n → 0, and
√

n(μ̌1n − μ̃1n)/σ̃1n → 0.

Definition 6.1 (Slowly varying functions) (a) Call L(·) > 0 slowly varying at 0 (written
L ∈ R0 or L ∈ L) provided L(ct)/L(t) → 1 as t → 0, for each c > 0.
(b) The function l(·) > 0 on (0,∞) is called slowly varying at ∞ (written as l ∈ U0) if it
satisfies l(cx)/l(x) → 1 as x → ∞, for each positive number c > 0.
(∗) The functions L(t) = log(1/t) and l(x) = log(x) are the prototypes.

Proposition 6.1 (Equivalent conditions that give a CLT for iid rvs) The following
contains further “best” items from a long list of equivalents. When any one (hence all)
hold, we write either F ∈ D(Normal) or K ∈ D(Normal) and say that F (or,K) is in the
domain of attraction of the normal distribution. (We require that specific an ↘ 0 have
lim(an/an+1) < ∞) in (28), and an = θ/n is one such.) The following are also equivalent to
the conclusions listed in theorem 6.1.

x[M(cx) − M(x)]/U(x) → 0, all c > 1; where M(x) ≡ ∫
[|y|≤x]

|y|dF (y).(22)

U(·) is slowly varying at infinity, where U(x) ≡ ∫
[|y|≤x]

y2dF (y).(23)

V (·) is slowly varying at zero, where V (t) ≡ ∫
dom(t,t)

K2(s)ds(24)

V|X|(·) is slowly varying at zero, where V|X|(t) ≡ ∫
[0,1−t)

K2
|X|(s)ds(25)

σ̃2(·) is slowly varying at zero, where σ̃2(t) ≡ Var[K̃2
t,t(ξ)].(26)

r̃2(t) ≡ tq2(t)/σ̃2(t) → 0 as t → 0. (See (6) for q(·)).(27)
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r̃(an) =
√

anq(an)/σ̃(an) → 0 for one specific an ↘ 0, as above.(28)

tK2
|X|(1 − t)/V|X|(t) → 0 where V|X|(t) ≡ ∫

[0,1−t)
K2

|X|(s)ds.(29)

t[K2
+(t) ∨ K2(1 − t)]/V (t) → 0 where V (t) ≡ ∫

dom(t,t)
K2(s)ds.(30)

t[K2
+(ct) ∨ K2(1 − ct)]/σ̃2(t) → 0 for all 0 < c ≤ 1. (Or,K2

|X|(ct), etc.)(31)

q(θ/n)/[
√

nσ̃(1/n)] → 0 for all θ > 0. (See (6) for q(·)).(32)

[q(θ/n) − q(1/n)]/[
√

nσ̃(1/n)] → 0 for all θ > 0.(33) √
n[m(θ/n) − m(1/n)]/σ̃(1/n) → 0 for all θ > 0. (See (3) for m(·)).(34)

[v(θ/n) − v(1/n)]/[nσ̃2
n(1/n)] → 0 for all θ > 0. (See near (6) for v(·).)(35)

(Recall the Gnedenko–Kolmogorov theorem 6.6.1, (6.6.7), and all of that section.) (For
symmetric Xs ≡ X − X ′ rvs, see definition 8.3.1.)

Corollary 1 (Asymptotic normality of the Student-T statistic) If any one (hence, all)
of (9)–(20) and (23)–(35) holds, then

(36) Tn ≡ √
n{X̄n − μ̃n}/Sn =a

√
n{X̄n − μ̃1n}/Sn →d N(0, 1).

Thus, we have a confidence interval available for any of μ̃n, μ̃1nμ̌n, or μ̌1n that is asymptoti-
cally valid for any df F ∈ D(Normal).

Proof. Consider theorem 6.1 The equivalence of conditions (10)–(20) and (23)–(35) is
specifically developed in section C.1-section C.3, where much longer lists of equivalents are
given. Theorem 6.1 needs only to tie the CLT into this other combined list. This is accom-
plished via comparing (C.1.24)(a) (note also (C.1.24)(c)) with (10.5.32) and (10.5.38) in
theorem 10.5.2. Specifically, (10) ↔ (C.1.60) denotes the correspondence. Likewise, (11) ↔
(C.1.59), (12) ↔ (C.1.58), (13) ↔ ((C.1.51)–(C.1.54), (C.1.32), (C.1.42)), (14) ↔ (C.1.55),
(15) ↔ ((C.1.57) and (C.1.38)), (16) ↔ ((C.1.28) and (C.1.32)), (17) ↔ (C.1.56), (18) ↔
(C.1.43) with r = 2, (19) ↔ (C.1.25), (20) ↔ (C.1.26).

The results in proposition 6.1 correspond to results in section C.2. In section C.2, theorem
C.2.1 has parts (A)−(D) for magnitude W̃insorizing as in (1)–(3), while theorem C.2.2 repeats
much of this for for percentage W̃insorizing as in (4)–(6). We will list A–D and F after an
equation number (with the added symbol “F” referring to the use of the theorem C.2.2 version
of a result (and not the theorem C.2.1 version). Thus (22) ↔ (C.2.15), (23) ↔ (C.2.13), (24)
↔ (C.2.7)F, (25) ↔ (C.2.7), (26) ↔ (C.2.4)F, (27) ↔ (C.2.12)F, (28) ↔ (C.2.12)BF, (29)
↔ (C.2.6), (30) ↔ (C.2.6)F, (31) ↔ (C.2.10)CF, (32) ↔ (C.2.10)BCF, (33) ↔ (C.2.9)BCF,
(34) ↔ (C.2.11)BCF, (35) ↔ (C.2.7)BCF.

As earlier pointed out, many of these equivalences are found in the literature. Having a
different denominator in a condition, or being required to verify it only on some sequence of
values, could be useful. (The author finds all of the conditions in theorem 6.1 and proposition
6.1 to be interesting in their own right.) �
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7 A Converse of the Classical CLT∗

Theorem 7.1 (Domain of normal attraction of the normal df) Consider iid rvs
X1,X2, . . ., and set Zn =

∑n
1 Xk/

√
n. Then:

Zn = Op(1) implies EX1 = 0 and E(X2
1 ) < ∞.(1)

EX1 = 0 and Var[X1] < ∞ imply Zn →d N(0,Var[X1]).(2)

Proof. (Giné and Zinn) Now, (2) was established previously. Consider (1). Fix t > 0.
Let Zε

n ≡ ∑n
1 εkXk/

√
n for iid Rademacher rvs ε1, ε2, . . . that are independent of the Xk’s.

By Giné–Zinn symmetrization of (8.3.10), we have

(a) P (Zε
n > 2λ) ≤ 2 supn≥1 P (Zn > λ);

and thus P (Zε
n > λ) = Op(1) by our hypotheses. Also, Khinchin’s inequality in exercise 8.3.3

(regarding the Xk’s as fixed constants, and with r = 1) gives

(b) Eε|Zε
n| ≥ 1

3X2
n

1/2
= cSn, now with S2

n ≡ X2
n and c = 1

3 .

Applying Paley–Zygmund’s inequality 3.4.9 to Zε
n (conditioned on fixed values of the Xk’s)

for the first inequality and (b) for the second yields

Pε(|Zε
n| > t) ≥

(
(Eε|Zε

n| − t)+

(Eε{(Zε
n)2})1/2

)2

≥
(

(cSn − t)+

Sn

)2

(c)

= c2(1 − t/cSn)21[Sn>t/c] ≥ (c2/4)1[Sn>2t/c].(d)

Taking expectations across the extremes of this inequality with respect to the Xk’s gives the
bound

(e) P (|Zε
n| > t) ≥ (c2/4)P (Sn > 2t/c).

Thus Sn = Op(1), by combining (e), (a), and the hypothesis.
Fix M > 0. The SLLN gives

(f) 1
n

∑n
1 X2

k1[X2
k≤M ] →a.s. E{X2

11[X2
1≤M ]}.

But →a.s. implies →d. Thus, applying (9.1.12) to the open set (t,∞) gives

1(0,E(X2
11[X2

1≤M]))
(t) ≤ lim nP ( 1

n

∑n
1 X2

k1[X2
k≤M ] > t)(g)

≤ sup
n

P ( 1
n

∑n
1 X2

k1[X2
k≤M ] > t), for each t > 0.(h)

It follows that for each t > 0 we have

sup
M>0

1(0,E(X2
11[X2

1≤M]))
(t) ≤ sup

M>0
sup

n
P ( 1

n

∑n
1 X2

k1[X2
k≤M ] > t).(i)

≤ sup
n

P ( 1
n

∑n
1 X2

k > t) ≤ sup
n

P (S2
n > t).(j)

Since Sn = Op(1), we have S2
n = Op(1); and this implies that we can specify a t value of t0

in (j) so large that the right-hand side of (j) at t0 is less than 1/2. But this implies that for
this t0 the indicator function in (i) must equal zero uniformly in M . This means that

(k) sup
M>0

E(X2
11[X2

1≤M ]) ≤ t0.
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But this last supremum equals E(X2
1 ), and hence we must have E(X2

1 ) ≤ t0 < ∞.
To complete the proof, we must now show that E(X1) = 0. Since EX2

1 < ∞, the WLLN
gives X̄n →p EX1. But the hypothesis that Zn = Op(1) implies that X̄n = Zn/

√
n →p 0.

Combining these gives EX1 = 0. �
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8 Bootstrapping o

Suppose X1,X2, . . . are an iid sample from F . Denote the empirical df of the sample Xn ≡
(X1, . . . , Xn)′ by Fn(·). This empirical df Fn has mean X̄n and variance S2

n. Let X∗
n ≡

(X∗
n1, . . . , X

∗
nn) denote an iid sample from Fn, called the bootstrap sample. Let X̄∗

n and S∗
n

denote the mean and the standard deviation of the bootstrap sample. Since the moments
of Fn exist, we will work with normed summands. Note that the normed summands of a
bootstrap sample always constitute a uan array, since

(1) maxk P ∗(|X∗
nk − X̄n|/√

nSn ≥ ε) ≤ Var[X∗
1n]/(ε2nS2

n) = 1/nε2 → 0,

all ε > 0. The maximum normed summand (when forming the bootstrap mean) is

(2) M∗
n ≡ [maxk |X∗

nk − X̄n|]/√
nSn].

Now (by random sampling Xi−X̄n values), we can view M∗
n as the value of either of Mn = M̃n

of (10.5.30) and (10.5.31), and note that (for each 0 < θ ≤ θ0 = 1/2) the quantity xθn/
√

nσ̃n

in (10.6.18) now has a value of Dn, where

(3) Dn ≡ D(Xn) ≡ [maxk |Xk − X̄n|]/√
nSn.

Now, Dn is formed from the original sample, while M∗
n is formed from the bootstrap sample.

The following theorem is in the spirit of result (10.6.9). (Note, moreover, that 0 ≤ M∗
n ≤ Dn,

while P (M∗
n = Dn) ≥ 1 − (1 − 1/n)n → 1 − 1/e > 0 also holds.) The “standardized” rv of

(10.6.9) is now equal to

(4) Z̄∗
n ≡ √

n[X̄∗
n − X̄n]/Sn, and also define T ∗

n ≡ √
n[X̄∗

n − X̄n]/S∗
n.

Agree that the weak bootstrap holds if

(5)
Z̄∗

n →d N(0, 1)
for the joint probability on Ω × Ω∗

n.

Agree that the strong bootstrap holds if

(6)
P (Z̄∗

n ≤ z|X1, . . . , Xn) → P (N(0, 1) ≤ z)
for a.e. given sequence of values of X1,X2, . . . .

Theorem 8.1 (Bootstrapping) Consider Z̄∗
n in the iid case.

(i) The weak bootstrap for Z̄∗
n is equivalent to both

(7) Dn →p 0 and/or σ̃2(·) is slowly varying at zero

and/or any one (hence, all) of the equivalents in (10.6.9)–(10.6.35).
(ii) The strong bootstrap for Z̄∗

n is equivalent to both

(8) Dn → a.s. 0 and/or Var[X1] = σ2
F ∈ (0,∞).

Corollary 1 (i) The weak bootstrap holds for T ∗
n whenever Dn →p 0.

(ii) The strong bootstrap holds for T ∗
n whenever Dn → a.s. 0.
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Proof. Now (10.6.26) and (10.6.11) show that Dn →p 0 is equivalent to σ̃2(·) being slowly
varying. (Thus, (7) is a true statement.) Additionally, it is known from the SLLN of theorem
8.4.1 (or, from exercise 8.4.20(ii)) that Dn → a.s. 0 is equivalent to Var[X1] < ∞. (Thus, (8)
is a true statement.)

We next verify normality. Consider (ii). The Liapunov bound of (10.2.5) is

(a) ‖FZ̄∗
n

− Φ‖ ≤ 8γn/
√

nS3
n ≤ 8[max1≤k≤n |Xk − X̄n|]/Sn = 8Dn → 0

for a.e. sample value of X1,X2, . . .. Thus (6) holds. We next consider (i). Well, P (Dn >
ε/8) < ε for all n ≥ (some nε) means that P (‖FZ̄∗

n
− Φ‖ > ε) < ε for all n ≥ nε. That is, (5)

holds.
Consider the converse of the normality statements. Suppose Z̄∗

n →d N(0, 1) for a fixed
array (x1, . . . , xn, . . .). The summands are necessarily uan by (1). Thus (10.6.18) (for any
θ < 1) is equivalent to Dn → 0 for this same fixed array (as already noted just above (3)).
Thus Dn → a.s. 0 is implied by the strong bootstrap, and Dn →p 0 is implied (by going to
subsequences) by the weak bootstrap.

Consider the corollary next. Use both (10.6.13) with ṽ2
n, and (6.6.4) to conclude that both

(go to subsequences for the second)

S∗
n/Sn →p∗ 1 for a.e. value of (X1,X2, . . .) if Dn → a.s. 0 and(9)

S∗
n/Sn →p×p∗ 1 if Dn →p 0.(10)

These last two results are useful in their own right. �

Exercise 8.1 Establish the details.
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9 Bootstrapping with Slowly ↗ W̃insorization∗

Let kn and k′
n denote W̃insorization numbers, with kn ∧ k′

n → ∞. But suppose the
W̃insorization fractions (an ∨ a′

n) ≡ (kn ∨ k′
n)/n → 0. The CLT necessarily applies to any

such W̃insorized mean from any iid sample! Unfortunately the rvs X̃n and S2
n below are not

statistics–that is, they are not computable from the data. However, the bootstrap version of
this theorem is useful.

Notation 9.1 Let Kn ≡ F−1
n denote the qf associated with some unknown but fixed

nondegenerate df Fn. We can always specify that dom (an, a′
n) ≡ (an, 1 − a′

n) for any
n(an ∧ a′

n) → ∞. However, if Fn−(0) = 0, then specifying that dom (0, a′
n) ≡ [0, 1 − a′

n) is
preferable; and if Fn(0) = 1, then specifying that dom (an, 0) ≡ (an, 1] is preferable. So we
agree to let an ∧ a′

n denote an ∧ a′
n, or a′

n, or an according to the scheme used. Let K̃n(·)
denote KnW̃insorized outside of dom (an, a′

n), and let μ̃n and σ̃2
n denote the mean and vari-

ance of K̃n(ξ). Then the rvs X̃nk ≡ K̃n(ξnk) are row-independent with qf K̃n provided the
ξnk are row-independent Uniform(0, 1) rvs (as in (6.3.5)). Let X̃n ≡ (X̃n1 + · · ·+X̃nn)/n and
S̃2

n ≡ ∑n
1 (X̃nk − X̃n)2/n denote the sample mean and variance. The quantities of primary

interest here are

(1) Z̃n ≡ √
n[X̃n − μ̃n]/σ̃n

∼= (0, 1) and Ẑn ≡ √
n[X̃n − μ̃n]/S̃n.

Define γ̃n ≡ E|X̃n1 − μ̃n|3. Suppose these X̃nk ≡ K̃n(ξnk), with either known or unknown
df Fn, denote our model for our data. Also, let Fn denote the collection of all dfs Fn having
σ̃n > 0. �

Theorem 9.1 (Universal CLT for W̃insorized rvs) Suppose that the W̃insorization fractions
satisfy n(an ∧ a′

n) = (kn ∧ k′
n) → ∞. Then uniformly in Fn:

‖FZ̄n
− Φ‖ ≤ 8γ̃n/

√
nσ̃3

n ≤ 8/
√

n(an ∧ a′
n) = 8/

√
kn ∧ k′

n → 0.(2)

P (|S̃n/σ̃n − 1| ≥ ε) → 0.(3)
‖FẐn

− Φ‖ → 0.(4)

Requiring further that (an ∨ a′
n) → 0 guarantees that every fixed nondegenerate df F is

eventually in all further collections Fn.

Example 9.1 If Fn is Bernoulli (10−10), then n must be huge before σ̃n(an) > 0. �

Proof. That ‖FZ̄n
− Φ‖ ≤ 8γ̃n/

√
nσ̃3

n is immediate from the Berry–Esseen theorem for
iid rvs in (10.2.5). Maximizing one power |K̃n(t) − μ̃n|1 in the integrand of γ̃n (but leaving
|K̃n(t) − μ̃n|2 to integrate) gives

γ̃n/
√

nσ̃3
n ≤ [|K+(1 − a′

n) − μ̃n| ∨ |K−
+ (an) − μ̃n|]/√

nσ̃n

≤ 1/
√

n(an ∧ a′
n) = 1/

√
kn ∧ k′

n → 0,
(5)

as claimed. Thus (2) holds. Let qn ≡ K(1 − a′
n) − K+(an), as usual. Moreover,

(a) S̃2
n/σ̃2

n = {[
∑n

1 (X̃nk − μ̃n)2/n]/σ̃2
n} − {(X̃n − μ̃n)/σ̃n}2 ≡ {I2n} − {I1n}2,
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where Chebyshev’s inequality gives both P (|I1n| ≥ ε) ≤ 1/(ε2n) → 0 and

P (|I2n − 1| ≥ ε) ≤ 1
n2ε2

∑n
1 Var [

(
X̃nk − μ̃n

σ̃n

)2

− 1] ≤
∑n

1 E[(X̃nk − μ̃n)4]
ε2n2σ̃4

n

(b)

≤ 1
ε2n(an ∧ a′

n)
· (an ∧ a′

n)q2n
σ̃2

n

≤ 2
ε2n(an ∧ a′

n)
· 1 =

2
ε2(kn ∧ k′

n)
→ 0(c)

uniformly in all dfs F ∈ Fn. Thus (3) holds. Write

(d) Ẑn =
√

n(X̃n − μ̃n)/S̃n = Z̃n + Z̃n(σ̃n/S̃n − 1).

Note that P (Anε) ≡ P ([|Z̃n| ≤ Mε]) can be made uniformly small via Chebyshev (as just
below (a) ), even though this set depends on F . Also, P (|σ̃n/S̃n − 1| ≥ ε) → 0 uniformly in
F ∈ Fn also (as exhibited in (c) ). Thus (4) follows. �

Notation 9.2 Let Xn ≡ (Xn1, . . . , Xnn)′ denote an iid sample from the qf Kn, and let
X̄n, S2

n, Gn, and Kn(·) denote its sample mean, sample variance, sample third absolute central
moment, and sample qf. Let X̃n ≡ (X̃n1, . . . , X̃nn)′ denote the (kn, k′

n)-W̃insorized sample,
for integers kn and k′

n having kn ∧k′
n going to ∞ (here kn ∧k′

n will denote either kn ∧k′
n, or k′

n

or kn as in the scheme of notation 9.1). Let an ≡ kn/n and a′
n ≡ k′

n/n. Let X̃n, S̃n, G̃n, and
K̃n denote the sample mean, sample variance, sample third central moment, and sample qf
of the population X̃n. Let �X∗

n ≡ (X∗
n1, . . . , X

∗
nn)′ denote the iid bootstrap sample from K̃n(·)

and let X∗
n and S̃∗2

n be the sample mean and sample variance of the bootstrap sample X∗
n.

Let P
∗
n denote the bootstrap probability distribution. Our rvs of interest are

(6) Z̃∗
n ≡ √

n[X̃∗
n − X̃n]/S̃n and Ẑ∗

n ≡ √
n[X̃∗

n − X̃n]/S̃∗
n.

[We saw in the previous section that the sample mean and sample variance X∗
n and S∗2

n of
an iid bootstrap sample from Kn are such that Z̄n ≡ √

n[X∗
n − X̄n]/Sn satisfies the strong

(or the weak) bootstrap if and only if Var[X] ∈ (0,∞) (or F ∈ D(Normal)). But next we
see the glories of Winsorizing! Winsorizing does do what Winsorizing was supposed to do–in
a W̃insorized sample. The bootstrap always works, provided that we Winsorize at least a
slowly increasing number.] �

Theorem 9.2 (Universal strong bootstrap CLT) Suppose the W̃insorization fractions
are such that (kn ∧ k′

n) = n(an ∧ a′
n) → ∞ (as in notation 9.2). Then uniformly in all Xn for

which S̃n > 0, we have that for a.e. Xn, conditional on Xn,

‖FZ̄∗
n

− Φ‖ ≤ 8 G̃n/
√

nS̃3
n ≤ 8/

√
n(an ∧ a′

n) = 8/
√

kn ∧ k′
n → 0,(7)

P
∗
n(|S̄∗

n − S̃n|/S̃n ≥ ε|Xn) → 0,(8)
‖FZ̄∗

n
− Φ‖ → 0, and(9)

lim S̃n > 0 if we also specify that (an ∨ a′
n) → 0,with F nondegenerate.(10)

Proof. This is immediate from the previous theorem. �

Remark 9.1 If we knew how to W̃insorize correctly in theorem 9.1, it would be a useful
theorem. The point is, we do always know how to Winsorize correctly in the bootstrap of
theorem 9.2.
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But should we instead do bootstrap sampling from the empirical qf Kn itself, rather than
K̃n, and then Winsorize this sample? No! Sampling from K̃n gives us the analog of theorem
9.1, while sampling from Kn (it can be shown) does not. (Sampling from Kn could, however,
be shown to work for any qf K in a very large class of distributions.) �

Exercise 9.1 Let ξ1, ξ2, . . . be iid Uniform(0, 1) rvs. Let Xnk ≡ F̌−1
n (ξk) with

(11) F̌−1
n (t) ≡ −

√
t ∨ (1/n)

−1
1(0,1/2)(t) +

√
(1 − t) ∨ (1/n)

−1
1[1/2,1)(t).

Let Vn ≡ Var[Xnk], and let X̄n ≡ ∑n
k=1 Xnk/n. Compute Vn, as well as the higher moments

E|Xnk|3 and EX4
nk.

(a) Show that Zn ≡ √
nX̄n/

√
Vn →d N(0, 1) by verifying the Lindeberg condition.

(b) What conclusion does the Berry–Esseen theorem imply for Zn?
(c) Show that X2

n ≡ ∑n
k=1 X2

nk/n satisfies X̄2
n/Vn →p 1.

(d) Of course, this immediately implies that Tn ≡ √
nX̄n/(X̄2

n)1/2 →d N(0, 1).
(e) Show that (E|Xnk|)2/Vn → 0.

Exercise 9.2 Formulate and solve another example in the spirit of exercise 9.1.

Exercise 9.3 Verify that S2
n ≡ ∑n

k=1(Xnk − X̄n)2/(n − 1) satisfies S2
n/σ̃2

n →p 1, and do it
by verifying a Lindeberg type condition in the context of theorem 10.5.1.



Chapter 11

Infinitely Divisible and Stable
Distributions o

1 Infinitely Divisible Distributions o

Definition 1.1 (Triangular arrays, and the uan condition) A triangular array is just
a collection of rvs Xn1, . . . , Xnn, n ≥ 1, such that the rvs in the nth row are independent.
Call it a uan array if the uniform asymptotic negligibility condition holds, that is

(1) max
1≤k≤n

P (|Xnk| ≥ ε) → 0 as n → ∞ for all ε > 0.

The uan condition is a natural one for preventing one term from dominating the whole sum.

The Problem: Let Sn ≡ Xn1 + · · · + Xnn denote the nth row sum of a uan array.

(i) Find the family of all possible limit laws of Sn.

(ii) Find conditions for convergence to a specified law of this form.
Find specialized results for further restrictions on the uan array.

(a) Suppose variances exist.

(b) Suppose the limit law is normal or Poisson.

(c) Consider Sn = [(X1 + · · · + Xn) − Bn]/An for a singly subscripted sequence of iid
rvs X1, . . . , Xn, . . . .

Some of the results in this chapter are stated with only indications of the proofs. The goal
in this chapter is simply to develop some rough understanding of the subject. We will see in
this section that the set of all possible limit laws of row sums Sn ≡ Xn1 + · · · + Xnn of a uan
array of Xnk’s is exactly the class of infinitely divisible laws, which we now define. �

Definition 1.2 (Infinitely divisible) Call both the rv Y and its distribution infinitely
divisible (id) if for every value of n it is possible to decompose Y into n iid components as

(2) Y ∼= Yn1 + · · · + Ynn for some iid rvs Yn1, · · · , Ynn.

We denote the class of all id distributions by I; the subclass with finite variance is denoted
by I2. (We remark that the Yni’s of this definition form a uan array, but this needs to be
shown; note exercise 1.2.)

c© Springer International Publishing AG 2017
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Exercise 1.1 (Chf expansions for the uan array Xn1 + · · · + Xnn) Consider a uan array of
rvs Xnk, as in (1).
(a) Let Fnk and φnk denote the df and the chf of Xnk. Show that

(3) [max1≤k≤n|φnk(t) − 1|] → 0 uniformly on every finite interval.

[Hint. Integrate over |x| < ε and |x| ≥ ε separately to obtain

|φnk(t) − 1| ≤ δε + 2P (|Xnk| ≥ ε),

from which point the result is minor.] We then define (as will be useful regarding an expansion
of Log (1 + (φnk(·) − 1)) below)

(4) εn(t) ≡ ∑n
k=1|φnk(t) − 1|2.

(b) Verify the elementary fact that if Xnk
∼= (0, σ2

nk), and σ2
n ≡ ∑n

1 σ2
nk ≤ M < ∞ with

[max1≤k≤n σ2
nk] → 0, then εn(t) → 0 uniformly on each finite interval.

Exercise 1.2 (Chf expansions for the uan array Y ∼= Yn1 + · · · + Ynn)
(a) If φ is id, then φ(t) �= 0 for any t.
(b) Let φ and φn denote the chf of Y and of the Ynk’s, respectively, in (2). Show that these
Yn1, . . . , Ynn form a uan array.
(c)∗ If Ym →d Y for id rvs Ym, then Y is id. (Or, give an “approximate proof.”)

Motivation 1.1 (Limits of uan arrays) Suppose that Sn ≡ Xn1 + · · · + Xnn for some
row independent uan array. Let Fnk and φnk denote the df and chf of the rv Xnk. Then
for the function εn(·) of (4) we necessarily have for n sufficiently large (recall that a = b ⊕ c
means that |a − b| ≤ c) that

Log φSn
(t) =

∑n
1Log φnk(t) =

∑n
1Log (1 + (φnk(t) − 1))

=
∑n

1 [φnk(t) − 1] ⊕ εn(t) with εn(·) as in (4)

=
∑n

k=1

∫ ∞
−∞(eitx − 1) dFnk(x) ⊕ εn(t).(5)

If we further assume that all the Xnk’s have 0 means and finite variances, then we can rewrite
expression (5) to obtain

Log φSn
(t) =

n∑

k=1

∫ ∞

−∞

[
eitx − 1 − itx

x2

]

[x2dFnk(x)] ⊕ εn(t).

Thus

(6) Log φSn
(t) =

∫ ∞
−∞ { eitx−1−itx

x2 }[x2
∑n

1 dFnk(x)] ⊕ εn(t)
≡ ∫ ∞

−∞{φ(x, t)}[dKn(x)] ⊕ εn(t).

Observe additionally that

(7)
φ(x, t) is continuous on the (x, t)-plane with
each φ(·, t)bounded and continuous, and equal to − t2/2 at x = 0.

Moreover, take the point of view that

(8) Kn(x) =
∫ x

−∞ y2d
∑n

k=1Fnk(y) = (the contribution to variance up to x).
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It is natural to hope that Sn will converge in distribution to a rv Y whose Log chf is of the
form

(9) Log φY (t) ≡ ∫ ∞
−∞ φ(x, t)dK(t),

provided that Kn →d K.
When means and variances need not exist, we define

(10) α(x) ≡ x2 ∧ 1 and β(x) ≡ (|x| ∧ 1)sign(x).

We then note that (5) can also be manipulated to give

Log φSn
(t) =

∫ ∞

−∞

[
(eitx − 1 − itβ(x))

α(x)

] [

α(x) d

n∑

k=1

Fnk(x)

]

+ it [
∫ ∞

−∞ β(x)d
∑n

k=1 Fnk(x)] ⊕ εn(x)

≡ ∫ ∞
−∞ φ(x, t)dHn(x) + itβn ⊕ εn(x),(11)

where this new φ(x, t) still satisfies (7), and where we now define

(12) Hn(x) =
∫ x

−∞ α(u)d
∑n

k=1Fnk(u) .= (contribution to variance up to x),

at least for x near 0, which is where all the action is in any uan array. It is natural to hope
that Sn will now converge in distribution to a rv Y whose chf is of the form

(13) Log φY (t) ≡ itβ +
∫ ∞

−∞ φ(x, t)dH(x),

provided that Hn →d H and βn → β.
We are thus particularly interested in the behavior of Kn and/or Hn (and εn(·)), both for

the general uan Xnk’s of (1) and for the special uan Ynk’s of (2). �

The next example enables us to show that any chf of the form (9) or (13) is the chf of
some id distribution. The details are left to the easy exercise 1.3.

Example 1.1 (Generalized Poisson and compound Poisson distributions) We suppose that
the rvs Xn1, . . . , Xnn are iid with

Xnk =
{

aj with probability pnj , for 1 ≤ j ≤ J,
0 otherwise,

where npnj → λj ∈ (0,∞) as n → ∞. Then

(14) φSn
(t) → φY (t) ≡ exp(

∑J
j=1λj(eitaj − 1)) =

∏J
j=1 exp(λj(eitaj − 1)).

Thus the limiting distribution is that of Y ≡ ∑J
j=1 ajYj for independent Poisson(λj) rvs Yj .

This is called the generalized Poisson distribution.
Note also that the chf on the right-hand side of (14) satisfies

(15) φY (t) = exp(λ
∑J

j=1pj(eitaj − 1)) = exp(λ(φW (t) − 1)) = Eeit(W1+···+WN ),

where λ ≡ ∑J
j=1 λj , pj ≡ P (W = aj) = λj/λ for 1 ≤ j ≤ J, φW is the chf of W, and

W1,W2, . . . are iid as W and N ∼= Poisson(λ). The distribution of the rv Y is called the com-
pound Poisson distribution, and is distributed as a Poisson sum of independent Multinomial
(k;λ1/λ, . . . , λk/λ) rvs.
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The compound Poisson distribution of (15) is obviously id, as is clearly seen by using λ/n
in place of λ in (15) for the iid Ynk’s of (2). Thus the generalized Poisson distribution in (14)
is also id. It is in the compound Poisson format that we recognize that this distribution is id,
but it will be in its generalized Poisson format that we will put it to work for us. �

Exercise 1.3 Heuristics have suggested that if Y is id, then its chf φ is of the form (13)
(the reader should also note (29), where the normal component of the limit is removed). They
have not yet suggested the converse. However,

iβt +
∫ ∞

−∞ φ(x, t) dν/(x) ← ∑mn

j=1{[eitxj − 1 − itβ(xj)]/α(xj)}ν/(Ij) + iβt

=
∑mn

j=1(e
itxj − 1)λj + itβn(16)

with λj ≡ [ν/(Ij)/α(xj)] and βn ≡ β − ∑mn

j=1ν/(Ij)β(xj)/α(xj)
and appropriate intervals Ij (with xj , Ij and λj all depending on n)

→ (a limit of generalized Poisson rvs)
= (a limit of id rvs) = id,(17)

since the limit under →d of id rvs is also an id rv (as was stated in exercise 1.2(c)). [The
present exercise is to make all this rigorous.]

Theorem 1.1 (Kolmogorov’s representation theorem) Let the rv Y have chf φ and
finite variance. We will use the symbol K to denote a generalized df with 0 = K(−∞) <
K(+∞) < ∞. Now, Y is id if and only if

(18) Log φ(t) = iβt +
∫ ∞

−∞ φ(x, t)dK(x) for some such gdf K and some real β,

with φ(x, t) as in (6) (and (7)). The representation is unique. Moreover, it holds that β = EY
and K(+∞) = Var[Y ].

Theorem 1.2 (Bounded variances limit theorem for I2) (a) We start with a triangular
array of row-independent rvs Xnk

∼= (μnk, σ2
nk) having

(19) max
1≤k≤n

σ2
nk → 0 and σ2

n ≡ ∑n
k=1σ

2
nk ≤ M < ∞

(such a triangular array is necessarily uan). Then

(20) Sn ≡
n∑

k=1

Xnk →d Y,

where the limiting rv necessarily satisfies

(21) Log φY (t) = iβt +
∫ ∞

−∞

[
eitx − 1 − itx

x2

]

dK(x) = itβ +
∫ ∞

−∞
φ(x, t)dK(t)

with K(+∞) ≤ lim supσ2
n, if and only if

(22) μn ≡
n∑

k=1

μnk → β and Kn(·) ≡
n∑

k=1

∫ ·

−∞
y2dFnk(y + μnk) →sd K(·).

If Kn(∞) = σ2
n ≤ M < ∞ is replaced by Kn(+∞) = σ2

n → Var[Y ] < ∞, then we can claim
that Var[Y ] = K(+∞) = lim σ2

n, and we will write Kn →d K.
(b) The family of all possible limit laws of such Sn is the family I2 of all possible infinitely
divisible laws that have finite variance.
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Proof. (If one grants exercises 1.1 and 1.3, then the proof we give will be complete. These
exercises are straightforward.) Any chf of the form (18) or (21) is id, by exercise 1.3. Differen-
tiating twice in (21) shows that this chf has mean β and variance

∫ ∞
−∞ 1dK = K(+∞). For the

uniqueness of the representation, just differentiate (21) twice, and thus obtain −(Log φ(t))′′ =∫
eitxdK(x) subject to 0 = K(−∞) < K(+∞) = Var[Y ]; then applying the ordinary inversion

formula to
∫

eitxdK(x) gives K in terms of − (Log φ)′′.
It remains to show that any id Y with mean 0 and finite variance has a chf of the form (18)

with β = 0. Reconsider (6). For the special uan Ynk’s of (2) we have Var[Ynk] = Var[Y ]/n,
so that exercise 1.1(b) implies that εn(t) → 0 uniformly on all finite intervals. Moreover, the
family of functions φ(·, t) in (7) are bounded and continuous functions that converge to 0 as
|x| → ∞. Applying the Helly–Bray exercise 11.1.1 to each φ(·, t) in (6) shows (for the first
equality we need only recall that Y ∼= Tn ≡ Yn1 + · · · + Ynn) that

Log φY (t) = Log φTn
(t) → ∫

φ(x, t)dK(x), provided that Kn →sd K.(a)

So we must show that Kn →sd K. Now, every subsequence n′ has a further n′′ on which
Kn′′ →sd (some K). But every resulting such

∫
φ(x, t)dK(x) with a limiting K inserted must

equal Log φY , and thus the first paragraph of this proof implies that K has 0 = K(−∞) <
K(+∞) = Var[Y ]. In fact, all possible subsequential limits K must be equal, by the unique-
ness of the representation in equation (21). Thus Kn →sd K on the whole sequence n. Thus
Log φY =

∫
φ(x, t)dK(t). This completes the proof of theorem 1.1.

We now turn to the proof of theorem 1.2. Under the basic hypothesis (19), we have
in (6) that εn(t) → 0 uniformly on all finite intervals (by exercise 1.1(b)). Thus whenever
Kn →sd (some K) and μn → μ, we have by applying Helly–Bray to each φ(·, t) in (7) that
Log φSn

(t) → Log φ(t) for each t, for the φ of (21) with β = μ. Thus Sn →d Y for the id Y
with chf given by (21).

Suppose Sn →d Y . We argue (as in the proof of theorem 1.1) that each subsequence
n′ has a further n′′ on which the Kn of (6) satisfies Kn′′ →sd (the same K) and μn′′ →
(the same μ). Thus Kn →sd K and μn → μ, using theorem 1.1 for this uniqueness. That is,
Log φSn

(t) → Log φ(t) for the φ of (21) having this K and μ. But Log φSn
(t) → Log φY (t) also.

Thus Log φY = Log φ. Moreover, K(+∞) = Var[Y ] ≤ lim inf Var[Sn] = lim inf
∑n

1 σ2
nk ≤ M

(using Fatou and a Skorokhod representation for which S∗
n →a.s. Y ∗). If

Kn(+∞) = Var[Sn] = σ2
n → Var[Y ] = K(+∞),(b)

then Kn →sd K reasonably becomes Kn →d K. �

Example 1.2 (Normal convergence)
(i) (Representation) The N(0, 1) chf φ has

Log φ(t) = −t2/2.

Thus μ = 0 and K = 1[0,∞).

(ii) (Lindeberg–Feller theorem) Suppose the triangular array with Xnk
∼= (μnk, σ2

nk) satisfies
μnk = 0 and σ2

n ≡ ∑
σ2

nk = 1 for all n. Then

(23) Sn ≡ ∑n
k=1Xnk →d N(0, 1) and [max1≤k≤nσ2

nk] → 0

if and only if

(24)
∑n

k=1

∫
[|x|≥∈]

x2dFnk(x) → 0 for all ε > 0. �
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Exercise 1.4 Verify example 1.2.

Example 1.3 (Poisson convergence)
(i) (Representation) The Poisson(λ) chf φ has

Log φ(t) = λ(eit − 1) = itλ + λ(eit − 1 − it).

Thus μ = λ and K = λ1[1,∞).

(ii) (Convergence) Suppose the triangular array with Xnk
∼= (μnk, σ2

nk) satisfies
[max1≤k≤n σ2

nk] → 0, and
∑n

1 σ2
nk → λ ∈ (0,∞). Then

(25) Sn ≡ ∑n
1Xnk →d Poisson(λ)

if and only if

(26)
∑n

k=1μnk → λ and
∑n

k=1

∫
[|x−1|≥∈]

x2dFnk(x + μnk) → 0. �

Exercise 1.5 Verify example 1.3.

Exercise 1.6 (Decomposition of normal and Poisson distributions) Suppose that X ∼= X1+
X2, where X1 and X2 are independent I2 rvs. Then:

X normal implies that X1 and X2 are both normal.(27)
X Poisson implies that X1 and X2 are both Poisson.(28)

[This is also true if I replaces I2.]

Exercise 1.7 If φ is a chf, then exp(c(φ−1)) is an id chf for all c > 0. Thus any chf such as
the one in (15) represents the log of an id chf. (We do not make explicit use of this anywhere.)

From here to the end of this section we mainly just state results, mostly by analogy.

Theorem 1.3 (Lévy–Khinchin representation theorem) Let Y have chf φ. Then Y is
infinitely divisible (id) if and only if

(29) Log φ(t) = iβt +
∫ ∞

−∞
φ(x, t)dH(x) = iβt − σ2t2/2 +

∫ ∞

−∞
φ(x, t) dν(x),

where σ2 = 
H(0) and ν ≡ H − σ21[0,∞),

for φ(x, t) as in (11) (and (7)). The representation is unique. (We write Y =r (β,H) to
denote this representation. We will think of iβt − σ2t2/2 as the normal component of the
limit law.)

Theorem 1.4 (General limit theorem for I) Let the rv’s Xnk form a uan triangular
array. Then

(30) Sn ≡
n∑

k=1

Xnk =
n∑

k=1

(Xnk − bnk) +
n∑

k=1

bnk →d Y,

where necessarily

(31) Log φY (t) = iβt +
∫ ∞

−∞
[(eitx − 1 − itβ(x))/α(x)]dH(x),
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if and only if for some finite-measure generalized df H and for some real β we have

(32) βn → β and Hn →d H

where

(33)
βn ≡ ∑n

k=1[bnk +
∫ ∞

−∞ β(x)dFnk(x + bnk)] and

Hn(·) =
∑n

k=1

∫ ·
−∞ α(y)dFnk(y + bnk),

and where bnk ≡ EXnk1(−δ,δ)(Xnk), with δ > 0 arbitrary but fixed. The family of possible
limit laws of such Sn is the family I of all possible infinitely divisible distributions.

Theorem 1.5 (Normal limits of uan arrays)
(a) Let Sn ≡ Xn1 + · · · + Xnn for iid Xnk’s, and suppose that Sn →d S. Then

(34) Mn →p 0 if and only if S is normal.

(b) Let Sn ≡ Xn1 + · · · + Xnn for independent Xnk’s, and suppose Sn →d S. Then

(35) Mn →p 0 if and only if S is normal and the Xnk’s are uan.

(Compare this to (10.5.5).)

Exercise 1.8 (a) Show that all Gamma(r, ν) rvs are infinitely divisible.
(b) Show that an infinitely divisible rv can not be concentrated on a finite interval.

Exercise 1.9 Use theorem 1.4 to prove the asymptotic normality condition of theorem
10.5.1.

Exercise 1.10 Use theorem 1.4 to prove theorem 1.5.

Exercise 1.11 Use chfs to determine necessary and sufficient conditions under which the
WLLN will hold.
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2 Stable Distributions o

Definition 2.1 (Domain of attraction) Let X,X1,X2, . . . be iid F . Suppose an An > 0
and a Bn exist such that Sn ≡ X1 + · · · + Xn satisfies

(1) (Sn − Bn)/An →d Y ∼= G.

Then F is said to belong to the domain of attraction of G, and we write F ∈ D(G). We
also say that G possesses a domain of attraction. [If Var[X] < ∞ above, then necessarily
(Sn − nEX)/

√
n →d N(0,Var[X]) by the ordinary CLT; thus the only new and interesting

cases have EX2 = ∞.]

Definition 2.2 (Stable law) Call a df G stable if for all n there exist constants an > 0
and bn with

(2) Sn
∼= anX + bn, where X,X1, . . . , Xn are iid as G.

We call G strictly stable if we may take all bn = 0 in (2).

Theorem 2.1 (Only stable dfs have domains of attraction) A df G will possess a
domain of attraction if and only if G has a stable distribution. Moreover, the an of (2) must
satisfy

(3) an = n1/α for some 0 < α ≤ 2.

We call α the characteristic exponent of G. [To compare with section C.4 results for R−β

with β > 0, we define

(4) β ≡ (2/α) − 1 or α = 2/(β + 1),

where 0 < α ≤ 2 and 0 ≤ β < ∞.]

Definition 2.3 (Basic domain of attraction) The df F is said to belong to the basic
domain of attraction of G (or the domain of normal attraction of G), which is denoted by
writing F ∈ DN (G), provided An = (constant)×n1/α works in (1).

Remark 2.1 (a) Suppose that G1 and G2 are both of the same type (in the sense of
definition 9.1.4). Then:

(5)
D(G1) = D(G2) and DN (G1) = DN (G2),

G ∈ D(G) if G is stable.

(Thus there is a domain of attraction for the normal type, but this is not so for a particular
normal df.) �

Proof. Suppose G is stable. Then Sn
∼= anX + bn, or (Sn − bn)/an

∼= X ∼= G for all n.
Thus G ∈ D(G).

Suppose G possesses a domain of attraction. Thus there exists X1,X2, . . . iid F where
F ∈ D(G). Hence for some An > 0 and some Bn we have

Tn ≡ (X1 + · · · + Xn − Bn)/An →d Y ∼= G.(a)
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Replace n by nk in (a) and obtain

Tnk =
X1 + · · · + Xnk − Bnk

Ank

=
[
(X1 + · · · + Xn) − Bn

An
+ · · · +

(Xn(k−1)+1 + · · · + Xnk) − Bn

An

]
An

Ank
(b)

− (Bnk − kBn)/Ank,

which can be rewritten in the more useful format

Ank

An
Tnk +

[
Bnk − kBn

An

]

=
[
X1 + · · · + Xn − Bn

An

]

+ · · · +
[
Xn(k−1)+1 + · · · + Xnk − Bn

An

]

→ Y1 + · · · + Yk for Y1, . . . , Yk iid as G.(c)

Let k be fixed. Recall that the convergence of types theorem states that if

Tnk →d Y (true, from (a)) and also
ankTnk + bnk →d Y1 + · · · + Yk (true, from (c)),

(d)

with ank ≡ Ank/An and bnk ≡ (Bnk − kBn)/An, then it must be that

ank → (some ak) ∈ (0,∞), bnk → (some bk) ∈ (−∞,∞), where(e)

Y1 + · · · + Yk
∼= akY + bk.(f)

From (f), we see that G is stable. This completes the proof of the first statement.
Now we further exploit equation (e). From it we determine that

amk = lim
n→∞

Anmk

An
= lim

n→∞
Anmk

Anm

Anm

An
= akam for all m, k ≥ 1.(g)

We now let Z ≡ Y − Y ′ and Zn ≡ Yn − Y ′
n, where Y, Y ′, Y1, Y

′
1 , . . . are iid as G. Then the rvs

Z and Zn are symmetric, and (1) shows that

Z1 + · · · + Zn
∼= anZ for the same an’s as in (2).(h)

Thus for some x > 0 fixed we have

P (Z > (am/am+n)x) = P (am+nZ > amx)
= P (Z1 + · · · + Zm+n > amx) by (h)
= P ((Z1 + · · · + Zm) + (Zm+1 + · · · + Zm+n) > amx)
= P (amZ1 + anZ2 > amx) by (h)
≥ P (anZ2 ≥ 0 and amZ1 > amx) = P (Z2 ≥ 0)P (Z1 > x)
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≥ (some δ) > 0 for all m and n (by choice of x).(i)

Thus am/am+n stays bounded away from ∞ for all m and n. Letting m = kI and m + n =
(k + 1)I , we have from (h) that

(ak/ak+1)I = akI /a(k+1)I = am/am+n

≤ (some M) < ∞ for all k and I.(j)

Thus (ak/ak+1) ≤ 1 for all k; that is,

an is ↗, where amk = amak for all m, k ≥ 1,(k)

was shown in (a). Thus exercise 2.1 below shows that an = n1/α for some α > 0. Suppose that
α > 2. Then Var[Y ] < ∞ by exercise 2.2 below. We can thus claim that

√
n(Ȳ −μ) →d N(0, 1)

by the ordinary CLT. Thus An =
√

n and ak =
√

k work above. By the convergence of types
theorem, there are no other choices. That is, when α > 2, then only α = 2 works. (See
Breiman (1968, p. 202).) �

Exercise 2.1 Suppose that an ↗ with a = 1, and suppose that amk = amak for all
k,m ≥ 1. Then show that necessarily an = n1/α for some α ≥ 0.

Exercise 2.2 (Moments) Suppose that Y ∼= G is stable with characteristic exponent α.
Then

(6) E|Y |r < ∞ for all 0 < r < α.

[Hint. Use the inequalities of section 8.3 to show that nP (|X| > anx) is bounded in n, where
an ≡ n1/α. Then bound the appropriate integral.]

Exercise 2.3 (Strictly stable dfs) Suppose that G is stable with characteristic exponent
α �= 1. Then there is a number b such that G(·+ b) is strictly stable. [Hint. Show that b must
satisfy b′

n ≡ bn + (an − n)b = 0 for all n, and specify b such that b′
2 = 0. Or else b′

2 = b = 0
immediately.]

Example 2.1 (Hitting time as a stable law) Watch Brownian motion S until it first attains
height a. The time this takes is denoted by Ta. According to the strong Markov property,

(7) Tna
∼= T (1)

a + · · · + T (n)
a with T (1)

a , . . . , T (n)
a iid as Ta.

Checking the covariance functions, we see that S(a2·)/a ∼= S on [0,∞), and thus Ta
∼= a2T1.

Putting these last two equations together gives

(8) T (1)
a + · · · + T (n)

a
∼= Tna

∼= n2a2T1
∼= n2Ta;

thus Ta is strictly stable with α = 1
2 . From (12.7.3), P (Ta < t) = 2[1 − Φ(a/

√
t)] for the

N(0, 1) df Φ. Thus the df Fa and the density fa of Ta are given by

(9) Fa(x) = 2[1 − Φ(a/
√

x)] and fa(x) =
a√

2πx3/2
e−a2/(2x) for x > 0. �
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3 Characterizing Stable Laws o

Theorem 3.1 (General stable chfs) Suppose that Y ∼= G is stable. Then either Y is a
normal rv or there is a number 0 < α < 2 and constants m1,m2 ≥ 0 and β for which

(1)
Log φ(t) = iβt +m1

∫ ∞
0

[eitx − 1 − itα(x)] 1
x1+α dx

+m2

∫ 0

−∞[eitx − 1 − itα(x)] 1
|x|1+α dx.

For 0 < α < 1 or 1 < α < 2 this can be put in the form

(2) Log φ(t) = idt − c|t|α × (1 + iθ Cα sign(t)),

where d ∈ (−∞,∞), c > 0, |θ| ≤ 1, and Cα ≡ tan(πα/2). For α = 1 the form is

(3) Log φ(t) = idt − c|t| × (1 + iθ sign(t) log |t|)
with c, d, θ as above. In fact, θ = (m1−m2)/(m1+m2) measures skewness, while the constants
d and (1/c)(1/α) are just location and scale parameters. Then let p ≡ m1/(m1 + m2) =
(1 + θ)/2.

Corollary 1 (Symmetric stable chfs) φ(·) is the chf of a nondegenerate and symmetric
stable distribution with characteristic exponent α if and only if

(4) φ(t) = exp(−c|t|α) for some 0 < α ≤ 2 and some c > 0.

Proof. We give only a direct proof of the corollary. This keeps things simple. Let Y ∼= G
be strictly stable with chf φ and let ψ ≡ Log φ. Since Sn

∼= anY , we have φn(t) = φ(ant).
Thus (modulo 2πi)

nψ(t) = ψ(ant) = ψ(am(an/am)t) = mψ((an/am)t)

= mψ((n/m)1/αt) by (11.2.3).(a)

Thus for all rationals r > 0 we have shown that

(5) rψ(t) = ψ(r1/αt) modulo 2πi,

and by continuity, (5) also holds for all real r > 0. Set t = 1 and r = τα in (5) for

ψ(τ) = cτα for all τ > 0, with c ≡ ψ(1).

≡ (−c1 + ic2)τα.(b)

It must be true that c1 > 0; if c1 < 0 were true, then we would have the impossible situation
that φ(τ) → ∞ as τ → ∞, while c1 = 0 would imply that |φ(τ)| = 1 for all τ , and that Y is
degenerate by proposition 9.8.2. Thus for some c1 > 0, for t > 0 we must have

φ(t) = exp[(−c1 + ic2)tα], with φ(−t) = φ(t).(c)

We can summarize the two equations in (c) as

φ(t) = exp(−c1|t|α × [1 − i(c2/c1) sign(t)]).(d)

Since G is symmetric, φ is real, and so c2 = 0. Thus (5) holds. All that remains is to be sure
that φ is a valid chf. This follows from the next two exercises.

If α �= 1, then exercise 11.2.3 shows that φ(t) exp(idt) is a strictly stable chf for some
real d. Thus it satisfies (d), which is almost (2). �
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Exercise 3.1 Suppose that X ∼= F with chf φ that satisfies

(6) φ(t) = 1 − c|t|α + O(t2) as t → 0

for some fixed α ∈ (0, 2). Suppose now that X1, . . . , Xn are iid as F . Show that the properly
normed sum satisfies Sn/n1/α →d Z where φZ(t) = exp(−c|t|α).

Exercise 3.2 Suppose X has density f(x) = (α/2)|x|−(α+1)×1(1,∞)(|x|) with the constant
α ∈ (0, 2). Show that φ satisfies (6).

Exercise 3.3 (Holtzmark–Chandrasekar) Let Xn1, . . . , Xnn be iid Uniform(−n, n). We now
let 0 < 1/p < 2 and M > 0 be fixed. Let

Zn ≡
∑n

k=1
Znk ≡

∑n

k=1
M sign(Xnk)/|Xnk|p.

Regard Zn as the sum of forces exerted on a unit mass at the origin by n stars of mass M that
are uniformly distributed on (−n, n) in a universe where an inverse pth power of attraction
is operating. Show that Zn →d Z, where the chf of Z is given by φZ(t) = exp(−c|t|α) for
appropriate c and α.

Exercise 3.4 Show that (1) can be put into the form (2) or (3).
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4 The Domain of Attraction of a Stable Law o

We now merely state some results that assert when convergence in distribution to a general
stable law takes place.

Theorem 4.1 (Stable domain of attraction with 0 < α < 2)
(a) Now, F ∈ D(G) for some stable G with characteristic exponent α ∈ (0, 2) if and only if
(as x → ∞) both

(1) U(x) ≡ ∫
[|y|≤x]

y2 dF (y) ∈ U2−α [for α = 2/(β + 1)]

(or equivalently)

(2) V (t) ≡ ∫ 1−t

t
K2(s)ds ∈ R−β [for β ≡ (2 − α)/α])

and also

(3) P (X > x)/P (|X| > x) → (some p) ∈ [0, 1].

Moreover, α and p determine G up to type, as follows from the theorem of types.
(b) The constants An of (Sn − Bn)/An →d Y ∼= G necessarily satisfy (according to the
theorem of types)

(4) nU(An)/A2
n ∼ nA−α

n L(An) → 1 for L(·) slowly varying at ∞.

(c) The following are equivalent (for some constant 0 < α < 2, and then for some c > 0 and
some 0 ≤ p ≤ 1):

F ∈ DN (G) for some stable G with characteristic exponent α.(5)
xαP (X > x) → cp and xαP (X < −x) → c(1 − p) as x → ∞.(6)
t|K(1 − t)|α → cp and t|K(t)|α → c(1 − p) as t → 0.(7)

Theorem 4.2 (Domain of attraction of the normal) F ∈ D(Normal) if and only if either
(hence, both) U(·) is slowly varying at ∞ or V (·) is slowly varying at 0. (Theorem 10.6.1 and
proposition 10.6.1 give a myriad of other equivalences.)

Exercise 4.1 Use section C.4 to show that for 0 < α < 2 the following are equivalent
conditions:

U ∈ U2−α.(8)
P (|X| > x) ∈ Uα.(9)
[x2P (|X| > x)/

∫
[|y|≤x]

y2 dF (y)] → 2−α
α as x → ∞.(10)

Other characterizations in terms of K can be found in or derived from theorem C.4.2. The
theorems and this remark can also be proved via the Lévy–Khinchin theorem and results
about regularly varying functions.

Exercise 4.2 (a) State necessary and sufficient conditions on F for F ∈ D(Cauchy).
(b) Do the same for F ∈ DN (Cauchy).
(c) Show by example that DN (Cauchy) is a proper subset of D(Cauchy).
(d) Observe that a symmetric df F (·) is in D(Cauchy) if and only if the tail function defined
by xP (X > x) = x(1 − F (x)) is slowly varying. (Recall the tail function τ(.) of Feller used
in the WLLN in (8.4.2).)
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Exercise 4.3 (a) Show by example that the domain of normal attraction of the normal
law DN (N(0, 1)) is a proper subset of the domain of attraction of the normal law D(N(0, 1)).
To this end, let X1,X2, . . . be iid with density

f(x) = |x|−3 × (2 log |x|) × 1[1,∞)(|x|)

and consider Sn/(
√

n log n).
(b) Give a second example that works.
(c) For both examples, determine an An that works.

Exercise 4.4 (a) Consider the context of theorem 11.4.2. The constants An used for
(Sn − Bn)/An →d Y ∼= N(0, 1) must satisfy n σ̃2

n/A2
n → 1 (equivalently, it must hold that

nU(An)/A2
n → 1 as n → ∞) as follows from the theorem of types.

(b) It is also true that

(11) F ∈ DN (Normal) if and only if σ2 < ∞.

(Whenσ2 ∈ (0,∞), we know already that
√

n(X̄n − μ)/σ → N(0, 1).)
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5 Gamma Approximation ∗

If the underlying summands Xnk in a CLT approximation are symmetric, then a normal
approximation may seem particularly appropriate. But what if the underlying distribution is
positively skewed? (If X is negatively skewed, we just consider −X instead.) Consider the
rv Gr ≡ [Gamma(r) − r]/

√
r ∼= (0, 1), where r is chosen to make the third cumulants match.

Might this not give a better approximation for small n? And since Gr →d N(0, 1) as r → ∞,
there is no contradiction at the limit. We will show that this recipe works. The fact that the
sum of independent gammas is again gamma is crucial to the technical details of the proof.

Can we go one step further and match the first four cumulants? Yes, because sums of
independent rvs that are distributed as “gamma-gamma” again belong to the same family.
[This will also work within our ability to match up the cumulants.]

The skewness γ1 ≡ μ3/σ3 = E(X − μ)3/σ3 is defined to be the third cumulant of the
standardized rv, and the tail heaviness (or kurtosis) is the fourth such cumulant defined by
γ2 ≡ μ4/σ4 − 3 = E(X − μ)4/σ4 − 3. We will use these formulas with μ = 0 and σ2 = 1, so
that the skewness becomes μ3 and the tail heaviness becomes μ4 − 3. For the standardized
gamma, the first four cumulants are given by

(1) Gr ≡ Gamma(r) − r√
r

∼=
(

0, 1;
2√
r
,
6
r

)

.

For the difference of two independent gammas we let p + q = 1 and c, d > 0 and set u ≡ p/c
and v ≡ q/d, and then further define r = c2n and s = d2n and set

(2)
Gr,s ≡ −√

pGc2n +
√

qGd2n
∼=

(

0, 1; 2√
n
(−p3/2

c + q3/2

d ), 6
n (p2

c2 + q2

d2 )

)

=

(

0, 1; 2√
n
(−√

pu +
√

qv), 6
n (u2 + v2)

)

.

[This parameterization can match all (μ3, μ4) pairs for which μ2
3 ≤ 2

3 (μ4 − 3), all of which
have heavier tails than normal distributions.]

Theorem 5.1 (Gamma approximation; the GLT) Let Xn1, . . . , Xnn be iid as an X
having df F with cumulants (0, 1;μ3, μ4 − 3), where μ3 ∈ (0,∞), so that

(3) Zn ≡ 1√
n

∑n

k=1
Xnk

∼= (0, 1;μ3/
√

n, (μ4 − 3)/n).

Assume either (4)(a) for the df results below or (4)(b) for the density results, where:

(4) (a) |φX(t)| → 0 as |t| → ∞ or (b)
∫ ∞

−∞ |φX(t)|dt < ∞.

(i) Let r ≡ 4n/μ2
3, so that Gr ≡ [Gamma(r)− r]/

√
r ∼= (0, 1;μ3/

√
n, 3μ2

3/2n). Then for some
constants CF or CF,n → 0 (that may depend on the df of (X − μ)/σ),

‖FZn
− FGr

‖ ≤ CF /n and ‖fZn
− fGr

‖ ≤ CF /n when μ4 < ∞,(5)

‖FZn
− FGr

‖ ≤ CF,n/
√

n and ‖fZn
− fGr

‖ ≤ CF,n/
√

n when μ3 ∈ (0,∞).(6)

(ii) Suppose r and s can be specified so Gr,s
∼= (0, 1;μ3/

√
n, (μ4 − 3)/n). Then n3/2 can

replace n in (5) when μ5 < ∞. And n can replace
√

n in (6) when μ4 < ∞.
(iii) The density gr(·) of Gr(·) may replace the N(0, 1) density in the local limit theorems of
section 10.3.
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Proof. We initially approximate the distribution of Zn by that of

Z̄n ≡ 1√
2
N(0, 1) +

1√
2
[Gamma(r̄) − r̄]/

√
r̄ with r̄ ≡ n/(2μ2

3)(a)

∼= 1√
2
(0, 1; 0, 0) +

1√
2
(0, 1; 2/

√
r̄, 6/r̄) = (0, 1; 1/

√
2r̄, 3/2r̄)

∼= (0, 1;μ3/
√

n, 3μ2
3/n) matching (3) to three cumulants(b)

≡ 1√
n

∑n
1 [

1√
2
Nk +

1√
2
Wk] ≡ 1√

n

∑n
1Yk,(c)

where the Nk
∼= N(0, 1) and the Wk

∼= [Gamma(a)−a]/
√

a with a = 1/(2μ2
3) are independent.

Let φY (t) ≡ EeitY and ψY ≡ log φY , with φX and ψX defined analogously. Then

|φZn
(t) − φZ̄n

(t)| = |φZ̄n
(t)| × |en[ψX(t/

√
n)−ψY (t/

√
n)] − 1|

≡ |φZ̄n
(t)| × |ez − 1|

≤ |φN(0,1)(t/
√

2)| × |φΣWk/
√

n
(t/

√
2)| × |z|e|z|(d)

≤ e−t2/4 × 1 × |z|e|z|.(e)

Here (provided that |t|/√
n is sufficiently small for the expansion of (9.6.22) to be valid) the

inequality (9.6.22) then gives (since the first three cumulants of X and Y match)

|z| = n|ψX(t/
√

n) − ψY (t/
√

n)| ≤ t4 c̄4 [EX4 + EY 4]/n(f)

≤ t4c̄4[(3 + (μ4 − 3)) + (3 + 3μ2
3)]/n ≤ t47c̄4μ

3/2
4 /n

≡ t4c2/n(g)

≤ t2/9 for |t| ≤ √
n/3c.(h)

Plugging both (g) and (h) into (e) gives

|φZn
(t) − φZ̄n

(t)| ≤ (c2t4/n) exp(−(5/36)t2) for |t| ≤ (some d)
√

n,(i)

where c and d depend on the β2 value of (X − μ)/σ. [The specification in (a) that Z̄n has
a normal component is not natural or practically useful, but it delivers the technically lovely
exponential bound component exp(−t2/4) in both (d) and (e). Since (a) is not useful for
a practical approximation, we will overcome this objection by doing the approximation (a)
again—to difference it out. (I believe this whole approach may be new.)]

Let Gn1, . . . , Gnn be iid as [Gamma (b) − b] /
√

b for b ≡ 4/μ2
3. Then

Gr ≡ 1√
n

∑n

1
Gnk

∼= [Gamma(r) − r]/
√

r with r ≡ 4n/μ2
3(j)

∼= (0, 1;μ3/
√

n, (3/2)μ2
3/n), matching (3) to three cumulants.(k)

We now approximate Gr by the Z̄n of (a) [just as earlier we approximated Zn by the Z̄n of
(a)]. This gives (with generic constants c and d)

|φGr
(t) − φZ̄n

(t)| ≤ (c2t4/n) exp(−(5/36)t2) for |t| ≤ d
√

n.(l)
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Combining (i) and (1) gives

(7) |φZn
(t) − φGr

(t)| ≤ (ct4/n) exp(−(5/36)t2) for |t| ≤ d
√

n,

where the generic c and d may depend on the df of (X − μ)/σ.
Consider (5)(b). The inversion formula (using (9.6.22) to expand) gives

|fZn
(x) − fGr

(x)| =
1
2π

| ∫ ∞
−∞ e−itx[φZn

(t) − φGr
(t)]dt| ≤ I1n + I2n + I3n

≡ ∫
[|t|≤d

√
n]

|φZn
(t) − φGr

(t)|dt(m)

+
∫
[|t|>d

√
n]

|φZn
(t)|dt +

∫
[|t|>d

√
n]

|φGr
(t)|dt.

Now (7) bounds the integrand of the lead term to give

I1n ≤ ∫
(ct4/n) exp(−(5/36)t2)dt ≤ c/n.(n)

Since
∫ |φX(t)|dt < ∞ by (4)(b), the density inversion formula (9.4.9) shows that X has a

density fX(·). Since X is thus not distributed on a grid (and likewise Y ), proposition 9.8.2
gives

θ ≡ ‖φX‖∞
d ∨ ‖φW ‖∞

d < 1.

Thus the second term in (m) satisfies

I2n =
∫
[|t|>d

√
n]

|φX(t/
√

n)|ndt ≤ √
n

∫
[|s|>d]

|φX(s)|nds

≤ θn−1
√

n
∫ ∞

−∞ |φX(s)|ds = o(n−r), for any r > 0,(o)

since the θn term goes to 0 geometrically. Likewise, I3n = o(n−r), for any r > 0, since |φG|k
satisfies (4)(b), for some k. Combine (n) and (o) into (m) to get (5)(b).

Consider (5)(a). We will apply Esseen’s lemma. Thus

‖FZn
(x) − FGr

(x)‖ ≡ I ′
1n + I ′

2n + I ′
3n

≤ {∫
[|t|≤d

√
n]

+
∫
[d

√
n<|t|≤dn]

} 1
|t| |φZn

(t) − φGr
(t)|dt + 24‖gr‖/πdn(p)

≤ ∫
(c|t|3/n) exp(−(5/36)t2)dt + 2(dn/d

√
n)θn + 24‖gr‖/(πdn)(q)

= O(1/n),

where (4)(a) is now used to obtain θn.
Consider (6), when μ4 is not assumed finite. Use of (9.6.22) at line (f) must be replaced

by use of (9.6.21). The |t|3E|X|3 in (9.6.22) would give a bound of only CF /
√

n at line (m)
of the current proof; but the added δ3(t/

√
n) term in (9.6.21) that is valid on |t| ≤ d

√
n (now

with a tiny d) allows a CF to be replaced by a CF,n → 0. Dominated convergence is used for
this, with dominating function guaranteed by E|X|3 < ∞.

If we knew any appropriate two-parameter family closed under convolution, we could
choose those two parameters to match both third and fourth cumulants. Then CF /n3/2

under μ5 < ∞ and CF,n/n under μ4 < ∞ would be possible. The proof is essentially
unchanged, and needs no further comment. The difference of two gammas can be specified
in several different ways. All work. The only question is which has the greatest coverage of
the (skewness, kurtosis)-plane. Using gammas, we seem stuck with positive kurtosis, which
leaves out some of the least important situations. [Edgeworth expansions allow us to cover
the whole (skewness, kurtosis)-plane, but they have some other deficiencies. For instance, the
Edgeworth approximation to a df or density is not necessarily a df or density itself.] �
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Poisson Approximation

Most discrete distributions we care about live on the integers, and the write-up here will reflect
that fact and make this case fit our notation with the least effort. Rather than approximating
sums of such rvs X by an appropriate gamma with a continuity correction, we will use a nice
discrete analogue of the gamma.

For the standardized Poisson, the first four cumulants are

(8) Gr ≡ Poisson(r) − r√
r

∼=
(

0, 1;
1√
r
,
1
r

)

.

For the difference of two Poissons we let p + q = 1 and c, d > 0 and set u ≡ p/c and v ≡ q/d,
and then define r = c2n and s = d2n and set

(9)
Gr,s ≡ −√

p Gc2n +
√

qGd2n
∼= (0, 1; 1√

n
(−p3/2

c + q3/2

d ), 1
n (p2

c2 + q2

d2 ))

= (0, 1; 1√
n
(−√

p u +
√

q v), 1
n (u2 + v2)).

[This approach can (multiply) match all (μ3, μ4) pairs for which μ2
3 ≤ (μ4 − 3).]

Theorem 5.2 (Poisson approximation) Consider a rv X on the integers and let Zn be
as in (3). Let r ≡ n/μ2

3, so that

Gr ≡ [Poisson(r) − r]/
√

r ∼= (0, 1;μ3/
√

n, μ2
3/n).

(i) Then for some constants CF and CF,n → 0 (that may depend on the df of the standardized
rv (X − μ)/σ):

‖pZn
− pGr

‖ ≤ CF /n3/2 when μ4 < ∞.(10)
‖pZn

− pcr‖ ≤ CF,n/n when only μ3 ∈ (0,∞).(11)

[Most probabilities that one computes involve summing over the appropriate M
√

n number
of terms that are each of the type pZn

(·).]
(ii) Suppose r and s can be specified so that Gr,s

∼= (0, 1;μ3/
√

n, (μ4 − 3)/n). Then n2 can
replace n3/2 in (10), provided that μ5 < ∞. And n3/2 can replace n in (11), provided that
μ4 < ∞.

Proof. The appropriate inversion formula now (for a distribution on the grid am + b) is
given by

(12) pm ≡ P (X = m) =
a

2π

∫
[|t|≤π/a]

exp(−it(am + b))φX(t)dt.

By the previous proof (including the previous step (a) normal component, but now appearing
in step (u)) yields

|φZn
(t) − φGr

(t)| ≤ (c2t4/n) exp(−(5/36)t2) for |t| ≤ d
√

n,(u)

for c and d that may depend on the df of (X − μ)/σ. Applying the inversion formula in (12)
now gives

√
n|P (Zn = m/

√
n) − P (Gr = m/

√
n)|(v)

=
√

n

2π
√

n
| ∫

[|t|≤π
√

n]
e−itm/

√
n[φZn

(t/
√

n) − φGr
(t/

√
n)]dt|
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≤ ∫
[|t|≤d

√
n]

|φZn
(t/

√
n) − φGr

(t/
√

n)|dt(w)

+
∫
[d

√
n<|t|≤π

√
n]

|φZn
(t/

√
n)|dt +

∫
[d

√
n<|t|≤π

√
n]

|φGr
(t/

√
n)|dt

≤ c/n + o(n−r) + o(n−r),(x)

as is now easily shown with the same arguments as before (because θ < 1, since π
√

n never
reaches a full period of φX ; recall proposition 9.8.2). �

Exercise 5.1 Verify part (iii) of theorem 5.1.

Exercise 5.2 Show that the chf φ of the Gr of (1) satisfies
∫ |φ(t)|k dt < ∞ for some k > 0.

Exercise 5.3 We can replace the Poisson by the NegBiT (r, p) distribution with the moment
structure

(13) Gr ≡ NegBiT(r, p) − r/p
√

rq/p2
∼=

(
0, 1;

1√
r

1 + q√
q

,
1
r

1 + 4q + q2

q

)
.

This is probably more useful than the previous theorem. (a) Verify the claim.
(b) Provide some numerical work to compare Poisson and NegBiT approximations to a situ-
ation of interest.

Remark 5.1 (Gamma approximation or Edgeworth approximation?) In the next section
we will derive the classical Edgeworth approximations. The first-order Gamma (or Poisson,
or NegBiT) approximations of the current section are of the same order as the first-order
Edgeworth approximations. Moreover, approximation by the Gr-distribution is an approxi-
mation by a probability distribution; but this is not true of the Edgeworth approximation.
Happily, gamma approximations are easily and accurately implemented in S-plus, say.

The situation is similar regarding the two second-order approximations, provided that the
first two cumulants of the underlying rv can be matched within the family of Grs-distributions.
However, the Grs-distributions are not available within any set of computer-generated routines
I know, so that this would be hard to implement at present. However, this would seem to
make a nice project for a computer-oriented statistician. �

Examples

Example 5.1 (Sampling distribution of X̄n and S2
n) Suppose X1, . . . , Xn is a random

sample from a population whose first four cumulants are (μ, κ2;κ3, κ4). [Let K&S denote
Kendall and Stuart (1977, Vol. I).] How do we apply a gamma approximation?
(a) Consider first an infinite population, in which κ2 = σ2, κ3 = μ3, and κ4 = μ4 − 3. Then
(9.6.20) gives the first four cumulants of

√
n(X̄n − μ) as

(14)
√

n(X̄n − μ) ∼= (0, σ2;
1√
n

κ3,
1
n

κ4).

Now, unbiased estimators κ̂j of these κj are given (see K&S (p. 297, 300)) by

(15)
κ̂2 ≡ n

n−1m̂2, κ̂3 ≡ n2

(n−1)(n−2)m̂3,

κ̂4 ≡ n2

(n−1)(n−2)(n−3){(n + 1)m̂4 − 3(n − 1)m̂2
2},
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where m̂j ≡ ∑n
1 (Xj −X̄n)j/n. We will combine these facts with the theorems of the previous

sections to approximate the distribution of
√

n(X̄n −μ). Additionally (by K&S (p. 306–307),

(16)
√

n(S2
n − σ2) ∼= (0, κ4 +

2n

n − 1
κ2

2;
1
n

κ6 +
12

n − 1
κ4 κ2 +

4(n − 2)
(n − 1)2

κ2
3 +

8n

(n − 1)2
κ3

2),

where correcting for skewness in (16) should probably be ignored. An unbiased estimator of
the variance in (16) (unbiasedness verifiable from K&S (p. 296)) is

(17)
n − 1
n + 1

[κ̂4 + 2
n

n − 1
κ̂2

2].

(b) Finally (by K&S (p. 327)),

(18) Corr[κ̂1, κ̂2] = γ1/

{

γ2 +
2n

n − 1

}1/2

.

(c) In approximating the bootstrap distribution of X∗
n, it is exactly true that

(19)
√

n(X∗
n − X̄n) ∼= (0, κ̂2;

1√
n

κ̂3,
1
n

κ̂4).

(d) Now consider a finite population X1, . . . , XN whose second, third, and fourth true cumu-
lants Kj are given by (15), with N replacing n. Unbiased estimators K̂j are also given by
(15), now with n again (see K&S (p. 320)). It is also true (by K&S (p. 321–322)) that

√
n(X̄n − X̄N ) ∼=

(
0,

N − n

N
K2;

N2 − 3nN + 2n2

n2N2
K3,(20)

{α3 − 4α2/N + 6α1/N
2 − 3(N − 1)

N(N + 1)
α2

1}K4 + 3
N − 1
N + 1

α2
1K

2
2

)
,

where αr ≡ (n−r − N−r). Finally (by K&S (p. 323)),

(21)
√

n(S2
n − S2

N ) ∼= (0,K4 + 2
n

n − 1
K2

2 ).

Then (by K&S (p. 323)) an unbiased estimator of this last variance is given by (17) (with
Kj replacing κ̂j). (Though straightforward, the results cited from K&S are somewhat cum-
bersome.) �

Example 5.2 (Hall) A noncentral chisquare rv χ2
n(δ) satisfies

(22) T ≡ [χ2
n(δ) − (n + δ)]
√

2(n + 2δ)
∼= 1√

n

n∑

1

Xk
∼=

(

0, 1;μ3 ≡ 23/2(1 + 3δ/n)√
n(1 + 2δ/n)3/2

)

.

So we approximate this distribution by Gr with r ≡ (n + 2δ)3/(2(n + 3δ)2). Then

P (χ2
n(δ) ≤ x) = P (Gamma(r) ≤ r + [x − (n + δ)](n + 2δ)/2(n + 3δ))(23)

= (1 − α) if x ≡ (n + δ) + (γα − r)2(n + 3δ)/(n + 2δ),(24)

where γα denotes the upper 1 − α percentage point of Gamma(r). This is easy to implement
in Splus, for example. (Hall found that the accuracy seemed quite good, especially in relation
to previous proposals.) �
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Exercise 5.4 (Poisson approximation of the generalized binomial) We suppose Xn1, . . . , Xnn

are independent rvs with Xnk
∼= Bernoulli(pnk). Suppose further that Ynk

∼= Poisson(pnk)
are independent for 1 ≤ k ≤ n. Let Pn and Qn denote the distributions of Xn ≡ ∑n

1 Xnk

and Yn ≡ ∑n
1 Ynk. Show that the total variation distance between Pn and Qn satisfies

(25) dTV (Pn, Qn) ≡ sup{|Pn(A) − Qn(A)| : A ∈ B} ≤ ∑n
k=1 p2

nk.

If pnk = λk/n for 1 ≤ k ≤ n, then the bound becomes λ2/n.
[Hint. The first step is to replace the original Bernoulli(pnk) rvs by different Bernoulli
(pnk) rvs, to be denoted by Xnk also. To this end we now define the new Znk

∼= Bernoulli(1−
(1 − pnk)epnk) rvs that are independent for 1 ≤ k ≤ n (and they are also independent of the
Ynk’s). Now define

(26) Xnk ≡ 1[Ynk≥1] + 1[Ynk=0]1[Znk=1],

and verify that it is indeed a Bernoulli(pnk) rv. (This choice of the jointly distributed pair
(Xnk, Ynk) maximizes the mass on the diagonal x = y of an (x, y)-coordinate system.) Now
verify that

(27) dTV (Pn, Qn) ≤ P (Xn �= Yn) ≤ ∑n
1P (Xnk �= Ynk) ≤ ∑n

1p2
nk.

This type of proof is called a coupling proof, in that the (Xnk, Ynk) pairs are coupled together
as closely as possible.]

Exercise 5.5 (a)–(d) Derive the claims made in example 5.1(a)–(d).



292 CHAPTER 11. INFINITELY DIVISIBLE AND STABLE DISTRIBUTIONS O

6 Edgeworth Expansions ∗

The Setup

Let F0, f0, and φ0 denote the N(0, 1)df, density, and chf. Thus

(1) f0(x) ≡ e−x2/2/
√

2π and φ0(t) ≡ e−t2/2

on the real line. These are related via the inversion formula for chfs as

(2) f0(x) =
∫ ∞

−∞ e−itxφ0(t)dt/(2π).

Differentiating f0 gives

(3)

f ′
0(x) = −xf0(x), f ′′

0 (x) = (x2 − 1)f0(x),
f ′′′
0 (x) = −(x3 − 3x)f0(x) , f

(iv)
0 (x) = (x4 − 6x2 + 3)f0(x),

f
(v)
0 (x) = −(x5 − 10x3 + 15x)f0(x),

f
(vi)
0 (x) = (x6 − 15x4 + 45x2 − 15)f0(x);

and in general,

(4) f
(k)
0 (x) = (−1)kHk(x)f0(x)

defines what we will call the kth Hermite orthogonal polynomial Hk (see exercise 6.1). Equat-
ing the derivatives in (3) to derivatives of the right-hand side of (2) gives

(5) (−1)kHk(x)f0(x) =
∫ ∞

−∞ e−itx(−it)kφ0(t)dt/(2π),

which expresses Hkf0 as the inverse Fourier transform of (it )kφ0(t). This gives the key result
that

(6) (it)kφ0(t) is the Fourier transform of Hk(·)f0(·)
Now suppose that X1, . . . , Xn are iid where

(7) X ∼= (0, σ2) has chf φ(·)
We let Sn ≡ ∑n

k=1 Xk, and agree that

(8) Fn(·) denotes the df of Sn/(σ
√

n).

The idea is to expand Fn in terms of the orthogonal polynomials Hk. However, we choose
instead to obtain a first-order or second-order approximation, together with an error analysis.
Also,

(9) fn(·) denotes the density of Sn/(σ
√

n), if it exists.

In this latter case we will also seek to expand fn. The expansions we will derive for fn and
Fn are known as Edgeworth expansions.

Edgeworth Expansions for Densities

Instead of just assuming that fn exists, we assume instead that the chf φ of the rv X ∼= (0, σ2)
satisfies

(10)
∫ ∞

−∞ |φ(t)|mdt < ∞, for some positive integer m.

This guarantees both that fn exists for all n ≥ m, and that it can be found from the Fourier
inversion formula (9.4.9).
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Theorem 6.1 Suppose condition (10) holds. Let γ1 ≡ E(X/σ)3 denote the skewness, and
let γ2 ≡ E(X/σ)4 − 3 denote the tail heaviness of X ∼= F (0, σ2).
(a) Then

∥
∥
∥
∥fn(·) − f0(·) {1 +

γ1

3!
√

n
H3(·)}

∥
∥
∥
∥

= o(1/
√

n) (as a function of E|X/σ|3 and FX/σ) [if E|X|3 < ∞](11)
or

= O(1/n) (as a function of E|X/σ|4 and FX/σ) [if EX4 < ∞].(12)

(b) Moreover,
∥
∥
∥
∥fn(·) − f0(·)

{

1 +
[

1√
n

γ1

3!
H3(·)

]

+
1
n

[
γ2

4!
H4(·) +

γ2
1

2(3!)2
H6(·)

]}∥
∥
∥
∥

= o(1/n) (as a function of E|X/σ|4 and FX/σ) [if EX4 < ∞](13)
or

= O(1/n3/2) (as a function of E|X/σ|5 and FX/σ) [if E|X|5 < ∞].(14)

We specifically write out that H0(x) ≡ 1 and

(15)
H1(x) ≡ x, H2(x) ≡ x2 − 1,
H3(x) ≡ x3 − 3x, H4(x) ≡ x4 − 6x2 + 3,
H5(x) ≡ x5 − 10x3 + 15x, H6(x) ≡ x6 − 15x4 + 45x2 − 15,

for use in the current set of theorems. The previous theorem was for densities. The next is
for dfs. Condition (10) is used to control the extreme tails in the Fourier inversion formulas
for densities. In proving analogues of (11) and (12) for dfs, we will be able to use Esseen’s
lemma to control these tails instead. However, the analogues of (13) and (14) run into other
problems, and these are again overcome via a (now weaker) restriction on φ. All proofs are
at the end of this section.

Exercise 6.1 Find H7(·) Show that
∫ ∞

−∞ HmHnf0 dλ = n! if m = n, and 0 else.

Edgeworth Expansions for Distribution Functions
Consider the potential hypothesis

(16) lim sup
|t|→∞

|φ(t)| < 1.

(This is weaker than (10). The Riemann–Lebesgue lemma shows that (16) holds if F has an
absolutely continuous component, à la theorem 6.1.1.)

Theorem 6.2 Suppose that X is not distributed on a grid. Let γ1 ≡ E(X/σ)3 denote
the skewness, and let γ2 ≡ E(X/σ)4 − 3 denote the tail heaviness of the rv X ∼= F (0, σ2).
(a) Then

∥
∥
∥
∥Fn(·) − F0(·) + f0(·)

{
γ1

3!
√

n
H2(·)

}∥
∥
∥
∥

= o(1/
√

n) (as a function of E|X/σ|3 and FX/σ) [if E|X|3 < ∞](17)
or (additionally requiring (16) for (18))

= O(1/n) (as a function of E|X/σ|4 and FX/σ) [if EX4 < ∞].(18)
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(b) Moreover, when (16) holds,
∥
∥
∥
∥Fn(·) − F0(·) + f0(·)

{
1√
n

γ1

3!
H2(·) +

1
n

[
γ2

4!
H3(·) +

γ2
1

2 · (3!)2
H5(·)

]}∥
∥
∥
∥

= o(1/n) (as a function of E|X/σ|4 and FX/σ) [if EX4 < ∞](19)
or

= O(1/n3/2) (as a function of E|X/σ|5 and FX/σ) [if E|X|5 < ∞].(20)

Exercise 6.2 Let Zn ≡ Sn/σ
√

n as above, and let fn denote its density under (10). Let
Z∗

n ≡ [Gamma(r) − r]/
√

r, with r ≡ 4n/γ2
1 , and let gn(·) denote its density. Show that

‖fn − gn‖ = O(1/n) as a function of E|X/σ|4 and FX/σ when E|X|4 < ∞.

The Proofs

We defined and expanded the cumulant generating function ψ(·) ≡ Log φ(·) in exercise 9.6.6.
The first few cumulants of the standardized rv X/σ were seen to be 0, 1, γ1, and γ2.

Proof. Consider theorem 6.1(a). Without loss of generality we suppose that σ = 1. We
now agree that

dn ≡ fn −
[

1 +
1√
n

γ1

3!
H3

]

f0(a)

denotes the difference between the true fn and our first approximation to it. Note from (6)
that dn has Fourier transform

(21) φn(t) ≡ [φ(t/
√

n)]n − φ0(t)
[
1 +

1√
n

γ1

3!
(it)3

]

= e−t2/2{et2/2+nψ(t/
√

n) − [1 + (γ1/3!)(it)3/
√

n]}(b)

≡ e−t2/2[ez+ε − (1 + z)].(c)

Thus the Fourier inversion formula (9.4.9) gives

dn(x) =
∫ ∞

−∞ eitxφn(t)dt/(2π),(d)

since (10) implies that
∫ ∞

−∞ |φn(t)|dt < ∞. Thus for any fixed θ > 0 and all x > 0 we have

|dn(x)| ≤ ∫ ∞
−∞ |φn(t)|dt =

∫ ∞
−∞ e−t2/2|ez+ε − (1 + z)|dt

=
∫
[|t|≤θ

√
n/E|X|3] e

−t2/2|ez+ε − (1 + z)|dt + o(n−r)(e)

for any r > 0, as in (9.6.3). Now,

|φn(t)| = e−t2/2|enψ(t/
√

n)−(−t2/2) − [1 + (γ1/3!)(it)3/
√

n]|(f)

≡ e−t2/2|ez+ε − (1 + z)| = e−t2/2|ez(eε − 1) + (ez − (1 + z))|

≤ e−t2/2[|ε|e|ε|e|z| + z2e|z|/2](g)
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using (9.6.3). Note that for all |t| ≤ θ
√

n/E|X|3 we have

|z| ≤ (|t|3/6)E|X|3/√
n ≤ θt2/6 ≤ t2/8 if θ ≤ 3

4
,(h)

|ε| = |nψ(t/
√

n) − [−t2/2 + (γ1/6)(it)3/
√

n]|

≤ c3|t|3E|X|3δ(θ)/√
n ≤ c3t

2θδ(θ) ≤ t2/8 if θ is small enough,(i)

where δ(·) denotes the function δ3(·) function of (9.6.21) associated with the rv X/σ. Using
(h) and (i), the bound in (e) becomes (for some θ small enough)

|dn(x)| ≤ ∫
[|t|≤θ

√
n/E|X|3] e

−t2/2{|ε|e|ε|e|z| + z2e|z|/2}dt + o(n−r)

≤ c3δ(θ)[E|X|3/√
n]

∫ ∞
−∞ |t|3e−t2/4dt(j)

+ [(E|X|3)2/(72n)]
∫ ∞

−∞ |t|6e−3t2/8dt + o(n−r)

= o(n−1/2) uniformly in x,(k)

since a tiny δ(θ) results from a sufficiently tiny θ. Thus (11) holds. For (12), we replace the
bound in line (i) above by

|ε| ≤ c̄4 t4EX4/n ≤ t2/8, which is valid for |t| ≤ √
n/

√
8c̄4E|X|4,(1)

as (9.6.22) guarantees. We then use (1) instead of (i) during (j) (now integrated over the
interval [|t| ≤ √

n/
√

8/c̄4EX4]).
We now turn to (13), and then (14). We first redefine

dn ≡ fn − f0

{
1 + 1√

n
γ1
3! H3 + 1

n

[
γ2
4! H4 + γ2

1
2·(3!)2 H6

]}
.(m)

Taking the inverse of its Fourier transform φn(·) gives (as in (e)) that for any fixed value of
θ > 0 and all x,

|dn(x)| ≤ ∫ ∞
−∞ |φn(t)|dt

=
∫
[|t|≤θ

√
n/Ex4]

e−t2/2|et2/2+nψ(t/
√

n) − {1 + z + z2/2}|dt + o(n−r)(n)

=
∫
[|t|≤θ

√
n/Ex4]

e−t2/2|ez+ε − (1 + z + z2/2)|dt + o(n−r)(o)

for each fixed r > 0, with

z ≡ 1√
n

γ1

3!
(it)3 +

1
n

γ2

4!
(it)4.(p)

The final details are nearly the same as before. �

Exercise 6.3 Finish the details of the previous proof of theorem 6.1(b).
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Proof. Consider theorem 6.2(a). We note that

Dn ≡ Fn − F0 + f0

[
1√
n

γ1

3!
H2

]

has D′
n = dn ≡ fn − f0

[

1 +
1√
n

γ1

3!
H3

]

,(q)

where dn is as in line (a) of the previous proof (just use xH2(x) − 2x = H3(x) to verify this).
Esseen’s lemma then gives

‖Dn‖ ≤ 1
π

∫

[|t|≤a
√

n/E|X|3]

|φn(t)|
|t| dt +

24‖f0[1 + (γ1/3!)H3/
√

n]‖
πa

√
n/E|X|3 ,(r)

where φn is the same φn appearing in (21). Since the norm in the second term on the
right of (r) is bounded, the second term in (r) is less that ε/

√
n whenever a ≡ a(ε, FX/σ)

is chosen large enough. Fix this a in the limits of integration of (r), and then break this
integral into two pieces: the integral over [|t| ≤ θ

√
n/E|X|3] with θ as in (i), and the integral

over [|t| > θ
√

n/E|X|3]. The integral over the set [|t| > θ
√

n/E|X|3] is o(n−r), for any
r > 0 (à la (11.5.6), as before at line (e)). Finally, the value of the integral over the set
[|t| ≤ θ

√
n/E|X|3] is bounded by a term like the right-hand side of (j) (in which |t|3 and t6

are replaced in those integrals by t2 and |t|5, to account for division by |t| in the integrand
of (r)). This completes the proof of (17) when X is not distributed on a grid. For (18), the
initial region of integration in (r) must be [|t| ≤ an/EX4], and then an/EX4 will also appear
below the norm term. Moreover, we will now use θ for a, since only O(1/n) is required.

Consider theorem 6.2(b). We note that

Dn(·) ≡ Fn(·) − F0(·) + f0(·)
{

1√
n

γ1

3!
H2(·) +

1
n

[
γ2

4!
H3(·) +

γ2
1

2 · (3!)2
H5(·)

]}

(s)

has derivative

D′
n(x) = dn

= fn(x) − f0(x) + f0(x)
[

1√
n

γ1

3!
[2x − xH2(x)]

]

(t)

+ f0(x)
1
n

[
γ2

4!
[3(x2 − 1) − xH3(x)] +

γ2
1

2(3!)2
[5(x4 − 6x2 − xH5(x)]

]

= fn(x) − f0(x) + f0(x)
{[

1√
n

γ1

3!
H3(x)

]

+
1
n

[
γ2

4!
H4(x) +

γ2
1

2(3!)2
H6(x)

]}

,(u)

and this is the same dn as in (m) of the previous proof. Thus the final details are nearly the
same as before. �

Exercise 6.4 Complete the details in the previous proof of theorem 6.2(b).

Exercise 6.5 Consider a non-iid case in which all dfs Fnk have third and/or fourth
moments that are of the same order. Then all of the previous results still obtain.

Exercise 6.6 (Large deviations) Suppose the moment generating function (or mgf)
MX(t) ≡ EetX of the rv X is finite for 0 ≤ |t| < ε. Let X1,X2, . . . be iid (0, σ2). Let
Fn(·) denote the df of

√
n(X̄n − μ) and let F0(·) denote the N(0, 1) df. Show that

(22) [1 − Fn(xn)]/[1 − F0(xn)] → 1, provided that xn = o(n1/6).



Chapter 12

Brownian Motion and
Empirical Processes

1 Special Spaces

General Metric Spaces

Let (M,d) denote an arbitrary metric space and let Md denote its Borel σ-field (that is,
the σ-field generated by the collection of all d-open subsets of M). Let MB

d denote the σ-
field generated by the collection of all open balls, where a ball is a subset of M of the form
{y : d(y, x) < r} for some x ∈ M and some r > 0; call this the Baire σ-field. [The important
concept of weak convergence is best described in the context of metric spaces.]

Exercise 1.1 Now, MB
d ⊂ Md, while

(1) MB
d = Md if (M,d) is a separable metric space.

The Special Spaces (C, C) and (D,D)

For functions x, y on [0, 1], define the uniform metric (or supremum metric) by

(2) ‖x − y‖ ≡ sup
0≤t≤1

|x(t) − y(t)|.

Let C denote the set of all continuous functions on [0, 1]. Then

(3) (C, ‖ ‖) is a complete and separable metric space.

Here C‖ ‖ will denote the σ-field of Borel subsets of C; then CB
‖ ‖ will denote the σ-field of

subsets of C generated by the open balls, and C will denote the σ-field generated by the
finite-dimensional subsets of C(that is, all π−1

t (Bk) for which 0 ≤ t1 ≤ · · · ≤ tk ≤ 1 and
Bk ∈ Bk). It can be shown that

(4) C‖ ‖ = CB
‖ ‖ = C.

Let D denote the set of all functions on [0, 1] that are right continuous and possess left-hand
limits at each point. (In some applications below it will be noted that D is also used to denote
the set of all left-continuous functions on [0, 1] that have right-hand limits at each point. This
point will receive no further mention. In some cases we will admit to D, and/or to C, only
c© Springer International Publishing AG 2017
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DOI 10.1007/978-3-319-52207-4 12
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functions X having X(0) = 0, etc. This, too, will receive little, if any, further mention.) In
any case

(5) (D, ‖ ‖) is a complete metric space that is not separable.

Here D‖ ‖ will denote the Borel σ-field of subsets of D, then DB
‖ ‖ will denote the σ-field of

subsets of D generated by the open balls, and D will denote the σ-field generated by the
finite-dimensional subsets of D. It can be shown that

(6) D = DB
‖ ‖, and both are proper subsets of D‖ ‖,

and moreover,

(7) C ∈ D and C = C ∩ D.

We now digress briefly. The proper set inclusion of (6) caused difficulties in the historical
development of the theory of empirical processes (note that the uniform empirical process
Un =

√
n(Gn − I) takes values in D). To circumvent these difficulties, various authors

showed that it is possible to define a metric d on D that has nice properties (see exercise 1.4
below); thus there is a d(·, ·) for which

(8) (D, d) is a complete and separable metric space

whose Borel σ-field Dd satisfies

(9) Dd = D.

Moreover, for all x, xn in D the metric d satisfies

(10) ‖xn − x‖ → 0 implies d(xn, x) → 0,

while

(11) d(xn, x) → 0 with x ∈ C implies ‖xn − x‖ → 0.

The metric d will not be important to us. We are able to replace d by ‖ ‖ in our theorems;
however, we include some information on d as an aid to the reader who wishes to consult the
original literature.

Exercise 1.2 Verify (3) and (4).

Exercise 1.3 (i) Verify (5). [Hint. For each 0 ≤ t ≤ 1 define a function xt in D by letting
xt(s) equal 0 or 1 according as 0 ≤ s ≤ t or t ≤ s ≤ 1.] (ii) Verify (6). [Hint. Consider
∪{Ot : 0 ≤ t ≤ 1} where Ot is the open ball of radius 1

3 centered at xt.] (iii) Verify (7).

Exercise 1.4∗ Consult Billingsley (1968, pp. 112–115), and verify (8)–(11) for

(12) d(x, y) ≡ inf{‖x − y ◦ λ‖ ∨ (sups �=t | log
λ(t) − λ(s)

t − s
|) : λ ∈ Λ},

where Λ denotes all ↑ continuous maps of [0, 1] onto itself. [Roughly, this metric measures
how closely x and a slightly perturbed (via λ) y line up, where too much perturbation is
penalized. The (“log” bounds all λ-slopes away from both 0 and ∞.]
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Exercise 1.5 Verify that

(13) C is both ‖ ‖-separable and d-separable, viewed as a subset of D.

[We will require the ‖ ‖-separability below.]

Let q ≥ 0 be positive on (0, 1). For functions x, y on [0, 1] we agree that

(14) ‖(x − y)/q‖ is the ‖ · /q‖-distance between x and y,

when this is well-defined (that is, when ‖x/q‖ and ‖y/q‖ are finite).

Exercise 1.6 It is useful to be able to view C∞ ≡ C[0,∞) as a metric space; of course,
this denotes the class of all continuous functions on [0,∞). (We may sometimes require a
subclass, such as the one consisting of functions that equal zero at zero; and we will make
no further mention of this.) Let C∞ ≡ C[0,∞) denote the finite-dimensional σ-field. Consider
(C∞, C∞) = (C[0, ∞)C[0,∞)).

(a) For functions x and y on [0,∞), define

(15) ρ∞(x, y) ≡
∞∑

k=1

2−k ρk(x, y)
1 + ρk(x, y)

,

where ρk(x, y) ≡ sup0≤t≤k |x(t) − y(t)|. Show that (C[0,∞), ρ∞) is a metric space.

(b) Show that ρ∞(x, y) → 0 if and only if ρk(x, y) → 0 for each 0 < k < ∞.

(c) Show that (C[0,∞), ρ∞) is a complete and separable metric space. Moreover, the σ-field
Cρ∞ of Borel subsets is the same as the σ-field C[0,∞) of finite-dimensional subsets, as is
the σ-field CB

∞.

(d) Verify that (D[0,∞), ρ∞) is a complete metric space, and that the Borel σ-field Dρ∞
satisfies C[0,∞) ∈ Dρ∞ and Cρ∞ = Dρ∞ ∩ C[0,∞). Also, D[0,∞) = DB

ρ∞ is a proper
subset of Dρ∞ .

(e) Other spaces of continuous and right-continuous functions are analogously treated. They
will receive no specific mention.

Independent Increments and Stationarity

If T is an interval in (−∞,∞), then we will write

(16) X(s, t] ≡ X(t) − X(s) for any s, t ∈ T,

and we will refer to this as an increment of X. If X(t0),X(t0, t1], . . . ,X(tk−1, tk] are inde-
pendent rvs for all k ≥ 1 and all t0 ≤ · · · ≤ tk in T , then we say that X has independent
increments. If X(s, t] ∼= X(s + h, t + h] for all s, t, s + h, t + h in T with h ≥ 0, then X is
said to have stationary increments. If (X(t1 + h), . . . ,X(tk + h)) ∼= (X(t1), . . . ,X(tk)) for all
k ≥ 1, h ≥ 0, and all time points in T , then X is said to be a stationary process.



300 CHAPTER 12. BROWNIAN MOTION AND EMPIRICAL PROCESSES

2 Existence of Processes on (C, C) and (D,D)

When dealing with processes, we would like to work with the smoothest version possible.
This is the version that best models physical reality. It is important at this point to recall
theorem 5.4.2 on the existence of smoother versions of processes. Roughly, if all of the sample
paths of a process are shown to lie in a (useful) subset of the current image space, then we
can restrict ourselves to that subset.

Theorem 2.1 (Existence of processes on (C , C)) Begin with a process

X : (Ω,A, P ) → (R[0,1],B[0, 1]PX).

Suppose that for some a, b > 0 the increments of X satisfy

(1) E|X(s, t]|b ≤ K · F (s, t]1+a for all 0 ≤ s, t ≤ 1,

where F is a continuous df concentrated on [0, 1] and F (s, t] ≡ F (t) − F (s). Then there
exists an equivalent version Z : (Ω,A, P ) → (R[0,1],B[0, 1]PZ) for which

(2) Z : (Ω,A, P ) → (C, C, PZ), with Z(t) = X(t) a.s., for each t in [0, 1].

Corollary 1 (Sample path properties) For any 0 < δ < a/b and any ε > 0, there exists a
constant Kε ≡ Kε,δ,a,b for which the process Z of (2) satisfies

(3) P (|Z(s, t]| ≤ Kε · F (s, t]δ for all 0 ≤ s ≤ t ≤ 1) ≥ 1 − ε.

Proof. Case 1. Suppose that the df F of (1) is F (t) = t on [0, 1]. Let 0 < δ < a/b be
fixed. Let λ ≡ (a/b − δ)/2. Define tni ≡ i/2n for 0 ≤ i ≤ 2n and n ≥ 1. For n ≥ 0 define
processes Zn : (Ω,A, P ) → (C, C) by letting

(a) Zn(t) ≡ X(tni) + 2n(t − tni)[X(tn,i+1) − X(tni)] for tni ≤ t ≤ tn,i+1,

for each 0 ≤ i ≤ 2n −1; thus Zn(·) equals Xn(·) at each tni and Zn(·) is linear on the intervals
between these points. Define

(b) Uni ≡ |X(tn,i−1, tni]| for 1 ≤ i ≤ 2n.

If we define

(c) Δn(t) ≡ Zn(t) − Zn−1(t) for 0 ≤ t ≤ 1,

then for tn−1,i ≤ t ≤ tn−1,i+1 we have

|Δn(t)| ≤ |[X(tn,2i) + X(tn,2i+2)]/2 − X(tn,2i+1)|

(d) = |X(tn,2i, tn,2i+1] − X(tn,2i+1, tn,2i+2]|/2 ≤ [Un,2i+1 + Un,2i+2]/2

(e) ≤ [Un,2i+1 ∨ Un,2i+2]

for all n ≥ 1. Thus for all n ≥ 1 we have

(f) ‖Δn‖ ≤ Vn ≡ [max1≤i≤2n Uni].
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Let θ > 0 be arbitrary but fixed, and define

(g)
pn ≡ P (‖Δn‖δ > 2 θ 2−nλ)

≡ P (|Δn(s, t]|/(t − s)δ > 2 θ 2−nλ for some 0 ≤ s ≤ t ≤ 1).

Recalling (f) shows that

(h) |Δn(s, t]| ≤ 2Vn for all 0 ≤ s ≤ t ≤ 1.

Thus

(i) |Δn(s, t]|/(t − s)δ ≤ 2Vn2nδ for 2−n ≤ t − s,

while

|Δn(s, t]|/(t − s)δ ≤ [|Δn(s, t]|/(t − s)](t − s)1−δ ≤ [Vn2n]2−n(1−δ)

(j) = Vn2nδ for 0 ≤ t − s ≤ 2−n

(to see this, consider |Δn(s, t]/(t−s)| when s and t are both points in some [tn,i−1, tni]). Thus
for all n ≥ 1, we have

pn ≤ P (2Vn2nδ > 2 θ 2−nλ) ≤ P (Vn > θ 2−n(δ+λ)) by (g)

≤ ∑2n

i=1 P (Uni > θ 2−n(δ+λ)) by (f)

≤ ∑2n

i=1 EU b
ni/[θ 2−n(δ+λ)]b by Markov’s inequality

≤ 2n[K2−n(1+a)]/[θ 2−n(δ+λ)]b by (1)

= Kθ−b2−n(a−b(δ+λ)) = Kθ−b2−nb(a/b−δ−λ)

(k) = Kθ−b2−nλb since a/b − δ = 2λ > 0.

Since 0 ≤ t − s ≤ 1, we also have

p0 ≡ P (|Z0(s, t]| > 2θ(t − s)δ for some 0 ≤ s ≤ t ≤ 1)

≤ P (|X(0, 1]| > 2θ) ≤ E|X(0, 1]|b/(2θ)b

≤ Kθ−b = Kθ−b2−0·λb.(l)

Now, λb = (a − δb)/2 > 0, and so 2−λb < 1; hence
∑∞

n=0 pn < ∞. Thus for each arbitrarily
small θ, we have for m sufficiently large (recall (g) for ‖ · ‖δ) that

P (maxm≤k<∞ ‖Zk − Zm‖δ > θ) = lim
n→∞ P (maxm≤k≤n ‖Zk − Zm‖δ > θ)

≤ lim
n→∞ P (maxm≤k≤n ‖Zk − Zm‖δ > 2θ

∑n

m+1
2−kλ)

for
∑∞

m+1
2−kλ < 1/2

≤ lim
n→∞ P (maxm≤k≤n ‖

∑k

i=m+1
Δi‖δ > 2θ

∑n

i=m+1
2−iλ)

≤ lim
n→∞

∑n

i=m+1
P (‖Δi‖δ > 2θ2−iλ)

≤
∑∞

i=m+1
pi ≤

∑∞
i=m+1

Kθ−b2−iλb → 0 as m → ∞,(m)
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so that

(n) Zn(t) ≡ Z0(t) +
∑n

k=1
Δk(t)

converges uniformly on [0, 1] for a.e. ω; call the limit function Z(t). Since the uniform limit
of continuous functions is continuous,

(o) Z =
∑∞

n=0
Δn = limZn is a continuous function on [0, 1] for a.e. ω.

Now, Z = limZn, and since Zn equals X at each tni, we have

(4) Z(tni) = X(tni) at each tni = i/2n with 0 ≤ i ≤ 2n and n ≥ 0.

Thus all finite-dimensional distributions with diadic rational coordinates are equal. For other
t, we pick diadic rationals t1, t2, . . . such that tm → t. Then X(tm) →p X(t) as m → ∞ by
(1) and Markov, while Z(tm) →a.s. Z(t) as m → ∞, since Z has continuous sample paths.
Thus Z(t) = X(t) a.s. by proposition 2.3.4. By redefining Z ≡ 0 on the null set of (n), we
may assume

(p) Z : (Ω,A) → (C, C)

by theorem 5.4.2. So all of the finite-dimensional distributions agree: In particular, we have
PZ([x ∈ C : xt ∈ B]) = PX([x ∈ R[0,1] : xt ∈ B]) for all sets B ∈ Bk and for all t ∈ [0, 1]k

for any k ≥ 1.
Case 2. General F . Define

(q) Y(t) ≡ X(F−1(t)) for 0 ≤ t ≤ 1,

where F−1(t) ≡ inf{x ∈ [0, 1] : F (x) ≥ t}. Then for 0 ≤ s ≤ t ≤ 1,

E|Y(s, t]|b = E|X(F−1(s), F−1(t)]|b ≤ K[F ◦ F−1(t) − F ◦ F−1(s)]1+a

= K(t − s)1+a,(r)

since F ◦ F−1 = I for continuous F by exercise 6.3.2. Now use case 1 to replace Y by an
equivalent process Ȳ : (Ω,A) → (C, C). Then define

(s) Z = Ȳ(F ) ∼= X(F−1 ◦ F ) by (q).

Now, F−1 ◦ F (t) = t, unless F (t − ε) = F (t) for some ε > 0; see exercise 6.3.2. But in this
case equation (1) shows that ΔX is 0 across that same interval. Thus X(F−1 ◦ F ) ∼= X.

For the corollary, in case 1 we have (using (o) in line 2, (g) and (k) in line 3)

P (|Z(s, t]|/(t − s)δ > 2θ/(1 − 2−λ) for some 0 ≤ s ≤ t ≤ 1)

= P (|
∑∞

k=0
Δk(s, t]|/(t − s)δ > 2θ

∑∞
n=0

2−nλ for some 0 ≤ s ≤ t ≤ 1)

≤
∑∞

n=0
pn ≤

∑∞
n=0

Kθ−b/2nλb = Kθ−b/(1 − 2−λb)

→ 0 as θ → ∞.(t)

Take Kε to be an appropriately large value of θ. Use the transformation F−1 again in
case 2. �
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Exercise 2.1 Prove (2), by simplifying the proof of theorem 2.1 as much as possible with
this simpler goal in mind.

We merely state an analogous result for the existence of processes on (D,D).

Theorem 2.2 (Existence of processes on (D ,D); Chentsov) Let

X : (Ω,A, P ) → (R[0,1],B[0, 1]PX)

be a general process. Suppose that for some K > 0, b > 0, and a > 1
2 we have

(5) E|X(r, s]X(s, t]|b ≤ K · F (r, s]aF (s, t]a for all 0 ≤ r ≤ s ≤ t ≤ 1,

where F is any df concentrated on [0, 1]. Then there exists an equivalent version Z :
(Ω,A, P ) → (R[0,1],B[0, 1]PZ), which in fact satisfies

(6) Z : (Ω,A, P ) → (D,D, PZ), with Z(t) = X(t) a.s., for each t ∈ [0, 1].

[See Billingsley (1968, pp. 130, 134), for example.]

Exercise 2.2 Verify the existence of the Poisson process on (D,D).

Exercise 2.3 Let X : (Ω,A, P ) → (RT ,BT ) on some subinterval T of the line. Let To

denote a countable dense subset of T , and suppose P (ω : X(·, ω) is uniformly continuous on
To ∩ I) = 1 for every finite interval subinterval I of T . Then there exists a version Z of X
such that every sample path Z(·, ω) of Z is continuous.
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3 Brownian Motion and Brownian Bridge

Brownian Motion S on [0,1] We define {S(t) : 0 ≤ t ≤ 1} to be a Brownian motion on
[0,1] if S is a normal process having the moment functions

(1) ES(t) = 0 and Cov[S(s),S(t)] = s ∧ t for all 0 ≤ s, t ≤ 1.

This covariance function is nonnegative definite (in the sense of (A.4.12)) and these distribu-
tions are consistent; thus Kolmogorov’s consistency theorem shows that the process S exists
as a random element on (R[0,1],B[0,1]). Modifying this S on a set of measure zero (as in
theorem 12.2.1), we may may create a version of S that satisfies

(2) all sample paths of S are continuous functions on [0, 1] that equal 0 at 0.

Thus (as with the smoother realizations of theorem 5.4.2) there is a nice realization of S

having smoother paths; that is,

(3) S exists as a process on (C, C).

So, Brownian motion exists as the coordinate map St(ω) ≡ ωt for some distribution P on
(Ω,A) = (C, C). This is a more convenient realization of S (than is the one guaranteed by
Kolmogorov’s consistency theorem). For either realization

(4) S has stationary and independent increments.

In fact, its sample paths satisfy

(5) P (|S(s, t]| ≤ Kε(t − s)δ for all 0 ≤ s ≤ t ≤ 1) ≥ 1 − ε

for some Kε,δ, for any fixed ε > 0 and for any fixed 0 < δ < 1
2 . This follows from theorem

12.2.1 and its corollary, since for any k ≥ 1,

(6) ES(s, t]2k = [1 · 3 · · · (2k − 1)](t − s)k for all 0 ≤ s ≤ t ≤ 1,

and since a/b = (k−1)/(2k) ↗ 1
2 as k → ∞. (Note that (5) would allow a further application

of the smoother realizations theorem using just this smaller subset of such functions in C.)
[No appeal has been made to section 1.]
Brownian Bridge U on [0, 1] Let us now define

(7) V(t) ≡ S(t) − tS(1) and U(t) ≡ −V(t) for 0 ≤ t ≤ 1.

Then both U and V are obviously normal processes on (C, C) and satisfy (5); just observe
that V(t) is a simple linear combination of two normal rvs. Moreover, trivial calculations give

(8) EU(t) = 0 and Cov[U(s),U(t)] = s ∧ t − st for all 0 ≤ s, t ≤ 1.

Call U a Brownian bridge. And V is also a Brownian bridge.
Brownian Motion S on [0,∞) Similarly, we establish the existence of Brownian motion
on (C∞, C∞). In particular, a Brownian motion on (C∞, C∞) is given by

(9) S(t) = (1 + t)U(t/(1 + t)), 0 ≤ t < ∞.

Recall the proposition 8.6.1 LIL result. In section 12.8 we will establish the companion LIL
result for Brownian motion that

(10) lim sup
t→∞

|S(t)|/[
√

t b(t)] = 1 a.s. (the LIL for S at infinity),
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where b(t) ≡ √
2(1 ∨ log log t)). (We will use it in very minor ways in the meantime.) The

next exercise similarly defines some additional normal processes. These may provide a useful
revisualization device that enables calculation.

Exercise 3.1 (Transformations of Brownian motion) Let Z ∼= N(0, 1) and the Brown-
ian bridges V, U(1), and U

(2) be independent. Fix a > 0. Show that:

(11) S(t) = V(t) + tZ, 0 ≤ t ≤ 1, is a Brownian motion.

(12) S(at)/
√

a, 0 ≤ t < ∞, is a Brownian motion.

(13) S(a + t) − S(a) , t ≥ 0, is a Brownian motion.

(14)
√

1 − aU(1) ± √
aU(2) is a Brownian bridge, if 0 ≤ a ≤ 1.

(15) Z(t) ≡ [U(1)(t) + U
(2)(1 − t)]/

√
2, 0 ≤ t ≤ 1

2 , is a Brownian bridge.

(16) U(t) = (1 − t)S(t/(1 − t)), 0 ≤ t ≤ 1, is a Brownian bridge;

use the LIL at infinity of (10) to show that this U(·) converges to 0 at t = 1.

(17) tS(1/t), 0 ≤ t < ∞, is a Brownian motion;

apply the LIL of (10) to verify that these sample paths converge to 0 at t = 0.

Exercise 3.2 (LIL for S and U at 0) Use (10), (17), and then (7) to show that

(18) lim sup
t→0

|S(t)|/[
√

t b(1/t)] = 1 a.s.; and lim sup
t→0

|U(t)|/[
√

t b(1/t)] = 1 a.s.

Exercise 3.3 (Integrals of normal processes are normal rvs)
(a) Suppose X is a normal process on (C, C). Let X have mean function m(·) continuous on
I ≡ [0, 1] and covariance function Cov(·, ·) continuous on I×I. Let g(·) ≥ 0 on I and q > 0
on I both be continuous on I. Let K(·) be an ↗ and left continuous function for which∫ 1

0
q|g|dK < ∞. Show that the integrated process

∫ 1

0
X(t)g(t)dK(t)

∼= N(
∫ 1

0
m(t)g(t)dK(t),

∫ 1

0

∫ 1

0
Cov(s, t)g(s)g(t)dK(s)dK(t)) ,

(19)

provided that both m(s)/q(s) and Cov[s, s]/q2(s) are continuous for s ∈ I.

(b) Determine the distribution of
∫ 1

0
U(t)dt.

(c) Develop results for
∫ 1

0
S g dK, for appropriate functions g and K.

[Hint. (a) The Riemann–Stieltjes sums are normally distributed.]
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Exercise 3.4 Let Z0, Z1, Z2, . . . be iid N(0, 1). Let fj(t) ≡ √
2 sin(jπt), for j ≥ 1; these

are orthogonal functions. Verify that

(20) U(t) ≡ ∑∞
j=1 Zjfj(t)/jπ, 0 ≤ t ≤ 1, is a Brownian bridge.

Thus the process S(t) ≡ U(t) + t Z0 is a Brownian motion on [0, 1]. Moreover,

(21) W 2 ≡ ∫ 1

0
U

2(t)dt ∼= ∑∞
j=1 Z2

j /(j2π2).

This rv has a distribution that is well tabled (the asymptotic null distribution of the Cramér-
von Mises statistic).

Exercise 3.5 Show that Z is a Brownian motion on [0, 1], where

(22) Z(t) ≡ U(t) +
∫ t

0
[U(s)/(1 − s)]ds for 0 ≤ t ≤ 1.

Hint. Since the Reimann sums of normal rvs that define the integral are necessarily normal,
the process {Z(t) : 0 ≤ t ≤ 1} will be a normal process. Then, its mean and covariance
function will determine which normal process.

Exercise 3.6 (White noise) (a) Suppose that h and h̃ on [0, 1] are in L2. View white
noise as an operator dS that takes the function h into a rv

∫
[0,1]

h(t)dS(t) in the sense of →L.
Define this integral first for step functions, and then use exercise 4.4.5 to define it in general.
Then show that

∫
[0,1]

h(t)dS(t) exists as such an →L limit for all h in L2.

(b) In case h has a bounded continuous derivative h′ on [0, 1], show that

(23)
∫
[0,1]

h(t)dS(t) ≡ hS|1+0− − ∫
[0,1]

S(t)h′(t)dt.

(c) Determine the joint distribution of
∫
[0,1]

h(t)dS(t) and
∫
[0,1]

h̃(t)dS(t).

(d) Define
∫
[0,1]

h(t)dU(t) (appeal first to (7) for the definition), and obtain the marginal and
joint distributions of all three of the rvs in (c) and (d).

Exercise 3.7 (Conditional Brownian motion) Let 0 ≤ r < s < t. Determine the con-
ditional distribution of S(s) given that S(r) = y and S(t) = z. Draw a figure for this
situation, and then put your answer in a format that allows some insight to be offered as to
an interpretation.

Exercise 3.8 Find the solution V (t) of the stochastic differential equation with V ′(t) =
−kV (t) + σS′(t). Determine its covariance function. (Think of a tiny particle suspended in a
liquid whose velocity is impeded by the viscosity of the liquid and is additionally subjected to
random changes from collisions with particles in the medium.) [Hint. Rewrite the equation
first as ekt[V ′(t) + kV (t)] = σekt

S
′(t), then transform it to

V (t) = V (0)e−t + σ
∫ t

0
e−σ(t−s)dS(s) ,

and then use integration by parts to give meaning to dS(·).]
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Exercise 3.9 Verify Chentsov’s condition (12.2.5) for Brownian bridge, that

(24) E{Un(r, s]2Un(s, t]2} ≤ (some K)(s − r)(t − s) for all 0 ≤ r ≤ s ≤ t ≤ 1.

Specify a suitable specific K.

Exercise 3.10 The partial sum process {Sn(t) : 0 ≤ t < ∞} is defined below in (12.2.5).
Verify Chentsov’s condition for the case of iid (0, σ2) rvs, that

(25) E{Sn(r, s]2Sn(s, t]2} ≤ (some K)σ4(s − r)(t − s)

on the grid with r = i/n, s = j/n, t = k/n and 0 ≤ i < j < k < ∞. Specify a suitable
specific K. (Then note theorem 14.1.6.)
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4 Stopping Times

We first paraphrase the main result of this section. If we observe a right-continuous process
at a random time that depends on the process only through its past, then the result is a rv
(that is, it is measurable).

Notation 4.1 Let (Ω,A, P ) denote our basic probability space. We suppose that our time
set is a linearly ordered set such as [0, 1], [0,∞), [0,∞], {0, 1, 2, . . . }, {0, 1, 2, . . . ,∞}. Let X
denote a process with such an index set, defined on (Ω,A, P ). We now suppose that the
At’s are an ↗ collection of sub σ-fields of A, in that As ⊂ At whenever s < t. Call such a
collection of At’s a filtration. If it further holds that each Xt is an At-measurable rv, then
we say that the X-process is adapted to the At’s. The minimal such collection of ↗ σ-fields
is the histories σt ≡ σ[X−1

s (B) : s ≤ t]. Roughly, σt denotes all events for the process up to
time t. We let At+ ≡ ∩∞

n=1At+1/n; and if At+ = At for all t ≥ 0, then we call the σ-fields At

right continuous. Let At− ≡ σ[As : s < t]. Then let A∞ ≡ σ[∪t<∞At]. �

Definition 4.1 (Stopping times) An (extended) rv τ ≥ 0 will be called an (extended)
stopping time with respect to the At’s if [τ ≤ t] ∈ At for all t ≥ 0. (That is, one can determine
whether τ ≤ t using only current knowledge At.)

Roughly, whether τ “stops” or “occurs” by time t or not depends only on those events At

with probabilities within our knowledge base up through time t. We define the pre-τ σ-field

(1) Aτ ≡ {A ∈ A : A ∩ [τ ≤ t] ∈ At for all t ≥ 0};

roughly, at any instant we can decide whether or not A has occurred yet. Note that if τ(ω) ≡ t
for all ω, then Aτ = At; that is, the fixed time t is a stopping time whose σ-field is At. We
now develop some other technical properties.

Proposition 4.1 (Preservation of stopping times) Suppose the rvs T1, T2, . . . are stopping
times. Then:

(2) T1 ∨ T2 and T1 ∧ T2 are stopping times.

(3) If Tn ↗, thenT ≡ lim Tn is a stopping time.

(4) If Tn ↘ and At’s are right continuous, then T ≡ lim Tn is a stopping time.

This proposition is also true for extended stopping times.

Proof. Note that these four rvs satisfy

(a) [T1 ∨ T2 ≤ u] = [T1 ≤ u] ∩ [T2 ≤ u] ∈ Au,

(b) [T1 ∧ T2 ≤ u] = [T1 ≤ u] ∪ [T2 ≤ u] ∈ Au,

(c) [T ≤ u] = ∩∞
n=1[Tn ≤ u] = ∩∞

n=1 (events in Au) ∈ Au,

(d) [T ≤ u] = ∩∞
m=1 ∪∞

n=1 [Tn ≤ u + 1/m] = ∩∞
m=1(Au+1/m events) ∈ Au+ = Au.

No change is needed for extended stopping times. �
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Proposition 4.2 (Integral stopping times) Integer-valued T ≥ 0 is a stopping time if and
only if [T = n] ∈ An for all 0 ≤ n < ∞. This result is also true for extended stopping times.

Proof. If T is a stopping time, then [T = n] = [T ≤ n] ∩ [T ≤ n − 1]c is in An, since
[T ≤ n − 1]c ∈ An−1 ⊂ An. Also, T = ∞] = (∪∞

n=1[T ≤ n])c ∈ A∞. Going the other way,
[T ≤ n] = ∪m≤n[T = m] ∈ An, since [T = m] ∈ Am ⊂ An. Also, [T ≤ ∞] = Ω ∈ A∞. �

Exercise 4.1 (Properties of stopping times) Let T1, T2, . . . be (extended) stopping times;
no ordering is assumed. Then (using (9) and/or (10) below is ok):

(5) T1 + T2 is an (extended) stopping time if the At’s are right continuous.

(6)
A ∈ AT1 implies A ∩ [T1 ≤ T2] ∈ AT2 . [Hint. [T1 ∧ t ≤ T2 ∧ t] ∈ At.]
[T1 < T2], [T1 = T2], [T1 > T2] are all in both AT1 and AT2 .

(7) T1 ≤ T2 implies AT1 ⊂ AT2 . Also, AT1 ∩ [T1 ≤ T2] ⊂ AT1∧T2 = AT1 ∩ AT2 .

(8) If Tn ↘ T0 and the At’s are right continuous, then AT0 = ∩∞
n=1ATn

.

[Hint. [T1 + T2 ≤ u] = ∩∞
m=1{∪[τ1 ≤ a + 1

m ] ∩ [T2 ≤ b + 1
m ] : a + b ≤ u, rational a, b}.]

Proposition 4.3 (Stopping time measurability) Suppose τ is a stopping time with respect
to the At’s. Then:

(9) Aτ is a σ-field.

(10) τ is Aτ -measurable.

Proof. Consider (10). For example, for each real number r we have [τ ≤ r] ∈ Aτ , since
[τ ≤ r] ∩ [τ ≤ t] = [τ ≤ r ∧ t] ∈ Ar∧t ⊂ At for each t ≥ 0. Thus (10) holds.

Consider (9). Let A1, A2, . . . be in Aτ . Then

(a) (∪Ak) ∩ [τ ≤ t] = ∪(Ak) ∩ [τ ≤ t]) = ∪ (events in At) ∈ At.

Also, Ac
1 ∩ [τ ≤ t] = [τ ≤ t]\(A1 ∩ [τ ≤ t]) ∈ At. Thus, (9) holds. �

Definition 4.2 (Progressively measurable) Let {X(t) : t ≥ 0} be a process. Let Bt denote
the Borel subsets of [0, t]. Call X progressively measurable, and denote this type of measura-
bility by writing

X : ([0, t] × Ω,Bt × At) → (R,B) for each t ≥ 0,

provided that for each t in the index set we have

(11) {(s, ω) : 0 ≤ s ≤ t and X(s, ω) ∈ B} is in Bt × At.

Proposition 4.4 (Measurability of stopped right-continuous processes) Let τ be a stopping
time with respect to the At’s. AIso, let X : (Ω,A, P ) → (D[0,∞),D[0,∞)) be a process adapted
to the At’s. Then:

(12) X is progressively measurable.

(13) X(τ) is Aτ -measurable.

We may replace [0,∞) by any [0, θ) or [0, θ] with 0 < θ < ∞.
(Essentially, one can work nicely with right-continuous processes.)
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Proof. That Aτ is a σ-field and that τ is Aτ -measurable are trivial for any image space.
(For example, for each real number r we have [τ ≤ r] ∈ Aτ , and then [τ ≤ r] ∩ [τ ≤ t] = [τ ≤
r ∧ t] ∈ Ar∧t ⊂ At for each t ≥ 0.)

Fix t > 0. Now, (12) holds, since X = lim Xn (by right continuity), where

(14) Xn(s, ω) ≡
{

X((k + 1)/2n ∧ t, ω) for k/2n ≤ s < (k + 1)/2n, k ≥ 0, s < t,
X(t, ω) for s = t

clearly satisfies Xn : ([0, t]×Ω,Bt ×At) → (R,B) is measurable. That is, Xn is progressively
measurable. Thus the process X is also, by proposition 2.2.2, since Xn(ω̃) → X(ω̃) for each
ω̃ ≡ (s, ω). That is, X : ([0, t] × Ω,Bt × At) → (R,B) is measurable (or,X is progressively
measurable).

The following type of truncation argument with stopping times is common; learn it. We
must show that [X(τ) ∈ B] ∩ [τ ≤ t] ∈ At, for all Borel sets B ∈ B. But setting τ∗ ≡ τ ∧ t,
we see that

(15) [X(τ) ∈ B] ∩ [τ ≤ t] = [X(τ∗) ∈ B] ∩ [τ ≤ t] for τ∗ ≡ τ ∧ t,

and hence it suffices to show that [X(τ∗) ∈ B] ∈ At. Note that the mapping ω → (τ∗(ω), ω)
is a measurable mapping from (Ω,At) to ([0, t]×Ω,Bt ×At), since for A ∈ At and the identity
function I we have (for sets [0, s] × A generating Bt × At) that

(a) [(τ∗, I) ∈ [0, s] × A] = [τ∗ ≤ s] ∩ A = [τ ∧ t ≤ s] ∩ A ∈ At.

Combining this (τ∗, I) : (Ω,At) → ([0, t] × Ω,Bt × At) measurability with the progressive
measurability X : ([0, t] × Ω,Bt × At) → (R,B) shown above, we see that the composition
map ω → X(τ∗(ω), ω) is B-At-measurable. We express this by writing [X(τ∗) ∈ B] ∈ At.
(Both (12) and (13) have been established.) �

Exercise 4.2 Let T ≥ 0 be a rv and let {At : t ≥ 0} be an increasing sequence of σ-fields.
Establish the following facts.

(a) If T is a stopping time, then [T < t] ∈ At for all t ≥ 0.

(b) If [T < t] ∈ At for all t ≥ 0 and the At’s are right continuous, then T is a stopping time.

Exercise 4.3 Let T1 be a stopping time, and suppose T2 ≥ T1 where T2 is an AT1-
measurable rv, then T2 is a stopping time.

Exercise 4.4 Let 0 < a < b < 1. Let Ta ≡ inf{t : S(t) = a} for a Brownian motion S

on (C, C). Then Ta is a stopping time, but 1
2Ta is not. Also, A ≡ [‖S‖ ≥ a] is in ATa

, but
B ≡ [‖S‖ ≥ b] is not.

Definition 4.3 (Augmented filtration) Let (Ω, Â, P ) denote the completion of the proba-
bility space (Ω,A, P ). Let N ≡ {N ∈ A : P (N) = 0} denote all null sets. Let {At : t ≥ 0}
be an ↗ sequence of σ-fields; that is, the At’s form a filtration. If all At = At+, the At’s are
called right-continuous. If all At = σ[At,N ], then they are said to be a complete filtration. If
a filtration {At : t ≥ 0} is both complete and right-continuous, such a collection of σ-fields
is called an augmented filtration.
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Proposition 4.5 (Kallenberg) Let {At : t ≥ 0} denote an ↗ sequence of σ-fields on
the probability space (Ω,A, P ); that is, the At’s form a filtration. Consider the null sets
N ≡ {N ∈ A : P (N) = 0}. Define Ât ≡ σ[At,N ].

(a) Then the ↗collection of σ-fields Ât+ necessarily equals the completion Ât+ of the right-
continuous filtration At+, and so forms an augmented filtration for (Ω, Â, P ). Moreover, this
is the minimal augmented filtration.

(b) If the At ≡ σt denote the histories of a right-continuous process X : (Ω,A, P ) →
(D[0,∞),D[0,∞)), then the completion of the right-continuized histories necessarily forms the
minimal augmented filtration. (That is, complete each σt+ ≡ ∩∞

n=1σt+1/n.)

(c) If S ≤ T a.s. then AS ⊂ AT relative to the augmented filtration σ̂t+ = σ̂t+.

Proof. It is trivial that Ât+ ⊂ ̂̂At+ = Ât+. To show the converse, consider a set A ∈ Ât+.
Then for each n ≥ 1 we have A ∈ Ât+1/n, so P (AΔAn) = 0 for some set An ∈ At+1/n. Note
that A∗ ≡ limn An is in At+, while P (AΔA∗) = 0 since AΔA∗ ⊂ ∪∞

1 (AΔAn) = ∪{nul1}n =
{null}; thus A ∈ Ât+. Thus the main claim in (a) is established. Let Ft denote any other
augmented filtration for which all Ft ⊃ At. Then Ât+ = Ât+ ⊂ F̂t+ = Ft+ = Ft, as
claimed. Part (b) follows at once. Part (c) follows from exercise 12.4.1 on properties of
stopping times. �

Example 4.1 (Haeusler) Let both A and Ac be measurable subsets of some (Ω,A, P )
that have probability exceeding 0. Define Xt(ω) on 0 ≤ t ≤ 1 to be identically 0 if ω ∈ A and
to equal (t − 1/2) · 1[1/2,1](t) if ω ∈ Ac. All paths of this X-process are continuous. Since Xt

is always 0 for 0 ≤ t ≤ 1/2, we have σt = {∅,Ω} for 0 ≤ t ≤ 1/2. However, σt = {∅, A,Ac,Ω}
for 1/2 < t ≤ 1. These histories σt are not right continuous at t = 1/2. The right continuized
histories σt+ equal {∅,Ω} for 0 ≤ t < 1/2 and equal {∅, A,Ac,Ω} for 1/2 ≤ t ≤ 1. They are
already complete, so σ̂t+ = σ̂t+ = σt+. Now, proposition 4.5(c) could be applied. �
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5 Strong Markov Property

We now extend the strong Markov property (which was proved for discrete-time processes in
section 8.6) to processes with stationary and independent increments.

Theorem 5.1 (Strong Markov property) Consider the stochastic process X :
(Ω,A, P ) → (D[0,∞),D[0,∞)) adapted to right-continuous At’s. Suppose that X(0) = 0,X
has stationary and independent increments, and suppose that the increment X(t + s) − X(t)
is independent of At for all s ≥ 0. Let τ be an extended stopping time for the At’s, and
suppose P (τ < ∞) > 0. For some t ≥ 0 we define

(1) Y (t) ≡
{

X(τ + t) − X(τ) on [τ < ∞],
0 on [τ = ∞].

Then Y : ([τ < ∞] ∩ Ω, [τ < ∞] ∩ A, P (·|[τ < ∞])) → (D[0,∞),D[0,∞)) and

(2) P (Y ∈ F |[τ < ∞]) = P (X ∈ F ) for all F ∈ D[0,∞).

Moreover, for all F ∈ D[0,∞) and for all A ∈ Aτ , we have

(3) P ([Y ∈ F ] ∩ A|[τ < ∞]) = P ([X ∈ F ]) × P (A|[τ < ∞]).

Thus if P (τ < ∞) = 1, then X and Y are equivalent processes and the process Y is
independent of the σ-field Aτ .

Proof. That Y : (Ω ∩ [τ < ∞],A ∩ [τ < ∞], P (·|[τ < ∞]) → (D[0,∞),D[0,∞)) follows from
proposition 12.4.3. This proposition and exercise 12.4.1 show that

(4) A′
t ≡ Aτ+t are ↗ and right continuous, with Y adapted to the A′

t’s.

Case 1. Suppose the finite part of the range of τ is a countable subset {s1, s2, . . .} of
[0,∞). Let t1, . . . , tm ≥ 0, let B1, . . . , Bm be Borel subsets of the real line, and let A ∈ Aτ .
Then

P ([Y (t1) ∈ B1, . . . , Y (tm) ∈ Bm] ∩ A ∩ [τ < ∞])

=
∑

k
P ([Y (t1) ∈ B1, . . .] ∩ A ∩ [τ = sk])

=
∑

k
P ([X(t1 + sk) − X(sk) ∈ B1, . . .] ∩ A ∩ [τ = sk])

=
∑

k
P (X(t1 + sk) − X(sk) ∈ B1, . . .)P (A ∩ [τ = sk])

= P (X(t1) ∈ B1, . . .)
∑

k
P (A ∩ [τ = sk])

= P (X(t1) ∈ B1, . . . , X(tm) ∈ Bm)P (A ∩ [τ < ∞]),(a)

where the third equality holds as A ∩ [τ = sk] = (A ∩ [τ ≤ sk]) ∩ [τ = sk] is in Ask
, and is

thus independent of the other event by the independent increments of X.
Putting A = [τ < ∞] in (a) yields

P (Y (t1) ∈ B1, . . . , Y (tm) ∈ Bm|[τ < ∞])

(b) = P (X(t1) ∈ B1, . . . , X(tm) ∈ Bm);
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substituting (b) into (a) and dividing by P (τ < ∞) yields

P ([Y (t1) ∈ B1, . . . , Y (tm) ∈ Bm] ∩ A|[τ < ∞])

(c) = P (Y (t1) ∈ B1, . . . , Y (tm) ∈ Bm|[τ < ∞])P (A|[τ < ∞]).

Thus (b) and (c) hold for the class G of sets of the form [Y (t1) ∈ B1, . . . , Y (tm) ∈ Bm] and
for all sets A in Aτ . Since G generates Y −1(D[0,∞)), equation (b) implies (2). Since G is also
closed under finite intersections (that is, it is a π̄−system), (c) and proposition 7.1.1 imply
the truth of (3).

Case 2. Now consider a general stopping time τ . For n ≥ 1, define

(d) τn ≡
⎧
⎨

⎩

k/n for (k − 1)/n < τ ≤ k/n and k ≥ 1,
1/n for τ = 0,
∞ for τ = ∞.

Note that τn(ω) ↘ τ(ω) for ω ∈ [τ < ∞]. For k/n ≤ t < (k + 1)/n we have

[τn ≤ t] = [τ ≤ k/n] ∈ Ak/n ⊂ At

(so that τn is a stopping time), and also for A in Aτ that

A ∩ [τn ≤ t] = A ∩ [τ ≤ k/n] ∈ Ak/n ⊂ At

(so that Aτ ⊂ Aτn
). Define

(e) Yn(t) = X(τn + t) − X(τn) on [τn < ∞] = [τ < ∞],

and let it equal 0 elsewhere. By case 1 results (b) and (c), both

(f) P (Yn ∈ F |[τ < ∞]) = P (X ∈ F ) and

(g) P ([Yn ∈ F ] ∩ A|[τ < ∞]) = P (Yn ∈ F |[τ < ∞])P (A|[τ < ∞])

hold for all F in D[0,∞) and all A in Aτ (recall that Aτ ⊂ Aτn
as shown above, and

[τ < ∞] = [τn < ∞]). Let (r1, . . . , rm) denote any continuity point of the joint df of the
finite dimensional random vector (Y (t1), . . . , Y (tm)), and define

Gn ≡ [Yn(t1) < r1, . . . , Yn(tm) < rm, τ < ∞],
G ≡ [Y (t1) < r1, . . . , Y (tm) < rm, τ < ∞],
G∗ ≡ [Y (t1) ≤ r1, . . . , Y (tm) ≤ rm, τ < ∞],
H ≡ [X(t1) < r1, . . . , X(tm) < rm].

(h)

By the right continuity of the sample paths, Yn(t) → Y (t) for every t and every ω in [τ < ∞];
thus

(i) G ⊂ lim Gn ⊂ lim Gn ⊂ G∗

Thus

P (G|τ < ∞) ≤ P (lim Gn|[τ < ∞]) ≤ lim P (Gn|τ < ∞) by (i), then DCT

= P (H) = lim P (Gn|τ < ∞) by using (f) twice

≤ P (lim Gn|τ < ∞) ≤ P (G∗|τ < ∞) by the DCT and (i)

≤ P (G|τ < ∞) +
∑m

i=1
P (Y (ti) = ri|τ < ∞)
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= P (G|τ < ∞),(j)

since (r1, . . . , rm) is a continuity point. Thus (j) implies

(k) P (G|τ < ∞) = P (H),

and this is sufficient to imply (2). Likewise, for A ∈ Aτ ⊂ Aτn
,

P (G ∩ A|[τ < ∞]) ≤ P (lim Gn ∩ A|τ < ∞) by (i)

≤ lim P (Gn ∩ A|τ < ∞) by the DCT

= lim P (Gn|τ < ∞)P (A|τ < ∞) by (c), with [τ < ∞] = [τn < ∞]

= P (G|τ < ∞)P (A|τ < ∞) by (j)

= lim P (Gn|τ < ∞)P (A|τ < ∞) by (j)

= lim P (Gn ∩ A|τ < ∞) by (c), with [τ < ∞] = [τn < ∞]

≤ P (lim Gn ∩ A|τ < ∞) ≤ P (G∗ ∩ A|τ < ∞) by the DCT, then (i)

≤ P (G ∩ A|τ < ∞) +
∑m

i=1
P (Y (ti) = ri|τ < ∞)

= P (G ∩ A|τ < ∞),(l)

since (r1, . . . , rm) is a continuity point. Thus (1) implies

(m) P (G ∩ A|τ < ∞) = P (G|τ < ∞)P (A|τ < ∞);

and using proposition 7.1.1 again, we see that this is sufficient to imply (3).
The final statement is immediate, since when P (τ < ∞) = 1 we must have P (A|τ < ∞) =

P (A) for all A ∈ A. �
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6 Embedding a RV in Brownian Motion

Let a, b > 0. For a Brownian motion S on (C∞, C∞), we define

(1) τ ≡ τab ≡ inf{t : S(t) ∈ (−a, b)c}

to be the first time S hits either −a or b. Call τ a hitting time. [Show that τ is a stopping
time.] Note figure 6.1.

b

0

–a

(·)

τab

Figure 6.1 The stopping time τab.

Theorem 6.1 (Embedding via τab) Let τ ≡ τab. Then:

(2) ES(τ) = 0.

(3) P (S(τ) = −a) = b/(a + b) and P (S(τ) = b) = a/(a + b).

(4) Eτ = ab = ES2(τ) and Eτ2 ≤ 4ab(a + b).

(5) Eτ r ≤ rΓ(r)22rES2r(τ) ≤ rΓ(r)22rab(a + b)2r−2 for all r ≥ 1.

Definition 6.1 (Martingale) A process {M(t) : t ≥ 0} is a continuous parameter martin-
gale (mg) if E|M(t)| < ∞ for all t, M is adapted to the At’s, and

(6) E{M(t)|As} =a.s. M(s) for all 0 ≤ s ≤ t.

Definition 6.2 (Stopping time) If τ is a random time (just a rv that is ≥ 0) for which the
event [τ ≤ t] ∈ At for all t, then we call τ a stopping time.
Future theorem Let τ be a stopping time. With appropriate regularity conditions on a mg
M , we can claim that

(7) EM(τ) = EM(0).

Our present applications are simple special cases of a result called the optional sampling
theorem for mgs. The general version will be proven in chapter 18. We will use it for such
simple special cases now. �
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Proof. The independent increments of S lead to satisfaction of the mg property stated
in (6). Also, S is suitably integrable (we will see later) for (7) to hold (note (13.6.9) and
(13.6.16)). Thus, with p ≡ P (S(τ) = b), we have

(a) 0 = ES(τ) = bp − a(1 − p), or p = a/(a + b).

Also, the process

(8) {S2(t) − t : t ≥ 0} is a mg adapted to the σ-fields At ≡ σt,

since

E{S2(t) − t|As} = E{[S(t) − S(s) + S(s)]2 − t|As}
= E{[S(t) − S(s)]2 + 2S(s)[S(t) − S(s)] + S

2(s) − t|As}
= E{[S(t) − S(s)]2} + 2S(s)E{S(t) − S(s)} + S

2(s) − t

= t − s + 2S(s) · 0 + S
2(s) − t

= S
2(s) − s.(b)

This process is also suitably integrable, so that optional sampling can be used to imply
E[S(τ)2 − τ ] = 0. Thus

(c) Eτ = ES2(τ) = (−a)2 · b/(a + b) + b2 · a/(a + b) = ab.

We leave (5) to exercise 12.7.3 below. �

Theorem 6.2 (Skorokhod embedding of a zero-mean rv) Suppose X is a rv with df
F having mean 0 and variance 0 ≤ σ2 ≤ ∞. Then there is a stopping time τ such that the
stopped rv S(τ) is distributed as X; that is,

(9) S(τ) ∼= X.

Moreover,

(10) Eτ = Var[X] and Eτ2 ≤ 16EX4,

and for any r ≥ 1 we have

(11) Eτ r ≤ KrE|X|2r with Kr ≡ rΓ(r)24r−2.

Proof. For degenerate F , just let τ ≡ 0. Thus suppose F is nondegenerate. Let (A,B)
be independent of S, with joint df H having

(12) dH(a, b) = (a + b)dF (−a)dF (b)/EX+ for a ≥ 0, b > 0.

The procedure is to observe (A,B) = (a, b) according to H, and then to observe τab, calling
the result τ. (Clearly, τab = 0 if a = 0 is chosen.) Note that [τ ≤ t] can be determined by
(A,B) and {S(s) : 0 ≤ s ≤ t}, and hence is an event in At ≡ σ[A,B,S(s) : 0 ≤ s ≤ t}.
For t ≥ 0,

P (S(τ) > t) = E(P{S(τ) > t|A = a,B = b})

(a) =
∫
[0,∞)

∫
(0,t]

0 · dH(a, b) +
∫
[0,∞)

∫
(t,∞)

(a/(a + b))dH(a, b) by (3)
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(b) =
∫
(t,∞)

∫
[0,∞)

a dF (−a)dF (b)/EX+ =
∫
(t,∞)

dF (b)EX−/EX+

(c) = 1 − F (t),

since EX = 0 with X nondegenerate implies EX+ = EX−. Likewise, for t ≥ 0,

(d) P (S(τ) ≤ −t) =
∫
[0,t)

∫
(0,∞)

0 · dH(a, b) +
∫
[t,∞)

∫
(0,∞)

(b/(a + b))dH(a, b)

(e) =
∫
[t,∞)

∫
(0,∞)

bdF (b)dF (−a)/EX+ =
∫
[t,∞)

dF (−a)

(f) = F (−t).

Thus S(τ) ∼= X. Moreover,

Eτ = E(E{τ |A = a,B = b}) = E(E{S2(τ)|A = a,B = b}) = ES2(τ)

= EX2 = Var[X].(g)

Note that (a + b)2r−1 ≤ 22r−2[a2r−1 + b2r−1] by the Cr-inequality. Thus

Eτ r = E(E{τ r|A = a,B = b})

(h) ≤ 22rrΓ(r)E(AB(A + B)2r−2) by (5)

≤ 22rrΓ(r)E(AB(A + B)2r−1/(A + B))

≤ rΓ(r)24r−2E
(

B

A + B
A2r +

A

A + B
B2r

)
(i)

= KrE(E{S2r(τ)|A = a,B = b}) = KrE(S2r(τ)) = KrEX2r,(j)

as claimed. �
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7 Barrier Crossing Probabilities

For −a < 0 < b we defined the hitting time

(1) τab ≡ inf{t : S(t) ∈ (−a, b)c},

where S denotes Brownian motion on (C∞, C∞). We also considered the rv S(τab), which is
called Brownian motion stopped at τab. We saw that it took on the two values b and −a with
the probabilities p ≡ a/(a + b) and q ≡ 1 − p = b/(a + b).

For a > 0 we define the stopping time (the hitting time of a)

(2) τa ≡ inf{t : S(t) ≥ a}.

[Now, [τa < c] = ∩q<a ∪r<c [S(r) > q] (over rational p and q) shows that τa is a stopping
time.] The LIL of (8.6.1) shows that both τab and τa are finite a.s.

Theorem 7.1 (The reflection principle; Bachelier) Both

P (sup0≤t≤c S(t) > a) = P (τa < c) = 2P (S(c) > a)(3)

= 2P (N(0, 1) ≥ a/
√

c) for a > 0 and

(4) P (‖S‖1
0 > a) = 4

∑∞
k=1

P ((4k − 3)a < N(0, 1) < (4k − 1)a)

(5) = 1 − 4
π

∞∑

k=0

(−1)k

2k + 1
exp

(
− (2k + 1)2π2

8a2

)
for a > 0.

Proof. Define the stopping time τ ′
a ≡ τa ∧c, and note that τa = τ ′

a on the event [S(c) > a].
Now, [τ ′

a < c] ∈ Aτ ′
a

is independent of the Brownian motion {Y(t) ≡ S(τ ′
a+t)−S(τ ′

a) : t ≥ 0},
by strong Markov, with P (τ ′

a < ∞) = 1. In (b) below we will use that S(τ ′
a) = a on [S(c) > a].

We have

P (τa < c) = P (τ ′
a < c)

(a) = P ([τ ′
a < c] ∩ [S(c) > a]) + P ([τ ′

a < c] ∩ [S(c) < a]) + O

(b) = P ([τ ′
a < c] ∩ [S(c) − S(τ ′

a) > 0]) + P ([τ ′
a < c] ∩ [S(c) − S(τ ′

a) < 0])

(c) = 2P ([τ ′
a < c] ∩ [S(c) − S(τa) > 0]) using the strong Markov property

(d) = 2P (S(c) > a),

since the events in (c) and (d) are identical.
The two-sided boundary of formula (4) follows from a more complicated reflec- tion princi-

ple. Let A+ ≡ [‖S+‖ > a] =[S exceeds a somewhere on [0, 1]] and A− ≡ [‖S−‖ > a] = [S falls
below −a somewhere on [0, 1]]. Though [‖S‖ > a] = A+∪A−, we have P (‖S‖ > a) < P (A+)+
P (A−), since we included paths that go above a and then below −a (or vice versa) twice. By
making the first reflection in figure 7.1, we see that the probability of the former event equals
that of A + − = [‖S+‖ > 3a], while that of the latter equals that of A−+ = [‖S−‖ > 3a]. But
subtracting out these probabilities from P (A+) + P (A−) subtracts out too much, since the
path may then have recrossed the other boundary; we compensate for this by adding back
in the probabilities of A + −+ ≡ [‖S+‖ > 5a] and A−+− ≡ [‖S−‖ > 5a], which a second
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reflection shows to be equal to the appropriate probability. But we must continue this process
ad infinitum. Thus

(e) P (‖S‖1
0 > a) =

{
P (A+) − P (A+−) + P (A+−+) − · · · +
P (A−) − P (A−+) + P (A−+−) − · · ·

= 2[P (A+) − P (A+−) + P (A+−+) − · · · ] by symmetry(f)

= 2
∑∞

k=1(−1)k+12P (N(0, 1) > (2k − 1)a) by (3)

(g) = 4
∑∞

k=1 P ((4k − 3)a < N(0, 1) < (4k − 1)a)

as claimed. The final expression (5) is left for the reader; it is reputed to converge more
quickly. �

Exercise 7.1 Prove (5). (See Chung (1974, p. 223).)

–a

0

a

2a

3a

The second reflection

The first reflection

The path

(·)

Figure 7.1 The reflection principle for Brownian motion.

Theorem 7.2 (The reflection principle for linear boundaries; Doob) Consider the line ct+d
with c ≥ 0, d > 0. Then:

(6) P (S(t) ≥ ct + d for some t ≥ 0) = exp(−2 c d).

(7) P (|S(t)| ≥ ct + d for some t ≥ 0) = 2
∑∞

k=1(−1)k+1 exp(−2k2cd).

Proof. Now, for any θ �= 0 the process

(8) {V (t) ≡ exp(θ[S(t) − θt/2]) : t ≥ 0} is a mg (with V (0) ≡ 1).

This holds with σt ≡ σ[S(s) : s ≤ t] (using the mgf of a normal rv), since
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E{V (t)|σs} = E{exp(θ[S(s) − θs/2] + θ[S(s, t] − θ(t − s)/2])|σs}

(a) = V (s)E{exp(θN(0, t − s))} exp(−θ2(t − s)/2)

(b) = V (s).

Thus if we now redefine τab as τab ≡ inf{t : X(t) ≡ S(t) − θt/2 ∈ (−a, b)c}, where we have
a > 0, b > 0, then V (t) = eθX(t). Hence the “future theorem” gives

(c) 1 = EV (τab) = P (X(τab) = −a)e−θa + P (X(τab) = b)eθb,

so that

(9) P (X(τab) = b) = (1 − e−θa)/(eθb − e−θa)

(d) → e−θb if θ > 0 and a → ∞
(e) = e−2cd if θ = 2c and b = d.

But this same quantity also satisfies (by proposition 1.1.2)

P (X(τab) = b) → P (X(t) ≥ b for some t) as a → ∞(f)
= P (S(t) − θt/2 ≥ b for some t) = P (S(t) ≥ θt/2 + b for some t)

(g) = P (S(t) ≥ ct + d for some t) if c = θ/2 and d = b.

Equating (g) to (e) (via (f) and (9)) gives (6). �

Exercise 7.2 Prove (7). (See Doob (1949).)

Theorem 7.3 (Kolmogorov–Smirnov distributions) Both

(10) P (‖U±‖ > b) = exp(−2b2) for all b > 0 and

(11) P (‖U‖ > b) = 2
∑∞

k=1(−1)k+1 exp(−2k2b2) for all b > 0.

Proof. Now, ‖U−‖ ∼= ‖U+‖ and

P (‖U+‖ > b) = P (U(t) > b for some 0 < t < 1)
= P ((1 − t)S(t/(1 − t)) > b) for some 0 ≤ t ≤ 1, by (12.3.16)(12)
= P (S(r) > b + rb for some r ≥ 0) letting r = t/(1 − t)

(a) = exp(−2b2) by theorem 7.2.

Likewise,

(b) P (‖U‖ > b) = P (|S(r)| > b + rb for some r ≥ 0)

(c) = 2
∑∞

k=1(−1)k+1 exp(−2k2b2)

by theorem 7.2. �
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Exercise 7.3 (a) Prove (12.6.5) for r = 2.

(b) Prove (12.6.5) for integral r. (This is unimportant.)

[Hint. The Vθ ≡ exp(θ[S(t) − θt2/2]), t ≥ 0 of (8) are martingales on [0,∞). Differentiate
formally under the integral sign in the martingale equality

(13)
∫

A
Vθ(t)dP =

∫
A

Vθ(s)dP for all A ∈ As.

Then conclude that [∂k/∂θkVθ(t)]|θ=0 is a martingale for each k ≥ 1. For k = 4 this leads to
S

4(t) − 6tS2(t) + 3t2 = t2H4(S(t)/
√

t) being a martingale on [0,∞); here H4(t) = t4 − 6t2 + 3
is the “fourth Hermite polynomial.” The reader needs to work only with the single specific
martingale in part (a); the rest of this hint is simply an intuitive explanation of how this
martingale arises.]



322 CHAPTER 12. BROWNIAN MOTION AND EMPIRICAL PROCESSES

8 Embedding the Partial Sum Process o

The Partial Sum Process

Let Xn1, . . . , Xnn be row-independent rvs having a common F (0, 1) distribution, and let
Xn0 ≡ 0. We define the partial sum process Sn on (D,D) by

(1) Sn(t) ≡ 1√
n

[nt]∑

i=0

Xni =
1√
n

k∑

i=0

Xni for
k

n
≤ t <

k + 1
n

, 0 ≤ k ≤ n

(or for all k ≥ 0, in case the nth row is Xn1,Xn2, ...). Note that

Cov[Sn(s),Sn(t)] =
∑[ns]

i=1

∑[nt]

j=1
Cov[Xni,Xnj ]/n(2)

= [n(s ∧ t)]/n for 0 ≤ s, t ≤ 1

for the greatest integer function [·]. We suspect that Sn“converges” to S. We will establish
this shortly.
Embedding the Partial Sum Process

Notation 8.1 Let {S(t) : t ≥ 0} denote a Brownian motion on (C∞, C∞). Then

(3) Zn(t) ≡ √
nS(t/n) for t ≥ 0 is also such a Brownian motion.

By using the Skorokhod embedding technique of the previous section repeatedly on the Brown-
ian motion Zn, we may guarantee that for appropriate stopping times τn1, . . . , τnn (with all
τn0 ≡ 0) we obtain that

(4) Xnk ≡ Zn(τn,k−1, τnk], for 1 ≤ k ≤ n, are iid F (0, 1) rvs.

Let Sn denote the partial sum process of these Xnk’s. Then, for t ≥ 0 we have

Sn (t) = 1√
n

∑[nt]
k=1 Xnk = 1√

n
Zn(τn,[nt]) = S

( τn[nt]

n

)

= S

(
1
n

∑[nt]

k=1
Tnk

)
= S(In(t))

(5)

with Tnk ≡ (τnk − τn,k−1) and In(t) ≡ 1
nτn,[nt]. Observe that:

(6) Xn1, . . . , Xnn are iid F (0, 1), in each row.

(7) Tn1, . . . , Tnn are iid with means = 1 = Var[X], in each row.

(8) ET r
nk ≤ Kr · E|Xnk|2r, with Kr ≡ rΓ(r)24r−2. �

Theorem 8.1 (Skorokhod’s embedding theorem) The partial sum process Sn on
(D,D) of row-independent F (0, 1) rvs formed as above satisfies

(9) ‖Sn − S‖ →p 0 as n → ∞.

Notice: The joint distributions of any Sm,Sn in theorem 8.1 are not the same as they would
be if formed from a single sequence of iid rvs. In fact, we have no idea of what these joint
distributions may be. However, the partial sums of an iid sequence do not generally converge
to their limit in the sense of →p, so we have gained a great deal via the embedding.
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Theorem 8.2 (Embedding at a rate) Suppose that EX4 < ∞. Let I denote the identity
function. Then for each 0 ≤ ν < 1

4 , the process Sn of (5) satisfies

(10) nν‖(Sn − S)/I1/2−ν‖1
1/n = Op(1).

Proof. Consider theorem 8.1. Let I denote the identity function. Suppose we now show
that

(a) ‖In − I‖1
0 = sup0≤t≤1 |τn,[nt]/n − t| →p 0.

Then on any subsequence n′ where →p 0 in (a) may be replaced by →a.s. 0, the continuity of
the paths of S will yield

(b) ‖Sn′(·) − S(·)‖ = ‖S(In′) − S‖ →a.s. 0,

and thus (9) will follow. This is a useful argument; learn it. It therefore remains to prove (a).
The WLLN gives

(c) In(t) = τn,[nt]/n →p t for any fixed t.

Using the diagonalization technique, we can extract from any subsequence a further subse-
quence n′ on which

(d) In′(t) →a.s. t for all rational t.

But since all functions involved are monotone, and since the limit function is continuous, this
implies that a.s.

(e) In′(t) → t uniformly on F [0, 1].

Thus (a) follows from (e), since every n has a further n′ with the same limit. Thus the
conclusion (9) holds.

In the proof just given, the conclusion (9) can trivially be replaced by

(f) sup0≤t≤m |Sn(t) − S(t)| →p 0.

Appealing to exercise 12.1.6(b) for the definition of ‖ · ‖∞, we thus obtain

(11) ρ∞(Sn,S) →p 0 on (C∞, C∞),

provided that the rvs Xn1,Xn2, . . . are appropriately iid (0, σ2). [We consider the proof of
theorem 8.2 at the end of this section.] �

Let g : (D,D) → (R,B) and let Δg denote the set of all x ∈ D for which g is not ‖ · ‖-
continuous at x. If there exists a set Δ ∈ D having Δg ⊂ Δ and P (S ∈ Δ) = 0, then we
say that g is a.s.‖ · ‖-continuous with respect to the process S.

Theorem 8.3 (Donsker) Let g : (D,D) → (R,B) denote an a.s. ‖ · ‖-continuous mapping
that is D-measurable. Then g(Sn) : (Ω,A, P ) → (R,B), and both

(12) g(Sn) →p g(S) as n → ∞ for the Sn of (5) and

(13) g(Sn) →d g(S) as n → ∞ for any Sn having the same distribution.

(D-measurability is typically trivial, and hypothesizing it avoids the measurability difficulties
discussed in section 12.1.) [Theorem 8.2 allows (13) for D-measurable functionals g that are
continuous in other ‖ · /q‖-metrics.]
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Proof. Now, ‖Sn − S‖ is a D-measurable rv, and ‖Sn − S‖ →p 0 for the Sn of (5). Thus
any subsequence n′ has a further subsequence n′′ for which ‖Sn′′ − S‖ → 0 for all ω /∈ A′′,
where P (A′′) = 0. Moreover,

(a) P (A′′ ∪ [S ∈ Δ]) ≤ P (A′′) + P (S ∈ Δ) = 0,

and if ω /∈ A′′ ∪ [S ∈ Δ], then g(Sn′′(ω)) → g(S(ω)) holds, as ‖Sn′′(ω) − S(ω)‖ → 0 and
g is ‖ ‖-continuous at S(ω). Thus g(Sn) →p g(S) as n → ∞ for the Sn of (5). Thus
g(Sn) →d g(S) for the Sn of (5), and hence of (13) also. [Note that we are dealing only with
functionals for which the compositions g(Sn) and g(S) are (Ω,A, P ) → (R,B) measurable.]
�

Example 8.1 Since the functionals ‖ · ‖ and ‖ ·+ ‖ are a.s. ‖ · ‖-continuous,

(14) ‖S+
n ‖ →d ‖S+‖ and ‖Sn‖ →d ‖S‖.

The limiting distributions are those given in theorem 7.1. �

Exercise 8.1 Let X0 ≡ 0 and X1,X2, . . . be iid (0, σ2). Define Sk ≡ X1 + · · · + Xk for
each integer k ≥ 0.

(a) Find the asymptotic distribution of (S1 + · · · + Sn)/cn for an appropriate cn.

(b) Determine a representation for the asymptotic distribution of the “absolute area” under
the partial sum process, as given by (|S1| + · · · + |Sn|)/cn.

The LIL

Recall the (8.6.1) LIL for a single sequence of iid F (0, 1) rvs X1,X2, . . . with partial sums
Sn ≡ X1 + · · · + Xn; that is

(15) limn→∞ |Sn|/
√

2n log log n = 1 a.s.

The two LILs for Brownian motion (recall (12.3.7) and (12.3.18)) are

(16) limt→∞ |S(t)|/
√

2t log log t = 1 a.s. and

(17) limt→0 |S(t)|/
√

2t log log(1/t) = 1 a.s.

Notation 8.2 Define stopping times T1, T2, . . . (with T0 = 0) having mean 1 for which the
rvs

(18) Xk ≡ S(τk−1, τk] are iid as F.

Let τk ≡ T0 + T1 + · · · + Tk for k ≥ 0, and define the partial sums

(19) Sn ≡
∑n

k=1
Xk = S(τn) = S(n) + [S(τn) − S(n)].
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[Note that this embedding differs from that in notation 8.1. This one is based on a single
sequence of rvs X1,X2, . . . .] �

Exercise 8.2 (The LIL) (a) First prove (15), while assuming that (16) is true. [Hint. By
proposition 8.6.1, we want to show (roughly) that

(20)
|S(τn) − S(n)|/

√
2n log log n →a.s. 0 or that

|S(τ[t]) − S(t)|/
√

2t log log t →a.s. 0.

We will now make rigorous this approach to the problem. First apply the SLLN to τ [t]/t as
t → ∞. Then define Δk ≡ sup{|S(t) − S(tk)| : tk ≤ t ≤ tk+1}, with tk ≡ (1 + a)k for some
suitably tiny a > 0. Use a reflection principle and Mills’ ratio to show that P (Δk ≥ (an
appropriate ck)) < ∞. Complete the proof using Borel–Cantelli.]

(b) Now that you know how to deal with the “blocks” Δk, model a proof of (16) on the proof
of proposition 8.6.1.

Proof for Embedding at a Rate∗

Proof. Consider theorem 8.2. Let d2 ≡ Var[T ]. Let Logk ≡ 1 ∨ (log k). Let M ≡ Mε be
specified below, and define

(a) Ac
n ≡ [max1≤k≤n |

∑k

i=1
(Tni − 1)|/(d

√
kLogk) ≥ 2M/d].

Then the monotone inequality gives

Ac
n ⊂ [max1≤k≤n |∑k

i=1{(Tni − 1)/(d
√

iLogi)}| ≥ M/d]

(b) ≡ [max1≤k≤n |∑k
i=1 Yni| ≥ M/d],

where the Yni’s are independent with mean 0 and variance (iLog2i)−1. Thus the Kolmogorov
inequality gives

P (Ac
n) ≤ (d/M)2Var[

∑n

1
Yni] = (d/M)2

∑n

1
(iLog2i)−1

≤ (d/M)2
∑∞

1
(iLog2i)−1 ≡ (d/M)2v2 < ε2 if M > dv/ε(21)

(c) < ε.

Thus

(d) P (Bn) ≡ P

(
max

1≤k≤n

nν |S(
∑kr

1 Tni/n) − S(k/n)|
(k/n)1/2−ν

≥ 2M√
dv

)
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≤ P (Bn ∩ An) + P (Ac
n)

≤
∑n

k=1
P

([ |S(Σk
1Tni/n) − S(k/n)|

[2M
√

k(Logk)/n]1/2
≥

2M√
dv

k1/2−ν

√
n

l
[2M

√
k(Logk)/n]1/2

]
∩ An

)
+ ε

(e)

(f) ≤ ∑n
k=1 P (sup0≤|r|≤a |S(r + k/n) − S(k/n)|/√a ≥ b) + ε

with a ≡ 2M
√

k(Logk)/n (as in An in (a)),
and with ≥ b as on the right in (e)

(g) ≤ 3
∑n

k=1 P (sup0≤r≤a |S(t, t + r]|/√a ≥ b/3) + ε using (k) below

(h) ≤ 12
∑n

k=1 P (N(0, 1) ≥ b/3) + ε by the reflection principle

(i) ≤ 12
∑n

k=1 exp(−(b/3)2/2) + ε by Mills’ ratio

(22) ≤ 12
n∑

k=1

exp
(

− M

9dv

k1/2−2ν

Logk

)
+ ε

(j) < 2ε,

if M ≡ Mε is large enough and if 0 ≤ ν < 1
4 (this final step holds, since

∫ ∞
0

exp(−cxδ)
dx → 0 as c → ∞). The inequality (g) used

sup0≤|r|≤a |S(r + k/n) − S(k/n)|

(k) ≤ sup0≤r≤a |S(r + k/n) − S(k/n)| + 2 sup0≤r≤a |S(r + k/n − a) − S(k/n − a)|
[with t in (g) equal to k/n or k/n − a, and with a as above (see (f))].

Now, P (Bn) ≤ 2ε shows that (10) is true, provided that the sup over all of [1/n, 1] is
replaced by the max over the points k/n with 1 ≤ k ≤ n. We now “fill in the gaps”. Thus
(even a crude argument works here)

P (
√

n max1≤k≤n−1 sup0≤t≤1/n |S(t + k/n) − S(k/n)|/k1/2−ν ≥ M)

≤ ∑n−1
k=1 P (S‖1/n

0 ≥ Mk1/2−ν/
√

n)

≤ 4
∑n−1

k=1 P (N(0, 1) ≥ Mk1/2−ν) by the reflection principle

≤ 4
∑n−1

k=1 exp(−M2k1−2ν/2) by Mills’ ratio(23)

< ε,(l)

if M ≡ Mε is large enough and if 0 ≤ ν < 1
2 (even). �

Exercise 8.3 Suppose EX4 < ∞. Show that the process Sn of (5) satisfies

(24) (n1/4/ log n)‖Sn − S‖ = Op(1).

[Hint. Replace nν/(k/n)1/2−ν by n1/4/ log n in the definition of Bn in (d). Now determine
the new form of the bounds in (20) and (21).] [While interesting and often quoted in the
literature, this formulation has little value for us.]
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9 Other Properties of Brownian Motion o

Here we collect some selected sample path properties of Brownian motion, just to illustrate
a sample of what is known. Some proofs are outlined in the exercises.

Definition 9.1 (Variation) For a sequence of partitions

Pn ≡ {(tn,k−1, tnk] : k = 1, . . . , n} of [0, 1] (with 0 ≡ tn0 < · · · < tnn ≡ 1), define the rth
variation of S corresponding to Pn by

(1) Vn(r) ≡
∑n

k=1
|S(tnk) − S(tn,k−1)|r.

We call these partitions nested if Pn ⊂ Pn+1 for all n ≥ 1. We further define the mesh of the
partitions to be ‖Pn‖ ≡ sup1≤k≤n |tnk − tn,k−1|.

Theorem 9.1 (Nondifferentiability)

(a) Almost every Brownian path is nowhere differentiable.

(b) In fact, Vn(1) → ∞ a.s. if ‖Pn‖ → 0.

(c) (Finite squared variation) Vn(2) →L2 1 if ‖Pn‖ → 0.

(d) (Finite squared variation) Vn(2) →a.s. 1

if either (i)
∑∞

n=1 ‖Pn‖ < ∞ or (ii) The Pn are nested with mesh approaching 0.

(e) (Dudley) Vn(2) →a.s. 1 if and only if (log n)‖Pn‖ → 0.

Theorem 9.2 (Lévy) The Hölder condition is true:

(2) lim sup
{0≤s<t≤1 and t−s=a↘0}

|S(t) − S(s)|√
2a log(1/a)

= 1 a.s.

Theorem 9.3 (The zeros of S in [0, 1]) Define

Zeros(ω) ≡ {t ∈ [0, 1] : S(t, ω) = 0}.

For almost all ω, the set Zeros(ω) is a closed and perfect set of Lebesgue measure zero. [A set
A is called dense in itself if every point x of A is such that every neighborhood of x contains
another point of A beyond x. A compact set that is dense in itself is called perfect.]

Theorem 9.4 (Strassen) Let Zn(t) ≡ S(nt)/
√

2n log log n for 0 ≤ t ≤ 1. Let K be the
set of absolutely continuous functions f on [0, 1] with f(0) = 0 and

∫ 1

0
[f ′(t)]2dt ≤ 1;

equivalently,

K ≡
{

f ∈ C[0, 1] : f(0) = 0, f(t) =
∫ t

0

f ′(s)ds,

∫ 1

0

[f ′(s)]2ds ≤ 1
}

.

For almost all ω the sequence {Zn(·, ω) : n = 3, 4, . . .} visualized within C[0, 1] is relatively
compact with limit set K. That is,

(3) P (limn ‖Zn − K‖ = 0) = 1 and P (∩f∈K[limn ‖Zn − f‖ = 0]) = 1.

We will write this conclusion symbolically as Z � K. [This can be used to establish a LIL
for various functionals g of Sn, by determining the extreme values of g(K).]
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Exercise 9.1 Prove theorem 9.1 (a).

Exercise 9.2 (α) Let Z ∼= N(0, 1). Let r > 0. Show that:

(a) Cr ≡ E|Z|r = 2r/2Γ( r+1
2 )/

√
π.

(b) |S(tn,k−1, tnk]|r ∼= (Cr|tnk − tn,k−1|r/2, (C2r − C2
r )(tnk − tn,k−1)r).

(β) Now show that EVn(2) = 1 and Var[Vn(2)] ≤ (C2r − C2
r )‖Pn‖, giving

(c)
∑∞

1 P (|Vn(2) − 1| ≥ ε) ≤ (C2r − C2
r )ε−2

∑∞
1 ‖Pn‖ < ∞.

(γ) Finally, demonstrate the truth of theorem 9.1(d), case (i).

Exercise 9.3 Prove theorem 9.1(b) when all tnk = k/2n.
[Hint. Let 0 < λ < 1. The Paley-Zygmund inequality gives

P (Vn(1) > λEVn(1)) ≥ (1 − λ)2E2Vn(1)/E(V 2
n (1)) → (1 − λ)2,

where EVn(1) → ∞.]



10. VARIOUS EMPIRICAL PROCESS 329

10 Various Empirical Process

Suppose that ξn1, . . . , ξnn are iid Uniform(0, 1). Their empirical df Gn is defined by

(1) Gn(t) ≡ 1
n

n∑

k=1

1[0,t](ξnk) for 0 ≤ t ≤ 1

(2) = k/n for ξn:k ≤ t < ξn:k+1 and 0 ≤ k ≤ n,

where 0 ≡ ξn:0 ≤ ξn:1 ≤ · · · ≤ ξn:n ≤ ξn:n+1 ≡ 1 are the order statistics; see figure 10.1. Note
that nGn(t) ∼= Binomial (n, t) ∼= (t, t(1 − t)). The Glivenko–Cantelli theorem shows that Gn

converges uniformly to the true df I; that is,

(3) ‖Gn − I‖ →a.s. 0 (even for the present triangular array of ξnk’s).

(The Cantelli proof of the SLLN based on fourth moments shows that Gn(t) →a.s. t for each
fixed t; even for triangular arrays. The rest of the proof is identical.) The uniform empirical
process Un is defined by

(4) Un(t) ≡ √
n[Gn(t) − t] =

1√
n

n∑

k=1

[1[ξnk≤t] − t] for 0 ≤ t ≤ 1.

This process is also pictured in figure 10.1. The means and covariances of Un are the same
as those of Brownian bridge U, in that

(5) EUn(t) = 0 and Cov[Un(s),Un(t)] = s ∧ t − st for all 0 ≤ s, t ≤ 1;

this follows easily from

(6) Cov[1[0,s](ξnk), 1[0,t](ξnk)] = s ∧ t − st for 0 ≤ s, t ≤ 1.

{Moreover, for any dk’s and ek’s we have immediately from this that

(7) Cov[
∑n

1
dk1[0,s](ξnk),

∑n

1
ek1[0,t](ξnk))] = (

∑n

1
dkek) × [s ∧ t − st];

we would have
∑n

1 E[dk, ek] instead, if these were rvs independent of the ξnk’s.} We note that
G

−1
n (t) ≡ inf{x ∈ [0, 1] : Gn(x) ≥ t} is left continuous, with

(8) G
−1
n (t) = ξn:k for (k − 1)/n < t ≤ k/n

and G
−1
n (0) = 0, as in figure 10.1. The uniform quantile process Vn is defined by

(9) Vn(t) ≡ √
n[G−1

n (t) − t] for 0 ≤ t ≤ 1.

The key identities relating Un and Vn are (with I the identity function) the trivial

(10) Un = −Vn(Gn) +
√

n[G−1
n ◦ Gn − I] on [0, 1],

(11) Vn = −Un(G−1
n ) +

√
n[Gn ◦ G

−1
n − I] on [0, 1].

Note that

(12) ‖Gn ◦ G
−1
n − I‖ = 1/n and ‖G−1

n ◦ Gn − I‖ = [max1≤k≤n+1 δnk];



330 CHAPTER 12. BROWNIAN MOTION AND EMPIRICAL PROCESSES

here δnk ≡ (ξn:k − ξn:k−1), for 1 ≤ k ≤ n + 1, denotes the kth of the n + 1 uniform spacings.
It is sometimes convenient to use the smoothed versions G̈n and G̈

−1
n defined by

(13) G̈n(ξn:k) = k/(n + 1) and G̈
−1
n (k/(n + 1)) = ξn:k for 0 ≤ k ≤ n + 1,

connected linearly between points. Upon occasion the smoothed uniform quantile process
V̈n(t) ≡ √

n[G̈−1
n (t) − t] is a useful variation on Vn. The Glivenko–Cantelli theorem implies

that

(14) ‖Gn − I‖ →a.s. 0, ‖G−1
n − I‖ →a.s. 0, ‖G̈n − I‖ →a.s. 0, ‖G̈−1

n − I‖ →a.s. 0;

see figure 10.1. Coupling these with the identities (10) and (11) shows that

(15) ‖Un − U‖ →p 0 if and only if ‖Vn − V‖ →p 0.

Let cn ≡ (cn1, . . . , cnn)′ denote a vector of known constants normalized so that

(16)
cn. ≡ 1

n

∑n
k=1 cnk = 0 and σ2

c,n ≡ 1
n

∑n
k=1(cnk − cn.)2 = 1, and let

c4
n. ≡ 1

n

∑n
k=1[cnk − cn.]4.

We suppose that these constants also satisfy the uan condition

(17) max
1≤k≤n

|cnk − c̄n|/[
√

nσc,n] =
[

max
1≤k≤n

|cnk|/√
n
]

→ 0 as n → ∞.

The weighted uniform empirical process is defined by

(18) Wn(t) ≡ 1√
n

n∑

k=1

cnk[1[ξnk≤t] − t] for 0 ≤ t ≤ 1.

The Wn process is pictured in figure 10.1. It is trivial from (7) that

(19) Cov[Wn(s),Wn(t)] = s ∧ t − st for 0 ≤ s, t ≤ 1.

It is easy to show that Wn →fd W, where W denotes another Brownian bridge, one that is
independent of U.

Let Rn ≡ (Rn1, . . . Rnn)′ denote the ranks of ξn1, . . . , ξnn; and then denote the antiranks
by Dn ≡ (Dn1, . . . , Dnn)′. Then Rn is a random permutation of the vector (1, . . . , n)′, while
Dn is the inverse permutation. These satisfy

(20) ξnDnk
= ξn:k and ξnk = ξn:Rnk

.

As observed in example 7.5.3,

(21) (ξn:1, . . . , ξn:n) and (Rn1, . . . , Rnn) are independent rvs.

The empirical finite sampling process Rn is defined by

(22) Rn(t) ≡ 1√
n

[(n+1)t]∑

k=1

cnDnk
for 0 ≤ t ≤ 1.

The Rn process is also pictured in figure 10.1. The key identities are

(23) Wn = Rn(Gn) or Rn = Wn(G̈−1
n ) on [0, 1].
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Figure 10.1 Gn,G1
n,Un,Wn and Rn.
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These identities give

(24) ‖Wn − W‖ →p 0 if and only if ‖Rn − R‖ →p 0,

as with (15). Because of (21), we see that

(25) Rn and Vn are independent processes.

We reiterate that

(26) W and V = −U are independent Brownian bridges;

this is further corroborated, since (7) with
∑n

1 dkek =
∑n

1 cnk/n = 0 imply that the cross
covariance

(27) Cov[Un(s),Wn(t)] = 0 for all 0 ≤ s, t ≤ 1.

We will prove only part of theorems 10.1 and 10.3 (namely, that (28) holds). For the believ-
ability of the rest, we will rely on (28), our earlier proof that Sn can be embedded at a rate,
and the proof of theorem 10.2. (Shorack(1991) contains these proofs, written in the current
style and notation.) See section 12.11 for proofs of theorems 10.2 and 10.4.

Theorem 10.1 (Convergence of the uniform processes) We can define independent
Brownian bridges U = −V and W and row-independent Uniform(0, 1) rvs ξn1, . . . , ξnn on
a common probability space (Ω,A, P ) in such a way that

(28) ‖Un − U‖ →p 0 and ‖Vn − V‖ →p 0,

(29) ‖Wn − W‖ →p 0 and ‖Rn − R‖ →p 0,

provided that the cnk’s are uan with c̄n = 0, σ2
c = 1, and c̄4

n < ∞.

Theorem 10.2 (Pyke–Shorack) Let q > 0 on (0, 1) be ↗ on [0, 1
2 ],↘ on [12 , 1], and have∫ 1

0
[q(t)]−2dt < ∞. Then:

(30) ‖(Un − U)/q‖ →p 0 and ‖(Vn − V)/q‖ →p 0.

(31) ‖(Wn − W)/q‖ →p 0 and ‖(Rn − W)/q‖ →p 0.

Corollary 1 (Csörgő–Révész) We may replace 1/q in the previous theorem by K, for any
qf K having Var [K(ξ)] < ∞.

Theorem 10.3 (Weighted approximation of the uniform processes) The embed-
dings of the previous theorem are such that for any 0 ≤ ν < 1

4 we have

(a) (M. Csörgő, S. Csörgő, Horváth, Mason)

(32) Δνn ≡ ‖nν(Un − U)/[I ∧ (1 − I)]1/2−ν‖1−1/n
1/n = Op(1),

(33) Δ̄νn− ≡ ‖nν(Vn − V)/[I ∧ (1 − I)]1/2−ν‖1−1/2n
1/2n = Op(1).
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(b) (Shorack) Suppose lim c̄4
n < ∞. Then

(34) Δ̇νn ≡ ‖nν(Wn − W)/[I ∧ (1 − I)]1/2−ν‖1−1/n
1/n = Op(1),

(35) Δ̈νn ≡ ‖nν(Rn − W)/[I ∧ (1 − I)]1/2−ν‖1−1/2n
1/2n = Op(1).

[The supremum limits in (32) and (34) may be changed to c/n and 1−c/n for any constant
c > 0. This relates to exercise 10.3 below.]

Theorem 10.4 (Weighted approximation of Gn; Mason) For any realization of Gn, any
n ≥ 1, any 0 < ν < 1

2 , and all λ > 0 we have

(36) Δ0
νn ≡

∥∥∥∥
nν(Gn − I)

[I ∧ (1 − I)]1−ν

∥∥∥∥ = Op(1).

We may replace Gn by G̈
−1
n in (36).

Example 10.1 (R-statistics) Consider the simple linear rank statistics

(37) Tn ≡ 1√
n

n∑

k=1

cnkK

(
Rnk

n + 1

)
=

1√
n

n∑

k=1

K

(
i

n + 1

)
cnDnk

(38) =
∫ 1

0
KdRn = − ∫ 1

0
RndK,

where the last step holds if K = K1 − K2 with each Ki ↗ and left continuous on (0, 1). As
in (12.3.19), this suggests that

(39) Tn →p

∫ 1

0
WdK ∼= N(0,Var[K(ξ)]),

provided that the uan condition holds and provided that Var [Ki(ξ)] < ∞ for i = 1, 2. Indeed,
this can be shown to be true. (Writing

Tn = − ∫ 1

0
WdK ⊕ ‖(Rn − W)/q‖ ∫ 1

0
[q(t)]−2d|K|

provides a simple proof in case this integral is finite for some square integrable function q and
for total variation measure d|K|.) We will return to this in section 15.2 below. �

Proof. Consider Vn. We will represent our uniforms rvs as a normed sum of Exponen-
tial(1) rvs. Thus we really begin with a Skorokhod embedding of iid Exponential(1) rvs.

Let F (x) = 1 − exp(−(x + 1)) for x ≥ −1, so that F is a (0, 1) df; and if X ∼= F,
then X + 1 ∼= Exponentil(1). According to Skorokhod’s embedding theorem, there exist row-
independent rvs Xn1, . . . , Xnn with df F such that the partial sum process Sn of the n th row
satisfies ‖Sn − S‖ →p 0 for some Brownian motion S. We now define

(40) ηnk ≡ k + Xn1 + · · · + Xnk and ξn:k ≡ ηnk/ηn,n+1 for 1 ≤ k ≤ n + 1.

It is an elementary exercise below to show that these ξnk’s are distributed as n row-independent
Uniform(0, 1) order statistics. Let Gn denote their empirical df and Un their uniform empir-
ical process. The key identity relating Vn to Sn is

Vn−1

(
k

n − 1

)
=

√
n − 1

[
ηk

ηn
− k

n − 1

]
(a)

=
n

ηn

√
n − 1

n

[
ηk − k√

n
− k

n

ηn − n√
n

]
− √

n − 1
[

k

n − 1
− k

n

]
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=
n

ηn

√
n − 1

n
[Sn(k/n) − (k/n)Sn(1)] − 1√

n − 1
k

n
,(41)

so that for 0 ≤ t ≤ 1,

(42) Vn−1(t) =
n

ηn

√
n − 1

n
[Sn(In(t)) − In(t)Sn(1)] − 1√

n − 1
In(t),

where In(t) ≡ k/n for (k − 1)/(n − 1) < t ≤ k/(n − 1) and 1 ≤ k ≤ n − 1 with In(0) ≡ 0
satisfies ‖In − I‖ → 0. Note that ηn/n →p 1 by the WLLN and that ‖Gn − I‖ →p 0. Thus

(43) ‖Vn − V‖ →p 0 for V ≡ S − I S(1)

follows from the identity (42), ‖In − I‖ → 0, and the fact that

(b) ‖S(In) − S‖ ≤ ‖S(In) − S(In)‖ + ‖S(In) − S‖ ≤ ‖Sn − S‖ + ‖S(I) − S‖ →p 0,

by continuity of all sample paths of the S process.
All sample paths of V are continuous, and the maximum jump size of |Vn −V| is bounded

above by [
√

n max1≤i≤n+1 δni]; so ‖Vn − V‖ →p 0 and (12) imply

(44) [
√

n max1≤k≤n+1 δni] =
√

n‖G−1
n ◦ Gn − I‖ →p 0 as n → ∞.

Thus

‖Un − U‖ = ‖ − Vn(Gn) +
√

n[Gn ◦ G
−1
n − I] + V‖

(c) ≤ ‖Vn(Gn) − V(Gn)‖ + ‖V(Gn) − V‖ +
√

n‖Gn ◦ G
−1
n − I‖

≤ ‖Vn − V‖ + ‖V(Gn) − V‖ + op(1)(d)

= ‖V(Gn) − V‖ + op(1)

(e) = op(1),

using ‖Gn − I|| →p 0 and uniform continuity of the sample paths of V.
We will prove Mason’s theorem in the next section. �

Exercise 10.1 Establish the claim made just below (40).

Example 10.2 (The supremum functionals) Suppose g : (D,D) → (R,B) is an a.s. ‖ · ‖-
continuous function. Then

(45) g(Un) →p g(U) and g(Vn) →p g(V)

for the special constructions of theorem 10.1. Moreover, convergence in distribution holds
for any versions of these processes. Letting # denote +,−, or | · |, we can thus claim the
convergence in distribution

(46) ‖U#
n ‖ →d ‖U#‖ and

∫ 1

0
U

2
n(t)dt →d

∫ 1

0
U

2(t)dt

for any versions of these processes. These limiting distributions of ‖U±‖ were given in theorem
12.7.3, while that of

∫ 1

0
U

2(t)dt will be given in exercise 12.2. �
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Exercise 10.2 (The two-sample uniform process) (i) Let Gm and Hn be the empirical
dfs of two independent Uniform(0, 1) special constructions. Let

Um =
√

m(Gm − I) and Vn ≡ √
n(Hn − I)

denote the corresponding empirical process, and let λmn ≡ n/(m + n). Then

Wmn ≡
√

mn

m + n
(Gm − Hn) = (

√
λmnUm −

√
1 − λmnVn)

has

‖Wmn−W
0
mn‖ →p 0 as m ∧ n → ∞, where

(47)
W

0
mn ≡ (

√
λmnU −

√
1 − λmnV) is a Brownian bridge.

We thus have ‖W#
mn‖ →d ‖W#‖ for Brownian bridge W. Write out the details. (ii) Now

use a discrete reflection principle to compute the exact distribution of P (‖W+
nn‖ ≥ a), and

pass to the limit in the resulting expression to obtain (12.7.10). (This provides an alternative
to the earlier method.) [Hint. Go through the order statistics of the combined sample from
smallest to largest. If it is from sample 2, step up one unit as you go to the right one unit. If
it is from sample 2, step down one unit as you go to the right one unit. In this way, perform
a random walk from (0, 0) to (2n, 0). What is the chance you ever cross a barrier of height
a?]

Example 10.3 (The Kolmogorov–Smirnov and Cramér-von Mises statistics) Let ξn1, . . . ,
ξnn be the iid Uniform (0, 1) rvs of the special construction, and let F denote an arbitrary df.
Then Xnk ≡ F−1(ξnk), 1 ≤ k ≤ n, are iid F . Let Fn denote the empirical df of Xn1, . . . , Xnn

and let En denote the empirical process defined by En(x) ≡ √
n[Fn(x) − F (x)]. Now, En =

Un(F ). Thus (28) implies ‖En − U(F )‖ ≤ ‖Un − U‖ →p 0, where equality holds if F is
continuous. Thus

(48)
√

nD#
n ≡ √

n‖(Fn − F )#‖ = ‖U#
n ‖ → d‖U#‖ if F is continuous.

Likewise, a change of variable allows elimination of F , and gives

(49) W 2
n ≡ ∫

n(Fn − F )2dF =
∫ 1

0
U

2
n(t)dt →d

∫ 1

0
U

2(t)dt if F is continuous.

These statistics are used to test whether F is really the true df, and
√

nD#
n and W 2

n all
measure how far the estimate Fn of the true df differs from the hypothesized df F. [The per-
centage points of the asymptotic distributions of

√
nD#

n and W 2
n , under the null hypothesis

when F is really the true df, are available.]
Consider now the two-sample problem in which the rvs X

(i)
nj ≡ F−1(ξ(i)

nj ), for i = 1, 2 and

1 ≤ j ≤ ni, of independent special constructions have empirical dfs F(1)
n1 and F(2)

n2 . Note
that for independent uniform empirical processes

(50)
√

n1n2

n1 + n2
[F(1)

n1
− F(2)

n2
] =

√
n2

n1 + n2
U

(1)
n1

(F ) −
√

n1

n1 + n2
U

(2)
n2

(F ) ≡ Wn1,n2(F )

(51) =a Wn1,n2(F ) if F is continuous,
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where

(52) Wn1,n2 ≡
√

n1

n1 + n2
U

(1) −
√

n2

n1 + n2
U

(2) ∼= U for all n1 and n2.

This gives the asymptotic null distribution for the various supremum and integral functionals
with which we have dealt, no matter which version of these processes is considered. �

Exercise 10.3 Show that n ξn:n → d Exponential(1).

Exercise 10.4 (
∫ 1

0
g dUn) Suppose Var[g(ξ)] and Var[h(ξ)] are finite.

(a) Show that there exist rvs (to be labeled
∫ 1

0
g dU and

∫ 1

0
h dW) for which

(53)
∫ 1

0
g dUn →p

∫ 1

0
g dU and

∫ 1

0
h dWn →p

∫ 1

0
h dW.

(b) Show also that

(54)
∫ 1

0
g dVn →p − ∫ 1

0
g dU and

∫ 1

0
h dRn →p

∫ 1

0
h dW.

Exercise 10.5 (Mason) Consider the Δnν of (32). For some a > 0,

(55) supn≥2 Eexp(aΔnν) < ∞.

[Hint. This is too hard to be an “exercise,” but it is a very nice bound.]
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11 Inequalities for Various Empirical Processes o

We wish to apply the Birnbaum–Marshall and Hájek-Rényi inequalities to various martingales
(mgs) associated with the processes of the previous section.

Proposition 11.1 (Various martingales)

(1) {Un(t)/(1 − t) : 0 ≤ t < 1} is a mg.

(2) {Wn(t)/(1 − t) : 0 ≤ t < 1} is a mg.

(3) {U(t)/(1 − t) : 0 ≤ t < 1} is a mg.

(4) {Vn(k/(n + 1)) : (1 − k/(n + 1)) : 0 ≤ k ≤ n} is a mg.

(5) {Rn(k/(n + 1))/(1 − k/n) : 0 ≤ k ≤ n − 1} is a mg.

Proof. Let At ≡ σ[1[ξ≤s] : 0 ≤ s ≤ t]. Then

E{1[ξ≤t] − t|As} = 1[ξ≤s] +
t − s

1 − s
1[ξ>s] − t(a)

= 1[ξ≤s] +
t − s

1 − s
{1 − 1[ξ≤s]} − t

(b) =
1 − t

1 − s
{1[ξ≤s] − s},

so that

(6) [1[ξ≤t] − t]/(1 − t), 0 ≤ t ≤ 1, is a mg.

Noting (12.10.7), summing (6) shows that (1) and (2) hold.
Let At ≡ σ[U(s) : 0 ≤ s ≤ t]. Letting Σst ≡ Cov[U(s),U(t)] = s ∧ t − st,

(c) E(U(t)|As) = {[s(1 − t)]/[s(1 − s)]}U(s),

since U(t)|U(s) is normal with mean μt + ΣtsΣ−1
ss [U(s) − μs]. Thus (3) holds.

Consider (5). Let Znk ≡ Rn(k/(n + 1))/(1 − k/n), and set ΔZnk ≡ Znk − Zn,k−1 for
integers 1 ≤ k ≤ n − 1. Then

ΔZnk = n
n−kR

(
k

n+1

)
− n

n−k
n−k

n−k+1R

(
k−1
n+1

)

(d) = 1√
n

n
n−k

[
cnDnk

+ 1
n−k+1

∑k−1
j=1 cnDnj

]
.

Let Ak ≡ σ[Dn1, . . . , Dnk]. Then

E(ΔZnk|Ak−1) = 1√
n

n
n−k [E(cnDnk

|Ak−1) + 1
n−k+1

∑k−1
j=1 cnDnj

]

(e) = 1√
n

n
n−k

[
1

n−k+1

∑n
j=kcnDnj

+ 1
n−k+1

∑k−1
j=1 cnDnj

]

= 0, since c̄n = 0.
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Apply the finite sampling results (A.1.8) and (A.1.9) to (d) to conclude that

(f) Var [ΔZnk] =
σ2

c,n

n

( n

n − k

)2{
1 − 2

n − k + 1
k − 1
n − 1

+
k − 1

(n − k + 1)2
[
1 − (k − 1) − 1

n − 1

]}

(7) =
σ2

c,n

n − 1
n2

(n − k)(n − k + 1)
.

Thus (5) holds. Consider (4).
Let Ak ≡ σ[ξn:1, . . . ξn:k]. Then

(g) E(ξn:k|Ai) − k

n + 1
= ξn:i +

k − i

n − i + 1
[1 − ξn:i] − k

n + 1
=

n − k + 1
n − i + 1

[
ξn:i − i

n + 1

]
,

since the conditional distribution of ξn:k given ξn:i is that of the (k − i)th order statistic in a
sample of size n − i from Uniform (ξn:i, 1), and (A.1.32) can be applied. Thus (4) holds. �

Inequality 11.1 (Pyke–Shorack) Let X denote one of the processes Un, V̈n,Wn,Rn, or
U. Let q > 0 on [0, θ] be ↗ and right continuous. Then for all λ > 0 we have the probability
bound

(8) P (‖X/q‖θ
0 ≥ λ) ≤ (16/λ2)

∫ θ

0

[q(t)]−2dt.

Proof. Let X denote any one of Un,Wn, or U. Then X(t)/(1 − t) is a mg with mean 0
and variance ν(t) ≡ t/(1 − t). Thus the Birnbaum–Marshall inequality gives

P (‖X(t)/q(t)‖θ
0 ≥ λ) = P (‖[X(t)/(1 − t)]/[q(t)/(1 − t)]‖θ

0 ≥ λ)

(a) ≤ (4/λ)2
∫ θ

0
[(1 − t)/q(t)]2d[t/(1 − t)] = (4/λ)2

∫ θ

0
[q(t)]2dt.

Let X denote Rn. Then, with bk ≡ q(k/(n + 1)) and m ≡ [(n + 1)θ],

P (‖Rn(t)/q(t)‖θ
0 ≥ λ) = P (max1≤k≤m|Rn(k/(n + 1))|/bk ≥ λ)

≤ P
(
max1≤k≤m

|Rn(k/(n+1))/(1−k/n)|
bk/(1−k/n) ≥ λ

)

(b) ≤ 4
λ2

∑m
k=1

Var[ΔZnk]
[bk/(1−k/n)]2 by (b) and Hájek–Rényi

≤ 4
λ2

∑m
k=1

1
n−1

n2

(n−k)(n−k+1)
(n−k)2

n2b2k
by (7)

(c) ≤ 4
λ2

1
n

∑m
k=1 b−2

k ≤ 16
λ2

∫ θ

0
[q(t)]−2dt.

(We can improve (a) and (c) by a factor of 4, as stated in the Hájek–Rényi inequality, but
there is no real point to this.) �

Exercise 11.1 Verify (8) for V̈n.
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Inequality 11.2 (In probability linear bounds on Gn and G
−1
n ) For all ε > 0 there

exists λ ≡ λε so small that the event Anε on which

(9) Gn(t) ≤ t/λ on [0, 1], Gn(t) ≥ λt on [ξn:1, 1],

(10) Gn(1 − t) ≤ 1 − λ(1 − t) on [0, ξn:n), Gn(1 − t) ≥ 1 − (1 − t)/λ on [0, 1],

(11) |Gn(t) − t| ≤ 1/(λ
√

n) on [0, 1]

has P (Anε) ≥ 1 − ε for all n ≥ 1. Let 1nε denote the indicator function of Anε. (These
conclusions hold for any realization of Gn and G

−1
n .) (Note that linear bounds on G

−1
n are

also established by this result.)

Proof. Now, (ξn:1, . . . ξn:n) has joint density n! on its domain. Thus

P (Gn(t) ≤ t/λ for 0 ≤ t ≤ 1) = P (ξn:k ≥ λk/n for 1 ≤ k ≤ n)(a)

=
∫ 1

λ

∫ tn

λ(n−1)/n
· · · ∫ t3

λ2/n

∫ t2
λ/n

n! dt1 · · · dtn = · · ·

(b) = n!
[
tn

n!
− λtn−1

n!

] ∣∣∣∣
1

λ

= 1 − λ

(c) ≥ 1 − ε/3 for all λ ≤ λε ≡ ε/3,

and for all n. This gives the upper bound of (9). And (8.3.20) gives

Daniels’ equality

P (‖Gn/I‖ ≤ λ) = P (Gn(t) ≤ t/λ for 0 ≤ t ≤ 1)

= P (ξn:k ≥ λk/n for 1 ≤ k ≤ n) = P (G−1
n (t) ≥ λt for all 0 ≤ t ≤ 1)(12)

= 1 − λ for all 0 ≤ λ ≤ 1.

We now turn to the lower bound of (9). Now,

(13) Sk ≡ n ξn:k+1/k, 1 ≤ k ≤ n − 1, is a reversed mg,

as a rearrangement of E(ξn:k|ξn:k+1) = [k/(k + 1)]ξn:k+1 shows. So, immediately,

(d) S̃k ≡ S(n−1)−k+1 = Sn−k = n ξn:n−k+1/(n − k) is a mg for 1 ≤ k ≤ n − 1.

Now calculate

1 − P (Gn(t) ≥ λt everywhere on [ξn:1, 1]) [or = P (‖I/Gn‖1
ξn1

> 1/λ)]

(e) = P (ξn:k+1 > (k/n)/λ for some 1 ≤ k ≤ n − 1)

= P (max1≤k≤n−1Sk > 1/λ) = P (max1≤k≤n−1S̃k > 1/λ)

= P (max1≤k≤n−1 exp(rS̃k) > exp(r/λ))
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(f) ≤ infr>0[e−r/λEerS̃n−1 ] = infr>0[e−r/λEern ξn:2 ] by Doob’s (8.9.3)

(g) = infr>0

∫ 1

0
e−r/λerntn(n − 1)t(1 − t)n−2dt

= infr>0 e−r/λ
∫ n

0
ersn(n − 1)(s/n)(1 − s/n)n−2ds/n

≤ infr>0 e−r/λ
∫ n

0
sers(1 − s/n)n−2ds

≤ infr>0 e−r/λ
∫ n

0
serse−se2ds since 1 − s/n ≤ e−s/n

≤ e2 infr>0 e−r/λ
∫ ∞
0

s exp(−(1 − r)s)ds

(h) = e2 infr>0 e−r/λ/(1 − r)2 from the mean of an exponential density

(i) = (e2/4λ2) exp(−1/λ) since differentiation gives r = 1 − 2λ

(j) < ε/3

for λ ≡ λε small enough. Thus the lower bound in (9) holds. Then (10) follows from (9) by
symmetry. Finally, (11) holds since ‖Un‖ = Op(1). In fact, we have
Chang’s inequality

P (‖I/G−1
n ‖1

ξn1
≤ x) = P (Gn(t) ≥ t/x on all of [ξn:1, 1])

≥ 1 − 2x2e−x for all x ≥ 1.
(14) �

Proof. Consider Mason’s theorem 12.10.4. Apply the Pyke–Shorack inequality with divi-
sor q(t) ≡ (a ∨ t)1−ν to obtain

P (nν‖(Gn(t) − t)/t1−ν‖b
a ≥ λ) = P Un/t1−ν‖b

a ≥ λn(1/2)−ν)

(a) ≤ P (‖Un/q‖b
0 ≥ λn1/2−ν) ≤ 4

∫ b

0
(a ∨ t)−(2−2ν)dt/(λ2n1−2ν)

= 4
λ2(an)1−2ν + 4

λ2n1−2ν

∫ b

a
t−(2−2ν)dt

= 4
λ2(an)1−2ν − 4

λ2n1−2ν · 1
(1−2ν)t1−2ν |ba

(b) ≤ 8(1 − 2ν)−1/[λ2 (an) 1−2ν ].

Using a = 1/n, b = 1
2 and the symmetry about 1

2 gives

(15) P

(∥∥∥∥
nν [Gn(t) − t]

[t ∧ (1 − t)]1−ν

∥∥∥∥
1−1/n

1/n

≥ λ

)
≤

[
16

(1 − 2ν)

]
1
λ2

.

But [0, 1/n] is easy (and [1 − 1/n, 1] is symmetric), since on [0, 1/n] we have

(c) nν |Gn(t) − t|/t1−ν ≤ (nt)ν [1 + Gn(t)/t] ≤ 1 + Gn(t)/t;

and thus (9) gives

(16) P

(∥∥∥∥
nν [Gn(t) − t]

[t ∧ (1 − t)]1−ν

∥∥∥∥
1/n

0

≥ λ

)
≤ 1

λ − 1
for λ > 1.

We can repeat this same proof up to (13) with G̈
−1
n and V̈n replacing Gn and Un,

because of the Pyke-Shorack inequality. Then (0, 1/n] is trivial for G̈−1
n , as the values on this

whole interval are deterministically related to the value at 1/n. �

Exercise 11.2 Prove the Pyke-Shorack theorem 12.10.2. [Hint. Model your proof on (a) of
the previous proof, with a = 0 and b sufficiently small, and with theorem 12.10.1 sufficient
on [b, 1 − b].]
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12 Applications o

Theorem 12.1 (Donsker) Let g : (D,D) → (R,B) denote an a.s.‖ · ‖-continuous mapping
that is D-measurable. Then g(Un) : (Ω,A, P ) → (R,B), and

(1) g(Un) →p g(U) as n → ∞ for the Un of (12.10.28),

(2) g(Un) →d g(U) as n → ∞ for an arbitrary Un.

[These conclusions hold for D-measurable functionals g that are continuous in other ‖ · /q‖-
metrics as well.]

Exercise 12.1 Write out the easy details to prove this Donsker theorem.

Example 12.1 (Tests of fit) (i) Call F stochastically larger than F0 when PF (X > x) ≥
PF0(X > x) for all x (with strict inequality for at least one x), and write F ≥s F0. Then to
test the null hypothesis H0 that F = F0 is true against the alternative hypothesis Ha that
F ≥s F0 it is reasonable to reject the truth of the H0 claim for large values of Birnbaum’s
statistic Zn ≡ ∫ ∞

−∞
√

n[Fn(x)−F0(x)]dF0(x). Now suppose that H0 is true, with a continuous
df F0. Then

(3) Zn
∼= ∫ ∞

−∞ Un(F0)dF0 =
∫ 1

0
Un(t)dt →d Z ≡ ∫ 1

0
U(t)dt ∼= N

(
0, 1

12

)
.

(ii) Alternatively, one could form the Cramér-von Mises statistic

Wn ≡ ∫ ∞
−∞{√

n[Fn(x) − F0(x)]}2dF0(x)(4)

∼= ∫ ∞
−∞ U

2
n(F0)dF0 by (7.5.22)

=
∫ 1

0
U

2
n(t)dt when F0 is continuous, by (6.3.10)

→d

∫ 1

0
U

2(t)dt(5)

=
∫ 1

0
{∑∞

k=1φk(t) 1
πkZk}{∑∞

j=1φj(t) 1
πj Zj}dt (see below)

for the orthonormal functions φk(t) ≡
√

2 sin(πkt) on [0, 1]
and iid N(0, 1) rvs Zk

=
∑∞

k=1

∑∞
j=1

1
π2jk

ZjZk

∫ 1

0
φk(t)φj(t)dt

(6) =
∑∞

k=1

1
π2k2

Z2
k .

This shows that Wn is asymptotically distributed as an infinite weighted sum of independent
χ2

1rvs. This representation of the limiting distribution has been used to provide tables. If
Wn ≡ Wn(F0) is computed but a different df F is true, then

(7)
1
n

Wn =
∫ ∞

−∞[Fn − F0]2dF0 →a.s.

∫ ∞
−∞[F − F0]2dF0 > 0.

[In statistical parlance, this shows that the Wn-test is consistent against any df alternative
having F �= F0.]
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(iii) A third possibility is the Anderson–Darling statistic

(8) An ≡
∫ ∞

−∞

{√
n[Fn − F0]}2

F0(1 − F0)
dF0 =

∫ 1

0

U
2
n(t)

t(1 − t)
dt

for F0 continuous

(9) → d

∫ 1

0

U
2(t)

t(1 − t)
dt ∼=

∞∑

k=1

1
k(k + 1)

Z2
k .

�

Proof. (i) Consider Birnbaum’s Zn.
Method 1: By (6.5.27) and then the change of variable theorem of (6.3.10) (with identity

function H) one obtains the first two steps of (3). Apply Donsker for the third step. Appeal
to (12.3.19) for the → d to a normal rv Z. Finally, appeal to Fubini’s theorem for both

EZ = E
∫ 1

0
U(t)dt =

∫ 1

0
E(U(t))dt =

∫ 1

0
0 dt = 0 and(a)

E(Z2) = E{∫ 1

0

∫ 1

0
U(s)U(t)ds dt}

=
∫ 1

0

∫ 1

0
E{U(s)U(t)}ds dt =

∫ 1

0

∫ 1

0
[s ∧ t − st]ds dt

(b) =
∫ 1

0

∫ t

0
s(1 − t)ds dt = 1/12.

Method 2: Apply (12.10.28) for

(c)
∫ 1

0

|Un(t) − U(t)|dt ≤
∫ 1

0

1 dt × ‖Un − U‖ →p 0.

Thus Zn →d Z.
The rest of the justification of example 12.1 is outlined in exercises 12.2

and 12.3. �

Exercise 12.2 Consider the Cramér-von Mises statistic Wn.

(I) Verify step (5). Use (12.10.28).
(II) We now seek to justify the step representing U as an infinite series. To this end formally
write

(p) U(t) =
∑∞

1 φk(t)
1
πk

Zk

for iid N(0, 1) rvs Zk and the orthonormal functions φk(·). First recall the group of trigono-
metric identities

sin(A + B) = sin A cos B + cos A sinB,
2 sin A cos B = sin(A + B) + sin(A − B),
cos(A + B) = cos A cos B − sin A sinB,
2 cos A sin B = sin(A + B) − sin(A + B)

(q)

Use these to verify that
∫ 1

0
φj(t)φk(t)dt equals 0 or 1 according as j �= k or j = k. [Think of

this formal U(t) as an odd function on [-1, 1], and thus only these φk(·) are needed.] Then
note that the Fourier coefficients and the Fourier series are

(r) 〈U, φk〉 =
∫ 1

0
U(t)φk(t)dt = 1

πkZk,
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(s) U =
∑∞

k=1〈U, φk}φk =
∑∞

k=1 φk
1

πkZk.

So, verify that the series in (p) converges a.s. and then everything so far for the formal U is
rigorous. Then Parseval’s identity (note theorem B.3.3) gives

(t)
∫ 1

0
U

2(t)dt = ‖U‖2 =
∑∞

1 |〈U, φk}|2 =
∑∞

1
1

π2k2 Z2
k .

Finally, one needs to verify the step (u) in the identity

E
{∑∞

j=1 φj(s) 1
πj Zj × ∑∞

k=1 φk(t) 1
πkZk

}
=

∑∞
1

1
π2k2 φk(s)φk(t)

= 2
π2

∑∞
1

1
k2 sin(πks) sin(πkt)

(u) = s ∧ t − st,

and thus the (originally formal) process U is in fact a Brownian bridge. Where did this idea
come from? Verifying that

(v)
∫ 1

0
Cov [s, t]φk(s)ds = 1

πkφk(t) on [0, 1]

shows that Cov[s, t] ≡ Cov[U(s),U(t)] = s∧t−st has eigenvalues 1
πk with associated eigenfunc-

tions φk(·) for k = 1, 2, . . .. [Recall the spectral decomposition of matrices in (A.3.2)–(A.3.4).]

Exercise 12.3 Verify the results claimed for the Anderson-Darling statistic An. [Verifying
→d will be a little trickier this time, since (12.10.30) will now be needed in place of (12.10.28).]
The rest is roughly similar in spirit, but the details are now a geat deal more complicated.
Fundamentally, one must now represent the covariance function

Cov[s, t] = (s ∧ t − st)/
√

s(1 − s)t(1 − t)

as a convergent infinite series of orthonormal functions. (Hopefully, at least the approach is
now clear. Providing the details is hard work.)



Chapter 13

Martingales

1 Basic Technicalities for Martingales

Notation 1.1 We will work with processes on the following time sets I : {0, . . . , n}, {0, 1, . . .},
{0, 1, . . . ,∞}, {. . . ,−1, 0}, {−∞, . . . ,−1, 0} in the discrete case and [0, t], [0,∞), [0,∞],
(−∞, 0], [−∞, 0] in the continuous case. In the continuous cases we will consider only processes
of the type X : (Ω,A, P ) → (DI ,DI) that are adapted to an ↗ sequence of sub σ-fields At

of A. We will use the notation {an}∞
n=0, {an}∞

n=0, {an}0
n=−∞, {an}0

n=−∞ to denote sequences
over {0, 1, . . .}, {0, 1, . . . ,∞}, {. . . ,−1, 0}, {−∞, . . . ,−1, 0}, respectively. �

Definition 1.1 (Martingale and submartingale) Suppose E|Xt| < ∞ for all t. Call the
rvs {Xt, At}t∈I a martingale (abbreviated mg) if

(1) E(Xt|As) = Xs a.s. for each pair s ≤ t in I.

Call {Xt,At}t∈I a submartingale (abbreviated submg) if

(2) E(Xt|As) ≥ Xs a.s. for each pair s ≤ t in I.

(If the inequality in (2) is reversed, the process {Xt,At}t∈T is then called a super-martingale.)
When the index set I is a subset of the negative numbers [−∞, 0], we refer to such a process
as a reversed martingale or reversed submartingale.
[Most results in the first seven sections of this chapter are due to Doob.]

Basic Technicalities

Proposition 1.1 (Equivalence) Now, {Xt,At}t∈I is a submg if and only if the moments
E|Xt| < ∞ for all t ∈ I and for every pair s ≤ t we have

(3)
∫

A
(Xt − Xs)dP ≥ 0 for all A ∈ As.

Similarly, {Xt,At}t∈I is a mg if and only if equality holds in (3).
Notation As in section 8.9, we combine these two statements by writing

(4) {Xt,At}t∈I is a s-mg iff
∫

A
(Xt − Xs)dP � 0 for all A ∈ As.

Proof. As in section 8.9, for each pair s ≤ t,
(a)

∫
A
(Xt − Xs)dP =

∫
A

E(Xt − Xs|As)dP � 0 for all A ∈ As

if and only if E(Xt|As) − Xs = E(Xt − Xs|As) � 0 a.s. As. �
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Definition 1.2 (a) Call {Xt,At}t∈I integrable if sup{E|Xt| : t ∈ I} < ∞.
(b) If {X2

t ,At}t∈I is integrable, then {Xt,At}t∈I is called square-integrable.

Proposition 1.2 Let φ : (R,B) → (R,B) have E|φ(Xt)| < ∞ for all t ∈ I.

(a)
If φ is convex and {Xt,At}t∈I is a mg,
then {φ(Xt),At}t∈I is a submg.

(b)
If φ is convex and ↗ and{Xt,At}t∈I is a submg,
then {φ(Xt),At}t∈I is a submg.

Proof. Clearly, φ(Xt) is adapted to At. Let s ≤ t. For the mg case,

(a) E[φ(Xt)|As] ≥ φ(E(Xt|As)) by the conditional Jensen inequality

(b) = φ(Xs) a.s. (since {Xt,At}t∈I is a mg)

For the submg case,

(c) E[φ(Xt)|As] ≥ φ(E(Xt|As)) by the conditional Jensen inequality

(d) ≥ φ(Xs) a.s.,

since φ is ↗ and E(Xt|As) ≥ Xs a.s. �

Example 1.1 Let {Xt,At}t∈I be a martingale. Then:

{|Xt|r,At}t∈I is a submg, for any r ≥ 1 having E|Xt|r < ∞ for all t ∈ I,(5)

{X−
t ,At}t∈I is a submg,(6)

{X+
t ,At}t∈I is a submg (even if {Xt,At}t∈I is only a submg).(7)

[Note that φ(x) = |x|r and φ(x) = x− are convex, while φ(x) = x+ is also ↗ .] �

Proposition 1.3 If {Xt,At}t∈I and {Yt,At}t∈I are s-mgs, then (trivially)

(8) {Xt + Yt,At}t∈I is a s-mg.

Exercise 1.1 If {Xc
t ,At}t∈I is a submg for all c in some index set C, then the maximum

{Xc1
t ∨ Xc2

t ,At}t∈I is necessarily a submg for any c1, c2 ∈ C. Likewise, {supc∈C Xc
t ,At}t∈I

is a submg, provided that E| supc∈C Xc
t | < ∞ for all t ∈ I.

Definition 1.3 (Augmented filtration) Let (Ω,A, P ) be a complete probability space. Let
N ≡ {N ∈ A : P (N) = 0}. Let {At : t ≥ 0} be such that the At’s are an ↗ sequence of
σ-fields with At = Ât = At+ for all t ≥ 0 (here Ât ≡ σ[At,N ] and At+ ≡ ∩{Ar : r > t}).
[That is, they are complete and right continuous.] Such a collection of σ-fields is called an
augmented filtration.

Notation 1.2 (Completeness assumption) In this chapter we will assume that the σ-
fields At form an augmented filtration in that completion has already been performed on
the σ-fields labeled At. Thus, from proposition 12.4.5(c), we see that S ≤ T a.s. implies
AS ⊂ AT . For right-continuous processes on (D[0,∞),D[0,∞)) this effectively comes for free;
see proposition 12.4.5(b). If {Xt,At}t∈I is a s-mg, then {Xt, Ât}t∈I is also a s-mg; note
exercise 1.2 below. �
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Exercise 1.2 Verify the claim made in the previous assumption.

Exercise 1.3 If X is a process on (D,D) or (D[0,∞),D[0,∞)), then the histories σt ≡ σ[Xs :
s ≤ t] are right continuous, as are the σ̂t ≡ σ[σt ∪ N ]. (Recall (12.4.13) of proposition 12.4.4,
proposition 12.4.5, and exercise 1.2.1.)

Remark 1.1 All definitions and results in this section make sense for processes on the
measurable space (RI ,BI). �

Some Examples

Example 1.2 (Sums of iids) Let X1,X2, . . . be iid with means E(Xi) = 0, and then define
Sn ≡ X1 + · · · + Xn and An ≡ σ[S1, . . . , Sn]. Then E|Sn| ≤

∑n
i=1 E|Xi| < ∞ and so

{Sn,An}∞
n=1 is a mg. �

Example 1.3 As in example 1.2, but now assume that E(X2
k) ≡ σ2 < ∞. Let Yn ≡ S2

n −
nσ2. Then {Yn,An}∞

n=1 is a mg. Note also that S2
n is a submg by proposition 1.2, and that

we have written

S2
n = (S2

n − nσ2) + nσ2 = (martingale) + (increasing process).

This is an example of the Doob decomposition of a submartingale, which we will establish in
section 5. �

Example 1.4 Suppose μ ≡ E(Xi) > 0 in example 1.2. Then the partial sums {Sn,An}∞
n=1

form a submg. �

Example 1.5 (Wald’s mg) Consider again example 1.2, but now suppose that the Xk’s
have a mgf φ(t) = E exp(tX). Let Yn ≡ exp(cSn)/φ(c)n. Then {Yn,An}∞

n=1 is a mg. Note
that the mg of example 1.2 is recovered by differentiating once with respect to c and setting
c = 0; the mg of example 1.4 is recovered by differentiating twice with respect to c and setting
c = 0. �

Example 1.6 (Brownian motion) Let {S(t) : t ≥ 0} be standardized Brownian motion, and
let At ≡ σ[S(s) : s ≤ t]. Then {S(t),At : t ≥ 0} is a mg. �

Example 1.7 Let Y (t) ≡ S(t)2 − t in example 1.6. Then the Brownian motion transform
{Y (t),At : t ≥ 0} is a mg. �

Example 1.8 (The exponential mg for Brownian motion) As in example 1.6, let S denote
standard Brownian motion, and much as in example 1.5, set

Y (t) = exp(cS(t))/ exp(c2t/2) = exp(cS(t) − c2t/2).

Differentiating once with respect to c and setting c = 0 yields the mg of example 1.6; differ-
entiating twice with respect to c and setting c = 0 yields the mg that appears in example 1.7;
higher-order derivatives yield mgs based on the Hermite polynomials. (Recall (11.5.15) and
(12.7.13).) �

Example 1.9 Let X ∈ L1 and An be ↗ σ-fields. Then Yn ≡ E(X|An) is a mg. �
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Example 1.10 (Cumulative hazard Λ(·), and a simple counting process) (a) Let
X have df F on the reals R. Then

(9) Λ(t) ≡
∫
(−∞,t]

[1 − F−(r)]−1 dF (r) for all t ∈ R

is called the cumulative hazard function. Note that

(10) 0 ≤ Λ(t) < ∞ for all t < τo ≡ F−1(1), while ΔΛ(τo) = ΔF (τO)
1−F−(τO) < ∞.

Moreover, Λ is a generalized df on R that assign measure Λ(a, b] to (a, b] whenever −∞ ≤ a <
b < τo, that assign measure ΔΛ(τo) to {τo}, and that assigns measure 0 to any (a, b] for which
τo ≤ a < b ≤ ∞. It is common that Λ(t) ↗ ∞ as t ↗ τo. This holds when X ∼= Uniform(0, 1),
and for all dfs for which F−(F−1(t)) = t in some neighborhood with right endpoint τo. Still,
note that when X ∼= Bernoulli(p) with 0 < p < 1, then Λ(t) = (1 − p)1[0,∞)(t) + 1[1,∞)(t).
Roughly, 1 − F−(t) is the probability that Y still “lives” just prior to time t. Given this,
dF (t) is the “instantaneous probability” of a failure at time t. Thus dΛ(t) = dF (t)/[1 − F−(t)]
represents the instantaneous hazard at time t.
(b) Define the counting process

(11) Nt ≡ N(t) ≡ 1[X≤t] and let At ≡ σ[N(r) : r ≤ t], for all t ∈ R.

Note that N is an ↗ and right-continuous process on R that is adapted to the history σ-fields
At, and hence is a submg.
(c) The class Cs ≡ {[X > r] : −∞ ≤ r ≤ s} is a π-system that generates As. So any two
finite measures that agree on Cs also agree on As by the Dynkin π-λ theorem.
(d) We start with a bit of practice. The reader is to show in exercise 1.4 below that

(12) E{Nt|As} =a.s. 1[X≤s] + 1[X>s]
F (s,t]

1−F (s) for all − ∞ < s < t < ∞

(where 0
0 is interpreted as 0 and F (s, t] ≡ F (t) − F (s) ) by verifying that for every set A

in the π-system Cs the relationship
∫

A
(Nt − E{Nt|As})dP = 0 holds for the candidate for

E{Nt|As} that is specified in (12). In like fashion verify that

(13) E{1[X≥u]|As} =a.s. 1[X>s]
1−F−(u)
1−F (s) for all − ∞ < s < u ≤ t < ∞.

(e) Next, the process

(14) Mt ≡ M[(t) ≡ N(t) −
∫
(−∞,t]

1[X≥r] dΛ(r) ≡ N(t) − A(t) is a mg on R

adapted to the At’s. Note first that for all t ∈ R,

(15) E|Mt| ≤ E|Nt| +
∫ t

−∞ E1[X≥r] dΛ(r) ≤ F (t) +
∫ t

−∞
1−F−
1−F− dF ≤ 2F (t) ≤ 2.

Then verify
∫

A
(Nt − Ns)dP is equal to

∫
A
(At − As)dP for all sets A ∈ Cs. Statement (12)

gives the so called “Doob-Meyer decomposition” of the submg N into the mg M and the ↗
process A. The motivation for the definition of A is found in (13.5.3) and (13.8.3). �

Example 1.11 (Another counting process) Suppose that the rvs ξ1, ξ2, . . . are iid Uni-
form(0, 1), and let Nn(t) ≡ nGn(t) ≡ (the number of ξi’s ≤ t). Then Nn is a counting process,
since it is ↗, and it increases only by jumps upward of size +1. Hence it is a submartingale.
The reader will be asked to show (giving another Doob–Meyer decomposition) that the uni-
form empirical process Un satisfies

Mn(t) ≡ Nn(t) −
∫ t

0
{n[1 − Gn−(r)]/(1 − r)}dr

=
√

n{Un(t) +
∫ t

0
[Un−(r)/(1 − r)]dr} is a martingale.

(16)

The covariance function of this process is s ∧ t for all 0 ≤ s, t ≤ 1. �
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Example 1.12 (Poisson process) Suppose N(t) is a Poisson process with rate λ > 0. It is
a counting process and hence a submartingale. Moreover, the process M[(t) ≡ N(t) − λt is a
martingale, and the process M

2(t) − λt is also a martingale. �

Example 1.13 (Likelihood ratios) Let (Ω,A, P ) and (Ω,A, Q) be probability spaces for Q
and P . Suppose that An is an ↗ sequence of sub σ-fields of A. Suppose Qn and Pn denote
the measures Q and P , respectively, restricted to An, and suppose that Qn � Pn. Let Xn ≡
dQn/dPn. Then for A ∈ Am and n > m we have

∫
A

Xn dP = Qn(A) = Qm(A) =
∫

A
Xm dP ,

so that
∫

A
(Xn − Xm)dP = 0. This shows that

(17) {Xn,An}∞
n=1 is a mg of likelihood ratios. �

Example 1.14 (Kakutani’s mg) Let X1,X2, . . . be independent rvs with each Xk ≥ 0
and EXk = 1. Let Mn ≡

∏n
1 Xk, for 1 ≤ k ≤ n, with M0 ≡ 1. Then Mn is a mg with all

EMn = 1. �

Exercise 1.4 Verify the claims made in example 1.10.

Exercise 1.5 Verify the claims made in example 1.11.

Exercise 1.6 Find the exponential martingale that corresponds to the mg M(t) in example
1.12. Then differentiate this twice with respect to c, set c = 0 each time, and obtain the two
mgs given in the example.
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2 Simple Optional Sampling Theorem

The following proposition gives a particularly simple special case of the optional sampling
theorem. (What are the implications for gambling?)

Proposition 2.1 (Optional sampling) If {Xn,An}∞
n=0 is a s-mg and stopping times S and

T (relative to these An’s) satisfy 0 ≤ S ≤ T ≤ N a.s. for some fixed integer N , then

(1) E(XT |AS) � xS a.s. (so E(XT ) ≥ E(XS)).

Thus (X0,A0), (XS ,AS), (XT ,AT ), (XN ,AN ) is a s-mg.

Proof. Case 1: 0 ≤ T − S ≤ 1. Let A ∈ AS . Then
∫

A
{E(XT |As) − XS} dP =

∫
A
(XT − XS)dP

=
∫

A∩[T=S+1]
(XT − XS)dP =

∑N
i=0

∫
A∩[T=S+1]∩[S=i]

(XT − XS)dP

=
∑N

i=0

∫
A∩[S=i]∩[T=i+1]

(Xi+1 − Xi)dP(a)

=
∑N

i=0

∫
Ai

(Xi+1 − Xi)dP where Ai ≡ A ∩ [S = i] ∩ [T = i + 1]

� 0(b)

by (13.1.4), provided that we show that Ai ∈ Ai. We have

(c) A ∩ [S = i] ∩ [T = i + 1] = (A ∩ [S ≤ i]) ∩ ([S = i] ∩ [T ≤ i]c)

(d) = (an event in Ai) ∩ (an event in Ai) ∈ Ai.

Thus (b) holds, and case 1 is completed.
Case 2: 0 ≤ S ≤ T ≤ N a.s. Define the stopping times

(e) Rk ≡ T ∧ (S + k) for k = 0, 1, . . . , N ;

recall that sums and minima of such stopping times are stopping times, as in exercise 8.7.1.
Note that

(f) 0 ≤ S = R0 ≤ · · · ≤ Ri ≤ Ri+1 ≤ · · · ≤ RN = T ≤ N holds a.s.,

where 0 ≤ Ri+1 − Ri ≤ 1 for all i. Thus,

E(XT |AS) = E(XRN
|AR0) = E(E(XRN

|ARN−1)|AR0)(g)
� E(XRN−1 |AR0) by case 1, and stepwise smoothing
� . . . � E(XR0 |AR0) = XR0

= XS .(h) �
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3 The Submartingale Convergence Theorem

Theorem 3.1 (S-mg convergence theorem) Let {Xn,An}∞
n=0 be a s-mg.

(A) Suppose EX+
n ↗ M < ∞ (i.e., the X+

n -submg is integrable). Then

(1) Xn → X∞ a.s. for some X∞ ∈ L1.

(B) For uniformly integrable Xn’s, this X∞ closes the s-mg in that

(2) {Xn,An}∞
n=0 is a s-mg with EXn ↗ EX∞, and with A∞ ≡ σ[∪∞

n=1An].

In fact, supposing {Xn,An}∞
n=0 is a submg, the conclusions (aa), (bb), and (ee) of part (C)

below are equivalent. If all Xn ≥ 0, then (cc) and (dd) are also equivalent. (Closing the s-mg
means that

∫
A

Xn dP �
∫

A
X∞ dP for all A ∈ An and all n, with the terminal rv X∞ ∈ L1.)

(C) If the {Xn,An}∞
n=0 of (A) is actually a mg, then the following are equivalent.

(aa) Xn’s are uniformly integrable. (bb) Xn →L1 X∞.
(cc) Some rv Y closes the mg. (dd) X∞ closes the mg.

(ee) Xn’s are integrable and limnE|Xn| ≤ E|X∞| < ∞.
(3)

(D) In all the above, if {Xt,At}t∈[0,∞) is a process on (D[0,∞),D[0,∞)), then

(4) n,Xn,An, {0, 1, . . .} may be replaced by t,Xt,At, [0,∞).

[Closing an X-martingale on [0,∞) by X∞ is the same as closing an X-martingale on [0, θ)
by the limiting rv Xθ.]

Notation 3.1 If a sequence does not converge to an extended real value, then it must
necessarily be oscillating. If it does so oscillate, then some interval must be “upcrossed”
infinitely often. We seek to take advantage of this. Let X1,X2, . . . be a sequence of rvs. Let
a < b. Then:

U
(n)
[a,b](ω) ≡ (the number of upcrossings of [a, b] in the first n steps)

≡
[

number of integer pairs (i, j) with 0 ≤ i < j ≤ n having
xi(ω) ≤ a, a < Xk(ω) < b for i < k < j, and Xj(ω) ≥ b

]

,(5)

(6) U
(∞)
[a,b](ω) ≡ limn→∞ U

(n)
[a,b](ω). �

Inequality 3.1 (Upcrossing inequality; Doob) If {Xk,Ak}n
k=0 is a submg, then

(7) EU
(n)
[a,b] ≤ 1

b−a{E(Xn − a)+ − E(X0 − a)+} ≤ 1
b−a{EX+

n + |a|}.

If {Xn,An}∞
n=0 is a submg, then

(8) EU
(∞)
[a,b] ≤ 1

b−a{E(X∞ − a)+ − E(X0 − a)+} ≤ 1
b−a{EX+

∞ + |a|}.

Proof. The number of upcrossings of [a, b] made by Xk and the number of upcrossings of
[0, b − a] made by (Xk − a)+ are identical; since (Xk − a)+ is also a submg, we may assume
that Xk ≥ 0 and a = 0 in this proof. Define

T0 ≡ 0, T1 ≡ min{n ≥ 0 : Xn = 0}, T2 ≡ min{n > T1 : Xn ≥ b},
T3 ≡ min{n > T2 : Xn = 0}, . . . , Tn+2 ≡ n;(a)
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here we use the convention that min ∅ ≡ n. Clearly, these are stopping times that do satisfy
0 = T0 ≤ T1 ≤ · · · ≤ Tn+2 = n. Thus proposition 13.2.1 shows that the process {XTi

,ATi
}n+2

i=0

is a submg. Now,

Xn − X0 =
∑n+2

i=1 (XTi
− XTi−1)

(b) =
∑

i odd (same) +
∑

i even (same) ≡ I1 + I2,

and since XTi
is a submg, we have

(c) EI1 ≥ 0 and EI2 ≥ 0.

Now suppose that U
(n)
[0,b](ω) = k; then

I2(ω) = [XT2(ω)(ω) − XT1(ω)(ω)] + · · · + [XT2k(ω)(ω) − XT2k−1(ω)(ω)] + · · ·

(d) ≥ [b] + · · · + [b] + 0 = bU
(n)
[0,b](ω).

Thus (recall (2.1.3))

(e) E(Xn − X0) = EI1 + EI2 ≥ EI2 ≥ bEU
(n)
[0,b]

and this is (7) in disguise (since Xk really denotes (Xk − a)+). Finally, note the positive part
inequality (Xn − a)+ ≤ X+

n + |a|.

Now, 0 ≤ U
(n)
[a,b] ↗ U

(∞)
[a,b] . Thus,

EU
(∞)
[a,b] = lim EU

(n)
[a,b] by the MCT(f)

≤ lim 1
b−a{E(Xn − a)+ − E(X0 − a)+} by (7)(g)

≤ 1
b−a{E(X∞ − a)+ − E(X0 − a)+},(h)

since E(Xn − a)+ ≤ E(X∞ − a)+ follows from {(Xn − a)+,An}∞
n=0 being a submg. �

Proof. (Proof of theorem 3.1) Now,

[ω : lim Xn(ω) exists as a number in [−∞,∞]]c = [lim Xn < lim Xn]

(a) = ∪{r<s rational}[lim Xn < r < s < lim Xn] ≡ ∪{r<s rational} Ars.

It suffices to prove that P (Ars) = 0 for all r, s. Now,

(b) Ars ⊂ Brs ≡ [ω : U
(∞)
[r,s] = ∞].

It thus suffices to show that P (Brs) = 0 for all r, s. But

EU
(∞)
[r,s] = E lim U

(n)
[r,s] = lim EU

(n)
[r,s] by the MCT(c)

≤ lim 1
s−r {EX+

n + |r|} by (7)(d)

≤ (M + |r|)/(s − r) < ∞, since the X+
n ’s are integrable;(e)

hence we must have P (Brs) = 0. Thus X∞ ≡ lim Xn exists a.s. with values in [−∞,∞], and
X∞ is A∞-measurable, since all Xn’s are. Now (recall (2.1.3)),

(f) E|Xn| = 2EX+
n − EXn ≤ 2EX+

n − EX0 ≤ M < ∞.
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Thus Fatou’s lemma implies

(g) E|X∞| = E(lim |Xn|) ≤ lim E|Xn| ≤ M < ∞;

thus X∞ ∈ L1 with its values in (−∞,∞) a.s. Thus (A) holds.
Consider (B). Now Xn → (some X∞) a.s. by (A) under any of (aa), (bb), or (ee). Vitali

shows that (aa) is equivalent to (ee) and the L1-convergence of (bb) with the rv X∞. (If
Xn →L1 Y in (bb), then this Y must equal X∞ a.s. by going to subsequences.) Thus for
n ≥ m, we have from (13.1.4) and L1-convergence that

(h)
∫

A
Xm dP �

∫
A

Xn dP →
∫

A
X∞ dP for all A ∈ A∞.

Thus {Xn,An}∞
n=0 is a s-mg by condition (13.1.4). That is, the rv X∞ closes the s-mg (and

thus (B) holds, except for the equivalence of (cc) and (dd)).
Consider (C). For (aa)–(ee), we lack only that (cc) implies (aa). For a mg with Xn (or

for submg with Xn ≥ 0), the |Xn| form a submg. Thus

(i) E{|Xn| × 1[|Xn|≥λ]} ≤ E{|Y | × 1[|Xn|≥λ]} since |Y | closes the submg

(j) → 0 by absolute continuity of the integral,

and since the sets satisfy

(k) P (|Xn| ≥ λ) ≤ E|Xn|/λ ≤ E|Y |/λ → 0 uniformly in n as λ → ∞.

This completes the entire proof in the case of discrete time.
Consider (D). (Continuous time) Our preliminaries will not assume the s-mg structure.

Now, lim Xt(ω) could be +∞ for some ω’s, and this will cause difficulties with the present
approach. Thus (following Doob) define

(l) Yt(ω) = (2/π) tan−1(Xt(ω))

to transform the range space from [−∞,∞] to [−1, 1]. For each m choose rational numbers
tm1, . . . , tmkm

in [m,∞) so that (remember, X : (Ω,A, P ) → (D,D))

(m) P (supt∈[m,∞) Yt − suptmj∈[m,∞) Ytmj
> 1

m ) < 1
2m .

This is possible, since the sup over all rationals r in [m,∞) equals the sup over all reals t
in [m,∞), and the rationals are the limit of {r1, . . . , rk} for any ordering {r1, r2, . . .} of the
rationals; thus,

0 = P (supt∈[m,∞) Yt − suprj∈[m,∞) Yrj
> 1

m )
= limk→∞ P (supt∈[m,∞) Yt − suprj∈[m,∞);j≤k Yrj

> 1
m ).(n)

We may assume that the tmj ’s were chosen so as to simultaneously satisfy

(o) P (inft∈[m,∞) Yt − inftmj∈[m,∞) Ytmj
< − 1

m ) < 1
2m .
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Thus, if we
(p) let t1 < t2 < · · · denote an ordering of ∪∞

m=1{tm1, . . . , tmkm
} (which does exist, since

all tmj ≥ m), then

P (supt∈[m,∞) Yt − supti∈[m,∞) Yti > 1
m ) < 1

2m and
P (inft∈[m,∞) Yt − infti∈[m,∞) Yti < − 1

m ) < 1
2m .

(q)

Letting Am and Bm denote the events in (q) we see that
∑∞

1 P (Am ∪ Bm) ≤
∑∞

1 2/2m < ∞,

so that P (Am ∪ Bm i.o.) = 0. Thus

(r) limt→∞ Yt = limi→∞ Yti a.s. and limt→∞ Yt = limi→∞ Yti a.s.

Now, transforming back via Xt(ω) = tan((π/2)Yt(ω)), (r) implies the next lemma:

Lemma 3.1 For every X : (Ω,A, P ) → (D[0,∞),D[0,∞)) there exist rational numbers t1 <
t2 < · · · such that

(9) limt→∞Xt = limi→∞Xti a.s. and limt→∞Xt = limi→∞Xti a.s.

[Note that ti → ∞ in (9) could be replaced by ti ↗ θ for any finite θ.]
Armed with the (9) “lemma,” it is now easy to use the discrete version of this theorem to

prove the continuous version. We will refer to the continuous versions of conclusions (1)–(3)
as (1′)–(3′). We return to the proof of the theorem. (Now, we again assume s-mg structure
in what follows.)

Let Yi ≡ Xti and Ãi ≡ Ati for the ti’s in (9). Then (Yi, Ãi)∞
i=0 is a s-mg to which the

discrete theorems can be applied. Thus,

limt→∞ Xt = limi→∞ Xti a.s. by (9)(s)

= (a.s., some X∞ in L1) by (1) applied to (Yi, Ãi)∞
i=1(t)

= limi→∞ Xti by (1)
= limt→∞ Xt by (9),(u)

so that

(v) Xt → X∞ a.s. where X∞ ∈ L1.

That is, (1′) holds. The rest is left to the reader in exercise 3.1. �

Exercise 3.1 Complete the proof of the continuous part of theorem 3.1.

Exercise 3.2 Let Yt ≡ E(X|Dt), for X ∈ L1(Ω,A, P ) and for an arbitrary collection of sub
σ-fields Dt. Show that these Yt’s are uniformly integrable.

Exercise 3.3 Let A−∞ ⊂ · · · ⊂ A−1 ⊂ A0 ⊂ A1 ⊂ · · · ⊂ A∞ be sub σ-fields of the basic
σ-field A. Suppose the rv X ∈ L1(Ω,A, P ). Let Yn ≡ E(X|An). Then the process
(Yn,An)∞

n=−∞ is necessarily a uniformly integrable mg.

Exercise 3.4 Let {Xn,An}∞
n=0 be a submg for which Xn ≤ 0. Then (1) holds, and Y ≡ 0

closes the submg.



3. THE SUBMARTINGALE CONVERGENCE THEOREM 355

Exercise 3.5 Let {Xn,An}∞
n=0 be a submg. The following are equivalent:

(a): The X+
n ’s are uniformly integrable.

(b): There exists a rv Y that closes the submg.

(c): When these hold, then X∞(which necessarily exists a.s., and is in L1) closes the submg.

[Hint. Do what you can with X+
n . Then apply it to Y

(a)
n ≡ (Xn ∨ a) + |a|, and let the constant

a → −∞.]

Exercise 3.6 Let {Xn,An}∞
n=0 be a submg with Xn ≥ 0. Let r > 1. Then the Xr

n’s are
uniformly integrable if and only if the Xr

n-process is integrable.

Exercise 3.7 (Martingale Lr-convergence theorem) (i) Let {Xn,An}∞
n=0 be a mg

sequence. Let r > 1. Then the following are equivalent:

The |Xn|r-process is integrable.(10)
Xn →Lr

X∞.(11)

The Xn’s are uniformly integrable
(thus Xn →a.s. (some X∞)) and X∞ ∈ Lr.

(12)

The |Xn|r’s are uniformly integrable.(13)
{|Xn|r,An}∞

n=0 is a submg and E|Xn|r ↗ E|X∞|r < ∞.(14)

(14*) M∗ ≡ sup{|Xn| : 0 ≤ n ≤ ∞} ∈ Lr (via Doob’s Lr-inequality).

(ii) This theorem also holds for a submg when all Xn ≥ 0 a.s.

Exercise 3.8 (a) Show that t,Xt,At, [0,∞) may replace n,Xn,An, {0, 1, . . .} in all of exer-
cise 3.3–exercise 3.7. [Also, [0, θ) may replace [0,∞).]
(b) Prove (D) of theorem 3.2 below.

Definition 3.1 (Reversed s-mg) LetXn be adapted to An with n ∈ {. . . ,−1, 0}, and define
the σ-field A−∞ ≡ ∩0

n=−∞An. The process {Xn,An}0
n=−∞ is a reversed s-mg (as defined

earlier) if all E|Xn| < ∞ and

(15) Xn � E(Xm|An) a.s. for all n ≤ m.

(This is like the second law of thermodynamics run backward in time, since An brings more
stability as n ↘ .)

Theorem 3.2 (Reversed s-mg convergence theorem) Let {Xn,An}0
n=−∞ be a s-mg

sequence, or a reversed s-mg.
(A) It necessarily holds that

Xn → X−∞ a.s. as n → −∞
for some X−∞ ∈ [−∞,∞) a.s. that is A−∞-measurable.(16)

(B)–(C) Furthermore, the following are equivalent (and all yield an X∞ ∈ L1):

EXn ↘ M > −∞ as n → −∞. (This is trivial if Xn is a mg.)(17)
Xn’s are uniformly integrable.(18)
Xn →L∞ X−∞.(19)
{Xn,An}0

n=−∞ is a s-mg, where A−∞ ≡ ∩0
n=−∞An.(20)
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(D) In all the above, if {Xt,At}t∈(−∞,0] is a process on (D(−∞,0],D(−∞,0]), then

(21) n,Xn,An, {. . . ,−1, 0} may be replaced by t,Xt,At, (−∞, 0].

Proof. Consider (16). Let U
(n)
[r,s] now denote the upcrossings of [r, s] by the process

X−n, . . . , X−1,X0. Replace line (d) of the proof of theorem 3.1 by

(a) EU
(∞)
[r,s] ≤ 1

s−r (EX+
0 + |r|) ≤ (some constant) < ∞,

and conclude that X−∞ ≡ lim Xn exists a.s. with values in [−∞,+∞]. Since the sequence
{X+

n ,An}0
n=−∞ is necessarily a submg, we obtain from Fatou that

(b) EX+
−∞ = E(lim X+

n ) ≤ lim EX+
n ≤ lim EX+

0 = EX+
0 < ∞.

Thus X−∞ takes values in [−∞,+∞) a.s., and is A−∞-measurable. Thus (16) does hold.
Suppose that (17) holds. Then (b) and (17) give

E|X−∞| = E[lim |Xn|] ≤ lim E|Xn| = lim[2EX+
n − EXn]

(c) ≤ 2EX+
0 − M < ∞;

thus X−∞ takes values in (−∞,∞) a.s., and X−∞ ∈ L1 (using only Fatou on the right hand
side). Also, from (c),

(d) P (|Xn| ≥ λ) ≤ E|Xn|/λ ≤ [2EX+
0 − M ]/λ → 0

uniformly in n ∈ {−∞, . . . ,−1, 0} as λ → ∞. Thus (an analogous Xn proof works only in the
case of a mg),

(e)
∫
[X+

n ≥λ]
X+

n dP �
∫
[X+

n ≥λ]
X+

0 dP by (13.1.3)

implies that the X+’
n s are uniformly integrable. Now, for n < m we have

0 ≥ −
∫
[Xn≤−λ]

X−
n dP = E(Xn − Xm) + EXm −

∫
[Xn>−λ]

Xn dP

� E(Xn − Xm) + EXm −
∫
[Xn>−λ]

Xm dP

= E(Xn − Xm) +
∫
[Xn≤−λ]

Xm dP

≥ −ε +
∫
[Xn≤−λ]

Xm dP(f)

for all n ≤ (a fixed m that is large enough), since EXn ↘ M

≥ −ε −
∫
[Xn≤−λ]

|Xm|dP

≥ −2ε for λ large enough, as in (d), with m now fixed.(g)

Thus, the X−
n are uniformly integrable. Thus, the Xn are uniformly integrable; that is, (18)

holds.
Then (18) implies (19) by Vitali.
Suppose (19) holds. For any n ≤ m we have from (18.1.4) that

(h)
∫

A
Xm dP �

∫
A

Xn dP →
∫

A
X−∞ dP for all A ∈ A−∞,
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since L1-convergence gives
∫

|Xn − X−∞|dP → 0. Thus {Xn,An}0
n=−∞ is a s-mg, so (20)

holds.
Note that (20) trivially implies (17).
The extension of this theorem from n to t uses (9) to extend (16), just as in the case of

theorem 3.1. Then the proof that the t versions of (16)–(20) hold adds nothing new. �

Exercise 3.9 (a) Let {Xn,An}0
n=−∞ be a mg. If E|X0|r < ∞ for some r ≥ 1, then neces-

sarily

(22) Xn →Lr
X−∞ as n → −∞.

(b) Let {Xn,An}0
n=−∞ be a submg. If Xn ≥ 0 and E|X0|r < ∞ for some r ≥ 1, then (22)

again holds.

Theorem 3.3 Let {An}+∞
n=−∞be ↗ subσ-fields of A. Suppose that the rv X is integrable,

in that X ∈ L1(Ω,A, P ). Then the following hold.

E(X|An) →a.s. and L1 E(X|A∞) as n → ∞.(23)
E(X|An) →a.s. and L1 E(X|A−∞) as n → −∞.(24)

Proof. Now,

(25) {Yn,An}∞
n=−∞ is a mg for Yn ≡ E(X|An),

since E(Ym|An) = E{E(X|Am)|An} = E(X|An) = Yn for n ≤ m. Moreover,

(26) these Yn = E(X|An) are uniformly integrable,

since the tails yield (since [±Yn ≥ λ] ∈ An)

(a) 0 ≤
∫
[±Yn≥λ]

±Yn dP =
∫
[±Yn≥λ]

±E(X|An)dP

(b) =
∫
[±Yn≥λ]

±XdP ≤
∫
[|Yn|≥λ]

|X|dP

(c) → 0 as λ → ∞, by absolute continuity of the integral,

using P (|Yn| ≥ λ) ≤ E|Yn|/λ = E|E(X|An)|/λ ≤ E|X|/λ → 0 as λ → ∞. Thus

Y ± ∞ ≡ limn→±∞Yn exists a.s., and
{Yn,An}+∞

n=−∞ is a mg, and Yn →L1 Y ± ∞ as n → ±∞.
(27)

We just applied the s-mg convergence theorem (theorem 3.1) as n → ∞ and the reversed s-mg
convergence theorem (theorem 3.2) as n → −∞.

We must now show that Y∞ = E(X|A∞). Now, for A ∈ ∪∞
n=1An we have

(d)
∫

A
Y∞ dP =

∫
A

Yno
dP by (13.1.4), as A is in some Ano

(e) =
∫

A
XdP by definition of E(·|Ano

).

That is,
∫

A
Y∞ dP =

∫
A

XdP for all A ∈ ∪∞
n=1An, where ∪∞

n=1An is a field and a π-system
that generates A∞; thus equality also holds for all A ∈ A∞, by the Carathéodory extension
theorem. Thus Y∞ = E(X|A∞), by only the zero function.

We must also show that Y−∞ = E(X|A−∞). Now, if A ∈ A−∞, then
∫

A
Y−∞ dP =

∫
A

Yn dP by (13.1.4), as A is in An(f)
=

∫
A

XdP by definition of E(·|An), since A ∈ An

=
∫

A
E(X|A−∞)dP by definition of E(·|A−∞);(g)

and thus Y−∞ = E(X|A−∞). �
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4 Applications of the S-mg Convergence Theorem

The following examples give just a few selected applications to show the power of the various
s-mg convergence theorems.

Example 4.1 (SLLN) Let X1,X2, . . . be iid μ. Then the partial sum process Sn ≡ X1 +
· · · + Xn satisfies

(1) Xn ≡ Sn/n → μ a.s. and L1 as n → ∞. �

Proof. Let

(a) A−n ≡ σ[Sn, Sn+1, . . .] = σ[Sn,Xn+1,Xn+2, ..]

Now, Y−n ≡ E(X1|A−n) is a reversed mg on. . . ,−2,−1 and

(b) E(X1|A−n) → E(X1|A−∞) a.s. and L1

as n → −∞, by theorem 13.3.1. Now,

E(X1|A−n) = E(X1|Sn,Xn+1, · · · )
= E(X1|Sn) by (7.4.23)

=
n∑

k=1

E(Xk|Sn)/n by symmetry

= E(Sn|Sn)/n

= Sn/n.(c)

Combining (b) and (c) gives

(d) Sn/n = E(X1|A−n) → E(X1|A−∞) a.s. and L1 as n → ∞.

But lim(Sn/n) is measurable with respect to the symmetric σ-field, and so it is a.s. a constant
by the Hewitt-Savage 0-1 law of exercise 7.2.1; hence E(X1|A−∞) is a.s. a constant, by (d).
But E[E(X|A−∞)] = μ, so that the constant must be μ; that is E(X1|A−∞) = μ a.s. Thus
(d) implies Sn/n → μ a.s. and L1. �

Exercise 4.1 (SLLN for U -statistics) Let Y−n ≡ Un be a U -statistic based on X1,X2, . . .,
with a symmetric kernel H for which EH(X1,X2) is finite. (Thus, H(x, y) = H(y, x) for all
x, y.) Consider the σ-field A−n ≡ σ[Xn:n,Xn+1,Xn+2, . . .], for the vector �Xn:n of the first
n order statistics of the sequence. [Hint. As with the SLLN above, the proof will again be
based of the Hewitt-Savage 0-1 law for the symmetric σ-field.].

(a) Show that {Yn,An}−2
n=−∞ is a reversed mg.

(b) Use this to show that Un →a.s. and L1 EH(X1,X2).

(c) Extend this to higher-dimensional kernels.

Example 4.2 (Kolmogorov’s 0-1 law) Suppose that Y1, Y2, . . . are iid rvs and let An ≡
σ[Y1, . . . , Yn]. Suppose that A ∈ T ≡ (tail σ-field) = ∩∞

n=1σ[Yn+1, Yn+2, . . .]. Since An is
independent of T ,

P (A) =a.s .P (A|An) = E(1A|An) for every n.



4. APPLICATIONS OF THE S-MG CONVERGENCE THEOREM 359

But by theorem 13.3.3 we have

E(1A|An) →a.s. E(1A|A∞) =a.s. 1A.

Thus P (A) must equal 0 or 1 (as P (A) =a.s. 1A implies). �

Example 4.3 (Approximation of L1 and L2 functions) Fix the function f ∈ L1([0, 1],
B, Lebesgue) ; thus

∫ 1

0
|f(u)|du < ∞. Let

An ≡ σ[((i − 1)/2n, i/2n] : i = 1, . . . , 2n} ↗ B[0, 1].

Define X ≡ f(ξ), where ξ ∼= Uniform (0, 1). Now let

Xn ≡ E(X|An) = E(f(ξ)|An) =
∑2n

k=1Cnk(f)1[(k−1)/2n<ξ≤k/2n],

with Cnk(f) ≡ 2n
∫ k/2n

(k−1)/2n f(u)du. Since E|X| < ∞, theorem 13.3.3 gives

Xn → E(X|A∞) = E(X|B) = X a.s. and L1.

Summary Let f ∈ L1 and define the step function fs
n(·) by

(2) fs
n(t) ≡ 2n

∫ k/2n

(k−1)/2n f(u)du for (k−1)
2n < t ≤ k

2n and 1 ≤ k ≤ 2n

Then for every f ∈ L1,

(3) fs
n(·) → f(·) a.s. Lebesgue and

∫ 1

0
|fs

n(t) − f(t)|dt → 0.

Now suppose that f ∈ L2. Then f ∈ L1 also, and so (3) still holds; and this implies (13.3.12).
Thus (the equivalent) (13.3.11) gives

(4) fs
n →L2 f for every f ∈ L2.

[So in both cases fs
n(·) can be thought of as approximating the derivative of the indefinite

integral F (x) ≡
∫ x

0
f(t)dt.] �

Example 4.4 (Kakutani’s mg) Let X1,X2, . . . be independent with each Xk ≥ 0 and
EXk = 1. Define

(5) Mn ≡
∏n

1Xk, for 1 ≤ k ≤ n,

with M0 ≡ 1. Then {Mn,An}∞
1 is a mg for which all EMn = 1, where An is an appropriate

↗ sequence of σ-fields (such as the histories). Since Mn is bounded in the space L1, the sm-g
convergence theorem of (13.3.1) shows that

(6) Mn →a.s. M∞ ∈ L1 is always true,

for the appropriate rv M∞. We now show that the following are equivalent:

c∞ ≡ EM∞ = 1,(7)
Mn’s are uniformly integrable,(8)
Mn →L1 M∞,(9)
∏∞

1 an > 0, where an ≡ E(X1/2
n ) ≤ 1,(10)

∑∞
1 (1 − an) < ∞, where an ≡ E(X1/2

n ) ≤ 1.(11)

Whenever one (hence all) of these equivalent statements fails, then necessarily

(12) P (M∞ = 0) = 1 and c∞ = 0. �
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Proof. Because of (6), equivalence of (7)–(9) follows from Vitali’s theorem (or from the
submartingale convergence theorem). Equivalence of (10) and (11) is called for in the easy
exercise 4.2 below. We first show that (10) implies (8). Suppose (10) holds. Define the
normalized product

(13)
Nn ≡

∏n
1X

1/2
k /

∏n
1ak, with all ENn = 1 and with

E(N2
n) = 1/(

∏n
1ak)2 ≤ 1/(

∏∞
1 ak)2 < ∞ for all n.

Thus {Nn,An}∞
1 is a mean-1 mg that is bounded in L2. Since all

∏n
1 ak ≤ 1, Doob’s L2-

inequality (inequality 8.10.5) and the MCT give

E(supn Mn) = lim
n

E(sup1≤k≤n Mk) by the MCT(a)

≤ lim
n

E(sup1≤k≤n N2
k ) × 1(b)

≤ ( 2
2−1 )2E(N2

n) < ∞ by Doob’s Lr-inequality.(c)

Thus M∗ ≡ supn Mn is a rv in L1 for which 0 ≤ Mn ≤ M∗ Hence the rvs {Mn : 1 ≤ n ≤ ∞}
are uniformly integrable. That is, (8) holds.

We next show that when (10) fails (that is, when
∏∞

1 an = 0), then (7) fails (and that,
in fact, (12) holds). Now (13) notes that the Nn all have mean 1, and hence they form an
integrable mg. Thus Nn →a.s. (some N∞) ∈ L1 by the submartingale convergence theorem.
Hence,

(d) M
1/2
n = (

∏n
1 ak)Nn → 0 a.s.,

impling that M∞ = 0 a.s. and thus that c∞ = 0. This contradicts (7), and implies (12). �

Exercise 4.2 Show the equivalence of (10) and (11). (Recall lemma 8.1.4.)

Exercise 4.3 (Borel–Cantelli) Let An be an ↗ sequence of σ-fields in A. Show that [An i.o.]
= [ω :

∑∞
n=1 P (An|An−1) = ∞] a.s.

A Branching Process Model

Example 4.5 (Branching Processes) Let X denote the number of offspring of a particular
type of individual, and let pk ≡ P (X = k) for k = 0, 1, . . .. We start at generation zero with
a single individual Z0 = 1, and it produces the individuals in a first generation of size Z1.
These in turn produce a second generation of size Z2, and so forth. Thus,

(14) Zn+1 ≡
Zn∑

j=1

Xnj for n ≥ 0, with Z0 ≡ 1,

where Xnj denotes the number of offspring of the jth individual present in the nth generation.
We assume that all Xnj ’s are iid as the X above. Also, we suppose

(15) m ≡ EX =
∑∞

k=0kpk < ∞, with p0 > 0, and p0 + p1 < 1.

We call this a simple branching process model. Let

(16) Wn ≡ Zn/mn and An ≡ σ[W1, . . . ,Wn].
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Proposition 4.1 The process

(17) {Wn,An}∞
n=0 is a mg with mean EWn = 1,

and

Var [Wn] =

{
nσ2 if m = 1,

σ2 1−m−n

m(m−1) if m �= 1,
(18)

provided that σ2 ≡ Var[X] < ∞.

Proof. We note that

EZn+1 = E[E(Zn+1|Zn)] =
∑∞

k=0 E(Zn+1|Zn = k)P (Zn = k)(a)

=
∑∞

k=0 E(
∑k

j=1 Xnj)P (Zn = k) =
∑∞

k=0 mkP (Zn = k)

= mE(Zn) = · · · = mn+1,(b)

while the mg property follows from

(c) E(Wn+1|An) = m−(n+1)E(Zn+1|Zn) = m−(n+1)mZn = Wn.

We leave (18) to the following exercise. �

Exercise 4.4 Verify the variance formula (18). Verify (20) below.

Notation 4.1 We define the generating functions f and fn of X and Zn by

(19) f(s) ≡
∑∞

k=0s
kpk and fn(s) ≡

∑∞
k=0s

kP (Zn = k).

It is easy to verify that

(20) fn+1(s) = fn(f(s)) = f(fn(s)) for |s| ≤ 1. �

Theorem 4.1 (Branching process) (i) Suppose that m = EX > 1 and also σ2 ≡ Var[X] <
∞. Then

(21) Wn →a.s. and L2W∞ ∼= (1, σ2/[m(m − 1)]),

where (W∞,A∞) closes the mg. Also,

(22) P (W∞ = 0) = (the probability of ultimate extinction) = π,

where

(23) π ∈ (0, 1) is the unique solution of f(π) = π.

Moreover, the chf φ of W∞ is characterized as the unique solution of

(24) φ(mt) = f(φ(t)) for t ∈ R subject φ(0) = 1 and φ′(0) = im.

(ii) If m ≤ 1, then Wn →a.s. 0 as n → ∞.
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Proof. (i) Now, EW 2
n ≤ 1 + σ2/[m(m − 1)] for all n, so that the mg {Wn,An}∞

n=1 is
square-integrable. Thus the mg Lr convergence of exercise 13.3.7 gives (21).

We let π∗ ≡ P (W∞ = 0). Then

π∗ =
∑∞

k=0 P (W∞ = 0|Z1 = k)P (Z1 = k) =
∑∞

k=0 P (W∞ = 0)kpk(a)

=
∑∞

k=0 π∗kpk = f(π∗).(b)

Now, f(0) = p0 > 0, f(1) = 1, f ′(1−) = m > 1, and f ′(s) is ↗ in s for 0 < s < 1; draw a fig-
ure. Thus f(π) = π has a unique solution in (0, 1). The solution π = 1 is ruled out by
Var[W∞] > 0, since π = 1 would imply W∞ ≡ 0. (Note that (22) also follows from (20).)

We now turn to (24). Now,

φn+1(t) ≡ EeitWn+1 =
∑∞

j=0 E(exp(itZn+1/mn+1)|Z1 = j)P (Z1 = j)(c)

=
∑∞

j=0 φn(t/m)jpj

= f(φn(t/m)).(d)

Since Wn →a.s. W∞ implies Wn →d W∞, we have φn → φ on R. Applying this to the identity
in (c) and (d) gives

φ(t) = lim φn+1(t) = lim f(φn(t/m))
= f(lim φn(t/m)) since f is continuous on |r| ≤ 1
= f(φ(t/m)).(e)

Suppose now that ψ is any chf that satisfies ψ(t) = f(ψ(t/m)). Then

γ(t) ≡ [ψ(t) − φ(t)]/t = [(ψ(t) − 1) − (φ(t) − 1)]/t

→ ψ′(0) − φ′(0) if ψ(0) = 1 and ψ′(0) exists

= 0 if ψ′(0) = im(f)

as t → 0. Also,

|tm| × |γ(tm)| = |ψ(tm) − φ(tm)| = |f(ψ(t)) − f(φ(t))|
≤ |f ′(t∗)| × |ψ(t) − φ(t)| for t∗ ∈ (0, 1) by the mean value theorem
≤ m|ψ(t) − φ(t)|
= |tm| × |γ(t)|,(g)

and iterating (e) gives

(h) |γ(t)| ≤ |γ(t/m)| ≤ · · · ≤ |γ(t/mn)| → 0,

so that γ(t) = 0 for all t �= 0. Trivially, γ(t) = 0 for t = 0. Thus, (24) holds.
(ii) Set s = 0 in (20) to get P (Zn+1 = 0) = f(P (Zn = 0)) here P (Zn = 0) is necessarily

↗. Passing to the limit gives π = lim P (Zn = 0) = f(π). But if m ≤ 1, then π = 1 is the only
solution of π = f(π). �
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5 Decomposition of a Submartingale Sequence

Definition 5.1 (Predictable process) A predictable process {An,An}∞
n=0 is one in which

each An is An−1-measurable for each n ≥ 0; here A0 is a constant (or A0 is {∅,Ω}-measu-
rable). [Especially interesting are processes that are both ↗ and predictable, since any submg
can be decomposed as the sum of a mg and such a predictable process.]

Theorem 5.1 (Decomposition of a submg) Let {Xn,An}∞
n=0 be a submg. Then Xn

can be decomposed as

(1) Xn = Yn + An = [a mg] + [an ↗ and predictable process],

where {Yn,An}∞
n=0 is a 0-mean mg and An is a predictable process satisfying

(2) A0 ≡ EX0 ≤ A1 ≤ · · · ≤ An ≤ · · · a.s.

This decomposition is a.s. unique. Conversely, if Xn = Yn + An as above, then {Xn,An}∞
n=0

is a submg. [Call An the compensator.]

Proof. (Doob) Suppose that {Xn,An}∞
n=0 is a submg. Let A0 ≡ EX0, and for n ≥ 1 define

(the compensator candidate)

(3) An ≡
n∑

k=1

[E(Xk|Ak−1) − Xk−1] + EX0 =
n∑

k=1

E(ΔXk|Ak−1) + EX0,

with ΔXk ≡ Xk − Xk−1. Clearly, An is an ↗ process and each of the An is An−1-measurable.
So, it remains only to show that Yn ≡ Xn − An is a mg. Now,

E(Yn|An−1) = E(Xn|An−1) − E(An|An−1) = E(Xn|An−1) − An

(a) = E(Xn|An−1) − [E(Xn|An−1) − Xn−1] − An−1

(b) = Xn−1 − An−1 = Yn−1,

so {Yn,An}∞
n=0 is indeed a mg. Consider the uniqueness. Suppose Xn = Yn + An is one such

decomposition that works. Elementary computations give

(c) E(Xn|An−1) = E(Yn|An−1) + An = Yn−1 + An a.s.;

but the specification of the decomposition also states that

(d) Xn−1 = Yn−1 + An−1 a.s.

Subtracting (d) from (c) gives uniqueness via

(e) An − An−1 = E(Xn|An−1) − Xn−1 a.s.

The converse holds, since

(f) E(Yn + An|An−1) = Yn−1 + An ≥ Yn−1 + An−1 a.s., for n ≥ 1

as required. �

Exercise 5.1 If the X-process is integrable, then the A-process is uniformly integrable (in
either theorem 5.1 above or theorem 5.2 below).
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Theorem 5.2 (Decomposition of a reversed submg) Let {Xn,An}0
n=−∞ be a submg

such that E(Xn) ↘ M > −∞ as n ↘ −∞ (thus, the Xn-process is uniformly integrable with
Xn → (some X) a.s. and L1 where EX−∞ = M). Then Xn can be decomposed as

(4) Xn = Yn + An = [a mg] + [an ↗ and predictable process that is ≥ 0],

where {Yn,An}0
n=−∞ is a mean-M mg and An is an An−1-measurable function with

(5) 0 = A−∞ ≡ limn→−∞ An ≤ · · · ≤ An ≤ · · · ≤ A0 a.s.

This decomposition is a.s. unique. Conversely, if Xn = Yn + An as above, then
{Xn,An}0

n=−∞ is a submg. [Call An the compensator.]

Proof. (Doob) We define

(6) An ≡
n∑

k=−∞
[E(Xk|Ak−1) − Xk−1] for n ≤ 0;

then An is clearly ≥ 0,↗, and An−1-measurable, provided that it can be shown to be well-
defined (that is, provided the sum converges a.s.). Now, with n ≤ m,

E(Am − An) =
∑m

n+1 E(Xk − Xk−1) = EXn − EXm ≤ EX0 − EXm(a)

≤ (EX0 − M) < ∞,(b)

by hypothesis. Also,

(c) Ãm ≡ lim
n→−∞ (Am − An) = lim

n→−∞
∑m

n+1[E(Xk|Ak−1) − Xk−1]

is ≥ 0 and ↗, so that the MCT gives

(d) EÃm = lim
n→−∞ E(Am − An) = EXm − lim

n→−∞ EXn = EXm − M < ∞

with a well-defined finite limit. Since Ãm ≥ 0 and EÃm < ∞, we know that Ãm is finite a.s.;
so (6) is well-defined. The Ãm’s are ↗ and bounded below by 0. Thus A−∞ ≡ limm→−∞ Ãm

exists a.s., and it is ≥ 0. Moreover, the equalities in (d) show that EÃm → 0 as m → −∞;
just use the MCT via

(e) EA−∞ = lim
m→−∞ EÃm = lim

m
EXm − M = M − M = 0.

Thus A−∞ = 0 a.s., and each Ãm = Am a.s.
Let Yn ≡ Xn–An. Lines (a)–(f) of the previous proof complete this proof, using (13.3.20)

about mgs for the existence of Y−∞. �

Example 5.1 (Predictable variation, or conditional variance of a mg) Let {Xn,
An}∞

n=0 be a mg with each EX2
n < ∞. Then {X2

n,An}∞
n=0 is a submg by proposition 13.1.2.

By theorem 5.1, there is a decomposition for which

(7) Zn ≡ X2
n − An is a 0-mean mg adapted to the An’s for n ≥ 0.

Here An is the predictable process (with A0 ≡ EX2
0 ≥ 0) defined by

An ≡
∑n

k=1{E(X2
k |Ak−1) − X2

k−1} + EX2
0

=
∑n

k=1E{X2
k − X2

k−1|Ak−1} + EX2
0(8)

=
∑n

k=1E{(ΔXk)2|Ak−1} + EX2
0 , for n ≥ 1,(9)
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where ΔXk ≡ Xk − Xk−1 and ΔX0 = X0. The compensator term An (of the X2
n−process)

given in (9) is called the conditional variance or the predictable variation of the Xn-process.
Note that (for 〈X〉n ≡ An),

(10) EX2
n = E〈X〉n = EAn =

∑n
k=1 Var [ΔXk] + EX2

0 ,

since we agree to also use the notation 〈X〉n to denote the predictable variation process An

that corresponds to the mg {Xn,An}∞
n=0.

Summary For any mg {Xn,An}∞
n=0 having all EX2

n finite,

(11) 〈X〉n ≡ An =
n∑

k=1

E{(ΔXk)2|Ak−1} + EX2
0

is always the predictable variation (or conditional variance, or compensator), and the condi-
tionally centered process

(12) Zn ≡ X2
n − 〈X〉n is a 0-mean mg with respect to the An’s, for n ≥ 0. �

Martingale Transforms

Definition 5.2 (H-transforms) Let {Hn}∞
n=0 be a predictable process with respect to the

filtration {An}∞
n=0. [Think of Hn being the amount a gambler will wager at stage n, based

only on complete knowledge of the outcomes of the game up through time n − 1 (but not, of
course, through time n).] For some other process {Xn}∞

n=0, define the H-transform of X (to
be denoted by {(H · X)n}∞

n=0) by

(13) (H · X)n ≡
n∑

k=1

Hk(Xk − Xk−1) + H0X0 =
n∑

k=0

HkΔXk.

(We agree that ΔX0 ≡ X0, and that H0 is a constant.)

Theorem 5.3 (S-mg transforms) (i) Let {Xn,An}∞
n=0 be a s-mg (or supermg). If {Hn}∞

n=0

is predictable with each Hn ≥ 0 and bounded, then {(H · X)n,An}∞
n=0 is a s-mg (or supermg).

(The supermartingale case shows that there is no system for beating the house in an unfa-
vorable game.)
(ii) If {Xn,An}∞

n=0 is a mg and {Hn}∞
n=0 is predictable and bounded, then note that the

process {(H · X)n,An}∞
n=0 is a mg with mean H0EX0.

Proof. We compute

(a) E[(H · X)n+1|An] = (H · X)n + E[Hn+1(Xn+1 − Xn)|An]

(b) = (H · X)n + Hn+1E[ΔXn+1|An]

(c) � (H · X)n,

since Hn+1 ≥ 0 and E(ΔXn+1|An) � 0. Note that EΔX0 = EX0 in the mg case. (The
supermg case just reverses the inequality.) �

Corollary 1 If {Xn,An}∞
n=0 is a s-mg and T is a stopping time, then:

(a) Hn ≡ 1[T≥n] is ≥ 0, bounded, and predictable.

(b) (H · X)n = XT∧n = (the stopped process) is a s-mg.
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Proof. Now, Hn is predictable, since [T ≥ n] = [T ≤ n − 1]c ∈ An−1 for a stopping time
T . Furthermore,

(a) (H · X)n =
∑n

k=0 1[T≥k](Xk − Xk−1) =
∑n

k=0 1[T≥k]ΔXk = XT∧n

(the sum ends at m if T (ω) = m ∈ [0, n]; else, at n). Then, apply theorem 5.3. �

Notation 5.1 Suppose {Xn,An}∞
n=0 is a mg with EX2

n < ∞, so that {X2
n}∞

n=0 is a submg
with predictable variation process {〈X〉n}∞

n=0. Let {Hn}∞
n=0 denote a predictable, bounded,

and ≥ 0 process. Then we know that {(H · X)2n} is a submg. We will now give the form
taken by its predictable variation process 〈H · X〉n. Also, we will summarize everything so
far in one place. �

Theorem 5.4 (Martingale transforms) Suppose {Xn,An}∞
n=0 is a mg with EX2

n < ∞
for each n, and let {Hn}∞

n=0 be bounded, predictable, and ≥ 0. Then the predictable variation
process 〈X}n is given by

(14) 〈X〉n ≡ An =
n∑

k=1

E{(ΔXk)2|Ak−1} + EX2
0 .

Then the conditionally centered process

(15) Zn ≡ X2
n − 〈X〉n is a 0-mean mg with respect to the An’s,

for n ≥ 0. The martingale transform

Wn ≡ (H · X)n ≡
∑n

k=0HkΔXk

is a mg with mean H0EX0 with respect to the An’s,(16)

for n ≥ 0. Its predictable variation process 〈W 〉n is

(17) 〈W 〉n ≡ 〈H · X〉n =
n∑

k=1

H2
kE{(ΔXk)2|Ak−1} + H2

0EX2
0 .

Moreover, for n ≥ 0, the sequence

Ln ≡ W 2
n − 〈W 〉n ≡ {(H · X)n}2 − 〈(H · X)〉n

is a 0-mean mg with respect to the An’s (with L0 = H2
0 (X2

0 − EX2
0 )).(18)

Proof. Recall example 5.1 and theorem 5.3 for the first parts. Then by straightforward
calculation from (13), we have

〈H · X〉n =
∑n

k=1 E{[Δ(H · X)k]2|Ak−1} + H2
0EX2

0(a)
since (H · X)0 = H0X0

=
∑n

k=1E {[Hk(Xk − Xk−1)]2|Ak−1} + H2
0EX2

0

=
∑n

k=1H
2
k × E{(ΔXk)2|Ak−1} + H2

0EX2
0

since Hk is Ak−1-measurable
=

∑n
k=0 H2

k Δ〈X〉k.(b)

Note that L0 = W 2
0 − 〈W0〉 = [H0ΔX0]2 − H2

0E(X2
0 ) = H2

0 (X2
0 − EX2

0 ) has mean 0, while Ln

is a mg by example 5.1. �

Exercise 5.2 Let (Xn,An)∞
n=0 be a submg. Let Mn ≡ sup{|Xn| : n ≥ 1}. Use the Doob-

Meyer decomposition and Doob’s inequality 8.10.2 to show that

(19) P (Mn ≥ λ) ≤ 3
λ supn E|Xn| for all λ > 0.
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6 Optional Sampling

We now extend the simple optional sampling theorem of section 13.2. Our aim will be to
relax the restrictive assumption used there, that the stopping times are bounded.

Discrete Time

Notation 6.1 Suppose that

(1) {Xn,An}∞
n=0 is a s-mg

and that

(2) 0 ≤a.s. T0 ≤a.s. T1 ≤a.s. · · · <a.s. ∞ for stopping times T0, T1, . . . .

We define

(3) X̃n ≡ XTn
and Ãn ≡ ATn

,

so that the X̃n’s are adapted to the Ãn’s. We would like to prove that {X̃n, Ãn}∞
n=0 is a

s-mg, but this requires hypotheses. The weakest such hypotheses presented are

(4) E|X̃n| < ∞ for all n, and

(5) lim
k→

inf∞
∫
[Tn>k]

X+
k dP = 0 for each n.

(But these conditions (4) and (5) need to be replaced by useful conditions that are more easily
verifiable.) �

Theorem 6.1 (Optional sampling theorem) Let (1)–(3) define the sequence {X̃n,
Ãn}∞

n=0 with respect to the s-mg {Xn,An}∞
n=0. Suppose (4) and (5) hold. Then the optionally

sampled process

(6) {X̃n, Ãn}∞
n=0 is a s-mg

for which

(7) EX0 � EX̃0 � . . . � EX̃n � . . . � supk EXk ≤ ∞.

Corollary 1 (A) Condition (4) holds if {Xn,An}∞
n=0 is integrable.

(B) Conditions (4) and (5) both hold if any of the following conditions holds:

Each Tn is a.s. bounded by some fixed integer Nn.(8)
The Xn’s are uniformly integrable.(9)
Xn ≤a.s. (some M) < ∞ for all n.(10)

(11)
ETj < ∞ for all j, and there exists a constant K such that for all j,

E(|Xn − Xn−1||An−1)(ω) ≤ K for all n ≤ Tj(ω) holds a.s.
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Notation 6.2 The theorem becomes much cleaner if our s-mg includes an entry at ∞ that
closes the s-mg. Suppose

(12) {Xn,An}∞
n=0 is a s-mg

and

(13) 0 ≤a.s. T0 ≤a.s. T1 ≤a.s. · · · ≤ T∞ ≤a.s. ∞

for extended stopping times T0, T1, . . . , T∞. We again define

(14) X̃n ≡ XTn
and Ãn ≡ ATn

,

so that the X̃n’s are adapted to the Ãn’s (for 0 ≤ n ≤ ∞). �

Theorem 6.2 (Optional sampling theorem) Suppose (12)–(14) hold. Then

(15) {X̃n, Ãn}∞
n=0 is a s-mg

with EX0 � EXT0 � EXT1 � . . . � EXT∞ � EX∞ < ∞.

Continuous Time

Theorem 6.3 (Optional sampling theorem) Suppose that the X-process is integrable
and satisfies X : (Ω,A, P ) → (D[0,∞),D[0,∞)), and that it is adapted to some filtration
{At}t∈[0,∞). Then

n,Xn,An, {0, 1, ...}{0, 1, . . . ,∞}, k may be replaced by
t,Xt,At, [0,∞), [0,∞], s(16)

in theorem 6.1, corollary 1 (only (11) must be omitted from the list of things that carry over
with no change), and theorem 6.2.

Proofso

Proof. Consider theorem 6.1. Let A ∈ ATn−1 . It suffices to show that

(a)
∫

A
XTn−1 dP �

∫
A

XTn
dP.

Basically, we wish to use proposition 13.2.1 and the DCT. To this end we define

(b) T
(k)
n ≡ Tn ∧ k = (a bounded stopping time) ↗ Tn.

Now A ∩ [Tn−1 ≤ k] ∈ A
T

(k)
n−1

, since for each m ≥ 0 we have

A ∩ [Tn−1 ≤ k] ∩ [T (k)
n−1 ≤ m] = A ∩ [Tn−1 ≤ k] ∩ [Tn−1 ∧ k ≤ m ∧ k]

= A ∩ [Tn−1 ≤ m ∧ k] ∈ Am∧k ⊂ Am.

Thus, for n fixed we have
∫

A∩[Tn−1≤k]
XTn−1 dP(c)

=
∫

A∩[Tn−1≤k]
X

T
(k)
n−1

dP as the integrands are equal on the set

�
∫

A∩[Tn−1≤k]
X

T
(k)
n

dP by proposition 13.2.1(d)

�
∫

A∩[Tn−1≤k]∩[Tn≤k]
XTn

dP +
∫

A∩[Tn−1≤k]∩[Tn>k]
Xk dP,(e)
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since X
T

(k)
n

= Xk on [Tn > k]. Let k → ∞ in (c) and (e); and since Tn < ∞ a.s. and since
E|XTn−1 | and E|XTn

| are finite, the DCT implies (recall that a = b ⊕ c means that |a − b| ≤
c)

∫
A

XTn−1 dP(f)

�
∫

A
XTn

dP ⊕ lim
∫
[Tn>k]

X+
k dP(g)

≡
∫

A
XTn

dP ⊕ lim ak, where limk→∞ ak = 0 by (5).(h)

Equate the terms in (f) and (h) on a subsequence k′ having ak′ → 0 to obtain

(i)
∫

A
XTn−1 dP �

∫
A

XTn
dP for all A ∈ ATn−1 .

This is equivalent to (6) by (13.1.4).
Letting A = Ω in (i) shows that EXTn

is ↗. Introducing the new stopping time τ ≡ 0 ≤ T0

and applying this result shows that EX0 ≡ EXτ � EXTn
.

It remains to show that EXTn
� supk

EXk. Now,

EXTn
=

∫
[Tn≤k]

XTn
dP +

∫
[Tn>k]

XTn
dP(j)

=
∫
[Tn≤k]

X
T

(k)
n

dP +
∫
[Tn>k]

XTn
dP

�
∫
[Tn≤k]

Xk dP +
∫
[Tn>k]

XTn
dP ±

∫
[Tn>k]

Xk dP(k)

by proposition 13.2.1, since [Tn ≤ k] ∈ A
T

(k)
n

as [Tn ≤ k] ∩ [Tn ∧ k ≤ m] = [Tn ≤ m ∧ k] ∈ Ak∧m ∈ Am, for m ≥ 0

� EXk ⊕
∫
[Tn>k]

X+
k dP ⊕

∫
[Tn>k]

XTn
dP.(l)

For the second term in (1) we recall (5). For the third term in (1) we note that E|XTn
| < ∞

and that Tn < ∞ a.s. We thus conclude from (1) that

(m) EXTn
� limk→∞ EXk + 0 + 0

(n) � supk EXk.

This gives (7). �

Proof. Consider the first claim made in the corollary. That is, we verify that (4) holds if
supk E|Xk| < ∞. Let T

(k)
n ≡ Tn∧k. Now, both {Xn,An}∞

n=0 and {X+
n ,An}∞

n=0 are submgs.
Since 0 ≤ T

(k)
n ≤ k, proposition 13.2.1 implies that both

(a) X0,XT
(k)
n

,Xk and X+
0 ,X+

T
(k)
n

,X+
k are submgs.

Thus,

E|X
T

(k)
n

| = E[2X+

T
(k)
n

− X
T

(k)
n

] since |x| = 2x+ − x(b)

≤ 2EX+
k − EX0 using (a)(c)

≤ 2E|Xk| − EX0

≤ 2 supk E|Xk| − EX0

≤ (some M) < ∞ by hypothesis.(d)
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Thus, Fatou’s lemma and then (d) gives

E|X̃n| = E|XTn
| = E| lim X

T
(k)
n

| ≤ lim EXTn∧k
(e)

≤ lim E|Xk|
= sup E|Xk| < ∞(f) �

Proof. Consider (8). Now, E|X̃n| ≤
∑Nn

0 E|Xj | implies (4), and (5) is trivial, since the
integral equals 0 for k ≥ Nn. �

Proof. Consider (9). Uniformly integrable Xn’s are uniformly bounded in L1 and are uni-
formly absolutely continuous, by theorem 3.5.4. Uniformly bounded in L1 means that supk≥1

E|Xk| < ∞; hence by part (A) of the corollary, we have (4). Since Tn < ∞ a.s., we have
P (Tn > k) → 0 as k → ∞, and hence uniform absolute continuity implies (5). �

Proof. Consider (10). Now, (5) is trivial, since X+
k ≤ M , and (4) holds, since

0 ≤ E(M − XTn
) = E[lim(M − X

T
(k)
n

)](a)

≤ lim E(M − X
T

(k)
n

) by Fatou, since all M − Xn ≥ 0(b)

≤ lim E(M − X0) by proposition 13.2.1(c)
= M − E(X0) < ∞,(d)

giving EX0 ≤ EXTn
≤ M. �

Proof. Consider (11). Let Y0 ≡ |X0| and Yj ≡ |Xj − Xj−1| for j ≥ 1. Define the sums
Zn ≡

∑n
0 Yj and Z̃n ≡

∑Tn

0 Yj . Then (4) holds since

E|X̃n| ≤ E|Z̃n| =
∑∞

k=0

∫
[Tn=k]

Zk dP =
∑∞

k=0

∫
[Tn=k]

∑k
j=0 Yj dP(a)

=
∑∞

j=0

∫
[Tn≥j]

Yj dP by Fubini(b)

=
∑∞

j=0

∫
[Tn≥j]

E(Yj |Aj−1)dP(c)

since [Tn ≥ j] = [Tn ≤ j − 1]c ∈ Aj−1

≤ K
∑∞

j=0 P (Tn ≥ j) = K(1 + ETn) using (11) and then (8.2.1)(d)

< ∞.(e)

Also, (5) holds, since ETn < ∞ implies P (Tn > k) → 0 as k → ∞; hence EZ̃n < ∞ (as follows
from (e)) gives

(f)
∫
[Tn>k]

|Xk|dP ≤
∫
[Tn>k]

Z̃n dP → 0 as k → ∞. �

Proof. Consider theorem 6.2. Since {Xn,An}∞
n=0 is a s-mg, we see from the s-mg conver-

gence theorem that the Xn’s are uniformly integrable and Xn → X∞ a.s. and L1, for some
X∞ ∈ L1. Now, for any n ∈ {0, 1, . . . ,∞} we have

E|XTn
| ≤ E(limk→∞ |X

T
(k)
n

| + |X∞|) since T
(k)
n ≡ Tn ∧ k ↗ Tn

≤ lim E|X
T

(k)
n

| + E|X∞| by Fatou

≤ lim E|Xk| + E|X∞| by proposition 13.2.1
< ∞, since the process is integrable and X∞ ∈ L1.(a)
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Let A ∈ ATn−1 ; recall that Tn−1 could now equal +∞. Even so, A ∩ [Tn−1 ≤ k] ∈ A
T

(k)
n−1

,
as shown at the start of the proof of theorem 6.1 Thus,

∫
A∩[Tn−1≤k]

XTn−1 dP(b)

=
∫

A∩[Tn−1≤k]
X

T
(k)
n−1

dP since T
(k)
n−1 = Tn−1 on [Tn−1 ≤ k]

�
∫

A∩[Tn−1≤k]
X

T
(k)
n

dP by proposition 13.2.1

=
∫

A∩[Tn−1≤k]∩[Tn>k]
Xk dP +

∫
A∩[Tn−1≤k]∩[Tn≤k]

XTn
dP,(c)

since X
T

(k)
n

= Xk on [Tn > k]. Let k → ∞ in (b) and (c); since (a) shows that E|XTn−1 | and
E|XTn

| are finite, the DCT gives
∫

A∩[Tn−1<∞]
XTn−1 dP(d)

� limk→∞
∫

A∩[Tn−1≤k]∩[Tn>k]
Xk dP +

∫
A∩[Tn<∞]

XTn
dP

=
∫

A∩[Tn−1<∞]∩[Tn=+∞]
X∞ dP +

∫
A∩[Tn<∞]∩[Tn−1<∞]

XTn
dP(e)

using Xk →L1 X∞
=

∫
A∩[Tn−1<∞]

XTn
dP.(f)

We add to each of (d) and (f) the equal terms of the equation

(g)
∫

A∩[Tn−1=∞]
XTn−1 dP =

∫
A∩[Tn−1=∞]

XTn
dP,

and obtain

(h)
∫

A
XTn−1 dP �

∫
A

XTn
dP for all A ∈ ATn−1 .

Replace Tn by T∞ in the previous paragraph to see that

(i)
∫

A
XTn−1 dP �

∫
A

XT∞ dP for all A ∈ ATn−1 .

Finally, (h), (i), and (13.1.4) show that {XTn
,ATn

}∞
n=0 is a s-mg. Add in Ta ≡ 0 and Tb ≡ ∞

for the expectation claim, with A = Ω in (h) and (i). �

Proof. Consider theorem 6.3. We must consider the extension of theorem 6.2. It suffices
to consider the stopping times a pair at a time; we will do so, relabeling them so that S ≤ T
a.s. Let Dn ≡ {k/2n : k = 0, 1, . . . , }, and note that

(a) {Xt,At}t∈Dn
is a s-mg.

Define extended stopping times T (n) by

(b) T (n)(ω) =
{

k/2n whenever (k − 1)/2n < T (ω) ≤ k/2n and k ≥ 0,
∞ whenever T (ω) = ∞,

and make an analogous definition for S(n); it is trivial that these rvs are extended stopping
times. Note that a.s.

(c) S(n) ≤ T (n), S ≤ S(n), T ≤ T (n) S(n) ↘ S, T (n) ↘ T.

We can apply theorem 6.2 to S(n) and T (n) to conclude (as in (h), just above) that

(d)
∫

A
XS(n) dP �

∫
A

XT (n) dP for all A ∈ AS ⊂ AS(n) .
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Now, by right continuity of the paths,

(e) XS(n) →a.s. XS and XT (n) →a.s. XT as n → ∞.

Thus Vitali’s theorem allows us to pass to the limit in (d) and obtain

(f)
∫

A
XS dP �

∫
A

XT dP for all A ∈ AS ,

provided that we show that

(g) the XT (n) ’s (and analogously the XS(n) ’s) are uniformly integrable.

Since 0 ≤ T (n) ≤ T (n−1) with both taking values in Dn, theorem 6.2 gives

(h) XT (n) � E(XT (n−1) |AT (n)) a.s.

Thus

(17) {Yn,Bn}0
n=−∞ is a reversed s-mg, where Yn ≡ XT (−n) and Bn ≡ AT (−n) .

From this we need only the rather minor fact (since EX0 � EXT (n) for this s-mg pair) that

(i) lim
n→−∞ EYn = lim

n→−∞ E(XT (−n)) � EX0 > −∞.

Thus the reversed s-mg theorem implies (g). Let A = Ω in (f) for

(j) −∞ ≤ EX0 � EXS � EXT � EX∞ < ∞

(we also apply (f) to T0 ≡ 0 and T∞ ≡ ∞). Then (f) and (j) finish the proof. �

Exercise 6.1 Prove theorem 6.3 (for the case of integrable Xt in theorem 6.1).

Exercise 6.2 Prove theorem 6.3 (for the corollary to theorem 6.1 case).

Exercise 6.3 Write out all the details of step (h), in the context ot theorem 6.2.
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7 Applications of Optional Sampling

Example 7.1 (Gambler’s ruin) Suppose Y1, Y2, . . . are iid with p≡ P (Y1=1) and with
q ≡ P (Y1= − 1). Let Sn ≡ Y1 + · · · + Yn. Let −a < 0 < b be integers, and define the stop-
ping time

(1) τ ≡ inf{n : Sn = −a or b}.

Define An ≡ σ[X1, . . . , Xn]. Let φ(t) = pet + qe−t denote the mgf of Y . Let c0 ≡ log(q/p),
and note that φ(c0) = 1. We now apply the examples of section 13.1. When p = q = 1

2 :

Sn is a mean-0 mg,(2)

Z
(1)
n ≡ S2

n − n is a mean-0 mg.(3)

For general p and q with p ∈ (0, 1) :

Z
(2)
n ≡ Sn − n(p − q) is a mean-0 mg,(4)

Zn ≡ (q/p)Sn = exp(c0Sn) = exp(c0Sn)/φn(c0) is a mean-1 mg.(5)

We now make the claim (see exercise 7.1 below)

(6) ESτ = 0, EZ
(1)
τ = 0, EZ

(2)
τ = 0, EZτ = 1.

With probability 1, the rv Sτ takes on one of the values −a or b. Now, τ ∧ m ↗ τ a.s. and
Sτ∧m → Sτ a.s., while (τ ∧ m) is a bounded stopping time to which proposition 13.2.1 or
theorem 6.1 necessarily applies. Thus, for p = q = 1

2 we can conclude that

0 = limm0 = limmESτ∧m = ESτ = −aP (Sτ = −a) + b[1 − P (Sτ = −a)]

by proposition 13.2.1 and the DCT with dominating function a + b; and

Eτ = lim E(τ ∧ m) = ES2
τ∧m → ES2

τ = a2P (Sτ = −a) + b2P (Sτ = b)

by the MCT, proposition 13.2.1, and the DCT. Solving these gives

(7) P (Sτ = −a) = b/(a + b) and Eτ = ab when p = q = 1
2 .

Justifying the other two equations in (6) (Z(2)
n is analogous to Z

(1)
n , while Zn uses condition

(13.6.11)),

(8) P (Sτ = −a) =
1 − (p/q)b

1 − (p/q)a+b
if p �= q

and, with μ ≡ p − q,

(9) Eτ = b
μ − b+a

μ

1 − (p/q)b

1 − (p/q)a+b
if p �= q.

Note that if μ ≡ p − q < 0, then [max0≤n<∞ Sn] ∼= Geometric(p/q). That is,

(10) P (max0≤n<∞Sn ≥ b) = (p/q)b for all integers b, when p < q.

(Just let a → ∞ in the formula for P (Sτ = −a) to obtain the complementary
probability.) �
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Example 7.2 (Gambler’s ruin for Brownian motion) Suppose that Sμ is Brownian
motion with drift: Sμ(t) = S(t) + μt for t ≥ 0. Define the stopping time τab ≡ τ ≡ inf{t ≥ 0 :
Sμ(t) = −a or b}, where −a < 0 < b. An easy argument will show that Eτ < ∞. Observe
first that

(11) S0(t), S2
0(t) − t, Sμ(t) − μt are 0-mean mgs.

Then set θ = −2μ, and recall (12.7.8) to conclude that

(12) exp(θ[Sμ(t) − μt] − θ2t/2) = exp(−2μ[S(t) + μt]) is a mean-1 mg.

Applying the optional sampling theorem to (11) and (12), we obtain

P (S(τ) = −a) = b/(a + b) if μ = 0,(13)
Eτ = ab if μ = 0,(14)

P (Sμ(τ) = −a) = 1−e2µb

1−e2µ(a+b) if μ �= 0,(15)

Eτ = b
μ − a+b

μ
1−e2µb

1−e2µ(a+b) if μ �= 0.(16)

Let ‖S+
μ ‖∞

0 ≡ sup0≤t<∞ Sμ(t). Note that if μ < 0, then ‖S+
μ ‖∞

0
∼= Exponential(2|μ|). The

Exponential (2|μ|) tail probability gives

(17) P (‖S+
μ ‖∞

0 ≥ b) = exp(−2|μ|b) = exp(−θb) for all b > 0.

Note the complete analogy with example 7.1. �

Exercise 7.1 Give all details in justifying the final two equalities in (6).

Exercise 7.2 Verify completely the claims of example 7.2. (recall theorem 12.7.1 and
theorem 12.7.2.)

Exercise 7.3 Derive an analogue of the previous example 7.2 that is based on the Poisson
process {N(t) : t ≥ 0}.
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8 Introduction to Counting Process Martingales∗

Heuristic Treatment of Counting Process Martingales
Suppose now that the process {M(x),Ax}x∈R is a martingale. Then for every increment
M(x + h) − M(x) we have E{M(x + h) − M(x)|Ax} = 0. Operating heuristically, this sug-
gests that

(1) E{dM(x)|Ax−} = 0 a.s. for any martingale {M(x),Ax}x∈R,

where Ax− is the σ-field generated by everything up to (but not including) time x. With this
background, we now turn to our problem.

Suppose now that

(2) N(x) is a counting process;

a counting process is (informally) an ↗ process that can increase only by taking jumps of size
+1. Incremental change is modeled via

(3) E{dN(x)|Ax−} = dA(x) a.s.; here dA(x) is Ax−-measurable.

It then seems that

(4) M(x) ≡ N(x) − A(x) for x ∈ R is a martingale;

we call A(.) =
∫ x

−∞ dA(y) ≡
∫
(−∞,x]

dA(y) the compensator of N . Note that A(.) is an ↗
and Ax−-measurable process.

We compute the predictable variation process 〈M〉 of the martingale M (as suggested by
(13.5.3) or (13.5.8), and using integration by parts) via

d〈M〉(x) ≡ E{dM2(x)|Ax−} = E{M−(x)dM(x) + M(x)dM(x)|Ax−}(5)
= E{2M−(x)dM(x) + [dM(x)]2|Ax−}
= 2M−(x)E{dM(x)|Ax−} + E{[dM(x)]2|Ax−}
= 2M−(x) · 0 + E{[dM(x)]2|Ax−} by (1)

= E{[dM(x)]2|Ax−} as is also suggested immediately by (13.5.11)(6)
(so, the heuristics of both (13.5.8) and (13.5.11) give the same thing)

= E{[dN(x) − dA(x)]2|Ax−}
= E{[dN(x)]2 − 2[dA(x)][dN(x)] + [dA(x)]2|Ax−}
= E{[dN(x)]2|Ax−} − 2dA(x)E{dN(x)|Ax−} + E{[dA(x)]2|Ax−}
= E{dN(x)|Ax−} − 2[dA(x)]2 + [dA(x)]2 by (3) and [dN(x)]2 = dN(x)
= dA(x) − [dA(x)]2 by (3)(7)
= [1 − ΔA(x)]dA(x) where ΔA(x) ≡ A(x) − A−(x) ≡ A(x) − A(x−);(8)

note that [dN(x)]2 = dN(x), since dN(x) takes on only the values 0 and 1. When we combine
(5) = (8), it suggests that

(9) 〈M〉(x) =
∫ x

−∞[1 − ΔA(y)]dA(y).

Thus (note (13.5.12) and (5)), the process

M2(x) − 〈M〉(x) has E{d[M2(x) − 〈M〉(x)]|Ax−} = 0,
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which suggests that, provided that each EM2(x) < ∞,

(10) M2(x) − 〈M〉(x) for x ∈ R is a 0-mean mg with respect to the Ax.

Summary Starting with a martingale M(.) having all EM2(x) < ∞, it seems that

(11) 〈M〉(·) is the predictable variation of the submartingale {M2(x),Ax}t∈R.

That is, 〈M〉 (·) is the ↗, ≥ 0, and Ax−-measurable process whose existence is guaranteed by
the Doob-Meyer decomposition (see 13.9.2 in Shorack (2000)). [Note that we (“discovered”
this without using said Doob-Meyer theorem; that theorem will merely guarantee that our
heuristic guess-and-verify approach (assuming that we can make it rigorous) gives us the
“right answer” This is typical.] (Note Fleming and Harrington (1991).)

Consider the martingale transform

(12) W (x) ≡
∫ x

−∞ H(y)dM(y), where H(x, ·)is Ax−-measurable for all x.

Then E{dW (x)|Ax} = E{H(x)dM(x)|Ax−} = H(x)E{dM(x)|Ax−} = 0 by (1), so

(13) {W (x),Ax}x∈R is a martingale, provided that each E|W (x)| < ∞.

Moreover, its predictable variation is given by

d〈W 〉(x) = E{[dW (x)]2|Ax−) appealing directly to (6) this time

= E{[H(x)dM(x)]2|Ax−}
= H2(x)E{[dM(x)]2|Ax−} since H(x) is Ax−-measurable

= H2(x)d〈M〉(x) by (6),

suggesting that

(14) 〈W 〉(x) =
∫ x

−∞ H2d〈M〉 =
∫ x

−∞ H2(y)[1 − ΔA(y)]dA(y).

This also suggests, provided that each EW 2(x) < ∞, that

(15) {L(x) ≡ W 2(x) − 〈W 〉(x),Ax}x∈R, is a 0-mean mg.

Processes H(.) that are Ax−-measurable satisfy H(x) = E{H(x)|Ax−}, and so H(x) can
be determined by averaging H(.) over the past; such an H is thus called predictable. The
martingale transform statement (12) can be summarized as

(16)
∫ x

−∞ [predictable] d [martingale] = [martingale],

provided that expectations exist.
Suppose now that we have a sequence of martingales Mn whose increments satisfy a

type of Lindeberg condition; this suggests that any limiting process M ought to be a normal
process. From the martingale condition we hope that

Cov[M(y) − M(x), M(x)] = limn E{[Mn(y) − Mn(x)]Mn(x)}
= limn E{Mn(x)E{Mn(x, y]|Ax}} = limn E{Mn(x) · 0} = 0;

and for a normal process M(.) uncorrelated increments also mean independent increments.
The variance process of M(.) should be EM2(x) = limn EM2

n(x) = limn E〈Mn〉(x) by (6). So
it seems reasonable to hope that [recall (12.1.15)]

(17) Mn →d M ∼= S(V ) on (DR,DR, ρ∞) as n → ∞
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for a Brownian motion S, provided that

(18) the increments of Mn satisfy a type of Lindeberg condition,

and provided that (note (9))

(19) 〈Mn〉(x) →p [some V (x)] as n → ∞, for each x ∈ R,

where

(20) V is ↗ and right continuous with V (−∞) = 0.

As noted above,

(21) it often holds that V (x) = limn E〈Mn〉(x) = limn EM2
n(x) = EM2(x).

Of course, the original martingales Mn need to be square integrable. This “quasi theorem”
is roughly Rebolledo’s CLT.

One other bit of heuristics seems in order. Suppose now that we have several count-
ing processes Ni(x) and that we perform the above calculations and determine martingales
Mi(x) = Ni(x) − Ai(x) with 〈Mi〉 (x) =

∫ x

−∞[1 − ΔAi] dAi. Now, for Ax−-measurable func-
tions ci(.)

(22) Mn(x) ≡
∑n

i=1 ci(x)Mi(x) is also a martingale.

We note from (6) that

d〈Mn〉(x) = E{[dMn(x)]2|Ax−}

=
∑n

i=1c
2
i (x)E{[dMi(x)]2|Ax−}

+
∑ ∑

i�=jci(x)cj(x)E{[dMi(x)][dMj(x)]|Ax−}

=
∑n

i=1c
2
i (x)〈Mi〉(x),(23)

provided that the

(24) Mi(x, y] and Mj(x, y] are uncorrelated, given Ax−.

In fact, conditions under which all of the previous heuristics are actually true are given
below. Even without these, we can use these heuristics as the first step in a guess-and-verify
approach.

The Guess-and-Verify Approach in a Single Sample IID as F

Example 8.1 (Single-sample martingale) Let τo ≡ F−1(1). Suppose that

(25) Ni(x) ≡ 1[Xi≤x] for all real x,

for X1, . . . , Xn iid F on R. Let

Ax ≡ σ[1[Xi≤y] : y ≤ x, 1 ≤ i ≤ n] = σ[1[Xi>y] : −∞ ≤ y ≤ x, 1 ≤ i ≤ n].

Then Ni is a counting process with

E{dNi(x)|Ax−} = P (dNi(x) = 1|Ni(x−) = 0)
= dAi(x) ≡ 1[Xi≥x] dΛ(x) ,
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where dΛ(x) ≡ [1 − F−(x)]−1 dF (x) with ΔΛ(x) = [ΔF (x)]/[1 − F−(x)] ≤ 1, so

(26) Mi(x) ≡ Ni(x) − Ai(x) = Ni(x) −
∫ x

−∞ 1[Xi≥y] dΛ(y) for all real x

satisfies (as verified in exercise 13.1.4)

(27) {Mi(x),Ax}x∈R is a 0-mean mg.

The predictable variation process is (letting
∫ x

−∞ ≡
∫
(−∞,x]

)

〈Mi〉(x) =
∫ x

−∞
[1 − ΔAi(y)] dAi(y)

=
∫ x

−∞[1 − 1[Xi≥y] × ΔΛ(y)] × 1[Xi≥y] dΛ(y)

=
∫ x

−∞ 1[Xi≥y] × [1 − ΔΛ(y)] dΛ(y) for all real x.(28)

Thus,

Cov[Mi(x),Mi(y)] = EM2
i (x ∧ y) since Mi is a mg

= E〈Mi〉(x ∧ y) = E
∫ x∧y

−∞ 1[Xi≥t] × [1 − ΔΛ(t)] dΛ(t)

=
∫ x∧y

−∞ E(1[Xi≥t] × [1 − ΔΛ(t)] dΛ(t)

=
∫ x∧y

−∞ [1 − ΔΛ] dF for all real x

= V (x ∧ y),(29)

where

(30) V (x) ≡
∫ x

−∞[1 − ΔΛ] dF =
∫ x

−∞[(1 − F )/(1 − F−)] dF.

Since the sum of martingales is also a martingale, we have

Mn(x) ≡ 1√
n

∑n
i=1Mi(x) is a 0-mean mg on R with respect to the Ax(31)

=
√

nFn(x) −
∫ x

−∞
√

n[1 − Fn−] dΛ(32)

= Un(F (x)) +
∫ x

−∞ Un(F−) dΛ.(33)

Moreover, (23) tells us that

〈Mn〉(x) =
∫ x

−∞[1 − Fn−] × [1 − ΔΛ] dΛ

→p

∫ x

−∞[1 − F−] × [1 − ΔΛ] × [1 − F−]−1 dF

=
∫ x

−∞[1 − ΔΛ] dF = V (x) for V as in (30) for all real x.(34)

Our heuristic Rebolledo CLT thus suggests that for a Brownian motion S,

(35) Mn →d S(V ) on D[0,∞),D[0,∞), ρ∞);

see (12.1.15) for ρ∞.
It is clear from theorem 12.10.1 that a Skorokhod embedding version M̃n of the original

process Mn should (and will) satisfy

(36) ‖M̃n − M|| →p 0 as n → ∞,

where (note exercise 8.1 below)

(37) M ≡ U(F ) +
∫ ·

−∞ U(F−) dΛ ∼= S(V ) for all real x. �
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Exercise 8.1 (a) Computing means and covariances to suggest that M[∼= S(V ). (b) Verify
that (Zn ≡ M

2
n − 〈Mn〉,Ax)x∈R̄ is a u.i.0-mean mg, and identify Zn(∞).

The Random Censorship Model

Example 8.2 (Random Censorship) Suppose now that X1, . . . , Xn are iid nondegen-
erate survival times with df F on [0,∞). However, we are not able to observe the Xi’s due
to the following random censoring. Let Y1, . . . , Yn be iid censoring times whose df G is an
arbitrary df on [0,∞]. Suppose also that the Yi’s are independent of the Xi’s. All that is
observable is

(38) Zi ≡ Xi ∧ Yi and δi ≡ 1[Xi≤Yx] for i = 1, . . . , n.

Let Ax ≡ σ[{1[Zi≤y]∩[δ=1], 1[Zi≤y]∩[δ=0] : y ≤ x, 1 ≤ i ≤ n}]. Let the ordered values be deno-
ted by Zn:1 ≤ · · · ≤ Zn:n (we agree that in a tied group of Zn:i’s, those with a δ of 1 are given
smaller subscripts than those with a δ of 0), and let δn:i correspond to Zn:i. Now, Z1, . . . , Zn

are iid H, where 1 − H = (1 − F )(1 − G), and we let Hn denote the empirical df of the Zi’s.
Thus,

(39) Hn(t) ≡ 1
n

∑n
i=1 1[Zi≤t] and 1 − H = (1 − F )(1 − G).

Let H
uc
n and Huc denote the empirical df and the true df of the uncensored rvs; so

H
uc
n (t) ≡ 1

n

∑n
i=11[Zi≤t,δi=1] and

Huc(t) ≡ E1[Zi≤t,δi=1] =
∫
[0,t]

(1 − G−) dF.
(40)

The basic counting process here is

(41) Ni(t) ≡ 1[Zi≤t]δi on [0,∞).

In analogy with exercise 13.1.4, it can be shown (see exercise 8.2 below) that, for the
cumulative hazard function defined by

(42) Λ(t) ≡
∫ t

0
1

1−F−
dF =

∫ t

0
1−G−
1−H−

dF on [0,∞),

the compensator must satisfy

(43) dAi(t) ≡ E{dNi(t)|At−} = 1[Zi≥t]
1−G−(t)
1−H−(t) dF (t) = 1[Zi≥t] dΛ(t).

This defines the basic martingale on [0,∞) to be

M1i(t) ≡ Ni(t) − Ai(t) = 1[Zi≤t]δi −
∫ t

0
1[Zi≥s] dΛ(s)

= 1[Zi≤t]δi − Λ(Zi ∧ t).
(44)

The predictable variation process should be

(45) 〈M1i〉(t) =
∫
[0,t]

1[Zi≥s] × [1 − ΔΛ(s)] dΛ(s) on [0,∞).

Now, observe (with
∫ t

0
≡

∫
[0,t]

) that

Mn(t) ≡ 1√
n

∑n

i=1
M1i(t) =

√
n[Huc

n (t) −
∫ t

0

(1 − Hn−) dΛ](46)

=
√

n[Huc
n (t) − Huc(t)] +

∫ t

0

√
n[Hn−−H−]

1−H−
dHuc

= E
uc
n (t) +

∫ t

0
En−

1−H−
dHuc, on [0,∞),(47)
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where we have defined

(48) E
uc
n ≡ √

n[Huc
n − Huc] and En ≡ √

n[Hn − H] on [0,∞).

We would expect that a Skorokhod version M̃n of Mn would satisfy

(49) ‖M̃n − M[‖ →p 0 as n → ∞,

where for appropriately defined E
uc and E,

(50) M[≡ E
uc +

∫
0

E

1−H−
dHuc on [0,∞).

Also,

(51) 〈Mn〉(t) =
∫ t

0
[1 − Hn−(s)] × [1 − ΔΛ(s)] dΛ(s) on [0,∞),

and

(52) V (t) ≡ E〈Mn}(t) =
∫ t

0
(1 − G−)(1 − ΔΛ) dF =

∫ t

0
(1 − H−) × [1 − ΔΛ] dΛ.

As would now be expected, it can be shown (see (12.1.15) for ρ∞) that

(53) M ∼= S(V ) on (D[0,∞),D[0,∞), ρ∞).

The cumulative hazard function Λ(.) and the Aalen–Nelson cumulative hazard function
estimator Λ̂n(.) are defined by

Λ(t) ≡
∫ ∞
0

1
1−F−

dF =
∫ t

0
1−G−
1−H−

dF and Λ̂n(t) ≡
∫ t

0
1

1−Hn−
dHuc

n(54)

for all t ∈ [0,∞). This is motivated by the deterministic halves of (39) and (40). We use this
to form an estimator of the df F , that is, a type of instantaneous life table. The Kaplan–Meier
product-limit estimator of the survival function 1 − F is defined by

(55) 1 − F̂n(t) ≡
∏

s≤t[1 − ΔΛ̂n(s)] =
∏

Zn:i≤t[1 − 1/(n − i + 1)]δn:i on [0,∞).

Fundamental Processes We define

(56) Xn ≡ √
n[F̂n − F ], Bn ≡ √

n[Λ̂n − Λ], Zn ≡ √
n [F̂n−F ]

1−F

on [0,∞) ; and, with

(57) T ≡ Zn:n and Jn(.) ≡ 1[0,T ] = 1[0,Zn:n](.) = 1[Hn−(.)(·)<1]

(where Jn(.) is predictable), we further define τo ≡ H−1(1) and

(58) X
T
n ≡ Xn(T ∧ ·), B

T
n ≡ Bn(T ∧ ·), Z

T
n ≡ Zn(T ∧ ·) on [0,∞).

Note that for t ∈ [0,∞), (54) and (46) give

B
T
n (t) =

√
n[

∫ T∧t

0

1
1 − Hn−

dHuc
n −

∫ t

0

dΛ]

=
√

n
∫ T∧t

0
1

1−Hn−
d[Huc

n −
∫ t

0
(1 − Hn−) dΛ]

=
∫ t

0
Jn

1−Hn−
dMn =

∫ t

0
[predictable] d [martingale] = [martingale](t). �(59)
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Exercise 8.2 Suggest that on [0,∞) we have

(60) 〈BT
n 〉 =

∫ t

0
Jn

[1−HN−] [1 − ΔΛ] dΛ → C(t) ≡
∫ t

0
1

1−H−
[1 − ΔΛ] dΛ.

Exercise 8.3 (a) Verify (43).
(b) For 0 ≤ s, t < ∞, evaluate Cov [Euc

n (s),En(t)].

Exercise 8.4 Use integration by parts to show that

(61) Z
T
n (t) = Xn(T∧t)

1−F (T∧t) =
∫ t

0
1[0,Znn]

1−F̂n−
1−F

1
1−Hn−

dMn on [0,∞)

(62) =
∫ t

0
[predictable] d [martingale] = [martingale](t).

Use the above heuristics to suggest (it can be proved by either mg or empirical process
methods) that

〈Zn〉T (t) =
∫ t

0

1[0,Zn:n][
1 − F̂n−
1 − F

]2
1

(1 − Hn−)2
d〈M〉n on [0,∞)(63)

=
∫ t

0
1[0,Zn:n][

1−F̂n−
1−F ]2 1

1−Hn−
× [1 − ΔΛ] dΛ

(64) → D(t) ≡
∫ t

0
1

1−H−
1

1−ΔΛ dΛ on [0,∞)

(which is a ≥ 0, right continuous, and ↗ function), since

(65) [(1 − F−)/(1 − F )]2 = [1/(1 − ΔΛ)]2.

These facts suggest that (for the D(.) of (64))

(66) Z
T
n →d S(D) and X

T
n → d(1 − F )S(D) on (D[0,∞),D[0,∞), ρ[∞)).

We now prove the corresponding result for B
T
n .

Theorem 8.1 Let F denote an arbitrary df F on [0,∞). Then for C as in (60),

(67) B
T
n →d S(C) on (D[0,∞),D[0,∞), ρ[∞)).

Proof. We will show that for all 0 ≤ r ≤ s ≤ t < τo, we have

(68) E{BT
n (r, s]3/2

B
T
n (s, t]3/2} ≤ 35C(r, s]3/4C(s, t]3/4 for C as in (60),

so Chentsov’s theorem gives relative compactness. We leave convergence of the finite-dimen-
sional distributions to an exercise below. Define Yt ≡ B

T
n , and note that Yt is of the form

(a) Yt =
∫
[0,t]

HdM for H predictable and M a mg;

in fact,

(b) H ≡ Jn/(1 − Hn−) and M ≡ Mn.

We will require two basic results. It holds that

(c) E{Y (s, t]2|As} ≤ 2βnC(s, t] for all 0 ≤ s ≤ t < ∞,
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where C(.) as defined in (60) is ≥ 0, right continuous, and ↗, and where

(d) βn ≡ ‖(1 − H−)/(1 − Hn−)‖Zn:n
0 has Eβk

n ≤ 1 + 2kΓ(k + 2).

These will be established below. However, we first use them to give a proof of (67).
Now, for all 0 ≤ r ≤ s ≤ t < τo we have

E{|Y (r, s]|3/2|Y (s, t]|3/2} = E{|Y (r, s]|3/2E{|Y (s, t]|3/2|As}}
≤ E{|Y (r, s]|3/2E{Y (s, t]2|As}3/4} by conditional Liapunov(e)

≤ E{|Y (r, s]|3/2(2βnC(s, t])3/4} by (c)(f)

≤ 23/4C(s, t]3/4E{(Y (r, s]2)3/4β
3/4
n }(g)

≤ 23/4(Eβ3
n)1/4C(s, t]3/4(E{Y (r, s]2})3/4 by Holder’s inequality

≤ 23/4(Eβ3
n)1/4C(s, t]3/4(E{E{Y (r, s]2|Ar}})3/4

≤ 23/4(Eβ3
n)1/4C(s, t]3/4(E{2βnC(r, s]})3/4 by (c)(h)

= 23/2(Eβ3
n)1/4(Eβn)3/4C(r, s]3/4C(s, t]3/4

≤ 23/2(Eβ3
n)1/2C(r, s]3/4C(s, t]3/4 by Liapunov’s inequality(i)

≤ 35C(r, s]3/4C(s, t]3/4 by (d),(j)

as claimed in (66).
We now establish (c). Now,

E{Y (s, t]2|As} = E{Y 2
t − 2YsYt + Y 2

s |As}
= E{Y 2

t − Y 2
s |As} since {Yt,At}[t≥0] is a mg(k)

= E{Y 2
t − 〈Y 〉t|As} − (Y 2

s − 〈Y 〉s) + E{〈Y 〉t − 〈Y 〉s|As}
= E{〈Y 〉t − 〈Y 〉s|As} since {Y 2

t − 〈Y 〉t,At}[t≥0] is a mg
= E{

∫
(s,t]

H2d〈Mn〉|As} so far, holding very generally(l)

= E{
∫

(st]

Jn

(1 − Hn−)2
(1 − Hn−) × [1 − ΔΛ] dΛ|As} using (58) and (50)(m)

=
∫

(s,t]

E{ nJn(v)
n[1 − Hn−(v)]

|As} × [1 − ΔΛ(v)] dΛ(v) by Fubini(n)

= Jn(s)
∫

(s,t]

nE{
1[Z(v)>0]

Z(v)
} × [1 − ΔΛ(v)] dΛ(v)(o)

where Z(v) ∼= Binomia1(n[1 − Hn−(s)], [(1 − H−(v)]/[1 − H−(s)])

≤ Jn(s)
∫
(s,t]

2n
n[1−Hn−(s)]

1−H−(s)
1−H−(v) × [1 − ΔΛ(v)] dΛ(v)(p)

by (68) below

= 2Jn(s) 1−H−(s)
1−Hn−(s)

∫
(s,t]

1
1−H−

× [1 − ΔΛ] dΛ

≤ 2βnC(s, t],(q)

as claimed in (c). Step (o) used the fact that

(69) E{Z−11[Z>0]} ≤ 2/(mp) when Z ∼= Binomial(m, p).

This is true, since Z−11[Z>0] ≤ 2/(Z + 1) and

E(Z + 1)−1 =
∑m

k=0
1

k+1
m!

k!(m−k)!p
kqm−k

= 1
(m+1)p

∑m+1
k+1=1

(m+1)!
(k+1)!((m+1)−(k+1))!p

k+1q(m+1)−(k+1)
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(r) ≤ 1/((m + 1)p) ≤ 1/(mp).

We now turn to (d). Now, by (6.4.13) and (12.11.14) we have

Eβk
n =

∫ ∞
0

P (βn ≥ x)kxk−1dx ≤ 1 +
∫ ∞
1

2x2e−xkxk−1dx

≤ 1 + 2kΓ(k + 2) for general k(s)
≤ 145 for k = 3,(t)

as claimed in (d). �

Exercise 8.5 Complete the proof of theorem 8.1, by showing convergence of the finite-
dimensional distributions.

Exercise 8.6 Show that (69) may be extended to give

(70) E{ 1
Zk 1[Z>0]} ≤ k(k + 1)/(mp)k when Z ∼= Binomial(m, p), and k ≥ 1.

Remark 8.1 At this point, three sections of the 1st Edition have been entirely omitted. The
first two contained a general form of the Doob–Meyer decomposition for continuous parame-
ter martingales followed by a treatment of martingales of the form

∫
HdM =

∫
[predictable

]d[martingale]. The final omitted section treated the basic censored data martingale.
Together, these three sections, form the continuous analog to the current section 13.5 and
section 13.8. �
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9 CLTs for Dependent RVs o

Let {Xnk : k = 1, 2, . . . and n = 1, 2, . . .} be an array of rvs on a basic probability space
(Ω,A, P ). For each n we suppose that Xn1,Xn2, . . . are adapted to an ↗ sequence of σ-fields
An0 ⊂ An1 ⊂ An2 ⊂ · · · ⊂ A. For each n we suppose that κn in an integer-valued stopping
time with respect to these (Ank)∞

k=0. We now introduce

Pk−1(·) ≡ P (·|An,k−1),
Ek−1(.) ≡ E(·|An,k−1), and Vark−1[·] ≡ [·|An,k−1].

(1)

Our interest is in the sum

(2) Sn ≡
∑κn

k=1Xnk.

We will have reason to consider

(3) X ′
nk ≡ Xnk1[|Xnk|≤1] and X ′′

nk ≡ Xnk1[|Xnk|>1].

What follows is the most basic CLT in this monograph. For row-independent rvs and κn ≡ n it
reduces to the asymptotic normality conclusion in (10.5.30), with c = 1. The second theorem
implies the first, and is very much in the spirit of the Lindeberg theorem.

Theorem 9.1 (Basic dependent CLT) Conclude that Sn →d N(0, 1) if
∑κn

k=1Pk−1(|Xnk| ≥ ε) →p 0 for all ε > 0
(equivalently, max1≤k≤κn

|Xnk| →p 0),(4)
∑κn

k=1Ek−1(X ′
nk) →p 0 (i.e., partial sums of the Xnk are nearly a mg),(5)

∑κn

k=1Vark−1[X ′
nk] →p 1.(6)

Theorem 9.2 Conclude that Sn →d N(0, 1) if
∑κn

k=1Ek−1(X2
nk1[|Xnk|≥∈]) →p 0 for all ε > 0,(7)

∑κn

k=1Ek−1(Xnk) →p 0,(8)
∑κn

k=1Vark−1[Xnk] →p 1.(9)

Comments If one replaces (5) by

(10)
∑κn

k=1|Ek−1(X ′
nk)|2 →p 1,

then (6) may be replaced by

(11)
∑κn

k=1Ek−1(X ′
nk

2) →p 1.

If (4) holds, then (11) is equivalent to

(12)
∑κn

k=1X
2
nk →p 1.

If Xn1,Xn2, . . . are mg differences, then (10) and (5) are implied by

(13)
∑κn

k=1|Ek−1(Xnk1[|Xnk|>1])| →p 0.

Moreover, (13) is implied by either (7) or

(14) E(max1≤k≤κn
|Xnk|) →p 0.

We now summarize these last claims.
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Theorem 9.3 (MG CLT) Suppose the Xn1,Xn2, . . . are mg differences, for each n. Then
Sn →d N(0, 1), provided that any of the following occurs:

Conditions (7) and (9) hold,(15)
Conditions (12) and (14) hold,(16)
Conditions (4), (12), and (13) hold.(17)

Note Hall and Heyde (1980) for such results.



Chapter 14

Convergence in Law on Metric
Spaces o

1 Convergence in Distribution on Metric Spaces o

Many results for convergence in distribution generalize to probability measures on a general
metric space (M,d) equipped with its Borel σ-field Md. We call such measures Borel mea-
sures. Instead of using convergence of dfs to define convergence in distribution (or law), we
use directly the Helly-Bray idea embodied in the →d equivalences of theorem 9.1.4, and that
theorem is here extended to general metric spaces. Skorokhod’s construction is also gener-
alized to complete and separable metric spaces. Section 12.1 gave specific information on
the two very important metric spaces that gave rise to (C, C) and (D,D). In section 2 the
dual bounded Lipschitz metric will be introduced, along with Hellinger, Prohorov, and total
variation metrics. These are useful on function spaces.

Definition 1.1 (Convergence in distribution) If {Pn : n ≥ 1} and P are probability
measures on (M,d,Md) satisfying

(1)
∫

g dPn →
∫

g dP for all g ∈ Cb(M)

[where Cb(M) ≡ {all bounded and d-continuous functions g from M to R}, and Cbu(M)
denotes those functions that are additionally d-uniformly continuous], then we say that Pn

converges in distribution (or law) to P , or that Pn converges weakly to P ; and we write
Pn →d P or Pn →L P . Similarly, if Xn, X are random elements in M for which

(2) E g(Xn) → E g(X) for all g ∈ Cb(M),

then we write Xn →d X, Xn →L X or L(Xn) → L(X).

Theorem 1.1 (Portmanteau theorem; Billingsley) For probability measures {Pn :
n ≥ 1} and P on any metric space (M,d,Md) the following are equivalent:

Pn →d P [i.e.,
∫

g dPn → ∫
g dP for all g ∈ Cb(M)].(3) ∫

g dPn → ∫
g dP for all g ∈ Cbu(M).(4)

lim Pn(B) ≤ P (B) for all closed sets B ∈ Md.(5)

lim Pn(B) ≥ P (B) for all open sets B ∈ Md.(6)

lim Pn(B) = P (B) for all P -continuity sets B ∈ Md.(7)

c© Springer International Publishing AG 2017
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Proof. Clearly, (3) implies (4).
Consider (4) implies (5): Suppose that (4) holds and that B is closed. Let ε > 0. Then

for integer m large enough, the set Bm ≡ {x : d(x,B) < 1/m} satisfies

(a) P (Bm) ≤ P (B) + ε,

since Bm ↘ B as m → ∞. Let gm(x) ≡ ψ(md(x,B)) = max{0, (1 − md(x,B))}, where ψ(t)
is equal to 1, 1 − t, 0 according as t has t ≤ 0, 0 ≤ t ≤ 1, 1 ≤ t. Then

(b) 1B ≤ gm ≤ 1Bm
,

and for each m ≥ 1, gm is Lipschitz and uniformly continuous. Hence, by (4) and also (a)
and (b),

(c) limn Pn(B) ≤ limn

∫
gm dPn =

∫
gm dP ≤ P (Bm) ≤ P (B) + ε.

Since ε > 0 was arbitrary, (5) follows.
Equivalence of (5) and (6) follows easily by taking complements.
Consider (5) implies (3): Suppose that g ∈ Cb(M) and that (5) holds. Now, transform g

linearly so that 0 ≤ g(x) ≤ 1. Fix k ≥ 1, and define the closed set

(d) Bj ≡ {x ∈ M : j/k ≤ g(x)} for j = 0, . . . , k + 1.

Then it follows that
∑k+1

j=1
j−1

k P (x : j−1
k ≤ g(x) < j

k )

≤ ∫
g dP <

∑k+1
j=1

j
kP (x : j−1

k ≤ g(x) < j
k ).(e)

Rewriting the sum on the right side and summing by parts gives

(f)
∑k

j=1(j/k)[P (Bj−1) − P (Bj)] = (1/k) + (1/k)
∑k

j=1 P (Bj),

which together with a similar summation by parts on the left side yields

(g) (1/k)
∑k

j=1 P (Bj) ≤ ∫
g dP ≤ (1/k) + (1/k)

∑k
j=1 P (Bj).

Applying the right side of (g) to Pn, and then using (5) for the closed sets Bj , and then
applying the left side of (g) to P gives

limn

∫
g dPn ≤ limn

[
1
k + 1

k

∑k
j=1 Pn(Bj)

]

≤
[
1
k + 1

k

∑k
1 P (Bj)

]
≤ 1

k +
∫

g dP.(h)

Letting k → ∞ in (h) yields

(i) limn

∫
g dPn ≤ ∫

g dP.

Applying (i) to (the nontransformed) −g yields

(j) limn

∫
g dPn ≥ ∫

g dP.

Combining (i) and (j) gives (3).
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Consider (5) implies (7): With B0 the interior of any set B ∈ M and B̄ its closure, (5)
and (6) give

(k) P (B0) ≤ lim Pn(B0) ≤ lim Pn(B) ≤ lim Pn(B) ≤ lim Pn(B̄) ≤ P (B̄).

If B is a P -continuity set, then P (∂B) = 0 and P (B̄) = P (B0), so the extreme terms in (k)
are equal; thus limPn(B) = P (B), as required by (7).

Consider (7) implies (5): Since ∂{x : d(x,B) ≤ δ} ⊂ {x : d(x,B) = δ}, the boundaries
are disjoint for different δ > 0, and hence at most countably many of them can have positive
P -measure. Therefore, for some sequence δk → 0, the sets Bk ≡ {x : d(x,B) < δk} are P -
continuity sets and Bk ↘ B if B is closed. It follows from B ⊂ Bk and then (7)

(l) lim Pn(B) ≤ lim Pn(Bk) = P (Bk).

Then (5) follows from the monotone property of P , since Bk ↘ B as k → ∞. �

Proposition 1.1 Pn →d P if and only if each subsequence {Pn′} contains a further sub-
sequence {Pn′′} such that Pn′′ →d P .

Proof. This is easy from definition 1.1 (and the fact that a sequence of real numbers has
xn → x if and only if each {xn′} contains a further subsequence {xn′′} such that xn′′ → x),
as in the corollary to Helly’s selection theorem 9.1.3. �

Theorem 1.2 (Slutsky’s theorem) Suppose that Xn, Yn are random elements taking values
in a separable metric space (M,d,Md), both defined on some Ωn.

(a) Show that d(Xn, Yn) is a rv whenever (M,d) is separable.

(b) If Xn →d X and d(Xn, Yn) →p 0, then Yn →d X.

Proof. For a closed set B and δ > 0 let Bδ ≡ {x : d(x,B) < δ}. Then

P (Yn ∈ B) = P (Yn ∈ B, d(Xn, Yn) < δ) + P (Yn ∈ B, d(Xn, Yn) ≥ δ)(a)
≤ P (Xn ∈ B̄δ) + P (d(Xn, Yn) ≥ δ).(b)

The second term on the right side of (a) goes to zero, since d(Xn, Yn) →p 0 (note the following
exercise). Then Xn →d X gives

(c) lim P (Yn ∈ B) ≤ lim P (Xn ∈ B̄δ) ≤ P (X ∈ B̄δ), for every δ > 0,

via the portmanteau theorem (5) applied to the Xn’s. Then B̄δ ↘ B as δ ↘ 0, since B
is closed, so P (X ∈ B̄δ) ↘ P (X ∈ B). Thus lim P (Yn ∈ B) ≤ P (X ∈ B) ; thus Yn →d X
follows from applying the portmanteau theorem to the Yn’s. �

Exercise 1.1 Prove theorem 1.2(a). (Recall proposition 2.2.4.)

Theorem 1.3 (Continuous mapping theorem) Let Xn →d X on (M,d,Md), and sup-
pose g : M → M̄ (where (M̄, d̄) is another metric space) is continuous a.s. with respect
to P ≡ PX (that is, P (X ∈ Cg) = 1 for the continuity set Cg of g). Then, necessarily,
g(Xn) →d g(X).
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Proof. We simply note that this is essentially no different from the proof of the
Mann–Wald theorem. (Only now we apply the general Skorokhod construction of the follow-
ing theorem, instead of the elementary Skorokhod theorem.) [This proof, however, requires
that the metric space be complete and separable. The next exercise asks the reader to provide
a general proof.] �

Exercise 1.2 Prove the continuous mapping theorem above by appeal to (5) and then
proposition 2.2.4 (that the discontinuity set of a transformation between metric spaces is
always measurable). This proof requires neither completeness nor separability! (And this is
actually a much more elementary proof.)

Skorokhod’s Construction

We earlier established the elementary form of Skorokhod’s theorem: If random variables
Xn →d X0, then there exist random variables {Yn : n ≥ 0} defined on a common probability
space satisfying Yn

∼= Xn for all n ≥ 0 and Yn →a.s. Y0. That proof relied on the inverse
transformation. We now turn to the extension of the elementary Skorokhod theorem from
R to a complete and separable metric space (M,d), whose open sets generate the Borel σ-
field. [The first step in the proof will be to establish a preliminary result for just one P on
(M,d,Md).]

Theorem 1.4 (Skorokhod construction) Suppose (M,d,Md) is a complete and sepa-
rable metric space and the measures {Pn : n ≥ 0} satisfy Pn →d P0. Then there exist ran-
dom elements {Xn : n ≥ 0} taking values in the space M (thus Xn(ω) ∈ M for all ω ∈ Ω)
and all defined on the common probability space (Ω,A, P ) ≡ ([0, 1],B([0, 1]) Lebesgue), with
Xn

∼= Pn and satisfying

(8) d(Xn(ω), X0(ω)) → 0 for each ω ∈ Ω.

Proposition 1.2 Suppose P is a probability measure on (M,d,Md). Then there is a
random element X defined on (Ω,A, P ) = ([0, 1],B[0, 1], Lebesgue) and taking values in M
that has distribution P .

Proof. For each k, decompose M into a countable number of disjoint sets Ak1, Ak2, . . .
whose diameter is less than 1/k. Then arrange it so that Ak+1 refines Ak ≡ {Ak1, Ak2, . . .}.
Make a corresponding decomposition of the unit interval as Ik ≡ {Ik1, Ik2, . . .} where the
subintervals Ikj satisfy P (Akj) = λ(Ikj) and where the decomposition Ik+1 refines Ik.

Let xkj be a point in Akj , and define

(a) Xk(ω) = xkj if ω ∈ Ikj ⊂ [0, 1].

Since {Xk(ω),Xk+1(ω), . . .} ⊂ (some one Akj), its diameter is bounded by 1/k. Thus,
{Xk(ω)} is Cauchy for each ω, limk Xk(ω) ≡ X(ω) exists, and

(9) d(X(ω),Xk(ω)) ≤ 1/k → 0 as k → ∞.

For a given set B, write
∑∗ ≡ ∑

{j:Ajk∩B �=∅}, and similarly for unions of sets. Then

P (Xk ∈ B) ≤ P (Xk ∈ ⋃∗
Akj) =

∑∗
P (Xk ∈ Akj)

=
∑∗

λ(Ikj) =
∑∗

P (Akj)

≤ P (B1/k),(b)
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where Bδ ≡ {x : d(x,B) ≡ infy∈B d(x, y) < δ}. For a closed set B we have
⋂∞

k=1 B1/k = B,
and so

(c) limk P (Xk ∈ B) ≤ limk P (Xk ∈ B1/k) ≤ P (B) for closed sets B,

and hence the distribution of Xk converges to P by (5) of the portmanteau theorem. It follows
from Slutsky’s theorem (with Yk = X for all k) that X ∼= P . �

Proof. Consider Skorokhod’s theorem. First construct the decompositions Ak of the proof
of the previous proposition, but now do it in a way that makes each Akj a P -continuity set.
Because ∂{y : d(x, y) < δ} ⊂ {y : d(y, x) = δ}, the spheres about x are P -continuity sets for
all but countably many radii; hence M can be covered by countably many P -continuity sets
all with diameter at most 1/k. The usual disjointification procedure preserves P -continuity
because ∂(B ∩ C) ⊂ (∂B) ∪ (∂C).

Consider the decompositions Ik as before, and, for each n, construct successively finer
partitions I(n)

k = {I
(n)
k1 , I

(n)
k2 , . . .} with λ(I(n)kj ) = Pn(Akj). Inductively arrange the indexing

so that I
(n)
ki < I

(n)
kj if and only if Iki < Ikj ; here I < J for intervals I and J means that the

right endpoint of I does not exceed the left endpoint of J . In other words, we ensure that for
each k the families Ik, I(1)

k , I(2)
k , . . . are ordered similarly.

Define Xk as before, where xkj ∈ Akj , and define

(a) X
(n)
k (ω) = xkj if ω ∈ I

(n)
kj .

Again Xk(ω) converges to an X(ω) satisfying (9), and X
(n)
k (ω) converges to an X(n)(ω)

satisfying

(b) d(X(n)(ω),X(n)
k (ω)) ≤ 1/k → 0 as k → ∞.

And again X has distribution P and X(n) has distribution Pn.
Since

∑
j [P (Akj) − Pn(Akj)] = 0, it follows that

∑
j |λ(Ikj) − λ(I(n)kj )| =

∑
j |P (Akj) − Pn(Akj)|(c)

= 2
∑′′

j [P (Akj) − Pn(Akj)]

= 2
∑

j
[P (Akj) − Pn(Akj)]+,(d)

where the next to the last sum extends over those j for which the summand is positive. Each
summand goes to 0 as n → ∞ because the Akj are P -continuity sets, and it follows by the
DCT (with dominating function identically equal to the constant function with value 1) that

(e) lim
n

∑
j |λ(Ikj) − λ(I(n)kj )| = 0.

Fix k and j0, let α and αn be the left endpoints of Ikj0 and I
(n)
kj0

, respectively, and let
∑′

indicate summation over the set for which Ikj < Ikj0 , which is the same as the set for which
I
(n)
kj < I

(n)
kj0

. Then (d) implies

(f) α =
∑′

j λ(Ikj) = lim
n

∑′
j λ(I(n)kj ) = lim

n
αn.
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Similarly, the right endpoint of the interval I
(n)
kj converges as n → ∞ to the right endpoint of

the interval Ikj .
Hence, if ω is interior to Ikj (which now fixes k and j), then ω lies in I

(n)
kj for all n large

enough, so that Xk(n)(ω) = xkj = Xk(ω) for all n ≥ (some nk,j,ω), and the conclusions (9)
and (b) give

(g) d(X(ω),X(n)(ω)) ≤ 2/k for all m ≥ nk,j,ω.

Thus, if ω is not an endpoint of any Ikj , then for each k we have that (g) holds for all
sufficiently large n. In other words, limn X(n)(ω) = X(ω) if ω is not in the set of endpoints of
the Ikj . This last set, being countable, has Lebesgue measure 0; thus if X(n)(ω) is redefined
as X(ω) on this set, X(n) still has distribution Pn and there is now convergence for all ω.
This completes the proof, with X(n) denoting Xn and with X denoting X0. �

Exercise 1.3 Recall the partial sum process Sn = {Sn(t) : t ≥ 0} defined earlier. Now,
Sn →d S by Donsker’s theorem (theorem 12.8.3), where S is a Brownian motion process in
M = C[0, 1]. Consider the following four functions:

(a) g(x) = sup0≤t≤1 x(t),

(b) g(x) =
∫ 1

0
x(t) dt,

(c) g(x) = λ({t ∈ [0, 1] : x(t) > 0}) where λ denotes Lebesgue measure,

(d) g(x) = inf{t > 0 : x(t) = b}, with b > 0 fixed.

For each of these real-valued functionals g of x ∈ C[0, 1], find the discontinuity set Dg of g.
[If we can show that the P measure of these discontinuity sets is zero, where P denotes the
measure of S on C[0, 1], then it follows immediately from the continuous mapping theorem
that g(Sn) →d g(S).]

Exercise 1.4 Let S0 ≡ 0, S1 ≡ X1, Sk ≡ X1 + · · · + Xk for k ≥ 1 be the partial sums of
the iid (0, 1) rvs that go into the definition of Sn. Represent n−3/2

∑n
k=1 |Sk| as a functional

g(Sn). Is the resulting g continuous?

Tightness and Relative Compactness
The notion of tightness comes into play in a crucial way in the general theory of convergence
in distribution on a metric space (M,d), since there now are more ways to “leave” the space
than simply for mass to drift off to infinity.

Definition 1.2 (Tightness) Let P0 denote a collection of probability measures on some
(M,d, Md). Then P0 is tight (or uniformly tight) if and only if for every ε > 0 there is a
compact set Kε ⊂ M with

(10) P (Kε) > 1 − ε for all P ∈ P0.

Definition 1.3 (Sequential compactness, or relative compactness) Let P0 be a family of
probability measures on (M,d,Md). We call P0 relatively compact (or sequentially compact) if
every sequence {Pn} ⊂ P0 contains a weakly convergent subsequence. That is, every sequence
{Pn} ⊂ P0 contains a subsequence {Pn′} with Pn′ →d (some probability Q) (not necessarily
in P0).
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Proposition 1.3 Let (M,d,Md) be a separable metric space.

(a) If {Pn}∞
n=1 is relatively compact with limit set {P}, then Pn →d P .

(b) If Pn →d P , then {Pn}∞
n=1 is relatively compact.

(c) We have thus related convergence in distribution to relative compactness.

Proof. See proposition 1.1 for both (a) and (b). (That is, we have merely rephrased things
we already know.) �

Theorem 1.5 (Prohorov) Let P0 denote a collection of probability measures on the metric
space (M,d,Md).
(a) If P0 is tight, then it is relatively compact.
(b) Suppose that (M,d,Md) is separable and complete. If the collection P0 is relatively
compact, then it is tight.
(c) We have thus related relative compactness to tightness, at least on complete and separable
metric spaces.

Proof. A full proof progresses from M = Rk to R∞, to sigma compact M, and finally to
general M , at each step using the next simpler case. We present only the proof of (a) for the
case M = Rk.

If {Pn} is any sequence in P0, then Helly’s selection theorem implies that the corresponding
sequence of dfs {Fn} defined by Fn(×) ≡ Pn(−∞,×] contains a subsequence {Fn′} satisfying

(p) Fn′(×) → F (×) for all × ∈ CF ,

where the sub df F is continuous from above. Now, there is a measure P on Rk such that
P (a, b] equals F differenced around the vertices of the k-dimensional rectangle (a, b]. Now
Pn′ →d P will follow if we can show that P (Rk) = 1.

Given ε > 0, choose K ⊂ Rk compact with Pn′(K) > 1 − ε for all n′; this is possible by
tightness of P0. Now choose a, b in Rk such that K ⊂ (a, b] and all 2k vertices of (a, b]
are continuity points of F (we can do this because at most a countable number of parallel
(k − 1)-dimensional hyperplanes can possibly have positive P -measure. Since Pn′(a, b] equals
Fn′ differenced around (a, b], (a) yields Pn′(a, b] ≥ Pn′(K) ≥ 1 − ε, so P (a, b] ≥ 1 − ε. Since ε
was arbitrary, P (Rk) = 1. Hence P is a probability measure, Pn′ →d P , and P0 is relatively
compact. �

Convergence in Distribution on (D,D)

We phrase results carefully in this subsection, so as to mention primarily the familiar metric
‖ · ‖ on D (while limiting mention of the contrived metric d of exercise 12.1.4 for which (D, d)
is complete and separable with Dd = D). Recall, D denotes the finite-dimensional σ-field.

Theorem 1.6 (Criterion for →d on (D,D); Chentsov) Let each Xn denote a process
on (D,D). Suppose that for some a > 1

2 and b > 0 the increments of the Xn processes satisfy

(11) E|Xn(r, s]Xn(s, t]|b ≤ [μn(r, s] × μn(s, t]]a for all 0 ≤ r ≤ s ≤ t ≤ 1

for some finite measure μn on the Borel subsets of [0, 1]. (Often, a = 1 and b = 2, and note
the relaxation of this condition in the remark below.) Suppose that μ is a continuous measure
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on the Borel subsets of [0, 1], and that either

(12) μn(s, t] ≤ μ(s, t] for all 0 ≤ s ≤ t ≤ 1 and for all n ≥ 1 or

(13) μn/μn([0, 1]) →d μ/μ([0, 1]) as n → ∞.

(a) Then for the metric d of exercise 12.1.4 we have that

(14) {Xn : n ≥ 1} is relatively compact on (D, d).

(b) Especially, if we further have Xn →f ·d. (some X) and if P (X ∈ C) = 1), then

(15) g(Xn) →d g(X) for all D-measurable and a.s. ‖ · ‖-continuous g : D → R.

Remark 1.1 For processes like partial sum process Sn condition (11) is troublesome; but
since Sn is constant on the intervals [(i − 1)/n, i/n), it should be enough to verify (11) for
r, s, t restricted to be of the form i/n. We now make this rough idea precise.

For m ≥ 1 we let Tm ≡ {0 ≡ tm0 < tm1 < · · · < tmkm
≡ 1}, and measure the coarseness of

this partition by defining mesh(Tm) ≡ max{tmi − tm,i−1 : 1 ≤ i ≤ km}. Let x ∈ D and let
Am(x) denote the function in D that equals x(tmi) at tmi for each 0 ≤ i ≤ km and that is
constant in between these points. We agree to call Am(x) the Tm-approximation of x. Suppose
now that one of the two conditions (12) or (13) holds, that Xn = An(Xn) with mesh(Tn) → 0
as n → ∞, and that (11) holds for all r, s, t in Tn. Then both (14) and (15) hold. [That
Xn = An(Xn) means that Xn is equal to its own Tn-approximation; and this clearly holds
for Sn when all tni = i/n.] �

“Proof.” By analogy with Helly’s selection theorem, it should suffice to show the tightness.
Thus, for each ε > 0 we must exhibit a compact set Kε of functions on [0, 1] with P (Xn ∈
Kε) > 1 − ε for all n. According to Arzelà’s theorem (see exercise B.2.11), a compact set
of functions consists of a uniformly bounded set of functions that have a uniform bound on
their “wiggliness.” A complex and delicate argument (slightly in the spirit of Kolmogorov’s
inequality) based on (6) can be given to bound this “wiggliness.” Since the details are long
and hard and are only used for the present theorem, they will be skipped. See Billingsley
(1968). �

Exercise 1.5 (Prohorov) For any real-valued function on [0, 1] we now define the mod-
ulus of continuity ωδ(x) of x by ωδ(x) ≡ max{|xt − xs| : |t − s| ≤ δ} for each δ > 0. Let
X,X1,X2, . . . denote processes on (C, C). Then Xn →d X on (C, ‖ · ‖) if and only if both
Xn →f.d. X and limδ→0 lim supn→∞ P (ωδ(Xn) > ε) = 0 for all ε > 0. (The modulus of con-
tinuity also measures the “wiggliness” of the process, and Prohorov’s condition implies that
the processes are “not too wiggly.”)

Exercise 1.6 (Doob) Use theorem 1.6 to establish that g(Un) →d g(U) for all D-measur-
able and a.s. ‖ · ‖-continuous functionals g on D. See (12.10.4) for Un.

Exercise 1.7 (Donsker) Use theorem 1.6 to establish that g(Sn) →d g(S) for all D-measur-
able and a.s. ‖ · ‖-continuous functionals g on D.

Exercise 1.8 (Prohorov) Linearize Sn between the i/n-points so as to make it a process
on (C, ‖ · ‖), and then use exercise 1.3 to show that this linearized process converges in
distribution to Brownian motion.
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2 Metrics for Convergence in Distribution o

Definition 2.1 (Prohorov metric) [The Lévy metric of exercise 9.1.5 extends in a nice way
to give a metric for →d more generally.] For any Borel set B ∈ Md and ε > 0, define

Bε ≡ {y ∈ M : d(x, y) < ε for some x ∈ B}.

Let P,Q be two probability measures on (M,d,Md). If we set

(1) ρ(P,Q) ≡ inf{ε : Q(B) ≤ P (Bε) + ε for all B ∈ Md},

then ρ is the Prohorov metric (see exercise 2.1). (We note that this definition is not formed
in a symmetric fashion.)

Definition 2.2 (Dudley metric) (i) Label as BL(M,d) the set of all real-valued functions
g on the metric space (M,d) that are bounded and Lipschitz (in the sense that both of the
quantities

(2) ‖g‖∞ ≡ sup
x∈M

|g(x)| and ‖g‖L ≡ sup
x�=y

[|f(x) − f(y)|/d(x, y)]

are finite). For functions g in BL(M,d) we define

(3) ‖g‖BL ≡ ‖g‖L + ‖g‖∞,

and so BL(M,d) = {g : ‖g‖BL < ∞}.
(ii) Now let P,Q be two probability measures on (M,Md), and set

(4) β(P,Q) ≡ sup{| ∫ g dP − ∫
g dQ| : ‖g‖BL ≤ 1}.

Then β is called the dual bounded Lipschitz distance (or Dudley distance) between the prob-
ability distributions P and Q.

Proposition 2.1 Let P ≡ {all probability distributions P on (M,M) }. Then both ρ and
β are metrics on P. (Equation (12) below will show that Mρ = Mβ , which we abbreviate
here as M.)

Exercise 2.1 Prove the previous proposition.

The following theorem says that both ρ and β metrize →d on (M,d,Md) just as the Lévy
distance L metrized the convergence in distribution →d of dfs on R1.

Theorem 2.1 (Metrizing →d; Dudley) For any separable metric space (M,d) and prob-
ability measures {Pn : n ≥ 1} and P on the Borel σ-field Md, the following are equivalent
conditions:

Pn →d P,(5) ∫
g dPn → ∫

g dp for all g ∈ BL(M,d),(6)

β(Pn, P ) → 0,(7)

ρ(Pn, P ) → 0.(8)
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Theorem 2.2 (Ulam) For (M,d) complete and separable, each single P on (M,Md) is
tight.

Proof. Let ε > 0. By the separability of M , for each m ≥ 1 there is a sequence Am1,
Am2, . . . of open 1/m spheres covering M . Choose im such that P (

⋃
i≤im

Ami) > 1 − ε/2m.
Now, the set B ≡ ⋂∞

m=1

⋃
i≤im

Ami is totally bounded in M , meaning that for each ε > 0 it
has a finite ε-net (that is, a set of points xk with d(x, xk) < ε for some xk, for each x ∈ B).
[Nice trick!] By completeness of M,K ≡ B̄ is complete and is also compact; see exercises
B.2.3(c) and B.2.4(e). Since

(a) P (Kc) = P (B̄c) ≤ P (Bc) ≤ ∑∞
m=1 P ([

⋃
i≤im

Ami]c) <
∑∞

1 ε/2m = ε,

the conclusion follows. �

Proof. We now prove theorem 2.1, since Ulam’s theorem is in hand, but only under the
additional assumption that M is complete. Clearly, (5) implies (6). We will now show that (6)
implies (7). By Ulam’s theorem, for any ε > 0 we can choose K compact so that P (K) > 1 − ε.
Let f |K denote f restricted to K. Now, the set of functions F ≡ {f |K : ‖f‖BL ≤ 1} forms
a ‖ · ‖-totally bounded subset of the functions Cb(K) (by the Arzelà theorem of exercise
B.2.11(a)). Thus, for every ε > 0 there is some finite k ≡ kε and functions f1, . . . , fk ∈ F
such that for any f ∈ F there is an fj with

(a) sup
x∈K

|f(x) − fj(x)| ≤ ε; moreover, sup
x∈Kε

|f(x) − fj(x)| ≤ 3ε,

since f and fj are in F (note the second half of (2)). Let

g(x) ≡ max{0, (1 − d(x, K)/ε)};

then g ∈ BL(M,d) and 1K ≤ g ≤ 1Kε . Thus,
∫

g dPn → ∫
g dP , so that for n large enough

we have

(b) Pn(Kε) ≥ ∫
g dPn >

∫
g dP − ε ≥ ∫

1K dP − ε = P (K) − ε > 1 − 2ε.

Hence, for any f ∈ F we have from (a), (2), (b), and P (K) > 1 − ε that

| ∫ f d(Pn − P )| = | ∫ (f − fj) d(Pn − P ) +
∫

fj d(Pn − P )|
≤ | ∫ (f − fj) dPn| + | ∫ (f − fj) dP | + | ∫ fj d(Pn − P )|
≤ (3ε + 2 × 2ε) + (ε + 2 × ε) + | ∫ fj d(Pn − P )| ≤ 11ε(c)

for n chosen large enough. Hence (7) holds.
We next show that (7) implies (8). Suppose a Borel set B and an ε > 0 are given. Let

fε(x) ≡ max{0, (1 − d(x, B)/ε)}. Then fε ∈ BL(M,d), ‖fε‖BL ≤ 1 + ε−1, and 1B ≤ fε ≤
1Bε . Therefore, for any P and Q on M we have from (4) that

(d) Q(B) ≤ ∫
fε dQ ≤ ∫

fε dP + (1 + ε−1)β(P,Q) ≤ P (Bε) + (1 + ε−1)β(P,Q),

and it follows that

(e) ρ(P,Q) ≤ max{ε, (1 + ε−1)β(P,Q)}.

Hence, if β(P,Q) < ε2, then ρ(P,Q) < ε + ε2 < 2ε. Hence, for all P,Q we have ρ(P,Q) ≤
2
√

β(P,Q). Thus, (7) implies (8). [It is also possible to establish the inequality β(P,Q)/2 ≤
ρ(P,Q). This would give

(f) β(P,Q)/2 ≤ ρ(P,Q) ≤ 2
√

β(P,Q),
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showing that ρ and β are equivalent metrics (see (12) and exercise 2.3 below).]
Finally, we will show that (8) implies (5). Suppose (8) holds. Let B denote a P -continuity

set, and let ε > 0. Then for 0 < δ < ε with δ small enough, we have P (Bδ \B) < ε and
P ((Bc)δ \Bc) < ε. Then for n large enough we have

(g) Pn(B) ≤ P (Bδ) + δ ≤ P (B) + 2ε

and also

(h) Pn(Bc) ≤ P ((Bc)δ) + δ ≤ P (Bc) + 2ε.

Combining these yields

(i) |Pn(B) − P (B)| ≤ 2ε,

and hence Pn(B) → P (B). By the portmanteau theorem, this yields (5). �

Strassen’s Coupling Theorem
Suppose Pn →d P0 on a separable metric space (M,d). Then theorem 2.1 gives ρ(Pn, P0) → 0,
for Prohorov’s metric ρ, while Skorokhod’s theorem gives existence of random elements Xn on
a common (Ω,A, P ) satisfying d(Xn,X0) →a.s. 0. Claiming less than is true, d(Xn,X0) →p 0,
or P (d(Xn,X0) ≥ ε) → 0 as n → ∞. We are then naturally led to ask how rapidly this conver-
gence occurs. It turns out that this is essentially determined by ρ(Pn, P ). Alternatively, the
following theorem can be used to bound ρ(Pn, P ), provided that a rate is available regarding
Skorokhod.

Theorem 2.3 (Strassen) Suppose that P and Q are measures on the Borel sets of a sep-
arable metric space (M,d). Then ρ(P,Q) < ε if and only if there exist X and Y defined
on a common probability space with X ∼= P and Y ∼= Q and coupled closely enough that
P (d(X,Y ) ≥ ε) ≤ ε.

Proof. See Dudley (1976, section 18). �

Some Additional Metrics
As shown in theorem 2.1, both the Prohorov metric ρ and also the dual-bounded Lipschitz
metric β metrize weak convergence (→d). Other stronger metrics are also available and are
often useful.

Definition 2.3 (Total variation metric) For probability measures P and Q on the measur-
able space (M,Md), let

(9) dTV (P,Q) ≡ 2 sup{|P (A) − Q(A)| : A ∈ Md};

dTV is called the total variation metric.
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Proposition 2.2 The total variation metric dTV is equal to

(10) dTV (P,Q) =
∫ |f − g| dμ = 2[1 − ∫

f ∧ gdμ],

where f = dP/dμ, g = dQ/dμ, and μ is any measure dominating both P and Q (for example,
P + Q).

Proof. Note that |f − g| = (f ∨ g) − (f ∧ g) = (f + g) − 2(f ∧ g). �

Definition 2.4 (Hellinger metric) For probabilities P and Q on (M,Md), let

(11) d2H(P,Q) ≡ ∫
[f1/2 − g1/2]2 dμ = 2[1 − ∫ √

fg dμ],

where f = dP/dμ, g = dQ/dμ, and μ is any measure dominating both P and Q (for example,
P + Q); then dH is called the Hellinger metric.

Exercise 2.2 dH does not depend on the choice of μ.

Here is a theorem relating these metrics and the Prohorov and bounded Lipschitz metrics.
The inequalities in (12) show that ρ and β induce identical topologies. The inequalities
(13) show that the total variation metric dTV and the Hellinger metric dH induce identical
topologies. Moreover, (14) shows that the identical β and ρ topologies are finer than the
dTV topology (with more open sets and admitting more continuous functions). [Note exercise
B.2.1 dealing with equivalent metrics.]

Theorem 2.4 (Inequalities among the metrics) (a) For P and Q probability measures on
(M,Md), the following inequalities necessarily hold:

β(P,Q)/2 ≤ ρ(P,Q) ≤ 2
√

β(P,Q),(12)

d2H(P,Q) ≤ dTV (P,Q) ≤ dH(P,Q){4 − d2H(P,Q)}1/2,(13)

ρ(P,Q) ≤ dTV (P,Q).(14)

(b) For dfs F,G on R (or Rk) we have the following:

L(F,G) ≤ ρ(F,G) ≤ dTV (F,G),(15)

L(F,G) ≤ dK(F,G) ≤ dTV (F,G),(16)

where dK(F,G) ≡ ‖F − G‖∞ ≡ supx |F (x) − G(x)| is the Kolmogorov distance.

Exercise 2.3 Prove the first inequality in (12).

Exercise 2.4 Prove (13). [Hint. To prove the left inequality, establish the inequality∫ √
fg dμ ≥ ∫

f ∧ gdμ and use the second equality in (11). To show the right inequality,
write |f − g| = |√f − √

g||√f +
√

g|.

Exercise 2.5 Prove (14).
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Exercise 2.6 (Statistical interpretation of the dTV metric) Consider testing P versus
Q. Find the test that minimizes the sum of the error probabilities, and show that the
minimum sum of errors is ‖P ∧ Q‖ ≡ ∫

f ∧ gdμ. Note that P and Q are orthogonal if
and only if ‖P − Q‖ ≡ dTV (P,Q) = 2 if and only if ‖P ∧ Q‖ = 0 if and only if

∫ √
fg dμ ≡∫ √

dP dQ = 0.



Chapter 15

Asymptotics via Empirical
Processes

0 Introduction

In section 15.1 we rederive the usual CLT for iid samples from any distribution in the domain
of attraction of the normal distribution, but now using empirical process methods. We then
obtain a corresponding result for the trimmed mean that is valid for samples from any df
in any domain of attraction, provided only that the number of observations trimmed from
each tail grows to infinity so slowly that the fraction of observations trimmed from each tail
goes to zero. When the qfs of all distributions in a class are bounded by an appropriate
envelope qf, then all of these convergence results are uniform across the class of qfs. This
uniformity allows random trimming. In section 15.2 similar results are derived for linear rank
tests and permutation tests, and a uniform studentized CLT is given for sampling from a
finite population. Also, two very interesting ways of creating normality are discussed in this
section. In section 15.3 results are presented for L-statistics.

All of the results are based on the empirical process construction of section 12.10 com-
bined with the quantile method inequalities from sections C.5–C.6. We will frequently obtain
conclusions of the form Tn →p Z for a special construction version of an interesting statistic
Tn and its limiting normal rv Z. Or, we may even obtain supK |Tn − Z(K)| →p 0 for a
family of normal rvs Z(K) indexed by the qf K in a class K. These strong →p conclusions
are only true for the special construction versions of the statistic Tn. However, Tn →p Z
for the special construction Tn implies that Tn →d Z for any version of Tn. In like fashion,
supK |Tn −Z(K)| →p 0 for a special construction version of Tn implies that the rate at which
Tn →d Z is uniform across the entire class of qfs in K for any version of the statistic Tn.

c© Springer International Publishing AG 2017
G.R. Shorack, Probability for Statisticians, Springer Texts in Statistics,
DOI 10.1007/978-3-319-52207-4 15

401
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1 Ťrimmed and W̃insorized Means ∗

Notation 1.1 Let Xn1, . . . , Xnn be iid with df F and qf K. Let Xn:1 ≤ · · · ≤ Xn:n denote
their order statistics, with empirical qf Kn. Define μ ≡ μK ≡ ∫ 1

0
K(t)dt = EK(ξ) and

σ2 ≡ σ2
K ≡ Var[K(ξ)], when these exist. We also let X̄n =

∑n
1 Xni/n denote the sample

mean and S2
n =

∑n
1 (Xni − X̄n)2/n denote the “sample variance” For trimming numbers

kn ∧ k′
n ≥ 1 and for an ≡ kn/n and a′

n ≡ k′
n/n, we let K̃n(·) denote K(·) Winsorized outside

(an, a′
n) (see notation 6.5.1) and define

μ̌n ≡ μ̌K(an, a′
n) ≡ ∫ 1−ań

an
K(t)dt = E{K(ξ) × 1(an,1−a′

n)(ξ)},

σ̃2
n ≡ σ̃2

K(an, a′
n) ≡ ∫ 1

0

∫ 1

0
[s ∧ t − st]dK̃n(s)dK̃n(t) = Var[K̃n(ξ)],

X̌n ≡ X̌n(an, a′
n) ≡ 1

n

∑n−k′
n

i=kn+1 Xn:i = μ̌Kn
(an, a′

n),

S̃2
n ≡ σ̃2

Kn
(an, a′

n).

(0)

Here S̃n ≡ σ̃Kn
(an, a′

n) denotes the sample (an, a′
n)-Winsorized standard deviation, and

the rv X̌n = μ̌Kn
(an, a′

n) is being called the sample (an, a′
n)-truncated mean, while X̆n ≡

X̌n/(1 − an − a′
n) denotes the sample (an, a′

n)-trimmed mean. Also, μ̆n ≡ μ̌n/(1 − an − a′
n)

is the population trimmed mean, and σ̆n ≡ σ̃n/(1 − an − a′
n). Now, X̌n is our vehicle of

convenience for studying the trimmed mean X̆n, since

(1)
√

n(X̌n − μ̌n)/σ̃n = Z̆n ≡ √
n(X̆n − μ̆n)/σ̆n.

Summary: X̆n has statistical meaning, while X̌n does not; but X̌n is much more convenient
to work with notationally and probabilistically.

So long as kn ∧ k′
n ≥ 1, we always have (integrating Brownian bridge U, which for each

fixed ω is just a continuous function)

(2) Z(K̃n) ≡ −
∫ 1−a′

n

an

UdK/σ̃n = −
∫ 1

0

UdK̃n/σ̃n
∼= N(0, 1).

Generally, K̃t,t(·) denotes K(·) Winsorized outside (t, 1− t), and σ̃2(t) ≡ Var[K̃t,t(ξ)]. Recall
that Rn =a Sn denotes that Rn − Sn →p 0. �

Convention We now specify that throughout this chapter Xni ≡ K(ξni) = F−1(ξni), for
1 ≤ i ≤ n, for the ξni described in notation 1.3 below. (Recall the sentence above (6.4.3)
noting that this representation of rvs allows alternative methods of proof.)
Note The conclusions of being “=a” in (4) and (6) below are true only for these particular rvs
F−1(ξni) that are iid F (·) but the implied →d conclusion is true for any iid rvs Xn1, . . . , Xnn

having df F (·).

Theorem 1.1 (The CLT for X̄n) Let K ∈ D(Normal), which is equivalent to

(3) t[K2
+(ct) ∨ K2(1 − ct)]/σ̃2(t) → 0 as t → 0, for each fixed c > 0

by (10.6.31). Define μ̌n ≡ μK(1/n, 1/n) and σ̃n ≡ σ̃K(1/n, 1/n), and let K̃n(·) denote K(·)
Winsorized outside (1/n, 1 − 1/n). Then the mean X̄n of the iid rvs Xn1, . . . , Xnn above
satisfies (as is also shown in theorem 10.6.1)

(4) Zn =
√

n(X̄n − μ̌n)/σ̃n =a Z(K̃n) ∼= N(0, 1) and Sn/σ̃n →p 1.
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Notation 1.2 For the following theorem, suppose the integers kn and k′
n satisfy

(5) (kn ∧ k′
n) → ∞, (an ∨ a′

n) → 0, and a′
n/an → 1.

Of course, K̃n(·) now denotes K(·) Winsorized outside (an, 1 − a′
n). �

Theorem 1.2 (The CLT for trimmed means) Suppose the qf K(·) is such that the
partial variance σ̃2(t) ≡ Var[K̃t,t(ξ)] is in one of the regularly varying classes R−β , for some
β ≥ 0. [This union of all the R−β classes was labeled as D̃ in definition (C.5.33), and
R0 ≡ D(Normal). Note inequality C.5.4.] If (5) holds, then

(6) Z̆n =
√

n(X̌n − μ̌n)/σ̃n =a Z(K̃n) ∼= N(0, 1) and S̃n/σ̃n →p 1.

If β = 0, we can weaken (5) to an ∨ a′
n → 0 when 0 < lim an/a′

n ≤ lim an/a′
n < ∞.

Corollary 1 (Trimming fixed fractions) Suppose an → a and a′
n → a′ for 0 < a <

1 − a′ < 1. Then (4) holds for any qf K(·) continuous at both a and 1 − a′.

Notation 1.3 Be clear that we are working on the specific probability space (Ω,A, P ) of
theorem 12.10.3 on which are defined a fixed Brownian bridge U and a triangular array of rvs
whose nth row members ξn1, . . . , ξnn are iid Uniform(0, 1) with order statistics 0 ≤ ξn:1 ≤
· · · ≤ ξn:n ≤ 1, empirical df Gn, and empirical process Un =

√
n[Gn −I] that not only satisfies

‖Un = U‖ →p 0, but in fact, for each fixed 0 ≤ ν < 1
4 , satisfies

(7) �νn ≡
∥
∥
∥
∥

nν(Un − U)
[I ∧ (1 − I)](1/2)−ν/

∥
∥
∥
∥

1−1/n

1/n

= Op(1).

For any ξn1, . . . , ξnn (and hence for this realization also), for each fixed 0 < ν < 1,

(8) �0
ν/n ≡

∥
∥
∥
∥

nν(Gn − I)
[I ∧ (1 − I)]1−ν

∥
∥
∥
∥

1

0

= Op(1). �

Remark 1.1 We prove these theorems in such a way that the uniformity available is apparent.
To see the full range of uniformity possible, consult the 1st Edition of this text, where this
topic is pursued much more completely. Random kn and k′

n, (useful to applied statisticians)
are also considered therein. �

Proofs. Integration by parts (with
∫
(d,c]

≡ − ∫
(c,d]

if c < d in (b), (c), etc. below) [a.s., dK

puts no mass at any ξn:i] yields

Z̆n =
√

n(X̆n − μ̆n)/σ̆n =
√

n(X̌n − μ̌n)/σ̃n as in (1)

(a) =
√

n{∫
[ξnkn+1,ξnn−k′

η
]
KdGn − ∫

(an,1−a′
n)

K(t)dt}/σ̃n

(b) =
√

n{−KGn|ξn:kn+1− − ∫
[ξn:kn+1,ξn:n−k′

n
]
GndK + KGn|ξ

n:n−k
′+
n

}/σ̃n

+
√

n{tK|an+ +
∫
(an,1−a′

n)
tdK − tK|1−a′

n−}/σ̃n

(c) =a.s. − ∫
(an,1−a′

n)
UdK̃n/σ̃n − ∫

(an,1−a′
n)

[Un − U]dK̃n/σ̃n

− ∫
(ξn:kn+1,an]

√
n[Gn(t) − an]dK/σ̃n

− ∫
[1−a′

n,ξn:n−k′
n
)

√
n[Gn(t) − (1 − a′

n)]dK/σ̃n
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≡ Z(K̃n) + γ1n + γ2n + γ′
2n(9)

{+γ3n + γ′
3n when replacing X̌n − μ̌n by X̄n − μ̌n during theorem 1.1},

where γ3n ≡ K(ξn:1)/
√

n σ̃n and γ′
3n ≡ K(ξn:n)/

√
nσ̃n are the extreme summands of Z̆n.

[We require the added terms γ3n and γ′
3n only for the theorem 1.1 identity, because in this

case only we have used the “non-natural for the identity” value μ̌(1/n, 1/n) in the theorem
statement. The “natural value” μ = μ̌(0, 0) would have caused trouble in the proof. Note the
definition of kn = k′

n = 1 in theorem 1.1.]
We begin an examination of the various γ-terms. Concerning γ1n, we note that

(10) |γ1n| ≤ �νn ×
∫ 1−ań

an

n−ν [t(1 − t)]1/2−ν/dK(t)/σ̃n ≡ �νn × Mνn(K),

and it is this sort of factorization into a random term times a deterministic term that is
key to the proof. The randomness refers only to the Uniform(0, 1) distribution, and the
only reference to K(·) is in the deterministic term (to which inequality C.6.1 applies). In
particular, �νn = Op(1) by (7). Then (C.6.3) gives (the second term appearing in (d) is the
γn of (C.6.3), and the γ′

n term in (d) is the symmetric term from the right tail)

(d) Mνn(K) ≤ (3/
√

ν)
[(kn ∨ r) ∧ (k′

n ∨ r′)]ν
+

√
r|K+(an) − K+(r/n)|√

nσ̃n
1[an<r/n] + γ′

n.

Note with regard to γ2n that monotonicity of Gn(·) implies that

(e) the integrand of γ2n is uniformly bounded by |Un(an)| =
√

anEn,

where it is trivially true that En ≡ |Un(an)/
√

an| = Op(1). We also let 1nε denote the
indicator function of an event, having probability exceeding 1 − ε, on which (with λ ≡ λε

small enough) we can specify our choice of one of the following:

(f)
(i) λan ≤ ξn:kn

≤ ξn:kn+1 ≤ an/λ.

(ii) ξn:kn+1 lies between an ∓ λ
√

kn/n = an(1 ∓ λ/
√

kn).
(iii) Bound ξn:kn+1 by its lower and upper ε/2 -quantiles t∓nε.

[The bounds in (f) are derived as follows: For (ii), the Chebyshev (second moment) inequality
with beta rv moments of ξn:kn+1. Or for (i), the Markov (first moment) inequality, or from the
in probability linear bounds of inequality 12.11.2. Or for choice (iii), the exact distribution
of ξn:kn+1.]

Consider theorem 1.1, when an = a′
n = 1/n. Now, γ1n is controlled via (d) (at the left

end) solely by |K+(an)|/√
nσ̃n (just choose r first to be very large in the first term in the

bound of (d)). To summarize, γ1n →p 0 whenever

(11) {√an|K+(an)| +
√

a′
n|K(1 − a′

n)|}/σ̃n → 0.

For γ2n and γ3n we apply (f)(i) in choosing the 1nε in (f) to get (when K+(0) < 0)

(g) |γ2n| × 1nε ≤ En × |√an

∫
(λan,an/λ)

dK/σ̃n| ≤ 2En × |√anK(λan)/σ̃n|,

(h) |γ3n| × 1nε ≤ 2 × |K+(λan)|/(
√

nσ̃n) ≤ 2 × |√anK(λan)/σ̃n|.
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Thus the CLT claim of (4) holds, provided only (adding the symmetric condition in the right
tail)

(12) {√an|K+(λan)| +
√

a′
n|K((1 − λa′

n }/σ̃n → 0

for each 0 < λ ≤ 1, and it holds uniformly in any class of qfs in which (12) holds uniformly.
But (12) follows from (3) (or any of the equivalent conditions like (10.6.32), or (10.6.35), or
(10.6.13), or (10.6.12), or (C.2.6), or (C.2.13), or (C.2.15)–for example.) Thus the normality
in theorem 1.1 is established again—using a fundamentally different proof from that in section
10.6. [Note that (the crude upper bound) condition (12) implies (11), (g), and (h).]

Consider theorem 1.2. The first term in (d) converges to 0, and the other two terms that
appear in (d) equal zero. Thus, again γ1n →p 0 whenever kn ∧k′

n → ∞(but now, it converges
uniformly in all qfs). In the present context the γ3n term always equals 0. Thus, only γ2n

must be shown to be negligible; but we must now be much more careful than the crude upper
bound (12). Now, using (f)(ii) in the definition of 1nε in (f), we obtain

(i) |γ2n| × 1nε ≤ En × |√an

∫
Iλn

dK/σ̃n|,

where Iλn ≡ (an(1 − λ/
√

kn), an(1 + λ/
√

kn)). Thus the CLT claim of (6) holds, provided
that (with symmetric requirements in the right tail)

(13)
√

an |K(an(1 ∓ λ/
√

kn)) − K+(an)|/σ̃n ≡ √
an

∫
I∓

λn
dK/σ̃n → 0

for each λ > 0. Thus, normality holds uniformly in any class Ku in which both (13) and its
right tail analogue hold uniformly; call such a class Ku a uniformity class.

Summary (so far) Whenever kn ∧ k′
n → ∞,

(14) supK∈Ku
|√n[X̌n(an, a′

n) − μ̌n]/σ̃n − Z(K̃n)| →p 0

for any class Ku in which both (13) and its right tail analogue hold uniformly. (Also, we
may replace σ̃n by S̃n in (14) under this same requirement (as was shown in the variance
estimation proof given in the 1st Edition)).

Now, (13) does hold for a fixed K whenever both K is in any R−β and the trimming
numbers of (5) are employed (appeal to theorem C.5.1), and this gives theorem 1.2. (Two
uniformity classes Ku are exhibited in theorem C.5.2.) Aside from variance estimation,
the proofs of theorems 1.1 and 1.2 are complete. The 1st Edition carefully considers both
variance estimation and the uniformity of the asymptotic normality, via making (12) hold
uniformly. �

Remark 1.2 The class D̃ of qfs K having σ̃2(·) ∈ R−β for some β ≥ 0 is strictly bigger
than the stable laws; the class of stable laws also require that

v+(t)/v−(t) → (some (1 − p)/p) ∈ [0, 1],

so that both the contributions from the two extreme tails {(from 1 to kn) and (from n−k′
n +1

to n)} can be balanced. (Recall the De Haan result in exercise C.4.2.) But we do not need
to balance them; we threw them away. �

Exercise 1.1 Verify that sup{Un(t)|/√
an : can ≤ t ≤ an/c} = Op(1).
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Exercise 1.2* (Rossberg) Suppose 0 ≤ ξn:1 ≤ · · · ≤ ξn:n are the order statistics of the
first n of the infinite sequence of independent Uniform(0, 1) rvs ξ1, ξ2, . . .. Let αn ≡ {j :
1 ≤ j ≤ kn}, δn ≡ {j : kn + 1 ≤ j ≤ ln}, βn ≡ {j : ln + 1 ≤ j ≤ n − l′n}, δ′

n ≡ {j :
n− l′n +1 ≤ j ≤ n− k′

n}, and α′
n ≡ {j : n− k′

n +1 ≤ j ≤ n}. Show that the collections of rvs
{ξn:j : j ∈ αn}, {ξn:j : j ∈ βn}, and {ξn:j : j ∈ α′

n} are asymptotically independent when
kn ↗ ∞ with an ≡ kn/n → 0 and ln ≡ k

1+2ι/
n for 0 < ν < 1

4 (with analogous conditions in
the right tail).

Remark 1.3 Consider asymptotic normality of the sample mean. Let Un, Vn,Wn, V ′
n, and

U ′
n denote the sum of those Xn:j = K(ξn:j) for which j is in αn, δn, βn, δ′

n, and α′
n, respectively.

The previous exercise shows that Wn, Un, and U ′
n are asymptotically independent. Exercise

C.6.1 shows that Vn and V ′
n are always asymptotically negligible. We saw in appendix C that

the condition σ̃2(·) ∈ L is also necessary for (4). Since the vast middle is “nearly always”
normal, one needs to determine what is happening only in the extreme tails (as the mid-tails
were always negligible). This asymptotic independence is at the heart of the very general
asymptotics for X̄n found in S. Csörgő, Haeusler, and Mason (1989). �

Exercise 1.3 (Winsorized mean) Let Z̃n ≡ √
n(X̃n−μ̃n)/σ̃n for the sample mean X̃n of the

Winsorized sample X̃n1, . . . , X̃nn. For the N(0, 1) rv Z(K̃n) of (2), the identity (9) becomes

Z̃n = Z(K̃n) + γ1n + γ̃2n + γ̃′
2n,

where γ̃2n ≡ √
n

∫
In

GndK/σ̃n and γ̃′
2n ≡ √

n
∫

I′
n
GndK/σ̃n

and γ1n is as before. Here In is equal to [ξn:kn+1, an] or (an, ξn:kn+1) according as ξn:kn+1 <
an or ξn:kn+1 ≥ an, and I ′

n is equal to [1 − a′
n, ξn:n−k′

n
] or (ξn:n−k′

n
, 1 − a′

n) according as
1 − ξn:n−k′

n
< a′

n or 1 − ξn:n−k′
n

≥ a′
n. Show that this quantity γ̃2n for the Winsorized mean

essentially exceeds the γ2n of the trimmed mean proof by the factor
√

kn. This is just enough
to prevent analogues of the theorems for trimmed means that we proved in this chapter.
(a) Prove what you can for the Winsorized mean.
(b) Graph a typical K on (0, 1). Locate an and ξn:kn+1 near the 0 endpoint (and suppose
K(0) < 0). Obtain the natural graphical upper bounds on the magnitudes of γ2n and γ̃2n,
and note how the second quantity is inherently larger than the first (pictorially, a “trapezoid”
versus a “triangle”).

Exercise 1.4 (Uniform WLLN) Suppose the qf K0(·) is of order one, in that

(15) t(|K0(t)| + |K0(1 − t)|) → 0 as t → 0.

Then one can claim the uniform WLLN

(16) sup
K∈K0

∣
∣
∣
∣
∣
X̄n −

∫ 1−1/n

1/n

K(t)dt

∣
∣
∣
∣
∣
→p 0,

when K0 ≡ {K : |K| ≤ |K0| on (0, a0] ∪ [1 − a0, 1]}, for some 0 < a0 ≤ 1
2 .
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2 Linear Rank Statistics and Finite Sampling

Example 2.1 (Linear rank statistics) Consider the RN process of section 12.10, with the
same notation and assumptions as were made there. Thus (for cNi’s with mean c̄N = 0,
standard deviation σ2

cN = 1, and standardized fourth central moment c4N/σ4
cN ≤ M < ∞ for

all N) we define (for the antiranks D ≡ (DN1, . . . , DNN ))

(1) RN (t) ≡ 1√
N

[(N+1)t]∑

i=1

cNDNi
− cN ·

σcN
=

1√
N

[(N+1)t]∑

i=1

cNDNi
on [0, 1],

and this process satisfies �̈νN = Op(1), as in (12.10.35). The known constants cN ≡
(cN1, . . . , cNN )′ are called regression constants. Let aN ≡ (aN1, . . . , aNN )′ specify known
scores. Let aN ., σ2

aN > 0, and μ4(aN ) denote their mean, variance, and fourth central moment.
The class of simple linear rank statistics is defined by

(2) TN ≡ TN (aN ) ≡ 1√
N

N∑

i=1

aNi − aN

σaN
cNDNi

.

Now, ETN = 0 and Var[TN ] = N
N−1 by exercise 2.1 below. Assume (for convenience only)

that the scores are ordered as

aN1 ≤ · · · ≤ aNN ,

and we define an ↗ left-continuous qf KN on [0, 1] by

(3) KN (t) = aNi − aN . for (i − 1)/N < t ≤ i/N, and 1 ≤ i ≤ N,

with KN (0) ≡ aN1. Note that

(4) TN ≡
∫ 1

0

KNdRN/σaN = −
∫ 1

0

RNdKN/σaN .

The basic probability space and rvs are as defined in notation 15.1.3 and in (12.10.35). Let

(5) ZN ≡ Z(aN ) ≡ −
∫ 1

0

WdKN/σaN .

Clearly, ZN is a normal rv with mean 0, since it is just a linear combination of the jointly
normal rvs W(1/N), . . . ,W(1 − 1/N). Fubini’s theorem gives

Var [ZN] = Var
[
− ∫ 1

0
WdKN/σaN

]
=

∫ 1

0

∫ 1

0
[s ∧ t − st] dKN(s) dKN(t)/σ2

aN

= Var[KN (ξ)]/σ2
aN = 1.(6)

We will also consider the sum of independent rvs given by

(7)
T 0

N ≡ T 0
N (aN ) ≡ −1

σaN

∫ 1

0
WNdKN = 1

σaN

∫ 1

0
KN dWN

= 1√
N

∑n
i=1[cNiKN (ξNi)]/σaN

∼= (0, 1).

We next show that TN =a T 0
N =a ZN

∼= N(0, 1) under rather mild conditions. �
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Exercise 2.1 Show that ETN = 0 and Var[TN ] = N/(N − 1).

Definition 2.1 (D(aN )-negligibility) Call such aN a negligible array if

(8) D(aN ) ≡ max1≤i≤N |aNi − aN .|√
NσaN

≤ (some εN ) ↘ 0.

We let A denote any collection of such arrays that uses the same εN ’s. When the aNi are
random, we call them

p-negligible if D(aN ) →p 0 and a.s.-negligible if D(aN ) →a.s. 0.

Theorem 2.1 (Uniform CLT for linear rank statistics) Suppose that the regression
constants satisfy c4N ≤ M < ∞ for all N . Let A be a collection of uniformly negligible arrays,
in that εN ≡ supA D(aN ) → 0. Then

(9) supA |TN (aN ) − Z(aN )| →p 0 and supA |T 0
N (aN ) − Z(aN )| →p 0.

Proof. Fix 0 ≤ ν < 1
4 . Now, γ(aN ) ≡ TN − ZN satisfies

(a) |γ(aN)| = |TN − ZN | = | − ∫ N/(N+1)

1/(N+1)
(RN − W)dKN/σaN |

(b) ≤
∥
∥
∥
∥

Nν(RN − W)
[I(1 − I)]1/2−ν

∥
∥
∥
∥

N/(N+1)

1/(N+1)

×
∫ N/(N+1)

1/(N+1)

N−ν [t(1 − t)]1/2−νdKN (t)/σaN

(10) ≡ �̈νN × MνN (K̃N ),

where �̈νN = Op(1) by (12.10.35). Thus (C.6.3) gives

|TN − ZN | ≤ �̈νN

×
{√

9/ν

rν
+

√
r
|KN (1/(N + 1)) − aN .|√

NσaN

+
√

r
|KN (N/(N + 1)) − aN .|√

NσaN

}

(c) ≤ �̈νN × {
√

9/ν/rν + 2
√

r[max1≤i≤N |aNi − aN .|/
√

NσaN ]}

(11) ≤ �̈νN × {
√

9/ν/rν + 2
√

rD(aN )}.

By first choosing r large and then letting N → ∞, we see that

(d) |TN − ZN | = Op(1) × o(1) →p 0.

Note that we have separated the randomness from properties of the aNi’s, so that the con-
vergence is uniform over A. [The rate for TN in (9) depends on the sequence εN → 0, and
on the cNi’s only through the Mε’s in the statement P (�̈νN ≥ Mε) ≤ ε for all N.] Since (see
(12.10.34))

(e) |T 0
N − ZN | = | ∫ N/(N+1)

1/(N+1)
(WN − W)dKN/σaN | ≤ �̇νN × MνN (K̃N ),

comparing (e) with (a) and (10) shows that the proof is the same in this case.
[One can also allow random regression constants cN and scores aN that are independent

of the antiranks for which c4N = Op(1) and supA D(aN ) →p 0.] �
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Example 2.2 (Creating normality) The following are known, and intuitive.

(A) (Using normal regression constants) When lim c4N ≤ ∞, present methods give

(12) TN →d N(0, 1) if and only if either D(aN ) → 0 or cNDN1 →d N(0, 1).

Result 1 Thus, with absolutely no hypotheses,

the choice cNi ≡ Φ−1(i/(N + 1))
always gives TN →d N(0, 1) for every choice of aNi’s.(13)

(B) (Winsorizing a finite sample) Let ãN ., σ̃aN , T̃N , and Z̃N be defined as before, but now
based on the (kN , k′

N )-Winsorized population �̃aN consisting of

(14) aN,kN+1, . . . , aN,kN+1;aN,kN+1, . . . , aN,N−k′
N

; aN,N−k′
N

, . . . , aN,N−k′
N

.

Of course, theorem 2.1 also applies to T̃N . But note that now

D(ãN ) = max
1≤i≤N

|ãNi − ãN .|/
√

Nσ̃aN

= [|aN,kN+1 − ãN .| ∨ |aN,N−k′
N

− ãN .|]/(
√

Nσ̃aN )

≤ |aN,kN+1 − ãN .| ∨ |aN,N−k′
N

− ãN .|
{(kN + 1)(aN,kN+1 − ãN .)2 + (k′

N + 1)(aN,N−k′
N

− ãN .)2}1/2

≤ 1/
√

(kN ∧ k′
N ) + 1, provided only that aN,kN+1 < aN,N−k′

N
.(15)

Thus D(ãN ) → 0 whenever

(16) kN ∧ k′
N → ∞, and aN,kN+1 < aN,N−k′

N
for all N sufficiently large.

Result 2 Suppose c4N ≤ M < ∞ for all N . For fixed kN ∧ k′
N → ∞, we have

(17) sup
A

{|T̃N (aN ) − Z̃(aN )| : all arrays in A with aN,kN+1 < aN,N−k′
N

} →p 0.

Summary Asymptotic normality is guaranteed by Winsorizing a number that slowly
increases to infinity, provided only that we do not collapse the whole sample. �

Exercise 2.2 Argue heuristically why (13) should be true. [See Shorack(1996).]

Example 2.3 (Permutation statistics) Suppose X1, . . . , XN are iid rvs with nondegenerate
df F on (Ω,A, P ). Then let XN ≡ (X1, . . . , XN )′ denote the full population of observed
values, having order statistics XN :1 ≤ · · · ≤ XN :N , antiranks (DN1, . . . , DNN ), sample
mean X̄N , sample variance S2

N , empirical df FN , and empirical qf KN ≡ F
−1
N . Let 0 ≤ kN <

N − k′
N ≤ N , and let X̃N denote the (kN , k′

N )-Winsorized population X̃N :1 ≤ · · · ≤ X̃N :N

(as in (14)) whose parameters are the Winsorized mean T̃N , the Winsorized variance S̃2
N , and

empirical qf K̃N . We note that

(18)
XN :1 ≤ · · · ≤ XN :N and (DN1, . . . , DNN ) are independent rvs,
if tied Xi ’s are randomly assigned their ranks.
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We also recall (from theorem 10.7.1, or from exercise 8.4.20) that

(19) D(XN ) →a.s. 0 if and only if 0 < Var[X] < ∞.

(20) D(XN ) →p 0 if and only if F ∈ D(Norma1).

Moreover, from (16),

(21) D(X̃N ) →a.s. 0 [making X̃N a.s. negligible] for a.e. X1,X2, . . . ,

provided only that

(22) kN ∧ k′
N →a.s. ∞ and lim(XN :N−k′

N
− XN :kN+1) > 0 a.s.

for kN and k′
N that are either fixed integer sequences or integer-valued rvs that are indepen-

dent of the antiranks DN . Condition (22) necessarily holds if

(23) F is any nondegenerate df, and if kN ∧ k′
N → ∞ while (kN ∨ k′

N )/N → 0.

[We shall maintain the order statistics (which are on (Ω,A, P )), but we can replace the
independent antiranks by a realization (on some (Ω∗,A∗, P ∗) independent of (Ω,A, P )) for
which �̈∗

νN = Op(1) on (Ω∗, A∗, P ∗) (from (12.10.25)) for some Brownian bridge W. This
is possible whenever c4N ≤ M < ∞ for all N (see theorem 12.10.3).]

By a permutation statistic we mean a rv of the form

(24) TN ≡ TN (XN ) ≡ 1√
N

N∑

i=1

cNiXi/SN =
1√
N

N∑

i=1

cNDNi
XN :i/SN ,

with S2
N = σ2

XN =
∑N

1 (Xk − X̄N )2/N and with a cN ≡ (cN1, . . . , cNN )′ population that is
standardized. (Note that the distribution of TN is unaltered by using this different realization
of the antiranks.) �

Theorem 2.2 (Permutation tests) If �̈∗
νN = Op(1) (as when lim c4N < ∞), then the

asymptotic normality

(25)

TN =a Z(XN ) ∼= N(0, 1)

holds

⎧
⎪⎨

⎪⎩

on (Ω∗,A∗, P ∗) for a.e. X1, X2, . . . if cNi = Φ−1(i/N + 1) ,
on (Ω∗,A∗, P ∗) for a.e. X1, X2, . . . if 0 < Var[X] < ∞,

on (Ω × Ω∗,A × A∗, P × P ∗) if F ∈ D (Normal).

[The convergence is uniform over classes F of dfs F in which D(XN ) →p or a.s.0 uniformly.]
Also, whenever (22) (or (23)) holds a.e. we have

(26) T̃N =a Z(X̃N ) ∼= N(0, 1) on (Ω∗,A∗, P ∗) for a.e. X1,X2, . . .

Similar results hold for TN (YN ) and T̃N (YN ), where YN ≡ (YN1, . . . , YNN )′ with

(27) YNi ≡ ĝN (Xi) for any function ĝN (·) independent of the antiranks DN .
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Proof. Equation (11) now becomes (recall (10) for MνN (·))

(a) |γ(XN )| ≡ |TN − Z(XN )| = | − ∫ 1

0
(RN − W)dKN/SN | ≤ �̈∗

νN × MνN (KN )

(28) ≤ �̈∗
νN × {

√
9/ν/rν + 2

√
rD(XN )}

(b) = Op(1) × o(1) →p 0, as in (25),

using either (19), (20) on subsequences, or the proof of (13) on D(XN ). So, (25) holds.
Likewise, conclusion (26) holds by using (22) to apply (15) to D(X̃N ). �

Sampling from Finite Populations

Example 2.4 (Simple random sampling) Let X1, . . . , Xn be a random sample without
replacement from an aN ≡ (aN1, . . . , aNN )′ population. As usual, let X̄n and S2

n ≡ X2
n −X2

n

denote the sample mean and “sample variance.” Suppose that aN1 ≤ · · · ≤ aNN , that
n ≡ nN , and that the D(aN ) of (8) satisfy both

(29) 0 < lim n/N ≤ lim n/N < 1 and

(30) sup
A

D(aN ) = sup
A

{ max
1≤i≤N

|aNi − aN .|/
√

NσaN} → 0.

Prior to normalizing, the cNi’s consist of n values of 1 and m ≡ N − n values of 0, with
cN . = −n/N and σ2

cN = mn/N2. After normalizing,

c4N = (m3 + n3)/(mnN) ≤ 2(m ∨ n)/(m ∧ n).

Thus (29) implies that all c4N ≤ (some M) < ∞. Since cNDN1 →d N(0, 1) clearly fails, (12)
shows that TN →d N(0, 1) if and only if D(aN ) → 0. The limiting rv (as in (5)) will be
ZN ≡ Z(aN ) ≡ − ∫ 1

0
WdKN/σaN

∼= N(0, 1). Now define

(31) TN ≡ TN (aN ) ≡
√

n(X̄n − aN ·)
σaN

√
1 − n/N

= − ∫ 1

0
RNdKN/σaN

∼= (0, N/(N − 1)),

(32) T̂N ≡ T̂N (aN ) ≡
√

n(X̄n − aN ·)
Sn

√
1 − n/N

. �

Theorem 2.3 (Simple random sampling) Suppose (29) holds, and suppose the arrays
A are uniformly negligible with supA D(aN ) → 0 (as in (30)). Then

(33) supA |TN (aN ) − Z(aN )| →p 0,

(34) supA | 1
σaN

Sn − 1| →p 0,

(35) T̂N (aN ) − Z(aN ) →p 0. In fact, supA |T̂N (aN ) − Z(aN )| →p 0

if (36) also holds. That is, the uniform convergence conclusion in (35) holds if

(36) supN

∫ N/(N+1)

1/(N+1)
g(t)dKN (t)−aN

σaN
< ∞

for g(t) = b(t)[t ∧ (1 − t)]1/2 and b(t) = b(1 − t) = 1 ∨ [2 log2 1/t]1/2 for t ∈ [0, 1/2].
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Exercise 2.3 (a) Show that (30) and (36) both hold whenever the qfs KN (·) have a uniformly
bounded 2 + δ moment for any δ > 0.
(b) Devise a “logarithmic moment” that will suffice.

Proof. Now, (33) follows from (9). Consider (34). Let dN ≡ √
m/nN . Simple algebra

(start on the right) gives

(a)
S2

n − σ2
aN

σ2
aN

=
{ 1

n

∑n
1 (Xi − aN .)2 − σ2

aN

σ2
aN

}

−
{

X̄n − aN ·
σaN

}2

≡ I2n − I21n.

Using Chebyshev’s inequality with the finite sampling variance of (A.1.9) yields

(b) P (|I1n| ≥ ε) ≤ Var[X̄n]/ε2σ2
aN = [1 − n−1

N−1 ]/nε2 → 0.

Letting Yi ≡ (Xi − aN .)2, we use (A. 1.9) again for

(c) P (|I2n| ≥ ε) = P (|Ȳn − μY | ≥ εσ2
aN ) ≤ Var[Ȳn]/ε2σ4

aN

(d) ≤ σ2
Y

nε2σ4
aN

[1 − n − 1
N − 1

] ≤ E(X − aN .)4

nε2σ4
aN

m

N − 1

=
∑N

1 (Xi − aN .)4/N
nε2σ4

aN

m

N − 1
≤ D2 (aN)

σ2
aN

σ2
aN

2m

ε2n

(e) ≤ D2(aN )
2m

ε2n
→ 0 by (29).

Thus (34) holds. Then (33) and (34) gives the first claim in (35) via Slutsky’s theorem. (Note
that (29) uniformly bounds the ratio

√
m/n.) The second claim made in (35) will now follow

from the identity

(f) (T̂N − ZN ) = (TN − ZN ) × {[(σaN/Sn) − 1] + 1} + ZN × [(σaN/Sn) − 1],

provided we show that

(37) supN |Z(aN )| = Op(1).

The proof that (36) implies (37) is found in the 1st Edition. �

Remark 2.1 At this point in the 1st Edition, the next section was used to rederive the
bootstrap results of Chapter 10 using the present methods instead. �



3. L-STATISTICS ∗ 413

3 L-Statistics ∗

Let K ≡ F−1, and define Xni ≡ K(ξni), for 1 ≤ i ≤ n, in terms of the Uniform (0, 1) rvs
ξn1, . . . , ξnn of notation 15.1.3. Then Xn1, . . . , Xnn are iid F , and we let Xn:1 ≤ · · · ≤ Xn:n

denote the order statistics. Suppose the statistician specifies a known ↗ and left-continuous
function h, known constants cn1, . . . , cnn, and known integers 0 ≤ kn < n − k′

n ≤ n. We wish
to establish the asymptotic normality of the trimmed L-statistic

(1) Ln ≡ Ln(kn, k′
n) ≡ 1

n

n−k′
n∑

i=kn+1

cni h(Xn:i) =
1
n

n−k′
n∑

i=kn+1

cni H(ξn:i),

where H ≡ h(F−1) = h(K) is also ↗ and left continuous. [Other useful cases such as
h(x) = x2 are dealt with by considering (H−)2 and (H+)2 separately, and then adding the
results. Here H− ≡ −H · 1[H≤0] and H+ ≡ H · 1[H≥0] denote the negative and positive parts
of H. Thus there is no theoretical loss in now assuming that h(X) = X and H = F−1.]

Now, Gn and Un denote the empirical df and the empirical process of those specially
constructed ξni’s of notation 15.1.2, whose empirical process Un converges pathwise to the
Brownian bridge U in the manner described. This will figure heavily in our proofs and in =a

claims, but not in any →d claims.
We need a centering constant μn for Ln. We define

(2) Jn(t) = cni for (i − 1)/n < t < i/n and 1 ≤ i ≤ n,

where the value of Jn at the i/n points is totally inconsequential. Suppose that Jn “converges”
to J in some sense. Define an ≡ kn/n, a′

n ≡ k′
n/n as before, and then define centering

constants

(3) (μn ≡ ∫ 1−ań

an
Jn(t)H(t)dt and μ0

n ≡ ∫ 1−ań

an
J(t)H(t)dt

with μ0 ≡ μ0
n(0, 0) =

∫ 1

0
J(t)H(t)dt. Note that μn =

∑n−k′
n

i=kn+1 cni

∫ i/n

(i−1)/n
H(t)dt, which

means that kn = 0 and cn1 > 0 (that k′
n = 0 and cnn > 0) entails the added requirement

that EH−(ξ) be finite (that EH+(ξ) be finite), for ξ ∼=Uniform (0, 1). [Our main interest is
in μn, while μ0

n is secondary; μn is the data analysis constant, while μ0
n is just a constant for

theory.]
It is convenient to assume that on (0, 1)

(4) Jn ≥ 0, J ≥ 0 is continuous, and H is ↗ and left continuous.

[More generally, we can apply our results for two separate J functions and then just subtract
the results.] Now specify a. ∈ (0, 1) to satisfy H+(a.) = 0, and define

(5) K(t) ≡
∫

(a,t)

J(s)dH(s),

where
∫
(a,t)

≡ − ∫
[t,a]

.(But set a. = 0 if H(·) ≥ 0, and use
∫
[0,t)

in (5) ; and set a. = 1 if
H(·) ≤ 0, and use

∫
[t,1]

in (5).) Thus (in case (5))

(6) K is ↗ and left continuous on (0, 1) with K+(a.) = 0,

where K + is the right-continuous version, and �K ≡ K+ − K. [Since Ln − μn is invariant
under vertical shift, there is actually no theoretical loss in also assuming as we did above that
H satisfies H+(a.) = 0.] Since K is a qf, the unobservable rvs

(7) Yni ≡ K(ξni), for 1 ≤ i ≤ n, are iid with qf K, and let Ȳn ≡ 1
n

∑n
i=1 Yni.
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The most historically important case obtains when

(8) σ2 ≡ Var[K(ξ)] ∈ (0, ∞), μ ≡ EK(ξ), and kn = k′
n = 0.

In this case we would desire to show that (on the same probability space where the special
ξni’s above are defined) for some N(0, 1) rv that we will denote by ZK (or alternatively, and
suggestively, we will also denote by

∫ 1

0
KdU/σ) we have

(9)
√

n[Ln(0, 0) − μn(0, 0)]/σ =a

√
n(Ȳn − μ)/σ =a ZK ≡ ∫ 1

0
KdU/σ ∼= N(0, 1).

We would also like a consistent estimator of σ, and we might want to be able to replace
μn(0, 0) by μ0 =

∫ 1

0
J(t)H(t)dt. Of course, Jn will have to approximate J sufficiently closely.

Let K̃n denote K Winsorized outside (an, 1−a′
n), and define the unobservable Winsorized

rvs

(10) Ỹni ≡ K̃n(ξni) for 1 ≤ i ≤ n.

Then Ỹn1, . . . , Ỹnn are iid with qf K̃n and mean μ̃n and variance σ̃2
n given by

(11) μ̃n ≡ EỸni =
∫ 1

0
K̃n(t)dt and σ̃2

n ≡ Var[Ỹni] = Var[K̃n(ξ)].

(We can allow only kn = 0 or k′
n = 0 if the variance double integral is finite.) Let

(12) Ỹn. ≡ Ỹn(an, a′
n) ≡ 1

n

∑n
i=1 Ỹni =

∫ 1

0
K̃ndGn.

In this case it is our desire to show that

(13)
√

n(Ln − μn)/σ̃n =a
√

n(Ỹn. − μ̃n)/σ̃n =
∫ 1

0
K̃ndUn/σ̃n = − ∫ 1

0
UndK̃n/σ̃n

(14) =a ZK(an, a′
n) ≡ ∫ 1

0
K̃ndU/σ̃n

∼= N(0, 1).

We also seek an appropriate estimator of σ̃n, and we may want to be able to replace μn by
μ0

n. Whenever kn ∧ k′
n ≥ 1, we always define the symbol

∫ 1

0
K̃ndU to mean − ∫ 1

0
UdK̃n(that

is, pathwise integration for each ω) for all qfs.
Make throughout without further comment the rather modest assumptions that an and

a′
n satisfy lim inf(1 − an − a′

n) > 0 and lim inf σ̃n = lim inf σK(an, a′
n) > 0 for the df F or F0

under consideration at the particular moment. The first says that we will deal with averaging,
rather than just “quantiles” (though we could easily have added in fixed quantiles had we
chosen to do so). The second says that the statistician has at least enough insight to avoid
removing all the variation.

We now state the two most elementary theorems about L-statistics found in the 1st Edi-
tion. The results found there establish uniform convergence to normality over large classes of
dfs, and they present studentized versions of such results. This is a very complete treatment
of L-statistics. Roughly, suppose the finite sample score function Jn function is sufficiently
close to a limiting score function J , as defined in the 1st Edition. Then any asymptotic
normality theorem for the mean (whether trimmed or untrimmed) of a sample from the df K
defined in (5) is also true for the corresponding L-statistic of (1) based on samples from the
df F . Consult the 1st Edition for proofs of the following results.

Theorem 3.1 (CLT for L-Statistics) Suppose the score function J(·) of (4) is approx-
imated “sufficiently closely” by a sequence Jn(·). Let the statistic Ln in (1) be untrimmed.
Suppose also that Y ≡ K(ξ) ∼= (μ, σ2) with σ2 ∈ (0, ∞) for the K of (5). Let μ̃n and σ̃n be
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as in (11) (with an = a′
n = 1/n, for the sake of the proof). Let μn be as in (3). Then (in the

context of notation 15.1.3)

(15)
√

n(Ln − μn)/σ =a

√
n(Ȳn − μ)/σ =a Zn(K) ≡ ∫ 1−1/n

1/n
U dK/σ̃n

∼= N(0, 1).

(Moreover, Vn/σ →p 1 for an estimator V 2
n of σ2 presented in the 1st Edition.)

Theorem 3.2 (CLT for trimmed L-statistics) Suppose that J(·) as in (4) is approx-
imated “sufficiently closely” by a sequence Jn(·). Suppose the statistician protects himself
by specifying trimming numbers kn and k′

n for which kn ∧ k′
n → ∞, while an ∨ a′

n → 0 with
an/a′

n → 1, and suppose that K is in the statistical domain of attraction D̃ (recall (C.5.33),
(15.1.3), and proposition 10.6.1). Then (in the context of notation 15.1.3)

√
n(Ln − μn)/σ̃n =a

√
n(Ỹn. − μ̃n)/σ̃n(16)

= − ∫ 1−ań

an
UndK/σ̃n = − ∫ 1

0
UndK̃n/σ̃n,

(17) =a Zn ≡ ZK(an, a′
n) ≡ − ∫ 1−a′

n

an
U dK/σ̃n = − ∫ 1

0
U dK̃n/σ̃n

∼= N(0, 1).

(Moreover, Ṽn/σ̃n →p 1 for an estimator Ṽ 2
n of σ̃2

n presented in the 1st Edition.) [If K ∈
D(Normal), only (kn ∧ k′

n) ≥ 1 is required and an/a′
n → 1 may be omitted.]



Appendix A

Special Distributions

1 Elementary Probability

Independent Bernoulli Trials

If P (X = 1) = p = 1 − P (X = 0), then X is said to be a Bernoulli(p) rv. We refer to the
event [X = 1] as “success,” and [X = 0] as “failure.” Let X1, . . . , Xn be iid Bernoulli(p), and
let Tn ≡ X1 + · · · + Xn denote the number of successes in n independent Bernoulli(p) trials.
Now,

P (Xi = xi for 1 ≤ i ≤ n) = pΣn
1 xi(1 − p)n−Σn

1 xi if all xi equal 0 or 1;

this formula gives the joint distribution of X1, . . . , Xn. From this we obtain

(1) P (Tn = k) =
(

n
k

)
pk(1 − p)n−k for 0 ≤ k ≤ n,

since each of the
(

n
k

)
different possibilities that place k of the 1’s in specific positions in an

n-vector containing k outcomes 1 and n − k outcomes 0 has probability pk(1 − p)n−k, from
the earlier display. We denote this by writing Tn

∼= Binomial(n, p) when (1) holds. Note
that Binomial(1, p) is the same as Bernoulli(p).

Let X1,X2, . . . be iid Bernoulli(p); call this a Bernoulli(p) process. Interesting rvs include
Y1 ≡ W1 ≡ min{n : Tn = 1}. Since we can rewrite the event [Y1 = k] = [X1 = · · · = Xk−1 =
0,Xk = 1], we have

(2) P (Y1 = k) = (1 − p)k−1p for k = 1, 2, . . . .

We write Y1
∼= Geometric T(p). Now let Wm ≡ min{n : Tn = m}. We call Wm the waiting

time to the mth success; Wm counts the number of turns until the mth success. We let
Ym ≡ Wm −Wm−1 for m ≥ 1, with W0 ≡ 0, and we call the Ym’s the interarrival times. Note
that [Wm = k] = [Tk−1 = m − 1 and Xk = 1]. Hence

(3) P (Wm = k) =
(

k − 1
m − 1

)
pm(1 − p)k−m for k = m,m + 1, . . . .

We write Wm
∼= Negative Binomial Turns(m, p) ≡ NegBiT(m, p). [We agree that NegBiF(m, p)

denotes the distribution of Wm − m, and that this “F” connotes “failures”; the rv Wm − m
counts the number of failures prior to the mth success.]
c© Springer International Publishing AG 2017
G.R. Shorack, Probability for Statisticians, Springer Texts in Statistics,
DOI 10.1007/978-3-319-52207-4
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Exercise 1.1 Explain why Y1, Y2, . . . are iid GeometricT(p).
Since the number of successes in the first n1 + n2 trials is the same as the number of

successes in the first n1 trials plus the number of successes in the next n2 trials, it is clear
that

(4) T1 + T2
∼= Binomial(n1 + n2, p) for independent rvs Ti

∼= Binomial(ni, p).

Likewise, waiting for m1 successes and then waiting for m2 more successes is the same as
waiting for m1 + m2 successes in the first place. Hence,

(5) W1 + W2
∼= NegBiT(m1 + m2, p) for independent rvs Wi

∼= NegBiT(mi, p).

Urn Models

Suppose an urn contains N balls that are identical, except that M bear the number 1 and
N − M bear the number 0. Thoroughly mix the balls in the urn. Draw one ball at random.
Let X1 denote the number on the ball drawn. Then X1

∼= Bernoulli(p) with p ≡ M/N .
Now replace the ball in the urn, thoroughly mix, and draw at random a second ball with
number X2. Continue the process. This is the sampling with replacement scheme. Then
Tn ≡ X1 + · · · + Xn

∼= Binomial (n, p), where p = M/N represents the probability of success
in n independent Bernoulli(p) trials.

Suppose now that the same scheme is repeated, except that the balls are not replaced.
In this sampling without replacement scheme X1, . . . , Xn are dependent Bernoulli(p) rvs with
p = M/N . Also,

(6) P (Tn = k) =

(
M
k

)(
N − M
n − k

)
(

N
n

) , provided that the value k is possible.

We write Tn
∼= Hypergeometric(M,N − M ;n).

Suppose now that sampling is done without replacement, but the N balls in the urn bear
the numbers a1, . . . , aN . Let X1, . . . , Xn denote the numbers on the first n balls drawn, and
let Tn ≡ X1 + · · ·+Xn. We call this the general finite sampling model. Call ā ≡

∑N
1 ai/N the

population mean and σ2
a ≡

∑N
1 (ai − ā)2/N the population variance. Note that Xi

∼= (ā, σ2
a)

for all 1 ≤ i ≤ n, since we now assume n ≤ N . From (7.3.4), we have

(7) 0 = Var[
∑N

1 Xi] = NVar[X1] + N(N − 1)Cov[X1,X2],

with the 0 valid, since
∑N

1 Xi is a constant. Solving (7) yields

(8) Cov[X1,X2] = −σ2
a/(N − 1).

As in (7), and using (8), Var[Tn] = nσ2
a − n(n − 1)σ2

a/(N − 1). Thus

(9) Var[Tn/n] =
1
n

σ2
a

[
1 − n − 1

N − 1

]
,

where [1 − (n − 1)/(N − 1)] is called the correction factor for finite population sampling.

Exercise 1.2 Verify (8) and (9).
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Exercise 1.3 Suppose that T1
∼= Binomial (m, p) and T2

∼= Binomial(n, p) are independent.
Then the conditional distribution of the first component T1 given the total T1 + T2 = k is
Hypergeometric(k,m + n − k;m).

The Poisson Process

Suppose now that Xn1, . . . , Xnn are iid Bernoulli(pn), where npn → λ as n → ∞. Let
Tn ≡ Xn1 + · · · + Xnn, so that Tn

∼= Binomial(n, pn). Simple calculations give

(10) P (Tn = k) → λke−λ/k! for k = 0, 1, . . . .

When P (T = k) = λke−λ/k! for k = 0, 1, . . ., we write T ∼= Poisson(λ).
This is now used to model a Geiger counter experiment. A radioactive source with

large half-life is placed near a Geiger counter. Let N(t) denote the number of particles
registered by time t. We will say that {N(t) : t ≥ 0} is a Poisson process. (Do note
that our treatment is purely informal.) Physical considerations lead us to believe that the
increments N(t1), N(t1, t2], . . . , N(tk−1, tk] should be independent rvs; here, the increment
N(ti−1, ti] ≡ N(ti)−N(ti−1) is the number of particle counts across the interval (ti−1, ti]. We
say that N has independent increments. Let us now define

(11) ν ≡ EN(1) ≡ [the intensity of the process].

Let M denote the number of radioactive particles in our source, and let Xi equal 1 or 0
depending on whether or not the ith particle registers by time t = 1. It seems possible to
assume that X1, . . . , XM are iid Bernoulli. Since N(1) = X1 + · · · + XM has mean ν =
EN(1) = MEX1, this leads to N(1) ∼= Binomial(M,ν/M). By the first paragraph of this
section, N(1) is thus approximately a Poisson (ν) rv. We now alter our point of view slightly,
and agree that we will use this approximation as our model. Thus N(1) is a Poisson(ν) rv.
Since M is huge, the accuracy should be superb. Because of the stationary and independent
increments we thus have

N(s, t] ≡ N(t) − N(s) ∼= Poisson(ν(t − s)) for all 0 ≤ s ≤ t, and(12)
N has independent increments.(13)

We agree also that N(0) ≡ 0. (This is actually enough to rigorously specify a Poisson process.)
Let Y1 ≡ W1 ≡ inf{t : N(t) = 1}. Since

(14) [Y1 > t] = [N(t) < 1] = [N(t) = 0],

we see that 1−FY1(t) = P (Y1 > t) = P (N(t) = 0) = e−νt by (12). Thus Y1 has df 1−exp(−νt)
for t ≥ 0 and density

(15) fY1(t) = νe−νt for t ≥ 0;

we write Y1
∼= Exponential(ν). Now let Wm ≡ inf{t : N(t) = m}; we call Wm the mth

waiting time. We call Ym ≡ Wm − Wm−1,m ≥ 1, the mth interarrival time. In light of the
physical properties of our Geiger counter model, and using (13), it seems reasonable that

(16) Y1, Y2, . . . are iid Exponential(ν) rvs.

Our assumption of the previous sentence could be expressed as follows:

(17)
Y1 and N1(t) ≡ N(Y1, Y1 + t] = N(Y1 + t) − N(Y1) are independent,
N1is again a Poisson process, with intensity ν.
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We will call this the strong Markov property of the Poisson process. Additionally,

(18) [Wm > t] = [N(t) < m],

so that 1 − FWm
(t) = P (Wm > t) =

∑m−1
k=0 (νt)ke−νt/k!; the derivate of this expression

telescopes, and shows that Wm has density

(19) fWm
(t) = νmtm−1e−νt/Γ(m) for t ≥ 0.

We write Wm
∼= Gamma(m, ν). Since waiting for m1 counts and then waiting for m2 more

counts is the same as waiting for m1 + m2 counts in the first place,

(20) Z1 + Z2
∼= Gamma(m1 + m2, ν) for independent Zi

∼= Gamma(mi, ν).

It is true that (19) is a density for any real number m > 0, and the property (20) still holds
for all positive mi’s.

Exercise 1.4 Verify (10), that Binomial (n, pn) → Poisson(λ) as npn → λ.

Exercise 1.5 Verify (19), that FWm
has derivative fWm

.

Exercise 1.6 Verify that (20) holds for arbitrary real mi > 0.

Exercise 1.7 If X ∼= Poisson(ν1) and Y ∼= Poisson(ν2), then the conditional distribution
of X given that X + Y = n is Binomial(n, ν1/(ν1 + ν2)).

Exercise 1.8 Use Kolmogorov’s extension theorem to show that a Poisson process N exists
on (R[0,∞),B[0,∞)). Then apply the smoother realizations theorem 5.4.2 to claim that a.e.
sample path is right continuous with integral jumps.

Location and Scale

If a > 0, then

FaZ+b(x) = P (aZ + b ≤ x) = P (Z ≤ (x − b)/a) = FZ((x − b)/a)

holds for any FZ(·). Thus for any density fZ(·) the rv aZ + b has density

(21) faZ+b(x) = 1
afZ

(
x−b

a

)
for − ∞ < x < ∞.

Normal Distributions

Suppose the rv Z has density

(22) fZ(x) = 1√
2π

exp(−x2

2 ) for − ∞ < x < ∞.

Then Z is said to be a Standard Normal rv. Thus the rv X ≡ μ + σZ ∼= (μ, σ2) has density
(by (21))

(23) 1√
2πσ

exp(− 1
2 (x−μ

σ )2) for − ∞ < x < ∞,

and we write X ∼= Normal(μ, σ2), or just X ∼= N(μ, σ2).
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Exercise 1.9 Show that the formula fZ(·) of (22) is a density. Then show that this density
has mean 0 and variance 1. [Transform to polar coordinates to compute (

∫
fZ(x) dx)2 = 1.]

The importance of the Normal distribution derives from the following theorem. Recall
that if X1, . . . , Xn are iid (μ, σ2) with 0 < σ < ∞, then

√
n(X̄ − μ)/σ ∼= (0, 1) for the sample

average X̄n ≡ (X1 + · · · + Xn)/n. This is only a statement about moments. But much more
is true. The proof of the powerful result we now state is found in chapter 10. We will use it
here for motivational purposes.

Theorem 1.1 (Classical CLT) Let X1, . . . , Xn be iid (μ, σ2) with σ < ∞. Then

(24)
√

n(X̄n − μ) →d N(0, σ2) as n → ∞.

Let 0 < σ < ∞. Then the rv Zn below is asymptotically normal, in that

(25) Zn ≡
√

n(X̄n − μ)/σ →d N(0, 1) as n → ∞.

Suppose now that Z is N(0, 1). Then

(26) FZ2(x) = P (Z2 ≤ x) = P (−
√

x ≤ Z ≤
√

x) = FZ(
√

x) − FZ(−
√

x);

thus Z2 has density

(27) fZ2(x) =
1

2
√

x
[fZ(

√
x) − fZ(−

√
x)] for x ≥ 0.

[Note that formula (27) is true for any density fZ(·).] Plugging into (27) for this Z shows
that

(28) fZ2(x) = (2πx)−1/2 exp(−x/2) for x ≥ 0;

this is called the Chisquare(1) distribution. Note that Chisquare(1) is the same as Gamma
( 1
2 , 1

2 ). Thus (20) establishes that

(29) if X1, . . . , Xm are iid N(0, 1), then
m∑

i=1

X2
i

∼= Chisquare(m),

where Chisquare(m) ≡ Gamma(m
2 , 1

2 ).

Uniform and Related Distributions

Write X ∼= Uniform(a, b) if

(30) fX(x) = 1
(b−a)1[a,b](x) = 1

(b−a) on [a, b].

By far the most important special case is Uniform(0, 1). A generalization of this is the
Beta(c, d) family. We write X ∼= Beta(c, d) if

(31) fX(x) =
1

β(c, d)
xc−1(1 − x)d−11[0,1](x) =

1
β(c, d)

xc−1(1 − x)d−1 on [0, 1],

where β(c, d) ≡ Γ(c)Γ(d)/Γ(c + d). Here, b > 0 and c > 0 are required.
Suppose that ξ1, . . . , ξn are iid Uniform(0, 1). Let 0 ≤ ξn:1 ≤ · · · ≤ ξn:n ≤ 1 denote the

ordered values of the ξi’s; we call the ξn:i’s the uniform order statistics. It seems intuitive
that ξn:i equals x if (i − 1) of the ξi’s fall in [0, x), 1 of the ξi’s is equal to x, and n − i of the

http://dx.doi.org/10.1007/978-3-319-52207-4_10
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ξi’s fall in (x, 1]. There are n!/[(i−1)!(n− i)!] such designations of the ξni’s, and for each such
designation the “chance” of the rv’s falling in the correct parts of [0, 1] is xi−1(1·dx)(1−x)n−i.
Thus

(32) fξni
(x) =

n!
(i − 1)!(n − i)!

xi−1(1 − x)n−i1[0,1](x), or ξn:i
∼= Beta(i, n − i + 1).

Exercise 1.10 Give a rigorous derivation of (32) by computing 1 − Fξni
(x) and then dif-

ferentiating it.

Exercise 1.11 Choose a point at random on the surface of the unit sphere (with probability
proportional to area). Let Θ denote the longitude and Φ denote the latitude (relative to some
fixed axes) of the point so chosen. Determine the joint density of Θ and Φ.

The Cauchy Distribution

Write X ∼= Cauchy(b, a) if

(33) fX(x) = 1/{aπ[1 + (x − b)2/a2]} on (−∞,∞).

By far the most important special case is Cauchy(0, 1); we then say simply that X ∼= Cauchy,
and its density is given by 1/[π(1 + x2)] on (−∞,∞). Verify that E|X| = ∞. We will see
below that if X1, . . . , Xn are iid Cauchy, then the sample average X̄n ≡ (X1 + · · · + Xn)/n ∼=
Cauchy. These two facts make the Cauchy ideal for many counterexamples.

Double Exponential and Logistic Distributions

We say X ∼= Double Exponential(b, a) when (X − b)/a has density 1
2 exp(−|x|) on the line.

We say X ∼= Logistic(b, a) when (X − b)/a has density ex/(1 + ex)2 = 1/(e−x/2 + ex/2)2 on
the line.

Exercise 1.12 Now, X ≡ F−1(ξ) has df F by the inverse transformation. So, compute
F−1 for the Logistic(0, 1) and the Double Exponential(0, 1) distributions.

Rademacher Random Variables and Symmetrization

Many problems become simpler if the problem is symmetrized. One way of accomplishing
this is by the appropriate introduction of Rademacher rvs. We say that ε is a Rademacher
rv if P (ε = 1) = P (ε = −1) = 1

2 . Thus ε ∼= 2 Bernoulli(1
2 ) − 1.

We say that X is a symmetric rv if X ∼= −X. If X and X ′ are iid, then Xs ≡ (X −X ′) ∼=
(X ′ − X) = −(X − X ′) = −Xs; hence Xs is a symmetric rv.

Exercise 1.13 If X is a symmetric rv independent of the Rademacher rv ε, then X ∼= εX
always holds.

The Multinomial Distribution

Suppose that B1 + · · · + Bk = R for Borel sets Bi ∈ B; recall that we call this a partition of
R. Let Y1, . . . , Yn be iid rvs on (Ω,A, P ). Let Xi ≡ (Xi1, . . . , Xik) ≡ (1B1(Yi), . . . , 1Bk

(Yi))
for 1 ≤ i ≤ n, and set

(34) T ≡ (T1, . . . , Tk)′ = (
n∑

i=1

Xi1, . . . ,
n∑

i=1

Xik) = (
n∑

i=1

1B1(Yi), . . . ,
n∑

i=1

1Bk
(Yi)).
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Note that X1j , . . . , Xnj are iid Bernoulli(pj) with pj ≡ P (Yi ∈ Bj), and thus Tj
∼=

Binomial(n, pj) (marginally). However, T1, . . . , Tn are dependent rvs. The joint distribu-
tion of (T1, . . . , Tn)′ is called the Multinomial(n, p) distribution. We now derive it. The
number of ways to designate n1 of the Yi’s to fall in B1, . . ., and nk of the Yi’s to fall in Bk

is the multinomial coefficient

(35)
(

n
n1 . . . nk

)
≡ n!

n1! · · · nk!
, where n1 + · · · + nk = n.

Each such designation occurs with probability
∏k

1 pini . Hence for each possible n,

(36) P (T = n) ≡ P (T1 = n1, . . . , Tk = nk) =
(

n
n1 . . . nk

)
pn1
1 · · · pnk

k .

It is now a trivial calculation that

(37) Cov[Xij ,Xil] = E1Bj
(Yi)1Bl

(Yi) − E1Bj
(Yi)E1Bl

(Yi) = −pjpl if j 
= l.

Thus

(38) Cov[Tj , Tl] = −n pj pl for all j 
= l.

Thus (with DP a diagonal matrix having each dii = pi)

(39)

⎛
⎜⎝

T1

...
Tk

⎞
⎟⎠ ∼= n

⎛
⎜⎝
⎛
⎜⎝

p1

...
pk

⎞
⎟⎠ ,

⎛
⎜⎝

p1(1 − p1) −p1pk

...
. . .

...
−pkp1 pk(1 − pk)

⎞
⎟⎠
⎞
⎟⎠ = n(p, [DP − pp′]).

Assorted Facts

Stirling’s Formula for n! For all n > 1 we have

(40) n! = eannn+1/2e−n
√

2π, where 1/(12n + 1) < an < 1/(12n).

Eulers’s Constant γ

(41)
∑n

i=11/i − log n ↑ γ ≡ 0.577215664901533 . . . .

Exercise 1.14 (An added touch) If
∑∞

1 an < ∞, there exists a sequence cn ↑ ∞ such that∑∞
1 cnan < ∞.

Elementary Conditional Probability

One defines the conditional probability of the event A given that the event B has occurred via
P (A|B) ≡ P (AB)/P (B) when P (B) 
= 0. One then calls A and B independent if P (A|B) =
P (A), because the probability of A is then unaffected by whether or not B occurred. Thus
both of the following statements hold:

(42)
Definition: P (A|B) ≡ P (AB)/P (B)
leads to Theorem: P (AB) = P (B)P (A|B), always.



424 APPENDIX A. SPECIAL DISTRIBUTIONS

(43)
Definition: Independence means P (A|B) = P (A), and
leads to Theorem: P (AB) = P (A)P (B) if A and B are independent.

The big advantage of computation of P (A|B) via the theorem of (42) is that one can often
revisualize P (A|B) in the context of a much simpler problem. Thus the probability of drawing
two Reds when drawing at random without replacement from an urn containing 6 Reds and
4 Whites is P (R1R2) = P (R1)P (R2|R1) = (6/10) × (5/9), where we revisualized to an urn
containing 5 Reds and 4 Whites to compute P (R2|R1) = 5/9. [Had we used sampling with
replacement, our answer would have been (6/10) ×(6/10) via (43).] [In the next exercise,
revisualization works superbly to trivialize the problem.]

Exercise 1.15 (Craps, according to Hoyle) (a) The “shooter” rolls two dice, and obtains
a total (called the “point”). If “point” equals “seven” or “eleven,” the game is over and
“shooter” wins. If point equals “two” or “twelve,” the game is over and “shooter” loses.
Otherwise, the game continues. It is now a race between “point” and “seven.” If “point”
comes first, the “shooter” wins; otherwise, he loses. Determine the probability that the
“shooter” wins in the game of craps.
[When trying to “convert” a “point” of “ten” (say), we can revisualize and say that on the
turn on which the game ends the dice will be showing either one of the 3 tens or one of the
6 sevens, and the probability of this conversion is clearly 3/(3 + 6).]
(b) (The Las Vegas game) The above game is favorable to the “shooter.” Thus the version
played in Las Vegas has different rules. Specifically, a “three” on the first roll of the two dice
is also an immediate loss for “shooter.” Determine the probability that “shooter” wins the
Las Vegas version of craps.



2. DISTRIBUTION THEORY FOR STATISTICS 425

2 Distribution Theory for Statistics

Convolution

If X and Y are independent rvs on (Ω,A, P ), then

FX+Y (z) = P (X + Y ≤ z) =
∫∫

x+y≤z
dFX(x) dFY (y)

=
∫∞

−∞
∫ z−x

−∞ dFY (y) dFX(x)

=
∫ ∞

−∞
FY (z − x) dFX(x) ≡ FX ∗ FY (z)(1)

is a formula, called the convolution formula, for FX+Y in terms of FX and FY (the symbol
∗ defined here stands for “convolution”). In case Y has density fY with respect to Lebesgue
measure, then so does X + Y . In fact, since

∫ z

−∞
∫∞

−∞ fY (y − x) dFX(x) dy =
∫∞

−∞[
∫ z

−∞ fY (y − x) dy] dFX(x)

=
∫∞

−∞ FY (z − x) dFX(x) = FX+Y (z) ,

we see that X + Y has a density given by

(2) fX+Y (z) =
∫ ∞

−∞
fY (z − x) dFX(x).

In case both X and Y have densities, we further note that

(3) fX+Y (z) =
∫ ∞

−∞
fY (z − x)fX(x) dx ≡ fY ∗ fX(z).

Exercise 2.1 Use (2) to show that for X and Y independent:
(i) X ∼= N(μ1, σ

2
1) and Y ∼= N(μ2, σ

2
2) implies X + Y ∼= N(μ1 + μ2, σ

2
1 + σ2

2).
(ii) X ∼= Cauchy(0, a1) and Y ∼= Cauchy(0, a2) has X + Y ∼= Cauchy(0, a1 + a2).
(iii) X ∼= Gamma(r1, θ) and Y ∼= Gamma(r2, θ) has X + Y ∼= Gamma(r1 + r2, θ).

Exercise 2.2 (i) Let X1, . . . , Xn be iid N(0, 1). Show that the normed sample average
necessarily satisfies (X1 + · · · + Xn)/

√
n ∼= N(0, 1).

(ii) Let X1, . . . , Xn be iid Cauchy(0, 1). Show (X1 + · · · + Xn)/n ∼= Cauchy(0, 1).
If X and Y are independent rvs taking values in 0, 1, 2, . . ., then clearly

(4) P (X + Y = k) =
k∑

i=0

P (X = i)P (Y = k − i) for k = 0, 1, 2, . . . .

Exercise 2.3 Use (3) to show that for X and Y independent:

X ∼= Poisson(λ1) and Y ∼= Poisson(λ2) has X + Y ∼= Poisson(λ1 + λ2).

A fundamental problem in probability theory is to determine constants bn and an > 0 for
which iid rvs X1, . . . , Xn, . . . satisfy

(5) (X1 + · · · + Xn − bn)/an →d G, as n → ∞

for some nondegenerate df G. Exercise 2.2 gives us two examples of such convergence; each
was derived via the convolution formula. Except in certain special cases, such as exercises
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2.1 – 2.3, the various convolution formulas are too difficult to deal with directly. For this
reason we need to develop a more oblique, but ultimately more convenient, approach if we
are to solve problems of the form (5). This is taken up in chapters 9, 10, and 11.

Other Formulas

Exercise 2.4 Suppose that X and Y are independent with P (Y > 0) = 1. Show that
products and quotients of these rvs satisfy

FXY (z) ≡ P (XY ≤ z) =
∫∞
0

FX(z/y) dFY (y) for all z,(6)

FX/Y (z) ≡ P (X/Y ≤ z) =
∫∞
0

FX(zy) dFY (y) for all z.(7)

If FX has a density fX , then changing the order of integration above shows that FXY and
FX/Y have densities given by

fXY (z) =
∫∞
0

y−1fX(z/y) dFY (y) for all z,(8)

fX/Y (z) =
∫∞
0

y fX(yz) dFY (y) for all z.(9)

Exercise 2.5 Let Z ∼= N(0, 1), U ∼= χ2
m, and V ∼= χ2

n be independent.
(a) Establish these classically important results:

Z√
U/m

∼= Student’s tm.(10)

U/m

V/n
∼= Snedecor’s Fm,n.(11)

U

U + V
∼= Beta(m/2, n/2).(12)

Here

ftm
(x) ≡ Γ((m + n)/2)√

πmΓ(m/2)
1

(1 + x2/m)(m+n)/2
for − ∞ < x < ∞,(13)

fFm,n
(x) ≡ Γ((m + n)/2)

Γ(m/2)Γ(n/2)
(m/n)m/2xm/2−1

(1 + mx/n)(m+n)/2
for 0 < x < ∞.(14)

(b) Compute the kth moment of each of these three distributions.

Exercise 2.6 If Y1, . . . , Yn+1 are iid Exponential(θ), then

(15) (Y1 + · · · + Yi)/(Y1 + · · · + Yn+1) ∼= Beta(i, n − i + 1).

Exercise 2.7 Let X1, . . . , Xn be iid N(μ, σ2) .
(a) Show that Wn ≡ √

n(X̄n − μ)/σ ∼= N(0, 1) .
(b) Show that (n − 1)S2

n/σ2 ≡
∑n

1 (Xk − X̄n)2/σ2 ∼= χ2
n−1.

(c) Show that Wn and S2
n are independent rvs.

(d) Show that Tn ≡ √
n(X̄n − μ)/Sn

∼= Student’s tn−1.

[Hint. Let Γ ≡ |[γij ]| be an orthogonal matrix with all γ1j = 1/
√

n. Now let �Z ≡ Γ( �X−μ�1)/σ.
This yields iid N(0, 1) rvs Z1, . . . , Zn, with Wn = Z1

∼= N(0, 1) and (n−1)S2
n =

∑n
2Z2

k
∼= χ2

n−1.
Apply exercise 2.5.]
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Statistical Confidence Intervals

Example 2.1 Suppose we model the performances of n independent repetitions X1, . . . , Xn

of an experiment as iid N(μ, σ2)rvs. The previous exercise shows that
√

n(X̄n − μ)/σ is a
N(0, 1) rv independent of the sample variance estimator S2

n ≡
∑n

1 (Xk − X̄n)2/(n − 1) of σ2,
and that Sn/σ ∼= {χ2

n−1/(n − 1)}1/2. Thus

(16) Tn ≡
√

n[X̄n − μ]/Sn
∼= Tn−1 ≡ Student tn−1.

Specify tp/2 such that P (−tp/2 ≤ Tn−1 ≤ tp/2) = 1 − p; perhaps, with p = .05. Then with the
“large” probability of 1 − p = .95 we have

1 − p = P (−tp/2 ≤ Tn ≤ tp/2) = P (−tp/2 ≤
√

n[X̄n − μ]/Sn ≤ tp/2)(17)

= P (μ − tp/2Sn/
√

n ≤ X̄n ≤ μ + tp/2Sn/
√

n ≤ X̄n)(18)

= P (X̄n − tp/2Sn/
√

n ≤ μ ≤ X̄n + tp/2Sn/
√

n).(19)

That is:

(20)
The random interval X̄n ± tp/2Sn/

√
n

will contain the unknown value of μ
an average of (1 − p) × 100% of the time.

So when we apply this to the data values x1, . . . , xn, we can have (1 − p) × 100% confidence
that the interval x̄n ± tp/2 sn/

√
n did enclose the true (but unknown) value of μ. We say that

(21) X̄n ± tp/2 Sn/
√

n provides a (1 − p) × 100% confidence interval

for the unknown mean μ. Or we say that

(22) x̄n ± tp/2 sn/
√

n provides a (1 − p) × 100% numerical confidence interval

for the unknown mean μ. There is a probability of 1 − p (or a (1 − p) × 100% chance)
that the former will contain the unknown value of μ when the X-experiment is repeated n
times. There is a (1 − p) × 100% confidence (or degree of belief) that the latter did contain
the unknown value of μ after the X-experiment was repeated n times giving the actual
data values x1, . . . , xn. We call tp/2 sn/

√
n the numerical margin for error exhibited by our

experiment. �

Transformations of Random Variables

Exercise 2.8 Suppose X has density fX(·) with respect to Lebesgue measure λn(·) on
n-dimensional Euclidean space Rn.

(a) Let Y ≡ AX denote a linear transformation with A a nonsingular matrix. The Jacobian
of this linear transformation is

(23) J ≡
∣∣∣∣
[

∂(old)
∂(new)

]∣∣∣∣ ≡
∣∣∣∣
[
∂xi

∂yj

]∣∣∣∣ = A−1, with |J |+ = |A−1|+ = 1/|A|+.

Verify that the rv Y has a density fY (·) with respect to Lebesgue measure that is given by
fY (y) = fX(A−1y)/|A|+ on Rn.
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(b) Suppose now that X has density fX(·) with respect to Lebesgue measure on a region RX

in Rn. Suppose the 1-to-1 transformation Y ≡ g(X) from RX to the region RY ≡ g(RX) has
a nonsingular Jacobian with continuous elements at each point of the region. Show that Y
has a density given by

(24) fY (y) = fX(g−1(y)) × |[∂(old)/∂(new)]|+ for y in the region RY .

(That is, any “nice” transformation is locally linear.)

Exercise 2.9 Suppose that U ≡ XY and V ≡ X/Y for rvs having joint density fXY (·, ·) on
the region where x > 0 and y > 0. The inverse transformation is X =

√
UV and Y =

√
U/V

with a “nice” Jacobian that is equal to 2v. Thus the joint density of U, V is

(25) fUV (u, v) =
1
2v

fXY (
√

uv,
√

u/v)) on the appropriate (u, v)-region,

provided that the transformation is 1-to-1. (Obtaining the appropriate region is often the
hardest part.) Now evaluate fUV (·, ·) and fV (·) in the following cases.
(a) X and Y are independent Exponential(1).
(b) X and Y are independent with density 1/(xy)2 on x, y ≥ 1. Evaluate fU (·).
(c) X and Y are independent N(0, 1). [Note that this transformation is not 1-1.]
(d) X ∼= N(0, 1) and Y ∼= Uniform(0, 1) are independent.
[This exercise demonstrates vividly the important role played by the regions RX and RY .]
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3 Linear Algebra Applications

Notation 3.1 (Mean vector and covariance matrix) Let X ≡ (X1, . . . , Xn)′ be a rv. Then
E(X) ≡ μ ≡ (μ1, . . . , μn)′, where μi ≡ E(Xi) is called the mean vector. And Σ ≡ |[σij ]| ≡
|[Cov[Xi,Xj ]]| is called the covariance matrix. (By the Cauchy–Schwarz inequality, both of
μ and Σ are well-defined provided that each of σii ≡ Var[Xi] ≡ Cov[Xi,Xi] is finite.) �

Definition 3.1 (Linear algebra) We will operate on n-dimensional space Rn with n × n
matrices and n × 1 vectors.
(i) A matrix Γ with column vectors γi (that is, Γ = [γ1, . . . , γn]) is called orthogonal if
Γ′Γ = I. [Thus γ′

iγj equals 1 or 0 according as i = j or i 
= j; when γ′
iγj = 0 we say that

these vectors are orthogonal, and we write γi ⊥ γj .] Under the orthogonal transformation
of Rn onto itself defined by y = Γx, the image of each γi is the standardized basis vector
ei ≡ (0, . . . , 0, 1, 0, . . . , 0)′ with the 1 in the ith slot.
(ii) Call a symmetric matrix A positive definite (written A > 0) if x′Ax > 0 for all vectors
x 
= 0. Call it nonnegative definite (written A ≥ 0) if x′Ax ≥ 0 for all vectors x 
= 0.
(iii) If A is symmetric and idempotent (that is, if AA = A), then A is called a projection
matrix (the symbol P is often used for a projection matrix).
(iv) Let Da be the diagonal matrix with dii = ai (and dij = 0 for all i 
= j).
(v) Let R[A] denote the column space of A; that is, it is the set of all vectors that can be
written as linear combinations of the column vectors of A.
(vi) Call x′Ax =

∑n
j=1

∑n
i=1xiaijxj a quadratic form in the vector x.

What follows is the statistician’s main result from linear algebra. We simply state it,
then interpret it geometrically in discussion 3.1, and then put it into a very useful format in
discussion 3.2.

Theorem 3.1 (Principal axes theorem) Let A denote an arbitrary real and symmetric
matrix of rank r.
(a) There exists an orthogonal matrix Γ ≡ [γ1, . . . , γn] and a diagonal matrix D for which we
have the representation

(1) A = ΓDΓ′ and/or Γ′AΓ = D with rank(D) = r.

The γi are called eigenvectors, while the corresponding dii are called eigenvalues. (See (39)
below for further comments.)
(b) If A > 0(A ≥ 0), then all dii > 0 (dii ≥ 0) .
We can specify Γ such that d11 ≥ · · · ≥ drr > 0 = dr+1,r+1 = · · · = dnn.
(c) If P is a projection matrix, then all dii = 1 or 0. Moreover, we must have r ≡ rank(A) =
tr(D) = tr(A) =

∑n
1aii.

Discussion 3.1 (Spectral decomposition) Consider a projection matrix P of rank r.
Then the transformation y = Px can be broken down as

(2) Px = ΓDΓ′x = [γ1, . . . , γn]D[γ1, . . . , γn]′x =
∑n

1dii(γ′
ix)γi,

where (γ′
ix)γi is the projection of x onto γi in the direction of γi, and where this term is present

when dii = 1 and is absent when dii = 0. Also, Px ⊥ (I − P )x, where the transformation

(3) (I − P )x =
∑n

i=1[1 − dii](γ′
ix)γi

projects onto R[γr+1, . . . , γn] = R⊥[γ1, . . . , γr]. Finally,

(4) Px =
∑r

i=1dii(γiγ
′
i)x = [

∑r
i=1Pi]x
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with Pi ≡ γiγ
′
i. This is called the spectral decomposition of the transformation y = Px. �

Exercise 3.1 (a) Show that for compatible matrices B and C,

(5) tr(BC) = tr(CB) and rank (BC) ≤ rank(B) ∧ rank(C),

giving rank(AΓ) = rank(A) above.
(b) Prove theorem 3.1(b)(c) using theorem 3.1 (a).
(c) Show that R[A] = R[AA′] and R[A′] = R[A′A].

Proposition 3.1 (Properties of E(·)) (a) It holds that

(6) E(AXB + C) = AE(X)B + C and Cov[AX,BY ] = A Cov[X,Y ]B′.

(b) Any covariance matrix ΣX ≡ |[Cov[Xi,Xj ]]| satisfies ΣX ≥ 0.

Exercise 3.2 Prove proposition 3.1.

Discussion 3.2 (Versions of Σ− and Σ−1/2) Let X ∼= (μ,Σ). According to the principal
axes theorem, we can make the decomposition (for any orthogonal matrix Δ whatsoever)

(7)

Σ = ΓDΓ′ =
[
Γ
[

D1/2 0
0 0

]
Δ′
] [

Δ
[

D1/2 0
0 0

]
Γ′
]

=
[
Γ
[

D1/2 0
0 0

]] [[
D1/2 0
0 0

]
Γ′
]

= (ΓD1/2)(D1/2Γ′) ≡ AA′,

where D1/2 has the numbers d
1/2
ii on its diagonal and where A is n × k. The presence of Δ′Δ

(which equals I) shows that this decomposition is not unique. Continuing on gives

Σ = ΓDΓ′ = (ΓDΓ′)(ΓDΓ′) ≡ Σ1/2Σ1/2,(8)

Σ−1/2 ≡ ΓD−1/2Γ′, where d
−1/2
ii ≡

{
0 if dii = 0,

1√
dii

if dii > 0,
(9)

Σ− ≡ ΓD−Γ′, where D− ≡ D−1/2D−1/2.(10)

Note that

ΣΣ−Σ = Σ and Σ1/2Σ−1/2Σ1/2 = Σ1/2,(11)

Σ1/2Σ−1/2 =
[

Ik 0
0 0

]
= Σ−1/2Σ1/2 and ΣΣ− =

[
Ik 0
0 0

]
= Σ−Σ.(12)

These last two results are in keeping with the definition of generalized inverses. �
Recall that the generalized inverse B− of the matrix B is defined to be any matrix B− that

satisfies BB−B = B. A generalized inverse always exists. It has the following interpretation.
Fix the matrix B and the vector c. Then

(13) Bβ = c (with any c ∈ R[B]) has the solution β̂ = B−c.

(It is clear that such a solution does always exist, for a fixed c.) Suppose such a B− exists,
in general; which we accept, and will use freely. Then replace c in (13) by each column of B,
and see that such a B− must necessarily satisfy BB−B = B.
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Theorem 3.2 (Properties of covariance matrices)
(a) The following results are equivalent for real matrices:

Σ is the covariance matrix of some rv Y.(14)
Σ is symmetric and nonnegative definite.(15)
There exists an n × n matrix A such that Σ = AA′. (Recall (7) for A.)(16)

(b) The matrix ΣX is positive definite (that is,ΣX > 0) if and only a vector c 
= 0 and a
constant b do not exist for which c′X = b a.s.

Proof. Now, (14) implies (15): Σ is symmetric, since EYiYj = EYjYi. Also, a′Σa =
Var[a′Y ] ≥ 0 for all vectors a, so that Σ ≥ 0.
Also, (15) implies (16): Just recall (17).
Also, (16) implies (14): Let X ≡ (X1, . . . , Xn)′, where X1, . . . , Xn are independent N(0, 1).
Let Y ≡ AX. Then Y has covariance matrix Σ = AA′ by (6). �

Exercise 3.3 Prove theorem 3.2(b).

Exercise 3.4 Let X ∼= (θ,Σ) and let B be symmetric.
(a) E{(X − b)′B(X − b)} = tr(BΣ) + (θ − b)′B(θ − b) .
(b) If Σ = σ2I, then tr(BΣ) = σ2tr(B) = σ2

∑n
i=1bii.

(c) If Σ = σ2I and B is idempotent, then tr(BΣ) = σ2tr(B) = σ2rank(B).

Exercise 3.5 For symmetric A there exists an upper (or lower) triangular matrix H for
which A = HH ′. If A > 0 (or A ≥ 0), we may suppose that all hii > 0 (or that all hii ≥ 0).

Discussion 3.3 (Best linear predictor and multiple correlation) Consider the par-
titioned random vector

(17)
[

Y0

Y

]
∼=
[[

0
0

]
,

[
σ00 σ′

0

σ0 Σ

]]
with |Σ| 
= 0.

The best linear predictor of Y0 based on Y is

(18) α′
0Y ≡ σ′

0Σ
−1Y (or α0 ≡ Σ−1σ0),

where “best” is in the sense that

(19) Var[Y0 − β′Y ] ≥ Var[Y0 − α′
0Y ] = σ00 − σ′

0Σ
−1σ0 for all β.

In parallel with this,

(20) Corr[Y0, β
′Y ] ≥ Corr[Y0, α

′
0Y ] for all β.

The maximized value of the correlation (that is, the multiple correlation coefficient) is given
by

(21) ρ0·1,...,n ≡ Corr[Y0, α
′
0Y ] =

√
σ′

0Σ−1σ0

σ00
,

and the variance of the best linear predictor is also easily seen to equal

(22) Var[Y0 − α′
0Y ] = σ00 − σ′

0Σ
−1σ0 = σ00(1 − ρ2

0·1,...,n).
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[Proof. The first holds, since

Var[Y0 − β′Y ] = Var[(Y0 − α′
0Y ) + (α′

0 − β)Y ]
= Var[Y0 − α′

0Y ] + 2 · 0 + (α0 − β)′Σ(α0 − β)
≥ Var[Y0 − α′

0Y ].

The second holds, since

Corr2[Y0, βY ] =
(β′σ0)2

σ00 β′Σβ
≤ σ′

0Σ
−1σ0

σ00
,

with equality only at β = cΣ−1σ0 (as follows from application of Cauchy–Schwarz).]

Simple linear regression model We now want the best linear predictor of Y based on X.
The conditional distribution of Y given that X = x is given by

(23) Y
∣∣X = x ∼=

(
μY +

σXY

σ2
X

(x − μX), σ2
Y − σ2

XY

σ2
X

)
= (α + βx, σ2

ε ),

expressing the moments in terms of

(24) ρ ≡ σXY

σXσY
, β ≡ ρ

σY

σX
, α ≡ μY − βμX , σ2

ε ≡ σ2
Y (1 − ρ2).

This leads directly to the simple linear regression model that conditionally on X = x the
observations Yi satisfy

(25) Yi = α + β xi + εi where εi
∼= (0, σ2

ε ) are iid

with

(26) β = ρ
σY

σX
, σ2

ε ≡ σ2
Y (1 − ρ2), α ≡ μY − μXβ. �

Discussion 3.4 (Conditional moments and projections) Suppose that

(27) Y =
[

Y (1)

Y (2)

]
∼=
[[

μ(1)

μ(2)

]
,

[
Σ11 Σ12

Σ21 Σ22

]]
.

Then the moments of the conditional distribution of Y (1) given that Y (2) = y(2) are summa-
rized in

(28) Y (1)
∣∣Y (2) = y(2) ∼= (μ(1) + Σ12Σ−1

22 (y(2) − μ(2)), Σ11 − Σ12Σ−1
22 Σ21).

To see this, just define

(29) Z ≡
[

Z(1)

Z(2)

]
≡
[

(Y (1) − μ(1)) − Σ12Σ−1
22 (Y (2) − μ(2))

Y (2) − μ(2)

]
.

It is a minor calculation that

(30) Z ∼= [�0,ΣZ ] ≡
[[

0
0

]
,

[
ΣZ,11 ΣZ,12

ΣZ,21 ΣZ,22

]]
=
[[

0
0

]
,

[
Σ11 − Σ12Σ−1

22 Σ21 0
0 Σ22

]]
.
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The exercises will show that

(31) |ΣZ | = |Σ22||Σ11 − Σ12Σ−1
22 Σ21|.

[Proof. It is straightforward to compute ΣZ,12 = Σ12 − Σ12Σ−1
22 Σ22 = 0. Trivially, we have

ΣZ,22 = Σ22. Then

(a) ΣZ,11 = Σ12 − 2Σ12Σ−1
22 Σ22 + Σ12Σ−1

22 Σ22Σ−1
22 Σ21

(b) = Σ12 − Σ12Σ−1
22 Σ21.

Since Y (1) = μ(1) + Z(1) + Σ12Σ−1
22 Z(2) with Y (2) − μ(2) = Z(2), conditionally

(c) Y (1)
∣∣∣Y (2) = y(2) ∼= μ(1) + Z(1) + Σ12Σ−1

22 z(2)

∼= (μ(1) + Σ12Σ−1
22 z(2),ΣZ,11)

= (μ(1) + Σ12Σ−1
22 (y(2) − μ(2)),ΣZ,11),

as required.] [See exercise 3.7 below for (31).] �

Exercise 3.6 Consider the rvs Z(1) and Z(2) in (29). Suppose μ(1) = 0 and μ(2) = 0. Let
H0

1 and H0
2 denote the Hilbert spaces generated by the rv subsets Y (1) ≡ (Y1, . . . , Yk) and

Y (2) ≡ (Yk+1, . . . , Yn), respectively. Show that Z(1) is the projection of Y (1) into the Hilbert
space (H0

2)
⊥. (See (B.3.1).)

Discussion 3.5 (Partitioned matrices) Let

(32) A ≡
[

A11 A12

A21 A22

]
, and write A−1 ≡

[
A11A12

A21A22

]

when the inverse exists. We agree that A11 is k × k.

Exercise 3.7 (a) If |A22| 
= 0, show that |A| = |A22||A11 − A12A
−1
22 A21|.

(b) If |A| 
= 0, show that |A + xy′| = |A|(1 + y′A−1x) for all vectors x, y. [Hint. Appeal to
[

C 0
E D

]
= |C||D| and work with B ≡

[
I 0

−A12A
−1
22 I

]

for appropriate choices.]

Exercise 3.8 (a) Show that for a symmetric A having |A11| 
= 0 and |A22| 
= 0:

A11 = (A11 − A12A
−1
22 A21)−1 and A12 = −A−1

11 A12A
22.(33)

A22 = (A22 − A21A
−1
11 A12)−1 and A21 = −A−1

22 A21A
11.(34)

[Hint. Start multiplying the partitioned form of A A−1 = I.]
(b) Obtain analogous formulas from A−1A = I.
(c) Show that

(35) A11A11 + A12A21 = I and A11A
12 + A12A

22 = 0. �
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Exercise 3.9 Show that for symmetric A,

(36)
∂

∂β
[β′ A β] = 2Aβ.

Discussion 3.6 (Simultaneous decomposition) For a real symmetric matrix A that is non-
negative definite (that is, A ≥ 0) we wrote

(37) A = ΓDΓ′ and Γ′AΓ = D

with d11 ≥ · · · ≥ drr > 0.
(A) We note that

(38) |A − λI| = |Γ||D − λI||Γ′| = |D − λI| = 0

all have the same solutions d11, . . . , drr, 0, and thus d11, . . . , drr are indeed the nonzero eigen-
values of A. Moreover, (37) gives

(39) AΓ = ΓD or Aγi = diiγi for 1 ≤ i ≤ r,

so that γ1, . . . , γr are the corresponding eigenvectors.
(B) Suppose A > 0 and B ≥ 0. Then

(40) |B − λA| = 0, |A−1/2BA−1/2 − λI| = 0, |A−1B − λI| = 0
all have the same solutions λ.

[Just note that |B−λA| = |A1/2||A−1/2BA−1/2−λI||A1/2| and |A−1||B−λA| = |A−1B−λI|.]
Writing A−1/2BA−1/2 = ΔDθΔ′ with Δ orthogonal gives

(41) B = (A1/AΔ)Dθ(Δ′A1/2) and A = (A1/2Δ)(Δ′A1/2).

This last formula is called the simultaneous decomposition of A and B. �

Discussion 3.7 (a) (Cauchy–Schwarz) For all vectors x, y:

(42) (x′y)2 ≤ ‖x‖2‖y‖2,

with equality (for y 
= 0) if and only if x = cy for some constant c.
(b) For any real symmetric matrix A > 0

(43) max
a�=0

a′Aa

a′a
= d11(A)

(as follows immediately from (1), with d11(A) the largest eigenvalue of A).
(c) Let A > 0, and fix C ≥ 0 and b 
= 0. Then

(44) (x′y)2 ≤ (x′ A x)(y′A−1y),

with equality (when y 
= 0) if and only if x = cA−1y for some c. Also,

(45) min
a′1=1

{a′ A a} = 1/(1′A−11),
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with equality only at a0 ≡ A−11/(1′A−11). Also,

(46) max
a�=0

(a′b)2

a′Aa
= b′A−1b,

with equality only when a = (some c)A−1b. Also,

max
a�=0

a′Ca

a′Aa
= max

a�=0

(a′A1/2)(A−1/2CA−1/2)(A1/2a)
(a′A1/2)(A1/2a)

= d11(A−1/2CA−1/2) = d11(CA−1).(47)

Here, (a′Ca) = (a′b)2 is an important special case (already solved via (46)).
(d) Let A > 0, let Bk×n have rank (B) = k, and let bk×1 
= 0. Then

(48) min
Ba=b

{a′Aa} = b′[BA−1B′]−1b, is achieved at a0 ≡ B′[BA−1B′]−1b. �

Exercise 3.10 Prove (42)–(47) (the equality in (42) needs some attention). [The harder
(48) is proven below.]

Proof. Consider (48). Now,

a′Aa ≥ (a′y)2

y′A−1y
for all y 
= 0

(a) =
[a′B′[BA−1B′]−1b]2

b′[BA−1B′]−1(BA−1B′)[BA−1B′]−1b
if y ≡ B′[BA−1B′]−1b

(b) =
[b′[BA−1B′]−1b]2

b′[BA−1B′]−1b
for all a, using Ba = b

= b′[BA−1B′]−1b

yielding a bound not depending on a, which proves (48). �

Discussion 3.8 (General Linear Model) Consider the general linear model

(49) Y = Xβ + ε ≡ θ + ε,

where Xn×p is a matrix of known constants, where βp×1 is a vector of unknown parameters,
and where the rv εn×1 ∼= (�0, σ2I) with σ2 unknown. Recall that

(50) R[X] ≡ (the column space of X) = {y : y = Xa with any vector a}

is a vector space (of rank r, say). Noting that θ = Xβ ∈ R[X], the least squares estimator
(or LSE) of θ is defined to be that value θ̂ in R[X] that minimizes

(51) ‖ε‖2 = ‖Y − Xβ‖2 = ‖Y − θ‖2.

This minimization clearly occurs when θ̂ is the projection of Y onto R[X]; so

(52) θ̂ = (the unique projection of Y onto R[X]) = (the unique LSE θ̂ of θ).
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We note that β̂ need not be unique, since

(53) any β̂ for which Xβ̂ = θ̂ gives this same LSE θ̂.

Since (Y − θ̂) is ⊥ to R[X], it must be that θ̂ and β̂ satisfies the normal equations

(54) X ′(Y − θ̂) = �0, or equivalently X ′Xβ̂ = X ′Y.

Conversely, suppose β̂ satisfies the normal equations. Then Xβ̂ ∈ R[X] with X ′(Y −Xβ̂) = �0,
showing that (Y − Xβ̂) ∈ R[X]⊥; and thus Xβ̂ and (Y − Xβ̂) must be the projections of Y
onto the spaces R[X] and R[X]⊥, respectively. Thus

(55) Xβ̂ = θ̂ ≡ (the unique projection of Y onto R[X]) iff X ′Xβ̂ = X ′Y.

Let Ω ≡ R[X], let r ≡ rank(X), and let PΩ ≡ (the projection matrix onto Ω). We will next
prove that:

PΩ = X(X ′X)−X ′ ≡ (the hat matrix), with PΩ and (I − PΩ) idempotent.(56)

θ̂ ≡ Ŷ ≡ ( the fitted value) = [X(X ′X)−X ′]Y = PΩY.(57)

ε̂ ≡ (the residuals) ≡ (Y − Ŷ ) = [I − PΩ]Y = PΩ⊥Y.(58)

Eθ̂ = θ,E‖ε̂‖2 = E‖Y − Ŷ ‖2 = (n − r)σ2 and Cov[θ̂ − θ, Y − θ̂] = �0.(59)

Call RSS ≡ ‖ε̂‖2 = ε̂′ε̂ = ‖Y − Ŷ ‖2 = Y ′[I − PΩ]Y the residual sum of squares.

Proof. Let B ≡ X ′X, with R[B] = R[X ′] (by exercise 3.1(c)); and then define c ≡ X ′Y ∈
R[X ′]. Then (by (13)) the projection of Y onto Ω is given by PΩY = θ̂ = Xβ̂ = XB−c =
X(X ′X)−X ′Y ; so PΩ = X(X ′X)−X ′. Also, E(θ̂) = E(PΩY ) = PΩEY = PΩθ = θ. Finally,
the residuals satisfy ‖Y −Ŷ ‖2 = (Y −Ŷ )′(Y −Ŷ ) = Y ′(I−PΩ)′(I−PΩ)Y = Y ′(I−PΩ)Y , with
expectation (given by exercise 3.4) σ2tr(I−PΩ)+θ′(I−PΩ)θ = σ2tr(I−PΩ)+θ′�0 = (n−r)σ2.

When rank(X) = p, then Xb = θ̂ has a unique solution β̂. Moreover,

(60) β̂ = (X ′X)−1X ′Y

is the unique solution of the normal equations (β̂ is now called the LSE of β), and

Eβ̂ = (X ′X)−1X ′Xβ = β, so that β̂ is an unbiased estimator of β, and(61)

Σβ̂ = (X ′X)−1X ′(σ2I)X(X ′X)−1 = σ2(X ′X)−1, with(62)

ES2 = σ2 for S2 ≡ ‖Y − Ŷ ‖2/(n − p), so that S2 is unbiased for σ2.(63)

We thus say that β is identifiable (and estimable) in this full rank case when rank(X) = p
(that is, when X is non-singular, or |X| 
= 0). �

Exercise 3.11 (Gauss–Markov) Let Y = Xβ+ε = θ+ε (as in (49)) with the rv ε ∼= (0, σ2I)
and with rank(X) = r. Consider some c′θ(= c′Xβ). Show that among the class of all linear
unbiased estimators of c′θ, the estimator c′θ̂ is the unique one having minimum variance (so,
it is best). Determine its variance.
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Exercise 3.12 (Distribution theory under normality) (a) Let Y = Xβ + ε = θ + ε (as in
equation (49)) with ε ∼= N(0, σ2I), and with r ≡ rank(X). Show that

(β̂ − β)′(X ′X)(β̂ − β) = ‖X(β̂ − β)‖2 = ‖θ̂ − θ‖2 ∼= σ2Chisquarer.(64)

‖ε̂‖2 = ‖Y − Ŷ ‖2 = ‖Y − θ̂‖2 ∼= σ2Chisquaren−r, or(65)

RSS/(n − r) = ‖Y − Ŷ ‖2/(n − r) ∼= σ2Chisquaren−r/(n − r), and(66)

θ̂ and ε̂ = (Y − Ŷ ) = (Y − θ̂) are uncorrelated.(67)

When r ≡ rank(X) = p (so that β̂ is unique, identifiable, and estimable), show that

β̂ ∼= N(β, σ2(X ′X)−1) and(68)

β̂ is independent of ε̂ = (Y − Ŷ ) = (Y − θ̂), and hence of ‖Y − θ̂‖2 also.(69)

(b) Suppose instead that ε ∼= (�0, V ), with rank(V) = n. Define Z ≡ V −1/2Y, and show
that this Z satisfies the linear model equation Z = X∗β + ε∗ where X∗ ≡ V −1/2X and
ε∗ ∼= (0, σ2I). So, analogs of all the formulas in (a) are trivial.

Exercise 3.13 (Alternative minimization in the general linear model) In the context of the
model Y = Xβ + ε = θ + ε (as in (49)) we now let θ̃ denote that θ ∈ R[X] that minimizes
(for some positive definite covariance matrix M)

(70) ‖ε‖2
M ≡ ε′Mε = ‖Y − θ‖2

M = ‖Y − Xβ‖2
M = (Y − Xβ)′M(Y − Xβ)

(instead of minimizing ‖ε‖2 (as in (49))). Show that (Y − θ̃) ⊥M R[X], and so this resulting
weighted LSE θ̃ = Xβ̃ must satisfy the weighted normal equations

(71) X ′Mθ̃ = X ′MY, (equivalently,X ′MXβ̃ = X ′MY ).

Summary: Xβ̃ = θ̃ if and only if β̃ satisfies the weighted normal equations. Also,

β̃ = (X ′MX)−(X ′MY ) does satisfy the weighted normal equations and(72)

θ̃ = Xβ̃ = [X(X ′MX)−X ′M ]Y ≡ PΩY projects Y onto Ω ≡ R[X].(73)

Exercise 3.14 (Minimum variance unbiased linear estimators) (a) Let X1, . . . , Xn be
uncorrelated with common mean μ and common finite variance σ2. All linear estimators
T ≡

∑n
1aiXi having

∑n
1ai = 1 are unbiased estimators of μ (that is, ET = μ). Show that the

choice with all ai = 1/n has minimum variance within this class of linear unbiased estimators.
(b) Determine the minimum variance unbiased linear estimator of the common mean μ when
the variances are σ2/c1, . . . , σ

2
n/cn, with the ck being known constants.
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4 The Multivariate Normal Distribution

Definition 4.1 (Jointly normal) Call Y = (Y1, . . . , Yn)′ jointly normal with 0 means if
there exist iid N(0, 1) rvs X1, . . . , Xk and an n × k matrix A of known constants for which
Y = AX. [We again write Y in this section, rather than �Y , when the context seems clear.]
Note that the n × n covariance matrix ΣY ≡ Σ of the random vector Y is

(1) Σ ≡ ΣY = EY Y ′ = EAXX ′A′ = AA′.

The covariance matrix of X is the k × k identity matrix Ik. We will write X ∼= N(0, Ik), and
we will write Y ∼= N(0,Σ). Then write Y ∼= N(μ,Σ) if Y − μ ∼= N(0,Σ). Call Y Multivariate
Normal with mean vector μ and covariances matrix Σ, or just Normal with mean vector μ
and covariance matrix Σ. Call Y nondegenerate when |Σ| 
= 0 (that is, the determinant of Σ
is not equal to 0). Say that Y1, . . . , Yn are linearly independent if (rank Σ) = n. Of course,
this means that

(2) Y is nondegenerate if and only if rank(A) = n.

Now, Σ is symmetric. Also aΣa′ = Var[aY ] ≥ 0 for all vectors a. When aΣa′ ≥ 0 for all
vectors a, the symmetric matrix Σ is called nonnegative definite, and one writes Σ ≥ 0.

Theorem 4.1 (Densities) If Y ∼= N(0,Σ) is nondegenerate, then Y has density (with
respect to Lebesgue measure on Rn) given by

(3) fY (y) =
1

(2π)n/2|Σ|1/2
exp(−y′Σ−1y/2) for all y ∈ Rn.

[Note that each possible Normal distribution is completely determined by μ and Σ.]

Proof. Now, Y = XA, where AA′ = Σ, (rankA) = n, |A| 
= 0,X ∼= N(0, Ik). It is trivial
that

(a) P (X ∈ Bn) =
∫

1Bn
fX(x) dx with fX(x) ≡ (2π)−n/2 exp(−x′x/2).

Thus X = A−1Y gives

P (Y ∈ Bn) = P (AX ∈ Bn) = P (X ∈ A−1Bn) =
∫

1A−1Bn
(x)fX(x) dx

=
∫

1A−1Bn
(A−1y)fX(A−1y)|∂x

∂y |+ dy

=
∫

1Bn
(y)(2π)−n/2 exp(−(A−1y)′(A−1y)/2)|∂x

∂y
|+ dy

(b) =
∫

Bn

(2π)−n/2|Σ|−1/2 exp(−y′Σ−1y/2) dy,

since (A−1)′(A−1) = (AA′)−1 = Σ−1 and

(c) |∂x

∂y
|+ = |A−1|+ =

√
|A′−1||A−1| =

√
|Σ−1| = 1/

√
|Σ|.

This is the required statement. �
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Theorem 4.2 (Characteristic functions and representations)
(a) If we are given a random vector Y = An×kXk×1 where X ∼= N(0, Ik), we have

(4) φY (t) ≡ Eeit′Y = exp(−t′Σt/2)

with Σ ≡ AA′ and rank(Σ) = rank(A) .
(b) If Y has characteristic function φY (t) ≡ EeitY = exp(−t′Σt/2) with Σ ≥ 0 of rank k,
then

(5) Y ∼= An×kXk×1 with (rank A) = k and X ∼= N(0, I).

(Thus the number of independent rvs Xi’s needed is equal to the rank of A.)

Proof. Our proof will use the fact that the characteristic function φY of any rv Y is unique
(this is shown in theorem 9.4.1.) [When a density function does not exist, one can use this
characteristic function for many of the same purposes.] We observe that

φY (t) = E exp(it′AX) = E exp(i(A′t)′X)

(a) = exp(−(A′t)′(A′t)/2)

since EeiuXj = exp(−u2/2) for any u, by (9.3.5)

(b) = exp(−t′(AA′)t/2).

The converse follows from (A.3.7). �

Even when a Multivariate Normal rvY does not have a density, the characteristic function
can often be manipulated to establish a desired result.

Theorem 4.3 (Marginals, independence, and linear combinations) Suppose that

Y = (Y1, . . . , Yk, Yk+1, . . . , Yn)′ ∼= N(0,Σ) with Σ ≡
(

Σ11 Σ12

Σ21 Σ22

)

(i) The marginal covariance matrix of (Y1, . . . , Yk)′ is the k × k matrix Σ11, and

(6) (Y1, . . . , Yk)′ ∼= N(0,Σ11).

(ii) If Σ12 = 0, then (Y1, . . . , Yk)′ and (Yk+1, . . . , Yn)′ are independent.
(iii) If (Y1, Y2) is a jointly normal rv, then Y1 and Y2 are independent if and only if they have
the zero covariance Cov[Y1, Y2] = 0.
(iv) Linear combinations of Multivariate Normals are Multivariate Normal.

Proof. (i) Use the first k coordinates of the representation Y = AX.
(ii) Use the fact that one can factor

φY (t) = exp(−1
2
t′
(

Σ11 0
0 Σ22

)
t).

(iii) Just apply (ii), as the other direction is trivial.
(iv) Zm×1 ≡ Bm×nY n×1 = B(AX) = (BA)X. �
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Theorem 4.4 (Conditional distributions) If

(7) Y =
[

Y (1)

Y (2)

]
∼= N

[[
μ(1)

μ(2)

]
,

[
Σ11 Σ12

Σ21 Σ22

]]
,

then

(8) Y (1)
∣∣Y (2) = y(2) ∼= N(μ(1) + Σ12Σ−1

22 (y(2) − μ(2)),Σ11 − Σ12Σ−1
22 Σ21).

Note that

(9) |Σ| = |Σ22||Σ11 − Σ12Σ−1
22 Σ21|.

Proof. The vector

(10) Z ≡
[

Z(1)

Z(2)

]
≡
[

(Y (1) − μ(1)) − Σ12Σ−1
22 (Y (2) − μ(2))

(Y (2) − μ(2))

]

is just a linear combination of the Yi’s, and so it is Normal. We need only verify the means
and variances. But we did this in discussion A.3.4. �

Exercise 4.1 Show that (Y1, Y2) can have Normal marginals without being jointly normal.
[Hint. Consider starting with a joint N(0, I) density on R2 and move mass in a symmetric
fashion to make the joint distribution nonnormal, but still keeping the marginals Normal.]

Quadratic Forms

Exercise 4.2 Let Y n×1 ∼= N(0, I), and suppose that A is symmetric and of rank r. Then
Y ′AY ∼= χ2

r if and only if A is a projection matrix (that is, A2 = A).

Exercise 4.3 Let Y n×1 ∼= N(0, I). Suppose that A and B are symmetric and both Y ′AY
and Y ′BY have chisquare distributions. Show that Y ′AY and Y ′BY are independent if and
only if AB = 0.

Exercise 4.4 Suppose A and B are n × n projection matrices with ranks rA and rB , and
suppose AB = 0 and I − A − B ≥ 0. Then:
(a) I − A is a projection matrix of rank n − rA.

(b) I − A − B is a projection matrix of rank n − rA − rB .

Exercise 4.5 Suppose Y n×1 ∼= N(0,Σ), and let A be an arbitrary symmetric matrix of
rank r. Show that Y ′AY ∼= χ2

r if and only if AΣA = A.

The Multivariate CLT

The following result is theorem 14.1.3, but we also list it here for convenient referral.

Theorem 4.5 Suppose that the random vectors X1, . . . , Xn are iid (μ,Σ). Then

(11)
√

n(X̄n − μ) →d N(0,Σ) as n → ∞.
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Normal Processes

To specify a normal process, we must specify consistent distributions (in the sense of Kol-
mogorov’s consistency theorem). But μ and Σ completely specify N(μ,Σ), while the marginals
of N(μ,Σ) are N(μ(1),Σ11). Thus a normal process exists, provided only that the mean value
function μ(·) on I and the covariance function Cov(·, ·) on I × I are well-defined and are such
that Cov(·, ·) is nonnegative definite (meaning that every n-dimensional covariance matrix
formed from it is nonnegative definite).

We call {S(t) : 0 ≤ t < ∞} a Brownian motion if S is a normal process having

(12) ES(t) = 0 and Cov[S(s), S(t)] = s ∧ t for all s, t ≥ 0.

Since this covariance function is nonnegative definite, a version of the process S exists on
(R[0,∞),B[0,∞)) by the Kolmogorov consistency condition. Then

(13) U(t) ≡ −[S(t) − t S(1)] for all 0 ≤ t ≤ 1 is called Brownian bridge.

It is a normal process on (R[0,1],B[0,1]) for which

(14) EU(t) = 0 and Cov[U(s), U(t)] = s ∧ t − st for all 0 ≤ s, t ≤ 1.



Appendix B

General Topology and Hilbert
Space ∗

1 General Topology ∗

Only the definitions and the statements of the major results are presented. (Only a small
amount will be referenced; so see this as a handy summary.)

Definition 1.1 (Topology, open set, neighborhood, and boundary)
(a) A topological space (or a space) is a pair (M,U) where M is a set and U is a family of
subsets that satisfies

(1)
∪V ≡

⋃
V ∈VV ∈ U , for any V ⊂ U ,

∩V ∈ U for any finite V ⊂ U , and ∅ and M are in U .

U is called a topology, and the sets in U are called open sets.
The complements of all open sets are called closed sets.
An open set U containing a point x ∈ M is called a neighborhood of x.
(b) The interior Ao of A is int (A) ≡ Ao ≡ ∪{ U : U ⊂ A with U open}.
The closure Ā of A is defined by c1(A) ≡ Ā ≡ ∩{ F : F ⊃ A with F closed}.
The boundary ∂A of A is ∂A ≡ Ā\Ao.
(c) Call x an accumulation point of A if A\{x} contains x.

Exercise 1.1 (a) Show that Ā = {x : every neighborhood U of x has U ∩ A 
= ∅}.
(b) Show that A ∪ B = Ā ∪ B̄, while A ∩ B ⊂ Ā ∩ B̄.
(c) Show that Ao = M\Ac, and that (A ∩ B)o = Ao ∩ Bo, while (A ∪ B)o ⊃ Ao ∪ Bo.
(d) Show that ∂A = Ā ∩ Ac,M\∂A = Ao ∪ (Ac)o, Ā = A ∪ ∂A, and Ao = A\∂A.

Definition 1.2 (Bases and subbases) (a) Call B a base for the topology U if B ⊂ U and if
each nonvoid U ∈ U satisfies U = ∪V for some V ⊂ B. We then say that B generates U . (All
the open intervals (a, b) generate the open subsets of R.)
(b) A family of sets S is a subbase for U if ∪ S = M and the family of all finite intersections
of members of S is a base for U . (All (a, b) × R and R × (a, b) serve as a subbase for all the
open sets in R2.)

Exercise 1.2 (Bases and subbases) (a) B is a base for a topology U on M ≡ ∪B if and
only if for each x ∈ M and each neighborhood U ∈ U of x there exists a B ∈ B such that
x ∈ B ⊂ U.

c© Springer International Publishing AG 2017
G.R. Shorack, Probability for Statisticians, Springer Texts in Statistics,
DOI 10.1007/978-3-319-52207-4
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(b) B is a base for some topology on M ≡ ∪B if and only if whenever B1 and B2 are members
of B and x ∈ B1 ∩ B2, there is a B3 ∈ B such that x ∈ B3 ⊂ B1 ∩ B2.
(c) Any collection S of subsets of M having ∪S = M is a subbase for a unique topology on
M .

Exercise 1.3 (Relative topology) Let (M,U) be a topological space. First let N ⊂ M , and
then let V ≡ {U ∩ N : U ∈ U}.
(a) Then V is a topology (the relative topology) for N.
(b) Moreover, B ⊂ N is open (closed) with respect to V if and only if there is an A ⊂ M that
is open (closed) with respect to U for which B = A ∩ N.
(c) The closure cl(B|N) of an arbitrary B in (N,V) equals B̄∩N , while the interior int (B|N)
of an arbitrary B in (N,V) equals (Bc)c ∩ N.

Convergence

Definition 1.3 (Sequences) A sequence is a function x whose domain is the natural num-
bers {1, 2, . . . } and we let xn ≡ x(n). Suppose x takes values xn in some space (M,U). Then
the sequence is said to converge to some x0 ∈ M if for each neighborhood U of x0 there exists
a natural number nU such that xn ∈ U for all n ≥ nU . We write xn → x0 or limn xn = x0 to
denote that the sequence xn converges to x0.

Definition 1.4 (Nets) A partial ordering is a relationship R that is reflexive (xRx), anti-
symmetric (xRy and yRx implies x = y), and transitive (xRy and yRz implies xRz). A
directed set is a set I under a relationship � for which, for any i, j ∈ I there is a k ∈ I
satisfying i � k and j � k. A net is any function whose domain is such a directed set I (with
xi ≡ x(i)) taking values in some topological space (M,U). The net {xi}i∈I is said to converge
to a value x0 in M if for each neighborhood U of x0 there is an iU ∈ I for which xi ∈ U for
all i � iU . [The set of all neighborhoods of a point constitutes a directed set. So does the set
of all partitions of an interval.]

Compactness

Definition 1.5 (Compactness) (a) A collection A of subsets of M covers the subset B of
M if B ⊂ ∪A; and A is called an open cover of B if all sets A in A are open. A set A is called
compact if every open cover A of A has a finite subcover V (that is, A ⊂ ∪V, where V ⊂ A
contains only finitely many subsets of A). [This is called the Heine-Borel property.]
(b) A ⊂ M is compact (relatively compact) if it (its closure) is compact in the relative topology.
(c) The collection A has the finite intersection property if ∩F 
= ∅ for each finite subcollection
F of subsets of A.

Exercise 1.4 (a) A closed subset of a compact space (M,U) is compact.
(b) Let B be a base for (M,U), and let A ⊂ M . Then A is compact if and only if every cover
of A by members of the base B admits a finite subcover.
(c) (Alexander’s lemma) Let S be a subbase for the topological space (M,U). Then M is a
compact space if and only if each cover of M by members of the subbase S admits a finite
subcover.
(d) A space (M,U) is compact if and only if each family of closed sets with the finite inter-
section property has a nonempty intersection.
(e) (M,U) is compact if and only if every net on M has at least one accumulation point in
M.
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Separation

Definition 1.6 (Separation) (a) (M,U) is called a Hausdorff space if for each x 
= y in M
there are disjoint open sets U and V such that x ∈ U and y ∈ V.
(b) (M,U) is called a normal space if for each pair of disjoint closed sets A and B there are
disjoint open sets U and V having A ⊂ U and B ⊂ V.
(c) (M,U) is called separable if it contains a countable subset D that is dense in M ; here D
is called dense if D̄ = M.
(d) (M,U) is called first countable if for each x ∈ M there is a family Nx of neighborhoods
Nx of x such that for each neighborhood U of x we have x ∈ Nx ⊂ U for some neighborhood
Nx in Nx.
(e) (M,U) is called second countable or perfectly separable if the topology U admits a countable
base B.

Exercise 1.5
(a) A sequence with values in a Hausdorff space converges to at most one point.
(b) If all values xn are in A and xn → x0, then x0 ∈ Ā.

Exercise 1.6 (a) A perfectly separable (M,U) is separable.
(b) (Lindelöf) An open cover of a perfectly separable space necessarily admits a countable
subcover.

Exercise 1.7 (a) A compact subset of a Hausdorff space (M,U) is closed.
(b) A compact Hausdorff space is normal.
(c) A space (M,U) is normal if and only if for each closed C and open U with C ⊂ U there
exists an open V with C ⊂ V ⊂ V̄ ⊂ U.
(d) A subset of a Hausdorff space (M,U) is Hausdorff in its relative topology.
(e) A subset of a normal space (M,U) is normal in its relative topology.

Continuity

Definition 1.7 (Continuous functions and homeomorphisms)
(a) Let f : M → N for topological spaces (M,U) and (N,V). Call the function (or mapping)
f continuous at x if for each neighborhood V of f(x) there is a neighborhood U of x for which
f(U) ⊂ V.
(b) A 1-to-1 function that maps onto the image space is called a bijection.
(c) A 1-to-1 bicontinuous function f (that is, both f and f−1 are continuous and onto) is
called a homeomorphism.

Exercise 1.8 (Conditions for continuity) The following are equivalent:
(a) f is a continuous function.
(b) Inverse images of all open sets are open.
(c) Inverse images of all closed sets are closed.
(d) Inverse images of all subbasic open sets are open.
(e) For each x ∈ M and each net {xi}i∈I converging to this x, {f(xi)}i∈I → f(x) converges.
(f) f(Ā) ⊂ f(A) for all subsets A of M.
(g) f−1(B) ⊂ f−1(B−) for all subsets B of N.
(h) f−1(Bo) ⊂ [f−1(B)]o for all subsets B of N.
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Exercise 1.9 (a) (Dini) If fn are continuous real-valued functions on a compact (M,U)
for which fn(x) ↘ f(x) for each x ∈ M , then fn converges uniformly to f.

(b) A uniform limit of bounded and continuous functions fn is also bounded and continuous.

Exercise 1.10 (Continuity and compactness)
(a) If f : M → N is continuous and M is compact, then f(M) is compact.
[Thus [0, 1] cannot be mapped continuously onto R.]
(b) The composition of continuous functions is continuous.
(c) If f : M → N is 1-to-1 and continuous (that is, it is a bijection) where M is compact and
N is Hausdorff, then f is a homeomorphism.

Exercise 1.11 (Urysohn’s lemma) (M,U) is normal if and only if for each pair of disjoint
closed sets A and B there is a continuous function f : M → [0, 1] having f(x) = 0 for all
x ∈ A and f(x) = 1 for all x ∈ B.

Exercise 1.12 (Tietze) Let (M,U) be a normal space, and let A be a closed subset. If
f : A → [−1, 1] is continuous, then f admits a continuous extension from M to [–1, 1].

Product Spaces

Definition 1.8 (Product topology) Let P{Ma} ≡
∏

a∈AMa denote the product set associ-
ated with the individual topological spaces (Ma,Ua) over the index set A; this product set is
defined to be { x : x is a function on A with xa ≡ x(a) ∈ Ma}. The a0th projection function
πa0 : P{Ma} → Ma0 is defined by πa0(x) = xa0 . Let S ≡ {π−1

a (U) : U ∈ Ua and a ∈ A}.
Then S is the subbase for a topology called the product topology.

Exercise 1.13 (a) Projection functions are continuous in the product topology. (Recall
definition 5.4.1 for the projection maps πt1,...,tk

(·).)
(b) (Tychonoff) P{Ma} with the product topology is compact if and only if each (Ma,Ua) is
compact.
(c) The product of countably many separable topological spaces is a separable space in the
product topology.
(d) P{Ba} = P{B̄a} for all choices Ba ⊂ Ma, and thus the product of closed sets is closed in
the product topology.
(e) (P{Ba})o = P{Bo

a} for all choices Ba ⊂ Ma, provided that A is finite.
(f) If each (Ma,Ua) is Hausdorff, then the product topology is Hausdorff.
(g) Let (M,U) be a topological space and suppose fa : M → Ma is a continuous function
for each a ∈ A. Define f : M → P{Ma} by πaf(x) = fa(x) for each x ∈ M . Then f is
continuous in the product topology.

Local Compactness

Definition 1.9 (Locally compact) Let (M,U) be a topological space. Let x ∈ M. The
space is locally compact at x if x has a neighborhood with compact closure (that is, there
exists a V ∈ U with x ∈ V for which V̄ is compact). The space is locally compact if it is
locally compact at each point.
[Rn and (0, 1) are locally compact.]
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Exercise 1.14 (Locally compact Hausdorff spaces are nice) Let M be a locally
compact Hausdorff space. Let C ⊂ U ⊂ M , with C compact and U open.
(a) Then there is an open set V whose closure is compact having C ⊂ V ⊂ V̄ ⊂ U.
(b) (Urysohn’s lemma) There is a continuous function f : M → [0, 1] for which f(x) equals 1
for x ∈ C and 0 for x ∈ U c.
(c) There is an open set V and a compact set D where C ⊂ V ⊂ D ⊂ U with V a countable
union of compact sets and D a countable intersection of open sets. Sets of the type V form
a base for the topology.
(d) Let Cc denote the set of all continuous functions f on M that vanish outside compact
sets (that is, f(x) = 0 for all x /∈ (some compact Kf )). Let Co be the set of all continuous
functions f on M that vanish at infinity (that is, |f(x)| < ε for all x /∈ (some compact Kf,∈)),
for each ε > 0). Show that the closure (in the sup norm metric on M) of Cc equals Co.

Exercise 1.15 (One-point compactification) The one-point compactification of any locally
compact Hausdorff space (M,U) makes it a compact Hausdorff space. That is, let M̄ ≡
M ∪ {p}, and designate the open sets Ū to be all open sets U plus all sets {p} ∪ Cc with C
compact and {p} the one new point. Then (M̄, Ū) is a compact Hausdorff space.

Category

Definition 1.10 (Category) A subset A of (M,U) is nowhere dense if (Ā)o = ∅. If A can be
written as a countable union of nowhere dense sets, then it is said to be of the first category;
otherwise, it is said to be of the second category.

Exercise 1.16 (Baire category theorem) (a) A locally compact Hausdorff space is second
category. (b) Let C denote the class on all continuous functions on [0, 1], and let C(1) denote
the subclass of those that have continuous derivatives on [0, 1]. Show that (C, ‖·‖ is a complete
and separable metric space of category two, and that C(1) is a subset of category one. That
is, “most” continuous functions on [0, 1] are not differentiable on [0, 1].

Topological Properties

Definition 1.11 (Topologically equivalent) If there exists a homeomorphism between
the two topological spaces (M,U) and (N,V) (that is, there exists a 1-to-1 bicontinuous
mapping between them), then there exist 1-to-1 correspondences both between points and
between open sets. We then say that these two topological spaces are topologically equivalent.
Thus any properties that are defined solely in terms of the open sets either hold or fail
simultaneously in the two spaces. Such concepts are called topological concepts. [These
include closed set, closure, interior, boundary, accumulation point, compactness, separability,
perfect separability, local compactness, category, continuity, and being either Hausdorff or
normal.]

We are about to introduce metric spaces. We will soon see that two different metrics can
induce the same topology. Thus distance in a metric space is not a topological property. A
homeomorphism f that leaves distance unchanged (thus, d2(f(x), f(y)) = d1(x, y)) is called
an isometry.
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2 Metric Spaces ∗

Definition 2.1 (Metric space) (a) A semimetric space (M,d) consists of a set M together
with a semimetric d that satisfies

(1) d(x, y) = d(y, x) ≥ 0, d(x, z) ≤ d(x, y) + d(y, z), and d(x, x) = 0

for all x, y, z ∈ M . If d(x, y) = 0 implies x = y, then d is called a metric and (M,d) is called
a metric space. [If all d(x, y) ≤ (some finite c), then d is called a bounded metric.] Call the
set

(2) Sr(x) ≡ {y ∈ M : d(x, y) < r} an open sphere or ball about x of radius r.

(b) The collection of all such spheres is the base for a topology, called the metric topology,
and is denoted by Ud. The abbreviation (M,d,Ud) refers to the metric space with its metric
topology, and we call it a topological metric space.
(c) Let (M,U) be a topological space. Suppose there exists a metric d on M whose open balls
form a base for the topology U . Then the topology U is said to be metrizable.

Exercise 2.1 (Equivalent metrics) (a) Two metrics d and ρ on a set M lead to equivalent
topologies if and only if for each x ∈ M and each ε1, ε2 > 0 there are δ1, δ2 > 0 such that for
all y ∈ M,

d(x, y) < δ1 implies ρ(x, y) < ε1 and ρ(x, y) < δ2 implies d(x, y) < ε2.

[If only the first holds, then Ud ⊂ Uρ, meaning that the ρ topology is finer.] Such equivalent
metrics lead to the same continuous functions. If both sets of δ values do not depend on
x, then the metrics are called uniformly equivalent metrics and lead to the same uniformly
continuous functions.
(b) Define four equivalent metrics on Rn.
(c) ρ ≡ d/(1 + d) defines a metric equivalent to the d metric on (M,d); and ρ is a bounded
metric.

Exercise 2.2 (a) The closed sphere {y : d(x, y) ≤ r} equals Sr(x) with respect to the
metric topology Ud.
(b) Any metric space is homeomorphic to a metric space with a bounded metric.
(c) A metric space is perfectly separable if and only if it is separable.
(d) A compact metric space is separable and perfectly separable.
(e) Any metric space is Hausdorff, normal, and first countable.
(f) The product of countably many metrizable spaces is metrizable in the product topology,
with the bounded metric d(x, y) ≡

∑∞
1 ψ(dn(xn, yn))/2n, where we define ψ(t) ≡ t/(1 + t).

If each is separable, then so is the product.
(g) The relative topology on a subset A of the metric space (M,d,Ud) is the same as the
metric topology for (A, d) .
(h) Every subspace of a separable metric space is separable in its relative topology.
(i) A separable metric space is locally compact if and only if it is the union of U1 ⊂ U2 ⊂ · · ·
with each Ūn a compact subset of Un+1.

Completeness

Definition 2.2 (Complete) (a) We will call a sequence x in a metric space (M,d) a
Cauchy sequence if d(xm, xn) → 0 as m ∧ n → ∞.
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(b) The topological metric space (M,d,Ud) is called complete when every Cauchy sequence x
having values xn in M converges to a member of M.

Exercise 2.3 (a) A sequence x taking values in a metric space (M,d) converges to a mem-
ber xo of M if and only if d(xn, xo) → 0.
(b) Every compact metric space is complete, separable, and perfectly separable.
(c) Every closed subspace of a complete metric space is complete.
(d) A metric space in which every sequence has a convergent subsequence is perfectly sepa-
rable.

Compactness

Definition 2.3 (a) A metric space (M,d) is totally bounded if for every ε > 0 there is a
finite subset Fε of M such that for each x ∈ M there exists a y ∈ Fε sufficiently close to x to
have d(x, y) < ε.
(b) Let diam(A) ≡ sup{d(x, y) : x, y ∈ A} denote the diameter of A. The metric space is
called bounded if diam(M) is finite.

Exercise 2.4 (Compactness) The following conditions are equivalent to the compactness
of a subset K of the metric space (M,d,Ud).

(a)
(Heine–Borel property = compactness,by definition):
Every open cover ofK has a finite subcover.

(b)
(Bolzano–Weierstrass property):
Every infinite subset ofK has a limit point inK.

(c)
(Sequential compactness (or relative compactness)):
Every sequence in K has a subsequence converging to a point inK.

(d)
(Countable compactness):
Every countable open cover ofK has a finite subcover.

(e) K is totally bounded and complete.

(f)
K is totally bounded, and
any ↘ sequence of closed spheres Sn inK whose diameters → 0 has
∩∞

1 Sn = {some singleton x} ∈ K.

Exercise 2.5 A subset of Rn is compact if and only if it is closed and bounded.

Exercise 2.6 If the closed subset A and the compact subset B are disjoint, then we have
d(A, B) ≡ inf{d(x, y) : x ∈ A, y ∈ B} > 0.

Definition 2.4 (Covering numbers) Let (M,d) be a totally bounded metric space. Let
ε > 0. Let N(ε,M) denote the minimum n for which M = ∪n

1Ak for sets Ak all having diam
(Ak) ≤ 2ε. Let D(ε,M) be the largest number m of points xk in M having d(xi, xj) > ε for
all i 
= j. These are called covering numbers.

Exercise 2.7 Show that N(ε,M) ≤ D(ε,M) ≤ N(ε/2,M).
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Spaces of Functions

Exercise 2.8 (Uniform norm) Let Cb(M) denote the collection of all bounded and con-
tinuous functions from the topological space (M,U) to R, and define the uniform norm ‖ · ‖
on the functions of Cb(M) by ‖f‖ ≡ sup{|f(x)| : x ∈ M}.
(a) A uniform limit of bounded, continuous functions is bounded and continuous.
(b) Moreover, (Cb(M), ‖ · ‖ defines a complete metric space.
(c) Let (M,U) be a compact Hausdorff space. Then (Cb(M), ‖ · ‖ is separable if and only if
(M,U) is metrizable.

Definition 2.5 (Uniform continuity) A mapping f from a metric space (M1, d1) to a met-
ric space (M2, d2) is uniformly continuous if for all ε > 0 there exists δε > 0 for which
d2(f(x), f(y)) < ε whenever d1(x, y) < δε.

Definition 2.6 (Equicontinuity) (a) A collection F of bounded and continuous functions
from a topological space (M,U) to a metric space (N, d) is equicontinuous if for every ε > 0
and each x ∈ M there is a neighborhood U of x for which d(f(x), f(y)) < ε for all y ∈ U and
all f ∈ F .
(b) In fact, if (M,ρ,U = Uρ) is a metric space for which d(f(x), f(y)) < ε for all f ∈ F
whenever ρ(x, y) < δε, then the functions of F are called uniformly equicontinuous.

Exercise 2.9 A continuous function (an equicontinuous family of functions) from a com-
pact metric space into another metric space is uniformly continuous (is uniformly equicontin-
uous).

Exercise 2.10 (Ascoli’s theorem) Let F be an equicontinuous class of functions from a
separable metric space (M,d) to a metric space (N, ρ). Let fn denote a sequence of such
functions for which c1({fn(x) : n ≥ 1}) is compact for each x ∈ M. Then there is a subse-
quence fn′ that converges pointwise to an f that is continuous on M , and this convergence
is uniform on any compact subset K of M.

Exercise 2.11 (Arzelà’s theorem) (a) A collection F of real-valued, bounded, and con-
tinuous functions f on a compact topological space (M,U) is a totally bounded subset of
(Cb(M), ‖ · ‖ if and only if it is a collection of uniformly bounded and uniformly equicontin-
uous functions.
(b) A subset F of (Cb([a, b]), ‖ · ‖). is compact if and only if F is closed, bounded, and
equicontinuous with respect to ‖ · ‖.
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3 Hilbert Space ∗

Definition 3.1 (A) (Vector space) Let V be a real (or a complex) vector space; that is,
x+y ∈ V and cx ∈ V for all x, y in the commutative group V and for all real scalars c ∈ R (or
all complex scalars c ∈ C). Moreover, c(x + y) = cx + cy, (c + d)x = cx + dx, c(dx) = (cd)x
and 1x = x must be satisfied.
(B) (Inner product space) A vector space H is an inner product space if for each pair
x, y ∈ H there is a real (or a complex) number 〈x, y〉 ≡ (the inner product of x and y)
satisfying:

(a) 〈cx, y〉 = c〈x, y〉 for all x, y ∈ H, and all c ∈ R (or all c ∈ C),

(b) 〈y, x〉 = 〈x, y〉 (or satisfying, 〈y, x〉 = 〈x, y〉),

(c) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉 for all x, y, z ∈ H,

(d) 〈x, x〉 ≥ 0 for all x ∈ H, with equality if and only ifx = 0.

(C) (Norm) We use (d) to define the norm (denoted by ‖ · ‖) of x; thus

(e) ‖x‖2 ≡ 〈x, x〉, so that ‖x‖ =
√

〈x, x〉.

(D) (Normed linear space) The pair (H, ‖ · ‖ has the following three properties, and these
are the three properties that define a normed linear space. Thus

(f) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ H.

(g) ‖cx‖ = |c| · ‖x‖ for all x ∈ H and all scalars c.

(h) ‖x‖ = 0 implies that x = 0.

A complete normed linear space is called a Banach space.
(E) (Orthogonal, and orthogonal complement) We agree that

(i) x ⊥ y means that 〈x, y〉 = 0,

and we then say that x is orthogonal to y. We also let

(j) M⊥ ≡ {x : x ⊥ y for all y ∈ M},

and we call it the orthogonal complement of M.

(F) (Hilbert space) If H is an inner product space that is complete (with respect to the
metric defined by the norm ‖x − y‖), then H is called a Hilbert space.
(G) (Bounded linear map) A linear map L : H → R satisfies

(k) L(cx + dy) = cL(x) + dL(y) for all x, y ∈ H and all scalars c, d.
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The linear map L is said to be bounded if ‖L‖ is finite, where

(l) ‖L‖ ≡ supx∈H |L(x)|/‖x‖;

call ‖L‖ the norm of L. The collection of all linear maps on H is denoted by H∗.

Example 3.1 (L2 is a Hilbert space) Let μ denote a fixed positive measure. Then let
L2(μ) ≡ {X :

∫
X2 dμ < ∞}, which is a Hilbert space with inner product

〈X, Y 〉 =
∫

XY dμ = E(XY ). Recall the completeness presented in exercise 3.5.1. (Note
part (g) below to identify the bounded linear functionals on this H. This is called the Reisz
representation theorem.) �

Exercise 3.1 (a) Show that a linear functional L on (H, ‖ · ‖ is bounded if and only if it is
continuous if and only if it is continuous at any one point.
(b) Show that ‖L‖ = sup{x:‖x‖=1} |L(x)|/‖x‖ is also valid.

Proposition 3.1 (Elementary properties) Let x, y ∈ H, an inner product space.

(a) (Cauchy–Schwarz) |〈x, y〉 | ≤ ‖x‖‖y‖.

(b) (Triangle inequality) ‖x + y‖ ≤ ‖x‖ + ‖y‖.

(c) (Pythagoras theorem) ‖x + y‖2 = ‖x‖2 + ‖y‖2 if and only if x ⊥ y.

(d) (Parallelogram law) ‖x + y‖2 + ‖x − y‖2 ≤ 2[‖x‖2 + ‖y‖2].

(e) (Polarization identity) 4〈x, y〉 = ‖x + y‖2 − ‖x − y‖2 when c’s are real.

(f) (Linear functionals) x → 〈x, y〉 and x → 〈y, x〉 are uniformly continuous linear
functionals on H. The norms equal ‖y‖.

(g) (Reisz) The only bounded linear functionals on H are those in (f).

(h) x → ‖x‖ is a bounded and uniformly continuous functional on H.

Exercise 3.2 Prove proposition 3.1.

Exercise 3.3 An inner product space over the reals is a normed linear space iff the inner
product satisfies the parallelogram law. [Hint. Use proposition 3.1(e).]

Definition 3.2 (Subspaces) We say that M ⊂ H is a subspace of the vector space H if M
is also a vector space. [It is enough if x + y and cx are in M for all x, y ∈ M and all scalars
c.] [Recall that a subset M of the metric space H is closed if and only if it is complete (that
is, it contains all of its own limit points).]

Exercise 3.4 Let M be a subset of the Hilbert space H.

(a) Then M⊥ is a closed subspace of H. In fact, M⊥ = ∩{x:x∈M}x⊥.

(b) (M⊥)⊥ = M̄ ⊃ M.

(c) If M1 and M2 are closed subspaces of H with M1 ⊥ M2, then the sum space
M1 + M2 ≡ {x + y : x ∈ M1 and y ∈ M2} is also a closed subspace of H.
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(d) If M1 and M2 denote subspaces of H, then (M1 + M2)⊥ = M⊥
1 ∩ M⊥

2 . Thus,
M1 + M2 = (M⊥

1 ∩ M⊥
2 )⊥.

(e) Let L denote a continuous linear functional on H. Then M = {x : L(x) = 0} is a closed
subspace, and either M⊥ has dimension 1 (or else M⊥ = H).

Theorem 3.1 (Orthogonal projections) Let M be a closed subspace of H.

(i) Unique mappings P and Q on H necessarily exist such that

(1) x = Px + Qx for all x ∈ H, with Px ∈ M and Qx ∈ M⊥.

This P and Q are called the orthogonal projections of H onto M and onto M⊥. That is,
H = M + M⊥ with M ∩ M⊥ = {0} when M is a closed subspace.
(ii) Specifically and additionally, this P ≡ PM and Q ≡ PM ⊥ satisfy:

‖x‖2 = ‖Px‖2 + ‖Qx‖2,(2)
‖x − Px‖ = inf{‖x − y‖ : y ∈ M} for each x ∈ H,(3)
P and Q are bounded, uniformly continuous, and idempotent linear maps.(4)

(Call P idempotent if P (P (x)) = P (x) for all x ∈ H.)
(iii) Moreover, PMx may be uniquely determined by solving x − PMx ⊥ M. Or, PM is the
unique linear map for which 〈PMx, y〉 = 〈PMx, PMy〉 for all x, y ∈ H.

(iv) If M is a proper subset of H, then there exists a y 
= 0 in H such that y ⊥ M. Moreover,
the space spanned by M and y is closed.

Example 3.2 (HD and H0
D are closed subspaces of H) For L2(Ω,A, μ), let

(5) HD ≡ {X ∈ L2(Ω,A, μ) : F(X) ⊂ D} and H0
D ≡ {X ∈ HD : EX = 0},

where D ⊂ A denotes a fixed sub σ-field of A. Then exercise 3.5.1 and theorem 3.5.3 show
that both HD and H0

D are closed subspaces of H ≡ L2(Ω,A, μ). �

Exercise 3.5 (a) Prove theorem 3.1. (b) Show that

|‖x‖ − ‖y‖| ≤ ‖x − y‖ and ‖Px − Py‖ ≤ ‖x − y‖ for all x, y ∈ H.

(c) Show ‖x − Px‖ = max{|〈x, y〉| : y ∈ M⊥ and ‖y‖ = 1} for closed subspaces M.

Exercise 3.6 Let M,M1, and M2 denote non-trivial subspaces of H. Verify:

(a) ‖PM‖ = 1.

(b) PM2 = PM2(PM1) when M2 ⊂ M1.

(c) PM1+M2 = PM1 + PM2 when M1 ⊥ M2.

(d) PM1 = P
PM1 (M2)

+ PM1∩M⊥
2
.
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Definition 3.3 (Independent, span, orthonormal, Fourier coefficient, and basis)
(i) Call vectors {x1, . . . , xn} in V linearly independent if c1x1+· · ·+cnxn = 0 implies c1 = · · · =
cn = 0. Call the set Z linearly independent if all of its finite subsets are linearly independent.
Let the span of Z (denoted by S[Z]) denote the set of all finite linear combinations of elements
of the set Z.
(ii) If Z ≡ {za : a ∈ A} is a subset of H indexed by A, then the elements of Z are called
orthonormal if 〈za, zb〉 = 0 for all a, b ∈ A, while ‖za‖ = 1 for all a ∈ A. Moreover, the values
(6) xA(a) ≡ 〈x, za〉, for all a ∈ A, are called theFourier coefficients of x

relative to Z. A maximal orthonormal set is called an orthonormal basis.

Theorem 3.2 (Coordinates)
Let vectors {z1, . . . , zn} be orthonormal in the Hilbert space H.
(i) If x =

∑n
1 ckzk, then for each 1 ≤ k ≤ n,

(7) ck = 〈x, zk〉, the z1, . . . , zn are linearly independent, and ‖x‖2 =
∑n

1 |ck|2.

(ii) Let x ∈ H. Define sn ≡
∑n

1 〈x, zk〉zk. For all scalars c1, . . . , cn we have

(8) ‖x − sn‖2 = ‖x −
∑n

1 〈x, zk〉zk‖2 ≤ ‖x −
∑n

1 ckzk‖2,

with equality if and only if ck = 〈x, zk〉 for all 1 ≤ k ≤ n. Moreover,

(9)
∑n

1 〈x, zk〉zk is the orthogonal projection of x onto the span S[z1, . . . , zn].

(Bessel’s identity) Call d(x, S[z1, . . . , zn]) ≡ inf{ ‖x −
∑n

1 ckzk‖ : ck’s are scalars} the distance
from x to the span S[z1, . . . , zn]; then (with sn ≡

∑n
1 〈x, zk〉zk)

(10) d2(x, S[z1, . . . , zn]) = ‖x − sn‖2 = ‖x‖2 − ‖sn‖2 = ‖x‖2 −
∑n

1 |〈x, zk〉|2.

(iii) (Bessel’s inequality) For any orthonormal set {za : a ∈ A},

(11)
∑

a∈A|〈x, za〉|2 ≤ ‖x‖2 with equality if and only if x =�2

∑
a∈AxA(a)za.

(iv) Thus, each x ∈ H has at most countably many nonzero Fourier coefficients.
(v) Let y1, y2, . . . be orthogonal vectors in H. Then

(12)
∑n

1yk →L2 (some y) ∈ H if and only if
∑∞

1 ‖yk‖2 < ∞,

and ‖y‖2 then equals this sum. Also,

(13) if x ∈ H and
∑n

1 〈x, yk〉yk →L2 (some y) ∈ H, then x − y ⊥ yk for all k.

(vi) The collection {
∑∞

1 cnzn : |cn| ≤ dn} is compact if and only if
∑∞

1 d2
n < ∞. Here, we

let z1, z2, . . . be any orthonormal set, and distance is the ‖ · ‖�2 below.
(vii) Let �2(A) denote L2(A, 2A, counting measure), as in exercise 3.5.11. Bessel’s inequality
can be rewritten. For any orthonormal set {za : a ∈ A} we have

(14) ‖xA‖�2 ≡
∑

a∈AxA(a)yA(a) ≤ ‖x‖ (so, ‖xA − yA‖�2 ≤ ‖x − y‖).

(viii) An orthonormal set z1, z2, . . . is closed and bounded, but it is not compact. Thus H is
not locally compact.
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Theorem 3.3 (Orthonormal bases) Let {za : a ∈ A} be an orthonormal set. The
following are equivalent:

{za : a ∈ A} is an orthonormal basis.(15)
The span of these za’s is ‖ · ‖-dense in H.(16)
(Fourier series) x =

∑
a∈AxA(a)za for all x ∈ H.(17)

(Parseval’s identity) 〈x, y〉 =
∑

a∈AxA(a)yA(a) for all x, y ∈ H.(18)
(Bessel’s identity) ‖x‖2 =

∑
a∈A|xA(a)|2 for all x ∈ H.(19)

Every x ∈ H is uniquely determined by its Fourier coefficients(20)

Theorem 3.4 (H is isomorphic to �2) (a) Suppose the Hilbert space H has an ortho-
normal basis {za : a ∈ A}. Then the mapping x → xA maps H onto �2(A). And it is an
isomorphism in that it preserves inner products via the correspondence

(21) 〈x, y〉 = 〈xA, yA〉�2 ≡
∑

a∈AxA(a)yA(a) for all x, y ∈ H.

(b) Every Hilbert space possesses an orthonormal basis. Thus every Hilbert space H is
isomorphic to some �2(A). The cardinality of A equals that of the basis.
(c) Every orthonormal basis for the Hilbert space H has the same cardinality.
(d) Every orthonormal set can be extended to an orthonormal basis.
(e) H is separable if and only if H contains an orthonormal basis that is finite or countably
infinite.

Exercise 3.7 Prove: (a) theorem 3.2. (b) theorem 3.3. (c) theorem 3.4.

Exercise 3.8 (Gram–Schmidt) Show that from any n vectors that are linearly independent
one can define n orthonormal vectors that have the same span.

Trigonometric Series

Consider Fourier series representations defined on [−π, π]. In this case the functions

(22) φ0(t) ≡ 1√
2π

, φn(t) ≡ 1√
π

cos nt (for n ≥ 0), ψn(t) ≡ 1√
π

sinnt (for n ≥ 1)

form a set (denote it by Z) of orthonormal functions. The corresponding Fourier coefficients
for a function f in L1 ≡ L1([−π, π],B, λ) are given by

(23)
an ≡ 〈f, φn〉 =

∫ π

−π
f(t)φn(t) dt (for n ≥ 0) and

bn ≡ 〈f, ψn〉 =
∫ π

−π
f(t)ψn(t) dt (for n ≥ 1).

The partial sums of the Fourier series representation of f are defined on [−π, π] by

gn(t) ≡ aoφ0(t) +
∑n

j=1{an φn(t) + bnψn(t)}(24)

=
∑n

j=−ncje
int where cn ≡ 1

2π

∫ π

−π
f(t)e−int dt for all n.(25)

When does gn“converges” to f? Let Ω ≡ [−π, π], and let Lp ≡ Lp([−π, π],B, λ).
In case f ∈ L1([0, 1],B, λ), we define Fourier coefficients

(26) an ≡
∫ 1

0
f(t)φn(t) dt with φ0(t) ≡ 1 and φn(t) ≡

√
2 cos nπt on [0, 1],
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for n ≥ 1, with the Fourier series representation gn(t) ≡
∑n

0 ajφj(t) on [0, 1] in terms of
the set (denote it by Z) of orthonormal functions φn, n ≥ 0. Let Ω ≡ [0, 1] and let Lp ≡
Lp([0, 1],B, λ).

In case f ∈ L1([0, 1],B, λ), we also define Fourier coefficients

(27) an ≡
∫ 1

0
f(t)φn(t) dt with φn(t) ≡

√
2 sin nπt on [0, 1], for n ≥ 1,

with the Fourier series representation gn(t) ≡
∑n

1 ajφj(t) on [0, 1] in terms of this set (denote
it by Z) of orthonormal functions φn, n ≥ 1. Let Ω ≡ [0, 1] and let Lp ≡ Lp([0, 1],B, λ).

We are interested in when each of these three Fourier series representations gn “converges”
to f . We will consider various modes of convergence on these [c, d].

Theorem 3.5 (Reisz–Fischer) Consider any f ∈ L2 ≡ L2(Ω,B, λ), where we define
Ω ≡ [c, d]. Let gn denote the Fourier series representation of f based on the first n orthonormal
functions Z (in any one of the three cases considered above). Let φn generically denote the full
set of orthonormal functions in Z, and then let an ≡

∫
Ω

f(t)φn(t) dt denote the corresponding
Fouier coefficients.
(a) The class Z is a complete orthonormal basis for L2. (b) Moreover:

an → 0 for every f ∈ L2.(28)
gn →L2 f for every f ∈ L2.(29) ∫
Ω

f2(t) dt =
∑

all n a2
n for every f ∈ L2.(30) ∫

Ω
f(t)f̃(t) dt =

∑
all n anãn for every f, f̃ ∈ L2,(31)

where ãn ≡
∫
Ω

f̃(t)φn(t) dt denotes the Fourier coefficients of the other f̃ ∈ L2.

Theorem 3.6 (Carleson–Hunt) Let 1 < r ≤ ∞. Then

(32) gn →a.e. f for every f ∈ Lr([c, d], B, λ).

Definition 3.4 (Piecewise continuous) Suppose f is continuous at all but a finite number
of points in [c, d], while right and left hand limits of f do exist at each of these exceptional
points. Then call f piecewise continuous on [c, d].

Theorem 3.7 (a) Let f be piecewise continuous on Ω = [c, d], and suppose the two one-
sided derivatives f ′

+(t) and f ′
−(t) both exist at a fixed t ∈ (c, d). Then

(33) gn(t) → g(t) ≡ 1
2
[f+(t) + f−(t)] =

1
2
[f(t+) + f(t−)].

(Jordan condition) (b) Let f ∈ L1([c, d],B, λ), and suppose that f is of bounded variation
in some neighborhood of the point t ∈ (c, d). Then

(34) gn(t) → g(t) ≡ 1
2
[f+(t) + f−(t)] =

1
2
[f(t+) + f(t−)].

(c) Let f be continuous and of bounded variation on [c, d]. Then gn → f uniformly on every
subinterval [co, do] having c < co < do < d. (Uniform convergence of gn to f on any interval
containing a discontinuity of f is impossible. Gibb’s phenomenon is the name given to what
goes wrong. To prevent it, endpoint conditions are assumed in the next theorem.)
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Theorem 3.8 Let f be continuous on Ω = [c, d]. We require f(−π) = f(π) in case (23) on
[−π, π], f(0) = f(1) = 0 in (27) on [0, 1], nothing in (26) on [0, 1].
Suppose that f ′ is piecewise continuous on Ω. Then:

gn(t) → f(t) converges absolutely for every t ∈ Ω = [c, d].(35)
gn → f uniformly on Ω = [c, d].(36)
g′

n(t) → f ′(t) for every t ∈ (c, d) where f ′′(t) exists.(37)

If f has m− 1 continuous derivatives and a piecewise continuous mth derivative, then g
(k)
n →

f (k) as in (35)–(36) for 1 ≤ k ≤ m − 1, and as in (37) for k = m.

Theorem 3.9 Let f be piecewise continuous on Ω = [c, d]. Then

(38)
∫ t

c
gn(s) ds →

∫ t

c
f(s) ds for all t ∈ Ω = [c, d]

(no matter how badly the gn may fail to converge to f).

Proposition 3.2 Let f ∈ L1. If all an = 0, then f(t) ≡ 0 on Ω (in each case).

Theorem 3.10 (Cesàro summability of Fourier series) Let Lr([−π, π],B, λ), for some fixed
r ≥ 1. For the Fourier series representations gn above, let

(39) hn(t) ≡ 1
n+1

∑n
j=0 gj(t) on [0, 1] (traditionally, hn is denoted as σnf).

Then the Cesàro sums hn converge to f in the sense:

hn →Lr
f for every f ∈ Lr.(40)

hn →a.e. f for every f ∈ Lr.(41)

Exercise 3.9 Obtain the Fourier series representation of f(t) = t on [−π, π]. Use the
previous theorems to claim that

∑∞
1 n−2 = π2/6.

Exercise 3.10 (a) Show that f(t) ≡ (π − |t|)2 = π2

3 +
∑∞

n=1
4

n2 cos nt on [−π, π] (with con-
vergence in the sense of L2 and of (35)–(37)). In particular, now show that
a0 = 1

2π

∫ π

−π
f(t) dt = π2/3 and an = 1

2π

∫ π

−π
f(t) cos ntdt = 2/n2 for n ≥ 1.

(b) Show that for all 0 ≤ s, t ≤ 1 we have

(42) C(s, t) ≡
∑∞

n=1
φn(s) φn(t)

n2π2 ≡
∑∞

n=1
2 sin nπs sin nπt

n2π2 = s ∧ t − st.

Other Orthonormal Systems

Exercise 3.11 (Legender polynomials) Consider L2([−1, 1],B, λ). Define

(43) φn(t) ≡
√

2n + 1
2n

√
2n!

dn

dtn
(t2 − 1)n for n ≥ 1.

These are the Legender polynomials.
(a) Show that by beginning with 1, t, t2, . . . and then applying the Gram–Schmidt orthogo-
nalization process, one arrives at these orthogonal polynomials.
(b) Also, verify that these polynomials are orthonormal.
(c) Verify that they form a basis.
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Exercise 3.12 (Hermite polynomials) See (11.6.4), (11.6.15), and exercise 11.6.1 for the
orthonormal set of polynomials Hn/

√
n (for n ≥ 0). (a) Show that they are orthonormal

relative to (R,B, P ), with P denoting the N(0, 1) measure.
(b) Verify that they form a basis.

Bounded Linear Functionals on Lr

Exercise 3.13 (Reisz representation theorem) Fix 1 < r < ∞, and define s via 1/r+1/s =
1. A linear functional g on Lr ≡ Lr(Ω,A, μ) is bounded if and only if there is a measurable
function Y ∈ Ls ≡ Ls(Ω,A, μ) for which g(X) = E(XY ) for all X ∈ Lr. The norm of this
bounded linear functional g is given by ‖g‖ = ‖Y ‖s. Thus the collection L∗

r of all bounded
linear functionals on Lr is isomorphic to Ls (in that norms are preserved).



Appendix C

More WLLN and CLT o

0 Introduction

The beginning section C.1 can be viewed as a continuation of the WLLN theme, that now
allows the case of a possibly infinite moment. To do so, we choose to estimate a moment when
trimming a vanishingly small proportion from the tail of the moment. This leads to what
could be referred to as the ratio LLN . Such estimation of a second moment is intimately
connected to determining the most general possible setting for a CLT for sums of independent
rvs that are each individually rather negligible. (A version of this material appeared in the
1st Edition as the sixth section of the LLNs chapter ten, though it has now been streamlined
and improved.)

Such results depend on a careful understanding of the contributions of the tails of a df to its
moments. This topic is also developed in sections C.2–C.3 and some of that is used in section
C.1. (Sections 6.5 and 6.6 derive inequalities capable of yielding necessary and sufficient
conditions for asymptotic normality for untrimmed, trimmed, and Winsorized averages, as
well as the extension of such results to linear combinations of functions of order statistics and
linear rank statistics.) These six sections could be viewed as a continuation of chapters 6 and 8
of the present text. A short treatment of the applications referred to above appears in chapter
15 of this text. These six sections on the df appeared in the 1st Edition as sections seven
through eleven of chapter seven, section six of chapter 10, and a more complete treatment
of the applications that carefully treated uniform convergence to normality of the various
statistics under very general conditions appeared in a chapter sixteen. Roughly then, nearly
all this theoretical material has been moved to appendix C, with a greatly reduced version
of the applications moved to chapter 15. The exception is chapter 11 where some of this
remaining material is cited in developing the domain of attraction of the Normal distribution.

c© Springer International Publishing AG 2017
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1 General Moment Estimationo

Notation 1.1 (General case on [0, ∞)) Let Yn1, . . . , Ynn denote rvs that are row inde-
pendent with dfs Fn1, . . . , Fnn and with average df F̄n ≡ 1

n

∑n
1 Fnk. Let Xnk ≡ |Ynk|,

with median m̈nk, for 1 ≤ k ≤ n. The average df of Xn1, . . . , Xnn is 1 − P̄n, where
P̄n(x) ≡ 1

n

∑n
1 P (|Ynk| > x), with quantile function Kn(·). Let xθn denote the (1 − θ/n)th

quantile of the df 1 − P̄n. (Thus x1n ≡ Kn(1 − 1/n) is the (1 − 1/n)-quantile of 1 − P̄n, while
[−x1n, x1n] is the shortest symmetric interval with at least 1 − 1/n of the probability.) Let
the rv Wn have df 1 − P̄n.

Let Xr
n ≡ 1

n

∑n
1 Xr

nk, for a fixed r > 0. We do not require that EXr
nk < ∞. Define the

truncated rth absolute moment functions on [0, ∞) and on (0, 1] by

(1) Un(x) ≡
∫
[|y|≤x]

|y|rdF̄n(y) and Mn(t) ≡
∫

[0,1−t]

K
r

n(s) ds.

Let uθn ≡ Un(xθn) and mθn ≡ Mn(θ/n) for small values 0 < θ ≤ 1. Measure the relative
heaviness of the tails of both of the dfs F̄n and 1 − P̄n by either

(2) Rn(x) ≡ xrP̄n(x)∫
[|y|≤x]

|y|rdF̄n(y)
on [0, ∞) or rn(t) ≡ tK

r

n(1 − t)∫
[0,1−t]

K
r

n(s) ds
on (0, 1].

Both u1n ≡ Un(x1n) and m1n ≡ Mn( 1
n ) are natural parameters to associate with the

estimator Xr
n (even when Un(∞) = ∞). Also, [max1≤k≤n

1
n |m̈r

nk|/ νn] → 0 whenever
1
nXr

n1/νn, . . . , 1
nXr

nn/νn are uan rvs (for a fixed sequence νn > 0). �

Theorem 1.1 (Consistency of the absolute moments; estimation)
(A) Statements (3)-(10) below are equivalent.

Xr
n/νn →p 1 with [Xr

nk]/n νn uan, for some sequence νn > 0.(3)

Xr
n/u1n →p 1 with [Xr

nk]/nu1nuan, where u1n = Un(x1n).(4)

xr
θn/nuθn → 0 for each fixed 0 < θ ≤ 1.(5)

xr
θn/nu1n = K

r

n(1 − θ

n
)/nu1n → 0 for each fixed 0 < θ ≤ 1.(6)

nP̄n(ε n u1n) =
∑n

1P (Xr
nk/nu1n > ε) → 0 for each fixed 0 < ε ≤ 1.(7)

Mn/u1n ≡ [max1≤k≤n
1
n

Xr
nk]/u1n →p 0.(8)

Mn/νn →p 0 and ǔn/νn → 1, where ǔn ≡ Un(n νn).(9)

Mn/Xr
n →p 0 with [Xr

nk]/nu1n uan.(10)

(B) If (3), then (9) yields u1n/νn → 1, ǔn/νn → 1, and (e.g.) Un(nu1n)/νn → 1.
(C) The W̃insorized means ũθn ≡ uθn + xr

θnP̄n(xθn) and m̃θn ≡ mθn + θ
nK

r

n(1 − θ/n) are
equal, for all n ≥ 1 and 0 < θ ≤ 1 (use figure 8.4.1). However, uθn ≥ mθn.
(D) The symbol “ũ” can replace the symbol “u” in each of the equivalences (4)–(8), and thus
add five more equivalences; label them as (4̃)–(8̃).

Corollary 1 Under the hypothesis of the preceding theorem we necessarily have

(11) (Ȳn − μ1n)/u1n →p 0 for μ1n ≡
∫
[|y|≤x1n]

y dF̄n(y).
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Discussion 1.1 (General case on [0, ∞)) Let Yn1, . . . , Ynn denote rvs that are row inde-
pendent with dfs Fn1, . . . , Fnn and average df F̄n ≡ 1

n

∑n
1 Fnk. Let Xnk ≡ |Ynk|. Notice

(with Wn
∼= 1 − P̄n, as above) from exercise 6.3.3 that

(a) Un(x) ≡
∫
[|y|≤x]

|y|rdF̄n(y) =

{
=
∫
[0,F̄n(x)]

K
r

n(s) ds = Mn(1 − F̄n(x))

=
∫
[0,x]

P (Wn ≥ y) dy − xP (Wn > x),

(b) U−
n (x) ≡

∫
[|y|<x]

|y|rdF̄n(y) =

{
=
∫
[0,F̄n(x−)]

K
r

n(s) ds = Mn(1 − F̄n(x−))

=
∫
[0,x]

P (Wn ≥ y) dy − xP (Wn ≥ x).

(Use the top formulas in (a) and (b) to picture the numerical values of Un(x) and U−
n (x)

on the quantile half of figure 8.4.1, and then use the two bottom formulas to picture the
corresponding areas in the df half of figure 8.4.1.) Measure the values of these functions at
the 1 − θ/n−quantiles xθn(using F̄n(xθn) ≥ 1 − θ

n ) to obtain

(c) uθn ≡ Un(xθn) = Mn(1 − F̄n(xθn) ≥ Mn(1 − θ/n) = mθn for 0 < θ ≤ 1.

Natural constants to associate with the estimator Xr
n (even if Un(∞) = ∞) are

(d)
u1n ≡ Un(x1n) =

∫
[|y|≤x1n]

|y|rdF̄n(y) =
∫
[0,F̄n(x1n)]

K
r

n(s) ds and

m1n ≡ Mn( 1
n ) =

∫
[0,1− 1

n ]
K

r

n(s) ds, �

Exercise 1.1 Show that for each fixed 0 < θ ≤ 1 both

(e) uθn − mθn ≤ Un(xθn) − Un(xθn−) = xθnP (Wn = xθn) and

(f)
Rn(xθn) ≡ P̄n(xθn)xr

θn/uθn ≤ θ
nxr

θn/uθn ≤ rn

(
θ
n

)
≡ θ

nxr
θn/mθn

≤ P̄n(xθn−)xr
θn/Un(xθn−) = Rn(xθn−).

Proof. Consider Xr. Since xr
∑n

1 P (Xnk > x) = xr
∑n

1 P (Xr
nk > xr), a proof for r = 1

suffices. Let ε > 0, and fix 0 < θ < ε < 1. Thus,

(a) uθn ≡ Un(xθn) =
∫
[|y|≤xθn]

|y|dF̄n(y) = 1
nE(
∑n

k=1Z
θ
nk)

for the truncated rv Zθ
nk ≡ Ynk · 1[|Ynk|≤xnθ].

Now (6), (7), and (8) are equivalent by (8.3.17)–(8.3.19). Further, (6) trivially implies (5)
(since uθn ≥ u1n), and the converse that (5) implies (6) holds since

(b) 0 ← xθn

nuθn
≥ xθn

n[u1n + xθn/n]
=

(xθn/nu1n)
1 + (xθn/nu1n)

implies xθn/nu1n → 0. Thus (5) and (6)–(8) are equivalent.
Consider (6) implies (4) (showing first that (6) implies uθn/u1n → 1). Well,

(c) 1 ≤ uθn

u1n
≤ u1n + xθnP̄n(x1n)

u1n
≤ 1 +

xθn

nu1n
≤ 1 + ε

for all n ≥ (some large nε θ). This implies that

(12) uθn/u1n → 1 whenever (6) holds.
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We now show that (6) implies (4) (and we are entitled to use (12) to do so). Fix 0 < θ < ε.
The truncation inequality (8.3.23) (the proof is repeated below) gives

(d) P (|X̄n/uθn − 1| > ε) = P (|X̄n − uθn| > εuθn)

≤ P (|Zθ
n − uθn| > εuθn) +

∑n
1P (Xnk 
= Zθ

nk) (recall (a) for Zθ
nk)

(e) ≤
∑n

1E((Zθ
nk)2)/(ε2u2

θnn2) + nP̄n(xθn)

(f) =
∫
[|y|≤xθn]

y2dF̄n(y)/(ε2nu2
θn) + nP̄n(xθn)

(g) ≤ xθn

∫
[|y|≤xθn]

|y|dF̄ (y)/(ε2nu2
θn) + θ

(h) = ε−2{xθn/nuθn} + θ ≤ ε−2{xθn/nu1n} + θ

(i) ≤ 2ε for all n exceeding some even larger nε θ (using (6)).

Thus for n large enough, (12) and (i) show that

(j)
|Xr

n − u1n|
u1n

=
uθn

u1n
·
∣∣∣∣X

r
n − uθn

uθn

∣∣∣∣+
∣∣∣∣uθn

u1n
− 1
∣∣∣∣ ≤ (1 + ε)ε + ε ≤ 3ε

with probability at least 1 − 2ε. Thus (4) holds. That is, (6) implies (4).
We next show that (4) implies (8). Now (4) implies that

(k) W s
n ≡

∑n
1W s

nk ≡
∑n

1 [(Xnk/nu1n) − (X ′
nk/nu1n)] →p 1 − 1 = 0,

for the symmetrized rvs W s
nk. Then Levy’s inequality (8.3.4) and (k) give

(l) P (maxk|W s
nk| > ε) ≤ 2P (|W s

n| > ε) → 0, for all ε > 0.

It further holds that

P (maxk|(Xnk/nu1n) − median(Xnk/nu1n)| > ε)
≤
∑n

1P (|(Xnk/nu1n) − median(Xnk/nu1n)| > ε)

≤ 2
∑n

1
P (|W s

nk| > ε) by the symmetrization inequality (8.3.2)(13)

(m) → 0 by (8.3.14), since maxk|Wnk| →p 0 by (�).

That is,

(n) maxk|(Xnk/nu1n) − median(Xnk/nu1n)| →p 0.

Since the uan condition in (4) yields {maxk |median(Xnk)/nu1n)|} → 0, we have shown from
(n) that Mn = [max 1

n |Xnk|r] (for r = 1) satisfies

(o)
1

u1n
Mn →p 0, or equivalently that nP̄n(ε nu1n) → 0 for all ε > 0.

Thus (4) implies (8), so (4) is added. Thus (4)–(8) are equivalent. �

Exercise 1.2 Prove corollary 1 to theorem 1.1 by adapting (d)–(j) in the previous proof
in light of the truncation equality (8.3.23).

http://dx.doi.org/10.1007/978-3-319-52207-4_1
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Proof. We now add (3) and (9). Consider (3) implies (9) first, and then (3) implies (4).
Steps (k)–(o) in the previous proof (with u1n replaced by νn) yield

(a)
1
νn

Mn →p 0, or equivalently that nP̄n(ε nνn) → 0 for all ε > 0

(using (8.3.17)–(8.3.19) for the equivalence). Let

(14) X̌n ≡ 1
n

∑n
1Xnk1[Xnk≤nνn] and let μ̌n ≡ EX̌n ≡

∫
[|y|≤nνn]

|y|dF̄n(y).

Use (3) with P (X̌n 
= X̄n) ≤
∑n

1P (Xnk > nνn) = nP̄n(nνn) → 0 (by (a)) to get

(15) 1
νn

X̌n →p 1.

Use (8.3.25) and cn ≡ n νn and the second half of (a) to obtain the bound

(b) P (| 1
νn

X̌n − 1
νn

μ̌n| ≥ ε) ≤ 1
ε2 μ̌n/νn + nP̄n(n νn) = 1

ε2 μ̌n/νn + o(1).

Assume that μ̌n/νn → 0 on some subsequence n′. Then (b) implies that

(c) X̌n′
νn′ = X̌n′ −μ̌n′

νn′ + μ̌n′
νn′ = op(1) + o(1) →p 0;

but this contradicts (15). Thus

(d) limnνn/μ̌n ≤ (some M) < ∞.

Combined with (a), this gives

(e) 1
μ̌n

Mn →p 0, or equivalently that nP̄n(ε nμ̌n) → 0 for all ε > 0,

by (8.3.17)–(8.3.19) again. With μ̌n = EX̌n =
∫
[|y|≤nνn]

|y|dF̄n(y) as in (14), let

(16) Z̄n ≡ 1
n

∑n
1Xnk1[Xnk≤nμ̌n] and let μ̄n ≡ EZ̄n =

∫
[|y|≤nμ̌n]

|y|dF̄n(y).

It follows that

μ̄n

μ̌n
= 1

μ̌n

∫
[|y|≤nμ̌n]

|y|dF̄n(y)

= 1 ⊕ 1[μ̌n≤νn] · νn

μ̌n
· nP̄n(nμ̌n) ⊕ 1[μ̌n>νn] · μ̌n

μ̌n
· nP̄n(nνn)

= 1 + O(1) · o(1) + 1 · o(1) using (d) and (e), and then (a)

(f) → 1.

We will now use (e) and (f) to show (with μ̌n = EX̌n =
∫
[|y|≤nνn

]x dF̄n(x)) that

(17) 1
μ̌n

Z̄n = 1
μ̌n

1
n

∑n
1Xnk1[Xnk≤nμ̌n] →p 1.

Let Zε
nk ≡ Xnk1[Xnk≤ε3nμ̌n], and let μ̄εn ≡ EZε

n with μ̄1n = μ̄n. Then (e) gives

(g) 0 ≤ μ̄1n−μ̄εn

μ̌n
≤ 1

nμ̌n

∑n
1nμ̌nP (Xnk > ε3nμ̌n) = nP̄n(ε3nμ̌n) → 0.

Then for n ≥ (some nε) the truncation inequality (8.3.25) gives

P (|Z̄n − μ̄εn| > εμ̄εn) ≤ P (|Z̄ε
n − μ̄εn| > εμ̄εn) + nP̄n(ε3nμ̌n)

≤
∑n

1 E(Zε
nk)2

ε2μ̄2
εnn2 + nP̄n(ε3nμ̌n) ≤ ε3nμ̌n

ε2μ̄2
εnn2

∑n
1EZε

nk + nP̄n(ε3nμ̌n)

= ε μ̌n

μ̄εn
+ nP̄n(ε3nμ̌n)
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(h) = ε(1 + o(1)) + o(1) using (f) and (g), and then (g) again,

since (g) and (f) give

(i) μ̄εn

μ̌n
= μ̄εn−μ̄1n

μ̌n
+ μ̄1n

μ̌n
= o(1) + [1 + o(1)] → 1.

Thus Z̄n/μ̄εn →p 1 by (h); then Z̄n/μ̌n →p 1 by (i), as (17) required. Further,

(j) Δn ≡ Z̄n−X̌n

μ̌n
= 1

μ̌n

1
n

∑n
1Xnk{1[Xnk≤nμ̌n] − 1[Xnk≤nνn]}

has the expectation bound

E|Δn| = | Z̄n−X̌n

μ̌n
| ≤ 1[μ̌n≤νn] · 1

nμ̌n

∑n
1nνnP (Xnk ≥ nμ̌n)

+1[μ̌n>νn] · 1
nμ̌n

∑n
1nμ̌nP (Xnk ≥ nνn)

= 1[μ̌n≤νn] · νn

μ̌n
· nP̄n(nμ̌n) + 1[μ̌n>νn] · nP̄n(nνn)

(k) → 0 using (d), (e), and (a);

so Markov’s inequality now yields Δn →p 0. This Δn →p 0 and (17) yield

(l) X̌n/μ̌n →p 1.

Combine (�) and (15) (and then use (f)) to obtain

(m) μ̌n/νn → 1 (as well as μ̄n/μ̌n → 1).

So (a) and (m) show that (3) implies (9)—and (B).
We still need to verify that (3) implies (4). Fix ε > 0, and let 0 < θ < ε. Now 1

νn
Mn →p 0

implies xθn ≤ εnνn for all n ≥ nε,θ by (8.3.17) and (8.3.19). Thus

1 ← μ̌n

νn
= 1

nνn
E{
∑n

1Xnk1[Xnk≤nνn]}

(n) = 1
nνn

E{
∑n

1Xnk(1[Xnk≤x1n] + 1[x1n<Xnk≤xθn] + 1[xθn<Xnk≤nνn])}

= u1n

νn
⊕ { xθn

nνn
}{
∑n

1P (Xnk > x1n)} ⊕ 1
nνn

nνn

∑n
1P (Xnk > xθn)

(o) = (u1n/νn) ⊕ {ε} · {1} ⊕ θ < 3ε for n sufficiently large,

using (8.3.17)–(8.3.18) for the first ε and P̄n([−xθn, xθn]) ≥ 1 − θ/n for both the 1 and the
θ. That is, u1n/νn → 1. Thus (3) implies (9) and (4)—and (B).

We will now prove that (9) implies (3). Begin rereading at (16), and replace μ̌n in the
definitions of Z̄n and Zε

nk by νn (which necessitates this same replacement at various points
in the arguments that follow (16)—these include the denominators of (17), (g), and (i)).
(Statement (f) is not needed.) Since μ̌n = μ̄n = μ̄1n, (g) now yields (μ̄1n − μ̄εn)/νn → 0,
using (9) for μ̄1n/νn → 1. Thus (h) and (i) give Z̄n/μ̄εn →p 1 as is implied by (h), and
μ̄εn/νn → 1 as in (i). Hence Z̄n/νn →p 1. Then P (X̄n 
= Z̄n) ≤ nP̄ (nνn) → 0 from (9), and
gives X̄n/νn → 1 So, (3) holds true. �

Proof. We now establish (B), (C), and (D). First, (B) follows from (3) and (9). Then (C)
is trivial since P̄n(xθn) ≤ θ/n. Consider (D). Suppose (3) holds with some νn > 0. Then (4)
holds. That (6) also holds gives ũ1n/u1n → 1. Thus (4)–(6) all hold if their “u” is replaced
by a “(ũ” By now it is trivial to argue that if any one of the “ũ” versions of (4)–(6) hold,
then they all do. Likewise, the “ũ” version of (6) implies the “u” version of (6). Thus the“ũ”
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versions of (4)–(6) are each equivalent to each of the “u” versions. Then (8.3.17)–(8.3.19)
show that the ũ versions of (6)–(8) are equivalent to each other. Thus the “ũ” claims in
(D) hold. (Comment: Exercise 1.3 above holds (with r = 1) by applying the final remark in
(C).) �

Proof. We will now show that (7) and (10) are equivalent. Suppose (7), which we already
know implies (4). Then

(a) [max Xnk/n]/X̄n = {max Xnk/nu1n} × {u1n/X̄n}

(b) = op(1)[1/(1 + op(1))] →p 0,

using (7) and then (4) in the last step. The uan condition in (10) is implied by the stronger
(7). This shows that (7) implies (10); that is, it establishes that

(c) Mn/X̄n →p 0.

Suppose, alternatively, that (7) fails for some uan array of row independent Xnk. (Note
O’Brien (1980) for the iid analog.) Then for a fixed tiny ε > 0,

(d)
∑n

1P (Xnk > εnu1n) ≥ (some α ∈ (0, 1]), on some subsequence m → ∞.

Let Amk ≡ [Xmk > εmu1m], let Cm ≡ [exactly 1 of the Xmk’s exceed εmu1m], and let Dkm ≡
[at least k of the Xmk’s exceed εmu1m]. Bounding P (D1m) below by inclusion/exclusion gives

(e) P (Cm) = P (D1m) − P (D2m)

≥ {
∑m

k=1P (Amk) −
∑m

k=1

∑
i�=kP (Ami)P (Amk)} − P (D2m)

(f) ≥ 1
2

∑m
k=1P (Amk) − {max1≤k≤mP (Amk)}{

∑m
k=1P (Amk)} (see (19))

(18) ≥ 1
4

∑m
k=1P (Amk) for all n ≥ (some n3ε), by the uan condition,

(g) > α/4 for all m, by (d),

since uan gives (18) once the Markov inequality gives (f) via

(19) P (D2m) = P (1Am1 + · · · + 1Amm
≥ 2) ≤ 1

2E(
∑m

1 1Amk
) ≤ 1

2

∑m
1 P (Amk).

Now let Sm ≡
∑m

1 Xmk,

X ′
mk ≡ Xmk · 1[Xmk≤ε m u1m], S

′
m ≡

∑m
1 X ′

mk, and X̄ ′
m ≡ 1

mS′
m

and note that

(h) μ′
m ≡ E(X ′

m) = 1
m

∑m
1

∫
[0,ε m u1m]

xdFmk(x) = Um(εmu1m).

Fix β ≡ αε3/2 (note that 1/β ≥ 2). Then the Markov inequality gives

(i) P (Gm) ≡ P (S′
m ≥ 1

β εmu1m) ≤ β m
ε m

Um(ε m u1m)
u1m

= β
ε

Um(ε m u1m)
Um(x1m)

≤ β
ε {[u1m +

∫
(x1m,ε m u1m]

ydF̄m(y)]1[x1m≤∈mu1m]

+u1m1[x1m>εmu1m]}/u1m
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≤ β
ε {1 + εmu1m

P̄m(x1m)
u1m

}

≤ β
ε {1 + ε

∑m
1 P (Xmk > x1m)} ≤ 2β

ε by definition of x1m

(j) < ε2α, for m ≥ (some mε).

Combining (g) and (j) will give

(k) P (Mm/X̄m >
1
2
β) ≥ P ([Xm:m/Sm >

1
2
β] ∩ Cm)

= P ([Sm <
2
β

Xm:m] ∩ Cm)

= P ([S′
m + (Xm:m − X ′

m:m) <
2
β

Xm:m] ∩ Cm)

= P ([S′
m < (

1
β

+ (
1
β

− 1))Xm:m + X ′
m:m] ∩ Cm)

≥ P ([S′
m <

1
β

Xm:m] ∩ Cm) = P ([S′
m/Xm:m <

1
β

] ∩ Cm) as 1/β ≥ 2

(l) ≥ P ([S′
m/εmu1m <

1
β

] ∩ Cm) = P (Gc
m ∩ Cm) using (i)

(20) ≥ P (Gc
m) + P (Cm) − 1 as any P (Gc) + P (C) = P (Gc ∩ C) + P (Gc ∪ C)

(m) ≥ (1 − ε2α) + α/4 − 1 = α(
1
4

− ε2) > 0 on the subsequence m,

using (j) and (g) in (m). Thus Mn/X̄n 
= 0 on the subsequence m. Thus

(n) Mn/X̄n � 0.

So, the failure of (7) implies the failure of (10); or (10) implies (7). Thus (c) and (n) give the
equivalence of (7) and (10). (This present proof replaces the proof that added (10) to the list
in the first edition of this text.) �

Independent Identically Distributed RVs (or, the IID Case)

Notation 1.2 (Absolute moments in the iid case) Let Y and all rvs Ynk have a
common df F (·) ≡ FY (·) and qf K(·) ≡ KY (·). (Let X ≡ |Y |. The rvs Xnk ≡ |Ynk| may
be represented as KX(ξnk) for row-independent Uniform(0, 1) rvs ξn1, . . . , ξnn, as in (6.3.5).)
Then P (·) ≡ 1 − FX(·). The truncated rth absolute moment functions M(·) and U(·) (as
defined in discussion 1.1) are defined by

(21) M(t) ≡
∫
[0,1−t]

Kr
X(s) ds on (0, 1], U(x) ≡

∫
[y≤x]

yrdFX(y) on [0, ∞).

Let mθn ≡ M(θ/n) and uθn ≡ U(xθn), where xθn ≡ KX(1 − θ/n) is defined to be the
(1 − θ/n)th quantile of FX . The Winsorized absolute moment

(22) m̃1n ≡ m1n +
1
n

m(1/n) equals ũ1n ≡ u1n + xr
1nP (x1n),

even though 1
nm( 1

n ) ≥ xr
1nP (x1n) as in theorem 1.1. �
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Comment Section C.3 is devoted to showing that the four conditions in (25) and (26) are
equivalent. (This section could be read now.) Note also exercise 6.3.3.

Theorem 1.2 (Consistency of absolute moments for iid rvs; estimation)
For iid rvs Xnk ≥ 0 as above, conditions (3)–(10), and (23)–(32) are equivalent.

Xr
n/νn →p 1 for some sequence νn > 0.(23)

(a) Xr
n

u1n
→p 1, (b) Xr

n

ũ1n
= Xr

n

m̃1n
→p 1, (c) Xr

n

m1n
→p 1.(24)

R(x) ≡ xrP (x)
U(x) = xrP (X>x)∫

[w≤x] wrdFX(w)
→ 0, or R(x−) → 0.(25)

r(t) ≡ tKr
X(1−t)∫

[0,1−t) Kr
X(s) ds

→ 0, or r(t+) → 0.(26)

r(ε/n) → 0 for every/any 0 < ε ≤ 1.(27)

nP (Xr > εnm1n) → 0 for all ε > 0.(28)

Mn/m1n ≡ [max1≤k≤n
1
nXr

nk]/m1n →p 0.(29)

Mn/X̄r
n →p 0.(30)

Mn/νn →p 0 and μ̌n/νn → 1, where μ̌n ≡ U(n νn).(31)

Of course, u1n/νn → 1, ũ1n/νn = m̃1n/νn → 1, and m1n/νn → 1 under (23). Moreover,
μ̌n/νn → 1 with μ̌n ≡ U(n νn), for any νn used in (23) or (31). Also,

(32)
u1n, ũ1n = m̃1n,m1n can replace νn in (23) or (31),
or they can replace m1n in (28) or (29).

Proof. Of course, all of (3)–(10) are still equivalent in this iid case. (However, the uan
condition is now redundant, since the claim just below (g) in the proof of theorem 1.1 that
implied {maxk median(Xnk)/nu1n} → 0 is now trivial in this iid case. The uan consequence
in (18) is also trivial.) Part (D) of theorem 1.1 showed that ũ1n can everywhere replace u1n,
and this justifies the inclusion of (24)(b). Note that (23), (24)(a), (30), and (31) are identical
to (3), (4), (9), and (10).

We first show that (27) implies (24)(c). For Xnk ≡ KX(ξnk), define

(a) Zθ
nk ≡ KX(ξnk)1[ξnk<1−θ/n] and mθn ≡ EZθ

nk =
∫
[0,1−θ/n)

KX(s) ds.

Fix ε > 0. Then for a fixed tiny θ ≡ θε < ε, the truncation inequality (8.4.25) gives

(b) P (|X̄n − mθn| > εmθn) ≤
∑n

1E(Zθ
nk)2/(ε nmθn)2 + n · (θ/n)

(c) ≤
∫
[0,1−θ/n) K2

X(s) ds

ε2nm2
θn

+ θ ≤ (θ/n)KX(1−θ/n)
θε2mθn

+ θ

(d) = 1
θε2

(θ/n)KX(1−θ/n)
M(θ/n) + θ = 1

θε2 r(θ/n) + θ < 2ε

for n sufficiently large, by (27). In like fashion

(e) 1 ≥ m1n

mθn
=
∫
[0,1−1/n) KX(s) ds
∫
[0,1−θ/n) KX(s) ds

≥ 1 − (1−θ)
θ

(θ/n)KX(1−θ/n)∫
[0,1−θ/n) KX(s) ds

≥ 1 − ε

http://dx.doi.org/10.1007/978-3-319-52207-4_1
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for all n sufficiently large, by (27). Thus, for n ≥ (some nε) we have

(f) |X̄n−m1n|
m1n

= mθn

m1n
| X̄n−mθn

mθn
+ 1 − m1n

mθn
| ≤ 1

1−ε [ε + ε] ≤ 2ε
1−ε

with probability at least 1 − 2ε. That is, X̄n/m1n →p 1, giving (24)(c).
Next, (24)(c) implies (29) (and its equivalent (28)); just replace u1n by m1n in that part

of the proof (i.e., (k)–(o)) of theorem 1.1 that yields (4) implies (8).
We now prove that (28) implies (27), for the specific choice an = θ/n, for any fixed

0 < θ ≤ 1. State (28) (recall (8.3.19)) as

(g) P (KX(1 − ξ)/(nm1n) > ε) ≤ θ/n for all n ≥ (some nεθ).

This implies that K(1 − θ/n) ≤ ε nm1n, and so

(h) r(θ/n) ≡ (θ/n)KX(1 − θ/n)/mθn ≤ (θ/nmθn)ε nm1n ≤ ε θ m1n/mθn ≤ ε

for all n ≥ nεθ; that is, (27) holds with t = an = θ/n. Thus (27) holds.
That each of the two parts of (25) is equivalent to each part of (26) follows from (C.3.6),

which is established simply by appealing to pictures of the graphs of F and K. Then (26)
trivially implies (27), while the proof that (27) implies (26) just mimics (m)–(n) on page 490.
Finally, (24)(c) implies (23), then (24)(a), then (5), which then implies (27). �

Comment At this point the reader should peruse sections C.2−C.3, and only then come
back to complete the reading of this section.

Notation 1.3 (Moments in the iid case) Let Yn1, . . . , Ynn be a triangular array of row
independent rvs, all with common df F and qf K. Now define the rvs Y +

nk ≡ Ynk × 1[Ynk≥0]

and Y −
nk ≡ −Ynk × 1[Ynk<0]. Fix r > 0. Let

(33)

m−(t) ≡ |K−
+ (t)|r, m+(t) ≡ |K+(1 − t)|r,

M̄(t) ≡
∫
(t,1]m̄(s) ds where m̄(·) ≡ m−(·) + m+(·),

m̄1n ≡ M̄(1/n) , m−
1n ≡

∫
(1/n,1]

m−(s) ds, m+
1n ≡

∫
(1/n,1]

m+(s) ds,

m±
1n simultaneously denote any one of m−

1n,m+
1n, or m+

1n ± m−
1n,

Ȳ −
rn ≡ 1

n

∑n
k=1[Y

−
nk]r, Ȳ +

rn ≡ 1
n

∑n
k=1[Y

+
nk]r, Ȳrn ≡ Ȳ −

rn + Ȳ +
rn,

Y ±
rn simultaneously denote any one of Ȳ −

rn, Ȳ +
rn or Ȳ +

rn ± Ȳ −
rn.

Make crude plots of m−(·), m+(·), m̄(·) and m(·) ≡ Kr
|X|(1 − ·) before going on.

Let KX denote the qf of the rv X ≡ |Y |, and then (as in theorem 1.2) let

(34) M(t) ≡
∫
[0,1−t)

Kr
|X|(s) ds =

∫
(t,1]

Kr
|X|(1 − s) ds =

∫
(t,1]

m(s) ds. �

Theorem 1.3 (Consistency of moments in the iid case; as estimators)
Fix an r > 0. Just some of the possible equivalent conditions are as follows:

[ 1
n

∑n
k=1|Ynk|r]/m̄1n →p 1, where m̄1n ≡ M̄(1 − 1/n).(35)

r̄(t) ≡ tm̄(t)/M̄(t) = tm̄(t)/
∫
(t,1]m̄(S) ds → 0 as t → 0.(36)

r̄(an) → 0 for every choice an ≡ ε/n with 0 < ε ≤ 1.(37)

Mn/m̄1n = [max1≤k≤n
1
n |K(ξnk)|r]/m̄1n →p 0.(38)

Mn/|X|rn = [max1≤k≤n
1
n |K(ξnk)|r]/[ 1

n

∑n
k=1|K(ξnk)|r] →p 0.(39)

Mn/νn →p 0 and μ̌n/νn → 1, where μ̌n ≡ U(nm̄1n).(40)
m̄1n can be added to the choices in (32).(41)

http://dx.doi.org/10.1007/978-3-319-52207-4_1
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Moreover, these are also equivalent to each of the conditions in the lists of theorem 1.1 and
theorem 1.2 such as

[ 1
n

∑n
k=1|Ynk|r]/m1n →p 1, where m1n ≡ M(1/n).(42)

xr
θn/nu1n → 0 for all 0 < θ ≤ 1, where u1n ≡ U(x1n).(43)

nP (Xr > εnun1) → 0, for all ε > 0.(44)
R(x) = xrP (|X| > x)/

∫
[|y|≤x]

|y|rdF (x) → 0 as x → ∞.(45)

Fix r ≥ 1. Let one (hence, all) of (3)–(10), (23)–(31), or (35)–(45), etc. hold. Then

(46) [Ȳ ±
rn − m±

1n]/m̄1n →p 0 and [Ȳrn − (m+
1n − m−

1n)]/m̄1n →p 0.

Proof. Let r = 1. That (36) implies (35) is virtually the same as (b)–(f) in the proof
of theorem 1.2, but now with Zθ

nk ≡ |K(ξnk)|1[θ/n<ξnk<1−θ/n]. Trivially, (35) implies (23).
From theorem 1.1 we know that (23) is equivalent to (10). However, (10) = (30) = (39), as
they are identical in content. Now, (39) = (30) is equivalent to (26) (by theorem 1.2) and
which is equivalent to (36) and to (37) (by theorem 2.2). Having the condition (10) = (30)
= (39) on this list allowed us to add all previous equivalent conditions given in (23)–(31) in
theorem 1.2, and this is what all four of the conditions given in the list (42) = (24)(c), (43)
= (6), (44) = (7), and (45) = (25) were chosen to exemplify.

Consider (46). With the Zθ
nk of the previous paragraph, we now consider

(a) Y ±
nk ≡ m±(ξnk) , m+

θn ≡ E(Y +
nk1[ξnk<1−θ/n]), m−

θn ≡ E(Y −
nk1[θ/n<ξnk]).

Using the truncation inequality (8.4.15) yet again (with mθn ≡ E(Zθ
nk)) gives

(b) P (|Y ±
n − m±

θn| ≥ εmθn) ≤ E((Zθ
n1)

2/n(εmθn)2 + 2θ.

Now proceed to establish (46), as in (a)–(f) of the proof of theorem 1.2. Finally, combining
(35) with (42) gives (46). �

Theorem 1.4 (Equivalencies for consistent estimation of the variance σ̃2
n)

Let Y and Yn1, . . . , Ynn be iid with df F (·) and qf K(·) Let F|Y |(·) and K|Y |(·) denote the
df and qf of |Y |. Let dom(a, a) denote one of (a, 1], [0, 1 − a), or (a, 1 − a) according as
Y ≤ 0, Y ≥ 0, or Y is general. Define v̄(t) ≡ [K−

+ (t)]2 +[K+(1− t)]2 and v(t) ≡ K2
|Y |(t). The

following are just some of the possible equivalent conditions:

x2P (|Y | > x)/U(x) → 0, where U(x) ≡
∫
[|y|≤x]

y2dF (y).(47)

tK2
|Y |(1 − t)/V|Y |(t) → 0, where V|Y |(t) ≡

∫
[0,1−t)

K2
|Y |(s) ds.(48)

t[K2
+(t) ∨ K2(1 − t)]/V (t) → 0, where V (t) ≡

∫
dom(t,t)

K2(s) ds.(49)

anv̄(an)/V (an) → 0 for any one an ↘ 0 with lim(an/an+1) < ∞.(50)

Y 2
n /u1n →p 1, where u1n ≡ U(x1n).(51)

Y 2
n /ũ1n →p 1, where ũ1n ≡ U(x1n) + x2

1nP (|Y | > x1n).(52)

Y 2
n /v1n →p 1, where v1n ≡

∫
[0,1−1/n)

K2
|Y |(s) ds = V|Y |(1/n).(53)

Y 2
n /v̄1n →p 1, where v̄1n ≡ V (1/n) =

∫
dom(1/n,1/n)

K2(s) ds.(54)

http://dx.doi.org/10.1007/978-3-319-52207-4_1
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Y 2
n /νn →p 1 for at least one sequence νn > 0.(55)

[maxk
1
nY 2

nk]/νn →p 0 and μ̌n/νn → 1, where μ̌n ≡ U(nu1n).(56)

[maxk
1
nY 2

nk]/νn →p 0 where νn is any one of v1n, v̄1n, ũ1n or u1n.(57)

[maxk
1
nY 2

nk]/Ȳ 2
n →p 0.(58)

D2
n ≡ [maxk

1
n |Ynk − Ȳn|2]/S2

n →p 0, where S2
n ≡ Ȳ 2

n − (Ȳn)2.(59)

S2
n/σ̃2( 1

n ) →p 1
where σ̃2( 1

n ) is the variance of KY (ξ) Winsorized outside dom( 1
n , 1

n ).
(60)

U(x) =
∫
[|y|≤x]

y2dF (y) is slowly varying at ∞. (See (C.2.13)).(61)

Now, (51)–(54) imply u1n/v1n → 1, ũ1n/v1n = ṽ1n/v1n → 1, and v̄1n/v1n → 1. (If (50) holds
for one such sequence an, then it holds for all such sequences an.) [Theorems C.2.1 and C.2.2
present many more equivalencies similar to (47)–(50) and (61), all of which follow from using
just geometrical considerations and Cauchy–Schwarz.] (See theorems 1.1–1.3 for additional
equivalencies.)

Proof. The equivalence of (47) through (59) (and of many other conditions from theorems
1.1–1.3, (with r = 2 for iid rvs), like (3)–(10), (23)–(32), and (35)–(45)) has already been
established. We were able combine the lists of theorems 1.2–1.3 since (58) appeared on all
of these lists. We added (59) via propositions 6.6.1 and 6.6.2. We added (61) via theorems
C.2.1 and C.2.2. �

Remark 1.1 (Alternatively Winsorized variances) Let σ̃2(x) denote the variance of Y Win-
sorized outside [−x, x]. Let σ̃2(t) denote the variance of KY (ξ) Winsorized outside dom(t, t).
Note from theorem 1.4 that ũ1n = ṽ1n. Note also that

(62) σ̃2(x1n)/σ̃2(1/n) → 1

when either Var[Y ] < ∞ or when Var[Y ] = ∞. �

Exercise 1.3 Prove (27) implies (26) for r = 1 (based on the natural (r = 2) modification
of the proof that (C. 2.6)(B) implies (C. 2.6)(A)—which is written out in the next section).

Exercise 1.4 (a) See (51) and (52) for u1n and ũ1n, (53) for v1n, and (54) for v̄1n when
r = 2. Show that both

(63) u1n ≥ v1n and ṽ1n = ũ1n.

(b) State the analogous results for u1n,m1n, ũ1n, m̃1n, and ˜̄m1n when r = 1. [Hint. Note
figure 8.4.1 and exercise 6.3.3.]

Theorem 1.5 (Strong negligibility) Let Y, Y1, Y2, . . . be iid rvs (that are not identically
equal to 0). Then

(64)
Dn →a.s. 0 iff EY 2 < ∞
iff M2n →a.s. 0 iff EM2n → 0 iff M2n/Y 2

n →a.s. 0.

for M2n ≡ [ 1
n max1≤k≤n Y 2

k ]. (Recall exercise 8.4.20.)
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2 Slowly Varying Partial Variance When σ2 = ∞ o

Many facts about slowly varying functions can be learned from simple pictures. We con-
centrate here on just such facts. Lévy’s condition (14) has emerged as the necessary and
sufficient condition of choice for the CLT; and we will now derive many equivalent ways to
demonstrate it. (Necessary and sufficient conditions for consistent estimation of the variance
parameters V (1/n) and σ̃2(1/n) as defined below are also equivalent to the conditions on the
current list.) (Note (21) below.)

Notation 2.1 Let Y denote an arbitrary rv (with df F and qf K); let X ≡ |Y |. Let FX

and KX denote the df and qf of X. For 0 < t < 1, let xt ≡ KX(1 − t). Let Ỹt denote Y
W̃insorized) outside [−xt, xt]. Define various partial moments, via

v(t) ≡ K2
X(1 − t), V (t) ≡

∫
(t,1]

v(s) ds, σ̃2(t) ≡ Var[Ỹt],(1)

q(t) ≡ KX(1 − t), m(t) ≡
∫
(t,1]

q(s) ds, μ̃(t) ≡ EỸt,(2)

U(x) ≡
∫
[0,x]

y2dFX(y), M(x) ≡
∫
[0,x]

y dFX(y) , Ṽ (t) ≡ EỸ 2
t . �(3)

Theorem 2.1 (Partial variance, with symmetric W̃insorizing)
Only the case σ2 = ∞ has interest; all conclusions below are trivial if σ2 < ∞.
(A): The following (also referred to as (4)(A)–(12)(A)) are equivalent (as t → 0) :

[σ̃2(ct) − σ̃2(t)]/σ̃2(t) → 0 for all 0 < c < 1.(4)

[Ṽ (ct) − Ṽ (t)]/Ṽ (t) → 0 for all 0 < c < 1.(5)
r(t) ≡ tv(t)/V (t) → 0.(6)
[V (ct) − V (t)]/V (t) → 0 for all 0 < c < 1.(7)
t[v(ct) − v(t)]/V (t) → 0 for all 0 < c < 1.(8)

d(t) ≡
√

t[q(ct) − q(t)]/
√

V (t) → 0 for all 0 < c < 1.(9)
tv(ct)/V (t) → 0 for all 0 < c < 1.(10)

[m(ct) − m(t)]/
√

tV (t) → 0 for all 0 < c < 1.(11)

r̃(t) ≡ tv(t)/σ̃2(t) → 0.(12)

(B): Specify a sequence an ↘ 0 as n → ∞ that satisfies lim sup an/an+1 < ∞. Conditions
(4)(B)–(12)(B) are obtained by replacing t by an in (4)(A)–(12)(A). These conditions (4)(B)–
(12)(B) are also equivalent to condition (4)(A).
(C): Conditions (5)(C)–(11)(C) are obtained by replacing V (an) or Ṽ (an) by σ̃2(an) in the
denominators of (5)(B)–(11)(B). Then (5)(C)–(11)(C) are also equivalent to the condition
(4)(A). (Also, (21) below is an equivalent; (20) and (22) are useful.)
(D): The most useful choices are an ≡ ε/n(equivalently, an ≡ 1/n with c ≡ ε), or the
alternative an ≡ εn/n with εn ↘ 0 subject to lim sup εn/εn+1 < ∞.
(E): The following are equivalent (as x → ∞) to the previous conditions.
[Any sequence xn to be specified below is assumed to satisfy lim(xn+1/xn) < ∞).]

U ∈ U0 (that is, U is slowly varying at ∞).(13)

R(x) ≡ x2P (X > x)/U(x) → 0 (equivalently, R(xn) → 0).(14)
x[M(cx) − M(x)]/U(x) → 0 for any one (or, all) fixed c > 1.(15)

Ũ(x) ≡ U(x) + x2P (X > x) defines a function in U0.(16)
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Theorem 2.2 (Partial variance, equal fractions) Consider an arbitrary rv Y with df
F and qf K. Let K̃t,t(·) denote K(·) Winsorized outside dom(t, t) (recall notation 6.5.1),
and now redefine so that

v(t) ≡ {[K−
+ (t)]2 + [K+(1 − t)]2} and V (t) ≡

∫
(t,1]

v(s) ds,(17)

q(t) ≡ [K−
+ (t) + K+(1 − t)] and m(t) ≡

∫
(t,1]

q(s) ds,(18)

μ̃(t) ≡ E[K̃t,t(ξ)] and σ̃2(t) ≡ Var[K̃t,t(ξ)].(19)

All equivalences stated in parts (A), (B), and (C) of the previous theorem are still valid
for the new definitions of q, v, σ̃2, and Ṽ (t) ≡ E[K̃2

t,t(ξ)]. (In the previous theorem we had
q2(t) = v(t). In the present theorem we have v(t) ≤ q2(t) ≤ 2v(t), which is still convenient
and meets all our needs. What is crucial is that m(·), q(·), v(·) and V (·) have an appropriate
meaning. Note that this V (t) is the Ťruncated second moment (with respect to dom(t, t)).)
(Also, (21) below is equivalent.)

Note (to W̃insorize the absolute value, or to W̃insorize symmetrically)
Theorem 2.1 W̃insorizes symmetrically about zero, while the companion theorem 2.2
W̃insorizes equal fractions from each tail. Statisticians use both strategies in the modifi-
cation of their data, and these theorems are prepared to deal with both.

Remark 2.1 (Why develop all these equivalent conditions?) Quite a number of the useful
conditions that appear in the literature are developed herein. These have application in esti-
mation of moments and partial moments and in the determination of necessary and sufficient
conditions for asymptotic normality of iid rvs. Some of these conditions are best developed
in the context of a careful examination of the df and the qf of the underlying distribution.
These are considered in this section and the next. Some are best developed in the context
of the ratio LLN , and this was just done in the previous section in theorem C.1.4 for the
estimation of a partial second moment and a partial variance when the underlying variance
may be infinite. In sections 10.5–10.6 all of these results are connected to necessary and
conditions for asymptotic normality of the mean of iid rvs. In sections 10.8–10.9 they are tied
into the bootstrap via the quantity Dn appearing in (C.1.60). (Once started, it was just fun
to see how completely it could be done.) �

Proof. Clearly, all of (4)(A)–(12)(C) (in the context of both theorem 2.1 and theorem
2.2), hold when σ2 < ∞. So from here on we always assume that σ2 = ∞.

(A): Now, (5) implies (6), since for each d > 1 figure 2.1(a) demonstrates that

(a)
tv(t)
V (t)

≤ tv(dt) + t[v(t) − v(dt)]
V (dt) + (d − 1)tv(dt)

d

d

(b) ≤ 1
d − 1

{
dtv(dt)
Ṽ (dt)

+
dt[v(t) − v(dt)]

1 · Ṽ (dt)

}
≤ 1

d − 1

{
1 + d

t(v(t) − v(dt))
Ṽ (dt)

}

(c) ≤ 1
d − 1

+
d

d − 1
Ṽ ( 1

d dt) − Ṽ (dt)

Ṽ (dt)

(d) → 1/(d − 1) + 0 by (5).

Since this holds for any d > 1, it gives (6).
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v(·) v(·) v(·)

t dt

(a)

tc t

(b)

tc t
ct

(c)

2

Figure 7.1 Comparison of areas.

Next, (6) implies (7), since for each fixed 0 < c < 1 figure 2.1(b) shows that

(e) [V (ct) − V (t)]/V (ct) ≤ [(1 − c)/c][ctv(ct)/V (ct)] → 0.

Suppose (7), that V ∈ R0. This means that [V (ct/2) − V (t)]/V (t) → 0, and figure 2.1(c)
then demonstrates that

(f) (c/2)t[v(ct) − v(t)]/V (t) ≤ [V (ct/2) − V (t)]/V (t) → 0;

this shows that (8) holds.
Supposing (8) about v(·), we will establish (9) about d(·). Now,

(g) t[v(ct) − v(t)]/V (t) = d(t) × [d(t) + 2
√

tq(t)/
√

V (t)] ≥ d2(t);

and so d(t) → 0 is implied, as required for (9).
Then (9) implies (5), since figure 2.1(b) also shows that

Ṽ (ct) − Ṽ (t)
Ṽ (t)

≤ t[v(ct) − v(t)]
V (t) + tv(t)

=
√

t[q(ct) − q(t)]√
Ṽ (t)

×

⎧⎨
⎩

√
t[q(ct) − q(t)]√

Ṽ (t)
+

2
√

tq(t)√
Ṽ (t)

⎫⎬
⎭

(h) ≤
√

t[q(ct) − q(t)]√
V (t)

×
{√

t[q(ct) − q(t)]√
V (t)

+
2
√

tq(t)√
tv(t)

}

= d(t){d(t) + 2} → 0.

We have closed the (5)–(9) circle. It is now trivial that (6) and (8) imply (10), while (10)
even more trivially implies (6).

We obtain (11) implies (6) via

(i) (1 − c)
{

tv(t)
V (t)

}1/2

= (1 − c)
tq(t)√
tV (t)

≤
∫ t

ct
q(s) ds√
tV (t)

=
m(ct) − m(t)√

tV (t)
→ 0.

Then (7) implies (11) via Cauchy–Schwarz in

m(ct) − m(t)√
tV (t)

=

∫ t

ct
q(s) ds√
tV (t)

≤
{

(1 − c)t
∫ t

ct
q2(s) ds

tV (t)

}1/2
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(j) ≤
{

V (ct) − V (t)
V (t)

}1/2

→ 0.

So far, (5)–(11) are equivalent.
We next show that (4) is equivalent to the simpler (5). Suppose (4) holds, so that σ̃2(·) ∈

R0. We use Gnedenko and Kolmogorov’s theorem 6.6.1 to write

Ṽ (ct) − Ṽ (t)
Ṽ (t)

=
[
σ̃2(ct) − σ̃2(t)

σ̃2(ct)
+

μ̃2(ct) − μ̃2(t)
σ̃2(ct)

]
× σ̃2(ct)

σ̃2(t)
× σ̃2(t)

Ṽ (t)

(k) =
[
σ̃2(ct) − σ̃2(t)

σ̃2(ct)
+ o(1) + o(1)

]
× σ̃2(ct)

σ̃2(t)
× [1 + o(1)] = o(1);

and this implies Ṽ (·) ∈ R0, which is (5). Now suppose that (5) holds, so that Ṽ (·) ∈ R0.
The same Gnedenko–Kolmogorov theorem now gives

σ̃2(ct) − σ̃2(t)
σ̃2(t)

=
Ṽ (ct) − Ṽ (t)
Ṽ (t)[1 + o(1)]

+
[
μ̃2(t) − μ̃2(ct)

Ṽ (ct)

] [
Ṽ (ct)

Ṽ (t)[1 + o(1)]

]

(l) =
Ṽ (ct) − Ṽ (t)

Ṽ (t)
[1 + o(1)] + [o(1) + o(1)][1 + o(1)] = o(1);

and this implies σ̃2(·) ∈ R0, which is (4).
That (6) and (12) are equivalent is immediate from (6.6.2), which gives

(20) r̃(t) =
tv(t)
σ̃2(t)

=
tv(t)

Ṽ (t) − μ̃2(t)
∼ tv(t)

Ṽ (t)
=

r(t)
1 + r(t)

.

(B): We next show that (6)(B) implies (6)(A). Suppose that (6)(B) holds for even one
sequence an ↘ 0 having lim an/an+1 < ∞. We are thus given that rn ≡ anv(an)/V (an) → 0.
So (6)(A) holds via

(m) sup
an+1≤t<an

tv(t)
V (t)

≤ an

an+1

an+1v(an+1)
V (an+1)

V (an+1)
V (an)

=
an

an+1
rn+1

V (an+1)
V (an)

≤ an

an+1
rn+1/

[
1 −
(

an

an+1
− 1
)

rn+1

]
→ 0,

since

(n) 1 ≥ V (an)
V (an+1)

= 1 −
∫

(an+1,an]
v(t) dt

V (an+1)
≥ 1 − an+1v(an+1)

V (an+1)

[
an

an+1
− 1
]

→ 1.

Since(6)(A) trivially implies (6)(B), the condition (6)(B) is now on the list.
That (5)(B) implies (5)(A) follows from

(o) 1 ≤ sup
an+1≤t<an

Ṽ (ct)
Ṽ (t)

≤ Ṽ (c an+1)
Ṽ (an)

≤ Ṽ ((c/M)an)
Ṽ (an)

→ 1 × 1 = 1,

since lim(an/an+1) < (some M) < ∞. The trivial converse puts (5)(A) on the list.
We next show that (6)(B) implies (7)(B). Now, (6)(B) (since it implies (6)(A)) allows use

of (e) with t = an to conclude (7)(B). The arguments of (f)–(h) can be repeated with t = an
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to show that (7)(B) implies (8)(B), which implies (9)(B), which implies (5)(B). Now, (5)(B)
was shown in (o) to imply (5)(A), and thus it also implies (6)(A), which trivially implies
(6)(B). Also, (10)(B) can be added by the same argument used for (10)(A). The arguments of
(i) and (j) with t = an allow us to add (11)(B). Finally, the equivalence of (4)(B) and (5)(B)
still follows from arguments (k) and (1) with t = an.

Next observe that (12)(B) is equivalent to (6)(B), since (m) gives

(p) r̃(an) =
anv(an)
σ̃2(an)

∼ anv(an)
V (an) + anv(an)

=
r(an)

1 + r(an)
.

Thus (12)(B) is on our list.
(C): Note that (6)(C) is exactly (12)(B), and so (6)(C) is on our list, and thus it implies

(12)(A). We may reread (e) (with denominator V (can) replaced by σ̃2(an) throughout) to see
that (6)(C) (that is, its (12)(A) consequences) implies (7)(C). Then rereading (f)–(h) (with
the same denominator replacement) shows that (7)(C) implies (8)(C), which implies (9)(C),
which implies (5)(C). We now close the circle on (5)(C)–(9)(C) by noting that (5)(C) implies
(5)(B), again using the Gnedenko and Kolmogorov result (6.6.2). We can add (10)(C) by the
same trivial argument as before. Rereading (i)–(j) (with the new denominator) then allows
us to add (11)(C).

The proof of theorem 2.2 is essentially identical. All but lines (h) and (j) are identical; line
(i) is identical because m is still the integral of q. But (h) and (j) are not identical because
we no longer have q2 = v. But we do have v2 = [q+]2 + [q−]2, where q = q+ + q−, and that is
enough to complete the proof. Just factor the two pieces separately in (h) and (j), and apply
the trivial inequalities (a + b)2 ≤ 2(a2 + b2) and a ∨ b ≤ a + b ≤ 2(a ∨ b). �

Proof. (E): We prove this part separately. We first show that (14) implies (13). So suppose
that (14) holds, so that R(x) ≡ x2P (X > x)/U(x) → 0 as x → ∞. If c < 1, then

[U(x) − U(cx)]/U(cx) =
∫

(cx,x]
y2dFX(y)/U(cx)

(a) ≤ c−2[(cx)2P (X > cx)/U(cx)] → 0;

and for c > 1 it is analogous that [U(cx) − U(x)]/U(x) → 0. Thus, U is slowly varying, as in
(13).

Suppose (13) holds. Then for all x ≥ (some xε),

(b)
x2P (x < X ≤ 2x)

U(x)
≤
∫ 2x

x
y2dFX(y)
U(x)

≤ U(2x) − U(x)
U(x)

< ε,

(c)
x2P (2x < X ≤ 4x)

U(x)
≤ (2x)2

4
P (2x < X ≤ 2 · 2x)

U(2x)
.

U(2 · x)
U(x)

≤ ε · (1 + ε)
4

,

(d)
x2P (4x < X ≤ 8x)

U(x)
<

ε

42

U(4x)
U(2x)

U(2x)
U(x)

≤ ε[(1 + ε)/4]2, . . .

So for x ≥ xε we add these to get

(e) R(x) = x2P (X > x)/U(x) ≤ ε
∑∞

k=0[(1 + ε)/4]k ≤ ε/(1 − (1 + ε)/4) ≤ 2ε.

Thus R(x) → 0 as x → ∞. That is, (13) implies (14).
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We will obtain (15) implies (14) analogously to (b) − (d). (To keep notation nearly
identical to (b) − (d), we shall pretend that c = 2; but really, 2, 4, 8, · · · , are just surrogates
for c, c2, c3, · · · .) Now, for all x ≥ (some xε), (15) gives

(f)
x2P (x < X ≤ 2x)

U(x)
≤ x[M(2x) − M(x)]

U(x)
< ε,

x2P (2x < X ≤ 4x)
U(x)

≤ 1
22

2x[M(2 · 2x) − M(2x)]
U(2x)

. (1 +
U(2x) − U(x)

U(x)
)

(g) ≤ 1
4
ε(1 +

2x[M(2x) − M(x)]
U(x)

) ≤ ε
1 + ε

4
,

x2P (4x < X ≤ 8x)
U(x)

≤ 1
42

4x[M(2 · 4x) − M(4x)]
U(4x)

.
U(2 · 2x)
U(2x)

· U(2x)
U(x)

(h) ≤ 1
42

ε(1 + ε)2 ≤ ε(
1 + ε

4
)2

Add these to get R(x) → 0 as x → ∞, as in (e). Thus (15) implies (14).
We obtain (13) implies (15) via

(i)
x[M(cx) − M(x)]

U(x)
≤
∫ cx

x
y2dFX(y)
U(x)

≤ [U(cx) − U(x)]
U(x)

→ 0.

Now, (14) implies (16) via

(j)
Ũ(cx) − Ũ(x)

Ũ(x)
≤ U(cx) − U(x)

U(x)
+

(c2 + 1)x2P (X > x)
U(x)

→ 0.

Then (16) implies (14), since for c > 1 we have

Ũ(cx) − Ũ(x)
Ũ(x)

=
[
∫ cx

x
y2dFX(y) + (cx)2P (X > cx) − x2P (X > x)]

Ũ(x)

≥ {[x2[P (X > x) − P (X > cx)] + c2x2P (X > cx) − x2P (X > x)}/Ũ(x)

(k) ≥ (c2 − 1)x2P (X > cx)
Ũ(cx)

≥ c2 − 1
c2

/
{1 +

U(cx)
(cx)2P (X > cx)

},

and the extreme left term going to 0 forces R(cx) = (cx)2P (X > cx)/U(cx) → 0. Thus
(13)–(16) are equivalent. In fact, the second condition in (14) suffices, since

(l) sup
xn≤x≤xn+1

x2P (X > x)
U(x)

≤
[
lim

x2
n+1

x2
n

]
x2

nP (X > xn)
U(xn)

≤ O(1) × R(xn) → 0.

The equivalence of (14) and (6)(A) is shown in the next section. Conditions (13)–(16) will
then be added to the big list with the rest in theorems 2.1–2.2. �

Though already established, we will still give a simple proof that V (·) ∈ L does indeed
imply Ṽ (·) ∈ L. If V ∈ L, figure 2.1 (b) shows that

0 ≤ (1 − c) a v(a)/V (a) ≤ [V (ca) − V (a)]/V (a) → 0,
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implying that tv(t)/V (t) → 0 as t → 0. Then when V ∈ L the equation

Ṽ (ct)
Ṽ (t)

=
{[

ctv(ct)
V (ct)

+ 1
]

× V (ct)
V (t)

}/[
tv(t)
V (t)

+ 1
]

→ (0 + 1) × 1
0 + 1

= 1

shows that Ṽ ∈ L. Alternatively, note that V ∈ L implies V ∈ L via

[Ṽ (ct) − Ṽ (t)]/Ṽ (t) ≤ t[v(ct) − v(t)]/V (t) → 0.

Remark 2.2 The condition (6.6.11) in theorem 6.6.2 is

(21) t[K2
+(ct) ∨ K2(1 − ct)]/σ̃2(t) → 0 as t → 0, for each fixed c > 0.

We now verify that (21) can be added to our list of equivalent conditions. (This condition
gets heavy use in dealing with L-statistics.) Just note that when σ2 = ∞, the Gnedenko–
Kolmogorov theorem 6.6.1 gives

(22)
tv(ct)
σ̃2(t)

∼ tv(ct)
Ṽ (t)

=
tv(ct)

V (t) + tv(t)
=

tv(ct)
V (t)

/(
1 +

tv(t)
V (t)

)
=

tv(ct)
V (t)

1
1 + r(t)

. �
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3 Specific Tail Relationships o

We list two relationships that could prove important. The first concerns the WLLN and the
second concerns the CLT and variance estimation. They compare the height of the qf with
the magnitude of a partial moment.

Definition 3.1 (Order-r qfs) A qf K is of order r (with r > 0) if

(1) t{|K+(t)|r + |K(1 − t)|r} → 0 as t → 0.

Theorem 3.1 (The (x, t)-order equivalence; WLLN) Let X ≥ 0 have qf K. Then

(2) lim sup
t→0

t|K(1 − t)|r = lim sup
x→∞

xrP (X > x) = lim sup
x→∞

xP (Xr > x).

for each r > 0. The same is true for lim inf, and lim (if it exists).

Proof. Consider figure 8.4.1. When r = 1, the two quantities in (2) correspond to areas;
so we will use words appropriate to r = 1.

At any point (x, F (x)) the quantity xP (X > x) is just the area above and to the left of
this point (in the leftmost half of following figure). At any point (t, K(1 − t)) the quantity
tK(1− t) is just the area below and to the right (in the rightmost half of the following figure).
Just trace out these two areas in the figures, and note that all the local extreme points of
these two sets of area values (that are associated with jumps and flatspots) are identical. �

Remark 3.1 Clearly, if E|X|r < ∞ for X ∼= K, then K is of order r, since for some finite
M

g(x) ≡ |x|rF (x)[1 − F (x)] ≤ M on R, and
while g(x) → 0 as |x| → ∞,

(3)

h(t) ≡ t[|K(t)|r + |K(1 − t)|r] ≤ M on (0, 1),
while h(t) → 0 as t → 0. �(4)

Theorem 3.2 (The (x, t)-tail equivalence; CLT) Let X ≥ 0 have df F and qf K, and
fix a constant r > 0. Define R(·) and r(·) (as in theorem C.1.2) by

(5) R(x) ≡ xrP (X > x)∫
[0,x]

yrdF (y)
on [0, ∞) and r(t) ≡ tKr(1 − t)∫

[0,1−t]
Kr(s) ds

on (0, 1].

Then

(6) limx→∞ R(x) = limx→∞ R(x−) = limt→0 r(t+) = limt→0 r(t).

The same is true for the lim, and for the lim (if it exists).

Comment Recall that E|X| =
∫∞

0
P (|X| > y) dy and (see (6.3.12))

(i)
∫

(x,∞)
ydF|X|(y) = xP (|X| > x) +

∫∞
x

P (|X| > y) dy; so

(ii)
∫

[0,x]
ydyF|X|(y) =

∫ x

0
P (|X| > y) dy − xP (|X| > x).
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Let X ≥ 0 have df F(·).

WLLN   iff   x[1 – F(x)] → 0    iff   (1 – t)F –1(t) → 0.

SLLN  iff   ∫    [1 – F(y)]dy → 0    iff   ∫  F –1(s)ds → 0.

x[1 –F(x)]

∫    [1 – F(y)]dy F(·)

0 x 0 t 1

(1 – t)F –1(t)

∫  F –1(s)ds

F –1(·)

1∞

∞ 1

x t

x
t

These two sum to

Figure 4.1 Conditions for the WLLN and for the SLLN. (Use (a ∨ b) ≤ a + b ≤ 2(a ∨ b) for
general X.)

Proof. Suppose that [x1, x2) is a maximal flat spot of F (·). Then

(a) U(x1) = U(x) = U(x2−) ≤ U(x2) and R(x) ≤ R(x2−)

for all x ∈ [x1, x2]. Thus the supremum of R(·) across [x1, x2] is R(x2−). The three values
R(x1), R(x2−), and R(x2) are numerically equal to the three values r(F (x1)), r(F (x1)+), and
r(F (x2)); use (a) and picture the claims in terms of the flat spots in Figure 4.1. Suppose next
that x is a discontinuity point of F (·) with jump size F (x) − F (x−). Then R(x−) > R(x).
Moreover the maximum of r(t) across [F (x−), F (x)] is equal to r(F (x)+) = R(x−). Finally,
at all other points there are unique pairs that solve R(x) = r(t). Thus (5) holds. This
establishes the equivalence of the four different conditions that are stated in (25) and (26).

�
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4 Regularly Varying Functions ∗

Definition 4.1 (Regularly varying functions, at 0) Call V (·) > 0 regularly varying at
0 with characteristic exponent r (written V ∈ Rr) if L(t) ≡ t−rV (t) satisfies L(ct)/L(t) → 1
for each c > 0 (such a function L is called slowly varying, and we agree to write L ∈ L ≡ R0).
[Clearly, shifting a qf up or down has absolutely no effect on whether or not it is varies
regularly.]

Theorem 4.1 Let V (t) ≡
∫ 1

t
v(s) ds, where v ≥ 0 and v ↘ on some 0 < t < ao. Consider

also Ṽ (t) ≡ V (t) + tv(t). Let β ≥ 0.
(Monotone density theorem)

V ∈ R−β iff tv(t)/V (t) → β as t → 0.(1)
V ∈ R−β implies v ∈ R−(β+1), when β > 0.(2)

(Karamata theorem)

v ∈ R−(β+1) implies V ∈ R−β , when V (0) = ∞.(3)

V ∈ R−β implies Ṽ (t) ∈ R−β and tv(t)/Ṽ (t) → β/(1 + β).(4)

Proof. Consider the “only if” half of (1). For 0 < b < a < 1 we note that

(a) (a − b)tv(at) ≤
∫ at

bt
v(s) ds = V (bt) − V (at) ≤ (a − b)tv(bt).

Also,

V (bt) − V (at)
t−βL(t)

=
V (bt)

(bt)−βL(bt)
× b−βL(bt)

L(t)
− V (at)

(at)−βL(at)
× a−βL(at)

L(t)

(b) → (b−β − a−β).

The left side of (a) thus gives

(c) lim sup
t↘0

tv(at)
t−βL(t)

≤ − (b−β − a−β)
b − a

, and is also ≤ − d

db
b−β

∣∣∣∣
b=1

= β

by setting a = 1 and letting b ↗ 1. The right side of (a) analogously gives

(d) lim inf
t↘0

tv(bt)
t−βL(t)

≥ − (b−β − a−β)
b − a

, and is also ≥ − d

db
b−β

∣∣∣∣
b=1

= β

by setting b = 1 and letting a ↘ 1. Combining (c) and (d) gives tv(t)/V (t) → β, so the “only
if” half of (1) holds. Then (2) and (4) are immediate.

Consider the converse part of (1). Let r(t) ≡ tv(t)/V (t), so that the ratio r(t) ∈ [β −
ε, β+ε] for all 0 < t ≤ (some tε). Now, V is absolutely continuous on every closed subinterval
of (0, tε] by the fundamental theorem of calculus. And thus log V is absolutely continuous on
the same closed subintervals (see exercise 4.4.5), and so we may claim that

(e) (log V )′(s) = −r(s)/s a.e. on (0, tε].

Thus for any 0 < t ≤ tε, we can integrate to get

(f) log V (t) − log V (tε) =
∫ tε

t
[r(s)/s]ds,
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and this gives

[(ct)βV (ct)]/[tβV (t)] = cβe

∫ t

ct
[r(s)/s]ds = eβ log ce

∫ t

ct
[r(s)/s]ds

(g) = e

∫ t

ct
[(r(s)−β)/s]ds

(h) = (some value between c−ε and cε) for all 0 < t ≤ tε.

But ε > 0 is arbitrary. Thus V ∈ R−β . Moreover, (f) shows that V may be written in the
form

(5) V (t) = ct−β exp(
∫ d

t
[r(s) − β]/s ds)

for some constants c, d and for r(t) ≡ tv(t)/V (t) → β as t → 0.
Now, (4) is immediate from (1), (2), and Ṽ (t) = V (t) + tv(t).
Consider (3). Fix 0 < r < 1. Let L(·) ∈ L. Then for all w ≤ (some t0 ≡ trε),

(i) (1 − ε)L(w) ≤ L(rw) ≤ (1 + ε)L(w).

(Recall that a = b ⊕ c means that |a − b| ≤ c.) We write

V (rt) − V (rt0) =
∫ rt0

rt

v(u)du = r
∫ t0

t
v(rw)dw with u ≡ rw

= r−β
∫ t0

t
w−(β+1)L(rw)dw

(j) = r−β [1 ⊕ ε]
∫ t0

t
w−(β+1)L(w)dw using (i)

(k) = r−β [1 ⊕ ε]
∫ t0

t
v(w)dw = r−β [1 ⊕ ε][V (t) − V (t0)].

Thus

(l) (1 − ε)r−β ≤ V (rt) − V (rt0)
V (t) − V (t0)

≤ (1 + ε)r−β .

Since V (t) → ∞ as t → 0, we have from (1) that V ∈ R−β . �

Definition 4.2 (Regularly varying functions, at ∞) A function U > 0 on (0, ∞) is
called regularly varying with exponent ρ (written U ∈ Uρ) when l(x) ≡ x−ρU(x) satisfies
l(cx)/l(x) → 1 for each c > 0 (such a function l(·) is called slowly varying at ∞).

Theorem 4.2 (Partial variance, β > 0) [Let α ≡ 2/(β + 1) and β = (2 − α)/α.]
(i) Based on the definitions in (C.2.1) and (C.2.3), the following are equivalent:

U ∈ U2β/(1+β) = U2−α.(6)

x2P (X > x)/U(x) → β as x → ∞.(7)
tv(t)/V (t) → β as t → 0.(8)
V ∈ R−β .(9)
v ∈ R−(β+1).(10)

(ii) Based on definition (C.2.17), the conditions (6)–(10) are equivalent.
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Proof. The equivalence of (8), (9), and (10) follows from theorem 4.1. Then add (7) using
theorem 4.1. That (6) is also equivalent is the subject of the next exercise. �

Exercise 4.1 Establish the initial equivalence (6) in theorem 4.2. [Hint. Use the integra-
tion by parts result P (X > x) =

∫
(x,∞)

x−2dU(x).]

Exercise 4.2 (De Haan) Let v−(t) ≡ [K−
+ (t)]2 and v+(t) ≡ [K+(1 − t)]2. Let V −(t) ≡∫ 1

t
v−(s) ds and V +(t) ≡

∫ 1

t
v+(s) ds. If v−(t)/v+(t) → c ∈ [0, ∞] as t → 0, then

V −(t)/V +(t) → c as t → 0 when both V −(0) and V +(0) are infinite.

The following exercises summarize some standard general regular variation results. [That
is, h is not assumed to be monotone. Karamata’s result is now harder.]

Exercise 4.3 (Regular variation holds uniformly) (a) Let h denote any function that is
regularly varying at 0, of order r ∈ R. Then for 0 < a < b ≤ 1 we have the uniform
convergence of both:

sup
a≤c<b

|h(ct)/h(t) − cr| → 0 as t → 0,(11)

sup
a≤u≤v≤b

|
∫ v

u
h(ct)dc/h(vt) −

∫ v

u
crdc/vr| → 0 as t → 0.(12)

(b) Prove (11) assuming h ↘.
[Hint. Use (5) for (b). That (12) follows from (11) is easy, even in general.]

Exercise 4.4 (Karamata) Let h be regularly varying at 0, of order r ∈ R.
(i) Suppose r ≤ −1. Then

(13)
∫ 1

t
h(s) ds/[th(t)] → −1/(r + 1) as t → 0.

(ii) Suppose r > −1 or both r = −1 and
∫ 1/2

0
h(s) ds < ∞. Then

(14)
∫ t

0
h(s) ds/[th(t)] → 1/(r + 1) as t → 0.

Question Theorem 4.1 shows that when β > 0, the collection of quantile functions {K :
V (·) ∈ R−β} form a subset of the collection {K : Ṽ (·) ∈ R−β}. Are these two collections
actually the same collection?
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5 Some Winsorized Variance Comparisons ∗

Notation 5.1 We agreed in notation 6.5.1 that for 0 ≤ a ≤ 1 − a′ ≤ 1,

(1)
K̃(·) ≡ K̃a,a′(·) denotes K(·) Winsorized outside dom(a, a′),
μ̃ ≡ EK̃(ξ), σ̃2 ≡ Var[K̃(ξ)], Ṽ ≡ EK̃2(ξ), with ξ ∼= Uniform(0, 1),
q̃ ≡ K+(1 − a′) + K−

+ (a) and V ≡
∫

dom(a,a)
K2(t) dt.

Thus whenever K+(a) < 0 < K(1 − a′) we note that K̃(t) = K̃a,a′(t) equals K+(a),
K(t),K(1 − a′) according as t is in (0, a], (a, 1 − a′), [1 − a′, 1), while only the right tail
of K(·) is modified if X ≥ 0, and only the left tail of K(·) is modified if X ≤ 0. (Recall also
that ao ≡ a ∧ (1 − a) for a· ≡ inf{t : K(t) ≥ 0}, from just below (6.5.8).) In any case,

(2) σ̃2 = σ̃2(a, a′) ≡
∫ 1

0

∫ 1

0
(s ∧ t − st)dK̃a,a′(s)dK̃a,a′(t)

for 0 ≤ a < 1 − a′ ≤ 1, which shows that σ̃2(a, a′) always ↗ Var[K(ξ)] as a ↘ 0 and a′ ↘ 0.
Setting a = a′ = 0 gives a valid representation of the variance in [0, ∞] without mention of
μ.

a0
0 1

K0(·)

1 – a0

Figure 10.1 If K ∈ K, then the graph of (K − μK)/σK lies entirely in the shaded region.

Fix a qf K0 having mean 0 and finite variance σ2
0 , and (for some 0 < a0 < 1

2 fixed) define the
class of qfs

(3) K ≡ {K(·) : |K − μK |/σK ≤ |K0| on (0, a0] ∪ [1 − a0, 1)}

to be all qfs whose standardized form is bounded in the tails by the fixed qf K0. (See the
figure above.) Let μ ≡ μK and σ ≡ σK for each K ∈ K. �

Inequality 5.1 (Uniform Winsorized variance comparisons) Note that as (a∨a′) →
0,

supK∈K|σ̃2 − σ2|/σ̃2 → 0,(4)

supK∈K|μ̃ − μ|/(σ̃
√

a ∨ a′) → 0 (and μ̌ may replace μ̌), and(5)

supK∈K{
√

a|K+(ca) − μ̃| +
√

a′|K(1 − c′a′) − μ̃|}/σ̃ → 0(6)

for every fixed 0 < c, c′ < 1. [Thus supK∈K
√

n|μ̌ − μ|/σ̃n → 0 when an = a′
n = 1/n.]
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Proof. Let K ∼= (0, 1) with K ∈ K. The following bounds are uniform over K ∈ K and all
0 ≤ (a ∨ a′) ≤ (some aε). For the first moment comparison we use

(7) |μ − μ̃|/σ ≤
∫ a

0
|K0(t)|dt +

∫ 1

1−a
, |K0(t)|dt + a|K0+(a)| + a′|K0(1 − a′)|

(a) ≤
√

a ∨ a′ × ε,

since

(8)
∫ a

0
|K0(t)|dt ≤ ||

√
tK0(t)||a0 ×

∫ a

0
t−1/2 dt = o(

√
a)

follows from
√

tK0(t) → 0 as t → 0 whenever σ2 < ∞. Comparing second moments shows
that for all 0 ≤ (a ∨ a′) ≤ (some aε) we have

|
∫ 1

0
K2(t) dt −

∫ 1

0
K̃2(t) dt|/σ2

≤
(∫ a′

0

+
∫ 1

1−a

)
,K2

0 (t) dt + aK2
0+(a) + a′K2

0 (1 − a′) ≤ ε.(9)

Finally,

{
√

a|K+(ca) − μ̃| +
√

a′|K(1 − c′a′) − μ̃|}/σ

≤ 2
√

ca|K0+(ca)|/
√

c + 2
√

c′a′|K0(1 − c′a′)|/
√

c′ ≤ ε.(10)

Simple algebra completes the proof. �

Inequality 5.2 (Basic Winsorized variance inequality) We suppose that 0 ≤ a ≤
1 − a′ ≤ 1 (with a = 0 allowed only if X ≥ 0, and a′ = 0 allowed only if X ≤ 0). Fix
0 < c, c′ < 1. Let K̃c(·) ≡ K̃ca,c′a′(·) and let μ̃c, σ̃

2
c , Ṽc, and q̃c denote the same quantities for

this new qf. It is immediate from the next figure (using |μ̃| ≤ q̃) that for a ∨ a′ sufficiently
small,

0 ≤ σ̃2
c − σ̃2 = (Ṽc − Ṽ ) − (μ̃2

c − μ̃2)(11)
= {Ṽ ⊕ (a + a′)q̃2

c − Ṽ } + {(μ̃ ⊕ (a + a′)q̃c)2 − μ̃2}

≤ 5(a + a′)q̃2
c .(12)

Inequalities Aimed at the Infinite-Variance Case

Suppose the qf K(·) satisfies K+(a) < 0 < K(1 − a′). Fix 0 < c, c′ < 1. Define

d ≡
√

a

σ̃
[μ̃ − K+(a)] and d′ ≡

√
a′

σ̃
[K(1 − a′) − μ̃],(13)

D ≡
√

a

σ̃
[K+(a) − K+(ca)| and D′ ≡

√
a′

σ̃
[K(1 − c′a′) − K(1 − a′)],(14)

D̃ ≡ a

σ̃2
[K2

+(ca) − K2
+(a)] and D̃′ ≡ a′

σ̃2
[K2(1 − c′a′) − K2(1 − a′)].(15)

All of these are then ≥ 0. (Note the figure below.) Recall that q̃ ≡ K+(1 − a′) + K−
+ (a).
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˜
0 1

K̃

K̃

Kc
˜

Kc
˜

ca a

a c′a

K(·)

→

Figure 10.2 The qfs K and K̃c(·).

Inequality 5.3 (Tail relationships) Suppose K+(a) < 0 < K(1 − a). Then

0 ≤ d ∨ d′ ≤ 1,(16)

(μ̃c − μ̃)2/σ̃2 ≤ (
√

aD +
√

a′D′)2 ≤ 2 (a D2 + a′D′2),(17)

cD̃ + c′D̃′ ≤ (Ṽc − Ṽ )/σ̃2 ≤ D̃ + D̃′(18)

D̃ = D2 + 2D
√

a|K+(a)|/σ̃ and D̃′ = (D′)2 + 2D′√a′K(1 − a′)/σ̃,(19)

(σ̃2
c − σ̃2)/σ̃2 ≤ D(D + 2d) + D′(D′ + 2d′) ≤ D(D + 2) + D′(D′ + 2),(20)

q̃ ≤ |K+(a) − μ̃| + |K(1 − a′) − μ̃| ≤ 2q̃,(21)
√

a|K+(ca)|/σ̃ ≤ D +
√

a|K+(a)|/σ̃ ≤ D + d +
√

a|μ̃|/σ̃,(22)

D + D′ ≤ 4[(a ∨ a′)/(a ∧ a′)]1/2 × (q̃c − q̃)/q̃.(23)

Proof. The figure immediately gives all but (20) and (23). For (23) observe that σ̃2 ≥∫ 1

0
(K̃(t) − μ̃)2 dt ≥ (a ∧ a′)(q̃/2)2. Since ν = μY minimizes E[(Y − ν)2],

(a) (σ̃2
c − σ̃2)/σ̃2 ≤ (

∫ 1

0
(K̃c(t) − μ̃)2 dt −

∫ 1

0
(K̃(t) − μ̃)2 dt)/σ̃2

(b) ≤ (
∫ a

0
+
∫ 1

1−a′)(same)dt/σ̃2 ≤ D2 + 2Dd + (D′)2 + 2D′d′. �

There are many equivalent ways of expressing that a df or qf is in the domain of attraction
of a normal or stable distribution. The next inequality enables us to go back and forth between
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various of these equivalent conditions and to establish new ones. We now prove that (24)–(28)
below are equivalent. [We write (24)u–(28)u to denote uniformity of the inequalities in the
qfs over some collection Ku of qfs K(·).] It matters not here whether the variance of K(·) is
finite or infinite.

Inequality 5.4 (Tail equivalencies) (A) Let the qf K be arbitrary. With fixed 0 <
c, c′ < ∞ (bounded from 0 and ∞), as (a ∨ a′) → 0 the following are equivalent:

D ∨ D′ → 0,(24)

[σ̃2
c − σ̃2]/σ̃2 → 0,(25)

D̃ ∨ D̃′ → 0,(26)

[Ṽc − Ṽ ]/σ̃2 → 0,(27)

[Ṽc − Ṽ ]/Ṽ → 0.(28)

(B) These are also equivalent for a specific c ≡ ca → 1 and c′ ≡ ca′ → 1 as the maximum
(a ∨ a′) → 0.
(C) The condition a ∨ a′ → 0 may be replaced by a specific an ∨ a′

n → 0 as n → ∞.
(D) If any one of (24)–(27) holds uniformly over a class Ku of qfs K, then all of them hold
uniformly over the same class Ku.
(E) Everywhere in (24)–(27) that a σ̃2 appears in a denominator it may be replaced everywhere
simultaneously by Ṽ .
(F) Suppose X ≥ 0. We may let a ≡ 0, and claim everything above with respect only to a′.

Proof. [The proofs are written assuming 0 < c, c′ < 1, with only minor adjustments
needed otherwise] Now, (27) is equivalent to (26) by (18), and (26) implies (24) by (19) (all
implications holding with the claimed uniformity). Then (24) implies (25) by (20) (also with
the claimed uniformity). We will show in the next paragraph that (25) implies (27) and (24)
(also with the claimed uniformity).

From the definition of K̃ we have (for rectangular regions R1, R2, R3, R4 and corner regions
R5, R6, R7, R8) (noting that E(K̃(ξ) − μ̃)+ = E(K̃(ξ) − μ̃)+)

(a) [σ̃2
c − σ̃2]/σ̃2

= (
∫ 1−c′a′

ca

∫ 1−c′a′

ca
−
∫ 1−a′

a

∫ 1−a′

a
)(s ∧ t − st)d[K(s) − μ̃]d[K(t) − μ̃]/σ̃2

(b) = Σ8
1

∫
Ri

∫
(s ∧ t − st)d[K(s) − μ d[K(t) − μ̃]/σ̃2

≥ {
∫ a

ca
sd[K(s) − μ̃]/σ̃}{

∫ 1−a′

a
(1 − t)d[K(t) − μ̃]/σ̃}

(c) +
∫ a

ca

∫ a

ca
(s ∧ t − st)d[K(s) − μ̃]d[K(t) − μ̃]/σ̃2 + {(six terms}

(d) ≥ {c√aD}{E(K̃(ξ) − μ̃)+/σ̃} + {(c/2)D2} + {(six analogous terms)}
for a ∨ a′ small enough (integrate the EK̃+(ξ) term by parts).

Suppose (25) holds. From (d) (along with the other six analogous conclusions) we learn
that the (25) conclusion [σ̃2

c − σ̃2]/σ̃2 → 0 (uniformly) implies both

(29) D
√

aE|K̃(ξ) − μ̃|/σ̃ → 0 (uniformly) and D → 0 (uniformly).

Thus when [σ̃2
c − σ̃2]/σ̃2 → 0 (uniformly) this gives (recall (20), also)
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(e)

∣∣∣∣∣
σ̃2

c − σ̃2

σ̃2
− Ṽc − Ṽ

σ̃2

∣∣∣∣∣ =
|μ̃2

c − μ̃2|
σ̃2

≤ |μ̃c − μ̃|
σ̃

(
|μ̃c − μ̃|

σ̃
+ 2

|μ̃|
σ̃

)

(30) ≤ [
√

aD +
√

a′D′]{[
√

aD +
√

a′D′] + 2E|K̃(ξ)|/σ̃} → 0

(uniformly), and so assuming [σ̃2
c − σ̃2]/σ̃2 → 0 (uniformly) implies |Ṽc − Ṽ |/σ̃2 → 0 (uni-

formly). That is, (25)u implies (27)u. Thus (24)u–(27)u are equivalent.
Since |(Ṽc − Ṽ )/Ṽ | ≤ |Ṽc − Ṽ |/σ̃2, we have (27)u implies (28)u. Finally,

(f)

∣∣∣∣∣
Ṽc − Ṽ

σ̃2
− Ṽc − Ṽ

Ṽ

∣∣∣∣∣ =
|Ṽc − Ṽ |

Ṽ
× μ̃2

σ̃2
;

but μ̃2/σ̃2 is bounded as a ∨ a′ → 0 whenever σ2 ∈ (0, ∞), and it likewise goes to zero
whenever σ2 = ∞ by (6.6.2). Thus (f) shows that (28) implies (27). Note also that (28)u

implies (27)u in any class Ku in which

(31) lima∨a′→0 supK∈Ku
μ̃2/σ̃2 < ∞.

Claim (E) also follows from (6.6.2) when EK2(ξ)2 = ∞, and is trivial when this is finite.
Claims (B), (C), and (G) are now trivial. �

The Statistical Domain of Attraction

Definition 5.1 (Domains of attraction) Let K be a qf, and define Ṽ (t) ≡ Ṽ (t, t) =
Var[K̃t,t(ξ)] as in (1). Let v−(t) ≡ [K−

+ (t)]2 and v+(t) ≡ [K+(1 − t)]2. Call K(·) balanced if
v−(t)/v+(t) → (1 − p)/p for some p ∈ [0, 1]. Now define

(32) D ≡
⋃

β≥0 {all K : V (·) ∈ some R−β , and K(·) is balanced if β > 0},

and call D the classical total domain of attraction. [It is customary to focus instead on the
value α related to β by α ≡ 2/(β + 1).] Let

(33) D̃ ≡ U{al1 qfs K : Ṽ ∈ R−β for some β ≥ 0},

and we call D̃ the statistical domain of attraction. [In trimming observations the two extreme
tails do not have to be in balance, as they will be thrown away. That is, the natural CLT for
the applied statistician can apply more generally than the probabilist’s natural CLT. We are
preparing for this.]

Theorem 5.1 (Tail comparisons for regularly varying qfs) Suppose the qf K is in
the class D̃ ≡ {all qfs K : Ṽ (·) ∈ R−β for some β ≥ 0}. Suppose further that the following
two conditions hold:

(i): Fix c, c′ (if β = 0) or

(ii): Both c ≡ ca → 1 and c′ ≡ c′
a → 1 as (a ∨ a′) → 0 (if β > 0),

(34)

(i): 0 < lim a′/a ≤ lim a′/a < ∞ (if β = 0) or

(ii): a′/a → 1 (if β > 0).
(35)

Then all of the conclusions (24)–(28) hold.
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Proof. Because of inequality 5.4, we need only establish (28). We suppose that 0 < a, a′ <
ao ≡ (a. ∧ (1 − a.)). We assume a′ < a in deriving an inequality (the other case of a < a′ is
symmetric). Let Ṽ (a) ≡ Ṽ (a, a), etc. Now,

[Ṽ (ca, c′a′) − Ṽ (a, a′)]
Ṽ (a, a′)

(a) ≤ [Ṽ (ca) − Ṽ (a)]
Ṽ (a)

+
[Ṽ (c′a′) − Ṽ (a′)]

Ṽ (a′)
×
{

1 +
[Ṽ (a′) − Ṽ (a)]

Ṽ (a)

}
.

Suppose Ṽ ∈ R−β , with β ≥ 0. Then L(a) ≡ aβṼ (a) ∈ L by definition of R−β . For β > 0
we have

[Ṽ (ca) − Ṽ (a)]
Ṽ (a)

=
(ca)−βL(ca) − a−βL(a)

a−βL(a)

(b) = c−β

(
L(ca)
L(a)

− 1
)

+ (c−β − 1) → 0,

since L ∈ L, a → 0, and c → 1 as (a ∨ a′) → 0, while [Ṽ (ca) − Ṽ (a)]/Ṽ (a) → 0 directly when
β = 0 and Ṽ ∈ R0. Of course, [Ṽ (c′a′)− Ṽ (a′)]/Ṽ (a′) is identical to the previous claim, since
c′ → 1. For β > 0 (with 1 − θ ≡ a′/a → 1 as (a ∨ a′) → 0) the other term in (a) satisfies

(c)
[Ṽ (a′) − Ṽ (a)]

Ṽ (a)
=

[a(1 − θ)]−βL(a(1 − θ)) − a−βL(a)]
a−βL(a)

(d) = (1 − θ)−β

(
L(a(1 − θ))

L(a)
− 1
)

+ [(1 − θ)−β − 1] → 0,

while [Ṽ (a′) − Ṽ (a)]/Ṽ (a) → 0 directly for β = 0. Note that if β = 0, we needed only
0 < a/M < a′ < Ma < ∞ to conclude that Ṽ (a′)/Ṽ (a) → 1. �

Definition 5.2 (Uniformity class Ku) Consider the uniformity classes Ku of qfs defined by

Ku ≡ {K : K(1 − t) = −K(t) = t−β for 0 < t < 1/2, for all 0 < β ≤ β0},(36)

Ku ≡ {K(t) ≡ [−t−β · 1[t<a] + (1 − t)−β · 1[t>a]]Q(t) : 0 < β ≤ β0, Q ∈ Q},(37)

where Q is any class of qfs Q contained in L = R0 that are uniformly slowly varying at 0 and
at 1.

Theorem 5.2 (Uniformity class Ku) As a ∨ a′ → 0, we have for either of the classes Ku

above that

(38) supK∈Ku
D ∨ D′ → 0,

provided that either

0 < lim inf(c ∧ c′) ≤ lim sup(c ∧ c′) < ∞ (if β = 0) or(39)
Both c ≡ ca → 1 and c′ ≡ c′

a → 1 as (a ∨ a′) → 0 (if β > 0).(40)

Thus all of (24)–(28) hold uniformly over such classes Ku.
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Proof. We now prove this for the class of qfs (37), with the result for the class of qfs (36)
as a corollary. If we bound 4(a ∨ a′)/(a ∧ a′) by M2, then (23) gives

(a) D ≤ M |K+(ct) − K+(t)|/|K+(t)| ≤ 4M |(ct)−βQ(ct) − t−βQ(t)|/t−β |Q(t)|

(b) = c−β |Q(ct) − Q(t)|/|Q(t)| + (c−β − 1) → 0. �
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6 Inequalities for Winsorized Quantile Functions ∗

The key to the smoothly functioning power of the following inequalities is the formulation of
the tail terms in (3) and (7) below. The inequalities look clumsy, but they work extremely
efficiently. Note that the upper bounds that appear in equations (1) and (6) do not depend
at all on the unknown qf K. Roughly, parts (i), (ii), and (iii) prepare for the central limit
theorem (CLT), the law of large numbers (LLN) (whether for second moments or for first
moments), and general integral variance estimators. [If σ̃n = 0, then just multiply through
by this symbol. We agree that

∫ b

a
≡
∫
(a,b)

throughout the course of this section.] Use the
notation of section 7.5. All qfs are assumed to be nondegenerate.

Inequality 6.1 (Winsorized variance inequalities) Let K(·) be arbitrary. Let 0 < c ≤
an < 1 − a′

n ≤ 1 − c′ < 1. Let 1/n ≤ r/n ≤ 1
2 ≤ 1 − r′/n ≤ 1 − 1/n.

(i) For the CLT Fix ν ∈ (0, 1
2 ). The following statements hold:

∫ 1−ań

an
n−ν [t(1 − t)]1/2−νdK(t)/σ̃n ≤

√
9/ν

(kn ∧ k′
n)ν

.(1)
∫ an

c
n−ν [t(1 − t)]1/2−νdK(t)/σ̃n ≤ √

an|K+(c) − K+(an)|/σ̃n.(2) ∫ 1−ań

an

n−ν [t(1 − t)]1/2−νdK(t)/σ̃n ≤
√

9/ν

[(kn ∨ r) ∧ (k′
n ∨ r′)]ν

+ γn + γ′
n,(3)

where

γn ≡
√

r|K+(an) − K+(r/n)|√
nσ̃n

× 1[an<r/n] and

γ′
n ≡

√
r′|K(1 − a′

n) − K(1 − r′/n)|√
nσ̃n

× 1[a′
n<r′/n].

(ii) For the WLLN and variance estimation Fix ν ∈ (0, 1). Recall (6.5.7) for the
distribution function K̄2

n. Then

(4)
∫ 1−ań

an

n−ν [t(1 − t)]1−νdK−2
n (t)/σ̃2

n ≤ 2
[(kn ∨ r) ∧ (k′

n ∨ r′)]ν
+ γ̃n + γ̃′

n,

where

γ̃n ≡ r|K2
+(an) − K2

+(r/n)|
nσ̃2

n

× 1[an<r/n] and

γ̃′
n ≡ r′|K2(1 − a′

n) − K2(1 − r′/n)|
nσ̃2

n

× 1[a′
n<r′/n].

Additionally,

(5)
∫ 1−ań

an

n−ν [t(1 − t)]1−νdK(t) ≤ 8
ν

||t(1 − t)K(t)||1−a′
n

an

[(kn ∨ r) ∧ (k′
n ∨ r′)]ν

+
√

r√
n

γn +
√

r′
√

n
γ′

n.

(iii) For variance estimation involving double integrals Let

gn(s, t) ≡ (ns(1 − s))−ν0(nt(1 − t))−ν1(s ∧ t − st) for s, t ∈ (0, 1),

http://dx.doi.org/10.1007/978-3-319-52207-4_7
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where we set 0 ≤ ν0, ν1 < 1
2 with 0 < ν0 + ν1 < 1 (to “dominate” the difference between the

(“limiting” and estimated variances). Then

(6)
∫ 1−ań

an

∫ 1−ań

an
gn(s, t)dK(s)dK(t)/σ̃2

n ≤ 2/(kn ∧ k′
n)ν0+ν1 .

Since we also have 1/n ≤ r/n ≤ 1
2 ≤ 1 − r′/n ≤ 1 − 1/n, then

∫ 1−ań

an

∫ 1−ań

an

gn(s, t)dK(s)dK(t)/σ̃2
n

≤ 2
[(kn ∨ r) ∧ (k′

n ∨ r′)]ν0+ν1
+ 8

√
rγn + 8

√
r′γ′

n.(7)

Proof. Let K̃ ≡ K̃a,a′ denote K Winsorized outside (a, 1 − a′), μ̃ ≡ EK̃(ξ), and σ̃2 ≡
Var[K̃(ξ)]. Integration by parts, then Cauchy–Schwarz, and the elementary inequality (|a| +
|b| + |c|)2 ≤ (3max(|a|, |b|, |c|))2 ≤ 9(a2 + b2 + c2) give (with ã. ≡ inf{t : K(t) − μ̃ ≥ 0}) that

∫ 1−a′

a
[t(1 − t)]1/2−νdK(t) =

∫ 1−a′

a
[t(1 − t)]1/2−νd[K(t) − μ̃]

≤ a1/2−ν |K+(a) − μ̃| + a′1/2−ν |K(1 − a′) − μ̃|
+
∫ 1−a′

a
|K(t) − μ̃|(1/2 − ν)|1 − 2t|[t(1 − t)]−(1/2+ν) dt

≤ a−ν{
√

a|K+(a) − μ̃|} + (a′)−ν{
√

a′|K(1 − a′) − μ̃|}
+(1/2 − ν){

∫ 1−a′

a
[K(t) − μ̃]2 dt}1/2(a ∧ a′)−ν2ν/

√
ν

≤ (3/
√

ν)(a ∧ a′)−ν{
∫ 1−a′

a
[K(t) − μ̃]2 dt

+a[K+(a) − μ̃]2 + a′[K(1 − a′) − μ̃]2}1/2}

≤ (3/
√

ν)(a ∧ a′)−ν σ̃K(a, a′) for any 0 < ν <
1
2
.(8)

This gives (1). Also,

∫ 1−a′

a
[t(1 − t)]1−νdK(t)

≤ a1−ν |K+(a)| + (a′)1−ν |K(1 − a′) +
∫ 1−a′

a
|K(t)/[t(1 − t)]ν |dt

≤ (a ∧ a′)−ν{a|K+(a)| + 2
∫ 1−a′

a
|K(t)|dt + a′|K(1 − a′)|}

≤ 2E|K̃(ξ)|/(a ∧ a′)ν for any 0 < ν < 1.(9)

Apply (9) to K̄2 ≡ −[(K − μ̃)−]2 + [(K − μ̃)+]2 to get (4) via

(10)
∫ 1−a′

a
[t(1 − t)]1−νdK̄2(t)/σ̃2 ≤ 2(a ∧ a′)−ν for any 0 < ν < 1.
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Integration by parts gives (5) via

∫ 1−a′

a
[t(1 − t)]1−νdK(t)

≤ |a(1 − a)K+(a)|
[a(1 − a)]ν

+
|a′(1 − a′)K(1 − a′)|

[a′(1 − a)]ν

+‖t(1 − t)K(t)‖1−a′
a

∫ 1−a′

a

|1 − 2t|
[t(1 − t)]1+ν

dt

≤ (8/ν)(a ∧ a′)−ν‖t(1 − t)K(t)‖1−a′
a for any 0 < ν < 1.(11)

Now observe that for 0 < c ≤ r/n we have (since r ≥ 1)

(12)
∫

(c,r/n]
n−ν [t(1 − t)]1/2−νdK(t) ≤

√
r/n|K+(c) − K+(r/n)|.

Letting (c, r/n] ≡ (c, an] in (12), we obtain (2). There is a symmetric right tail result.
Now let (c, r/n] = (an, r/n] in (12), and assume an ≤ r/n < 1 − r′/n ≤ 1 − a′

n also now
holds. Then

∫
(an,1−a′

n)
n−ν [t(1 − t)]1/2−νdK(t)

≤ (
∫

(an,r/n]
+
∫

(r/n,1−r′/n)
+
∫

[1−r′/n,1−a′
n)

)n−ν [t(1 − t)]1/2−νdK(t)

≤
∫

(r/n,1−r′/n)
n−ν [t(1 − t)]1/2−νdK(t) + γn + γ′

n

≤ (3/
√

ν)σ̃K(r/n, r′/n)/(r ∧ r′)ν + γn + γ′
n

≤ (3/
√

ν)σ̃K(an, a′
n)/[(r ∨ kn) ∧ (r′ ∨ k′

n)]ν + γn + γ′
n(13)

using σ̃K(a, a′) ↗ as a ↘ and a′ ↘. This gives (3).
Consider part (iii). Now,

∫ 1−r′/n

r/n

∫ 1−r′/n

r/n
gn(s, t)dK(s)dK(t)

≤ 2(r ∧ r′)−(ν0+ν1)

∫ 1−r′/n

r/n

∫ 1−r′/n

r/n

(s ∧ t − st)dK(s)dK(t)

(b) ≤ 2σ̃2
K(r/n, r′/n)/(r ∧ r′)(ν0+ν1).

Setting r = kn and r′ = k′
n in (b) gives (6). If 0 ≤ s ≤ t ≤ 1, then

(c) gn(s, t) =
1

(1 − s)ν0
× 1

nν0
× s1−ν0

tν1
× 1

nν1
× (1 − t)1−ν1

(d) ≤ 2 × (r/n)ν0 × (r/n)1−ν−ν
0 1 × (r/n)ν1 × 1 ≤ 2r/n if an ≤ s ≤ r/n;

and this bound extends to an ≤ t ≤ s ≤ r/n by symmetry. Thus
∫

(an,r/n]

∫
(an,1−a′

n)

gn(s, t)dK(s)dK(t)
σ̃2

n

(e) ≤ 2r × |K+(an) − K+(r/n)|√
nσ̃n

× |K+(an)| + |K(1 − a′
n)|√

nσ̃n
,
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and the integral over (an, 1 − a′
n) × (an, r/n] gives the same value. Whenever 1 − r′/n ≤

t ≤ 1 − a′
n, then both the integral over (an, 1 − a′

n) × [1 − r′/n, 1 − a′
n) and that over

[1− r′/n, 1− a′
n) ×(an, 1− a′

n) give equal values symmetric to (e). Adding the four bounds,
together with (6), then gives (7). �

Exercise 6.1 Suppose kn ↗ ∞, but an ≡ kn/n → 0. Let 0 < ν < 1
4 be given. Define

ln ≡ k1+2ν
n , and let en ≡ ln/n. Show that for every nondegenerate qf K we necessarily have

(14)
(∫ en

an
+
∫ 1−an

1−en

)
n−ν [t(1 − t)]1/2−νdK/σ̃n ≤

√
2/kν

n.

(Thus the tails will be separated from the vast middle by a vanishingly small piece that is
inconsequential.)



Remarks

I would like to use this discussion of the literature to say a very heartfelt “Thank you!” to
a number of people who have figured prominently in my professional life. Especially, I want
to thank my professors Fred Andrews (University of Oregon), Donald Truax (University of
Oregon), and Lincoln Moses (Stanford University), whose voluntary efforts on my behalf had
far-reaching consequences on most aspects of my life. I shall offer some thoughts on my own
personal history as well as the subject matter of this book. My view is strongly affected by
how I came to learn about these things. Others have undoubtedly had different experiences.

Measure theory
This text begins with five chapters devoted to measure theory. Halmos (1950) has had a
major influence on what future books on measure theory and real analysis would contain and
how they would present the subject. Other books on measure theory and real analysis that
I have found to be especially useful include Royden (1963), Hewitt and Stromberg (1965),
Rudin (1966), and the nicely simplified presentation of Bartle (1966). Many theorems in
this introductory part are to some degree recognizable from several of these sources (and/or
from the other sources listed in the probability section below). Certainly, Halmos’s book
was a popular one while I was getting my M.S. degree in mathematics at the University
of Oregon, 1960–1962. My own introduction to “real and abstract analysis” came from a
beautiful course taught by Karl Stromberg. Later, Edwin Hewitt was a colleague at the
University of Washington. So it is a real pleasure for me to cite their work at various points.
Lou Ward taught the topology course that I took at Oregon. He gave us a list of theorems,
and we had to come up with proofs and present them. That was the most fun I ever had in
the classroom. A good deal of appendix B reflects what I learned in his course. Kelly (1955),
Copson (1968), and Housain (1977) are useful published sources. Watching over the Oregon
graduate students in mathematics was Andrew Moursand, chairman. He really cared about
all of us, and I owe him my thanks.

Probability
Loève’s (1977–78, originally 1955) presentation has been a very influential work on probability,
certainly from the pedagogical point of view. To me, it refines and specializes much general
analysis to probability theory, and then treats a broad part of this subject. Clearly, many
learned probability from his text. Also, many seem to follow notational conventions used in
his book. But I was rather late in learning from it. My original training was at Stanford
from lectures that became Chung (1974), and those lectures also reflected Chung’s efforts
regarding translation of Gnedenko and Kolmogorov (1954). I truly enjoyed Chung’s course,
and his book. Breiman’s (1968) style coincided most closely with my own. I particularly
liked his treatment of partial sum and empirical processes, as one would suspect from my
own research. I have sometimes used his text as a “permanent reference” to stand beside my
own notes in my courses on probability theory. My choice of notation has been most influenced
by Loève and Breiman. Feller (1966) has a different flavor from most probability texts, and
it includes various interesting approaches not found elsewhere. And it is informative on rates
c© Springer International Publishing AG 2017
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of approximation. Billingsley (1968) created some excitement and spawned much interesting
work, and a bit of that is included here. Doob’s (1954) work on martingales has had a huge
influence on the subject. I had the privilege of sitting in on a course on martingales taught
at the University of Washington about 1968 by visiting Professor Ito. I find Meyer (1966)
and Hall and Heyde (1980) particularly significant. Lectures by Tom Fleming that led to
Fleming and Harrington (1991) sparked part of my martingale presentation here. Whittaker
and Watson (1963) is still a superb source for the gamma function. Lehmann (1959) has
greatly influenced my view of conditional probability and expectation. This brings me back
to the University of Oregon, and to Fred Andrews. Fred “recruited me to statistics” and then
taught a year-long course out of Lehmann’s book (even though I was the only student), and
he was one of those who lined me up for a National Science Foundation fellowship that made
it possible for me to go to Stanford University. Don Truax also figured heavily in this. He
cared about me, and I learned a lot from him. Thank you both!

The scene shifts southward. My years at Stanford were very fruitful, and I met some
fine people. Ingram Olkin is fun and a good teacher, and he went out of his way to be
helpful to me. The multivariate topics in appendix A represent things I learned from him.
Lincoln Moses was my thesis advisor. This relationship grew out of a course in nonparametric
statistics that I took from him. One of the topics in his course was Charles Stein’s approach
to the central limit theorem. Lin spoke on it for three days, even though he had to leave a
couple of well-acknowledged gaps in his presentation—because he believed it was good work.
That gave me a profound respect for him as a teacher. Lin was also my assigned advisor
when I arrived at Stanford. His second sentence to me was, “OK, Shorack, what’s important
to you in life”? My answer had a lot to do with the geography of the Pacific Northwest.
Two months before I graduated he responded on my behalf to a University of Washington
opening. Wow!

At Washington I had a chance to teach courses in probability and statistics. And I learned
a lot from my association with Ron Pyke, and later with Jon Wellner. The presentations in
parts of chapters 12 and 14 reflect this to varying degrees. Fritz Scholz got me started on
gamma approximations in the central limit theorem. Likewise, work with David Mason on
quantile functions, embedding, and trimmed means is reflected in parts of chapters 6 and
appendix C. I offer them all my thanks.

Obviously, I also owe a huge debt to “the literature” in regard to all these topics, and I will
list some of those sources below. However, this is a textbook. It is not a research monograph.
My emphasis is on presentation, not attribution. Often, my citation concerns where I learned
something rather than who did it originally. And in some areas (especially, chapters 6 and
12) I have offered only a sampling of the citations that I could have given. Moreover, I have
often chosen to cite a book instead of an original paper. My own work is cited “too heavily”
because it is written in the same style and notation as this book.

The bibliography contains quite a number of other books on probability theory, and many
are very good books. But it is the ones listed above that have had the most influence on
me. I hope that the reader will find that my book also has a somewhat different flavor—a
statistical flavor. That flavor will be enhanced if you think of chapters 16 and 17 and the first
appendix of the original 2000 Edition as part of the total package.

Special thanks to Chari Boehnke, Roger and Heather Shorack, the Michael Boehnke family,
the Barbara Aalund family, Kathleen Shorack, David Mason, Michael Perlman, Fritz and
Roberta Scholz, Jon Wellner, the Jan Beirlant family, Piet Groeneboom, Frits Ruymgaart,
Derek Dohn, and Pauline Reed for enabling me to write this book.
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uniqueness theorem, 226

Chisquare tests, 229, 247, 290
CLT, 126

asymptotic normality condition, 251,
277, 384

basic dependent, 384
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Berry–Esseen, 231, 236, 237, 268, 270
bootstrap, 266
classical, 178, 226, 423
connection with variance estimation,

126, 262, 474
creating normality, 409
delta method, 238
Doeblin, 243, 244
Edgeworth (see also), 292
examples, 228, 229, 238, 239, 242, 244,

245
finite sampling, 289, 411
for general iid uan arrays, 277
FrchetShohat via moments, 199
gamma approximation, 285, 289, 290
Liapunov, 231, 236
Lindeberg–Feller, 233, 236, 251, 275,

384
local limit (see also), 249
L-statistics, 412
martingale, 384
multivariate, 228, 442
negligibility, 124, 227, 474
Poisson approximation, 288
random sample size, 243
Rebolledo, 377, 378
R-statistics, 408
slowly varying σ̃2(·), 126, 262, 474
Studentized CLT for σ̃2(·) ∈ L, 262
trimmed means, 402, 403
universal bootstrap CLT, 269
universal studentized CLT, 268
Winsorized, 256, 262

Compensator, 363, 364, 375
Complete

measure, 14, 31
space Lr, 55

Completeness assumption, 346
Conditional expectation, 134, 136, 143, 146,

187
properties of, 134

Conditional probability, 135, 136, 425, 442
regular, 9, 143–145

Convergence
a.e., 31–33, 55
almost uniform (a.u.), 64
a.s., 35, 87, 100, 114, 181
Cesàro summability, 151, 165, 460
DCT, 43
fd convergence →fd, 101

in distribution, 35, 55, 102, 112, 193,
196, 197, 211, 395

in L2, 87
in measure, 32, 33, 55
in probability, 35, 55, 100, 181
in quantile, 112
in rth mean, 35, 55, 100
in sub-df, 193
in distribution, 35, 55, 100, 112, 113,

181, 193, 196, 387
MCT, 42
modes, 61
mutual, 31–33, 55
set, 31, 165, 182
uniform, 76
weakly in Lr, 64, 66

Convex, 49, 51, 53, 60, 346
Convolution formula, 427
Correlation coefficient, 244

multiple, 433
Counting process, 348, 375
Coupling, 291, 397
Cramér

Cramér–Lévy continuity theorem, 210
Cramér–von Mises, 306
Cramér–Wold device, 228, 247

Cumulant gf, 228, 286, 289, 294
Cumulative hazard function, 348, 379

D
Decomposition of normals, 276
Decomposition of Poissons, 276
Dense

Bernoulli polynomials, 173
continuous functions, 63, 87
in Hilbert space, 457
step functions, 63, 87, 359

Density estimation, 208
Derivative

differentiable, 77, 84
Dini derivates, 77
Lebesgue theorem, 77, 79, 86
Radon–Nikodym, 73–75, 82, 84, 85,

134
series, 79
Taylor’s theorem, 80
under integral sign, 48, 321

Determining class, 57, 198
C0, Cb, Cbu, C

(k)
b , C

(∞)
b , 198

chf, 202
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G, G0, G1, G2, 198
moments, 199, 200, 214

Df, 20, 35, 107
absolutely continuous, 20, 78, 108
decomposition of, 107
generalized, 18, 29
joint, 95, 96, 130
jumps and flatspots, 110
Lebesgue singular, 78, 108, 113
properties, 112
singular, 78, 108
sub, 35, 107, 108, 193
support, 110

Diagonalization, 194
Discontinuity set, 28
Distribution

Bernoulli, 419
beta, 423
Binomial, 419
Cauchy, 182, 243, 283, 424, 427
chisquare, 423
compound Poisson, 273
de la Vallée Poussin, 203, 206, 208,

223
double exponential, 242, 424
exponential, 87, 246, 421
extreme value, 245
gamma, 277, 285, 294, 422
geometric, 419
hitting time, 280
hypergeometric, 420
logistic, 424
multinomial, 273, 424
multivariate normal, 440
NegBiT, 289, 419
noncentral, 247, 290
normal, 245, 276, 422
Poisson, 243, 246, 276, 288, 421
sampling without replacement, 420
Snedecor’s Fm,n, 428
stable laws (see also), 281
Student’s tm, 428
triangular, 203, 206, 208
uniform, 87, 423

Divergence set, 31
Domain of attraction, 491

D(Normal), 262, 263, 269, 283
DN (Normal), 284
D(G) of the stable law G, 278
DN (G) of the stable law, 278

DN (G) of the stable law G, 283
statistical D̃, 403, 413, 491
total D, 491

E
Edgeworth expansions, 287, 292, 293
Eigenvalues, 343, 431, 436
Embedding

Csörgő, M., Csörgő, S., Horváth,
Mason, 332

Shorack, 332
Skorokhod, 176, 316, 322, 333

Empirical
chf, 208
df Gn, 121, 173, 329, 403
df Fn, 121, 173, 335
finite sampling process Rn, 330
process En, 122
process Un, 121, 228, 329, 403
qf Kn, 120
quantile process Vn, 329
two-sample process Wm,n, 335
weighted process Wn, 330

Euclidean space, 25
Euler’s constant, 425
Events, 3
Expectation, 40

of products, 128
Extremes, 230

F
Filtration, 310, 365, 368

augmented, 310, 346
Finite-dimensional

σ-field, 101
convergence →fd, 101
distributions, 101
projection mappings πt1,...,tk

, 101
rectangle, 97, 100
subsets, 101

Function
ψ-function, 63
elementary, 26–28
indicator, 3, 26
measurable, 26
simple, 26–28, 30, 39
step, 63

G
Gambler’s ruin, 373, 374
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Gamma approximation; the GLT, 285
Generalized inverse, 432

Σ− and Σ−1/2, 247, 432
Generators, 3

σ-field, 10, 26
of the induced F(X) ≡ X−1(B̄), 26
of the induced F(X1, . . . , Xn), 37
of the induced F(X1,X2, . . .), 37
regarding X−1, 24
regarding independence, 8
various for Borel sets B, 26
various for Borel sets B∞, 38, 97
various for Borel sets Bn, 25, 37, 90

Glivenko-Cantelli, 173, 330

H
Hermite polynomials, 292, 321, 347
Hewitt-Savage zero-one law, 132
Hilbert space, 454

L2 is a Hilbert space, 455
�2-isomorphism, 458
Fourier coefficients, 342, 457
Gram-Schmidt, 458
inequalities, 455, 457
orthogonal projections, 456
orthonormal basis, 457–459
subspaces, 455

Hitting time, 280, 315, 318

I
Increment function, 18
Independence tests, 229
Independent, 139

σ-fields, 127, 128
rvs, 127, 129, 133, 428, 441

Indicator function proof, 30, 40, 44, 73, 90,
93, 140

Induced
distribution, 24, 26, 29, 35, 56, 96, 102
distribution consistency, 98

Inequality
basic, 52
Birnbaum-Marshall, 188, 337
Bonferroni, 53
bounds on (1 − x/n)n, 214
Cantelli, 169
Cauchy-Schwarz, 51, 436
Chang, 161, 340
Chebyshev, 52, 166
chf bound on tails, 210

chf key inequality, 232
convexity, 51
correlation, 51
Cr-inequality, 50, 139, 156, 232, 317
Daniels’ equality, 161, 339
dispersion, 141, 156
Doob, 187, 188, 339
Etemadi, 159
geometric mean, 54
Giné–Zinn symmetrization, 159, 264
Hájek–Rényi, 169, 188, 337
Hardy, 53
Hilbert space inequalities, 455, 457
Hoffman–Jorgensen, 189
Hölder, 50, 51, 139, 155
Jensen, 53, 54, 139, 141, 156, 188, 346
Khinchin, 155, 160, 264
Kolmogorov, 155, 165, 166, 187, 188,

244, 325
Kolmogorov’s other, 183, 184
Lévy, 158, 167, 176
Liapunov, 51, 54, 139, 156, 231
Littlewood, 52, 156
Marcinkiewicz–Zygmund, 160
Markov, 52, 156
Mills’ ratio, 176, 178, 325, 326
Minkowski, 52, 57, 139, 156
moment expansions of chfs, 231, 234
monotone, 151, 169, 187, 188, 325
Ottaviani–Skorokhod, 158, 182
Paley-Zygmund, 52, 264, 328
Pyke-Shorack, 332, 338, 340
sandwiching the mean, 153, 154, 163,

165, 166
Shorack, 160, 487, 489, 494
Shorack–Smythe, 187
symmetrization, 157, 167
truncation, 161, 167, 466, 471, 473
upcrossing, 351
Wellner, 53
Winsorized variance, 487, 490, 494
Young, 50

Infinitely divisible, 271
log chf is never zero, 273
limits of, 272
subclass I2, 271

Information, 37
Integrable, 39

L+
r , 39

L1, 39
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L2, 87
Lr, 39, 50
�r, 64
collection, 57
product, 92
uniformly, 57, 59, 60, 169, 351, 355,

364, 367
Integral, 40

improper, 48
Lebesgue, 39
Lebesgue–Stieltjes, 47
linearity, 41, 138
Riemann, 1, 84
Riemann–Stieltjes, 47, 48

Integration by parts formulas, 115, 118
Inverse image, 23, 24

of σ-fields, 24
Inverse transformation, 111
I.o., 7, 150

J
Jacobian, 86, 429

K
Khinchin equivalent rvs, 153, 154, 163, 184
Kolmogorov

consistency theorem, 103, 304
extension theorem, 98
Gnedenko-Kolmogorov theorem, 123,

124
inequality (see also), 157
Kolmogorov-Smirnov, 320, 335
representation theorem for I, 274
SLLN (see also), 163, 267
zero-one law, 131, 150, 358

L
Large deviations, 296
Lebesgue

decomposition theorem, 70, 73, 108
integral, 39
Lebesgue-Stieltjes measure, 18, 20, 47,

85, 90, 97
measure, 5, 25, 40, 74
measure λn, 90
sets, 14, 16
singular df, 78, 108
sums, 1
theorem re derivatives, 77, 79, 86

Likelihood ratios, 349

LIL, 176, 178, 325, 327
Brownian motion (see also), 304

Limit theorem
general uan terms, 276
uan terms with negligible variances,

274
Lindeberg’s LF ε

n, 235, 236, 242, 251
Linear algebra, 431
Lipschitz condition, 82, 395
LLN, 171, 494

U-statistics, 358
Glivenko-Cantelli (see also), 173
negligibility, 161, 169, 170
random sample size, 168
ratio, 463, 476
SLLN of Kolmogorov, 155, 163, 168
strong, 168, 175, 179
weak, 169, 174, 241
WLLN of Feller, 155, 163, 168
WLLN of Khinchin, 155

Local limit theorem, 249

M
Martingale, 186, 315, 321, 345

�notation, 186
closes, 351, 353, 355, 368
CLT, 385
convergence theorem, 351, 355
counting process, 348
decomposition, 363, 364, 376
equivalence, 186, 345
examples re empiricals, 337
exponential, 347, 374
integrable, 346
Kakutani, 349, 359
optional sampling theorem, 315, 350,

367, 368
reversed, 339, 355, 358, 372
s-mg, 186, 345
square-integrable, 346
submg, 186, 187, 345
transform, 365, 366, 376
Wald, 347

Mason theorem, 333, 336, 340
Measurability criterion, 26, 27
Measurable, 26

A′-A-measurable, 26
Aτ -measurable, 309
B∞-measurable, 98
Bn-measurable, 95
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σ[C]-measurable, 26, 30, 300
D-measurable, 303, 323
F(S̃)-measurable, 179
Ft-measurable, 38
F(X)-measurable, 26, 98, 134
F(X1, . . . , Xn)-measurable, 37
F(Xs : s ≤ t)-measurable, 38, 102
F(X1,X2, . . .)-measurable, 37, 98, 102
F(Z)-measurable, 30
as a limit, 27, 32
common functions are, 27
measurability criterion, 26
non, 15, 103
partition, 39
progressively, 309
set, 28, 31
space, 2

Measurable function spaces, 101
(C, C), 101, 297, 300
(RT ,BT ), 102
(R[0,1],B[0,1]), 101
(C[0,∞), C[0,∞)), 299
(D,D), 297, 300, 347
(M,d) with Md or MB

d , 297
general space (MT ,MT ), 101

Measure, 3
σ-finite, 11, 13, 68, 70, 73, 89
absolute continuity, 20, 46, 70, 71, 73–

75, 85, 86, 97, 108
Borel, 387
complete, 14, 18, 31
continuous, 69, 99
countably generated, 63, 66
counting, 5, 64, 74
finite, 68
induced, 24, 26, 29, 35, 44, 56, 102
Lebesgue, 4, 6, 25, 40, 74
Lebesgue λn, 90
Lebesgue-Stieltjes, 4, 18, 20, 47, 85,

86, 90
monotone property, 5, 69
motivation, 4
outer, 4
outer extension, 11, 20
positive part, 69, 70
positive set, 69
probability, 20
product, 89, 91
regular, 15, 20
signed, 68, 70, 73, 84

singular, 70, 78, 108, 109
space, 3
total variation, 69
uniform convergence, 43, 57, 62, 76

Mesh, 47
Metric space, 297, 451

Arzelà theorem, 394, 396, 453
Ascoli theorem, 453
compact, 452
compactness equivalents, 452
complete, 393, 451
covering numbers, 452
discontinuity set, 28
equicontinuity, 453
equivalent metrics, 451
properties, 454
regular measure, 15
relatively compact, 392
separable, 297, 393
sup norm, 453
totally bounded, 452
uniform continuity, 453

Metrics
d on (D,D), 300
Dudley, 395
Hellinger, 76, 398
Kolmogorov, 398
Lévy, 196
Prohorov, 395
total variation, 75, 249, 397, 398

Modulus of continuity, 394
Moment, 49

conditional, 434
consistent estimation, 464, 471, 473
convergence of, 57, 184, 195
correlation, 51, 133
covariance, 49, 116, 133, 440
cumulant, 289
generating function, 296
mean, 49, 115, 116, 119
moments determine the normal, 199
moments of stable laws, 280
Monte Carlo, 175
partial, 464, 470, 475, 476, 482
skewness γ1 and tail heaviness γ2, 285,

287, 290, 293
standard deviation, 49
truncated, 251, 261
variance, 49, 115, 116, 119, 474



Index 507

N
Negligibility, 160, 169, 227, 251, 256, 271,

408, 411, 463, 474
nonnegative definite, 433, 443
uan, 235, 242, 257, 271, 330

Norm
L2-norm, 454
q-norm, 333
rth mean, 55
sup, 24, 297, 334, 453

Null set, 14, 93

O
Oh

big O, 8
big Op, 156
little op, 156
little o, 8
o-plus ⊕, or “at most”, 8

Optional sampling, 350, 367, 373
Order statistics, 120, 147, 148, 239, 329,

423
Orthogonal, 229, 292, 428, 454, 457, 460

P
P∞, 38
Partial sum process Sn, 228, 322, 324, 392,

394
Partition, 39
Poisson

compound, 273
generalized, 273

Poisson approximation, 288, 291
Poisson Limit Theorem (PLT), 227, 276

negligibility, 227
Poisson process, 349, 374, 421
Positive definite, 431
Positive part, 23, 119, 352
Predictable, 363, 364, 376

variation, 364, 366, 375, 376
Probability integral transformation, 112

inverse, 111
Process, 101

convergence on (D,D), 393
counting, 348
empirical process (see also), 121
existence of on (C, C), 300
existence of on (D,D), 303

general, 102
independent increments, 299
normal, 101
realizations (equivalent), 101
realizations (smoother), 103
stationary, 299
stationary increments, 299
versions, 101

Product
countable, 97
cylinder set, 97
F0, F , A × A′ = σ[F ], μ × ν, 89
Fubini theorem, 92
integrable, 92
measurable rectangle, 89
measure, 89, 91
measure existence, 89, 92
null sets, 93
sections, 90, 92
σ-field, 89
space, 89
topology, 448

Product lemma, 226, 233
Product limit estimator, 380
Projection, 434, 442, 456

mappings πt1,...,tk
, 101

Q
Qf, 111, 123, 472, 491, 494

order-r, 482
standardized class K bounded by K0,

487
Winsorized qf K̃, 117, 123, 487, 494,

495
Quadratic form, 229, 431
Quantile, 110, 112, 241, 245

median, 157, 239

R
Random censorship, 379
Random sample size, 174, 225
Random variable (see also rv), 35
Ranks and antiranks, 121, 147, 330
Rationals, 144, 281, 302, 353
Regression, 246, 434
Regularly varying, 403, 491

definition: at infinity, 485
definition: at zero, 484
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De Haan, 486
Karamata theorem, 484, 486
monotone density theorem, 484
qf (see also), 484
uniformly, 486

Representation theorem
Kolmogorov for I2, 274
Lévy–Khinchin, 276, 283

Revisualization, 305, 426
rv, 35

existence of, 32, 89, 103, 113
extended, 35
Rademacher, 159, 182, 424
random element, 101
random process, 101
random vector, 95

S
Sample

mean, 120, 243
median, 120, 239
quantiles, 241, 243
space, 20
trimmed mean, 120
truncated mean, 120
variance, 120, 238, 244, 262, 269, 429
Winsorized mean, 120
Winsorized variance, 120

Series, 79
three-series theorem, 181, 184
two-series theorem, 181

Set theory, 2
π̄-system, 3, 4, 8, 30, 129, 141, 313
λ-system, 8, 129
σ-field, 3
De Morgan’s laws, 3
limsup (liminf), 7, 131, 150
monotone class, 2, 10, 91, 145
pi system, 128
set difference A\B, 2
symmetric difference AΔB, 2

σ-field, 3
Âμ, the completed σ-field, 14
A = σ[C], 11
μ∗-measurable sets A∗, 3
histories, 308, 347
induced F(X) ≡ X−1(B̄), 26
preservation of, 24
symmetric, 131
tail, 131

Skewness γ1 and tail heaviness γ2, 285
Skorokhod

elementary theorem, 56, 114, 275
embedding (see also), 333
theorem, 236, 390, 397

Slowly varying, 126, 262, 474, 475, 484
Space

Borel, 144
Hilbert, 454
inner product, 454
measurable, 3
measure, 3
probability, 20, 35
sample, 20
vector, 30, 454

Spectral decomposition, 343, 431
Stable laws, 278, 280, 281

strictly stable, 280, 281
symmetric, 281

Statistics
L-statistics, 412, 413
R-statistics, 239, 333, 407
U-statistics, 358
permutation, 409

Stirling’s formula, 425
Stopping time, 179, 308, 315, 322, 324,

350, 365, 367
St. Petersburg paradox, 169
Strong Markov property, 179, 180, 280, 312,

422
Subsequences, 59, 61, 194, 275, 389, 393

criterion relating →a.e. to →μ, 33
Sufficient statistic, 147, 148
Symmetrized rv, 157, 159, 167, 184, 232

T
Tail equivalence, 490, 491

CLT, 482
WLLN, 167, 482

Theorem
absolute continuity of the integral, 44,

58
Arzelà, 394, 396, 453
Ascoli, 453
Bochner, 223
Carathéodory extension (see also), 9,

11
Carleman, 200
Carleson-Hunt, 459
Chentsov, 393
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chf (see also), 206
continuous mapping, 194, 389
convergence implications, 61
convergence of types, 279, 280, 283
correspondence, 18, 20, 29, 85, 96
DCT, 43, 138
de la Vallée Poussin, 58, 60
Dini, 34, 448
Donsker, 323, 341, 394
Doob, 228, 363, 364, 394
Dynkin’s π − λ, 9
Egorov, 64
Esseens lemma (see also chf), 218
Fatou’s lemma, 42, 59, 78, 138, 183,

236, 275
Fubini, 9, 92, 115, 116, 145
fundamental of calculus, 84, 484
Gnedenko-Kolmogorov, 123, 124, 478
Heine-Borel, 17, 19, 446
Helly–Bray, 56, 57, 193, 194, 275

kinder and gentler, 198
Helly selection, 194, 394
Hilbert space, 455, 457, 458
Jordan–Hahn, 69
Karamata, 484, 486
Kolmogorov (see also), 98
Kronecker’s lemma, 151, 165, 169
Loève, 76
local limit (see also), 249
Lusin, 65
Mann–Wald, 56, 194, 229
Marcinkiewicz-Zygmund, 168, 178
Mason, 333, 336, 340
MCT, 42, 138
mg convergence (see also), 357
moment convergence, 57, 183, 195
monotone class of Halmos, 10, 91, 145
monotone density, 484
only the zero function, 44, 93
Pólya’s lemma, 195, 197
portmanteau, 196, 387
principal axes, 431
Prohorov, 393, 394
Radon–Nikodym, 73, 134
Reisz-Fischer, 55, 459
Reisz representation, 455, 461
Riemann-Lebesgue lemma, 250, 293
Riesz, 33
rth mean convergence, 178
Scheffé, 62, 249

Skorokhod (see also), 114
Slutsky, 36, 235, 243, 389
smoother realization of a process, 103
Strassen, 176, 327, 397
supporting hyperplane, 49, 53
Taylor, 80
Tonelli, 92
Ulam, 396
unconscious statistician, 44, 74, 113,

134
uniform absolute continuity, 58
Vitali (see also), 56, 166
Weierstrass approximation, 173

Tightness, 193, 195, 392, 394
Topology, 445

base and subbase, 445
boundary, 196, 445, 449
category, 449
compact, 446, 449, 452
continuity, 448, 450
homeomorphism, 447, 450
isometry, 450
locally compact, 449
net, 446
one-point compactification, 449
product, 448
relative, 327, 381, 446
separation, 447

Triangular array, 225, 271
Trigonometric identities, 342
Trimmed, 119

fraction, 120, 403
mean, 119, 401

Truncated, 154, 251, 464, 470
mean, 119, 401, 464, 470
variance, 53

Type, 109
convergence of types, 197

U
Uan, 235, 241, 271, 330
Uncorrelated, 133
Uniformity class, 405, 492
Upcrossing, 352, 356

V
Vitali

covering, 16, 81
theorem, 59, 62, 354, 357, 372
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W
Waiting time, 180, 419
Wald’s identity, 180
Wasserstein distance, 114
Winsorized, 123, 154, 269

fraction, 120

mean, 119, 464, 470
moment, 261
outside, 119, 123, 257, 261, 268, 402,

475, 476, 487, 495
variance, 119, 262, 266, 268, 487, 490,

491, 494
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