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Preface 

The theory of multivariate analysis had its beginnings in the 1930s and much 
of the early work was restricted to the multivariate normal distribution. The 
mathematics was intractable for other distributions-it was hard enough for 
the normal case-and many of the procedures developed were found to have 
optimal properties under normality. However, the methods were not welcomed 
with open arms, as the computations were usually very time-consuming, even 
with a good desk-top calculator, and the distributions of the various test 
statistics were not tabulated. For example, likelihood ratio test statistics were 
developed for a wide range of hypothesis tests, but they all involve finding 
d x d determinants, where d is the dimension of the data, and only their 
asymptotic distributions were known. A great deal of effort was then expended 
in finding good approximations for the distributions of these test statistics and 
their power functions. Eigenvalues of various matrices of random variables 
held a prominent place in the growing industry of multivariate distribution 
theory. 

With the advent of powerful computers, however, the subject began to free 
itself from its multivariate normal straitjacket and researchers began to tackle 
problems in a more realistic fashion, without being cramped by lack of 
computational power. Automated procedures have allowed the graphical ex- 
ploration of data, which is so necessary for good data analysis, to become a 
practical possibility and have facilitated the calculation of tables of exact 
percentage points for a number of test statistics. However, good approxima- 
tions are still important for the automatic presentation of significance levels in 
a computer printout. There has also been a growing interest in robust proce- 
dures that are close to optimal under normality assumptions but which are 
better than the usual normal-based procedures when these assumptions are not 
satisfied. 

However, the classical normal-based procedures still have a place for a 
number of reasons. First, some of these procedures are robust under moderate 
departures from the usual assumptions. Second, tests and graphical procedures 
exist for investigating normality. Third, when the normal-based procedure is 
optimal, it can be used as a guideline for comparing less optimal but more 
robust procedures. Fourth, many of the "classical" methods are derived using 
techniques that are important in their own right. Fifth, many of the current 
statistical computer packages automatically compute various normal-based 
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statistics and it is important that package users know what these statistics arc 
and how they behave in practice. 

With the above comments in  mind, I have attempted to write ii textbook 
including both data-oriented techniques and it reasonable coverage of classical 
methods supported by comnients about robwtncss and general practical 
applicability. Numerous books have been written on multivariate analysis, 
ranging from the very theoretical to the very applied with 110 proofs. Why, 
then, another book on the subject? In the first place, the subject is growing 
rapidly right across the theoretical-applied spectrum, and regular updating is 
needed. I have therefore attempted to provide a text that gives a comprehen- 
sive up-to-date survey of the Subject and is useful as a reference book. This has 
not been easy, as entire books and monographs on topics covered by single 
chapters of this book are beginning to appear on the market. 

Secondly, there is a current shortage of textbooks suited to graduate majors 
in statistics that are theoretical and yet give something of the rnore applied, 
data-oriented developments. The subject is a rich one, with room for everyone, 
regardless of their applied or theoretical bias, and it is hoped that this book 
caters to both viewpoints. 

The basic prerequisites for reading this book are a good knowledge of 
matrix algebra and an acquaintance with the niultivariate normal distribution, 
multiple linear regression, and simple analysis of variance and covariance 
models. This book could be regarded as a companion volume to Seber L19771. 

Chapter 1 discusses the nature of multivariate data and problems of 
simultaneous inference. Chapter 2 selects from the extensive subject of multi- 
variate distribution theory sufficient ideas to indicate the breadth of the subject 
and to provide a basis for later proofs. Attention is focused on the niultivariate 
normal distribution, Wishart’s distribution, Hotelling’s T 2  distribution, to- 
gether with the multivariate beta distribution and some of 115 derivatives. 
Inference for the multivariate nonnal, both in the one- and two-sample cases, 
is discussed extensively in Chapter 3, whde Chapter 4 surveys graphical arid 
data-oriented techniques. Chapter 5 discusses at length the rnany practical 
methods for expressing rnultivariate data in fewer dimensions in the hope of 
tracking down clustering or internal structure more effectively. The growing 
field of discriminant analysis is reviewed in Chapter 6, while Chapter 7 
endeavors to summarize t,he essentials of the almost unmanageable body of 
literature on cluster analysis. Chapters 8 and 9 develop linear models, with the 
general theory given in Chapter 8 and applications to siniple iriultivariate 
analysis of variance and covariance models given In Chapter 9. The final 
chapter, Chapter 10, is mainly concerned with computational techniques; 
however, log- linear models and incomplete data are also discussed briefly. 

Appendixes A and B summarize a nuniber of useful results in matrix 
algebra, with projection matrices discussed in Appendix B. Order statistics and 
probability plotting are considered in Appendix C, and Appendix D is a 
collection of useful statistical tables. Finally, there is a set of outline solutions 
for the exercises. 
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CHAPTER 1 

Preliminaries 

1.1 NOTATION 

Matrices and vectors are denoted by bold-faced letters A and a, respectively, 
and scalars by italics. If a is an n x 1 column vector with elements a,, a , , .  . . ,a,, 
we write a = [(a,)], and the length or norm of a is dencted by Ilali. Thus 

The n X 1 vector with all its elements equal to unity is represented by 1,. 
If the m X n matrix A has elements u , ~ ,  we write A = [ (ai j ) ] ,  and the sum of 

the diagonal elements, called the trace of A, is denoted by tr A (= a,, + u2, i- 
. - .  + akk, where k is the smaller of m and n). The transpose of A is 
represented by A‘ = [(a;!)], where aij = aji. A matrix A -  that satisfies A K A  
= A is called a generalized inverse of A. If A is square, its determinant is 
written lAl, and if A is nonsingular (IAI # 0), its inverse is denoted by A-l .  
The n X n matrix with diagonal elements d,, d,, . . . , d, and zeros elsewhere is 
represented by diag(d,, d, ,  . . . ,d,) ,  and when all the di’s are unity, we have the 
identity matrix I,. 

Given an n X n symmetric matrix A such that x’Ax 2 0 for every x Z 0, we 
say that A is positive semidefinite and write A 2 0, where 0 is an n x n 
matrix of zeros. We can therefore talk about a partial ordering of symmetric 
matrices A and B and write B 2 A when B - A 2 0. If X’AX > 0 for every 
x # 0, we say that A is positive definite and write A > 0. 

For any M X n matrix A the space spanned by the columns of A, called the 
range space of A, is denoted by 9[A]. The null space or kernel of A (= {x: 
Ax = 0)) is denoted by M[A]. The symbol Rd will represent d-dimensional 
Euclidean space. 

It is common practice to distinguish between random variables and their 
values by using upper- and lowercase letters, for example, Y and y .  However, 
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when this notation is applied to vectors and niatrices of ratidom variables, 
there are some problems. First, there is the need to distinguish between a 
random matrix [(<,)I and its observed value Y = [(y!,)]: This could be 
achieved by using, for example, script or bold-faced italic letters. Second, a 
vector of random variablcs Y = (Y,, Y2, .  . . , K)’ looks like a matrix of ob- 
served values Y = [(v,,)]. Clearly the reader will be more concenied with 
knowing whether a vector or matrix of data is involved than with the 
distinction between random variables and their observed values. For this 
reason I have decided not to niake the latter distinction. However, to help the 
reader distinguish betweeii data and constants, the letters A ,  B,. I .  ,P and their 
lowercase counterparts will generally refer to constants, whereas Q, R, . . . , Z 
and their lowercase counterparts will refer to random variables or their values. 
There will be some exceptions, as there arc not enough letters to go round! 

If x and y are random variables, then the symbols E[x], vadx], covlx, y], 
and E[ x Iy]  represent expectation, variance, covariance, and conditional expec- 
tation, respectively. Multivariate analogues of these are defined in Section 1.3. 

We say that y - - N , ( B ,  0 ’ )  if y is nomialiy distributed with mean 8 and 
variance u2: z has a standard normal distribution if z - Nl(O,l). The 1- and 
chi-square distributions with k degrees of freedom are denoted by t ,  and xi ,  
respectively, and the F-distribution with m and n degrees of freedom is 
denoted by F,, ”. The garnnia and beta functions are respectively defined as 

and 

B [ a ,  b ]  = y-- I’(a)l’fb) = p - y l  -- y ) h ’ - l d y  ( a ,  b > 0). (1.1) 
1 (a f h )  

We shall also use the ‘‘dot” and “bar” notalion representing sum and 
average, respectively: For example, 

#I 

F ~ . =  C yii/n. 
j - 1  

In the case of a single subscript, x,, say, we omit the dot and write X for the 
mean. 

It is assumed that the reader is well versed in linear algebra, though many of 
the standard (and not so standard) results are included in Appendixes A and I3 
at the end of this book. References to these Appendixes are denoted by, for 
example, A2.3. 
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(person) . 

xnd 
... n x,1 xn2 

1.2 WHAT IS MULTIVARIATE ANALYSIS? 

The term multivariate analysis means the analysis of many variables, which 
effectively includes all of statistical sampling. However, this term has tradition- 
ally referred to the study of vectors of correlated random variables, for 
example, n random vectors xl, x2,. . . ,xn, each of dimension d (we depart from 
the more common but less convenient notation of p for dimension). Typically 
these vectors arise from taking measurements on d variables or characteristics 
for each of n objects or people. The vectors may or may not come from the 
same probability distribution and the variables x i j  within each xi = 

( x i l ,  x i 2 , .  . . ,x id) l  will generally be correlated. The variables may be quantita- 
tive (discrete or continuous) or qualitative (ordered or unordered categories). 
For example, we may wish to record the following d = 6 variables for each of n 
men in a given age bracket: xil = height, xi2 = weight, x i3  = blood pressure 
(continuous quantitative variables); xi4 = number of children (discrete quantita- 
tive variable); x i s  = income category, that is, low, medium, or high (ordered 
qualitative variable, also referred to as an ordered multistate or ordinal 
variable); and xi6 = marital status category, that is, married, never married, or 
previously married (unordered qualitative variable, also referred to as a dis- 
ordered multistate or nominal variable). The qualitative variables are coded: A 
natural order for the income categories would be xi=, = 1,2,3, respectively, 
whereas for marital status any order would do, such as xi6 = 1,2,3, respec- 
tively, or some permutation thereof. Many qualitative variables are defined on 
only two categories, for example, sex and presence or absence of a “character- 
istic” or symptom. Such variables, usually coded ( l ,O) ,  are called binary 
variables. The variable xi6 can, for example, be represented by two binary 
variables xi7 and xi8  as follows: 

if married, 
xi7 = (; otherwise; 

if never married, 
otherwise. xis= {b  



4 Prdirtrinaries 

We can also write 

(1.3) 

where the row representation (1.3) emphasizes the objects, and the column 
representation (1.4) emphasizes the variables. In our previous example x(’) is 
the vector of height measurements for the n men. Some authors use thz 
transpose of X as their data matrix, but this is inconvenient, for example, when 
studying linear models. Throughout this book the suffix i generally refers to the 
ith observation vector, wlule sufixes j and k usually refer to variables or 
characteristics. 

Although no distinction is made between random variables or their values, 
it should be noted that sometimes the n objects represent the whole population 
or a nonrandom subset of the population. In this case the use of random 
variables is riot appropriate. 

Many univariate statistical methods generahe quite naturally to higher 
dimensions, hut there are some fundamental difliculties in going ,L ‘ b ove one o r  
two dimensions. First, there is the problem of graphical representation. Hope- 
fully one may be able to transform the d-diniensionaj points representing the 
x, into points in a two- or at most three-dimensional space without too much 
change in relative positions. Dimension-reducing techniques are discussed in 
detail in  Chapter 5.  Second. the notion of rank ordering that underlies 
univariate distribution free methods does not readily extend into several 
dimensions. A great deal of information is lost in transforming vectors into 
one-dimensional ranked data. Third, there 1s the problem of choosing d 
variables from a pool of variables that may be very large: A prcliiiunary and 
possibly subsequent selection is almost always required. 

Most problem in rnulti\ariate analysis Call into one of two categories. They 
are either about the “external” structure of the data (what can we say about 
the configuration or interpoint distances of the n points in d-dimensional 
Euclidean space Rd?)  or about the “internal” structure of the vanahles (are the 
J th and k th variables strongly correlaled?). For example, in the previous 
illustration with six variahles and n men, we may wish to look lor any natural 
grouping of the data or any of the n men that are “outlying” or diflerent from 
the rest. I f  the sample is large, we could use it to estimate population averages: 
for example, average height, proportion married, and so on, Alternatively, we 
may wish to examine the relationship between blood pressure and the other 
five variables using a regression model. 
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In the previous example we considered just a single population; instead we 
may have a sample from each of two populations, say, men and women. 
Interest now extends to the geometrical relationships between the two swarms 
of points in Rd. Comparing the two sample vector means reduces to examining 
the relative positions of the centers of gravity of the two swarms, while 
comparing covariance structures is related to comparing the overall shapes of 
the two swarms. If our interest is “internal,” then we may wish to see if the 
regression relationship of blood pressure on the other variables is the same for 
both populations. 

A related problem is that of discrimination. Suppose samples are available 
from two populations and the origin of a further observation is unknown. On 
the basis of the d measurements we wish to assign the object to one population 
or the other. For example, using measures like weight and blood pressure, we 
may wish to decide whether a male aged 40-45 is at risk with regard to having 
a heart attack in the next 10 years. The two samples could be observations 
taken from 10-year case histories of men in the required age bracket: Those 
who do not have a heart attack form one sample, while those that do make up 
the other sample. An assignment rule can be estimated from the sample data 
(see Chapter 6) and used to assign current observations. A doctor may wish to 
counsel any man who is assigned to the heart attack group. 

A natural extension of the previous examples is to the case of more than two 
populations. We may not even know the number of populations represented by 
the sample data, so that the problem is to divide the overall configuration into 
an unknown number of well-defined clusters. A typical problem in this area 
that has created some controversy is the classification of mental illnesses based 
on observations of certain quantitative and qualitative variables. How many 
categories (clusters) do we need and where do we draw the line between normal 
and abnormal? 

An important group of multivariate problems comes under the title of 
ordination techniques. Instead of having observations on n objects, we have 
measures of similarity crs, say, between the rth and s t h  objects. We wish to 
represent the objects by a configuration of points in a low-dimensional space 
so that the distances between the points follow the same pattern as the c,. 
Hopefully the configuration will uncover any underlying structure or clustering 
of the objects. For example, the objects may be ancient graves, with c, being 
the proportion of artifacts common to graves r and s. 

1 . 3  EXPECTATION A N D  COVARIANCE OPERATORS 

Let X = [ (xi , ) ]  be a matrix of random variables. We define the expectation 
operator &‘for a matrix by 
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the matrix of uxjj]. From the linear properties of E, 

& [ A D  -I- C] = Ad?[X]B + C. 

The concept of covariance can also be generalized. We define the genexaliwd 
covariance operator V of two vectors of random variables x = [ ( x i ) ]  and 
y = [ ( .y j ) ]  (not necessarily of the same dimension) as follows: 

(see Exercise 1.1), where px = &“XI, the mean of x, and so on. If x and y are 
statistically independent, then %?[x,y] = 0. When x = y, then %?[y,yJ? written 
as 9[y], is called the dispersion (variance-covariance) matrix of y. Thus 

From Exercise 1.1, we have 

V[Ax,By] = AV[x,y]B’, (1.7) 

from which it follows that 

Suppose xlr x2,.  . . , x ,  are n statistically independent d-dimensional random 
vectors with means pI, . . . , p, and dispersion matrices Z,, . . . , Z,, respectively. 
Then we define a generalized quadratic form 

11 n 

where X = (x,, . . . ,x,,)” and A = [(a,,)] is symmetric. For d = 1 the above 
expression reduces to a quadratic C, C j  a,,x,x,. 

LEMMA 1.1 

I I  

&“X’AX] = a J ,  + b [ X ’ ] A B [ X ] .  
1-1 
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0 2 . * .  0 
9 [ Y 1  = : . . .  

Proof 

= I , e Z .  (1 .lo) 

= za i iZ ,  + cf”X’]Acf”X]. 
i 

COROLLARY If = 2, = * = 2, (= 2, say), then 

B[X’AX] = (trA)Z + B[X’]AB[X]. (1.9) 

Finally we mention one other concept that sometimes arises in the multi- 
variate literature. Let A and B be m X m and n X n matrices, respectively; 
then 

Some authors find it convenient to use y rather than X in deriving certain 
theoretical results. A common notation is y = vec[xI,. . . , x,] = vec[X’] (see 
Henderson and Searle [1979] for a useful review of the properties of vec). 
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1 .4  SAMPLE DATA 

Suppose xl, x2 , .  . . , x, represent a random sample from a d-dimensional distri- 
bution with mean p and dispersion matrix 2. By analogy with the univariate 
sample mean X and unbiascd estimate of variance, s2 = C , ( x ,  - . T ) 2 / ( n  - I ) ,  
we consider the multivariate analogues 

and 

say. Then 

1 "  

" j - 1  
6[%] = - c r$[X;] = Ir, 

and 

by Exercise 1.3. Writing y, = x i  -- p, then y = E - p and 

n n c ( X i  -. %)(XI -- x)' = c (y; - y)(y, - y y  
; = I  1-1  

tl 

=5 c yiy.yil - nyy '3 (1.11) 
; = I  

by Exercise 1.2. Since yl, y2,. . . ,y, have mean zero and dispersion matrix Z, 
4Y,YIf[ = %Y,l [by (W1 and 

= nZ - n ( C / n )  = ( n  - 1)Z. 

Thus E and S are unbiased estimators of p and Z, respectively. We note that 
for continuous random variables, Q is positive definite with probability I 
under very general conditions, which are usually satisfied (see AS.13). 
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Since data are frequently “centered,” that is, the mean is substracted, we 
introduce the notation 

x/ = [XI - R,  ..., x, - E] 

= X’- 3(1,1, ..., 1) 

= X’( I, - - 1,1; 
l )  n 

(1.12) = X’(1“ - Pl), 

where P, and I, - P, are symmetric idempotent matrices of ranks (traces) 1 
and n - 1, respectively (see Exercise 1.5 with K = 1,). With this approach, an 
alternative proof that S is unbiased can be given. First, 

Q = X’X 

= X’(1” - &)(I, - P,)’X 

= X‘(1, - P,)X, 

and d’[X’] = (p , .  . . ,p)  = pl;, Then, by (1.9), 

~ [ X ’ ( I ,  - P~)x] = Etr[I, - P,] + ~I ; ( I ,  - P~)I,~’ 

(1.13) 

= ( n  - 1)Z, 

as (I, - PJl,, = 0. Hence 
X’X s = -  

n - 1  

is unbiased. An alternative estimate is the 
(n - l ) S / n :  2 is sometimes called the sample 
ences for s or 3 vary among statisticians. 

(1.14) 

biased estimate 2 = Q/n = 

covariance matrix, and prefer- 

Data are frequently scaled as well as centered. If qk is the sample correlation 
coefficient for thejth and kth variables, then 

(1.15) 
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then 

and R is called the sampr‘e COrrelatIOn matrix. Its definition is independent of 
the factor n - 1, so that S or 2 can be used. We note that R is a biased 
estimate of the populafion correlation matrix 

{ 1-17) 

where PJk = (Ilk/(a,JJ1(7kk)1’2* We notc that 

where Do = diag(all, uZ2, .  . . ,a,,,). Methods for simulating correlation matrices 
are given by Chalmers [1975] and Bendel and Mickey (19781. In data analysis, 
with observed values xI,xL,. . . , x n ,  the scaled and centered data take the form 
ztJ = ( x , ~  - z ,)/$f or zlJ = ( x , ~  - x J ) / 6 i / 2 .  If we set z == [ ( z l J ) ] ,  the 
columns of Z have zero sample means and unit sample variances. 

Finally, for the estimation o f  the mode and related contours (isopleths) sce 
Sager [1979]. 

1 . 5  MAHALANOBIS DISTANCES A N D  ANGLES 

If x is a vector of random variables with mean p and positive definite 
dispersion matrix Z, we define the Mahalanobis distance between x and p as 

(1.18) 1/2 
A(x, p )  = {(x - P ) ’ ~ - ’ ( X  - P)} . 

This distance measure differs from the usual Euclidean distance jlx - pll in 
that account is taken of the. relative dispersions and correlations of the 
elements of x. Also, for some distributions like the so-called family of elhipti- 
cally symmetric distributions, the density function of x is constant for all x 
such that A(x, p) = c. We can then interpret A(x, p) as a “probabilistic” 
distance- equal distances imply equal likelihoods. 

Given a random sample xl,xz,.. . , x n ,  we have the following sample 
versions of (1.18): 

1 / 2  
D(x,X) = ((x - 52)’S-’(x - E)) 
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and 

where S is defined by (1.14). In a similar fashion, we can define the Maha- 
lanobis angle 6 between x, and xs, subtended at the origin, by 

This contrasts with the usual measure 

X % S  

llxtllllxsll * 
cost? = 

In the case of two populations with means p1 and p,, and common 
dispersion matrix 2, we can define 

as the Mahalanobis distance between the two means. Given a sample of size ni, 
with sample mean X i  and unbiased estimate S, of dispersion, from the ith 
population ( i  = 1,2), we have the sample version 

1/2 
D(X,,X,) = {(El - X2)’S,-1(E, - x*)) , 

where Sp = [(nl - l)Sl -t- (n2  - l)S,]/(nl + n, - 2) is a pooled unbiased 
estimate of 2. 

The concept of Mahalanobis distance, whether in a population or sample 
form, arises several times in this book, for example, Hotelling’s T2, weights in 
robust estimation, discriminant analysis, and cluster analysis. For further 
details see Mardia [1975, 19771: The second paper deals with the situation 
where 2 or S is singular. 

1 .6  SIMULTANEOUS INFERENCE 

1.6.1 Simultaneous Tests 

In multivariate analysis a variety of techniques have been developed for 
carrying out simultaneous hypothesis tests and constructing simultaneous 
confidence intervals. Some of the problems associated with simultaneous 
inference in the univariate case are described in Seber [1977: Chapter 51 and 
these are magnified in the multivariate generalizations. 
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Suppose we are interested in r simultaneous tests and let E, ( i  = 1,2, .  . . , r )  
be the event that the ith hpothesis is accepted, given that it is true. Then we 
would like to find the appropriate critical level for each test such that the 
overall probability that they are simultaneously accepted is 1 - a, given they 
are all tiue, that is, 

pr n E~ = 1 - a. 
[ i : ,  ] 

For example, suppose we are interested in a population paramcter 8 that can 
be partitioned in the form 8’ = (Oi, q,. . . ,8;). Then instead of testing H, : 
8 =- 0, we may be interested in testing each individual hypothesis Ho, :8 ,  = 0 
( i  = 1,2,, . . , r ) .  Here H ,  = f l  Isl H,, and testing H, is equivalent to siniulta- 
neously testing each lf,,. The difference between the simultaneoits procedure 
and the “direct” test of H ,  is that if H, is rejected by the simultaneous 
procedure, we can pinpoint which of the H,, are at fault. If 7; is a test statistic 
for H,, ,  then, typically, we require a constant c, such that 

r r  1 

(1.19) 

To find the critical value c , ~  for the distribution of maxIT,I we need to know 
the joint distribution of the 1111. Usually the 7; contain comnion random 
variables (e.g., common s 2  i n  univariate testing) so that the I7;I are correlated 
and follow a multivariate version of one of the univariate distributions like 3-, 

P,  and chi-square distributions. For a sunley of this problem see NZiller 11977, 
19811 and, in particular. Krishnaiah [19791, who calls the simultaneous test 
procedure outlined above a finite intersection test. Further details are given bv 
Krishnaiah et al. [19801. 

A conservative procedure is always available using the Bonferroni inequality 

(1.20) 

where E, is the complement of E l .  The lower bound is surprisingly good if the 
values of prf E:] are small (Miller [1977: p. 7791). [f we use the critical level a / r  
for each test, that is, pr[E,] = 1 - ( a / r ) ,  then 

pr [,:, n E, ] 2 1 - r ( ; ) =  1 - a.  (1.2’1) 
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In terms of the above example, we find c, such that for each i, 

Another approximate procedure is frequently available. For example, sup- 
pose we are able to find the appropriate critical value d, for the simultmeous 
test of a wider class of hypotheses Hob (b  E B), where Elol,. . . ,Ho, are 
included in ths  class. Then 

(1.22) 

and using d, instead of c, will lead to a conservative test procedure. This 
approach forms the basis for numerous procedures for finding simultaneous 
confidence intervals (see Miller [1977, 19811, Seber 11977: Chapter 51). 

Simultaneous hypothesis testing is closely related to a principle of testing 
that is particularly appropriate for multivariate problems called Roy’s 
union-intersection principle, discussed below. 

1.6.2 Union - Intersection Principle 

Given (Ho ,  H), null and alternative hypotheses, respectively, it is sometimes 
convenient to express H, as the intersection of a number of more “primitive” 
composite hypotheses and H as the union of the same number of correspond- 
ing alternatives. Symbolically we have 

(1.23) 

where (H,,, H,) form a natural pair, and a E A, a general set. For example, 
suppose we wish to test Ho : 8 = 0, where 8 is d dimensional; then one choice is 
HOa:a’8 = 0 and Ha:a’8 # 0. Since 8 = 0 if and only if a’8 = 0 for all a inA 
(= R d ) ,  (1.23) is satisfied. In practice, this means that a multivariate test about 
a vector parameter can be derived in terms of a family of univariate tests. This 
method of test construction, introduced by Roy [1953] (see also Roy [1957], 
Roy et al. [1971: Chapter 41, Olkin and Tomsky [1981]), is called the union-in- 
tersection principle and is a useful tool for developing multivariate tests. 

It should be noted that the decomposition (1.23) is not unique, so that the 
union-intersection principle can lead to different test procedures. For example, 
setting+, = 4, @i = 6, - 6i-1 ( i  = 2,3, ..., d ) ,  we can writeH0,:Ga = O(a = 
1,2,. . . , d ) ,  Ho:+ = 0, and H, = f l  ,HOG. Alternatively, we can use the so- 
called step-down procedure (see Roy et d. [1971]) and consider H,, : el. = 0, 
Hoa : 6, - (O, ,  4, .  . . ,6a-l)ya-l = 0 ( a  = 2,. . . , d ) ,  where ya- , is appropnately 
defined (section 3.3.4). Again Ho = n a H,,, and Ho is not rejected if each H,, 
is not rejected. Clearly the choice of decomposition (1.23) will depend on the 
type of alternatives Ha we regard as important. 
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1.7 LIKELIHOOD RATIO TESTS 

Suppose that a set of random variables has density function f(y; 0), where 
B E 12 and we wish to test H o : O  E o, where w is a subset of St. If we write 
j(y; 8 )  as a function of 9, L(8)  say, then the likelihood ratio 

t=  supremuml.(O)/ suprernumf,(0) 

can be used to test W,. We reject Ho at the a level of significance if /< C‘, 
where p r ( l 4  / , lH,  true] = a. This test procedure, called the bkelrhood ratio 
test, usually has good power properties. Under fairly general conditions, anti 
with large samples, - 2 log A s  approximately distributed as xt when H ,  is true. 
Here P is, roughly speaking, the difference in dimension (or the number of 
“free” parameters) of P and o. In some cases t‘can also be derived using the 
union -intersection principle, though there are several examples in this book 
where the two procedures lead to different tests. 

B E w  B E 0  

EXERCISES 1 

1.1 Given random vectors x and y, prove the following: 
(a) %?[Ax, By] = AV[x, ylB’. 
(b) %, Y I  = &[XY’l .- ml(4Yl)‘.  
(c) 9 [ x  -- a] = 91x1. 

1.2 If y , ,y2 , .  . , ,ya are d-dimensional vectors, show that 

c (Y, - Y N Y ,  -- 7)’ = c Y,Y; - WY’* 
I - I  i - I  

1.3 Let x,, x2, .  . . ,x,, be a random sample from a distribution with dispersion 
matrix C. Prove the following: 

(a) qx,] =(  1-1 f a:).. 

(b) ‘& a,x, ,  bp , ]  = 0 if and only if a,b, = 0. 

Z. If A is symmetric, show that 

1-1 

[ I-1 1 - 1  

1.4 Let x be a vector of random variables with mean O and dispersion matrix 

E[xAx] = tr[AX] -t 0548. 

1.5 Suppose y = KP + u, where K is n X p of rank p, and 8[u] = 0. If 
P = K(K’K)- ‘K’, prove the following: 
(a) P and I, - P are symmetric and idempotent. 
(b) (I, - P)K = 0. 
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(c) rank[I, - PJ = trfi, - PI = n - p .  
(d) ~ ' ( 1 ~  - P)y = ~ ' ( 1 ~  - P)u. 

1.6 Let xl, x2 , .  . . ,x, be a random sample from a d-dimensional distribution, 
and let 

g,, = (x, - sz)'2-'(xs - $, 

where 2 = X'X/n [see (1.12)]. Show the following: 
(a) E[grrl= d. 
(b) Q g r s l =  -d/(n - 1) ( r  + s)* 

[Hint: Consider C:=, (x, - jZ)'e-'(x, - K) for the two cases.] 
Mardia [1977] 

1.7 Let xl, x2,. . . ,xn be a random sample from a distribution with dispersion 
matrix Z, and let 2,  = x, - X. Find W[%,,%,) for all r,  s. 

1.8 The following algorithm provides a method for updating a sample mean 
and a sample dispersion matrix when a further observation is added, or an 
observation deleted. Let xl, x2,. . . ,xn be n d-dimensional observations 
with associated weights w, ( i  = 1,2,. . . ,n). Define 

n 

Q, =: wi(xi - X,,)(X, - X n ) ' ,  
i-1 

Show that 
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[Note: If a positive weight corresponds to adding a new observation to the 
sample, and a negative weight to removing one, then precisely the same 
algorithm can be used in both cases. Also, by starting with X, = x1 and 
Q1 = 0, ?in and Q, can be computed in a stepwise fashion as the x, are 
introduced one at a lime. This procedure has the advantage of only 
requiring one pass through the data.] Clarke [1971] 

1.9 Given y - Nd (0,Z) and A a d X d symmetric matrix of rank r ,  show that 
y’Ay - x: if and only if AZA = A. [Hint: Use A6.5.1 



CHAPTER 2 

Multivariate Distributions 

2.1 INTRODUCTION 

Most of the univariate continuous distributions have multivariate analogues 
with the property that their univariate marginal distributions all belong to the 
same family. For example, there are the multivariate versions of the normal, 
gamma, beta, t-, F- (see Johnson and Kotz [1972], Ronning [1977], Krishnaiah 
[1979, 19801, Dawid [1981]) logistic normal (Aitchison and Shen [1980]), 
lognormal (Press [1972a]), reliability (Block [1977]), and stable distributions 
(Press [1972b]). A useful family that provides both longer- and shorter-tailed 
alternatives to the multivariate normal is the family of elliptically symmetric 
distributions (see Devlin et al. [1976], Chmielewski [1981]): This family is 
useful for the empirical and theoretical study of robustness to nonnormality 
(Muirhead [1982]). Another useful family of symmetric distributions is given 
by Cook and Johnson [1981]. However, we shall consider only those distribu- 
tions, and some close relations, that are actually used in this text. Our main 
multivariate distributions are the multivariate normal and multivariate beta. In 
addition, we consider the Wishart distribution, which is a multivariate generali- 
zation of the chi-square distribution, though the Wishart is not described as the 
multivariate chi square, as not all the marginals are chi square. A univariate 
distribution called Hotelling's T 2  is also introduced. It is represented by T2, as 
it is constructed in much the same way as one constructs the square of a 
t-statistic. 

2 . 2  MULTIVARIATE NORMAL DISTRIBUTION 

We shall consider two definitions of the multivariate normal (MVN) distribu- 
tion. The first simply defines the distribution in terms of the density function. 
The second definition is based on a unique property of the MVN distribution, 
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namely, that any Linear combination of its elements is univariate normal. 
Although not needed in what follows, the second definition has two ad- 
vantages: I t  can be extended to include the so-called singular MVN and. more 
importantly, it emphasizes the fact that some niultivariate problems can be 
handled by looking at univariate “reductions.” 

Definition Iu Let y = ( yl, .v2,. . . ,yd)’ be a d-diinensional vector of random 
variables. Then y is said to have a (nonsingular) MVN distribution if its 
density function is 

(--a. < y , <  w , , j = 1 , 2  ,..., J), (2.1) 

where Z = [ (aj jk)]  is positive definite (written Z > 0). 

It is readily shown (e.g., Seber [1977: Chapter 21) that 8 [ y ]  = 8 and 
9[y] = Z, so that it is convenient to use the notation y - N d ( 8 ,  Z) or y - N,l 
for short. There are two important special cases: First, y - 8 - Nd(O, Z) and, 
second, if they, are mutually independent with univariate normal distributions 
I$($, a’) ( j  = 1,2, .  . . , d ) ,  then y - Nd(f l ,  a2Id).  We now list some of the 
man properties of the MVN distribution for future reference. 

THEOREM 2.1 Suppose y - Nd(8,  X) and let 

where y(‘)  and fl(’) are d,  X 1 vectors and Z,, is d,  X d, (dl + d ,  = d ) .  

(i) I f  C is a q x d matrix of rank q, then Cy - N,(CO,CX’> .  
(ii) Any subset of the elements of y has an MVN distribution; in 

(iii) The moment-generating function of y is given by 
particular y(”  - Nd,(fl(‘), Xii). 

M(t) = E[exp(t’y)] 

= exp(t‘B + it’%). (2-2) 

As the characteristic function of y. E[exp(rt’y)], is analytic, it follows 
that (2.2) uniquely determines (2.1). 

(iv) y(’) and ycr) are statistically independent if and only if %‘[y(’) ,~(~)] = 

0. [This result extends to a general partition of y into, say, k subsets 
y(’ )  ( i  = 1,2,. . . , A ) ;  the y“)  are mutually independent if and only if 
%‘[y(’),y(’)] = 0 for all i, j ,  i ~ j ] .  
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(v) If ui  = A,y (i = 1,2,. . . ,m) and U[u,,u,] = 0 for aII i ,  j, i # j, then 
the ui are mutually independent. 

(vi) (y - eyc-yy - 8) - x i .  
(vii) y'I:-'y has a noncentral chi-square distribution with d degrees of 

(viii) The conditional distribution of Y ( ~ ) ,  given y(l), is Nd2(8(2) + 
freedom and noncentrality parameter 6 = 8'C-'8. 

2,1L:fi1[y(1) - 801, X,,.,), where 

Proof These results are generally well known and are proved in most books 
that consider the MVN in any detail (e.g., Seber [1977: Theorems 2.1-2.6 and 
Exercise 2c, no. 21): As (vii) is not always derived, it is given in Exercise 2.1. 0 

The MVN distribution has many unique characteristics (Kagan et al. [1973]) 
and we now use one of these (see Exercise 2.2) to define the MVN, as in Rao 
[1973; Chapter 81. 

Definition Ib y is said to have a MVN distribution if t'y is univariate normal 
for all real t! If &"y] = 8, 9Iy]  = 2 > 0, and y is d X 1, then we write 
Y - Nd(8, 2). 

One is frequently interested in linear combinations of independent uni- 
variate normal variables t, with common variance a', say y = Az, where 
9[y ]  = A9[z]A' = a2AA' may be singular (e.g., Exercise 2.5). This situation of 
singular C can be included in Definition l b  if we remove the restriction Z > 0 
and include the degenerate distribution Nl(b,O) in the class of univariate 
distributions so that e'y = b is possible (see Exercises 2.4 and 2.5). With this 
extension of Definition lb, Theorem 2.1(i)-(v) can be readily proved, with 
arbitrary rank for C in (i), for the case of singular 2 (see Exercise 2.3): (viii) is 
also true if we use a generalized inverse Xi2 (Rao (1973: pp. 522-5231). When 
L: is singular, (2.2) still uniquely determines the distribution of probability 
(usually called the singular MVN distribution), though (2.1) no longer exists. In 
this case there exists at least one nonzero C such that t'(y - 8) = 0 (see 
Exercise 2.4). Furthermore, when 2 has rank m, it can be shown that y is 
expressible in the form y - 9 = Bu, where B is d X m of rank m and u has a 
(nonsingular) MVN distribution with nonsingular B[u]. 

One advantage of Definition l b  is that it can be extended to random 
variables defined on an infinite-dimensional space. Instead of the vector y in 
d-dimensional Euclidean space, we may be interested in a time series Y = 

{q :  0 I t < 00)  in a Hilbert spaceor an infinitesequence Y = {Yl, Y2,..  . >  in 
a Banach space. Also related to time series is the development of the so-called 
complex MVN distribution apparently introduced explicitly by Wooding [1956]. 
For literature reviews relating to this distribution, see Krishnaiah (19761 and 
Saxena [1978]. 
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Considerable interest has been expressed in the problem of finding condi- 
tions under which the quadratic (y - O)'A(y - 0) has a ch-square distribution, 
given that y - Nd(O,  Z), where Z may be singular. For a review, see Khatri 
119781. - 

As-far as this book is concerned, it does not matter which definition of the 
MVN we use for a starting point, as essential results are readily proved either 
way. However, the second definition avoids cxplicit mention of the density 
function @.I), and it is this idea that suggests a similar method for handling 
the Wishart distribution discussed below (Rao [1973]). 

2 . 3  WISHAKT DISTKIBUTION 

2.3.1 Definition und Properties 

Like most well-known distributions, the Wishart distribution aro:;e out of the 
sampling distribution of an important sample statistic, in this case C,*(y, - 
y)(y, - j) ' ,  a multivariate analogue of the univariate sum of squares C , ( y ,  - j ) 2  
(Johnson and Kotz [1972. p. 2.591). Two definitions of the Wishart distribution 
are now given. 

Definition 2u Let W = [ ( w , ~ ) ]  be a d >( d symmetric matrix of random 
variables that is positive definite with probability 1, and let Z be a d x d 
positive definite matrix. If rn is an integer such that m 2 d,  then W is said to 
have a (nonsingular) Wishart distribution with m degrees of freedom if the 
joint density function of the fid(d + 1) distinct elements of W (in, say, the 
upper triangle) is 

where etr represents the operator elrace, 

and 

(the so-called multivariate gamma function). We shall write W - K J m ,  Z) or 
lzl W - Wd for short. 

It is shown below (Thcorem 2.2, Corollary '1) that for every 4 G'Wl-. G'2txi, 
a quadratic version of the linear property of the MVN. Unfortunately, the 
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resemblance ends here, as this quadratic property does not uniquely determine 
(2.3); in fact, it is held by XW where X has an independent beta distribution 
(Mitra [1969]). However, as in the case of the MVN, it would be helpful to 
have a definition of the Wishart distribution that does not involve knowing 
explicitly the form of the density function (2.3). Such a definition is given 
below and it has the additional, though somewhat minor, advantage that if we 
use Definition l b  for the MVN, we can remove the restriction 1x1 # 0 so that 
Z is positive semidefmite, that is, C 2 0. 

Defiition 26 Suppose that xl, x2,. . . ,x, are independently and identically 
distributed (i.i.d.) as NJO, 2); then 

m 

w = c xix; 
i - 1  

is said to have a Wishart distribution with m degrees of freedom. 0 

If Z > 0 and m L d, then it can be shown that W > 0 with probability 1 
(see A5.13); otherwise, by the definition of W, W 2 0 and there is a nonzero 
probability that / W (  = 0. In the latter case we say that W has a singular 
Wishart distribution and (2.3) does not exist. Of course, (2.6) leads to (2.3) for 
the nonsingular case (see Exercise 2.16), but we shall use (2.6), as it does not 
require manipulations of the density function. Although not always necessary, 
we shall now assume Z > 0, unless otherwise stated. 

Analogous to Theorem 2.1(i), we have the following. 

THEOREM 2.2 If W - W,(m, 2) and C is a q X d matrix of rank q, then 

CWC- Wq(m,CCC). 

Proof Let xl,x2,.. .,x, be i.i.d. N,(O, 2) and let W, = C,x,xf. Then W, - 
W,( m, 2) so that CWoC' has the same distribution as CWC'. Now 

m m 

cW,c = c (cx,)(x;c) = c yiy;, (2.7) 
i -  1 i-1 

where, by Theorem 2.1(i), the y, are i.i.d. N,(O, CZC'). Hence, by (2.6), 
CW0C - W,( m, CZC'). 

(We note that if m 2 q and C has rank q,  then CZC' is positive definite (see 
A5.7) and CW,C has a nonsingular distribution. However, both assumptions 
and the assumption of 2 > 0 can be dropped if we allow singular normal and 
Wishart distributions. In future proofs involving the Wishart distribution we 
shall omit the step of introducing W, and simply assume that W = C,xix:.) 
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COROLLARY 1 If [is any nonzero d x 1 vector of constants, then tWt-  
u('x',, where a: = d'W> 0 (since Z > 0). 
Proof Let C = e in the proof of Theorem 2.2. Then, from (2.7), d'W,/- 

u C,mP,$. where they, are i,i.d. N,(O, u i ) .  Hence if C?# 0, elWC?/u: - x i .  

COROLLARY 2 Setting d' = (0,. . . ,0, l , O , .  . . ,O), we have, from Corollary 
1, 

In spite of Corollary 2, we do not call the Wishart distribution the 
multivariate chi-square distribution, as the marginal distribution of y k  ( j  # k) 
is not chi square. We Iiorrnally reserve the term rnultiuariate for the case when 
all univariate marginals belong to the same family. 

23.2 Generulized Quadru f ics 

If we write 

then 
m 

w == c xix; = xx. 
i-1 

By regarding this as a multivariate sum of squares (see Section l .3), it is 
natural to consider more general expressions of the form X A X  = C,C,a,,x,x;, 
where A = [(a,,)] is an rn X rn symmetric matrix. In univariate linear rnoctel 
theory it is the nature of A that determines the distribulional properties. 
Fortunately, these same properties carry through to the multivanate case, and 
we shall see in Theorem 2.4 later that we can always handle X A X  by 
considering a univariate version etXAXC( = y'Ay). But first let us introduce a 
lemma. 

LEMMA 2.3 Suppose xI,x2.. . .,xm are i.i.d. NJQ, I:) and let X = 

(xl, x2,.  . . , x m ) ' .  Then we have the following: 
(i) x(') - NJQ, uJJ I,) [see (2.9)l. 
(ii) If a is an rn x I vector of constants, then 

Xa - N,(Q,IJa(l'XZ). 
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(iii) If {al,a2,.  . . ,ar},  r I m, is a mutually orthogonal set of m X 1 vec- 
tors, then the random vectors X a ,  ( i  = 1,2, ..., r )  are mutually inde- 
pendent. 

(iv) If b is a d X 1 vector of constants, then Xb - Nm(O, $Im), where 
u i  = b%b. 

Proaf (i) Thejth element of xi is Nl(O, T~).  
(ii) By Exercise 2.6 and (2.9), 

m l m  \ 

(iii) Let ui = X'a, and let a, = (ail ,  q2,. . . ,ajm)'. Then 

Now 

say, where x - 

(2.10) 

Q Z), by Exercise 2.7. Thus, by Theorem :v), 1 
u, are mutually independent. 

(iv) Let 

then the elements y; of y are i.i.d. Nl(O, u i ) ,  where [by (1.8)] 

u i  = var[x;bJ = ~[ IY 'x~]  = b'Zb. 
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COROLLAKY Let a L- l , , , /m; then [}allZ = l /m and, by (ii) above, 

We now show that certain properties of quadratic forms extend naturally to 
the multivariate case. The key results are collected together in the following 
theorem. 

THEOREM 2.4 Let X' = (x,,x2,. . . , x m ) ,  where the x, are i.i.d. NJO, Z), 
and let y = Xd, where /( f 0) is a d X 1 vector of constants. Let A and B be 
m x m symmetric matrices of ranks r and s, respectively, and let b be an 
m X I vector of constants. 

(i) X'AX - wd(I', Z) if and only if y'Ay - u('x5 for any 4 where u j  = PZL 
(ii) X A X  and X B X  have independent Wishart distributions with I' and ,s 

degrees of freedom, respectively, if and only if y'Ay/uj and y'By/cij 
are independently distributed as chi square with r and s degrees, 
respectively, for any L 

(iii) X b  and X'AX are independently distributed as Nd and Wd(r, Z), 
respectively, if  and only if y'b and y'Ay/u: are independently distrib- 
uted as iVl and x: ,  respectively, for any t! 

Proof (i) Given W = X'AX - Wd(r, Z), then y'Ay = G'X'AXt'= P W t -  
ujx:, by Theorem 2.2, Corollary 1. Conversely, suppose that y'Ay/o: - xf for 
some d; then, since y - N,(O, .,'I,) [by Lemma 2.3(iv)] it follows from A6.5 
that A is indempotent of rank r .  Hence, by A6.2, we can write 

r 

A = a,a;, 
i -1  

(2.11) 

where the a, are an orthonormal set of eigerwctors corresponding to the I' unit 
eigenvalues of A. Therefore 

r r 

X'AX = Xa,a:X =I up;,  
i =  1 i - 1  

where u, = Xa, .  But, by Lemma 2.3(ii) and (iii), the u, are i.i.d. NJO, 2). since 
lla,11* = I, so that X A X  - Wd(r, 2) by Definition 2b. 

(ii) Given X'AX and X B X  with independent Wishart distributions, then the 
quadratics y'Ay and y'By are statistically independeni, being functions of the 
Wishart matrices. Also, by (i), the quadratics are each distributed as o,,? times a 
chi-square variable. Conversely, suppose that y'Ay/ot and y'By/oj are inde- 
pendently distributed as xf and x:, respectively for some t: 'Then, by A6.5, A 
and B are indempotent matrices of ranks r and s, respectively, and it follows 
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from A6.6 that AB = 0. Thus we can write 
r S 

A = aia: and B = bjbr;, 

where {al, a2 , .  . . ,a , }  and {bl, 4,. . . ,bs} are orthonormal sets of eigenvectors. 
Moreover, since Aai = ai and Bbj = bj, we have 

i = l  j = 1  

a!b. = a:A'Bbj = a:ABbj = 0 

for all i ,  j so that the combined set of vectors {a1,. . . ,a,, b,, . . . ,bs) is 
orthonormal. Hence, as in the proof of (i), 

J J  

r 

X'AX = up: 
i = l  

(2.12) 

and 
S 

XBX = v,v,', 

where u, = X a , ,  5 = Xbj, and the set {ul, .  . . ,u, ,v, , .  . .,v,} are mutually 
independent (see Lemma 2.3(iii)]. 

(iii) Suppose that X b  and XAX are independently distributed as Nd and 
W,, respectively. Then y'b = dX'b is Nl and y'Ay - ujx; ,  as in the proof of 
(i). Furthermore, y'b and y'Ay are statistically independent, being functions of 
independent sets of random variables. Conversely, suppose that y'b and y'Ay 
are independently distributed as Nl and u:x:, respectively, for some L Now we 
already know from Lemma 2.3(u) that X'b - Nd. Also, by (i), WAX - 
wd(r, Z). Since y - N,(O, u ~ I , ) ,  we have y'b - Nl(O, ujb%), y'bby/b'b - 
ujx: and Abb = 0 (A6.6 with B = bb). Postmultiplying by b, we have 
Ab = 0, so that arguing as in (u), {al,a2,. . . ,ar, b} are mutually orthogonal. 
Hence ul, u2,.  . . , u, and X'b are mutually independent, and X b  is independent 
of XAX [by (2.12)]. 

j - 1  

COROLLARY 1 XAX - wd( r,  Z) if and only if A2 = A. 

COROLLARY 2 The Wishart variables X'AX and X'BX are independent if 
and only if AB = 0. 

COROLLARY 3 XAX and X b  are independently distributed as W, and Nd, 
0 respectively, if and only if Ab = 0 and A' = A. 

Although we could have stated the preceding corollaries as the main 
theorem, it is convenient to follow the above approach of Rao 119731 and prove 
multivariate results using the corresponding univariate theory. 
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For further properties of the Wishart distribution, the reader is referred to 
Johnson and Kotz [1972: Chapter 381 and Muirhead [1982: Section 3.21. A 
related distribution is the inverse Wishart, the distribution of W-’ (see Press 
[1972a] and Siskind [1972] for some properties). 

2.3.3 Nonceritral Wishart Distribution 

Let xl, x2 , .  . . ,x, be indcpendently distributed as Nd( pl, 2 )  ( i  = I, 2,.  . . ,m). 
Then, by analogy with the noncentral chi-square distribution (see Exercise 2.1), 
we can define W = X X  to have the noncentral Wishart distribution, written 
W,(m, Z; A), with noncentrality matrix A defined to be (see A 5 4  

where M = (p l ,  p2 , .  . . ,pm)’. We note that &“X’]&[X] = M’M = Zip,,p;, and it 
follows from (1.9) with A = I,,, that 

d‘[W] = mZ: f M M .  

When A = 0, M = 0 (by A4.9, the x,  are N,(O, Z), and W,(rn, 2; 0) is the 
same as W,(rn, 2). 

The noncentral Wishart distribution has a complicated density function, 
though it can be handled in a formal fashion using zonal yolyiiomials (see 
Johnson md Kotz [1972: Chapter 481, Muirhead (19821). A5 the density 
function depends on the eigenvalues of A, it is common practice in theoretical 
studies to variously define A, $A, and 2- ‘M’M (see A1.4) as the noncentrality 
parameter matrix. Some authors use M and wnte W - Wd(m, 8; M). tileser 
[I9761 has given a canonical representation for the noncentral Wishart that is 
useful for simulation. 

Most of the properties of the (central) Wishart carry over to the noncentral 
case. For example, Theorem 2.4 and its corollaries still hold if  the chi-square 
and Wishart distributions are replaced by their noncentral counterparts. Thus 
if A = C 1’2&[X)A8[X]X ‘I2,X’AX - W d ( m ,  X; A )  if and only if A2 = A. 

A particular case often studied in the literature is the so-called “linear” 
noncentral distribution in which ranklA] = 1 (= rank[M’], by A2.2). In this 
case there is only one linearly independent vector in the set { pI, p2,. . . ,pm,} so 
that p, = k , p  for all i and certain k ,  and p. Geometrically this is equivalent :o 
saying that the points p, are collinear and lie on a straight Line through the 
origin and the point p. If pl = p ( i  = 1,2,. . . ,m), then M M  = mpp‘ and the 
rank 1 condition is automatically satisfied. 
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2.3.4 Eigenvalues of a Wishart Matrix 

Suppose that W - Wd(m, I d ) ,  m 1 d,  and let C1 2 C2 2 * * 1 cd 2 O be the 
ordered eigenvalues (characteristic roots) of W .  The joint distribution of the cj 
was shown independently by Fisher [1939], Hsu [1939], and Roy [1939] to have 
density function 

where k is a constant. The marginal distributions of c1 and cd are known (see 
Johnson and Kotz [1972: Section 39.41 for a review), and tables of percentage 
points are given by Pearson and Hartley [1972: Table 511. Hanumara and 
Strain [1980] mention some applications ,of these percentage points. Formulas 
for the joint distribution of a few ordered roots, or any pair of roots, and the 
marginal distribution of any individual root are given by Krishnaiah and 
Waikar [1971]. The noncentral case is considered by Krishnaiah and Chatto- 
padhyay [1975]. Krishnaiah and Schuunnann [1974] give formulas for the 
density function of a root divided by the sum of the roots, and the distribution 
function of cd/cI .  For further references see Krishnaiah’s [1978] review. 

For the general case when W - Wd(m, Z), various exact and asymptotic 
results for some or all of the ci in terms of the eigenvalues A, 2 A, 2 - 2 A, 
> 0 of Z are available (Muirhead [1982]). As the method of principal compo- 
nents is a major application of this theory, further references are given in 
Section 5.2.5. The noncentral Wishart is considered briefly by Johnson and 
Kotz [1972] and Muirhead [1982] and the moments of its trace are given by 
Mathai [1980]. 

2.3.5 Determinant of a Wishart Matrix 

Given W - Wd(m, Z), m 2 d ,  the problem of estimating 1x1, the so-called 
“generalized variance,” has been considered by several authors (e.g., Shorrock 
and Zidek [1976], Sinha [1976]). It is sometimes used as a measure of 
variability (see Kowal [1971]). Since b[W] = mZ (Exercise 2.10), we have the 
estimate Jrn-’WI, where IWl is distributed as 1x1 times the product of d 
independent chi-square variables with respective degrees of freedom m, m - 
1,. . . ,m - d + 1 (Exercise 2.22). Some approximations for the distribution of 
I W I are described in Johnson and Kotz [1972: Chapter 391, and approxima- 
tions for the central and noncentral distributions of IWll/d/m are given by 
Steyn 119781. The related problem of estimating /X22.11 = IZ,, - X21Z1,’Z,21 
[see Theorem 2.l(viii)] was considered by Tsui et al. [1980]. 
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2.4  HOTELLING’S T’ DISTRIBUTION 

2.4.1 Central Distribution 

If x - N , ( p ,  u2), w - 0 2 x ~ , ,  and w is statistically independent of x, then 

(2.14) 

where 1, is the t-distribution with m degrees of freedom. Therefore 

? ? l ( X  - p)’ I ’ z  = ____ = m ( x  - p ) w - ’ ( x  - p )  - F l , m ,  
M’ 

since we have the identity r;t, = F l , m  between the t- and I;’-distributions. A 
natural generalization of the above statistic is the so-called Hotelling’s TZ 
statistic 

1’’ = m ( x  - p)’W- ‘(x - p), 

where x - N d ( p ,  Z), W - Wd(m, X), x is statistically independent of W, and 
both distributions are nonsingular. We shall show in Theorem 2.8 that T 2  - 
cFd, _. d +  but first let us introduce three lemmas. 

LEMMA 2.5 Given u = ( u l ,  uz , .  . . ,ud))  - Nd(& X), the conditional distri- 
bution of ud, given ul. u 2 , .  . . ,ud- ,, is of the form Nl(po + Cf, :p,u,, 1 /ud”) ,  
where [(a’“)] = X-’. 

Proof Let u(’) = ( u1 ,. . . , u d -  J, e(1) = (e  . . ,#, )’. and 

(2.15) 

From Theorem Z.l(viii) with d ,  = 1, the conditional distribution of ud,  given 
u(’), is normal with mean 

say. As I: > 0, then XI,  > 0 and (see A3.2) 

(2.16) 
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so that 

1 
U dd 

- -- (2.17) 

LEMMA 2.6 Consider the linear regression model y = KB + E, where K is 
m x p of rank p and e - N,(O, a21,). Let 

= minimumlly - KB1l2; 
B 

then Q - U ’ X ~ - ~  and Q = l / w d d ,  where [ ( w - ” ~ ) ]  = W-I and 

W = ( K ) ( K , y )  = ( Kf’K ’,”). 
Y’ Y K  Y Y  

Proof From general regression theory (e.g., Seber [1977: Theorem 3.51; see 
also A6.5) 

Q = Y’(1m - P)Y 

since (I, - P) is symmetric and idempotent of rank m - p (Exercise 1.5). 
Also, from (2.16), 

so that 

LEMMA 2.7 Suppose W - Wd(m, C), where m 2 d. Then we have the 
following: 

and is independent of all the elements w j k  of W (i)  udd/wdd - 
(ii) d‘I:-ld/elW-ld- ~ i - ~ + ~  for any fixed d(# 0). 

( j , k = 1 , 2 ,  ..., d -  1). 
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Proof (i) Since W - W,(m, Z), we can argue as in Theorem 2.2 and write 
W = C~_lxIx;, where the x, are i.i.d. N d ( 0 , Z ) .  If x, = ( x t l ,  . x 1 7 , .  , . , x ld ) '  then, 
from Lemma 2.5 (with 6 r= 0), the coriditioiial distribution of x I d  given 
x I I ,  x12,. . . , x , , ~ - ,  is N,(C:::p,x,,, l/odd). Thus, conditionally, we have a 
regressioii niodel of the form given in Lenuna 2.6 (with p = J - 1 j so that 

Since the conditional distribution of Q does not involve the conditioning 
variables x,,, it is also the unconditional distribution, and Q is independent of 
x,, ( i  = 1,2,. . . ,m; j -= 1,2,. . , ,d  - 1). Thus Q is independent of y k  = 

~ ~ ~ ~ , , X , k  for all j ,  k ( j  #: d ,  k # d ) .  
Now 

where x(J) = (xIJ,  x2, , .  . . ,xnrJ) ' .  Hence identifying y with 
(x"), ..., ~(~-'))inLemma2.6,weseethatQ = L/w""andudd/'wJn - 
~ ~ ~ ~ ~ - l ~ .  Then, from Theorem 2.2, 

and K with 

(ii) Let I, be any d x d orthogonal matrix with its bottom row equal to 

LWL' - w,( m, LZL'). 

Now (LWL) I -- LW- 'L' and (LZL')..' = LZ 'L. Applying part (i) to 
LWL', we have 

U 

Using Lemma 2.7 we can ncw readily prove the following theorem, which 
forms the basis of Hotelling's 7 2  distribution. 

THEOREM 2.8 Let T' = my'W-'y, where y - NJO, Z), W - Wd(m, Zj, 
and y and W are statistically independent. (It is assumed that the distributions 
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are nonsingular, i.e., Z > 0, and m 2 d, so that W-’ exists with probability 
1). Then 

m - d + l  T 2  -- d ,,, F d , m - d + l -  (2.18) 

Proo/ 

T* 
m 
- 5 y y ’ y  

- y’Z-’y - 
y’Z - 1 y/y w - * y 

say. 
For a given value of y ,  it follows, from Lemma 2.7(ii), that the conditional 

distribution of H, given y = 4 is X i - d + l .  Since this conditional distribution 
does not depend on y, it is also the unconditional distribution, and H is 
independent of y. Hence H - x i - d + l  and is independent of G = y’Z-’y,. a 
function of y .  From Theorem 2.1(vi), G - x; ,  so that T 2 / m  is the ratio of two 
independent chi-square variables. Hence 

-. F d , m - d + l .  
_ -  G / d  - m - d + l  T 2  

d m H / ( m - d + 1 )  

COROLLARY Given x - Nd(p, X-’Z), W - W d ( m ,  Z), and x independent 
of W, then 

T 2  = Xm(x - p)’W-’(x - p) 

satisfies (2.18). 

Proof Let y = fi(x - p) in Theorem 2.8. 0 

As the distribution of TZ depends on two parameters d and my we shall use 
the notation T 2  - TdTm when T2 is distributed as in (2.18). For future 
reference we note the equivalence 

T i , ,  m - d + 1 - 
m d = F d , m - d + l *  (2.20) 
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2.4.2 Noncentrai Distribution 

Given y - N J e ,  Z), W - wd(m, Z), and y independent of W, then T 2  = 

my‘W ‘y is said to have a noncentral T 2  distribution with rioncentrality 
parameter 8 = B’Z-lfJ. To identify this distribution we briefly retrace the steps 
leading lo the derivation for the central case 6 = 0 (ix., 8 = 0, as 2, is positive 
definite). 

In Theorem 2.8 we considered the ratio G / H  and proved that H - x2,- w d L l  

and H is independent of G. part of the proof is valid, irrespextive of 
whether or not 9 = 0. From Theorem 2.1(ni), y’Z-’y has a noncentral 
chi-square distribution with d degrees of freedom and noncentrality parameter 
8. Thus (rn - d -t l )G /dH is the ratio of a noncentral chi-square variable to 
an independent chi-square variable, each suitably scaled by its degrees of 
freedom. Hence 

T 2 m - d + 1  - 
d Fd,m-  d t 1 . 6 .  111 

where Fd,n,..d k l , 6  is the noncentral F-distribution with d and m - d -t 1 
degrees of freedom, respectively, and noncentrality parameter 8.  (For deriva- 
tions and properties of noncentral distributions see Johnson and Kotz [ 19/01 
and Muirhead [1982]). 

2 . 5  MULTIVARIATE BETA DISTRIBUTIONS 

2.5.1 Dcrivation 

Suppose that H - a2xi,,  E - a x m , ,  ’ and H and E are statisticaily indepen- 
dent. For example, H ccdd he the “hypothesis” sum of squares and E the 
“error” or residual sum of squares in an analysis of variance model. ’Then the 
density functions of T = H/E and V = T / ( l  + T )  = H / (  E -t M )  are 

1 +m,,/2-1 

and 

where 
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For convenience we can use the notation V - BmHI2, mE,Z and Vis said to have 
a (type 1) beta distribution with f m H  and *mE degrees of freedom, respec- 
tively. We also note that mET/mH - FmH, mE and T is said to have a type I1 or 
inverted beta distribution with +mH and tmE degrees of freedom, respectively. 
For future reference it is useful to highlight the relationship V = 1 - (1 + T ) - l  
in terms of distributions, namely, 

(2.21) 

The preceding results can be generalized to the case where H and E are 
matrices with independent nonsingular Wishart distributions, namely, H - 
above univariate approach, we could consider HE-' and H(E + H)-', but 
these matrices are not symmetric and do not lead to useful density functions. 
However, since E and H, and hence E + H, are positive definite with probabil- 
ity 1, we can obtain symmetry by defining the positive definite matrices (see 
A5.7) 

Wd(mH,Z) and E -  W,(mEyZ) with m H , m E  2 d. By andOgy with the 

T = E-1/2)IE-1/2 (2.22) 

and 

v = (E + H)-'/'H(E + H)-~/', (2.23) 

and (E + H)'l2 are the symmetric square roots of E and E + H, where 
respectively (see A5.4). We now prove the following theorem. 

THEOREM 2.9 The joint density function of the j d (d  + 1) distinct elements 
of V, namely, g( ull, u12,. . . ,udd) [or g(V) for short] is given by 

(2.24) 

where 

and rd(a)  is defined by (2.5). It is assumed that d 5 mH,  mE.  

Proof Since H and E are independent, their joint distribution is simply the 
product of their marginal densities, namely [see (2.3)], 

c-lc-1 H E 1  H I (m~-d-1)/21E((m,-d-l)/2etr[ - fZ-'(E + H)], 
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where 
c = 2 m , d / 2  II:lm~~'2J'd(m,/2), ( i  = H ,  E ) .  

We now make the transformation from (H,E) to (V,Z) ,  where V = (E + 
H)-'/2N(E + H) 'IL and 2 = E -1- H. The Jacobian of this transformation is, 
by A9.2(c), (Z l (d  ")I2, so that the joint density function of the upper triangular 
elements of V and Z is 

h(v, z) = c,lc,l[Z'/2V~l/21(m~-d-1)/21z - z1/2vz1/21(mF - d -  1)/2 

x IZl(di  ')/*etr( - j 2 - l ~ ) .  
Using the fact that the integral of the Wishart density is one, we have 

g(v) = 1 - * / h ( V ,  z) dZ1, * * * dz,, 

Finally, by A5.7, V > 0 and 

I, - V = (E + H) -'/'(E -t. H -- H)(E + H)-'/' 

= (E + H-'/'E(E + H I -  '/* > 0, (2.25) 

so that using the convention for positive definite matrices, we can write, 
0 

The derisity function (2.24) does not depend oil X, so that Theorem 2.9 still 
holds if I: --= I,. In this case it can be shown that T of (2.22) has deiisity 
function 

symbolically, 0 < V < I,,. 

(2.26) 

However, (2.26) is not true for general X (Olkin and Rubin [1964]). 
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In addition to the symmetric square root (E + €I)’/*, there are two other 
“square roots” based on the Cholesky decompositions E + H = L L  = U’U, 
where L and U are lower and upper triangular matrices, respectively, with 
positive diagonal elements (see A5.11). If we put V = (L’)-‘HL-’ or V = 

(U’)-’HU-’, we find that the density function of V is still (2.24) in both cases. 
However, if we use similar representations for T, we h d  that we get different 
expressions for f(T), for each of the three square roots. This rather curious 
result is due to certain independence properties that depend critically on the 
square root used ( O k  and Rubin [1964]). However the distribution of trT is 
the same in each case and it is this function of T that is featured later [see 
(2.38)]. 

By analogy with the univariate theory, we say that (2.26) is the density 
function for a multivariate type I1 or inverted beta distribution, while V is said 
to have a d-dimensional multivariate type I beta distribution with ) m H  and 
+mE degrees of freedom, respectively. By simply interchanging the roles of H 
and E, we see that I,, - V also has a multivariate Type I beta distribution, but 
with $mE and f m H  degrees of freedom. 

We now consider the eigenvalues of V. 

2.5.2 Mu Itivariate Beta EigenvaIues 

Suppose 8 is an eigenvalue of V. Then, since V > 0 with probability 1, 8 > 0 
with probability 1 (by A5.1). We note that 8 is a root of 

= [(E + H)-”’H(E + H)-’/” - 8I,[ 

that is, a root of 

IH - 8(E + H)I = 0. (2.27) 

If 8 2 1, - ( 8  - l)H - 8E < 0 with probability 1 and (2.27) holds with 
probability 0. Hence 8 < 1 with probability 1 and we can express (2.27) in the 
form 

(2.28) IH - +El = 0, 

where $I = 8/(l - 8). Since E and H are independent nonsingular Wishart 
matrices, both E > 0 and the eigenvalues of H are distinct, with probability 1 
(see A5.13, A2.8). This implies that the eigenvalues of HE-’, that is, the roots 
of (2.28), are distinct with probability 1. Hence the eigenvalues of V are 
distinct and we can order them in the form 1 > 8, > 8, > . - - > B,, > 0. 



36 Multroariute Distnhutionr 

Although in the above theory we have assumed H > 0 and E z 8, we note 
from (2.23) that if /HI = 0, then IV 1 = 0 and at least one of the roots of (2.27) 
is zero, while if JEl = 0, then at last one of the roots is unity [see (2.25)]. 

From A1.2 we have 

d d 

IVl = n BJ and J I d  - VI = n ( I  - q ) ,  
1 - 1  1=1 

where 

We note that (2.29) does not depend on 2, a result that caii be deduced 
directly from (2.27) (see Exercise 2.21). The distribulion given by (2.29) is 
sometimes called a generalized beta distnbution, as some, but not all, of the 
marginal distributions are beta (Foster 11957, 19581, Foster and Rees [19573). 

The preceding derivation of (2.29), wllich depends on (2.24), is valid if pd 

and E are both positive definite, that is, X > 0 and mf,, m, 2 d .  However, i f  
m H  < d, then H is singula~ and does not have a density function, so that the 
ahove method of deriving (2.29) no longer holds. However, if m y  2 d ,  then 
E -t- H 1 0 (as E > 0 and H 1 0; see A5.10) and V still exists, but it is now 
singular with rank m,,. Thus, with probability 1, there are only m N  nonzero 
roots of V, namely 8, > 8, > * . . > en,,, > 0. With a different approach, it can 
be shown (e.g., Anderson [1958; p. 3151) that thejoint density function of these 
BJ is 

(2.31) 

where 
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We note that (2.31) is of the same form as (2.29), but with the changes 
(d, m H ,  mE) 4 ( m H ,  d ,  mE f m H  - d). Equations (2.29) and (2.31) were ob- 
tained independently by Fisher [1939], Girshick [1939], Hsu [1939], Roy [1939], 
and Mood [1951] and can be combined into a single equation 

j - 1  f i s , i ” [ f i ( l - 8 j )  j - 1  I u 2 j : k  n < 8 j - e , > ,  (2.32) 

where s = minimum(d, m H ) ,  v1 = )(lmH - d) l  - I), v2 = j ( m E  - d - 11, 
and 

a = s - s 2 / 2 ~ s ( v 1  + +[$ + I], v2 + +[s + l])r,(+). 
Owing to various test statistics and associated simultaneous confidence 

intervals introduced by Roy [1939, 19531, considerable attention has been 
focused on the distribution of Om, (= el). In fact, Roy [1939] gave an elegant 
representation for the distribution function of 61 in terms of the determinant of 
a matrix whose elements are incomplete beta functions. Using this represen- 
tation, Pillai and his co-workers (see Johnson and Kotz (1972; pp. 18-26] or 
Pillai [1967] for references) constructed tables of the percentage points of 
for s = 2(1)20 and selected vaIues of v1 and v2. Further values for s = 2, 3, 4, 
were given by Foster and Rees [1957] and Foster [1957, 19581, while Heck 
[1960] has given a number of charts for s = 2(1)5. A useful algorithm for the 
distribution function of 8- when v2 is an integer is given by Venables (19741. 
Chang [1974] gives exact values for s = 2(1)5 and found that Pillai’s tables 
were sufficiently accurate for s 2 6. Tables are given in Appendix D14. 

If mH, m E  2 d, the percentage points for e,, (= 8 d )  can also be obtained 
from the tables by noting that the eigenvalues of I d  - V, that is, the roots of 
f E  - X(E + €I)/ = 0, satisfy A = 1 - 8. Thus 19- = 1 - A,,, where A,, has 
the same distribution as Om,, but with m E  and mH interchanged. Tables for 
0- are given by Chang (1974: s = 2(1)5] and Schuurmann and Waikar 
[1974: s = 4(1)10]. 

The reader should be aware that there are a variety of notations used in the 
literature concerning the eigenvalues. Roy’s famous maximum root statistic is 
actually +,,, the maximum root of IH - +El = 0, that is, the maximum 
eigenvalue of HE-’, while Heck’s I19601 charts refer to Om=. Thus we have 
three sets of roots 8, A, and +, which are related as follows [see (2.28)) 

and 

(2.33) 

(2.34) 

However, we need only concern ourselves with 8 and +. 
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When s =: 1, ( H  - 6(E + K){ = 0 has only one root. Since the trace of a 
matrix is the sum of its eigenvalues (A1.2), 

Om, = tr[H(E -t H)-'] 

and the multivariate distribution of the roots reduces to the univariate beta 
distribution of Om,, namely, 

The quantile f?, can be obtained by making the transformation [see (2.21)] 

(2.36) 

and using the upper tail of the Pdistribution. Alternatively, we can use 
$I,,,,, = tr[HE--'], and then 

(2.37) 

We note that the eigenvalues $I/ of PIE-' are the same as those of 
T = E-'/2HE--*/2, while the eigenvalues are the same as 
those of V (A1.4). 'llere is an extensive literature on the exact and largc- 
sample properties of these eigenvalues and the reader is referred to the reviews 
of Pillai [1976], Krishnaiah [1978: Section 41, and Muirhead [197X,  19821. In 
the literature HE-' and H(E + I-l-.' are commonly called the nriiltivariate F- 
and beta matrices: The distributions of their traces are considered in Section 
2.5.3. 

When H has a noncentral Wishart distribution, the joint distribution of the 
0) is commonly called the noncentral generalized beta distribution and is 
discussed by Johnson and Kolz [1972: p. 186, with S ,  -+ M and S, 4 El. 
Asymptotic expressions for distributions are given by Constantine and 
Muirhead [1976] for the BJ, and by Fujikoshi [1977a] for the +J. There have also 
been several papers giving asymptotic expansions for functions of eigenvalues 
using perturbation techniques (Fujikoshi 119781). 

of H(E + H) 

2.5.3 Two Truce Statistics 

a LAWLEY- H u r t n I N t i  srArIsi'Ic 
In relation to hypothesis testing, Lawley [I9381 and Hotelling 119521 consid- 
ered using the sum of the eigeienvalues of HE-' when InE 2 d, iiarney, 

(2.38) 
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where 

(2.39) 

and s = minimum(d, mH), the number of nonzero eigenvalues of HE-’. This 
statistic is called the Lawley-Hotelling trace statistic or Hotelling’s generalized 
T 2  statistic: We shall use T i  instead of the usual T,’ to avoid confusion in the 
notation later. 

The exact distribution of G2 was obtained by Hotelling [1951] for d = 2 and 
expressions for general d are given by Pillai and Young [1971] and Krishnaiah 
and Chang [1972]. Exact and approximate 5% and 1% upper tail critical values 
for various values of d are given by a number of authors, including Davis 
[1970a, b, 1980al and Pillai and Young [1971] (see Appendix D15. McKeon 
I19741 has shown that the distribution of U(”) can be approximated by cF, 
where F - 4, *. Here 

u = dm,, b = 4 + ( a  + 2)/(B - l), c = ~ ( b  - 2)/b(m, - d - l), 

where B = (mE + my - d - l)(m, - 1) / (mE - d - 3)(mE - d). This ap- 
proximation is surprisingly accurate and supersedes previous approximations 
by Hughes and Saw [1972] and Pillai and Samson [1959]. 

When m E  -, m, q2 - x;,,. However, using more terms of the large-sam- 
ple expansion for the distribution function of q2, more accurate chi-square 
approximations have been obtained. Similar expansions are available when H 
is noncentral Wishart with noncentrality parameter A : T: now has a limiting 
noncentral chi-square distribution with noncentrality parameter tr A (see 
Johnson and Kotz [1972: Chapter 391, Pillai [1976, 19771, Muirhead [1982]). 

b PILLAI’S TRACE STATISTIC 

Pillai [1953] proposed several other statistics, including 

V ( ” )  = tr[H(E + H)-’] = $, 
j - 1  

where s = minimum(d, mH). The exact distribution of Y(’) was obtained by 
Pillai and Jayachandran [1970], thus extending the work of Nanda [1950], who 
obtained the distribution for special cases only. PiUai [1955] obtained a 
two-moment beta approximation to the distribution that seems moderately 
accurate, and used a four-moment Pearson curve approximation to construct 
tables (Pillai [1960], Mijares [1964]). A more accurate approximation and some 
tables are given by John [1976, 19771. Using a simplification of an expression 
obtained by Krishnaiah and Chang [1972], Schuurmann et al. 119751 computed 
exact percentage points for s = 2(1)5 (see Appendix D16). 
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When M I ,  -+ 00, mEV(') - x:,,,. Using the Cornish-Fisher approach of 
Hill and Davis [1968], Y. S. Lee [1971] derived a large-sample approltiniation 
for the upper tail values of mCVs).  He also gave a large-sample approximation 
for the noncentral distribution o f  mEV(s"(i.e., when H is noncen tral Wishart). 
For further references, see Pillai (1976, 19771. 

2.5.4 U-Distribution 

An important function of V [see (2.23)] in multivariate statistical inference is 
U = 11, - V l .  (It is more convenient to use U ralher than IVl in applications). 
Following Anderson [1958], if I d  - V has a multivariate Type I beta distribu- 
tion with fm, and $mtI degrees of freedom, respectively, then we say that U 
has i i  U-distribution with degrees of freedom d, mif, and mK, and write 

- ('d. m f l ,  m ,  . From (2.23, 

(2.40) 

and we require IEl # 0, that is, m E  L d, for U .fi 0. The statistic U, originally 
called A, was first introduced by Wilks (19321 as the appropriate likelihood 
ratio statistic for testing a linear hypothesis (see Chapter 8), and has since been 
studied extensively. The theoretical properties of U are set out in Anderson 
[1958: Chapter 81 and Kshirsagar [1972: pp. 292-3041. Further references are 
given by Jolmon and Kotz [1972: pp. 202-2041. The main facts about the 
distrihution of U are as follows. 

1. l h e  distribution function of U can be expressed as a computable 
mixture of incomplete beta functions (Tretter and Walster [1975]). 

2. The distribution of Ud, n,r,, mf: is the some as that of U,, ,,,, d , , n E + , n H - O :  

This fact is useful if mII i d (as in the cases mlI = 1,2  below). lnstead of using 
the triple (d, mtI,  m E ) ,  some authors use (d, mi,,, n o ) ,  where n, = m E  -t- mlE. 
If we interchange d and mtI so that d* = mll and mfr = d ,  and set mg = mE 
+ mfI -- d ,  then nt = mE + mk = m R  -t i n H  = no. Thus n,* = no  and no 
remains unchanged when d and m H  are interchanged. 

3. The following special cases hold. When d = 1, 

Whenm, = 1, 

(2.41) 
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When d = 2, 

When mH = 2, 

In Section 2.5.5b the above results are expressed in a more convenient form. 
The distribution of U has also been derived for the cases d and mH both less 
than or equal to 4 (Anderson [1958: pp. 196-2021). 

4. By expanding the characteristic function of -clog U up to terms of 
order no2 and choosing c appropriately, Bartlett [1938a] showed that for large 
no (i.e., large mE),  W = -flog U is approximately distributed as xim,,  where 
f = mE - 3(d - mH + 1) = no - + ( d  + l?lH + 1). This approximation is 
surprisingly accurate for the usual critical values, in fact, to three decimal 
places if d 2  + I.$ 5 jf. Rao [1948: pp. 70-711 expanded the characteristic 
function to terms of order no6 and obtained the first three terms of a rapidly 
converging series. Rao's approximation is in fact a special case of a more 
general result of Box [1949], who gave asymptotic approximations to functions 
of general likelihood ratio statistics (see Anderson [1958: Section 8.61). It is 
also a modification of an expansion of -log U given by Wald and Brookner 
[1941]. 

Other approximations and asymptotic expansions have been given by Rao 
[1951] and Roy [1951]. In particular, Rao showed that 

where 

dmH - 2 1 /2 d2m$ - 4 
2 -  and g =  

lr ( d 2  + m i  - 5 )  

This approximation to an F-distribution, which is exact when d or mH is 1 or 2 
[see (2.41)-(2.44)], is better than Bartlett's chi-square approximation and is 
also better than Rao's three-term chi-square expansion when m E  is small 
(Mudholkar and Trivedi [1980: Table 11). Although the three-term approxima- 
tion is slightly better for large mE, (2.45) seems adequate for practical 
situations. If ft - g is not an integer, a conservative value for the degrees of 
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freedom is the integral part of fi - g. Mudholkar and Trivedi [1980] give a 
normal approximation that performs well for small and large m E ;  however, it 
requires much more coinputation than (2.45). 

5. SchatzofT [1966a] gave a method for obtaining the exact distribution 
function of U when d or nt,, i s  even. He also tabled a conversion factor 
C, = CJd, inH.  M), where M = m E  - d t 1, such that we have the exact 
relation 

(2.46) 

for specified values of a. Pillsi and CJupla [I9691 obtained the density and 
distribution functions of U explicitly for d = 3,4,5,6 and mH odd or even, and 
made substantial additions to Schatzoffs tables. A modified version of these 
tables, with helpful methods of interpolation, is given by Pearson and Hartley 
[1972]. Mathai I19711 gave an explicit expression for the distribution of U and 
filled some gaps. Infinite series are encountered when d and mH are both odd, 
though Lee (19721 was able to reduce the problem to the evaluation of certain 
uilivariate integrals. We extended the existing tables so that percentage points 
were available for d I ttzH 2 20 and dmH I 144, except when d or mH is odd 
and greater than 10. Using a differential equation approach, Davis I19791 then 
filled the remaining gaps: A set of tables is given in Appendix D13. In these 
tables m H  and d are interchangeable, as M = no - rnn - d + 1 is unchanged 
if we interchange M H  and d. We observe that C, > 1 and C, + 1 as m E ,  and 
therefore M, tends to infinity. Generally C, is close to 1. 

When H has a noiicentral Wishart distnbution, U is said to have a 
noncentral distribution. An asymptotic expansion up to order m E 2  has been 
given by Sugiura and Fujikoshi [I9691 (see also Pillai [1977] and Muirhead 
[1982]). 

2.5.5 Summury of Special Distributions 

For convenient reference we now summarize some of the previous distribution 
theory. 

a HOIELLING’S T2 
If x - N , ( p ,  X), W - Wd(m,  Z), and x and W are statistically iiidependent, 
then 

T 2  = m(x  - p)’W-’(x - p )  - T;,, ( m  2 d ) ,  

where 

(2.47) 
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b U-STATISTIC 

Suppose E - Wd(mE, 2) (ME 5 d), H - Wd(mH, Z), E and H are statisti- 
cally independent and s = minimum(m,, d); then 

(2.48) 

The basic parameters underlying the joint distribution of the eigenvaiues 3 are 
s, vl = $(lmH - dl - l), and v2 = $(mE - d - 1). If s = 1 

while if s = 2, 

(2.49) 

(2.50) 

Tables for finding the upper quantile values for -flog U, wheref = mE - +( d 
- mH + 1) are given in Appendix D13. A good F-approximation is given by 
(2.45). 

C MAXIMUM ROOT STATISTIC 

Let B,, be the maximum root of IH - B(E + €?)I = 0. Then if a = pr[e,, 2 
B,], 0, is obtained by entering s, vl, and v2 in Appendix D14. 

d TRACE STATISTICS 

The Lawley-Hotelling trace statistic is 

(2.51) 

and Pillai's trace statistic is 

V(')  = tr[H(E + H)-'] = 3. (2.52) 
j - 1  

Percentage points and Papproximations are given in Appendix D (D15 and 
D16). 

e EQUIVALENCE OF STATISTICS WHEN m = 1 
When mH = 1, it transpires that all the above statistics are functions of each 
other. Sincerank(H(E + m-'] = = 1 (byA2.2), ( H  - 8(E + H)I = 0 
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has only one nonzero root, which we can call Thus 

u(I) = emm/(i - em,), (2.53) 

and, from (2.48), 

u = 1 - (2.55) 

Also, since rank [HI = 1 and M has a Wishart distribution, H can bc expressed 
in the form H == xx', where x - NJO, 2) and x is independent of E. 'Then 

T: = rn,U'') 

== m,tr[x'E -'XI (by A l . l )  

= mEx'E-'x 

= T' - T;,,,. 

Combining (2.53) with (2.47) leads to 

(2.56) 

This is another way of writing (2.49). 'Thus 52 reduces to Hotelling's T 2  when 
m H  = 1. The above result can also be established using the following algebraic 
technique: 

= (1 + tr[E-'xx'])-' (by A2.4) 

= (1 f x'E-'x)-' 

- 1  

= ( I  +;;) 
(2.57) 

(2 .58)  

and x'E * x  = (1 - U ) / U  = (I(*). 



2.5 Multivariate Beta Distributions 45 

For future reference we note from (2.49) and (2.21) that U and hence Y(l) 
have a beta distribution, the latter with v1 + 1 = fd and v2 + 1 = $ ( m E  - d 
+ 1) degrees of freedom respectively. Finally, we also have 

V(1) = Um/( (yo) + 1) 

2.5.6 Factorizations of U 

a PRODUCT OF BETA VARIABLES 

Anderson 119581 showed that 

(2.59) 

where the 6, are independently distributed as beta variables with f ( m ,  - k + 
1) and f m H  degrees of freedom, respectively. The proof that we give follows 
Rao [1973]. 

Let Ek be the leading k X k submatrix of E (with El = ell and Ed = E), 
and let 

by A5.9, this matrix is nonsingular as E > 0. Then, from A3.2, 

say, and 

= e&2 . * t d d .  (2.61) 

We can use the same decomposition for (E,[ = ( E  + HI and obtain 
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Since E and H have independent Wishart distributions, we can find 
ul, u2, .  . . ,utl that are i.i.d. NJO, 2) such that, with m = m E  and n = m E  + HI,,, 

E = C U,U{ and H = C up:. (2.64) 

From Lenuna 2.5, in Section 2.4.1, the conditional distribution of u , k  (the kth 
element of ul), given u,(,, 1 )  = ( t i l1 ,  u , ~ ,  . . . . u , , k  

m n 

1-1 i = m i  1 

is 

N l (  p11(,] $- &1(,2 + * * ' -t p k -  1 l l 1 , k -  11  (2.65) 

where 62 is suitably defined. Setting 

' 1 . k - 1  ' l k  

' 2 . k - 1  ' 2 k  

' n , k - I  ' n k  

(2.66) 

(2.67 j 
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and Ckk is statistically independent of K ,  (and therefore of K ,  as the ui are 
independent). Using a similar argument, we also have 

pH,, = TllY - Kf1112, 

which is independent of K, and 

From B3.6, the conditional distribution of b k ,  given the uj (k-1)  ( i  = 1,2,. . . ,n), 
is beta with f ( m E  - k + 1) and f m ,  degrees of freedom. As this distribution 
does not depend on the ui (k- l ) ,  it is also the unconditional distribution and bk 
is independent of the uj (k-1) .  Hence bk is independent of b,, b2,. . . ,bk-l, these 
being functions of the u;(k-1).  The joint density function of the bk is then 

f(b1, b - . , b d )  =f1(bJf,(b2lb,) - - *  f d ( b d l b l 9  b29.. . ,bd-l)  

= f i(bl)f ,(b,)  * * f d ( b d ) ,  

and the bk are mutually independent beta random variables. 
We now show that the bk can be computed using the Cholesky decomposi- 

tion method of Section 10.1.la. Let E = T’T and E ,  = VY be the (unique) 
Cholesky decompositions of E and E,. If Tk is the k X k leading submatrix of 
T,  then, from the uniqueness of T [see (lOS)], Ek = TLTk and (see A5.11) 

lEkl = lTk12  = 1:1 . * .  f k k ,  2 

where t k k  is the kth diagonal element of T. Hence 

and 

b k = - .  ‘kZk 

d k  

From the properties of the beta distribution [see (2.21)J 

(2 -69) 

(2.70) 

(2.71) 

(2.72) 
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Also, writing Ah = b,h, . * . b,, we note that 

When mII  -- 1 we see, from (2.58), that 

where T i  has a Hotelling’s 7’2 distribution. Hence 

and, froin (2.72), 

(2.73) 

(2.74) 

(2.75) 

Later in this book we shall consider hypothesis testing so that M becomes a 
“hypothesis” matrix, and E an “error” matnx. Under the null hypothesis ii-g 

ha5 a Wishart distribution; otherwise If has a noncentral distribution. ‘I’he 
statistic ki (or b,)  can be thcii used to test the null hypothesis based on k 
variables, given that the null hypothesis based on k - 1 variables IS true: Thus 
F, provides a test for “additional information” (see Section 9.5.3). For further 
details of the above decomposition of I /  sce Hawkins [1976]. 

b PRODUCT OF TWO U-STAIISIICS 

If 

and E ,  is partitioned in a similar fashion, then. by A3.2, 

say. Writing 

( d  d ,  -t d2)  

= (KIY), (2.77) 
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say, we can apply B3.7 and show that, conditional on K, 42) - u d , ,  r n H ,  rn,-dl .  

Since the latter distribution does not depend on K, it is also the unconditional 
distribution, and 6(2) is independent of K. Hence b(2) is independent of 
E,,, = K K  and E,, = KiK,, and therefore of b(l) = ~ E l l ~ / ~ E m l ~ :  HereK, is 
the first m rows of K. Since El, and H,, have independent d,-dimensional 
Wishart distributions (Exercise 2.14), it follows that b(,) - Ud, ,  r n H ,  rnE .  Hence, 
from (2.76), we can write symbolically 

ud,mH.rnE d i ,  mH. rnE U d i .  m ~ ,  mE-dl (d  = dl + d 2 ) .  (2.78) 

When m, = 1, we can argue as in (2.74) and obtain 

From (2.42) with d and replaced by d, and mE - d,, it follows that 

m , - d + l  Td2-T; 

d2 d2 mE f T i  
(2.79) 

Fd2, rnE-d+ l -  (2.80) 

Also, b(2). is independent of T i ,  the latter being a function of 
The distribution of (2.79) is considered again in Section 2.6 usmg a different 

approach and different notation. There E = W and H = xx', where &[XI = p 
# 0, that is, H now has a noncentral Wishart distribution. Suppose 

where x(l) and p(l) are dl X 1 vectors and Z,, is a d, X dI matrix. Then, from 
Theorem 2.l(viii) of Section 2.2, 

&[ (2) x Ix 1 P 21 11P 21 11 

= B, + 2,JfilX(l), 

(1) = (9-2 2 - 1  w+z  z-lx(1) 

say. For each of the vectors u,,. . . ,urn, the same conditioning leads to Po = 0 
so that x ( = urn+ ,) can be treated on the same footing, provided that 

$2) - 2 21 2-1 11 Ir (1) = 0. (2.81) 

Under this condition, the crucial step (2.65) holds for x as well; thus (2.80) 
follows once again, provided that (2.81) holds. 
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A “direct” proof of (2.80), when (2.8L) is true, is given in Section 2.6. 
Although, in the light of the above proof outline, it may be omitted at a first 
reading, it  does provide a useful pedagogical exercise in handling multivariate 
distributions. 

2 . 6  RAO’S DISTRIBUTION 

Before stating the main result of this section, we will prove the following 
lemma. 

L E M M  2.10 Let 

(2.82) 

where W,, is d,  X d,  ( d ,  < d ) .  If I: is partitioned in the same way as W, 
I:,, , = Z,, -- Z,,Z,’Z12, and d ,  = d - d, ,  then 

w22.1 = w2, - w,,w,’w,, - K,(m - d , ,  2,,.,), 

and W,, is statistically independent of (Wll, Vil,). 

Proof Arguing as in Theorem 2.2, we can assume W = Cy=lx,x;, where the x, 
are i.i.d Nd(O, 2). Given the partition x: = (u;, y’), where u, is d ,  x 1, we have, 
corresponding to (2.82), 

say, where U’ == (u,,. . . ,u,), and so on. Then 

w,, 1 = V‘V - v’u(u’u)-’u’v 

= V’(1, - P)V, 

say, where I,n - P = I,, -- U(IJ’U)--%J’ is a symmetric idempotent (projection) 
matrix of rank m - d,, with probability 1 (see Appendix Bl). Let 

v, 1 = v, -- Z&j’u, 

and 
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Then, since PU = U, 

(1, - P)V,., = (1, - P)V (2.84) 

and 

= v;.,(r, - P)V,.,. (2.85) 

To handle the distribution theory we first of all condition on U. By Theorem 
2.1(viii), with 8 = 0, 

ViIUi - ~ , ~ ( Z , 1 Z i ' u i ,  8 2 2 . 1 ) ,  (2.86) 

and the rows vi(, of V,., are i.i.d. Nd2(0, X,,.,). Since P is now constant in 
(2.85), it follows from Theorem 2.4, Corollary 1 in Section 2.3.2 that W,,., is 
conditionally Wdl(m - d, ,  Z,,.,). Since this distribution does not depend on 
the ui ,  W,,., is unconditionally Wd,(rn - d,,  Z,,.,) and is independent of U. 

From P(1, - P) = 0 and Exercise 2.18, 

PV,,, = PV - UZfi1Zl2 (2.87) 

is conditionally independent of (I,,, - P)V,.,, and therefore of W,, ., [by (2.85)]. 
We now have the following density function factorization: 

and W,,., is statistically independent of @'V,.,,U). Since W,, = U'U and 
[from (2.87)] 

w,, = U V  = U P V  = UPV,.,  + U'UZ,'Z,, 

are functions of U and PV,.,, W,,., is independent of Wl1,Wl2). 

COROLLARY If Z,, = 0, A = W,,W;'W,, - Wdl(dl, X2,) and A is inde- 
pendent of W,, . ,. 
Proof Since A is a function of W,, and W,, (= W&), it is independent of 
W,,., by the above lemma. When Z,, = 0, then ZZ2., = X 2 , ,  V,., = V, and 

w,,w,T'w,, = V'PV = v;.lPv2.1. 
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Conditional on IJ, the rows of V2 are i.i.d. N J 0 ,  X 1 2 )  [see (2.86)]. Since P is a 
projection matrix of rank d , ,  the conditional distribution of' Vi IPV, I given U 
is wdL(dl,  X22). Since this distribution does not depend on U, i t  is also the 
unconditional distribution. n 

Suppose that x - Nd(  p, C), W -- W,(m, Z), x is independent of W, and we 
partition both x = (x(')', xt2)')' and p = (p(')', p(')')' into d ,  X 1 and t12 X 1 
vectors, respectively. Later on we shall be interested in testing the hypothesis 
H ,  that the so-called population Mahalinohis distance squared for x is the 
same as that based on x('j, namely, A 5  = @d,, where A$ = p'L1 'p and A;, = 

p(l)'X;lp('). From Exercise 2.20, we see that 

A-; - 4, = Ir; 1 ~ 2 2 h  1, (2.88) 

where p2 = p(2) - Z212fi'p(1', and H ,  is true if and only if p 2  = 0 (since 
C,, > 0). Sample versions of the above distances are T i  = mx'W-lx and 
qt = mx(')'WG1x('), and by the same algebra that led to (2.88) we have 

q/ - T i  = mx; ,WG11x2 1, (2.89) 

where 

x 2  I -- x(2) - w, 21 w - l x ( l ) *  1 1  (2.9 

THEOREM 2.11 When H , : V ' ~ '  -- &lZ;,lp(l) = 0 is true, and rn 2 d, 

The above statistic is independent of Tz, ff, true or false. 

Proof Let 
conditional 
in Section 

(1)  P I, 2 2 . 1 )  

W be partitioned in the foriri (2.82) and (2.83), and consider the 
distribution o f  T&" -- TZ given x(') and U. From Theorem 2.l(viii) 
2.2 we have, conditionally, X ( ~ ) I X ( ~ )  - p") + z21Z;,1[x'1) - 
. Looking at (2.90), we note that 

w,,w, lx(1) = v'uw-'x(" 
11 

= V'a, say, 

= UIVl 1- * * * -t a,v,, 

Since x is independent of W, xm is independent of each v,. Also the v, arc 
mutually independent, su that x Z . '  of (2.90) is conditionally MVN, being a 
linear combination of m + 1 independent MVNs (see Exercise 2.6). Now, by 
(2.86), 

b[v'UW~~'~('~)(x(~), U] = ~21X~11~J'UWl11x(*)  = 2 21 Z- 11 'x(') 7 
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and 

-9[VjlU] = 2 2 2 . 1 .  

Hence, from (2.90) 

b [ X , , , I X ( ’ ) , U ]  = p(2) + ZzlZ;l(x(l) - p‘”) - z 21 C-’x(’) 11 

= 112.1 = 0 

and 

i 

= 222.1(1 + a’a), 

where 

a’a = (w{~x(’))’(w~’x(’)) 

= x‘WW-1W W-lx(’) 

= x ( l ) w - l x ( v  

= T i / m .  (2.92) 

Thus, conditionally, x2.1 - Nd2(o, 222 .# + a’a]) and y = x2.,/(1 + a’a)”’ - 
Nd,(o, 222.1). Since this distribution does not depend on a’a, it is also the 
unconditional distribution, and y is independent of TZ. By Lemma 2.10, W,,., 
is independent of ( T i ,  y), as the latter are functions of Wll, W12, and x. Hence 

11 11 11 

11 

f(W22.1, Y 9 Tdf ) = fl ( w 2 2 . 1  If23 (Y 9 T i  ) 

= fi (w22 .1 If2 (Yb-3 ( Ti ) (2.93) 

and W22.1, y, and TZ are mutually independent. Since W,,., - Wd,(m - 
d, ,  Z,,.,), by Lemma 2.10, it follows from Theorem 2.8 and (2.92) that 

has a Hotelling’s T 2  distribution with d, and m - d,  degrees of freedom. 
Hence, using (2.89) and (2.20) [the latter with m and d replaced by rn - d,  and 
d2 I, 

Td2 - Tz m - d + 1 m - d + l  
m + TZ d2 = y‘W,,!,y d2 Fd, ,m-d+l  
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and is independent o f  Tz [by (2.93)]. This iridependence still carries over if H, 
is false, that is, if the conditional mean of x2 3 

We note that the statistic in (2.91) is proportional to (1 - u ) / u ,  where 
u = (1 + T:/m)/( l  4- T i / m )  is a statistic due to Rao (see Rao 11948)). Also, 
if p(’) = 0, then H, becomes p(*) = 0. Other tests of Ho are considered by 
Subrahmaniam and Subrahmaniam [1976], and Kariya and Kanaawa (19781. 
A generalization of Theorem 2.11 is described in Section 9.5.3. 

namely, p, I ,  is not zero. 

2 . 7  MULTIVARIATE SKEWNESS A N D  KURTOSIS 

In addition to the mean p and dispersion matrix X for a d-dimensional random 
x, it is convenient, particularly for normality and robustness studies, to have 
multivariate measures of shewriess and kurtosis. Various measures are possible, 
but the following, due to Mardia 11970, 1974, 19751, are particularly useful, 
namely, 

= 81 - p ) # ~ - - ~ ( y  - p ) ~ 3 ~  (2.94) 

and 

P 2 , d  = R.1 ((x - IL)’z-l(x -- P),’], (2.95) 

where y is independent of x but has the same distribution. When x is N d ( p ,  Z), 
PI,, = 0 and & = d(d  -1- 2) (Exercise 2.26). 

The above measures are natural generalizations of the usual uilivariate 
measures: 

Tz P3 
a3 ’ 

and 

(2.96) 

- P4 _ -  
a4 ‘ 

(2.97) 
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In theoretical studies a more common measure of univariate kurtosis is 

If x l ,  x 2 , .  . . , x ,  are a random sample from the underlying distribution of x ,  
Y2 = 82 - 3. 

then natural sample estimates of skewness and kurtosis are 

and 

b2,d = - { (Xi  - Sz)'2-'(x, - sr)}', (2.99) 
n j=l 

where 2 = Q/n = Z(x, - XXx, - %)'/n. An algorithm for computing these 
measures is given by Mardia and Zemrock [1975a]. When the data are normal, 

d ( d  + 2 ) ( n  - 1) 
E [ b l . d l  = and E [ b 2 , d l  = + 1 

These estimates are considered further in Section 4.3.2. 

EXERCISES 2 

2.1 Suppose that the random variables x i  ( i  = 1,2,. . . ,n )  are independently 
distributed as Nl(pi, a'). Then C ~ , l x f / a 2  is said to have a noncentral 
chi-square distribution with n degrees of freedom and noncentrality 
parameter 8 = C1-lpf/a2. If y - Nd(O, Z), prove that y'Z-'y has a 
noncentral chi-square distribution with d degrees of freedom and non- 
centrality parameter 6'C-'B. 

2.2 Using moment-generating functions, show that Definitions l a  and l b  in 
Section 2.2 are equivalent. 

2.3 Given Definition lb,  prove Theorem 2.l(i)-(iv). 
2.4 Let y be a random vector with B[y] = 6 and 9 [ y ]  = 2. If C > 0, show 

that there do not exist nonzero constants a and b such that a'y = b. If I: 
is singular, show that there exists a, a # 0, such that a'(y - 0) = 0. 

2.5 Consider the regression model yi = Po + &xil + . . . + & l x i , p - l  + E~ 

( i  = 1,2 ,..., n), or y = Xp + e, where X is n X p  of rankp (< n) and 
E - N,(O, a'l,). Let e = (I, - P)y, where P = X(X'X)-'X, be the vector 
of residuals. Show the following: 
(a) 9[e] is singular. 
(b) e has a singular multivariate normal distribution. 
(c) lie = 0. 
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2.6 

2.7 

2.8 

Multivariate Dutributiom 

If y,, y,,. . . ,ym are independently distributed as R,(fl,, Z,), i -= 1,2,. . . , t i ,  

prove that 

using (a) Definition la  arid moment-generating functions and (b) Defini- 
tion lb. 
if y, ,  yr,. . . ,yn are a random sample from h r d ( 0 ,  Z), show that y = 

Let y , ,  ,y2 ,..., y,, be i.i.d. N,(B, a,) and define Q = Z ~ = l ( ~ ~ l  - . i j ) , .  

(a) Prove that cov[ p, y ,  - J ]  = 0 and hence deduce that V 1s statistically 
independent of Q. 

(b) Find a syinmctric matrix A such that Q = y'Ay, where y = [ (y,) ] .  
Using A6.5, show that Q/a2 - xi- 

(Y;, Y;, . * .  , y , y  - N,,,,(O, I, @ 2) [see W O N .  

2.9 Using Definition 2a for the Wishart distribution, show that the moment- 
generating function of a Wishart matrix W =: [ (wJk) ]  - Wd(m, Z) ib 

given by 

= E[etr(LJW)] 

= 11, - 21121 -"'I2, 

where U' = U. u,, = tJJ, and uJk I= uk, = $t ,k  ( j  < k ) .  Since this mo- 
ment-generating function exists in a neighborhood of T = 0, i t  iiniquely 
determines the joint density function. [Hint: Use A5.8.1 

2.10 Prove that b[W] = mZ, where W - Wd(ryI, 2).  
2.11 Using both definitions for the Wishart distribution, show that Wl(rn, a') 

2.12 Use Exercise 2.9 to prove the following for the nonsingular Wishart 
is a 'x i .  

matrix W: 
(a) Pwt- elzPxI,, for all & [Hint: PWC= tr[ttlw].l 
(b) Let 

where W,, arid Z,, are r X r matrices ( r  < (I). if Z,, = 0, then W,, 
and W,, have independent Wishart distributions. 

(c) The distribution of tr W is the same as the distribution of a linear 
combination of independent chi-square variables. 
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(d) If W, and W, are independent, and W, - Wd(mi, X), then 

2.13 Using Definition 2b, prove Exercise 2,12(d). 
2.14 Using Definition 2b, prove that, in general (i.e., 2,, # 0), W,, and W,, 

2.15 If y - Nd(O, 2) and A is any given d X d symmetric matrix, show that the 
have marginal Wishart distributions. 

moment-generating function of y'Ay is 

M ( t )  = ( I d  - ~ z A Z ( - " ~ .  

[Hint: Use A5.8.1 

ing function of 
2.16 Given xl, x z , .  . . ,x, i.i.d. N d ( 0 ,  Z), with rn 2 d, find the moment-generat- 

rn 

i-1 

and hence show that Definition 2b for the nonsingular Wishart distri- 
bution implies Definition 2a [Hint: Apply Exercise 2.15 to tr[WU] = 
C,x;Ux, and use Exercise 2.9.1 

2.17 Using the notation of Theorem 2.1(viii), prove that y(,) - Z,,X;ly(l) and 
y ('1 are statistically independent. 

2.18 Suppose that the rows of X are i.i.d. Nd(0, 2) and let Y = AXB and 
2 = CXD, where A, B, C, and D are conformable matrices of constants. 
Show that the elements of Y are independent of the elements of Z if and 
only if (a) BED = 0 and/or (b) A C  = 0 [Hint: Consider cov[y,,, zrs] 

2.19 Let x and y be continuous random variables such that the probability 
density function f ( x l y )  of x given y does not depend on y;  Show that x 
and y are statistically independent and f is the unconditional density 
function of x. 

= 0.1 

2.20 If I: is positive definite, show that 

where p,., = p2 - Z,,Z~'p, and Z,,., = ZZ2 - 2,,2;'ZI2. Prove that 
Z,, is positive definite. [Hint: Use A3.1.1 

2.21 Let W, - W,(m,, 2) ( i  = 1,2), where W, and W, are independent. Show, 
without finding the distribution, that the distribution of I Wll/lW, + W,I 
does not depend on 2. 
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2.22 Cjiven W - Wd(m, Z), where Z > 0, show that \Wi/[Zl  is distributed 
as the product of d independent chi-square variables with respective 
degrees of frccdotri H I ,  i n  - 1, .  . . ,m - d + 1. [IIint: Use the factoriza- 
tion (2.61).] 

2.23 Let W - wd(m, X), where X > 0 and m 2 d -t 2. By giving appropriate 
values to the vector {in Lemma 2.7 (Section 2.4.1), prove that 

b[W - '] = 2- ' / ( m  - d - 1) .  

If y - N d ( 0 ,  2) and y is independent of W, find E[y'W-'y]. [Hint: If 
x - x i ,  then FAX '1 I= (11 - 2)-'.] 

2.24 If x, and x 2  are independently distributed as N,(O, Z), for what values of 
a and b does 

ax,x; + bx,x; + bx,x; + ax,x; 

have a Wishart distribution? 
2.25 Let X = (xlrx2,.. . . x n } .  where the x, are i.i.d Nd(O,Z). If X'A,X - 

w d ( m , ,  z),j = 1,2 , .  . . ,r, and A,A, = 0 (allj, k; j f k),  show that the 
XA, X are mutually independent. 

2.26 Show that when x - Nd(u, 2) in (2.94) and (2.95), we have Pl,d = 0 and 
P 2 . d  = d ( d  + 2). 



CHAPTER 3 

Inference for the Multivariate Normal 

3.1 INTRODUCTION 

It has been said that the multivariate normal (MVN) distribution is a myth and 
. that it has dominated research in multivariate analysis for far too long. This 
criticism is certainly justified, and with more sophisticated computers we are 
now able to do much more data snooping without the necessity of imposing 
distributional assumptions or too much structure on the data. However, the 
MVN still has an important role to play for at least the following reasons. 
First, we can transform to normality in many situations: Such transformations 
are discussed in Chapter 4. Second, some procedures based on the MVN 
assumptions are in fact robust to departures from normality. This usually 
happens because of the multivariate central limit theorem, which states that 
under fairly general conditions the asymptotic distribution of a sample vector 
mean Fi is MVN. Third, as procedures based on the MVN are frequently 
optimal in some sense, they provide a yardstick for comparing less than 
optimal, but more robust, procedures: A ''good" procedure is one that is 
robust to departures from the assumption of multivariate normality, yet is 
close to being optimal when the assumption is true. 

In this chapter we shall initially consider inferences about the mean and 
dispersion matrix for the MVN based on a sample of size n. Later we shall 
consider inferences based on samples from two MVN distributions. 

3.2 ESTIMATION 

3.2.1 Maximum Likelihood Estimation 

Suppose xl, x2,. . . ,x, are independently and identically distributed (iid.) as 
N d ( p ,  Z), and n - 1 2 d .  We show below that the observed sample mean % 
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and sample dispersion matrix 

1 1 "  
--Q - C (x, - %)(xi - a)' 
n n 

(3.1) 

are the maximum likelihood estimates of p and 2, respectively. 

function of  p and C, namely, 
The likelihood function is the joint distribution of the x, expressed as ;L 

(3.2) 

We note that X-' > 0 as Z > 0 (by A 5 3  and we have (Al.1) 

I = c - +nlog/ZI - f tr Z-'  C (xi - p)(xi .- p)' , (3.3) [ i:, 

where c = - $rtdlog2n. Also 

n n c (x, - fi)(x, .- p)' = c ( X i  - a + x - p)(x,  - z -t P -- p)' 
1=1 1=1 

n 

= c ( X i  - a)(a,  -- s)' + n ( x  - p)(K - p)' 
1 = l  

= Q + n(X - p ) ( ~  -- p)'. (3.4) 

Now tr[2 '(x .- p)(x -- p)'] =- (a  -- p)'Z -'(% - p)  2 0 (since 2 -  I > 0), so 
that log I ,  is maximized for any Z > 0 when p = (= fi, say). Thus 

l o g L ( f i , C ) >  l o g L ( p , X )  foral l2  > 0. 
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The next step is to maximize 

logL(fi, 2) = c - &nlog(Z( - 4 tr[2-'Q], 

subject to Z > 0. Since Q > 0 (with probability 1; see A5.13) the solution 
follows from A7.1, namely, 

2 = Q/n (= 2, say). (3 -5)  

Thus 

logL( f i , 2 )2  logL(p,z)  2 logL(p,Z),  

and fi and 2 are the maximum likelihood estimates of p and 2. For future 
reference we note that since 

tr[e-'Q] = tr[nJ,] = nd, 

we have from (3.3) 

(3.6) 

The theoretical properties of fi and 2 [or the unbiased estimate S = Q/ 
( n  - l)], namely, sufficiency, consistency, completeness, efficiency, and Baye- 
sian characteristics, are proved, for example, by Giri [1977: Chapter 51. The 
Bayesian estimation of I: is discussed by Chen [1979], while Wang [1980] 
considers the sequential estimation of p. An algorithm for handling missing 
observations is described by Beale and Little [1975] (see Section 10.3). 

The use of 7i as an estimator of p has been criticized on the grounds that it is 
inadmissable for particular loss functions when d 2 3 (James and Stein [1961], 
Stein [1956,1965]). Let t be an estimator of p with quadratic loss (t - p)'(t - p) 
(= /It - p1I2) and risk (expected loss) E[llt - Then, without assuming 
normality, it can be shown, under fairly general conditions, that there exists a t 
such that, for d 2 3, X is inadmissable (see Brown (1966; Section 31); that is, 

for all p. James and Stein [1961: p. 3691 demonstrated this briefly for the case 
of diagonal 2 and finite fourth moments about the mean. When the underlying 
distribution is the MVN, j z  is most efficient and, for eachj, thejth element of R 
is the minimum variance unbiased estimator of pj. However, using the loss 
function (t - p)'A(t - p) with A = Z-', James and Stein (1961: p. 3661 
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showed that for certain positive c, 

(3.8) 

has smaller risk than si for all p (see Muirhead [1982: Chapter 41 for a helpful 
discussion). 

Most of the admissibility studies assume normality with 2 known (Berger 
[1976a, 1978, 1980a, 19821, X = I,, (Efron and Morris [1975], Faith [1Y78], 
Shinozaki [1980]), I: diagonal (Berger arid Bock [ L976h]), and X = 021d (Efron 
and Morris \1976a], Rao and Shinozaki [1978], Berger [1980a], Fay and 
Herriott [1979]). Fay and Herriott state that “in our knowledge, the Censu:; 
Bureau’s use is the largest application of Jarnes-Stein procedures in a federal 
statistical program.” The cases of general 2 (James and Stein [1961: p. 3661, 
Alan1 [1975], Efron and Morris [1976a], HatT [1980]) and nonnormal distribu- 
tions (Berger and Bock [1976a], Berger [1980b], Brandwein and Strawderman 
[1980]) have received much les3 attention. The admissible estimation of 2-’ is 
discussed by Efron and Morris [1976b] and Haff [1979]. Evidently, under 
certain circumstances, there are real gains in using a Stein estimator of p that 
has the elrect of pulling the mean X towards the origin. However, as noted by 
Efron and Morns [1975], this new technique has not been as widely used as its 
proponents might have anticipated. There are several reasons for this. First, an 
estimator t that is bctter than x for one loss function might not be better for a 
different loss fujiction: Kao and Shinozaki [1978: p. 231 give an example of tbis 
due to Professor P. A. P. Moran. Second, if t = [(f,)] and X = [(X,)], then, 
from (3.7), 

which does not imply that E[(t, - P , ) ~ ]  i E[(F, - P , ) ~ ]  for each j = 

1,2,. . . ,d. In fact, some of the individiial mean square errors of the 1, will be 
greater than those of the 1, so that for some constant vectors a, a linear 
combination a’t will have a larger mean square error than a’E (Rao and 
Shinozaki [ 19781). Third, an estimator that is admissible under normality may 
not he admissible for other distributions. Fourth, further work needs to be 
done on the cases of a general unknown Z, an arbitrary A in the loss function 
(t -- p)’A(t - p) (see Oleser [I9791 and, in particular, Berger [1980a] for 
references) and nonquaclriltic loss functions (e.g., Berger [197Xj, Brandwein a i d  
Strawderinan 119801). Fifth. estimators that are better than 2 are only signifi- 
cantly better when p is in a fairly small region of Hd (Berger 11980al). Finally, 
there is a lack of suitable theory for confidence intervals of admissible 
estimators. 

For at least the above reasons it is perhaps not surpnsing that practictioners 
have generally ignored the question of inadmissibility and have been more 
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concerned by the lack of robustness demonstrated by X and S with regard to 
nonnonnality and outlying observations. In Section 4.4 we look at various 
robust alternatives to these estimators. 

3.2.2 Distribution Theory 

Having found maximum likelihood estimators of p and Z for the MVN 
distribution, we now look at their distributional properties. 

THEOREM 3.1 If x1,x2,. .  . ,x, are i.i.d. Nd(p, 2) and (n - 1) 2 d,  then we 
have the following: 

(i) f - Nd(p, 2 / n ) ,  Q = (n - 1)s - w d ( n  - 1, Z), and X and s are 
statistically independent. 

(ii) T 2  = n(X - p)’S-’(X - p) - T2n- l ,  where T i n v 1  is Hotelling’s T 2  
distribution with d and n - 1 degrees of freedom. 

Proof (i) Assume for the moment that p = 0 and let y, = d‘x,  ( i  = 1,2,. . . ,n). 
Then the y, are i.i.d. N,(O, uj), where u j  = PZd From the univariate theory 
(see Exercise 2.8),jj - N,(O, u j / n ) ,  C,(y, - J ) 2  - ts~x~- l ,  and7 is statistically 
independent of C,(y, - Now writing y’ = ( y l ,  y2 , .  . . ,y,), we haveJ = y’b 
(b = l,/n) and C,(y, - J ) *  = y’Ay. Hence, by Theorem 2.4(iii) of Section 
2.3.2 with X’ = (x1,x2,. . . ,xn), SZ = X’b and (n - 1)s = XAX are indepen- 
dently distributed as Nd and W,(n - 1, Z), respectively. When p # 0, we 
simply replace x, by x, - p: S is unchanged [see (1.13)j and Z is replaced by 
X - k. Thus X - Nd(py X / n )  (by the Corollary of Lemma 2.3), S is indepen- 
dent of 2 - p (and therefore of X), and (n - 1)s - W,(n - 1,Z). 

(ii) Setting m = n - 1, W/m = S, x = X, and A = n in (2.19) gives the 
required result. 

A simple mnemonic rule is as follows. Since SZ - Nd(p, Z / n ) ,  (X - 
p ) ’ ( Z / n ) - . ’ ( ~  - p) - x 2  [Theorem 2.1(vi) of Section 2.21. We now replace Z 
by its unbiased estimate S, and this leads to n(E - p)’S-l(SZ - p). 

3.3 TESTING FOR THE MEAN 

3.3.1 Hotelling’s T 2  Test 

Clearly the T 2  statistic in Theorem 3.1 can be used for testing H o : p  = po 
against H , : p  # p,. Thus To2 = n(Z - po)’S-’(% - po) has a T&l distribu- 
tion when Ho is true, or from (2.20), 
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when fiu 1s true. Since we would reject Ho if X is too “far” from pel. we use the 
upper tail of the Pdistribution. In particular, we reject Ho at the a level of 
significance if 4) exceeds F;:n.-d, where pr[F,,,,l_ (, 2 F&-,] = a. Methods for 
computing T t  based on the Cholesky decomposition U’U of Q (or S) are 
described in Section 10.1.3. For example, solving the triangular system U’z = 

(X - po) for z gives us 

z’z -- (R -- Jbo)’u-l(u’)--l(X -- Po) 

(3.10) 

EXAMPLE 3.1 In Table 3.1 we have bivarinte observations on the weights 
and heights of 39 Peruvian Indians. Suppose we wish to test Ho:p = 

(63.64,1615.38)’ = p,) (corresponding to 140 lb and 63 in., respectively). A plot 

TABLE 3.1 Weight and Height of 39 Peruviau Indians” 

Weight (kg) Height Qmm) Weight (kg) Height (mm) 

71 .0 
56.5 
56.0 
61.0 
65.0 
62.0 
S3.0 
53.0 
65.0 
57.0 
66.5 
59.1 
64.0 
69.5 
64.0 
56.5 
57.0 
55.0 
57.0 
58.0 

1629 
1569 
1561 
1619 
1566 
1639 
1494 
1568 
1540 
1530 
1622 
1486 
1578 
1645 
1648 
1521 
1547 
1505 
1473 
1538 

59.5 
61 .0 
57.0 
51.5 
74.0 
72..0 
62.5 
68.0 
63.4 
68.0 
69.0 
73.0 
64.0 
65.0 
71 .O 
60.2 
55.0 
70.0 
87.0’ 

1513 
1653 
1566 
1580 
1647 
1620 
1637 
1528 
1647 
1605 
1625 
1615 
1640 
1610 
1572 
1534 
1536 
1630 
1542* 

‘From Ryan et al. [lY‘76], with kind permission of the authors. 
”Suspected outlier. 
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of the data (Fig. 3.1) suggests that the last item is an outlier. Other plots (see 
Examples 4.3 and 4.6 in Section 4.3) also indicate that the normality assump- 
tion is tenable, though there is some suggestion of kurtosis. Ignoring the last 
item (i.e., n = 38), we write 

62.5316 - 1 .lo84 
= (1579.8900)’ jZ  - Ir0 = ( -35.4900)’ 

1331.62 7304.83 = (36.4914 200.179 ), Q = (  7304.83 104118 0 

Solving 

36.4914 0 - 1 .lo84 
(200.179 253.073)( ::) = ( -35.4900) 

gives 2’ = (- 0.0303749, - 0.116191). Hence 

T t  = n ( n  - 1)z’z = 20.2798 

and 

T ,  n - d - 20.2798 36 - 9.87. F, = -- - -_ - 
n - 1  d 31 2 

Since F:F = 8.77, F, > @p > and we reject H,, at the 0.1% level of 
0 

Since T t  reduces to the square of the usual univariate d-statistic, n(X - 
po)2/s2, when d = 1, it is not surprising that G2 has a number of properties 
analogous to those held by the univariate t-ratio. In the first place the t-ratio is 
independent of change of scale and origin, and T, is invariant under all 
nonsingular linear transformations z = Fx + c of the observations and the 
hypothesis, where F is an arbitrary d X d nonsingular matrix and c is an 
arbitrary d x 1 vector. For example, &“z] = +, = Fpo + c when H, is true, and 

significance. If the outlier is included, F, = 10.50. 

n(2 - +o)’~;l(z - +o) = n ( E  + c - ~p~ - c)’(FsF’)-~ 

x(Fx + c - 1FjrO - c) 

= n ( a  - p , , ) ’ ~ ’ ( ~ ’ ) - ’ ~ - I ~ - l ~ ( ~  - p,,) 

so that the statistic computed from the transformed data is the same as that 
computed from the original data. It was this invariance property that led 
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Hotelling [1931] to the choice of q2 as a generalization of the t-ratio. In fact, 
T: is the uniformly most powerful invariant test; it is also admissable and has 
certain local minimax properties (see Giri [1977: Chapter 71). Another property 
shared by T; and the t-ratio is given by the following theorem. 

THEOREM 3.2 The test statistic G2 is equivalent to the likelihood ratio test 
statistic for Ho : p = po versus Hl : p # p,. 

Proof The likelihood function L(p, 2) is given by (3.2) and the Ucelihood 
ratio statistic is 

supremum L ( p, , 2) 

supremum L ( p , 2) . 
e 

c. E 

G= 

From (3.6) we have 

supremumL(p, 2) = L(X, 2) 
P9 2 

Using the same method of Section 3.2.1 with A7.1 applied to log L(po,  Z), we 
find that L(po, 2) is maxhhed at 2 = 2, = c,?,l(xi - po)(xi - po)‘ /n .  
Hence 

SUPL(P0Y 2) = L(Po9 $ 0 )  
e 

Using the identity (3.4) with p = p,, we find that 
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Now rink(S- ‘(3 - po)(% -’ p,)’] = rank[@ - pO)@ - pO)’] = rank[(X - 
pO)] = 1 (A2.3) so that by A2.4 

- 1  n 
n -- 1 = (1 -t ---(% - p , y s - - y x  - Po)) 

-- 1 ( 1 f ---- n?!zl) ’ 

which leads to 
7; = (I7 - l)(t - V n  - 1). (3.11) 

By the likelihood ratio principle we reject H ,  if t i s  too small, that is, if T t  is 

The 7;; statistic has one further property that links it closely to the 

too large. 0 

univariate t-ratio. Since S > 0, we have, from A7.6, 

T: = n(X - po)’S-’(X - P O )  

= supr,”(t) ,  (3.12) 
C 

where to([) is the usual t-statistic for testing the hypothesis Hot:& = elp, (see 
Section 3.4.4). Hence the T: test is essentially a univariate t-test based on the 
“optimal” linear combination of the data Gx,, where 4, is proportional to 
S -  l(?i - po). We shall see later i n  Chapter 6 that L,, is in the direction that, in 
a certain sense, gves maximum discrimination between f and pLri.  

We note that Ho = n ctfo/ so that the union-intersection principle of 
Section 1.6.2 can be used to construct a test statistic. The acceptance region for 
H,, takes the form { X : t i ( d )  I k ) ,  where X = (x l ,x2 ,  ..., xn)’. Hence the 
acceptance region for H,, is 

= {X:T’,  5 k ) ,  (3.13) 
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and we are led, once again, to the To2 test. In this situation, the likelihood ratio 
and union-intersection methods lead to the same test statistic. This is not 
always the case. In Section 1.6.1 we considered the problem of simultaneous 
testing: Jensen [ 19721 gives approximate procedures for testing, simulta- 
neously, hypotheses about various subsets of p. 

3.3.2 Power of the Test 

We note from Section 2.4.2 that of (3.9) has a noncentral F-distribution with 
d and n - d degrees of freedom and noncentrality parameter S when H, is 
false. To find 6, let y = 6 ( X  - p,), W = (n - l)S, and 0 = d'[y]. Then 
T: = ( n  - 1)y'W-ly and, from Section 2.4.2,S = B'Z-% = n(p - p0)'Z-l(p 
- po). If we denote the noncentral F-distribution by Fd,n-d,B, the power of 
the test for a critical region of size a is 

(3.14) 

Here P is a function of v1 = d, v, = n - d, and 6. It is extensively tabulated 
by Tiku [1967, 19721 for a range of values of vl, v2, and the "standardized" 
noncentrality parameter 9 = [6/(vl + 

In designing an experiment we may wish to choose n to detect a given value 
of 6 with a given power P. Charts are available to help us solve this problem 
(e.g., Pearson and Hartley [1972: Table 301). We set the values of a, vl, and cp 
and read v2 off the appropriate chart. 

3.3.3 Robustness of the Test 

Departures from the normal distribution are generally measured by the coeffi- 
cients of skewness and kurtosis (see Section 2.7). For the univariate t-test it has 
been demonstrated, both theoretically and empirically, that the test is more 
sensitive to the skewness \Is, than to the kurtosis Is,, and we might expect a 
similar property to hold for T l .  Using Monte Carlo simulation, this has been 
demonstrated by several authors for the bivariate case d = 2 (Arnold [1964], 
Mardia [1970: p. 5291, Chase and Bulgren [1971]), and a short summary table 
reproduced from Mardia [1975: Table 2a] is given here as Table 3.2. Table 3.2 
suggests that T; is reasonably robust with regard to the nominal significance 
level when the underlying distribution is symmetrical (PI, = = 0). How- 
ever, for skew distributions like the negative exponential, the actual signifi- 
cance level can be many times the nominal level, for example, three times at 
5% and six times at 1% (Mardia [1970: Table 3)). These conclusions are 
supported by the simulation study of Everitt [1979a] for d > 2, which shows 
that any adverse effects tend to increase with d, and by the contamination 
study of Srivastava and Awan [1982]. 

Using permutation theory, Mardia [1970] suggested that, for nonnormal 
data, 4 of (3.9) is approximately distributed as Fad,a(n-d) when H, is true. 
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TABLE 3.2 Monte Carlo Studies of the One-Sample Hotclling's T 2  for the Bivariaitc 
Case ( M  = 100 x Maximum of la - 0.051, u is the Actual Size of the Nominally 
5% Test)" 

Inference for the Muitivurrale Normal 

Parent Population Source Sample Sizes i'L,Z M(%) 
--_________________________~-------- __--- 
Uniform: Arnold [I 964) 4,6,8 0 5.6 2 

independent 

Morgenstern 

independent 

independent 

Marshall and Olkin 

Uniform: Chase and nulgren I19711 5,10,20 0 5 60,5.63 3 

Double exponential: Anold [I Y64] 8 0 14 1 

Negative exponential: Mardia [ 19701 4,6,8 8 20 10 

Negativeexponential: Chase arid liulgren [I9711 5,10,20 (8, (20,4U) 9 

_______ ___ I_-- 

"From Mardia [1975: Table 2al. 
93 s 81.2 < 10. 

Here 

and a = 1 when the data are normal [ P r . d  = d(d + 2)]. In practice & d  is 
estimated by h2, of (2.99). However, Everitt [1979a] showed that this method 
is inappropriate for skewed distributions like the exporiential and lognormal. It  
is not surprising, as the previous paragraph indicates, that any correction 
factor like a would be expected to depend on the skewness &. It transpires 
that the permutation moments used for deriving u (see Arnold (19641) do in 
fact assunie symmetry indirectly, so that Mardia's test is recoinmended for 
symmetric distributions only. Tests for inultivariate skewness and kurtosis are 
discussed in Section 4.3. A promising robust test of H ,  based on Winsorized 
ranks is given by Utts and Hettmansperger [lY80]. Another robust test is given 
by 'Tiku and Sin& [1982]. 

3.3.4 Step - Down Test Procedure 

Another method for testing Ho : p = 0, called the step-down procedure, has 
been proposed (Roy [2958]). Defining p i - l  = (p, ,  p 2 , .  . . , / L ~ - ~ )  ( k  = 

1,2,. . . , d ;  p, =- 0), we can use the first k elements of each x,  and test a 
hypothesis of the form &:pk - yl-lpk -= 0 using (see Theorem 2.11 in 
Section 2.6 with p(') = pk arid p(') = p k - J  
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Here 7& is the Hotelling’s T 2  statistic for testing yk  = 0: When Hok is true, 
Fk - Fl, ,,-k. We note that if f~ i:: HOk is true, then p,-l = 0 and H,, is true if 
and only if pr = o ( r  = 1,2,. . . ,d). In particular, H, = n i - l H O k  so that H, 
can be tested using the sequence of test statistics F,, F,, . . . , Fd, in that order, 
The hypothesis H, is not rejected if all d statistics are not significant, while H, 
is rejected if one of the tests is significant. From Theorem 2.11 it follows that 
Fk is independent of T$-,,. Since the elements that make up qi-r, ( r  > 1) are 
a subset of those making up Z&l,, the proof of Theorem 2.11 can be used to 
show that F k  is statistically independent of { F,, F,,. . . , F k - l } .  A simple 
extension of this argument [see (8.79)] shows that when H, is true, the Fk are 
mutually independent and are distributed as Fl,n-k (k = 1,2,. . .,d). The size 
a of the overall procedure is then related to the levels ak of the component 
tests by 

d 

k-1  
1 - a = n (1 - ai). (3.16) 

The above procedure is an alternative to Hotelling’s TZ for Ho and it may 
be used when there is an a priori ordering among the p k .  Subbaiah and 
Mudhokar [1978] have compared the powers of the two procedures using 
simulation and concluded that if the ak are set equal, there is not a great 
difference between the powers. As might be expected, if a, is made large, the 
power of the step-down procedure is substantially greater for detecting non- 
zero p1 than the corresponding power of T,,’. They concluded that “when the 
variables in a multiresponse experiment are of unequal practical significance, 
and are ordered accordingly, a step-down analysis seems to yield superior 
inferences on the earlier variables at the expense of the quality of the 
inferences on the later variables, as compared with the corresponding in- 
ferences obtained using conventional methods such as Hotelling’s T2.” The 
above procedure is generalized in Section 8.8. 

3.4 LINEAR CONSTRAINTS ON THE MEAN 

3.4.1 

Suppose we wish to test the effect of a new drug on diastolic blood pressure by 
measuring the blood pressure after administering the drug and a placebo 
(dummy drug) on two separate occasions to each of n patients. For the ith 
patient (i = 1,2,. . . ,n) we have a bivariate random vector x i  = ( x i l ,  xi,)’ with 
mean p = (pl, p2)’, and to test the effect of the drug we consider H,:pl = p 2 .  
Now if we assume the x i  are i.i.d. N2(p, Z), the yi = xil - xi2 are i.i.d. 
iVl(py, u,”), where py = p ,  - pz and uy’ = uI1 - 2aI2 + u?. To test H,: py = 0 
we can use the so-called paired comparison t-staustic (Exercise 3.1) 

Generalitation of the Paired Comparison Test 
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n 1 / 2 ~ / ( C , (  y, - j j ) 2 / ( n  -- I)}’,’?. If we are interested in a more general hy- 
pothesis of the form ulpl  t a2p2 = c, that is, a‘p = c, we simply transform to 
y, = a‘x, and test p y  = c. 

Suppose now that we wish to compare d - 1 different drugs (or d - I 
different strengths of the same drug), so that, with the placebo, we have d 
treatments applied at different times (say, in random order) to each patient. I f  
xl, x2,. . . ,x, are the d x 1 observation vectors with mean p, the hypothesis of 
interest, namely, that of no treatment effects, is H, :yl = p 2  -- * . . = p d  o r  
p1 - p d  = p2 - p d  = . . . = p d - ,  - p d .  To test Ho we transform to y, = 

(Y,~, . . . ,y,,  d -  ,)’, wherey,, = x,, - x ,d  ( j  = 1,&. . . ,d  - l),  and test p,, = &“J,] 

= 0. If there are d drugs and no placebo, we inight wish to express fZo in the 
form p1 -- p2 = p2 - p3 = . . = pd-l - pd and transform to 

Once again we test B[y,]  = 0. 
With the previous motivating example we now consider testing a general 

linear hypothesis of the form I [ , :  Ap -- b, where A is a known q X d matrix of 
rank 4 and h is a known q X 1 vector. If we set yL = Ax,, then, by Theorem 
2.1(i), the y, are i.i.d. NJp,,, Z,), where pLy = Ap and Z,, = AZA. ’We can now 
test H,, by testing p, = h, using 

= n(A% - b)’(ASA’)-’(AZ - b). (3.17) 

When Ho is true, it follows froin Section 3.3.1 that T,, - T:,-l .  We now show 
that Ho can also be expressed in the form Ay = 0. Let p1 be any solution of 
Ap = b and let y = p -- p1 and z, = x, - pi. Then the z, are i.1.d. NJy, Z )  
and H, takes the form Ay = Ap - Ap, = b .- b = 0. We proceed 11s in (3.17), 
using z, instead of x ,  so that q2 = n(AZ)’(ASA’)- ‘A%. 

Having described the general theory of hypothesis testing we now apply the 
method to several examples. 

3.4.2 Some Examples 

a REPEAI‘EU-MEASUREMENT DESIGNS 

The blood pressure example of the previous section is a special case of the 
so-called repeated measurernenr design in which d similar measurements are 



C1p= 

Morrison [1972] also discusses the problem of testing Ho when (1) Z takes the 

0 1 -1 * * *  0 0  
. . p = o ,  (3.18) 

form 

z = a2 

0 0 ..- 1 -1 

1 p ... P P  
p 1 . * ’  P P  

P P . . *  P 1  

. .  . .  . .  . .  . .  . .  
(3.21) 
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(see Exercise 3.3 and Arnold [ 19791); (2) Z is reducible, that is, there exists a 
(d - 1) x d matrix A of rank d - 1 such that A l ,  = 0 and AZA' is diagonal; 
(3) Z: has compound synunetry, a block generalization of (3.211; and (4) 
I: = a2E0, 2, known. The so-called intraclass correlation model leading 10 
(3.21) is sometimes considered in the context of mixed model analysis of 
variance (e.g., Winer [1962], SchefR [1959: p. 2641). Morrison [1972] also 
briefly considers the problem of incomplete data. 

The literature on repeated-measurement designs is reviewed by Hedayat and 
Afsarincjad [1975]. In conclusion, we note that several authors have considered 
the problem of testing hypotheses about p when both null and alternative 
hypotheses are specified by linear inequalities of the form Wp 2 0 (see Sasa- 
buchi [1980]). 

Infercnce for the Mullivariate Normal 

EXAMPLE 3.2 Rao [1948] introduced the now famous example of testing 
whether the thickness of cork borings on trees was the same in the north, east, 
south and west directions; thus d = 4 and H, is p1 = p, = pLj = p4. Observa- 
tions x, on 28 trees are given in Table 3.3, for which 

9450.11 7007.61 * i 50.5357 N 7840.96 6041.32 7787.82 6109.32 
= 46.1786 E and Q, = - 5938.11 6184.61 4627.11 

- - 6102.11 
- - [ 45.1786 49.67861 W S 1 - 

TABLX 3.3 Weight of Cork Borings (in Centigrams) in Four Directions 
for 28 Trees" ___--__ _______ 
N E S W N E S W 

72 66 76 77 91 79 100 75 
60 53 66 63 56 68 47 50 
56 57 64 58 79 65 70 41 
41 29 36 38 81 80 68 58 
32 32 35 36 78 55 67 60 
30 35 34 26 46 38 37 38 
39 39 31 27 39 35 34 37 
42 43 31 25 32 30 30 32 
37 40 31 25 60 50 67 54 
33 29 27 36 35 37 48 39 
32 30 34 28 39 36 39 31 
63 45 74 63 so 34 37 40 
SJ 46 60 52 43 37 39 50 
47 51 52 43 48 54 57 43 

__ - _ _ I ~  

_ _ _ ~ _ _ - - - - ~  ___ ~ _ _ _  
From Rao [ 1948: Table 1 j, by permission of the Rionietrika Trustees. 
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Using the transformation y, = Clxi, where C, is given by (3.18), we obtain 

and 

1696.43 - 1500.0 121 .O 
Q, = C,Q,C; = 3019.0 - 885.0 

- 1537.0 

From (3.17), the test statistic for H,, is 

T; = n ( n  - 1)F’Q;’Y = 20.742, 

and the corresponding F-value, with d now equal to 3, is [see (3.9)] 

n - d 20.742 25 6.40. F, = - - = ~ - i= 

n - 1  d 27 3 

As F, > Ft;: = 4.68, we reject H, at the 1% level of significance so that the 
bark deposit cannot be considered uniform in the four directions. 

The univariate plots for each of the four variables suggest that the marginal 
distributions are skew. However, in discussing this problem, Mardia [1975] 
found that the sample multivariate measures of skewness and kurtosis, namely, 

bi.4 = 4.476 and b2.4 = 22.957, 

were not significant when used as tests for multivariate normality (Section 
4.3.2). More appropriately, the coefficients for the transformed data yi were 

b1.3 = 1.177 and b2,3 = 13.558, 

indicating that the yi were more like multivariate normal data. Also the T t  test 
is robust to mild skewness and moderate kurtosis. 

As bl,3 is small, we can consider the correction (3.15) to the degrees of 
freedom of Fo, namely, 

b2 d - d ( d  + 2) 
nd a = l +  ’ 

13.558 - 15 
28 X 3 

= 1 +  

= 0.98. 
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As a = 1. the correction is unnecessary. 

b TESTING SPECIFIED CON THASI'S 

In testing whether the p,  are equal, we saw above that we have a wide choice 
for the niatrix A, though C, wilt do in many cases. However, we may he 
interested in choosing A so that attention is focused on ceriarn prescribed 
contrasts c'p ( ~ ' 1 ~  = 0). 

EXAMPLE 3.3 In Example 3.2, Rao was particularly interested in cork 
differences relating to the contrast north-south versus east-west (pl -k p3 - 
p2 - p4), to which he added the contrasts south versus west ( p 3  - p4)  and 
north versus south ( p1 - p3). This choice of contrasts leads to the matrix 

1 - 1  1 - 1  

1 0 - 1  0 
A = [ O  0 1 -11. 

Since testing Ho:Ap = 0 is equivalent to testing p1 = p z  = p3 = p4, the value 
of the test statistic F, is the same as that in Example 3.2, namely, 6.402. By the 
same token, the measures of skewness and kurtosis, bl,3 and h2,3,  are also thc 
same, as A is related to C, by a noiisingular transformation. 

C TEST FOR SYMMErRY 

The following is an interesting problem that arises naturally in biology and 
anthropology. Suppose that x, is now a 2d X 1 vector in which the first d 
elements represent measurements or characteristics on the left side of the irh 
member of the sample, and the second d elements represent the sainc measure- 
ments on the right side. Alternatively, the first d elements could refer to 
measurements on one of a twin pair and the second d elements refer to the 
other member. Then a naturai hypothesis to test is the symmetry hypothesis 
H o : p ,  = c ( , + ~  ( i  = 1,2, .  , . , d )  that represents the equality of the left. and right 
sides of an individual or the equality of measurements from twins. In this case 
Ifo can be expressed in the form Ap = 0, where A = (Id,  - I,,), so that the 
above gcneral theory applies, provided that 2d 5 ti  - 1. If j z  and S are 
partitioned in a similar fashion to A, namely, 

then, from (3.17), 

7;: = ~(AX) ' (ASA' I  'AK ( 3 . 2 2 )  

- 
= n ( x ,  - x2)'(s , ,  -- s,, - s,, + SZ2) l(X, - x z ) .  

When Ha i s  true, Ti2 - I;,?,,. 



3.4 Lnear Constraints on the Mean 77 

d TESTING FOR A POLYNOMIAL GROWTH TREND 

Suppose we have a group of n animals all subject to the same conditions, and 
the size (e.g., length) of each animal is observed at d points in time t,, t2,. . . , t,. 
Clearly the d lengths, xi, say, for the ith animal will not be independent, but 
will be correlated with an unknown covariance structure 2. Assuming that 
each x, is N,(p, Z), we may wish to test the hypothesis Ho that the “growth 
curve” is a polynomial of degree k - 1, that is (Rao [1959, 1973]), 

This hypothesis is a special case of the more general hypothesis H,: p = KB, 
where K is a d X k matrix of rank k (k < d ) ,  or, equivalently Ap = 0, for 
some A. The simplest choice for the rows of A are any d - k linearly 
independent rows of I, - P, where P = K(K’K)-‘K’ represents the orthogonal 
projection of Rd onto 9[K]  (cee B2.3). Rao [1959] calls A the deficiency matrix 
of K’. The test for H, is aga I given by (3.22) and q2 - TdZ_k,n-l when Ho is 
true. An alternative method for calculating T: that does not require A is given 
in Section 3.4.3. 

e INDEPENDENT ESTIMATE OF Z 

The preceding examples are all special cases of the following problem. Suppose 
we are given a single random vector x that is N d ( P ,  2) together with an 
independent matrix W obtained, say, from previous data, where W - 
W,(m, 2). If we set y = Ax, then, from Theorem 2.8, we can test Ho:Ap = 0 
for a q X d matrix A of rank q using T: = my’(AWA‘)-’y. When H, is true, 
T,* - T&,. 

3.4.3 Minimization Technique for the Test Statistic 

In Section 3.4.2 we saw how to test the hypothesis H ,  : p = Kfl by transforming 
it to the form Ho:Ap = 0. Rao [1959, 19731 has given a general method for 
finding qz that incorporates either representation of H,. This method is 
described by the following theorem, which generalizes Rao [1959: pp. 50-511. 

THEOREM3.3 L e t x , , ~ ,  ,..., xnbei . i .d .Nd(p,2) ,dsn-  l,andletH,be 
the linear hypothesis that p E V ,  where V is a p-dimensional vector subspace 
of Rd, d-dimensional Euclidean space. Then 

when Ho is true. 
Proof Let po = d - p and let P be the symmetric idempotent d X d matrix 
representing the orthogonal projection of Rd onta, V (see B1.2). We can argue 
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as in Section 3.4.2d and let A be the po X J matrix of rank po whose rows are 
any p o  linearly independent rows of I, - P. Then V = "A], the iiull space of 
A, and H,:Ap = 0. Since S, and therefore S-', is positive definite (with 
probability I), we can write S- ' = R'R (A5.3), where R is a d X d nonsingular 
matrix. If z = RX and 8 = Rp, we wish to mininize 

Inference for the Multzwrzute Normal 

( i ~  -- p ) f s - y ~  - p) = 1jz - 8112 (3.24) 

subject to 0 = Ap = AH-- 'Rp = AR-% -- A,6, say, that is, subject to 6 E 

"A,] = V,,  say. This is a standard least squares problem and (3.24) is 
minimized, subject to 9 E V,,  when 8 = b == Plz and (B2.2) Pl =: I, -- 
A;(A,A;) -'A, = I, - Pz, say. Hence z -- 8 = P2z and 

minimum(R - ~)'s-'(x - p) = llz - ell2 
Ap= 0 

= (AE))"ASA'-'AX 

= T:/n, (3.25) 

where T: is the usual Hotelling's T 2  statistic (3.22) for testing A p  = 0. Thus 
when H(, is true, T; - ct,n ,, 
COROLLARY IfH,,:Ap = b, then 

minimum(% -- p)'S--'(x -- p) = -- T: . 
Ap= b n (3.26) 

Proof We use the method following (3.17) to "eliminate" b. If p1 is a solution 
of A p  = b, ui = x, - pI, and y = p - p1 =: b[u i ] ,  then 

min (R - ~ ) ' s - ' ( E  -- p) -- min [ii - ( p  - p,)]'s;"[i~ -(p - p,)] 
Ap=b Ap-b 

3 lnin (ii - yyS"-yii - Y), 
Ay-0  

which is of the same form as (3.25). 
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Since To2 is the minimum of (Z - p)'S-'(X - p) under H,, it does not 
matter how we actually arrive at the minimum. For example, the test statistic 
for testing Ho:pl = p, = - - * = p d  can be derived as in (3.17) or else as in 
Exercise 3.4. The growth model hypothesis H o : p  = K$ of (3.23) can also be 
tackled differently, From Theorem 3.3 we can find T,,' by minimizing n(x - 
p)'S-'(Z - p) subject to p = KB. Now minimizing 

R = (Z - K$)'S-'(Z - K$) 

with regard to $ is a standard problem of generalized least squares (Seber 
[1977: Section 3.6)). The answer is obtained by differentiating with respect to j3 
using A8.1, namely, 

-2K'S-'% + 2K'S-'K$ = 0, (3.27) 

which has solution $* = (K'S-'K)-'K'S-'Z. Thus 

and we compare 6 = T t ( n  - d + p ) / ( n  - l ) ( d  - p) with Fi--p,n-d+p. 

EXAMPLE 2.4 The height, in millimeters, of the ramus bone in the jaws of 
20 boys was measured at ages 8,8) ,  9, and 93, and the results from Elston and 
Grizzle [1962] are given in Table 3.4. A main objective of the study was to 
establish a standard growth curve for the use of orthodontists, and. it is clear 
from the sample means that a straight line should provide a satisfactory fit for 
the age range considered. Following Grizzle and Allen [1969], we can use 
orthogonal polynomials and consider the model 

where age 8 is chosen as the time origin so that r j  = j  - 1. Then )r = KB, 
where 
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TABLE 3.4 Rarnus Heigbt of 20 Boys“ 

-- 6.449 6.153 5.923 
__ - 6.918 6.946 
._ 

Age in Years 

’ 

Individual 8 8f 9 st 
___ 

I 47.8 48.8 49.0 49.7 
2 46.4 41.3 47.7 48.4 
3 46.3 46.8 47.8 48.5 
4 45. I 45.3 46.1 47.2 
5 47.6 48.5 48.9 49.3 
6 52.5 53.2 53.3 53.7 
7 51.2 53.0 54.3 54.5 
8 49.8 50.0 50.3 52.7 
9 48.1 50.8 52.3 54.4 

10 45.0 47.0 47.3 48.3 
11 51.2 51.4 51.6 51 .Y 
12 48.5 49.2 53.0 55.5 
13 52.1 52.8 53.7 55.0 
14 48.2 48.9 49.3 49.8 
15 49.6 50.4 51.2 51-8 
16 50.7 51.7 52.7 53.3 
17 47.2 41.1 48.4 49.5 
18 53.3 54.6 55.1 55.3 
19 46.2 47.5 48.1 48.4 
20 46.3 47.6 51.3 51.8 

Mean 48.655 49.625 50.570 51.450 
s. D. 2.52 2.54 2.63 2.73 

~ -. - . ... ~ ~ . _  ~- 

“Reproduced from R. C. Elston and J .  E. G ~ . l e  f1962j. “Estimation 
of time-response curves and their confidcnce bands.” Biornetrics, 18, 
148-159, Table 2. With pernussioo from ’fie Riometric Society. 

and 
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Hence 

T t  = n ( Z  - K@*)’S-’(Z - K@*)  

= 0.20113, 
and we compare 

with F&. Since F, is so low, we do not reject the straight line model. 

3.4.4 Conjidence Intervals 

Suppose we wish to construct a confidence interval for a linear function a’p, for 
example, a’p = (0,. . . , O , l , O , - .  . ,O)p = p , ,  or a contrast like p j  - p k .  If a is 
prespecified, that is, specified before the data are collected, then we can readily 
construct a t-confidence interval as follows: a’X - Nl(a’p, u:/n), where u,’ = 

a%a, ( n  - 1)a’Sa - u,‘xi- (by Theorem 2.2, Corollary 1 in Section 2.3.1), a’X 
is statistically independent of a’Sa (by Theorem 3.1 in Section 3.2.2), and hence 

A lOO(1 - a)% confidence interval for a’p is therefore 

(3.28) 

If we are interested in finding confidence intervals for r prespecified linear 
combinations a;p ( i  = 1,2,. . . , r ) ,  then we run into the usual problems associ- 
ated with simultaneous inferences (see Section 1.6.1). We shall now consider 
two methods for constructing simultaneous confidence intervals of the form 

a;Saj ‘I2 
a:X f k,( 7) , i = 1,2 ,..., t .  (3.29) 

The reader is referred to Seber [1977: Chapter 51 for further background 
details. 

The first method consists of using an individual critical level of a / r  instead 
of a so that k, = t,“!:‘. These so-called Bonferroni t-intervals are conservative 
in that the overall probability that the t statements are jointly true is at least 
1 - a [see (1.21)J. 
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A second method of interval construction can be developed along exactly 
the same lines as ScheWs S-method for univariate h e ; u  models. We may 
assume, without loss of gerierality, that the first q vectors of the set 
{a,, a2, .  . . , ar}  are linearly independent. and the remaining vectors (if any) are 
linearly dependent on the first q vectors; thus q I min(r, d ) .  Let A = 

[a,,a,,. . . ,ao], where A is q X d of rank q, and let = A p  and 4 = A%. If  
T:,,- 
(2.471, 

is the upper a quantile value for the T:n-l distribution then, from 

(3.30) 

Using (3.17), we have 

(Dr'd)* 
= pr [ ,,,( sup WEh } ' -1 (byA7.6) 

s m, all h( f 0)  1 
We can therefore construct a confidence uilerval for any linear function K+, 
namely, 

(3.32') 

and the overall probability for the whole class of such intervals is exactly 
1 - a. Note that h'Lh,/n is simply var[h'&] with 2 replaced by its unbiased 
estimator S. Since If+ = for suitable h, a confidence interval for every 
a',p = 9, ( i  = 1,2, .  . . ,q )  is included in the set of intervals (3.32). In addition, 
an interval for every $, ( j  = q -t 1, q + 2,. . . , r)  is also included in this set 
owing to the linear dependence of the a, ( . j  = q .t I , .  . . , r )  on the other a,'s. 
For example, if a q + l  = h,a ,  + - . - + h9a4,  then +9, = a>+lk = CP,lh,q,,. 
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Since the set of intervals 

is a subset of (3.32), the above confidence intervals have an overall probability 
of at least 1 - a. 

In comparing the two sets of conservative confidence limits, we h d ,  for the 
common situation of r = q (or r not much greater than q), that 

The last inequality follows from (3.30). Thus 

The Bonferroni intervals are preferred, as they are generally much shorter than 
the Scheffk intervals. Values of z;‘f2r) are tabulated in Appendix D1. 

There is a direct link between the Scheff&type.intervals and the test of 
Ho: Ap = b. If we set + = Ap = by we obtain To2 of (3.17), the test statistic for 
H,. This statistic T: is not significant at the a level of significance if and only if 
To2 I T~n~,,,,whichistrueifandonlyif[see(3.31)](~- b)’L-’(t$- b)l; m, 
that is, if and only if Yb belongs to the confidence interval (3.32) for euev h. If 
T: is significant, it is due to at least one interval (3.32) not containing lfb. In 
this situation we would first look at the intervals for the +i (= a;p) and see 
which ones, if any, did not contain b;. 

Up till now we have been concerned with finding confidence intervals for 
prespectjied a:p (i = 1,2,. . . , r ) .  Suppose, however, we wish to choose our 
confidence intervals on the basis of the data. Then, setting q = d, A = I,, and 
+ = p in the above Scheffk intervals, we obtain a set of confidence intervals for 
all linear functions Yp, namely, 

(3.34) 

with an overall probability of 1 - a. No matter how many intervals we select, 
we have a “protection” of at least 1 - a. If H, : p = b is rejected, then at least 
one of (3.34) does not contain lfb for some h. 

In the repeated-measurement design of Section 3.4.2a we were concerned 
with testing Ho:pl - p, = = pdPl - p, = 0. If +i = p ;  - p d  ( i  = 

1,2,. . . ,d  - l), then we find (Exercise 3.5) that the set of all linear combina- 
tions hl+l + . - + l ~ , - ~ + , - ~  is identical to the set of all contrasts clpl + 
. . - + c,p, (&ci = 0). Thus + = 0 if and only if lf+ = 0 for every h, if and 
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only if c’p = 0 for every contrast. From (3.32) with 9 =. d - I we can therefore 
construct a set of confidence intervals for all contrasts c‘p, namely, 

1/2 cjsc 
C’P +(?;f.,,“ (.;-) , c’l, 5= 0. ( 3 3 )  

If T,2 is significant, at least one of the above intervals does not contain zero. 
However, if Ho is rejected, we would probably be interested in the r [ = i d ( ( (  
- l)] contrasts p, - p, ( i  c j ) ,  of which the d .- 1 contrasts dl , .  . . form 
a basis. In this case the two methods of interval estimation given above lead to 
intervals of the form 

(3  3 6 )  

where k,,  = ti/’:‘ for thc Bonferroni method and k ,  = (Ti , , , l - l , a  )‘I2 for 
Scheflk’s method. For example, if d = 4, n -- 21, and a = 0.05, then r = 6 arid 
the respective values of k ,  are 2.93 and 3.25. 

Unfortunately there is a problem associated with the above simultaneous 
procedures. If contrasts are exiimined only if T: is significant, then the correct 
overail probability is a conditional one, conditional on q2 heing significant. 
For the linear regression model Olshen [ 19731 showed that the conditional 
probability is, unfortrrna tely, generally smaller than the unconditional proba- 
bility, so that we have less “confidence” in the sjrnultaneous conditional 
procedure than we thought. In the above applications we can also expect the 
conditional and unconditional probabilities to differ. One way around this 
problem is to decide to use a simultaneous procedure, irrespective of the 
significance or otherwise of T: (Scheffk [1977]). 

EXAMPIE 3.5 Consider Example 3.2 (Section 3.4.2) and the cork data df 
Table 3.3. If we are interested in a confidence interval for each p,, then we can 
use (3.29) with a; = (1 ,0 , .  . . ,O) ,  and so on, namely, 

With n -- 28, r = q = d = 4, and a = 0.05, the two methods give the following 
values of k,: From Appendix 111, t::’/* = 2.676 [see (3.28)] for the Bonferroni 
method and (T4f27,005)1/2 = {[4(27)/24]E::: = 3.537 [see (3.33) and (3.3O)J 
for the Scheffk method. We require the elements of P and the diagonal 
elements s,, of S, where 

350.004 259.541 

50.536 N 290.406 223.753 288.438 226.271 
j2 = 46.179 E and S = 219.930 229.060 171.374 

--- _- 226.004 
__ [ i y l 7 9 )  S 

45,179 W [ 1 - 
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Using the Bonferroni intervals, we obtain the following: 

p1:50.54 f 8.62, 

y,:46.18 f 7.50, 

p3:49.68 f 9.46, 

p4:45.18 f 7.60. 

Since the test for H,:yl = y2 = y, = p4 was significant at the 1% level, we 
can see which contrasts C’X are responsible for the rejection of H,. In Example 
3.3 (Section 3.4.2) the contrast p1 - p 2  + p 3  - p4 (= N + S - E - W) with 
c’ = (1, - 1,1, - 1) was regarded as a likely candidate. Using (3.39, a 99% 
confidence interval for this contrast is 

1/2 

8.86 f (FF;!!) {128.718/28}1’2, 

that is, 8.86 f 8.35 or [0.51,17.21], which does not contain zero. Correspond- 
ing intervals for pairwise contrasts are 

pl - ~ 2 ~ 4 . 3 6  f 5.83, 

p1 - p4: 5.36 f 5.88, 

p 3  - ~ ~ ~ 3 . 5 0  f 7.78, 

p2 - p4:l.0O f 7.47, 

p3 - p4:4.50 f 5.55, 

and all of these contain zero. Since H,, is rejected if and only if at least one 
interval for a contrast does not contain zero, we see that the contrast (N + S 
- E - W) is responsible for the rejection of H,. 

3.4.5 Functional Relationships (Errors in Variables Regression) 

Given a random sample xl, x2,. . . ,x, from Nd(p,  Z), suppose that we have the 
partitions 

x i =  [I) and p =  [ 
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where w,, y,, and 2, have the same dimension. It is assumed that thej th  
elements of each mean satisfy 
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WI .- g ( P y , ,  Pz,; 81, 

where g is some function and 8 is a vector of unknown parameters. For 
example, if g is linear, we may have the simple model pwl = &py, + 8 2 p z l ,  or 

P w  = PIP, + 02PZ. 

The above regression-type model is generally called a functional reluzionship, in 
this case with replication. A linear relationship exists, but we do not observe i t  
because of errors in the variables. Although we have only considered two 
vectors y and z, the extension to more than two is obvious. A procedure for 
finding the maximum likelihood estimates of b and 2, together with asyrnptotlc 
variances and covariances for the estimate of B, is given by Dolby and 
Freeman [ 19751 for a linear or nonlinear g. The reader is referred to their paper 
and Robinson [1Y77] for details and references to related models. 

Another more general type of model is as follows. Suppose that the x,  
( i  = 1,2,. . .,n) are independently distributed as Nd(pL,,, Z), where 

A simple linear model is 

PJJ, -- a + Bh,? (3.37) 

where a, B, and pz, are unknown parameters (see Gleser [1981] for discussion 
and references; he assunies X = a21,,). For related topics see Patcfield [19Sl], 
and Fisher and Hudson [1980]. 

3.5 I N F E R E N C E  FOR THE DISPERSION M A T R I X  

3.51  Introduction 

Given a random sample xlr x2, .  . . ,x, from N d ( p ,  X), n - 1 2 d, we shall 
consider testing the following hypotheses about X in this section. 

1. Blockwise independence. Let X be partitioned as follows: 

21, \ 
(3.38) 



3.5 Inference for the Dispersion Matrix 81 

where Z,, is d,  X d ,  and C p  ,d, = d .  We shall consider testing H, : Z, = 0, 
all r ,  s ( r  # s): The case b = 2 is considered in Section 3.5.2, the general case 
in Section 3.5.3, and the general case with each d, = 1 in Section 3.5.4. 

2. Sphericity. In Section 3.5.4 we consider testing the hypotheses 
(a) 2 = u21d, u2 unknown. 
(b) ).: = I,. 

The hypotheses 2 = u2Zo and Z = 2, (2, known) are also included, as they 
can be reduced to (a) and (b), respectively, using a suitable transformation of 
the data. 

3. Equal diagonal blocks. The hypothesis Xll = Z2z = * - . = Z,, is dis- 
cussed in Section 3.5.5. 

4. Equal correlations and variances. In Section 3.5.6 we consider the 
model (3.21), which is sometimes used in mixed and components of variance 
models. Here we test ujj = u2 and ujk = pa2 ( j ,  k = 1,2,. . . , d ;  j # k). Likeli- 
hood ratio tests and, in one or two cases, union-intersection tests are given for 
the above hypotheses. For a general review of these tests, together with some 
tables of significance levels, see Krishnaiah and Lee [1980]. We note that tests 
for (1) and (2) have also been developed for the case when the xi come from a 
complex multivariate normal distribution (Krishnaiah et al. 119761). The dis- 
persion matrix of a complex normal plays an important role in the study of 
spectral density matrices of stationary Gaussian multiple time series. 

3.5.2 Blockwise Independence: Two Blocks 

Consider the partition 

dl d2 
e f i  

We wish to test the hypothesis that yi is statistically independent of zi 
( i  = 1,2, .  . . , n ) ,  that is, test H, : Zlz = 0. Two methods for doing this are the 
likelihood ratio method and the union-intersection principle; Both tests are 
described below. For future reference we mention the maximum likelihood 
estimates X and Q / n  of p and Z, respectively, and these are partitioned 
appropriately: 

Z=(!!) and Q = (  Qii Qiz ), 
Q21 4 2 2  

(3.39) 

where Q = C,(x, - %)(xi - Z)’, Qll = C,(y, - 9)(yi - y)’, QZ2 = 
(zi - z)’, and Q12 = Q;l = Ci(yi - jXzi - 2)’. We assume d ,  2 d z .  

- Z) 
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a LIKELIHOOD RATIO TEST 

Inference for the Mdtiriarrate Normal 

When H, is true, we have two independent random samples yl ( I  = 1,2 , .  . . , I I )  

from Ndl(pl, Z,,), and zI ( i  = L2, .  . . ,n) from N d L ( p 2 ,  C,,). The overall 
likelihood for the two samples is then the product of two likelihood functions, 
one for each sample. Thus p n g  the notation of (3.2), we have, when II', is 
true, 

L(P9 2) == k(ccl,  Z , , ) k ( P D  &2)9 (3.40) 

so that the likelihood ratio test for H ,  is 

by (3.6), or 

(3.41) 

where e,, == QJn, i = 1,2. Now, since Q > 0 with probability 1, QII is 
nonsingular (A5.9) and, from A3.2, 

Setting E = Qzl - Q71Q;,'Qlr (= Qz2 1, say) and H = Q2,Q;'QI2, we have 
from (3.41) 

(3.42) 

Since Q == ( n  - 1)s - W,(n -- 1, X) (by Theorem 3.1), we can apply Leninia 
2.10 and its Corollary (Section 2.6) to Q. Thus, when f lo:X12 = 0 is true, 
Z22 = Z,, and the random matrices E and H are independently distributed 
as Wd,(n -- 1 - d,, X2J and Wd2(d1, Z,,), respectively. It now l'ollows from 
(2.48), with m,, = d,, inE = n - d ,  - 1, and "d" = d , ,  that 11 - qiZrdl,n dl  
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when Ho is true. Since Ud2.d,, n-d, - l  has the same distribution as Ud,,d2,Y, 

where v = mH f m E  - “d”  = n - d ,  - 1, we arrive, as expected, at the same 
test statistic for Ho if we interchange the roles of yf and z, and write A in the 
form \Qll 2 1 / ) Q 1 1  I .  We note that Ho is rejected if the likelihood ratio /is too 
small or, equivalently, A is too small: The lower tail of the U-distribution is 
therefore appropriate here and tables of critical values are given in Appendix 
D13. Asymptotic properties of the test statistic are described in Section 3.5.3 
with b = 2. 

From Section 2.5.5b, A = ll;2,(1 - 0,), where the 0, are the ordered roots 
of ( H  - B(E + €€)I = 0. These roots are the eigenvalues of H(E + H)-’ = 

QzlQ~’Q12Q;~, that is, the roots of 

IS21S,’S,,S,’ - @I,*I = 0, (3.43) 

where Sf, = Q, , / (n  - 1). It does not matter whether we use a divisor of n or 
n - 1, as it cancels out. Since 0 I 6, < 1, we can write 0, = ( q  # 0), and the 
positive square roots 5 are called the sample canonical correlations between the 
y,’s and the 2,’s (see Section 5.7). The usual notation adopted is rf > r; > . . - 
> r,’ > 0, where s = minimum(d,, d2). These roots can be regarded as esti- 
mates of the population canonical correlations, the latter being the ordered 
positive square roots of the solutions of 

12212,’2122;2 - p21d21 = 0. (3.44) 

b MAXIMUM ROOT TEST 

To apply the union-intersection principle to test Ho : El, = 0, we consider 
the univariate hypothesis HOab:a’~12b = 0, or, equivalently, = 

(a’Zl,b)2/(a’Zl,a)(WZ,2b) = 0, where pob is the correlation between a’y and b’z. 
An acceptance region for testing Hoob is given by r2b I k, where 

a’S,,b 

{ a’S,,ab’S,,b} 1’2 
rob = (3.45) 

is the sample correlation for the n pairs (a’yi, b’z,), i = 1,2,. . . ,n. Since 

H~ = nnHOabr 
a 6  

the union-intersection principle (Section 1.6.2) leads to the following accep- 
tance region for testing Ho (Roy [1953]): 

= {(Y,Z):d,,,, 5 k } ,  

where, from A7.7 and A1.4, B,, is the maximum root of (3.43). 



90 Injerence /or the Mitltrvuriute Normal 

We can also add a third test statistic to A and em, for testing H,, namely, 
Pillai's trace statistic 

V(' )  = cfl I =- tr[H(E + H)-'] = tr[S2,S,'S,,S~1]. 
J 

For d = 2 Pillai and Hsu (19791 showed that these statistics are not seriously 
affected by slight nonnormality: V ( 2 )  is the most robust, followed by A. 

3.5.3 Blockwise Independence: b Blocks 

Let xl,xz,., . ,x, be a random sample from . N d ( ~ ,  2 )  and consider the 
par ti tion 

where x,, and p, arc d ,  x 1 vectors and X,, is d ,  X d ,  ( r  = 1,2, .  . . ,h; Cp,ld, 
= d ) .  Suppose we wish LO test the null hypothesis 

say, that the b vectors X , ~ , X , ~ . .  . . ,x,, are mutually independent. From thc 
derivation of (3.41), it is clear that the likelihood ratio statistic lfor testing H ,  
takes the form 

(3.46) 

where Q = n e  = Ez(xi - X)(x, 1- R)' and Q,, -- n e , ,  = C,(x,, -- X . r ) ( x l ,  - 
x ,)'. Unfortunately, the special method we used to find the distribution of A - 
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for the case b = 2 in the previous section does not generalize here, so that we 
must content ourselves with a large-sample test based on the likelihood ratio 
theory. Using the notation of Section 1.7, the number of parameters in Sl is 
d + f d ( d  + l ) ,  as p has d elements and Z has ) d ( d  + 1) distinct elements in 
the upper triangle. Similarly, the number of parameters in w, specified by H,,, 
is the number of distinct elements in each p r  and X r r  ( r  = 1,2,. . . , b), namely, 

b l b  C [ d ,  + idr(d,  + I)] = ;F C d,' + $d.  

Hence, for large n, - 2 log d(  = - n log A )  is approximately distributed as x:  
when H, is true, where 

= -( 1 d 2  - E d : ) .  
2 r 

As the moments of A, under H,, are known exactly, Box [1949] was able to 
obtain a more accurate large-sample expression for the null distribution, 
namely (see Anderson [1958: Section 9.51, Muirhead [1982: Section 11.2.4]), 

pr[ - m log A I z]  = pr[ xf I z ]  + gm-*{ pr[ x : + ~  I z ]  - pr[ xf 5 z ]  } 

+ o ( m - 3 ) ,  (3.47) 

where 

m = n - - -  ( d 3  - Cd,?)/3( d z  - E d : )  (3.48) 2 r r 

and 

r r 

2 

- ( d 3  - E d : )  r /72(d2 - E d : ) .  
r 

(3.49) 

Correction factors to make the percentage points of -m log A (written as 
-2p log l )  exactly those of xf are given by Davis and Field [1971] and 
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reproduced by Muirhead 11982: p. 5371. A good Pearson-type approximation is 
also available, and J. C‘. Lee et al. [1977: Table 71 use it to provide some 
accurate percentage points for -- 2 log A .  Muirheiid and Waternaux [ 1980: p. 
421 demonstrate, using elliptical distributions, that - 2 log t can be very 
sensitive to departures from normality when kurtosis is present, as in “long- 
tailed” distributions. They provide a correction for - 2 log eon the assumption 
of a common kurtosis factor. Properties of the test based on A are discussed by 
Giri [1977: Section 8.31. The asymptotic nonnull distribution of A is given by 
Olkin and Siotani [1976]. 
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Nagao [1973a, b, 19741 proposed anothei statistic, 

(3.50) 

where Q,o, = diag(Q,,, Q22,. . . ,Qbh), based on the asymptotic variance of 
-2 logt .  His statistic reduces to Pillai’s trace statistic when b = 2 (see 
Exercise 3.6). He also gave asymptotic expansions for the null and nonnull 
distributions of -mlog A and L, and showed that their asymptotic relative 
efficiency was 1. 

3.5.4 Diagonal Dispersion Matrix 

A special case of the hypothesis considered in the previous section is H,,, that 
C is diagonal, that is, Z = diag(u, ,,..., Setting b = d and x,, = x,, 
( r  = 1,2,. . . , d ) ,  we have from (3.46) 

(3.51) 

where 4,, = , Y , ( X , ~  - X ,)’ = m?,, ( r  = 1,2,. . . , d ) .  Since d, = I ,  we can usc 
(3.47),  with v =i # d ( d  -- l), m = n - (2d + 11)/6, and g = d(d - l)(?d’ - 
2d - 13)/288. Exact percentage points for the statistic - m log A, from Mathai 
and Katiyar [1979a], are given in Appendix D17. A good normal approxima- 
tion is provided by Mudholkar et al. [1982]. The case J = 2 is straightforward, 
as the hypothesis uI2 := 0 can be tested using the exact I-test of the regression 
of one variable on the other (see Exercise 3.’7). 

We note that q k  = q l k / (  q,,qkA )‘I2 is the sample correlation for variables 
labeledj and k ,  and the correlation matrix R = [ (qk)l  is given by 

. . , qdc;I2 ) . R = diag( ql, ‘I2,. . . , qd(,!12 )Q diag( (3 32) 

Hence, from (3.51), A = lRl, so that our test statistic for If,,, is based on the 
determinant of the correlation matrix. Olkiri and Siotani [1976] use this fact to 
find the asymptotic nonnull distribution of A. A union - intersection test of H,, 
based on the concept of maximum eccentricity is given by Schuenemeyer and 
Bargmann [1978]. 
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In practice we may be interested in testing the hypothesis HO2:Z  = u21d, 
where u2 is unspecified. The likelihood ratio statistic 4, for testing HO2 is now 
given by (Exercise 3.8) 

(3.53) 

say. This statistic has a very simple interpretation if we note that testing Ho2 is 
equivalent to testing that the eigenvalues hj of X are afl equal, that is, 

geometric mean of the Xj 
arithmetic mean of the hi 1 =  

(by Al.2). 
- IZl'/d 

tr[ X/d 1 
- 

We test this by replacing Z by its maximum likelihood estimate 2 and seeing if 
the resulting statistic, t22/Rd is about unity. Using a'one-sided test, since the 
geometric mean cannot exceed the arithmetic mean, we reject HO, if .4, is too 
small. The ellipsoid (x - p)'Z-l(x - p) = c2 reduces to the sphere (x - p)' 
(x - p) = c2u2 under HO2 so that HO2 is called the hypothesis of sphericity. 
Properties of the above test are discussed, for example, by Muirhead [1982: 
Section 8.31. The exact distribution of A, and a table of percentage points for 
d = 4(l)lO are given by Nagarsenker and Pillai [1973a]. A useful computing 
formula based on a mixture of incomplete beta functions is given by Gupta 
[1977], and a good Pearson type I approximation is also available (J. C. Lee et 
al. [1977]). The large-sample approximation (3.47) for - rn log A 2  still applies, 
but with v = @ ( d  + 1) - 1, m = n - 1 - (2d2 + d + 2)/6d, and g = ( d  + 
2)(d - l ) (d  - 2)(2d3 + 6d2 + 3d + 2)/288d2. Venables [1976] shows that 
A, can also be derived using a union-intersection argument. Using the family 
of elliptical distributions, Muirhead and Waternaux [1980] demonstrate that 
- 2 log .4, is very sensitive to kurtosis and provide a correction based on the 
assumption of a common kurtosis factor (see also Muirhead [1982: Section 
8.31). 

To test Ho3 : X = I d  we use the likelihood ratio (Exercise 3.9) 

t, = (e/n)d"'21Q1fl/2exp( - +  tr Q). (3.54) 

When Ho3 is true, -21og 4, is asymptotically xt, where Y = t d ( d  + 1). The 
exact distribution and a table of percentage points for d = 4(l)lO are given by 
Nagarsenker and Pillai [1973b]. As might be expected, the test is very sensitive 
to kurtosis in the parent population (Muirhead and Waternaw [1980: p. 401). 
Properties of the test and a modification are given by Muirhead [1982: Section 
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8.41, who also reproduces percentage points from Davis and FieId [1971: 

The hypotheses that Z = a2Z, and Z = Z,, where Z, is known, can he 
reduced to Ho2 and \I,, above, respectively, by making the transformation 
yl 5= C01/2xI. For example, when Z = Z,, 9 [ y l ]  = Z , ' / ' ~ ~ X , ] Z ~ ' / ~  = 

C;1/2C0Z,'/2 = 1,. Nagao [1973a, 19741 has proposed alternative test statis- 
tics for these hypotheses based on the asymptotic variance of - 2 log t, where t 
is the corresponding ljlkelihood ratio. The Likelihood ratio test of Ho4 : p = p,, 
Z = C,, is given in Exercise 3.10, and the exact null distribution together with 
tables are given by Nagirsenker and Pillaj (1974: d = 2(1)6] (see also Muirhead 
[1982: Section 8.51). Some chi-square and I.-approximations loor a inodified 
likelihood ratio test are given by Korin and Stevens [1973j. Finally, the 
likelihood ratio test of H,,:p =- po, 2 = a Z I d  and exact percentagc points for 
d = 4(1)10 are given by Singh [1980]. 

Injerence for the Multrrwrate Normal 

d = 2(1)10]. 

- 1 YII  \ 
Yi2 XI2 - XI. - y . =  . - 

. I  

- 

3.5.5 Equal Diagonal Blocks 

Using the notation of Section 3.5.3, with d, = do ( r  = 1,2, .  . . , b ) ,  we now wish 
to test HOs : Z,, = X,, == . . - == Z h b ,  given that the Z,, ( r  s)  are all equal (to 
Z,2). Krishnaiah [1975] gives the following method for doing ths, and reviews 
briefly some of the earlier work relating to the problem (see also Choi and 
Wette [1972]). Let 

1 
b 

3, = - ( x l l  + x,Z + ' * ' + X I ( , )  

and 

.= cx , ,  (3.55) 

\ Y i h ,  

say. Since 3; = Cx, for nonsingular C (Exercise 3.11), the y, are i.i.d. 
Nd(Cp ,  CZC') [Theorem 2.l(i)]. Now for r # 1, 

- 
' [ ~ i , ? ~ i , l  = v [ x i r  -- x i  1 

= V[X,,,P, ] - B[sz,.] 

XI* - X I .  , 

1 
= -- c %[Xir ,Xis]  - ' C p i f [ X i r , X , , ]  

s = l  bZ r s 
b 

r =  1 

7 
b 

= - - [ ( b  -- l ) X l z  + Z,,.] - h ( b  - 1 ) & 2  + C Z,, 



3.5 Inference for the Dispersion Matrix 95 

which is zero if H,, is true. Setting yj$ = (yh, yi;, . . . ,y,6)', we find that testing 
H,, is equivalent to testing V[yi,, yj$] = 0, and this can be accomplished using 
the theory of Section 3.5.2 for testing the independence of two subvectors. We 
note that for the case b = 2 no assumption is needed about the structure of 2, 
as Z only has one off-diagonal block Ell. 

p 1 . - .  P P  . . .  . .  . .  . .  . .  
H , : Z = u 2  . . 

3.5.6 Equal Correlations and Equal Variances 

A hypothesis that sometimes arises in analysis of variance situations is 

(3.56) 

if S = [(sjk)], the usual unbiased estimate of 2, then the maximum likelihood 
estimates of u2 and p are (Exercise 3.12) 

d 

j - 1  

82 = sjj/d (3.57) 

and 

628 = C C S j k / d ( d  - 1).  
j + k  

(3.58) 

The likelihood ratio statistic is d6 (Wilks [1946]; see Exercise 3.13), where 

e; /n  = IS1 (3.59) 
( ~ ? ~ ) ~ ( l  - fi)"-'[l + ( d  - 1)$] ' 

Box [1949] showed that 

d ( d  + 1)2(2d - 3) 
6 ( d  - l ) (d2  + d - 4) 

is asymptotically distributed as chi square with Sd(d + 1) - 2 degrees of 
freedom when H, is true. The exact distribution and percentage points are 
given by Nagarsenker [1975: d = 4(1)10], and a nonparametric test is proposed 
by Choi [1977]. Finally, the exact distribution and percentage points for jointly 
testing H ,  and ,ul = p 2  = - - . = p d  are available from Mathai and Katiyar 
[1979b: d = 4(1)10]. 
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3.5.7 Simultaneous Con$denctl Intervals for Correlation$ 

Writing Z = [(uJk)J, we may be interested in constructing simultaneous confi- 
dence intervals for thc m = +d(d  -- 1) correlation coefficients pJk = 

U , ~ / ( ? , U ~ ~ ) ' / ~  (1 < k ) .  With the union-intersection principle in mind, we can 
look at thc corresponding univariate problem of finding a confidence interval 
for d'Zd( t#  0). Now Q = C,(x, - X)(x, - Z)' - W,(n - I, 2) (by Theorem 
3.1) and t?'Qt/t?'Xk'- x', -, (Theorem 2.2, Corollary 1). From A7.5 we have 

Inference for the Mulfrrwrufe Nmrniul 

for all nonzero &if  and only it' L 5 ynu, < ymax 2 U, where ym,,, and y,,, are 
the minimum and maximurn eigcnvalues, respectively, of QI: - I .  The "optimal" 
choice of Z, and U is unknown; however, if we choose L and U such that 
pdy,, 2 L ]  = 4 2  and pr[y,, s U ]  = u/2,  then 

Also, the eigenvalues of 9Z ' are the same as those of Z--1'2Q2-'''2 (A1.4) 
which. by Theorem 2.2 of Section 2.3.1. is distributed as Wd(n - 
1, C -*/'ZX *I2), that is, as W,(n - 1, Id). As Z is not involved in this latter 
distribution, yn,, and ym, can be tabulated, as in I-lanumara arid lhompson 
[1968: d -= 2(1)10]. For applications of these tables, see Hanumim and Strain 
[1980]. Further tables, for the choice L = U-' ,  are given by Clemm et al. 
[ 19731. 

By setting l' equal to (LO,. . . , O ) ,  ( O , l $ O , .  , . ,O) ,  and so on, we obtah 
intervals for the variances u,,, u ~ ~ , .  . . , namely, 

and 

(3.61) 

(3.62) 

Unfortunately, intervals for the covariances do not follow so readily. However, 
setting t?' = (1, 1,O.. . . ,0) in (3.60) gives 
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and, subtracting ull + u2, from both sides of the above inequality, we have 
from (3.61) and (3.62) 

We can go one step further and find an interval for plz if we divide by 
~ ( I Y ~ , U , ~ ) ~ / ~  and use the square root of the product of (3.61) and (3.62), 
namely, 

where a12 = (411 + q22)/2(q11q22Y2 and '12 = q 1 2 / ( q 1 l q 2 2 Y 2 .  

A different set of intervals is obtained if we "subtract" the interval corre- 
sponding to P = (1, -1,O,. . . ,0) from that corresponding to l" = 

(1,1,0,. . . ,O). Narrower intervals can be obtained if we use t' = (4, I!',, 0,. . . ,0) 
and then minimize the width of the corresponding interval with respect to 4 
and I!', either at the covariance or correlation stage. T. W. Anderson [1965: p. 
4831 and Aitkin 119691 give two such approaches. 

Unfortunately, the above methods give rise to very wide intervals for the PJk. 
This is not surprising, as intervals for the qj are also included in the simulta- 
neous set, and the inequalities (3.61) and (3.62) are used in a crude fashion to 
obtain (3.63). In an attempt to construct other confidence intervals we find that 
the joint distribution of the lik is not available in a useful form. Even the 
asymptotic distribution, which is multivariate normal when the parent popula- 
tion is normal (Aitkin [1969, 1971]), is too complicated to allow the construc- 
tion of simultaneous confidence intervals from the implicitly defined confi- 
dence region 

(r - Cf"r])'(B[r])-'(r - e?[r]) 5 k 

for p [see the argument leading from (3.31)) Here r and p are the sample and 
population correlation coefficients fisted as vectors. However, another ap- 
proach is available using the marginal distribution of each t& and Fisher's 
Z-transformation. We have 

ZJk = flog (; - :;:) = tad-'$, (= z [ Q ~ ] ,  say) (3.64) 

is approximately N1(Z[pj , ] ,  1/[n - 31). We can therefore construct a large- 
sample confidence interval for each pjk based on this normal distribution and 
then combine all the intervals using the Bonferroni method [see (1.21)]. Thus 
for all j ,  k ( j < k), the set of confidence intervals 

tmh(Zjk - c,[n - 3]-ll2) Pjk 5 tanh(zjk + c , [ n  - 3]-1/2), 
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where c, = z,,~,,, and m j $ d ( d  - l), have an approximate overall confidence 
of at least loO(1 - a)%. Clearly, if d is large, m and c,  will be large, thus 
leading to wide intervals. For this reason it is more appropriate to set a -- 0.10 
rather than the customary a = 0.05. 

The above confidence intervals can be used as a basis for a conservative test 
procedure, namely, pJk. is significantly different from zero if its confidence 
interval does not contam zero, that is, if 

I I ; ~ ~  > tanh(c,[n - 3]-1/2) = K, ,  

say. We could calculate k, and compare its value with each I r , k l .  However, as 
we are testing p,k = 0, we can use various improvements to the normal 
approximiition (3.64) (see Konishi [1978: approximation “S” with p == 01). In 
practice, the researcher may, before seeing the data, be interested in only d, 
(< d)  of the variables: Then m == $d, (d ,  - 1). 

Hills 119691 provides two graphical techniques for examining large corre- 
lation matrices. The first method consists of a half-normal plot of the ranked 
l z J k l .  If the pJ,, are all zero, the Z , k  have approximately zero means arid the 
probability plot will be approximately lincar, provided that the dependence 
among the ZJk can be ignored and there are enough points, say, at least 50 (sce 
Daniel and Wood [19Slj). Any Z,k with a significantly nonzero mean will S ~ O W  
up as a point lying above the general linear trend. Hill’s second method is a 
visual clustering technique that endeavors to select clusters of variables wluch 
have high positive correlations with each other. 

Finally, a word of caution: The above theory leans heavily on the assump- 
tion that the x, are multivariate normal, and is affected by kurtosis (Muirhead 
(1982: Section 5.1.41). We now consider an asymptotic theory that does no1 
require normality. 

3.5.8 Large - Sample Inferences 

We know that inferences about dispersion matiices are very sensitive io 
nonnormality of the parent distribution, whereas inferences about means are 
more robust. A sensible approach, therefore, would be to try and transform the 
data so that the elements of the dispersion matrix now become the elements of 
a mean vector. This approach is used for correlation coeficients in the previous 
section, though normality of the data is assumed. Layard 119721, however, has 
generalized this approach and does not assume normality. Here asymptotic 
normality is achieved by the multivariate central limit theorem, and the 
following notation and theory are based on his paper. 

Let x ,  ( i  = 1,2,. . . , n )  be i.i.d. with mean p and dispersion matrix 2, = ((uJk)I. 
Define 

0’ = ( ‘11 9 uz’2 9 - * * 9 3 ‘12 1 * * * 3 uld 3 u23 9 - . - 3 uid , * . 3 - 1 .  d ) 

( { ‘ J J I Y  ( ‘ J k ) ) ,  (3.65) 
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say, to be the vector of distinct elements of 2. In a similar manner we can 
define the unbiased estimate of a‘: 

s r =  ({s,jI’{sjkI), (3.66) 

where [ (s jk)]  = S = C,(x, - %)(x, - %)‘/(n - 1). When n 3 00, 6 ( s  - o )  is 
asymptotically distributed as N,(O, r), where r = $I( d f 1) and I‘ is described 
below. Convergence to normality can be speeded up by transforming s to [see 
(3.6411 

$(s) = ( (lOgsJj}, (tafi-lqk))’? (3.67) 

where T J ~  = s,k/(s,,skk)”2. Using a Taylor expansion and denoting elements of 
s and + by the subscnpts u and u, respectively, we have 

or 

4,s) - + ( a )  = A’(s - 4, (3.68) 

where A = [ (auu)] = [(L?&,(a)/L?u,>]. Hence, by A10.2, fi[+(s) - +(a)] is 
asymptotically N,(O, A), where A = A’I‘A and 

We now turn our attention to the matrices r and A. Suppose the general 
cross moments of the elements of x are as follows: 

For example, p20. . .o = ull, p020...0 = u22: andpllo...o = q2. If as stands for 
asymptotic, then it can be shown, either dlrectly (e.g., Seber [1977: pp. 14-16]) 
or via cumulants (e.g., Muirhead [1982: p. 421 and Cook [1951]), that 

~cov[ J l ; s jk ,6smp]  = E[(xj - ~ j ) ( x / ,  - p k > ( x m  - P m > ( X p  - ~ p ) ]  

-E[(xj - pj)(xk - ~ / c ) ] ~ [ ( x r n  - Prn>(xp - ~ p ) ]  

(3.70) 
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for all j ,  k, rn, p = 1,2, .  . . ,d ,  and these are the terms that make up the 
elements of r. For example, the diagonal elements of I’ consist of the d 
elements 

(= p m  ..() - ,,, whenj = 1) 

and the i d ( d  - 1) elements (withj < k) 

(= p220...0 - p:lo...o, whenj = 1, k = 2) .  

The reader is referred to Layard [1974] for the case d = 2 (see also Exercise 
3.14). 

The matrix A in (3.68) is best described by means of an example. If d = 3, 

(I‘ = (‘ll, (J229 O33, ul’2, u13, ‘23) 

and 

+’( U) = (log v l l ,  log u22, log uj3, tanh- ‘p,, , tanh- ‘p13, tanh- ‘p,,). 

Since dtaiih b/dp  = 1/(1 - p 2 ) ,  

where 

(3.71) 

and 

(3.72) 
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For general d, I, becomes I,, the form of A generalizes in an obvious fashion, 
and B takes the same form as above with zeros in the ith row in positions 
corresponding to the p. when neitherj nor k equals i. 

All the elements of $and A are functions of the moments q ( x j  - p j ) ( x k  - 
pk) (x ,  - p,)(x, - p,)] and E[(xj  - pj ) (xk  - pk) ] ,  which are special cases of 
p a b . . . q  [see (3.69)]. We can estimate pab. . .q  by 

0 

and obtain estimates f and A. From a practical viewpoint, therefore, we can 
assume that fi+(s) is approximately multivariate normal With mean fi+(a) 
and “known” dispersion matrix A = k.f& and use +(s) to make inferences 
about u via +((I). Alternatively, if n = Nno, we can use Box’s [1953] univariate 
technique (see Scheffe [1959: pp. 83-87]) and split the n observations x i  into N 
groups of no observations to obtain N replicates from N,(&+(u), A). A third 
approach is to generate n “ pseudoreplicates” using the jackknife technique: 
The underlying asymptotic distribution is N r ( 6 $ ( u ) ,  AJ) ,  where A, is the 
unknown dispersion matrix of a pseudoreplicate. 

Although Layard’s [1972] prime concern was with testing the equality of two 
dispersion matrices (see Section 3.6.1d), it is clear that the above three methods 
can be used for making a variety of inferences about Z. For example writing 
z = fi+(s) and 8 = fi+(u), we have the linear model 

z = e + C  (3.74) 

where e - N,.(O, V) and V (= A) is assumed “known” in the first method. All 
the previous hypotheses about Z take the form Ho : A8 = 0. For example, if we 
wish to test ull = u22 = . - . = udd, or, equivalently, log ull = - - - = log odd, 
then 

A =  

1 -1 0 - * .  0 0  
0 1 -1 - * -  0 0  

0 0 0 ... 1 - 1  

is a (d - 1) X r matrix of rank d - 1. Alternatively, if we wish to test for 
mutual independence, that is, pjk = 0, for allj,  k, j f k, we now have A = 

(OIIred). In general, if A is q X r of rank q, then, when Ho is true, we have 
approximately Az - NJO, AVA’) and (Az)’(AVA’)-’Az - xt. 

The grouping and jackknife methods can also be formulated in a similar 
fashion. For the grouping method we now have a random sample zl, z2 , .  . . , z N  
from Nr(8, A)  and we can test H0:AB = 0 using Hotelling’s T 2  statistic [see 
(3.1711 

T; = N(AZ)’(AS,A~)%, 

where S, = C, (z, - Z)(z, - Z)’ / (N - 1). When Ho is true, To2 - T 2 N - I  
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3,5.9 More General Cmariance Structures 

A wide class of structural models, called radex models, was introduced by 
Guttman [1954]. In these models test scores are generated froin components 
that may be viewed as having a special geometrical structure, and hence the 
more recent name simplex models. One such model, called the circumplex by 
Guttman and studied in detail by Olkin and Press 119691, has a circular 
symmetric dispersion matrix 

A key property of such matrices is that their eigenvectors do not depend 011 
elements o f  Z,, so that 8, can be reduced to a diagonal matrix. Olkin [1973] 
makes use of this property to extend Z, to the case where each uI is replaced by 
a k X k matrix Z,, and discusses various hypothesis tests relating to this 
extended Z,. 

We note that Z, takes the form 

2,. = alG, + 4, + * 9 * -t- arcr, (3.75) 

where the G, are known linearly independent symmetric matrices and the a, are 
unknown parameters. Models with this kind o f  covariance structure have been 
studied by several authors (e.g., T. W. Anderson [1969, 1970, 19731, Krishnaiah 
and Lee 119761, Sinha and Wieand [1979: p. 5431, Szauowski [1980]). 

Finally we note that Jiireskog [1970, 1Y'73] has considered questions of 
inference For a general structure of the form 

C = B( A@A' + q2)B' + e2, 

where 9 and 8 are diagonal matrices. Even more general structures are 
considered by Jiireskog [1981], S. Y. Lee [1979, 19811, and Lee and Bentler 
[ 19801. 

3.6 C O M P A R I N G  TWO N O R M A L  P O P U L A T I O N S  

3.6.1 

Although techniques for comparing any number of normal populations are 
considered in Chapter 9, i t  is helpful to consider thc case of just two 
populations separately. Suppose we have a random sample vI,  v,, . . . ,vn, from 

l'ests for Equal Dispersion Matrices 
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Nd(pl, 2,) and an independent random sample w,, w,,. . . ,wn2 from N d ( p 2 ,  2,). 
It is convenient to consider testing H,: 2, = Z2 (= 2, say) first, before 
considering inferences about p1 and p,. Two basic procedures for testing Ho 
are given below, the likelihood ratio method and the union-intersection 
method. Of the two, the former test procedure is generally more powerful. 

a LIKELIHOOD RATIO TEST 

If we use the notation of Section 3.2.1, the likelihood function is 

L12(P , ,  P2Y z,, 2 2 )  = Ll(P1, Z l N 2 ( P 2 9  22 )Y  

where I,,@,, 2,) takes the form (3.2). Maximizing L,, is equivalent to simulta- 
neously maximizing each L, so that L,, is maximized at p1 = 1, fi2 = W, 
2, = Ql/n, = C,(v, - V)(v, - l ) ’ / n l  and e2 = Q2/n2 = C,(y - W)(y - 
@)’/nz. From (3.6) the maximum value of L,, is 

LIZ(PL9 fi29 % 3 2 )  = LI(P1, 3&2(P2,  2 2 )  

= (2 .) - “ d q  2, I - “l/2 I 2* 1 - “ 2 4  - “ d / 2 ,  

where n = n, + n2. Setting 2, = Z2 = 2, we now wish to maximize 

log &z(p,, p 2 , 2 ,  2) = logL,(P,, 2) + 1% L,(P,, 2) 

“2 

+ c (w, - P 2 ) ( 7  - P2)’ 
j = 1  

= c - +nlog(ZI - 4 tr[2-’Q] 

+t  tr(2-’[nl(1 - cL1)(v - p1)’+ n 2 ( ~ - - ~ 2 ) ( w - l r 2 ) ’ ] )  

(3.76) 

[by (3.3) and (3.4)], where c = - $ndlog2a and Q = Q1 + Q2. Since 
tr{ 2 - l n 1 ( t  - pl)(l - p,)’} = nl(l - p1)‘X-’(V - pl) 2 0, and so on, (3.76) 
is maximized for any Z > 0 when pl = 1 = P1, and p2 = W = fi2. Thus 

log L,2(P,, P,,& 2) 2 1% L12(P,9 I r 2 9  2 ,Z) .  

and the next step is to maximize 
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subject to Z > 0. Since each Q > 0 (with probability 11, Q > 0, and (3.77) 
is maximized when (A7.1) 2 = $ = Q / n .  Thus 

logL,,(P,,P,,%e) 2 logL,,(ir,,P2,292) 2 logL12(Pl ,P2,&a 

so that &, ji2 and 2 are the maximum likelihood estimates of pI, p,, and Z 
under H,,. Also, from (3.77). 

l o g ~ , , ( j i , ,  ji,, 2,ej = c - tv(1oglf:I + tr[f:-'2]) 

= c - tnloglel - f n d ,  

so that 

L , ~ ( P ~ ,  jiz, e , 2 )  = ( 2 n j -  nJ/2121 n / 2 e - n d / * .  

The likelihood ratio statistic is therefore 

where 

(3.78) 

, ,nd/Z 

pi2 = - - ~  
1 n22 1 ,,it d 2 n d 2 ' 

a result originally due to Wilks [1932]. Using the usual large-sample theory for 
the likelihood ratio test, - - 2 log /is asymptotically xz, Y = $ d ( d  t l), when Ii, 
is true. However, there exists a slight niodificatinn of C that produces an 
unbiased test and which leads to a better chi-square approximation and ail 
F-approximation. This modification, called M, is discussed in Section 9.2.6 for 
the more general case of comparing any nurnber of dispersion matrices. The 
robustness of these tests is discussed after the union-intersection test below. 

We note from A1.2 that 

(3.79) 



3 6 Comparing Two Normal Populahons 105 

is a function of the characteristic roots +, of IQ1 - +Q21 = 0. Setting 0, = 
+,/(l + +,), we have the roots of IQ1 - O(Q1 + Q2)1 = 0 and /is propor- 
tional to Y = ll, {f3p(l - 6,)b} with a = fn, and b = fn,. Pillai and 
Nagarsenker [1972] give an expression for the nonnuU distribution of Y (i.e., 
when 2, # 2,) for general a and b. Pillai and Nagarsenker, and Sub- 
rahmaniam [1975: p is misprinted at the top of p. 917 but correctly defined 
later], give asymptotic expansions for certain a and b. Nagarsenker [1978] gives 
a number of formulas that are useful for computing powers and exact 
percentage points for significance tests. For further details see Muirhead [1982: 
Section 8.21. 

b UNION-INTERSECTION TEST 

Writing x, = Pv, and y, = Fw,, we see that the x ,  are i.i.d. Nl(Ppl, PZ,e), and 
they, are i.i.d. N1(Pp2, t'Z,e). Using the notation above, we also have that the 
PQ,C/PX,t!, i = 1,2, are independently distributed as (see Theorem 2.2, 
Corollary 1, in Section 2.3.1). Writing S, = Q , / ( n ,  - l), the usual F-test of 
size a for testing Hot: P&d= PX,e has acceptance region of the form F, I; 
PS,C/PS,ei F2. Hence, with the union-intersection principle (Roy [1953]), a 
test of H,, = n Hothas an acceptance region that is the intersection of all the 
univariate acceptance regions. Using A7.5, this is given by 

= ((v,w): F,'I +min I $ma 5 F;) 

= {(v,w): c1 I e,, I e,, 5 c , ) ,  (3.80) 

where + (= 0/(l - 0)) and 0 are eigenvalues of Q1Q;' and Ql(Q1 + Q 2 ) - I ,  

respectively [see (2.33)]. Thus for a test of size a: the rejection region is the 
complement of (3.80), namely, [0,, < cl] u [Om, > c,], where c1 and c, 
satisfy 

1 - a = pr[c, I e,, I 8,, 5 c,lZ, = Z,]. 

The optimal choice of c1 and c,, in the sense of maximizing the power, is not 
known; however, Schuurmann et al. [1973a] give values of A for the simple 
choice c1 = 1 - A and c2 = A, ford = 2(1)10 and selected values of R = +(n, 
- d - l), N = i ( n ,  - d - l), and a. 

Testing 2, = 2, is equivalent to testing that the eigenvalues of X,Z;' are 
all unity. Since these eigenvalues are estimated by those of S,S;', namely, the 
+, multiplied by (n, - l)/(n, - l), several functions such as tr[Q,Q;l] = Zj$tj 
have been proposed as test statistics (see Muirhead [1982: Section 8.2.81). 
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Unfortunately, like the trace criterion, these functions have the weakness that 
the effect of large 9,'s can be canceled by the presence of small +,'5. Such 
statistics are more appropriate for testing against one-sided alternatives Z, 
Z,, that is, against the alternative that the eigenvalues of P,?;' are each 
greater than or equal to unity, with at least one strict inequality. Pillai and 
Jayachandran "681 and Chu and Pillai [1979] compare four such tests. 
However, Pillai and Sudjana [1975] give empirical evidence that the tests are 
not robust to departures from normality, and that no one statistic is any better 
than the others with regard to robustness. 

Simultaneous confidence intervals for all ratios t"I:,t/P2,( with any noai- 
zero G, can be constructed using the methods of T. W. Anderson [1965: 11. 4851. 
However, as we found with the single population I: in Section 3.5.7, such 
intervals are not likely to be useful as they will be too wide. 

ltifmwte for the Mttltrwriufe Nnrmul 

C ROBUSI'NESS OF TESTS 

We observed above that the maximum likelihood and unioii--intersection tests 
are both based on the roots of [Q1 - + Q 2 1  -- 0. If H,:Z, = Z, (= 2, say) is 
true, we can transform the data by pretiiultiplying by Z -1/2 (A5.4) without 
changing the roots +, as 

In studying the null distributions of the two tests with respect to robustness, 
we can therefore assume that Z = I,. On this basis, Layard [ 19721 proved thaL 
if ti1 and n ,  tend to infinity in a constant ratio, and both parent distributions 
have common fourth moments, then - 2 log t i s  asymptotically distributed as 
C!Llc,G,, where k = i d ( d  + 1) and the GI are independent x: variables when 
H,  is true. The c, are functions of correlation coefficients and standardized 
fourth-order cumulants, and the c, are all unity when the parent dtstributions 
are normal. A similar result wiis obtained by Muirhead and Waternaux [I9801 
for a general family of elliptical distributions. For the special case of d = 2 and 
the four elements of v, arid w/ all independently and identically distributed wiih 
common kurtosis y,, Layard [1972] showed that 

(3 .X2) 

For the normal distribution y, = 0, and - 2 log t' is asymptotically when H, 
is true. If y2 > 0, the critical values obtained from x:  will be too small and the 
significance level greater than the nominal value. If yL < 0, the oppositr: 
situation occurs. Asymptotic nonrobustness was also demonstrated theoreti- 
cally by Ito [1969: p. 1181. For the above bivariate model, Layard 119721 
showed that the asymptotic joint distribution of the two roots ( + 1 , + 2 )  

[ = $,,,,")I also depends on the term 1 + $yz in the lionnormal situation 
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so that similar comments about the significance level of the union-intersection 
test apply. 

If the asymptotic distributions of our two test statistics are adversely 
affected by nonnormality, then we can expect at least a similar nonrobustness 
for their exact small-sample distributions. For example, Layard [1974], using 
simulation, examined a modification M of the likelihood ratio statistic &for 
d = 2 and small samples (e.g., n1 = n2 = 25). Sensitivity to nonzero kurtosis y, 
is again indicated, and Layard concluded that the significance level is so 
severely affected by nonnormality that the usefulness of the test is question- 
able. For a bivariate gamma distribution that is only mildly nonnormal 
(yz = 0.6 for each marginal), and with p = 0.9, the observed significance level 
was 15.2% instead of the nominal 5%. However, for a heavy-tailed con- 
taminated normal with y, = 5.33 for the marginals and p = 0.9, the observed 
significance level is 40%! Such conclusions are not unexpected, as the non- 
robustness of the F-test for comparing two variances is well known. We now 
consider a robust large-sample approach. 

d ROBUST LARGE-SAMPLE TESTS 

Layard [1972, 19741 used the large-sample methods described in Section 3.5.8 
for testing the equality of two dispersion matrices. Suppose for i = 1,2 we 
have a random sample of size n, from a distribution with dispersion matrix X i .  
Then, with the notation of Section 3.5.8, +(si)  - +(ai) is approximately 
N,.(O, A’cA/n,). Consider H,, the hypothesis that the two parent distributions 
are identical, apart from a possible shift in location. Then under H,, Z, = 2, 
[i.e., +(a,) = Cp(u,)] and all the higher moments are equal so that r, = r2 = r, 
say. Hence when H, is true, +(sl) - +(s2) is approximately N,[O,(l/n, + 
l/n,)A’I’A], and 

is approximately distributed as x;, where f ,  is a suitable estimate of r based 
on the pooled data. Layard called this test of H, a “standard error” test and 
recommends using pooled estimates of pub...q, namely, 

- ( n l  - 1)fiab...9(l) + ( n 2  - ’)bab...q(2) 

nl + n, - 2 pab. ‘q  - 

in f, [see (3.73)]. He also introduced the grouping and jackknife tests of H,,. 
These two tests, under the linear model formulation of (3.74), amount to 
testing the equality of the means of two normal populations: This can be 
accomplished using Hotelling’s T 2  test (see Section 3.6.2). 

Layard [1974] carried out a simulation study to compare the small-sample 
robustness of the above three tests with the modified likelihood ratio statistic 
M of Section 9.2.6 for the case d = 2. He concluded that the grouping test 
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maintained its nominal significance level well, but had a much lower power: 
This property is also shared by its univariare counterpart (Layard 119731). The 
standard error and jackknife tests had better powers, and these were close to 
the power of the M test under normality. However, their significance levels 
tended to be high and on this count the standard error test seemed preferable, 
particularly with a contaminated normal distribution. In the latter case the 
observed significance levels were approxirnately 7 and 15% respectively, and 
there was some evidence that as n ,  and n ,  were increased, the level converged 
to 5% more rapidly for the standard error test. 

InJereim Jor the Mdt iwr iute  Yorinul 

3.6.2 

a IIC)TI!LLING'S T 2  TEST 

Given a random sample v l , v z , .  , . ,vn, from N d ( p l ,  2,) and an independent 
random sample w l , w 2 , . .  . ,wn2 froin Nd(pz, X2), we wish lo test f&:0 = (p,  - 
p2) = 0. We begin by assuming 2, = 2, (= C, say). From Theorem 3.1 in 
Section 3.2.2, t - N , ( p , ,  Z/ 'n,) ,  Q1 = ( n l  - 1)S, = C,(v, - B)(v, - V)' - 
W d ( n l  - 1, Z), and B is statistically independent of Q1. Similarly, Si. - 
N d ( p 2 ,  Z / n , ) ,  Q2 = (n, - 1)S2 - W d ( n 2  -. 1, Z), and W is statistically inde- 
pendent of Q2. Since the two samples are independent, the four random 
variables V, W, Ql ,  and Q2 are mutually independent. Hence, by Exercises 2.6 
and 2.12(d), 

Test /or Equal Means Assuming Equal Disperslon Matrices 

v --- w - N~ [ e, (;, -+ - -  i2) I: ] , (3.83) 

and V - W is statistically independent of Q. Hence. defining S, = Q / ( n ,  + n 2  
- 2), we have from (2.19) and (2.20) with X = n l n 2 / ( n l  -t n 2 )  that 

To test H ,  : 8 =: 0 we calculiite 

n n  
2 -- _ _ r 2  ( 8  - w)'Sp-'(t -- w) q) n ,  + n 2  

(3.85) 

(3.86) 
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and reject Ho at the a level of significance if 

This test statistic is also equivalent to the likelihood ratio test [see (3.11) and 
Exercise 3.151. We also note that as n = nl + n ,  -, 00, 

dFd, co 

- 2  
= X d ,  

so that T t  is asymptotically distributed as x:  when Ho is true. 
Using A7.6 and arguing as in (3.12), 

(3.88) 

[ q v  - .)I2 
T: = Xsup 

8 m p e  
2 

=sup[ f i q v  ( - w) ] 
8 d,s,d)1'2 

= supt,2(d), (3.89) 
c 

where t o ( { )  is the usual 2-statistic for testing the hypothesis Hof: G'B = 0 based 
on the two samples t"vi ( i  = 1,2 , . .  . , n l )  and fly ( j  = 1 , 2 , . .  . ,n2 ) .  The 
supremum occurs when Ga SP-'(V - W) or, with suitable scaling, G= S,-'(V - 
3). This particular value of G was introduced by Fisher [1936] as a means of 
classifying a new observation x into one of two groups. The function e x  is 
called Fisher's linear discriminant function (LDF) and it will be discussed 
further in Chapter 6. 

Since H, = n Hot, we can duplicate the argument leading to (3.13) and 
show that T t  also follows from the union-intersection principle. Also, from 
(3.871, 

= pr[X(V - w-e)'s;yv - w - e )  I ~ 2 ~ , + ~ ~ - ~ , ~  , I 
so that we can construct simultaneous confidence intervals along the lines 
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outlined in Section 3.4.4. For example, a set of simultaneous confidence 
intervals for the class of all linear functions h3, with overall probability of 
1 - a, is given by [see (3.34)] 

EXAMPLE 3.6 Using individual measurements of cranial length (xl) arid 
breadth (xz)  on 35 mature female frogs (Kana esculenta) and 14 mature male 
frogs published in a study by Kauri, Reyment [1961] obtained the following 
results: 

v = (  22.860 ), w = (  21 321 ) 
24.397 22 343 

17.683 20.292 18.479 19.095 ‘ 
= (20.292 24.407 ’ ’’ (19.095 20.755) 

and 

We note that S, and S, are very similar so that the assumption of 2, = Z, is 
tenable. To test the difference between the population means for female arid 
male frogs we can use (3.86) with d = 2, n1 = 35, and n, =: 14, that is, 
T: = 1.9693. From (3.87) we therefore compare 

with F::; = 3.2 and conclude that the test is not significant. 
Although the null hypothesis of equal means is not rejected, it is instructive 

to demonstrate the calculation of confidence intervals. Writing pi == ( p f i , ,  pFl  j 
and p> = (p,,,,, p M l ) ,  we can use (3.90) with 

for constructing the contidence interval for any linear combination of the form 
h l ( p F 1  - pM1) + h , ( p F 2  - pM2) .  In particular, setting K equal to ( l , O ) ,  we 
have KSph = sll ,  the first diagonal element of Sp, and a confidence interval for 
P F l  - PMl is 

22.860 - 21.821 6.54’12[(& + h)17.903]”2 
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or 1.04 f 3.42. Similarly, setting If = (0, l), we can find a confidence interval 
for p F ,  - p,,,, , namely, 1.55 f 3.91. The two intervals have a combined “confi- 
dence” of at feast 95%. 

If we had decided before seeing the data that we required these two 
confidence intervals, then we could use the Bonferroni method with t::5/4 = 
2.31 (see Appendix D1) in the above intervals instead of (&:47,0,05)1/2 = 

6.54lI2 = 2.56. For example, the first interval now becomes 1.04 f 3.09. 
In conclusion we note, from Sp, that an estimate of the correlation between 

cranial length and breadth is 19.959(17.903 X 23.397)-’/2 = 0.98, thus sug- 
gesting that only one measurement is sufficient. The eigenvalues of S, are 
40.797 and 0.503, indicating that a single principal component wiU adequately 
describe the pooled data (see Section 5.2). The first eigenvector of Sp is 
(0.6571,0.7538). 

b EFFECT OF UNEQUAL DISPERSION MATRICES 

To examine what happens to our test statistic T t  when Z, # Z,, we assume 
that n1 and n 2  are large enough so that Si = Q , / ( n j  - 1) = Xi ( i  = 1,2). Then, 
from (3.86), 

-1 

= (v - w)t( T Z ,  1 + -p2) 1 (v - w) 
2 1 

say. Since (V - W) - Nd[O,(l/nl)Zl + (l/n,)Z,], it follows from Theorem 
2.l(vii) that 

- 1  1 
(t - w)’ -2, + -2.) (t - w) K1 n2 

(3.91) 

has a noncentral chi-square distribution with d degrees of freedom and 
noncentrality parameter 8 = 8’[(l/n,)X, + (l/n2)Z2]-%. When H,:8 = 0 is 
true, S = 0 and we have a central chi-square distribution. We note that when 
n, = n 2 ,  Do has the same distribution as (3.91), irrespective of the values of Z, 
and Z,, thus demonstrating the asymptotic insensitivity of To2 to 8, # 8, in 
this case. Using the approximation St = Z,, Ito and Schull [1964: p. 75-78] 
demonstrated empirically that the effect of 2, # 2, on the significance level 
and the power of the T: test in minimal if n, and nz are very large, n, = n 2 ,  
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and the eigenvalues of z',:;' lie in the range (0.5,2). When rrl and 11 are 
markedly dilferent, inequality of Z, and Zl has a serious elTect on the size and 
power.of T:. [It should lie rioted that the authors used the trace statistic 7 2  
which is cqual to T i  as mff = 1; see (2.56)]. 

Injtvrenct- for the Mttlirvnriate Normcil 

C EFFECT OF NONNORMALITY 

When 2, = Z, we see from (3.88) that for normal data T: is asymptotically 
distributed as xi when H,, is true. Even with nonnormal data, the central limit 
theorem ensures the asyniptoric normality of f - w so that Do, now the same 
as (3.91), is still asymptotically xi when H,) is true. Hence 7;: hrts the correct 
asymptotic null distribution when Z, = Z,, irrespeclive of the underlying 
distributions of the v, and WJ.  This asymptotic robustness might be expected to 
hold for moderate-sized samples. Such robustness is demonstrated by Everitt 
[1979a] and his table is reproduced as Table 3.5. For the uniform distribution 
the observed (true) significance levels are very close to the nominal values. In 

TABLE 3.5 
Corresponding to Two-Sample T 2  Statistic" 

Percentage of Samples Exceeding lo!&, 5% and 1% Points of the F Statistic 

- _ _ _ _ c _ ~ _ _ c _ _ _ _ _ _  ~-~ 
Distribution SamDled 

Simulations Mul tinoimal Uniform Fxpunential Lognormal 

d N n l  n 2  10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 51% 1% 

5 5 10.3 5.1 1.1 10.1 5.7' 1.2 8.0' 3.6" 0.6' 7.1" 3.0' 0.8 
5 10 10.4 4.8 1.0 9.4 5.2 1.3' 8.6' 4.0' 1.2 8.Sh 3.8' 0.7 
5 15 10.2 5.0 1.3h 9.6 4.8 0.7h 9.3 4.8 1.4' 9.3 4.5 1.3' 
5 20 10.4 5.2 0.9 9.8 4.8 1.3" 10.1 5.6 1.5' 9.5 5.2 1.6h 

2 5,000 10 10 10.1 5.4 1.2 9.8 5.4 1.2 9.4 4.3" 0.8 7.3" 2.9' 04 '  
10 15 10.0 4.8 1.0 9.8 5.2 1.1 9.4 4.5 0.7' 8.1" 3.2" 0.5' 
10 20 9.6 4.4 1.0 9.9 5.3 1.5h 9.0' 4.3' 0.7' 8.8" 4.3b 0.8 
15 15 9.6 5.2 0.9 10.7 5.0 1.2 9.3 4.4 0.8 8.1" 3.4b 0.4' 
15 20 9.1" 4.3b O.? 10.2 5.0 1.0 9.2 4.4 0.9 8.3" 3.5' 0.4' 

10 10 9.5 5.1 0.9 9.6 4.8 0.9 9.6 4.7 0.8 7.2h 3.0" 0.4' 
10 15 9.5 4.9 1.0 9.X 5.0 1.1 9.4 4.5 0.9 7.6" 3.4" 04' 

4 5,OOO 10 20 9.2 4.3" 1.0 9.7 5.1 1.2 9 2  4.7 0.8 8.3* 3.5' 0.5' 
15 15 9.7 S . l  1.0 9.6 4.9 1.1 9 5  4.6 0.7" 7.bh 3.0" 0.4h 
15 20 9.9 5.2 1.1 10.0 5.2 1.2 9.6 4.3" 0.9 8.0' 3.6" 0.4' 
20 20 9.5 4.6 1.1 10.7 5.2 l..O 8.5" 4.0" 0.6' 7.4" 3.Zh 0.5' 

15 15 9.2 5.1 172 10.4 5.7 1.2 76' 3.0' 0.3" P.2" 3.2' 0.5' 
6 2,500 15 20 9.0 4.1'' 0.8 10.1 4.6 1.0 9.0 3.8' 0.4h 8.4" 3.7" 0.6 

20 20 9.9 5.4 1.4 . ~~ 9.3 5.2 1.2 9.3 ...... 4.6 . ~ ~ 0.5' . X.2' 3.2" ~ 0.5' 

8 l,OOO 20 20 9.7 5.5 1.1 10.4 5.3 1.5 8.2 4.4 0.8 8.2 3.5' 0.2' 

zc) 20 10.1 5.3 1.0 9.3 5.0 1.0 9.2 4.2" o.8 x 5b 3 . 8 ~  O.P 
- . ~ ~  . ~~ ~~~ .. ~. ....... . .~. _ _  

. ..-~ .. .... .. ~. ._ . ~. . . . ~ ~  ~ ~ .~ ~ 

. ..~ .. 

"From Everitt 11979a: Table 21. 
%dica!es that the observed proporlion is more than 2 {  a( l  -. u)/N 
level. 

from the nominal a 
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general, the test is conservative in that nonnormality tends to reduce the true 
significance level, with the reduction being much greater with a highly skewed 
distribution like the lognormal. This is in contrast with the one-sample test, 
where nonnormality tends to increase significance levels. From Table 3.5 we 
note that the value of d and the equality or inequality of n, and n 2  appear to 
have little effect on the observed significance level. However, if nI = n 2 ,  we can 
assume that T: is robust with regard to both nonnormality and moderate 
departures from 2, = Z2. 

Mardia [1971] has given a permutation test based on the statistic Y(') of 
(2.59), namely, 

(3 -92) 

This test is a special case of V* in Section 9.2.4a with I = 2 and s = 1. Under 
the more restrictive null hypothesis H,, that the n = n1 + n2 observations vf 
and y are independently and identically distributed, V( l )  has approximately a 
beta distribution with sad and +a(. - d - 1) degrees of freedom, respectively, 
where 

f l - 1 - 2 c  
a =  

( n  - l ) ( c  + 1) ' 

c, = (n - n - l  3)(n - 2) { n ( n + l ) [ k  + ;f; - 4 ] - q n - 2 ) ) ,  

(3.93) 

(n - 1)(n + 1) 
d ( n  - 3)(n - d - 1) 

(n - l ) d ( d +  2) 
( b 2 . d  - n + l  c, = 

x i  = v, ( i  = 1,2, ..., nl) and x , ~ + ~  = 9 ( j  = 1,2 ,..., n 2 ) .  If we use a = 1, 
Mardia [1971] presents evidence to show that the true significance level is not 
likely to differ by more than 2% from the nominal 5% level. When n, = n 2 ,  
C ,  = -2(n - l)/(n - 3), c = - Cz/n, and, from (3.93), 

(3.94) 
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which is close to one for moderately large samples. In this case we can expect 
the test to be insensitive to nonnormality. However, the null hypothesis 
includes p1 = pz aiid Z, = 2, so that we can expect the test to be affected by 

in practice, we would use the statistic To2(n - d -- l ) / [ d ( n  - 2)],  which, 
under the null hypothesis, is approximately distributed as the F-distribution 
with ad and a ( n  - d - 1) degrees of freedom, respectively [see (3.92) aiid Ba,h 
of (2.2l)j. Tables for handling noninteger degrees of freedom are given by 
Mardia and Zernroch [ 1975b] (see also Pearson and Hartley [1972: Table 43;). 

Recently four nonparametric tests of Ziol were given by Friednian and 
Rafsky [ 19791. These tests are multivariate generaliqatioiis of the 'Wald- 
Wolfowitz and Smirnov two-sample tests and use the miniirial spanning tree 
(see Section 5.9) to order the observations. Friedman and Rafsky [1981] 
provide two useful P-P plots (Appendix C4): One highlights location dif- 
ferences, the other scale diKerences. 

Z, # 2,. 

3.6.3 Test for Equal Means Assuming [Jnequal Dispersion Mutrices 

If n, = n 2  (= no, say), we can reduce the two-sample problem to a one-sample 
problem by writing x,  = v, - w, ( i  = 1,2 ,..., no). Then the x, are i.1.d. 
N,@, Z,) with 0 = p, -- p2 and 2, = Z, + Z,, and we can test Ho:O = 0 
using 

T i  = n,,E'S; '3. (3.95) 

This statistic is distrihuted as I&,, wheii fZc, is true. However, if 2, = 2:, 
this test is not as powerful as (3.86), which is based on 2(no - 1 )  degrees of 
freedom. Also, (3.86) is insensitive to unequal 2, when n, = n 2 ,  s o  that the lcss 
of (no  - 1) degrees of freedom in using (3.95) will generally ncit be worth it. 

When n1 =# n Z r  the corresponding problem in the univariate case of unequal 
variances is known as the Uehrens- Fisher problem and various solutions have 
been proposed. One solur ion, proposed by Scheffk [1943], has been generdixd 
to the multivariate case by Bennett [1951j and extended to more than two 
populations by Anderson [1963a]. Details of the test are set out in Exercise 
3.16. Ito [1969: pp. 91-94] discussed this test in detail and showed that it is 
most powerful for a limited class of test procedures. However, the test has two 
disadvanlages. First, we would need to choose n, of the observations at 
random from the n2 ohservations in the calculation of y, so that diff'erent 
statisticians will obtain differeot values of T i  in Exercise 3.16. Far this reason 
ScheKC, 11970: p. 15031 subsequently rejected the approach. Second, the power 
of the test will be far from optimal if n1 is much less than n 2 ,  as we are 
effectively ignoring n z  -- n1 values of in calculating S,,. This eKect on the 
power is denionstrated by Ito [1969: p. 971, who compared the test with the 
most powerful test under the assumption Z, = k Z , ,  with k known (Exercise 
3.17). As more powerful tests are given below, we do not recommend Bennett's 
test. 
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In the light of (3.91), a natural test statistic for Ho : 8 = 0 is 

(v - w)’ -s, + -s2 (t - w). K1 n2 1-l 
(3.96) 

When n, and n 2  are very large, this statistic tends to (3.91) and is therefore 
approximately distributed as x: when H, is true. The statistic (3.96), a 
multivariate generalization of Welch’s [1947] test statistic, was proposed by 
James [1954]. Using Taylor expansions, James showed that the upper a critical 
value of the statistic (3.96) is, to order nF2, 

where 

1 1 
n1 n2 

s,= -s, + -s2, (3.98) 

and x i ( a )  is the upper a quantile value of x; ,  that is, 

Pr[X; 2 X%4l  = a- 

We would expect (3.96) to be robust to nonnormality, as it has the right 
asymptotic distribution, irrespective of the underlying distributions of the vi 
and 5. 

A different solution was proposed by Yao [1965], who approximated the 
aull distribution of (3.96) by Hotellings TZ,, where the degrees of freedom f 
are now estimated from the data. Using a heuristic argument, Yao showed that 

where min(n, - 1, n 2  - 1) I f I n ,  + n2 - 2. This approach is a generaliza- 
tion of Welch’s [1947] approximate degrees of freedom solution to the uni- 
variate Behrens-Fisher problem. Using simulation, Yao [ 19651 and 
Subrahmaniam and Subrahmaniam [1973, 19751 compared James’ expansion 
method with the above approximate degrees of freedom method. As far as 
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significance levels are concerned, the expansion method gives inff ated values 
that get worse as d increases (e.g., 0.08 instead of' the nominal 0.05). However, 
it also hiu a slightly lugher powcr, though this would partly reflect the inflated 
significance level. Subrahmaniam and Subrahmaniam [ 1973, 19751 also in- 
cluded Bennett's test and demonstrated its general infefiority to the other two 
tests, particularly when n, + n 2 .  A very general test procedure for handlfiig 
problems relating to unequal variances has been given by Johansen [1980]. His 
procedure leads to a critical value that is similar to k ,  of (3.97). 

EXAMPLE 3.7 From James [1954] we have the following data: 

From (3.98), 

14.936 1.899 
1.899 6.003 

and 

(V - iV)'S;'(V - W) (-3.23, -7.51) 0.06976 -0.02207)( 1;::: 1 ( -0.02207 0.17357 

:- 9.45. 
Also 

B ~ --s 1 -19 = 0.5457 -0.0956) 
n1 ' - I  ( -0.3424 0.2155 ' I 

trR: = 0.4097, (trB,)2 = 0.5794, trB: = 0.8873, (trB2)2 = 1.5346; 

(trR,)' = 0.19209; 1 
.f F-i trB,2 = 0.11604, 

c 1 
n, -- 1 

A = 1 1- j(0.19209) = 1.0480 and B = i[$(0.19209) + 0.11604) = 0.02651. 

Values of k, are given in 'Table 3.6. 
For the approximate degrees of freedom method we have (Yao 119651) 

- 1 = i ~ ( 0 . 1 6 5 7 ) ~  + &(0.8343)2 

I 
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TABLE 3.6 Critical Values for the James ( k , )  
and Yao (T:) Tests 

0.05 5.991 7.23 8.21 
0.025 7.378 9.18 10.70 
0.01 9.210 11.90 14.43 

and f = 14.00. From (2.47) 

and this is also tabled in Table 3.6. As expected, the critical values of the two 
tests are very similar and, in general, the degrees of freedom method is 
preferred, as it is more conservative. For either test, the value of the test 
statistic, 9.45, is significant at 5%. When f is not an integer, we can use the 
tables of Mardia and Zemroch [1975b]. 

3.6.4 ProJie Analysis: Two Populations 

Suppose that a battery of d psychological tests is administered to a sample of 
n, people from a given population, and let q = (q , ,  q2, .  . . ,qd)’ be the vector 
of mean scores for the population. The graph obtained by joining the points 
(1, ql), (2, q,), . . . ,( d, q d )  successively is called the profile of the population. In 
practice, qj  will be estimated by the sample mean for the j t h  test ( j  = 

1,2 ,..., 4. 
If we have a sample of n, people from another population with mean vector 

v = (v,, v2,. . . ,vd)’, we would wish to compare the two profiles ( j ,  q j )  and 
( j ,  v,), j = 1,2,. . . ,d, using the sample data. Suppose, then, that the vectors 
scores for the first sample are v,, v,, . . . ,vnI, and those for the second are 
w,, w,, . . . ,wn2. We shall assume that the vi’s are i.i.d. Nd(q,  8 )  and the y’s  are 
i.i.d. NJv ,  2). Then the first hypothesis of interest is whether the two profiles 
are similar, that is, the two graphs are parallel as in Fig. 3.2. Expressed 
mathematically, we wish to test H,, :qk - v k - 1  = vk - V k - ,  ( k  = 2,3,. . . , d )  
or Clq = C1v, where C, is the (d - 1) X d contrast matrix in (3.18). In 
experimental design terminology H,,, is the hypothesis of no interaction 
between the groups and the tests. Now the C,v, are i.i.d. Nd-1(C,q,C,2C;), 
and the C,? are i.i.d. Nd-,(CIv, C,ZC;), so that testing H,, is equivalent to 
testing whether these two normal populations have the same mean. The theory 
of Section 3.6.2 applies and the required test statistic is [see (3.86)] 

T: = *[C,(V - W)]’(ClspC;)-’[Cl(V - R)], (3.100) 
“1 + “ 2  
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where 
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c __ 

f l l  f12 

(nl t n ,  - 2 ) ~ , ,  =: C (v, - v)(v, - 8)’ + C (3 - w)(w, -- w)’ 
i = l  J = 1  

A 

=: Q, i- Q2 = Q. 

1-1.L> 

When H,, is true, T; - T t  l , n ,  + n 2  . 2 r  that is, 

n ,  + n 2  - d 
Fd-- 1. n1 + n , - . d -  (3.101) F = To2 --__ - 

n , + n , - 2  d - 1  

In practice, we would plot the sample version of Fig. 3.2 using the samplc 
means instead of the population means. 

If we do not reject the hypothesis No, of parallelism, we may ROW wish to 
ask the question, Are the population profiles at the same level? Expressed 
mathematically we wish to test 

Population 2 

Fig. 3.2 Two parallel profiles 
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This hypothesis takes the same form as Hol so that the test statistic for Ho2 is 

which is simply the square of the usual t-statistic to  for testing the difference of 
two means for the data consisting of the column sums l’q and l’w,. When HO2 
is true, to - t n l + n 2 - 2 .  

The hypothesis Ho2 can be regarded as the hypothesis of no population 
“main effects” and it can still be true when H,, is false, as, for example, in Fig. 
3.3. However, Ho2 becomes difficult to interpret when H,, is false and, in this 
case, there is perhaps little point in testing HO2. If H,, and HO2 are both true, 
then the two population profiles coincide. 

In the same way we can investigate the hypothesis that there are no test 
main effects (i.e., effects due to the d variables), that is, 

HO3:+(q1 + vl) = + ( q 2  + v 2 )  = = $ ( q d  + vd) or C,(q + Y) = 0. 

1 2 3 4  5 
Test 

Fig. 3.3 Two profiles with the same average level. 
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a-e-e-e-• PopLilation I 

1 2 3  4 5  
Test 

Fig. 3.4 Two piirallcl profiles with no effects due to thc variables. 

When H,, is true, Ho3 implies that q1 = q, = * .  = qd and v ,  = v2 = . - .  == 

vd; that is, the two profiles are parallel horizontal lines, as in Fig. 3.4. If Ho2 is 
also true, the horizontal lines coincide. Now let ?i = (n,V -t n,E)/(n, -t n,) 
and Q = (n l  + n L  - 2 B P .  Then Clst - Nd-1(C18[3i],(n, + n,)-’C,ZC;), 
C,QC; - 14$-l(nl + n 2  -- 2,C,ZC;), and C$ and C,QC; are statistically 
independent as V, W, Q1, and Qz are mutually independent. Hence, by (2.19) 
with X = n1 t n L ,  we can test HO3 given H,, (i.e. C,q = C,v) using 

T,?. = ( 0 ,  t n,)(C,%)’[C,S,,C;] ‘C,X, (3.103) 

and T: - Ti .  ,, n!  +,,:. when HO3 r? H,, is true [see (3.101)]. 
Later, in Section 8.7.2, we shall extend the above theory to the case of 

profiles for more than two populations. These models are also dcscribed as 
repeatedmeasurement designs (I’imm [I 9801). 

EXAMPLE 3.8 A sample of 27 children aged about 8-9 years who had an 
inborn error of metabolrsm known as transient neonatal tyrosineinia (‘TN’I) 
were compared with a closely matched sample of 27 normal children (called 
the control group) by their scores on the Ilhiois Test of Psycholingual Ability 
(ITPA). ‘This test gives scores on 10 variables, namely; 

x, =: auditory reception score, 

x2 = visual reception score, 
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x3 = visual memory, 

x4 = auditory association, 

x5 = auditory memory, 

x6 = visual association, 

x ,  = visual closure, 

x8 = verbal expression, 

xp = grammatic closure, 

xl0 = manual expression. 

The data are listed in Table 3.7 and the profiles for the sample means are given 
in Fig. 3.5. The standard deviation of each mean is SD/ m, or roughly 1.35 
(= 7/ m), so that an inspection of Fig. 3.5 would suggest that the hypothesis 
of parallelism would not be rejected. The variable xl0 is omitted from the 
following analysis. 

The sample dispersion matrices (Si = Q,/26) for the control and TNT 
groups, respectively, are, to one decimal place, 

s, = 

and 

s, = 

‘49.1 16.8 2.7 27.9 10.9 30.1 6.6 64.4 23.4 
- 43.4 18.2 25.8 10.7 18.4 7.0 36.9 19.9 
- - 69.4 22.5 13.5 18.8 14.4 11.2 20.6 
- - - 77.7 32.6 39.9 17.0 56.0 32.6 
- - - - 65.4 24.9 9.7 23.6 17.5 

- - - - 49.7 12.8 48.1 22.0 
- - - 18.3 14.2 9.3 

- - - - - - - ‘ 133.9 29.7 
- 36.3 

- 
- - - 

- - - - - - - 

8.6 
8.1 

30.3 

32.8 9.6 15.3 18.9 26.1 10.3 
-1.7 17.1 16.1 14.9 11.3 16.4 
-0.2 -0.5 3.0 5.6 10.2 10.8 
75.5 14.1 7.0 18.7 35.7 -2.7 
- 55.1 7.3 14.4 27.4 6.2 
- - 42.3 5.5 4.1 10.4 
- - - 22.7 24.3 13.3 

- 82.2 19.9 
- 44.1 

- - - 
- - - - 

As these two matrices are not too different and n, = n 2  = 27, we can assume 
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that our test procedures are reasonably robust with regard to both nonnormal- 
ity and moderate departures from Z, = Z, (see Section 3.6.2~).  'The pooled 
dispersion matrix S,, is the average of S, and S,, and the T: statistic (3.100) 
for parallelism takes the value 2.2697. Hence, from (3.101), 

InJerencr lor the Mulrisaricite Normul 

and the test statistic is not significant, as Ft$ = 2.2. Forming the row sums of 
Table 3.7, we find from (3.102) that to  = 1.88. Since /ti('' = 1.68 and = 

TABLE 3.7 Test &OKS in 10 Categories for 54 Children on the Illinois Test of 
Psycholinguistic Abilities" 

1 40 
2 35 
3 30 
4 22 
5 21 
6 39 
7 39 
8 22 
9 44 

10 34 
11 30 
12 26 
13 44 
14 36 
15 30 
16 18 
17 27 
18 30 
19 33 
20 26 
21 31 
22 29 
23 34 
24 36 
25 42 
26 32 
27 38 
Mean 32.15 
SD 7.00 

32 
30 
42 
27 
38 
40 
39 
23 
33 
34 
43 
34 
42 
39 
35 
25 
28 
36 
16 
37 
33 
31 
29 
27 
40 
38 
40 

33.74 
6.58 

16 
41 
48 
34 
46 
47 
27 
34 
43 
41 
34 
32 
54 
49 
32 
38 
35 
42 
38 
54 
33 
29 
40 
34 
36 
57 
40 

20 
44 
26 
19 
28 
37 
42 
16 
31 
41 
46 
20 
48 
24 
28 
24 
25 
28 
35 
32 
32 
26 
26 
21 
31 
42 
32 

38.30 30.52 

38 
39 
42 
40 
48 
43 
36 
33 
40 
51 
50 
38 
54 
49 
43 
32 
42 
15 
51 
36 
47 
38 
33 
31 
41 
44 
36 

40.37 

37 
38 
34 
24 
33 
40 
36 
30 
40 
32 
34 
20 
44 
36 
32 
22 
25 
26 
40 
41 
37 
28 
31 
27 
38 
49 
41 

28 
32 
30 
29 
28 
34 
34 
33 
32 
41 
32 
26 
34 
35 
34 
30 
36 
32 
33 
38 
32 
21 
30 
23 
35 
32 
36 

33.89 31.85 
8.33 8.82 8.09 7.05 4.28 

43 
36 
36 
14 
22 
31 
47 
20 
41 
46 
45 
28 
52 
50 
37 
8 

16 
39 
40 
27 
22 
27 
39 
35 
41 
43 
43 

34.37 
11.57 

32 
41 
43 
30 
34 
49 
4.3 
21 
40 
3x 
38 
28 
43 
36 
3 9 
36 
30 
2X 
35 
37 
36 
27 
34 
36 
36 
32 
41 

35.67 
6.03 

30 
21  
36 
31 
24 
42 
38 
30 
27 
38 
33 
33 
44 
36 
24 
23 
24 
23 
40 
32 
28 
22 
26 
37 
31 
40 
28 

31.44 
6.35 
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TABLE 3.7 (continued) 

1 26 
2 31 
3 28 
4 19 
5 31 
6 35 
7 37 
8 41 
9 35 

10 29 
11 18 
12 38 
13 31 
14 26 
15 33 
16 27 
17 22 
18 37 
19 24 
20 11 
21 24 
22 28 
23 17 
24 31 
25 34 
26 41 
27 23 

38 
30 
36 
43 
33 
36 
35 
37 
40 
19 
26 
40 
23 
21 
20 
36 
32 
38 
40 
27 
30 
14 
25 
29 
38 
46 
26 

44 
26 
36 
39 
26 
43 
38 
36 
34 
34 
27 
27 
40 
31 
44 
39 
35 
36 
28 
36 
30 
31 
31 
34 
42 
40 
37 

26 
23 
16 
16 
29 
32 
31 
29 
49 
42 
26 
30 
28 
29 
34 
19 
26 
47 
16 
19 
26 
36 
35 
28 
31 
39 
21 

37 
43 
46 
46 
41 
46 
44 
32 
37 
32 
21 
44 
37 
41 
23 
28 
41 
46 
36 
38 
30 
48 
46 
32 
43 
44 
32 

38 
35 
28 
43 
33 
22 
29 
30 
34 
32 
22 
40 
37 
23 
37 
28 
38 
38 
34 
22 
36 
36 
25 
31 
26 
46 
34 

22 
28 
33 
33 
23 
37 
37 
32 
34 
30 
26 
29 
30 
24 
28 
23 
25 
36 
27 
23 
30 
27 
30 
24 
27 
36 
22 

28 
24 
28 
28 
30 
48 
41 
39 
36 
40 
12 
36 
45 
22 
17 
38 
24 
34 
24 
31 
38 
38 
42 
26 
27 
42 
20 

30 
27 
28 
40 
23 
34 
46 
48 
34 
22 
27 
42 
39 
28 
39 
29 
38 
32 
34 
41 
35 
31 
36 
29 
30 
41 
31 

Mean 28.78 31.78 34.96 28.63 38.30 32.48 28.74 31.78 33.85 
SD 7.53 8.09 5.51 8.69 7.42 6.50 4.76 9.07 6.64 

33 
33 
39 
28 
24 
43 
31 
27 
40 
37 
26 
38 
24 
26 
35 
36 
26 
40 
38 
35 
32 
41 
27 
31 
30 
40 
18 

32.52 
6.42 

"Data courtesy of Peter Mullins. 

2.01, we reject the hypothesis that the profiles are at the same level at the 10% 
level of significance, but not at the 5% level. Finally, the test statistic (3.103) 
takes the value q2 = 129.894, so that 

14.05 - F8,45, 129 894 45 
O -  52 8 

F -L-= 

whch is significant at the 1% level. We conclude that the scores on the d 
variables are different, which is to be expected from Fig. 3.5. 

Summing up, we conclude that the two profiles are very similar. Although 
there is a positive difference for all the variables (Fig. 3.3, this difference is not 
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Fig. 3.5 Profiles of average scores in 10 categories for normal children (control) and children with 
transient neonatal tyrosinernia (TNT) 

great when compared to a standard deviation of about 1.4 for each mean. It 
should be noted that these diflerences have high positive correlations, which 
could be a contributing factor to the systematic difference. 

EXERCISES 3 

3.1 Suppose that x I , x L , .  . . , x u  are i.i.d. N2(p,, X), where p' = (pl, pz), and 
let y, = x , ~  - x,) ( i  = 1,2,. . . ,n ) .  Show that Hotelling's T: statistic for 
testing H o : p ,  = p 2  versus H,:  p1 # p2 is equivalent to the usual paired 
comparison r-statistic Jl;p/s,. 

3.2 Let xl, x2, .  . . ,x,, be a random sample from NJp, X) and lei 7i and S be 
the sample mean and the usual unbiased estimate of Z, respectively. Let 
A be a (d - 1) x d matrix of rank d - 1 such that A l ,  = 0. Using B3.5, 
verify that 

n (X'S - 1 d )2 
nx'S-'f - - = nX'A'(ASA') -'A%. 

I>S-'ld 

Williams [ 19701 
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3.3 Let x1,x2,.. . ,xn be i.i.d. Nd(py x), where 2 satisfies (3.21). Let QH = 
C~,lC$,l(X.j - X..)2 and QE = Cy--lC$l(xij  - X i . -  X . j  + XJ2,  where 
xi, is thejth element of xi. Show that H,:pl = p2 = - .  - = pd can be 
tested using F = (n - l)QH/QE, where F - Fd-l,(n-lX&l) when Ho is 
true. [Hint: Use Theorem 2.l(iv) and Exercise 1.9.) 

Wilks [1946] 
3.4 Let x1,x2, ..., x, be a random sample from N d ( p ,  Z), and let E = 

(XI, X,,. . .,Xd)' and S-' = [(sJk)J. Using Theorem 3.3 in Section 3.4.3, 
show that Hotelling's T: statistic for testing H,: p1 = p ,  = - - - = p d  is 
given by 

d d  

T,Z = n c c s J k x j z k  - n c c s J k ( x j  + xk) / 4ccsJk . 
j - 1  k - 1  [ j : l  k I 1  r ( j k  

Verify that this expression is the same as that given by Exercise 3.2. 
3.5 Let 9; = pi - p d  ( i  = 1 , 2 , . .  . , d  - 1). Show that the set of all linear 

combinations CfZ: hj+; is equivalent to the set of al l  contrasts Zy=l cipi 
<c;=, c; = 0). 

3.6 Verify that L, of (3.50) reduces to (n - l)trfQ12Q;;Q21Qg']. 
3.7 Suppose x - N2(p, X) where ojj = oj2 and u12 = pula2. Verify, from 

Theorem 2.1(viii), that conditional on xl, x2 = p2 + p(02/u1)(x1 - pl) 
+ E ,  where E - Nl(O, u;[l - p2)].  If x1,x2,. . . ,x, is a random sample 
from this model, show that the usual t-statistic for testing the hypothesis 
H, of zero slope ( p  = 0) is a function of r ,  the sample correlation 
coefficient of x l  and x 2 .  Verify that, given Ho true, r has density function 

3.8 Verify that the likelihood ratio statistic for testing Z = u21d based on a 

3.9 Verify (3.54). 
random sample from N d ( p ,  2) is given by (3.53). 

3.10 Let x1,x2, ..., xn be a random sample from N d ( p ,  2). Show that the 
likelihood ratio test statistic for Ho4 : p = p, and Z = Z, is given by 

X exp( - i[tr(QC,') + n(X - p,)'Z;'(% - p,)]). 

3.11 Find the matrix C of (3.55) and verify that it is nonsingular. 
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3.12 Let x, ,x2 , .  . . , x n  be i.i.d. NJp, Z), where T, satisfies (3.56). Show that the 
maximum likelihood estimates of o2 and p are given by (3.57) and (3.58). 
[Hint: 2 = a'(1 -- p)K<, + a2pld l ; ,  Z-' takes the same form as 2 and 
1x1 follows from A3.51. 

inference fur t h P  Mulrirwtiure Normul 

3.13 Verify (3.59). 
3.14 Using (3.70), show that when d = 2; 

r -  PI3 - P02P.11 * 
2 

P22 - P20P02 P a  - Po: 
pll - p2l)pll P13 - P 0 2 p l I  P22 - 

Prove that 

and 

Hence show that one possible statistic for testing p, =- p2 is Tf -= 

n,S'S,; ly .  What is she distribution of T: when pI = pz? Prove that 
p = v - W and (11, - l)Sy = ZrLl(&, - Z)(z, - Z)', where z, = v, - 
(n,/n2)'/'y. (Note: This test is riot recommended.) 

Bennett [1951] 
3.17 Given samples from two normal populations as in Exercise 16, suppose 

that 2, = kZ,, where k is known. Derive a Hotelling's T 2  test for testing 
PI = P,. 

3.18 Given a random sample from N d ( p ,  Z), obtain the union- intersection 
test for testing 2 = Z,. 



CHAPTER 4 

Graphical and Data - Oriented Techniques 

4.1 MULTIVARIATE GRAPHICAL DISPLAYS 

Graphical methods for displaying a set of d-dimensional observations 
xl, x2,. . . , x, are still somewhat in their infancy, though there have been some 
interesting suggestions. Fienberg [1979] gives a readable survey and mentions 
the following: glyphs and metroglyphs (Anderson [1957]), triangles (Pickett 
and White [1966]), k-sided polygons (Siege1 et al. [1971]) and a variant called 
STARS (Welsch [1976]), Fourier plots (Andrews [1972], Gnanadesikan [1977: 
207-2251), faces (Chernoff [1973]; see also Everitt [1978: Chapter 4]), weather 
vanes (Bruntz et al. [1974]), and constellations (Wakimoto and Taguri [1978]). 

A glyph is a circle of fixed radius with d rays of various lengths representing 
the values of the d coordinates or variables: These variables may be quantita- 
tive or qualitative (e.g., low, medium, high). In the latter case the lowest “level” 
can be represented by a ray of zero length, as in Fig. 4.la, where we have 
n = 3 observations and d = 5 variables. Reading from left to right, observation 
1 has variables 1, 2, and 4 at the medium level, and 3 and 5 at the high level, 
while observation 4 has variables 1, 3, and 5 at the low level, and 2 and 4 at the 
medium level. If the glyphs are plotted as points in a two-dimensional scatter 
plot for two of the variables, then only d - 2 rays are required. For example, a 
four-dimensional plot could be represented by Fig. 4.2, where the lengths of 
the north and south arrows represent positive and negative values, respectively, 
of variable 3 (Gower [1967b]). When using an automatic plotting device such 
as a microfilm plotter, Everitt [1978] suggests the possibility of representing 
three dimensions by a two-dimensional plot using the intensity of the plotted 
characteristic to represent the magnitude of the third variable: The size of the 
plotted points could also be used in this way. 

STARS are similar to glyphs, except that the rays are now equally spaced 
around the circle and the ends of the rays are joined up to form polygons. Fig. 
4.lb is a STAR representation of Fig. 4 . 1 ~ .  The method of faces consists of 
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13) 

(1) 
(6) 

Fig. 4.1 Graphical representation of three four-dimensional points. ( a )  Glyphs. [ h )  STARS 

representing each variable by B different characteristic such as length of nose, 
shape of face, and size of eyes, as in Fig. 4.3. Unfortunately there is a major 
problem with the technique. The faces change when the variables are inter- 
changed, so that one may need to try a variety of displays before finding the 
“best” one (see Chernofr and Rizvi [1975] and Fienberg [1979] for related 
experiments). Everitt 11978: pp. 87-94] gives a helpful discussion of the 
method with examples. Further applications are given by Jacob et al. [1976] 
and by several authors in Wang [1978]. ‘The features in Chernoffs faces, as 
indicated by Fig. 4.3, are rather crude; but with more sophisticated software, 
more “attractive” faces can be plotted (Wainer [1981]). The use of asymmetric 

L 

Fig. 4.2 (.ir;iphical represenlatioil of four-dimensional data. 
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Fig. 4.3 ChernofI‘s faces for measurements on permanent first lower premolar of various groups 
of humans and apes. From Fienberg [1979]. 

faces can effectively double the number of variables representable (Flury and 
Riedwyl[19811). 

A heipful two-dimensional representation is the so-called “profile” (Berth 
[1967]), already introduced in Section 3.6.4. Each observation is represented by 
d vertical lines or bars for d-dimensional data, with each line having height 
proportional to the value of the corresponding variable. The profile refers to 
the tops of the lines or bars and is usually drawn as a polygonal b e ,  as in Fig. 
4.4. There we have profiles for two four-dimensional observations: The profiles 
are similar, except in the fourth variable. Further details and algorithms are 
given by Hartigan [1975]. The method can be useful for detecting clusters of 
similar profiles. 

1 2 3 4 

Variable 

Fig. 4.4 Profiles for two four-dimensional observations. 
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TABLE 4.1 Percentage of Republican Votes in United States Presidmtid 
Elections in 6 Southern States, 2932-1940, 1960-1968“ 

State 1932 1936 1940 1960 1964 1Y68 

Missouri 35 38 48 50 36 45 
Maryland 36 37 41 46 35 42 
Kentucky 40 40 42 54 36 44 
Lowsiana ‘ I  11 14 29 57 23 
Mississippi 4 3 4 25 8’7 14 
South Carolina 2 1 4 49 59 39 

“From Kleiner and Hartigan [1981: Table 11. 

EXAMPLE 4.1 In Table 4.1 we have data from Kleiner and Hartigan [198l] 
giving the percentage of Republican votes in the presidential elections in six 
southern states for six elections. Various graphical displays of this data are 
given in Fig. 4.5. ‘ f ie  inexperienced viewer would probably find the bar 
profiles the most informative and the faces the least informative. However, it is 
clear that some practice is needcd in interpreting such displays, particularly in 
the case of faces. 0 

The Fourier plot method consists of representing a d-dimensional vector 
x’ = ( x , ,  x2,. . . , x d )  by the finite Fourier series 

f x ( t )  = x,/J2 t x,sint t xjwst  t x,sin2t + x5cos2r + 
and plotting f,(t) for a grid of I-values in the range - n  < t < x (or else 
replacing f by 2nt and using the range 0 < t < 1). An example showing the 
corresponding curves for five seven-dimensional observations is given in Fig. 
4.6. Andrews (19721 gives the following properties for such plots. 

1. The function preserves means. We have 

so that the curve representing the mean looks like an “average” curve. 

two functions is the 15, norm. From Exercise 4.1 we have 
2. The function preserves distance. A natural measure of distance between 

d 

f , ( t )  ---fy(l)l2dt = n c (x, - -JJ , )% 

I =  1 



S.C. MISSOURI MARYLAND KENTUCKY LOUISIANA MISSISSIPPI 

'Oo( 3660 68 - 

FACES ( ? - J O ~ ~ ~ O  - - - e A n 

Fig. 4.5 Profiles, STARS, glyphs, and faces for the data in Table 4.1. The circles in the STARS 
are drawn at 50%. The assignment of the variables to facial features is: 1932-shape of face; 1936 
--length of nose; 1940-curvature of mouth; 1960-width of mouth; 1964-slant of eyes; 
1968-length of eyebrows. From Kleiner and Hartigan [19Slj. 

I 

Fig. 4.6 Andrews' Fourier plot for five seven-dimensional observations, 

131 
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so that points x and y that are close together lead to curves which are close 
together. 

3. The function preserves linear relationships. If y lies on the line joining x 
and z, thenfy(t) lies betweenJ,(r) and f i ( r )  for all 2. 

4. The representation yields one-dimensional projections. For a particular 
value of t = t,,, the function value /%(r, , )  is proportional to the length of the 
prqjection of the vector x on the vector 

a. = (I /& ,sin t , ,  cos t o ,  sin 21 , ,  cos ~ t , ,  . . . ), 

since f,(lo) -- x’ao. This projection onto a onc-dimensional space may show 
up clusterings or any data peculiarities that occur in this subspace and which 
may be otherwise obscured by other dimensions. The plot, therefore, provides 
a continuum of such one-dimensional projections all on the one graph. We 
note that iio/l\aoll represents a point on the d-dimensional sphere of unit radius 
and one would hope that, in the course of the plot, as many of these points as 
possible were covered as c,, ranged from - s to T.  Andrews [I 9721 demon- 
strated that a better coverage can be achieved using more complex functions of 
to in a. ahove, but at the expense of having a curve with more “wiggles.” 

5.  The representation preserves variances. If the components of x are 
uncorrelated with common variance IJ*, then 

var[jx(t)] = u 2 ( $  + sidr + cos2t + sin’2t + cos22t + . . . ) .  

If d is odd, this reduces to a constant, +cia2; i f  d is even, the variance lies 
between f ( d  - 1)u2 and i ( d  -t 1)o’. For all d the variance is therefore either 
independent of t ,  or else the relative dependence on t is slight and decreases as 
d increases. This implies that the variance of f , ( l )  is almost constant along the 
graph. Unfortunately, the components of x are invariably correlated with 
unequal variances. However, the above conditions can be approxiniately 
satisfied hy transforming x to its vector of standardized principal components 
(Section 5.2.1). Since low frequencies are more readily seen than high frcquen- 
cies, it is useful to associate the most important variables with low frequencies. 
We therefore associate xI with the first principal component, x2  with the 
second, and so forth. Interesting applications of this technique to anthropologi- 
cal data and British towns are given by Andrews 11972, 19731. The case ef 
correlated components is discussed very briefly by Goodchild and Vijayan 
[1974]. Andrews [1973] applies the method to comparing covariance matrices. 

The Fourier plot suffers from the same disadvantage as the faces method, in 
that an interchange of variables leads to a different picture. However, in 
contrast to some of the other graphical techniques, which arc more useful for 
studying internal dependences among the variables, the Fourier method is 
useful for detecting external palterns such as clustering (Chapter 7), or outliers 
(Section 4.5). For example, if well-separated clusters are present, one might be 
fortunate to have a plot exhibiting distinct bands of curves, as in Fig. 4.7. 
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f 

Fig. 4.7 Andrews’ curves for a cluster of 86 people. From Morgan [1981]. 

When n > 10 the plot becomes messy and is difficult to study in detail. In this 
case we would probably separate out interesting looking subsets for closer 
scrutiny. For larger n, Gnanadesikan [1977: p. 210 l€j suggests using quantile 
contour plots for a grid of t-values and gives some interesting examples of their 
use. 

EXAMPLE 4.2 Morgan [1981] described briefly a survey of 2622 elderly 
people from 1975 households in England (see JoWe et al. [1982]). For all 
individuals, 20 variables were selected by the Departments of the Environment 
and Health and Social Services, and these were then reduced to 10 principal 
components for each of the age groups 65-74 and 75 + , accounting for more 
than 80% of the original total variation in each case (see Section 5.2). A 
k-means method (Section 7.5.3) was used to form 12 clusters of individuals 
from a subsample of 600 in the 75+ age group. Figure 4.7 illustrates the 
Andrews curves, computed from the 10 principal component scores, for each 
of the 86 people in cluster 3. This cluster consisted mainly of single female 
owner-occupiers, and from the plot there is a suggestion of an outlying group 
of four individuals. Morgan noted that the “period” of these curves suggests 
that it is principal component 6 (with coefficient sin3r) that causes them to 
separate out. This component identifies employment and these outlying curves 
correspond to the only four individuals in the cluster who are (part-time) 
employed. The Andrews curves also clearly identified employed individuals in 
the other clusters, particularly full-time employed, who have curves with larger 

0 amplitudes than part-time employed but share the same period. 



134 Gruphical und Duta-Oriented Techniques 

When the number o f  variables d is large, the above graphical representations 
become awkward to plot and difficult to assimilate. For example, glyphs with, 
say, 20 rays would present a confusing picture of short and long rays. Also, 
any change in the ordering of the variables could lead to a dramatic change hi 
the overall picture. ‘To cope with these problems, Kleiner and Harrigan [198l] 
proposed carrying out a cluster analysis or1 the variables, using, for example, 
the complete linkage method with Euclidean distances between variables [see 
Section 7.3.l(a)] so that highly correlated variables are together. Using the 
ordering of the variables imposed by the clustering, they then used trees or 
castles to represent the observations. For the data in Table 4.1 we have, in Fig. 
4.8a, a grouping of the variables (yearly percentage rates) corresponding to 
complete-linkage clustering, and Fig. 4.8h i s  a tree representation for the Statc 
of Missouri. We can now add to the displays in Fig. 4.5 the trees and castles of 
Figs. 4.9 and 4.10, but with the year order given in Fig. 4.8. Evidently, up to 50 
variables can be successfully represented by trees, though a lower figure of, say, 
30 variables may be appropriate if the branches overlap too much. Castles, 
however, do not suffer from overlap and can potentially portray many more 
variables, particularly if the clusters are well defined. The castles can also be 
tapered for clarity. For example, the above authors gave a further example 
involving yearly yields of 15 transport companies (called the 15 “ variables”) 
for 25 ycars (called the “objects” or “points”). The companies are clustered in 
Fig. 4 . 1 1 ~  and a tapered castle representing yields in 1953 is given in Fig. 
4.11b. 

In the comments that followed Kleiner and Hartigdn’s paper, Jacob [1981] 
suggested that the preclustering of variables could be used to advantage in the 
other methods as well. When “similar” variables are adjacent to one another, 
glyphs and profiles, for example, convey much more information, as clusters of 

Fig. 4.8 ( u )  Hierarchical cliistering by complete linkage for the data in Table 4.1. ( b )  Tree 
representation of data in Table 4 1 for  Missouri. From Klriner and tirtrtigan [19RLj. 
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Fig. 4.11 (0) Hierarchical clustering for yields of 15 transport cornparues ovei 25 years bv 
coniplete linkage (6 )  Tapered castlc representing yields in 1953. From Kleinzr and Ilartigan 
[1981] 

variables are more easily cornpared for tliffcrent vector observations than 
isolated variables (e.g., Fig. 4.12). Whether trees and castles are more useful 
images to contemplate than, say, faces and STARS remains to be seen. Wainer 
[19131] felt that faces are more “memorable,” though more skill is needed in 
assigning features to VdriableS. As trees and castles are hierarchical in struc- 
ture, they clearly provide more information about the results of the cluster 
analysis than most other representations. They are very useful if clustering is 
important. However, Jacob comments, “One should choose figures for the 
displays according to the extent to which they tell about the original data, 
rather than about cliaiers.” 

Ehrenberg [1975, 19’77, 19811 reminds us not to overlook the value o f  
properly prepared tables. Some of his suggestions are as follows: (1) Round to 
two significant or “effective” digits so that numbers can be easily compared; 
Final 0’s do not matter, as the eye easily filters them out; (2) border the table 
with useful summary statistics (e.g., row and column averages, when ay- 
propriate); (3) remember that numbers are easier to compare in columns; (4) 
order rows and columns by size; and (5) keep numbers to be compared close 
together. In his  1977 paper he demonstrates the value of a well laid out table 
by replacing Table 4.2 by the simplified Table 4.3. This former table is a 
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10 X 10 correlation matrix where the variables correspond to whether people 
in a sample of 7000 U.K. adults said they “really liked to watch” a range of 10 
television programs like “World of Sport” (WoS). The second table is obtained 
by rounding to one decimal place, suppressing the unit diagonal elements and 
zeros before the decimal point, giving both the upper and lower triangles of the 
matrix, keeping the numbers close together with gaps after about every five 
rows and columns for easy reading, and reordering the variables. We see at a 
glance that there are two clusters: The five sports programs have correlations 
of 0.3 to 0.6; the five current affairs programs have correlations of 0.2 to 0.5; 
and the correlations between the two groups are about 0.1. Given that the 
ordering of variables has been chosen, a simple procedure for reordering the 
correlation matrix is to cut a photocopy of the table into columns and paste 
them on a blank sheet in the correct order, and then repeat the process on the 
rows (Chatfield and Collins [1980]). 

Finally we note that graphical methods for representing asymmetric matrices 
have been suggested by several authors (see Constantine and Gower [1978] and 

TABLE 4.2 Adults Who “Really Like to Watch”; Correlations to 4 Decimal Places 
(Programs Ordered Alphabetically with Channel)” 

ITV PrB 
‘I ThW 
‘I Tod 
I’ wos 

BBC GrS 
” LnU 
I’ MOD 
I’ Pan 

Rgs 
I’ 24H 

PrB ThW Tod WoS GrS 
1.0000 0,1064 0.0653 0;5054 0.4741 
0.1064 1,0000 0.2701 0.1424 0,1321 
0.0653 0.2701 1.0000 *’ J926 0.0704 
0.5054 0.1474 0.0926 1.0000 0.6217 
0.4741 0.1321 0.0704 0.6217 1.0000 
0.0915 0.1885 0.1546 0.0785 0.0849 

0.1681 0.3520 0,2004 0.1867 0.1813 
0.3091 0.0637 0.0512 0.2963 0.3412 
0,1242 0.39% 0,2432 0.1403 0.1420 

0.4732 0.0815 0,0392 0.5806 0.5932 

LnU 
0.0915 
0.1885 
0.1546 
0.0785 
0.0849 
1.0000 
0.0487 
0.1973 
0.0969 
0.2661 

MOD 
0.4732 
0.0815 
0.03 92 
0.5806 
0.5932 
0.0487 
1.0000 
0.1314 
0.3261 
0.1211 

PIIl Rgs 24n 
0.1681 0.3091 0.1242 
0.3520 0.0637 0.39% 
0.2004 0.0512 0.2437 
0.1867 0.2%3 0.1403 
0.1813 0.3412 0,1420 
0.1973 0.0969 0.2661 
0.1314 0.3267 0.1221 
l.OOO0 0.1469 0.5237 
0.1469 1.0000 0.1212 
0.5237 0.1212 Loo04 

‘From Ehrenberg j1977: Table 41. 
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Example 2 of Morgan [1981]). Various methods relating to data matrices are 
given in Section 5.3. Several other graphical tools are also described in Chapter 
5, though the emphasis there is on representing a set of &dimensional vectors 
by a set o f  lower-dimensional vectors. Various two-dimensional plots are 
described in this chaptcr for investigating distributional properties and for 
outlier detection. For further methods of display see Barnett [1981]. 

Proarams 

World of Sport LTV 
MaKch of the Day BBC 
Groodetand 886 
Prof.Boxing ITV 
Rugby Special BBC 

24 Hour8 BBC 
Panorama BBC 
m e  Week 1TV 
Today ITV 
Line-Up BBC 

4 . 2  TRANSFORMING TO NORMALITY 

__ -cI_ 
WoS MoD.GrS PIB RgS 24l-l Pen T h W  Tod LnU ---- 

,6 .6 .5 -3 m l  .2 .1 . I  -1 
.6 a 6  a 5  .S -1 -1 O 0 
.6 .6 .s . 3  .1 .2 .1 .1 .1 
.5  .S .S . 3  ,x .2 .1 “1 .1 
.S . 3  .3 .J .1 .1 , l  .1 . l  

.L .1 .1 .1 .1 .s .4 ..2 .2 

.2 “1 .2 .2 .1 .ti .4 - 2  .2 

.l .1 .1 .1 .l .4 .4 “3 .2 
- 1  0 -1 a 1  .I .2 - 2  .a .2 
.1 0 .1 .I .1 .2 .2 ,2 .2 - I 

As the multivariate normal (MVN) distribution has played such a central role 
in multivariate analysis, it is appropriate that we should consider transforma- 
tions that help to norrualize the data. However, there are some pitfalls 
associated with the transformations discussed below (see Hernandez and 
Johnson [1980], Bickel and Doksum [19811, Box and Cox [1982]). Also, the 
parameters associated with the transformed data may not be as meaningful as 
those associated with the original data; for example, p1 - pz may be more 
appropriate than Iog(pl/p2). ’To set the scene we consider the univariate case 
first. 

4.2.1 Unirwiute Transformations 

A useful family of transformations is the following: 

This particular family, studied in detail by Tukey [195’7] for jhl I 1, contains 
the well-known log, square root, and inverse transformations. To avoid a 
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discontinuity at h = 0, Box and Cox [1964] considered the modification 
139 

(4.3) 

Using this modification, if we assume that the transformed observations $1 
are i.i.d. N l ( p ,  o’), the likelihood function for the untransformed data is 

Since the last term in square brackets, the Jacobian of the transformation, does 
not contain p or u2, the maximum likelihood estimates of p and u 2  for given h 
are 

If x 1 = ( x I x 2  - * * x,)””] is the geometric mean of the x i ,  then the maximum 
value of the log likelihood is (apart from a constant) 

L , ~ (  A) = - f n  log 6; + n log i(A-l) ( 4 4  

= - jnlog 6;, (4.7) 

where zjh) = xIA) / .k - - ’ .  Box and Cox [1964] then suggested choosing X = 1, 
where maximizes L,,(X). The maximization can be carried out directly 
using a standard numerical procedure such as solving dt,,(h)/dX = 0 
iteratively, or by simply plotting &,,(A) against A. A plot is always useful, as 
the local behavior of L,,(A) in the neighborhood of ĥ can be considered. For 
example, if ĥ = 0.2, it may be quite reasonable, for a fairly flat likelihood 
function, to set A = 0, that is, a log transformation. More formally, an 
approximate lOO(1 - a)% confidence region for the true value of X is the set of 
all h satisfying 

Lrn,(X) - Lmax(h) -< ! i ~ ? , a ,  

where pr[X? 2 x:,,,] = a. To test H,:h = A, we simply treat 2[Lm,(1) - 
Lma( A,)] as being approximately distributed as x:. Andrews [1971] proposed 
an “exact” more robust test for H,, though the empirical study of Atkinson 
[1973] suggests that the test is less powerful than the likelihood ratio test. 
Alternatively, robust M-estimators of p and u2 [see (4.32)] can be used instead 
of (4.5) (Carroll [1980]), and the resulting test for Ho combines some of the 
robustness of Andrews’ so-called significance method against outliers with 
some of the power advantages of the likelihood ratio test. 
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If some of the x, are negative, we can add a positive constant 5 to all the 
observations to make them positive. Alternatively. we can include I in the 
above likelihood function, now written L, , , ( I ,  A )  to indicate that x, is 
replaced by x ,  + [, and fiiid the maximum likelihood estimates of 6 and X (Box 
and Cox [1964]). 

John and Draper [ 198O] provided an alternative family of transformations 

A = 0 ,  

where the sign of s(‘) is that associated with the observation x. called tlic 
modulus transformation. ‘The power transformation (4.3) is effective in inahrig 
skewed distributions more symmetrical and, hopefully, more normal. For 
example, the effect of a logarithmic or square root transformation is to pull in 
one tail of the distnbution. John and Draper 119801 noted that the “modulus 
transformation, on the other hand, is effective on a distribution that illready 
possesses approximate syrnmetry about some central point and alters each half 
of the distribution through the same power transformation in an attempt to 
make the shape more nortnal.” If all the data are positive, the modulus and 
power transformatiom are equivalent. However, an alternative is still provided 
by the modulus family, since data of the form x - a, for some constant a such 
as a robust estimator of location, can be transformed. The maxiniuni likelihod 
method described ahove also applies to the inodulns family: Equation (4.7) still 
holds with i in z( ’ )  now being the geometric mean of the Ix,( -1 1 .  John and 
Draper [1980] gave an example where the hest power transformation is 
inadequate (the normal plot is S shaped), while the best modulus uansfornia- 
tion gives a linear residual plot. This might have been expected, as the residual 
plot for the untransformed data was S shaped but symmetric, indicating that n 
modulus transformation, wliicli treats the tails symmetrically, would be better 
than a skew-correcting power transformation. 

Finally we note that Hinkley [1975, 19771 has given two quick methods of 
transforming the data to obtain approximate synmetry. 

4.2.2 Multivariate Trunsforwiations 

For multivariate data, the above univariate procedures can be applied to each 
dimension with a separate h or separate pair ( I ,  A )  for each of the d variables. 
However, Andrews et al. 11 9711 have given the following inultivariate generali- 
zation of Box and Cox’s technique. We now have a vector of parameters 
X = (A,, A,, , , . ,A,), one A,  for each dimension, and the transformed vectors 
xl”) = (x$’1),. . . ,x:$df))’ arc assumed to be i.i.d. NJp, 2). Corresponding to 
(4.6), the likelihood function for A is [see (3.6)] 

d I ,  

Ln,&) = - $nlog\%l + c ( A ,  - 1) c logx,,, (4.9) 
j - 1  i -  1 
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where x i j  is thejth element of x i  and 

(4.10) 

We now choose A = k, where k maximizes &,,(A). To test H , : A  = A, we 
calculate 2[L,,(k) - Lma(hO)], which is approximately x i  when H, is true. 
Ths statistic can also be used for constructing a confidence region for A. 

Andrews et al. [1971] give a transformation procedure for improving nor- 
mality in certain directions. Some interesting plots demonstrating the transfor- 
mations described above and in the previous section are given in Gnanadesi- 
kan [1977: pp. 144-1501, 

4.3 DISTRIBUTIONAL TESTS AND PLOTS 

4.3. I Investigating Marginal Distributions 

In contrast to the univariate case, there is a noticeable dearth of practical 
alternatives to the MVN distribution. Those distributions that have been used, 
such as the multivariate t-, F-, beta, lognormal, and gamma distributions, share 
with the multivariate normal the perhaps unrealistic property that their uni- 
variate marginals all come from the same family, One useful family of 
distributions that which includes the normal is the family of elliptical distribu- 
tions (Section 2.1). A first step, therefore, in studying sample data from a 
multivariate distribution might be to check whether the marginals conform to 
some known family of univariate distributions. A simple graphical method for 
doing this is a Q-Q or quantile-versus-quantile plot (Wilk and Gnanadesikan 
[1968]) in which the sample (cumulative) distribution function is compared 
graphically with a theoretical distribution function F. Examples of F are the 
chi-square, gamma, beta, and normal distributions, and details are given in 
Appendix C. A nice feature of the Q-Q plot not shared by its competitor, the 
so-called P-P plot, is that the graph is linear even if the two distributions 
being compared have different scale or location parameters. If the scales are 
different, the slope is not Unity; if the locations are different, the graph will not 
pass through the origin. 

EXAMPLE 4.3 Normal probability plots (see Appendix C4) were made for 
the heights and weights of 38 Peruvian Indians (see Table 3.1 on p. 64, with the 
last observation excluded). These plots are given in Fig. 4.13. In assessing such 
plots it is helpful, by way of comparison, to have available plots of genuinely 
normal data for different sample sizes: Such a set of plots is gven by Daniel 
and Wood [1981]. 

We see that the plot for heights is reasonably linear up to a height of about 
1600 mm, and then there is a discontinuity. Looking at the original scatter plot 
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(Fig. 3.1) on p. 66, we see that there are about seven taller Indians with lower 
than average weights in the range 61-64 kg approximately. ’This cluster of 
observations would have the eiiect of raising the probability plot for heights in 
the region of 0 < x < 0.5. 

The probability plot for weights is somewhat different and looks S shaped 
suggesting, perhaps, a short-tailed marginal distribution for weight. 

In addition to the usual probability plot for visually assessing normality, a 
large number of tests for univariate normality have been proposed. Perhaps the 
oldest method is to base significance tests on the sample coefficients of 
skewness and kurtosis, usually denoted, respectively, by 

and 

(4.12) 

These coefficients are invariant with respect to origin and scale changes, so that 
their distributions are independent of the population mean p and variance u2. 
When the underlying population is normal, the corresponding popuration 
coefficients {fli and Pz are 0 and 3, respectively. Various approximations for 
the symrrietric null distribution of fii are available, including a normal 
approximation for ti 2 150 and a t-approxiination for rd I 8 (DAgostino and 
Pearson [1973]). Exact percentage points for 4 5 n i2 25 due to Mulholland 
11977: Table 21 are reproduced in Table D3 of Appendix D. For n 2 8,  
DAgostino and Pearson 119731 give a table of 6 and l / h  (reproduced as 
Appendix D4) for calculating the N(0,l) statistic X( &) = 8 sinh- ‘(b:/’/h). 
The null distribution of b, is more complicated, though D’Agostino and 
Tietjen [ 19711 have simulated the percentiles for selected values in the range 
7 5 n 5 50: These are given in Appendix D5. Charts for reading off upper and 
lower percentiles for 20 2 n I; 200 are Bven by DAgostino and Pearson 
[19731, (see Appendix D6). For n < 20 a complex normalizing transformation 
X( h2)-1s available (Bowman and Shenton I 19751). Approximitte distributions 
for ,/!I, when sampling fiom various noiinormal populations are given by 
Bowman and Shenton [1973a, bl: These iire useful for investigating the power 
properties of Ji;; as a test for normality. Using normalizing transformations, 
Bowman and Shenton 119751 and Pearson et dl.  [1977] propose cunnibus tes:s 
of the form Y =r X2({by)  i X’(b2) ,  which is asymptotically X: under parerit 
normality. Bowman and Shenton [1975] (see also Shenton and Bounian [1977]) 
also give useful contour plots for jointly testing fii and b, when ti > 20. 
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Dyer [1974] listed seven further tests of which the Wilk-Shapiro (W) and 
Anderson-Darling ( A : )  tests generally provide the most powerful tests for a 
reasonable class of alternatives (see Dyer [1974], Shapiro et al. [1968], Stephens 
[1974], Huang and Bolch [1974], and Lin and Mudholkar [1980: Table 11). 
Further modifications of some of the tests are given by Green and Hegazy 
[1976], and large-sample versions of W are given by Shapiro and Francia 
[1972] and Weisberg and Bingham [1975]. The statistic W is given by 

(4.13) 

where x ( ~ )  I * - I x ( ~ )  are the ordered observations, and is independent of 
scale and origin. Since -a(") = u ? ! ~ + ~ ,  we have aiy:') = 0 and, for n = 2k 
or 2k + 1, 

The coefficients u:?~+ and percentage points for W are given by Shapiro and 
Wilk [1965] for 2 I n 5 50: These are reproduced in Appendixes D7 and D8. 
Any departure from normality is detected by a small value of W, an example is 
given below. 

Shapiro and Wilk do not extend their tables beyond n = 50 and DAgostino 
[1971] gives a number of reasons that suggest that such an extension is not 
appropriate. However, for n > 50, DAgostino [1971] gives an alternative 
large-sample test statistic 

or its standardized version 

6 [ D  -(26)-'] 
0.02998598 Y =  

which, asymptotically, has mean 0 and variance 1 when the x i  are normal. If 
the x, are not normal, then E[ Y] tends to differ from zero, with the direction of 
the difference depending on the parent distribution. D'Agostino [1971, 19721 
gave tables of percentiles for n rangin from 10 to 1000 (see Appendix D9) and 
compared the power of D with W, &, and b,, thus extending the study by 
Shapiro et al. [1968] (see also Pearson et al. [1977]). From the comparison it 
appears that W and D are useful all-round tests when the type of deviation 
from normality is unknown. If the parent distribution is known to be symmet- 
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ric, b, can perform better than W, though their relative performances depend 
on n and p2. 

The Anderson-Darling statistic is given by 

where 

s 2  = Z , ( x ,  - X ) 2 / ( n  - 1) and CP is the distribution function for N,(O, 1). T‘he 
null hypothesis of normality is rejected for large values of A:.  As there is little 
difference in the powers of W and A:,  there is some computational advantage 
in using A:, as W requires different coefficients a!“)  for each n, and percentage 
points for A: are now available (Pettitt [1977]). If a = pr[A: 5 a,], then, for 
n 2 4, we have approximately a, = a,(l -t c,n-’  + c 2 n -  ’), where a,, r L ,  
and c2 are given by Tiible D10. The study by Pettitt confirms that W and A: 
have similar powers, though W seems more powerful for the highly skewed 
distributions, while ,4: appears to be more powerful for long-tailcd distribu- 
tions. 

A number of tests based on the linearity of the Q-Q probability plot (sze 
Appendix C4) are also available. Two promising tests, called F, and F2, with 
powers comparable with W are proposed by LaBrecque [1977]. 

EXAMPLE 4.4 Suppose we wish to test whether the following 11 ordered 
observations come from a normal distribution: 148,154,158,160,161,162, 
166,170,182,195,236. Then X = 172, Z,(x, - X)2 = 6226, and s = 24.95. The 
ordered values of ( x ( ~ )  -- K)/s are -0.962, -0.721, -0.561, - 0.481, -0.441, 
- 0.401, - 0.240, - 0.080, 0.401, 0.922, and 2.565. Comparing these values 
with the standard normal distribution, we see that there is evidence of both 
skewness and kurtosis. From (4.11) and (4.12) we find that \it; = 1.68 and 
6, = 4.99. Using Appendix D.3, with n = 11, we see that /&; is sgnificant at 
the 1% level, as it exceeds the 0.5% value of 1.553 (for a two-tailed test). From 
Appendix D5, h, is just below 5.10, the upper 1% critical value for n = 11. 

To calculate W of (4.14), we obtain the following from Appendix D7: 
~1:’) = 0.5601, a!;’) = 0.3315, u$”) = 0.2260, uf’) = 0.1429, and a$”) = 0.0695. 
Thus 

1 
= 

6226 

= 0.79. 

(0.5601(88) t . . . + 0.0695(25)}2 

From Appendix D8, this value i s  just below the 1% critical value of 0.792. 
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The Anderson-Darling statistic of (4.15) requires values of zi from the 
normal tables, for example, z1 = CP( -0.962) = 0.168, giving A:, = 1.007. Using 
Appendix D10 with n = 11 andp = 0.99, we obtain 

a,, = 1.0348(1 - - 1.013 - ") = 0.932. 
11 121 

Since A,2, > a,,, our test is significant at the 1% level. 0 

The search for further tests of normality continues. Spiegelhalter [1977, 
19801 proposed a Bayesian test statistic S that has good power against certain 
extreme distributions and which compares very favorably with W. Unfor- 
tunately, it requires the computation of five separate statistics; graphs for 
reading off estimated significance points for n I 100 are given by Spiegelhalter 
[1980]. Using the concept of entropy, Vasicek [1976] proposed another test 
statistic together with a table of 5% significant points. 

Lin and Mudhokar [1980] have proposed a test for normality based on the 
statistic 

(4.16) 

where r is the correlation of the pairs ( x i ,  yi) and 

1/3 

( i  = 1 , 2  ,... ,n). 
a # i  a + i  

Given normality of the xi's, Z is approximately N,(O, 3/n). More accurately, 
the upper lOOa percentile of the null distribution of 2 is 

(4.17) 

where 

u,' = 3n-' - 7.324n-' + 53.0051-~, 

Y z n  - - -11.70n-' + 55.06r1-~, 

and u, = @-'(a), where CP is the distribution function for the N,(O, 1) distribu- 
tion. l k s  approximation is adequate for II as small as 5 and the power of this 
Z-test is fairly close to that of the W-test. Although the 2-test was constructed 
primarily for detecting nonsymmetric alternatives, it compares reasonably well 
with other tests for normality against long-tailed symmetric distributions. 

Which of the above tests should be used? Some limited power comparisons 
have been made, with the emphasis largely on the types of alternative distribu- 
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tions. Unfortunately, significance level and sample size both have an effect, and 
little has been done by way of comparison in this direction. Clearly W 
( n  I 50), D ( n  2 lo), and tr, are useful test statistics, though W is awkward to 
use and A: may be preferred. Spiegelhalter’s S-statistic looks promising, but 
only rather crude graphs are published fot n 5 100: Further powcr compaii- 
sons are also needed. On the other hand, the Z-statistic, although generally ncn 
as powerful as W or S ,  has the advantage of being readily computerized and is 
easy to interpret without the need of special tables. 

For moderately large samples, Andrews et al. [1972bj have proposed a 
simple test for nonnormality based on the normalized gaps 

Gruphicul and Dutu Oricnled Techniques 

(4.18) 

where m, = E[x(,,] under the assumption of normality. If the x, are i.i.d 
Nl( p ,  o’), the g, are approximately independently and exponentially distrib- 
uted with scale parameter u. Gnanadesikan [1977: pp. 165 -1661 describes threc 
test statistics based on the g, and the reader is referred to him for details. One 
can also make a normal probability plot of the cube roots of the ordered g ,  [see 
(4.56)]. Wainer and Schacht [1978] suggest the use of weighted gaps. 

The transformation techniques of Box and Cox [1964] described in Section 
4.2.1 can be used for testing univariate normality. Gnanadesikan [1977: p. 1661 
suggests that the pair of parameters ( I ,  A )  should be used, as A appears to be 
sensitive to skewness, while ,$ seems to respond to kurtosis and longer tails. In 
this case we have the transformation 

and if the data are already normal, then A = 1. We can therzfore test for 
normalily by testing l & : A  = 1 using the statistic [see (4.7)] 2(  1) - 
ZJmU([,l)},  which is approximately x: when N o  is true. It should be noted 
that L,,,(<, 1) is independent of E ,  so that any value, including {, maxiinizzs 
I,,,([,  1) (see Exercise 4.2). 

For further references on univariate testing, see the review of Mardia [19803. 

4.3.2 Tests and Plots for Multivariate Normnlity 

If we simply investigate marginal distributions, we are ignoring the structure 
imposed by the dispersion matrix 2. Also, marginal norniality does not 
necessarily imply joint multivariate normality (see Seber [I 977: pp. 30-311 for 
references). In assessing overall multivariate notinality it is natural to try arid 
generalize some of the univariate techniques. For example, Mardia [1970, 1974, 
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19753 introduced the multivariate measures of skewness and kurtosis, pl, d and 
& d ,  respectively, defined in Section 2.7. When x is MVN, & d  = 0 and s2, d = d(d  + 2), and we can test for these values using the sample estimators 

(4.19) 1 " "  1 "  

n2 h - 1  i -1  ' i - 1  
b l , d = -  c cgh3i and b 2 , d = - C g ; t  

where 

An algorithm for computing the sample estimators is given by Mardia and 
Zemrock [1975a]. Mardia [1970] showed that, given multivariate normality, we 
have asymptotically 

and 

6 2  d - d ( d  -k 2) 

[ 8d( d + 2)/n] 1'2 
B =  - N d O ,  1). (4.21) 

Unfortunately, it appears that we must have n impractically large in most cases 
(at least greater than 50) for these large-sample approximations to be satisfac- 
tory. However, Mardia [1974] gives tables of approximate percentiles for d = 2 
and n 2 10, and provides two alternative large-sample approximations that 
can be used in conjunction with A and B to give conservative critical values for 
d > 2 and n 2 50. 

EXAMPLE 4.5 In Table 3.3 (p. xxx) we have 28 four-dimensional observa- 
tions for which 

b l , 4  = 4.476 and b 2 , 4  = 22.957. 

From (4.20) and (4.21), with d = 4 and f = 20, we have 

A = &(28)(4.476) = 20.89, 

which is not significant when compared to &, and 

22.957 - 4(6) 
B =  = -0.40, 

[ 32(6)/28] '" 
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which is not significant when compared to Ni (0, I). Although these distribu- 
tions are only approximate for ) I  = 28, they at least indicate that the data docs 

0 
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not show any marked departure from multivariate normality. 

Another approach to the problem is to base tests on the vectors u1 and u2 
whose elements are the d marginal coefficients of skewness (6; j and kurtosis 
(b2 ) ,  respectively. However, the distributions of u1 and u2 approach multi- 
variate normality very slowly, so that Small [1980] utilized the univariate 
normalizing transformations of Bowman and Shenton [ 19751 and considered 

v1 = S,sinh-'( -?), v, = y21d + S,sinh-' ( h 2  --___-- ;2&1) ,  

where sirh-'(a) implies that sinh-I is applied to each element of a. Small 
[1980] proposed the statistics 

Qi = V~'V~- 'V~ ( i  = 1,2), 

where the diagonal elements of V, and C$ are unity and the ( j ,  h )th off-diags- 
nal elemcnts are, respectively, 5: and $,, 5k being the sample correlation 
between thejth and k th  variables. Simulated trials by Small indicate that, for 
n > 29 and 2 5 d 5 8, Qi and Q, are approximately independently and 
identically distributed as x: when the underlying distribution is MVN. We 
could also treat Q1 t Q2 as x:,~. The various parameters S,, A,, and so on, are 
obtained from Johnson [1965], and details of the computation are given by 
Small [1980]. 

Alternative measures of multivariate skewness and kurtosis have been 
proposed by Malkovich and Afifi [1973] that are essentially the univariate 
measures for the data a'x,, maximized over a. Although such an approach is 
very appealing, the distributions of the sample estimates seem to be intract- 
able. In a similar vein the authors propose a geiicralization of the U'ilk-Shapiro 
W-statistic of (4.1 3). 

One of the properties of the MVN is that the regression of one variable on 
the others is linear. Cox and Small 119783 utilize this property to give a number 
of tests for multivariate normality. A further test, also based on conditional 
distributions, is proposed by I-lensler et al. [ 19771. 

A univariate procedure of Quesenberry et al. [I9761 has been generalized to 
the multivariate case by Rincbn-Gallardo et al. [197Y] as follow [with the 
change in notation ( i ,  j ,  k )  --* ( j ,  r ,  d)]. Define R ,  = E : - l x L / r  and Q, = 

C:,,(X, -- X,)(x, - Sr)' .  Let A',Ar be a factorization (e.g., Cholesky decom- 
position) of Q;' and, for r = 1,2,. . . , n ,  define 

- x r )  

1/1 Z r  = 

(I(r - ')/'I - ( x r  - gr) 'Qi  ' ( X r  - X i ) )  
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If z: = (zlr,. . . , zdr ) ,  r = d + 2,. . . ,n, consider the variables 

r = d + 2 , d + 3  ,..., n ; j = 1 , 2  ,..., d ,  (4.22) 

where G, is the distribution function for student’s t ,  distribution. Then, given 
the x i  are multivariate normal, the d(n - d - 1) random variables ujr are 
independently and identically distributed with the uniform (rectangular) [0,1] 
distribution. Testing for multivariate normality is therefore equivalent to a 
goodness of fit test of the ujr to the uniform distribution. The authors note that 
several statistics are available and mention the modified form, UAoD, of 
Watson’s U 2  statistic, proposed by Stephens [1970], that has the advantage of 
having upper 1, 5, and 10 percentage points that are approximately 0.267, 
0.187, and 0.152 for n 2 10. The details of computing UhOD are the following. 
Given y,, y,, . . . ,ym from a uniform [0,1] distribution, calculate 

u2 = w2 - m ( y  - j)‘, 

and 

U&oD = ( U2 - 0.ln-l + O.ln-’)(l.O + 0.8n-’). (4.23) 

Another statistic, called the Neyman [1937] smooth statistic, p i ,  can also be 
used (Rincbn-Gallardo and Quesenberry [1982]). Probability plots can also be 
carried out. If the ujr are ranked uo) I y2) I - - * I zqrn), then E [ u ( ~ ) ]  = 

k / ( m  + 1) and a plot of u ( ~ )  versus k / ( m  + 1) should lie approximately on 
the line through the origin with unit slope. A major weakness of the above 
approach is that it depends on the order of the sample xl, x2, .  . . , x,: Care 
should be exercised so that the xi’s are not ordered by the values of one or 
more of their components. An advantage of the method is that samples can be 
combined. For example, if we have three samples from parent distributions of 
the same functional form, but possibly with different parameter values, we can 
pool the three sets of U-values and test that this common functional form is 
normal. Also, we can test that the j th  variable in the x i ’s  is normal by 
considering the subset uj,  d + 2 ,  uj, d+  3 , .  . . , uj, (Rincbn-Gallardo and Quesen- 
berry [1982]). 

Andrews et al. [1973] suggested using the multivariate transformation 
technique of Section 4.2.2 for testing multivariate normality. If the data comes 
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from a MVN, no transformation is needed and X = 1,. We can test this using 
[see (4.9)] 

2[4naX(V - L a x ( l d ) l ~  (4.24) 

which is approximately x i  when X = 1,. If  X # l,, we can also test for 
marginal similarity by testing A, = A, = - * * = A, (Exercise 4.4). 

’The univariate “gap” methods, using (4.1 8), are based on the successive 
interpoint distances d, = x(, , I )  - x ( , )  for the ranked observations x(,). In the 
multivariate case there is, unfortunately, no unique method of ordering so that 
different sets of interpoint distances can be used. For example, Kohlf [1975) 
suggested using the lengths d, of the n - 1 edge connections in the minimum 
spanning tree (MST), which is defined as follows. A spanning tree is any set of 
straight line segments joining various pairs of points x, such that there are no 
closed loops, each point is visited by at least one line, and each point is 
connected to every other point either directly or through a chain of inter- 
mediary points. The length of the tree is the sum of the lengths of its segments 
so that the MST is the spanning lree of minimum length (see Fig. 4.14). Rohlf 
[I9751 proposed fitting a quantile plot of the ordered d: to a scaled gamma 
distribution, as in Appendix C4. The MST has also been found useful in 
comparing two populations (Friedman and Rafsky [1979]). 

A number of graphical methods based on the scaled diflerencer, y, -- 
S 1 l 2 ( x ,  - x) are available. Under the null hypothesis H, of multivariate 
normality, the 2, = Z--’/*(xA - p) are i.i.d. Nd(O,Id) and zrz, = (x, .- 
p)’Z - ‘ ( x I  - p) - x ;  [lheoreni 2.l(vi)]. Clearly the y, will have similar proper- 
ties and the Mahalanobis distances squared (Section 1.5), 

n,‘ = yl’yl = (XI  - a)’s-’(x,  - x), (4.25) 

Fig. 4.14 Minimum spanning tree for 10 two-dimensional observations. 



4.3 Dtsrrrburional Tests and PIofs 153 

will be approximately i.i.d. x $  under Ha. We note that 0,’ is unchanged if we 
work with the correlation matrix R instead of S,  as 0,” is invariant under linear 
transformations of the x,. Healy [1968] suggested checking for normality by 
plotting the D,’ [or normalized 0: such as 0:13; see (4.56)] against their 
expected order statistics. Although Andrews et al. [1973: p. 1001 suggested that 
the above chi-square approximation will be satisfactory for moderate samples 
(n > 25 for the bivariate case), Small [1978] found that much larger values 
of n are required, particularly as d increases. Now, from Gnanadesikan and 
Kettenring [1972: p. 1131, the exact marginal distribution of u, = nD:/(n - 1)2 
is Beta [a, 61, where a = $d and b = 4(n - d - 1). For sufficiently large n, the 
correlations between the u, can be ignored, and the u, can be treated as 
independent observations from Beta [a, b]. If q1) I u12) 5 . . - I u(dt are the 
ranked u,, a = $(a  - l)/a, and /3 = f (b  - l ) / b ,  then Small [1978] suggested 
plotting u( , )  against u:, where u: is the solution of 

An algorithm for doing this is given by Cran et al. [1977]. Any nonnormality in 
the orignal observations xi will lead to nonlinearity in the plot. Although the 
largest estimated values u: tend to be too high, Small stated that this is more 
than offset by the effect of correlation between the u, that tends to inflate the 
large u( , )  above what might be expected if the ui were independent. 

A different form of scaling can be used that leads to the more general 
distance measure (x, - p)T(x, - p), where I’ is an arbitrary positive definite 
matrix. Arguing as in Appendix C2, we can write 

d - 

( x i  - p)T(xi - p) = C (4.26) 
j-1 

where the wi ( j  = 1,2, .  . . , d )  are i.i.d. x:. Hence, under Ha, (x, - p ) T ( x i  - p) 
is a linear combination of independent chi-square variables that can be 
reasonably approximated by a scaled chi-square variable, that is, a gamma 
variable. Thus if p and I’ are estimated from the data, a gamma plot can be 
used for assessing normality. For example, Gnanadesikan and Kettenring 
I19721 considered the general class of distances (xi - 3)5’(xi - a). For b = 1 
we can write, as in (4.26), 

d 

( X i  - a)’s(x, - a)  = c cjy; ,  (4.27) 
j =  1 

where the cj ( c1 > c2 > - - - > c d )  are the eigenvalues of S and ( yil, yi2,. . . ,&d) 

are the principal components of x i  (see Section 5.2). In this case, the distance 
measure is useful for determining which observations have the greatest in- 
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fluence on the orientation and scale of the first few principal components. 
Similarly, if b = - 1, the case considered above by Healy [1968], 
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d 

1’1 

- E)’S-yx, - 9)  = c c-’  2 
I YI,’ 

and the emphasis is now on the last few components. Setting b = 0, we have. 
(Exercise 4.7) 

n - 1  
n 

X)’(x, - R) = ----(tr[Q] - tr[Q-,]), 

where Q -- (n - 1)s and Q-, IS Q, but with x, deleted in the calculations. The 
measure (4.28) is useful for isolating observations that excessively inflate the 
overall scale. 

EXAMPLE 4.6 We demonstrate the above ganuna plot (with b = - 1) using 
the height-weight data of 38 Peruvian Indians given in Table 3.1 (excluding 
the last observation) on p. 64. Applying the method outlined in Appendix C4, 
we first calculate 

geometric mean of the Df R = -  ~- 
arithmetic tnean of the D: 

= 0.659486 

and 

(1 - R ) - ’  = 2.93674, 

where D: is given by (4.25). Second, we interpolate linearly in Appendix I>2 as 
follows. For (1 - R ) -  ’ equal to 2.9 and 3.0, we obtain the respective values of 
;irl = 1.32430 and 4, == 1.37599. Our required estimate of TJ is then 

= 1.343. 
Third, we solve 

for x:, wlierep, = ( i  - f ) / n ,  for i = 1,2,. . . ,n. Finally, if x ( , )  5 xtz) 2 . + . 5 

x(,,) are the ordered D:, we plot the pairs (x:, x(,)). This plot is given in Fig. 
4.15 and is reasonably linear apart from the curlous hump near the upper end. 
This is no doubt due to those taller Indians with lower than average weight 
that caused a similar hump in the normal probability plot for the heights [Fig. 
4 . 1 3 ~  in Section 4.3.11. 
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4.4  ROBUST ESTIMATION 

4.4.1 Why Robust Estrrriates? 

In recent years there has been a great flurry of activity related to finding robust 
estimates of location and scale for univariate data. The reader is referred to 
Huber [1972, 19811 and Bickel [1976] for technical reviews, to Barnett and 
Lewib [1978: Sections 2.6 and 4.21 and Hogg 11979a. b] for readable, leas 
technical, summaries, and to I-{ampel [1973, 19781 for helpful nonmathetriatical 
overviews. 

The purist faces two problems when analy~ing data. First, various studies 
(see Hampel [1973: p. 88, 1978: p. 4271) suggest that practiclionsrs can usually 
expect something like 0.1 - 10% of observations (or even more!) to be “dubious,” 
that is, wrong measurements. wrong decimal points, wrongly copied, or simply 
unexplainable. Second, data are. rarely nornially distributed and tend to have 
distributions that are longer in the tails than normal. Occasionally short-tailed 
distributions arise through rounding of the data or, possibly unknown, trunca- 
tion. What is needed is a robust estimate, robust in the sense of being 
insensitive to extreme observations and yet maintaining a high eRiciency (low 
dispersion) for longer-tailed distributions. A good estimator is one that is  close 
to the hcst, say, an efficiency of 90-95‘36, when the data is exactly normal, but 
which also oflers good protection against departures from norIlliility. This can 
be demonstrated by the following example (Tukey [1960), and also Huber 
[19811). Given data from N ( p .  a’), d ,  = CJx, - xl/n is about 89% as efficient 
as s, = [c,(x, - E)’/n]’/*; however, if just 0.2% of the observations come 
from N ( p ,  9a2), then d ,  is more efficient. In the words of Hampel [1973: p. 911, 
the main aim of robust estimation is “building in safeguards against unsus- 
pectedly large amounts of gross errors, putting a bound on the influence ol 
hidden contanination and questionable outlicrs, isolating clear outliers for 
separate treatment (if desired), and still being nearly optimal d t  the strict 
parametric model.” 

Two ubeful concepts in the theoretical study of robustness aie the break- 
down point (Hampel(1971]), which is roughly the fraction of outliers that can 
be tolerated without the estimator potentially breaking down, and the influence 
function (Hampel [1974]), which quantifies the influence of contamination on 
an estimate. Influence functions for some multivariate parameters are given by 
Radhakrishnan and KdLirsagar [1981]. 

4.4.2 Estimution of Location 

a UNIVARIATE METHODS 

Before considering the rotmst estimation of multivariate location it is helpful to 
review the univariate methods first. Univariate location is usually defined in 
terms of the population mean or median, and a large number of estimators 
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have been proposed. For example, some 65 of them were compared in a 
Princeton study under various, mainly symmetrical distributions, ranging from 
a mildly contaminated normal to the extreme case of the Cauchy distribution; 
short-tailed and skewed distributions were largely neglected (Andrews, et al. 
[1972a: see Section 7c for a quick summary]). Although there was not complete 
agreement among the authors, Huber [1972: pp. 1063-10641 gave a useful 
summary of the findings and some tentative recommendations. The choice of 
estimator will depend very much on the degree of nonnormality expected from 
the data. It is interesting to note from the study how badly the sample mean 
performed, even with the very mildest contamination. Also, the study supports 
the principle, not readily accepted by the statistical world, of routinely throw- 
ing away extreme observations. Whatever the reader’s view of this principle, it 
is imperative that data should always be checked for outliers, even if one 
eventually uses the mean of the remaining data. This screening of the data will 
at least give some protection from extreme outliers and severe contamination. 

Relles and Rogers [1977] carried out an unusual and thought-provoking 
study in which they compared the performance of several outlier-rejecting 
statisticians with some of the robust procedures described below. They con- 
cluded that the statistician is at least 20% less efficient than the best robust 
estimate and that statisticians should trim off one or two observations more 
than they think they should. Stigler [1977] applied a number of the methods to 
well-known sets of scientific data and demonstrated that other aspects of data, 
such as systematic bias, for example, must be considered in robustness studies. 
In the discussion following Stigler’s paper, Professor D. R. Cox comments, 
“whether recent work is right to concentrate strongly on robustness to 
longtailed contamination rather than, for example, robustness to correlations 
among errors, is not so clear.” The problem of unsuspected correlations is 
highlighted by Hampel [1978: p. 428). Box [1979: p. 2041 raises similar 
questions in the following comment: “It -is currently fashionable to conduct 
robustness studies in which the normality assumption is relaxed (in favour of 
heavy tailed distributions or distributions containing outliers) but all other 
assumptions are retained. Thus it is still assumed that errors are independent, 
that transformations are correctly specified and so on. This seems to be too 
naive and narrow a view.” These comments are supported by Wegman and 
Carroll 119771, who demonstrated that current robust estimators are somewhat 
inadequate for short-tailed distributions or positively correlated data. 

We shall now consider four useful classes of robust estimators: the adaptive 
estimators, the Lestimators (linear function of order statistics), the M-estima- 
tors (analogues of maximum likelihood estimators), and the R-estimators (rank 
test estimators). Recently a new class has been suggested called P-estimators 
(Johns [1979]): These are analogues of Pitman estimators. The method of 
cross-validation has also been proposed for constructing robust estimators 
(Balasooriya and Chan [1981]). An adaptive estimator is one in which the 
method of estimation is allowed to depend partly on the data (see Hogg [1974] 
and Forst and Ali [198lJ for references). If xo)  I I * - * I x C n )  are the 
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order statistics for a sample of size n ,  then an L-estimator takes the form 
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n 

(4.29) 

In this class are the sample mean and median, the a-trimmed mean, and the 
a-Wirisorized mean. For the tx-trinmied mean a prescribed proportion a of  
the lower .T(~,, and the same proportion of the upper x(,) are omitted; the 
remaining values are avcrageti. Since the proportion of observations to be 
trimmed might not be an integer, we set an = r t I ,  where r is a11 integer and 
0 < f < 1. Then our estimator is 

For the a-Winsorized mean we simply replace each of the upper r values 
x,,, - r + l ) ,  x(,,- r + 2 ) ,  . . . ,x(,,) by x(,,-~), and each of the lower r values 

x(~ ) , .  . . , x ( ~ )  by x(,, 1), so that our ordered sample is now y'  = 

(X(,+l),... , .T(r+l) ,  X(r+?),.*.rX(n-r-l)9 X ( n - r ) , . ' . , X ( " - , . , )  and 
p = j i  

In general, trimmed means are preferred to Winsorized means. Asymptotic 
theory for both methods is given by Shorack [ 19741. 

For normal data the a-trimmed mean has an efficiency of roughly 1 - {a ,  
ranging from 1 for a zero-trimmed mean (arithmetic mean) to 3 for a 
0.5-trimmed mean (median). The situation is dif-Terent for nonnormal data and 
we are faced with the problem of choosing a. A popular choice seems to be 
a = 0.1. which leads to B 10% trim in each tail. Another possibility is to use an 
adaptive trimmed mean (see Nogg [1974] and the invited comments) in which 
a is determined from the data using an appropriate measure of Iionnormality. 
Hogg [I9673 originally used the kurtosis, but more recently (Eiogg [1972]) 
proposed the measure 

[U( .05)  - Z(.OS)] 
'= 

where u(a)  is the average of the largest nath order statistics, with fractional 
items used i f  tia is not an integer [as in (4.30)], and z ( a )  is the average of the 
smallest riath order statistics. Prescott [1978] examined the asymptotic proper- 
ties of several adaptive trimmed means based on Q. DAgostino and Lee 
[1977], and De Wet and Van Wyk [1979], investigated the robustness of several 
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estimators to varying Q or kurtosis in the parent distribution. For highly 
skewed distributions, asymmetric trimming, with a1 at one end and a2 ( #  al) 
at the other, may be more appropriate (Hogg [1974], Hertsgaard [1979]). 

An M-estimator ji is obtained by solving an equation of the type 

(4.32) 

where s is a robust estimator of the population scale parameter for x. Since 
there is a wide choice of functions +, a number of different estimators have 
been proposed. To give the rational behind the method it is convenient to 
ignore the scale parameter for the moment and assume that our sample comes 
from a distribution with probability density function f ( x  - p ) :  We follow 
Hogg’s [1979a, b] discussions. 

The logarithm of the likelihood function L ( p )  is 

n n 

where p(x) = -log f ( x ) .  Writing 

where p’ (x)  = +(x), the maximum likelihood estimate ji satisfies 

(4.33) 

Ignoring any constant in logL(p), we have the following three interesting 
cases: 

(1) Normal: p ( x )  = x2/2, + ( x )  = X ,  ji = X. 
(2) Double exponential: p(x) = 1x1, +(x) = - 1 for x < 0, and +(x) = 1 

for x 
(3) Cauchy: p(x) = log(1 + x2), +(x) = 2x/(1 + x’), and (4.33) must be 

solved iteratively. 
For theoretical reasons Huber [1964] proposed that we use, for our robust 
estimator p, the maximum likelihood estimator for a density function that 
looks like a normal in the middle and a double exponential in the tails. Thus 

0, p = sample median. 
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and 

(4.34) 

where a is usually chosen to be close or equal to 1.5. With this J ,  function, 
(4.33) must be solved iteratively and the solution is called an M-estimator. M 
for maximum likelihood. To obtain a scale-invariant version of this estimator 
we could solve (4.32) using a suitable s. We shall see later that the sampie 
standard deviation is unsatisfactory, as it is not robust. Two useful ad hoc 
estimators are 

medianlx, - median( .,)I 
0.6745 

(4.35) $ z- -----_____ 
1 

or MAD (median of the absolute deviations), and 

75th percentile - 25th percentile 
(4.36) 

2(0.67Zj- s 2 =  -__- 

‘The divisor 0.6745 is used, as s, is an estiniator of the standard deviation u 
when the data are normal. Equation (4.32) can he solved iteratively using, for 
example, the usual Newton-Raphson method: 

where ji(l,  can be taken as the sample median, and the denominator of the 
second term is simply the number of observations that saiisfy Ix, - &,,l/s 5 n 
(Hog [1979b] also mentions two other methods). Several other I) functions 
have been proposed in the literature, including Hanipel’s $, Andrews’ sine 
(wave) function 

Tukey’s biweight function, 

(4.38) 

(4.39) 

and, more recently, a promising modification of Hampel’s 4 bascd on the tanh 
function (I-Iampel et al. [1981]). The 1c/ function give5 greater weight to 
observations from the central part of the distribution and less weight, or even 
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zero weight, to observations from the tails; extreme values are pulled toward 
the origin. The sine and biweight procedures are very similar and are reasona- 
ble substitutes for each other. As the p functions associated with these two 
redescending I) functions are not convex, there could be certain convergence 
problems in the iterative procedures. Although this situation is not very likely, 
the procedures should be used with care. In contrast to trimming and 
Winsorizing, the above I) functions provide a much smoother down-weighting 
of extreme values. Adaptive M-estimators can also be used (eg ,  Moberg et al. 
[19781), and asymmetry of the undklying distribution can also be taken into 
account (Collins [1976]). 

We now briefly consider the class of R-estimators. These are adaptions of 
various nonparametric statistics for testing hypotheses about a location param- 
eter. Perhaps the simplest is the median, which is also an Lestimator, and it 
forms the basis of the one-sample sign test for location. Another well-known 
R-estimator is the so-called Hodges-Lehmann estimator (Hodges and Leh- 
mann [1963]), the median of the averages of all possible pairs of observations. 

In spite of the overwhelming evidence, statisticians are still rather slow in 
using robust procedures along with standard techniques. Unfortunately, old 
habits die hard and one's activities can so easily be dictated by the available 
software. Another reason for the delay is perhaps. the great number of 
procedures that are available and the differences of opinion which exist among 
the proponents of robust techniques. However, there is agreement that a robust 
method should be used and, as several of the methods work well, we should 
perhaps concentrate on just one or two methods. H o g  [1979a] suggested using 
Huber's Equation (4.34) with u = 1.5 followed by two or three iterations with 
the sine ( a  = 1.5) or biweight ( a  = 5) function. He proposed computing both 
the classical and robust estimates, and looking carefully at those points with 
low weights if the estimates differed markedly. 

A third possible reason for the slow adaption of robust estimates is the 
absence of a corresponding robust theory for small-sample confidence inter- 
vals. Although most robust estimates of location are asymptotically normal, we 
require robust variance estimates of our location estimates (not to be confused 
with the robust estimation of the population variance). Some progress has been 
made in this direction using Studentized robust estimates (Shorack [1976], 
Gross [1976: 25 procedures], Barnett and Lewis [1978: Sections 4.2.4 and 4.31). 
For example, the a-trimmed mean provides good protection against mild 
contamination and it can be Studentized using a Winsorized sample variance 
(Tukey and McLaughlin [1963], Huber [1970, 1972: pp. 1053-10541) or the 
difference between the means of the upper and lower trimmed groups (Prescott 
[1975]). For M-estimation we can use a Taylor expansion of (4.32) and obtain 
(Hogg [1979a]; see Exercise 4.8) 
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as an estimate of the variance of &(ji - p). Also, (n - 1)1/2(ji  - p)/6+ has 
approximately a I-distribution with n - 1 (or fewer; see Huber 11970)) degrees 
of freedom. A different method of interval estimation using an M-estimator 
and percentiles of a certain function is given by Boos [1980]. The effect of 
asymmetry on the variance estimates is investigated by Carroll f 19791, and 
three estimates of variance are compared by Rocke and Downs [1981]. 

b MULTIVARIATE METHODS 

Having discussed the univariiite situation in some detail, we are now perhaps 
better able to appreciate the problems associated with multivariate robustness. 
Unfortunately, less progress has been made with the multivaiiate case and 
many of the estimators proposed are simply vectors of the corresponding 
univariate robust estimators. For example, there is x M, the vector of medians 
(Mood [1941]); xHL, the vector of Hodges -Lehmann estimalors proposed by 
Bickel [1964]; and xTtrr), the vector of a-trinuned means (Gnanadesikan and 
Kettenring [1972]). In comparing such vector estimates of location, one is faced 
with the problem of measuring eficiency. Most measures are based on the 
eigenvalues of the dispersion matrix of the estimate such as the determinant or 
trace of the matrix (A1.2). Using the determinant as a measure, Bickel [1964] 
showed that robustness can be related to the determinant of the population 
correlation matrix P, -- [( p , , ) ] .  For example, when the absolute value of lPp[ is 
large, x and x IIL share their corresponding univariate robust properties. 
However when lPpl = 0, the distribution of x is close to being degenerate 
(singular) and xM and xHL can have extremely poor efficiencies relative to SZ, 
even in the presence of heavy contamination. Bickel considers the case d = 2 
in some detail: lP,l = 0 then corresponds to Ip(  2: 1. Gnanddesikan and 
Kettenring [1972] also considered the case d = 2 and compared xM, xHL, xT( ,) 
and xT(2s) under thc assumption of normality. From a limited simulation they 
concluded that xM is the Ieast efficient, x . ~ (  25) is a substantial Improvement, 
and the best estimators xHL and xT( are very similar, being almost as efficient 
as SZ. Clearly xT(l) is a convenient estimator to compute, simply requiring a 
10% trim from each end for each variable. Further methods of estimation are 
considered in Section 4.4.3a below, where procedures for the simultaneous 
estimation of location and dispersion are also developed. 

Graphical und Data Oriented Techniques 

4.4.3 EL~:'imaiion of' Dispersion and Covariance 

a UNIVARIATE METHODS 

In the univariate case the robust estimation of dispersion is more difficult than 
it is for location, as there is a conflict betwcen protecting the estimate from 
outliers and the need to use data in the tails for efficient estimation. Downton 
I19661 proposed the L-estimator 

(4.41) 
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of the standard deviation u of the normal distribution. Healy [1978] proposed a 
similar estimator based on symmetrically trimmed data. If k [= (1 - 2/3)n] 
observations, relabeled y(l) I y(2) I * - * I y(k) (yCi, = x ( ~ ~ + ; ) ) ,  are left after 
trimming fin observations from each end, his estimator of u is d(n,  k), where 

(4.42) 

and b(n,  k) is the correction for bias. If 0 < B < 0.25 and n > 10, b(n, k) is 
less than 3% below a limiting value bp that depends only on p = k/n, the 
proportion of the sample left. Healy [1978] tabulated b for p = 0(0.02)0.98, 
and his table is reproduced as Table 4.4. He proposed tie estimate (4.42) but 
with b(n, k) replaced by 4,. Prescott [1979] extended the method to the case of 
asymmetric trimming. 

The sensitivity of the usual unbiased estimator, s2 = &(xi  - X) ’ / (n  - l), 
to outliers is well known. If the xi are normal, it requires only a very small 
amount of contamination to drastically reduce the efficiency of 8’: This is 
indicated by the example given in Section 4.4.1 and by Table 3 of Healy [1978]. 
The so-called breakdown point of s2 is zero, so that just a single outlier can 
cause s2 to break down as an estimator of a’. To get hound this problem we 
can trim or Winsorize the data (Tukey [1960], Johnson and Leone [1964], 
Huber [1970]). For example, a &trimmed estimate of u2 is given by 

(4.43) 

where j.2 is a robust estimate of p such as a trimmed mean, and c(n,  k) is a 
correction for bias. Because of the efficiency loss, it is advisable to use a smaller 

TABLE 4.4 The Unbiasing Factor b,,, Where p is the Proportion 
of the Sample Uncensored* 

P 0 0.02 0.04 040 0.08 
0.00 - 119.667 69.826 38,872 29.891 
0.10 23.899 19.902 17446 14.900 13.280 
0.20 11.892 10.787 9.882 9.107 8.441 
0.30 7.864 7.367 6.909 6.609 6.161 
Q40 6.828 6434 6.266 6.021 4.796 
0.60 4.687 4.393 4.213 4446 3.888 
0.60 3.741 3402 3470 3.346 3.228 
0.70 3.116 3.008 2.907 2.809 2.7 14 
0.80 2624 2636 2.460 2.367 2.286 
0.90 2.208 2.126 2-046 1.964 1.878 

‘From Healy [1978: Table 11, by permission of the Biometrika Trustees. 
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proportion /3 of trimming or Winsoriring for variance estimation than for 
location estimation. Correction factors like c ( n ,  k )  are based on the moments 
of order statistics of the normal distribution and the assumption that the 
middle of the sample is suficiently normal. Johnson and Leone [ 1964: p. 1731 
give a table for n I 15. 

The estimate MAD of (4.35) is a useful one and, although only 40% efficient 
for normal data, it is robust to outliers and long-tailed distributions. Hampcl 
[ 19741 describes it as a “crude but simple and safe scale estimate” that could be 
used “(i) as a rough but fast scale estimate in cases where no higher accuracy is 
required; (ii) as a check for more refined computations; (iii) as a basis for the 
rejection of outliers; and (iv) as a starting point for iterative (and one-step) 
procedures, especially for many other robust estimators.” 

A robust estimator ol covariance can be obtained from robust variance 
estimators via the well-known identity 

cov[U,,U2] = a(var[U, -t v,] - var[U, - & I ) ,  (4.44) 

and this can lead to a robust estimator of p12, the correlation between U, and 
U2. However, such an estimate insy not lie in the range [ - 1,1] and alternative 
estimators for p12 that lie in this range have been suggested by Devlin et al. 
[1975] using the result 

var[ ~ , / u ,  t u~/(I , ]  - var[U,/a, - Uz/u2] 
var[ ~ , / a ,  -t ~ ~ / a ~  j + var[ ~,/q - U2/u2] 

2 -t 2 p , ,  - -  (2 -- 2 p , , )  

2 + 2p , ,  + ( 2  - 2p12) 
I_______--_.______-_ I__ = 

where q IS the standard deviation of U,. Therefore, given the sarnyle pairs 
(x ,~ ,  x I 2 ) ,  i == 1,2,. . . ,n  for random variables (X,, X,), we proceed as follows: 
(1) make a robust standardization of the x,) to z,) = (x,, - ,k,)/LiJ ( i  = 

1,2, .  . . , I I ;  j = I, 2), where fi, and 6; are robust estimates of the mean and 
variance o f  3; (2) form the sums w , ~  = z I 1  + z t2  and wIz = z,, - z,,; and (3) 
calculate robust variance estimates 6, and i i _  for the { w I l )  and { w 1 2 ) ,  
respectively, and obtain 

z, - a  
== +-- e + +  a -  (4.45) 

as a robust estimate of correlation between X, and X2. ‘Trimmed (ur Winsorized) 
variances can be used, as the scale factor for bias cancels out. 

Another method of estimating the correJation is to use bivariats trimming in 

which observations “outside” the general body of data are trimmed without 
affecting the general shape of the scatter plot. Two such methods are convox 
hull trimming (Bebbington [ 19781) and ellipsoidal trinirrung (‘l’itterington 
119781). The use of convex hulls in looking for outliers is describcd by Barnett 
[ 1976al under the title of partial or P-ordering. 
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In conclusion, we mention one other procedure that involves the simulta- 
neous estimation of p and (I using a pair of equations like (4.32) (Huber 
[1964]). With suitable starting values for p and (I, these equations are solved 
iteratively. The method seems particularly useful in the multivariate case, as we 
shall see later. 

b MULTIVARIATE METHODS 

A robust estimator of the correlation matrix Pp can be obtained by robustly 
estimating each off-diagonal element using (4.45) for each pair of variables. 
Devlin et al. [1981] used 5% trimmed means and variances (a = p = 0.05) and 
called their estimator R*(SSD), being based on standardized variables and 
variances of their sums and differences. However, R*(SSD) may not be positive 
definite, and a method of “shrinking” it to achieve positive definiteness (ie., its 
eigenvalues positive) is given by Devlin et al. [1975: Equation 10 with A = 0.25/ 
fi]. With the Z-transformation (3.64), each element 51 is replaced by 

The effect of the transformation is to leave large correlations virtually un- 
changed and to shrink small correlations toward zero. Unfortunately, shrinking 
tends to introduce bias, particularly with the intermediate correlations. The 
shrunken estimator is denoted by R*,(SSD), and this can be converted to a 
dispersion estimator, S*,(SSD) say, of X by “rescaling” the correlation matrix 
using a diagonal matrix of robust (e.g., trimmed) standard deviations, as in 
(1.16). 

An alternative procedure is to use multivariate trimming (MVT) (Gnana- 
desikan and Kettenring [1972], Gnanadesikan [1977], Devlin et al. [1981]). The 
process is iterative and requires, at each step, the squared Mahalanobis 
distances D:, where 

1/2 
0, = ((xi - p*)’(S*)-’(x, - p*)) , i = 1,2, ..., n, (4.47) 

where p* and S* are the current estimators of p and 2. A fixed proportion y 
(= 0.1, say) of the x i  with the largest D, are temporarily set aside and p* and 
S* are recomputed using the formulas for ?i and S, but based on n(l - y )  
observations. Devlin et al. [1981] suggested starting the process using X and S 
in (4.4), and stopping after 25 iterations or when each Z(q;) [see (3.64)] does 
not change by more than between successive iterations. The final estimate 
is denoted by S*(MVT), which can be converted to R*(MVT) by scaling with 
the square roots of the diagonal elements as in (1.16). Unfortunately, as in the 



166 Graphical und Dara-Oriented Techniques 

univariate case of (4.43), a correction factor for bias is needed so that 
S*(MVT) is an asymptotically unbiased estiiriate of X under normality; this 
correction is not available at  present (Gnanadesikan [1977: p. 1341). However, 
the factor cancels out when forming R*(MVT). In order for these estimators to 
be positive definite (with probability l), we must have n(1 - y )  -- 1 2 d. 

Instead of deleting those observations with large values of D,, we can 
down-weight them using weights that depend on 0,. This is the basis of the 
multivariate M-estimators proposed by Maronna [1976], Huber [1977a, b], 
Carroll [1978], Campbell (1980a1, and Devlin et al. [1981]. The appropriate 
equations, which are solved iteratively as in the above MVT method, are 

and 

(4.49) 

where w,  and w, are appropriate weight functions and D, is given by (4.47). 
Under fairly general constraints on w1 and w,, Maronna [1976] proved results 
on the existence and uniqueness of the solutions of (4.48) and (4.49). For 
elliptically symmetric distributions, namely, those with density functionf(x) = 

1x1 - ] / ’ h ( ( x  - p)’Z ‘(x -- p)), he established consistency and asymptotic 
norniality of the solutions. ’This family of densities is obtained from the family 
of spherically symmetric (radial) densities of the form f(x) = h(Ilxll) by a 
noiisingular transformation of x, and includes distributions with shorter or 
longer tails than the MVN. Maronna [1976: p. 531 proposed two types of 
weight functions for w,  and w2. The first results in the maximiim likelihood 
estimators for a d-variale radial r-distribution with f degrees of freedom, and 

H,J1 ( I )  1 = + -= W 2 ( D 2 ) .  ,, / +  D 2  

Devlin et al. 119811 consider only the Cauchy case of f = 1 aiid call the 
corresponding estimate o f  I: the maximum likelihood t-estimator, S*(MLT). 
The corresponding correlation matrix, obtained by applying (1.16), is denoted 
by R*(MLl). The second method is based on the rational underlying the use of 
$ functions like (4.34) in which observations in the “central part” of the data 
set (i.e., with small D, values) are given full weight, while extreme observatioiis 
(with large 0, values) are down-weighted. The weight functions are 
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and 

where c is a “correction” factor for asymptotic unbiasedness under normality; 
unfortunately c is unknown. As D; is asymptotically x i  under normality, 
Devlin et al. [1981] choose a as the square root of the 90% quantile of x i  and 
call the resulting estimator S*(HUB), as it is based on Huber’s I) function 
(4.34), that is, wl( D )  = +( D ) / D .  

Unfortunately the above M-estimators have a low breakdown point (the 
proportion of outliers tolerated), namely, no greater than l/(d + 1) (Maronna 
119761) or l / d  (in the more general framework of Huber [1977b]). This result 
refers to outliers whose distribution is not far from the assumed parent 
elliptical symmetry. Devlin et al. [1981] give some empirical evidence that these 
bounds should be even lower with symmetrical outliers (see Table 4.5). In 
contrast, the breakdown point for the MVT method is the same as the 
trimming proportion y and therefore does not fall off as d increases. 

Devlin et al. [1981] compared, using simulation, the estimators R*(HUB), 
R*(SSD), R*(MVT), R*(MLT), and R*(REG), a regression estimator due to 
Mosteller and Tukey [1977: Chapter lo], and came .to the following conclu- 
sions. The regression method requires substantial computation and lacks the 
d n e  invariance property shared by the others (SSD in special cases only) and 
S; namely, if y = Ax, then Sy = ASA’. The MY”, MLT, and HUB are all 
useful methods, though if extreme outliers are present, robust starting values of 
p* and S* instead of 2 and S should be used for the iterative process. The 
effect of a robust start on the breakdown point is clearly demonstrated in 
Table 4.5. The MLT method seems the most stable under various conditions, 
unless d is quite large; MVT is then preferred, having better breakdown 

TABLE 4.5 Percentage of Contamination Tolerated“ 

d = 20 Type of Contamination 

Estimator Symmetric Asymmetric 

R 
R*,(SSD) 

R*(MVT) with robust start 
R*(HUB) 
R*(HUB) with robust start 

R*(MLT) with robust start 

R*(MvT) 

R * W T )  

0 
5 

10 
10 
10 

2 25 
15 

2 25 

0 
5 
4 

10 
1 
1 
2 
2 

“From Devlin et al. [1981: Table 31. 
bValues tested: 0(1)5,10(5)25. 
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properties. If eigenvalues and eigenvectors are extracted, as in principal 
components, MLT again seems to come out in front. When there are a large 
number of missing values, R!@SI)) can be useful because of its parsimonious 
use of the available data; r,; is based on the number of complete data pairs fur 
the j t h  and k th variables only. Unfortunately, the shrinking process of (4.46) 
brings R:(SSD) closer to Id so that estimators of eigenvalues will be biased. 
This method is therefore not recommended for robust principal componerit 
analysis. 

Campbell [ 198Oal proposed using a “ redescending” + function in wl(D) = 

1cI ( D ) / D ,  namely, 

along with 

Here 

(4.52) 

where c1 and c2 are chosen by the experimenter. The rationale behind (4.52) is 
that, under normality, Fisher’s square root transformation for the chi-square 
distribution gives U, as approximately Nl(@, I /  a); c1 is an approximate 
quantile of N,(O, 1). When c1 = 00, we arrive at the usual estimators X and S; 
when c2 = 00, (4.51) reduces to (4.50). From “extensive practical experience” 
Campbell suggested c1 = 2 and c2 = 1.25 as suitable values. His equation for 
p* is (4.48), but his equation for S* is 

From simulation experiments Campbell demonstrated that the robust variance 
estiniates obtained from (4.53) are reasonably efficient under noainality in that 
they are generally within 2-3% of the corresponding elements of S (which are 
most efficient under normality). Further studies by Cainpbell (personal com- 
munication) indicate that the values of constants like c,  and c2 are critical. 
With a suitable choice of influence function and associated constants, the 
estimates are approximately unbiased and, unlike S*(MVT), correction factors 
for bias are unnecessary. 
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4.5 OUTLYING OBSERVATIONS 

The concept of an outlier or a “dubious” observation has tantalized statisti- 
cians for many years. The key question is, Should we discard one or more 
observations from a set of data simply because they appear to be “inconsistent” 
with the rest of the set? We have seen in Section 4.4 that current thinking on 
the closely related topic of robust estimation supports some form of automatic 
truncation or modification of the data. However, a closer look at an extreme 
observation is often warranted, as it may shed light on underlying structures or 
tell us something about the recording of the data. For example, an observation 
may deviate sharply from a fitted hypothesized model such as a regression, 
analysis of variance, or time series model, because the model breaks down at 
that particular point and not because the observation is spurious. On the other 
hand, we have already noted in our discussion on robustness that wrong 
measurements or wrongly recorded data at either the experimental or computa- 
tional stage are much more common than is generally appreciated, a few 
percent of wrong values tending to be the norm. As Barnett and Lewis [1978] 
and Hawkins [1980] give extensive, readable surveys of the vast literature on 
outliers, we shall simply highhght one or two basic ideas and outline some 
procedures for multivariate data. Gnanadesikan and Kettenring [1972] give a 
helpful review of multivariate techniques and this material is reproduced in 
detail by Gnanadesikan [1977]. 

To aid our search for outliers we need graphical techniques to provide 
possible candidates for further investigation, and suitable follow-up tests of 
“discordancy” of these observations with the rest of the data. With univariate 
data the observations are readily ranked so that the largest and/or smallest 
observations come up for scrutiny. When there are several possible outliers, we 
can test the extreme observations one at a time (consecutive procedures) or as a 
group (block procedures). The consecutive method, however, may suffer from a 
masking effect in which the less extreme outliers mask the discordancy of the 
most extreme observations under investigation. 

When we turn to multivariate data, the situation is even more complicated, 
for a number of reasons. First, for more than two dimensions, there is the 
problem of presenting the data graphically so as to highlight the presence of 
any outliers. Second, there is the problem of ordering the data so that we can 
isolate the extremes or observations that separate themselves from the bulk of 
the data (see Barnett [1976a]). Third, a multivariate outlier can distort the 
measures of orientation (correlation) as well as the measures of location and 
scale. Referring to the bivariate data in Fig. 4.16, observation A will inflate 
both variances, but will have little effect on the correlation; observation B will 
reduce the correlation and inflate the variance of xl, but Will have little effect 
on the variance of x,; and observation C has little effect on variances but 
reduces the correlation. From another viewpoint, B and C add what is 
apparently an insignificant second dimension to data that are essentially one 
dimensional, lying almost in a straight line, A fourth problem with multivariate 
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outliers is that an outlier can arise because of either a gross error in one of its 
components or small systematic errors in severable components. Clearly the 
situation is complex aid ,  as eniphasized by Gnanadesikan and Kettenring 
[1972: p. 1091, there is not much point in looking for an oniiiibus outlier 
protectiori procedure. We need an arsenal of methods each designed for a 
specific purpose. 

As a first step in detecting outliers we can look at thr: d univariate marginal 
distributions and apply the univariate techniques described by Barnett and 
Lewis [1978: Chapter 31. Discordancy tests are provided there for data from 
the gamma, exponential, truncated exponential, normal, Pareto, Gumbel, 
FrCchet, Weibull, lognormal, uniform, Poisson, and binomial (but not the beta) 
distributions. The coefficient of kurtosis, 11, of (4.12), is a useful statistic for 
detecting outliers among norm;ilIy distributed data. If b, is significant, Ehe most 
extreme observation is removed and b, retested on the remaining ohservations. 
For nonnormal data with a known distribution, a normalizing Itransforrnaticm 
can sometimes be used as, for example, in the lognormal, Poisson, binonlial, 
and gamma distributions. However, a major weakness of this one-dimensional 
approach is that outliers like C in Fig. 4.16, wtuch mainly affect the cctrrek- 
tion, may not be detected. 

In the case of bivariate data, the sample correlation r is very sensitive to 
outliers and can therefore be used for their detection. For example, when the 
data are bivariate normal, Gnanadesikan and Kettenring 119721 suggest a 
normal probability plot of the values 

Gra~thicul and Data Oriented Technique3 

z(r ,) = 1 log [; ----- ;---Iy (4.54) 

where r I is the sample correlation between the two variables based on the 
data with xi omitted. Uevlin el al. [1975] capitalize on the useful concept of the 
influence curve (Hampel [79741) and present two graphical methods based on 
the sample influence function of r.  One of their methods leads to the function 
( n  - 1)12( r )  -- Z (  r which, for a reasonably large sample of normal 
bivariate data, is approximately distributed as the product of two independent 

*2 

Fig. 4.16 Scatter plot for bivanate data showing three possible outliers A ,  8,  and C 
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N ( 0 , l )  variables. They propose a further normalizing transformation prior to 
probability plotting. 

For higher-dimensional data we can examine the $d(d  - 1) scatter plots for 
all the bivariate marginals, provided that d is not too large, and then apply the 
above bivariate methods for outlier detection. However, although marginal 
distributions will detect a gross error in one of the variables, they may not 
show up an outlier with small systematic errors in all its variables. Also, we still 
have the problem of outliers like B and C in Fig. 4.16, which add spurious 
dimensions or obscure singularities. Apart from 3 and C, the data lie almost in 
a one-dimensional space, the regression line. Going up a dimension we can 
envisage a set of points that all lie close to a plane except for one or two 
outliers at some distance from the plane. Generally such outliers can be 
uncovered by working with robust principal components of the observations 
(Section 5.2) instead of with the observations: One robust procedure, based on 
(4.51), is given by Campbell [1980a]. Gnanadesikan and Kettenring [1972: p. 
1111 note that the first few principal components are sensitive to outliers that 
inflate variances and covariances (if working with 2 or S) or correlations (if 
working with the sample correlation matrix R), and the last few are sensitive to 
outliers which add spurious dimensions or obscure singularities. If the ith row 
y; of Y = (yl, y2,. . . ,yn)’ represents the d sample principal components of the 
observation x i ,  then the first and last few principal components are repre- 
sented by the first and last few columns of Y. In particular, we could look at a 
scatter plot for the first two columns and use the above bivariate techniques for 
detecting outliers. One advantage of using principal components is that they 
are likely to be more normal than the original data, particularly when d is 
reasonably large, approximate normality being achieved by central limit theo- 
rem arguments applied to linear combinations. Another approach is to use one 
of the hierarchical clustering methods of Section 7.3 such as complete linkage 
for visually highlighting any cluster(s) of outliers. The multivariate kurtosis bL, 
of (4.19) can also be used as an outlier test (Schwager and Margolin [1982]). 

We note that all the plotting techniques for assessing multivariate normality 
in Section 4.3.2 can be used for detecting outliers. In the case of normal or 
gamma plots, any extreme points could be tested using one of the discordancy 
tests of Barnett and Lewis [1978: Chapter 31. Unfortunately all their gamma 
tests but one assume that the scale parameter h is unknown, but the shape 
parameter v is known (see Appendix C2 for definitions). However, the gamma 
values can be “normalized” using Fisher’s transformation y = x1l2 or Wilson 
and Hilferty’s transformation y = x1l3. In particular, for not too small, 

is approximately N~ ([ A ( 9  - 4)] 1/2 , ZA 1 ) (4.55) 

and 
1 A2 v 3  

9 v  
x1/3 is approximately Nl [Aq]’/’( 1 - ( 9 7 1 - l ) ~  - [ -1 ) . (4.56) 
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With either transformation we can apply to the .y, a discosdancy test for a 
sample from a normal distribution with unknown mean and variance: 17 such 
tests are listed by Barnett and Lewis [1978: pp. 91-92]. ‘They proposed using 
the transformation XI’~, wluch has the useful property that a change in the 
shape parameter is reflected by a change in just the normal mean. Such a 
change can be tested by a so-called “location slippage” test. However, y = x1I3 
gives a much better normal approximation and Kimber [I9791 uses it as a basis 
for two tests. He selects the two discordancy tests for normal data 

and 

(called K in his paper), where s2 = C i ( y i  - j )2 / (n  - 1). Kimber also adds a 
third statistic, 

(4.57) 

where 

n - ui 
n - - 1  ’ ui = -log 24, - ( n  -. l)log( -1 u, = XJX, 

and the .x, have a gamma distribution. Here Z gives a scale-invariant dis- 
cordancy test whose null distribution is essentially independent of 9,  provided 
that q is not too small (say, g > 4.5). Large values of T, b,, and Z signify the 
presence of a very large or a very sniall observation in the sample, and 
significance points for b, and Z are given in Appendixes D5 and D6, and 
Appendix D11, respectively. The critical values for 2 are apparently conserva- 
tive when i 4.5, the elkct becoming more apparent as -q gets smaller. For 
example, when n =: 20, the case q = 0.5 gives a tnie significance o f  about 3.7% 
at the nominal 5%. 

Kimber [ 19791 compared the three tests and came to the following conclu- 
sion. None of the three tests are entirely satisfactory over the wide range of 
situations investigated. However, if the sample size is not too small ( n  > 15, 
say), 2 is the best of the three tests if at most one outlier is involved, while if 
more than one outlier is likely, h, may be used in a consecutive procedure. In 
the latter case, if the test is significant, we remove the outlier farthest from j ,  
and repeat the test with IZ - 1 observations. Unfortunately, all ?he tests have 
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marked weaknesses for small samples, and the use of both 2 and b, is 
recommended when n I 15. There seems to be no great advantage in using T. 
Although Z appears to be safe to use whatever the value of q,  6 ,  should be 
treated with caution if q I 1 is suspected. The transformation x1I3 breaks 
down in this range. The maximum likelihood estimate of q [see C2.41 will throw 
some light on this question. 

If we use Healy’s [1968] plot of the 0;” [see (4.25)], we can base a formal test 
for a single outlier on D;, = max15isnD:. It transpires (Barnett and Lewis 
[1978: pp, 210-2191) that if we carry out the so-called “slippage” tests of the 
mean and dispersion matrix (multivariate versions of models A and B of 
Ferguson [1961]) using the method of maximum likelihood, both tests lead to 
D;,. This statistic is also equivalent to a statistic proposed by Wilks [1963] 
(Exercise 4.9), namely, 

(4.58) 

A table of approximate (conservative) significance levels for D;,, derived from 
Wilks’ table for r(l) by Barnett and Lewis [1978], is given in Appendix D12. 
Wilks also gave a test for the presence of two outliers. 

An outlier will tend to inflate ?t and S, and possibly reduce D;”, so that it is a 
good idea to use the robust version of D;”, namely, ( x i  - p*)’(S*)- ’ (xi  - p*), 
where p* and S* are robust estimators of p and Z. Campbell [1980a] used the 
procedure given by (4.51) and (4.52) to obtain p* and S* (with c1 = 2.0, 
c2 = 1.25), and recommended the normal probability plot of the “robustified” 

for detecting outliers. He gave an example, which is typical of robust 
methods, in which the outliers stood out more clearly with the robust Di than 
with the usual Di. The weight w,(Di) will also give some indication of a typical 
observation and Campbell suggests that a weight less than 0.3 (cl = 2.0, 
c2 = 1.25) or 0.6 (cl = 2.0, c2 = 00) indicates an outlier. 

EXERCISES 4 

4.1 Verify Equation (4.1). 
4.2 If I,,,((, A )  is (4.7) with xi replaced by x i  + 4, verify that L,,((, 1) does 

not depend on I. 
4.3 Prove that the coefficients bl,d and b,,d of Equation (4.19) are invariant 

under the transformation y = Ax + c, where A is nonsingular. Hence 
verify that these coefficients do not depend on the mean p and dispersion 
matrix Z of x. 

4.4 Using the notation following (4.24), derive the likelihood ratio test for the 
hypothesis A = el,, where B is unspecified. 
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4.5 If 0,” = (x, - X)’S -‘(x, - R), find E[@]. 
4.6 Let xl, xz,. . . ,x be a random sample from a distribution with coefficients 

of skewncss \la,( = p s / a ’ )  and kurtosis (= p4/a4). Prove that 

P, - P, 2 1.  

If \ch; and b, are the sample coefficients defined by Equations (4.11) and 
(4.12), show that 

[Hint: Obtain b, I n firsl, then define a random variable U that takes 
values x, (i = 1,2,. . . , n )  with probability l / n .  What is the population 
skewness of U?l. This example demonstrates that the sample coefficients 
may be inadequate estimates of the population coefficients if the latter are 
large and n is sufficiently small. 

Johnson arid Lowe 119791 
4.7 Verify Equation (4.28). 
4.8 Derive Equation (4.40). Assume q$ { x - p ) / u } ]  = 0: This defines p. 
4.9 Let Q T= X;-,(x, -- X)(x, -- a)’ and let Q - ,  be Q with x, onlilted from the 

data set. If 

verify Equation (4.58). [Hint: Use Exercise 4.7.1 



CHAPTER 5 

Dimension Reduction and Ordination 

5 . 1  INTRODUCTION 

When taking measurements on people or objects, the researcher will frequently 
include as many variables as possible to avoid overlooking any that may have 
future relevance. WnfortunateIy, when the dimension d is large, a data set may 
not only be very costly to obtain but it may also be unmanageable and difficult 
to study without being condensed in some way. In this case several options are 
available to the researcher. 

First, he can try to select a k-subset of the variables so that the "reduced" 
sample points in k dimensions will reflect certain geometrical or statistical 
properties of the original d-dimensional points. How this is done will depend 
on the properties under consideration. For example, in Chapters 6 and 10, 
methods are given for selecting a subset that has a discriminating power similar 
to that of the original variables. In Section 5.2.6 a method is given for selecting 
variables based on a cluster analysis of the variables followed by choosing 
representative variables from the clusters. 

A second approach, considered in this chapter, is to replace a d-dimensional 
observation by k linear combinations of the variables, where k is much smaller 
than d. The method of principal components is of this type: Its aim is to 
choose k so as to explain a reasonable proportion of the total dispersion tr S, S 
being the sample dispersion matrix. A related technique is the biplot that 
endeavors to describe graphically in two dimensions both relationships among 
the d-dimensional observations xl, x *, . . . , x ", and relationshps among the 
variables. A special case, the h-plot, gives a two-dimensional picture of the 
approximate sample variances and correlations of the variables, and it is based 
on a rank 2 approximation of S. Factor analysis, a method often confused with 
principal components, attempts to extract a lower-dimensional linear structure 
from the data that, hopefully, explains the correlations between the variables. 
Although a popular method in the social sciences, factor analysis has some 
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conceptual and computational problems: It should be used with extreme 
caution. When attention i s  focused on comparing one subset of the variables 
with the subset of remaining variables, the method of canonical correlations 
can be used to find suitable linear combinations within each subset. However, 
if one wishes to highlight any grouping of the x, observations, but in a lower 
dimension, then discriminant coordinates (canonical discriminant analysis) can 
be used. Linear combinations are then chosen to highlight group separation. 

A third approach to dirncnsion reduction, also considered in this chapter, is 
multidimensional scaling (ordination). Here the d-dimensional configuration 
xl, x z , .  . . ,x, is approximated by a configuration yn,y2, .  . . ,yn in a lower 
dimension in such a way that the second configuration is reasonably “close” to 
the first and distances (metric scaling) or the rank ordering of distanccs 
(nonmetric scaling) between points is preserved as much as possible. This 
method can be used even when the first configuration is not available and the 
data consist only of measures of similarity or dissimilarity between the n 
objects. We now begin our review of the above methods by discussing principal 
components. 

5.2 PRlNClPAL COMPONENTS 

5.2.1 Dejinition 

Let x be a random d-vector with mean p and dispersion niatrix 2. Let 
T = ( t l , t2 , .  . . , t d )  he an orthogonal matrix suck that 

T’ZT -- A = diag(A,, A 2 . . .  . , A d ) ,  ( 5 . 0  
where A, 2 A z  2 - - .  2 A, 2 0 are the eigenvalues of Z (see A1.3), and let 
y = [(y,)] = T’(x - p). Then ,v, = t;(x - p) ( j -- 1,2,. . . , d )  is called the j t h  
principal component of x, and z, = A; ”2y, is called the j th  standardized 
principal component of x. These components have a number of optimal 
properties described below, and they provide a useCul tool for investigating a 
wide range of data analysis problems. Since the eigenvwtor t, has unit length, 
we note that y, is the orthogonal projection of x - p in direction t,. 

LEMMA 5.1 They, are uncorrclated and vary, -- A,. 

Proof 9 [ y ]  = 9[T’(x - p)] = T’9[x]T = T’XT = A. 

COROLLAKY 9 [ z ]  r= 9 [ A  -‘-”*y] = A-‘-”2AA -lI2 = I d *  

0 

5.2.2 Dimension Reduction Properties 

One method of dimension reduction consists of transforming x to a lower- 
dimensional k-vector y(!) such that, for a suitable choice of the d x k matrix A, 
Ay(,, is “close” to x. Given 9[y( , , ]  = r 0, we can use the more convenient 
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representation Ay(,, = (AI’1’z)(I‘-1/2y(kl) = A o q k ) ,  where 9[qk)] = I,. We 
shall assume, for the moment, that p = 0 and B [ z ( ~ ) ]  = 0. 

A reasonable measure of the “nearness” of x and A,z(,, would be a 
suitable function f of A = 9 [ x  - A o q k ) ] ,  wheref(A) measures the “size” of 
A. Before choosingf, we note first of all that f is defined on the set of d x d 
positive semidefinite matrices, 9, say; thus C E 9 if and only if C 2 0. We 
can therefore define the usual partial ordering on 9, namely, if C E 9 and 
D E 9, then C 2 D if and only if C - D E 9. Clearly a reasonable require- 
ment off is that it be strictIy increasing, that is, f(C) > f(D) if C 2 D and 
C # D. Furthermore, if we simply rotate the vector x - A,z by premultiplying 
by an orthogonal matrix, we would not expect to change the “nearness” of 
A+(,) to x. Therefore a second property we would expect off is that it is 
invariant under orthogonal transformations, namely, f(T’CT) = f(C) for all 
orthogonal T. 

The above two properties off were suggested by Okamoto and Kanazawa 
[1968], and the development below is based mainly on their paper. They noted 
that the functions f(c) = tr C and the Frobenius norm IlC(( = { tr[CC’]}’/2 = 

{ C J , C ; } ~ / ~  satisfy these two properties; we can also add ICI to the list 
(Exercise 5.1). They stated the following lemma, which we now prove. 

LEMMA 5.2 Let f be defined on 9. For any C E 9, let pl[C] 2 pz[C] 2 . . - 
2 pd[C] 2 0 be the eigenvalues of C in decreasing order of magnitude. A 
necessary and sufficient condition for f to be strictly increasing and invariant 
under orthogonal transformations is that f(C) = g(pl[C], p2[C],. . . ,pd[C]) for 
some g that is strictly increasing in each argument. [In essence, this lemma 
states that iff satisfies the two properties, then minimizing f (C) with respect to 
C is equivalent to simultaneously minimizing the eigenvalues of C.] 
Proof Necessiry. There exists orthogonal T such that 

say. Since f is invariant under T, 

f(C) =f(T’CT) = f ( W  = ~ ~ ~ 1 ~ ~ l , ~ z . ~ ~ l , . . . ~ ~ d ~ ~ l ~  

for some g. Let L be the same matrix as M, but with 6 (6  > 0) added to thejth 
diagonal element. Since L 2 M, L # M, and f is strictly increasing, then 

g(lL“. .*,P,[Cl + 6 , .  * .,cGd[Cl) = f(L) 

’ f (MI 

and g is a strictly increasing function of pj[C]. 
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Sujliciency. Since 0 = IS‘CS - p!,l = IS’lIC - p l d l l S (  if and only if 
J C  - p1,I = 0 for any orthogonal S, then C and S’CS have the sanre eigenval- 
ues. Since f depends only on the eigenvalues of C, fl,S’CS) = J(C) and f is 
invariant under orthogonal transformations. To prove that f is strictly increas- 
ing, let C 2 D with C P D. Then p,(C) > p,,(D) for at least o n e j  (see A7.9) 
and 

f(c) g(pL[cl, p2[cl,***,pd[c]) 

= f ( D ) .  U 

Having given the propertics off, we now wish to find A o ~ ( k ,  (or, equivs- 
lently, Ay,,,) such thatf(A) is minimized. Setting B = %‘[x,z(,,], 

A = 9 [ x  - A,z(,,] 

= (2 - BB’) +(A,  - B)(Ao - B)’ 

as (A, - BXA, - 9)’ 2 0 (see A4.4). Also Z - BB’ = 9 [ x  - Bz,,,] 2 0. 
Now the rank of the d X k matrix B is at most k, so that from A7.10 we have 

p k + z [ Z ]  = hk+r  ( i  = 1,2 ,..., d - k), 
( i - d - k +  1, ..., d ) .  

p , [ Z  - BB’] 2 

Hence, hy Lemma 5.2, 

f (  A )  2 f (  Z - BB’) 

and we have a lower bound on f (A).  In the following theorem we now show 
that this lower bound is attainable. 
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THEOREM 5.3 Let T = (TI, T2), where Tl = (tl, t,,. . . , tk), be defined as in 
(5.1). Iff  satisfies Lemma 5.2 above, then 

is minimized when Ay(k, = A,z(,) = TIT{x. 

Proof Given Ay(k, = TIT;x = Px, say, then x - Ay(k, = (I - P)x = Qx, say. 
From (1,8), A = ~ [ Q x ]  = QZQ. Now X = TAT’ so that 

= TlhlT{, ( 5  -4) 

where A, is k X k. Since Q = ‘IT’ - TIT; = T2T& we have, using a similar 
argument to that leading to (5.4), that QZ = T2A2T;. Also, from T;T, = 0, 
we have QZP = 0 so that 

Finally 

which is the lower bound (5.3). Thus f (A)  achieves its minimum value when 

In the above theorem we have shown that Ay(,, = Px gives a solution of the 
minimization problem. However, Okamoto and Kmazawa [1968] proved the 
more general result that (5.6) is true if and only if Ay(k, = Px. Since P 
represents the orthogonal projection onto 9[Tl] (see B1.9), the solution is 
unique if and only if x k  f X k + *  (by A1.3). Special cases of the above results 
were obtained by Kramer and Mathews [1956], Rao [1964a, 19731, Darroch 
[1965: f = truce] and Brillinger [1975: pp. 106-107, 339, 3421. 

Ay(k) = PX* 0 
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Since QZP = 0, 

I: =: (PI: +(I - P)X){P -I- 1 - P) 

= PZP + QXQ, (5.7) 

which we can regard as an “orihogonal decomposition” of I: as PQ = 0. Thus 
A = QZQ minimizes f ( A )  by suitably “projecting” 2 onto the space of 
positive semidefinile matrices of rank less than or equal to k so as to minimize 
the “distance” f(I: - PXP) between 5: and its “projection” PZP. Alterna- 
tively, Px is the orthogonal projection of x onto 9[P], where P i b  chosen so 
that the functional f(g’[(l - P)x]) of the perpendicular vector (11 -- P)x is 
mini rnized. 

Uptil now we have assumed that &[XI = 0. If 8 [ x ]  = p, theu we simply 
replace x by x - p in &he above derivations The best approximation for x -. p 
is therefore T,T/(x -- p) = Tly(k), where y ( k )  -- (yl ,  yr,. . . ,yk)’ are the first k 
principal components defined in Section 5.2.1. The corresponding standardized 
vector z ( k )  gives the first k slandardized principal components (see Lemma 
5.1). 

Since ‘I’iy(k) is an “approximation” for x -- p, a measure of fit is the sum of 
squares of the residuals, namely, 

Q1 = (X - I’ - T~Y(~,)’(x - ~r. - TIY(,,) 

d 

= v,” (by Exercise 5.8). ( 5  -8)  
j - k t l  

If 0, = E;=k+IAL; = trace Xu - CJk,,A;, CI -- 1,2,3, h,  -- 1 - (281f?3/3S,2), and 
x - Nd(p, I:), then Jackson and Mudholkar [I9791 showed that (Ql/el)ho is 
approximately Nl(l f 8, 282h,,[h, - 1],28;282h~). They recornmend the use 
of QI as a suitable statistic for multivariate quality control where good 
large-sample estimates of p and I: are available. A significant value of Q, could 
suggest that x may be an outlier. Another measure of fit is (Rao [1964a]) 

d 

Qz = c ti’ 
i = k  t 1 

(5 .9 )  

k 

= (x - p)’Z--l(,x - p )  - c %; (5.10) 
J-1  

based on the standardized principal components 2,. Although QL - x d .  2 

under normality, it requires the a.dditiona1 computation of either I:-’ or the 
smallest eigenvalues A &  + A c + z , .  . . ,Ad; both of these could have sonit? 
numerical problems if I: is near singulanty. On the other hand, Q, can be 



5.2 Principal Components 181 

readily computed from the residual x - p - T,y(,,. If Q, is significant, then 
the elements of the residual will shed some light on the adequacy of q k ) .  For 
further related references in quality control see Hawkins (19741 and Jackson 
and Hearne [1979]. 

5.2.3 Further Properties 

Principal components have a number of interesting properties that have been 
used in the past to motivate their definition. One such motivation is given by 
the following theorem. 

THEOREM 5.4 The principal components 8 = t;(x - p), j = 1,2,. . . , d ,  
have the following properties: 

(i) For any vector a1 of unit length, var[a;x] takes its maximum value A, 
when a, = t,. 

(ii) For any vector a, of unit length such that a;ti = 0 (i = 1,2,. . . j - l), 
var[a;x] takes its maximum value Aj when aj = tj. 

(iii) I$ ,var yj = Cy= ,var x J . = tr 2. 

Proof (i) var[a;x] = 9[a;x] = a;Za, and the result follows from A7.4. 
(ii) Since t,, t,, . . . , td are mutudy orthogonal, they form a basis for Rd. We 

are given aj I {t,, t,,. . . ,tj-,} so that a, can be expressed in the form 

Hence 1 = a;aj = C ~ = j c ~ t ~ n  = Ci=jc2 and 

var [ a>.] = a>Zaj 

d 

= a> C (cnZta) 

= a) C C , X J ~  

a - j  

d 

a-j 

a = j  a - j  

d 

n =J 

= C C , 2 A n  

n - j  

= X i ,  
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with equality if c, = I ,  c, t l  = -. - = c, = 0. Thus var[a;x] is maximized when 
a) = t,. 

d 

(iii) vary, = trA = tr[AT’T] = tr[’rAT’] = t r X .  c7 
/ = I  

Properties (i) and (ii) can also be described as follows. Component y ,  is the 
norrnali;t.ed linear combination of the elements of x - p with maximum 
variance A,. Now a’x is uncorrelated with y , ,  that is, 

= a’%, [by (1.7)] 

= a‘&, 

= 0  

if and only if a I t,. Thus, from (ii), y2 is the normaIized linear combination 
uncorrelated with y ,  with maximurn variance (= A2), and y, is the normalized 
linear combination uncorrelated with yl, y 2 , .  . , ,y,- , with maximum variance 
A,. This property of the y, was used by Hotelling [1933] to define principal 
components. They werc also described geometrically by Pearson {1901] in a 
different context as follows. 

Consider a plane through thc origin with equation a’u = 0, where a’a = 1, 
with a a unit vector normal to the plane. The distance of a random point x -- y. 
from the plane is the projection of x - )I in direction a, nameiy, d ,  =_1 a’(x - p). 
If we look for the plane that minimizes I441 = vard, = a’Za, we obtain 
a = t, as its normal (the unit vector perpendicular to the plane). We next find 
a plane perpendicular to the first plane such that FJdfJ is a minimum: This 
leads to t, 

Instead of using a plane, Kendall[1975] considers a line through the point 6 
with direction cosines a -- (u,, a 2 , .  . . ,u,)’, namely, 

and so on. 

or 

The foot of the perpendicular froin x to the line is given by p = ya + [, where 
y satisfies a‘(x - p) = 0, that is, y = a’(x - E;) = a’%, say. Hence the square of 
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the distance of x from the line is 

0: = IIX - P1I2 

= Ilx - ya - Ql2 

(5.13) 

If 8 = a[%] = p - [, then (by Exercise 1.4) 

E[ D:] = tr 2 + 8’8 - {var[a’%] +(a*)’} 

2 
= tr z - a’xa + Ile - (aq)’al( , 

the last step following from (5.13) with 3 replaced by 8. Now minimizing 
E[D;] is equivalent to setting 8 = 0 and maximizing a’Za: the maximum 
occurs at a = t, [by Theorem 5.4(i)]. Therefore a line through p with direction 
t, minimizes the expected squared distance of x from the line. Alternatively, if 
we shift the origin to p, then a line through the origin with direction t, 
minimizes the expected squared distance of x - p from the line. Similarly, t, is 
the direction of a second line through the origin, perpendicular to the first, 
with the same property, and so forth. 

Property (iii) of Theorem 5.4 provides us with a crude but simple technique 
for deciding what k should be. The ratio h j / E t - l A a  = varyJtr Z measures 
the contribution of y, to tr 2, the “total variation” of x. We can therefore take 
out successive components y,, y,, y 3 , .  . . and stop at y,  when Cjk-,hj/tr 2 is 
close enough to unity. This question is raised later under sample principal 
components. 

= A d  = 0, then yk+l,  yk+2,. . . ,y, have zero vari- 
ances and t;(x - p) = 0 ( j  = k + 1, k + 2, ... , d ) .  In this case, d -  k of the 
xi variables are linearly dependent on the others and x lies in a k-dimensional 
subspace of Rd. 

If we standardize the xi and work with x,? = (xi - p,)/oj;I2, then 9 [ x * ]  = 

P,, the correlation matrix of x [see (1.17)]. We can now extract a new set of 
principal components, y* = Ex* ,  say, where L is orthogonal and EP,L is 
diagonal. However, y*  will differ from y, as the eigenvectors of Z are, in 
general, not the same as those of P,. The question of whether to use y or y*  is 
discussed in the next section. 

In addition to the above properties, principal components also enjoy various 
optimal properties in the context of regression (Obenchain [1972], Chen [1974]) 

If X k + l  = hk+ ,  = - .  
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arid restricted least squares (Fomby et al. 119781). However, apart from these 
optimal properties, we sometimes find that the components have a natural 
physical meaning. For example, in the process of measuring various character- 
istics of an organism, the first component may provide an overall measure of 
size, and the second an overall measure of shape. In educational data the first 
component may provide an overall measure of learning ability, the second a 
measure of motivation, and so on. 

5.2.4 Sample Principal Components 

In practice, p and I: are not known and have to be estimated from a sample 
x1,x2,. ..,x,,. Let $ = f and let 2 = C,(x, - f)(x, - K)’/n with eigenvalues 
1, 2 1, 2 . . .  2 1, and an  orthogonal matrix T = (il,i2,...,id) of corre- 
sponding eigenvectors. For each observation x, we can define d vector of 
sample (estimated) principal components y, = T’(x, - Z) giving us a new data 
matrix 

- Y’= ( Y ~ , ~ 2 , . . . , ~ , )  = ?’(XI - g,Xz - x ,..., X, - Ti). (5.14) 

Many authors prefer to use the unbiased estimator S of I: instead of 2 in 
defining the sample components. In this case 

(5.15) 

and the eigenvalues of S are n^h,,/(n - 1). If we use ^A,/tr f: Cor assessing the 
relative magnitude of an eigenvdue, then the scale factor n / ( n  - 1) cancels 
out and the two approaches are identical in this respect. 

As in Section 5.2.2, we might expect the first k sample principal Components 
of a vector observation to give us the “best” summary of the observation in k 
dimensions. Support for chis viewpoint is provided by the following theorem. 

THEOREM 5.5 Let A be ii d x k matrix and let = g(x, - a), i = 
1,2,. . . ,n ,  for any (measurable) function g : Rd -+ Hk such that 9 ck,. = 0. I f f  is 
strictly increasing and invariant under orthogonal transformations (i.e., satisfies 
Lemma 5.2), then 

(5.16) 

is minimized with respect to A and g by choosing 

A = (4,i2,.. . ,ik) = %, and g(x - x) = ”{(x - %I. 
Proof Following Okamato [1969], let v be the random vector laking the value 
x, ( i  = 1,2,. . . , n )  with probability n- ’ ,  w = v - W, and y(,) = g(w). Then 
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1 ”  
= - c ( X i  - X)(Xi - I)’ 

i - 1  

= 2. 
Hence (5.16) is equal to 

whch, by Theorem 5.3, is minimized for all random vectors y(k) such that 
~f?[y(~)] = 0 (and therefore for all such y(k) that are measurable functions of w) 
when = TIT{w. This last equation holds if we set A = T1 and g(w) = Tlw. 

0 

An interesting consequence of the above theorem is that by using v, I, and 
2 instead of x, p, and 2 there is essentially no difference between a “popula- 
tion” or a “sample” approach to principal components. For example, we have 
the following sample analogue of Theorem 5.4(i). Given any vector a1 of unit 
length, the sample variance 

var[a;v] = a;g[v]al 

= a;$al 

1 “  
n .  

= - c [.;(xi - a)]’ 
1=1 

takes its maximum value of il when a1 = I , .  Part (ii) of Theorem 5.4 carries 
over in a similar fashion, and part (iii) becomes 

tr e,, = tr [ :Y ’Y] 

= tr [ T ~2,T] 

= tr[ 2$+] 
= t r2 ,  (= 1, + ... + A d ) .  (5.17) 

In reference to the geometrical properties, a line through j2  with direction 2, 
minimizes the expected squared distance of v from the line, that is, minimizes 
the average squared distance of the points xl, x2,. . . ,x, from the line. 

[from (5.14) and F = 01 



1x6 Ditnension Reduction and Ordiwtion 

Table 5.1 (or its transpose) gives a common format for setting out the 
results of a principal component analysis. For an observation x = 

(.q, x2,. . . , xd ) ’ ,  thejth principal component is given by 

v, = ti(. - 3 )  

-- i 1 / ( X l  - 2,) + i , , ( x 2  - x,) + . ‘ *  + i d / ( X d  -- X d ) .  

In general, the k, will be distinct (see A2.8) so that the corresponding 
eigenvectors 2, will be unique, apart from a sign. Uniqueness can be acllievcd 
by, for example, assigning a positive sign to the element of 0 ,  with the largest 
absolute value. The number k of components selected will depend on the 
relative magnitudes of the eigenvalues. If there is a clear gap between the large 
and small eigenvalues A,, then, for n much greater than d ,  this will tend t o  
show up in the sample estimates A,, thus giving a clear choice for k. For 
example, if the 1, a ~ e  

(20.1 ~0.8,0.6,0.4~0.02,0.0l,0.008) 

or, expressed as a cummulativc percentage, 

(89.15(Y3.87,97.41,99.78)99.89,99.95, loo), 
the possible stopping points are indicated by vertical bars, that is. Ir = 1 or 4. 
Alternatively, we might stop at k if I,, , / G  I 6, or Cy,k .,^X,/G 5 6, (G = 1, 
+ . . + A,), where 6, and 6, are to be chosen. Unfortunately, a joint 
assessment of the 1, is not easy because of sampling variability. We shall see 
later that for normal data the coefficient of variation of 1, is asymptoticalliy 
(2/n)’/* + O(n- ’ ) :  For n = 20 this is around 30%. Gnanadesikan and Wi& 
[ 1969: Example 131 calculated the sample eigenvalues for 200 observations 

TABLE 5.1 Principal Component Analysis 

Figenvector 

i d  
... Vari ah le 2, 1 2  

1 . .  . . .  . . .  . . .  
i d< ,  

. . .  
{‘I I id2 
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simulated from N49(0, I,) and found that the eigenvalues ranged from 0.3 to 
2.13, even though the population eigenvalues are all unity. This range is much 
wider than that suggested by the above formula, which gives a coefficient of 
variation of about 10%. A cross-validatory method for choosing k has been 
proposed by Eastment and Krzanowski [1982]. 

The problem of sampling variability is particularly crucial when d/n is not 
small. However, Wachter [1975,1976a, b, 19801 has given a graphical technique 
that shows some promise when d and n are both large (tentatively greater than 
12). Wachter defined a sample distribution function & that has a step of size 
l/d at each A, and called it the “positive random spectrum” of data matrix 
X = (xl - x,x2 - x,. . . ,x, - X)’. He showed that, irrespective of the distri- 
butional assumptions, the 1, are asymptotically independent and 6 tends to 
some function F that has the properties of a distribution function, these 
properties depending on the “spread” or spectrum of the A,, Wachter’s 
technique consists of performing a Q-Q plot of @, versus F, or, equivalently, a 
plot of 1, versus F1{ j / ( d  + 1)}, for Merent A, spectra. For example, a 
“ two-atom” model proposes that the AJ are all equal to one of two values. The 
idea is to find a model to match the data. 

Exact linear relationships among random variables seldom exist in practice, 
as all quantitative random variables are measured with error. We can expect Z 
to have nonzero eigenvalues, though in some cases it may have a few very small 
eigenvalues. If n - 1 2 d, this means that 2 is positive definite with probabil- 
ity 1 and the 1, win be all positive. Yet if A d  is very smd, we can expect 1 to 
be small also, and it is tempting to test A, = 0 using the distribution of i d ,  

even though A d  # 0. It is, however, a question of whether A, is small enough to 
be ignored rather than whether A d  = 0. Clearly the main emphasis of principal 
components is a descriptive one and formal tests of significance are of lesser 
importance. 

There is one practical problem when successive components are being 
extracted. It may happen that for some r the eigenvalues A r + l ,  1r+2,.  . . ,I, are 
not too different, thus suggesting the hypothesis H,:A,+, = hr+* = * - * = A d .  

If H, is true, there is no sense in maximizing the variance var[a’v] in any 
particular direction given by a, subject to a I {2,,2,, . . . ,2,}. A test for H, is 
given in the next section. 

We have already mentioned one serious disadvantage of principal compo- 
nents. They are not scale invariant and the results depend on the units of 
measurement. If we use standardized data (x , ,  - X.,)/[C,(x, ,  - E ,)2]1/2, 

then 2 and S reduce to the sample correlation matrix R = [ ( t j k ) ] ,  where tjJ = 1 
and 

- - 

( j  Z k). (5.18) 
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The eigenvalues and eigenvectors of R will differ from those of 2. and we may 
end up with a different number k of relevant principal components. Kendall 
[1975: p. 221 gives an example in which the eigenvalues of 2 are 
(86.640,7.0~4.0.471.O.258), with the first eigenvalue accounting for 100 X 
86.64/94.463 = 92% of the total, and those of R are (1.676,1.146,0.960,0.218), 
with the first eigenvalue now accounting for only 428 of the total. The 
corresponding eigenvectors also have dilferent elements with regard to both 
size and si n. Some practitioners maintain that R should always be used 
instead of P or S, as R does not depend on the scales used for the original 
variables. ‘This approach would seem reasonable in psychological and educa- 
tional studies where the scales may be arbitrary and the data little inore than 
ranks. However, the distribution theory associated with R is much more 
complex and there are some problems in interpreting the coefficients given by 
the eigenvectors. Gnanadesikan [1977: p. 121 concludes that there “does not 
seem to be any gerierul elementaiy rationale to motivate the choice of scaling of  
the variables as a prelinunary to principal components analysis on the resulting 
covariance matrix.” About all that can be said is that similar variables should 
be measured in the same units where possible. 

We note that the sum of the eigenvalues of R is d, the trace of R, so that the 
average i s  1. The arbitrary nile, sometinies used in computer packages, of 
including only those eigenvalues greater than unity is often inappropriate. If 
we obtained eigenvalues (1.1,1.0,0.9), we would not wish to exclude the 
component corresponding to O.Y. 

It is well known that estimates of variances, covariances, and correlations 
can be very sensitive to outliers, so we can expect principal components to 
have the same sensitivity. For instance, Devlin et al. I19811 mention an 
example of annual observations on 14 economic variables for 29 chemical 
companies, in which the first two principal components are given in Fig. 5.1. 
These two components have the required zero saiiiple correlation, but if the 
outlier is excluded, the correlation coefficient of the remaining 28 points is 
0.99. Admittedly, this is an exlreme example, but the message is clear: Robust 
estimates of p, 2, and F,, are advisable (Section 4.4.3b). One computational 
procedure for extracting robust components is given by Campbell [1980a]. 

EXAMPLE 5.1 Jelfers 119671 described a study carried out on the strength of 
wooden props used in mining. A number of variables were measured OII each 
pitprop and the prop was compressed in a vertical position until failure 
occurred. The variahles measured were the following: 

Topdiam(x,) = the top diameter of the prop, in inches; 

Length( xz)  = the length of the prop, in inches; 

Moist(x,) = the nioisture content of the prop, expressed as a 
percent.age of diy weight; 
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Testsg( x4) = the specific gravity of the timber at the time of the test; 

Ovensg(x,) = the oven-dry specific gravity of the timber; 

Ringtop( x6) = the number of annual rings at the top of the prop; 

Ringbut( x 7 )  = the number of annual rings at the base of the prop; 

Bowmax(x,) = the maximum bow, in inches; 

Bowdist(x,) = the distance of the point of maximum bow from the top 
of the prop, in inches; 

Whorls(x,,) = the number of knot whorls; 

Clear(x,,) = the length of clear prop from the top of the prop, in 
inches; 

-16 ' 
- 14 8 

151 PRINCIPAL COMPONENT 

Fig. 5.1 First two principal components for chemical companies data. From Devlin et al. [1981: 
Fig. 11. 
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Knots( x l t )  = the average number of knots per whorl; 

Diaknot( x I 3 )  = the average diameter of the knots, in inches. 

Although one of the aims of the study was to relate the maximum compressive 
strength to the variables, an initial attempt was made to reduce the dimension 
of the problem using principal components. Table 5.2 gives the upper triangle 
of the correlation matrix for the 13 variables measured on n = 180 props cut 
from Corsican pine. The eigenvalues of this matrix are given in Table 5.3 and 
the first step is to decide on the number of components k. Bearing in mind the 
sampling variability of the eigenvalues, it is not easy to choose a cutting point. 
The rather arbitrary rule of considering components with eigenvalues greater 
than unity would lead to k = 4, thus accounting for 74% of the sum of the 
eigenvalues. This rule tends to give too few components and does not seem 
appropriate here. A figure approaching 90% would often be regarded as 
adequate and JeEers settled for k = 6, giving a total contribution of about 
87%. 

The corresponding eigenvectors for the first six components are given in 
Table 5.4 and, instead of being scaled to have unit length, they have been 
scaled so that the largest element in each vector is unity. JeEers suggested that 
these elements may be interpretated as the relative weights given to the 
variables in each component, and that important variables are those with high 
negative or positive weights (say, greater than 0.7). For example, the first 
component gives high positive weights to the top diameter, the length, the 
number of rings at the top and base, the bow, and the number of whorls, and 
may be interpreted as a general index of the size of the prop. The second 

TABLE 5.3 Eigenvalues of the Correlation Matrix in Table 5.2 

Component Eigenvalue Percent of Sum Cumulative Percent 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Sum 

4.219 
2.378 
1.878 
1.109 
0.910 
0.815 
0.576 
0.440 
0.353 
0.191 
0.051 
0.041 
0.039 

13.000 

32.4 
18.3 
14.4 

8.5 
7.0 
6.3 
4.4 
3.4 
2.7 
1.5 
0.4 
0.3 
0.3 

32.4 
50.7 
65.2 
73.7 
80.7 
87.0 
91.4 
94.8 
97.5 
99.0 
99.4 
99.7 

100.0 
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TABLE 5.4 Eigenvectors for First Six Components of Pitprop Data" 

Eigenvector /or coniponent 
1 2 3 4 5 6 Variable 

-~ 
TOPDUM 
LENGTH 
MOW 
?'EsnG 
OVENSG 
RWGTOP 
RINGBUT 
B o w w  
BOWIST 

CLEAR 
KNOTS 
DIAKNOT 

WHORLS 

0.96 
1 .oo 
0.31 
0.43 
0.14 
0.70 
0.99 
0.12 
0.88 
0.93 

- 003 
- 0.28 
- 0.27 

0-40 
0.34 
1 .cQ 
0.84 

.- 0.3 1 
- 0.26 
- 0.35 
-- 0.35 
0.32 

- 0.46 
0.38 
0.63 
0.57 

- 0-43 
- 0.49 

0.29 
0-73 
1 .oo 
0.99 
0.53 

-0.51 
- 0.43 
-- 0-25 
-0.15 

0.19 - 0.68 

- 0 1 1  
- 0 1 3  

0.10 
0.07 
0.06 

- 0.08 
-0.81 
0-36 
0.12 

- 0.26 
1 -00 

- 0.37 
- 0.38 

0.14 
0.19 

- 0.58 
- 0.59 
- 0.29 

0.53 
0.36 

-0.31 
0.1 8 

- 0.26 
0.57 
I B o o  

-0.13 

0.19 
0.26 

- 0.44 
- 0-03 

1 .oo 
0.08 
O W  

- 0.09 
0.05 

- 0.28 
0.28 

- 0-27 
1 00 

"From Jen'ers [1967: Table 41. 

component, giving high weight only to moisture content and the specific 
gravity of green timber, is a measure of the degree of seasoning. The third 
componcnt is a measure of the rate of growth and strength of the timber, while 
the fourth component is a contrast between the length of the clear prop from 
the top and the number of rings at the base. The fifth component is a direct 
measure of the number of knots per whorl, and thc sixth component is a 
combined index of the average diameter of the knots and the strength of the 
timber, that is, a combined strength index. 

EXAMPLE 5.2 A further study described by Jeffers [1967] concerned the 
degree of variation in 40 individual alate aldelgids (winged aphids) caught in a 
light trap. Jnterest centered on the number of distinct taxa present in the 
trapping area. As the aphids are difficult to identify with any certainty by 
conventional taxonomic keys, principal component analysis was suggested as a 
possible aid to the identification of distinct taxa. A total of 19 variables were 
measured, including body length (Length), body width (Width), forewing 
length (Forwing), using a microscope. Body length and width and all leg 
measurements were recorded at a magnification of X 10, wing length at x 3, 
and all other tneasurements at X40. Table 5.5 gives the upper half of the 
correlation matrix, and the very high correlations indicate a high degree of 
collinearity among the variables. In effect, very few basic dimensions of the 
individuals had been measured and Jeffers suggested that new variables, 
uncorrelated with the ones meiisured, should be sought. This is indicated hy 
Table 5.6, which shows that the first two coinponents account for 85% ol tlic 
sum o f  the eigenvalues, and the first four components account for 92%. Fro111 
the corresponding eigenvectors in Table 5.7, scaled so that the liirgest element 
is unity, the first coniponent is a general index of size, with approximately 
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TABLE 5.5 Correlation Matrix for Winged Aphid Variables (Lower Triangle)" 

*I 

0.934 1.ooO 
0.927 0.941 
0.909 0.944 
0.524 0.487 
0.799 0.821 
0.854 0.865 
0.789 0.834 
0.835 0.863 
0.845 0.878 

0.917 0.942 
0.939 0.961 
0.953 0.954 
0.895 0.899 
0.691 0.652 
0.327 0.305 

0.702 0.729 

1.OOo x2 

- 0.458 - 0.496 

-0.676 - 0.712 

X I  1 
1.Ooo XI2 

-0.465 1.Ooo 
-0.447 0.981 
-0.439 0.971 
-0.405 0.908 
-0.198 0.725 
-0.032 0.396 

0.492 -0.657 
-0.425 0.6% 

x3 
1.OOO 
0.933 
0.543 
0.856 
0.886 
0.846 
0.862 
0.863 

0.940 
0.956 
0.946 
0.882 
0.694 
0.356 

0.746 

- 0.522 

- 0.667 

x13 
1 .Ooo 
0.991 
0.920 
0.714 
0.360 

0.724 
- 0.655 

x4 
1 .Ooo 
0.499 
0.833 
0.889 
0.885 
0.850 
0.881 

0.945 
0.952 
0.949 

0.623 
0.272 

0.777 

- 0.488 

0.908 

-0.736 

XS 
1 .Ooo 
0.703 
0.719 
0.253 
0.462 
0.567 

-0.174 
0.516 
0.494 
0.452 
0.551 
0.815 
0.746 

0.285 
-0.233 

x6 
1.Ooo x7 
0.923 1.Ooo 
0.699 0.751 
0.752 0.793 
0.836 0.913 

0.846 0.907 
0.849 0.914 
0.823 0.886 
0.831 0.891 
0.812 0.855 
0.553 0.567 

0.499 0.592 

-0.317 -0.383 

-0.504 -0.502 

XS 
1.000 
0.745 
0.787 

0.861 
0.876 
0.878 
0.794 
0.410 
0.067 

0.793 

- 0.497 

- 0.758 

x9 
1.000 
0.805 

- 0.356 
0.848 
0.877 
0.883 
0.818 
0.620 
0.300 

0.671 
- 0.666 

x14 
1.OOo XI5 
0.921 1.ooO 
0.676 0.720 1.OOO 
0.298 0.378 0.781 1.OOO ~ 1 8  

0.731 0.694 0.287 -0.026 -0.775 1.OOo 
-0.687 -0.633 -0.186 0.169 1.OOO X1q 

XlO 
1 .Ooo 

- 0.371 
0.902 
0.901 
0.891 
0.848 
0.712 
0.384 

- 0.629 
0.668 

"From Jeffers [1967: Table 91. 

equal weights given to most of the variables. The second component is almost 
entirely a measure of ovipositor spines, and the third and fourth components 
are measures of the number of antennal spines and of the number of spiracles, 
respectively. 

As the first two components account for such a high percentage of the 
variation, they can be plotted for each insect, as in Fig. 5.2. The plot suggests 
the presence of four major groups, recognizable by differences in the general 
size of the organism and the number of ovipositor spines. It would appear that 
not all the variables are necessary: Only one of the main group of variables 
such as the length of tibia 111, together with the number ovipositor spines, the 
number of antennal spines, and the number of spiracles, need be retained. 



TABLE 5.6 Egenvalues for the 19 Components of the Correlation Matrix in 
Table 5.5 

Component Eigenvalue Percent of Sum Cumulative Percent 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I1 
12 
13 
14 
15 
16 
17 
18 
19 

13.861 
2.370 
0.748 
0.502 
0.278 
0.266 
0.293 
0.157 
0.140 
0.123 
0.092 
0.074 
0.060 
0.042 
0.036 
0.024 
0.020 
0.01 1 
0.003 

19.000 
___ 

73.0 
12.5 
3.9 
2.6 
1.4 
1.4 
1 .0 
0.8 
0.7 
0.6 
0.4 
0.4 
0.3 
0.2 
0.2 
0.1 
0.1 
0.1 
0.0 

73.0 
85.4 
89.4 
92.0 
93.5 
44.9 
95.9 
96.7 
97.4 
98.1 
98.6 
99.0 
99.3 
99.5 
99.7 
99.8 
99.9 

100.0 
100.0 

TABLE 5.7 Figenvectors for First Four Components of Aphid 
Variables" 

Variable Eigeiruectoas /or conlpotrenf 
1 2 3 4 

0.96 
0.98 
099 
0.98 
061 
091 
0.96 
0-88 
0.90 
094 - 0.49 
0.99 
1 a 0 0  
0.99 
0.96 
0.76 
041 

076 
- 0.71 

- 0.06 
-0.12 
- 0.06 
-0.16 

0.74 
0.33 
0.30 

- 0.43 
- 0.08 

0.0s 
0.37 

- 0.02 
- 0.05 - 0.12 

0.02 
0.73 
1 *oo 
0.64 - 0.52 

0.03 - 0.12 
0.01 -0.16 

- 0.06 -0.11 
0.03 - 0.00 

- 0.20 1-00 
0.04 0.02 

0.06 -0.18 
0.1 8 -- 0.01 
0.1 1 0.03 
1 .00 027 
0.03 - 0.29 
0.09 -0.31 
0.12 -0.31 
0-OB - 0.06 - 0.03 - 009 - 0.16 - 0.06 
0.04 - 0.80 
0.06 0.72 

O& - 0.04 

~~~ ~ 

"From Jeff<-rs [1967: Table 211. 



t 

I 

-6 - 4  -2 

+ 
+ 

++ , 
2 4 6 + 

5.2 Principal Components 195 

Component I 

+ 

+ +  :* + Component 2 

+ +  
+ ++ 

-2  " -4  

-6 

+ 
+ 

Fig. 5.2 Plotted values of the first two components for individual insects. From Jeffers [1967: 
Fig. 11. 

EXAMPLE 5.3 Dudski and Arnold [1973] described an interesting study 
that compared the diets of sheep and cattle grazing together on sown pasture. 
Each animal was fitted with an esophageal fistula so that diets could be 
sampled at regular intervals. Pastures were sampled on the same day as the 
diets were sampled by cutting the grass on a number of quadrats and then 
separating the material into categories. The response or y-variables were the 
differences between cattle and sheep in the percentages of various substances 
in the fistulated material. The pasture or x-variables were transformations of 
total dry matter ( x ~ ) ,  green dry matter (x2), the percentage of edible green 
( x 3 ) ,  green grass leaf (x , ) ,  dry grass leaf ( x 5 ) ,  green clover ( x 6 ) ,  dry clover 
( x , ) ,  stem ( x 8 ) ,  and inert matter ( x g ) .  The transformations were basically 
logarithmic in an endeavor to normalize the data. As a first step in the study, 
an attempt was made to reduce the dimension of the pasture data using 
principal components. The correlation matrix for 18 pasture samples is given 
in Table 5.8, and the eigenvalues are listed in Table 5.9. The authors chose the 
first four principal components, which contributed 91% of the total variation, 
and the corresponding eigenvectors are given in Table 5.10. As with the 
previous two examples, we have scaled the eigenvectors so that the largest 
element in the vector is unity. The authors actually scaled each eigmvector so 
that its squared norm was equal to the eigenvalue (?$; = 1;). 
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TABLE 5.8 Correlation Matrix for Paqture Variables (Upper Triatigkj“ 

0.11 
1.0 
..-. 

0.04 0.11 0.42 8.11 
0.86 0.98 -0.11 0.76 
1.00 0.84 -0.33 0.80 
.- 1.00 -0.13 0.64 
__ _. 1.00 -0.17 
- -- _ _  1.00 
__ __ - 

0.22 
- 0.36 
- 0.57 
- 0.39 

0.21 
- 0.24 

I .oo 

0.34 - 0.51 
--0.48 0.13 
-0.71 -0.11 
--0.45 0.12 

0.39 -0.06 
-0.43 0.06 

0.72 0.30 
1.00 0.19 
.- 1.00 

______..__-__I_- - ______ ~ 

“Froni Dudzinski and Arnold 11973: Table 31. 

The first component is characterized by high positive weights for green dry 
matter, percentage of edible green, green grass leaf, and green clover, and hgli 
negative weights for dry clover and stem (and, to a lesser degree, dry grass 
leaf). This principal component gives a contrast between the green and dry 
components of the pasture and hence represents an index of “greenness.” A 
positive value of y1 indicates ii high proportion of green material, while a 
negative value indicates that the pasture is largely dry. The second principal 
component has a high positive weight for total dry matter arid a negative 
weight for inert matter, thus representing a measure of “useful bulk.” The 
third component, with hgh weights for inert and, to a lesser degree, dry clover, 
stem, and green dry matter, is used as a measure of ‘ I  total bulk.” The fourth 
principal component represents a contrast between dry grass leaf and dry 
clover and measures the type of dry material available to animals. A positive 

TABLE 5.9 Figenvalues of thc Correlation Matrix in Table 5.8 
~ 

Component Eigenvalue Percent of Sum Cumulative Percent 

1 
2 
3 
4 
5 
ti 
7 
8 
9 

Sum 

4.250 
1.771 
1.460 
0.731 
0.397 
0.230 
0.109 
0.050 
0.003 

9.001 

47.2 
19.7 
16.2 
8.1 
4.4 
2.6 
1.2 
0.6 
0.0 

47.2 
66.9 
83.1 
91.2 
95.7 
98.3 
99.4 

100.0 
1(K).CJ 



5.2 Principal Components 197 

value of y4 implies that the amount of dry grass leaf is dominant, while a 
negative value implies that dry clover is dominant. 

5.2.5 Inference for Sample Components 

Suppose that the observations x1,x2, ..., x, are a random sample from 
N,(p, Z); then K and 2 are the maximum likelihood estimators of p and Z. If 
Z is positive definite with distinct eigenvalues A,, then Z = TAT’, where T is 
unique (with an appropriate convention for the signs of the eigenvectors t,; see 
A1.3). The uniqueness of T implies that we have a one-to-one relationship 
between the 4d(d + 1) distinct elements of Z (in the upper triangle) and the 
d + f d ( d  - 1) = $d(d  + 1) “free” elements of A and T. Since T’T = I,, we 
can choose d - 1 elements of t,, d - 2 elements of t, ,  and so on, or 
1 + 2 + * * - + d - 1 = f d ( d  - 1) elements of T altogether. The maximum 
likelihood estimate 2 = of Z is also positive definite with distinct 
eigenvalues (with probability l), so that, by A7.2,1, and i, are the maximum 
likelihood estimates of A, and t, and have the usual properties such as 
asymptotic normality. Similarly, the sample principle components will be 
maximum likelihood estimates of the population components. 

Under normality, n e  - W,(n - 1,2) (see Theorem 3.1) and the joint 
distribution of the A, can be found (James [1960]): Sugiyama (19661 gave the 
distribution of the largest eigenvalue and corresponding eigenvector. However, 
these distributions are complicated and a number of asymptotic expansions 
have been given for distinct A, and some A, equal (see the reviews of Muirhead 
[1978,1982] and Tyler [1981]). For distinct eigenvalues, Girshick [1939] showed 
that the set of random variables A,, ilk ( j ,  k = 1,2,. . . , d )  is asymptotically 
multivariate normal with {A,, i2,. . .,id} asymptotically independent of 

TABLE 5.10 Egenvectors for First Four Components of Pasture Data 

Egenvector 

Variable 1 2 3 4 

Total dry matter ( X I )  -0.07 1 .oo - 0.18 - 0.31 

Percent edible green (x,) 1 .oo 0.10 - 0.03 - 0.14 
Green dry matter (XZ) 0.92 0.27 0.35 0.10 

Dry grass leaf ( ~ 5 )  -0.36 0.67 0.09 1 .oo 
Green grass leaf ( X d  0.90 0.24 0.31 0.14 

Green clover (x6) 0.81 0.24 0.29 - 0.30 
Dry clover ( ~ 7 )  -0.65 0.26 0.63 - 0.55 
Stem ( ~ 8 )  -0.79 0.37 0.43 - 0.19 
Inert (xg) -0.04 - 0.43 1 .oo 0.27 
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. . , t d } .  T%e asymptotic moments are given by 

(5.19) 

C A ~ ( A ,  - A ~ ) -  (5.20) 
a+j  

9[2,] = - 1 c AJA,(A, .- xJ2tat: + o d ( n - 2 ) ,  

n 
fl+l 

Since the covariances of the ^hJ are asymptotically zero, we have that the 
standardized random variables (n /2 ) ' I2 (h ,  - A,),/A, are asymptotically i.i.cl. 
Nl(O, 1). We note that if A,, = A,, then 9[2,] will be large, indicating 
instability in the estiinate 2,. Using H Taylor expansion and (5.20), we also have 
that the random VaIidbkS 

(log h, - log A J )  

are asymptotically 1.i.d. Nl(O, 1); however, both normal approximations are not 
very accurate (Konishi and Sugiyama (1981)). 

When some of the A, are equal, the above theory does not hold. In zhe first 
place there is some arbitrariness in defining eigeiiveclors for equal eigenvalues 
(see A1.3), so that we do not have a one-to-one correspondence between Z and 
the appropriate elements of A and T: A7.2 can no longer bc invoked. 
Secondly, the sample eigenvalues are distinct (with probability I) so that we 
will have rn estimates of an eigenvalue with multiplicity m. However, the 
average of these estimates turns out to be the maximum likelihood estimate of 
the repeated eigenvalue, and the corresponding sample eigenvectors are (non- 
unique) maximum Likelihood estimates of the population eigenvectors. The 
likelihood ratio test for testing &:Au, = -- - .  . = A , ,  is given by 

- -2 logd= -nlog (5.21) 
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where 1 = (Z;:,”, rh j ) /b .  When Ho is true, - 2 log dis approximately x:, with 
v = f(b - l ) (b  + 2). If a + b = d ,  so that we are testing for the equality of 
the last b eigenvalues, then a better chi-square approximation is obtained if n 
in (5.21) is replaced by 

2 b 2 + b + 2 +  f,[ “1’ 
6b j - 1  X j - A  * 

n - l - a -  

This correction was suggested by Lawley [1956] and “confirmed” by James 
[1969]. The statistic (5.21) and extensions of the above asymptotic theory to the 
case of multiple eigenvalues were given by Anderson [1963b]; further results 
are given by Fujikoshi [1978]. Anderson also gave a test for the hypothesis that 
several consecutive eigenvalues are equal to a given nonzero constant. Asymp- 
totic expansions for this test and (5.21) are given by Fujikoshi [1977b] for the 
null case, and Sugiura [1976bj for the nonnull case of distinct eigenvalues. The 
statistic (5.21) can also be applied to the correlation matrix R instead of 2, but 
its asymptotic distribution is no longer chi square (Anderson [1963b: p. 1361. 

The above asymptotic theory assumes that the underlying distribution is 
MVN. Unfortunately, the large-sample joint distribution of the i j  is not robust 
to departures from normality, being mainly affected by the nonzero fourth 
cumulants and cross-cumulants of the parent population. Waternaux [1976] 
showed that for distinct A j ,  the limiting joint distribution of the G(hj - A,) is 
N,(O, P), where P = [(ajk)], ajj = k$’ + 2A; and a,& = k$$ ( j  f k). Here k$ is 
the fourth cumulant of thejth element of x and k$,k is the bivariate cumulant 
of order 4 of the joint distribution of thejth and kth elements. Using a 
Fisher-Cornish expression for x j ,  Waternaux also obtained an approximation 
for the percentiles of the distribution of Aj .  From a simulation study for d = 3, 
she demonstrated that, for nonnormal data, large samples (n > 100) are 
required for the asymptotic means and variances to be adequate. Further terms 
in the asymptotic joint distribution of the h(ij - A j )  and an asymptotic 
expression for the distribution of 

x, + * - *  +x, 
R, = 

l +  - * * + A  d 
(5.22) 

are given by Fujikoshi [1980] (see also Exercise 5.9). He also confirms the 
nonrobustness to departures from normality in both situations and gives 
asymptotic expansions for the distribution of certain functions of the i j  in the 
nonnormal case. Davis [1977] shows how the limiting distribution of (5.21) is 
affected by nonnormality and examines briefly the effect of nonnormality on 
the theory given by Anderson [1963b] for the multiple eigenvalue case. Tyler 
[1981] gives a general asymptotic inference for eigenvectors. 
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5.2.6 Preliminary Sejeciion of Variables 

In many experimental siluations there is a strong temptation to measure every 
conceivable characteristic of a sample unit in order that “nothng will be 
missed,” for example, height, weight, sex, marital status, income, and size of 
family. The dimension of the vector observations x can therefore grow rapidly, 
even though n is usually limited because of cost or shortage of sampling unils. 
Every experimenter is therefore faced with the problem of which characteristics 
should he included, particularly if the data are going to he used extensively ko 
study relationships between the sample units. Before carrying out a principal 
component analysis (PCA), it  may therefore be appropriate to reduce the 
number of variables to a smaller subset. The aim would be to discard variables 
that add little to the resulting PCA. Jolliffe [1972, 19731 described eight 
rejection methods and applied five of them to artificial and real data sets. His 
first, and slowest, technique (A2) is a stepwise method that rejects at each stage 
the variable having the largest multiple correlation with the renidning vari- 
ables (see Section 5.7.1). The process stops when the multiple correlation first 
falls below some prescribed level (e.g., 0.15). Two techniques (B2 and 114) 
involving PCA of the full se1 of variables first are also included and they 
associate a variable with each of the principal components. The variables 
associated with the last few components are rejected, the number of rejections 
being equal to the number of eigenvalues less than a certain value (e.g., 0.70 for 
the PCA of the correlation matrix). However, having to carry out an initial 
PCA of the full set does, in  some situations, defeat the purpose of trying to 
reduce the set. 

The two final methods (C1 and C2) are much faster and use agglomerative 
clustering methods for variables based on the single-linkage and group average 
linkage methods, respectively (Section 7.3.1). The fusion of clusters continues 
until all the between-cluster siniilarities first drop below 0.45 for C2 and 0.55 
for C,. If g clusters have been found at this stage, then, using an appropriate 
criterion (e.g., one of the innermost variables), one variable is selected from 
each cluster for retention in the final subset of g variables. The principle 
behind this technique is that variables in a given cluster are similar, so that a 
suitably chosen candidate will represent the whole cluster. Although there is 
not a great deal of diffcrence between C ,  and C,, C, seems preferred. This is 
supported by the demonstrated superiority of average linkage over single 
linkage in detecting clusters (Section 7.3.2b). 

5.2.7 General Applications 

An important application of principal components analysis (PCA) is the 
screening for outliers and redundant dimensions by plotting the first or last few 
coniponents (Section 4.5). Here robust estimates of p and Z should generally 
be used, as X and S (or 2) can be seriously affected by outliers. A normal 
probability plot of Q f o  for each x, can also be used [see (5.8)] .  
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Principal components have also been used to analyze vector time series by 
approximating the series by a filtered version of itself, but restraining the filter 
to have reduced rank (Brillinger [1975: Chapter 91). Alternatively, the structure 
of a series can be studied by reducing the dimensions of the input and output 
data and estimating the reduced-dimension transfer function (Priestly et aI. 
[1973]). Methods of robust estimation have also been developed for time series 
(e.g., Martin [1979]). 

Frequently the observations xl, x2,. . . ,x, are not a random sample but may 
come from different populations or groups, and may even represent the whole 
population. In this case it is not appropriate to assume an underlying sampling 
theory, but simple regard PCA as a dimension-reducing technique. For exam- 
ple, suppose that several groups have the same variables measured on them, 
and interest centers on discovering how similar the groups are with respect to 
their overall features. An intuitive procedure is to apply a separate PCA to 
each group and then assess the similarity of the groups by comparing the first 
few components. The angular measures suggested by Krzanowski /1979a] may 
be usefui for comparing the reduced groups. Alternatively, if the group 
structure is unknown, PCA can be applied to the n observations and the first 
few components plotted to help indicate possible clusters in the data. 

For the group situation, a number of models have been proposed under the 
title “fixed (-effects) models of PCA” (see Okamoto [1976] for references). 
From y; = T i ( x j  - Ti) we have xi = ?i + ?yi. Extracting thejth elements and 
letting 1; equal thejth row of T gives us 

x i j  = Tj + qy, 

k A  
= zj + c yirtjr + E j j ,  

r = l  

where E;, = Cf---k+lyjrijr. By analogy, we have a fixed-effects model 

k 

x i j  = pj + C pirmjr + E , ~  
r - 1  

(5.23) 

(5.24) 

with an appropriate orthogonal structure imposed on the mJr and the p,,, 
mimicking the orthogonality of the first k columns of f and the zero sample 
covariances of they;,. If we use the standardized components yir = I1,!’zir in 
(5.23), we have the analogous representation 

k k 

C P;rm;r = C Virmj r ,  
r = l  r = l  

(5.25) 

which is of the form (10.20) given by a singular value decomposition. One 
method of estimation for (5.24) consists first of ignoring (5.25) and forming the 
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usual analysis of variance matrix of residuals R = [ ( x l ,  - &)I. Then we obtain 
the singular value decomposition of R and use the first k eigeiivalues and 
corresponding eigenvectors to give estimates of a,, I , , ,  and W I ~ , .  If k = d ,  there 
is nothing left over for estimating the “error” E,,. The smallest eigenvalues are 
therefore used to estimate the E,,. This method can be applied to models more 
general than (5.24). For example, Mandel [1971. 19721 initially proposed using 
the technique for the model 

XI,  = P + a, + 6, + Yl,, f el,, 

where the interaction y,, takes the form (5.25) and 

For further details and references relating to the above model, see Yochmowicz 
and Cornell [ 19781, Krzanowski [lY 79b], Cornelius f 19801, Krishnaiah and 
Yochmowitz [1980], and Marasinghe and Johnson [1981]. A cross-validation 
method for estimating k in the model (5.24) is given by Wold [1978]. Bradu 
and Gabriel (19781 show how the biplot of Section 5.3 can be used for choosing 
the appropriate two-way model. 

Another application of PCA is in regression analysis. Consider the regres- 
sion model 

This can be expressed in the form 

y -.. aI, + Xg + e, 

where X = (xi - i, x -- SZ,. . . ,x  - a)’. If 

n 

xpx -- c (XI - %)(Xi - K)’ 
i=;  1 

has an eigenvalue ̂ h close to zero, with corresponding eigenvector f, then 

and premultiplying hy 2’ gives us Xi = 0; that is, multicollinearily is preseqt. 
If, in general, we have d - k linear constraints X$* = 0, where $ = (?,,T2)\ 
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then 

= w, (5.26) 

where the regression model is now expressed in terms of the first k principal 
components instead of the original variables [see (5.14) transposed]. However, 
care is needed, as y may be highly correlated with one of the omitted 
components (see Jolliffe [1982] for examples], 

The idea of using PCA for analyzing multicollinearity and finding a 
meaningful regression subset was suggested by Jeffers [1967] and Cox [1968: p. 
2721, and is discussed in detail by several authors (see Mansfield et al. [1977], 
Hill et al. [1977], and White and Gunst [1979] for references). The method is 
also referred to as latent root regression. A useful practical discussion on the 
role of PCA in detecting multicolline~ty in regression models is given by 
Chatterjee and Price [1977: Chapter 71 and Mandel [1982]. An interesting 
example is given by Box et al. [1973]. However the technique seems of limited 
usefulness as a method of finding a regression subset (see Draper and Smith 
[1981: p. 332 and p. 3371. 

5.2.8 Generalized Principal Components Analysis 

If the d-dimensional observations xl, x2,. . . , x, all approximately satisfy d - k 
linear constraints, then the observations lie approximately in a k-dimensional 
subspace. Using PCA, we can estimate the constraints, namely, 

i ; ( ~  - K) z 0 ( j =  k +  1, k + 2 ,..., d ) ,  (5.27) 

and use the first k principal components as the coordinates in the k-dimen- 
sional subspace. However, the observations may, instead, satisfy nonlinear 
constraints so that a reduced nonlinear coordinate system is more appropriate. 
For example, suppose d = 2 and each x = (xl, x2)‘ satisfies 

x; - 2x1x* + X I  - x2 + 3 = 0. 

If we know that any constraint would be quadratic, we could consider 
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and focus our attention on 

a’x* = a , r :  + a l x $  + a 3 x , x z  + a4x1 t a S x 2 ,  

a general quadratic in x1 and x2. Working with the n vectors x;, we can 
calculate X* and S*, and extract eigenvalues A; and eigenvectors tr, say. For 
this “starred” system the principal component transformation is y * = T*‘(x* 
- X*), and we would expect A; = 0. Also 

= h( x: - 2X,X, -t x1 - x2 + 3) 

= 0, (5.28) 

since y: has sample mean zero and sample variance A? zero. The scale factor b 
arises as IltJll = 1. Thus any quadratic constraints approximately satisfied by 
the data will correspond to small A:. 

If the type of nonlinear constraint is unknown, we may wish to consider a 
cubic polynomial so that 

x* = (& x i ,  .x;xz, x , x ; ,  x;, x;, X I ,  XJ. 

However, the dimension of x* grows rapidly with the dimension d of x and the 
degree of the polynonlial. For example, with quadratic constraints, x* has 
dimension 2d + $d(d  - 1) and we require n to exceed this if the method is to 
work (e.g., n =. 27 for d = 6). 

This nonlinear technique was proposed by Gnanadesikan and Wilk [ 1966, 
19691 and considered independently by Van de Geer [1968]. It can be moti- 
vated along the lines of ‘Theorem 5.4. The reader is referred to Gnanadesikan 
[1977: p. 531 for further details and examples. 

5.3 BIPL,OTS AND h-PLOTS 

The biplot is a procedure introduced by Gabriel [I9711 that graphically 
describes both relationships among the &dimensional observations xl, x2,  
. . . ,x, and relationships among the variables. It is based on the standard result, 
demonstrated below, that any n X rn matrix B = [(b,r)]  of rank r can be 
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factorized (nonuniquely) as 

B = GH’, (5.29) 

where G and H are n X r and m X r matrices, respectively, of rank r .  Thus 

b . .  1J = g!h. 1 I ’  (5.30) 

where g: and I$ are the rows of G and H, respectively, and we have a 
representation of the bij in terms of r-dimensional vectors. This factorization 
assigns each g, to a row of B and each hj to a column of B. If r = 2, we can 
plot the n + m vectors in two dimensions and obtain what Gabriel [19711 calls 
the biplot. For r > 2 it may be possible to approximate B satisfactorily by a 
rank 2 matrix B(2,, and the corresponding biplot may shed light on B itself. 

From (5.29) we can write B = (GR’)(HR-l)’ for any nonsingular R, and 
this nonuniqueness of the factorization can lead to rather different looking 
biplots (e.g., Exercise 5.10). Apart from an orthogonal transformation (rotation 
or reflection), which does not change the relations between vectors, the 
factorization can be made unique by imposing a particular metric on the 
columns of G or H. Clearly, we would wish to choose a factorization in which 
the G and H have meaningful properties. A natural approach is to use the 
singular value decomposition (see Section 10.1.5) 

r 

B = L,A,M; = ail irn;,  
i -1  

(5.31) 

where L, is an n X r matrix of rank r with orthogonal columns li (i.e., 
LiL, = I,), M, is an rn X r matrix of rank r with orthogonal columns mi (i.e., 
MiM, = IT), A, = diag(d,, a2,. . . ,a,), and 6, 2 6, 2 * - 2 6, > 0 are the 
positive singular values of B (i.e., the positive square roots of the nonzero 
eigenvalues of B’B). Dropping the matrix subscript r ,  we see from (5.31) that 

B’BM = MAL’LAM’M = MA2 (5.32) 

or 

B’Bmi = &‘mi, (5.33) 

so that the columns of M are eigenvectors of B‘B. Writing 

B = L( AM’) = GH’, 
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say, we have verified the existence of the factorization introduced in (5.29). For 
this particular choice of G and H, 

r 

HH’ = MA2M‘ = c s:m,m’, = B’B, (5.34) 
1 = 1  

CG’ = LII ( 5  35) 

= (BMA--’)(BMA-’)‘ [by (5.31)] 

=-7 B(B’B)-B’ (by Exercise 5.11). (5.36) 

The factorization (5.29) is now unique up to an orthogonal transformation, as 
we have imposed constraints G’C = L’L = I, (see Exercise 5.12). 

If we want to find a rank s (s < r )  approximation to B, then applying a 
Frobenius norm criterion leads to the approximation (see A7.3) 

where B(s, is the value of the n x m matrix C of rank s that minimizes 

i -1  j-1 

The lack of fit can be measured by (see Exercise 5.13) 

and the goodness of fit by 

r 

( 5  .Ti) 

(5.38) 

In addition to minimizing a certain norm, we now establish another useful 
property of B($,. 

LEMMA 5.6 If the rows of B sum to zero (i.e., B’l, = a), then, in terms of 
the Frobenius norm, B(s) is the rank s matrix whose column djKerences best 
approximate the column differences of B. 
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Proof Let C be an n X m matrix such that C1, = 0, and let bj,and cj be 
columns of B and C. If uj  = 9 - cj, then 

m m  m m  

m 

= 2m llu, - ii1I2 (Exercise 5.14) 
j - 1  

m 

as El, = C1, = 0 implies that ii = 0. Now 

m n m  

which is minimized when C = B($,. (The same result applies to row differences 

Gabriel I19711 applied the above theory to the data matrix B = X = 

if B1, = 0.) 0 

(g1,g2,. . . ,fin)', where 3; = xi - X and m = r = d. Then B1, = 0 and 

n 

B'B = C gig; = Q = (n - 1)S, (5.39) 
i=l 

where S is the unbiased estimate of the dispersion matrix of the xi. If 
8: 2 6; 2 . * * 2 8: are the ordered eigenvalues of Q, then from (5.35) and 
(5.34), G = (11, f 2 , .  . . , ld )  and H = (Slml, Q2m2 ,..., 6,m,), where G is n x d 
and H is d X d. Also, from (5.34) and (5.36), HH' = Q and GG' = XS-'X/(n 
- 1). We can get rid of the factor of (n - 1)-l from GG' by rescaling, namely, 

Then (5.29) still holds with 

I-W=S and G G = X S - ' X ,  (5.41) 

and the rows gj and l$ of G and H, respectively [see (5.30)] have the following 
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properties: 
(1) From (5.41), gigB = W:,S -Itg, and the distance between the points 

represented by g,J and gg, namely, 

1 /z 
= { (x, - x B ) ’ s - - l ( x u  - XB)} 

is the Mahalanobis distance between the observations x, and x B  (Sec- 
tion 1.5). 

(2) The sample covariance between variables j and k is 

and the sample variances are llh,1I2. 
(3) The correlation between variables j and k is the cosine of the angle 

(4) We note that 
between h and h k  (= h;hk/~~hJ~~ llhkll). 

Ilh, - hk1I2 = H’h, f Kkhk - 2w/hk 

is the sample variance of the diff‘erence between variables] and k. 

If we approximate B by IB(2,, then we can use the corresponding biplot of the 
n + d vectors g, and h, to visually provide approximate information on 
distances between observations, and on sample variances, covariances, and 
correlations between variables. The approximalion B(2) will be satisfactory if 
pi’) of (5.38) is close to unity. 

In conclusion, we see that if we are given S, we can find thc two largest 
eigenvalues A, and A,, where A, -- 6: / (n  - l), with corresponding unit eigen- 
vectors mi and m2 [see (5.33)], using a principal components program. We then 
form the matrix 

where the d rows h, of H(2) have, approximately, properties (2)-(4) above. 
Corsten and Gabriel [1976] call the plot of just the h, the h-plot of S, and 
demonstrated how sample covariances matrices can compared by looking a t  
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their h-plots. Instead of using llB - B($’ as a measure of lack of fit, the 
authors proposed using I(S - H,z,H{z,ll . This leads to the goodness of fit 
measure 

Nc 

Ni 

Ne 

B 

cc 
Ci 

ce 

S 

for h-plotting, where CjA; = trS2 = z,&&. 
The general problem of least squares approximation of matrices by “addi- 

tive” and “multiplicative” models is considered by Gabriel [1978] and Gabriel 
and Zamir [1979: weighted least squares] while matrix approximation in 
general is considered by Rao [1980]. Bradu and Gabriel [1978] give an 
application of biplots to two-way models. A technique, similar in spirit to the 
biplot, is correspondence analysis (Hill [1974], Mardia et al. [1979], Gordon 
[19Sl], GENSTAT statistical package). 
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.3714 .4080 ,4104 ,3274 ,4916 ,6103. ,8015 129.73 

EXAMPLE 5.4 Corsten and Gabriel [1976] demonstrated their h-plot method 
on daily rainfall data in eight regions of Israel: three northern regions (coast, 
interior, and east), three corresponding central regions, a narrow buffer region 
between north and center, and a small region in the south. Each observation 
was a rainy day’s precipitation averaged over several rain gauges in one region. 

TABLE 5.11 Variances, Covariances, and Correlations of Daily Rainfall (mm) in 
Israel- 945 Rainy Days, Preexperimental, 1949-1%0 (Correlations Below Main 
Diagonal) 
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TABLE 5.1 3 Coordinates for h-Plots of Rainfall Data" 
--- ----. - - . .- 

Pre- 
North-Seeded experimental 

133.17 105.30 9 0 . 7 0  1 1 6 . 9 1  70.73 75.97 44.00 2 6 . e ~  

.9194 187.96  1 2 3 . 2 1  1 4 2 . 9 3  9 1 . 5 1  100.77 63.77 32.27 

,7955 ,9096 97.61 92.01  58 .55  65 .32  42.77 21.66 

,7805 ,8032 ,7175 168.48 91.62 90.07 113.94 23.25 

. S W O  ,6512 ,5782 ,6886 105.06  113.33 72.4 5 52.29 

,5622 ,6277 ,5646 ,6826 ,9442 137.12 81.93 62. 26 

, 3 7 1 ~  ,4619 .r2w ,335b .7017 . 7 ~ 7  i o ~ r o .  82.16 

.2317 .2347 ,2196 .1786 ,5086 ,5301 .a135 100.60 
1 -1-L 

North coast 
in tenor 
east 

Buffer 
Center coast 

interior 
east 

South 

10.10 
12.70 
8.42 

11.10 
8.82 
9.78 
6.68 
4.60 

- 3.72 7.39 
- 3.97 8.40 
- 2.71 8.71 
-- 3.86 6.70 

3.29 11.80 
4.63 10.08 
6.69 9.61 
7.50 7.78 

-- 3.81 
.- 3.35 
+ 3.09 
- 3.31 
- 1.54 

0.73 
6.28 
7.18 

Goodness- of - fi t 98.79% 98.73% 

A,  696.54 639.79 
xz 185.12 140.23 
A,  63.79 62.36 

Sample Size 208 84 5 

xix, 1031.40 918.49 
ZP 52.5809.1 7 434494.42 

~~ ~ 

"Reproduced from L. C. A. Corsten and K. R. Gabriel (1976). Graphical 
exploration in comp'aring variance matrices. Biornetrics, 32, 851 --863, Table 
of coordinates. With permission from The Riometric Society. 
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The regions were used for a rainfall stimulation experiment in 1961-1967, and 
on each experimental day cloud seeding was randomly assigned either to the 
north or to the center and carried out upwind of those regions. Prior to the 
experiment, “natural” rainfall data was collected over the same regions from 
1949 to 1960. The sample covarianms and correlations for two of the cases, 
pre-experimental and north seeded, are presented in Tables 5.11 and 5.12. By 
way of illustration, the sample dispersion matrix in Table 5.11 has eigenvalues 
A, = 639.79, A, = 140.23, A, = 62.36, and so on. The matrix H,, of (5.42) is 
given by the last two columns in the upper part of Table 5.13, and the rows of 
H(*), namely, (7.39, -3.81), and so forth, form the coordinates for the arrows 
of the h-plot (Fig. 5.3). The goodness of fit measure, lOOp,, is 98.73%, and such 
a high value indicates an excellent fit of H,, to H. In particular, llhjll and 
[lhj - hkll for H,, will be close to their counterparts for H, the latter being 
upper bounds. The lengths of the rays in the h-plots and the cosines of the 
angles between the rays will therefore be close to the respective standard 
derivations of the variables and the correlation coefficients. The axes of the 
plots are used only for constructing the plot and not for interpreting them. 
Corsten and Gabriel [1976] came to the following conclusions with regard to 
the pre-experimental and north-seeded plots. 

r il’South 

Origin 

- 2  

- 4  

-coast 

Fig. 5.3 The h-plot of variances of rainfall on pre-experimental days. Redrawn from Corsten and 
Gabriel (19761. With permission from The Biometric Society. 
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Figure 5.3 shows that “natural” variability in rainfall was much the same i n  
all regions, except that the northern and buffer regions had slightly smaller 
standard derivations. The c:orrelations show a clear geographical pattern: a 
highly correlated cluster of northern regions and the buffer; little correlation of 
this cluster with the dry regions of the south and center-east; and the central 
coast and interior are in betwcen, being more highly correlated with the north 
than with the south. For the north-seeded days, Fig. 5.4 shows that the 
center-coast and center-interior are less highly correlated with the north and 
buffer than under “natural” conditions. Furthermore, north and buf€er rainfalf 
variability appear to have increased (except in the east) under north seeding, 
and the seeded areas are more highly correlated. This suggests that seeding not 
only increased average rainfall, but also increased variability and reduced the 
correlation with unseeded regions. 

The authors suggested a number of test procedures based on the h-plot and 
the reader is referred to their paper for further details. 

h 

-- 
Buffer I n k  

N o r t h  
- 4  t- 

Fig. 5.4 ‘The h-plot of variances of runfall on north-seeded days. Redrawn from Corstrn and 
Gabriel [1Y76]. With permission from the Diometric Society. 
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5.4  FACTOR ANALYSIS 

5.4.1 Underbing Model 

Let x = ( x I ,  xz,. . . , xd ) ‘  be a d-dimensional random vector with mean p and 
dispersion matrix Z,. Suppose we believe that, apart from a random fluctua- 
tion or “error” term, the elements of x can be explained in terms of a smaller 
number m of unknown random variables ( f i ,  f 2 , .  . . ,fm) = f‘ called (common) 
factors. In the simplest model we assume that the factors affect x linearly so 
that we consider a linear model of the form 

x = p + rf + &, (5.43) 

where e is the “error” term and everything on the right-hand side of (5.43) is 
unknown. The elements of e are usually called the speci$c or unique factors. We 
also make the reasonable assumptions that f and e have zero means and are 
uncorrelated. The ( j ,  k)th element of the d x rn constant matrix I?, yjk,  say, is 
called the weight or factor loading of x j  on the factor f k  as 

For identifiability we require that each column of r have at least two nonzero 
elements; otherwise f and e are “confounded” (see Exercise 5.15). It is further 
assumed that the factors account for all the correlation structure so that the 
elements of the residual or error vector e = x - p - rf are uncorrelated, that 
is, \k = g [ e ]  is a diagonal matrix, diag( $:+;, . . . ,+:). We can therefore write 

z, = 9 p - f  + 
= g[rf] + g [ e ]  

= rqflr’ + \k 

= rx,r’ + q, 

say. However, we also have an equivalent representation 

with 

(5.45) 
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and 9[f] = 2;’/29[f]2;1/2 = I,,,. In our original model, (5.43), we can there- 
fore assume that the factors are standardued and uncorrelated, that is, 
2, = I,,,. We now have 

z , = r r + \ k  (5.46) 

= n -t *, (5.47) 

say. 
Given a random sample of observations xl, x2 , .  . . ,xn, the basic problem is 

to decide whether Z, can be expressed in the forni (5.46) for a reasonably small 
value of m, and to estimate the elements of I’ and 4’. However, some care Is 
necded in developing estimation procedures, as the model is undetermined. In 
the first instance we will have, from the sample data, estimates of the 
$d(d  t 1) distinct elements of the upper triangle of Z,, but on the right-hand 
side of (5.46) we have dm + d parameters, dm for I’ and d lor 9. The solution 
will be indeterminate unless i d ( d  + 1) - d ( m  + 1) 2 0, or d > 2rn. Even if 
this condition is satisfied, I’ is not unique. If L is any m X m orthogonal 
matrix, then 

say, where 9,[f*]  = L‘9[[f]Ld = L L  = I,,,. Therefore any orthogonal rotation of 
f will do just as well as f itself. 

There is also a further source of nonuniqueness in the model that is not 
usually recognized (Francis [1973]). If the d X rn matrix I‘ is of rank r ( r  i m), 
then IT’ is positive semidefinite of rank r and there exists the factorization (see 
A4.3) IT’ =- rrrr’, where I’, is d x r of rank r .  In this case the model 

x = (L + I’,h -t E, 

where h is a vector of r factors, has the same dispersion as (5.46). Another 
representation for Z,, which leads to a different q, is given in Exercise 5.16. 

The above problem of uniqueness is generally resolved by choosing an 
orthogonal rotation L such that the final I’ [called I’* in (5.48)] satisfies the 
condition that I ‘ T  ‘I‘ is diagonal with positive diagonal elements [see later, 
following (5.54)). This restriction requires I’ to be of full rank m. Given a 
“valid” q, namely, one with all positive diagonal elements, then for this 
particular J! it can be shown that the above restriction yields a unique r, 
provided that a suitable convention is adopted with the sign of each column of 
I’. However given 2,. such a \k may not cxist for a given m; and il it does 
exist, it niay not be unique (see Lawley and Maxwell [1971: Section 2.3j). 
Uniqueness can also be obtained by specifying a priori the values of a 
sufficient number of parameters, the so-called “restricted” model (Lawley and 
Maxwell [1971: Chapter 71). One rigorous approach to the problem of unique- 
ness is given by Williams [1978]. 
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Once r is estimated, f is frequently rotated, as in (5.48), to obtain more 
“meaningful” factors, that is, obtain a more meaningful structure in I”. 
Suppose, for example, that the estimated factor loadings for thejth component 
of x, given by the j th  row of the estimate f [see (5.44)], consist of a few 
moderate values and a large number of small values. Then it may be consid- 
ered worth “rotating” f” so that a few values become relatively large and the 
rest become zero or negbgible. This can be achieved by maximizing certain 
functions of the squares of the rotated loadings. The most popular method is 
uurimux (Kaiser [1958], Lawley and Maxwell (1971: Section 6.3]), which seeks 
to maximize the sum, over the columns, of the “variance” of the squared 
loadings in a column of the rotated f. A less satisfactory technique is 
quurtimux, which seeks to maximize the corresponding sum of variances for the 
rows. 

With an orthogonal rotation, uncorrelated factors remain uncorrelated. 
However, if we make a general nonsingular linear transformation g = Rf, we 
have the model rf = (rR-’)g, and the new factors g are now correlated with 
dispersion matrix 9[g] = RR’. Such transformations are called oblique rotations 
and are frequently used by practictioners to achieve “better” models. One such 
rotation is biquartimin, which minimizes the sum of the “covariances” of pairs 
of columns of the squared loadings of IIR-’. For a general reference on 
rotations see Williams [1979J. 

The two techniques of principal component analysis (PCA) and factor 
analysis (FA) are often confused, particularly in the behavioral sciences, and it 
is perhaps appropriate to make some comparisons at this stage. If y is the set 
of d principal components of x, then 9[y]  = A = diag(A,, A,, . . . , A d )  and we 
can write (see Section 5.2.1 for notation) 

= TlYl + T2Y2 

= B1g1 + q, (5.49) 

say, where the elements of y1 are the first m principal components, the elements 
of g, are the first m standardized principal components, and A, = 

diag(A,, A , , .  . .,A,,,). This model looks like the FA model (5.43) as 9[gJ = 
A;1/29[yl]A;1/2 = I,,, and V[g,, q] = A;’/2%[y,, y,]T; = 0. However, if 
A, = diag(h,+,, Am+2, .  . . , A d ) ,  then 9 [ q J  = T2A2T; is not diagonal, so that 
g, does not “explain” all the correlation structure m x. There are no assump- 
tions underlying PCA; we simply rotate x to y with the hope that some 
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elements of y have smdl variances. If the eigenvalues of 2, are distinct, the 
rotation that achieves the ordering of the eigenvalues is unique (with a suitable 
convention for the sign of an eigenvector). However, FA makes the strong 
assumption that there is an underlying linear model that accounts completely 
for the correlation struclure. Moreover, the underlying factors an be arhi- 
trarily rotated without changing the form of the model. Because of the 
underlying linear structure, FA regression has been proposed as a method of 
linear prcdiction instead ol the usual least squares regression for situations 
when the regressors (“independent” variables) are subject to mutticollinearity 
and measurement errors (see Isogawa and Okamoto [1980] for references). 

In conclusion, we note that the above approach is not suitable for categori- 
cal data. For inodcls and rel‘erences relating to this topic and the related 
subject of latcnt structure analysis, see Bartholomew I19801 and Anderseii 
[1982]. 

5.4.2 l3:Ftimation Procedures 

Before discussing several methods of estimation, we introduce some terrminol- 
ogy commonly used in the factor analysis literature. If r = [ ( y i k ) ] ,  then the 
diagonal elements of (5.46) give us 

say, where hf is called the comtnunaliry or common variance and +; is called the 
residual rrariance or unique uuriance of xJ. Obvious estimates of y, and X are f 
and S, and we now consider several methods of estimating I’, 9, and f using S 
as a starting point. 

a MEIIIOD OF MAXIMUM LIKELIHOOD 

Suppose that the sample observations x, ( i  = 1,2, .  . . , n )  come from &(p, 2). 
Then ( n  - 1)s - W,(n - 1,2) and, from (2.3), the log-likelihood function of  
r and J, is 

(5.51) 

It can be shown that maximizing the above expression with respect to the 
elements of I‘ and leiids to the following equations for the maximum 
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likelihood estimates f and \f (Lawley and Maxwell [1971] with their "n" equal 
to n - 1): 

sf-'f = f ( I m  + f W f )  (5.53) 

and 

f = diag(S - ff'). (5.54) 

However, as already noted, these equations do not have a unique solution, as r 
can be arbitrarily rotated. It is therefore usual to impose the restriction that 

j =E ff*E.-lf (5.55) 

is diagonal. This particular constraint can be justified by the following Baye- 
sian-type argument (Bartholomew [1981]). Assuming f - N,,,(O, I,) and the 
conditional distribution of x - p, given f, is Nd(rf, q), then the conditional 
distribution off,  given x, is (see Exercise 5.17) N,(r'Z-'(x - p), [I"W1I' + 
I,]-'). If M"'I' is diagonal, then we have chosen the particular rotation that 
leads to the elements of f being conditionally independent. 

Equations (5.53)-(5.55) must be solved iteratively, and unfortunately there 
are convergence problems. In fact, prior to 1967 practictioners had so much 
difficulty with solving the equations that the maximum likelihood method was 
rarely used and another method, principal factor analysis (see below), became 
popular. However, there was a major breakthrough when Joreskog [1967] and 
Lawley [1967] developed a suitable algorithm based on numerically maximiz- 
ing log L ( r ,  9) of (5.52) (see Lawley and Maxwell [1971], Joreskog [1977], and 
S. Y. Lee [1979] for details, and Williams [1979] for a historical survey). The 
process begins with an initial estimate q0 from which ro is calculated (Exercise 
5.18). The function logL(rO, 9)  is then maximized with respect to \k to obtain 
9, and corresponding rl; logL(r, ,q) is then maximized with respect to 9, 
and so on. In practice, the likelihood function may not have a true maximum 
subject to the constraint 9 > 0. This may be due to the fact that the 
ynderlying model is inadequate or simply due to sampling variation. In such 
cases one or more elements of 9 tend to zero in the course of the iteration and 
become negative if allowed to do so. To overcome this problem, the maximiza- 
tion is carried out within the region R ,  for which #$ 2 6 for allj, where 6 is an 
arbitrary small positive number (e.g., 0.005). The solution is said to be 
improper if it occurs on the boundary of R, ,  and proper otherwise. If +; = 6 
for somej, it stays at that value until the iterations stop. Improper solutions 
occur with surprising frequency and the cause cannot be determined because of 
the constraints that fI of (5.47) is positive semidefinite and \f is positive 
definite. As the maximum likelihood theory has not been proved valid for 
boundary points, it has been suggested that we assume fr to be just symmetric 
(see Van Driel [1978] for a discussion and references). 
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One satisfactory feature of the maximum likelihood niethod is that it is 
independent of the scales of measurement. To see this we note, from Exercise 
5.1 8, that the computational procedure depends only 011 finding the eigenval- 
ues and eigenvectors of S -- q-1/’2Sq--1/2. If we make the scale transforma- 
tion yl = D x I ,  where the diagonal elements of the diagonal matrix D all have 
the same sign, then, since all the following matrices except S are diagonal, 

s,, = (DJTD’)-’/’DSD’(D~D’)-’/* 

= 9- 1/’2D -lDSDu-19--1/2 

9 - I / z Q q - 1 / 2  = - sr - __ 

Given a proper solution for k factors, we can now carry out a goodness of 
fit test of the hypothesis Ho:2 = I’I” + 4’ ( m  = k )  versus the alternative that 
2, is unrestricted using the likelihood ratio statistic t. Evaluating (5.51) at 
I: = S and I: = 2 = ff, + 4, we have 

-2logC- ( n  -- l){log($l + tr[S%.’] - loglSl - d }  (5.56) 

= (11 -- l ) { l o g ( g ) ]  (byExercise5.19). 

Following Bartlett’s [ 19511 recommendation, when H, is true, 

(5.57) 

is approximately xf. where Y = $[ (d  - k)’ -- (d -t k) ] .  Because of this test 
procedure, Jareskog’s algorithm actually minimizes 

instead of, equivalently, maximizing log L ( r ,  q)  of (5.52); - 2 log /of (5.56) is 
then n - 1 times the minimum of (5.58). Lawley and Maxwell [1971: p. 361 
suggest that the chi-square test can be trusted only if n - d > 50, though the 
simulations of Geweke and Singleton [1980] suggest that this is probably too 
pessimistic. The latter auhhors suggest, for example, that n = 10, d = 1 and 
n = 25, d -- 2 are possible thresholds. 

It  should be noted that the above likelihood ratio test is only valid if r has 
full rank. We can therefore expect problems with -- 2 log /if k is too large. For 
the same reason we cannot use the usual asymptotic theory to test Ho : rn = k 
versus N, : m = k, (r k). Parameters in the k ,  factor model will be under- 
identified and their estimators inconsistent when the null hypothesis is true (see 
Geweke and Singleton (1 9801). 
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b PRINCIPAL FACTOR ANALYSIS 

Because of the early difficulties with the maximum likelihood method, and the 
lack of availability of the Jijreskog-Lawley algorithm, the following method is 
still very popular. 

We note that Z - J! = I‘I” is positive semidefinite of rank m. Hence there 
exists an orthogonal matrix M such that 

M ( Z  - 9 ) M  = diag(&,& ,..., +m,O ,..., 0) = a, 

where the +j are the positive eigenvalues. If the columns of M, are the first m 
eigenvectors, and Q, = diag(+l, &, . . . ,+,), then we can write 

X - * = M Q M  = M,QT,M; = (Ml@~/2)(MlQ1/z)’, 

and I’ = M,Q;I2 is a solution (with certain optimal properties; see Exercise 5.3 
with A = I: - q). Therefore, given a suitable estimate \fi of 9, we can take 
out the first m standardized principal components of S - $, and obtain an 
estimate M,&;/’ of r. This technique, called principal factor analysis, was 
suggested by Thompson [1934]. 

= diag( I);, @, . . . ,I):) are given in the literature, 
the most common being 4; = l/s’j, where [(dk)] = S-’ .  This is equivalent to 
estimating the communality hf by [see (5.50)] 

Several suggestions for 

A2 = s . .  - I); = SJj -(l/s”) = SjjRj,  
J JJ 

where R j  is the sample (multiple) correlation between xi and the fitted 
regression of x, on the remaining x-variables (see Seber [1977: p. 3331 for a 
proof). 

The key step in the above method is the choice of m. Since X - 9 has 
d - m zero eigenvalues, we can expect some of the eigenvalues of S - 9. 
(which is not necessarily positive semidefinite) to be negative. In practice, we 
could continue to extract positive eigenvalues until CY!,&,. was close to 
C?=,C$, = tdS - @,] = Ci- ,hj ,  the estimated total communahty. Because of 
the presence of negative +j, m will then not exceed the number of positive b. 
Once m is chosen, we can iterate the process for i = 1,2,3,. . , , until stability, 
using 

@i+ , = diag(S - F&) (5.59) 

and extracting the m components of S - @i+l to obtain c.+r. We could also 
start the process with = 0 and initially extract the components of S. In this 
case the choice of m depends on the relative magnitudes of the eigenvalues of 
S, though such an approach will not be satisfactory unless the elements of 
are small compared to the elements of I‘; otherwise the eigenvalues will reflect 
the elements of 9 as much as those of r. Because of the optimal properties of 



220 Dimeruron Reduction und Ordinatloti 

principal components, the above iterative procedure is equivalent to minitnis- 
ing tr[(S - 2)2] =-; C,C,(s,, - u,,)~ subject to 2 = IT' + 4' (see E,xercise 5.3). 
Algorithms for doing this are the unweighted least squares of Jiireskog [1977] 
and the minres method of Ilarinan [1977] (see also Kennedy and Gentle [1980: 
pp. 567-5741 for a summary). 

As in PCA, the question arises to as to whether the dispersion or correlation 
matrix should be used. Unfortunately, the latter is often used with little or no 
justification. In the correlation approach the FA model is based on the 
standardized variables z, = (x, - p,)/u,, so that we have the scaicd version of 
(5.46), namely, 

= (D; 1/2r)(Dn-l/2r)f + ~ ~ - 1 / h p ~ , - 1 / 2  

= A L \ ' + 8 ,  (5.60) 

say, where P, = [ ( p I k ) ]  is the population correlation matrix and D, = 

diag(u:(2, u$i2,. . . ,u;d/'). If we equate diagonal elements of (5.60), and note 
(5.50), 

say. Here Pp = P, - Q is called the reduced correlutron matrix. Given estimates 
H; of the communalities of the z,, P,, can be estimated by the sample version 
R, which is simply the sample correlation matrix R = [ (ck)]  with its unit 
diagonal elements replaced by the fi:. 

A variety of estimates for fC2  have been suggested in the literature. The 
most common method is to use the lower bound (Har r is  [19'78]) fi: = R; = I 
- l/rJJ, where [ ( r j k ) ]  -= R-' (see Seber [1977: bottom of p. 3351). However, 
Gnanadesikan [1977: p. 211 mentions that ford not too small (say, d > lo), the 
digwent choices of H: that he lists, including R;, generally lead to similar 
results. One can, of course, iteiate, and algorithms are given by Jiireskog I19771 
and Harman [1977]. 

C ESTIMATING FACTOR SCORES 

In conclusion, we discuss methods of estimating the factor scores f for each 
observation x,. Clearly f cannot be estimated in the usual fashion, as it is a 
random vector and the m + n unknown random variables f and e outnumber 
the n observations. However, treating f as fixed, we have 

and we can consider the generalized least squares estimate of f in this model, 
namely (Bartlett [1938h]), f* = (I")-'I"W 'y, which is the linear unbiased 
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estimate with minimum variance properties. If we re lace parameters by their 
maximum likelihood estimators and note that j = pl ’+-‘f is assumed to be 
diagonal, then we have 

fi* = j-1p+-l(xi - g)  (5.62) 

An alternative approach is to choose the linear estimate f = Ay that 
as the factor scores for xi. 

minimizes the mean square error 

E[lli - f l l 2 1  = E[llAY - f1l21 
= E[(IAFf + Ae - f(12] 

= E[f’(Ar - I,)’(Ar - 1,)f + 2e’A’(Ar - 1,)f + e’AAe] 

= tr[(Ar - I,)’(Ar - I,)] + tr[A’Aq] (by Exercise 1.4) 

= tr[ r’A’Ar + A’Aq - AI‘ - PA‘ + I,] 
= tr[A’AC] - 2tr[Ar] + m (byAl.l), (5.63) 

making use of the fact that e and f are independent and have zero means. 
Using the rules of matrix differentiation in A8.2, we differentiate (5.63) with 
respect to A and obtain 2AC - 2r’ = 0. Hence A = r’2-I and (Thomson 
W 1 1 )  

f = r’Z-’y. 

Using the identities in A3.4, we can write 

and 

i = (I, + rw1r)-’r/q-1Yy (5.64) 

which is a ridge estimator of f for the conditional model (5.61). Hence f is 
conditionally biased as 

= (I, + J)-’Jf 

# f .  
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However, as with ridge estimators, the elements of t^ will have a smaller mean 
square error than those of f*. Comparing f* = J-'I''V l y  with f = (I,,* i 
J)-'r'V * y, we see that the elements of f are simply scalar multiples of those 
of I*. The choice of estimators for the individual factor scores, namely, f,' of 
(5.62) and the corresponding i,, is up to the experimenter, as no general 
preference has been given (Lawley and Maxwell [1971: p. 1111). 

If m = 2, the f,* or f, ( i  = 1,2, ..., n) can be plotted as a scatter diagram. 
Such plots have been used as a method for detecting clusters, though this is not 
recommended. It is preferable to detect the clusters first and then, if necessary, 
apply FA to each cluster. Factor analysis can only be applied to homogeneous 
data that fit a particular linear model. 

5.4.3 Sonie Dificulties 

Factor analysis goes back to Spearman [ 19041, though early developments are 
associated with Thurstone and Thomson. However, in spite of its long history, 
it has a thin coverage in the statistical literature and is regarded by many 
statisticians as lacking statistical respectability. Part of the controversy that 
began around 1950 (see Kendall and Babington Smith [1950] and thc ensuing 
discussion), and which still exists today, is clue to a lack of agreement regarding 
the tneaning of FA and a general confusion between FA ard PCA. 'rhe 
situation is not helped by the use of principal factor analysis. In spite of early 
attempts to clarify the differences (e.g., Kendall and Lawley [I %6]), several 
widely used texts still display this confusion. 

One of the main controversies regarding FA is whether or not the factors 
have any real existence and have causal rather than just statistical implications. 
Some researchers in psychology maintain the reality of the factors by gvmg 
them psychological namcs. IIowevcr, the question ol' exibtence need not bc 
established before a nrodel can be used, though care IS needed in interpreting 
such a model. Francis [1973, 19741 has raised a number of serious difficulties 
associated with FA and the following is based on his work. 

Suppose, for the purpose of discussion, that p = 0 and we have three 
two-dimensional observations x,, x2, x 3  on a factor model with a single factcr. 
Then, from (5.43), 

x ,  = Yf; + e, ( i  = 1,2,3) ,  

where1 and el are uncorrelated and unobservable, and the elements of E,  are 
uncorrelated. Writing f = ( j , ,  f 2 ,  13)' and (xi, x2 ,  x3)' = (x('), x")), and so on, 
we have 

Thus in three-dimensional space we have two observable correlated vectors x(I)  
and x(*), and three unobservable uncorrelated vectors f ,  e(') and e('). By 
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judiciously choosing the yj,  we can construct a model in which each e(J)  is 
perpendicular to f (Fig. 5.5). We are then faced with the problem of trying to 
discover the relationship between the x's and f without being able to observe f. 
To make matters worse, the link between the x's and f is via the uncorrelated 
vectors e(*) and d2), which are perpendicular to f! 

Clearly the above approach to the factor model is inadequate and several 
attempts to provide a more suitable framework have been made (see Mc- 
Donald and Burr [1967] for a survey of earlier models). Williams [1978, 19791 
bases the factor model on a type of second-order stochastic process in which 
the d variables in x are a selection from a sequence of random variables. 
Bartholomew [1981] gives a helpful framework via conditional distributions 
and a posterior analysis. A useful historical survey of the problem of factor 
indeterminacy is given by Steiger [1979]. 

There is a more serious difficulty associated with FA and this relates to the 
choice of m, the number of factors. Unfortunately, there have been too few 
simulation studies like that of Francis [1973] in which the methods have been 
tested out on data from known factor models. The models with known I? and 
C = *'I2 used by Francis are given in Table 5.14. The test procedure used was 
to choose a model and then ask a program to either retrieve these parameters 
from the known dispersion matrix, or to estimate these parameters using a 

Fig. 5.5 Three-dimensional representation of a one-factor mode1 with three two-dimensional 
observations. Redrawn from Francis [1973]. 



TABLE 5.14 True Paramctcrs of 12 Factor Models: r is the matrix of factor 
loadings, and C = *'I2 the diagonal matrix of the square roots of residual variances" 

Model r diag C Model r diag C 
__ -__- --~--_____---__---__ -. 

I 0 3 1  
0 3.3 
0 3 5  
0 3.7 
0 3.9 

4.1 0 
4.3 0 
4.5 0 
4 7  0 
4 9  0 

I1 1 -1  
2 - 1  
3 - 1  
4 -1 
5 -1 
5 1  
4 1  
3 1  
2 1  
1 1  

111 1 0  0 
1 - I  0 
1 1  0 
1 - 1  - 1  
1 1  1 

- 1  - 1  1 
- 1  1 1 
- I  -1 0 

1 1  0 
- 1  0 0 

V 10 7 4 
10 7 4 
10 7 4 
10 7 4 
10 7 0 
1 0  7 0 
10 7 0 
10 0 0 
1 0  0 0 
10 0 0 

1.55 
1.65 
1.75 
1.85 
1.95 
2.05 
2.15 
2.25 
2.35 
2.45 

2 
2 
2 
4 
4 
4 
4 
2 
2 
2 
1 
1 
1 
I 
1 
1 
1 
1 
1 
1 

15 
15 
15 
15 
15 
20 
20 
20 
20 
20 

IV 9 0 
8 4% 

6 3 f i  
7 2 J z  

5 4 4 2  
4 s f i  
3 642 
2 7 6  
1 t i f i  
0 9 J z  

XV(a) 9 0 
9 1 
9 2 
9 3 
9 4 
9 5 
9 6 
9 7 
9 a 
9 9 

1V(b) 5.0 7.5 
4.0 8.0 
3.3 8.6 
2.5 9.2 
1.7  Y.7 
.8 10.3 
.o 10.8 

- - . X  11.4 
-1.7 11.9 
-2 .5  12.5 

VIII 1 1 0 
1 1 0 
1 1 0  
1 1 0  
1 1 0  
1 0 1  
1 0 1  
1 0 1  
1 0 1  
1 0 1  

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

224 
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TABLE 5.14 (Continued) 

Model r diag C Model r dlag C 

VI 10 
9 
8 
7 
6 
5 
4 
3 
2 
1 

VII 10 
10 
10 
10 
10 
0 
0 
0 
0 
0 

7 
6 
5 
4 
3 
2 
1 
0 
3 
5 
0 
0 
8 
8 
8 
8 
8 
0 
0 
0 

0 
0 
0 
0 
1 
1 
6 
6 

11 
11 

0 
0 
0 
0 
6 
6 
6 
6 
6 
0 

(4 (b) 
20 10 rx 
20 10 
20 10 
30 15 
30 15 
30 15 
30 15 
20 10 
20 10 
10 5 
15 X 
15 
15 
15 
15 
20 
20 
20 
20 
20 

10 10 
10 9 
10 8 
10 7 
10 6 
10 5 
10 4 
10 3 
10 2 
10 1 

10 7 
10 7 
10 7 
10 7 
5 1  
5 1  
5 .  1 
1 4  
1 4  
1 4  

1 11 
2 12 
3 13 
4 14 
5 15 
6 16 
7 17 
8 18 
9 19 

10 20 

0 1 
0 3 
0 5 
0 9 
1 1 
1 10 
1 20 

10 1 
10 10 
10 20 

"From Francis [1973, 19741. 

simulated random sample from the model. Each model has two or three 
factors, d = 10 variables, and in most cases the sample size was 50, though 
several larger samples were taken. The specific factors e were generated by the 
relation e = Cz, where C is a d x d diagonal matrix with positive diagonal 
elements and the elements of z are i.i.d. Nl(O,l). Thus C2 = 9. After the 
factors were taken out, they were rotated using a varimax (orthogonal) rotation 
and an oblique rotation. In comparing the fitted f with the true I' it should be 
noted that the corresponding columns could be of different signs, as it depends 
on the sign convention adopted by the program. We now summarize Dr. 
Francis's conclusions, and I am grateful to him for permission to reproduce his 
findings. 

a PRINCIPAL FACTOR ANALYSIS 

Five principal factor analysis (PFA) programs were considered from BMD, 
OSIRIS, and SSPS packages, and Francis selected BMDX72 for carrying out 
the analysis, as it was the best with regard to accuracy, options, and documen- 
tation. This program also has the option for PFA of the dispersion matrix, 
while the others were restricted to the correlation matrix. The dispersion 
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matrix was mainly used in the study, and PFA was applied to the sample 
dispersion matrices in Table 5.15 for models I IV. 

In model 1 all the eigenvalues of S were greater than 1.0, so that the 
program, as a default, extracted half the number possible, namely, 5. The 
actual number of true factors was 2, but we would not know this in practice. 
The first two columns of 1’ (Table 5.16) are similar to r, but the other columns 
of f are not negligible, although their elements are smaller. This model is 
ideally suited to varimax rotation and from Table 5.16b we see that the firsi 
two columns of f improve slightly on rotation, but the other three columns are 
changed considerably, so that several of the loadings compared in size with 
those in the first two columns. As Francis [1974] conments, “there is little 
doubt that an imaginative user could come up with a plausible explanation for 
the high estimated loadings on the non-existent factors.” If just two columns of 
f are rotated then varimax recovers the loadings well (Table 5.16~). 

The oblique rotations were unsatisfactory (Table 5.16d and e). Although 
biquartimin does not disturb the first two factors very much, the three fictitious 
factors now have large loadings that could be taken as indicating important 
factors. Direct quartimin, another oblique rotation that is supposed to lead to 
“simple” loadings, destroyed the simple structure of the first two columns of r‘. 

Similar comments apply to model 11. An interesting feature of ths model 
are the high estimated loadings associated with the fourth to eighth variables in 
Table 5.17a. The same thing happened, particularly with regard to the nonex- 
istent third and fourth factors, when two more samples were analyzed and 
when PFA was performed on the true dispersion matrix. The reason for this is 
that PFA is trying to represent the large elements in 9 for these four variables 
by two extra factors. Francis [ 19731 concluded that “it is not possible to justify 
the use of factor analysis for finding underlying structure simply because 
repeated applications of the teclinique on independent sets of data give rise to 
similar loadings.” The varimax criterion was not well suited to this model, and 
its application (Table 5.17b) destroyed any similarity with the true structure. 
Using the correlation matrix led to estimates of the first two factor loadings 
that were reasonably close to the true loadings if the variables were scaled by 
their true standard deviations. However, the other columns of f had several 
large loadings and, once again, orthogonal rotation destroyed any similari ry 
with the true model (Table 5 . 1 7 ~  and d). 

For model 111 the good estimates in the first three columns of ‘Table 5.1Pa 
are completely lost after any kind of rotation, irrespective of the criterion used 
or the number of factors rotated; only the result of varimax is displayed in 
Table 5.18b. 

While in inodds 1-111 the factors f are uncorrelated, in model 1V thcy are 
correlated with correlation 1/ a, The true loadings of these correlated factors 
fl and 1% are given in Table 5.14, model IV; the loadings on (f;, f-), an 
uncorrelated pair of factors defned by f; = fi and f,’ -- dzf2 - fi, which is an 
oblique rotation of (Il, A),  are given in ’Table 5.14, model IVa; and the 
loadings on (f;’, j;), are uncorrelated, where f;’ = (5f1 -- 34zf2)/ and 



TABLE 5.15 Sample Covariance Matrices from the First Four Models” 

1 2 3 4 5 6 7 8 9 10 

1 
2 
3 
I 
5 
6 
7 

9 
10 

a 

10.934 

10.468 8.623 14.528 

11.998 10.494 12.625 11.063 19.832 

8.104 10.709 

8.541 10.155 9.629 14.846 

-0,047 0.025 0.901 1.892 -0.092 15.804 

-0.626 -0.166 0.867 1.466 0.684 15.001 15.426 24.456 
-0.168 1.990 1.433 3.292 0.323 13.498 15.365 16.602 21.326 
-1.749 -1.139 -0.453 1.873 -2.958 12.491 13.367 15.814 15.385 22.136 

2.385 2.765 3,480 3,880 2.915 12.921 17.580 

(b) Model I1 

1 
2 
3 
4 
5 
6 
7 

9 
I0 

a 

6.538 
4.306 10.726 
4.119 6.424 11.158 
8.362 13.593 14.434 46.048 
7.712 15.703 17.170 35.662 50.866 
6.362 12.561 13.009 29.966 32.377 46.468 
6.692 9.276 10.110 26.415 22.693 31.466 38.688 
3.714 7.595 7.864 16.852 19.896 23.380 17.020,17.505 
1.948 5.766 5.695 9.869 11.463 14.367 11.470 9.120 11.323 
0.083 1.500 2.336 4.778 4.006 7.754 7.099 3.990 3.929 7.311 

(c) Model I11 

1 2.019 
2 1.176 3.068 
3 1,000 -0.358 3.174 
4 1.193 2.612 -0.011 4.186 
5 0.868 -0.259 2.067 -1.143 4.353 
6 -1.314 -0.360 -1.976 -1.194 -1.262 3.983 
7 -0.812 -1.445 0.191 -0,759 -1.034 -0.371 3.370 

9 -1.235 -2.171 0.508 -2,321 0.161 0.281 1.733 0.087 2.835 
s -0.840 -0.198 -1.861 -0.745 -1.572 2.263 0,119 2.618 

10 -1,065 -1.108 -0.993 -1.110 -0.864 1.117 1.153 0.901 1.194 1.987 

(d) Model I V  

1 82.75 

3 62.97 72.65 87.83 

5 80.51  83.78 81.72 87.21 124.91 
6 71.01 76.29 74.66 82.88 103.16 114.02 

2 65.42 84.53 

4 69.26 73.96 75.14 101.07 

7 73.60 82.38 86.23 95.95 114.34 111.62 152.98 
8 63.87 82.41 81.17 89.27 109.95 112.18 131.56 146.59 
9 54.38 63.39 72.70 85.01 99.63 101.09 118.65 120.62 143.34 
10 75.79 80.76 84.86 102.93 122.04 124.28 142.69 147.02 140.07 192.02 

“From Francis [1973]. 
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1 
2 
S 
4 
5 
6 
7 

I) 

10 

a 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10  

1 
2 
3 
4 
5 
6 
7 
8 
9 

l a  

(a )  Before rotation 

.42 3.00 - . 2 1  .37 - . s 7  

.60 2.81 . h l  - .72  . 4 8  

.80 3.27 - .15 .63  - .95  
1.11 3.05 1 .40  -.28 1 . 1 7  

- 6 2  4.01 -1.03 .34 .12 
3.44 -.58 - .54  - . 26  -.25 
3.Ml a17 - .27  - .S1 - .87 
4.35 -.a0 -1.53 . s 6  1.29 
4.13 - - 4 6  .50 -1.44 - . 3 4  
3.87 - 1 . 2 1  1.65 1 .61  - . I 9  

( c )  Afrer orthogonal rotation 
of two factors 

- . 1 2  3.03 
.09  2.88 
. 2 1  3.36 
.56 3.20 

- . I 0  4.06 
3 .49  .04 
3.72 .M4 
4.43 - . 02  
4.15 -27  
4.03 - .51  

( e )  After ohiique rotation of f i v e  
fact or s (d i rec t quart im i n) 

.09 2.87 .39 .06 - . 4 3  

- 2 1  3.54 .12 .55 - . 6 7  
-05  . 4 0  3.46  .50 .01 

- .39  3.35 .92 - . 8 8  .98 
2.19 - 3 6  - . 5 8  .35 1 . 3 5  
3.19 1.17 -.61 .44 .42 

.29 - .09  - . 0 2  .36 4.46 
4.23 - ,56  .49 .I0 .17 
.09 -.OO .16 4.43 .30 

.a7  .a8 2.25 - . 6 1  - . 3 3  

(b) After or thogonal  rotation 
of f ive factors  

- .19  3.08 
- . 0 3  2.40 
-.OO 3.50 

.20 2.53 
.27 4.08 

3 . 2 9  .08 
3.25 . 8 S  
4.85 .07 
3.50 - .11 
3.01 - .46  

.04 
- .23 

‘42 
.54 

- .74 
.70 
.93 
.46 
.93  

3.51 

- . 2 7  - .65 
- .4J  
- . 2 8  

.26 
-1.11 
-1.86 

.42 
-2.45 
- . 4 5  

.?7 
1.78 

.07 
2.67 
-60 

- .26 
- . 20  
- . 02  

.75 

. 2 2  

(d)  After ohlique rotation o f  
f ive  factors (biquart~min) 

-.I$ 3.32 . 8 3  8.75 
.39 2.98 -1.72 -11.14 

.44 3.35 1 . 1 0  -18.76 

5 .26  -.07 .07 1 .35  

6 .23  - .04 -.08 -15.39 
6.58 - .02  -1 .23  -3.97 
4 . J4  - .48 11.25 9 .35  

.15 3.71 2.26 14 .75  

.08 4.44 -1.66 - .74 

5.74 .76 .36 8.05 

6.54 
-9.28 
11.23 

-19.46 

4.73 
11.72 

-12.78 
3 . 1 1  
1 .93  

-1.48 

f;’ = (II c 2f i f2) ) /  Jl3, are given in ‘Table 5.14, model IVh. Alrhcrugh PFA 
will find estimated loadings for some pair of u i i c o r r e l a t e d  factors, it would be 
unlikely to  cliocxie ariy particular pair such as (f;, fi). However, it did 
apparently choose a pair rather like (f,”, f;), as the first two columns of ‘Table 
5.1Ya are like the interchanged columns of model 1%. Unfortunately, the 
oblique rotation of the five colunms using biquartimin is a disaslet. However, I f  
just two factors are rotated. we see from Table 5.19d, that, apart from sign and 
an interchange of columns, the estimated loadings are close to those of model 
IV. It is therefore possible that an oblique rotation of PFA loadings may give 



TABLE 5.17 Factor Loadings for Model 11" 

F a c t o r  Factor 

1 2 3 4 5  1 2 3  4 5  Var iab le  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

(a) Before r o t a t i o n  

1.30 .33  
2.33 .72 
2.48 . B O  
5.85 1.67 
6.17 2.90 
6.08 -2.02 
4.99 -2.78 
3.48 -.79 
2.20 - .84 
1.06 -1.00 

.55 
- . 27  
-.24 
2.62 

-1.41 
-1.39 

-1.14 
-.86 
-.11 

1.65 

(b) After or thogonal  r o t a t i o n  
of  f i v e  f a c t o r s  

.60 .26 .98 -.09 .81 

.34 1 .06  1.94 .61 1.04 

.56 .82 2.17 .55 1.00 
-1.41 .30 3.26 1.63 5.53 

1.04 - . 82  6.57 1.71 1.81 
-1.40 m.75 2.81 5.55 1.66 

1.70 -.49 1.60 2.52 1.73  
- .38  .15 1.98 2.84 .72 

.16 1 .85  .94 1.63 .41 
-.19 .84 -.08 1.12 .37 

-.88 
-.so 
-.68 

-1.43 
-.88 
-1.98 
-5.16 
-1.01 

-.70 
-.a7 

.36 
1.35 
1.16 

.15 

.22 

.23 
* 20 
.79 

2.29 
.99 

[c) Before r o t a t i o n  (from cor- (d) A f t e r  or thogonal  r o t a t i o n  
r e l a t i o n  mat r ix)  of f ive  f a c t o r s  (from 

c o r r e l a t i o n  m a t r i x )  

.56 - . 5 4  

.76 - .29 

.78  -.21 

.82 - .19 

.83 -.22 

.87 . 20  

.79 .20 

.84 .17 

.72 .34 

.43 .70 
~ ~~ ~ 

'From Francis [1973]. 

.52 
-.17 
-.14 

.05 
-.27 . 00 
.35 

- . I 3  
- .21  

.25 

.04 -26 

.13 .27 

.33 - .06 

.05 -.34 

.09 -.24 
-.26 -.09 
- .27 - . l o  
- . 2 8  .01 
- .03  .46 

.46 - . 04  

.23 .18 .93 

.57 .15 .40 

.76 '.IS .29 

. 7 1  .48 .28 

.83  .35 .13  

.39 .75 .ll 

. I 9  .78 .32 
.38 .70 .06 
.19 .35 .07 
.08 .20 - .03  

-.a4 
- .01 

.20 

.14 

. 0 2  

.19  

.30 

.09 

.28 

.95 

TABLE 5.18 Factor Loadings for Model 111" 

.08 

.52 

.27 
- .01 

.22 

.33 

.13 
145 
. 8 1  
115 - 

~~~ - - 

Factor Fac tor  

1 2 3 4 5  1 2 3  4 5  Var iab le  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

(a) Before r o t a t i o n  

1.08 
1.17 

.85 
1.38 

.78 
-1.27 - .87 
-1.01 
-1 .12  
-1.06 

.04 
-1.04 
1.30 

-1.10 
1.40 
-.94 

.55 
- .a9  
1.01 
-.03 

- .05 
- .08 

.16 

.80 
-1 .12  
-.91 
1.32 
-.34 

.29 

. 2 2  

(b) A f t e r  orthogonal r o t a t i o n  
of f i v e  f a c t o r s  

.30 .07 .ao - . n  

. 2 5  .39 1.57 .07 

.68 - .40 -.11 e.74 

.17  .I0 1.80  -.so 

.07 .64 - . 2 7  - .37 

.65 - .07 -.32 1.86 

. 43  . 4 7  -.44 -.20 

.29 .07 - . 1 2  1.24 

.08 -.11 -1.33 .oo 

.12 . 5 4  - .54  . 4 1  

- .23 -.46 .47 
-.40 .I2 .09 

- . l o  - .13  -.53 
- .28 -.26 1.98 
-.15 .25 -.34 
1.67 -.08 - .41  

.07 .44 -.52 

.77 -.19 - .02 

.73 .67 - .20 

. i a  -1.37 .74 

'From Francis [1973]. 
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TABLE 5.1Y Factor Loadings for Model IV" 

Factor Factor 
.. ____ - __ _-_-_._L-- ____ 

Variable 1 2 3 4 5 1 2 3  4 5 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

(a) Before rotation 

6.96 4.59 -2.30 1.38 .42 
7.67 3.93 -81 -- 1.15 -.40 
7.83 3.24 2.57 .09 -.04 
8.73 2.36 1.64 2.73 - 1.88 

10.28 1.86 -1.70 - .62 2.41 
9.98 .13 -1.43 -.75 .99 

11.48 -.96 3 6  -- 2.31 -.89 
11.27 --2.28 . 4 7  - 2.53 -.82 
10.43 -4.10 2.17 2.11 2.75 
12-67 -3.86 --2.43 1.71 -2.12 

(c) After oblique rotation of five 
factors (biquartirnin) 

7.03 -9.03 -2.46 1.22 - 2.64 
7.75 -4.48 1.26 -4.38 -3.50 
7.92 -5.58 2.73 - -  1.26 -2.52. 
8.83 -- 12.33 3.40 - 6.45 -16.00 

10.39 .48 -- 3.60 9.58 13.57 
10.09 1.01 -. 2.20 4.07 6.85 
11.61 2.61 1.62 -S.Ol -1.03 
11.40 4.81 1.13 - 4.28 .62. 
10.55 3.01 -.08 16.55 16.33 
12.81 --3.52 - -  .60 -5.17 -11.26 

(b) After orthogonal rotation 
of five factors 

3.79 6.83 2.92 -.66 - .12 
4.19 4.72 4.33 -4.20 .47 
4.37 3.55 5.22 -3.83 2.19 
6.18 2.98 6.71 -1.33 1.30 
7.37 6.91 1.86 -2.85 2.11 
8.20 4.96 1.56 -- 2.67 1.36 
9.83 2.82 2.57 - 5.20 1.17 

10.37 2.16 1.?0 -4.88 1.10 
9.93 1.28 1.63 -1.07 6.18 

13.28 2.58 2.40 -.16 .20 

(d) After obhque rotation of 
two factors 

-.30 8.15 
-1.48 7.65 
-2.31 6.90 
-3.84 6.22 
-5.46 6.23 
-7.00 4.08 
-9.19 3.38 

--10..37 1.75 
-11.62 - .73 
-12.98 .44 
_---c_____ 

"From Francis [1973]. 

good estimates of the true loadings, but this can only happen under very 
stringent conditions, including knowledge of the true number of factors and 
the existence of a suitable method of rotation. The biquartimin, which mini- 
mizes thc sample covariance of the squared loadings for the pair of columns, is 
ideal for model IV. 

Although the BMD program estimated the communalities by the diagonal 
elements of S, Francis used several other estimators, including the iterative 
procedure, and came to similar conclusions as those above. 

b MAXIMUM LIKEI.ll-IOOD JAC (OR ANALYSIS 

Francis 119731 considered three such programs, SPSS, NIH (a program for the 
National Institutes of Health, 1J.S.A.) and UFABY3, a program of Joreskog 
documented by JBreskog and Van Thillo [1971] that supercedes an earlier 
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version for estimating the parameters in an unrestricted model. A further six 
models were included in the study: Only models 1-111 satisfied the requirement 
that J be diagonal, and models VIII and IX had rank 2. A summary of the 
results from all the models is given in Table 5.20, with further details in Table 
5.21. 

In model I, m = 2 was “accepted” and varimax produced a good estimate 
of I‘ (see Table 5.14 with a sign change in one column and an interchange of 
two columns). When a third factor was fitted, an improper solution was 
obtained. 

In model 11, m = 1 was accepted. However, when two factors were fitted, 
reasonable estimates of r and C were obtained. Rotation led to poorer 
estimates of the loadings. 

In model 111, m = 3 was accepted, but the estimates of r were not as good 
as those of the PFA estimates of Table 5.18a. After rotation, all resemblance to 
I’ is lost. When a further factor was introduced, an improper solution was 
obtained. 

In model IV, m = 2 was accepted. Here f roughly approximated r for 
model IVb before rotation, and IVa after rotation. The elements of diagc 
ranged from 3.1 to 5.1. 

In model V, m = 1 was accepted and, in the two cases of 50 samples, the 
fitting of three factors (the true number) led to an iniproper solution. For 250 
samples c was a good estimate of C, but f was nothing like I‘ before or after 
rotation. Even if the true Z were used corresponding to infinite sample size), 

rotation. There were similar problems with models VI, VII, and X. 
Since the dispersion matrix of a three-factor model with rank r = 2 cannot 

be distinguished from the dispersion matrix of some two-factor model, we 
would expect models VIII and IX to behave like a two-factor model. When I: 
(n = 00)  was used in model IX, C was recovered exactly for m = 2, but there 
was an improper solution from S for n = 50. When I: was used in model VIII, 
the program refused to fit a second factor. However, for n = 50 and 250, 
reasonable estimates of e and f were obtained: The first column of f was 
close to the first column of r, and the second column of f was close to a linear 
combination of columns 2 and 3 of r. 

which leads to recovering C exactly, i? was nothing like r before or after 

C CONCLUSIONS 

If the correct number of factors is known, then PFA may provide a reasonable 
estimate of I’ that may or may not improve with orthogonal rotation. However, 
a satisfactory method for determining m does not seem to be available, and 
fictitious factors are all too readily generated. For this reason the maximum 
likelihood method seems preferable, though the goodness of fit test for m may 
not lead to the correct value of m. The test appears ready to accept a low value 
of m as soon as the large variances in Q have been explained (e.g., models V, 
VIa). If the normality assumption is tenable, then an asymptotic sampling 
theory for the estimates is available (Lawley and Maxwell [1971: Chapter 51). 



TABLE 5.20 Summary of Iiesulls from UFABY3“ 
- ____--___- 

Sample “Accepted” at Improper Illustrated in 
Model Size m a m Score‘ at m Table 5.21 

50 
50 
50 

50 

50 

50 

50 
50 

250 

50 
50 

so 
50 

50 
50 

50 
250 

50 
250 

do 

00 

do 

do 

00 

03 

do 

2 
2 
1 
2 
1 
3 
2 

1 
1 
1 

1 
1 

2 
2 

1 
1 

7 

2 

1 
2 

.39 2 2 

.69 2 3 

.03 1 2 

. I2  

.09 1 2 

.44 3 2 

.39 2 2 

3 5 
.a. 1 2 
.60 1 3 
.62 1 4 

3 4 
.55 1 0 
.09 1 2 

3 4 
.15 2 2 
.Ol 2 0 

3 5 
.80 1 2 
.39 1 3 

1 2 
.85 2 2 
.58 2 3 

2 5 
.M 1 2 
.17 2 3 

3 4 

3 X 

3 

3 

3 
4 X 

3 
4 X 

3 
2 
4 
4 

173 
3 
5 
3 
2 
6 
3 
3 

X 

X 

X 

’From Francis [ 19731. 
”Scale of accuracy of c = = diag($,,. . . , $ d ) :  

Score Meaning 

0 
1 very poor. 
2 
3 
4 
5 all +, are exact. 

improper: at least one I), = 6. 

all +, are within 50% of I),. 
all qj are within 208 of +,. 
all +, are within Y 0% of I),. 

232 



TABLE 5.21 UFABY3 Estimated Factor Loadings" 

Model 

I 

I1 

V 

Before rotation 

f 
2.5 -1.7 
2.4 -1.4 
2.9 -1.6 
2.8 -1.1 
3.2 -2.1 
1.9 2.8 
2.7 2.7 
2.2 3.5 
2.3 3.2 
1.6 3.4 

diag e 
1.2 
1.8 
1.9 
2.4 
2.2 
2.0 
1.7 
2.6 
2.2 
2.8 

After varimax rotation 

f 
3.0 0.1 
2.7 -0.1 
3.3 -0.2 
2.9 -0.5 
3.8 0.1 
0.1 -3.4 
0.9 -3.7 
0.0 -4.2 
0.2 -4.0 

-0.4 -3.7 

Before rotation 

f 
1.3 0.8 
2.3 0.9 
2.5 1 .o 
5.3 1.6 
5.9 2.3 
6.1 -1.7 
4.7 -1.3 
3.6 -0.7 
2.3 -0.6 
1.1 -0.9 

diage 

2.1 I11 
2.1 
2.0 
3.9 
3.3 
2.5 
3.8 
2.0 
2.4 
2.3 

Before rotation 

f 
0.8 0.6 -0.2 
1.4 -0.3 -0.2 
0.1 1.5 0.2 
1.8 -0.2 0.6 

-0.1 1.4 -0.9 
-0.6 -1.3 -0.6 
-0.8 0.0 1.2 
-0.4 - 1.2 -0.3 
-1.4 0.3 0.5 
-0.8 -0.6 0.4 

diag e 
1.0 
0.9 
1 .o 
0.6 
1.2 
1.2 
1.1 
0.9 
0.7 
0.9 

Before rotation 
f 

12.7 -1.6 -1.0 
12.7 -1.6 -1.0 
12.7 -1.6 -1.0 
12.7 -1.4 -1.0 
11.9 0.2 2.5 
11.9 0.2 2.5 
11.9 0.2 2.5 

8.5 5.3 -0.8 
8.5 5.3 -0.8 
8.5 5.3 -0.8 

After rotation 
f 

11.6 5.5 1.0 
11.6 5.5 1.0 
11.6 5.5 1.0 
11.6 5.5 1.0 
9.7 5.9 4.5 
9.7 5.9 4.5 
9.7 5.9 4.5 
4.3 8.9 1.2 
4.3 8.9 1.2 
4.3 8.9 1.2 

23 3 



TABLE 5.21 (Confinued) 

VIII 

c-- 

Before rotation 

f 
-7.0 10.0 - 0.7 
- 6.2 8.9 -0.3 
- 5.3 7.8 --O.O 
-4.5 6.9 0.3 
-4.5 5.0 0.9 
- 3.6 3.9 1.2 
-6.8 0.1 2.6 
-5.9 - 1.0 2.9 

-- 11.0 -3.6 1.0 
-11.4 -3.6 -0.8 

Before rotation 

f 
8.2 5.2 - 2.3 
8.2 5.2 - 2.3 

12.5 0.6 2.6 
12.5 0.6 2.6 
13.6 - 3.2 -1.9 
5.4 -- 8.4 0.5 
5.4 -. 8.4 0.5 
1.1 -3.8 . 4.5 
1.1 -3.8 -4.5 
0.0 0.0 0.0 

diag 

10.0 
10.0 
10.0 
15.0 
15.0 
15.0 
15.0 
10.0 
9.9 
5.2 

After varimax rotation 

f 
2.0 12.6 0.7 
1.x 10.'7 0.4 
1.5 9.3 0.0 
1.3 8.0 -0.3 
2.0 6.4 -0.7 
1.8 5.1 -1.0 
6.5 2.9 -1.6 
6.2 1.6 -1.9 

11.5 1.5 0.9 
11.6 1.7 2.8 

After varimax rotation 

f 
9.9 - 1.1 0.4 
9.9 -1.1 0.4 

10.8 6.6 -1.8 
10.8 6.6 -1.8 
10.8 8.2 4.0 
0.9 9.3 3.7 
0.0 9.3 3.7 

- 0.0 1 .o 5.8 
- 0.0 1 .h 5 8  

0.0 -0.0 - -00  

Before rotation Before rotation 

f diag f 
1.3 -0.4 0.8 IX 13.4 - 4.6 
1.3 --0.9 1.0 13.2 - 3.2 
1.1 -0.x 0.8 13.0 -- 1.8 
1.4 --0.8 0.8 12.8 - 0.4 
0.9 -0.6 1.0 12.7 1 .o 
0.9 0.9 1.0 12.5 2.4 

1.0 1.1 0.9 12.1 5.2 
0.9 1.1 0.9 11.9 6.6 
0.9 1.0 1.0 11.7 8.0 

0.9 1.2 1.0 12.3 3.8 

After varitiiax rotation 

f 
13.5 4.5 
12.5 5.5 
11.5 6.5 
10.5 7.5 
9.5 8.5 
8.5 9.5 
7.5 10.5 
6.5 11.5 
5.5 12.5 
4.5 1 3 s  

"From Francis [1973]. 
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If normatity cannot be assumed, then the maximum likelihood method can be 
justified on other grounds (Howe [1955]; see also Momson [1976]); however, 
the goodness of fit test is no longer valid. Although Jareskog has written 
excellent programs, improper or almost improper solutions come up too 
frequently. When an improper solution OCCUTS, one of the loadings of the 
variable with zero-estimated $j  becomes very large, and the others very small, 
so that the whole matrix f is disturbed. 

Unless the true model has a ‘‘good” structure, like model I, for example, an 
orthogonal rotation may be worse than useless if the wrong value of m is used, 
Although oblique rotations are popular with some practitioners in the social 
sciences (e.g., Cattell and Khanna [1977]), there is a general lack of hard 
empirical evidence to support this practice. After discussing oblique methods 
of rotation, Comrey [1973] states in-his book (p. 175); “More experience with 
these methods or perhaps new methods will be required before satisfactory 
oblique analytic rotation becomes a practical reality, if in fact it ever does.” 
Admittedly, there are circumstances (e.g., m known, the linear model true and 
“suitable” for the particular rotation used) where the experimenter may be 
lucky, as in Table 5.19d; however, such a situation seems unlikely to occur. 

In conclusion, it must be stated that if FA is carried out, then the results 
must be interpreted with extreme caution. Even if the postulated model is true 
-and this is a very strong assumption- the chance of its recovery by present 
methods does not seem very great. However, proponents of FA and rotational 
methods (e.g., Cattell and Khanna [1977]) claim that FA is particularly useful 
as a method of creating hypotheses suggesting underlying causes. A method 
called Q-mode factor analysis has been used as a cluster technique, though it 
has been criticized (see Everitt [1979b] for references). 

5 . 5  MULTIDIMENSIONAL SCALING 

5.5.1 Classical (Metric) Solution 

Principal component analysis is presented in Section 5.2.2 as a linear reduction 
technique that can be used to replace a set of d-dimensional vectors 
xl, x2,. . . , x, by a set of k-dimensional vectors yl, y2,. . . , y,, where k is usually 
much smaller than d. If k = 2, the yi can be plotted on a scatter diagram that 
can then be studied for patterns or clustering. We now consider another 
reduction technique called multidimensional scaling in which we calculate 
interpoint distances S,, = I(x, - x,(I and then try to find a set of k-dimensional 
vectors yz with interpoint distances d,, = IJy, - yJ such that drs = Srs for all 
r ,  s. In many applications the x i  are not given, and S,, is simply a measure of 
the proximity of the objects r and s. The proximity measure need not be the 
Euclidean distance and in fact may not be a distance measure at all. Sometimes 
the proximity is a distance, but measured with error, so that the problem is to 
reconstruct the original configuration from approximate interpoint distances 



236 Dinicnsron Heduciron und Ordination 

only. Proximities are usually described as similarities or dissimilarities (see 
Chapter 7), depending on the information we have about the objects. 

A proximity S,, is called a dissimilarity if S,, = 0, S,, 2 0, and S,, = S,, for all 
r, s = 1,2 , .  . . ,n; the matrix D = [(S,,)1 is called a dissimilurity matrix. We say 
that D is Euclidean if there exists a p-dimensional configuration yl, y2,, . . ,y, 
for some p such that d ,  a,,. The following theorem (Gower [1966], Mardia 
et al. [1979]) tells us when D is Euclidean. 

THEOREM 5.7 Let A 5 [(q,)], where ars = 

b . ,  + ii.. so that 
is,$ Define b,, = urS - a,.-- 

B = [ (b , , ) ]  == (I, - n-’l,l;)A(In -- n--’l,l;). (5.66) 

Then D is Euclidean if and only if B is positive semidefinite. 

Proof Equation (5.66) is left as an exercise (Exercise 5.22). Given D is 
Euclidean, there exists a configuration xI, x2,. . . ,x, such that 

-2a ,  = 6: 3= (Ix, - X , ~ ~ I ~  = x:x, + xix ,  - 2x:x,. 

Also 
, 
1 

-2a,.= x;x, + - c x ; x i  - 2x;g, 
n i  

1 
n i  

- 2a., = x;x, + - Cx;x, - 2R’x,, 

1 
“ 1  

2a..- 2-- c x ; x i  - 255’55. 

Here, by substituting and canceling, we obtain 

and 

where 

= (x, -- X)’(X, - x) 

B = %%’ 2 0 (by A4.4) 

- - FC = (XI -- a,x, - x ,.,., x,, - x). 

(5.67) 

(5.68) 

(5.69) 
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Conversely, suppose B 2 0 of rank p. There exists an orthogonal matrix 
V = ( v ~ ,  v,, . . . ,vn) such that (see A1.3) 

(5.70) 

where r = diag(y,, y,,. . . , y p )  and yl 2 y2 2 - * L y, are the positive eigen- 
values of B. Let V, = (vl, v,, . . . , $). Then, from (5.70), 

r o  

B = V i 0  r o  o)V’ 

= vlrv; 

= (v, r112 ) (v, r 112 )! 
= W’, 

where 

(5.71) 

We note that (ly(j)1I2 = yjllvjl12 = yj.  Since b,, = y,‘y,, 

IIYr - ys1t2 = Yr’Yr + Y;Y~ - 2 ~ : ~ s  

= brr + bss - brs - bsr 

= arr + ass - 2a, 

= - 2a, 

= d,,, 

(5.72) 

(since a,, = us, = 0) 

2 

and the yi give the required configuration. Hence D is Euclidean. 0 

The above theorem gives a method for constructing a configuration (y,} 
now commonly known as the “classical” method of multidimensional scaling. 
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The basic idea was introduced by Richardson [1938] and popularized by 
Torgerson [ 1952, 19581, who introduced the term multidimensional scaling. 
Gower [ 1966,1967aj further claiified the technique under the name of przncipal 
coordrnatr ana[ysis and showed that it is closely connected with principal 
component analysis. When D is Euclidean, we shall call the configuration (y, 
the classical solution. 

We note that the classical solution is not unique, as a shift of origin and a 
rotation or a reflection will not change interpoint distances. For example, if IA 
is a p X p orthogonal matrix, then 

Drntunvon Redirt rion and Ordinanon 

IIUYr -- ysV,)112 = (Yr - ysW"br - ~ $ 1  = I I Y ~  -- Y ~ I I ~ .  

and the Ly, providc another solution. We shall see below that the classical 
approach has a number of advantages, including some optimal properties. It 
also places the mean 9 at the origin, as (I, -. n -  ' l , l~)l , ,  = 0 implies B1, = 0 
and 

n2y'y = (Y'l,)'(Y'l,,) = Ii,BI, = 0, 

that is, 9 = 0. 
Sibson [ 19791 has provided an approximate error analysis for tne classical 

procedurc by applying a perturbation theory to procrustes analysis (Section 
5.6). He concluded that the procedure is robust against errors that leave the 
dissimilarities a,, approximately linearly related to the IIx, - x,II. Kruskal 
[1977b] also notes; "An empincal fact is that classical scaling is amazingly 
robust. The solution is surprisingly little affected by random error or mono- 
tonic distortion in the 6, ,.." Further support for robustness comes from the 
theoretical study by Mardia [1978], who shows that a perturbation of the form 
6; - 2a does not alter the solution much when a is small. 

We note that 

6; = Ilh - Ys1I2 

P 

1-1  
= c (Yr, - A,)?. 

If yJ is small, or the elernelits of y'J) = fiiv, are not too different (y,., and yY, 
being the rth itnd s th elements, respectively), then (y,, - yJJ)* will be small for 
all r ,  s. Therefore if y1 and yz are much larger than the other y's, and the 
elements of y(J) ( j = 1,2) are reasonably different, then most of the contribu- 
tion to each 8; will come from the first two elements of y, and ys. Provided that 

1 
2 2  c ( Y ,  - Ys,) = a,,, 

J = 1  

we then have a useful two-dimensional representation. 
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Sometimes the dissimilarity matrix is not Euclidean, so that some of the 
eigenvalues of B are negative. In this case we cannot write I’ = 1’1/21’1/2, so 
that Theorem 5.7 does not hold; however, if the first k eigenvalues are 
comparatively large and positive, and the remaining positive or negative 
eigenvdues are near zero, then the rows of Yk = (y(’), y@), . . . ,y(“)) will give a 
“reasonable” configuration in k dimensions. Further research is needed to see 
how well the method tolerates negative eigenvalues. 

The classical procedure can also be applied to similarities c,,, where c,, = 1, 
c, = csr, and 0 _< c, 5 1. We simply convert the similarities into dissimilari- 
ties using the transformation 

a,, = (2 - 2C,)”* (5.73) 

and set Q, = c, in Theorem 5.7. If A 2 0, then B 2 0, and D is Euclidean. 
Hence, from (5.72), 

IIYr - YJI’ = arr + ass - 2ars 

= 2 - 2c, 

= a,,, 2 

and the yi provide a solution once again. 
We can summarize the classical scaling procedure as follows: 
(1) Form the matrix A, where urs = - $3; for dissimilarities and a, = crs 

(2) Obtain B from A (called “double centering” by psychometricians). 
(3) Extract the k largest positive eigenvdues yl > y2 > 

for similarities. 

- > yk of B with 
corresponding eigenvectors yk = (y(’), Y ( ~ ) ,  . . . , Y ( ~ ) )  that are normalized 
by I I Y ( ’ ) ~ ~ ~  = yj ( j  = 1,2,, . . ,k). 

(4) The n rows of Yk are cded  the principal coordinates in k dimensions. 
In the above discussion we described the method as primarily one that 

provides a geometrical representation of proximity data. This process is 
sometimes called ordination. However, if we are given the original observations 
x,, then the emphasis is more on dimension reducing. In this situation we 
might ask how the method compares with principal components. We note from 
(5.68) that B = ?& and, in the context of principal component analysis, the 
estimate 2 of the dispersion matrix I: for the xi  satisfies n e  = XX. Hence B 
and n e  have the same distinct positive eigenvalues (A1.4) and the same rank 
(A2.3). If I: > 0 and n - 1 2 d, this common rank is d (with probability 1). 
The j th  principal component of x i  is tj(xi - Z), where /lt,ll = 1 and (see 
Section 5.2.4) 

XXtj = n i j t j  

= yjt, ( j  = 1,2 ,..., d ) .  
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Premultiplying by X leads to BXt, = y,X€,, so that X?, is an eigenvector of B, 
normalized by t;XX€, = y,t;?, = y,, corresponding to the eigenvalue y,. Since, 
apart from a scale factor, the eigenvector corresponding to an cigenvalue of 
multiplicity 1 is unique (see A1.3), we can choose the sign of t, such that 
yf') = Xt,. Then 

YL = (y( ' ) ,y(*) , . .  . , Y ' ~ ' ) '  (1 I: k I d )  

and 

3: = 

t ; ( x r  - x) 
t;(x, - E) 

t;(xr - x) 

the first k principal components of x,. Therefore principal components and 
principal coordinates are the same in this situation. 

For the more general case where we are simply given a Euclidean dissimilar- 
ity matrix D or a positive senlidefinite similarity matrix A, the principal 
coordinates will be the principal components for some configuration with 
d: = a:, and will therefore shiire some of the optimal properties of the sample 
principal components. When D is not 'Euclidean, principal coordinates have 
the following optimal property. Let X, be an n X k matrix whose rows are an 
approximating configuration and have mean zero. If B, = X,X;, then lllB -. 
R,1I2 = td(B -- B,)*] is minimized when X, = Yk (Mardia [1978], Mardia et al. 
11979: Section 14.41). Mardia [I9781 has proposed two coefficients for measur- 
ing how close the d,( = )lyF - y,J) for the k-dimensional principal coordinates 
are to the drs. These are 

(5.74) 

and 

where y, z yz 2 . . . 2 y, are the eigenvalues of B and yk > 0. 'The second was 
also proposed by Saito [1978] and is related to the problem of finding a 
lower-rank approximation for B (see A7.3). 
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Examples of the use of principal coordinates are given by Hills [1969], 
Blackith and Reyment [1971], and Everitt [1978], and the application to binary 
data is discussed by Banfield and Gower [1980]. Psychometricians frequently 
call B = f6’ the Q-matrix, and Z = XX/n (or more usually the correlation 
matrix) the R-matrix. Thus principal coordinate analysis is a “Q-method,” and 
principal components an “R-method.” 

Finally, we note that it has been common practice in the past to fit the 
model d ,  = 6, + a, where u is chosen so that the S,, + a are more “distance- 
lie.” Several methods of estimating u are available (see Saito [1978]), and the 
problem is usually referred to as the “additive constant” problem. 

S, 5.2 Nonmetric Scaling 

In Section 5.5.1 we considered the problem of finding a set of k-dimensional 
vectors yi whose interpoint distances d,, were as close as possible to a set of 
dissimilatiries &. If, however, the configuration (y,} is to be used geometri- 
cally for cluster and pattern detection, then an expansion or contraction of the 
configuration would provide an equally useful picture. Some distortion could 
also be allowed, provided that the rank ordering of the d ,  was the same as that 
of the tirs. We could therefore widen our search for configurations and look for 
one such that 

drs E f ( ars 1 (5.76) 

for some unknown monotonic increasing function f satisfying 

Our aim, then, would be to find a configuration in k dimensions such that the 
plot of d ,  versus is monotonically increasing (or approximately so). For 
example, if n = 3 and a,, < a,, < SlZ, we require three points yi such that 
d,, I dI3 I d12. A method for doing this developed by Shepard [1962a, b] and 
Kruskal [1964a, b] (see Kruskal[1977b], Kruskal and Wish [1978], Carroll and 
Arabie [1980] and De Leeuw and Heiser [1980]), called nonmetric multidimen- 
sional scaling, is described below. The term nonmetric is used, as only the rank 
order of the S,, is important, whereas classical scahg is “metric,” being based 
on the magnitudes of the arS. 

Given a trial {y,} configuration, the plot of d ,  versus S,, ( r  < s) will not 
generally be monotonic as in Fig. 5.6, but will be partly sawtoothed as in Fig. 
5.7; point 3 lies below point A rather than above it or on the same level. For 
this situation we would like some measure of departure from monotonicity that 
we can use to make adjustments to the yi to improve the degree of monotonic- 
ity. Kruskal[1964a] suggested fitting the nearest monotonic curve by monotone 
least squares, shown dotted in Fig. 5.7, and measuring the difference between 
this curve and the solid curve using a scaled sum of squared vertical dif- 
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/x ( 2 , 3 )  
X l X  ( 4 5 )  

/ (1,4) 

/ x  (3,5) 
/72,4) 

/'(1,3) 

/ (1,s) 

/' 13,41 

xlcx (2 ,5 )  
(1,2) 

- 
Fig. 5.6 Scatter lI plot of distance versus dissimilarity 6 where the monotonicity constraint f is satisficd. 

ferences. Therefore, given dr,,v, I< 13,,,, < . . < drmS, "/ < s, and 171 = + n ( n  - 
l)], we find positive numbers drs to minimize 

subject to the monotone constraint 

The minimum value of S, the positive square root of S2, is called the STRESS 

-- L- - 

Fig. 5.7 Scatter plot of distance versus dissimilarity where the monotonic ccinstraint is 
satisfied. ?he dotted curve is the monotonic curve of best fit. 

6 

not 
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S* and is a measure of the departure from monotonicity. It has the desirable 
property of being invariant under the similarity group of shift of origin 
(translation), orthogonal transformations (rotations and reflections), and, with 
the particular choice of denominator in (5.77), uniform scaling (isotropic 
contractions and dilations) of the yi. We note that the fitted drs are not 
distances and there does not necessarily exist a k-dimensional configuration 
whose interpoint distances are h,. They are simply a set of numbers that are 
used as a reference for measuring the monotonicity of the dr,. In terms of 
(5.76), we have found a monotonic transformationf, given by (s, = f(&), that 
leads to a minimum S2. 

Having calculated the h,, we now “improve” the k-dimensional representa- 
tion by choosing the nk elements of the yj to minimize S* with respect to the 
d,. For this second configuration we find a new set of d,, and this in turn 
leads to a third configuration. The procedure is continued until S* converges to 
its minimum over all k-dimensional configurations. Clearly some dissimilarities 
Srs are “closer” to k-dimensional curved subspaces than others, and Kruskal 
[1964a] gives some empirical guidelines, reproduced in Table 5.22, as to how 
well the configuration fits in terms of monotonicity. 

A major problem in using the above method is the choice of k. Kruskal 
[1964a] recommended beginning with a low value of k, say, k = 1, and plotting 
the minimum stress against k until the minimum stress became acceptably 
small. Obviously the stress is zero if k 2 n - 1, since perfect monotonicity can 
be achieved with n points in n - 1 dimensions. However, we would hope that 
k = 1,2 or possibly 3 so that the y j  can be plotted. For example, in Fig. 5.8b 
we would choose k = 3 on the basis of Table 5.22. A recent program for 
performing both metric and nonmetric scaling called KYST (pronounced 
“kissed”), from the initials of Kruskal, Young, Shepard, and Torgerson, was 
developed by Kruskal, Young, and Seery to combine the best features of the 
two previous programs TORSCA and M-D-SCAL. In essence, the Torgerson 
classical scaling procedure and Young’s preliminary iterative procedure were 
integrated into Kruskal‘s M-D-SCAL program, the latter extending the work 
of Shepard both conceptually and computationally. The essential elements of 

TABLE 5.22 Guidelines for Determining Appropriate- 
ness of Fitted Configuration Obtained by Multidimen- 
sional Scaling 

Minimum Stress 
Goodness of Fit 

- 

20 
10 
5 

0 
24 

Poor 
Fair 
Good 
Excellent 
Perfect 
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Dimension (k) 

(b)  

Fig. 5.8 Ilot of miiunium stress versus dimension. ( u )  Elbow at k = 2. ( b )  Elbow at k = 3. 

KYST are described by Kruskal [1977b], and helpful background inaterial is 
provided by Kruskal and Wish [1978]. The program bcgins with the maximum 
value of k lo be entertained and computes an initial configuration. This could 
be a set of points choscn at random from some distribution, a set of evenly 
spaced points in R k ,  or (preferably) the classical metric solution computed 
from the arS. With a monotonic regression algorithm for computing the d,, the 
k-dimensional configuration with minimum stress is computed iteratively using 
a gradient method. One coordinate i s  then dropped to form the initial 
configuration for a ( k  - 1)-dimensional fit. The program has the option of 
rotating the k-dimensional solution to principal coordinates (in this case the 
same as principal componcmts) arid the last coordinatc would then be the one 
to drop. The procedure continues until the specified minimum value of k is 
reached (usually k = 1). A few ties among the S,, have little etkct on the 
procedure and missing values can be filled in with appropriate averages of 
nonmissing values. Similarities c, are converted into dissimilarities by a 
suitable transformation, for example, Srs -- n - c,. 

Vstrious procedures are available for handling asymmetric a,, caused prim- 
arily by unreliability or experimental error, the simplest being t o  take the 
average $(ars + S,,). For example, in the famous Morse signal example of 
Shepard [1963] where signals r and s are heard in succession, we can take a,, as 
the proportion of listeners who say that the signals are different. The clrder 
makes a difference, so that &,, f 

There are difficulties with nonmetric scaling when the numher of observa- 
tions is too small relative to the number of dimensions. Kruskal and Wish 
[1978] recommend that n - I 2 4k, with empirical support for this rule 
existing mostly for k 2 3. They also give practical hints for coping with the 
problems of incomplete convergence (maximum number of iterations reached) 

(see Example 5.5 below). 
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or a local rather than a global minimum. They suggest a plot of dij  versus aij 
should be examined for each solution. A table of residuals di j  - di j  can also be 
useful. A number of rules of thumb, like Table 5.22, are available for choosing 
k. Usually the appropriate dimension is indicated by an elbow in the plot of 
minimum stress versus dimension, provided that the stress at the elbow is 
below about 0.10. For example, we would choose k = 2 in Fig. 5.8a and k = 3 
in Fig. 5.8b. However, caution is needed when there is an apparent elbow at 
k = 2, as a very large stress at k = 1 can have limited accuracy. On the other 
hand, k = 1 is suggested if the stress there is below 0.15, provided that n 2 10. 
An alternative, statistical, approach to the problem is to compile tables of plots 
using simulated data for which the true dimension is known, but with increas- 
ing amounts of “noise” (error) added (Spence [1972], Spence and Graef [1974], 
Kruskal and Wish [1978: p. 54 and their Appendix C]). With increasing error, 
the elbow gets rounded and may disappear altogether; the plot is also raised. 
We could try and match up our own plot with one of those tabled, though if 
the error level is too high, we may conclude that there is no point in trying to 
choose a dimension k and that multidimensional scaling is inappropriate. 
Spence [1979] obtained the following empirical formula: 

STRESS = -524.25 + 33.80k - 2.54n - 307.26 log k + 588.35(10g n)”’, 

which fits simulated (pseudo-) random data well fork = 1(1)5 and 10 s n s 60. 
He suggested that if the values of STRESS for a data set and different k are 
well below the values given by the above formula, say, only a third or half as 
large, then the data are satisfactory for scaling, otherwise the data may have 
little structure and the results of the scaling should be treated with caution. For 
rough formal tests, the standard deviation associated with the above formula is 
about 0.01. 

We note that STRESS is just one measure of fit, and other measures have 
been proposed. One modification consists of replacing d ,  by d ,  - 2.. in 
STRESS; another, called SSTRESS (see Takahane et al. [1977]), replaces d ,  
and &, by their squares. Sammon [1969], in his technique called nonlinear 
mapping, chose a configuration with interpoint distances d ,  to minimize the 
so-called mapping error 

(5.78) 

Sammon uses a “steepest descent” procedure for minimizing E over the nk 
elements of the yi, while Chang and Lee [1973] suggest a relaxation method. 
These authors and Howarth [1973] give several examples. 

Once we have found a configuration {yi}, we can rotate and translate it 
without changing the drs. To overcome this indeterminancy, it is often ad- 
vantageous to shift the centroid to the origin (i.e., subtract ! from each yi) and 
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rotate to a principal components solution, particularly when comparing differ- 
ent configurations. 

EXAMPLE 5.5 Shepard [ 1963, 19801 applied multidimensional scaling to 
Morse code data collected by Kothkopf 119571. About 150 observers who did 
not know Morse code listened to a pair of signals produced at B fixed rapid 
rate by machine and separated by a quiet period of 1.4 secs, and were required 
to state whether the two signals they heard were the same or diiferent. A total 
of 36 signals were used, 26 letters of the alphabet and the numbers 0-9. Each 
signal consists of a sequence of dots and dashes, e.g. ---- for letter J and . . - 
for 5 .  The ( r ,  s)th element of the 36 X 36 similarity matrix is the proportion of 
observers who responded “same” to signal r followed by signal s. The matrix is 
roughly symmetric and applying nonmetric multidimensional scaling gives the 
plot of stress versus dimension in Fig. 5.9. Choosing k = 2 leads to Fig. 5.10, 
which shows Shepard’s interpretation of the two dimensions. The vertical scalc 
could also be labeled “length o f  signal” rather than “ number of components,” 
though, as noted by Shepard, it is not possible to distinguish between them 
with the data given. c3 

The method of rnultidimerisional scaling deals with only one matrix of 
proximities. Suppose, however, that several such matrices are avaiiable for the 
same objects or stimuli. perhaps one for each person involved with the 
experiment. If we can regard the matrices as true replicates, then we could 
simply average over the subjects and obtain a single proximity matrix. How- 
ever, if there are large systematic differences between the matrices, we may 
wish to analyze the data as a three-way array, the so-called three-way multidi- 
mensional scaling. One such model, called “individual differences scaling,” or 
INDSCAL, was developed by Carroll and Chang 119701. Suppose we have N 

30 - 

25 - 

20 -- 

15 -- 

‘10 - 

0 1 2 3 4 5  

Dimension 

Fig. 5.9 Plot of srrcss versus number of diinensious for Morse code example 
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Fig. 5.10 Shepard’s interpretation of Morse code configuration. From R. N. Shepard [1980]. 
Science, 210, 390-398. Copyright 1980 by the American Association for the Advancement of 
Science. 

subjects and n stimuli and let a,,, be the dissimilarity for the stimuli r and s 
and the uth person (r, s = 1,2,. . , ,n; u = 1,2,. . . ,N). We then find weights 
wuj, one for each person in combination with each variable, and a configura- 
tion (y,} such that 

(5.79) 

for some k. This model is discussed by Kruskal [1977b], Kruskal and Wish 
(1978: Section 41, and Young et al. [1978, 19801. The latter authors use an 
algorithm called ALSCAL (see Psychometrika, Vol. 43, 1978, for further 
references). We note that the solution cannot be rotated because of the weights. 

The problem of multidimensional scaling with restrictions is considered by 
De Leeuw and Heiser [1980]. 

EXAMPLE 5.6 In April 1968, 18 students taking part in a pilot experiment 
were each asked to give similarity ratings, on a scale from 1 (extremely 
dissimilar) to 9 (extremely similar), of all (122) = 66 pairs of nations drawn 
from a set of 12 nations. After this they were asked to state anonymously their 
opinions regarding the action that the United States should take in Vietnam. 
They were then classified as “doves,” “moderates,” or “hawks,” according to 
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whether they advocated (1) withdrawal of troops from Vietnam, (2) conccs- 
sions to bring about a negotiated peace, or (3) continuation or escalation of the 
current U.S. military involvement. Using the similarity matrix of ratings from 
each student, Wish et al. [1970] applied INDSCAL to these mawices rather 
than muitidimensional scaling to the average matrix. They argued that INDS- 
CAI, would allow for the dimmsions obtained by the scaling to be weighted 
differently by each student according to their backgrounds and political 
orientation. A three-dimensional configuration was selected and Scores on the 
first two dimensions for the 12 countries are given in Fig. 5.11. The first 
dimension was identified as measuring “political alignment and ideology,” and 
the second dimension as measuring ‘‘econonic development.” 

In Fig. 5.12 we have a plot of the students’ weights on these two dimensions 
with their labels as doves, moderates, or hawks. A diagonal line through the 
origin separates the doves from the hawks and suggests that political alignment 
is the more important factor for hawks in judging the similarity of nations. On 
the other hand, economic devdopnient is the more important factor, both in 
absolute and relative terms, for the doves. The reader is referred to Wish et al. 
[1970] for further details and a more comprehensive example involving 21 
nations and 90 students from 15 different countries. El 

Little has been done in the way of inference for niultidimerisional scaling 
(e.g., Ramsay [ 1978: conlidelice regions for points]). Levine [1978] has studied 
the values of SI’RESS, with d,s replaced by d ,  - d . ,  for random configura- 

Russia 
1 

0 

Yugo~;ldvla 

0 

Clllna 

Cuba 
0 

0 Brazil 
I RYllt liidia 

h m  1: Political aligninerit and ideology 

Fig. 5.1 1 Dimensions one atid (wo of three-dimensional INDSCAL configuration for 12 nations. 
From Wish et al. 119701. Copyright 1970 by the American Psychological Ass.ociatior. Reprinted by 
permission of the publisher and author. 
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Fig. 5.12 Plot of students’ weights on dimensions one and two of three-dimensional INDSCAL 
configuration for 12 nations. From Wish et al. 119701. Copyright 1970 by the American Psychologi- 
cal Association. Reprinted by permission of the publisher and the author. 

tions with the aim of providing information on testing the null hypothesis of 
randomness. When fewer than 10 points are considered, low values of STRESS 
can often be obtained, even for random configurations. 

We note that multidimensional scaling can be used for sniffing out one- 
dimensional structure in the data. The most common application is senation, 
where the aim is to determine the chronological ordering of the objects. A 
famous example of this comes from archeology, where the similarity of two 
graves is measured by the number of types of pottery they have in common. 
The argument is that similar graves will be close chronologically. Sometimes 
associated with this kind of problem is the so-called “horseshoe” phenomenon 
(Kendall[1971]) pictured in Fig. 5.13. In this case, the two-dimensional scaling 
solution is found to have a U shape, and an “ordering” along the curve can be 
detected by joining up points with dissimilarities less than a threshold value. 
The two-dimensional configuration is almost a one-dimensional configuration 
that has been bent into a horseshoe shape. Only one curvilinear dimension is 
needed to give a reasonable description of the configuration, though a second 
coordinate, giving the perpendicular distance from the nearest point of the 
curved line of the horseshoe, would improve the description. 
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! 
* 

Fig. 5.13 Horseshow phenoriicnon with poiots linked that have dissirnilaritics less than a 
threshold value. 

The horseshoe phenomenon can occur in situations where the distance 
between two objects can be measured accurately when they are close together, 
but not when they are far apart. Moderate or large distances lead to similar 
measures, with the effect of pulling the more distant objects closer together. 
For exarnple, graves close together in time will have similar types of pottery, 
but those sufficiently separated in time will have no types in common. The 
same applies to the so-called color-matching problem where individuals arc 
asked to compare colors. Those close to each other on the spectrum will be 
recognized as being similar, whereas those further apart will be all treated the 
same. Again a horseshoe curve results giving the so-called color circle (Fig. 
5.14); the one-dimensional coordinate is the wavelength. It is important to 
draw in the links as shown in Fig. 5.13, particularly when the curve is almost 
closed and when it is Inure of a wide band rather than a curve; otherwise the 
one-dimensional structure may be overlooked. Kendall [1971] gives a number 
of procedures to help “ unbend” the horseshoe so that the gap is clearer. 
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Violet 

Fig. 5.14 Multidimensional scaling solution for 14 colors. From R. N. Shepard (19801, Science, 
210, 390-398. Copyright 1980 by the American Association for the Advancement of Science. 

One of the signs that the data is basically one dimensional is the existence of 
a permutation of the object labels that converts the similarity matrix into a 
matrix which approximates a so-called Robinson matrix (Robinson [1951]; see 
also the papers by Gelfand, Kendall, Landau, and de la Vega in Hodson et al. 
[1971]). In this matrix, the similarity coefficient always decreases when we 
move from the main diagonal to the left or to the, right. For example, the 
matrix in Table 5.23 can be changed into that of Table 5.24, which is close to a 
Robinson matrix, by reordering the variables as shown. The relevance of this 
type of matrix structure is perhaps seen more clearly by the following example 
(Spiulding [1971]). Suppose we have five collections of cutting tools labeled A, 
B, C, D, and E, and the tools are made of three materials, stone, bronze, and 
iron. If a tool of a particular material is present in a collection, we score 1; 
otherwise we score 0 (see Table 5.25). The pattern is clear: No 1’s are separated 
by 0’s in any column or row, and the cluster of 1’s moves steadily upward from 
left to right. The five collections are therefore readily ordered, and they cannot 
be so simply ordered with any other significantly different row and column 
permutations. The ordering supports the view that the period of the use of 
stone did not overlap with that of the use of iron, so that we have five classes 

TABLE 5.23 Similarity Matrix for Eight Variables 

1 2 3 4 5 6 7 8 

1 1 .00 .03 .01 .20 .02 .33 .35 .06 
2 0.3 1.00 .98 .54 .96 .02 .15 .57 
3 .01 .98 1 .00 .54 .98 .01 .13 .58 
4 .20 .54 .54 1.00 .55 .25 .41 .86 
5 .02 .98 .98 .55 1.00 .02 .15 .60 
6 .33 .02 .01 .25 .02 1.00 .51 .14 
7 .35 .15 .13 .41 .15 .51 1.00 .33 
8 .06 .57 .58 .86 .60 .14 .33 1.00 
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TAIHX 5.24 Approximate Robinson Matrix Obtained by Rcordcring 
Variables in Table 5.23 

1 6 7 4 8 5 2 3 

1 1.00 .033 
6 .33 1.00 
7 .35 .52 
4 .20 .25 
8 .06 .I4 
5 .02 .02 
2 .03 .02 
3 .01 .O1 

,035 
.52 

1.00 
.41 
.33 
.15 
.15 
.13 

.20 .06 .02 .03 .O1 

.25 .I4 .02 .02 .01 

.41 .33 .15 .15 .13 
1.00 .86 .55 .54 .54 
.86 1.00 .60 .57 .58 
.55 .60 1.00 .98 .98 
.54 .57 .98 1.00 .9x 
.54 .58 .98 .98 1.00 

TABLE 5.25 Incidence Matrix for Five Collections 

Stone Bronze Iron 
_____- .--__ --___- 

I-_---- - 
A 0 0 1 
B 0 1 1 
c 0 1 0 
D 1 1 0 
E 1 0 0 

of cutting tools: (1) stone only, (2) stone and bronze, (3) bronze only, (4) 
bronze and iron, and ( 5 )  iron only. Using Jaccard's similarity coeffcierit 
./(a + /3 + y )  (see Table 7J), we obtain the Robinson matrix in Tabk 5.26. 
For further references on the subject of seriation, see Hodson et al. [1971]. 

In conclusion, we mention one important practical problem associated with 
large dissimilarity matticcs. If the underlying experiment consists of a number 
of subjects each comparing (I;) = $n(n - 1) pairs of n stimuli, then there is a 
practical limit on n above which even the inost dedicated subject is exhausted, 

TABLE 5.26 Robinson Similarity Matsix for Data 
in Tablc 5.25 

A B C D E 

A 1 1 0 0 0 

B t 1 t i 0 
c' 0 i 1 t 0 
D 0 t t 1 d 
E 0 0 0 h 1 
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not to mention the possible unreliability of the resulting data. For example, if 
n = 40, then 780 pairs need to be assessed. Clearly, for quite moderate values 
of n, the complete pairwise assessment is out of the question and incomplete 
designs need to be considered. For a discussion and a survey of this topic see 
Spence and Domoney [1974] and Spence [1982]. 

5.6 PROCRUSTES ANALYSIS (MATCHING CONFIGURATIONS) 

We have seen that in some situations multidimensional scaling of Section 5.5 
can be regarded as a technique for trying to match one set of n points in 
d-dimensional space by another set in a lower-dimensional space. A related 
technique, commonly known as procrustes analysis (Hurley and Cattell [1962: 
p. 260]), refers to the problem of matching two configurations of n points in 
d-dimensional space where there is a preassigned correspondence between the 
points of one configuration and the points of the other. The origins of the 
technique go back at least to Mosier [1939] and, although originally developed 
for use in factor analysis, it is now seen as relating closely to multidimensional 
scaling. The method is reviewed by Sibson [1978] and the following discussion 
is based on his paper. Further algebraic results are given by Ten Berge [1977J. 

Let X’ = (xl, x2,. . . ,xn) and Y’ = (y1,y2,. . . ,yn) be two d-dimensional 
configurations of n points. If the yi are in fact k dimensional (k  < d), then we 
can add a column of d - k zeros to each y,. One measure of goodness of fit of 
Y to X is 

(5.80) 

Fixing the x i ,  we wish to move y, relative to x i  through rotation, reflection, and 
translation, that is, by the linear transformation 

T’y, f c ( i  = 1,2 ,..., n), (5.81) 

where T is an orthogonal matrix, so that (5.80) is minimized. Carrying out the 
translation first, we see that Xi llxi - yi - c1I2 is minimized when c = a - (see 
Exercise 7.20). If the data are centered at the origin so that 2 = = 0, then 
X = X = (xl - %,xz - a ,..., x, - a)’, Y = P, and c = 0. The problem of 
matching now reduces to minimizing 

n 

D(X,?T) = C - T’Yillz 

D(X,Y) = llxi - yi112 = tr[(X - Y)(X - Y)’]. 
i = l  

1-1 

= tr[(X - W)(W - 

= t r [ s ’ ]  -t tr[-’] - 2 tr[T%’Y] 

with respect to orthogonal T. This is achieved using the following theorem. 

(by Al.l)  
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THEOREM 5.8 Let A be a d X d matrix with singular value decomposition 
A = LAM’ where L and M are orthogonal matrices and A == 

diag(S,, &,. . . ,a,), where each SJ L 0 [see (1@.19)1. Then for all orthogonal T ,  

tr[TA] I tr[ (AA)”’] (5.82) 

with equality if T := T = ML. 

Proof 

tr[TA] = tr[TLAM’] = tr[M’TL,A] = tr[NA], 

where N = M’TL is an orthogonal matrix, being the product of orthogonal 
matrices. Now the elements of an orthogonal matrix cannot exceed 1, so that 

d 

tr[NA] = n,&, 
J = 1  

d 

1-1  

= trA 

= tr[ ( 

5= tr[ (M ’A’LL’AM)’/2] 

= tr[ (M’A’AM)”2] 

= tr[ (AMM (by A4.7) 

= tr( (AA’)*’2] 

=: tr[ (NA)”’] . 

5 CS, 

We have equality when T = T, as 

TA = MCLAM’ 

= MAM‘ 

:= ( M A M ’ M A M ~ ) ’ / ~  

:=   MA^ ’)l/2 

n 
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Now D(X, ?T) is minimized when tr[“%’v is maximized. Setting A = X’k, we 
see from the above theorem that a solution is given by = ML’, and 

If A is nonsingular, then TA = (A!4)’l2 has a unique solution 

T = (KA)-1/2A! = (q!stk)-1/2(ktX). 

The rotation that takes k to is called the procrustes rotation of k relative 
to X. Since tr[(%”%%’@1/2] = td(X’W’X)’I2], we see from (5.83) that the 
roles of X and k can be interchanged, as expected. 

In some situations the scales of the two configurations are Merent, so that 
(5.81) is now replaced by bT’yi + c (b > 0). Proceeding as before, we now 
wish to minimize 

D(X, bkT) = tr[%%’] + b2 t r [ e ’ ]  - 2b tr[T%’k] (5.84) 

with respect to b and orthogonal T. This can be done in two stages. If we fix 
b > 0, (5.84) is minimized with respect to T when T = ?. Then 

D(X, bm) = t r [ a ’ ]  + b2tr[w’] - 2l~tr[(P’=’Y)’/~]. (5.85) 

If we differentiate with respect to b, the above is minimized for all b when 

b = 6 = t r [ (P ’~ ’Y) ’ /* ] / t r [~ ’ ] .  

Since b > 0, it also minimizes (5.85) for the restricted case of b > 0. Gower 
[1971b] noted that 

is not symmetric in X and k, so that the optimal scaling of fi to X is not the 
inverse of the optimal scaling from X to m. However, symmetry could be 
obtained if we followed Gower’s suggestion and scaled the configurations so 
that tr[%%’] = tr[w’] (= 1, for example). 

If we wished to compare two configurations k and Z, say, with the same X, 
then DSL ( r  = 1,2) could be used as a measure of fit: The smaller the value, 
the better the fit. For example, k might be the classical scaling solution and Z 
the nonmetric solution. However, if we wished to compare with X and 
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with U, then some standardization of DsL is needed to remove the cffecl of the 
number of points and the scale of X (or U). Sibson [1978] suggested 

or 

He noted that B1 and 

are symmetric in X and 9, which may be preferred. A related coefficient 
introduced by Robert and Escoufier [1976] (see also Escoufier and Robert 
[ 19801) is 

tr [ Y ‘ B ’ Y ]  R V [ X , * ]  = - -.--- 

( tr [ ( W i f ) 2 ]  tr [ (Wy] ] 
* (5.87) 

This coeficient is a measure of similarity between X and v, and the authors 
call it the R V-coefficient. If we wish to reduce X to XL and P to gM, then m e  
criterion for choosing L, and M would be to minimize RC’[%,TM]. The 
authors showed, by suitable choices of L, M, X, and * (e.g., = X), that the 
methods of principal components, multiple regression, canonical correlaiions 
(see Section 5.7), and discriminant coordinates (see Section 5.8) arise as special 
cases of the minimization. They also used the RV-coefficient to provide an 
algorithm for selecting the “best” subset of variables. 

An alternative, more robust method than the procrustes least squares 
approach has been proposed by Siege1 and Renson [ 19821 and called the 
repeated median algorithm. 

5 . 7  CANONICAL CORRELATIONS A N D  VARIATES 

5.7. I Population Correlations 

Suppose we have have a d-dimensional vector z = (zl, z 2 , .  . . ,z(,)’ with zero 
mean and dispersion matrix 9 [ z ]  = 2 = [(u,~)]. We can measure the linear 
association between z j  and zk by their correlation. If, however, we require a 
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measure of linear association between z1 and the vector y = ( z 2 ,  z 3 , .  . . ,zd)’, 
then we can use &3 . . . d ) ,  the square of the multiple correlation between z1 and 
y. This quantity is defined to be the maximum squared correlation between z1 
and any linear combination B’y and is given by 

where the parameters come from the partition 

This maximum occurs when (see Exercise 5.25) 

$ = ZZ;u2,. (5.88) 

Taking the generalization one step further, suppose we partition z’ = (x’, y ’), 
where x and y are d,- and d,- (= d - d,) dimensional vectors, respectively, 
and we wish to construct a measure of linear association between x and y. 
Then one such measure is the maximum value of p2 ,  the squared correlation 
between arbitrary Linear combinations a’x and B‘y. Partitioning 

where 2,, is d, X d, and Z12 = Xil ,  we have ’ 

p’ = (cov[a’x, P’Y1)2 
var[a~x]var[ ~ ’ y ]  

(5 .89)  

From A7.7, the maximum value of p2 is p:, the largest eigenvalue of 
C~’Z,,Z,;‘Z2, (or of Z;~Z212,1’Z,2). The maximum occurs when a = a,, the 
eigenvector of I : ~ ’ I : , J i ~ Z 2 ,  corresponding to p:,  and p = b,, the corre- 
sponding eigenvector of Zi,Z2,Z,’Zl2. The maximization of (5.89) can be 
carried out in two stages (see Exercise 5.30). 

is called thejrst canonical correlation between 
x and y: u1 = a;x and u1 = b;y are called thejirst canonical variables (Hotell- 
ing [1936]). Since p: is independent of scale, we can scale a1 and b, such that 
a;Z,,a, = 1 and b;Zz2b, = 1. In this case u1 and u1 have unit variances. 

The positive square root 
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The above procedure may be regarded as a dimension-reducing technique in 
which x and y are reduced to u1 and u1 suck that p’ is nlinimized. However, uI,  
for example, may not be an “adequate” reduction of x, and a possible 
extension of the procedure would be to reduce x and y to r-dimensional vectors 
u = (q, uz,. . . ,u,)’ and v = (q, u2,. . . ,u,)‘, respectively, such that ( 2 )  the 
elements of u are uncorrelated, (2) the elements of v are uncorrelared, and (3) 
the squares of the correlations between uj and u, ( j  = 1,2,. . . , r )  are collec- 
tively maximized in some sense. One approach is given by the following 
theorem. but let us first introduce some notation. Let 

Z,, =. R‘,iR,i ( i  = 1,2) (5.90) 

be the Cholesky decomposition of 2,, (see A5.11), where H,, is uppcr triangu- 
lar. Define 

then 

(5.92) 

and 

X,’Z,,Z,’Zlz = R;;’C’CR,,. (5.93) 

THEOREM 5.9 Let 1 pf L pi 2 - * . 2 pk > 0, where rn = rank Z12, be 
the m nonzero eigenvalues of 2,’Zl28,’Z,, (and of Z,’Z,1Z,;12,2). Let 
a,,a2, ..., amand b,,b,,. ..,b,,, becorrespondingeigenvectorsofZ,12’l,8,’Z,, 
and 2;2Z212;11212r respectively. Suppose a and B are arbitrary vectors such 
that for r I m - I, a’x is uncorrelated with each a;x ( j  = 1,2,. . . , r )  and p’y 
is uncorrclated with each b;y ( j = I, 2,. . . , r ) .  Then we have the following: 

(i) The maximum squared correlation between a’x and f3’y is given by p: ,  

(ii) cov[a;x,a;,x] = O , j  + k,  and coqqy, Wky] = 0 , j  # k. 
and it occurs when a = and @ = b,, 

Prooj We observe from (5.91) that rank C -- rank ZlZ, and that (5.92), (5.93, 
CC’, and C’C all have the same positive eigenvalues p:, p;,. . . , p i  (by AlA). 
From 

we have 



5.7 Canonical Correlations and Variates 259 

or, using (5.92), 

CC’(Rllaj) = (Rllaj)p;. (5.94) 

Hence aoj = R,,a, is an eigenvector of CC’ and, using similar algebra, bo, = 
R22bj is an eigenvector of C’C, corresponding to $. 

be 
similarly defined. We are given 

(i) Let A’ = (al,a2,. . .,a,), No = (aO1,ao2,. . . ,aor) and let B’ and 

0 = V[Ax,a’x] 

= AB[x]a 

= AZ,,a 

say, where a. = R,,a. Using a similar argument, we also have B&, = 0, where 
Po = R2,B. Then 

(5.95) 

which occurs when a. = aO,r+l and &, = bo,r+l, that is, when a = a,+1 and 

(ii) Since CC’ is symmetric, we can choose its eigenvectors so that they are 
B = br+l*  

mutually orthogonal (see A1.3). Hence 

~ [ a > x , a i x ]  = a>Zllak 

= ahjaok 

= o  ( j # k ) .  

A similar result holds for the columns of 5. 
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Thc positive square root /p; is called the j th canonical correlation, arid 
u, = a;x and u, = b;y the j th canonical variables. The latter will be unique 
(apart from signs) if the canonical correlations are distinct (see Al.3). Theorem 
5.9 tells us that the canonical variables have the following property. First, w1 
and u ,  are chosen so that they have maximum squared correlation p:. Second, 
u,  and o2 are choseti so that u1 is uncorrelated with ulr u2 is uricorrelated with 
ulr  and u2 and u2 have maximum squared correlation p i .  Third, ug and u3 are 
chosen so that u3 is uncorrelated with both u1 and u 2 ,  u3 is uncorrelated with u1 
and u,, and u3 and u3 have maximum squared correlation pi,  and so on. Since 
the eigenvectors a,, and bo, can be scaled to have unit length, we have 
var u, = a;Z,!a, = &,a,, = 1 and, similarly, var u, = 1. For this scaling the 
canonical vanates all have unit variances. Thus, writing u = Ax. for example, 
we have 9[u]  =: A X , , A  = I,. 

If the d ,  X d, matrix Z,, has full rank, and dl < d, ,  then m = d, .  All thc 
eigenvalues of I :~ ,1Z, ,Z,~X2,  are then positive, while Z;2ZzlX;,’212 had d ,  
positive eigenvalues and d, - d ,  zero eigenvalues. However, lhe rank of Z,, 
can vary, even though I: > 0. For example, there may be constraints on Z,, 
such as Z,, = 0 (rank zero) or I:,, = 02pld,l>, (rank 1). 

Although the above approach to canonical correlations is the more tradi- 
tional one, another method of derivation that also has considerable appeal can 
be based on the concept of prediction. For example, if we wished to predict z1 
from y = (z2, z3,. . . J ~ ) ’ ,  then we could use the linear predictor f3‘y such that 
the variance of the error is minimized. Now 

E[ (2, - p 9 * ]  = E[ 2: - 26’yz, f p’yy’p] 

(5.96) 

Differentiating (5.96) with respect to fl using A8.1 gives the solution p = Z,’u,,, 
the same as (5.88). Extending this concept to z’ = (x ’ ,~ ’ ) ,  we wish to find 2r 
linear combinations u :== Ax and v = By, where A and B each have r linearly 
independent rows satisfying AZ,,A’ = I, and BC,,B’ = I,, such that w and Y 
are “close” to each other. I f  we usc Rllu - v1I2]1 as a measure of closeness, thcn 
we find that it is minimized when u and v are the canonical variables (see 
Brillinger [1975: Theorem 10.2.21). For further derivations of a sinular nature 
see Izenman [1975] and Yohai and Garcia Ben [1980]. 

Uptil now we have assumed that pz = &[z] = 0. If this is not the case, we 
simply replace z by z - p, it! the above theory; for example, u = A(x - pl). 

5.7.2 Sample Canonical Correlations 

The above theory can now be readily extended to a sample of observations 
z,, z,,. . . , z n ,  using the technique of Theorem 5.5 in Section 5.2.4. We define a 



n 2 =  

Then r is called thejth sample canonical correlation. These correlations are 
distinct with probability 1 (otherwise any equality implies some constraints 
on the original sample vectors z,). We call uIJ !hejth sample canonical vari- 
able of x,. In a similar fashion we define u,/ = y(y, - 1) to be thejth sample 
canonical variable of y,, where bl, b2,. . . ,bd, are the corresponding eigenvectors 
of Q;iQZ1Qfi1Ql2. The uIJ and uIJ are also called the scores of the ith 
individual on thejth canonical variables. We note that q2 is the square of the 
correlation of the (u lJ ,  u IJ )  ( i  = 1,2,. . . ,n).  The sample canonical variables 
have the same optimal properties as those described in the previous section, 
except that population variances and covariances are replaced by their sample 
counterparts. 

For computational purposes, we observe that we can use Qab, 2 a b  = Qab/n, 
or So, = Qab/(n - 1) (a ,  b = 1,2) in calculating the required eigenvalues and 
eigenvectors as the factors n and n - 1 cancel out. Also, given the Cholesky 
decomposition Q,, = T,;T,,, where T,, is upper triangular, we note from the 
sample versions of (5.91) and (5.94) that 8, = Tl,fJ is an eigenvector of &’, 
where 

e = (T;~)-’Q~~T;~. (5.97) 

i = l  i -1 
n 

C (yi - j i ) (x j  - x)’* C (Y; - s)(Y; - Y)’ 
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Similarly, bo, = T& is an eigenvector of c“C. Details of the computation a x  
given in Scction 10.I.Sd, where we shall also require 

x; - 8’ 

x; - K’ 
u = [ ( u , , ) ]  = 1 ; ,...) ad,) = w (5 .98)  

and 

v = [( l I i j ) ]  = v y .  (5.99) 

If any variable is qualitative with k states, it can be replaced by k - f 
zero-one binary variables [see (1.2)] arid the analysis carried out as above. An 
application of canonical analysis to mixed data is given by Lewis I19701 (see 
Mardia et al. [1979: Section 10.41). 

Kendall(1975] noted that “the difficulties of interpretation are such that nut 
many examples of convincing applications of canonical correlation analjsis 
appear in the literature.” On the credit side, Gnanadesikan [1977: pp. 282-2841 
suggests that valuable insight can be obtained from two- and three-dimensional 
displays of the canonical variables (or their prin6ipal components), particularly 
in the identification of outliers that may be inducing an artificial linear 
relationship. Normal probability plots and univariate outlier procedures can 
also be applied to the canonical variables, with separate plots for each set. 

EXAMPLE 5.7 In Table 5.27 we have a well-know11 set of data from Frets 
I19211 that has been discussed by various authors (e.g., Rao [1952], Anderson 
[1958], Mardia et al. [1979]). The data are summarized as follow: 

Z’ = (X’,y’) = (185.72,151.1%, 183.84,149.24) 

and 

2287.04 1268.84 1671.58 1106.68 
1268.84 1304.64 1 1231.48 841.28 ] 
1671.88 1231.48 2419.36 1356.96 
1106.68 841.28 1356.96 1080.56 

---____I 

The rows of Q12 appear to be approximately linearly dependent, and this is 
confirmed by transforming to the correlation matrix 

0.7108 0.7040 
R12 = ( 

Since thcse elements are approximately equal, the rank of It,, (and therefore of 
Q12) is nearly 1. In fact, the eigenvalues of Q,’QI2Q;,’Q2,, which are also the 
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TABLE 5.27 Head Measurements on the First and Second Adult 
Sons in 25 Families“ 

Head Head Head Head 
Length, Breadth, Length, Breadth, 

First Son First Son Second Son Second Son 

X1 X2 Y1 Y2 

191 155 I79 145 
195 149 201 152 
181 148 I85 I49 
183 153 188 149 
176 144 171 142 

208 I57 
189 150 
I97 159 
188 152 
192 150 

179 158 
183 147 
174 I50 
1 90 159 
188 151 

163 I37 
19s I55 
186 153 
181 145 
175 I40 

192 I54 
I74 143 
176 139 
I97 I67 
190 I63 

I92 IS2 
I90 149 
I89 152 
197 159 
187 151 

I86 148 
174 I47 
185 152 
195 157 
I87 158 

161 130 
183 158 
173 148 
182 146 
165 137 

185 152 
178 147 
176 I43 
200 158 
187 150 

“From Frets [1921]. 

same as those of R,1R12R;2R21 (see Exercise 5.27) are (0.6218, 0.0029). 
Taking square roots, r, = 0.7885 and r2 = 0.0537. 

The corresponding eigenvectors are 
0.0577 0.1429 

0.0512 0.1796 
= (0.0722)’ = ( -0.1909)’ 

b1 = (0.0819)’ b2 = ( -0.2673). 
Hence the first canonical variables are 

u* = i;(x - z) 
= 0.0577(~, - 185.72) + 0.0707(~, - 151.12) 
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and 

Since the second canonical correlation r, is close to zero, we can compare the 
two head dimensions of first arrd second sons by concentrating on just the first 
canonical variates. However, in this example it is hdpful to standardize the 
four original variables by dividing each by its sample standard deviation ( S D )  
to get 

tiI = 0.552~: + O.!i22x,* 

and 

o1 = 0.504~: i 0.538.y,*, 

where .xT = ( x I  - Xl)/SD, and so on. Now u1 and o, cat] be interpreted as 
“girth” measurements being approximately proportional to the sum of the 
standardized length and breadth for each brother. We also find that the second 
canonical variables, namely, 

U Z  = 1.366~,* - 1.378~: 

arid 

u2 =: 1.769~: - 1.759~,*, 

can be interpreted as “shape” measurements, being approximately propor- 
tional to the differences between the standardized length and breadth for the 
two brothers. Clearly there is little correlation between the head “shapes” of 
first and second brothers. We note that the eigenvectors (0.552, 0.522)’, and so 
on, associated with the standardized variables x: and J;* can be obtained 
directly from the eigenanalysis of Ri;1R12R;:RL, instead of Ql11Q,,Q;iQ21. 
Some statistical packages do this. 

Finally, in Fig. 5.15 we have a plot of u1 versus u1 for each of the 25 pairs of 
brothers. There do not appear to be any outliers. 

5.7.3 lnference 

If the sample zl.zZ,. . . , z n  conies from Nd(p, Z), then the exact joint distribu- 
tion of the sample canonical correlations, which depends only OD the popula- 
tion canonical correlations, has been given by Constantine [ 1963 and James 
[1964] (see also Muirhead [1982: Section 11.31). However, the distribution is 
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intractable and an asymptotic: theory has been developed. Siiice 2 is the 
maximum likelihood estimate of 2, then, provided that the population canoni- 
cal correlations are distinct, G ~ ,  i,, and bJ are the maximum likelihood 
estimates of pj, a,, and bJ (given an appropriate sign convention for the 
eigenvectors). Large-sample maximum likelihood theory then applies and Hsu 
119411 showed that as n --* GO, the Jn‘(5’ - p;) ( . I  = 1’2,. . . ,171) are asymptoti- 
cally independently distributed as N,(O, - $I2). The asymptotic theory 
for the sample eigenvalues and eigenvectors (using a difrerent scaling) is 
summarized by Brillinger [1975: Theorem 10.231, who suggested that it is 
probably more sensible lo estimate variances using the jackknife method. 
Using the transformation (3.64), we note from Glynn and Muirhead [I9781 
that 

E[tanh ‘q]  = tanh .Ip, + O(n.-’) 
and 

var[tanh--’~;] = n - l  + 0 ( ! 1 - ~ ) .  

Further references on asymptotic expansions are given by Fujikoshi [1977a], 
Muirhead and Waternaux [ 19801, and Muirhead [ 19821. 

One of the most commonly used tests in canonical correlation analysis is the 
test that d ,  - k of the smallest correlations are zero, that is, HOk : p k ,  , = p k  , 
= ... = pdt = 0 ( p k  > 0). When HOk is true, the canonical variables u,,, u,, 
( j  = k + 1,. . . , d l )  have no predictive value for comparing x, and y,. so that 
the relationship between x,  and y, can be sumlarked by means of the first k 
canonical variables. If k is small, this represents a substantial reduction in 
dimensionality. The likelihood ratio test for testing f&k leads to the statistic 

dl 
t:= I-1 (1 -- I;”, 

j - k + l  

and -2nlogtis asymptotically xz, where v = ( d ,  .- k ) ( d 2  - k ) ,  when Hok is 
true (Bartlett [1938a, 19471). A special case of this procedure, namely. Ifo: 
p1 -. p2 = p . 0  = pd, = 0 or Z,, = 0 is discussed in Section 3.5.2. The chi- 
square approximation can be improved if we use Lawley’s modification 

(see Glynn and Muirhead [1978]). To determine k we can test the sequence of 
hypotheses ] I o ,  Hal, [I(,:, . . . , until we obtain a nonsignificant test for Her. We 
then choose k = r. Fujikoshi and Veitch [1979] propose several other proce- 
dures using extensions of Mallows’ [1973] C). statistic and Akaike’s [1973] 
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information criterion. A large-sample expansion of the nonnull distribution of 
(5.100) is given by Fujikoshi [1977b]. It should be noted that Hams [1975: p. 
1441 claims that (5.100) is not approximately chi square and that such tests 
should be abandoned. 

Unfortunately, as with other tests based on the sample dispersion matrix, 
- n log / is so nonrobust to departures from normality, particularly to the 
presence of outliers and to long-tailed distributions, that there is some doubt 
whether it should be used at all. Muirhead and Waternaux [1980] obtained the 
asymptotic joint distribution of the 52 in the nonnuIl case and showed that the 
6 ( q 2  - pi”) are still asymptotically normal with mean 0, but the asymptotic 
variance-covariance matrix now contains additional terms depending on 
fourth-order cumulants of the parent population. The limiting distribution of 
- n log /is now a weighted sum of x: variables, the weights being complicated 
functions of the cumulants. In one special case, when the parent population is 
elliptical, there is substantial algebraic simplification and a correction factor 
can be calculated. Asymptotic inference for eigenvwtors is given by Tyler 
[1981]. 

In conclusion, we note that canonical correlation analysis has been applied 
to time series (Brillinger [1975]), reduced rank regression with random regres- 
sors (Izenman [1975]), and the analysis of systems of linear equations (Hooper 
(19.591, Hannan [1967]). 

5.7.4 More Than Two Sets of Variables 

Uptil now we have considered two sets of variables represented by z’ = (x’, y’). 
If we transform xo = Nll)-’x and yo = (R\2)-1y, where Zii = R;iRii, then 

9[yo] = I d t  and V[xo,yo] = R;;‘Z12R;; = C. Therefore, if zh = (xb,y;), we 
have 

say. Thejth canonical variables are given by (see Theorem 5.9) 

uj = a>x = (R,’aoj)’R;,x0 = a’ O j  x 0 

and 

0 .  = by = v 
J J oiyo, 

where llaojll = l/bojl] = 1. Since the correlation of a’x and B’y reduces to the 
expression in curly brackets in (5.99, the first variables u1 and u1 are obtained 
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by maximizing a(;Cp, subject to liaoll = l[floll = 1. If 

where $12 = ahCPo = $2L, then u1 and u1 are obtained by maximizing G12 or, 
cquivalently, a suitable function of @ such as l’@l = 2 t. 2rp12 or I r a 2  = 

C,C,&, = 2 t 2$f2. The next canonical variables are found by the same 
procedure, but with further constraints on a. and Po [ul  and u2 are uncorre- 
lated and u1 and u2 are uncorrelated, so that ahla,, = 0 and b&po = 0;  see 
(5.95)]. Using the above approach, Kettenring [19711 generalized the procedure 
to three or more sets of variables. For example, if z’ = (w’, x’,y’) and 
w, = (R’33)-’w, then 

where c o b  = ~ ‘ZrrbR;;. Then, writing 

we have 

a;, 0’ 0’ 

0’ Po’ 0’ 

0’ 0’ yd 

9 

where (J,, = (J,t. The first canonical variables t , ,  ul ,  and u1 for the three groups, 
respectively, are now found by minimizing some function of the elements of Q, 
subject to llaOll = llPoll = llyoil = 1. In the sample case 2, and C(ll, are replaced 
by their sample equivalents. Kettenring [1971] considered five functions of @, 
including the ones mentioned above, and the reader is referred to his paper 
and Gnanadesikan [I 9771 for further details and examples. 
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5 . 8  DISCRIMINANT COORDINATES 

Although discriminant analysis is not discussed until Chapter 6, it is ap- 
propriate to mention in this chapter a dimension-reducing technique that is 
useful for examining any clustering effects in the data. Suppose we have n 
d-dimensional observations in which ni belong to group i ( i  = 1,2,. . . ,g; 
n = C; n;). Let x j j  be thejth observation in group i, and define 

Then we can define two matrices, the within-groups matrix 

g “ 1  

w = c c ( X i ,  - X i . ) ( X i j  - Z i . ) ’  
i -1  j - 1  

g 

= c (? I i  - l)S;, 
i = l  

say, and the between-groups matrix 

8 nt 

B = C (Xj.- %..)(%;.- a , . ) ’  
i-1 j - 1  

8 
= C ni(Pi.-  !2..)(Ki.- z..)’ * 

i= l  

say. These are multivariate analogues of the usual analysis of variance sums of 
squares and are discussed further in Section 9.2. Clearly the degree of cluster- 
ing within the groups will be determined by the relative “magnitudes” of B 
and W. However, as a first step, we could reduce the multivariate observations 
x i j  to univariate observations z i j  = c’xij and obtain the usual sums of squares 

c c ( Zii - zi. )2 = C’WC 
i i  

and 

CC(Z,.- z..)2 = C’BC. 
i j  
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How do we choose c‘! I f  we were testing for equal group populatton means lor 
the z,, observations, we could use the ratio 

c‘Rc 
C’WC 

F =___ 

and reject the hypothesis of equal means if F, is too laige. The magnitude of F; 
reflects the degree of group clustering in the z,, and one criteria would be 10 
choose c so as to maximize 4. To do this we assume that at least one 
within-group sample dispersion matrix S, is positive definite (with probability 
1). Then W, a sum of positive semidefinite matrices, is also positive definite 
(A5.10) with Cholesky decomposition W = T’T (A5.11). Setting b = Tc, 

W(T’)--‘RT- 
F,. = 

b b  

WAb 
b’b ’ say’ 

== -- 

= a’Aa, 

where a = b/llbll, that is, lla{l = 1. Maximking 4 subject to c SC 0 is equivalent 
to maximizing a’Aa subject to a’a = 1. From A7.4, the maximum occurs when 
a = a,, the unit eigenvector corresponding to the largest eigenvalue A, (= 
aiAa,) of A. 

We now ask what other directions c might give us useful separation of the 
groups? A reasonable procedure might be to choose a second a that is 
perpendicular to a1 such that a’Aa is again minimized subject to llall -.- 1. This 
problem is formally equivalent to extracting principal components so that from 
Theorem 5.4 (with I: -+ A) in Section 5.2.3, the solution is a 2 ,  the uiiit 
eigenvector corresponding to A, (= a’,Aa,), the second largest eigenvalue of 
A. We can therefore find d orthogonal directions given by ar ( r  = 1,2, .  . . , d )  
that correspond to the eigenvalues A, > A, > > A, > 0 of A. We note 
that 

* 

(T’) - ‘BT-‘a ,  = Aa, = Arar, 

and multiplying on the left by T ^  ‘ ( n  - g)’/’ ,  we have 

W-lBc,  = A$,. 

Hence W - ’ R  has eigenvalues A, and suitably scald eigenvectors c, ( r  -=- 

1,2,. . . , d ) ,  where c, satisfies a, = Tc,(n - g) ‘I2, the a, being orthonormal. 
Let C’ -- ( c l ,  c2 , .  . . , c k )  ( k .  I d )  and consider the transformativn z,, = Cx,,. 
Then, following Gnanadesikati [1977], we shall call the k elements of z,, the 
first k discriminant coordinalcs. ‘The more common term canonical uariutes is 
reserved lor canonical correlation analysis in Section 5.7. Since these coordi- 
nates are determined so as to emphasize group separation, but with decreasing 
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effectiveness, we have to decide on k. Clearly some trial and error is inevitable, 
though the relative magnitudes of the A, will give some indication. For k = 2 
or 3, plots of the z,, will be helpful for studying the degree and nature of the 
group separations and for highlighting outliers. In studying these plots we use 
the usual Euclidean distance for assessing interpoint distances as the elements 
of z,, are “standardized.” To see this we first recall that W = T’T so that 

c$k, = ( n  - g)-’c;TTc, = a;a, = a,,, 
or CSC‘ = 1,. Assuming equal group dispersion matrices, then %‘[c;x,,, c,lx,,] 
= c;Xc, and, replacinj X by S, we see that the z,, have zero sample covari- 
ances and unit sample variances. Furthermore, if the samples are large enough 
for the central limit theorem to apply, and S = 2, then 2, - Nk(pl,Ikn;’) 
approximately, for some unknown p,. A lOO(1 - a)% circular confidence 
region for p, is then approximately given by 

df, - P m . -  P,) 5 x f ( 4  
A computational procedure for finding the A, and c, is given in Section 10.1.4c, 
and a geometrical interpretation of the above procedure is given by Campbell 
and Atchley [1981]. A ridge-type adjustment to W is proposed by Campbell 
[1980b], and robust M-estimation (see Section 4.4.3b) of the discriminant 
coordinates is developed by Campbell [1982] using a functional relationship 
model. 

Some authors work with the matrices S,  = B/( g - 1) and S = W/( n - g )  
instead of B and W. The only change is that the eigenvalues A, above are now 
all multiplied by (n - g ) / ( g  - 1); the c, are unchanged, as we still require 
csc’ = 1,. 

EXAMPLE 5.8 Reeve [1941] published a series of trivariate measurements on 
skulls of six collections (four subspecies) of anteaters. The subspecies, locality 
of the collection, and numbers of skull are given in Table 5.28. The features 
chosen for measurement were (1) the basal length, excluding the premaxilla; 
(2) the occipitonasal length; and (3) the greatest length of the nasals. The data 
used for analysis consisted of the common logarithms of the original observa- 
tions measured in millimeters. The appropriate ‘‘within‘’ and “between” 
matrices are 

0.020021 1 0.01 7 W 8  0.013081 1 
0.01 585 17 0.01 50665 

- - 0.030681 8 
B = (  - 

and 

0.0129227 0.0171355 
0.01 36309 0.01 27691 . 0.01 64379 

0.03615 19 
w = (  - 

- - 
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TABLE 5.28 Tfivariate Measurements on Anteater 
Skulls Fautid in Six Locationsa - 

No. of Mean 
Subepeoierr Locality skull8 vector 

instobilis Sta.Maxt&, 21 2.064 
Colombia 2.066 

1.621 

chpad~nuiu MinaaQeram, 8 2mOQ7 
BCt3Zi.l 2.100 

1.625 

c&pade& M&ttoGro~o, Q 2.091 
Brazil 2.096 

1.624 

chrvpadeneis Bta.Cruz, 3 2,099 
Bolivia 2.102 

1.643 

ahitiquenew Panama 4 2,092 
2,110 
1.703 

m42icQtKI Mexioo 6 2.098 
2.107 
1.871 

“From Reeve [1941], courtesy of The Zoological 
Society of London. 

L_---_- ----- 

The eigenvalues A,  of W ‘B are (2.400, 0.905, 0.052) and, as A, is small, we 
can choose k = 2. Now the first two scaled eigenvectors are 

C; = (408.918, - 33.823, - 35.497) 
and 

C; I= (--40.608,59.952,22.821), 

and thesc can be used to calculate the individual discriminant coordinates z,, 
lor each skull. However, Following Seal [1964: p. 1361, we can plot the 
discriminant coordinates CX, ( 1  = 1,2,. . . ,6) for the mean of each of the SIX 

collections, as in Fig. 5.16. These coordinates are (96.3,77.4), (99.7.77.83, 
(99.2,77.8), (99.2,78.2), (36.1,80.4), and (98.0,79.2). The radius of the 95% 
confidence circle for p, is { ~~(0.05)/n,)’/~ = 2.448/ , / r i i ,  and these are also 
shown in Fig. 5.16. These circles are different from those used by Seal 119641. 
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Fig. 5.16 Scatter plot of the first two discriminant coordinates for the sample means of six 
collections of anteater skulls: a 95% confidence circle for each population mean is also drawn. 

5 . 9  ASSESSING TWO-DIMENSIONAL REPRESENTATIONS 

In applying one of the previous dimension-reducing techniques, we would hope 
to obtain a useful reduction to two dimensions so that the scatter diagram of 
the reduced configuration is “similar” to the original configuration. As in 
multidimensional scaling, we can measure similarity by comparing the two- 
dimensional interpoint distances d ,  with the original distances or dissimilari- 
ties Srs. Various measures of “distortion” have been proposed (see Cormack 
[1971: Table 31, Orl6ci [1978: pp. 264-276 including the so-called cophenetic 
correlation, the correlation between the (; 4 pairs (d, , ,  S,,) (see Rohlf [1974a] 
and references therein), the rank correlation (Johnson [ 1967]), the Goodman- 
Kruskal y statistic (Hubert [1974]), and Hartigan’s I19671 measure C,,,ld, - 
S,, 1. These measures are discussed further in Section 7.3.2a. 

One useful graphical method for examining the effectiveness of a reduction 
is the minimum spanning tree (MST) described in the paragraph following 
(4.24). Given the lengths S,, of all (i) possible segments between pairs of 
points in the original configuration, we can define the MST as the spanning 
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Dimension 1 

Fig. 5.17 Links in the minimum spanning tree transferred to a two-dimensional reduction of the 
data. 

tree of minimum length. 'The links in the MST can be transferred to the scatter 
diagram, provided that there is a one-to-one correspondence between the 
initial and reduced configurations. For example, in Fig. 5.17 we have the MST 
for three points. There is sane distortion in the two-dimensional reduction, as 
C appears closer to A than B ,  whereas in the original configuration B is closer 
to A. When distortion of this type occurs, then caution must be exercised in 
making inferences about possible clustering from the scatter diagram. Suitable 
algorithms for finding the MST are available (e.g., Gower and Ross [1969]). 

5.10  A B R I E F  COMPARISON OF METHODS 

The methods of principal components, principal coordinates, and h-plotting all 
involve the extraction of eigenvalues and eigenvectors. We have already noted 
that principal components have a number of useful optimal properties that aid 
interpretation and which can be used for detecting outliers and redundant 
dimensions. However, principal coordinate analysis is more general, being the 
same as principal coniponents for vector data and Euclidean distances, yet 
requiring only the matrix of similarities or dissimilarities. In particular, metrics 
other than the Euclidean metric can be used for measuring interpoint dis- 
tances. If the method does not give an adequate reduction, that is, a low 
enough dimension, Gower [1966] suggests using the principal coordinate 
solution as a starting point for the iterative algorithm of nonrnetric multidi- 
mensional scaling. Kruskal [ lW7b] uses this starting point in  his multidimen- 
sional scaling program KYST' and notes that sometimes the iterative procedure 
does not change this initial configuration very much. Random start procedures 
have also been used, though there is some controversy over their usefulness (see 
Psychometrika, Vol. 43, 1978, pp. 111-1 19). In general, fewer dimensions will 
be needed to reproduce ordinal information than to reproduce metric informa- 
tion, so that nonmetric multidimensional scaling is likely to be more useful for 
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complex nonlinear-type data. Multidimensional scaling is discussed further in 
Section 7.8 in relation to cluster analysis. 

Banfield and Gower [1980] discuss the ordination of multivariate binary 
data with special reference to principal coordinate analysis. By plotting certain 
additional points, they show how to (1) check on the suitability of the 
ordination, (2) provide a useful screening test before any cluster analysis, and 
(3) recover appropriate values of the entries of the 2 X 2 tables from which the 
ordination was derived. 

Theoretical and empirical evidence has been given that shows that factor 
analysis can be completely misleading if the number of factors is unknown. 
The “reality” of the derived factors is controversial, and, all in all, the method 
does not inspire much confidence in spite of its support from social scientists. 
Discriminant coordinates is a useful tool for examining external structure, such 
as the clustering of groups and discriminant analysis (Chapter 6), while 
canonical analysis is useful for investigating internal structure among the 
variables. 

EXERCISES 5 

5.1 Let f be a real-valued function defined on the n X n positive definite 
matrices C. Verify that f is invariant under orthogonal transformations 
[i.e., f (T’W = f(C) for orthogonal TI and is strictly increasing in the 
eigenvalues of C for the functions (a) trC, (b) [Cl, and (c) llCl1 = 
{tr[CC’]}’/2. [Hint: Use A7.9.1 

5.2 Given n X n positive definite matrices A and B such that A - B is 
positive semidefinite, show that the eigenvalues of AB-’ are all greater 
than or equal to unity. Deduce that IAI 2 IBI. [Hint: Use A5.12.1 

5.3 Let A be a d X d positive definite matrix. Then there exists an orthogonal 
matrix T such that TAT = A, where A, 2 A, 2 - - .  2 A d  > 0 are the 
eigenvalues of A. If B is a d X k matrix of rank k (k .c d), and f is a 
function satisfying the two conditions of Lemma 5.2 in Section 5.2.2, 
show that f(A - BB’) is minimized when B = T,Ay2, where TI is the 
matrix consisting of the first k columns of T, and A, = diag(X,,. . . ,Ak). 

5.4 Given x = (xl, x 2 ) ’ ,  where x1 and x2 are random variables with zero 
means, unit variances, and correlation p, find the principal components of 

5.5 Let x be a d-dimensional vector of random variables with mean 0 and 
dispersion matrix Z = [(u,~)], and let8 = t;x be thejth principal compo- 
nent of x with variance A,. Show that the correlation between xi and 8 is 
~ i J ( A J / u i i ) 1 ~ 2 ,  where ti, is the ith element oft,. 

5.6 Suppose to, zl,. . . , zd  are independently and identically distributed with 
mean 0 and variance u2. Let xi = to + zi, i = 1,2,. . . ,d.  Verify that there 
is a principal component of x = (xl, x 2 , .  . . ,xd) ’  that is proportional to 

X. 
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3. What is its variance? Deduce that this is the first principal component, 
that is, the component with maximum variance. 

5.7 Let x have mean zero and dispersion matrix 

a + l  1 

1 a + l  

Verify that Z -- I,a has rank 1 and a nonzero eigenvalue of 3. Hence find 
the eigenvalues of X and the first principal component of x. 

5.8 Verify Equation (5.8). 
5.9 Let R, be defined as in Equation (5.22) and let 

A , + A , +  . . * + A ,  
p, = A,  + x, -t . * * + x, . --.I__- 

Show that for normal data &( R,, - p,) is asymptotically N,(O,  u),  where 

2{(1 --pJ2(At t h \ +  - . . - I - A ~ ) + ~ ~ ( x ~ + , + A ~ + , +  .‘.+A$)) 
= .- __ _ _  .- - _ _  -_I_ --_____A .-. _- - 

( t rZ)’  

[Hint: Use (5.19), (5.20), and A10.21. 

5.10 Draw the biplots for the two factorizations 
Kshirsagar f1972: p. 4541 

- - 

5.1 1 Verify Equation (5.36). 
Gabriel [197 I] 

5.12 Show that G in (5.29) is unique, up to an orthogonal transformation, i f  
C‘G = I,. [Hint: Suppose that there are two solutions GI ( i  = 1,2). Using 
B1.7 prove that B(B’B)-B’ = G,Hl(H,H;)- H,GI’ = GIG,’. Now use 
B1.9.l 
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5.13 Verify Equation (5.37). 
5.14 Prove that for x1,x2,. . . ,x,, 

5.15 Show that there is an identifiability problem in the model (5.44) if the 
first column of I? has only one nonzero element. 

5.16 Let I' be a d x m matrix of rank t and let Q be an m X (m - t )  matrix 
for which rQ = 0 and Q'Q = Imp,. If M is any d X (m - r )  matrix 
with mutually orthogonal rows, show that 

IT' + 9 = (r + Ma')( I' + MQ')' + 9 - MM'. 

5.17 Given that f - N,(O,I,) and xlf - N,(p + I'f,9)y show that flx - 
N,(I"X-l(x - p), [I"W + IrnI-'). [Hint: Use A2.4 and show that 

5.18 Let 8 = diag(B,, 6 2 , .  . .,ern), where 8, 2 0, 2 . . . 2 0, are the m largest 
eigenvalues of $f-'/2S\f-1/2, and let 8 = (ol,.oz,. . . ,am) be the d x m 
matrix whose columns are the corresponding orthonormal eigenvectors. 
Verify that 

m - 1 =  (I, + r'9-11')-11'~1.1 

f = , f 1 / 2 q e  - I ~ ) ~ / ~  

satisfies Equations (5.53) and (5.55). 
are the respective maximum likeli- 

hood estimates of I' and !P (see Section 5.4.2a), show that tflse-'] = d. 
5.19 Given 2 = f f '  + ,f, where f and 

5.20 If f is defined by Equation (5.64), show that 

B [  (f - f)(f - f)'] = (I, + J)-'. 

5.21 Consider the factor analysis model 

- = rf + = nfi + y2f2 -t e, 

where fi and f 2  are correlated random variables with zero means and unit 
variances. Let Bfi be the conditional regression of f2 on fi, and let 
f2.1 = f2 - /3fl. Show that fl and f2.1 are uncorrelated, and express the 
model in the form 

x - p = elfi + 4f2.1 + e. 

If estimates of 8, and f& are available, can we estimate yl? [This is the 
problem of trying to find an oblique rotation that sends ( fi, f2.1) into 
Cf,? f2).1 

Francis [1973] 
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5.22 Verify Equation (5.66). 
5.23 Given the dissimilarity matrix 

D =  

0 2 2 242  
2 0 2 a 2  
2 2 1 6 0  2 

2 f i 2  2 0 

find a two-dimensional configuration, centered at the origin, whose inter- 
point distances are given by D. 

5.24 In Theorem 5.8 [see (5.82)] show that T is a maximizing orthogonal 
matrix if and only if TA is positive semidefinite. 

Ten Berge [ 19771 
5.25 Verify (5.88). 
5.26 Given B[(x’,y’)’] ==r Z > 0, show that pt 1, where p ,  is the first 

canonical correlation between x and y, [Hint: Use A3.2.j 
5.27 Show that the population canonical correlations are the same, irrespective 

of whether we use the dispersion matrix C or the correlation matrix. 
5.28 Given the population canonical variables u, and u,, show that cov[u,, E,] 

= 0 ( i  + j ) .  [Hint: Show that a, = Z~’Z, ,b, . ]  
5.29 Use the method of Lagrange multipliers to verify that p: is the maximurn 

value of (a’Z,,f3)2 subject to a’Zlla = 1 and p‘Z,,p = 1. [Hint: Use 
A8. I . ]  

5.30 Given z‘ = (x’, y ’), use Equation (5.88) to find the square of the niultiple 
correlation between c’x and y. Show that the maximum value of this with 
respect to c is p:, the square of the first canonical correlation. 

C‘ramer [ 19731 
5.31 Let z’ = (x’,y’), where x and y are both two dimensional, and suppose 

that 

where la! ,  161, and I c l  are all less than unity. Find the first canonical 
correlation and the corresponding canonical variables. 



CHAPTER 6 

Discriminant Analysis 

6.1 INTRODUCTION 

The problem we consider in this chapter is the following. Given that an object 
(or person) is known to come from one of g distinct groups Gj ( i  = 1,2,. . . ,g) 
in a population 9, we wish to assign the object to one of these groups on the 
basis of d measured characteristics x associated with the object. We would like 
our assignment rule to be optimal in some sense such as minimizing the 
number or cost of any errors of misclassification that we might make on the 
average. The literature on this subject of discrimination is extensive, as seen 
from the bibliographies of Cacoullos [ 19731, Lachenbruch [ 1975a1, Huberty 
[1975], Goldstein and Dillon [1978], and Lachenbruch and Goldstein [1979]. 
The subject also goes under the title of classification, though this term is 
usually reserved for cluster analysis (see Chapter 7). Another subtitle is 
“statistical pattern recognition with supervised learning,” where the groups are 
pattern types, signal sources, or characters, and the reader is referred to Dolby 
[1970] for a readable introduction to statistical character recognition. The 
literature on pattern recognition, statistical or otherwise, is very extensive: Fu 
[1977] and Zadeh [1977] list about 22 books between them! A nonstatistical 
method of discrimination is the use of diagnostic keys (Payne and Preece 
[1980], Jolliffe et al. [1982]). 

A perusal of the 579 references in the bibliography of Lachenbruch [1975a] 
will indicate the wide-ranging applications of discriminant analysis. We con- 
sider just three examples to give the flavor: 

(1) A number of dated literary works by an author are available and these 
can be put into g chronological groups. An undated work turns up and 
we wish to classify it chronologically. A major problem is to decide 
what style characteristics should be measured, particularly those that 
change with time. 
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(2) A student in a class either passes or fails an examination at the end of 
the year and therefore belongs to one of g = 2 groups. However, one 
student misses the exam owing to illness and the instructor wishes to 
decide whether to pass or fail the student on the basis of x, a vector of 
scores on tests and assignments done during the year. 

(3) On the basis of preliminary tests, a doctor wishes to decide whether a 
patient is free of a certain disease or whether the patient should be 
referred to a medical clinic for more comprehensive tests. 

When developing an allocation rule, there are four cases that can be 
distinguished, depending on the information or sample data we havc on each 
group. The distribution of x is (I)  completely known, (2) known except for 
some unknown parameters, (3) partially known, and (4) conipletely unknown. 
The differerice between (I) and (2), in practice, is usually in the size of the 
samples available from each group. For very large samples we nidy effectively 
ignore the sampling variation in the parameter estimates. Model (1 ) provides a 
convenient starting point for the discussion of allocation rules and we begin 
here with the case of just two groups. It should be emphasized that we consider 
groups that are qualitatively distinct. There is, however, an important class of 
problems where the groups are quantitatively distinct and we simply wish to 
split a single populations into two groups on the basis of some variable (e.g., 
high or low intelligence). This latter problem, called probit discrimination, is 
discussed by Albert and Anderson [198l]. 

6.2 TWO GROUPS: KNOWN DISTRIBUTIONS 

6.2. I Misclussifcation Errors 

Suppose we have a population 9 with a proportion T~ in group ti, and the 
remaining proportion T,! ( = 1 -- T,) in group G2. For i = 1,2, let fi(x) be the 
probability or probability density function of x if x comes from G,. Consider 
thc following classification rule for an identified objecl from 9 with an 
observed x (sometimes called the “feature” vector). Assign to G, if x belongs to 
R,,  where K, and R, arc mutually exclusive and R ,  U R ,  = R ,  the entire 
sample space for 9. We can make one of two errors: Assign x to G, when it 
belongs to G ,  or assign x to G, when it belongs to G,. The respective 
probabilities of making these errors are 

P(211) = / f l (x)  d x  and P(112) = 1 f2(x) dx, 
R2 R l  

where a single integral sign is used to represent multiple integration or 
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summation over d dimensions. Then the total probability of misclassification is 

P(R,f) = pr[wrongly assign x to G,] 
I 3 1  

2 
= pr[assignxtoG,lx E G,]pr[x E G,] ( j  = 1 or2, j # i) 

r=l 

= P(112)n2 + P(211)n1, (6.2) 

where R = ( R , ,  R2)'  and f = (f,, f2) ' ,  a convenient misuse of the vector 
notation (Lachenbruch [1975a]). The following lemma is central to our discus- 
sion. 

LEMMA 6.1 The integral IRlg(x) d x  is minimized with respect to R ,  when 
R, = R,, = (x: g(x) < O}. 
Proof Let R ,  = (x: g(x) 2 O}. For general R, we can write R, = (R, n 
Rol) u ( R ,  n Roz)  so that g(x) < 0 in R,, - R ,  n R,, (c RoJ and g(x) 2 0 
in R ,  - R, n R,, (c RO2).  Hence 

which completes the proof. Furthermore, let B = (x: g(x) = 0} and let A be a 
subset of B. Then the integral or summation of g(x) over R,, U A is the same 
as that over Rol.  Hence R,, is not unique, as the boundary points B may be 
arbitrarily assigned to R,, or R,. (If x is continuous, then pr[x E B] = 0.) 

62.2  Some Allocation Principles 

a MINIMIZE TOTAL PROBABILITY OF MISCLASSIFICATION 

From (6.2) and (6.1), 

(6.3) 
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By Lenima 6.1, this is mininlized if we choose R, = Rol ,  where R,, = (x: 
7r2f2(x) -- ~r,f,(x) < O } .  This classification iule, due to Welch [1939], that 
mininuzes the total probability of misclassification is the following: Assign x to 
G, if 

and to G, otherwise. As we noted above, the assignment 011 the boundary 
fI(x)/f2(x) = 7r2/7r1 can be: arbitrary, for example, assign to GI with probabii- 
ity f .  Although for continuous x the probability that x falls on the boundary is 
zero, the class interval represented by the recorded (rounded) value of x can 
overlap the boundary with a nonzero probability. 

EXAMPLE 6.1 Given that i ( x )  is the density function for N d ( p l ,  X,), and 
X, = Z, L- 2, we shall derive the optimal classification rule based on (6.4) and 
the corresponding probabilities of misclassification. Now 

and 

'Taking logarithms, (6.4) is as follows: Assign to GI if 

where X =- X '(p, - pL). The equation U ( x )  = log(77,/7r1) defines a hyper- 
plane for separating the two groups. 

To find the probabilities of misclassification, define 

the so-called Mahalanobis distance squared between pl and p2. Then 

1 + 1  2 = + ( - t )  A [by(6.7)] 
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and 

VX[ D(x)Jx E Gi] = ~ [ X X ]  = x%X = A2. (6.9) 

Since D(x) is normally distributed, 

= pr ZI log - -$A2  [ i (3 PA] 
where Z - Nl(O, 1) with distribution function @, and A is the positive square 
root of A2. To find P(112) we simply interchange the subscripts 1 and 2: Thus 

If q = n2 = t ,  then P(211) = P(l (2)  = @(- $A), and we assign x to G, if 
[see (6.6)] 

Xx ' +(PI - P 2 ) f w F 1  + P 2 )  = f(XPl + YP2>, (6.12) 

that is, if Xx is closer to Xpl than Xp, (see Exercise 6.1). The rule (6.12) goes 
back to Fisher [1936], though his approach was distribution free. We look for 
the linear combination Xx that maximizes the ratio of the difference of its 
means in the two groups to its standard deviation. From A7.6 the square of 
this ratio [X(pl - p2)]2/h'ZX is a maximum when h a Z-'(p1 - p2) or, 
with suitable scaling, h = 2-'(pl - p2), thus leading to (6.12). 

EXAMPLE 6.2 Suppose that x is MVN as in Example 6.1, but Z, # Z,. 
Then 



(a)  ( b )  

Fig. 6.1 
swarms of points. 

Use ol' ( a )  linear discrimination and ( h )  quadratic discrimination to separate two 

and our optimal rule is as follows: Assign to G I  if Q(x) > log(r2/m,). In 
contrast to D(x) ,  which is linear in x, Q(x) is quadratic. For example, in Fig. 
6.la, Z, = Z2, so that the two swarms of points, which are sintilar in shapa, 
can be adequately scparated by a straight line. However, in Fig. 6.1 b, 2, # Z2 
so that one swarm is long and thin vertically while the other is circular. Ilere a 
curved discrinunant function gives adequate separation. 

The special case of pl = pz is considered by Bartlett and Please [1963], 
Geisser 119731, Desu and Geisser [ 19731, Lachenbruch 11 975131, and Schwemer 
and Mickey [1980]. 

EXAMPI. E 6.3 Suppose that x = (xl, x2)' is a pair of independent Bernoulli 
variables each taking the value 1 or 0. Let x, -- 1 with probability p l , ,  and 
xJ = 0 with probability 1 - p,,, i f  x comes from G, ( i ,  j = 1,2). We will show 
that the optinial classification rule leads to a linear discriminant function. 

Now 

and 

where 

(6.14) 
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The rule is as follows: Assign to G, if rB, + plxl + P2x2 > 10g(n2/n1), where 
the fi, are functions of the four parameters p i j .  

The generalization to a d-dimensional vector x of independent Bernouilli 
variables is obvious. The rule is now the following: Assign to GI if 

(6.15) Po + f i l x l  + * * + P d X d  ' 10g(n2/s1), 
where the /3, are functions of 2d parameters p i j  ( i  = 1,2; j = 1,2,. . . , d ) .  

b LIKELIHOOD RATIO METHOD 

When n, is unknown, an intuitive rule is to choose Gj that maximizes the 
likelihood function for the sample x. This leads to the following rule: Assign to 
G ,  if &(x)/j2(x) > 1, and this is a special case of the previous rule with 
n1 = n2 = f. 

C MINIMIZE TOTAL COST OF MISCLASSIFICATION 

Let C(2)l) and C(112) be the costs of misclassifying a member of GI and G2, 
respectively. Then, from (6.2), the total expected cost of misclassification is 

c, = C(2(1)P(2~l)n1 + C(1(2)P(1(2)n2. 

The rule (6.4) depends only on Lemma 6.1 and not on'the condition n, + n2 = 
1. Hence, replacing ni by C(j l i )ni ,  it follows that C,  is minimized when R ,  is 
chosen so that C(l12)n2f2(x) < C(211)a,fl(x). Our rule now becomes as 
follows: Assign to G, if 

This rule reduces to (6.4) if the costs are equal. 
The above problem is a special case of general decision theory and the 

above procedure is in fact a Bayes procedure (see Anderson [1958: Chapter 61 
for a helpful discussion). It is sometimes called the optimal Bayes procedure, as 
it minimizes C,. 

d MAXIMIZE THE POSTERIOR PROBABILITY 

Suppose for the moment that x is a discrete random vector. Then, by Bayes' 
theorem, the posterior probability of Gi is 

qi(xo) = pr[x E G,)x = xo] 

- - pr[x = xo(x  E Gi]pr[x E Gi] 

pr[x = xolx E Gj]pr[x E G,] 
2 

j -  1 

(6.16) 
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If x is continuous. then we have the approximation 

Using this approxiniation and letting dx, -+ 0, we see, intuitively, that (6.16) 
will still hold so that (6.16) is the posterior probability for G,, x discrete or 
continuous. 

A reasonable classification criterion would be to assign x to the group with 
the larger posterior probability, that is, assign x to C, if 

which is the same ~S/~(X)/~~(X) > 7r2/7r1. 

e MINIMAX AI LOCATION 

A rule that minimizes the total probability of nlisclassification may not do so 
well for an individual group. This is particularly the case if one of the T, is 
small, as in the detection of a rare disease. To avoid a possible “imbalance” we 
can use a so-called minimax rule that allocates x so as to minimize the 
maximuni individual probability of misclassification, that is, which nliiiimizes 
the greater of P(l(2) and P(211). Now, for 0 5 a I 1, 

max{l’(ll2), P(211)) 2 (1 - a)P(211) + aP(1(2), (6.18) 

and, by (6.4), the right-hand side of (6.18) is minimized when R, =- R,,  = {x :  
fi(x)/f2(x) > a / ( l  - a) = c ) .  If we choose c (ix., a = a,, say) so that the 
rnisclassification probabilities for R,, are equal, namely, Po(l 12) = P,(21 I),  
then 

(1 - a , )P(211)  + a,P(112) 2 (1 - a,)P,(2)1) + a,P0(I 12) 

= (1 -. a, -1- a0)P0(211) 

and, from (6.18), 

The minimax rule is therefore the following: Assign x to G, if f,(x)/f2(x) > c. 
where c satisfies P,(112) = P,(2( 1). 
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EXAMPLE 6.4 If the two distributions are normal with common covariance 
matrix (see Example 6.1), then the minimax procedure is as follows: Assign to 
G, if 

D(x) > log c, 

where D(x) is given by (6.6), and [see (6.10) and (6.11)] 

The above equation has solution log c = 0 or c = 1, so that the minimax rule is 
the same as the likelihood ratio method. Both procedures do not require 
knowledge of r,. 

f SUMMARY 

In general, all the rules except the minimax rule are equivalent to (6.4), so that, 
initially, we shall adopt this method. However, the method of maximizing the 
posterior probability, although equivalent to (6.4), is more common in the 
literature for two reasons: It generalizes more naturally to the case of more 
than two groups, and it provides a good framework for the logistic discrimina- 
tion method discussed in Section 6.4. 

6 . 3  
PARAMETERS 

TWO GROUPS: KNOWN DISTRIBUTIONS WITH UNKNOWN 

63.1 General Methoh 

It is now convenient to use the notationI;(xlOi) instead of f,(x), where 0, is the 
vector of parameters for group Gi. In Section 6.2 we saw that when 0, is known, 
all the classification rules take the following form: Assign to G, if 
fi(xIOl)/f2(xl~) > c, for an appropriate value of c. However, if Oi is unknown 
and we have sample data (commonly called “ training” data) from each group, 
say, xI1, x12,. . . ,xln, from G, and x~,,x~~,. . . ,x from G2, then we can 2 %  
replace O = (O;, g)’ by 8 = b(z), an efficient estimate of 8 (such as the maxi- 
mum likelihood estimate) based on the sample data z = (xi,,. . . ,xin,, 
x;~,. . . ,xin2)’. The optimal region R, is now estimated by R, = (Aol, ko2)’, 
where A,, = (x: fl(x(61)/f2(x)h) > c}. We would like A,, to be close to RO1, 
and this will be the case for sufficiently large samples. As a rule of thumb, 
Lachenbruch and Goldstein [1979] suggest that ni should exceed three times 
the number of parameters in 8,: This number is adequate for groups that are 
“well separated,” but can be increased for groups that are close together. 

In assessing a given allocation rule, there are various associated error 
probabilities, usually called error rates, that need to be considered (see 
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Hills [1966j for a theoretical treatment). We use Lachenbruch’s [1975a: p. 301 
definitions: 

(1) The optimum error rates 

and [see (6.2)] 

= P(R,,,f). 

(2) The actual error rates 

(6.19) 

(6.20) 

(6.21) 

and 

If a large number o f  observations are classified using the partition R,, thcn 
about l(lOea,~l% will be misclassified. We note that P , , ~ ,  I e,,,, by the definition 
o f  eopt. 

(3) The expected actual error rates E[e,,,,,] and 

We also have the following intuitive estimates: 
(1) The plug-in estimates 

and 
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obtained by using the estimates of the unknown parameters in fl and 
f,. Some authors call these estimates the apparent error rates (e.g., Hills 
[1966], Glick [1973], Goldstein and Dillon [1978]). 

(2) The apparent error rates 

where mi of the ni observations from group Gi are incorrectly classified 
by the assignment rule. If sl and 772 are unknown, and the n = n1 + n2 
observations are a random sample from the combined group popula- 
tion 9, we have the intuitive estimates +i = ni/(nl + n,) and 

Papp = +lel ,app + +2e2,app 

(6.27) 

This estimate is also called the (overall) apparent error rate by some 
authors, and the resubstitution method by others, for example, Hab- 
bema and Hermans [1977]. It is used, for example, in the SPSS and 
BMDO7M programs. 

(3) The leaving-one-out or cross-validation method proposed by Lachen- 
bruch and Mickey [1968]. This technique consists of determining the 
allocation rule using the sample data minus one observation, and then 
using the rule to classify the omitted observation. Doing this for each 
of the ni  observations from Gi gives 

(6.28) 

the proportion from G, that are misclassified. We can then define 

e, = V I ,  c + 772e2, C' (6.29) 

which can be estimated, as in (6.27), by 

a 1  + a 2  2 =- 
n 1 + n 2 '  (6.30) 

Because the omission of one observation forms the basis of jackknifing, 
the above estimates are sometimes incorrectly called jackknife esti- 
mates. 
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(4) The bootstrap estimate proposed by Efron [1979, 19811 (see also 
McLachlan [1980a]). As e,,app is biased, Efron suggested estimating its 
bias using a so-called “bootstrap” technique. In this technique a new 
sample of size t i ,  ( i  = 1,2) is taken with replacement from the original 
sample of n I  observations. The new sample is not just a random 
permutation of the original sample as sampling is now with replace- 
ment. From these two new samples we obtain a new classification rule 
using the same method as before. Suppose that in: of the new sampIe 
and m:* of the oiiginal sample are misclassified by the new rule, and 
let d,  = (m:* - m : ) / n , .  Then E[d,] is approximated by d,,  obtained 
by averaging d,  over a large number of repeated realizations (say, 100) 
of new samples. The bootstrap estimates are then defined as [see (6.2611 

e,,bm = ( m , / n , )  + 4 (6.31) 

and 

ebwt = *lel,boot -‘ *2e2,b001- (6.32) 

It appears that the estimate of the bias of e,,app, d,, has good efficiency 
for the important case of groups that are close together (McLachlan 
[ 1980al). 

The plug-in estimate 2,,, not only relies heavily on the correct specification 
of thef,, but it also ha5 poor small-sample properties. Setting r , ( x )  = f , ( x l O , > q ,  
Hills [1966] proves the following lemma for the rule based on 

= { x :  q ( x )  > r 2 ( x ) }  

= (x: r l ( x )  = max r, (x)j  
1 5 1 5 2  

(see also Cilick [1972: p. 1181, though he uses nonerror rates rather than error 
rates). 

LEMMA 6.2 Let i t ( x )  == f , (xl8,)~,  be a pointwise unbiased estimate of r,(x), 
that is, Ee[ i , (x ) ]  = r , (x)  for almost all x .  Then, referring to (6.22) and (6.25), 
we have 

(6.33) 

Proof If i ( x )  = max,,,,, F,(x), then A,, = {x : P(x) = 3 , ( x ) }  and A,, = R -- 
A,, = ( x  : i ( x )  = i 2 ( x ) } .  Since the expected value of the maximum of several 
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random variables is not less than the maximum of the expected values, we have 

Ee[i(x)] 2 max Eb[$(x)] 
l s i i 2  

= max ri(x) 
l s i 1 2  

= +), 

(6.34) 

(6.35) 

say. Now 

= (REB [ i (x)]  dx  (by Fubini’s theorem) 

= rl(x) d x  + J r2(x) dx 
01 R 02 

= n, + T~ - eopt 

= 1 - eWt. 

Hence E[t,,] I eopt. Also eopt -= eact (with probability 1, since, in general, 
4 Z 0), so that eopt < Ee[eac.] = Qe,,]. 

COROLLARY The above lemma still holds if Pi (x) = fi (x I $) +, and E [ ii (x)] 
2 q(x). The main change in the proof occurs in (6.34) where = is replaced by 
2 .  0 
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We note that with a suitable estimate el, I , (x lb l )  will be an asymptotically 
unbiased estimate of f,(xl0,) so that Lermna 6.2 will generally hold for large 
samples. I f  &, is asymptotically unbiased, then the Corollary of Lenuna 6.2 will 
also hold asymptotically. We can therefore expect to be an underestimate 
of eac, (and of E[ex,]), and the evidence indicates that the bias can be severe; 
eact is therefore unsatisfactory. {Jnfortunately, e,,,,, and eapp also tend to be 
underestimates (see McLachlan [1976]), though they do have the advantage of 
being easy to calculate and do not require iiny distrihutional assumptions. In 
general, they should be used only when n1 and n2 are reasonably large: 
Lachenbruch (personal communication) recommends that n ,  exceed twice the 
number of parameters in 0,. llor smaller samples, el*‘ and are preferred. 
as they are both almost unbiased estimates of e,,,,,. Although its vanance is 
large, el has been popular in the literature. particularly as convenicnt comput- 
ing formulas are available for normal distributions (sec Exercise 6.6). However, 
Efron [1979] demonstrated in the normal case that el,,,, can have a standard 
deviation one-third that of e l , ,  ; further coniparnsons by McLachlan [1980a] 
indicate that in the nornial case has a good efficiency compared with an 
efficient parametric estiiiiate when the groups are close together. Additional 
references on the general subject of error estimation are given in the reviews of 
Toussaint [1974], Lachenbrucli [1975a], and (3lick [1978]. 

Instead of estimating ((x10,) by fi(xl$), where 0, = fi,(z) IS an estirnrzte 
based on the sample data, an alternative approach calied the predictrue method 
is to use 

(6.36) 

Here g, can be regarded as either some weighting function based on the sample 
data or a full Bayesian posterior density function for 0, based on the prior 
density ~ ~ ~ ( 0 , )  and the data z, that is, 

The expression (6.36) arises in Bayesian statistical prediction theory as the 
predictive density for a “future” observation from GI as assessed on the basis 
of the data I, (see Aitchison el al. I19771 for references). 

Aitchison and Kay [1975] introduced the useful concept of the atypicality 
index (see also Aitchison et al. [1977] and Moran and Murphy [1979] for 
further comments). I f f  is the cstimated or predictive density, an observation y 
is said to be more typical of group i than x if l ( y )  i ( x ) .  The atypicality 
index of x with regard to group i is then defined as 

(6.37) 



6.3 Two Groups: Known Distributions with Unknown Parameters 293 

where S is the set of all y more typical than x. Atypicality indices are more 
readily calculated for discrete data: The integral in (6.37) is then replaced by a 
sum (Aitchison and Aitken [1976]). If Il(x) and 12(x) are both near 1, x may be 
an outlier and not belong to either G, or GZ. 

6.3.2 Normal Populations 

a LINEAR DISCRIMINANT FUNCTION 

Suppose that f,(xle,) is the density function for N&, i;), where 2, = X, 
( = C), and let xil, x i 2 , .  . . , xin, be a random sample from Gi (i = 1,2). We can 
estimate pi by a; .  = X,x ;Jni and X by the pooled estimator 

Q P  (6.38) (n1 - 1)S, + ( n 2  - 1)SZ = sp = 
n1 + nz - 2 n , + n Z - 2 ’  

where 
“ I  

s; = c (x;, - X i . ) ( X i j  - X i . ) ’ &  - 1). 
j - 1  

Referring to (6.6), our estimated rule is as folIows. Assign to G,  if 

D,(X) ’ log(rJq) (= loge), (6.39) 
where 

DJX) = k[x - +(XI.+ a, . ) ]  

= (a1.-  Tt,.)’S,-“X - +(El.+ n,.)], 

and 

i = S,-1(X1.- E,.). 

We shall call D,(x) the linear discriminant function (LDF), the sample estimate 
of D ( x )  in (6.6). Although it is traditional to use Sp, we could also use 
Q p / ( n ,  + n2), the maximum likelihood estimator of the common dispersion 
matrix 2. Di Pill0 [1976, 1977, 19791 proposed Sp + kI,, a ridge-type estima- 
tor, instead of Sp as the former can lead to a smaller eact. Other ridge-type 
adjustments have been suggested by Campbell [1980a]. If we have a random 
sample of size n (= nl + n,) from the combined groups, so-called mixture 
sampling, then the n; are random and 7i, = n,/n is the maximum likelihood 
estimate of n,. 

If nl = nz, (6.39) reduces to the sample equivalent of (6.12), namely, assign 
x to G, if 

kx > $(knl.+ ksz,.). (6.4) 
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This method was first proposed by Fisher [1936j, who used it to cliassify two 
species of iris on the basis of four measurements: sepal length, sepal width, 
petal length, and petal width. As the classification works very well, the iris data 
have been quoted by many authors. However, it turns out that a single 
measurement, petal length, does just as well. Also, the assumption 2, -- Z, is 
violated. 

Using the rule (6.391, we have from Exercise 6.7 that 

eacc n1@({lOgC - D ~ ( P ~ ) ) / o )  + ~ 2 @ ( {  -1OgC 4- D~ (Y~) ) /O) ,  (6.41) 

where CP is the distribution lunction for N,(O, l), and u = (kZX)’/’. Replacing 
p, and X by their estimates leads to (see Exercise 6.7) 

Cact = nlcP((lOg~ -- $D2}/D) + ~ 2 c P ( (  - - l O g C  - $ D 2 } > / D ) ,  (6.42) 

where D is the positive square root of 

D 2  = kS P X 3 (El.- k2,)’SP-’(E1.- j i 2 . ) ,  (6.43) 

the well-known Mahalanobis “D-squared” measure of distance between two 
samples. However, we have already noted that SaCt is not a good estimator of 
eat,. The general estimators edDP and e, meiitioned above [(6.26) and (6.29)] can 
be improved upon when the data are normal (Lachenbruch [1975a: Chapter 21, 
McLachlan [1976,1980a], Schervish [19Sl]). For example, using D instead of D 
in (6.42), where 

- n + n  - d - 3  
D 2 .  D2 = -1-L 

n, + n2 -- 2 

gives a better estimate of eact than e,. Also? McLachlan [I9761 gave a formula 
for the asymptotic bias of e,,app that can be used to improve on el.,,,,. 
However, these methods are appropriate for normal data only. We note that 
some packages, for example, SPSS and BMD07M, calculate plug-in estimates 
of the posterior probabilities, namely [see (6.16)], 

for the sample data. 
Campbell [I9781 considers the problem of detecting outliers in the sample 

data. If D 2 . ,  is the value of D 2  calculated from the data but with observation 
m omitted, then Campbell suggests a Q-Q plot of the values of U 2  -- 05, for 
each group versus the quantiles of a gamma distribution with unknown shape 
parameter (see Appendix C4). Campbell also suggests a similar plot using kX 
instead of D2. 
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A sequential method of discrimination based on the LDF is discussed by 
Srivastava [1973]. 

EXAMPLE 6.5 In Table 6.1 we have four measurements on two species of 
flea beetles, namely, 

x1 = the distance of the transverse groove from the posterior border of the 
prothorax (in microns), 

xt  = the length of the elytra (in 0.01 mm), 

x j  = the length of the second antennal joint (in microns), 

x4 = the length of the third antennal joint (in microns). 

Measurements were made on 19 specimens of male Hu/?jcu oleruceu L. and on 

TABLE 6.1 Four Measurements on Samples of Two Species of Flea-Beetles 

Haltica oleracea 

NO. X I  ~2 x3 xq 

1 189 
2 192 
3 217 
4 221 
5 171 
6 192 
7 213 
8 192 
9 170 

10 201 
11 195 
12 205 
13 180 
14 192 
15 200 
16 192 
17 200 
18 181 
19 192 

245 
260 
276 
299 
239 
262 
278 
255 
244 
276 
242 
263 
252 
283 
294 
277 
287 
255 
287 

137 
132 
141 
142 
128 
147 
136 
128 
128 
146 
128 
147 
121 
138 
138 
150 
136 
146 
141 

163 
21 7 
192 
213 
158 
173 
201 
185 
192 
186 
192 
192 
167 
183 
188 
177 
173 
183 
198 

1 181 
2 158 
3 184 
4 171 
5 181 
6 181 
7 177 
8 198 
9 180 

10 177 
11 176 
12 192 
13 176 
14 169 
15 164 
16 181 
17 192 
18 181 
19 175 
20 197 

305 
237 
300 
213 
297 
308 
301 
308 
286 
299 
317 
312 
285 
287 
265 
308 
276 
278 
271 
303 

184 
133 
166 
162 
163 
160 
166 
141 
146 
171 
166 
166 
141 
162 
147 
157 
154 
149 
140 
170 

209 
188 
231 
213 
224 
223 
221 
197 
214 
192 
21 3 
209 
200 
214 
192 
204 
209 
235 
192 
205 

Haltica carduorum 

No. x1 x 2  x 3  x4 

“Reproduced from A. A. Lubischew (1962). “On the use of discriminant functions 
in taxonomy.” Biometrics, 18, 455-477, Table 2. With permission from The 
Biometric Society. 



296 Discriminant Atralysis 

20 specimens of male Halricu curduomm Guer. Rounding off to two decimal 
places for ease of presentation, we obtain the two sample means 

/ 194.47 \ / 179.55 

\ 185.95 1 \ 209.25 

and the respective sample dispersion matrices are 

s, = 

and 

s, = 

187.60 176.86 48.37 11: 
- 345.39 75.98 118.78 
.- ._ 66.36 16.24 

- -- 239.94 I 

101.84 128.06 36.99 32.59 
- 389.01 165.36 04.37 

- 177.88 
-- - 
- - 

It seems reasonable to pool S, and S, and obtain 

( n ,  -- 1)S1 + ( n 2  - 1)S* 
n ,  + n ,  - 2 

s = 
P 

143.56 151.80 42.53 71.99 
- 367.79 121.813 106.24 

- -. 208.07 
__ - 
__ 

Then 

- f ( R , . -  R2,)'s;yJz,.+ R2,) = -$(X;.s;%,.- q.sp 1 R 2 . )  

= 15.805, 

and ?,(x) of (6.39) is given by 

D,(x) = 15.805 + 0 . 3 4 5 ~ ~  - 0.130~2 --- 0 . 1 0 6 ~ ~  - 0 . 1 4 3 ~ ~ .  
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-10 4 b b I0 rS 
Discriminant score 

Fig. 6.2 LDF scores for two species of flea beetles, H .  carduorum (+) and H .  oleracea 0). 

Assuming n1 = n2, we assign x to H. oleracea if D,(x) > 0. Applying this rule 
to the data in Table 6.1, we find that only one observation, namely, number 8 
in group 2, is classified incorrectly. Values of D,(x) are plotted in Fig. 6.2. We 
conclude that the four variables chosen seem to provide an adequate LDF for 
classifying a flea beetle from one of the two species. 

b QUADRATIC DISCRIMINANT FUNCTION 

When 2, # X,, a quadratic discriminant is appropriate. Replacing pi by Ei .  
and Xi by Si in (6.13) gives us the sample estimate 

Q,(x) = +log( E) - )(x - Rl.)’S;*(x - Zl.) + +(x - X2.)’!3;’(x - s Z 2 . ) ,  

which we shall call the quadratic discriminant function (QDF). We note that 
quadratic discriminants can also arise from nonnormal distributions (e.g., 
Cooper [1963]). 

c ROBUSTNESS OF LDF AND QDF 
The classification rule (6.39) based on the LDF is derived on the basis of the 
following assumptions: (1) The distributions are normal; (2) 2, = 2,; and (3) 
the n ,  + n ,  sample observations are correctly classified. We might ask by how 
much does the rule depart from optimality when one or more of these 
assumptions no longer hold? One survey of this topic is given by Krzanowski 
[1977]. In relation to (l), Lachenbruch [1975a: Chapter 31 summarized the 
results of a number of studies on discrete data and concluded that “the general 
indications seem to be that the linear discriminant function performs fairly 
well on discrete data of various types.” This is supported by the example of 
Titterington et al. [1981]. However, Moore [1973] demonstrated that for binary 
data the LDF gives poor results for populations whose log likelihood under- 
goes a “reversal.” A reversal occurs when L(x)  = log[fl(x18,)/f2(x18,)], the 
true log likelihood, is not a monotonic function of x1 + x, + . ’ - + xd.  To 
illustrate this, suppose that the values (0,O) and (1,l) of any two binary 
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variables occur more frequently in one group (GJ, white the values of (0,l) 
and (1 ,O)  occur more frequently in the other (G2) .  For example, in the study of 
infant maturity we could define (Yerushalmy et al. [1965]) 

0 
x1 = { 1 

if birth weight is low, 
if birth weight is high, 

and 

0 
1 

if gestation length is short, 
if gestation length is long. x2 -- 

A baby would be classified as “normal” if it had low birth weight and short 
gestation, or high birth weight and long gestation; otheiwise the baby would be 
classified as “abnormal.” ’The optimal rule would be the following: Assign to 
GI if L ( x )  > c, and this would tend to assign babies correctly. However, for 
any linear rule Assign to G, if 

we have 

a ( l , l )  = a(0,1) + u(1,O) -- a(O,O), 

where u(xl, x2) is an abbreviation of u ( x , ,  xz,. . . , x d ) .  Hence 

(6.45) 

implies that 

a ( ~ , o )  < min{ u(O, I ) ,  a ( 1 , O ) )  (6.46) 

If (1,l) is assigned to Gi,  and both (0,l) and (1,Ot assigned to G,, then 
n(l.1) > c, min( u(0, l), a(l.0)) < c, and a(0,O) < c. Thus (0,O) cannot be 
assigned to G,. The essence of the problem is that we are trying to use a linear 
function u(x)  that is essenlially a monotonically increasing function of x1 + x,,. 
to approximate L(x), which is not monotonic. 

One reason for the breakdown of the LDF in the above example is that x I  
and x2 art; positively correlated in G,, but negatively correlated in G,, so that 
the assumption of e q u a l  dispersion matrices IS violated. However, Moore 
119731 showed that reversals can occur even when there are moderate positive 
correlations between the variables. Dillon and Goldstein [19781/ extended 
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Moore’s study and again demonstrated the poor performance of the LDF 
because of reversals when there are large positive correlations, even when the 
dispersion matrices are equal. Krzanowski [1977] considered the case of a 
mixture of binary and normal random variables and showed that the LDF 
performs poorly if there is a moderate positive correlation among all the binary 
variables or the correlations between the discrete and continuous variables 
differ markedly for the two groups. 

When we turn to continuous data, limited studies (e.g., Lachenbruch et al. 
[1973], Crawley [1979], Chinganda and Subrahmaniam [1979]) indicate that the 
LDF is not robust to nonnormal distributions like the very skew lognormal: 
There are large total error rates and individual actual error rates are widely 
different. However, a small amount of skewness can be tolerated (Sub- 
rahmaniam and Chinganda [1978]), and the LDF seems to be moderately 
robust to longer-tailed symmetric distributions and mixtures of normals 
(Ashikaga and Chang [198l]). 

When Z, # Z,, we saw above that the optimal rule is quadratic rather than 
linear. Although the QDF may tolerate mild nonnormality (Clarke et al. 
[1979]), it is unsatisfactory for binary data (see Moore [1973: p. 4031). Since the 
LDF still might be satisfactory for small departures from Z1 = Xz, Marks and 
Dunn [1974] compared the asymptotic and small-sample performance of the 
QDF, LDF, and the “best” linear discriminant function for normal data under 
both proportional and nonproportional differences in the Xi. Their study, 
which extends that of Gilbert [1969], showed that for small samples (say, 
n,, n, < 25), the QDF performs worse than a linear discriminant when 2, +i Z, 
and d is moderately large (d > 6). However, the performance of the QDF 
relative to the LDF improves as the covariance differences increase. This 
investigation was taken further by Wahl and Kronmal [1977], who compared 
performances for moderate to large sample sizes. The “best” linear discrimi- 
nant was omitted, as it offers little advantage in the situation when the LDF 
does better than the QDF and is not as good as the QDF when the covariance 
differences are greater. From the two studies it is clear that sample size is a 
critical factor in choosing between the LDF and QDF with normal data, and 
the following broad recommendations can be made: 

(1) For small covariance differences and small d (d 5 6) there is generally 
little to choose between the LDF and QDF. 

(2) For small samples (nl, n 2  < 25) and the covariance differences and/or 
d large, the LDF is preferred. However, when both covariance 
differences and d are large, the misclassification probabilities P( il j )  
may be too large for practical use. 

(3) For large covariance differences and d > 6, QDF is much better than 
LDF, provided that the samples sizes are sufficiently large. Recom- 
mended sample sizes are d = 4, n1 = n2 = 25, and 25 additional 
observations for every two dimensions, for example, d = 6, 8, 10 and 
n1 = n 2  = 50, 75,100. For more than 100 observations the asymptotic 
results, which favor the QDF, are reached fairly quickly. 
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The deterioration of the QI>F a5 d increases is also supported by Van Ness 
[I9791 and is due to the fact that S, is not a reliable estimate of 25, when d 
becomes a moderate fraction of n,. The poor small-sample performance of khe 
QDF, even when 2, # C,, is also supported by the simulation studies of 
Aitchison et al. (1977: p. 231 and Remme et al. [1980]. In summary, we 
conclude that for normal data the LDF performs satisfactorily, provided that 
the dispersion matrices are not too different; and the QDF is very poor for 
small samples, but is satisfactory for large covariance differences, provided that 
the samples are large enough. 

Other departures froni the assumptions of normality and 2, -5 2, have been 
studied from B contamination viewpoint. A change partway through an investi- 
gation can lead to a shift in the mean (location contamination) or il change in 
the covariance structure (scale contamination) for a portion of ihe sampled 
observations. Some effects of scale contamination have been studied by Ahmed 
and Lachenbruch [1975, 19771, who showed that a large-sample LDF is little 
affected by mild scale contamination, particularly if = T,. Rrofit et al. 
I19811 showed that Itmtion contamination had little effect on the LDF. 
However, it would seem preferable to use robust estimates of p, ( I  = 1,2)  and 
Z in the calculation of the LBF if there is likely to be contamination or 
outliers. Such an LDF seems to perform as well as the usual LDF when there is 
no contamination. Rrofiitt et al. [I9801 considered using robust estimators for 
the QDF to try and mitigate some of the effects of nonnorniality on the QUF; 
however, they found that any gains were not suficient to warrant the extra 
coniputational effort. A ridge regression approach using a biased estiniare 
S t- kI,, of Z instead of S has been suggested by DI PiIlo [1976] to help offset 
the increase in error rates through using estimates rather than true parameters 
values. 

The assumption that the initial samples are correctly classified may not 
always hold, and the effects of initially misclassifying a portion of the samples 
on the LDF and QDF have been studied by McLachlan [1972] and Lachenbruch 
[1966, 1974, 19791. It transpires that if the initial misclassification rates for the 
two samples are about the same and all the other assumptions are satisfied, 
then the niisclassification probabilities P( i l1 )  for the LDF are litile aflected, 
irrespective of whether the initial misclassification is random or nonrandom. 
Unfortunately the individual apparent error rates el,app are grossly distorted 
and totally unreliable for any sample sizes. The situation with regard to the 
QDF is even worse, as the P( i l1 )  are adversely affected even if the sample 
misclassification rates are about the same. The effect appears to get worse with 
increasing covariance di tlerences and increasing initial misciassification rates. 
For this reason Lachenbruch [ 19791 recommends that if initial misclassification 
is suspected, then all the sample observations should be carefully checked and 
reassigned if necessary. 

d MISSlNG VALUES 

In a regression model with nussing response (1’) values, the usual methods for 
estimating these values {see Seber [1977: Section 10.21) are equivalent to 
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“predicting” the missing values on the basis of the complete data. A similar 
approach can be used for handling missing xj  values in discriminant analysis. 
For example, Chan and Dunn [1974] compared a number of procedures for 
estimating missing values, including a method D in which each xi is treated as 
a response and the resulting regression on the other x ’ s  (regressors) using 
complete data only is used to estimate (predict) any missing values of xi. Chan 
et al. [1976] also compared several methods and recommended a modification 
of D, called D*, in which one uses regressor data with all the gaps filled by 
substituting sample means. As these methods do not produce consistent 
estimates of the LDF coefficients, Little [1978] considered two further con- 
sistent modifications that he called D, and D2 : D, uses a consistent estimator 
of X, and D2 is an iterative procedure which gives maximum likelihood 
estimators under normality assumptions. 

e PREDICTIVE DISCRIMINANT 

Using the predictive density function hi(xlz) of (6.36) instead of the plug-in 
estimatefi(xI$), we have the following allocation rule: Assign to G, if 

(6.47) 

If 2, # 2, and vi = ni - 1, then using the conventional “improper” or “ vague” 
prior for 9, the vector of the distinct elements of pl, p,, 2c1, and X;’, leads to 
(Aitchison et al. [1977]) 

hi(XJ2) = T,(X, Y i J % 1 . ,  (1 + n;’)sJ, (6.48) 
where 

(6.49) 

is the density function of a d-dimensional Student’s distribution with v degrees 
of freedom. Substituting (6.48) in (6.47) leads to a ratio that we shall call the 
PU- the predictive discriminant for unequal dispersion matrices. 

- (v+1)/2 
X [l +(x - b)’(vC)-’(x - b)] 

If 2, = 2, = Z, the corresponding predictive density is 

h,(x(z) = T,(X, v&., (1 + ny’}sp), 
where v = n, + n 2  - 2 and Sp is given by (6.38). The rule (6.47) now takes the 
form 

1 + [ n 2 / ( n 2  + I)](x - E,.)’Qi’(x - x 2 . )  

1 +[.I/(., + l)](x - %,.)’Q,’(x - 11.) 
R ( x )  = 

(6.50) 
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and we shall call the ratio R(x) the PE-- the predictive discriminant for equal 
dispersion matrices. Ai tchison et al. [1977] gave an example demonstrating that 
the plug-in (estimative) and predictive rules have very different properties arid 
compared the two rules by considering how close l o g [ / , ( ~ ~ ~ ~ ) / f i ( x ~ ~ ) ]  and 
log[ h,(x  Iz)/h 2(x lz)] are to LO(true) = log[ fi (x 10,)/j2(x (6, )], the so-called 
true log-odds. They concluded from theoretical considerations using the Kull- 
back and Liebler [1951] information measure, and a simulation study using 
small samples (n,, 11, 5 ’LO, d s 9), that the predictive method gave a closer 
estimate. More specifically, if 2, f X,, the PU is moderately superior to the 
LDF and only slightly better than the PE; while if Z, = Z,, the PE is by far 
the best and the PU and LDF are comparable. In both the cases the QDF is 
decidely the worst; the poor small-sample properties of the QDF have already 
been mentioned above We note that for large samples the estimative and 
predictive rules are equivalent, as the multivariate Student’s distribution tends 
to the MVN (see Exercise 6.9). Further evidcnce in favor of the PE is gven b y  
McLachlan [1979]. 

However, Moran and Murphy [1979] pointed out that the LDF and QDF 
are primarily associated with allocation rules rather than with the estimation of 
log-odds. They argue that it is not appropriate to use these discriminant 
functions as representative of the frequerttist approach to the estimation of 
log-odds without at least introducing adjustments for bias. When this is done, 
the performance of the estimative (plug-in) methods is much closer to that of 
the predictive. The unbiased LDF (Exercise 6.10) can be expressed in the form 

(6.51) 

where Q,,(x) = (x - 2 ,  )’SP-’(x - Z,.). This may be compared with 

L D €  3 { Q 2 2 ( ~ )  - Q,,(x)). (6.57) 

We assign x to GI if the value of the discriminant function exceeds logc. if 
n ,  = 11, and c = 1, then, using the ULDF, we assign x to G‘, if Qll(x) < Q L 2 ( x ) ,  
that is, if 

which is the same as K(x) > 1 in (6.50). I n  this case the correction for bias is 
unnecessary, as the ULDF, LDF, and PE alltxation rules are all identical. 

Moran and Murphy [1979] suggested an alternative “Erequentist” approach 
baszd on a generalized likelihood ratio test discussed by Anderson [1958: p. 
1411. If we assume that x - N d ( p ,  X) and the x,, ( j  = 1.2,. . . , n l )  are i.i.d. 
N,Jp,, X I ) ,  then the likelihood ratio statistic for testing H , : ( p ,  2) = (pl ,  2,) 
versus I I ,  : (p,  2 )  = (p2, 2, )  can be used as a discriminant function. Whrm 
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2, = 2,, the corresponding likelihood ratio rule is the following: Assign to G ,  
if R(x)  > ( T ~ / V , ) ~ ’ ( ” + ~ ) ,  which is of the same form as (6.50). If we ignore 
costs, then c = n2/75, and these two rules are almost the same when n, = n2, 
and identical if n, = n2 as well. When n, # n 2  and n, = n2, the likelihood ratio 
rule becomes Assign to G, if R(x) > I, that is, if 

The distribution of 2 has been studied by John [1960, 19631 and Memon and 
Okamoto [1971]. The latter authors obtained an asymptotic distribution for 2 
and good approximations for the individual actual error rates ei,act of (6.21) 
using a method similar to that used by Okamoto (19631 for the LDF. It 
transpires that Z has certain minimax properties (Das Gupta [1965]) with 
respect to the ei,act (see Section 6.2.2e) in contrast to the LDF that can have 
widely different error rates (Moran [1975]). Also, el,ac, + e2,act is smaller for 2 
than for the LDF over a wide range of values of dand A = ((pl - p2)’L1-’(p1 
- p2))ll2 (Siotani and Wang [1977: Table 4.21). 

The predictive estimate h,(x lz), derived using Bayesian methods, has also 
been derived using a non-Bayesian argument, so that the estimate can be given 
a frequency interpretation and miscIassification probabilities can be calculated 
(Han [1979]). However, all the theory in this section is very much tied to the 
normal distribution and robustness properties need investigation. 

6.3.3 Multivariate Discrefe Distributions 

a INDEPENDENT BINARY VARIABLES 

Consider Example 6.3 in Section 6.2.2, where x’ = ( x , ,  x , )  is a vector of 
independent binary variables, each taking the value 1 or 0, with pdx, = 11 = p i j  
when x E Gi ( i  = 1,2; j = 1,2). Then x’ takes the four values (1, l), (1,0), 
(0,l) and (0,O) with respective probabilities O(;), = p i l p i 2 ,  O(i)2 = pil(l - p i 2 ) ,  
B(i)3 = (1 - p j l ) p i 2 ,  and O(if4 = (1 - pjt)(l - pi2) .  Therefore, given x E Gi, x 
falls in the multinomial cell k with probability O(i)k (k = 1,2,3,4), and the 
probability function for x is 

(6.53) 

If an observation x to be classified falls into cellj, then the optimal rule (6.4) is 
Classify as G, if 

(6.54) 

The parameters 8(z1k have to be estimated from the sample data. Suppose, then, 
that we have a random sample of n observations from the population 8, and 
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of the R ,  that come from GI suppose that I I ( , ) ~  fall into cell k, that is, 
n, = Z k n ( r ) k .  Since 

pr[x in cell k and x E GI ]  = pr[x in cell klx E G,]pr[x E G I ]  

the likelihood function is 

2 

I =  I 
L (  { pI,,  T,}) = 11 { pr[n,,)k cell frequencies and data from GI] 1 

2 4  

(6.56) 

where the d( , )k  are replaced by their functions of the p! , .  Maxiniiz,ing (6.54) 
gives us the maximum likelihood estimates$,, { = proportion of n,  observations 
with x, = 1)  and ii, = n , / n  (see Exercise 6.11): These can be plugged into 
(6.54). 

Instead of using (6.54), we can, of course, use the LDF of (6.6) and rely on 
its robustness to discrete data and mild inequality of dispersion matrices. 
Moore (1973) showed that for his simulated data the actual error rates for the 
LDF and the above plug-in method, which he calls the first-order procedure, 
were very similar. The rule (6.54) can also be expressed in the form (6.14), 
namely, 

P” + P I X I  + i32% ’ log(fl2/7h)r (6.57) 

where the PJ are now estimated directly using the method of logistic discrimina- 
tion described in Section 6.4. A cross-validatory technique has also been 
proposed by Mabbett et al. [lSSO]. 

The above methods clearly extend to thc case of d independent binary 
variables. The numbers of parameters to be estimated for each of the methods 
are (excluding the T , ) :  2d probabilities p , ,  for the mdtinonua! approach, 2d 
+ $ d ( d  t 1) elements o l  pl,  p,, and X for the LDF, and d + 1 p’s for the 
logistic method. 

b CORRkIATkD BINARY VAR1ABL.E.S 

If x’ = (xl, x,), as in the exarriple above, but the x, are now correlated binary 
variables, then we can n o  longer express the as functions of the pIJ’s. For 
instance, eft,, f p ,1p12 ,  as r, and x 2  are not independent. However, the 
multinomial model (6.56) still applies and the maximum likelihood estimate of 



6.3 Two Groups: Known Distributions with Unknown Parameters 305 

O(r)k  is 
gives the simple rule Assign to G, if 

= n ( l ) k / n l ;  7;, is still n , / n .  Substituting these estimates in (6.54) 

‘(1)J ’ n ( Z ) J ‘  (6.58) 

The extension to a d-dimensional x is straightforward with 2d - 1 independent 
cell probabilities to be estimated for each group. 

Although, for rule (6.58), eact and E[Sac,] both converge rapidly to eopt ( eact 
in a probabilistic sense; see Glick [1973], who uses nonerror rather than error 
rates), the method is generally unsatisfactory, as very large samples are usually 
required to provide satisfactory estimates of all the cell probabilities. For 
example, if d = 10 then 2d - 1 = 1023 and, in practice, many of the cells 
would be empty or have few observations. We note, in passing, that Goldstein 
and Wolf [1977] give an expression for the “bias” E[8,,] - eopt [see (6.25)]. To 
overcome this problem of sparseness, the number of parameters must be 
reduced by imposing further constraints on the multinomial model. One 
method is to express f(x) in terms of the independent binary model and a 
multiplicative “adjustment” for dependence. For example, Bahadur [1961] 
based the adjustment factor on the correlation structure: The number of 
parameters is reduced by assuming various “higher-order’’ covariances to be 
zero. Two other adjustments, using orthogonal polynomials, were proposed by 
Martin and Bradley [1972] and Ott and Kronmal[1976]. Although each of the 
three methods has its own particular strengths (see Goldstein and Dillon [1978] 
for a discussion), none of the three allows for a satisfactory degree of “control” 
in the construction of models for the cell probabilities (Lachenbruch and 
Goldstein [1979]). A similar type of adjustment, but based on log8(,),, was 
proposed by Brunk and Pierce [1974] and analyzed using Bayesian methods. 
However, an alternative approach is to use the models described in Section 
10.2. For example, if d = 3, we can extend (10.28) to give 

logf(x) = logpr[X, = xl, X2 = x 2 ,  X3 = x 3 ]  

= u + U 1 ( l  - 2x1) + u,(l - 2x2) 

+ u 3 ( l  - 2x3) + u12(1 - 2x,)(1 - 2x , )  

+ u ~ ~ ( I  - 2x2)(1 - 2x3) + ~ ~ ~ ( 1  - 2x3)(1 - 2x,) 

+u123(1 - 2 ~ 1 ) ( 1  - 2 ~ 2 ) ( 1  - 2x3) 

= (U + ~1 + ~2 + ~3 + ~ 1 2  + ~ 2 3  + ~ 3 1  + ~ 1 2 3 )  

+ (-  2u1 - 2u12 - 2u3, - 2 ~ 1 2 3 ) ~ ~  

+ ’ * * + (4u12 f 4u12,)Xix2 + * ’ * + (-8u123)x1x23 
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If we can assume pi2 = 
same for both fl(x) and f 2 ( x ) ,  then 

=-- pil = = 0, or that these parameters are the 

where P, is the difference between the corresponding pi’s. For general d ,  the 
same linear model applies if sccond- and higher-order interactions are the sanie 
for both probability functionsJ,. The @, can be estimated using the methods of 
Section 6.4. 

Instead of trying to reduce the number of parameters, another approach to 
the sparseness problem is to use a nearest neighbor method (Section 6.5.2a) jri 

which fi(x) is estimated by the proportion of the n, observations with values 
close to OL’ equal to x. Ciardner and Barker [1975] give an interesting diagnostic 
example in which the simple allocation rule C,dClx, > c,  that is, assign to the 
“sick” group if the niinaber of positive symptoms exceeds a certain value, 
compares satisfactorily with more sophisticated methods. 

c CORKELATED DISCRE r E  VAIIIARLES 

Suppose x’ -1 ( xl, x2), where x1 and x2 are discrete random variables taking s1 
and s2 values, respectively. Then the rnultinomial model (6.56) still applies, 
except there are now sls2 cell probabilities instead of 4. The problem of 
sparseness is now even greater and all the methods above for reducing the 
number of parameters apply here. Of course, any discrete random variable C ~ I I  
be converted to a set of binary variables. For example, if y = 1,2 ,3 ,  we chn 
define 

Y = 1, 
otherwise, 

Y = 2, 
otherwise, 

(6.61) 

with x, = 0 and x2 = 0 corresponding to y = 3. However, this procedure is 
more appropriate for unordered categories, for example, married, never mar- 
ried, or previously married. Another method for comparing the two multi- 
nomial distributions, based on a measure of distance between two distribu- 
tions, has been proposed by Dillon and Goldstein [1578] (see Section 6 5 . 2 ~ ) .  

6.3.4 Multivariate Discrete - - Continuous Distributions 

Suppose x’ = (x(’)’, x‘~)’),  where x(’) is continuous and x(’) discrete. Even 
though most probleiiis in medical discriminations fall into this mixed category, 
it is surprising that ttus situation has received comparatively Little attention in 
the literature (see Krzanowski [1975, 19801, Tu and Han [1982] for references). 
However, Krzanowslu [1975, 1976, 19771 has developed a model that assumes 
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that x ( ~ )  is a d2-dimensional vector of binary random variables generating 
S = 2d2 states; and x(l) is a d,-dimensional MVN vector with mean p($) 
depending on the state s of x ( ~ )  (s = 1,2, .  . . , S) and constant dispersion matrix 
C. Then 

and the allocation rule is Assign to G, if 

(6.62) 

Since g is the density function for the MVN, the logarithm of (6.62) reduces to 
[see (6.5)] 

(x(,) belongs to states, s = 1 , 2 , .  . . , S ) ,  (6.63) 

Thus for each s there is a separate classification rule. However, very large data 
sets would be needed to estimate all the quantities p!’), /z~(x(~)), and 2. A zero 
frequency for state s would mean that py) could not be estimated without 
additional constraints on the model. Krzanowski [1975] suggested using a 
log-linear model like (6.60) to model the probability hi(x(*)), and a similar 
linear expression to model p:‘) in terms of main effects and first-order interac- 
tions, hgher-order interactions being assumed zero. For d = 2 we have, as in 
(6.59), 

where x(*) = (x i2) ,  x p ) ’  is in state s. Lachenbruch and Goldstein [1979] noted 
a number of extensions of the above procedure to discrete random variables 
taking more than two values, and to normal variables with unequal dispersion 
matrices. Krzanowski [1980] extended the model to the case of categorical 
(unordered multistate) variables with more than two states. He (Krzanowski 
[1979c]) also described some linear transformations of the data, analogous to 
those used in canonical correlation analysis, for simplifying the underlying 
correlation structure and reducing the number of variables. 

Another approach to the problem of mixed discrete and continuous data, 
which does not require normality assumptions, is the logistic model described 
below. 
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6.4  1WO GROUPS:  LOGISTIC DISCRIMINANT 

6.4. I General Model 

Since the classification rules deveioped in this chapter depend only on the ratio 
of the density functions, we can simply inodel the ratio without specifying the 
individual densities f ,  (x). The so-called logistic model assumes that 

log = a -t $’x, iz 1 (6.64) 

and the allocation rule of (6.4) becomes Assign to G1 if (Y + p’x > log(n,/n,), 
that is, i f  

a(, + p’x > 0, (6.65) 

where 

(Yo = (Y + log( nl/n*). (6.66) 

With this model the posterior probabilities of (6.1.6) lake the simple form 

and 

Hence 

(6.67) 

(6.68) 

This mocicl for the “posterior odds” was suggested by Cox [1966] and Day and 
Kerridge 119671 as a basis for discrinlination. There is a growing body of  
literature on logistic discrimination and this is reviewed by Lachenbruch 
[1975a] and Anderson [1982]. The discussion in this section is largely based on 
Anderson’s paper (see also Anderson and Blair [ 19821). 



6.4 Two Groups: Logistic Discriminant 309 

One advantage of the above logistic approach is that we only need to 
estimate the d + 1 parameters a,, and f3 from the sample data, without having 
to specify f. By contrast, the previous methods require not only the specifica- 
tion of f i ,  f,(xle,>, say, but also the estimation of many more unknown 
parameters fJi ( i  = 1,2). Another advantage is that the famiIy of distributions 
satisfying (6.64) is quite wide. These include the following: 

(1) MVN distributions with equal dispersion matrices. That is, from (6.6) 
we have 

a + B’x = - +X( y, + y,) + x x ,  (6.69) 

where X = 2- l (p1  - p2). 
(2) Multivariate independent dichotomous variables [see (6.14)]. 
(3) Multivariate discrete distributions following the log-linear model with 

the same interactions in each group [see (6.60)]. 
(4) Mixtures of (1) and (2) that are not necessarily independent. 
(5) Certain truncated versions of the above. 
(6) Versions of the above with x replaced by some vector function of x in 

(6.64). 

Finally, the logistic model is particularly useful fot handling diagnostic data 
(Dawid [1976]). 

6.4.2 Sampling Designs 

There are three common sampling designs that yield data suitable for estimat- 
ing B: (1) mixture sampling in which a sample of n = n,  + n ,  members is 
randomly selected from the total population 9 so that the ni are random (Day 
and Kerridge [1967]); (2) separate sampling in which for i = 1,2 a sample of 
fixed size n, is selected from G, (Anderson [1972], Prentice and Pyke [1979]); 
and (3) conditional sampling in which, for j  = 1,2,. . . ,m, n(x , )  members of 9 
are selected at random from all members of 9 with x = x j  (e.g., in bioassay 
where the two groups refer to “response” and “no response”). In all three 
cases we adopt the notation used for (3) and assume that the n observations 
take m different values x ,  ( j  = 1,2,. . . , m )  with frequency n,(x,)  in group G I .  

a CONDITIONAL SAMPLING 

Here n(x , )  = nl (x , )  + n2(x , )  is fixed and n, (x , )  is random. The likelihood 
function for this design is 

2 m  

i = l  j - 1  
(6.70) 
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From (6.67) we see that LC is a function of a" and 8 that can be maximized to 
obtain maximum likelihood estimates. 

b MIXTURE SAMPLING 

In this case n is fixed and the xI and n ( x , )  are now random variables. Let 
L(x,  G I )  = q f , ( x )  and 

f ( x >  = .*fib) + 4 ( x ) .  

Then the likelihood function is 

= L,.L. (6.71) 

Sincef,(x) is unspecified, no  assumptions are made about the form off(x), the 
density function for the above sampling scheme. We can therefore assume that 
/(x) contains no useful information about a0 and p. Even if we knew 
something about J l ( x ) ,  the extra information about a. and p in L would be 
small compared with that contained in L,. Therefore, as in conditional 
sampling, maximum likelihood estimates are again found by maximizing L,. 

In practice, we frequenily have m = t i ,  that is, a11 the observations are 
different and n,(x,)  is 0 or 1. 

C SEPARATE SAMPLING 

Separate sanipling is generally the most cornmon sampling situation and the 
likelihood function is 

(6.72) 

(6.73) 



6.4 Two Groups: Logistic Discriminant 311 

If rl and r2 are known, then this model is equivalent to (6.71). However, if rl 
and 7r2 are unknown, we proceed as follows (Anderson and Blair [1982]). We 
assume that x is discrete so that the values off may be taken as multinomial 
probabilities (Section 6.3.3). 

From (6.64) we have 

fi (4 = f 2  (x)exp( a + B ' 4  
and, from (6.72), 

(6.74) 

wherep, = f2 (x) .  The problem is to maximize L, subject to the constraints that 
f 2  and f l  are probability functions, namely, 

CPX = 1 
X 

and 

Cpxexp( a + S'x) = 1. 
X 

(6.75) 

(6.76) 

Using Lagrange multipliers, it can be shown that (Exercise 6.12) the answer is 
given by estimating p,  by 

n (4 
nlexp(a + S'X) + n 2  ' A = 

substituting jj, into Ls of (6.74), and then maximizing the resulting expression 

where 

2 m  

L; = n n { &(X,)} f l , ( x J ,  

1-1 j-1 
(6.77) 
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and 

&(x) = 1 - ql(x). 

We note that &(x) is the same as q l ( x )  of (6.67). except that a. == a t 
log(7rl/r2) is rcplaced by LT -t log(n,/n,). Hence, with a correct interpretation 
of ao, maxiniiz.ing L; is equivalent to maximizing I,,.. We have therefore 
reduced the problem of maximizing L, subject to (6.75) and (6.76) to maxi- 
mizing L, again. Prentice and Pyke 11979) claim that the restriction to discrete 
variables can be dropped, as the above estimates will still have satisfactory 
properties for continuous variables. However, Anderson and Blair [ 19821 show 
that for continuous variables the estimates are no longer technically maximum 
likelihood and suggest an alternative method called penalized maximum likeli- 
hood estimation. 

6.4.3 Computations 

We have shown above that the appropriate likelihood function for all three 
sampling schemes and discrete or continuous data is 

2 m  

1-1 j - 1  

where 

and 

The role of /lo is not the same for the three sampling schemes. In conditional 
and mixture sampling, @,, = a,, [ = (Y + I O ~ ( ~ ~ / T ~ ) ] ,  However. in separate 
sampling, /lo = (Y i- log(n,/n :) = a. + log(.(n,n,/n,n,) and a. cannot be 
estimated from the estimate of Po unless n, and 'rz are known or have 
independent estimates. 

Now 
2 nt 

1% L,  = c x n ,  (x, )log 4, (x, 1 
4-1 J " 1  
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and the maximum likelihood equations are 

( k  = 0,1, ..., d ) ,  

where xjk is the kth element of xi (xi0 = 1). We also have 

= a k l ,  (6.79) 

say. Day and Kerridge [1967] and Anderson [1972) originally suggested using 
the Newton-Raphson procedure for maximizing L,, though the procedure 
may not converge (Jones [1975]). However, Anderson [1982] noted that the 
quasi-Newton methods (see Gill and Murray [1972]) have desirable properties 
with regard to starting values, speed of convergence, and, given sufficient 
iterations (tentatively, no less than d + l), asymptotic variance estimation. The 
starting values Po = 0 and 6 = 0 proposed by Anderson [1972] work well in 
practice, and convergence to the maximum is rapid as L, has a unique 
maximum for finite B, except under two easily recognized circumstances 
(Albert [1978], Anderson [1982]): (1) complete separation in which all the 
sample points from G ,  and G, lie on opposite sides, respectively, of a 
hyperplane and (2) zero marginal proportions occurring with discrete data. If 
there is complete separation, suppose that the m sample values are labeled so 
that x l ,  x , , .  . . , xml  belong to G ,  and x m l + l ,  . . . , x m  belong to G,. Now a family 
of parallel hyperplanes perpendicular to the unit vector y can be represented 
by y 'x  = c, where c, the perpendicular distance from the origin to a plane, 
varies. With complete separation we can find a separating hyperplane h(x)  = 

y'x - c,, = 0 such that all the points from GI lie on one side [ h ( x , )  > 0, j = 

1,2, .  . . ,mlJ  and all the points from G2 lie on the other side [h (x , )  < 0, j = ml 
+ 1,. . . ,mJ. Taking Po = -kco and = k y  in (6.78), we have 

m 
= n { 1 i- exp[ - kh(xj)] ) -n l (x , )  fi (1 + exp[ kh(Xi) ]  } -n2(X,) 

j =  1 ;=m,  + 1 

+ l ,  a s k - + c o .  (6 30)  

There are other limiting values of and p that give the same upper bound of 1 
for L,, so that L, does not have its maximum at a unique point. Although this 
nonunique solution indicates that B,, and p cannot be estimated with much 
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precision, Anderson [1972] rioted that any separating hyperplane should give a 
reasonably good discrimination rule, particularly if the n ,  are large, since all 
the gven sample observations are correctly allocated. Fortunately, as noted by 
Day and Kerridge [1967: p. 3201, the iterative procedures described above for 
maximizing L, must at some stage produce a solution Po"', p f r '  such that 
g,(x) = bJ') + B(')'X is a separating hyperplane, 'To see this, suppose, for 
example, that x1 lies an the G,  side of the plane h(x) = 0. 'Then /?(XI) 0, 

and, since all the fitctors q,(x,) in Lc. are less than unity, L ,  I $. Hence if 
there is at least one point on the wrong side of the plane, then Lc. 2 5 ;  
h ( x )  = 0 will be separating if L, > 4. Since L,  -i 1 is the niaximuiti value, it 
follows that any convergent process for maximi'zing the likelihood must 
eventually produce a discriminant g,(x) that separates the two groups. The first 
discriminant to achieve this will have a likelihood L ,  that is greater than that 
of any other discrimiiiant which does not completely separate the data. It is 
easy to check whether g,(x) is separating or not, as the values g,(x,) are 
required at each step of the iteration. 

The problem of zero marginal proportions can be illustrated a5 follo.uvs 
(J. A. Anderson (19741). Siiypose xl,  the first element of x, is dichotomous, 
taking values 0 or 1. Suppose further that in the sample data x1 = 0 for all x 
from G ,  and x I  # 0 for at  least one x from G,. Then the sample proportion for 
x1 = 1 in GI is zero. With this data we have 

Thus p1 only appears in those terms of Lc for which x1 = 1 in G,,  that is, in 

the terms {exp(p, i- $'x) + I} - '  with xI = 1. Without affecting any other 
terms of L,, we can make arbitrarily large and negative so that the terms 
with PI tend to 1. The maxlniiirn likelihood estimate of p1 is therefore - 00. 

This is unsatisfactory, as we do not wish to estimate pr[x E G,lx] as zero 
(implying certainty about group membership) when x1 = I, and yet we wish to 
retain x1 as a predictor, as it contains useful information about group member- 
ship. An ad hoc method far getting around this problem is described by 
J. A. Anderson [1974, 19821. 

We noted that the iterative maximization of L, is applicable to all three 
sampling procedures when it comes to finding the maximum likelihood esti- 
mates Po and 8. For mixture and conditional sampling, the asymptotic vari- 
ances of the estimates are given by the diagonal elements of A ', wherc 
A = [( akt)] [see (6.79)1 is the observation information matrix evilhated at the 
maximum likelihood point. In the case of separate sampling there are the 
additional constraints (6.75) and (6.76). However, Anderson [ 19721 showed 
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that A-’  can still be used, except that the (1,l) element, the asymptotic 
variance of b,, is now in error by O( n - ’). 

Although the maximum likelihood estimates are asymptotically unbiased, 
they can have substantial small-sample biases that will affect the plug-in 
estimate of the linear discriminant (6.65). Estimated corrections for bias are 
given by Anderson and Richardson [1979], and, on the basis of their simula- 
tion studies, they recommend a wider use of these corrections. McLachlan 
[1980b] also investigated the corrections and showed that they can be applied 
to separate as well as mixture sampling. 

EXAMPLE 6.6 (Anderson [1972]) People who suffer from rheumatoid arthri- 
tis can also contract the eye disease kerutoconjunctiuitis sicca (KCS). Although 
the disease can be diagnosed reliably by an ophthalmic specialist, such a 
service is not routinely available for screening all rheumatoid patients. It was 
felt that logistic discrimination based on a straightforward checklist of symp- 
toms could be used to enable medical staff of a rheumatic center who are not 
ophthalmic specialists to decide which rheumatoid arthritic patients should be 
referred to the eye hospital. 

The diagnostic check list consisted of 10 symptoms of the presence or 
absence type, with x, = 1 if the j t h  symptom is present and xi = 0 if it is 
absent ( j  = 1,2,. . . ,lo). The sample or training data, called set I, consisted of 
37 rheumatoid patients without KCS (Le., “normals” or group 1) and 40 with 
KCS (group 2). The estimated linear discriminant function is 

z1 = /lo + p x  

-0.8~~ + 0 . 8 ~ ~  - 2 . 4 ~ ~  + 1 . 8 ~ ~  - 0.9X,,. 

The zl scores of all the patients were calculated using this equation and are 
shown in Fig. 6.3~1. We note that our assignment rule for this separate 
sampling experiment is Assign to the normal group if 

As doubts about diagnosis occur when a patient’s z1 score is small, it was 
decided to give a patient a queried diagnosis if his score was in the range - 2 
to 2. This range for c1 corresponds to the range (0.15,7.99) for 7r2/7rl and leads 
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to the following diagnostic system: 

z1 2 2 : call patient normal, 

-" 2 < tl c 2 : query diagnosis, 

zI 2 - 2 : diagnose KCS. 

'To test the method, the 10 symptoms were then observed on a fusther set oC 
41 patients, series 11, which included 17 normals and 24 cases of KCS. The i, 
scores were again calculated for these patients, using the same discrinunarir 
function, and are shown i n  Fig. 6.30. We see that the scores for the two series 
are quite comparable. 

OC10 0 0 0  0 
00 00 0 0 0  0 0  0 000 0 0  0 0 0  

(4 

c 

+ t  + +  

i i  + 
I -- 

1 -12  - - l o  - - 8  - 6  -4 --2 0 4 6 
scoic 

Fig. 6.3 'ltie distribution of scores ol keratoconjunctivitis sicca patients ('3) and normals ( +  ). 
( a )  Series I patients estimated from series 1. ( b )  Series II patients cstirnated Irorri series I. ( c )  
Series I + I1 patients estimated from series I -1 11. From Anderson [1972J, by pcrmission of the 
Biometrika Trustees. 
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For applying the diagnostic method to further patients, the two sets of data, 
series I and 11, were combined to give the linear discriminant 

z2 = 4.7 - 5 . 2 ~ ~  - 3.oX2 - 1.3~3 - 5 . 4 ~ 4  - 4 . 0 ~ ~  

+ l . l ~ ,  + 0 . 8 ~ ~  - 1 . 9 ~ ~  + 2 . 1 ~ 9  - 2.0~10. 

The scores of all the patients in series I and I1 were calculated using z2 ,  and 
these are shown in Fig. 6.3~. A summary of all the results illustrated in Fig. 6.3 
are given in Table 6.2, and we conclude from these that the results of 
diagnosing series I and I1 patients using z2 are very similar to the results from 
using q. Also, the functions for z1 and z2 are very alike, so that, overall, the 
proposed diagnostic procedure is stable and repeatable. In addition, the error 
and query rates are at acceptable levels. 

6.4.4 LGD Versus LDF 

In Section 6.3.2~ we saw that Fisher’s linear discriminant function (LDF) has 
certain robust properties and we now ask how the logistic discriminant (LGD), 
bo + b’x, compares. Clearly, if the underlying distributions are normal with 
equal dispersion matrices, then the LDF will be asymptotically more efficient, 
as it is based on a “full” rather than a conditional likelihood procedure. This 
was demonstrated by Efron [1975], who gave the following table of the 
asymptotic relative efficiency (ARE) of the LGD with respect to the LDF for 
different values of A = [(pl - p2)’2-’(p1 - p2)J1I2 and r1 = r2 (the case 

TABLE 6.2 Evaluation of the Logistic Method of the Diagnosis of Kera-Conjunctivi- 
tis Sicca in Rheumatoid Arthritis“ 

Diaoriminator eetimsted from %ria I 

KeMto-mjunotivilis dcm No kemto-conjundiuitie sioccl 
w - 7  A % 

Correot Query Wrong Correot Query Wrong 

series I 36 3 I* 30 I 0 
Series 11 24 0 0 13 4 0 

Dieoriminator estimated from Seriee I and I1 

Kerato-wnjunot~~ia aieca No kerdo-oortjunctivitM sioccl 

Correct Query Wrong Correat Query Wrong 
A A 

I 7 1  % 

Series I +I1 60 3 12 41 1 0 

Thia patient 1d no symptoms. 
~ 

“From Anderson [1972: Table 31, by permission of the Biometrika Trustees. 
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most favorable to the LGD): 

A 0 0.5 1 1.5 2 2.5 3 3.5 4 

ARE 1.000 1.000 0.995 0.968 0.899 0.786 0.641 0.486 0.343 

He noted that just when good discrinunation becomes possible (2.5 I A s 3.51, 
the ARE of the logistic procedure falls off sharply; there is a similar decline in 
a measure describing the asymptotic relative accuracy of the actual error rates. 
ONeill [ 19801 extended the asymptotic results of Efroii from normal distribu- 
tions to an exponential fanlily using plug-in maximum likelihood estimates in 
the resulting linear discriminants, and demonstrated a similar loss of asymp- 
totic efficiency. However, this is not the &hole story. In the first place, the 
situation is different for finite samples, as the maximum likelihood estimates 
for both procedures are biased. Secondly, if the wrong distribution is assumed, 
then the maximum likelihood estimates will be inconsistent and the resulting 
estimated 1,DF will also be inconsistent. Thirdly, for independent binary data, 
different population means implies different dispersion matrices, and the 
relevance of the LDF approach is then an open question. Press and Wilson 
119781 presented two studies involving nonnormal data and found that the 
apparent error rates, eapp of (6.26), were smaller for the LGD than the LDF, 
thus supporting the results of Halperin et al. 119711. The dilferences were not 
great and the authors felt that the two methods would not generally give 
markedly different results. Krzanowski [19T5: Table 31 found that both meth- 
ods yielded almost identical results for several sets of mixed binarq-continuous 
data. In a simulation study carried out at Auckland University, Crawley [1979] 
showed that (1) for normal distributions with equal dispersion matrices, the 
performance of the LGD, in terms of apparent error rates, is verq comparable 
with the LDF; (2) for normal data with unequal dispersion matricts, the LGD 
is slightly better than the LDF, and the difference in the apparent error rates 
ec,app ( i  = 1,2) for the LCiD is much less, particularly with increasing covari- 
ance differences; and (3) for nonnormal data the LGD is much better than the 
LDF with respect to eapp and the difference in the e,,dpp. Crawley concluded 
that the LGD is preferred when the distributions are clearly nonnormal or the 
dispersion matrices are clearly unequal. The results also suggest that when 
using the LDF, widely different rates of misclassification are an indication that 
the LGD is more appropriate. Further support for the LGD comes from Byth 
and McLachlan [1980], and O’Hara et al. [1982]. 

6.4.5 Predictiue Logistic Mode( 

Writing 6’ = (a,,, fl’) and y’ = (1. x‘), we have, from (6.66) and (6.67), 

(6.81) 
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Suppose z represents the sample data and 8 = b(z) is the maximum likelihood 
estimate of 0 with estimated approximate dispersion matrix 9. Then, with the 
Bayesian version of the maximum likelihood theory, 0 is approximately 
Nd+ 1( 6, q), With this prior distribution for 8, we can proceed as in (6.36) and 
obtain 

where g is the density function for Nd+l(b,q). Using an approximation 
q , ( x l 0 )  = @(8'y/ 6) due to Aitchison and Begg [1976], with b = 2.942 and Q, 
the distribution function for the N,(O, 1) distribution, Aitken (19781 showed 
that 

q,(xJz) = @(b'y{ b + ~'QY}"'~).  

Other values of b can also be used (e.g., Lauder [1978: b = k']). Instead of the 
LGD 

we can use the predictive logistic discriminant function log{ q,(xlz)/[l - 
ql(xlz)]). This method was compared with several others for the case of 
multivariate binary data by Aitken [1978], and it has been used for handling 
imprecise data (Aitchison and Begg 119761, Lauder [1978]). 

6.4.6 Quadratic Discrimination 

For the case of two normal distributions N&, Zi) ( i  = 1,2) we see from 
(6.13) that 

+ +X'(Z" - c;')x 

say, where r = [(y,,)] is symmetric. The above function is linear in the 
coefficients So, 8, and y,, ( r  5 s) so that it can be written in the form Po + P'y 
with y = (xl, x2,. . . ,xd, x:, x1x2, x2,. . .)' and 1 + d + &d(d + 1) 8's to be 
estimated. In principle, these parameters can be estimated as before, using 
logistic discrimination, but in practice there are too many parameters to 
estimate iteratively for d > 4. Anderson [1975] suggested several approxima- 

2 



320 Discriminunt Anu!vsrs 

tions for xTx ,  the simplest being the rank 1 approltiniation r = h,t,t;, where 
A ,  is the largest eigenvakue of r and t, the corresponding unit eigenvector 
(A7.3). In this case the logistic model is 

e4 

1 + e 4 '  
yl(x) = 1 - q2(x) = ___ 

where q = So + 6'x + X,(t;x)2. Since tit, = 1, the number of parameters has 
now been reduced to 1 + 2d. Although y is nonlinear in t,, the parameters can 
be estimated once again by maximizing L ,  of (6.78) using another quasi- 
Newton iterative procedure. 

6 . 5  TWO GROUPS: UNKNOWN DISTRIBUTIONS 

6.5.1 Kernel Method 

If the form of fi(x) is unknown, then it must be estimated directly from the 
sample data x,, ( i  = 1.2, j = 1,2, .  . . ,n[). We note from Glick [1972] that if 
X(x) ?nd 4 are consistent estimates of f,(x) and q, respectively, and ,/[+ljl(x) 
+ 7j2fz(x)] dx  3 1 as n, -, 00 ( i  = 1,2), then eac, and tact both tend to eopc (in 
a probabilistic sense; see Section 6.3.1 for definitions). Methods are described 
below that, under fairly general conditions, give consistent estimates of f,(x). 

To simplify the discussion we shall drop the suffix i denoting group 
membership and consider the problem of estimatiiig f(x) from a sample 
xl, x2. .  . . , x,. Recently Habbema et al. [1974a], Hermans and Habbenia 
[19751, and Aitchison and Aitken [1976] have used the potential function 
(kernel) method of multivariale density estimation (Cacoullos [ 19661, Murthy 
[1966], Breiman et al. [1977], and the review of Fryer [197'7]; see also Susarla 
and Walter [1981] for a more general approach). Heref(x) is estimated by 

where K(yIz ,  A )  is a kernel probability or probability density function on y 
with mode at z, and a smoothing parameter h whose value depends on the 
group G,. 

a CONTINUOUS I x r A  

A popular choice for K is  the MVN distribution, as it is unimodal and has 
convenient scale properties. One kernel density is therefore 
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where S = Cj(xj - X)(xj - Z)’/(n - 1). Habbema et al. [1974a] used diag(S), 
the matrix of diagonal elements, rather than S itself. If we write y = 

(yl, y2,.  . . ,yd)’, xi = ( x j l ,  x j 2 , .  . . ,xjd)’,  and so on, their kernel is 

where s i  = C ~ , , ( x j k  - ~ . k ) ’ / ( n  - I). Sometimes it is convenient to work in 
terms of the scaled data j j k  = Y k / S k ,  I, = ‘ k / s k ,  with corresponding kernel 

If X is estimated by 1, say, f ( x )  can be estimated by 

PCX) = S(Xl1) 

= - 1 “  c K(XIXj, A ) ,  
n .  

5’1 

which will be consistent at all continuity points x if -, 0 sufficiently slowly as 
n -+ 00 [see Murthy [1966] with Bk, = and ( B l n B  2n...Bdn)/n 3 01. 
When x is one of the observations, say, x r ,  we can estimatef(x,) by 

K(xrlXj, 1). (6.85) 
/W(Xr) = - 1 

n - 1 j - 1 .  j + r  

As the maximum likelihood estimate of X for the likelihood l-Ijg(xjIX) turns 
out to be zero, Habbema et al. [1974a] suggested a “leaving-one-out” modiflca- 
tion of the maximum likelihood method. Working with the scaled data, they 
maximized 

n 

r= 1 
h ( A )  = n h ( r ) ( g r )  ( A  > 0) 

with respect to A, where 

The above method can be used for each group Gi to obtain estimatesf?(x) 
( i  = 1,2) and the rule Assign to G ,  if f1(x)/f2(x) > 7r2/w1. Habbema et al. 
[1974a] used a forward selection procedure for choosing a subset of the 
x-variables (see Section 6.10), though it is more suited to small-scale problems, 
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as it is rather time-consuming on the computer. For this reason the authors 
recommended using the estimate of h based on the full set of variables at each 
stage. The above kernel method has been used by Habbem [1976] for 
classifying human c1romosomt:s; a useful review of this latter topic is given by 
Habbema [1979]. Hermans and Habbema [1975] concluded for the two medical 
examples they investigated that the kernel and normal based LIIF procedures 
gave similar results for normd data; otherwise the kernel method was better. 
Although a MVN kernel has been used above, it should be clear that we we 
not making any assumptions about f(x) itself: Any other unimodel density 
could be used as a kernel. 

b BINARY DATA 

For multivariate binary data, Aitchison and Aitken [1376] suggested using the 
kernel 

~ ( ~ j ~ ,  A) = h d - - J U . 7 ) ( 1  - (6.86) 

where f i A I 1 and D(y,z) = Ily - zll’. With binary data the dissimilarity 
coefficient D(y, z) is simply the number of disagreements in corresponding 
elements of y and 2. The “extreme” kernels are 

and 

which represent estimating f(x) by a uniform distribution and the relative 
frequency n ( x ) / n ,  respectively. As in the continuous case, !he maximum 
likelihood estimate of A based on Il,g(x,(h) is unsatisfactory (A = I) and we 
can use the leaving-one-out modification based on the likelihood I l , i ( r ) ( x , )  
[see (6.85)]. The authors noted that, using the transformation wk = Iyk -. zkI  
( k  = I, 2,. . . , d )  from y to w with fixed z, we can write 

d 

which is easier to handle. They gave an outline proof that f ( x )  [ -- g(xlh)] is a 
consistent estimator of f ( x )  for all x, and noted that atypicality indices can be 
readily calculated [see (6.3’7) with a summation instead of an integral]. Studies 
by Aitken [I9781 and R.emme et al. [1980] show that the keriiel method 
compares favorably with other methods. For a further discussion on kernel- 
based estimates, see Titterington [1980] and Titterington et al. f198lJ. The 
problem of missing data is considered by Tittenngton [1977]. 
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Unfortunately the leaving-one-out estimate of h can behave erratically, even 
for large samples, and it is strongly influenced by the presence of empty or 
nearly empty multinomial cells. Hall [1981] demonstrated the problem theoreti- 
cally and by example, and proposed an alternative estimate of A. 

C CONTINUOUS AND DISCRETE DATA 

If y '  = (y ( ' ) ' , ~ (~ ) ' )  is a mixture of continuous variables y(') and binary 
variables Y ( ~ ) ,  Aitchison and Aitken [1976] suggested using a product of kernel 
functions, say, 

where K ,  is the normal kernel (6.82) and K 2  is the binomial kernel (6.86). Then 
f ( x )  can be estimated by 

[ ( x )  = - 1 "  Kl(x(')Ixy) ,  x,) K , ( X ( ~ ) ) X ~ ) ,  h2) ,  
n .  

/ = I  

where xl and A, are, for example, the leaving-one-out maximum likelihood 
estimates. The factorization of the kernel in no way implies independence of 
the continuous and binary components. 

Discrete data with more than two categories can either be converted to 
binary data [see (6.61)], or else modeled using an extension of the binomial 
kernel method: Aitchison and Aitken [1976] suggested two such extensions. 
Kernel methods can also be adapted to handle missing data and unclassified 
observations, the so-called mixture problem (Murray and Titterington [1978]). 
A " variable" (adaptive) kernel method that seems to work better for skewed 
distributions (e.g., lognormal) has been proposed (Breiman et al. [1977], 
Habbema et al. [1978], Remme et al. [1980: p. 1031. 

6.5.2 Other Nonparumetric Methocfs 

a NEAREST NEIGHBOR TECHNIQUES 

The first nonparametric method of classification was the nearest neighbor rule 
of Fix and Hodges [1951]. Suppose we have observations x i j ,  j = 1,2,. . . ,ni, 
from G, ( i  -- 1,2). If x is to be assigned, we order the n1 + n 2  observations 
using a distance function D(x, x i j ) .  We choose some integer K and let K i  be the 
number of observations from G, in the K closest observations to x.  Then we 
assign x to G ,  if 

(6.88) 

For further references see Lachenbruch [1975a: p. 571. 
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Hills [I9671 applied a similar technique to binary data using the metric 
D ( x ,  y) i= ilx - y1I2, the nurnbcr of disagreements hetween x and y. If U(x, j )  

= h, then y is called a near neighbor to x of order h. For example, 1106, 1010, 
and 0000 are all near neighbors to 1000, of order 1. We can use the assignment 
rule (6.88), but with K ,  equal to the number of sample observations from G, 
such that D(x,  x,,) 5 h. In tlus case K , / n ,  is not a consistent estmator of f,(x) 
unless h =- 0, the multinomial situation described in Section 6.3.3b. A difficulty 
with this method is the choice of h so that K, f 0 for a given x. A nearest 
neighbor approach for estimating scale factors in the kernel method has been 
proposed by Breiman et al. [1977]. 

b PAR11 rIONING MET HODS 

A method siinilar in spirit to the nearest neighbor technique is thc use of 
“statistically equivalent block:$” (Anderson [ 19661, Gessaman [1970], Gessa- 
man and Gessaman [1972]). The sample from G ,  is ordered on the basis of the 
first variable and is then dividcd into g approximately equal groups. Within 
each group the observations are ordered on the basis of the second variable 
and the group is divided into g approximately equal groups. The process is 
repeated for k 5 d of the variables so that there are g k  groups or “blocks” with 
approximately the same number of observations in each block. Suppose that 
an observation x falls into block/ and there are n,, observations from G, in this 
block. Then we assign to G ,  if 

(6.89) 

The ordering can also be carried out on the first k principal components of 
each observation. A digerent procedure is generally obtained i f  the sample 
from G, is used to obtain the blocks. 

Another partitioning method that shows promise because of its generalit,y 
and asymptotic optimality has been proposed by Gordon and Olshen [1978]. 

C DISI‘ANCE METHODS 

Nearest neighbor methods are one way of measuiing the closeness of x to G,. 
Another approach is to calculate the distance between the sample distribution 
functions of the two groups for two cases, the first including x i n  GI,  and the 
second including x in G,. We assign x to the group that gives the greater 
distance. For example, Dillon and Goldstein (19781 used a distance method 
proposed by Matusita (see Matusita [1964] for references) for handling multi- 
noinial data. The problem with distance methods is to find a suitable distance 
function. 

d RANK PROCEDURES 

Given a discriminant function D(x) ,  it is possible to determine an assignment 
rule based only on ranked values of D. Suppose that D treats the observations 
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from the same group symmetrically, that is, D is invariant under permutations 
of x l l , x l , , .  . . ,xlnl from GI and permutations of x Z 1 , x 2 , , .  . . , x , " ~  from G,. 
We can assume that D gives larger values for observations from G, than from 
G,. Then assuming, for the moment, that x E G,, we can compute D ,  say 
Dl(.), using the n1 + 1 observations from G, and the n 2  observations from G,. 
Let R,(x)  be the rank of D,(x)  among D l ( x l l ) , .  . . ,D1(xln,), D,(x),  ranked 
from the smallest to the largest. Then Broffitt et al. [1976] showed that for x 
continuous, Rl(x) will have a uniform distribution over the integers 1,2,. . . ,n, 
+ 1. A small rank would indicate that x looks more like a member of G,. The 
probability of obtaining a value at least as large as R,(x)  is Pl(x) = R l ( x ) / ( n l  
+ 1). We can repeat the process by assuming x now comes from G, and 
calculating a corresponding discriminant D,(- ) .  Let R , ( X )  be the rank of 
- D,(x) among -D2(xZl),. . . , - D2(xZnl ) ,  - D2(x).  A small rank makes x look 
more like a member of G,. An assignment rule is therefore 

Assign x to G, if P, (x )  > P, (x ) ,  

Assign x to G, if Pz ( x )  > P, (x) , 

Use a nonrank procedure if P, ( x )  = P2 ( x ) .  

(6.90) 

Clearly any discriminant D can be used, provided that it is symmetric and x is 
continuous. A nice feature of the method is that the probabilities of misclassifi- 
cation P ( i l j )  will be approximately equal, as they are asymptotically equal. 
The above discussion is based on Randles et al. [1978a, b] and the reader is 
referred to their papers for further details and extensions. The ranking proce- 
dure is considered further by Beckman and Johnson [1981]. 

Instead of forming the discriminant function and then using ranks, Conover 
and Iman [1980,1981] proposed ranking the data first and then using the LDF 
or QDF of Section 6.3.2. The rank transformation consists of ranking the k th 
components, x,,~, say, of all the observations x i j  from the smallest, with rank 
1, to the largest, with rank n = n, + n,. Each component is ranked separately 
for k = 1,2,. . . , d  and we replace x i jk  by its rank number. A similar transfor- 
mation is applied to x ,  the observation to be assigned. Each component x k  of x 
is replaced by a rank (actually a number obtained by linear interpolation 
between two adjacent ranks) representing its position in the n values of x i jk .  
We now treat the vectors of ranks from each group as though they were 
multivariate normal and compute a linear or quadratic discriminant function. 
We assign x ,  now replaced by a vector of ranks, to G, or G, on the basis of the 
discriminant function value. 

Conover and Iman [1980] compared their ranking methods, called RLDF 
and RQDF, with several nonparametric techniques, including the partition and 
kernel procedures. They concluded that if the data are MVN, very little is iost 
by using the RLDF and RQDF methods instead of the LDF and QDF 
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methods. When the data were nonnormal, the ranking methods were superior 
and they compared favorably with the other nonparairietric methods. 

A histogram method, also based on order statistics, is proposed by Chi and 
Van Ryzin [1977]. 

e SEQUENTIAL DISCRIMINATION ON THE VARIABLES 

A sequential approach to classification is as follows. After each step we 
decide to either allocate our current x to one of the G‘, or introduce another 
variable into x (Kendall and Stuart [1966], Kendall [1975]). Thus if R = 

10sIf2(xl, x,,. . . ,x,)/fl(xl, xz,. . . . x r ) l ,  our rule is 

If R < a,  assign to G,; 

If  R > b ,  assign to G,; 

If a -< R 5 b, recalculate K using ( x i ,  x2,. . . ,x,+ ,). 

(6.91) 

First we order the x1 values or all the n = n1 + t i 2  sample points and choose oI 
and h, such that all observations with x1 a belong to G I ,  and all observn- 
tions with x1 > b belong to G I .  For those observations with a, 2 x ,  5 6, we 
go through the same procedure with x2, choosing u2 and b2 such that the 
observations with x2 q: a belong to G, and those with x2 b, belong to G2. 
For the observations with u, 5 x1 I b, and u 2  I x, 2 b2 we proceed to x j  
and continue the process until all n observations are assigned to their correct 
groups, o r  wc run out of variables. A natural ordering for the variables is lo 
order the x k  according to the degree of overlap between the two groups, x1 
having the smallest overlap and therefore being the best one-variable dis. 
criminator. 

Although the above technique is distribution free and easy to understand, i i  
can leave a substantial proportion of the sample observations unclassified, so 
that there is a nonzero probability that a new observation K may not be 
classified. For example, K.endall [ 19751 applied. the method to Fisher’s famous 
iris data (50 four-dimensional observations from each of two species) and 
found that 13 of the 100 observations were unclassified. However, NcharJs 
[1972] suggested a refinement and an extension that led to a further classifica- 
tion of 10 of the 13 observations. The refinement consists of looking at all the 
variables at  each stage, except the one used at the previous stage, and using the 
best one-variable discriminator. For example, ?I, nught also be the best 
discriminator in terms of the sniallest overlap instead of x3 at stage 3. His 
extension consists of using two-variable discriminators based on the bivariate 
frequency distribution to classify observations not classified by the one-varia- 
ble method. A related procedure for discrete or categorical data is given by 
Sturt [19Sl]. 

A general theory of sequential discrinlination is given by Hora [1980]. 
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6 . 6  UTILIZING UNCLASSIFIED OBSERVATIONS 

In some situations unclassified observations (say, n3 of them) are also available 
and the question arises as to whether these should be included in estimating a 
discriminant function. For example, Conn's syndrome manifests itself in two 
forms: either as a tumor (adenoma), which is treated by surgery, or as a certain 
condition (bilateral hyperplasia) for which there is a drug therapy. Since the 
only way to confirm a diagnosis is to operate to see if a tumor exists, those 
cases treated by drug therapy will remain unclassified. 

An interesting (univariate) example from fisheries biology has been given by 
Hosmer [1973a, b]. The sex of the halibut can only be determined by dissec- 
tion. However, it is much easier to measure the length of a fish, which, for a 
given age class, is related to sex. For example, 11-year-old males are, on the 
average, about 19 cm longer than 11-year-old females, though the length 
distributions overlap. The International Halibut Commission has two different 
sources of data: sex, age, and length data from research cruises, and age and 
length data only from commercial catches, as the fish have been cleaned by the 
time the boats have returned to port. For each age class, the length distribution 
for the combined sexes is closely approximated by a mixture of two normal 
distributions, and the problem is to estimate the various parameters (especially 
q, the proportion of males) as efficiently as possible using the classified data 
from research cruises and the larger body of unclassified data from commercial 
catches. Here the emphasis is more on estimation than discrimination, and 
Hosmer [1973a] gives iterative methods for three sampling schemes. For 
further details see Hosmer and Dick [1977]. 

In two papers McLachlan [1975, 1977a) considered the problem of unclas- 
sified observations for the case of MVN data with equal dispersion matrices, 
o1 = v2, and n3 (= m in his notation) large and small, respectively. As in the 
above fisheries example, a classified observation is often much more expensive 
to make than an unclassified one, so that a large sample of unclassified 
observations may contribute as much to the estimation of the LDF as a small 
sample of classified observations. For the case of small n 3 ,  McLachlan f1977aj 
showed that the LDF based solely on classified data can be improved upon 
[i.e., E[e,,] of (6.23) can be lowered] by using the LDF to classify the 
unclassified data and then constructing a new LDF based on an appropriate 
weighting of classified and unclassified data. O"eiU [1978] considered the 
more general case of unknown 7z, and gave an iterative maximum likelihood 
method for estimating the LDF based on mixture sampling with part of the 
data classified. He concluded that if the populations are separate enough, 
namely, 2.5 I A I 4, then the information in an unclassified observation 
varies from about one-fifth to two-thirds that of a classified observation. 
Ganesalingam and McLachlan [1978] came to a similar conclusion in a 
univariate study: For 3 5 A s 4 the ratio is about to $. Since the ratio of 
costs of classified to unclassified observations is frequently much greater than 
5:1, the LDF could be estimated using a large number of inexpensive, 
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unclassified observations rather than a small, correctly classified sample. How- 
ever, whatever data are available, the message is clear: If there is a “reasona- 
ble” separation of the classified data, then the unclassified data should be used 
as well. This viewpoint is also supported by Titterington [1976], who consid- 
ered the same problem, but for the predictive discriminant rather than the 
LDF. Ganesalingarn and Mc1,;ichPan [1981] discussed the estimation of 7~~ and 
gave further references on the topic. 

The above problem is also considered by Anderson [1979] for the less 
restrictive logistic model. Suppose we have n, observations from G, ( i  -- 1,2) 
and n 3  = n - n, - n 2  unclassified observations with corresponding density 
functions f,(x) and f 3 ( x )  m, f i (x)  + 7rzf2(x).  Then, for the separate sampling 
scheme, the likelihood function is [see (6.72)] 

(6.92) 

where f l ( x ) / f i ( x )  = exp(a f P’x). J. A. Anderson [1979] showed that for 
discrete data, maximizing Ls,  with respect to a, p, and nl (= 1 - v2) subject 
to the constraints C,f,(x) = 1 ( i  = 1,2.3) is equivalent to maximizing 

where 

n: == n, + q n ,  ( i  = 1,2). 

Once again a quasi-Newton procedure can be used. When n 3  = 0, LzE1, is 
proportional to L& of (6.77). J. A. Anderson 11979: p. 211 argued that the 
above method can also be applied to continuous data (or continuous and 
discrete data), but with a slight loss of efficiency. 

6.7 
MIXTURES)  

ALL OBSERVATIONS UNCLASSIFIED (METHOD OF 

In the previous section we considered the possibility of having some of the 
sample observations unclassified. We now go a step further and suppose that 
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we have mixture sampling but with all n observations unclassified. This 
mixture problem in which one endeavors to estimate the underlying parameters 
of the mixing distribution has a long history, though much of the research has 
been confined to mixtures of univariate normals (see the reviews of Macdonald 
[1975] and Ode11 and Basu [1976], and the paper by James [1978]) or multi- 
variate normals (e.g., Day [1969], Wolfe [1970]). In the latter case it is assumed 
that we have a sample of n observations from the mixture density function 

(6.93) 

where the 4 are the unknown mixing proportions and is the density function 
for N d ( p i ,  Z i ) ( i  = 1,2). Maximum likelihood estimates of nl, p i ,  and Z i  are 
obtained by maximizing nin,,f(x,). These estimates give us the plug-in esti- 
mates i ( x )  and f ( x ) .  From (6.17) we have the rule Assign x to the group with 
the larger plug-in estimate of the posterior probability 

Parameter estimation for the case X, = Z, is discussed further by Tang and 
Chang [1972] and Ganesalingam and McLachlan [1979]. 

For the general case of g rather two groups, Wolfe [1970] gave two 
estimation programs, NORMIX and NORMAP, where the latter assumes 
2, = 2, = - a -  = Z,. Unfortunately such methods suffer from the problem 
that there may be more than one solution to the maximum likelihood equa- 
tions. In fact, Day [1969] pointed out that for n < 100, d moderate, and 
distributions not widely separated, there invariably appear to be several 
solutions. Evaluating the likelihood at each local maximum may not be feasible 
with the large-scale problems that can be met in practice. Everitt [1974: p. 851 
also found that NORMAP failed to converge for a number of simple examples. 
As might be expected, both procedures are very sensitive to outliers, and some 
attempt at screening these out before analysis should be made. Hartigan [1975: 
Chapter 51 also discusses some of the difficulties and gives a general algorithm. 

The method of mixtures is discussed further in Section 7.5.4, where the 
emphasis is on dividing the n observations into two clusters rather than on 
estimating an assignment rule for classifying future observations. For a general 
review of the subject, see Everitt and Hand [1981]. 

6 . 8  CASES O F  DOUBT 

There may be occasions when a researcher wishes to reserve judgment on the 
classification of a member of the population 8. In this case the sample space R 
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is partitioned into three mutually exclusive regions R,, R , ,  and R,,, where x is 
assigned to G, if x E R,, and x is left in doubt if x E R,,.  A simple procedure 
would be to decide what misclassification probabilities are to be tolerated, 
use these to define R ,  and R , ,  and designate the remainder of R as R,,.  
J. A. Anderson [1969] (see also Lachenbruch [1975a: pp. 86-88]) described a 
procedure that looks for a rule which minimi7.e~ the total probability of 
misclassification subject to upper bounds on the individual misclassification 
probabilities P(  i J  j ) .  We can either classify every observation using this condi- 
tional rule, which may not be readily computed, or else simply use the usual 
unconditional rule and bear in mind that there will be some observations not 
classified, as the restrictions imposed by the bounds will not be satisfed. For 
another approach to this problem, see McLachlan [1977b]. 

Hahhema et al. [1974bJ argued that it is only sensible to have a region R , ,  if 
the cost of reserving judgment when the observation actually comes from 
Gl(G2) is less than the cost of wrongly assigning to G,(G,).  The authors gave a 
Bayesian analysis of this problem. 

A related probleni, which also involves uncertainty, arises when each sample 
observation is not classified but has an associated probability p (0 < p < 1) of 
belonging to G,, where p varies over the population 9. A Bayesian solution of 
this problem is given by Aitchison and Begg 119761. 

In the case of normal data, McDonald et al. I19761 gave a test of the 
hypothesis that x comes from G, U G ,  versus the alternative that it does not. 

6 . 9  MORE THAN TWO GKOUPS 

Suppose that we have a population Pconslsting of g mutually exclusive groups 
and let T, be the proportion of 9 in group GI ( i  = 1,2,. . . ,g; Z,v-, = 1). The 
theory developed so far for g -- 2 carries over naturally to the case of more 
than two groups. We define XQx) to be the probability or probability density 
function of x if x E G,, and we wish to find a suitable partition 
{ R,, R,, . . . ,Rg} of  the sample space R such that we assign a mernbei of 9 to 
C;, if x E R,. The probability of assigning a metnber to GJ when it actually 
comes from GI is then 

and the probability of misclassifying a member of Gi is 

!? 

P ( i )  = c P ( j l i )  = 1 - P ( i 1 i ) .  
j = 1 ,  j + i  
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The total probability of misclassification is then [see (6.2)] 

P(R, f) = C r,P( i )  
i= 1 

(6.94) 

When g = 2 we saw from (6.17) that the rule that minimizes P(R, f) is to assign 
x to the group with the larger posterior probability q,(x). Noting from (6.16) 
that 

(6.95) 

say, we find that the same result generalizes, as seen by the following theorem. 

THEOREM 6.3 Given the rule Assign to Gi if x E R i ,  then P(R, f )  is 
minimized when 

R j  = ROi = (x:  qi(x) 2 q,(x), j = 1,2 ,..., g } ,  

Proof Define the indicator function x,,(x) = 1 if x E A and 0 otherwise. For 
any partition { R1, R 2 , .  . . , Rg}. 

say. Let g,(x) be the corresponding function for the partition { RO1, R,, . . . , 
Rag). Suppose x E R j ,  then x E R,, for some m as R = U , R , , .  Therefore 
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q,(x) 2 q,(x) for all i ,  and 

= d x ) .  

Thus g(x) is maximized for all x. From (6.94) and (6.96), 

P ( R ,  f) = 1 - Jg(x) d x  
R 

is nunimized when R ,  = R,, ( i  = 1,2,. . . , g ) .  0 

From the above theorem, our optimal assignment rule is Assign to G, if 
r,L(x) 2 n,f,(x)(j = 1,2 , .  . . ,g) ,  that is, if max,r,f,(x) = n,f,(x), with the 
assignment on the boundary or R o ,  being arbitrary. Clearly all the methods for 
estimatingf,(x) for the case g = 2 apply to general g .  For example, suppose we 
have n, observations x,, ( I  = 1,2, .  . . ,g; I = 1.2,. . . , n , )  from Nd( p,, 2). Let 
Sp = Ef-,(nf - l)S,/(n - g), where n = Cf-lnl, be the pooled estimate of 2. 
Then 

IO~[T~,~,(X)] == 10grr + c - ;(x - SZ,.)’S~-’(X - P, ), (6.97) 

and, subtracting o f  the common part c - $x’SP-’x, we obtain the linear 
function 

Lf(X) = log r, + q.s; ‘(x -- tsr,.). (6.98) 

We assign x to the group with the largest value of L,(x). With regard to this 
particular model, it should be noted that there. are dikrerences in terminology, 
particularly in some computer software packages. For example, the SPSS 
system, under the title “discriminant analysis,” refers to the linear functions 
derived in discriminant coordinate analysis (Section 5.8) as discriminant func- 
tions (some authors call them canonical variates), and refers to the discrinu- 
nant functions (6.98) as classification functions. ‘10 confuse the issue further, 
there is a third set of linear functions, sometimes quoted in the literature, given 
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by the differences L,(x) - L,(x) = 0. This difference defines a hyperplane for 
separating group i from group j; for two groups this leads to the LDF. 
Jennrich [1977] describes any linear function of the variables as a discriminant 
function and refers to the three types as canonical, group classification, and 
group separation functions, respectively. 

When the dispersion matrices are unequal, (6.98) is replaced by a quadratic. 
However, Wilf [1977] suggests a "coalition" method in which dispersion 
matrices may be equal within coalitions of groups. This method is a comprom- 
ise between the LDF and QDF techniques and attempts to reduce the number 
of unknown parameters. A test for multivariate normality and equal dispersion 
matrices is given by Hawkins [1981]. 

EXAMPLE 6.7 In Table 6.3 we have bivariate observations given by 
Lubischew [1962: x14 and x18 from Tables 4-61 on specimens of three species 
of male flea beetles, namely, 21 specimens of Chaetocnema concinna, 31 
specimens of Chaetocnema heikertingeri, and 22 specimens of Chaetocnema 
heptapotamica. The variables measured were 

x1 = the maximal width of the aedeagus in the forepart (in microns), 

x2 = the front angle of the aedeagus (1 unit = 7.5"). 

Rounded to two decimal places for ease of exposition, the three sample means 
for the species are, respectively, 

146.19 124.65 138.27 
"'= ( 14.10)' '"= ( 14.29)' ''.= ( 10.09)' 

and the corresponding sample dispersion matrices S, ( i  = 1,2,3) are 

31.66 -0.97 21.37 -0.33) ,  ( U::: ( -0.97 0.79 1 9  ( -0 .33  1.21 

Since these are similar, and bearing in mind the robustness of linear discrimi- 
nant functions to unequal group dispersion matrices, we can use a pooled 
estimate 

( -0.56 1.01 
3 3 

sP = C ( n i  - 1)S,/ C (n i  - 1) = 
i = l  i- 1 

In the face of ignorance about species proportions, we assume n, = r2 = q = 4 
for the prior probabilities and calculate three discriminant functions [see 
(6.9811 

Li(x)  = logni - 4Ei.SP-'?Zi.+ ?ii .Sp-'~ ( i  = 1,2 ,3) .  



TABLE 6.3 Two Measurements on Samples of Three 
Species of Flea-Beetles" 

C. concirina 
- 

X I  

150 
147 
144 
144 
153 
140 
151 
143 
144 
142 
141 
150 
148 
154 
147 
137 
134 
157 
149 
147 
148 

A2 

15 
13 
14 
16 
I ?  
15 
14 
14 
14 
15 
13 
15 
13 
1s 
14 
14 
1s 
14 
13 
13 
14 

C. heikertingeri C. heptapotamica 

X I  x2 X l  x 2 

__ 

120 
123 
130 
131 
116 
122 
127 
132 
125 
I19 
122 
120 
119 
123 
125 
125 
129 
130 
129 
122 
129 
124 
120 
119 
119 
133 
121 
128 
129 
124 
129 

14 
16 
14 
16 
16 
15 
15 
16 
14 
13 
13 
15 
14 
15 
15 
14 
14 
13 
13 
12 
15 
1s 
13 
16 
14 
13 
15 
14 
14 
13 
14 

145 
140 
140 
131 
139 
139 
136 
129 
140 
137 
141 
138 
143 
142 
144 
138 
140 
130 
137 
137 
136 
140 

8 
11 
11 
10 
11 
10 
12 
11 
10 
9 
11 
9 
9 
11 
10 
10 
10 
9 
11 
10 
9 
10 

"Reproduced from A. A. Lubischew (1962). On the use of 
discriminant functions in taxonomy. Biometrics, 18, 
455-477. With permission from The Biometric Society. 

334 
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These are 

L,(x) = log$ - 619.746 + 6 . 7 7 8 ~ ~  + 1 7 . 6 3 6 ~ ~ )  

We assign a new observation x to the species with the largest value of 
L,(X) - log+. 

Alternatively, we can use the functions 

0, j ( x )  = Li ( x )  - Lj ( x )  

namely, 

& ( x )  = -132.46 + 0 . 9 4 ~ ~  + 0.33x2, 

D~,(x) = 18.34 - 0 . 5 0 ~ ~  + 3 . 8 7 ~ ~ )  

D,,(x) = -114.13 + 0 . 4 5 ~ ~  + 4.19X2. 

The assignment rule is now as follows: If D,,(x) > 0 and D,,(x) > 0, assign to 
GI; if Dl,(x) < 0 and D23(~) > 0, assign to G,; otherwise assign to G3. In Fig. 
6.4 we have drawn in the three lines Dij(x) = 0 showing the three assignment 
regions. The three lines meet at a point as 

and a,D,,(x) + a2DZ3(x) = 0 is the equation of any line through the intersec- 
tion of D,,(x) = 0 and D , ~ ( x )  = 0. When the rule is applied to the data in 
Table 6.3, we find that only one observation, in group 1, is incorrectly assigned 
(to group 2). 0 

The logistic method also extends naturally to more than two groups using 
the assumption 

g 

= e Z t /  c 8) ( i  = 1,2 ,..., g), 
j = l  
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where 

= Poi + $/x, say, and 

zg = 0. 

We assign x to Gj  if, for j = 1,2,. . . ,g, 

For conditional and mixture sampling we can find estimates of { &}  and { 8,) 
by maximizing the conditional likelihood function (see Section 6.4.3) 

g m  

i-1 j - 1  

using quasi-Newton methods. This likelihood can also be used for separate 
sampling, except that it leads to estimates of aj + log(n,/n,) rather than of 

We note that Theorem 6.3 above can be generalized to the case of unequal 
costs of misclassification (see Exercise 6.13). Also the various estimates of error 
rates for the two group case carry over naturally to more than two groups 
(Exercise 6.18). Further models can be developed using a latent variable 
approach (Lauder 119811). 

Po, = a1 + lOg(T&)* 

6 . 1 0  SELECTION OF VARIABLES 

6.10.1 Two Groups 

Although misclassification probabilities tend to decrease as d increases (Urbakh 
[1971], Kokolakis [1981], Exercise 6.15), the cost of a vector observation goes 
up with d. Also, both the precision of estimation and the robustness of various 
discriminant functions such as the LDF and QDF fall off with increasing d. 
One might therefore ask whether x(l), a subset of k of the d variables in x‘ 
{ = (x(’)’,x(~)’)], will discriminate just as well. For MVN data with common 
dispersion matrix Z we can use a number of tests due to Rao (see Rao [1970] 
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for a review). Let 6 = (p,  - p r )  and 6, = (pp’ - py)). If  A; = 6’Z- ‘6 and 
A$ = 8;Z,i18, are the Mahalanobis squared distances for d and k ( <  d )  
variables, respectively, then a test of H,:  A; = A; is given by (Exercise 6.16) 

(6.100) 

where c = (n l  t n2) (n l  1- n2 - 2)/nlnZI and D j  and D i  are the sample 
squared distances. for example, 0: = (Ti, -- sZ,.)’S,-’(ll.- Ti, ). When No is 
true, F - Fd . L, “, + ~~- d -  , . ‘This result follows from Theorem 2.1 1 [Equation 
(2.91)] applied to the difference P, -- s2 Also, from (2.88), H,, is true if and 
only if 

(py’ - p y )  - z21cbl(p\’) - p(21)) = 0, 

that is, 

Therefore testing H,, is equivalent to testing that the conditional MVN distii- 
bution of x(’), given that x(’) is the same for both groups [Theorem Z.l(viii) in 
Section 2.21; that is, x(’) is sumcient for discrimination, as xc2) provides no 
further information about differences between the two groups. 

There is also a direct relationship between testing H ,  and testing whether 
certain regression coefficients in a multiple linear regression are zero. From 
(6.69) the LDF takes the form a + p’x, where = h = Z -‘6. Writing 

p’x = gjx‘” -t B;x‘,’, (6.102) 

we see, froni hxercise 6.17, that testing ff, is equivalent to testing $, = 01. 
Because o f  this close link with regression, it is clear that many of the 
techniques for selecting the “best” regression subset (Seber (1977: Chapter 121) 
can be applied to discrimination, for example, srepwise and forward selection 
procedures (Lachenbruch [1975a: Chapter 61, Jennrich [1977], Costanza and 
Afifi [ 1979]), “adequate” subsets based on simultaneous testing (McKily [1976, 
1977, 1978: p. 2611, McKay and Campbell [1982a]), Spjutvoll’s [1Y77] Pk plot, 
where P, is the probability that E’ exceeds its observed value in (6.100) (see 
McKay [1978] for details), and generating all subsets (McCabe [1975]). Several 
procedures based on canonical variates (discriminant coordinates) have beeri 
proposed, but these have been criticized by McKay and Campbell [1982a]. 

In the stepwise procedure the E-statistic (6.10) for testing A i  = 4; ,.’ serves 
as an F-to-enter or k-to-remove. At any given stage the variable with the 
largest F-to-enter is addcd to the current subset if its I.‘-value is larger than FIN, 
a specified threshold. Aftcr a variable has been entered, all the variables in the 
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subset are reexamined and the one with the smallest F to remove is deleted if 
its F-value is less than FouT, a second threshold. At each step we do not try to 
eliminate the variable that was just brought in or add the variable just 
eliminated. This can be automatically taken care of by choosing Fm 2 FoUT. 

Instead of a full stepwise procedure, we can use a forward selection method 
in which variables are brought in one at a time and are not tested for removal 
once they are in the subset. As with all stepwise and forward selection 
procedures, the choice of significance levels for testing is a problem, as at each 
stage we are dealing with the maximum (or minimum) of several correlated 
F-variables (see Draper et al. [1979] for references). For this reason Costanza 
and Afifi [1979] suggested using a significance level of 0.10 I a I 0.25 (prefer- 
ably the larger values) for testing A; = Aifl in the forward selection proce- 
dure. The conventional levels (a 2 0.10) lead to premature stopping, unless it 
is certain that there are only a few important variables. 

Unfortunately, stepwise procedures based on (6.100), testing for adequate 
subsets, and Pk plots depend very much on the assumptions of normality and 
equal dispersion matrices. These assumptions are not easy to test and may not 
be tenable. An alternative method for assessing the usefulness of a given subset 
is to use an estimate, Zact, say, of the actual error rate (e.g., e,, eapp: or ebmt of 
Section 6.3.1). For normal data (6.100) and Zact are similar critena, as larger 
values of F correspond to smaller values of eXt (see McLachlan [1980b]). In 
general, we would like to consider subsets that lead to an allocation rule with 
low P,, values. For example, Habbema et al. [1974a] used a forward selection 
procedure in conjunction with a kernel method of estimating the discriminat- 
ing function. Variables are brought in one at a time until the addition of a 
further variable leads to a neghgible decrease in e,. Beginning with d = 1, the 
variable xi is selected that minimizes e, when x = x,. Suppose this is xi,. For 
d = 2 we now consider all pairs (x,,, x , ) , j  f j , ,  and choose the pair, (x,,, xi*), 
say, that minimizes e,. For d = 3 we consider all triples (x,~, xi,, x,), and so 
on. This procedure gives an ordering of the xi and the process stops when the 
decrease in e, through introducing a further variable is less than some 
prescribed small number. 

If d is not too large (say, d < 20), it would be preferable to look at all 
subsets of k variables for k = 1,2,. . . ,d  and use some criterion for choosing 
the “best” overall subsets, or the best k-subset for each k. McCabe I19751 
proposed using Furnival’s I19711 algorithm and the U-statistic (Wilks’ A of 
Section 9.2.1) for selecting subsets, with good subsets corresponding to small 
U-values. For the case of two groups, small values of U correspond to large 
values of D i  [see (2.58)] and the best k-subset is the one with the largest value 
of Di .  Alternatively, we can use d,, as a criterion for selecting best subsets. 
However, as noted by Murray [1977b], there is a serious problem underlying all 
statistical subset procedures, irrespective of the measure used for comparing 
k-subsets. For a given k the number of values of P,, to be compared, (t), 
increases rapidly as k approaches 3d. Even if 8,, is an unbiased estimate of 
ex*, we are essentially dealing with ordered values of t,, when looking for the 
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best k-subset, so that the smallest ZaCt will tend to be an underestimate of the 
eact corresponding to that subset. The situation is even worse if we use an 
underestimate like eapp as our estimator of eact, though it should be emphasized 
that we use Z,,, for compurutiue purposes only in subset selection. Murray 
[1977b] gave the following results for the “best” k-subsets in a siniulated 
experiment with normal populations, d = 10, and n, == n 2  = 25: 

k :  1 2 3 4 5 6 7 8 9 10 

eat,: 40.1 36.2 33.3 30.8 28.8 27.0 25.4 24.0 22.7 21.5 

eapp: 25.2 18.0 13.9 11.5 10.6 10.0 10.8 12.2 15.3 21.4 

We note that e,, decreases as k increases, while eapp dips as k approaches 5. 
For this reason Murray suggests that once the best subset is found, then e,,,, 
should be estimated from an independent sample. 

Anderson [1982] has suggested a forward selection procedure based on 
logistic discrimination. Testing whether we can ignore d - k of the x-variables 
is equivalent to testing the hypothesis Ho that the corresponding B ’ s  in (6.102) 
are zero. This can be done using a likelihood ratio test based on 

Y = -  (6.103) 

where i,,, is the maxirrium value of the likelihood function L, of (6.70). When 
ffo is true, y is approximately x : - ~  and y plays the same role for logistic 
discrimination as F of (6.100) plays for normal data. In the forward selection 
procedure variables are brought in one at a time. Given k variables in the 
subset, the next variable lor consideration is the one that maximizes ,), 

and it is brought in if -- 2 log[ e,,,,/i,, , is significantly large. As with all 
stepwise procedures, thc test statistic is the largest of several chi-square 
statistics so that its distribution is not strictly asymptotically chi square. Since 
we are using maximum likelihood estimation, it transpires that any nonlinear 
nonnornial model can generally be approximated by a linear normal regression 
(see Seber [1980: Chapter 111). Lawless and Singhal [1978] exploited this 
relationship further and adapted the efficient algorithms of Furnival and 
Wilson [1974] for generating it11 the subsets, or just the rn best k-subsets 
(k  = 1,2,. . . , d ) ,  to nonnormal models including the logistic. They chose 
subsets corresponding to the smallest values of y in (6.103). 

A number of special procedures and associated computer programs for 
handling discrcte data are described by Goldstein and Dillon [1978] and Sturt 
[2981]. Instead of comparing A; with A;, Wolde-Tsadik and Yu [1979] 
suggested a different measure for comparing a set with a subset that they called 
the probability of concordance. 
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6.10.2 More Than Two Groups 

For the case of ni observations ( i  = 1,2,. . . ,g) from each of g normal 
populations with a common dispersion matrix, a generalization of (6.100) is 
available. If is Wilks’ ratio (see Section 9.2.1) for testing the equality of the 
g means, based on k variables, and A k + l  is the corresponding ratio when 
another variable is added, then a test for a significant change in A, (the 
so-called test for additional information of Section 9.5.3) is given by [see (2.73) 
and following (2.75)J 

F =  - - (2 - l), 
g - 1  

(6.104) 

where n = n1 + nz + . - + ng. We can select the variable that maximizes F 
or, equivalently, minimizes A k + l  (commonly called the U-statistic; McCabe 
[1975]). When g = 2, (6.104) reduces to (6.100) with d = k + 1. The above 
F-statistic is used in a number of popular computer programs such as SPSS 
and BMDP (see also Jennrich 119771). However, in contrast to the two-group 
case, a larger value of F does not necessarily imply a smaller ext. In fact, 
Habbema and Hermans [1977] provided an example where the smallest rather 
than the largest F-value gave the smallest eacf, and demonstrated the problem 
with simulated data. In general, the F-criterion tends to separate well-separated 
groups further instead of trying to separate badly separated groups. For these 
reasons, and the dependence on normality and equal dispersion matrices, the 
above F-test is not recommended, as it does not necessarily yield a subset with 
minimum eact. 

All the methods of the previous section apply to more than two groups. We 
noted there that the use of Pact as a criterion for the selection of a best k-subset 
leads to an underestimate of ext. The same problem was demonstrated by 
Rencher and Larson [1980] for the criterion Ak, which is biased downward for 
the best or near-best k-subsets. This bias is particularly pronounced if the 
number of variables d exceeds the degrees of freedom n - g. In this case a 
value of Ad cannot be obtained for the entire set of variables. We can expect A 
to share the same shortcomings as (6.100), in that it may lead to “best” subsets 
that do not have minimum eact. 

Habbema and Hermans [1977] compared five selection of variables pro- 
grams: DISCRIM (McCabe [1975]), BMW7M, BMDP7M, SPSS, and 
ALLOC-I (Habbema et al. [1974a]). They recommend the use of ALLOC-I, 
based on kernel estimation and the use of e,, for selecting the best variables, as 
the other methods require assumptions of normality and equal dispersion 
matrices and use F-statistics or A for subset selection. However, their program 
is much slower and operates as a forward selection procedure, since “an 
investigation of all possible subsets with the kernel method will take in general 
too much computer time.” Even with the forward selection procedure the 
computer time “is prohibitive for straightforward analysis of large scale 
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problems.” An extension of their program is ALLOC 80 (Hermans et al. 
[ 19821). 

A helpful review of selection procedures is given by McKay and Campbell 
[1982b]. 

6.11 S O M E  CONCLUSIONS 

The choice of method for estimating the allocation rule will depend very much 
on the nature of the data. If  the data are continuous and transformed io 
multivariate normality, then the LDF methods of Section 6.3.2 can be used, 
provided that the dispersion matrices for the transformed variables are not too 
different. However, it is not clear what differences in the sample dispersion 
matrices can be tolerated. If the dispersion matrices are widely different, the 
QDF can only be used if the training samples are big enough. Generally tile 
QDF is rather sensitive to moderate departures from normality, particularly 
skewness, and in most cases is probably not appropriate. However, the ranked 
versions RLDF and RQIIF of Section 6.5.2d look promising. For nonnormal 
data the LDF and QDF IIO longer provide optimal allocation rules, and this is 
generally reflected in widely dit€erent indiwdual error rates. The total erior rate 
is rather insensitive to departures from the optimal allocation rule (e.g., 
Beauchainp et al. (19801) and perhaps should not be used for comparing 
different models. Although the above comments refer to continuous data, most 
data, particularly in medicine, are a mixture of discrete and continuous, arid 
the LDF can then have poor properties for certain underlying correlation 
structures [e.g., when “reversals” can occur; see (6.45) and (6.46)]. The QDF is 
generally unsatisfactory for biriary data. 

The logistic approach is an attractive one, as it can be applied to a wide 
spectrum of distributions and is straightforward to compute. It is much more 
robust to nonriorniality than the LDF, it requires the estimation of fewer 
parameters, and it can be used for discrete, continuous, or nuxed data. 
However, as the form of the density functionf, is unknown, error rates must be 
estimated nonparametrically, using, for example, e, or eboo, (which is always a 
good idea anyway), and monitoring devices such as atypicality assessments [sce 
(6.37)] cannot be used. However, the posterior probabilities q, (x) can be 
estimated, though they may not be too accurate. 

Nonparametric procedures are also attractrve, as no distributional assump- 
tions are required. In particular, the kernel methods show considerable prom- 
ise, though they are at present slow cornputationally and further research is 
needed on sclecting the appropriate kernel and estimating the smoothng 
parameters. Using simulation, Van Ness and Simpson [1976j compared tlie 
LDF, QDF, and two kernel methods with normal and Cauchy kernels, 
respectively, for norninl data, equal dispersion matrices, and different values of 
d. There was essentially no  difference between the two kernel methods, thus 
supporting what appears to be a general consensus that the detailed shape of 
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the kernel is not so important as the more general properties of unimodality, 
smoothness, symmetry, and so on. They also showed that the kernel methods 
performed better than the LDF and QDF and were less sensitive to increasing 
d. Van Ness [1979] also provided evidence that a similar result holds for the 
case of unequal dispersion matrices. 

EXERCISES 6 

6.1 Show that (6.12) is equivalent to “X‘x is closer to A‘pl than X‘p,.” 
6.2 (a) A diagnostic test for gout is based on the serum uric acid level. 

Using appropriate units, the level is approximately distributed as 
N1(5,1) among healthy adults and N,(8.5,1) among people with 
gout. If 1% of the population under investigation have gout, how 
should a patient with level x be classified? Calculate the total 
probability of misclassification eopt and the posterior probabilities 
q i ( x ) ,  i = 1,2, for x = 7. 

(b) Calculate the total probability of misclassification for the minimax 
rule. 

(c) What assignment rule would you use if tlie probability of wrongly 
asserting that a person is free of gout is to be no greater than 0.1? 
Calculate the total probability of misclassification for your rule. 

(d) If the level in people with gout is approximately N(8.5,2), how 
should a patient with level x be classified? Find eopt for your rule. 

6.3 In the two-group discrimination problem suppose that 

where dl and 0, are known. If rl and r2 are the usual prior probabilities, 
show that the optimal classification rule (6.4) leads to a linear discrimi- 
nant function. Give an expression for the probability of misclassification 
P(112). Assume > 0,. 

6.4 An observation x comes from one of the two populations with prior 
probabilities nl = r2 = f and probability density functions 

f i ( x )  = Aie-‘Jx, x 2 0, 

where A, = 2 and A, = 1. Find the optimal rule of (6.4) and the minimax 
rule. Calculate the total probability of misclassification in each case. 

6.5 Omitting xl, from the observations x i j  ( i  = 1,2; j = 1,2, .  . . , n i ) ,  let s Z l ( j )  
be the mean of the n1 - 1 observations from G,, and Sp(,) the pooled 
unbiased estimate of the dispersion matrix. If uj = xlj - Xl., show the 
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following: 
(a) %,(,) = 7i1 - u,/(nl - 1). 
(b) (n l  + n 2  - 3)Sp,,, = ( n l  + n2  - 2)Sp - n,u,u;/(n, - I ) .  

Lachenbruch [ 1975a] 
6.6 Show that the linear discriminant function D,(x) of (6.39) takes the form 

O,(X) = 4 1 Q 2 2 ( ~ )  -- Qii(x)l, where 

Q , , T ( ~ )  = (X - Tir.)’SP-’(x - !is,) ( r ,  s = 1,2) .  

If one of the n ,  + n 2  saniple observations, say, z, is left out, show that the 
resulting LDF, D,(z), say, takes the form 

when z comes from G I .  Here v = n1 + n 2  - 2 and C, = n,/(n, - 1). 
Write down the corresponding expression for when z comes from G2.  
Derive similar results for the quadratic discriminant function 

[Hint: Use Exercise 6.5 and A3.3.1 

6.7 Derive Equations (6.41) and (6.42). 
6.8 Derive Equation (6.50). 
6.9 Show that (6.49) tends to the density function for the MVN distribution 

Lachenbruch [ 1975aI 

as v + 00. [Hint: Stirling’s approximation is 

l y k  -1- I )  - (27rky2kke-k ( k  > O).] 

6.10 If Q,,(x) is defined as in Exercise 6.6, the data are normal. and Z, = Z, 
= 2, show that 

= (111 - P J X  ’b - t(P1 + 

[Hint: Use Exercise 2.23.1 
Moran and Murphy [1979] 
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6.11 Using (6.56), find the maximum likelihood estimates of p, ,  and r,. 
6.12 Using Lagrange multipliers, show that maximizing (6.74) subject to (6.75) 

and (6.76) is equivalent to maximizing (6.77). 
6.13 Let c( j l i )  and P( j l i )  be the respective cost and probability of assigning 

an observation from G, to G,, and let c ( i ) i )  = 0. The expected cost of 
assigning an observation from G, is 

g 

~ ( i )  = c c( jl i ) P (  j l i )  
/=I 

and the total expected cost is 
g 

C(R,f) = r,C(i). 

The conditional expected cost of saying that an observation comes from 
G,, given its observed value is x ,  is 

1 1 1  

g 

c ( i l x )  = c 4Idq, (x) .  
1’1 

Given the assignment rule Assign to G, if x E R,, show that C(R,f) is 
minimized when 

R, = R,, = ( x :  c ( i ( x )  I c( j l x ) , j  = 1 , 2 , .  . . , g } ,  

If c( j l i )  = c for all i ,  j ,  i # j, show that the above result reduces to that 
given in Theorem 6.3 of Section 6.9. 

6.14 Given the model in Exercise 13, suppose that the T, are unknown. Let 
{ R o , }  be the partition defined above for some prior distribution, { r,*}, 
say, such that C*(l) = C*(2) = - 1 .  = C*(g). Show that the assignment 
rule based on this partition minimizes maxlS,,,C(i) with respect to all 
partitions. 

6.15 Show that reducing the dimension d reduces P(l(2) of (6.11) when 
rl = n2. [Hint: Use Exercise 2.20.1 

6.16 Using Theorem 2.11, derive the test given by (6.100). 
6.17 Show that testing &:A; = A: is equivalent to testing = (@k+l,. . ., 

&)’ = 0 in (6.102). 
6.18 How would you estimate P(i l j ) ,  P ( i l i )  and the total probability of 

misclassification P(R, f) for more than two groups? 
6.19 Let x = (xl, x2)” where x1 is normally distributed and x 2  is a binary 

random variable. Given that x comes from G,(i = 1,2), x 2  takes values 1 
and 0 with respective probabilitiesp, and 1 - p,, while x1 given x 2  = s is 
N l ( p t 3 ) ,  a2). Determine the optimal allocation rule and the corresponding 
probabilities of misclassification P ( i  b). 



346 Discriminant Analysis 

6.20 Suppose we wish to assign x to one of two bivariate normal popuIations 
N2(0,  C) and N,(p, C), where p = (pl. p,)’ and 

Find A* = p’C -lp. If sl = 7r2, for what values of p is the total probability 
of niisclassification greater than that when p = O? What happens when 

Cochran [1962] 
P1 = P2? 



CHAPTER 7 

Cluster Analysis 

7.1 INTRODUCTION 

Clustering is the grouping of similar objects using data from the objects. It is 
part of the general scientific process of searching for patterns in data and then 
trying to construct laws that explain the pattern. However, the goals of cluster 
analysis are varied and include widely different activities such as data “snoop- 
ing,” looking for “natural” groups of like objects to form the first stage of a 
stratified sampling scheme, hypothesis generation, and searching for a suitable 
classification scheme, two notable examples being the classification of plants 
and animals (taxonomy) and the classification of diseases. Clearly, different 
goals lead to different techniques, and to a casual observer there seems to be as 
many different cluster techniques as there are applications. For example, Good 
[1977] gives a classification of cluster methods based on 45 characteristics, each 
mainly of an either/or nature, so that the number of conceivable categories of 
methods is of order Z4’! The extent of the literature is seen in the reviews and 
books by Cormack (1971: 229 references], Jardine and Sibson [19?1b], 
Anderberg [1973], Duran and Ode11 [1974: 409 references], Everitt [1974], 
Gregson [1974], Hartigan [1975], Sneath and Sokal[1973: approximately 1600 
references], Clifford and Stephenson [19?5], Orlbci [1978: Chapter 4, ecological 
applications], and Gordon [1981]. In 1971 Cormack estimated the publication 
rate of articles on clustering and classification at over 1000 publications per 
year! Beginning with taxonomy (see Clifford and Stephenson [1975] for a 
historical perspective), applications have been made to many subjects among 
which might be mentioned archaeology, anthropology, agriculture, economics, 
education, geography, geology, linguistics, market research, genetics, medicine, 
political science, psychology, psychiatry, and sociology. The book by Hartigan 
[1975] provides a happy hunting ground for numerous applications, including 
over 40 data sets related to such diverse subjects as the contents of mammals’ 
milk, jigsaw puzzles, civil wars, car repairs, the appearance times of British 
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butterflies, and, one is tempted to add, “cabbages and kings.” Three detailed 
and interesting case studies are given by Gordon [1981: Chapter 71. 

With such diversity it  is pcrhaps not surprising that the sub-ject of cluster 
analysis lacks coherence, though there have been some attempts at providing a 
suitable structure using, for example, graph theory (Matula [ 19’71, Hansen and 
Delattre [ I  9781); and in the related subject of pattern recognition, fuzzy sets 
(Zadeh [1977], Gordon 11981: Section 4.21 and even category theory (Gordesch 
and Sint [ 19741). Much o f  the popularity of the sub-ject is due to the advent of 
electronic computers, though the explosion of methods in the 1940s is now 
being followed by a more critical evaluation. Fortunately some effort is going 
into providing efficient algorithms for the more useful methods instead of into 
generating still more techniques (e.g., Andersberg [1973: Appendix], Ilartigan 
[1975], Erislein et al. [1977: Part IV], Wishart [1978a], Everitt [Y979b], 
Spath [1980]). We recall the words of Dr. R. Sibson in his comments on 
Cormack’s [1971] paper: “ I  think the time has come for putting more effort 
into the cJicrent implementation of methods which are known to be useful and 
whose theoretical background is  well understood, rather than the development 
of yet more ad hoc techniques.” Sokal [1977j also commented, “ I  believe that 
the major e1Tort in classificatory work in the next few years should be devoted 
to comparison!; of different approaches and to tests of significance of classifica- 
tions. Work in these fields has so far been quite unsatisfactory,” We shall see 
later that much recent research has been along the lines suggested by Sibson 
and Sokal. 

It should be noted that cluster analysis goes under a number of names, 
including classification, pattern recognition (with “ unsupervised learning”), 
numerical taxonomy, and morphometrics. The reader is referred to Corniacks 
[1971] paper for a condensed summary o f  the many problems and differences 
of opinion in cluster analysis, and to Everitt 11974, 1979b] for a readable 
account of the more popular techniques. Because of lack of unanimity in the 
subject, I propose discussing the subject in fairly broad outlines, with emphasis 
on the strengths and weaknesses of the various approaches. 

‘There are three main types of data used in clustering (Kruskal[1977a]). The 
first is d-dimensional vector data xl, x2 , ,  . . ,x,, arising from measuring or 
observing d characteristics on each of n objects or individuals. We saw in 
Section 1.2 that the characteristics or variables may be quantitative (discrete or 
continuous) or qualitative (ordinal or nominal). It is usual to treat present- 
absent (dichotomous) qualitative variables separately. Although such variables 
are simply two-state qualitative variables, the two states are not generally 
regarded as being comparable, as the presence of a given character can be of 
much greater significance than its absence. A further complication arises if the 
“present” category is itself suhdivided further on a quantitative or qualitative 
basis, a so-called conditionally present variable. A detailed discussion on 
methods o f  changing from one type of variable to another is given by 
Anderberg [1973: Section 3.21: such conversions are useful in handling mixed 
data. Whatever the method used for coding the qualitative variables, the data 
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can be expressed as a matrix X = [ ( x i j ) ] ,  where 

and the aim of cluster analysis is to devise a classification scheme for grouping 
the x, into g clusters (groups, types, classes, etc.). In contrast to discriminant 
analysis (see Chapter 6), the characteristics of the clusters and, in most cases, 
the number of clusters have to be determined from the data itself. We may also 
wish to cluster the variables, that is, group the vectors ~ ( 1 ) .  For example, 
suppose n students fill out a teacher assessment questionnaire and give a rank 
value of 1 to 7 on each of d teaching attributes such as the organization of the 
course, legibility of writing, clarity of voice, approachability, and apparent 
knowledge of the subject. We may wish to see if the students form “natural” 
groups on the basis of their scores x , ,  or if the various attributes x(J) group 
naturally together. 

A second type of data encountered for clustering consists of an n x n 
proximity matrix [( cr,)] or [( dr3)] ,  where c, (d,) is a measure of the similarity 
(dissimilarity) between the rth and sth objects. A c , ~  or d ,  is called a 
proximity and the data is referred to as proximity data. 

A thrd type of data that is already in a cluster format is what might be 
called sorting data. For example, each of several subjects may be asked to sort 
n items or stimuli into a number of similar, possibly overlapping groups. 

All three types of data can be converted into proximity data and Cormack 
119711 lists 10 proximity measures. For example, the dissimilarity d, between 
observations x ,  and x, could simply be the Euclidean distance IIx, - xJ, and 
the use of such dissimilarity measures is described below. For sorting data we 
can base c,  on the number of subjects who place items r and s in the same 
group. Once we have a proximity matrix, we can then proceed to form clusters 
of objects that are similar or close to one another. An alternative approach, 
which avoids the use of proximity data, starts with vector data and produces 
clustering directly. The data are assumed to come from a mixture of g 
distributions, for example, MVN distributions, with unknown parameters and 
unknown mixing proportions 77, to be estimated from the data. However, the 
distribution theory is difficult, and some of the problems are highlighted by 
Hartigan [1977, 19781, who provides some conjectures and a few solutions (see 
also Section 7.5.4). 

There are basically three types of clustering available: 

(1) Hierarchical clustering. The clusters are themselves grouped into bigger 
clusters, the process being repeated at different levels to form what is 
technically known as a tree of clusters. Such a tree can be constructed 
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from the bottom up (see Fig. 7.5) using an agglomerative method that 
proceeds by a series of successive fusions of the n objects into clusters, 
or from the top down using a divisive method which partitions the 
total set of n objects into finer and liner partitions. The formcr method 
begiris with n clusters, each of one object, and ultimately ends up with 
a single cluster of I I  objects, whereas the latter method consists of the 
reverse process. The graphical representation of hierarchical clustering 
given by Fig. 7.5 is called a dendrogram. Clearly the investigator must 
decide at what stage he wants to stop t.he process of fusion or  division. 

( 2 )  Ptrrtitioning. Here the objects are partitioned into nonoverlapping 
clusters. 

(3) Overlapping clusters. 

In order to carry out a cluster analysis a riumber of algorithins are needed. 
‘These may be described as (Hartigan [1975]) sorting (e.g., objects are sorted or 
partitioned into groups on the basis of a single variable), switching or realloca- 
tion (after a partition an object may be switched from one cluster to another), 
joining or fusion (near clusters are fused to form a new cluster), splitti,ng or 
division (the reverse of  joining), addition (a clustering structure or a set of 
cluster centers is already available and each object is added to it in turn in 
some optimal fashion), and smrching through the eligible cluster structures for 
the one that satisfies some optimality condition. 

The biggest probleni with trying to develop clustering methods is that the 
notion of a cluster is not easy to define. Williams et al. [1971b] commented that 
“there are now so many variant uses of the word that it would probably be 
better if we all avoided it completely.” Clusters come in all shapes and sizes 
and some of the problems are indicated in Fig. 7.1. For spherical clusters, like 
those in Fig. 7.lu, most methods would arrive at an adequate description; 
however, for long thin clusters like those in Fig. 7.16, a method that uses 
interpoint distances may give misleading results, as points B and C in the same 
cluster are further apart than .4 and B, which are in different clusters. Also, if 
the algorithm tends to produce spherical clusters, it inay produce four clusters 
(as shown with dotted lines) inslead of two: ‘This effect is dernunstratcd bv 
Everitt [1974: p. 741. Some algorithms use a nearest neighbor concept of 
linking up adjacent points in a cluster, and this can lead to a chaining eifect. 
For example, in Fig. 7.lc, A is close to B, B is close to C, and so on, arid if we 
work with just pairs of points, i l  is likely that we end up with one cluster 
instead of two. 

In the light of the above examples, clusters could be defined as simply 
regions of high density. However, we are then faced with deciding between the 
compactness of the cluster as a primary criterion, or the clarity of the 
separation between the clusters. Figure 7.2 gives a picture of univariate density 
of points along a line. If compactness is important, then we might decide 011 
three or more clusters; if clarity of separation is important, then we would 
probably decide on two clusters. 
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(C )  

Fig. 7.1 Three types of clustering. ( 0 )  Spherical clusters. (6) Two or four clusters. (c) Chaining. 

Distance 

Fig. 7.2 Density of points along a line. 

7 . 2  PROXIMITY DATA 

7.2.1 Dissimilarities 

Perhaps the most common dissimilarity measure for measuring the nearness of 
two points is a metric A that maps Rd X Rd onto R' and satisfies the following 
axioms: 

(1) A(x,y) 2 0, all x,y in Rd. 
(2) A(x,y) = 0 if and only if x = y. 
(3) A(x,y) = A(y,x), all x,y in Rd. 
(4) A(x,y) 2 A(x,z) + A(y,z), all x,y,z in Rd. 

Assumptions (1) and (2) imply that A is positive definite, assumption (3) 
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implies symmetry of A,  and (4) is the well-known triangle inequality. Using the 
so-called “ L,-norm,” we have the family of Minkowski metrics 

the most common being the L, or “city block” metric, the L, or Euclidean 
metric Ilx - yI\, and the sup-norm ( p  = 00) metric 

We note that A,,(x, y )  I A,(x, y) for p 5 q and all x, y. 
The L ,  metric is easy to evaluate and is used by Carmichael and Sneaih 

[I9691 in their TAXMAP procedilre. The sup-nsrnm is also simple computa- 
tionally, but it involves a ranking procedure that could be very sensitive to a 
change in scale of one of the variables. The Euclidean distance is very popular, 
and, given observations x, ,  x,,. . . ,xn, we can define 

(7.2) 

as the dissimilarity (distance) between xr  and x,. However, a change in scale 
can have a substantial egect on the ranking of the distances. For example, 
suppose we have bivariate measurements, height and weight, on three objects, 
namely, 

Object Weight (gm) Height (cm) 

7 
2 

10 

Then d,, == 11.2, d,, := 20.2, and d,, = 12.8, so that object A is closer to B 
than C. However, if the heiglil is measured in millirneters, the respective 
distances become 51.0, 36.1, and 80.6, so that object A is now croser to C. In 
an attempt to overcome this problem each variable could be scaled by dividing 
by its range or sample standard deviation s, = { Z,(x,, - X , )2 / (n  - 1)}’l2, 
that is, x,/ is replaced by v,,/sJ. Ths method will remove the dependence on 
the units of measurement, but It has other problems. For example, it can dilute 
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the differences between clusters with respect to the variables that are the best 
discriminators. The interpoint distances within clusters become larger relative 
to between-cluster distances, and clusters become less clear-cut (see Fleiss and 
Zubin 119691, Hartigan [1975: pp. 59-60]). Looking at it another way, suppose 
we initially scale the variables so that within-cluster sample variances of the 
variables are unity. If we now rescale all the variables to have unit variances 
with respect to the whole data set, then those variables with relatively large 
between-cluster variances will be reduced in importance, as their scaling 
factors are larger. This means that the overall between-cluster variance will be 
reduced relative to the within-cluster variance and the clusters will become less 
distinct. Ideally we would like to scale the data so that within-cluster variances 
are approximately equal. For example, suppose Fig. 7.3 gives probability 
contour maps C, and C, for two bivariate normal distributions, that is, the 
probability that a point from the distribution lies within the outside ellipse of 
Ci is 0.9, and so on. Clearly point P should be grouped with C,, as, in terms of 
probability, it is “closer” to the center (mean) of C,; the unweighted Euclidean 
distance is not appropriate here, as it would group P with C,. However, scaling 
so that within-cluster variances are approximately equal would help to even up 
the two contour maps, Unfortunately this method of scaling begs the question, 
as the clusters are not known a priori. 

The effect of scaling can depend very much on the skewness of the data. An 
extreme case is a highly skewed binary variable taking values 1 and 0 with 
relative frequenciesp and q (= 1 - p)  in the n objects, wherep is very small. 
The sample variance pq (= p) will be small and division by fi will inflate 
the importance of this variable. 

Fig. 73 Probability 
normal distributions. 

contour ellipses for two bivariate 
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To overconie not only the scaling problem, but also correlation effects 
among the variables, the Mahalanobis distance 

(7.3) 

where S = C,(x, - j i ) (x ,  - K)’/(n - l), has been proposed as a distance 
measure (see Exercise 7.1). This measure is invariant to transformations of the 
form yl = Ax, + b, where A is nonsingular (see Exercise 7.2). However, as 
Hartigan [1975: p. 631 comments, invariance under general linear transforma- 
tions seems less conipellirig than invariance under simply a change of measur- 
ing units for each variable. Hartigan then goes on to argue that use of (7.3) 
reduces the clarity of the clusters even more than scaling to unit sample 
variances. Suppose, for example, that the data consists of two similar, well-sep- 
arated spherical clusters, each with nk points and centroids X k  (k  = 1,2), as 
indicated in Fig. 7.4. The grand mean K = (n& + n 2 X 2 ) / ( n ,  + t i , )  will lie on 
the line L joining the two centroids. Now the first principal component is a’x, 
where a is the direction of the Line through X that minimizes the sum of the 
squares of the distances of all the points from the line [see after (5,17)]. Clearly 
this line will be close to L and the second component will comespond 
approximately to the line M through % perpendicular to L. Since the distances 
from M are much greater than from I,, the first principal component (obtained 
by projecting orthogonally onto I , )  will have a large sample variance compared 
with the second component: These two variances are the eigenvalues of S. If 
we use the Mahalanobis distance instead of the Euclidean distance, we are 
effectively replacing the x, by S -‘/’x,, which have a sample covariance matrix 
S-’/’SS- = I,. ‘This nieans that the two principal components are stan- 
dardized to have equal sample variances. With this new scaling, the withln- 
cluster distances increase relative to the between-cluster distances and the 
clusters become less distinct. 

It would seem preferable to replace S in (7.3) by the pooled cluster estimate 
Sp [ = W/(n - g )  of Section 5.8). Although this involves the same circular 
problem as with scaling when the clusters are unknown, the estimate Sp could 
be recalculated, as the cluster structure changes. However, from their simula- 

M 

I 
I 

Fig. 7.4 Two similar well-separated spherical clusters. 
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tion study, Maronna and Jacovlus [1974] felt that neither version was worth 
using. 

Various scaled versions of the L, metric have also been used. For example, 
Gower [1971a] scales each variable by its range, which leads to the metric 

where R, is the range of the variablej. The Bray-Curtis [1957] measure, which 
is still used occasionally in ecology, takes the form 

(7.5) = 1 - 2 C / ( A  + B ) ,  

where A = Cjxrj ,  B = Cjxsj ,  and C = C,min(x,,, x,,). This measure is not 
necessarily a metric (see Exercise 7.3). Another measure, which is a metric for 
positive variables (see Exercise 7.4), is the so-called Canberra metric, 

introduced by Lance and Williams [1966, 1967bl. It is generally insensitive to 
skewness and outlying values. 

The question of scaling is clearly a difficult one and there is a general lack of 
guidance in the literature. Applying some form of scaling is equivalent to 
weighting the variables and, unfortunately, no satisfactory scheme for weight- 
ing variables has been proposed (Sokal [1977]). In some experimental situa- 
tions it may be possible to use certain reference objects as a model for 
standardization (Stoddard [1979]). Clearly, programs with automatic scaling 
built in should be avoided; the experimenter should have the option of whether 
or not to scale. 

A measure of dissimilarity d ,  between objects r and s need not be a metric. 
In Section 5.5.1 we defined it as a function satisfying d ,  2 0, d,, = 0, and 
d ,  = dsr.  It is then possible to have d ,  = 0, but object r different from object 
s. As Sibson [1972] argues convincingly, order relationships are more im- 
portant than numerical values, and a monotonic increasing function of a 
dissimilarity coefficient might do just as well. For this reason the metric 
triangle inequality is not an important requirement, as a monotonic transfor- 
mation of a metric need not satisfy the triangle inequality, for example, the 
square of the Euclidean metric (see Exercise 7.6). 
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7.2.2 Simrluritres 

Similarity coefficients have a long history and in the early literature were 
usually known as association coefficients. For example, suppose the J variables 
or characteristics are dichotomous, indicating the presence (+ )I or absence ( - ) 
of each characteristic. Then, for each pair of the n objects, we can form the 
usual two-way contingency table given by ’Table 7.1, where, for example, j3 IS 
the number of characteristics present in object r hut absent in object s. 
Numerous measures of association crsr satisfying 0 5 c,, I I, haw been pro- 
posed and Clifford and Stephenson [1975: pp. 54-55] list 11 (see also Ander- 
berg [1973: Table 4.531). The most popular measures are Jaccard’s [1908] 
coefficient a / ( a  + p t y ) ,  Czekanowski’s [1913] coefficient 2a/(2a + /3 + I), 
and the simple matching proportion (a + s ) / d .  The choice of a coefficient 
depends very much on the relative weights given to positive matches (a>  and 
negative matches (6).  Clearly thcre are situations, in numerical taxonomy, for 
example, where the joint absence of a characteristic would carry little or no 
weight in comparison with the joint presence, and the matching coeficient, 
with equal emphasis on both categories, would not be appropriate. However, 
the matching coefficient would be appropriate if the variables were all nominal 
with two states, the states simply being alternatives with equal weight. The 
above measures of association can be extended to nominal variables with more 
than two states (Anderberg [1973: Section 5.41). For example, we can calculate 
the matching coeficient as the proportion of the nominal variables that match 
for two objects. 

With quantitative variables, one measure of sirmlarity between x, and xs ,  
the observations on objects r and s, is the correlation of the pars ( x r J ,  x s J ) ,  
j = 1,2,. . . ,d, namely, 

K,)(x,, -- 

(7.7) 

TABLE 7.1 Number of Characteristics Occurring in, or Absent from, Two Objects: 
(Y Comrnon to Both Objects; /3 and y Occurring in Only One Object; 8 Absent 
from Both 

~- 

Objects 

Present ( -k ) Absent ( - ) Sum 

Present ( t ) 11 B 

Absent ( - ) Y 6 
Object r 

n -t /I 

Y + 8  
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and -1 I c,, I 1. Apart from not satisfying axiom (1) below, this measure, 
however, has certain disadvantages. For example, if c,, = 1, it does not follow 
that x, = x,, only that the elements of x, are linearly related to those of x, (see 
Exercise 7.9). Also, what meaning can we give X,., the mean over the different 
variables for object r? For these and other reasons, the correlation coefficient 
has been criticized by a number of authors (e.g., Fleiss and Zubin [1969]). 
Although there is some difference of opinion, the evidence would suggest that 
dissimilarities based on metrics are better proximity measures than correla- 
tions. Cormack [1971] states that the “use of the correlation coefficient must be 
restricted to situations in which variables are uncoded, comparable measure- 
ments or counts; it is not invariant under scaling of variables, or even under 
alterations in the direction of coding of some variables (Minkoff [1965]).” 

A large number of similarity measures have been proposed in the literature 
and they can be categorized mathematically in several ways (e.g., using trees in 
Hartigan [1967]; see also Duran and Odell [1974: Chapter 41). If 9 is the 
population of objects, then we can define a similarity as a function that maps 
9 x 9 into R’ and satisfies the following axioms: 

(1) 0 5 C(r ,  s) 5 1 for all r ,  s in 9. 
(2a) C(r ,  r) = 1. 
(2b) C(r ,  s) = 1 only if r = s. 
(3) C ( r ,  s) = C(s ,  r ) .  

We shall write c ,  = C(r ,  s) and use the notation C(xr ,  x,) for vector data. 
The Jaccard and Czekanowski coefficients satisfy the above axioms. 

Gower [1971a]) has proposed an all-purpose measure of similarity 

d 

where crSJ is a measure of similarity between objects r and s for variablej. Here 
wrsJ is unity except when a comparison is not possible, as with missing 
observations or negative matches of dichotomous variables, in which case we 
set c,, = wrs, = 0. In Table 7.2 we have the appropriate coefficients for a 
dichotomous variable or a two-state qualitative variable. With a multistate 
variable (ordinal or nominal) of more than two states, we set crsJ = 1 if objects 
r and s agree in variable j ,  and crsJ = 0 otherwise: In both cases wrs, = 1. For a 
quantitative variable, wrsJ = 1 and 

crsj = 1 - I Xrj  - xsj I / R j  

where R j  is the range of variable j and xi j  = x r j / R j .  Thus if we have d, 
quantitative variables, d ,  dichotomous variables, and d, multistate variables, 
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then 

where a? and S, are the number of positive and negative matches, respectively, 
for the dichotomous variables, and m3 are the number of matches for the 
multistate variables. If all the variables are dichotomous, then crS reduces to 
Jaccard’s coefficient, whereas if all the variables arc two-state, then c,, reduces 
to the matching coeficient. Williams and Lance 119771 do not recommend its 
use if the continuous data are highly skewed, as the range is very sensitive to 
skewness. 

Gower [l971a] showed that [(c,~)] is positive semidefinite for his coefficient. 
From (5.73), d ,  = (2 -- 2 ~ , , ) ‘ / ~  satisfies the triangle inequality, being the 
Euclidean distance measure foi some configuration of points (the factor 2 may 
be omitted). 

A dissimilarity coefficient can always be obtained from a similarity by 
setting d,, = 1 - c,, though d,, will riot be a metric unless c,, satisfies h o r n  
(2b) above and d ,  satisfies thc triangle inequality. For example, if we apply the 
scaled Euclidean metric IIx, - x & / d  or the Canberra metric (7.6) to binary 
0-1 data, we get ( p  -t y ) / d ,  the “one-complement” of the matching coefficient 
crS, so that 1 - c, is a metric. Similarly, we find that the one-complements of 
the Jaccard and Czekanowski coefficients satisfy the triangle inequality (Ihnr 
[1965]) so that they are also metrics. 

TABLE 7.2 Gowcr’s Similarity Coefiicients fol 
(a) Dichotomous and (b) Two State Qualitative 
Variablcs [see Equation (7.8)] 

(a) Presence/absence of dichotomous variable/ 
_ _ _ _ ~  

--___ __ .-II 

__ - ObJCCt r t + 
Object s -1  

c r s  J 1 0 0 0 
Wrr, I 1 1 0 

- + - 

--_----I--.- ___ 

(b) Two state quahtative variable/ 

Objcct r 1 1 2 2 
Object J L 2 1 2 
C,J I 0 0 1 
Wr,j 1 1 1 1 

I- - _______ 

-_______ 



7.3 Hierarchical Clurtering: Agglomerative Techniques 359 

If we are interested in clustering variables rather than objects, the correla- 
tion coefficient for variables j and k is 

(7.10) 

where i1, is xi, suitably “standardized.” If we define the Euclidean distance d j k  

between standardized variables j and k by 

= c$.l‘/ + za:k - 2z21,dfik 
1 I i 

= 2(1 - q k ) ,  

then we can use d,k = I2( l  - tjk)]’’* to transform the similarity measure qk 
into a distance; the factor 2 can be dropped. However, there are problems with 
using a correlation coefficient if  one or both of the variables j and k are 
nominal (disordered multistate) variables. One solution has been proposed by 
Lance and Williams 119681 (see also Anderberg [1973: pp. 96-97]). Dichoto- 
mous variables can be handled using the values 0 and 1 (see Exercise 7.12). 
Some measures of association between nominal and ordinal variables are 
described by Agresti [1981]. Methods for estimating missing values are dis- 
cussed by Wishart [1978b] and Gordon [1981: Section 2.4.31. 

7 . 3  HIERARCHICAL CLUSTERING: AGGLOMERATIVE 
TECHNIQUES 

The agglomerative methods all begin with n clusters each containing just one 
object, a proximity matrix for the n objects (we assume, for the moment, that 
this is an n x n matrix D = [(d,)] of dissimilarities), and a measure of 
distance between two clusters, where each cluster contains one or more objects. 
The first step is to fuse the two nearest objects into a single cluster so that we 
now have n - 2 clusters containing one object each and a single cluster of two 
objects. The second step is to fuse the two nearest of the n - 1 clusters to form 
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n - 2 clusters. We continue in this manner until at the (11  - 1)th step we fuse 
the two clusters left into a single cluster of n objects. A number of difTererit 
distance measures for clusters have been proposed and the ones that are or 
have been widely used are described below. 

7.3.1 Some Commonly Used Methods 

a SINGLE LINKAGE (NEAREST NEIGHBOR) MEIHOD 

If C, and C2 are two clusters, then the distance between them is defined to be 
the smallest dissimilarity between a member of C, and a member of C, (Sneath 
[1957], Sokal and Sneath [1963], Johnson [1967]), namely, 

d(c,)t{y2) = min{ drs r E C , ,  s E c2 1 ,  (7.11) 

where r denotes “object r.” We demonstrate the fusion process with the 
following simple example. Let 

1 2 3 4 5  
1 ’ 0 7.0 1.0 9.0 8.0 
2 7.0 0 6.0 3.0 5.0 
3 1.0 6.0 0 8.0 7.0 
4 9.0 3.0 8.0 0 4.0 
5 \ 8.0 5.0 7.0 4.0 0 

D =  (7.12) 

and the distance matrix for the clusters is 

(1 ,3 )  2 4 5 
(1 ,3)  0 6.0 8.0 7.0 

4 8.0 3.0 0 4.0 
5 i 7.0 5.0 4.0 0 

The smallest entry is u2 = d 2 4  := 3.0, so that objects 2 and 4 are joined and our 
clusters become (1,3), (2,4), and (9, with 

i D = 2 6.0 0 3.0 5.0 . 
1 

d(1,3X2,4) = min{d(l)(l,3), d(4)(1.3)) 6.0, 

d(S)(2,4) = min{ d,, , 4, } = 4, = 4.0 
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and 

The smallest entry is u3 = d(5)(2,4) = 4.0, so that object 5 is joined to cluster 
(2,4) and the clusters are now (1,3) and (2,4,5). Finally, these two clusters are 
fused to give the single cluster (1,2,3,4,5). We note that 

{ d( l ,  3)(2,4) 9 d ( l ,  3)(5) 1 d(l ,  3)(2,4,5) = 

= d3* = 6.0 (= u4 ,  say). 

The above process can be described diagrammatically in the form of a 
dendrogam as shown in Fig. 7.5. The vertical scale gives a measure of the size 
of a cluster; tight clusters tend to have lower values. In constructing dendro- 
grams, some relabeling is generally needed so that each cluster is a contiguous 
sequence of objects, for example, the interchange of 2 and 3 as in Fig. 7.5 (for 
algorithms, see Exercises 7.13 and 7.19). Although the above technique of 
spelling out D, D,, D2, and so on, is a general one and can be applied to other 
agglomerative methods, it can be simplified for single linkage using the ordered 
d ,  as in Table 7.3. 

b COMPLETE LINKAGE (FARTHEST NEIGHBOR) METHOD 

This method is the opposite of the single linkage method in that the distance 
between two clusters is defined in terms of the largest dissimilarity between a 

1 5 2 4  

Fig. 7.5 Single linkage dendrogratn for dissimilarity matrix (7.12). 
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member of Cl and a member of C, (Sokal and Sneath f19631, McQuitty [1964]), 
namely, 

At each step we fuse the two clusters that are closest, that is, have minimum 
d(,,nc2). A dendrograni can be constructed as for the single linkage method 
using these minimurn values (see Exercise 7.14). 

C CENTROID METHOD 

The distance between two clusters is defined to be the “distance” between the 
cluster centroids (Sokal and Michener [1958], King 11966, 19671). If 

(7.13) 

is the centroid of the nl members of C, and X, is similarly defined for C,, then 

(7.14) 

where P is a proximity measure such as the correlation of (7.7), the squared 
Euclidean distance IlX, - ;iz,112. or some other dissimilarity such as A,(X,,E?) 
[see (7.1)]. We would start with a proximity matrix with elements P ( x , , x s )  
and, at each stage, the two nearest clusters are fused and replaced by the 
centroid of the new cluster. The centroid of C, u C,, the fusion of C, and C,, 
is given by the weighted average 

TARLE 7.3 Single-Linkage Clustering for Dis- 
similarity Matrix (7.12) 

Ordered Distances Clusters 

d , 3  = 1.0 
d14 = 3.0 
dJ5 = 4.0 
d,, = 5.0 
d7, = 6.0 
d :5 = 7.0 
d , ,  = 8.0 
d,, = 9.0 

(7.15) 
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d INCREMENTAL SUM OF SQUARES METHOD 

Using an idea suggested by Ward [1963] for the case of univariate data, 
Wishart [1969a] suggested fusing the two clusters that minimize I(cl)(c2),  the 
increase in the total within-cluster sum of squares of the distances from the 
respective centroids on fusing. If R is defined by (7.15), then (see Exercise 7.15) 

L 

a = l  
(7.16) 

(7.17) 

In particular, for objects r and s, 

Beginning with D = [(d:)], we can define the “distance” between two clusters 
by 

This method was proposed independently by several other authors under the 
names of minimum variance clusterjng, sum of squares method [Orlki [1967]), 
incremental sum of squares (Burr [1968, 1970]), and Ward’s method (Wishart 
[1969a]). A generalization of the method that allows for missing observations 
has been given by Wishart [1978b]. 

e MEDIANMETHOD 

This is the same as the centroid method, except that a new cluster is replaced 
by the unweighted average, = +(XI + %,) (Gower [1967a]). The method was 
introduced to overcome a shortcoming of the centroid method, namely, that if 
a small group fuses with a large one, it loses its identity and the new centroid 
may lie in the large group. 

f GROUP AVERAGE METHOD 

The distance between C, and C2 is defined to be the average of the nln2 
dissimilarities between all pairs (Sokal and Michener [1958], McQuitty [1964], 
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Lance and Williams [1966]), namely, 

g L,ANCE A N D  WILLIAMS FLEXIBLE METHOD 

Lance and Williams [1967a) showed that the preceding methods labeled a-c, e, 
and f (with P(f,,iZ,) = IIR, - S7,f in the centroid method) are special cases of 
the following forrnula for the distance between clusters C, and C, U C,: 

(7.19) 

Wishart [1969a] then showed that the incremental sum of squares method also 
satisfies the above fnmiuln. (see Exercise 7.17), and the values of the parameters 
are given in Table 7.4; n, is the number of objects in cluster C, ( i  = 1,2 ,3) .  
Lance and Williams [ 1967al suggested using a flexible scheme satisfying the 
constraints a1 t aZ + p == 1, a,  = (Y*, p c 1, and y = 0, and recommended a 
small negative value of /1 such ,AS @ = -0.25. Sibson [1971] noted that (7.19) is 
symmetric with regard to c', and C, for all the methods in Table 7.4 so that 
these methods are independent of labeling. 

Using the recurrence relationship (7.19), it is easy to devise a general 
program that incorporates all the above methods (e.g., CLUSTAN, produced 
by Wishart [1978a], and CLASS, described by Lance and Willianis [k967a] and 

TABLE 7.4 Parameters for Lance and WilIiarns [1967] Recurrence 
Formula (7.19) 

Parameter 

-. 1 1. Newest neighbor t 0 
2. Farthest neighbor t 0 t 

- .n1n2 
0 _I-__ 

nl 

n, -1- n 2  
3. Centroid 

( I 4  + 
4. Incremental 

5. Median L - a  0 

6. Group average nl 

n ,  -I- n, 
0 0 
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Williams and Lance [1977]). It is appropriate to start with D = [ (d(r)(s))] ,  so 
that the definition of d(cl)(c2) holds for clusters of single objects. This means 
that in some methods (c, d, and e) we use d,,,,,, = d;, whereas in others (a, b, 
and f) d(,,r,, = d,,, though in the latter cases (7.19) still holds if we work with 
df, instead of drs. 

Most of the methods can also be applied to similarities instead of dissimilar- 
ities, provided that the measure makes sense. For example, an average correla- 
tion in the group average method is generally unacceptable, as correlations can 
be negative. Also, the intuitive geometrical properties of the centroid and 
median methods are lost if correlations are used. In general, we can simply 
interpret nearness in terms of a small dissimilarity or a large similarity, and all 
that is required is to interchange the words maximum and minimum in the 
appropriate places. In the single linkage method, for example, we can define 
similarity as 

and we fuse the two clusters with maximum similarity. 

h INFORMATION MEASURES 

For noncontinuous data, another method, based on Shannon's information 
measure (Shannon and Weaver [1963]), has been proposed. If the d variables 
are all dichotomous, and a, objects in a cluster C of rn objects possess 
characteristicj ( j = 1,2, .  . . , d ), then the Shannon information content of C is 

d 

J ' 1  

I ,  = dm log m - [ u,log a, + (m - a,)log(m - u,)] . (7.20) 

We fuse the two clusters that have the smallest gain 

(7.21) 

To start the process we note that I, is zero for a cluster of one object. The 
method is insensitive to "skewed" variables, for example, rare attributes 
missing from most of the objects. It can also be adapted to categorical and 
continuous variables, though there are difficulties (Williams and Lance [1977]). 
For example, the information gain from a multistate variable can be rather 
large and tend to dominate the clustering process; the number of states should 
be kept small (no more than, say, 5 )  where possible. Continuous variables have 
to be converted into discrete variables with a consequent loss of information. 
For this reason the method is best avoided in most situations where the 
variables are largely quantitative. 
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Another information measure that has becri used is that of Brillouiri [19621, 
which uses the function log n! rather than n log tz in (7.20). However, there 1s 
not a great deal of diKerence between the two measures, as one is monotonic 
with respect to the other (see Clifford and Stepherison [1975: Appendix A] for 
an elementary summary). I n  general, the Shannon measure applies to a sample, 
whereas Brillouin’s measure is appropriate for a population. The latter is 
discussed in some detail by Pielou [1966, 19691. 

A new entropy-based technique for binary data has been proposed by Buser 
and Baroni-Urbani [1982]. 

i OTlIEH METHODS 

Two other methods that provide a compromise between the extrenics of single 
and complete linkage are k-clustering (see Ling [1972, 1973a], Matula [1977: 
p. 1051) and r-diameter clustering (Hubert and Baker [1977]). These methods 
have not yet received much attention in the literature and their main use at 
present seems to be for comparing clustered data with “random” data. 
D’Andrade [1978] has proposed a third method, called U-statistic hierarchical 
clustering, that apparently performs better than either single 01’ complete 
linkage on the basis of the y-criterion [see (7.25)]. 

EXAMPLE 7.1 In a study of English dialects, Morgan [1981] compared 25 
East Midland villages to see if they use the same words for 61) items. The 
measure of similarity between two villages is the percentage of items for which 

TABLE 7.5 
East Midland Villages” 

Similarity Matrix (Lower Triangle) of Dialect Similarities Between 25 

N13 
N14 
LI 
L3 
Id 

71 
58 57 
49 45 48 
63 63 41 59 
64 66 50 51 71 _. 

L6 71 75 52 5J 71 68 
L8 52 56 36 34 60 58 69 
LI1 46 50 57 31 42 43 43 44 
LIZ 
L13 
L15 
Lei I 
Lei4 
La8 
Lei10 
RI 
Nthl 
Nth3 
Nth4 
NlhS 
Hul 
el 
Bkl 
Bd I 

61 49 52 40 58 61 56 61 52 
51 60 56 33 53 48 55 48 0 59 
39 46 45 30 42 40 47 44 50 33 60 
42 50 5 3  28 41 36 4 1  1Y 48 41 58 48 
32 34 41 20 2 7  29 31 23 44 39 43 39 63 
32 39 50 19 25 25 16 37 43 41 48 49 64 63 
23 17 42 14 20 22 24 28 36 27 38 35 54 62 6R 
41 47 56 25 38 42 46 38 48 54 54 48 72 51 6L 59 
39 42 48 24 37 34 36 42 4 1  49 60 56 59 51 56 47 54 
32 36 43 22 22 24 14 29 47 34 45 41 38 46 51 42 44 53 
27 36 38 19 22 20 25 ZS 40 25 40 40 45 49 54 49 42 44 63 za 37 31 20 2s 25 31 13  41 29 41 37 46 48 49 47 43 44 58 59 
26 26 30 20 21 28 28 ?u 41 33 39 55 34 33 40 33 3w 40 sn w 47 
30 33 32 16 25 26 33 32 41 37 31 46 41 46 49 39 46 58 42 44 47 SO 
36 49 45 26 29 31 4 1  72 47 32 52 46 51 19 56 49 54 53 63 611 73 51 J1 
31 44 40 23 29 32 32 3 1  41 33 43 45 45 41 53 43 46 53 60 61 62 55 54 72 

NtI Nt3 Nt4L1 L3 L4 L6 LB LII 1.12 L13 LI5 Lei1 Lei4 Lei8 Lei10 RI Nlhl Nth3NtbQNtbSHul CI ELI 

“From Morgan [1981: Table 11. 
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the same word is used. The similarity matrix is given in Table 7.5 and the 
coding is the following: Nt (Nottinghamshire), Lei (Leicestershire), Nth 
(Northamptonshire), L (Lincolnshire), R (Rutland), Hu (Huntingdonshire), C 
(Cambridgeshire), Bk (Buckinghamshire), and Bd (Bedfordshire). The data are 
part of a larger survey of over 300 villages. Using single linkage, with 
similarities instead of dissimilarities, the dendrogram in Fig. 7.6 was con- 
structed, and from this Morgan obtained two sets of clusters corresponding to 
“threshold” similarities of 57.5% and 60.5%, as shown in Fig. 7.7. This 
separation of clusters suggest a north-south dichotomy of the villages that in 
fact corresponds to a series of east-west pronounciation boundaries, or iso- 
glosses, thus implying a relationship between what we speak and how we 
speak. 

In Section 5.9 the minimum spanning tree (MST) is mentioned as a useful 
graphical tool to assess the distortion that may exist in a two-dimensional 
representation of proximity data, in this case a map. Morgan [1981] produced 
the MST for the dialect data (Fig. 7.8) and it highhghts villages Bdl, Lei1 and 
L13, which have four or more links with other villages. In this example we need 
to watch out for ties. Morgan noted that Fig. 7.7 gives an acceptable picture of 
geographically coherent groups of villages. Also, outlying villages are less well 
attached to their clusters, for example, C1 is probably more similar to East 
Anghan dialects. 

r 
I 

64 7 
r 

B I I- “, 0 

I I 

c! 

Fig. 7.6 Single linkage dendrogram for similarity matrix in Table 7.5. From Morgan [1981]. 
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Fig. 1.1 
, 5 1  _- 

Two sets of single linkagc clusters wxultirig from sections of the dcndrogram of Fig. 
.5% similarity; ---, 605% siniilarity. From Morgan (19811. 

7 .6 :  

7.3.2 Cvmparison of Methods 

a MONOCONICITY 

If the fusion process is 10 be visually represented by a dendrogram wilh its 
reasonable property of increasing ordinate values (see Fig. 7.9, then we require 
ak = inin d(C,)(c.2) at step h to be monotonically increasing with k .  Now what 
happens at  steps k and k + 1 can be described in terms of four clusters C, 
( i  = 1,2,3,4). Suppose at step k we form C,  u C,, that is, 

and at step k + 1 we form either (1) C, U C, or (2) C ,  U C2 U C,. In case ( I )  
(7.22) implies that ak+ = dc(.3)(C4) > ak.  In case (2) we find that for the single 
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c1 

Fig. 7.8 Minimum spanning tree for data in Table 7.5 showing similarities between linked pairs 
of villages. From Morgan [1981]. 

linkage and complete linkage methods [with y Z 0 in (7.19)], d(CpXC,UCZ) = 
uk + is the minimum (respectively maximum) of d(c,Xcl) and d(c,)(c2). As both 
the Iatter are greater than d(C,XC2), a k + l  > ak. For the other methods (Table 
7.4; y = 0, ai > 0 for i = 1,2), we find from (7.19) and (7.22) that 

so that we require a1 + a2 + 2 1 for monotonicity (Lance and Williams 
[1967a]). Hence all the methods in Table 7.4 are monotonic except the centroid 
and median methods with which frequent “reversals” are possible at any 
particular stage, that is, ak+l < ak. These latter methods are therefore not 
recommended and are regarded as obsolete by several authors. Although Burr 
[1970] has shown that information methods using A 1  as ordinate of the 
dendrogram are not necessarily monotonic, Williams and Lance [1977] state 
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that “monotonicity failure in these cases is so rare that it car1 be disregarded.” 
The method is monotonic if we use I as the ordinate rather than AZ. 

Referring to Table 7.3, we have the following steps in the single linkage 
method: 

Group of Clusters a k  

where W k  is the group of clusters formed at step k and ak is the current value of 
minimum d(c,Kc,) (a, = 0, by definition). In general, any monotonic method 
that gives rise to a hierarchical clustering scheme with g,, %:,. . . , V,,, and 
0 = a, < a, < * * < a, can also be described in terms of a certain function 
called an ultrametric. Following Johnson [1967], let k be the lowest level at 
which objects r and s occur in the same cluster, that is, k is the smallest number 
in (0, 1, . . . , m) such that objects r and s are in the same cluster in Vk (called the 
partition runk by Hubert 119741). Then we define the function 6 from B x .9,9 
being the population of objects, to the real line by 

6 ( r , s )  = ak ( k  = O,1, ..., m). 

Now r and rare in the same cluster for all Vr so that S ( r ,  r )  = 0 as k = 0 is the 
smallest number. Conversely, if S(r, s)  = 0 for some r and s, then r and s are 
in the same cluster in ‘ir, and r = s. Clearly, 6 ( r ,  s) = 6(s, r )  and 6 will be a 
metric if it satisfies the triangle inequality. Let r, s, t be three objects with 
S( r ,  s) =: a, and S(s, t )  = a,. Define k = max[i, j ] .  Then objects r and s are In 
the same cluster in %‘,, and s and t are in the same cluster in W,. Because the 
groups of clusters are hierarchical, one of these clusters equals or includes tlie 
other, namely, the one belonging to %k. Thus r, s, t all belong to the same 
cluster in gk so that 

6 ( r ,  t )  s ak = max[a,, u,] 

or 

S(r, t )  2 max[b(r, s), S(s, I ) ] .  (7.23) 

This is called the ultrametric inequality and is stronger than the triangle 
inequality in that 

max[S(r. s),  ~ ( s ,  r ) ]  5 6(r ,  s )  + ~ ( s ,  I ) .  (7.24) 
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Thus 6 is a metric satisfying the ultrametric inequality, and constructing a 
(monotonic) dendrogram from proximity data is equivalent to imposing an 
ultrametric on the proximity matrix. This equivalence was also demonstrated 
by Hartigan [1967] and Jardine et al. [1967] (see also Jardine and Sibson 
[1971b]). We note that, as in Johnson’s proof, the above argument still holds 
for a, 5 u1 5 - - -  I a,,,, where the equality of two uk7s represents a tie (see 
Fig. 7.9). 

The above approach can also be used as a basis for comparing a dendro- 
gram with the original proximity matrix by comparing the pairs d ,  and S(r,  s). 
Various measures of “distortion” have been proposed (see Cormack [1971: 
Table 31 and Orlbci [1978: pp. 264-2761) such as the correlation r,, the 
so-called cophenetic correlation coefficient (see Farris [1969], Sneath and Sokal 
[1973], Rohlf [1974a]). It is suggested (Everitt [1978: p. 461) that if r, is very 
high, say, about 0.95, then the hierarchical clustering model represented by the 
dendrogram is a reasonable fit to the data. However, if r, is much lower, say, 
0.6 or 0.7, then the model is questionable. In this case one could also carry out 
one of the dimension-reducing or ordination techniques such as multidimen- 
sional scaling and compare the clusters suggested by the hierarchical cluster 
analysis with a two-dimensional reduction, as in Fig. 7.10. 

In the case of single and complete linkage, ranks are more appropriate for 
comparison, as both methods are invariant under monotonic transformations 
of the proximities. We can compare the ranks of the d,, with the corresponding 
partition ranks, which are the same as the ranks given by the S(r,  s). A 
popular measure based on ranks is the y-statistic proposed by Goodman and 
Kruskal [1954], which, although somewhat arbitrary, has several desirable 
properties (Hubert [1974]). The y-index can be characterized as the difference 
between two conditional probabilities, namely, 

y = pr[consistent ranking] - pr[inconsistent ranking], (7.25) 

where a consistent ranking for two pairs of objects implies that both orderings 
give the higher rank to the same pair, that is, if d ,  < d,, then S ( i ,  j) < 6 ( r ,  s). 
As several objects may link up in a cluster for the first time (as in Fig. 7.9)’ 
there may be some ties in the partition rank. However, omitting any ties in the 
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Fig. 7.10 Multidimensional scaling and hierarchical clustering shown on Multidimensional scaling and hierarchical clustering shown on same diagram. 

original proximities or partition ranks and using “untied” data only, 

(7.26) 

where C is the number of concordances and D the number of discor- 
dances. Baker and I-iuhert I19751 also suggest the measure a = U / ( C  + D )  

In general, a dendrogram representation of a proximity matrix is likely to be 
useful only if the data are strongly clustered and have a llierarcnical type of 
structure; otherwise, as demonstrated by Everitt [1974: Chapter 41, the dendro- 
gram cin be very misleading. For instance, in a dendrogram displayed on a 
printed page the objects have to be linearly ordered (see Exercise 7.19). Such 
an order may be misledcling, as two adjacent objects on the page may be far 
apart and may stay in difl’erent clusters right up until the final fusion of all the 
data into a single cluster. At the same time objects in widely separated stenis of 
the dendrogram may be more similar to each other than individids in their 
own stems. For example, in Fig. 7.11, where we have two clusters, A is closer to 
C than I) is to C. If the cluster started growing from point E ,  thcn C‘ and D 
would join up at about the same time and could even end up next to each other 
in the linear ordering on the page. 

Once a cluster analysis has been carried out, the sequence of objects can be 
reordered so that in the corresponding permuted proximity matrix. members of 
the same cluster always lie in consecutive rows and columns. The sizes o f  the 
individual proximities can then be represented by dots or symbols of increas- 

(= $11 -- Yl). 
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Fig. 7.11 Two clusters with points in different clusters 
being closer than points in the same cluster. 

ing size and darkness so that, in the case of dissimilarities, for example, clusters 
will show up as dark triangles near the diagonal of the dissimilarity matrix. 
This graphical representation of a proximity matrix forms the basis of a 
procedure, suggested by Ling [1973b], called SHADE (see Everitt [1978] for 
details and examples). 

A measure of stability or replicability has been proposed by Mezzich [1975] 
(see Solomon [1977]). The data are split randomly in two and the clustering 
method is applied to both sets. The two sets of S(r, s) can be compared using a 
measure of distortion. 

b SPATIAL PROPERTIES 

The initial proximities may be regarded as defining a space with known 
properties. However, as clusters form, it does not follow that intercluster 
distances define a space with the original properties. If the properties are 
retained, Lance and Williams [1967a] (see also Williams et al. [1971a], and 
Williams and Lance [1977]) describe the method as space conserving; otherwise 
they call it space distorting with confracfion or dilation. Although these terms 
are not formally defined, the authors describe a space-contracting method as 
one in which a cluster will appear, on formation, to move closer to some or al l  
of the remaining objects so that an individual will tend to add to a preexisting 
cluster rather than act as the nucleus of a new cluster. A more common 
description of the phenomenon is chaining, whereby objects are linked together 
by a chain of intermediaries, giving straggly clusters. 

In a space-dilating system, clusters appear to “recede” on formation and 
growth, so that individuals not yet in clusters are more likely to form the nuclei 
of new clusters. We now have the reverse of chaining, with clusters appearing 
to be more distinct than they really are. In particular, “nonconformist” 
clusters (e.g., outliers) can develop consisting largely of rejects from other 
clusters (see Watson et al. [1966] for an example). 

The single linkage (nearest neighbor) method is intensely space contracting 
and its chaining tendencies are well known (e.g., Williams et al. [1966]). For 
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example, in  Fig. 7.12 the duster of three points on the left would grow first and 
spread to the second cluster through the link in the middle so that a single 
cluster would result. We thus find that a single nonrepresentative proxinlity 
value can force the union of two otherwise dissimilar clusters at a premature 
level in the hierarchy. For these and other reasons there has been considerabk 
controversy over the usefulness of the single linkage method (see the papers by 
Sibson [1971], Jardine and Sibsou (1971a1, and Williams et al. [1971b] in Vol. 
14 of The Computer Jorrrrral). We saw, in the previous section, that a dendro- 
gratn with monotonically increasing levels is characterized by an ultrametric 
transformation. Jardine and Sibson [1968] argue that this transformation 
should satisfy a number of criteria and show that only the bingle linkage 
method satisfied all the criteria, the implication being that it is the only 
acceptable method. Sibson 119711 considers the problem of ties (equal proximi- 
ties or intercluster distances) and, assuming random choice, demonstrates that 
of all the methods in Table 7.4, only single linkage is independent of choice. 
Although ties may be rare in practice, they are inadequately discussed in the 
literature. Several solutions are suggested by Williams et al. [ 1971b1, who 
question the need for cluster methods to satisfy all of Jardine and 
Sibson’s proposed criteria and suggest a more pragmatic approach to clustering 
on the grounds that they do not find single linkage useful. They note that the 
ultrametric approach excludes the information statistic method: Here the 
ordinate values of the dendrogram must be calculated from the original data, 
and not from a proximity matrix. 

With regard to single linkage, Williams and Lance [1977] go as far as to say 
that “we never advocate its us<; unless there are special reasons for doing so.’’ 
Their stance is supported by the fact that single linkage is not very popular. 
Also, several studies comparing derived clusters with known structures (see 
Cunninghiim and Ogilvie [1972], Kuiper and Fisher [ 19751, Blashfield [1976]. 
Edelbrock and McLaughliri 119801, Golden and Meehl [1980]) suggest that 
single linkage i s  generally the least successful, with the group average and 
incremental sum of squares methods doing reasoilably well overall. The power 
studies of Baker and Hubert 119751 also indicate that single linkage is of 
limited usefulness. Baker [1974] shows that single linkage is more sensitive to 
certain types of data errors than complete linkage, while Hubert [1974] shows 
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I--- -- Fig. 7.12 Effect of chaining on single linkage. 
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that the latter tends to produce a partition rank closer to the original ranking 
when measured by y of (7.25). The superiority of complete linkage over single 
linkage is also demonstrated by Solomon [1977]. However, the relative perfor- 
mances of the various methods are very dependent on the type of input data 
and the distortion measure used for the comparison (Hartigan [1977: p. 61)). 
Also, Hartigan [1981] notes that single linkage has certain consistency proper- 
ties for high-density clusters. 

While single linkage is intensely space contracting, complete linkage is 
intensely space dilating, with the tendency to artificially sharpen cluster 
boundaries. A major weakness of complete linkage is its overall sensitivity to a 
single change in the rank order of the proximities. Matula [1977: p. 1151 gives 
an example of this and states that “this extreme sensitivity of the overall 
clustering provided by complete-linkage to a single transposition in the prox- 
imity data order suggests that a practitioner is well advised to avoid the 
complet e-linkage method .” 

The spatial properties of the other agglomerative methods tend to be 
between the two extremes of single and complete linkage. The centroid and 
group average methods are space conserving, the incremental sum of squares is 
space dilating, and the information statistic approach is strongly space dilating 
and must be used with caution (Williams and Lance [1977: p. 2801). Because of 
its space-dilating properties, the information statistic can also produce noncon- 
formist groups. For instance, Edye et al. [1970] gave an example where a set of 
51 objects produced two such groups. Sneath [1969] has pointed out that 
although clustering tends to produce low entropy (a quantity closely related to 
information), a regular distribution also has low entropy. 

The properties of the flexible method depend on the value of p. If p = 0, 
the method is space conserving; as /3 becomes positive, the method becomes 
increasingly space contracting; and as p becomes negative, the method be- 
comes increasingly space dilating (Williams et al. [1971a]). It appears that some 
dilation is appropriate to sharpen up cluster boundaries, but too much can lead 
to an artificial proliferation of clusters. A value of /3 = -0.25 is used by 
Williams and his co-workers in the “Canberra school.” 

It is clear that the above methods wil l  be affected by outliers (Kuiper and 
Fisher [1975]) and, from a practical point of view, hierarchical clustering can 
provide a useful visual method for pointing out outliers. 

C COMPUTATIONAL EFFORT 

For the iterative schemes in Table 7.4, based on (7.19), the distance between 
clusters can be calculated directly from the distances for the previous step so 
that the original proximity matrix need not be stored. A hierarchical method 
with this property is called combinatorid by Lance and Williams [1967a]. The 
information method, and the centroid method with a different dissimilarity 
such as the L,  metric, require all the data at each step and are therefore not 
combinatorial. Given the n x n proximity matrix, combinatorial methods 
require about in( n - 1) operations, whereas noncombinatorial methods re- 
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quire about d ( n  - 1j2 operatioils. If the pronmities have to be calculated from 
the raw data. then a further f h ( n  - 1) operations involving (;I pairs and d 
variables are required. 

Sibson 129731 has produced a very efficient algorithm for singlr linkage that 
can handle very large data sets of, say, 103-104 observations, while Defay 
119771 and Hansen and Delattrc [1978] have given efficient algorithms for 
complete linkage. Williams and Lance [1977] describe a suite of programs for 
both agglomerative methods and the divisive methods (described below). 
Dixon and Brown I19771 use the group average method in their algorithm 
BMDP-2M. Some general algorithms for handling very large data sets are 
given by Bruynooghe [1978]. For a useful computer package see CLUSTAN 
(available from St Andrews University, Scotland). 

7.4  HIE R A RC 11 I C A L C L U STER I N  <i : DIVISIVE T EC HN I Q U ES 

We mentioned in Section 7.1 that hierarchical methods of clustering are of two 
types, agglomerative and divisive. Williams and Lance [ 19773 note the follow- 
ing advantages of the divisive over agglornerative procedures: (1) The process 
begins at maxinium information content; (2) the division need not be con- 
tinued until we have II clusters of one object; and (3) if there are fewer 
variables or characteristics than objects, the computation needed is less, the 
time depending on d 2  rather than approximately ( n  -- 1)2, as with the ag- 
glomerative methods. 

With divisive methods, the first step is to divide the n objects into two 
groups. This can be done in 2" ' - 1 ways, so that even with a large computer 
it is only possible to examine every such division if ti is small. With moderate 
values of n ,  only a restricted search is possible. For this reason most of the 
early techniques are motrotlietic, that is, the split is based on a single variable 
only. Unfortunately, such a method is sensitive to errors in recording or coding 
the variable used for the division so that outliers (e.g., a nontypical measure- 
ment, the presence of a rare trait, the absence of a common trait) can lead to 
progression down a wrong branch of the hierarchy. By contrast, agglomerative 
methods are yolythetic by nature, as the fusion process is based on all the 
variables. Although a monothetic system can be made polythetic using iterative 
relocation of all objects at each division (Section 7.5.3), there are some 
problems in doing this with a mixture of quantitative and qualitative data, 
particularly if nominal variables are present. Williams and Lance [1977] 
conclude that monothetic divisive methods are still the only comparatively 
realistic approach to cluster analysis when n is very large and d IS  moderate. 
However, monothetic divisive programs are not favored in taxononlic studies, 
as they frequently lead to inisclassifications (Clifford and Stephenson [1975: 
p. 1031). 
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7.4. I Monothetic Methods 

If all the variables are dichotomous, we could divide the objects into two 
groups on the basis of the presence or absence of a single attribute A. We could 
choose A to maximize some given measure of distance between the two groups. 
For example, for each pair of attributes,j and k, say, we can construct a 2 x 2 
table of presences and absences like Table 7.1, but based on two variables 
rather than two objects, and calculate the usual chi-square statistic for a 2 x 2 
contingency table (see Exercise 7.12), namely, 

(7.27) 

One criterion is to choose A to maximize 

c 4 A .  (7.28) 
j :  j + A  

Once the first division has taken place, the same method is applied separately 
to each group. However, the method is not monotoriic, is affected by skewed 
data, and is apparently being supplanted by the following information method 
based on the information content, I, say [see (7.20)], of a cluster. For each 
attribute the objects are divided into two groups, depending on whether j is 
present or absent. If the corresponding information contents of each of the two 
groups are It/ and I - , ,  respectively, then the reduction in information due to 
the division is I - ( I + /  + I-,); A is chosen to minimize this reduction. The 
technique is widely used for handling large sets of dichotomous or binary data 
(Williams and Lance [1977: p. 2821). 

Multistate qualitative variables with k states can be treated as a string of 
k - 1 binary variables, with the division made on the presence or absence of a 
specified state, though a more satisfactory method is needed for ordered states. 

With observations on a quantitative variable, x,, say ( i  = 1,2, .  . . ,n ) ,  a 
natural split would be that which minimized the within-group sum of squares 
or, equivalently, maximized the between-group sum of squares [see (7.33) with 
d =  11 

2 2 B = nl(E, - K )  + n2(X2 - K )  

where E, is the mean of the nk values in group k (k  = 1,2), and E is the overall 
mean. However, instead of considering all possible splits, the following re- 
stricted procedure of Dale [1964] can be followed (Williams and Lance [1977]). 
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We rank the data x ( , )  < x(2) < . . I < .yn). and consider 

R = rX: +(n .- r ) X i  

for each r = 0, 1, . . . , n - 1, and make the split at the value of r that maxi- 
mizes R. 

The above procedure can be applied to the values of the first principal 
component of vector data, as in the polythetic POLIXV system of Williams 
and Lance [1977]. It can also be applied to each of the variables in ru rn  so that 
we obtain a maximum value of R or, equivalently, a maximum value of B ,  
Bmm. If T -- C,(x, -- X)?, then the variable with the highest B,,/T ratio can 
be used to split the parent group in two. 71iis approach is similar to that used 
in the autoniatic interaction detection method (AID) developed by Sonquist 
and Morgan [1963]. In AID we have a single response variable y ,  and predictor 
(independent) variables x I 1 ,  x I 2 , .  . . ,x ld ( i  = 1,2,. . . , t i ) .  The first split is de- 
termined by the predictor that gives the best split for the response, that is, 
which minimizes 

2 2 B = n 1 ( j ,  - j )  + n*(.ji2 - j )  . 

A generalization of this approach that uses several predictors at mce, called 
MAID-M (multivariate version of monitored AID), is given by Gillo and 
Shelly [1974]. A similar technique to AID has been used to partition sample 
means in analysis of variance models (see Worsley [1977] for references). 

7.4.2 Polylhetic Merho& 

MacNaughton-Smith et al. [1964] have proposed the following technique. At 
each step of the procedure we have a splinter group and the remainder. For 
each object in  the remainder we calculate its average dissimilarity with the 
other objects in the remainder and subtract its averagc dissimilarity with 
objects in the splinter group. If these numbers are all negative, the process 
stops; otherwise the object with the largest positive value is shifted to the 
splinter group and the process repeated. The splinter group is started by 
separating out the object with the largest average dissimilarity with respect lo 
the other it -- 1 objects. When the process steps, we have the first binary split 
into two clusters and we repeat the process on each cluster (see Everitt [1974: 
pp. 19-20] for a numerical example). 
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7.5 PARTITIONING METHODS 

7.5.1 Number of Partitions 

Suppose that the number of clusters g is determined in advance. A natural 
procedure would be to partition the n objects into g clusters so as to optimize 
some criterion. The number of possible partitions is (Duran and Odell [1974: 
Chapter 21) 

(7.30) 

where Pg,n is a Stirling number of the second kind. As with the divisive 
methods, this approach is impractical, as Pg, is astronomically large, even for 
small values of g. Fortier and Solomon [1966] discuss this problem and from 
their Table 1 we have, for example, P3.19 = 1.9 X lo8 and P6,19 = 6.9 x lo1'. 
If g is not specified, the situation is even worse,'as the total number of 
possibilities is 

n 

When n = 25, this number exceeds 4 X 10l8! Clearly a more restricted, less 
than optimal approach to the problem is required. For example, the bierarchi- 
cal techniques can be used to produce a partition with a given number g of 
clusters, but a major weakness of these methods is that an improper fusion or 
split at an early stage cannot be corrected later. However, we now consider 
partitioning methods that allow objects to be relocated. Such relocation 
techniques can, for example, be applied to the divisive but not the agglomera- 
tive methods, as the latter use a different criterion for the formation of a cluster 
from that used for relocation. 

7.5.2 Starting the Process 

The first step is to choose g points in &dimensional space as nuclei for 
initiating the formation of clusters. A variety of techniques for choosing the 
cluster centers have been proposed, namely, choose the first g points (Mac- 
Queen [1967]); select g points at random (Ball and Hall [1965], MacQueen 
[1967]), regularly spaced (Beale [1969a, b]), mutually farthest apart (Thorndike 
119531; see also Kennard and Stone [1969]), or at suitably spaced positions of 
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maximum density (Astrahan [1970], Anderberg [1973: pp. 157-3581); or choose 
g points “at random” in Rd,  assign the objects to form g clusters, and use thc g 
centroids as nuclei for a further partition (Jancey [1966], Forgy [1965]). Ball 
and Hall [1967] use the overall mean as the first nucleus, then select subsequent 
nuclei by examining the data points in their input sequence and accepting any 
data point that is at least some specified distance, 6, say, from all previous 
nuclei, and continue until they have g nuclei or have run out of data. Several 
values of 6 can be tried i f  the first value gives too few nuclei or examines too 
little of the data set. ‘Their algorithm is called the sphere-factor starting 
algorithm and is part of a cluster analysis package ISODAlA developed by the 
authors in 1965 arid described in detail by Hall and Khanna [1977]. A 
randomized version of this algorithm was suggested by Bonner ”643. Several 
other procedures are described by Anderberg 11973: Chapter 71. 

Once g cluster nuclei are chosen, the remaining objects are assigned to their 
nearest nucleus using an appropriate proximity measure, generally the 
Euclidean squaied distance. The cluster center, usually the centruid, can be 
updated either after each addition to the cluster (e.g., MacQueen’s [19671 
“k-means” method) or only after all the points have been allocated (Fogy 
[1965], Jancey [1966J). Nagy [I9691 gives a modification that perinits overlap- 
ping clusters. An initial partition can also be obtained by stopping a divisive 
hierarchical procedure at an appropriate level. Hartigan [1Y75: Chapter 31 
gives it number of “quick partition” algorithms. 

7.5.3 Reussigning the Objects 

The next step is to search for poor fits, that is, objects that should be 
reallocated to another cluster. For example, in Fig. 7.13 point P is closer to 
nucleus R than nucleus A ;  but once the clusters are formed, P is closer to the 
new nucleus A’ than the new nucleus B’. Each individual is scrutinized in turn 
and reassignment takes place it‘ it causes an increase, or decrease in the case of 
minimization, in the value of a given clustering criterion. Repeated passes are 
made through all the objects until  a local optimum of the criterion is reached, 
that is, no further improvement can be obtained by moving a siiigle object. 
Unfortunately, we do not know if a global oplimum has been achieved and it  
may be appropriate to try and improve the solution using different starting 
nuclei. For example, Hodsoii [ I971 J found the global maximum only 3 times in 
24 random starts. 

A simple procedure, suggested by Forgy [ 19651, is to consider each object in 
turn and reassign it if it is closer to the centroid of another cluster. After a pass 

Fig. 7.13 Reassignment of P after the clusters are formed. 
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through the data, the centroids are updated and the process repeated until 
convergence, that is, until no objects change their cluster membership. This 
procedure also forms the basis of ISODATA (Hall and Khanna [1977]). 
Modifications of the procedure were proposed by Jancey [1966], MacQueen 
[1967], and Hartigan [1975: p. 1021. Anderberg [1973: Chapter 71 gives a 
helpful discussion on some of these modifications. An efficient version of 
Hartigan’s algorithm is given by Hartigan and Wong [1979]. The above 
collection of methods and their variants are commonly described as “k-means,” 
or, in OUT notation, “g-means” algorithms, and tend to produce clusters of 
similar overall size (Everitt [1979a]). Some methods for handling missing values 
are given by Wishart [1978b]. 

Several other clustering criteria have been proposed and three of them are 
based on the fundamental matrix equation 

T = W + B ,  (7.31) 

where 
n 

T = C ( x i  - % ) ( x i  - X)’, (7.32) 
i - 1  

and W and B are the matrices of with-cluster and between-cluster variation. 
Using a different notation, let yij be the observation for thejth object in the ith 
cluster ( i  = 1,2,. . . ,g;J = 1,2,. ..,n, and Cini  = n). Then 

and (7.31) now takes the form 

+ c n i ( y i . -  y..)@.- y..)’. (7.33) 
i 

(In the multivariate analysis of variance context of Chapter 9 we use the 
notation E, = E + H.) For univariate data (d = 1) the above expression 
reduces to the usual sum of squares decomposition for the one-way analysis of 
variance. In this case, for sharp clusters, we would like W to be small and B 
large, so that distances w i t h  the clusters are small compared with distances 
between cluster centers. For d dimensions a similar criterion would be ap- 
propriate so that an intuitive procedure for choosing clusters is to minimize the 
“size” of W or, as T is constant, maximize B. Several functions of W have been 
proposed and three are discussed below. Suitable algorithms for these func- 
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tions are given, for example, by Friedman and Rubin [1967]. McKae [1971], 
and Gordon and Henderson [1977]. An object is reallocated to the cluster that 
gives an optimum value of the criterion. 

a MINlMiZETRACE w 
Edwards and Cavalli-Sforza [I9653 and Singleton (see Friedman and Rubin 
[1967]) proposed minimizing 

trW = c c(yij - j i . ) ' ( y i ,  -- j i . )  (by Al.1) 
i j  

= C trW,, 
i 

say. 'This mcthod is equivalent to minimizing the sum of squarcd interpoint 
Euclidean distances within the clusters because of the identity given in Exercise 
5.14. Jensen [1968] gives a dynamic programming algorithm for finding the 
global maximum, though, as noted by Everitt [1979b], it does not seem to offa 
realistic practical solutions. The algorithm is descnbed by Duran and Ode11 
[1974: Chapter 31, who also discuss some integer programming methods. The 
nearest centroid methods of Forgy and others mentioned above may be 
regarded as attempts at inhinuzing t r W  (see also Maronna and Jacovkis 
[ 19741). Although these approximations are loosely called "k-means clustering," 
the term might be more appropriately reserved for describing the minimum 
tr W criterion. Some asymptotic properties of the method are given by Harti- 
gan [1978] and Pollard [198ll. 

b MINIMIZE 1 WI 

This can be motivated in two ways. Suppose that the g clusters represent 
samples from g MVN distributions N&,, 2 )  ( 1  = 1,2,. . . ,g )  with a common 
dispersion matrix. From Section 9.2.1 the usual likelihood ratio test for H , :  
p1 = p, = . . . = pg is related to A = lWl/]'I'l. The hypothesis Ho is rejected 
if A is too small so that a possible clustering criterion is to minimize h or, 
equivalently, minimize I W 1. Altertiatively, suppose we wish to assign the ti 

observations to the g normal distributions with the same dispersion niatrix in 
such a way that the likelihood function is maximized (Scott and Symons 
[1971]). For a giveti allocation, the maximum of the log likelihood is (see 
Exercise 7.23) a constant minus fn log1 W 1 so that we choose the allocation 50 
minimize log1 W 1, that is, minimize I W 1. 

Suppose that a further point x is added to a cluster with centroid m and let 
d = x - m. Then if m is not immediately updated with the addition of x. the 
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matrix W becomes W + dd’ and the increase in the criterion is 

IW + dd’J - IWl = (Wld’W-ld [by(2.57)] (7.34) 

The smallest increase in I W I therefore occurs when x is added to the cluster 
for which the Mahalanobis distance d’W-b of x from the centroid is a 
minimum. This contrasts with the tr W criterion that uses d‘d. 

We note that 1 W I and tr W can also be justified by maximizing certain 
approximated posterior probabilities (Binder [1978]). 

C MAXIMIZE TRACE BW-’ 

Using another test statistic for testing H,:p, = p, = - . = pg above, Fried- 
man and Rubin [1967] proposed maximizing tr[BW-’]. 

Which of the three criteria should be used? The trace criterion is very 
popular, no doubt because of its simplicity and ease of computation. It is 
invariant under orthogonal transformations, but not under any nonsingular 
linear transformation y,, = Rzij, so that minimizing tr W may give different 
solutions on the raw and standardized data. As only diagonal elements are 
involved, the trace does not take into account correlations among the variables. 
For this reason the method tends to produce spherical clusters. 

The criterion of minimizing I W I is invariant under nonsingular transforma- 
tions, since IW,l = ~ R ~ ~ W z ~ ~ R ’ ~  = IR121Wzl = clWzl (c > 0). Friedman and 
Rubin [1967] conclude from their experiments that this criterion has “a greater 
sensitivity to the local structure of the data,” that is, it performs the best. 
Marriott [1971] also prefers I W I to tr W because of correlation effects, though 
he notes that the former may be strongly influenced by a single well-clustered 
variable, The method searches for any natural grouping, even one based on a 
single variable rather than on all the variables. The I W 1 criterion does not aim 
to produce spherical clusters and will identify strongly elliptical clusters; 
however, as might be expected from its motivation, it does tend to produce 
clusters of the same shape. Scott and Symons [1971] also confirm the usefulness 
of J W I when the clusters are clearly separated or approximately of the same 
geometrical size. They give theoretical and empirical evidence that the method 
tends to divide the data into approximately equal-sized clusters when the 
separation is not great. This tendency is also demonstrated by Everitt [1974: 
Chapter 41, so that some caution is necessary if such an analysis produces 
clusters of about the same size. One suggestion for getting around the problem 
is to use II,lW,l”~ (Scott and Symons [1971]), and Everitt [1974: pp. 76-77] 
gives an example that demonstrates its superiority over I W 1. Further modifica- 
tions are proposed by Symons 119811 and Marriott [1982]. 

The criterion tr[BW-’1 can be increased most easily by increasing the 
largest eigenvalue of BW-’. This means that if the groups formed in the initial 
or subsequent partition are very elongated in the wrong direction, the error will 
not be corrected but will be increased in further iterations. This criterion can 
therefore be very unreliable (Maronna and Jmvkis [1974]). 
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In addition to the criteria based on W, Kubin 119671 proposed optimizing 
the “average entity stability.” Wallace and Roulton [1968] and hloulton and 
Wallace [ 19701 suggested minilniLing an information measure based on multi- 
nomial distributions for multistate data and nornial distributions for contiriu- 
ous data. 

EXAMPLE, 7.2 Pilowsky and Spence (1975, 19761 in Adelaide used the 
behavior profiles from an illness behavior questionnaire (IBQ) to identify six 
groups of patients, and described the characteristics o l  their groups. A similar 
expetimcnt was carried out by Large and Mullins [1981] with 200 patients with 
chronic pain at the Auckland llospital Pain Clinic, New Zealand. The same 
IBQ was used to obtain 10 clusters, and the analysis is described below. 

The IHQ has 30 itenis that are used to calculate patient scores on seven 
subscales labeled as follows: general hypochondriasis, xl; disease conviction, 
x2; psychological versus sonlatic perception of illness, x 3 ;  affective inhibition, 
x,; affective disturbance, x5; denial, x6; and irritability, x,. The ciuster method 
was essentially a so-called “k-means” (or, in our notation, g-means) technique 
using a suitable initial partition and the minimum tr W criterion. ‘The number 
of clusters g was allowed to vary from 2 to 12 and, on the basis of tr W, the 
authors chose g = 10. Because the algorithm is only locally optimal, different 
initial pitrtitions were used and the best results, in terms of tr W, were obtained 
using the single linkage algorithm to produce clusters. The 10 clusters were 
then compared with the six groups obtained by Pilowsky and Spence by 
calculating the Euclidean distance between the centroids lor each group (G) 
and cluster (C). These distances are given in Table 7.6 and we see that row and 
column minima coincide for five of the six groups, yielding initial pairs of 

TABLE 7.6 Euclidean Distances Between the Centroids or the Clusters and Groupsn 
~- 

Croups ( C )  
~ _ I _ _  - 

Clusters (C) 1 2 3 4 6 6 

1 2.64 2.31 1.50 
2 0.Sz 2.06 3.36 
3 1.26 1 2  2.87 

3.05 4 4.33 3.68 
6 4.61 3.42 3.13 
6 2.48 - 1.74 3.30 
7 3.14 2.45 4.24 
8 3.00 3.10 3.72 

10 7.80 7.27 6.91 

‘From Large and Mullins [1981: Table 31. 

- 

8 4.92 4.19 4.84 

2.67 
3.01 
2.92 
4.21 
2.35 
3.60 
I_ 

1.37 
1.41 
3.69 
6.04 

3.44 
4.65 
4.19 
4.33 
2.80 
3.51 
3.53 
2.64 
4.29 
6.04 

6.29 
7.43 
6.64 
4.33 
4.64 
6.80 
6.74 
6.41. 
2.66 
1.23 
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(Gl-CZ), (GZ-C3), (G3-C1), (G4-C7) and (G6-C10). The pairs (G2-C6) 
and (G4-C8) are also suggested by minimal distances. 

Using Euclidean distances between centroids for comparing the groups and 
clusters seems appropriate, as both the k-means algorithm and the method of 
Pilowsky and Spence are based on a Euclidean view of the space spanned by 
the observations. However, Large and Mullins point out that these distances 
may not take into account any similarity of profile across subscales that may 
be clinically relevant. The pairs (G3-C4), (G4-C5), (GS-CS), and (G6-C9), 
while representing minimum distances between clusters and groups, are quite 
dissimilar in profile, on inspection of the pattern of mean subscale scores. 
Therefore, taking into account both minimal distances and similarity of 
profiles, the authors obtained Table 7.7. They concluded that " this indepen- 
dent replication of the Pilowsky and Spence study shows a close similarity 

TABLE 7.7 Matching of Clusters and Groups" 

Subscale mean scores 

x 1 2 3 4 6 6 7 

Adelaide group 1 
Auckland cluster 2 

Adelaide group 2 
Auckland cluster 3 
Auckland cluster 6 

Adelaide group 3 
Auckland cluster 1 

Adelaide group 4 
Auckland cluster 7 
Auckland cluster 8 

Adelaide group 6 

Adelaide group 6 
Auckland cluster 9 
Auckland cluster 10 

Auckland cluster 4 

Auckland cluster 6 

Totai 
Adelaide sample 
Auckland sample 

29 
16 

18 
22.6 
6.6 

9 
10 

26 
11 
10 

8 

11 
8.5 
2.5 

5.5 

8.5 

100 
100 

0.62 1.97 0.31 0.62 0.36 2.46 0.31 
0.17 2.17 0.73 0.27 0.17 2.90 0.63 

0.60 2.44 0.61 0.94 2.06 2.83 0.67 
0.93 1.96 1.02 0.82 1.13 2.89 0.51 
0.69 1.70 0.92 1.16 2.38 1.38 0.38 

0.78 1.44 0.67 1.00 1.78 2.89 3.22 
0.90 2.20 1.26 0.90 0.90 2.80 2.60 

1.00 4.38 0.07 1.00 1.10 2.31 1.68 
1.09 4.73 0.66 1.18 1.50 2.68 0.59 
1.35 4.10 0.36 0.40 0.66 1.26 1.80 

0.63 4.00 1.26 0.63 2.60 0.38 2.76 

6.36 4.72 0.55 1.18 2.18 1.73 2.56 
4.18 4.06 0.82 1.41 2.41 2.06 1.29 
6.40 6.00 0.60 1.20 2.40 1.20 3.60 

3.55 1.55 1.09 1.00 2.46 2.36 2.36 

2.00 4.18 0.41 1.06 2.69 2.59 3.12 

1.35 3.28 0.44 0.88 1.43 2.38 1.38 
1.51 2.94 0.80 0.86 1.38 2.43 1.31 

OFrom Large and Mullins [1981: Table 41. 
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between the populations studied at both centers and adds validity to the 
groups described by them. Further experience wit.h these profiles may well 
produce therapeutic and prognostic guidelines of considerable clinical utility.” 

7.5.4 Other Techniques 

A completely different approach to partitioning is the density search method in 
which one attempts to separate regions with a high density of points x, from 
those of lower density. Usually each mode is taken to signify the presence of a 
cluster. Everitt [1974: Section 231 describes a number of such methods that are 
mainly derivatives of single linkage with a criterion for deciding when to stop 
adding points to clusters. These include the TAXMAP method (Carmichael et 
al. [1968], Carmichael and Sneath [1969]), an algorithm for detecting unimodal 
fuzzy sets (Gitman and Levine [1970]), the Cartet count method of Cattell and 
Coulter [ 19661, and the mode analysis of Wishart [1969b]. Unfortunately, these 
methods suffer from the problem of having a number of controlling parameters 
whose values have to be arbitrarily chosen. Also, Wishart’s mode analysis is  
scale dependent and assumes spherical modes. However, these methods essen- 
tially ignore “noise” points between clusters so that the effect of chaining is 
reduced. 

Another density-type procedure based on a modal analysis of the histogram 
for each variable was proposed by Chhikara and Register [1979]. Through a 
process of splitting and merging, clusters are eventually obtained so that for 
the observations in any one cluster, all one-dimensional histograms are uni- 
modal. Alternatively, one could fit a probability density function to the n 
points using a multivariate kernel function (Section 6.5.1) and then use the 
modes of the distributions to deterinine clusters (Bryan [19711; see also Duran 
and Ode11 [3974: Section 5.21 for a description of the method). 

Finally we mention one other technique called the method of mixtures. It is 
assumed that the I I  observations come from g diff’erent probability distribu- 
tions, and the problem is to develop an assignment rule for assigning each of 
the n observations to the most likely distribution. The mixture problem has 
already been mentioned in discriminant analysis (Section 6.7), where the 
emphasis is on finding an assignment rule for assigning a future observation. I n  
the multivariate case research has largely been confined to mixtures of g 
multivariate normals N d ( p , ,  C,) [with density function f,(xlp,, Z,)], and one 
approach is to assign each of the n observations to one of the g groups using 
the rule Assign to the group with the largest value of [see (6.97)] 

log+, - j loge, -- f(x - &)’el ’(x - fi,). 

Here +,, ji,, and 2, are obtained by maximizing the likelihood IIrf(xr), where 
R 

Sfx) = c ~ , ~ ( X l P I ~  w .  (7.35) 
l=l 
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However, in contrast to this mixture maximum likelihood method with its 
emphasis on estimating an assignment rule, there is another technique that 
may be called the classification method. Observations are now assigned to the g 
populations and the maximization is over all possible assignments as well as 
over all values of the unknown parameters. The likelihood to be maximized is 
therefore 

(7.36) 

where h ( r )  = i when xr is assigned to group G,. Scott and Symons [1971] 
showed that for equal dispersion matrices this leads to the criterion of 
minimizing ( W (  (see also Symons [1981]). However, for this case, Mamott 
[1975] noted that the resulting maximum likelihood estimates of the parameters 
are inconsistent; the same is true for nonnormal populations (Bryant and 
Williamson [1978]). We conclude, therefore, that when the emphasis is on the 
estimation of parameters or an assignment rule (as in discrimination and 
cluster analysis), the mixture method is preferred to the classification method. 
If the classification method is used, then the following comments of Mamott 
[1975] relating to the use of I W I should be borne in mind: “The assumption of 
underlying normal distributions with equal dispersion matrices is seldom 
strictly true in practice, and in many practical situations, when the proportions 
in the underlying distributions are approximately equal, minimizing I W I gives 
a sensible and reasonably robust clustering procedure. It is better regarded, 
however, as a heuristic approach, rather than an estimation process applied to 
a particular model.” For a further discussion on the two approaches, see Sclove 
[1977] and Ganesalingam and McLachlan [1980]. 

Some of the problems associated with testing for the existence of a mixture 
are discussed by Hartigan [1975: Section 4.8; 1977,19781. Bayesian approaches 
to the mixture model are given by Binder [1978, 19811 and Syrnons [1981]. A 
sequential Bayes-type procedure in which observations are assigned one at a 
time in the order they are taken is proposed by Smith and Makov [2978]. 

7 .6  OVERLAPPING CLUSTERS (CLUMPING) 

Uptil now we have considered methods that produce nonoverlapping (disjoint) 
clusters. However, there are situations where it is more meaningful to allow 
“clumping,” that is, some overlap between clusters. For example, in linguistics, 
words have several meanings and may belong to several groups, whereas in 
human populations mixed marriages lead to many racial overlaps (Rao [1977]). 
Some methods of clumping are given by Needham [1967], Parker-Rhoda and 
Jackson [1969], Jones and Jackson [1967], and Rao 119771 (see also Clifford 
and Stephenson [1975: pp. 118-1191). Jardine and Sibson [1968, 1971bl 
introduced their family of overlapping agglomerative methods ( B ,  clustering) 
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that allow clusters to overlap by as many as k - I objects, arid showed that the 
single link method could be generalized to ii k link method. Their algorithm 
was considerably improved by Cole and Wishart [1970] and i t  is incorporated 
in the CLUSTAN suite of programs (see also Rohlf [19’74b]). However, 
although the method has a number of desirable mathematical properties that i t  
shares with the single link method (Sibson [2970(), it has received little or no 
support, as it is computationally complex and the resulting dendrogram is 
difficult to draw and interpret (Sneath and Sokal 11973: p. 2081, Kruskal 
[1977a]). An example of B, clustering is given by Morgan [1981]. 

7.7 CHOOSING THE N U M B E R  O F  CLUSTERS 

A major problem of cluster analysis is the choice of g, the number of clustlers. 
I t  is helpful if a rough idea of the likely range of g is known, but such 
information may not be available. In agglomerative methods it is suggested 
that a large change in the dendmgram level is indicative of the correct number 
of clusters. However, Everitt [ 1974: Section 4.31 demonstrated that such 811 
approach can be misleading, as a large change in the fusion level of a 
dendrogram is a necessary but not a suficieiit condition for clear-cut clusters. 
Two “stopping rules” have been proposed by Mojena 129771, and one of them 
seems worthy of further consideration. In the same vein it has been suggested 
that for partitioning methods, a plot of the criterion value against g will show a 
sharp increase or decrease (depending on whether niaximizing or minimizing) 
at the correct number of clusters; however, this procedure is very subjective 
and can be misleading. 

If  the II observations x ,  are distributed uniformly on a suitable d-dimen- 
sional subset, then the number of observations, N, say, within Euclidean 
distance 6 of a given observation will be proportional lo ad. Hence if S, is the 
distance of the Nth nearest point to the given observation, then 6, = S and 
(Hartigan [1975: p. 651) 

log N = Q + dlog6,. (7.37) 

If No observations form a cluster near the gwen observation, then the distances 
8 ,  for N > No will he greater than expected from a plot of (7.37) of objects 
within the cluster, and there will be a break in the plot at the boundary of the 
cluster. Such plots may be useful for cluster detection. 

Once an initial g-partition is obtained, the value of g can be changed 
iteratively by allowing small close clusters to be merged with other clusters, 
and larger loose clusters 10 be split. Procedures for doing this are given, for 
example, by MacQueen 119671 and ISODATA (see Hidl and Khanna [1977]). 

Marriott [1971] investigated the criterion IW I and suggests choosing g to 
minimize g 2 J W I .  He provides a crude but useful graph for the decision maker 
and recoinmends that the data be regarded as a single cluster if g21 W l/lTl 1 1 



7.7 Choosing the Number of Clusters 389 

for ail values of g. However, Everitt [1974: Section 4.21 gives simple examples 
where the criterion gz I W I fails to give the correct value of g. As already noted, 
there is a tendency for this method to produce clusters of the same shape. 

The question of a single cluster is important, as spurious clusters can be 
found even in random data. Ling and Killough [1976] give some exact and 
approximate tables for assessing the randomness of the data using the notion 
of random graphs. Their tables allow us to compare the global structure of the 
data with the expected global structure of a random graph. They emphasize 
that their tables should be used as an informal screening device for the 
spurious clustering of random data rather than for precise statistical inference 
or formal hypothesis testing. Their article should be consulted for further 
references and background. A possible probabilistic approach for assessing the 
reality of an individual cluster in a classification is given by Ling [1973a]. 
Another approach, based on computing the probability distribution of all 
dendrograms under randomness, is given by Frank and Svensson [1981]. 

A number of methods have been developed on the assumption of multi- 
variate normality. For example, K. L. Lee [1979] gives a test of the hypothesis 
Ho that n observations come from one MVN distribution, versus the alternative 
HI that they come from two normal distributions with common dispersion 
matrix but different means. He gives some approximate percentage points for 
d = 1,2,3 and suggests a possible formula for d > 3. This approach could be 
used for deciding whether or not to split a given cluster in two. Using normal 
theory, Beale [1969a, b] proposed an F-statistic 

based on d(g ,  - gl) and d(n - g,) degrees of freedom. Here R ,  is the value 
of tr W for g,  clusters and a significant result indicates that a subdivision into 
g, clusters is significantly better than a subdivision into a smaller number of 
clusters g,. Beale starts with a value of g larger than thought necessary and 
endeavors to reduce it, The “derivation” of the statistic is highly heuristic so 
that the test should be used as a rough guide only (Kendall[1975: p. 411). 

Another criterion 

has been proposed by 

C = -  

Calinski and Harabasz [1974]. A value of C increasing 
monotonically with g suggests no cluster structure, whereas C decreasing 
monotonically with g suggests a hierarchical structure. However, C rising 
to a maximum at g suggests the presence of g clusters. The authors, in fact, 
choose for each g that partition of the minimum spanning tree into g sections 
that maximizes C. The above techniques based on the normal distribution are 
only likely to be useful for spherical-type clusters. 
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If the technique of fitting mixtures of normal distributions described in 
Section 7.5.4 is used, then a likelihood ratio statistic - 2 log t is available 
based on fitting g, and g2 distributions, respectively. W o k  [1970] has sug- 
gested referring this statistic to a chi-squared distribution, but this is not 
correct (Binder [1978]). Hartigm [1977] gives a helpful discussion on inference 
problems for nlixtures. 

7 . 8  GENERAL. COMMENTS 

Unfortunately, there is a general lack of guidelines as to which clustering 
method should be used in any given situation, though some attempts have been 
made in formulating principles (Fisher and Van Ness [1971], Williams et al. 
[1971a], Jardine and Sibson [1971a], Rand [1971]). Agglomerative methods a:e 
clearly preferred in taxonomic problems where a treelike structure can have, 
for example, an evolutionary interpretation. IIowever, as demonstrated by 
Everitt (1974: Section 4.31, different agglomerative methods can give rise to 
vcry different dendrograms, and one is forced to consider each cluster problem 
on its own merits. For example, if one suspects the presence of certain 
“natural” clusters, then a space-dilating algorithm for sharpening cluster 
boundaries could be appropriate. However, if one has no idea what to look for 
in the data, then pushing the data through some cluster prograni in the hope 
that something will turn up may simply be forcing the data iiito fictitious 
clusters. 

Graphical techniqucs such as those described in Section 4.1 may give some 
indication about the presence of possible clusters, and the dimension-reducing 
techniques described in Chapter 5 can be used in conjunction with cluster 
methods, though some care is needed. Clifford and Stephenson [1975: p. 1771 
give the example in Fig. 7.14 of bivariate data in three distinct clusters. The 
projections of the observations onto the first principal components would 
produce a continuous frequency distribution, suggesting that the observatioris 
belong to a single group, However, the three clusters would show up if the 
projections onto the second principal component were considered. A one- 
dimensional reduction using principal components would therefore be com- 
pletely misleading. 

Multidimensional scaling and clustering are sometimes regarded as competi- 
tive methods in that if one method fits perfectly, the other fits poorly, and vice 
versa (Holman (19721). However, Kruskal [I9774 afgues that this conclusion 
refers to a “boundary” situation. With real data, in which fits are not perfect, 
the two methods are complementary: If one model fits well, then the other 
model also fits well. What happens is that cluster methods essentially extract 
meaning from the small dissimilarities, whereas multidimensional scaling ex- 
tracts meaning from the large dissimilarities. For example, in hierarchical 
clustering i t  is often found that small clusters fit well and are meaningful, whde 
larger clusters farther up the tree do not seem to be meaningful, except, say, in 



7.8 General Comments 391 

Princioal 
component 

Fig. 7.14 Three clusters of bivariate data 
Variable 1 XI showing the two principal components. 

taxonomy, where the whole tree may provide an evolutionary model. The small 
clusters are based on small dissimilarities, and the large clusters on large 
dissimilarities. Simulation experiments by Graef and Spence [1979] demon- 
strate that small and medium distances play a lesser role than large distances in 
multidimensional scaling. Also, small changes in proximity data can cause 
drastic local changes in the resulting ordination from multidimensional scaling 
without changing the general overall configuration. Since both methods are 
sensitive to complementary aspects of the same data, it would seem ap- 
propriate to use them both on the same data in many cases. When scaling in 
two dimensions is appropriate, both results can be combined on a single 
diagram, as in Fig. 7.10. The positions of the points axe obtained by multidi- 
mensional scaling and the loops indicate the successive clusters. Even if a 
two-dimensional reduction is not very appropriate, the method, will generally 
still gwe a useful picture. Kruskal [1977a] opposes the practice of usingjust 
multidimensional scaling, generally in two dimensions, to pick out clusters 
visually because of reasons given above; The scaling configuration reflects large 
dissimilarities and does not faithfully indicate which points are nearest to 
which other points. 

In conclusion, we mention a few miscellaneous topics. Methods and refer- 
ences for space-time clustering (Are points that are close geographically also 
close in time?) are given by Klauber [1971, 19751 and Abe [1973]. Some 
interesting graphical methods analyzing how clustering effects change with 
time are given by Dunn and Landweh [1980]. Conover et al. [1979] introduced 
a window-scanning technique for detecting clusters on a two-dimensional map. 
They proposed moving a rectangular window in a systematic way over the map 
and recording when the number of points in the window exceeded K, say. The 
method was applied to detecting clusters of possible uranium deposits. A novel 
method for determining bird territories was given by North [1977]. Sometimes 
objects have a natural ordering that imposes certain constraints on the allow- 
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able clusters. This topic of constrained clustering is reviewed by Gordon (1981 : 
Section 4.31. 

5 
, x , =  2 ,  x3== 

4 

EXERCISES 7 

1 
1 
1 

7.1 Let A(x,y) = {(x - y)’B(x - y)}’I2, where B is positive definite. Verify 
that A is a metric. 

7.2 Verify that the Mahalanobis distance defined by (7.3) is invariant to 
linear transformations of the form y, = Ax, + b, where A is nonsingular. 

7.3 Suppose that 

x, = 

5 
2 
5 

If d ,  is the Bray-Curtis measure defined by Equation (7.5), show that 
d,,  > d, ,  + d,, (i.e., d,, is not a metric). 

7.4 L,et 

A(.x, y )  = - - y 1  (x, y 2 0). 
X + Y  

Given that x < y < z ,  verify that A satisfies 

7.5 If A(x,y) is a metric, show that 

is also a metric. 
7.6 Show that D(x,y) = (Ix -- yl12 is not a metric. 
7.7 Suppose that we have n = 3 objects, each with 10 binary altributes as 

follows: 

Attribute 
2 3 4 5 6 7 8 9 1 0  
0 0 0 1 1 0 0 1 0  

3 0 0 0 0 0 0 1 0 0  

~- 

Object 0 0 0 1 0 0 1 1 0  

Calculate cI2, cI3 and c23 for the Jaccard coefficient a/(. -t- f l  + y)  and 
the matching coefticient ( r y  4- 6 ) / d  (see Table 7.1). 
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7.8 Show that the similarity measures a / (a  + B + y )  and 2a/(2a + /3 f y )  
are monotonic with respect to each other. 

7.9 Given x’ = (1,4,7) and y’ = (3,7, ll), show that the correlation coeffi- 
cient for the pairs ( x j ,  yj) , j  = 1,2,3, is unity. 

7.10 Show that the Bray-Curtis dissimilarity measure for binary (1,O) data 
reduces to the one-complement of Czekanowski’s coefficient 2a/(2a + B 
+ y) [see (7.5)]. 

7.11 Show that Gower’s similarity measure (7.8) reduces to a/ (a  + p + y) 
when all the variables are dichotomous, and to (a + S)/d when all the 
variables are two-state qualitative variables. 

7.12 Show that the sample correlation T/k for two binary variablesj and k, 
scored 1 for presence and 0 for absence, is given by [see (7.9)j 

7.13 For single linkage, the following algorithm relabels the objects so that 
each cluster is a contiguous sequence of objects: Label any object as 0,, 
and label the nearest object to 0, as 0,. For i = 3,4, .  . . ,n, label the 
object that is nearest to one of 0,, 02,. . . ,Oi-,. as Oi. Apply this algo- 
rithm to (7.12), beginning with 0, = 4, and verify that the clusters have 
the contiguous properties. 

Hartigan [1975: p. 1941 
7.14 Apply the complete linkage and group average methods to the dissimilar- 

7.15 Verify Equations (7.16) and (7.17). 
7.16 Given three clusters with centroids and numbers of individuals X i  and nj, 

respectively (i = 1,2,3), verify that 

ity matrix (7.12) and draw the corresponding dendrograms. 

Lance and Williams [1967a] 
7.17 Verify Table 7.4. 
7.18 Find the ultrametric S ( r ,  s)  for Fig. 7.5. 
7.19 After hierarchical clustering is carried out, it is always possible to order 

the objects so that every cluster consists of a set of objects contiguous in 
the order. Let 0, (i = 1,2, .  . . ,n) denote the name of the ith object in the 
order. Such a procedure is as follows: 
(a) Select the first object 0, arbitrarily. 
(b) Select the second object 0, from the smallest cluster containing 0, 

but not included in the set { O,}. If no such cluster exists, select the 
second object to be any object other than 0,. 
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(c) For k = 3,4,, . . ,n, select the k th object 0, from the srnallest cluster 
containing 0, ., but not contained in the set { O,, 0,. . . . ,Ok-l >. If 
no such cluster exists, select the k th object to be any object other 
than one of (O,, 0,, . . . ,ok - , }. 
(i) Beginning with 0, = 4, verify the above procedure for the 

clusters arising from (7.12), namely, 

( I ) , .  . . ,(5,), (1,3), (2,4). (2,4,5), (1,2,3,4,5). 
(ii) Apply the above procedure to the following clusters (0, = 2): 

(I),.** ,(9),(3,7),(8,9),(1,5),(2,6), (3,7,10).(8,9,2,6), 
(3,7,10,4), (1,5,8,9,2,6), ( I ,& 3,4,5,6,7,8,9), 

and draw the corresponding dendrogram. 
Hartigan [1975: p. 1561 

7.20 Given observations xl, x2,. . . ,xn, prove that 
n n 

C I I X ,  - all2 = C ~ l x ,  - X1l2 + ~ J I X  - all2. 
1-1 1-1  

7.21 Suppose that the observations x,, xz, .  . . ,x,  are in two clusters C, with a, 
observations per cluster and cluster means 

1 1 

Prove that 

-__ C C IIxr - xr1t2 = C Itxr - %1li2 
n l r ' 2  rec, s e ~ ,  1 rec, 

7.22 Three methods for splitting n &dimensional observations into g groups 
are based on the following: 
(a) Minimizing I W I .  
(b) Maximizing tr[BW- '1. 
(c) Minimizing tr[WT. '1. 
Here T, W, and B are ghen by (7.31) and (7.33). Show that the methods 
all lead to the same partition when g = 2. [Zfint: Use A2.4 and assume W 
is positive definite with probability 1.1 

7.23 Suppose that the y,, are independently distributed as N,,(pz, Z), i = 

1,2,. . . .g ;  j = 1,2,. . . , n l .  Show that the maximum of the log likelihood 
function with respect to the p, and Z is a constant minus +nloglW[, 
where 



CHAPTER 8 

Multivariate Linear Models 

8 . 1  LEAST SQUARES ESTIMATION 

In this chapter we consider several multivariate extensions of the (univariate) 
linear model 

y = e + u ,  (8.1) 

where y = [ (y , ) ]  represents n independent measurements on a single response 
variable y ,  b[y] = 8 = Xg, and X is an n X p matrix of rank r ( r  s p ) .  If the 
elements of X are quantitative, for example, measurements on controlled 
regressor or predictor variables, then (8.1) is the usual regression model with 

and, generally, r = p .  However, if the elements of X are 1 or 0 so that X 
represents underlying qualitative factors, as, for example, in the randomized 
block design 

eij = p + ai + 7i ( i  = 1,2, .  . . , I ;  j = 1,2 , .  . . , J ) ,  (8.3) 

where B’ = (ell, el*,. . . ,&, . . . ,&, Oz2,. . . , e,,), then we have an analysis of 
variance model. In this case X is sometimes called the design matrix, as it 
expresses the structure imposed by the underlying experimental design, usually 
r < p. When X is a mixture of quantitative and qualitative elements as in 

a randomized block design with one concomitant variable z, we refer to the 
model as an analysis of covariance model. The general theory for (8.1) is 
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considered in detail in, for example, Seber [7977], and the main features of the 
theory there can be surnniari7ed as follows. 

The least squares estimate of 0 is obtained by minimizing (1uf = IIy -- @ I 2  
subject to 0 F 52 = %‘[XI, the range space of X. The minimum occurs at 
b = P,,y, where PQ is the unique symmetric idempotent matrix representing the 
orthoSolla1 projection of n-dimensional Euclidean space R“ onto 52. Since 
(y - 0)  1 Q ,  X’(y - b )  = 0. Hence, if 6 satisfies 0 = XB, then B is a solution of 
the normal equations X’(y - Xb) = 0 or 

Conversely, if 13 satisfies ( 8 3 ,  BW (y - XS) = o and 

y = xfl +(y  -. XB) = u -t v ,  

say, is an orthogonal decklmpositioii with u E 51 arid v I 52. As this decomposi- 
tion is unique (see F I I . ~ ) ,  B == LI = xB. 

y ) ,  (8.5) has a solution (see B1.7) 
B = (X’X)--X’y, where (X’X)- is a generalized inverse of X’X. Although fi is 
not unique, Xfl (=- 6) is unique. The uniqueness of PQ in Xb = &,y implies 
that Pi, = X(X’X) X‘. When X has full rank (r  == p ) ,  (X’X) = (X’X)-’ and 6 
is unique. 

In model (8.1) we assunicd that C[u] = 0. If we further assume that 
9[u]  = 9 [ y ]  = a21,, then the least squares estimates have certain optimal 
properties. For example, suppose that X has less than full rank and a‘P is sn 
estimable function, that is, 8 is linearly dependent on the rows of X. Then a$ is 
unique and is the hest linear unbiased estimate (BLUE) of a’P, that is, the 
linear unhiased estiniate with the smallest variance. Also, s2  = IIy - ellL/(n - 
r )  is an unbiased estimate of a 2  and, under certain conditions, has optimal 
properties. If we now add the assumption of normality so that the elements u, 
of u are i.i.d. N,(O,  a 2 ) ,  then u - NJO, a21,,) and we can obtain the distribu- 
tions of B and s2 .  An F-statistic for testing the hypothesis H,,:AP = c is also 
available. 

In developing a multivariate analogue for (8.1). we would hope to follow a 
similar path to that outlined above. An obvious generalization would be to 
assume that we are iiow interested in measuring d response variables instead of 
one variable on each of n sampling units. Then y, is replaced by a 1 x d row 
vector y,’, and y = [ (y,) ]  is replaced by the data matrix 

When X has less than full rank ( r  
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say. Here y ( J )  ( j  = 1,2 , .  . . , d )  represents n independent observations on the 
j t h  variable. Writing y( j )  = fl(j) + u(j) with B[u(j)] = 0, as in (8.1), we have the 
multivariate linear model 

y = e + u ,  (8.6) 

where 8 = (tltl), tl(*), . . . ,8(d)), U = (&), u(’), . . . ,dd)) ,  and &“U] = 0. If we 
are in an experimental design situation in which some sort of structure is 
imposed on the n sampling units, then the design will be the same for each of 
the d variables. This means that 0(’) = Xfl”),  8 = X(fl@),@(’),. . . , @ ( d ) )  = XB, 
say, and 

With this specification of a common design matrix X, we now find that the 
univariate least squares theory for (8.1) generalizes naturally if we use the usual 
partial ordering for symmetric matrices, namely, C 2 D when C - D is 
positive semidefinite, that is, C - D 2 0 (Siotani [1967]). Thus if C(8) is a 
symmetric matrix valued function, we say that C is minimized at 0 = 6 if 
~ ( 9 )  2 ~ ( 8 )  for all 8. 

By analogy with univariate least squares, we can estimate 8 = XB by 
minimizing U’U = (Y - e)’(Y - €9) subject to the columns fl(’) of 8 belong- 
ing to 52 = %’[XI. Now if Pa once again represents the orthogonal projection of 
R” onto 52, then Pa@) = 0 ( J )  ( j  = 1,2,. . . , d )  and 

Setting 6 = Pay and using Pa(& - Pa) = 0 (see B1.6), we see that 

(Y - 6)’(6 - 8) = Y’(I, - P~)P,(Y - e) 
= 0. 

Hence for all 8 with columns in 52, 

(8.9) 

= (Y - 6 + 6 - e)’(y - 6 + 6 - e) 

= (Y - &)’(Y - 6) +(& - q’(6 - e) (8.10) 

2 (Y - &)‘(Y - 6) 

= C(@, 
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since (6 -- 0)’(6 - €3) 2 0, and 8 gives the required minimum. Equality 
occurs in (8.10) on1 when (6 - 8)’(6 - e) = 0 or, by A4.5, when 8 = 8. 

We also note that the miriirnum value of U’U is 
Since P, is unique, B is unique and it is called the least squares estiniator of 8. 

E =. (Y - 6) ’ (Y  - 6) (8.11) 

= Y V ,  - P*)’(I, - P,)Y 

(8.12) = Y ’(I, - P& 

since I, - P, is symmetric and idempotent (see B1.4). We have called this 
minimum value E, as it is the multivariate analogue of the univariate residual 
or “error” sum of squares. 

Now PrlX = X so that X’(Y -- 6) = X’(& - P,,)Y = 0. Therefore, if B 
satisfies 6 = a, it satisfies the so-called normal equations 

X’xb = X’Y, (8.13) 

the multivariale analogue of (8.5). Conversely, if B satisfies (8.13), we can 
argue as for the univariate case and show that xb = 6. Extracting the j t h  
column from each side of (8.13), we have 

so that, as far as least squares estimation is concerned, we can treat each of the 
d response variables separately, cven though the y( / )  are correlated. This means 
that any technique for finding 0 in the corresponding univariate model can be 
used to find each B ( I ) .  For the same reason, univariate computational tech- 
niques extend naturally to the nwltivariate case. For example, replacing y b j  
Y, the efficient algorithms described in Seber [1977: Chapter 111 can be used 
for calculating fi, and E of (8.11). A brief survey of these methods is given in 
Section 10.1.1. Also, some univariate methods for finding the “best” subset of 
x-variables (Seber [1977: Chapter 121, Berk [1978], Thompson [1978a, b]) 
extend to the multivariate case (see Section 10.1.6). When X is ill conditioned 
so that X‘X is near singularity, the ridge regression biased estimates of $ can 
be generalized to the multivariate case (Brown and Zidek [ 19801). 

If X has less than full rank, the univariate methods for handling questions 
relating to identifiability and estimability (see Seber 1977: Chaptcr 3) carry 
over to the multivariate case. For example, we can introduce identifiability 
restrictions FP”) = 0 ( I = I, 2 , .  . . , d ) ,  or FB = 0, where the rank of G’ = 

(X’, F’) is p and the rows of F are linearly independent of the rows of X. We 
then have a solution B = (G’G) -‘X‘Y. Also, estimable linear functions of the 
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elements of B are readily handled. We say that 

is estimable if it has a linear unbiased estimate, that is, an unbiased estimate of 
the form C$lt$y(i). Then 

identically in the p”). Setting p(‘) = 0 for all r,  r # j ,  implies that 

a, = X’bj ( j  = 1,2 ,..., d ) ,  (8.15) 

that is, aj is linearly dependent on the rows of X. Thus Cp is estimable if and 
only if all the “ univariate” functions a;b(’) are estimable. In practice, however, 
one’s interest is usually confined to linear functions of individual columns of B, 
like a)p(j) ,  rather than linear functions Cp of all the elements of B. We note that 
various characterizations of univariate estimability are collected together by 
Alalouf and Styan [1979J. 

In conclusion, we note from the ith row of (8.7) that 

yi = B’xi + ui ( i  = 1,2,. . . ,n), (8.16) 

where x i  is the ith row of X. This row representation of (8.7) is sometimes 
more convenient to use than the column representation 

y ” ) =  X p ( j ) + u ( j )  ( j =  1,2  ,..., d ) ,  (8.17) 

8 . 2  PROPERTIES OF LEAST SQUARES ESTIMATES 

Uptil now the only assumption we have made about the “error” matrix 
U = (u~, uz , .  . . ,un)’ is that &“U] = 0. With this assumption it follows from 
(8.8) that 

s[6] = P,B[Y] = paae = 8,  (8.18) 

and 6 is unbiased. When X has full rank, we can solve (8.13) and obtain 
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B = (X’X)--’X’Y. Then 

&[B] = (x ’x ) - ’xu [Y]  

= (X’X). ‘X’XB 

= R, (8 .29)  

and h is unbiased. 
To consider variance properties we now generalize the univariate assump- 

tion €3uhii,] = 6,,,a7 and assume that the u, are uncorrelated with a common 
dispersion matrix X = [( u,,,)], namely, 

where a,,, = 1 when h = i and 0 otherwise. Referring to (8.17), we have 

and, since b ( J )  = X’X) ‘X’y(’), 

1 
= u,k (X’X) 

(8.21) 

(8.22) 

We now give a multivar*iate generalization of the so-called Gauss--Markov 
theorem. 

THEOREM 8.1 Let Y = 8 -1- U, where the rows w, of U are uncorrelated 
with mean 0 and commcm dispersion matrix 2, and 8 = (O(’J. @’), . , . ,€I(‘‘,). 
Let cp = X$lbiO(J) and let 6 be the least squares estimate of 0 subject to the 
columns of 0 belonging to 52. Then 6 = Zy=lb;8(J’ is the BLUE of +, that is, 
the linear unbiased estimate with minimum variance. 

Proof From (8.18), 4 is an unbiased estimator of 9. Since 6 == Pi2Y, 8 ( J )  = 

Ps,y(J), and (3, = ZJI$FiJy‘J) = ZJ(Pi2bl)’y(l) IS linear in the elements of Y. Let 

expected values, X,c,’W) = == Z J J  b’,’8(’) for all E 52, that is, (b, - c,)’W) 
= 0 for all O ( / )  E ( J  -I 1,2, .  . . , d ) .  Hence (b, - c,) is perpendicular to L!, 
and its projection onto 52 is zero; that is, P,(b, - cJ) = 0, or P,b, = Pi2cJ 

+* = 2: c’y ,. ( J )  be any other linear unbiased estimator of cp. Then, if we take 
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( j  = 1,2,. . . , d ) .  We now compare the variances of the two estimators 6 and 
+* : 

= C C c,’P,c~cT~~ [by (8.21)] 
i k  

and, similarly, 

Setting C = (cl, c2,. . . ,c,) and X = RR’, where R is nonsingular (see A5.3), we 
have 

var +* - var 6 = C Cc#, - p,)ckajk 
i k  

= tr[C’(I, - P~)CZ]  

= tr[R’C’(I, - P,)’(I,, - P,)CR] (by Al.l) 

= tr[D’D], say, 

2 0, 

since D’D is positive semidefinite and its trace is the sum of its eigenvalues (see 
A4.2). Equality occurs only if D’D = 0 or D = 0 (see A4.5), that is, if 
(I, -- Pa)C = 0 or c. = Pacj = Pal+ Thus var +* 2 var 6, with equality if and 
only if $* = 6, and + is the unique estimate with minimum variance. 

COROLLARY If 6 = [(Ji,)J, then Jij is the BLUE of Jij. This follows by 
0 

1 

appropriately choosing the bj m +. 

The above theorem is quite general, as Q is not specified; for example, Q 
could be expressed as the null space of a matrix, say, (x : Kx = O}. However, 
suppose Q = %[XI, as in Section 8.1, where X has less than full rank. If 
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cp = X,a;p(J) is an estimable function, then a, = X’h, for some b,, by (8.15), 
and cp -- Z,b;Xf3(’) -- Z,b;B”). It follows, from the above theorem, that Z,a$(/) 
(= X,h$(/) = 4) is the BLUE of +. When X has full rank, all linear functions 
like r$ are estimable. A coordinate-free approach to the above theory is given 
by Eaton 11970, 19831. For a general reference on multivariate linear models 
see Arnold [1981]. 

We now focus our attention on the estimation of 2 and we begin with the 
following theorem. 

‘THEOREM 8.2 Consider the model Y = 8 -t U of Theorem 8.1 with r the 
dimension of 51. Then E/(n - r), where E is given by (8.11), is an unbiased 
estimate of Z. 

Prof4 As Pit is symmetric and idempotent, 

tr[& - Po] = n - trP, 

= n - rank Pi2 (by A6.3) 

AISO, p,e = e SO that 

E Y ’(I, - P,)Y 

= (Y -- 9) ’ ( In  - P,)(Y - 63) 

== U’(1, - p,)u 

(8.23) 

(8.24) 

Hence, by (8.20), 

= ( n  - r ) Z .  (8.25) 

We note that if 2 > 0 (which we have assumed throughout) and T I  - r 2 t i ,  

then, under fairly general conditions, E is positive definite with probability 1 
(see A5.13). 
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8 . 3  LEAST SQUARES WITH LINEAR CONSTRAINTS 

Given the model Y = 8 + U = XB + U, where X is n X p of rank p ,  suppose 
we wish to find the (restricted) least squares estimate of B subject to H,:  
AB = 0, where A is a known q X p matrix of rank q. Our problem, then, is to 
minimize (Y - XB)’(Y - XB) subject to H,. Now B = (X’X)-’X’B, and H, 
becomes 0 = AB = A(X’X)-’X’8 = A,@. We therefore wish to minimize 
(Y - e)’(Y - 8) subject to the columns of Q lying in w = 51 n “Al], where 
51 = 9[X]. Since w is a vector subspace, we are still in the same situation as the 
unconstrained model, except that 51 is replaced by o. Hence the unique least 
squares estimator of 8 subject to H, is = P,Y, where P, represents the 
orthogonal projection onto a. Since X has full rank, we have the unique 
representation bH = XhH, and BH is the required restricted least squares 
estimate of B. Now 

PQN1 = X(X’X)-’X’X(X’X)-’A’ = X(X’X)-’A’, 

and 
xhH = 6H 

= P,Y 

= PQY +(P, - PQ)Y 

= 6 - P,,+,-,QY (by B3.2). (8.26) 

Since PQK1 is n X q of rank q (by B3.4 and 9[N1] C 9 [ X ]  = Q), 

PwlnQ = PQA;[A1P~A;] -‘(PaK1)’ (B3.3 and B1.8) 

= X(X’X) - ‘A’[ A( X’X) - ’A’] - ‘A(X’X) - ‘X’, (8.27) 

and, premultiplying (8.27) by X’, (8.26) becomes 

X’Xf&, = X ’ a  - A’[A(X’X)-’A’] -‘Ah. (8.28) 

If X is not of full rank, then the constraints a$(’) must be estimable, that is, 
the rows a; of A are linear combinations of the rows of X, or A = MX. 
Otherwise, if a; is linearly independent of the rows of X, then a:p(’) = 0 is not 
a bona fide constraint, but, instead, acts as an identifiability restriction. Now 
the q x n matrix M is of rank q, as q = rank A I rank M I q; also M 8  = 

MXB = AB = 0. Thusw = n.N[M] and 

PQM’ = X(X’X)-X’M’ = X(X’X)-A’. (8.29) 
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Suppose that this n x q matrix has linearly dependent columns so that, for 
some c ( f 0), Pa,M ’c = 0. Then M ’c I = %‘[XI and A’c = X’M ’c = 0, which 
is a contradiction, as the rows of A are linearly independent. Hence (8.29) has 
full rank q and 

Pw1,,62 = P,,M’[MP,,M’] ‘(PaM’)’ (8.30) 

a symnietric indenipotent matrix of rank (trace) y. Since X‘P, = X ’, it follows 
from (8.26) (which does not depend on the rank of X) that Equation (8.28) still 
holds with (X’X) replaced by (X’X)-, and fi any solution of the normal 
Equations (8.13). 

If we now consider constraints of the form AB = C, we can still use the 
above theory if we let B, be any solution satisfying the constraints and set 
Y = Y - XB,. Then 

Y = X ( B  - &) + U 

= X A + U  

= @ + U ,  (8.32) 

say, where A A  = AH - AIBo = C - C = 0, and our “translated” niodel(8.32) 
is of the same form as (8.7) above, but with Y replaced by q. Hence, from 
(8.26) and PslX = X, 

&[, = PQY + (P, - Q2)V 

= P,(Y - XB”) - P&,,]Y 

Since 

we have 

= 6 - x$ - P,ins2Y. 

e=@+xR,, 

$,, = XB, 

= &, + XB” 
= 6 .- P,,,,Y [by (8.33)], 

(8.33) 

(8.34) 

(8.35) 

(8.36) 
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which is similar to (8.26). Premultiplying by X’ and using (8.30), we have 

X ’ a ,  = X‘PQY - X’P,,,,(Y - XB,) 

= X’Y - X’PQM’[MF’QM’] -‘MPo(Y - x$) 

= X’Y - X!M’[MP,M’] -‘(may - MX$) 

= X’Y - A’[A(X’X)-A’] -‘[A(X’X)-X’Y - C], (8.37) 

which can be compared with (8.28). A solution for BH takes the form 

B,= B -(X’X)-A‘[A(X‘X)-A’]-’(AB - C), 

where 8 = (X’X)-X’Y. Although B and BH are not unique, 6, = XbH and 
6 = are unique (given Bo). For full rank X, (X’X)- reduces to (X’X)-’, 
and BH and B are unique. If the q X p matrix A has rank less than q, then we 
use a generalized inverse [A(X’X)-A’]-. 

If H,, holds, we have, from (8.34), (8.35) and P,CP = CP, 

(Y - 6,)’(6, - 0 )  = (Y - &”)’(& - @) 

= (Y - PUY)’(P$ - Pa@) 

= Y’(1, - Pu)P,(Y - *) 

= 0, 

and we have the identity [see (8.9) and (8.10)] 

(Y - e)’(y - e) = (Y - 6 , ) ’ ( ~  - 6,) +(6, - e)’(€b, - e )  
Using a similar argument, we have 

E, = (Y - €bH)’(Y - 6,) 

= Y’(1, - PJY. 

8.4 DISTRIBUTION THEORY 

(8 -38) 

(8.39) 

So far the only assumptions we have made about the rows ui of U are 
b [ u , ]  = 0 and b[u,u:] = 6,,X. We now also assume that the u, are normally 
distributed and obtain the following theorem. 
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THEOREM 8.3 Let Y -- 8 f U, where the columns of 8 belong to i3n 

r-dimensional subspace a, and the rows o f  U are i.i.d. N,(O, 2) .  ‘Then 6, the 
least squares estimate of 9, is statistically independent of E = (Y - 6)’(Y - 
6), and E - W,(n - r ,  2).  

Proof We note that 6 = PQY and E = [(I,, - P,)Y]’[(I, - -  Pia)Y]. Since F’&, 
- Pn) = 0, we see that PQY arid (I, - FQ)Y are statistically independent (by 
Exercise 2.18 with B = D = I(,); hence 6 arid E are statistically independent. 
Also, from (8.24), E = U’(1, -- Q,)U, where I,, - PQ is idempotent with rank 
n - r. We then apply Thcorerni 2.4 Corollary 1, of Section 2.3.2. 

COROLLARY If 6 = XB, where X has full rank, then B and E are 
statistically inde endent. This follows from the above theorem by noting that 
B = (x’x)--’x‘ Q is a function of 6. n 

In the univariate model (8.1) we find that under normality assumptions the 
Ieast squares estimate 8 of 0 is also the maxiilium likelihood estimate. and 
(y - b)’(y - b ) / n  is the maximurn likelihood estimate of u2. It is therefore not 
surprising that we have the following theorem and corollaries. 

THEOREM 8.4 Given the model of Theorem 8.3 with n - r 2 d, then 
6 = Xb and 

(8.40) 
1 1 
n n 

e = - ( Y  - 6)’(Y - 6) = -E 

are the maximum likelihood estimates o l e  and 2, respectively. 

Prooj We use the same approach iis that given in Section 3.2.1. The likelihood 
function is the joint density function of the rows of Y, namely, 

where 0: is the i th row of 8, and we wish to maximize this subject to the 
columns of 8 belonging to D == &?[XI. The last term of (8.41) is 

Hence 

i ogL(8 ,C)  = c - !nloglZ( - +tr[%’E] - h,  (8.42) 
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where 

2 0 (byA4.2), 

since 2-' > 0 implies that (6 - e)Z-'(6 - €3)' 2 0 (see A4.4). Therefore 
log L is maximized for any I: > 0 when b = 0, that is, when 8 = 6. Thus 

The next step is to maximize 

subject to I: > 0. Since n - r 2 d ,  E > 0 with probability 1 (see Theorem 8.3 
and A5.13), and, by A7.1, the maximum occurs at Z' = 2 = E/n. Thus 

and 6 and 2 are the maximum likelihood estimates. 

COROLLARY 1 The maximum value of L is 

COROLLARY 2 If X is n X p of rank p, then 6 has the unique representa- 
tion 6 = X.& and B is the maximum likelihood estimate of B (see A7.2). 

The key steps in the derivation of (8.43) are the decomposition (8.10) and 
the positive definiteness of E. Working with Y instead of Y [see (8.32)], we find 
that the same steps apply if we maximize L ( 8 , Z )  subject to the constraints 
H,:AB = C; w now replaces a. Firstly, (8.38) leads to 

(Y - a)'(* - @) = (Y - &)'(Y - &) + (& - @)'( $H - @). 

Secondly, from (8.39), we see that E,, > 0 with probability 1, as n - r + q 2 d ,  
r - q being the dimension of w (see Exercise 8.8). Therefore bH, bH, and EH 
are the respective maximum likelihood estimates of @, 8, and 2, and (8.44) 
holds for the restricted case if we add the subscript H. 

For a Bayesian approach to inference see Press [1980]. 
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8 . 5  ANALYSIS O F  RESIDUALS 

In a multiple linear regression model, the residuals obtained after fitting the 
model have been found useful for investigating the validity of the model and 
its associated distributional 
matrix of residuals 

- -  
assumptions. By the same token, we can expect the 

where U -= Y -. XB = (l,, - PS2)(y(’), ~ ‘ ~ ’ , . . . , y ( ~ ) ) ,  to provide a similar in- 
sight. As a first step we could apply the univariate plotting methods (see Seber 
[1977: Section 6.6)) to each coluiriri i&). For example, we could (I) carry out 
normal probability plots on the ranked elements of i~(’’, (2) plot the elements 
of B”) against the elements of y o ) ,  and (3) plot the elements of a(’’ against the 
corresponding values of any regressor variables or an omitted factor (e.g.. 
time). 

We note, from (8.21), thal 

WlB(’),U‘k)] = (I, - P,)V[y‘”,y‘~’](I, - PQ)’ 

= U,&P, - Po). (8.45) 

Since, as lar as univariate graphical methods are concerned, Pi2 can generally 
be ignored in (8.45) when j = k, it can probably be ignored for j # k. 
Therefore, under the normality assumptions of the model, the rows Q, of U can 
be regarded as being approximately i.i.d. N,(O,  2) and the graphical methods 
of Chapter 4 for detecting outliers and checking for multivariate normality can 
be used. For example, a gamma plot of the ordered ii:S I & , ,  where S is an 
estimate of 2, would be useful. As outliers can inflate S, a robust version of it  
with or without an “ UJlhjclSing” constant may he more iippropriatc. 

There are some piohlerns in analyzing residuals for an experimental design, 
whether tlicy come from a univariate or multivariate modcl. First, there are 
constraints on subsets of the residuals, namely, Pi@ = PQ(l, -- Ps2)Y = 0. For 
example, in a univariate one-way classification with rows representing factor 
levels, the row sums of residuals are all zero. This can cause problcins when the 
number of columns is small; one aberrant residual in a row will aliect the other 
residuals in the row. Second, the presence of outliers inay seriously bias the 
usual main efrects and interactions that are subtracted from an observation 
and thus mask the local effect of an outlier in the corresponding residual. To 
avoid this masking etfect of outliers, B could he replaced by a robust estimate 
R* and the residuals IJ* = Y - XB* used instead. These modified residuals 
will not satisfy the constraints Pip* = 0, but this is not important, as their 
main use is to accentuate the presence of outliers. Although there is a rapidly 
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growing literature on robust estimation for univariate linear models (see Huber 
[198l]), the multivariate case has received little attention. One possibility is to 
apply a univariate technique to each column B ( j )  of B. 

8.6 HYPOTHESIS TESTING 

8.6. I 

Consider the linear model Y = XB + U, where X is n X p of rank r ,  and the 
rows of U are i.i.d. Nd(O, 2). We saw, in Section 8.1, that this model arises 
naturally in the experimental design situation where the same design applies to 
each of d variables. This common design implies that main effects and 
interactions have the same form for each of the d variables so that the 
constraint matrix, A, say, for any corresponding test will also be the same for 
each variable. Thus we might wish to test H,,: ABc') = c ( j )  ( j  = 1,2,. . . ,d) 
simultaneously, that is, test 

Extension of Univariate Theory 

d 

j = l  
H, = n Hoj:AB = C, (8.46) 

where A is q X p of rank q. If r < p ,  then H, must be testable; that is, the 
constraints must be estimable so that A = MX for some matrix M of rank q 
(see Section 8.3). 

In the univariate model it was found that a test statistic for HoJ based on 
two residual or error sums of squares could be derived either intuitively from 
the distribution of AB(1) - c('), or using the likelihood ratio principle (Seber 
[1977: Section 4.1.21). It is therefore not surprising that we can base a 
multivariate test of H, on the matrix generalizations of these sum of squares, 
namely, 

E = (Y - Xb)'(Y - Xb) 

and 

E, = (Y - Xb,)'(Y - a,). 
As the Wishart distribution takes over the role of the chi-square distribution, 
we have the following multivariate generalization. 

THEOREM 8.5 When H, : AB = C is true, E and H = E, - E are indepen- 
dently distributed as Wd(n - r ,  Z) and W,(q, Z), respectively. 

Proof Using the notation of Section 8.3, let k = Y - XB, and let w = D n 
."MI. Then, from (8.24), 

E = U'(1, - Pn)U, 
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where I, - Pn has rank n - r. Also, from (8.39) and (8.32), 

E, == Y’(1, - Pw)Y 

= (@ t- U)’(I, - P,)(Qr + U) 
-- U’(1, - PJU, 

since Pa@ = Qr when No is true. Thus, when H,, is true, 

E, - E = U’(P, - P,)U 

= U’P,, n&, 

where Pwlnn is a symmetric idempotent matrix of rank q [see (8.31)]. Thus 
1, - Pn and Pn - P, are symmetric and idempotent with respective ranks 
n - r and 4, and (by B3.1) 

(I, - PQ)(Pu - P,) = P, -- PsPw = 0. 

‘The proof is now completed by evoking Theorem 2.4, Corollaries 1 and 2, lrom 
Section 2.3.2. 

COROLLARY 1 

€3 = (Ah - C)’[A(X’X)-A’] ‘(AB -- C), (8.47) 

Proof Since PilX = X, 

E = (Y - Xl$,)’(l, - P,)(Y - XB,) = Y’(1, - Pi2)%’. (8.48) 

Hence, by (8.39). 

E, - E z Y’(PQ - P,)Y 

= (Y - X$)’P,M’[MP,M’] -‘MPQ(Y -- XR,) 

= (MPSIY - MXB,)‘[A(X’X)- A’] -‘(MPnY -- MX$) 

= (A(X’X) X’Y - C)’[A(X’X) A’] ~ ‘(A(X’X) X’Y - C) 

= (AB - C)’[A(X’X)-A’] -‘(AB - C), 

[by (8.30)] 

[by (8.31 J] 

since MXB,, = A$ = C. 

COROLLARY 2 Given that H, is false, 

&[HI = 4Z -t (AR - C)’[A(X‘X)-- A’] -‘(AB - C) 

= qI: + D, (8.49) 
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say, and H has a noncentral Wishart distribution Wd(q, Z; A) with noncentral- 
ity matrix A = Z-’/2DZ-1/2. 

Proof The rows of Y - XB, are independently distributed with common 
dispersion matrix 2; and tapn - P,] = q. Hence, by (1.9), 

= qZ +(XB - W)’(P* - P,)W - XB,) 
= qZ + D, 

the last step following from the same algebra used in proving Corollary 1, but 
with Y replaced by XB. We now invoke Section 2.3.3 with A = Z-1/2DZ-1/z. 

8.6.2 Test Procedures 

In looking for a test statistic to test Ho, we note that 8[E] = (n  - r)Z and 
b[H] = qZ + D, where D 2 0 with equality if and only if Ho is true. Clearly, 
we would reject Ho if H or E, is too “large” compared with E. Two test 
statistics based on this general principle are derived below. We shall assume 
that n - r 2 d so that E is positive definite with probability 1. 

a UNION-INTERSECTION TEST 

Suppose we reduce the multivariate model to a univariate one by the trans- 
formation y = Ye, = Bland u = U4 where G# 0 (see Theorem 2.4 of Section 
2.3.2). Then y = X@ + u, where u - N,,(O, .,‘I,) and q? = &%’, and Ho re- 
duces to Ho,: AB = C t  = c, say. Let 

Q = (y - Xo)’(y - XO) = ~’(1~ - P*)y = d‘E4 

and 

Q H  = (Y - xlEH)’(y - XO,) = Y’(1n - P*)Y = e‘EJ, 

where J = qd Then we can test Hot using the F-ratio 

and we reject Ht if F, is too large. Now Ho = f l  ,Hot, so that, using the 
union-intersection principle, a test of Ho has acceptance region 

n { Y :  F(I k }  = 
L 
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where +,,,.. is the largest cigenvalue of HE-' (see A7.5 and A1.4), that is, the 
largest root of I H - +El = 0. 'This test, based on the largest eigenvalue, is due 
to Koy [1953], and we reject Ifo if +max is too large. The tables of critical values 
that we use are based on [see (2.34)] #,,,, = +,,,=/(l + +m,), the maximum 
eigenvalue of H(E + H)--'. When ff, is true we have, from Theorem 8.5, that 
H and E are independent Wishart matrices with degrees of freedom m H  = y 
and m E  -- n --- r ( 2  d ) .  Referring to Section 2.5.5,  we reject 11,) if Or,,,, 2 O,J, 
where 0, is obtained from Appendix D14 with s = min(q, d ) ,  u ,  = i(1q -- dl 
- l), and uz -- j ( n  - r - d -- 1). When s = 1, we can use fables of the 
F-distribution (Section 2.5.k). An alternative derivation of +,,,, also based ora 
the union-intersection principle, is given by Mudholkar et al. 11 974al. 

b LIKEI,IHOOD RATIO nisr 
Since n -- r 2 d ,  both E and E H  are positive definite with probability 1. 
Therefore if L(e, Z) is the likelihood function for the rows of Y, the likelihood 
ratio test statistic for I I ,  is (see Theorem 8.4 and the following discussion in 
Section 8.4) 

froin which we obtain 

= 11, - VI [by (2.25)] 

(8.50) 

(8.51) 

(8.52) 
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where V = E;1/2HE;1/2, as introduced in Section 2.5, and the Bj are the 
ordered eigenvalues of V. The test statistic A, a simple function of the 
likelihood ratio statistic e, was proposed by Wilks [1932]. We see from (2.48) 
that when Ha is true, A - Ud, p, n - r ,  and, by the likelihood ratio principle, we 
reject No if A is too small, that is, if (E,( is much greater than [El. Properties 
of the U-distribution are discussed in detail in Chapter 2 and summarized in 
Section 2.5.5b, while methods of computing A are described in Section 10.1.4a. 
If we use the tables in Appendix D13, we enter a, d, mu = 4, and M = n - r 
- d + 1 and obtain C, = C,(d, q, M). We reject Ha at the a level of signifi- 
cance if -flog A 2 C,&(a), wheref = n - r - 4(d - q + 1) and pr[X& 2 
x&(a)] = a. Since C, > 1, we do not need to look up C, if -flog A < &(a). 

2 2 - * 2 +d are the ordered eigen- 
values of HE-’, then 

We note, from (8.52), that if 

d 
-flog A = f C log(1 + + j ) .  

j- 1 

Since -flog A is approximately chi square when Ha is true, it is tempting to 
assert that each flog(1 + +,) is approximately chi square; however, this is not 
the case. Although the individual population eigenvalues generate distributions 
offlog(1 + +,), there is no way of knowing which of the d population values is 
generating thejth largest sample value +j. There is interest in the literature in 
testing the sequence of hypotheses HOk : + k + l  = +k+2 = * - * = +d = 0 using 

which is stated to be asymptoticallyally ~ f ~ - ~ ) ( ~ - ~ )  when HOk is true (see 
Muirhead [1982: Section 10.7.41 for a good survey of the theory). However, 
Harris [1975: p. 1121 claims that the appropriate distribution is not chi square 
and that such tests should be abandoned. Clearly there are some problems 
associated with such tests when f is not large. 

C OTHER TEST STATISTICS 

We note that A = n,(1 - 4 )  and +mm = OmJ(l - ern=) are functions of the 
eigenvalues 5. Since these eigenvalues have certain invariant properties (see 
Anderson [1958: pp. 222-2231), other functions of the 8/ have been proposed as 
test statistics for H,, or special cases of H,. If s = min(d, m,), these statistics 
include the following (see Section 2.5.5): 

(1) Wilks’ ratio (Wilks [1932], Hsu [1940]) 
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(2) ?he Lawley-Hotelling trace 

T: = ( n  - r )  tr[HE-’] 

(3) Pillai’s trace 

V s )  = tr[H(E + H) ‘1 = 0,. 
/ = I  

Several other statistics have been proposed by Pillai [1955]. In the literature the 
upper limit s of the above sums i s  sometimes replaced by d so that some of the 
0, may then be zero. A promising plotting method for assessing H,,  based on a 
(2-(2 plot (see Appendix C4) of the 5 versus the appropriate qumtiie values of 
the limiting null distribution, is given by Wachter [1980]. However, limiting 
forms under alternativc hypotheses are not yet available. 

d COMPARISON OF I:om TEST SIATISTICS 

As Wilks’ ratio has been shown to be generally inferior to the likelihood ratio 
statistic A (e.g., Hart and Money [1976]), we shall drop it from our list and 
compare just the four test statistics Roy’s q,,,,,, Wilks’ A, Hotelling’s Tg’, and 
Pillai’s Vfs). A brief review of some of the optimatty properties of these tests is 
given by Giri [1977: Section 8.4.41. 

When H ,  is false, E - W,(n - r ,  Z), E is independent of M, but now 
I1 - Wd(q,  Z; A), a noncentral Wishart distribution with noncentrality matrix 
[see (8.49)l 

A = Z-’/*(AB -. C)’[A(X’X)-A]--’(AB - C)2--1’’2. (8.53) 

Unfortunately the corresponding noncentral distributions of the four test 
statistics are very complicated, making power comparisons difficult. When rank 
A = 1, the so-called linear case (Section 2.3.3), the noncentral distribution 
function of A can be expressed as a mixture of incomplete beta functions 
(Tretter and Walster [1975]) and can therefore be readily computed. This 
mixture approach has been extended to general 11 by Walster and Tretter 
[1980]. An asymptotic expansion up to order n - 2  has been given by Suglura 
‘and Fujikoshi [1969]. Further asymptotic expansions are given by Y. S. Lee 
[1971] for ( n  - r ) V ( ‘ ) ,  and by Siotani [1956] and I t 0  [1960] for T f .  For a 
helpful survey and further references see Johnson and Kotx [ 1972: pp. 199-2011 
(in their notation S, -- H, S, == E, rn = d .  Y, =: 4, v2 = n - r ,  and p = s). 

A very general study was carried out by Schatzoff [1966bl using the concept 
of expected significance level (ESL), proposed by Dempster and Schatzoff 
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[1965], to compare the powers of the four test statistics (and two others) over a 
wide range of alternatives. Working with the eigenvalues 4, Schatzoff con- 
cluded that no single statistic was uniformly better than any of the others, 
though +mm was slightly worse than the others, except in the one case where 
+ m a  dominated the other (pj. This latter result is not surprising when the 
following theory, based on Rao [1973], is considered, 

Replacing the matrices E and H by their expected values [see (8.25) and 
(8.49)], we have a population version of IH - (pEj = 0, namely, 

0 = 1&“H] - +*&“Ell 

= JqZ + D - +*(n - t ) Z I  

= ID - { +*(n - t) - q ) X j  

= ID - YZI, 
say, where y = +*(n - t) - q is an eigenvalue of DZ-’, that is, of A = 
2:-1/2DZ:-1/2 (see A1.4). Here large values of (p* correspond to large values of 
y. Also, H, is the hypothesis that A = 0 or, equivalently, yl = y2 = - - - = yd 
= 0. Usually any departures from H, will be reflected in all the yj, which, in 
turn, will be reflected in the +: and their corresponding sample estimates 4. 
Hence for general departures from Ho (A has full rank), we wouId expect a 
better performance from test statistics that use all the sample roots. However, 
if rank A = 1, the entire deviation from Ho is concentrated in the one nonzero 
root ymm. This root corresponds to +Ern, the other +J’ being all equal to 
q/(n - t). In this situation we would expect the maximum root test to 
perform the best. 

The asymptotic equivalence of the other three tests is not surprising, as 
when n -+ 00, -flog A, q2, and (n - t )V( ’ )  are all asymptotically distributed 
as noncentral chi square with dq degrees of freedom and noncentrality parame- 
ter tr A. For example, Ito [1962] compared the powers of <* and A for the 
linear alternative rank A = 1 and showed that for mE = n - t equal to 100 or 
200, the powers differed at most in the second declmal place. Pillai and 
Jayachandran [1967: Table 101 compared the powers of A, T i ,  and V2) for 
d = 2, a = 0.05, and small samples [v2 = t ( m E  - d - 1) in the range 5-40]. 
They showed that the powers differed only in the third decimal place for small 
departures from H,, and differed by no more than 0.02 with larger deviations. 
The maximum root test was included in a subsequent study (Pillai and 
Jayachandran [1968: Table 41) and their power comparisons supported the 
general conclusions of the previous paragraph. However, in spite of the small 
differences, the authors were able to come to the following conclusions 
(d = 2): 

(1) For small departures from H,, or large deviations but with yl = y2, the 
tests may be ranked V(2)  L A 2 T:. 

(2) For large deviations from H,, and yl and y2 widely different, the order 
is reversed, that is, Tg2 2 A 2 Yo. 
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These conclusions are also supported by Y. S. Lee [1971]. Roy et al. [1971) 
carried out simulations and included smaller values of v2. Although power 
diiferences were greater, their conclusions generally agreed with the order i,n 

For general d ,  the ranking for small departures from H ,  would appear to be 
with the reverse order for the linear case of rank 

(1). 

V ( ’ )  2 A 2 Tg2 2 
A =  1. 

e MARIXA’S PERMUTATION TEST 

Consider the model 

(8.54) 

where the n x ( p  - 1) matrix X, has full rank p - 1 and X$l ,  = 8. Mardia 
[1971] investigated the permutation distribution of V *  = VS)/s under the null 
hypothesis li, : B, = 0. Instead of the usual normality assumptions, which 
imply that the y, are i.i.d. N,,(f3,, Z) under Ho, we now make the weaker 
assumption that the y, are simply i.i.d. under H0.  Each permutation of the set 
{y1,y2,. . , ,y,} will then have the same probability ll’n!. Using the approach of 
Box and Watson [1962], Mardia [ 19711 showed that the permutation distri- 
bution of V *  is approximately beta with UP and uQ degrees of freedom, 
respectively, where 

c [ s ( n  - I )  + 21 Cl l = 1 + -  __ 
s ( n  - I )  .- 2c ’ 

c - 3)C elc,] 
5 ( n  - 1) ’ 2 

s = min( d, 4 ) .  

Here C, and C ,  are measyres of the nonnormality of the rows of X ,  and of the 
yl, respectively. In particular, 

where b2, is the sample multivariate skewness of the yl (see Section 2.7). When 
the y, are MVN, the expected value of the above term in braces is zero (Mardin 
11974: Equation (5.2)]), so that E[C,] = 0 and n = 1. In this case the beta 
approximation is the one proposed by Pillai [1955], and it is exact when s = 1. 
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It transpires that 

(8 .55)  

so that c is of order n - l  near the lower bound of C,, and of order 1 near the 
upper bound. Therefore, when the y, are not normally distributed, C, de- 
termines the robustness of Vcs), ,  a result that Box and Watson [1962] demon- 
strated for the case d = 1. Mardia 119711 showed that 

where [ ( rn , , ) ]  = M = X,(X;X,)-'X;. If the diagonal elements of M are all 
equal, then, from trM = tr[X;X,(X;X,)-'] = trI, = q, we have mrr = q/n ,  
Brm:r = q2 /n ,  and C, = - 2(n - l ) / ( n  - 3). Thus C,attains its lower bound 
in (8.55), c = - a C y ] / n ,  

and, for large n ,  the permutation distribution of V* is insensitive to nonnor- 
mality. From symmetry, we see that any cross-classification with equal cell 
frequencies (e.g., Section 9.3) and any hierarchical classification with equal cell 
frequencies at each stage of the hierarchy are designs with equal elements mrr. 
Applications of the method are given in Chapter 9. From Exercise 8.7, we have 

H = (Y - l,Ji')'M(Y - 1,y') 

(8.57) 

since X;l, = 0 implies that M1, = 0. If H is known, then the diagonal 
elements of M can be found directly, Replacing (X;X2)-' by (X;X,)- we find 
that the above theory still applies when X, has less than full rank. 

We note that the above theory assumes that the yi have the same dispersion 
matrix. It is not clear what effect the violation of this assumption will have on 
the permutation test. 

8.6.3 Simultaneous Conjidence Intervals 

Associated with the largest root test of Ho : AB = 0 we have a set of simulta- 
neous confidence intervals for all linear combinations of the form aABb that 
we can derive as follows on the assumption that X has full rank. 
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Now H ,  is true if and only i f  HUab : d4Bb = 0 is true for all a, b; that is, 
= ~ l b ,  ato = a‘A, and 0 = (x‘x)-’x’Y, H, = n a n h &ah. Setting y -- ~ b ,  

we can test HOah:a6fi = 0 using the F-ratio (with q = I )  

where 

= y ’X(X’X)--’A’a[ a’A(X ’X) --‘A’a] -la’A(X’X) - -  ‘X’y 

= {ax( X ’X) ’- ‘X ’Yb ) ’/ {a%( X ’X) - ‘A’a } 

- (a’Lh)2 - -- 
a‘Ma ’ 

(8 .58 )  

say, and 

= b’Eb. (8.59) 

Using the union-intersection principle, a test of if,, has acceptance region 

nn{Y:q,.,,rk) = ( Y :  sup q , , , ) 5 : k }  
a 11 a,b(+O) 

1 (8.60) 
k < -- = 

(a‘Lb)’ = y :  sup -- { *,b (a’Ma)(b’Eb) - n - P k’\ 

= { Y :  +ma I k l } ,  

where 
(see A1.4) 

is the maximum eigenvalue of M-’LE-’L’ (by A7.7), that is, of 

L’M ‘LE-’ = Y ‘X(X’X)-’A’[A(X’X)--’A’] ’A(X’X) ‘X’YE-’ 

= (AB)’[A(X’X)-’A’] -lABE- 

= 1 b y  ( 8 4 1  
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We have therefore arrived at Roy’s maximum root test once again; however, 
we can use (8.60) with B replaced by B - B in L to obtain the following: 

Thus a set of multiple confidence intervals for all linear combinations is given 
by 

1/2 
a’ABb f ( +aa’A(X’X)-’A’a WEb) , (8.61) 

and the set has an overall confidence of lOO(1 - a)%. The largest root test of 
H,, will be significant at the a level of significance if and only if at least one of 
the intervals (8.61) does not contain zero. Although the maximum root test is 
not as powerful as the likelihood ratio test, it does have the advantage of being 
linked directly to a set of simultaneous confidence intervals. 

Since var[a’ABb] = a’A(X‘X)-’A’aai, where u i  = WZb, the intervals (8.61) 
may be written in the form 

a’ABb f ( +az[a’ABb])1/2, (8.62) 

where &[a’Ahb] is var[a’ABb] with X replaced by E. The term a’A(X’X)-’A’a 
can usually be found direct1 from the corresponding “reduced” univariate 
model by considering var[a’A i 1. 

By setting A = Ip ( q  = p ) ,  we obtain the set of intervals 

a’Bb f (+aa’(X’X)-’a WEb)1’2. (8.63) 

Included in this set is each element Pij of B, obtained by setting a and b equal 
to vectors with 1 in the zth andjth positions, respectively, and zeros elsewhere. 

If we are interested in just a certain number, say, m ,  of the elements of B, 
we can use the Bonferroni method of constructing m conservative confidence 
intervals with an overall confidence of at least lOO(1 - a)% (see Exercise 8.9). 
When rn is small, these intervals may be shorter than those given by (8.63). 

Finally, we note that if X does not have full rank, we simply replace 
(X’X)-’ by (X’X)-; Equation (8.62) still holds. 

8.6.4 Comparing Two Populations 

Let vl, v2,. ..,v,,, and w,, w2,.. .,w,,, be independent random samples from 
N d ( p I ,  2) and N&, Z), respectively. Setting yi = vi ( i  = 1,2,. . . ,n l ) ,  Y,, ,+~  = 
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w/  ( , I  = l , Z , .  . . , n , ) ,  and n = nl  + n 2 ,  we have the linear model 

(8.64) 

or 

Y = ’ x B + U .  

The hypothesis pi := p, is of the form (1, - l)B = pi - p i  = 0’ o r  AB = 10, so 
that this example is a special case of the general theory. Using this theory, we 
have 

n;’ 0 

O n,’ 

and 

E = (Y - XB)’(Y - XB) 
1‘1 ‘1 2 

1 - 1  1 - 1  

= c (v, - q v ,  - v)’ + c (yv, - n)(y - w)’ 

= ( n ,  -t n 2  -- 2)Sp,  

say. Also, 

Ah = (1, -l)( i:) = V ’  - w’, 

so that from (8.47), 

k1 = (AB)’[A(X’X)-’A’]--lAB 

(v -- w)(v - w)’, - - n1*2 

n1 f nz  
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and A = ( E ( / ( E  + HI. Since H has rank 1, we can use the test statistic [see 
(2.56) with mE = n, + n 2  - 21 

T: = m,tr[E-’HI 

n1 n1n2 + n2 1 1 
= mEtr -SPp1(~ - W)(V - @)’- I M E  

(8.65) 

2 
T d , n l + n 2 - 2 ,  

which is the same as the test statistic (3.86). Thus we find that Hotelling’s T t  
test of H, : 0 = pl - p2 = 0 is equivalent to the likelihood ratio test. 

8.6.5 Canonical Form 

Consider the general linear model Y = XB + U and the testable hypothesis 
H,:AB = C, where A is q X p of rank q and Xis n X p of rank r .  It is possible 
to shift the origin (to “remove” C) and make an orthogonal transformation 
Z = T’X of the data (see Seber [1980: p. SO]) so that the model and hypothesis 
become 

(8.66) 

where a, is q X d, 9, is ( r  - q )  X d, and the rows of U are i.i.d. Nd(O, &). 
Such canonical forms provide a simpler framework for theoretical derivations 
(such as powers of tests) and simulation (as in robustness studies). For 
example, using (8.66) we have, from Exercise 8.6, that 

4 
H = Z;Z, = ziz; 

i= 1 

and 
R 

E = Z;Z, = ziz:. 
i = r + l  

(8.67) 

(8.68) 

As 2, makes no contribution to H or E, (8.66) can be reduced further by 
simply omitting 2, and a2. 
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8.6.6 Missing Observuiionh 

If a sampling unit is missing in a design, for exilmple, a patient withdraws from 
the treatment, then all d measurements on that unit are missing and a row of Y 
is missing. Suppose then that &”YJ = XB, where 

and tn rows of Y, Y(2,, say. are missing. The Peast squares estimate B for the 
uvuiluble data is a solution o f  X;X,B = X;Ytl, [by (8.13)], and we have 
E = (Y(,, -- x,B)’(Y,,, -.-- x,B). However, using 

(1’ - XB)’(Y - XB) = (Y(1) - X,B)’(Y(,, - XIB) 

an alternative procedure is available. 
Let q(2) = X2B and $’ = (Y(il,$i1)‘, then 

(Q - x&)’(Y - XB) = (Y(l) - x,B)’(Y(l, - x,B) 

+ (Y(2) - x2B)’($(2) - X,B) 

= E. 

Also, adding X;XIB = X;Y(,, and X;X?B = X$(,,, we have 

X ’ ~  = XI*, 

and fi is obtained by minimizing (q - XB)@! - XB). Our procedure, there- 
fore, consists of finding rhe appropriate estimate 9(2, of Y(2,, completing the 
data set to q, and then finding B and E for this completed model This 
approach allows one to make use of the symmetry of the complete design 
matrix X and the simplicity of the corresponding analysis. 

Replacing Y by y, we see that the method is the same as the usual univariate 
missing observation procedure (see Seber [I  977: Section 10.21). We can there- 
fore find $‘(z, by applying a standard univariate procedure to each column of Y. 
Since both constrained and unconstrained least squares estimation for the 
multivariate model are equivalent to separate least squares estimation for each 
of the d univariate models, the same procedure can be used for finding E, 
when there are missing rows ol Y. We then have H = E ,  -- E and we can test 
H ,  using H and E with q and m E  - ni (= n - r - r n )  degrees of freedom 
respectively, E losing one degree of freedom for every inissing vector observa- 
tion. 
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Although the above case, where whole rows of Y are missing, is the natural 
one to consider, it may happen that single elements of Y are missing. This 
situation is more difficult to handle and some general procedures are described 
in Section 10.3. 

8.6.7 Other Topics 

Rogers and Young [1978] give methods for testing a linear hypothesis when Z 
satisfies 

for G,, G,, . . . , G, known linearly independent symmetric d X d matrices, and 
k I t d ( d  + 1). When k = t d ( d  + l), the (p, can be taken as the elements in 
the upper triangle of 2, and 2 is unstructured or “unpatterned.” Many of the 
special covariance patterns are included in the case k < +d(d  -+ 1). 

A number of authors (see Tso [1981] for references) have considered the 
problem of estimating the p X d matrix of parameters B subject to rank 
B I s < min(p, d), and testing rankB = s versus the alternative that B has 
full rank (or has rank s + 1). This topic is usually referred to as the reduced-rank 
regression model, and it is closely related to discriminant coordinates (canoni- 
cal variate analysis). A further problem is testing rankAB = t versus rank 
AB > t. When t = 0, this reduces to testing AB = 0 (Fujikoshi [1974]). 

8 . 7  A GENERALIZED LINEAR HYPOTHESIS 

8.7. I Theory 

Consider the model Y = XB + U, where X is n X p of rankp, and the rows of 
U are i.i.d. N,(O, 2). Suppose we wish to test 

Ho:ABD = 0, (8.70) 

where A is q x p of rank q (q I p), B is p X d of rank d, and D is d x u of 
rank u ( u  I d). As Ho reduces to the hypothesis AB = 0 when D = I,, a 
natural procedure for handling Ho is to try and carry out the same reduction 
using a suitable tiansformation. This can be achieved by setting YD = YD so 
that 

YD = XBD + UD 

= X h  + U,, 
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say, where the rows of 

u, = 

are i.i.d. N,(O,D’ZD) by Theorem 2.l(i) of Section 2.2. Since tio is now 
A h  = 0, we can apply the general theory of this chapter with 

H = (AA)’[A(X’X)-’A’] -‘AA [by (8.47)1 

= Y,;X(X’X)- ‘A’[ A(X’X)-’A’] ‘A(X’X) -‘X’Y, 

= (AhD)’[ A( X’X) -. ‘At] ABD (8.71) 

and 

E = Yi( l , ,  - P,,)YD = D’Y’(l,l - PQ)YD. (8.72) 

The only change is that Y is replaced by Y,, and d by u. Thus E - l v , ( n  - 
p,D’ZD), and, when H, is true, H - W,,(q,D’ZD). If X has less than full  
rank, namely rank r ,  then the above theory still holds, with (X’X) replaced 
by (X’X) , andp by r. 

Simultaneous lest procedures for testing several hypotheses like 11, are given 
by Gabriel [1968, 19691 and Mudholkar et al. [1974b]. Two examples of H, ,  
which we have already met in another context, are given below. 

8.7.2 Profile Analvsis for K Populations 

I n  Section 3.6.4 we considered a profile analysis of K = 2 populations with 
means q and v. As a step toward generalizing to K > 2, we now change the 
notation and refer to these mean vectors as p1 and p,, respectively. Then, with 
C, defined by (3.18). the hypothesis H,, of parallelism for K = 2 is C,(pl - 
p2)  = 0, that is, 

0’ = (ClPl)’ - (CIP2)’ 

I= (1, - l)BC;, (8.73) 



8.7 A Generalized Linear Hypothesis 425 

say. For the case of K populations N d ( p k ,  Z), k = I, 2,. . . , K, the correspond- 
ing hypothesis of parallelism is H,, : C,p, = Clpz = - . . = C1pK, or 

0 1 - 1  * . .  0 oliip u 

’1 - 1  0 * * .  

o =  . 

= A,BC;, (8.74) 

where the (K  - 1) X K matrix A, is of the same form as the ( d  - 1) x d 
matrix C,. We find, then, that (8.73) and (8.74) are special cases of (8.70). We 
note in passing that some nonparametric tests of parallelism are given by 
Bhapkar and Patterson [1977, 19781. 

In a similar fashion Hoz, the hypothesis that the profiles are all at the same 
level, generalizes from Ib(pl - p2) = 0 for the case of two populations to 
A,B1, = 0 for K populations. However, this test is equivalent to carrying out a 
one-way analysis of the differences between K means for the data consisting of 
the sum of the elements of each observation vector (e.g., 1;s) 

The hypothesis H,, of no test main effects, namely, 

generalizes to 

0’ = [Cl(pl + p2 + * - *  + p K ) ]  = 1iBC;. 

In the same way the test statistic, given by (3.103), for the case K = 2 
generalizes to 

T,2 = n(c,E)”c,s,c;] -lc,jZ, (8.75) 

when n = n1 + n ,  + . - - + nK, ?i is the mean of all n observations, and Sp is 
the usual pooled estimate of 2. When Ho3 n H,, is true, T: - T‘,-l,n-K 

8.7.3 

We shall now show that the hypothesis tests in Section 3.4 for the mean of a 
M W  distribution are a special case of the generalized linear hypothesis 
described above. Let v,, v,, . . . ,v, be i.i.d. N d ( p ,  Z), and suppose we wish to test 
H ,  : D’p = 0, where D’ is a known q X d matrix of rank q. Setting Y’ = 
(vl,v2,. . . ,vn) and XB = In$, we have the linear model Y = XB + U, where 
the rows of U are i.i.d. Nd(O, 2). Then H, becomes 0’ = p’D = BD, which is a 
special case of ABD = 0 with A = 1. Hence, from (8.71) and (8.72), the test 

Tests for Mean of Multivariate Normal 
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statistic for lf,, is A = (E(/IE + HI, where 

H = D‘Y’X(X’X) .‘A‘[A(X’X)-’A’] -lA(X’X)-‘X’YD 

= D’Y 8 B ( I; I , ) -- I (1; in ) ( 1; I , ) - I ;Y D 

= nD’fSi’D 

and 

= D ’ ~ ( V ,  - V)(V, - V)’D 
i 

= D’QD, 

say. However, as rank €1 = 1 and E - Wq( n - 1, C), we can test H ,  using (see 
Section 2.5.5e) 

T i  = ( n  - 1) tr[E- ‘€31 

= n(D’V)’[D’SD]-’D’ii [see (8 .65 ) ] ,  

where S = Q / ( n  - 1). We have arrived once again at (3.17) with A; = D’ and 
b = 0. 

In conclusion, we see that the general hypothesis ABD = 0 reduces to the 
usual multivariate linear hypothesis when 1) = I,, but reduces to a linear 
hypothesis about the mean of a MVN distribution when A = I,. In Chapter 9 
we consider a further generalization where we replace the model &[Y] = XB by 
&“Y] = XAK’. 

8.8 STEP-DOWN PROCEDURES 

For completeness we mention a step-down procedure, generalizing that of 
Section 3.3.4, for testing H,:AB = 0 for the mode1 Q = )3B + U, where the 
rows of U are i.i.d. NJO, 2) and C = [ ( [ I ,k) ] .  To set the scene, let Y,, = 

(y(’),yt2),. . . , Y ( ~ ) )  be Lhe first k columns of Y ( k  2 J ) ;  let B, = 

k X k submatrix of Z. From Y = t(yl,)] and &fY] = XB, i t  follows that 
E[y,,] = x;p(’) and the distribution of y,k given yI* = (ytl, y,,,. . . J , , ~ - ~ ) ’  is 
[by Theorem Z.l(viii) of Section 2.2 and (2.17)] 

Nl(x:p(k) f ~ ~ - l , k X k ! l { Y ~  - B ~ - ~ x l } , ~ ~ ) ,  

(p“), p‘l), . . . , p ( k ) ) ,  [ I k -  1, k = ( [ I l k ,  [I,,, . . . , [ I k -  1 ,  k ) ’ ,  and k t  2, be the leading 

(8.76) 
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where u i  = 1 & 1 / 1 & - 1 1 d  The elements Y l k ,  Y2ky . . . , Y n k  of y ( k )  are mutually 
independent, and conditioning Y j k  on y: for each i does not alter this 
independence, as the rows of Yk are mutually independent. Hence, if we 
transpose the second term in the mean of (8.76), the conditional distribution of 
y ( k ) ,  given Yk-1, is 

N n ( X p ' k ' +  {yk-1 - ~ k - 1 } ~ ~ ~ l u k - l , k ,  uk21n)i 

(8.77) 

To this set of conditional distributions (k = 2,3,. . . ,d) we add y(I) - 
Consider now the following decomposition of the testable hypothesis H, : 

Nn(XS"', u11In)* 

AB = 0, where A is q X p of rank q: 

(8.78) 

that is, 
d 

k - 1  
Ho = n H O k ,  

say. Equation (8.78) follows from the fact that if Hal, HO2,.  . . ,HO,k- l  are true, 
then ABk- ,  = 0 and &k :Aq(k)  = 0 reduces to A p c k )  = 0. For fixed Y k - 1  we 
have model (8.77), and, as this is a standard analysis of covariance model (see 
Section 9.3, we can test HOk conditionally using a standard F-statistic, Fk, say. 
If r = rank X, then, conditional on fixed Y k - 1 ,  Fk - Fq,n-,.-(k-l) when H O k  is 
true. Since this null distribution does not depend on Yk-1, Fk is independent of 
Yk- l  (and therefore of FkVl ,  Fk-2, etc.) and is unconditionally distributed as 
Fq,n-r-k+l  when H O k  is true. Thus when H, is true, each H O k  is true and the 
joint distribution of the Fk satisfies 

g(F1, F29."9Fd) = g 1 ( 4 ) g 2 ( F , I F 1 )  - * *  gd(FdlF1, F2,...9Fd-l) 

= g l ( F l ) g d F , )  * & ( F d ) ,  (8.79) 
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that is, the Fk are mutually independent. We can therefore test ffo at the a! level 
of signiticance by testing the sequence Hol, Ifo,, /Io3,. . . , using significance 
levels Uk + where 

This so-called step-down procedure can be used where there is a physically 
meaningful basis for considering the response variables in a certain order, 
different orders may lead to different conclusions. The method has been used 
to construct simultaneous confidence intervals (e.g., Roy et al. [1971]). A 
method for computing the successive F-statistics is given in Chapter 10 [see 
(10.12) and (10.22)]. 

8.9 M U L T I P L E  DESIGN MODELS 

A natural extension of the linear model described above is to allow the matrix 
X to depend on the response variable, namely, y ( J )  = 6'1) + u(J), J = 1,2,. . , ,d, 
where 6(/' = X P ( J )  and X, is n x p, of rank p,. The null hypothesis H ,  also can 
be generaliLed: We now wish to test €1, = f l  ,HoJ, where H,. A,P(J) = c ( J )  
and A, is qJ X p, of rank qJ.  

EXAMPLE, 8.1 Suppose we have two correlated regression models 

J 

E[Y,ll = 4, = P I 0  -t- P l l X l  

and 

E[ Y , ~ ]  = e,, = PZo -I- P2,x,  + PL2x,L ( i  = 1 ,2  ,..., n ) .  

Here Y = [(y,,)] = (y('), y")), 

/ 4 1  

and 

1 X I \  
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The hypothesis of no regression on x then takes the form 

so that 

We 
section 
Y = 6  

now 
and 
+ U  

0 1 0  A, = (0,l) and A , =  ( o  
l ) .  

(8.81) 

0 

return to the general formulation given at the beginning of this 
derive a maximum root test due to McDonald [1975]. Writing 
as before, we assume that the rows of U are i.i.d. Nd(O, Z). In 

order to use the union-intersection principle we reduce the multivariate model 
to a univariate one by using the transformation y = Ye, where t =  

L2,. . . , L,)’. Then 

say, where X = (Xl, X,, . . . , X d )  is n X p (p  = C j p j )  and 

p‘ = ( /,p‘”’, t*f3(*”, . . . , /“‘d”). 

We see that H, is true if and only if Hal: n,(A,fi‘j)LPj = c( j )G)  for all 4 that is, 
H, = n ,Hot. If q = max( ql, q,, . . . , qd), then H,, can be written in the form 
C,A?B(’)LPj = C,c*(’)$ (= c, say), where 

Here 0, is a ( q  - q j )  X pi block of zeros and Oj is a vector of q - qj zeros. 
Therefore setting A = (A!, A:, . . . ,A*,), we see that H,,, takes the form A$ = c 
and we assume that this hypothesis is testable, that is, the rows of A are 
linearly dependent on the rows of X. With the univariate theory, the ap- 
propriate sums of squares are 
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and 

Qlr - Q €'He. 

It then follows froin Section 8.6.2a, that H, can be tested using +max, the largest 
root of 111 - $El = 0. If X has rank r ,  A has rank q, and u 2  = 624 then 
Q/a2 and (Q,, - Q)/a2 are independently distributed as x', and x : .  r ,  

respectively, for all {when 11, is true. Hence, from Theorem 2.4(ii) in Section 
2.3.2, E and €1 are independently distributed as W,(n - r ,  2 )  and Wd(9, Z), 
respectively when 19, is true. Here 

E = Yq1" - X(X'X) X')Y 

and, since c = C4 we have from (8.47), 

H = {A(X'X)- X'Y - C)'[A(X'X)-A']--'(A(X'X)-X'Y - C } ,  (8.82) 

where C = (c*('), c*(~) ,  . . . ,c*(")). If rank A = 4,. then, when H, is true, 
H - Wd(q , ) ,2 )  and w e  use [A(X'X)-A']- in (8.82). Since E and H are 
independent d-dimensional Wishart distributions when H ,  is true, we can use 
all four test statistics given in Section 8.6.2 to test H,. 

Further insight into the above approach is gained by noting that 

8 = ( X p '  X,j3'2',. . . ,X,P'd)) 

(8.83) 

say. Then H, is ABd = C and the matrices E and H of (8.82) arise naturally bv 
applying the general theory of this chapter to (8.133). However, when X has full 
rank, H of (8.82) is based on the estimator &, = (X'X) 'X'Y. 'This estimator 
will not he efficient, as it estimates some elements of Bd that are known to be 
zero. We can therefore expect the above test procedure to be less powerful than 
what might be suggested by the general theory. 

More efficient estimators of the f3 (J )  can be found as follows (ZeXlner [1962], 
Press [1972a: Section 8.51. Let 
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or 

(8 -84) 

say. Then 9[u,]  = V,, where V, is a function of the elements of C (see Exercise 
8.13j, and the minimum variance linear unbiased estimate of b, is 0, = 

(XV;’X,)-’X;V;’y, (see Seber [1977: Section 3.61). Estimating Z by (Y - 
md)’(Y - Xhd j/n (= E/n), we can substitute this into V, to get v, and an 
approximation, B,, say, for f#,. Although 8, will be a biased estimate of b,, the 
bias will be small (of order n-’) when n is sufficiently large. Plugging 8, back 
into E will lead to a more efficient estimate of 2. To test H, we set 
A, = diag(A,, A 2 , .  . . ,Ad), as in the definition of X,, and c; = 
(c(l)’,d2)’,. . . ,dd)’). Then A,& is approximately N,(A,&, A,(X;$’-’X,)-lA;) 
and, when H, is true, 

(AI@, - c,)’[A,(X:~;’X,)-~A;] -‘(A$, - c,) is approximately xf 

The multiple design multivariate (MDM) model described above was con- 
sidered by Roy and Srivastava [1964] and Srivastava [1966, 19671. Some 
examples relating to multivariate regression systems, like Example 8.1 above, 
and their estimation problems are given by Zellnet [1962, 19631. McDonald 
[1975] mentions that the advantages of the above tests over the step-down 
procedure proposed by Roy and Srivastava [1964] are that the testability 
conditions are relatively simple, and the standard computational techniques 
and tables based on E and H are available. McDonald also gives a simple 
necessary and sufficient condition for the testability of a special case of the 
above theory that he calls the monotone MDM model. 

EXERCISES 8 

8.1 Let Y = XB + U, where X is n X p of rank p and b[U] = 0. Show that 
the least squares estimate B = (X’X)-’X’Y uniquely minimizes tr[(Y - 
XB)’(Y - XB)]. [Hint: Use A7.9.1 

8.2 Let y,, y2, and y3 be mutually independent, &dimensional MVN random 
vectors with means 8,, 8, - 4, and 9, + 4, respectively, and common 
dispersion matrix X. Find the least squares estimates of 

8.3 Suppose y, ( i  = 1,2, .  . . ,n) are independently distributed as N d ( p , ,  2), 
where p, = B’x,, B is a p X d matrix of unknown parameters and 
X = (xl, x2,. . . ,x,)’is a given n x p matrix of rankp. If 8 = (X’X)-’XY, 
find the dispersion matrix of B’xo, the predicted value of yo correspond- 
ing to x = xo. How would you estimate this matrix? Construct a confi- 
dence interval for a’y,. 

8.4 Let y1,y2, ...,yn be a random sample from Nd(p,  2). Show that the 
sample mean 9 is the least squares estimate of p. 

and 4. 
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8.5 Use Exercise 2.23 and (8.49) to find an unbiased estimate of Z '1). 
8.6 Verify (8.67) and (8.68). 
8.7 Let Y = XB + U, where XB = 1,p; + X2B2,X = (l, , ,X2) is n X p of 

rank p .  Xll, = 0, and the rows of U are i.i.d. NJO, C). 
(a) Show that the least squares estimates of and I$ are f and 

(X;X,)-'X$, respectively, where k = (y, - F,yz - 8 , .  . . ,y, - 7)'. 
(b) For testing H,:B, = 0, show that 

E = Y'(l, - M)Y and 11 = Q'MV, 

where M = X2(X;X2)--'X$. 
Note: A special case o f  this result is as follows. Let 

8.8 

8.9 

8.10 

8.1 1 

8.12 

8.13 

- where X, 1= (x,. x ? , .  . . , x n ) '  and X, = (x, - x, x 2  - x,. . . ,x, - %)'. 
Then Xhl,, = 0. 
IJsing the notation of Scction 8.3, let w = i2 17 "MI, where D has 
dimension r and M is y X n of rank q. Show that I, - P, has rank 
n - r + q .  
Using the notation o f  (8.63), construct a t-confidence interval for a given 
linear combina tiori u'Rb. Apply the Bonferroni method to obtain confi- 
dence intervals for m such linear combinations that have an overall 
confidence of at least 100(1 - a)%. 
Let Y -- XB + U, where X is n X p of rank p, and the rows o f  U are Lid. 
N,,(O, X). Let XB -- X,B, + X2R2, where X, is n X p 2 .  Derive the likeli- 
hood ratio test for testing H,: B2 = 0. 
Verify that (8.75) has a Hotelling's T 2  distribution under the ncll 
hypothesis n H,,,.  
For example 8.1 of Section 8.9 prove that the first three hypotheses below 
are each testable. and that the last two are not. 
(a) PI1 = 0, Ejzl = L- 0. 
(b) P 2 2  = 0. 
(c )  P11 = a, -- 0. 
(4 P1, = 0. 
(el P11 -- P 2 2  = 0. 
Find the dispersion matrix V, of u,, where u, is given by (8.84). 



CHAPTER 9 

Multivariate AnaEysis of 
Variance and Covariance 

9 .1  INTRODUCTION 

In Chapter 8 we developed a general theory for multivariate linear models. We 
saw that the usual univariate linear model generalizes naturally to a multi- 
variate model in which a vector y of independent observations y,  is replaced by 
a matrix of observations Y with statistically independent rows y;. In par- 
ticular, a quadratic form y’Gy = CiC,gi,yly,, for example, (y - Xs)’(y - XS) 
[= ~ ’ ( 1 ~  - P,)y], simply becomes Y’GY = C,C,g,,y,y;. As fixed effects uni- 
variate analysis of variance (ANOVA) models are special cases of the linear 
model (e.g., Seber [1977: Chapter 9]), it is not surprising that ANOVA models 
generalize naturally to MANOVA (multivariate analysis of variance) models. 
We now demonstrate this extension with several simple examples. 

9 .2  ONE-WAY CLASSIFICATION 

9.2.1 Hypothesis Testing 

In Section 8.6.4 we considered the problem of comparing the means of two 
MVN populations, assuming a common dispersion matrix 2, using the general 
theory of multivariate linear models. We now extend this theory to the case of 
comparing I normal populations when there are n ,  independent d-dimensional 
observations from the i th population. 

Let y,, be thejth sample observation ( j  = ly2,...yni) from the ith MVN 
distribution N d ( p l ,  X) (i = 1,2,. . . , I )  so that we have the following array of 
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data: 

\ 

p; 

clz 

Sample mean 

+ 

Population I :  YIl ,Yf2 ,"  .9YI,l, 71.  

We also require the grand mean 

where n = C, n I .  In order to apply the general theory of Chapter 8, we combine 
the above array of vectors into die single model 

y I J  = p, -1- u,, ( i  = 1,2, 

where the ulJ are i.i.d. Nd(O, 2). 'Then 

... , I : j  = 1,2 )...) 4, 

0 ... / '4 

or 

Y = x B + U .  (9.1) 

The hypothesis of equal population means, H,,: p1 = p, = * . 
written in the form 

= pf, can be 

O =  

1 0 . - *  0 - 1  
0 1 I * '  0 --1 

0 0 . - *  1 -1 

. .  . .  . .  
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TABLE 9.1 One-way Univariate Analysis of Variance Table 
~ 

Sum of Squares Degrees of Freedom 
Source (SS) (df) SS/df 

Between populations X n i ( y i . -  j j . . ) *  q - I - 1  8 ;  

Error XZ(yi, - j j i . ) *  n - p = Xni  - I 82. 

Corrected total ZZ(yij - 8 . )  Zni - 1 

To test Ho we consider the quadratic forms for the univariate analysis of the 
model y,, = p, + u,,. These are given in the ANOVA table, Table 9.1. It is now 
easy to write down the corresponding matrices for the MANOVA model, and 
these are given in Table 9.2. Instead of using the F-ratio s;/s$, we use one of 
the various test statistics based on the roots of IH - 8(E + €€)I = 0. For 
example, Wilks’ likelihood ratio statistic is 

and - ud,mH,m,  when Ho is true. Procedures for computing the various test 
statistics are described in Section 10.1.4. When I = 2, we have mH = 1 and, 
from Section 2.5.5e, all four test statistics of Section 8.6.2 are equivalent to 
Hotelling’s T t  test for comparing two means (see Exercise 9.1). For general I, 
the four tests are compared in Section 9.2.3. 

= p r  # p r + l  = . - - 
= p, ( r  unknown) are given by Sen and Srivastava [1973]. 

Methods for testing Ho against the alternative p, = . 

EXAMPLE 9.1 In Table 9.3 we have a selection of transformed measure- 
ments from Reeve 119411 on anteater skulls for the subspecies chapadensis from 
three different localities and now deposited in the British Museum. Three 
measurements were taken on each skull (see Example 5.8 in Section 5.8), and 
Table 9.3 shows the common logarithms of the original measurements in 
millimeters, dong with their means. To test H,:p,  = p2 = p, for the three 

TABLE 9.2 One-way Multivariate Analysis of Variance Table 

Source Matrix df 
-~ 

Between populations H = Zn,(Y, . -  Y . . ) ( j j . -  1.)’ m , = I - l  
Error 
Corrected total 

E = XZ(Y,, - 7, .MY,, - Y, .I’ mE = Zn, - I 

E, = W Y , ,  - B MY,, - Y..)’ 
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TABLE 9.3 
Localities” 

Multiuariate Analysis of Varioncc and Covariance 

Logarithms o f  Multiple Measurements on Anteater Skulls at Thrce 

_--I-- __I____-. ___I--.- 

Minw Qraos, Brazil Matto Groseo, Brazil Sants Cruz, Bolivia 
--h--.- - r--- 7 -7 

QI z: Xa XI XI 21 21 3% %a 

2.088 2.070 1.680 2.045 2.064 1.680 2.003 2.008 1.863 
2.088 2.074 1.802 2.078 2,088 1.602 2.100 2*LO8 1.823 
2*000 25000 1,613 2.080 2.003 1443  2,104 2.101. 1463  
2.007 2.003 1.013 2.111 2.114 1.843 - - -- 
2.117 2.126 1.683 - -. - - ..- - 
2.140 2.146 1.681 - - - - I - 

Mema 2.007 2.100 1.826 2.080 2487 1417 2.088 2.102 1-843 
-___- ___ ~ - _ _ _ -  

“From Reeve [1941), courtesy of The Zoological Society of London. 

locations, we compute 

i 0.80597 x 1 W 3  0.62324 x LO-’ 0.74979 x 
0.48202 X low3 0.58595 X 

1.18436 x 10- - 
H - [  - 

- 

and 

0.634233 x 0.624183 x 10- 0.761567 x lo-’ 

1.096733 x 10 

Here d = 3, I = 3, n,  1= 6, n 2  = 4, n 3  = 3, n = C , n ,  = 13, s = Inin([ -. 1, d )  
= 2, nzN = I - 1 = 2, and m E  -= n - I = 13 - 3 = 10. The various test sta- 
tistics for testing H, are 

A = IE(/(E + HI = 0.6014, 

tr(HE ‘1 == 0.5821, 

cp,,,, = 0.35531, 

where +,,, is the rnaxiniutn eigenvalue of HE-’. Since I n H  = 2, we can 
transform A into an exact F-statistic using (2.45:), namely, 

where f =  m E  -. f ( d  - m H  + 1 )  = 9, I = [(4d2 - 4)/(d2 - l)]l/’? = 2, and 
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1 - A’/’ _ -  16 - o.77, 
All= 6 

Fo = 

which is not significant, as F$i5 = 2.74. 

transformation 
For Hotelling’s T i  test we use Appendix D15. Since m H  < d, we make the 

and calculate 
mE - tr[HE-’] = e(0.58210) = 1.75. 
mH 

Interpolating in Appendix D15 with the above transformed triple, we get a 5% 
critical value of about 7.8, which is well above 1.75. Hence T i  is not 
significant. 

Now s = 2, v1 = $(Id - mHI - 1) = 0, and v2 = $ ( M E  - d - 1) = 3 and, 
from Appendix D16, the 5% critical value for Pillai’s test is 0.890, which 
is much greater than P2) = 0.4470. Also, the maximum eigenvalue of 
H(E + €I-’ is 

and, from Appendix D14, the 5% critical value is 00.05 = 0.70174. In both cases 
the 5% critical value is not exceeded. 

9.2.2 MuItiple Comparisons 

For a general linear model we have the result [see (8.61)J 

1/2 
1 - a = pr[ a‘ABb E a ’ d b  k ( +aa’A(X’X)-lA’a VEb) for all a, b] 

(9.3) 

Applying this to our one-way model [see (9.2)], we have 

A B =  1 (P2 - PI)’ 
(9.4) 
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so that 

a’AB = a,(pl -- p,)’ + a,(p, - p,)’ + - * *  + a,-,(p,. p,)’ 

where c, = a, ( i  = 1.2,. . . ,I - l), cI = - Z!;; a, and C,l, c, = 0. We there- 
fore find that the class of all vectors a’AB is the same as the class of d l  
contrasts in the p,. Furthermore, from Exercise 9.2, 

I 

aAAS = C c,~:, 
, = I  

and, when d = 1, 

Hence, from (8.62), the probability is 1 - a that [with = dJ(1 - e,)] 

simultaneously for all contrasts and all b. ‘The condition b’b = 1 can be 
imposed, as (9.5) is unatkted by a scale change in b. If p, = [(p )], the most 
interesting members of this set of intervals would generally he %, c,pIJ  ( j  = 

1,2,. . . , d ) ,  a contrast in the j t h  elements of the p, obtained by setting 
b’ = (0,. . . ,0,1,0,. . . ,0) with a 1 in the j  th position. In particular, we would be 
interested in pairwise contrasts pr - p, and the corresponding subset of (9.9, 
namely, 

If the maximum root test of H, : AB = 0 is significant, then at least one of 
the intervals given by (9.5) does not contain zero and we can use the 
simultaneous intervals to look at any contrast suggested by the data. We have 
already noted above that the set (9.5) includes contrasts For each of d 
univariate models with respective means p,,, p Z J , .  . . ,p,, (1 = 1,2, .  . . , d ) .  
However, it is well known that for a univariate model the so-called Scheffe 
confidence intervals for all contrasts are very wide, so that the set (9.5) will be 
wider still and may not be very useful. 
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A set of simultaneous intervals for all h e a r  combinations (p, - ps)’b, 
based on a multivariate analogue of Tukey’s Studentized range, was proposed 
by Krishnaiah [1965,1969,1979]. Writing H, : p1 = p2 = - . - = pLI as 

HO = n n HO,, 
r s  
r < s  

where H,, : pr - ps = 0, we can test each of the K = (i) = iZ( I - 1) hypothe- 
ses H,, using a Hotelling’s T2 statistic, Ti, say, based on a pooled estimate 
S ,  = E/v of Z, where v = C,(n, - 1) = n - Z (see Exercise 9.3). Then, argu- 
ing as in Section 1.6.1, we can test Ho using 

T:= = max T i .  
1 s k s . K  

If c, satisfies pr[T;= I c,lHo] = 1 - a, then 

pr[T’ 5 c,, k = 1,2 ,..., K J H , ]  = 1 - a, 

and, if we argue as in (3.90), the probability is 1 - a that 

simultaneously for all r ,  s ( r  # s) and for all b. These intervals are the same as 
(9.6), except that (pa is replaced by c,. Since the intervals of (9.6) are a subset of 
(9.5), their overall probability exceeds 1 - a and (pa > c,/v. Unfortunately, 
extensive tables of c, are not available, though a Bonferroni approach can be 
used. Since T: - T; n-, when H, is true, an approximation for c, is then the 
a / k  quantile of Ti  n-,. For further details and another set of simultaneous 
intervals based on Ti=, see Subbaiah and Mudholkar [1981: there is a 
misprint in their Equation (2.8)]. 

If we are interested in a single linear combination 8 = VBb = Eihi(p:b), 
chosen before seeing the data, we can construct a confidence interval as 
follows. If we set 8 = Ci hi(yi’.b), then 6 - Nl(B,Ci hTb’Zb/ni), b’Eb - 
b’ZbX:, and 8 is independent of b’Eb, as B is independent of E (Theorem 8.3, 
Corollary, in Section 8.4). Hence 

so that a lOO(1 - a)% confidence interval for B is then 
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If we are interested in r such confidence intervals. then we can use thc 
Bonferroni method with t-value 

Muttrocmole Analysrv of Vurrarrce arid Cooariucce 

EXAMPLE 9.2 To demonstrate the above method of calculating simulta- 
neous confidence intervals, we refer, once again, to Example 9.1, where we 
consider testing Ho:pl -= p2 r- p3 with p, = (p , , , ,  p12, p13)’. Loolung at the 
three sample means 

we might be interested in the largcst pairwise difference 1.643 - 1.417 = 0.026. 
Using a = 0.05, the confidence interval for p33 - pzJ is given by (9.6) with 
b’ = (0,0, I) ,  and, from Example 9.1, WEb = e33 = 1.096733 X and 

The interval is therefore 

0.026 f {2.3528(: + +)(0.0197633)}”2 or 0.026 f 0.16. 

This interval contains zero, which is to be expected, as the test of fIo using em, 
is not significant at the 5% level. 

9.2.3 f‘ornparima of Test Statistia 

Assunling that the u,, are independently distributed as N,,(O, X,), Ito and 
Schull [1964] investigated the iobustness of the null distribution of Hotelling’s 
generalized statistic T: = (n - I)tr[HE-’] with respcct to the inequality 
of the 2, for very large o , ,  that is, large enough for S, = 2,. where S, -= C, 
(y,, - v , ) ( y l ,  - v , ) ’ / ( n ,  - 1). ‘They demonstrated that when the Ill are equal, 
moderate inequality of the 2, does not affect Tg’ seriously, but when some or 
all of the n, are unequal, both the significaiice level and power of T l  can he 
seriously afttcted. Ito [1969, 19801 showed that the asymptotic pioperties of 7: 
are little affected by any nonnormality of the u,,. 

Since the null distribution of -flog A ,  where f = nt, - + ( d  - m H  + 1) 
and miL = n - I ,  is asymptotically &mF, it is convenient to compare -flog h 
rather than A with T l .  Letting n --j 00 and n , / n  3 r,,-we have 
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say. Hence by A2.4, 

-flog A 5 - ( n  - I)lOg A 

+ O(n-')  
tr[ (S-'H)*] 
2(n - I )  = tr[z-'H] - 

and 

q2 = (n - Z)tr[E-'HI + tr[z-'H]. 

The above argument follows Ito [1969: p. 1111 and demonstrates that -flog A 
and T i  are asymptotically equivalent tests, even in the presence of nonnormal- 
ity and inequality of dispersion matrices. 

When permutation theory is valid, Mardia [1971] showed that the permu- 
tation distribution of V(')  is insensitive to nonnormality when the n, are equal. 
This test is discussed in the next section. Unfortunately, the permutation 
theory does not allow for unequal Xi, and we would expect V c s )  to show a 
similar sensitivity to this departure as the other tests. Clearly, in designing a 
one-way classification, we must make every effort to achieve equal n,. 

Which of the four statistics A, Tg", Yes), and CP,, do we choose? When the 
underlying normality assumptions are valid, we know, from the general recom- 
mendations in Section 8.6.2d and special studies like that of Pills and Sudjana 
[1975], that they have similar powers. In general, the ranking is Yes) 2 A 2 T: 
2 +max for small departures from H,, with the order being reversed in the 
special case when the noncentrality matrix A has rank 1. However, the 
differences are small, and, following Olson 119741, it seems more appropriate to 
base our choice of test on a comparison of their robustness. 

Davis [1980b] has investigated the robustness of A to departures from 
normality. He showed that correction terms involving the measures of multi- 
variate skewness and kurtosis are needed for the calculation of the true 
significance level. However, these correction terms are generally small for large 
m E ,  thus indicating a general robustness of A to nonnormality. He demon- 
strated that for sufficiently large skewness and kurtosis, the effects on the true 
significance level may be quite serious for moderate m E ,  say, m E  = 30. 
Increasing the skewness tends to raise the significance level, whereas increasing 
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the kurtosis tends to lower it. ’The effect of skewness is more pronounced for 
smaller m E ,  and that of kurtosis more pronounced for larger m E .  Increasing 
the inequality of sample sizes generally seems to influence the true significarlce 
level in the opposite directions to those of the basic skewness and kurtosis 
effects. Similar conclusions apply to $+,,ax (Davis [1982]). 

Using simulation, Olson [19’74] compared the four statistics under equal n,, 
syrnmetric (contaminated normal) distributions, and unequal 2,. IIe concluded 
that kurtotic departures from normality have relatively mild effects on the type 
I error rates (significance levels), although the effects are more serious for +n,,, 
under certain conditions. Positive kurtosis usually leads to H, being accepted 
too frequently, that is, to a reduced type I error rate, a fact demonstrated 
theoretically by Davis [1980b]. ‘The powers of all the tests suff‘er under kurtosi!,, 
but the efkct is greatest for in the general case of rank A #- I. As expected 
from the above asymptotic results, inequality of the dispersion matrices is a 
more serious violation. Type I error rates can become excessively high for 72, 
A, and while I/(’) is iiiuch less disturbed. Thus positive kurtosis and 
inequality of the dispersion matrices tend to have opposite effects on the 
significance level. 

Since departures from the underlying assumptions affect all four statistics, 
the choice of a “best” statistic depends to some extend on balancing type I 
against type JI errors. Olson’s view is that “ very high type I errors rates makc 
a test dangerous; low power merely makes it less useful.’’ On this basis the qrnm 
test, which produces excessive rejections of ]Io under both kurtosis and 
covariance heterogeneity, is ruled out. For prolection agahist kurtosis, any of 
the remaining three would be asceptable. The test is generally better than 
the other two in terms of type I error rates, but it  is sometimes less powerful. I t  
also stands up best to covariance heterogeneity, thougli its type I crror rate is 
somewhat high. In this rcspect the other two statistics A ‘and T: behave like 
+,,,, and perhaps should be avoided if covariance heterogeneity is moderate. 

Olson also made sonic helpfill comments about the parameters d, I ,  and the 
common group size n/I. Generally robustness improves as d is reduced, so that 
variables should not be thoughtlessly included in an analysis simply because 
the data are available. Methods for choosing variables are described in Section 
10.1.6. Similarly, if I is under the experimenter’s control, then, from a 
robustness viewpoint, 1 should generally be as sinall as possible. Surprisingly, 
robustness properties do not always improve with increasing group size: smal 
groups are preferred when there is covariance heterogeneity and P) is used. 
However, any robustness advantages for smaller groups must be offset against 
loss of power, as the power increases with group size. 

Finally, Olson demonstrated that the multivariate measures of skewness and 
kurtosis (Section 2.7) are not very informative, and both are sensitive to 
kurtotic nonnormality and covariance heterogeneity. They may indicate that 
there are departures from the underlying assumptions, but not their nature, so 
that we cannot tell when the departures are damaging. 

Multrilurrutc Analysis of Vnncrncc untl Coouriirnce 
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9.2.4 Robust Tests for Equal Means 

a PERMUTATION TEST 

Since the Yc3)  test scored so well with regard to robustness, it is appropriate to 
consider a test due to Mardia (19711 based on the permutation distribution of 
v* = V ( ” ) / s ,  where (see Table 9.2 in Section 9.2.1) 

V ( ” )  = tr[H(E + H)-’] 

I 9..)(yi.- y..)’~;’ 

and s = minimum (I - 1, d). Setting n = Ci nit p = Ci n i p i / n  (= PI, say), 
and 

our model 
y . .  = pi + u.. 
‘J IJ 

can be written in the form 

Y = 1,p; + x,B, + u, (9.9) 

where B, = ( ol, +*, . . . ,+I-l)’. Since H, is now = +* = . * * = $I-l = 0, or 
B, = 0, we can now apply the general theory of Section 8.6.2e to the one-way 
MANOVA (see Exercise 9.4). Reparameterizing the model does not change E 
and H, so that 

H = zniyi.Yi’.- ng..Y!. (= Y’MY, say), 
i 

and the coefficient of yijyi) is (n;’ - n - * ) .  Thus, from (8.56) and (8.57), 



444 Multrriunure Analysis of Vanunce and Couariunce 

and 

- 2 ( I -  l ) ( n  - f )  . I 
The pertnutation distribution of V* is approximately beta with degrees of 
freedom U P  and uQ, respectively, where 

[ s ( n  -- I )  -' 2c]  a -  _______....I--__ 
[ s ( n  - I ) ( C  + I)] ' 

P = $ d ( Z  - l),  Q = j [ s ( n  - 1) - d ( I -  l)] 

( n  -- 1 ) ( n  + 1) c =-- _.__-_____ ( n  I- l ) d ( d  t 2 )  
n + l  d ( n  - 3)(n - d - -  1) Y 

and Cx is given above. 'To carry out the test we can use the statistic 
F* = Q V * / P ( l  - V*), which has an approximate Pdistribution with 2aP 
arid 2aQ degrees of freedom, rcspectively, under the null hypothesis that the yf, 
all comc from the same distribution. Noiiinteger degrees of freedom can be 
handled using, for example, the tables of Mardia and Zemroch [1975b] (see 
also Pearson and Hartley [1972: 'Table 41). We reject the null hypothesis if F* 
is signilicantly large. 

The above test applies in  two situations: Either the randomization occurs at 
the design stage when a completely randoniized design i s  used to allocate the I 
treatments to n sampling units, or the randomization occurs after the experi- 
ment when the n obscrvations are randomly assigned to the I populations. In 
either case, the permutation distribution awciated with the y I ,  is symmetrrc. 
When the n l  are all equal, we note that the mrr are all equal and the test is 
robust to kurtosis (see Section 8.6.2e). When the n,  are unequal, we would 
expect the test to be sensitive to ditrerences in the 2,. An approximate test that 
allows for unequal 2, is described below. 
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EXAMPLE 9.3 Mardia [1971] demonstrated his test on the anteater data 
given in Table 9.3. Here Z = 3, d = 3, s = &(I - 1, d) = 2, n, = 6, n2  = 4, 
n 3  = 3, and n = 13. For Example 9.1 we have 

2.092 
Y..= 2.096 i 1.627 

bl,3 = 2.0440, 

- 12 

0.007148 0.006865 0.008365 
, E H = (  - 0.006835 0.008199 

0.012152 - - 

b2,3 11.0134, 

c =  [13(14)(i + + $ - &) - 401 = -1.7700, 2(10)(10) 

c = ~(10)(1.7700)(1.1472)/(13)(12) = 0.065082, 

P = 3, Q = 9, a = 0.9338. 

Now V* = 4 V ( 2 )  = 0.2235 and P = 3Y*/(1 - v*) = 0.8635, which is clearly 
not significant. We note that Fc - F5.6,16,8, approximately, when the null 
hypothesis is true. 

b JAMES' TEST 

James [1954] has given an approximate test for Ho: p, = p2 = . - - = pI when 
the Z, may be unequal. Let zi = yi.- y I .  ( i  = 1,2,. . . , I  - 1); then, for h # i, 

= I  V[Z,,Z;] = 9 [ Y I . ]  = - = A,, 
" I  

say, and 

9[~;]  = A; + A,. 

Writing z' = (zi, z;, . . . ,z;-J, we then have 

say. We assume normality, so that when Ho is true, z - Nd(I-l)(O,V) and 
z'V-'z - If V is now estimated by 9, where 9 is obtained from V by 
replacing Xi by S, ,  then we have a test statistic that is approximately dis- 
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tributed as chi square. Here 

I w, -- w,w - 'w,, - W1W -1w,, .. -, -wlw- lw ,~ l  

I. -w,w 'W', w,- w*w- 'w2, ..., - w,w - lw,- 1 f - '  = 

I -w, Iw-'w2. ..., w, - W,_;W lw,-l 

where W, = A; = ( S , / n , ) - '  and W = Cj,, W,. Multiplying out, we have 

I I I  
= c yi:wiy,.-. c c p;.wfiw-1wjy1 

i = l  h = l  i - 1  
(9.10) 

I 

= c (?,.-- y,)'Wi(&.- 4,) (seeExercise9.5), (9.11) 
1-1  

where 

(9.12) 

James [1954] showed that the upper a quantile of the test statistic z ' 9 - l ~  is, to 
order Y I ; ' .  xt(cu)[A + &;(a)], where r = d ( l  - l), 

and x ; ( a )  is the upper a quantile value of xs. For very large w , ,  A = 1, B = '3, 
and our test statistic is approximately distributed as xf  when H ,  is true. The 
same result is also true even when the underlying distribution is not normal, as 
the central limit theorem applies to the sample means j ,  , and hence to z. We 
can therefore expect some mcasure of robustness against nonnormality for 
moderate sample sizes. 

EXAMPLE 9.4 James [I9541 considered an example in which there were 
samples of sizes 16, 11, and 11, respectively from three bivariate normal 
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populations. The sample means are 

the sample dispersion matrices Si ( i  = 1,2,3) are 

81.8 32.1), (100.3 23.2). 
(-16.3 120*o -16*3)’ 17.8 (32.1 53.8 23.2 97.1 ’ 

and the Wi ( i  = 1,2,3) are 

0.1523 0.1396 0.1756 -0.1048), ( 0.1161 -0.0277) 
0.1396 1.0272 )’ (-0.1048 0.2670 -0.0277 0.1199 * 

NOW W = C, Wi, 

i 

and substituting in (9.11) gives 18.75 for the value of our test statistic. 
Furthermore, r = d( I - 1) = 4, 

A = 1 + i(0.5311) = 1.0664, 

and 

3 = &[0.2820 + 4(0.5311)] = 0.02281 

Using a significance level of a = 0.01, xt(0.01) = 13.277 and 

xi(O.Ol)[ A + B~:(0.01)] = 18.18, 

so that our value of 18.75 appears to be significant at the 1% level. However, 
James cautions that “such results should not of course be interpreted too 
literally, particularly when working far out in the tail of the distribution.” 

9.2.5 Reparameterization 

In Section 9.2.4a we considered a reparameterization of the one-way model, 
namely, 

I -  1 

Pi = ir + +j - C ni+i/n, 
i - 1  
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where +, = p, - pI (i = I ,&.  . .,I) and F = C, n,pi/n. This led to the model 

Y - X B + U  

where b, = p and B, = (+,, +2, .  . . ,+,-I)’. With this particular formulation, 
X;l, = 0 and X has full rank. However, other reparameterizatioris are possi- 
ble; for example, if p == C, p,/I, we have 

pi = p + ( p i  -- ji) = p + a;, 

say, with identifaability restriction C, a, = 0. In this case B, = (a‘. a,. . . . ,a,)’, 
and X no longer has full rank. 

Another full rank formulation is to use p t a, with the constraint a, = 0 
and B, = (a1, a,,. . , ,a, In this case p = pf and a, = +,. This type of 
model, in which X has full  rank and can be fitted in parts (in this case the 
colurxlll 1, first, corresponding to H,, followed by X2) ,  can he used for more 
complex designs. Multivariate computing procedures using this type of model 
are given in Section 10.1.4a. The corresponding univariate model forms the 
basis of the statistical package GUM (Baker and Nelder [1978]). 

9.2.6 Comparing Dispersion Matrices 

a msr FOR EQUAL, DISPERSION MATRICES 

As the assumption of equal dispersion matrices is so critical with regard to 
tests for the means, it is natural to consider a likelihood ratio test for H,): 
2, = 2, = * * = C,, given that the yiJ are i.i.d. N d ( p , ,  Z,). Arguing as 111 

Section 3.6.la for the case I = 2, we obtain a similar equation to (3.78) for the 
likelihood ratio, namely, 

where 

(9.14) 



9.2 One- Way Classification 449 

and n = C, n,. When H, is true and n is large, - 2 log G is approximately 
distributed as xz,, where v1 = 4d(d + 1)(Z - 1) (the difference in the number 
of parameters to be estimated under the unrestricted and restricted models, 
respectively). However, a better chi-square approximation can be obtained by 
using a slight modification of d.  This modification, in which f, (= n, - l), the 
degrees of freedom associated with Q,, replaces ni ,  and which leads to an 
unbiased test (Perlman [1980]), is 

I 

= ( i - 1  n , Q i , f J 2 p f / 2 ) /  (9.15) 
i -1  

where f = Ci = n - I ,  Si = Qi/fi, and S = X i  Q i / f  = E/f. For the case 
d = 2 and I = 2 (Section 3.6.lc), Layard [1974] showed that the M-test is so 
sensitive to nonnormality that its usefulness is suspect. Ito [1969: p. 1171 
demonstrated the nonrobustness of a statistic Y that is asymptotically equal to 
n(1 - P"), and Mardia [1974: pp. 119-1201 showed that under the null 
hypothesis of a common underlying distribution for the I populations, 

E[Y] = $ ( I  - l )d (d  + 1) { 1 + s 2 ,  d-dd$ 2) } 

Here p2,* is the multivariate kurtosis of the underlying distribution and is 
equal to d(d + 2) under normality [see (2.95)) 

Olson I19741 has also studied the robustness of M for equal n, and 
demonstrated that M is very sensitive to kurtosis. A significant M could 
equally be due to H, being false or to kurtosis, or to both. Unfortunately, M is 
overly sensitive to departures from H, in that it detects differences among the 
dispersion matrices that have little effect on tests for the means. For the same 
reason it is much too sensitive to kurtosis. All that can be said is that it gives a 
somewhat inflated measure of departures from normality and covariance 
homogeneity, and seems to be as useful as the multivariate measures of 
skewness and kurtosis, the latter having similar shortcomings. 

For completeness we mention two approximations due to Box [1949] for the 
distribution of M (see Pearson [1969]), Krishnaiah and Lee [1980: pp. 526-5281). 

(1) The chi-square approximation 

-2(1 - cl)log M is approximately X:, (9.16) 
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where v1 = * d ( d  + 1x1 - 1) and 

2 d 2  + 3d - 1 
6(6 t ] ) ( I  - I) c 1 =  ------ 

iff, = f o , i  = 1 , 2  ,..., 1. 
(2d2 + 3d - 1 ) ( I  + 1) 

6 ( d  -1- 1) I f ,  
- __ - 

This is the multivariate analogue of Bartlett’s test for homogeneity (see Seber 
[1977: p. 147]), and it’s significance level is closer to the nominal significance 
level than either -- 2 log C! or -- 210g M (Greenstreet and Connor [1974]). If 
more accuracy is needed, further terms in the expression leading LO the above 
approximation can be included (Anderson 11958: p. 2551); however, the 
following approximation, which is more accurate, can also be used. 

(2) The F-approximasion 

- 2b log M is approximately Fv,, (9.17) 

where v2 = (vl + 2)/Ic, -. c;l, b -- [I - c1 - (vi/v2)]/v1, and 

i f j ,  =fo, i = 1 , 2  ,..., I 
( d -  Z ) ( d +  2 ) ( P  + I  + 1) -- - - --___ 

4Z2f, 

The above holds for c2 - c: > 0. If  c2 - c: < 0, then 

26,v210g 1M 
v1 + 2b,v,log M 

- is approximately F;,, 

where 

We note that v, is always an integer but it may be necessary to interpolate for 
v2, particularly when v1 is large. The tables of Mardia and Zeiiiroch [1975bj, 
with fractional degrees of freedom, may be useful. 

How accurate are the above approximations? When the f, are unequal, iittk 
information is available, though Box has made a few comparisons. His 
tentative conclusion was that the F-approximation could be satisfactory if 
d s 5,  I 5 5,  and f ,  2 9 (i  = 1,2,. . . , I ) .  For small values of 1, further terms 
are needed in Box’s series expansion. An accurate Pearson-type I approxima- 
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tion, along with some tables, is also available for - 2 log M (J. C. Lee et al. 
[ 19771). 

The most common situation, which usually occurs in planned experiments, 
is that of equal fi. In this case exact upper 5% significant points for the 
distribution of -21og M are available from J. C. Lee et al. [1977: d = 2(1)5]; 
these are reproduced in Appendix D18. Pearson [1969] compared the above 
two approximations with a similar table by Korin [1969] and concluded that 
the chi-square approximation seems adequate for most practical purposes, and 
the Papproximation is remarkably accurate. It appears, from Box’s compari- 
sons, that the errors in approximating the 1% points are, proportionately, only 
slightly greater than those for the 5% points. Thus if thefi are equal and a 5% 
point is required, use Appendix D18; otherwise use the F-approximation. 

We note that asymptotic expansions of the nonnull distribution of - 2 log M 
under various alternatives were given by Sugiura [1969] and Nagao (19701 (see 
also Muirhead [1982]). Also, Nagao [1973a] gave another test statistic based on 
the asymptotic variance of - 2 log M. In conclusion, we reference a promising 
test (Hawkins [1981]) for simultaneously testing multivariate normality and 
equal dispersion matrices. 

b GRAPHICAL COMPARISONS 

Under the assumptions of normality and equal dispersion matrices, the Q, of 
(9.14) are independently distributed as Wd(ni - 1,Z). For the case of equal ni 
(= no, say), Gnanadesikan and Lee I19701 gave two methods for comparing 
the Qi graphically, based on summary measures of the eigenvalues of Qi. If 
c1 2 c2 2 ..- 2 c, > 0 are the positive eigenvalues of the d X d matrix Qi, 
they propose using the sum and geometric mean, namely, 

f 

ui = cj = trQi (9.18) 
j - l  

and 

(9.19) 

Usually no - 1 2 d, so that t = d and Qi is positive definite. However, if 
no - 1 < d, then t = no - 1 and Qi is positive semidefinite. Now the trace of 
a Wishart matrix is distributed as a linear combination of independent 
chi-square variables [see Exercise 2.12(c)], which can be approximated by a 
scaled chl square, that is, a gamma variable (see Appendix C2). We can 
therefore plot the ordered values uQ) < < - * < a(,) against quantiles of 
the gamma distribution (see Appendix C4) and, if the underlying assumptions 
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are satisfied, the plot will be approximately linear. Gnanadesikan and Lee 
f19701 suggested that n similar plot could be made for the ordered g,. 

Another graphical technique, based 011 the translormation z = +(s) [see 
(3.67)] of the r [ = Qd(d + I)] distinct elements of the sample dispersion 
matrix, was given by Campbell [1981]. A matrix, Z = [ ( z ~ ! ) ] ,  say, is formed 
whose ith column is the value of z for the i th sample covariance matrix. Each 
of these column vectors can be regarded as a “profile” (see Section 3.6.4), and 
similar dispersion matrices will lead to similar profiles. Campbell suggested 
treating Z like a data matrix from a two-way analysis -of variance model with 
one observation per cell, namely, 

with the usual constraints Ch a,, = 0, and so on. If the dispersion matrices are 
the same, then we would expect, approximately, 

E[Z,~,] = p 1- ah -- E[Z,.]. 

Campbell suggested plotting the pairs (Zh,, t h  ) ( h  = 1,2, .  . . , r )  for each i and 
seeing if the graphs approximate to straight Lines of unit slope through the 
origin. He calls the plots I-A or individual-average plots and suggests treating 
separately the two parts of z, corresponding to the sample variances and 
sample correlations, respectively. He also presented a number of test proce- 
dures and other plotting methods. 

92 ,7  Exact Procedures for Means Assuming Unequul Dispersion Matrices 

a HYPOTHESIS TESTING 

Suppose that y,] - Nd(p,, 2,) and we wish to test Ho:pl = pz = ‘ .  . = pl 
without assuming equality of the 2,. ScheRZ 119431 proposed a soluiion for the 
irnivariate case (d = 1) and 1 = 2, and this was generalized to the multivariate 
case by Bennett [1951] (see Section 3.6.3) and Anderson [1963a: I > 21. A 
more general method is given by Eaton [1969], which includes all previous 
work as special cases, and we follow his approach. 

Let ntr = minimum ( n l ,  t i 2 , .  . . , n , )  and suppose, for each i ,  that we ran- 
domly select no of  the n ,  observations. For ease of expositron we assume that 
they are the first n o ,  namely, yIj ( j  = 1,2, .  . . , t io ) .  If j ,  is tlie mean of the n ,  
observations, let 

z =  

Y, . 
PI. 

Y l  . 

and 8 = 
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Then z - Ndl(B, Z), 2 = diag(C,/n,, Z 2 / n 2 , .  . . ,Z1 /n , ) .  For J = 1,2,. . . ,no 
define 

and let 

Then Qo - W,,(no - 1,2) and, since Qo is statistically independent of ii 
(Theorem 3.1 of Section 3.2.2) and of the observations left after removing no  
from each group, Qo is independent of z. To test Ho, we note that H,, is true if 
and only if p, - p2 = . . . = pl-' - p, = 0 or CB = 0, where C is the r X df 
matrix [ r = d( f - l)] 

C =  

I,, - Id ,  0, ... , 0 
0, I,, -I,, ..., 0 

o , o ,  0 , . . . ,  - I d  

(9.20) 

Ignoring the information that we have about the structure of X, we can now 
construct a Hotelling's T 2  test using 

To2 = (no - l)(Cz)'[CQ,C'] -'Cz. 

When Ho is true, T; - T:nD-l.. The above procedure holds for any matrix C of 
rank r, provided that r I rmnunum(df, no - 1). Eaton [1969] also allows for 
the possibility that d may vary with i. However, the above test has the 
following disadvantages: (1) when the n, are unequal, some of the data are 
discarded in calculating Qo; (2) the test statistic involves estimates of known 
elements of Z, the off-diagonal blocks of zeros, so that the test will be 
inefficient; and (3) randomization is required in selecting no  observations from 
each group. In the light of the comments made in Section 3.6.3 on the case 
Z = 2, it would appear, therefore, that this test should not be recommended 
and that the approximate test of James [see (9.11)) is preferred. However, the 
above theory has been included, as the method used is informative. 
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b MULTIPLE CONFIDENCE INFERVALS 

Mu1tivnrra:P Analysis of Varimtce and Couariunce 

Using a useful general inequality, Dalal[1978) proved that 

I I 

where 7, is the solution of 

and Gd, n ,  d(  7 )  denotes the distribution function of the Fd, distribution. 
Unfortunately, these intervals will be even wider than those based on equal 
dispersion matrices [given by (9.5)] and for this reason may not be too useful, 
particularly if n ,  - d is not large. 

9 .3  RANDOMIZED BLOCK DESIGN 

9.3.1 

If ,v(, is the observation corresponding to the i th treatment in thej th block of a 
randomized block design, then the linear model for this design is 

Hypothesis Testing and Conjidence Intervals 

y,, = p + n, + D, + uIJ ( i  = 1 , 2  ,..., 1 ; j  = 1 , 2  ,.... J), 

where C, a, = CJ3, = 0, and the u,, are i.i.d. N,(O, a2). For tllis model we have 
the anaIysis of variable table, Table 9.4, for testing H,,, : a, = 0 (all I )  and Ho2 ; 

= 0 (all j). Replacing each y,, by a vector observation yr,, the corresponding 
multivariate model is 

y,, := p + a, + S, + ui,’ (9.21) 

TABLE 9.4 Univariate Randomized Block Design 

Sum of Squares Degrees of Frecdom 
ss 
df 
-- Source (SS) (df) 
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TABLE 9.5 Multivariate Randomized Block Design 
~ 

Source Matrix df 

where xi ai = CjPj = 0, and the uij are i.i.d. Nd(0, 2). We can readily write 
down the matrices corresponding to the quadratic forms in Table 9.4; these are 
given in Table 9.5. Corresponding to the univariate F-ratios $/s2 (i = 1,2), 
we use one of the various test statistics based on the roots of I H, - O ( E  + Hi) I 
= 0. For example, the likelihood ratio test statistic for Hoi is 

IEI 
IE + Hil ’ Ai = 

where Ai  - Ud,m,,mE when Hoi is true. 

one-way classification, as (9.21) leads to 
The procedures for multiple comparisons are essentially the same as for the 

y i .=  p + ai + i i i .  
= pi.+ U i , ’  

where pr, = 8 [ y l j ]  and testing H,,, :ai = 0 (all i )  is equivalent to testing 
pl .=  p 2 . =  ... = p,.. Since C,c,a, = C,cip i . ,  it follows [see (9.5)] that, with 
probability 1 - a, 

simultaneously for all contrasts and all b. Corresponding to (9.6), we have the 
subset 

If we use a similar argument, the probability is 1 - a that 

(9.24) 
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TABLE 9.6 Observations on Bean Plants Infested with Leaf Miners.' 

Blocks 

Treatment 1 2 3 4 __ __- - - - _  
Y l  y2 Y3 .I'l Y2 Y3 Y l  Y2 Y3 Y l  1'2 Y 3  

1 1.7 0.4 0.20 1.2 1.4 0.20 1.3 0.6 0.36 1.7 11 0.39 
2 1.7 1.0 0.40 1.2 0.6 0.25 1.7 0.1 0.32 1.1 0.0 0.29* 
3 1.4 0.8 0.28 1.5 0.8 0.83 1.1 0.7 0.58 1.1 0.9 0.50 
4 0.1 0.8 0.10 0.2 1.2 0.08 0.3 1.2 0.00 0.0 (1.4 0.00 
5 1.3 1.0 0.12 1.4 1.2 0.20 1.3 0.8 0.30 1.2 0.6 0.36 
6 1.7 0.5 0.74 2.1 1.0 0.59 2.3 0.4 0.50 1.3 0.9 0.28 

"Data courtesy of Dr. R. Fdlerton. 
"Estimate of missing d u e .  

simultaneously for all contrasts and all b. We note that +a = @,/(I - @,,) and 
+: are quantile values for the maximum eigenvalues of I3,E-I and H,E-', 
respectively. Bonferroni confidence intervals are also availablc for r pre- 
specified cornparisons: We sinipiy replace E by E/v and r$L/2 by wi!h 
v =: ( I  -- 1)(J - l), in (9.22). 

EXAMPLE 9.5 In 'Table 9.6 we have the results of a randomized block 
experiment in the Cook Isiands involving the effects of six different treatments 
on plots of bean plants infested by the serpentine leaf miner insect. Three 
variables were measured on each plot, namely, 

y1 = the number of niincrs per leaf, 

y2 = the weight of beans per plot (in kilograms), 

y3 = sin '(fi), where p is the proportion of leaves infested with borer. 

In Table 9.7 we have the matrices I{,, H,, and E with their elements given to 
three decimal places only for convenience. Here d = 3 , l  = 6, and J = 4. 

'The likelihood ratio statistic for Hal, the hypothesis of no treatment effects, 
is 

A = -m.- = 0.05038 - Cr , , , , , ,  
IE i- H I (  

Now f, -1 m L  + m,  -- & ( m ,  -1- d i- 1) = 15.5, M = nzE -- d + 1 = 13, and 
-filog,A, = 46.32 - Ca& Entering Appendix D13 with d = 3, mH = 5, 
M = 13, and (Y = 0.005, we obtain 

(, ix:s(a) = 1.015(32.801) =. 33.29. 

We therefore reject H,, at the 0.5% level of significance. 
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TABLE 9.7 MANOVA Table for Bean Infestation Data Showing Hypothesis 
and Error Matrices 

Matrix Elements 

Source (1,l) (L2) (1,3) (2,2) (2,3) (3,3) df 

Treatments(H,) 6.617 -0.858 1.684 0.678 -0.219 0.707 m, = 5 
Blocks (H,) 0.271 0.082 0.029 0.617 0.056 0.013 m, = 3 
Error (E) 1.031 -0.007 0.156 1.578 -0.135 0.338 mE = 15 

For demonstration purposes we note that &,= = 6.69842 and 

Entering Appendix D14 with s = 3, v1 = $(Id - rnll - 1) = t ,  and v2 
= +(m, - d - 1) = 5.5, we find that t9,.,, < 0.80 (from v1 = 1, v2 = 5). Since 
Om, > 80,01, we reject H,, at the 1% level of significance. 

The likelihood ratio statistic for HO2, the hypothesis of no block effects, is 

IE' = 0.53795 - U3,3,15, 
IE + H 2 I  

A, = 

so that 

-f210gA2 = 8.99 < xf(0.10) = 14.68 

and we do not reject HO2. We note that C, is not required when the test 
statistic is not significant, as C, > 1. 

Since H,, is rejected, we now focus our attention on how the different 
treatments affected the number of leaf miners (yl). Simultaneous intervals for 
all treatment pairs are given by (9.23) with IF' = (l,O,O). Here J = 4, b'Eb = 
ell = 1,03125, and, interpolating linearly in Appendix D14 with s = 3, v1 = $, 
and v2 = 5.5, 80,05 = 0.67. Hence 

1/2 

S = (A-VEb} 2 = 1.02. 

The six ranked treatment means for the first variable, the first elements of the 
Y j . ,  are 

T4 T3 T5 T2 TI Ts 
0.15 1.28 1.30 1.43 1.48 1.85 
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Here T3 -- T4 exceeds 1.02, so thal T4 is clearly different from the other 
treatments with respect toy,. 

If we now carry out the same procedure for variable y2, the weight of beans 
per plot, the only change is to set b’ = (0,1,0) and b’Eb = e22 -- 1.57833. We 
now have S = 1.27, and the ranked means are 

T2 Tb T3 Tl T4 T5 
0.43 0.70 0.80 0.88 0.90 0.90 

All the intervals 
contributing factor to the rejection of Hal. 

means are 

- T, f 6 contain zero, so that y2 does not appear to be ;1 

Finally, fory,, b’ = ( O , O ,  l), b’Eb = e33 = 0.33781, and S = 0.59. The ranked 

7’4 T5 ’r, T2 Tb 7-3 

0.05 0.25 0.29 0.32 0.53 0.55 

Although all the intervals T, - 7; f S contain zero, T4 is much lower than the 
rest. We therefore conclude that treatment four is more efrective than the other 
treatnients in causing a reduction in both the leaf miner and borer without 
affecting bean yield. 

9,3.2 Underlying Assumptions 

Since treatments are assigned at random within blocks, the associatccl permuta- 
tion distribution can be used to study the effects of nonnormality on the test 
statistics. Arnold [1964] has done this for the case of I = 2, when all four test 
statistics of Section 8.6.2 are equivalent to a Hotelling’s T 2  (ix., m H  I= 1 in 
Section 2.5.5e). By simulating bivariate data from the rectangular, normal, arid 
double exponential distributions, he demonstrated that for d = 2, the signifi- 
cance level of 7 2  for H,,, is not likely to be biased by more than 1 or 2% at the 
5% level of significance when there is nonaormality. He also gives a correction 
term, based on estimating certain cumulants, that leads to a type I error closer 
to its nominal level a when there is nonnormality. 

9 .4  TWO-WAY CLASSIFICATION W I T H  EQUAL OBSERVATIONS 
PER MEAN 

Suppose. we have a (univariatej two-factor experiment, and let y,,& be the kth 
observation on the combination of the i th level of factor A and the j th level of 
factor R. Then the usual univariare model is (see Seber [1977: Section 9.21) 

yIlk = p l ,  + u , , ~  ( i  = 1,2 , .  . . , Z ; j  = 1,2,. . .,J; k = 1,2,. . . , K )  

= P + a, + P, + Y,J + %,&, 
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TABLE 9.8 Univariate Two-way Analysis of Variance Table 
~ ~- 

Sum of Quares Degrees of Freedom 
ss 
df 
- Source (SS) (df)  

Factor A J K Z ( J ,  - 7  ) 2  r - 1  3: 

Factor B I K X ( j j ,  - J  ) 2  J - 1  s22 

Error Z Z Z ( Y I J k  - Y t j )  IJ(K - 1) S 2  
A X B  K Z Z ( J , ,  - j l  -& + j j  )* ( I  - 1)(J - 1) 4 

Corrected total ZZZ(y,,, - j j  ) 2  IJK - 1 

where c, a, = ZIPJ = c, y,, = c, yIJ = 0, and the uIJk  are i.i.d. N,(O, u2). Here 
a, and p, are mam effects, and y, is the interaction between the i th level of A 
and the] th level of B. For the above model we have the ANOVA table, Table 
9.8, for testing Ho3 : y,, = 0 (aU i ,  j ) ,  H,, :a, = 0 (all i), and HO2 : /3, = 0 (allj). 
Replacing y, by YIJk ,  we have the multivariate model 

YiJk = pi, + ' i J k  

= p + a; + fl, + yj, + U j j k ,  

where I,a,  = C,S, = C,y,, = Z!yr! = 0, and the uIJk are i.i.d. Nd(O, 2). The 
corresponding MANOVA table IS gven by Table 9.9 and we test H,, ( i  = 1,2,3) 
using, for example, A, = IEI/IE + H,I, where A, - Ud,,,,,, when H,, is 
true. We test the interaction hypothesis Ho3 first, as H,, and Ho2 are difficult to 
interpret if HO3 is false. 

The above procedure can be expected to be reasonably robust to small 
departures from the assumption of equal dispersion matrices, as we have equal 
numbers of observations per group. However, if u,/& - Nd(O, Z,,), then an 
alternative test for H,, (or Ho2) is available from Garcla Ben and Yohai f19801. 
Unfortunately, these authors do not give a test of Ho3, though, in a randomized 
block design with one of the factors representing the block effects, we can 

TABLE 9.9 Multivariate Two-way Analysis of Variance Table 

Source Matrix df 

A HI = JKZ(jij..- y...)(jij..- j i . . . ) '  m , = I - l  
B H2 = I K Z ( y . j . -  y . . , ) (y .J . -  y...)' m , = J - 1  
A X B  

Error 

H3 = KZZ(Yj,.- y,..- y.,.+ y...) m3 = ( I  - 1)(J - 1) 

mE = IJ(K - 1) 
x(yj,.- yj . . -  y,.+ Y...)' 

E = Z Z Z ( y .  i l k  - 7. I J .  ) ( y .  I l k  - j i .  IJ - )' 
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expect the interactions to be small. We could also test H,,, using the general 
procedure of Eaton [1969] described in Section 9.2.7 by writing 

and choosing an appropriate rnatrix like (9.20). However, his test for Ho2 is not 
as powerful as the one given by Garcia Ben and Yohai [1980]. 

Since ar --- P I . -  p _., we can express H,, in the form P, .= jiz .= . + * = ji, , 
or PI . -  p I . =  j i 2 .  - p,.= * --i P I .  This implies AB = 0, where B = 

( P I P  c 1 1 2 3 -  * * *PI,)’ and 

F 2 . -  P I .  
A15 = 

Arguing as in Section 9.2.2, we can write 

I I 1  

and 

I 

aAB = C clyr:. , 
i = l  

(by Exercise 9.6). Therefore the probability is 1 - a that for all contrasts and 
all b, 

or, equivalently, 

where 6, = 3;. - 7 . In iI similar fashion we can construct simultaneous 
confidence intervals for C, (;bib (see Exercise 9.6). 

EXAMPLE 9.6 A laboratory experiment was set up to investigate the effect 
on growth of inoculating paqalum grass with a fungal infection applied at 
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four different temperatures (14, 18, 22, 26°C). For each pot of paspalum, 
measurements were made on three variables: 

y1 = the fresh weight of roots (gm), 
y2 = the maximum root length (mm), 
y,  = the fresh weight of tops (gm). 

The inoculated group was compared with a control group and six three-dimen- 
sional observations were made on each treatment-temperature combination: 
These are given in Table 9.10. All observations were transformed by taking 
logarithms, and the matrices for testing the hypotheses H,, : no treatment main 
effects, HO2 : no temperature main effects, and Ho3 : no treatment X temperature 
interactions are given in Table 9.11 (rounded to three decimal places). 

TABLE 9.10 Observations on Paspalum Plants" 

Control (Treat. 1) Inoculated (Treat. 2) 

Y1 

2.2 
3.0 
3.3 

Temp. 1 2.2 
2.0 
3.5 

21.8 
11.0 
16.4 

Temp. 2 13.1 
15.4 
14.5 
13.6 
6.2 

16.7 

8.7 
12.3 

3.0 
5.3 
3.1 

Temp. 4 4.8 
3.4 
7.4 

Temp. 3 12.2 

Y2 

23.5 
27.0 
24.5 
20.5 
19.0 
23.5 

41.5 
32.5 
46.5 
31.0 
41.5 
46.0 

29.5 
23.5 
58.5 
40.5 
37.0 
41.5 
24.0 
26.5 
24.5 
34.0 
22.5 
32.0 

Y3 

1.7 
2.3 
3.2 
1.5 
2.0 
2.9 

23.0 
15.4 
22.8 
21.5 
20.8 
20.3 

30.8 
14.6 
36.0 
23.9 
20.3 
27.7 
10.2 
15.6 
14.7 
20.5 
14.3 
23.2 

Y1 

2.3 
3.0 
2.3 
2.5 
2.4 
2.7 

10.1 
7.6 

19.7 
4.3 
5.2 
3.9 

10.0 
12.3 
4.9 
9.6 
6.5 

13.6 
4.2 
2.2 
2.8 
1.3 
4.2 
3.0 

Y2 

23.5 
21.0 
22.0 
22.5 
21.5 
25.0 
43.5 
27.0 
32.5 
28.5 
33.5 
24.5 

21.0 
49.0 
28.5 
27.0 
29.0 
30.5 
25.5 
23.5 
19.5 
21.5 
28.5 
25.0 

Y3 

2.0 
2.7 
1.8 
2.4 
1.1 
2.6 

14.2 
14.7 
21.4 
9.7 

12.2 
8.2 

23.6 
28.1 
13.3 
24.6 
19.3 
31.5 
13.3 
8.5 

11.8 
7.8 

15.1 
11.8 

'Data courtesy of Peter Buchanan. 
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TABLE 9.11 MANOVA Table for Paspalurn Data Showing Hypothe- 
sis and Error Matrices (from Log Observations in Table 9.10) ________-- -- 

Matrix elements 
__-- -_--_-___ 

Source (1, l )  (1,2) (1,3) (2,2) (2,3) (3 ,3)  d f  
.- - ___I ~- - ___- ---__-I_ __ 

Treatments 0.294 0.121 0.203 0.049 0.083 0.140 rn ,  = 1 
Teniperatures 3.514 1014 4.209 0.296 1.243 7.876 m 2  = 3 
Treat. x Temp. 0.156 0.037 0.097 0.017 0.017 0.066 tn3 = 3 
Error 1.035 0.291 0.693 0.294 0.217 0.646 m E  = 40 

The likelihood ratio test statistic for Ifo, is 

Since ml = 1, 

i s . ,  4) = 3.89 - F3,!8, which is not quite significant at the 1% level as F::: _=- 

4.3. The corresponding test statistic for HO2 is 

Here fi = m ,  + m7 -- j ( m ,  t d -t 1) = 39.5, M = mE - d + 1 = 38, and 
- f210g A --- 172.9 - Cox:. Entering Appendix D13 with d = 3, mH = 3, 
M = 38. and a = 0.005 we obtain 

C,x;(a) = l.OOl(23.59) = 23.6 172.9. 

We therefore reject at the 0.5% level of significance. 
The test statistic for Ho3 is 

and, asf3 = f2, -1;log A ,  = 8.73, which is below xi(O.1) = 14.7, that is, A,  is 
not significant. In practice, we would look at If03 first, since the presence of 
interactions makes the interpretation of II,, and H,, difficult. 

In conclusion, it is appropriate to plot the sample mean of the transformed 
data for each variable against temperature, and to compare the temperature 
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X 

0.2 2 
14 18 22 24 

Temperature ("C) 

Fig. 9.1 Plot of log,,(fresh weight of roots) versus temperature for the control and inoculated 
groups. Fitted quadratics are drawn in for each group. 

curves of the control group and inoculated group. Such a plot for the sample 
mean of log y ,  is given in Fig. 9.1. We find that quadratic curves fit the data 
well and the two curves are approximately parallel, as might be expected from 
negligible interactions. The curves for the other variables y2 and y3 are similar. 

9.5 ANALYSIS OF COVARIANCE 

9.5.1 Univariate Theory 

It is assumed that the reader is familiar with the usual univariate analysis of 
covariance model 

G: y = Xp + Zy + u 

= w + + u ,  (9.26) 

where X is n X p of rank p, Z is n X t of rank t consisting of values taken by 
the so-called concomitant variables, the columns of Z are linearly independent 
of the columns of X, and u - N,(O, a21,). The general theory is given, for 
example, in Seber [1977: Sections 3.7, 3.8.3, and Chapter lo], and some of the 
basic results are summarized below. 
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The least squares estimates for model G are 

qti -= (ZRZ) 'Z'Ry and &; = (XX) -'X'(y - Zf), 

where R = I, - X(XX) -'X. "he residua1 sum of squares is 

RSS, = (y - X& - ZqG)'(y - X& - ZfG) 

= (y -- ZqG)'R(y - Zqti) 

= y'Ry - fAZ'Ry. (9.27) 

If we wish to test H o y : y  -- 0, that is, the concoinitant variables have no ef€ect, 
we require KSS = y'Ry, the residual sum of squares for the model b[y] = Xp, 
and 

KSS - RSS, = ~ G Z R Y .  (9.28) 

The appropriate F-statistic is then 

say, where Fy - 4, n -  -, when Hoy is true. To test H o :  AB = 0, where A is 
q x p of rank q, we can use the general linear hypothesis theory and write 

say. If &; = (W'W)-'W'y is the least squares estimate of 4, then it follows 
from A3.1 that 

= r J  z [ (XX)- '  + LML, - LM) 
-MI:, M 

where L = (XX)- 'XZ and M = (Z'RZ)-'. Here the F-statistic for testing I-r, 
is 

F = (Al+G)f [ A (W 'W) -'A;] -- 'A L&-Jqs 

= (A&)'[A(XX)-'A' + ALMLA'] *-'A&./ys*, 
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where F - Fq, n - p - r  when H, is true. If X has less than full rank, we simply 
replace p by the rank of X, and (XX)-' by a generalized inverse (xlX)-. In 
concluding this summary, we note that (see Exercise 9.7) 

u [ 8 Y  ?GI = 0. (9.29) 

9.5.2 Multivariate Theory 

The above theory readily generalizes to deal with the multivariate analysis of 
covariance model [see (9.26)] 

G : Y = X B + Z r + U  

= W @ + U ,  

where the rows of U are i.i.d. Nd(O, 2). From the general theory of linear 
models developed in Chapter 8 we simply replace y by Y. To test Hor : r = 0 
we use the matrices [see (9.28) and (9.27)] 

H = f'6Z'RY and E = Y'RY - PdZ'RY, 

where fc = (Z'RZ)-'ZRY. When HOr is true, H and E are independently 
distributed as Wd(t ,  8 )  and W,(n - p - t, C), respectively. 

To test Ho : AB = 0, E remains the same and H now becomes 

H = (A&)'[A(XX)-'A + A L W A ' ] - l A b G ,  (9.30) 

where 

h G  = (x'x)-'x'(Y - Zf,) = h -(X'X)-'X'zfG. 

When H, is true, H - W,(q, Z). Finally, to test ABD = 0, where D is d x u 
of rank u, we simply replace H, E, and d by DHD, DED, and u (see Section 
8.7). Simultaneous confidence intervals for all linear combinations a'ABb can 
be constructed using the general theory of Section 8.6.3 applied to Y = WIP + 
U and A,@ = (A,O)IP = AB. However a direct approach is considered in 
Exercise 9.15. 

Univariate analysis of covariance models can be readily handled using a 
two-stage minimization technique that can be described as the two-step least 
squares procedure (Seber [1977]). The same procedure can be generalized to 
multivariate models and the relevant steps are as follows: 

(1) Find B = (XX)-'X'Y and Y'RY (= EYY,  say) for the MANOVA 
model B[Y] = XB. 

(2) 

fG = (ZRZ)-'Z'RY 

(9.31) 
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(3) We then have 
E = (Y - Zf',)'R(Y - Zf',) 

= Y'RY - F & Z R Y  

= EyY - E , , E ~ ~ E , , .  (9.32) 

(4) Replace Y by Y -. ZfG in h to get 

BG = (xx)-'x(Y - Z&). (9.33) 

(5) l o  obtain B,, for H,:AB = 0 we first obtain Y'R,,Y (= E,,,, say) 
for the model S[W] = XB and AB = 0 and then repeat steps (2) and 
(3). Thus, from (9.32), 

= E,.,,, - E,yZEii,E,Zy, 

and Wilks' likelihood ratio statistic: for H, is 

'This is distributed as Ud, rl, " - p  . , when H ,  is true, and it may be 
compared with the corresponding test statistic for the MANOVA 
model (I' = 0), namely, 

If H,, = Eff& - Eob (a, b = Y, Z), then, for the maximum root test, we 
require 

H = E ,  - E 

EXAMPLE 9.7 Consider the one-way analysis of covariance model with one 
concomitant variable z, namely, 

y, ,  = p, + yz,, -I u,, ( i  = 1 , 2  ,..., I ;  j = 1 , 2  ,... , 4, 
or, writing 

y' = (y11, y12,. * * * y / J ) ,  z' = ( z l l ,  Z12>*'.rZ[J)* 
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and B = ( p l ,  p 2 , .  . . ,p1)l, we have 

y = xp -t zy + u. 
In the multivariate generalization we replace each yij by a row vector yj> = 

( ~ i j l ,  yjj29. . . , Y i j d ) ,  where 

y .  IJT = p .  1, + y z . . +  , J J  # . .  I J ,  ( r =  1 , 2 , * * * 3 d ) ‘  

Thus 

y ‘ .  = p’ + z;,y’ + Uii 
IJ 1 

and 

G:Y = XB + Zr + U, 
where B = ( p l ,  p2 , .  . . , p l ) ’ ,  Z = z, and r = y’. 

Then. from Table 9.2 in Section 9.2.1, 
Suppose that we wish to test Ho:pl = p2 = = pI for the model G. 

EY, = c C(Y, - Y;.>(Yij - Y;.)’, 
i j  

and 

Hence 

and 

9G = (E;$,,)’ [from (9.31)] 

= E  E-l 
YZ zz 
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which is a pooled esthrnatc of slope for variable r. The statistic A is readiiy 
calculated and the degrees of freedom of H and E are q = I - 1 and 
n -- p -- t = 1.J - Z - I ,  resptvtively. We note, from (9.33), that the least 
squares estimator jl,, of pl for model G is obtained by replacing Y by Y - Z f  
in P I  = ; thus 

l4.c = Y, - WI * n 

The case when the I populations have different dispersion matiices is consid- 
ered by Chakravorti [1980]. 

From a computational viewpoint it is usually more convenient to test n 
hypothesis for an analysis of covariance model using the representation Y = 

WCP + U, where any ideritifiability restrictions are used to eliminate parame- 
ters and reduce W to full rank. All the hypotheses considered above can 
be expressed in the form H,.A,iD = 0 so that from the general theory of 
Chapter 8 

H = (A,&)’[A,(W’W)-’A’,] -‘Al& 

and 

E = Y’(1, - W(W’W)-’W’)Y, 

where & = (W’W)-’WY. These matrices can be calculated using the general 
methods of Sections 10.1.1 and 10.1.2, but applied to W instead of X. 
However, in most cases, H,, can be expressed in the form Q2 = 0, where 
9’ = (@;,a;) so that, under H,,  &“Y] = W,@,. A method for deriving the 
various test statistics f o r  this particular PI,, is described in Section 10.1.4a. 
Alternatively, since 

E,, = Y’(J, - Wl(W,’WI)-’W{)Y. 

we only need a general program for computing E; E, = E + H follows by 
simply omitting columns of W and applying the same program. An example of 
this follows. 

EXAMPLE 9.8 In Table 9.12 we have observations on men in four weight 
categories with x2 = 1 referring to group I, x3 -- 1 to group 2, ?s4 = 1 to group 
3, and x2 = x j  = x 4  = 0 to group 4. Urine samples were taken from each man 
and the following 13 variables. including two concomitant variables z1 and z 2 ,  



TABLE 9.12 Forty-five 11-Dimensional Observations on Men in Four Weight Groups 
(Coded by the x-Variables) with Two Concomitant Variables z1 and zz" 

~ 

Y1 Y2 Y3 Y4 Y5 Y11 

5.7 4.67 17.6 1.50 ,104 
5.5 4.67 13.4 1.65 ,245 
6.6 2.70 20.3 .90 ,097 
5.7 3.49 22.3 1.75 .174 
5.6 3.49 20.5 1.40 .210 
6.0 3.49 18.5 1.20 .275 
5.3 4.84 12.1 1.90 ,170 
5.4 4.84 12.0 1.65 .164 
5.4 4.84 10.1 2.30 .275 
5.6 4.48 14.7 2.35 .210 
5.6 4.48 14.8 2.35 .050 
5.6 4.48 14.4 2.50 .143 
5.2 3.48 18.1 1.50 .153 
5.2 3.48 19.7 1.65 .203 
5.6 3.48 16.9 1.40 .074 
5.8 2.63 23.7 1.65 .155 
6.0 2.63 19.2 .90 ,155 
5.3 2.63 18.0 1.60 ,129 
5.4 4.46 14.8 2.45 .245 
5.6 4.46 15.6 1.65 .422 
5.3 2.80 16.2 1.65 .063 
5.4 2.80 14.1 1.25 ,042 
5.5 2.80 17.5 1.05 ,030 
5.4 2.57 14.1 2.70 .194 
5.4 2.57 19.1 1.60 .139 
5.2 2.57 22.5 .85 ,046 
5.5 1.26 17.0 .70 .094 
5.9 1.26 12.5 .80 .039 
5.6 2.52 21.5 1.80 .142 
5.6 2.52 22.2 1.05 .080 
5.3 2.52 13.0 2.20 ,215 
5.6 3.24 13.0 3.55 .166 
5.5 3.24 10.9 3.30 .111 
5.6 3.24 12.0 3.65 ,180 
5.4 1.56 22.8 .55 .069 
5.3 1.56 16.5 2.05 .222 
5.2 1.56 18.4 1.05 .267 
5.8 4.12 12.5 5.90 .093 
5.7 4.12 8.7 4.25 .147 
5.5 4.12 9.4 3.85 .217 
5.4 2.14 15.0 2.45 ,418 
5.4 2.14 12.9 1.70 ,323 
4.9 2.03 12.1 1.80 .205 
5.0 2.03 13.2 3.65 .348 
4.9 2.03 11.5 2.25 .320 

1.50 1.88 5.15 8.40 7.5 
1.32 2.24 5.75 4.50 7.1 
39 1.28 4.35 1.20 2.3 
1.50 2.24 7.55 2.75 4.0 
1.19 2.00 8.50 3.30 2.0 
1.03 1.84 10.25 2.00 2.0 
1.87 2.40 5.95 2.60 16.8 
1.68 3.00 6.30 2.72 14.5 
2.08 2.68 5.45 2.40 .9 
2.55 3.00 3.75 7.00 2.0 
1.32 2.84 5.10 4.00 .4 
2.38 2.84 4.05 8.00 3.8 
1.20 2.60 9.00 2.35 14.5 
1.73 1.88 5.30 2.52 12.5 
1.15 1.72 9.85 2.45 8.0 
1.58 1.60 3.60 3.75 4.9 
.96 1.20 4.05 3.30 .2 
1.68 2.00 4.40 3.00 3.6 
2.15 3.12 7.15 1.81 12.0 
1.42 2.56 7.25 1.92 5.2 
1.62 2.04 5.30 3.90 10.2 
1.62 1.84 3.10 4.10 8.5 
1.56 1.48 2.40 2.10 9.6 
2.77 2.56 4.25 2.60 6.9 
1.59 1.88 5.80 2.30 4.7 
1.65 1.20 1.55 1.50 3.5 
.97 1.24 4.55 2.90 1.9 
.80 .64 2.65 0.72 .7 
1.77 2.60 6.50 2.48 8.3 
1.17 1.48 4.85 2.20 9.3 
1.85 3.84 8.75 2.40 13.0 
3.18 3.48 5.20 3.50 18.3 
2.79 3.04 4.75 2.52 10.5 
2.40 3.00 5.85 3.00 14.5 
1.00 1.14 2.85 2.90 3.3 
1.49 2.40 6.55 3.90 6.3 
1.17 1.36 6.60 2.00 4.9 
3.80 3.84 2.90 3.00 22.5 
3.62 5.32 3.00 3.55 19.5 
3.36 5.52 3.40 5.20 1.3 
2.38 2.40 5.40 1.81 20.0 
1.74 2.48 4.45 1.88 1.0 
2.00 2.24 4.30 3.70 5.0 
1.95 2.12 5.00 1.80 3.0 
2.25 3.12 3.40 2.50 5.1 

.14 

.ll 

.10 

.12 

.12 

.12 

.14 

.14 

.20 

.21 

.12 

.18 

.13 

.20 

.07 

.10 

.10 

.I8 

.13 

.I5 

.12 

.30 

.20 

.17 

.16 

.21 

.12 

.13 

.17 

.14 

.I1 

.22 

.21 

.21 

.15 
:11 
.11 
.24 
.20 
.31 
.17 
.I5 
.19 
.15 
.18 
- 

1 1 0 0  
1 1 0 0  
1 1 0 0  
1 1 0 0  
1 1 0 0  
1 1 0 0  
1 1 0 0  
1 1 0 0  
1 1 0 0  
1 1 0 0  
1 1 0 0  
1 1 0 0  
1 0 1 0  
1 0 1 0  
1 0 1 0  
1 0 1 0  
1 0 1 0  
1 0 1 0  
1 0 1 0  
1 0 1 0  
1 0 1 0  
1 0 1 0  
1 0 1 0  
1 0 1 0  
1 0 1 0  
1 0 1 0  
1 0 0 1  
1 0 0 1  
1 0 0 1  
1 0 0 1  
1 0 0 1  
1 0 0 1  
1 0 0 1  
1 0 0 1  
1 0 0 1  
1 0 0 0  
1 0 0 0  
1 0 0 0  
1 0 0 0  
1 0 0 0  
1 0 0 0  
1 0 0 0  
1 0 0 0  
1 0 0 0  
1 0 0 0  

~~ ~ 

205 24 
160 32 
480 17 
230 30 
235 30 
215 27 
215 25 
190 30 
190 28 
175 24 
145 26 
155 27 
220 31 
300 23 
305 32 
275 20 
405 18 
210 23 
170 31 
235 28 
185 21 
255 20 
265 15 
305 26 
4 4 0 2 4  
430 16 
350 18 
475 10 
195 33 
375 25 
160 35 
240 33 
205 31 
270 34 
475 16 
430 31 

47 10 28 32 
115 25 
97 28 
325 27 
310 23 
245 25 
170 26 
220 34 

"Reproduced from H. Smith, R. Gnanadesikan, and J. B. Hughes (1962) Multivariate analysis of 
variance (MANOVA). Eiometria, 18, 22-41, Tables 2,3. With permission from the Biometric 
Society. 
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were measured: 

)’, -- p€l, 
yr = modified creatinirie coefficient, 
y3 =L- pigment creatinine, 
y4 = phosphate (mg/ml), 
.ys = calcium (mg/ml), 
y, = phosphorus (mg/ml), 
y ,  = creatiiliiie (mg/ml), 
y8 =: chloride (mg/ml), 
yu = boron (pg/ml), 

y,, = choline (pg/ml), 
Y I I  = copper ( p g / W ,  
z1 = volume(ml), 
z2  = (specific gravity -- 1) x lo3. 

The model proposed by Smith et al. [1962] for this data is the one-way analysis 
of covariance with two concomitant variables, namely, 

or 

Y = XB + Zr + U = Wip + U. 
say, where 

I have used the identifiability constraint a4 = 0 (see Section 9.2.5) so that the 
matrix X takes the form given in Table 9.12. The hypotheses considered by the 
authors were 

H,, :a, = a2 = a3 = 0, 

H,, :y2 = 0.  

These are all special cases of flu : ip, = 0 and can be expressed in the form 
A,@ = 0, where A, is Riven by 
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respectively, with ranks 3, 1, and 1. The appropriate degrees of freedom for 
hypothesis testing are m1 = 3, m, = m3 = 1, and m E  = n - p - t = 45 - 4 
- 2 = 39. For H,, (see Appendix D13), 

A - I E '  = 0.0734, - IE + H,I 

f, = mE + m1 - $(m, + d + 1) = 39 + 3 - f(3 + 11 + 1) = 34.5, 

and - f,log A, = 90.11. Since C, = 1 and x:,(O.Ol) = 54.78, we strongly reject 
Hol. For HO2, A, = 0.4718, and, since m2 = 1, 

1 - A2 m , +  1 - d 
d 

Fo = - 
A2 

2.95 F11,29. 
0.5282 29 
0.4718 11 

=--= 

Since F;,O& = 2.14, we reject Ho2 at the 5 %  level of signrficance. Similarly, 
A, = 0.2657, so that F, is larger and we also reject Ho3 at the 5% level. 

9.5.3 Test for Additional Information 

Although this topic arises in several places in this book, it is appropriate to 
highlight it here, as it is basically an analysis of covariance technique. We 
begin with the usual linear model Y = XB + U and hypothesis H, : AB = 0, 
where X is n X p of rank p, A is q X p of rank q, and the rows of U are i.i.d. 
N d ( 0 , Z ) .  Suppose we partition the data matrix Y = (Y1,Y2), where Y, repre- 
sents n observations on d ,  y-variables and Y, represents n observations on a 
further d ,  (= d - d,) variables. Partitioning B = (Bl, &) in the same way, we 
consider the model and hypothesis 

Y, = XB, + Ul, H,,:AB, = 0, 

where the rows of Ul are i.i.d. Nd,  (0, Z,,), and Z,, is given by 

212 >dl 
= (x:: 2,,) I d 2 *  

Furthermore, conditional on Yl, it follows from Theorem 2.l(viii) of Section 
2.2 that the rows of Y2 are independently normally distributed with common 
dispersion matrix Z,,., = 2,, - C21Xfi1212, and that 

~[Y,IY, I  = XB, +(Yl - XBl)Z,'&, 

= X(& - BlZfi'Zl2) + YlZ,'Z12 

= XA + Y,r, (9.35) 
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say. The corresponding hypothesis for this conditional model is Ho2. ,  :A A -= 

A(& - B,r) = 0, and we now relate the likelihood ratio tests f a  all thee 
hypotheses. 

In the first instance we note that A(B,, A) 2- 0 if and only if AB = 0 so 
that Ho = H,, n Ho2.1,  Then, if we partition E and E,, in the same manner as 
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z, 

are the likelihood ratio tcst statistics for testing H ,  and Hol, respectively. As 
the conditional model is ~ K I  analysis of covariance model (with Y -+ Y2 and 
2 -+ Yl), the likelihood ratio test statistic for ti,,, is, by (9.34), 

which is distributed as Ud2, ~, . p - d ,  when fIo2,1 is true. By (2.76) we have the 
factorization A = AlA2  and, when H, is true, we can write symbolically [as 
in (2.78)], 

U - 
u d , q , r ~  p : =  h , , q , n - p  d Z , q , n - y - d , ‘  

In particular, if AB, = 0, then testing H,, , can be regarded as testing that the 
additional observations Y, make no further contribution, that is, AD = 0. For 
this reason H ,  , is comnionly called a test for “additional information” (Rao 
[1973]). The power of this test is considered by Fujikoshi [1981]. A “stepwise” 
testing of No using HOl followed by Ifo2 forms the basis of the so-called 
step-down procedure (see Section 8.8 and the special case in Seciion 3.3.4). 

Perhaps a more illuminating example of the procedure is the special case of 
A = I,, that is, Ho2 ., :A = 0. If this hypothesis is true, then the conditional 
distribution of Y2, given Y,, does not contain the parameter B,, and Y2 can give 
no additional information on El. The power of the test for A = 0 is consid- 
ered by Kabe [1973]. When X = 1, and B =5 p’, the test statistic A = 0 
reduces to the Pstatistic of Theorem 2.11 in Section 2.6. This theorem forms 
the basis of testing whether a subset of variables gives adequate discrimination 
(see Section 6.10.1). 

9.6 M U L l I V A R I A T E  COCHRAN’S TElEOREM ON QUADKATICS 

We now briefly introduce a multivariate version of a theorem due to Cochran 
on the decomposition of quadratic forms. The theorem depends on the 
following lemma. A proof, using projection matrices, is given in Seber [1966, 
1980: Appendix 1, Lemma 41. 



9.6 Multivariate Cochran’s Theorem on Quadratics 413 

LEMMA 9.1 Suppose A,,A,,  ..., Af  is a sequence of symmetric n x n 
matrices such that C:,oAi = I,, then the following conditions are equivalent: 

(i) Ci,orank Ai = n. 
(ii) A,A, = 0 (all i, j ,  i Zj). 

(iii) At = A i ( i  = O , l , . .  . , t ) .  0 

An experimental design is described by the model Y = 8 + U, where the 
columns of 9 belong to Q, the range space of some matrix X. Typically we 
wish to test a sequence of hypotheses HOi ( z  = 1,2,. . . , k)  that the columns of 
8 belong to wi ,  a subspace of 9. We can test each Hoi by comparing 
H i  = Y(P, - P,,)Y with E = Y’(I, - P,)Y, using, for example, A = IEI/IE 
+ HiJ. In the case of the one-way classification of Section 9.2.1, k = 1 and 

= A, + A, + A,,  

which clearly satisfies condition (iii) of the above lemma. In the so-called 
balanced design corresponding to two-way and higher-way classifications with 
equal observations per cell, we find that the hypotheses are “orthogonal” (see 
Seber [1980: Chapter 6]), that is, 

so that 

becomes 

Again, this decomposition satisfies condition (iii) and it provides a motivation 
for the following generalization of Cochran’s theorem on quadratic forms. 

THEOREM 9.2 Suppose that the rows ya (a = 1,2,. . . , n )  of Y are indepen- 
dently distributed as Nd(fla, Z), and let A,,, A,, . . . , A ,  be a sequence of n X n 
matrices with ranks r,, rl,.  . . ,rf such that &,Ai = I,. If one (and therefore 
all) of conditions of Lemma 9.1 hold, then the Y’AiY (i = 0,1,. . . , t )  are 
independently distributed as the noncentral Wishart, Wd(ri, 2; Ai), where 
A, = 2-1/28’A,82-1/2 is the noncentrality matrix and 8 = (el, f$,. . . ,(I,)’. 
Proof The special case 8 = 0 is proved using, for example, Exercise 2.25. 

0 The noncentral case follows in a similar fashion using Section 2.3.3. 
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For testing k orthogonal hypotheses, the decomposition corresponding to 
(9.36) is 

Y‘Y = E + til f H2 + * * *  + H, -k Y’Paln. n,,,,Y, 
so that by Theorem 9.2, with I = k + 1, each matrix on the right-hand side has 
a nonceiitral Wishart distribution. Since P&3 = 8, A,@ = (1, - Pa)@ = 0 
and A, = 0; thus E has a central Wishart distribution, as already proved 311 

Theorem 8.3 of Section 8.4. When H,, is true, Po,e = 0 so that A l e  = (Pf2 - 
PJ6 = 0 and A, = 0; then HI also has a central distribution. When 
Hol, flu>,. . . , HOk are simultaneously true, E,Hl,H2,.  . . ,H,  all have indepen- 
dent central distributions. I f  a is the overall significance level for tcsting all the 
H,,, then, from Dykstra [2979], 

k 

1 - 1  

a < 1 - n(1 - a,), 

where a, i s  the significance level for H,,,. Some generalizations of Theorem 9.2 
are given by Khatri [1977]. 

If the HI all have the same degrees of freedom (e.g., m H  = 1 for all main 
effects and interactions in a multivariate 2‘ design), then the graphical methods 
of Section 9.2.6b can be used for comparing the HI. For example, if (7, = tr H,, 
the k ordered values ql) < < a(k) could be plotted against a gamnia 
distribution estimated from the first few ordered values (see Appendix C4). 
Under null conditions, that is, all the H,, true, the points should lie approxi- 
mately on a straight line; however, any significant H, will give rise to a point 
above the linear trend [by (8.49)]. Such points will occur with the largest 
ordered values at the right-hand end of the plot. 

< . 

9.7  GROWTH CURVE ANALYSIS 

9.7.1 Examples 

a SINGLE GROWTH CURVE 

In Section 3.4.2 we considered the example of sampling from a polynomial 
growth curve (3.23). Using a change in notation, let v1,v2,. . . ,v, be i.i.d. 
&(q, W ,  where 

9‘ = YO + yl-fr + . . * f ~ k - l f r  k - - 1  ( r  = 1,2,...,d) 

is the expected “size” of an organism at time I,. In vector notation 

Yo 

Yl 
= KY, (9.37) 
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say. The elements of v;, plotted against time, give the observed growth curve 
for the ith individual. In Section 3.4.2 we were interested in testing the 
adequacy of the above model, that is, in testing q = Ky. However, given that 
this specification is acceptable, we may now wish to test that a lower-degree 
polynomial is acceptable, for example, Ho : y k - ,  = yk-2 = - * = yk-” - - 0. TO 
do this, we can reformulate the model as follows. 

Writing Y = (vl,vz,. . . ,v,)’, we have &[y1= l,q’, which, combined with 
(9.37), gives us &[Y] = 1,y’K. Then Ho takes the form 

0 = y’( :) = y’D, 

say. This is a special case of testing A A D  = 0 for the model Y = XAK’ + U 
with A = 1, A = y’, and X = 1,. A general theory for handling this type of 
model and hypothesis is derived below, and a test statistic for the above 
example is given in Section 9.7.3. 

b TWO GROWTH CURVES 

Suppose that we wish to compare the polynomial growth trends for two 
populations. Let v,,v,,. . . ,vnl be i.i.d. &(q, X) and let w,, w2,. . . ,wn2 be i.i.d. 
N J Y ,  2). For example, vi could represent the measurements at d points in time 
of the height of the ith animal in the first group. Writing q = [(q,)] and 
Y = [(v,)], we assume, for ease of exposition, that the growth curves are 
quadratic, namely, 

and 

v, = So + S,t, + 6,tf ( r  = 1,2, .  . . , d ) .  

Suppose that we wish to test Ho that the two quadratics in time f are 
“parallel”, that is, Ho : y,  = S,, y2 = S2. One method is to use the linear model 
representation 

where 

Y =  

y - e  + u =  XB + u, 

9 , x =  

(9.38) 
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and the rows of U are i.i.d Nd(O, 2). Noting, from (9.37), that q = Ky and 
Y = K8, where 
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11 t ,  1: 
2 1 t 2  12 

K = .  . . ?  . . .  . . .  
(9.40) 

we can write 
,I ‘d  ‘ : I  

(9.41) 

say. Here l? is 2 X d and K’ = 3 x d (d z 3). The hypothesis Ho can also be 
written in matrix form, namely, 

0 -- (y, -- s l r Y 2  - 6 2 )  

= (1 ,  - 1 )  AD, 

say. Combining (9.41) with (9.38), we have the model 

Y = XAK‘ + U (9.42) 

and we wish to test a hypothesis of the form AAD = 0, where A = (1, - 1). In 
much of the earlier work on growth curves, t‘ was replaced by a1 orthogonal 
polynomial of degree r in the matrix K. 

Suppose we now change the notation and formulate the model (9.38) as a 
one-way classification for two populations. To do this we write 

11 9 Yl2 9 * . * 9 Yh, 9 Y21- Y22 9 * * * K n *  ) y’ := (y 

and d‘[y,,l = O,J. We can now describe this model as having (1) an externul 
desigri structure, namely, a one-way classification with el, = q and e,, = P, 

imposed by the design matrix X of  (9.39) on the n,  + n2  vectors O,,,, and (2) an 
internnl structure of the form O,, = Kh,,, say, where A,, = y and A2, = 6, 
Clearly, we can generalize this model by simply changing the design matrix X, 
as in the following example. 

C SINGLE GROWTH CURVE FOR A RANDOMIZED BLOCK DESIGN 

The linear model for a randomized block design, 

y . .  = e. .  + uij ( i  = 1 ,2  ,..., I ;  j = 1 ,2  ,..., J ) ,  
f J  IJ  
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has an external structure 0,, = ~r, + a, + 
ity, a quadratic growth curve, we can write the internal structure as 

[see (9.21)]. Assuming, for simplic- 

eijr = hoij + A l j j t ,  + ( r  = i ,2 , .  . . , d ) ,  

or $, = KX,,, where X j j  = ( A o i j ,  A,,j, A f i j ) .  Substituting for p (= @.), a, 
( = 0,. - 6.3, and so on, and using Bjj = KXijl we find that X j j  has the same 
“additive” structure as ejj.  Therefore combming the external and internal 
structures gives us the model 

e; j  = K(+ + +; + € j ) ,  (9.43) 

where &(I, = Cj t j  = 0. Writing 9’ = (611, O12,. . . ,eIJ), we have 9 = XAK, 
where X is the usual design matrix for a randomized block design and 

A = (4% 4 1 9 . .  .,4,, €l,...,€J) . 
The usual identifiability constraints Cia, = Cjpj = 0, or FB = 0, where 

B = (p ,a l  ,..., aI, PI ,... $,)’ = AK’, 

also apply to A. This is true for any design matrix X, as BF‘ = 0 implies that 
K A F  = 0, or A F  = 0, as the columns of K are linearly independent. 

d TWO-DIMENSIONAL GROWTH CURVE 

We now consider a different generalization of the example in Section 9.7.lb 
above. Suppose we measure the height and weight of each organism at d times 
t ,  ( r  = 1,2,. . . , d ) ,  and we assume that the corresponding growth curves are 
linear and quadratic respectively. Then, for the sample from the first popula- 
tion, v, has 2d elements, the first d being height, and the second d weight. Since 
height and weight will be correlated, we assume that v, - N 2 J q ,  &), where 

q’ = ( q p ,  qp,. . * , q y  , q p ,  q p ,  ‘ . . , q y  ) = (p’, p’), 

q(l) = #) + y p t , ,  

with superscripts (1) and (2) referring to height and weight, respectively. Then, 
writing q(’) = K,y(’), we have 

say. For the second population we assume that q - N2Jv ,  X o ) ,  where Y = K8. 
Putting the two samples together leads to the model (9.42) once again, with X 
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given by (9.39), but 
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Clearly, further generahations are possible that still lead to the same 
general model (9.42) above (Potthoff and Roy [1964: pp. 315--316]). For 
example, the heights and weights could be measured at different times, or more 
than two growth measurements could be niade on each individual. However, 
before giving a general theory, some comments from Sandland and McGilcli- 
rist [1979] are particularly appropriate. They note that in  many cases of 
practical interest, for example, in a very short series, no sensible alternative 
model is available and the polynomial model will be adequate. However, such 
models are often biologically unsatisfactory, as the parameters may not have a 
satisfactory biological interpretation. Richards [19691 puts it more strongly 
when he says, " the polynoniial curves coirunonly adopted in statistical work 
are usually quite inappropriate for growth studies." Sandland and McGilchrist 
give four reasons why polynomials are not appropriate for modeling long 
structured growth series; (1) Growth processes undergo changes of phase, 
which are not appropriately fitted by a global polynomial; (2) an ill-fitting 
polynomial will lead to a distorted estimate of the correlation structure; (3) 
polynomials tend to be poor at fitting asymptotic approaches to limiting 
values; and (4) growth data usually exhibit nonstationary second-order proper- 
ties (e.g., Guttman and Guttman [1965]), which are not readily analyzed by 
standard procedures. However, some authors, for example, Grizxle and Allen 
[1969] and JBreskog 11970: pp. 245 -248; 1973: pp. 278-2801, have considered 
models that allow for Z to be internally structured, as, for example, when the 
errors of measurement on a growth curve are stationary and follow an 
autoregressive moving average (ARMA) process. 

With the above warnings in mind, we now develop a general niatheinatical 
theory for the so-called growth curve or repeated-measurement model. 

9.7.2 General Theory 

Consider the linear model Y == X A K  t U, where X is n X p of rank y, A is 
p X k ,  K is k X. d of rank k (k < d), and the rows of U are i.i.d. NJO, 2). We 
wish to develop a test statistic for testing H,,:AAD = 0, where A is q X d of 
rank y and D is k X u of rank u. It should be noted that d is the total number 
of growth measurements rnade on each individual and is, in fact, "2d " in the 
example in Section 9.7.1 d above. Also, the above linear model and hypothesis 
can be reduced to a canonical form (Gleser and Olkin [1970], Kariya [19781), 
and a likelihood ratio test constructed (Kabe [1975)). Unfortunately the test 
statistic has an intractable distribution and the following methods have been 
proposed instead. 
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a PO'ITHOFF AND ROY'S METHOD 

The first method, suggested by Potthoff and Roy [1964], is to choose a 
nonsingular d X d matrix G (usually positive definite) such that the k x k 
matrix K'G-'K is nonsingular, and transform yi to C;yi, where 

c,  = G-~K(K'G-~K)- '  

KC, = I,, 

is d X k of rank k .  Then 
(9.45) 

(9.46) 

and the k X 1 transformed observation vectors are independently normally 
distributed with dispersion matrix Z, = C;ZC,. Writing the transformed ob- 
servations as rows of Y,, we have 

4y11 = m%I 
= XAK'C, 

= XA [by (9.46)]. (9.47) 

We have therefore reduced our original model to Y, = XA + W,, where the 
rows of U, are i.i.d. N,(O, &), and H, can be tested using the general theory of 
Section 8.7.1 with Y --$ Y,, B -+ A, YD + DY,, and d -, k. The basic matrices 
are 

H, = (Ah,D)'[A(XX)-'A'] -'A8,D 

and 

El = DY{(I,, - X(XX)-'X')Y,D, 

where 

8, = (X'x)-'XY, 

= (XX) -'xYG-~K(K'G- 'K) - ', (9.48) 

by (9.45). From the general theory, H, and El are independently distributed as 
W,(q, D'Z,D) and W,(n - p, D'C,D), respectively, when H,, is true. 

If k = d, then K is nonsingular and we simply make the transformation 
Y, = YK-'. For k < d, G can be arbitrary and we face the problem of 
choosing a suitable G that can either be a matrix of constants or even a 
random matrix distributed independently of Y. The simplest choice is G = I,, 
so that 

Yl = YK(K'K)-l. (9.49) 
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Working with the transformed data (KK)-'Ky, is equivalent to using the 
estimated regression coeffcients of the associated polynomials instead of the 
original data y,, The calculations are somewhat simplified if normalized orthog- 
onal polynomials are uscd in K. We then have K K  = I, and Y, = YK. This is 
essentially the method adopted in the earlier papers of Wishart [1938] arid 
Leech aiid Ilealy [ 19591. 

Using a minimum variance criterion, Potthoff and Roy [1964] showed that 
the optimal choice of G is G = Z, so that variances increase as G moves away 
from C. However, I: is unknown and most estimates of C are statistically 
dependent on Y. A natural choice is G = S, where 
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YfIn - x ( x ' x ) - . ' x ) Y  
(9.50) --- =- 

n -- p 

As shown below, a, of (9.48) is then the maximum likelihood estimate of A for 
the original model. However, S depends on Y so that the usual distribution 
theory for the matrices H, and E, no longer applies. 

b RAO-KHATRI ANALYSIS 01 COVARIANCE METHOD 

Rao [I965, 1Y66, 19671 and lChatri I19661 independently proposed an alterna- 
tive reduction that gets around the problem of an arbitrary 6.  A helpfil 
exposition is given by Grizzle and Allen [1969]. 'The first step is to choose a 
d x k matrix C, of rank k such that K'C, = I, [as in (9.46)], and a d X (d -- k )  
matrix C, of rank d - k such that KC, = 0 and C = (C,,C,) is a d >( d 
nonsingular matrix. We can now transform the observations y, to C'y, and wriie 
the transformed observations iis rows of Yc = YC = (Y,,Y,), where Y, = YC,. 
( r  = 1.2). 'Then b [ Y ,  J = XAB'C, = XA, E[Y,] = XAKC, = 0, and we can 
write down the analysis of covariance model (see (9.35) with XB, = 0 anid 
subscripts 1 and 2 interchanged] 

(9.51) 

The matrix (X,Y,) will have rank p 4- d .- k with probability 3, as the p 
columns of X are Linearly independent, and Y, is an n x ( d  - k )  unrestricted 
random matrix with linearly independent columns that are also linearly 
independent of the coluiirns of X (otherwise Y2 is restricted). Since the rows of 
Y, are conditionally distributed as independent multivariate normals with a 
common covariance matrix, we can apply the analysis of covariance theory of 
Section 9.5 (with Z = \r, and H = A) as follows. 
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The least squares (and therefore maximum likelihood) estimates of r and A 
for the conditional model (9.51) are [see (9.31) and (9.33)] 

f = (Z'RZ)-'ZRY, 

= (CiYRY C, ) - 'C;YRYC, 

= (C;SC2)-1C;SCl [by (9.50)] (9.52) 

and 

a = (xX- ' )x(Y'  - zf) 

= ( x x ) - ' X ( Y c ,  - YC2f)  

= (x'x)-lxT(c, - c,[c;sc,] -lc;sc,). 

From B3.5 we have (with K'C, = 0) 

c2(c;sc,)-'c; = s-1- S-~K(K'S-'K)-~K'S-~, (9.53) 

so that 

a = ( xix) - 'XYS - K( K S  - 'K) - 'K'c, 

= (XX) -'X'YS - 'K(K's- 'K) - ', (9.54) 

since KC, = I,. If f and g are the joint density functions of the normally 
distributed rows of Y and Yc, respectively, then (by A9.2) 

where g, (Y , )  does not contain A, as B[Y2] = 0. Thus maximizing f(Y) with 
respect to A is equivalent to maximizing g(Yl IY2) with respect to A, so that a 
of (9.54) is the maximum likelihood estimate of A with respect to the original 
model, as well as the conditional model. 

Having cast the general growth model into an analysis of covariance 
framework, we now consider the problem of testing H, : A A D  = 0. To do this 
we first of all require E and H matrices for testing A A  = 0. From Section 9.5, 
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Equation (9.32), 

E = Y;RYl - €"Y,'HY, 

= CiY'RYC, -- f'C;Y'RYC, 

= ( n  - p)(C;K(KS-'K)-'K'C,) 

-- ( n  - p)(K'S--'K)-' 

[by (9.53)] 

(since K'C, -- I,). 
Using (9.30), we have 

H = (Ad)'[A(XX)-'A' 4- ALMLAI-lAd, 

where, by (9.53), 

LML = (XX)'-~'XY,(Y,'RY,)-'Y~X(XX)- 

= ----(xx) 1 -lX'Yc,(cpc,)-'c;Y'x(xx) - l  

n - p  
= -(X'X) 1 'xy[s- '  - 

n - - p  
(9.55) 

The extension to test H,:AAT) = 0 is straightforward. From Section 8.7, we 
simply replace the matrices H and E by H, = D'HD and E, = D'ED. When 
H,, is true, these latter matrices are (conditionally) independently distributed as 
o-dimensional Wishart distributions with a common dispersion matrix and 
degrees of freedom rnH = q and m E  = n .- ( p  + d .- k), respectively. Since 
these Wishart distributions do not depend on the condition that Y2 is fixed, 
they are also the unconditional distributioiis of DHD and D'ED when H, is 
true. We note that n -- p can be omitted from the above expressions if it is 
omitted from the definition of S. If X has less than full rank, then we simply 
use (X'X) and replace p by rank X. 

We note that a, E, L,MI1', and H do no1 depend on C, so that the above test 
of H ,  does not depend on C. Therefore if we use Potthofl and Roy's 
C ,  = G 'K(K'G-'K)- ', the above test is independent of G and we can set 
G = I,. In this case C, = K{KK)-', and choosing Cz such that K'C, = 0 
implies that C;C, = 0. We can therefore choose C; to be the linearly indepen- 
dent rows of the projection matrix I, - K(KK)-'K (see €32.3). If normalized 
orthogonal polynomials are used, then K K  .- I,, C, = K, and we can choose 
C, such that (Cl, C,) is orthogonal. For instance, in the growth curve example 
given by (9.37) we can use c P , ( f r )  instead of t,", where (pu(t) is a polynomial of 
degree Q and 

d 

C + u ( t r ) + b ( l r )  = 
r - 1  
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With such a K we can then choose C, to be the matrix of normalized 
orthogonal polynomials of degrees 0 to k - 1, and C, to be a similar matrix 
for degrees k to d - 1 (see Rao [1966: pp. 100-1011; Grizzle and Allen [1969]). 

The above method uses all the d - k concomitant variables in Yz and, in the 
context of the single growth curve example, Rao [1965] suggests that a better 
procedure might be to select only a subset of the concomitant variables, 
particularly if the correlations between any of the columns of Yl and Yz are 
small. If the covariance of each column of Yz with each of Yl is zero, then Y2 
provides no information about Yl, and Y, should be discarded. In this case 
Roy and Potthoffs method with G = I, is appropriate, the so-called “un- 
weighted” estimation procedure. 

When G = S, Roy and Potthoffs estimate h, of (9.48) is the same as the 
maximum likelihood estimate a of (9.54). This equivalence between the two 
classes of estimates when all the concomitant variables are used was noted 
independently by Grizzle and Allen [1969] and Y. H. Lee [1974], and extended 
by Baksalary et al. [1978] to the case when not all the concomitant variables 
are used. 

We can readily extend the theory of Section 8.6.3 and obtain the following 
set of simultaneous confidence intervals corresponding to the maximum root 
test of H,:AlSD = 0. With probability 1 - a, a’AADb is contained in the 
interval 

(9.56) 

for all a and b. where 

F = A(XX)-’A + ALML’A’, 

and 6, is obtained from Appendix D14 with 

If we are interested in r predetermined linear combinations, we can use the 
Bonferroni intervals 

a‘AhDb f t:/(2r)(a’Fa - b’EDb/v}l/Z (9.57) 

where Y = q - p - (d - k )  

C CHOICE OF METHOD 

Which procedure do we use, the Roy-Potthoff transformation method or the 
Rao-Khatri reduction method? We have already mentioned above that both 
methods lead to the maximum likelihood estimate 8 when G = S and all d - k 
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covariates (concomitant variatks)  are used. With G = I,, the Roy-Potthoff 
method is equivalent to not using any covariates in the Rao-Khatri reduction. 
However, in hypothesis testing, G = S is not appropriate in the Roy--Potthoff 
approach, as S is not independent of Y and the two methods have difTerent test 
statistics for testing H,:AAD = 0 (see Timm [1980] for a good discussion). 
Although the Rao-Khatri method avoids the choice of an arbitrary matrix, 
both methods require choosing the matrix K. This is also equivalent to 
choosing the covariate matrix Y, in the partition YC = (YC,,YC,) = (Y1,Y2). 
A test for the adequacy of K is described in Section 9.7.4 below. Also, by 
evaluating the correlations between the columns of Yl and Y2, a selection of the 
d -- k covariates can be made to increase the efficiency of estimation. Those 
columns of Y2 that have small correlations with all the columns of Y, are 
omitted (see Gri7:zle and Allen [I9691 for a helpful discussion and some 
numerical examples). 

In conclusion, we mention three queries raised by Timm [197S] with respect 
to the Rao-Khatri method. First, when considering more than one growth 
curve (see Section 9.7.3, the analysis of covariance method is oniy appropriate 
if the covariates do not affect the treatment conditions. This may not be tlie 
case here, as the covariates are not prechosen but are selected after the 
experiment. Second, different covariates may be appropriate for different 
groups, and, third, the selected set of covariates may vary from sample to 
sample. However, a major advantage of the Rao-Khatri method is that one 
can apply a standard multivariate analysis of covariance program to the data, 

9.7.3. Single Growth Curue 

We now apply the analysis of covariance method to the example in Section 
9.7.la. Here we have a random sample vlrv2,.  . . ,v, from N,(Ky, 2 )  and we 
wish to test H0:D'y = 0. Setting A = 1, A =. y', X = l,, and p = 1 in the 
general theory, 

" (v, -- V ) ( V i  -- Vj' s = c ___ 
n - 1  3 

i = l  

[by (9.55)1[ 
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where w is the expression in square brackets, and 

E D  = ( n  - l)D(KS-lK)-'D. 

When H, is true, HD and ED have u-dimensional Wishart distributions with 
m H  = q = 1 and m E  = n - (1 + d - k)  degrees of freedom, respectively, and 
one of the different test statistics described in Section 8.6.2 can be used for 
testing H,. However, as HD has rank 1, the test statistics are all equivalent to 
Hotelling's T 2  statistic m,tr[H,E,'] of Section 2.5.5e where 

tr[D'fP'DE,'] 

tr [ (D'f)'E;' Df ] 

tr[H,E;'] = 
W 

- - (by A l . l )  
W 

- - 
[ n/( n - l)] (D'f)'{ D[K'S-'K]-'D} -lD'p 

1 + [ n/( n - i)]t'{ s-1- s-~K(Ks-~K)-'Ks-~ 1.' 
(9.58) 

When Ho is true, 

This statistic was derived by Rao [1959] using a different approach. 
The maximum likelihood estimator f for the analysis of covariance method, 

the so-called weighted least squares estimate, may be compared with the 
minimum variance unbiased estimator (MWE), 

7 = ( K ' Z - ~ K ) - ~ K Z - - ~ ~ . ,  (9.59) 

and Roy and Potthoffs estimator (9.48), namely, 

fl = ( K G - ~ K ) - ' K G - ~ V .  

An alternative approach to modeling growth curves that has been used in the 
past and which leads to the unweighted estimator f1  with G = I, is as follows. 
Suppose that each of the n individuals has a separate growth curve with 
independent normal observations, that is vj - N,(K&, 021d), and suppose 
further that the regression coefficients are a random sample from another 
normal distribution so that pi - Nk(y , iP) .  Combining these two models, we 
have vj - N,(Ky,KiPK + d1,) or 

t - N,(Ky, ;Z) and Z = KiPK + a*I,. (9.60) 
1 
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In this case the MVUE of  y is (KK)-'KV (Rao [19h7: Leinma 531; see also 
Exercise Y.14). Since the analysis of covariance method does not depend on the 
choice of C, we can choose C, = K(KK)-'. Then 

Multivunute Analysis of Variutice ond Covariance 

9[c;yi,c;yi] .= c;x, 

= c;(K@K' + d1,)c2 
= 0, 

as C;C2 = ( K K ) '  'KC, and KC, = 0. We therefore have a special case of the 
situation where the covariances between corresponding rows of Yl end Y2 are 
zero. As argued in the previous section, Y2 should then be discarded, and the 
reason is now clear: The introduction of Y2 leads to a less efficient estimate 

Fearn [lY75, 19771 gives a Bayesian analysis of the growth model using the 
above two-stage approach. In h i s  1975 paper he also considers the prediction 
problem and compares several Bayesian predictors with those given by Lee and 
Geisser [1972]. The two-stage inodel can also be written in the form 

t = KB + e, 

where e - NJO, { 0 2 / n ) I d ) ,  0 - N,(y, n -'a), and V[e, &] = 0. The above 
regression model with stochastic coefficients arises naturally in I andom-effects 
analysis of variance models. Bowden and Steinhorst [I 9731 use model (9.60) to 
construct a tolerance band so that a given proportion of individuals have their 
(conditional) expected growth curves ( 1 , f ,  t 2 . .  . .)p lying in the band for all f ,  
with an overall probability of approximately 1 - a. They also give an interest- 
ing numerical example relating to the problem of deciding when to move fish 
from one hatchery pond to another for larger fish. For further references, see 
Geisser 119801. 

If the appropriate assumptions are satisfied, it may be possible to impose a 
simpler covariance stnicture on the general growth model, as for example in 

the random efl'ects niodel of Reinsel [1982]. Another approach is to use 
randomization tests (Zerbe [ 1979~1, b]). 

of y. 

9.7.4 Test jor Internal Adequucy 

The linear model we have been considering is 8\Y] = XB, where H = AK' and, 
since KC, = 0, 

&"Y2] = XBC, = XAKC, = 0. 

Since X is n X p of rank p, XBC2 = 0 if and only if BC, = 0. We can 
therefore test the adequacy of the model B = AK' by testing 6"[Y,] = 0, that 
is, by testing If,: I,BC, = 0 for the model 8[Y]  = XII. This test is a special 
case of the linear hypothesis test described in Section 8.7 with A = I,. 
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For the single growth curve of Section 9.7.3, p = 1, B = q‘, and, from (8.71) 
with D = C,, x = 1, and B now equal to (XX)-’XY = B’, 

H = (BC,)’(X’X)BC, 

= n(B’C*)’(B’C,) 

and 

n 

E = C; C (vi - B)(vi - B)’C2. 
i-1 

Since m H  = 1, the usual multivariate tests all reduce to Hotelling’s T 2  statistic 
(with m E  = n - l), namely, 

m,tr[HE-’] = ( n  - l)n(C;V)’E-’(C;B) 

= n(c;B)~[c;Sc,] -lc;v. 

This is, of course, the same test statistic as that given in Section 3.4.2d (with 
A = Ci). 

9.7.5 A Case Study 

Grizzle and Allen [I9691 applied the Rao-Khatri method to the data in Table 
9.13. Here we have observations on four groups of dogs showing the response 
of each dog at times 1, 3, 5 ,7 ,9 ,11,  and 13 min after an occlusion. This model, 
an extension of the second example in Section 9.7.1 from two to four 
populations, may be described as a one-way growth curve model with four 
groups (one control and three treatment groups) and 9, 10, 8, and 9 seven-di- 
mensional observations, respectively, in the groups. A plot of the sample 
means for each group against time suggests that a polynomial curve of at least 
third degree is required. Since the times are equally spaced, orthogonal 
polynomials can be used. For a third-degree polynomial (see Pearson and 
Hartley [1972: Table 471, 

K =  

1 - 3  5 - 1  
1 - 2  0 1 
1 - 1  -3  1 
1 0 - 4  0 
1 1 - 3  - 1  
1 2  0 - 1  
1 3 5 1  
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If y;, = pi + u,, represents the j th  observation in group i ( i  = 1,2,3,4; j = 

1,2,. . . ,n,), then p i  = K4, say, and 

B =  K' = AK'. 

To test the adequacy of the third-degree polynomial model we can choose 

c, = 

3 -1  1 
-7  4 -6  

1 - 5  15 
6 0 -20 
1 5 15 

-7 -4  6 
3 1  1 

the coefficients corresponding to the orthogonal polynomials of degrees 4, 5, 
and 6. Since K'C, = 0, our test for adequacy given in Section 9.7.4 is 
equivalent to testing Ho : BC, = 0 for the model 8[yl= XB. Setting A = I, = 
I,, D = C,, u = 3, q = 4, and n - p = 20 in Section 8.7.1, we have 

H = (BC2)'(X'X)BC2, 

E = CiY'(1, - X(XX)-'X')YC, 

and, when Ho is true, 

Since -flog A = 8.29 is less than x&(0.05) = 21.03 and C, > 1 (see Appendix 
D13), we do not reject H,. 

In estimating A we first consider which of the three covariates corresponding 
to the fourth-, fifth-, and sixth-degree orthogonal polynomials we shall use. 
From Table 9.14 we see that none of the columns in the (1,2) part of the table 
has all its correlations small, so that all three covariates are appropriate. 
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TABLE 9.14 Correlation Matrix for the Columns of the Transformed Data 

--______ -- (YC,,YC*Y 
_I-____ L - 

YC,(I) YCL(4 

1.00 0.42 -0 17 -0.16 
- 1.00 025 --0.37 

YC, - -- 1.00 --0.05 
(1) - - .- 1 .oo 

YC* - - 

(2) - - 

- _ _  - 
_- ._ 

_._ 

0.22 -0.1Y - 0.11 
-0.30 0.02 0.02 
-0.70 - 0.04 -0.20 
--0.31 -0.57 0.43 

1.00 -0.12 0.18 
1.m -0.08 
-. 1 .oo 

- 
__ 

~~ 

"Reproduced from J. E. Grizzle arid D. M. Nlen (1969). Analysis of growth and 
dose response curves. Biometrics, 25, 357-381, Table 3. With permission from 
The Biornetric Society. 

Therefore, given 

'0.2261 0.1721 0.1724 0.2054 0.1705 0.1958 0.1817 
- 0.1696 0.1840 0.1919 0.1628 0.1700 0,1644 

- 0.3917 0.3473 0.2370 0.1876 0.2194 
.- 0.4407 0.3689 0.2870 0.2582 

__ .- - 0.4337 0.3733 0.3178 
- ___ - _. - - 0.5235 0.4606 

- 0.5131 - - - - I -- 

we have, from (9.54), 

= 

Interccp t Linear Quadratic Cubic 
4.14 -4.68 - 1.14 

4.10 -2.90 

32.70 
25.07 -0.69 -1.00 
28.59 
27.12 2.91 -1.55 
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Thus, for the control group, the fitted curve is 

y = 32.70 + 4 . 1 4 ~  - 4.68(x2 - 4) - 1.14(x3 - 7 ~ ) / 6 ,  

where x = t ( t  - 7). 

where D = I, and 
To test whether the four growth curves are the same, we test AAD = 0, 

1 - 1  0 

0 0 1 - 1  
* = ( o  1 -1 

This hypothesis is rejected, as might be expected from a, and we can compare 
the coefficients of the four curves using the simultaneous intervals (9.56). For 
example, we can compare the coefficients of the quadratic terms of the first two 
curves by setting a' = (1,0,0) and b' = (O,O, 1,0), that is, 

a'AADb = (1, -1,O,O)Ab 

say. In a similar fashion, we can compare the fist and third curves by setting 
a' = (1,1,0) as a'A = (1,0, - 1,O). The vector a determines the pair of curves, 
and the vector b the corresponding coefficients. However, if we decided before 
the experiment that we would be interested in the (i) X 4 = 24 pairs of 
coefficients, then we could use the Bonferroni intervals (9.57) with r = 24. To 
compare the two sets of intervals we note that n = 36 observations, d = 7 
dimensions, p = 4 groups, k = 4 (third-degree polynomial), q = 3 (rank of A), 
and u = 4 (columns in D). Hence s = 3, v1 = 0, and v2 = 12, and, from 
Appendix D14, do,o, = 0.42 and [do~,/(l - do.05]1/2 = 0.85. This may be com- 
pared with (by linear interpolation in Appendix D1 with r = 24 and Y = m E  
= 29) 

The Bonferroni intervals are slightly shorter. Grizzle and Allen [1969] gave 
both sets of intervals in the form diflerence f LSD, where LSD, the half-width, 
is referred to as the least significant difference. For a given b, LSD varies only 
slightly with 8, and the authors, for convenience, used the average LSD; their 
values are reproduced in Table 9.15. Clearly, the intercept difference for groups 
1 and 2 is a strong contributor to the significance of the test for the identity of 
the four curves. 
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TABLE 9.15 Tests of Differences Among Groups” 

Multiuunute Analvsis o/ C’uriutice and Covrlnurice 

____.-_._--_. ___-__ 
Es tirnated Differences 

__ 

Group Comparison Intercept Linear Quadratic Cubic 

1 vs. 4 5.59 2.23 - 3.13 - 1.15 
2 vs. 4 - 2.04 - 2.59 0.55 -0.11 
3 vs. 4 1.47 2.19 0.85 - 0.48 
1 vs. 3 4.12 0.03 - 2.28 - 0.66 
2 vs. 3 - 3.51 .- 4.79 1.41 0.59 
1 vs. 2 7.63 4.82 - 3.68 - 1.25 

~ --__ - 

LSD 
based on: 

0, 8.10 7.13 7.13 1.46 
t 5.94 5.23 5.23 1.07 

~ 

“Reproduced from J E. Grizzle and D. M. Allen (1969). Analysis of growth and dose 
response curves. Biornetncu, 25, 357-381, Table 4. With pernussiori from The Riometric 
Society. 

9.7.6 Further Topics 

Kleinbaum [1973] (see also Woolson and Leeper [1980] and Schwertmari et al. 
[198l]) has given a generalization of the growth curve model that allows for 
data which are missing, either by accident or design. Machin I19751 has 
considered a related problem in which certain observations are omitted by 
design but are compensated for by the introduction of new subjects so that the 
total number of observations remains constant. Chakravorti [ 1974, 19SSl has 
studied the problem of testing the equality of several growth curves when the 
underlying dispersion matrices are unequal. Referring to (9.39), if we ignore 
the polynomial structure, then testing q = v for the case of unequal dispersion 
matrices is the classical Behrens-Fisher problem discussed in Section 3.6.3. 
Unfortunately, the polynomial structure adds further complications. Following 
the approach of Ito and Schull 119641, Chakravorti showed that their results 
also applied to the growth model. For example, the T: statistic for testing H ,  : 
y = 8 in (9.41) (or, more generally, yI = yL = * . . = y,,,), using the Kao-KhaLri 
analysis of covariance tnodd, is robust to differences in the dispersion matrices 
if equal numbers of observations are taken on each growth curve. Chakravorti 
also considered two exact test procedures for testing H ,  under unequal 
dispersion matrices. 

We note that Jfireskog [1970, 1973, 19781 has also investigated n model like 
(9.60), but with a more general covariance structure of the form 
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He considered estimation and hypothesis testing for this general structure and 
gave a number of examples, including special models in the behavioral 
sciences, factor analysis, variance components, path analysis models and linear 
structural relationships, and growth curves with serially correlated errors. 
Khatri [1973] also considered tests on Z for the growth curve, but focused his 
attention on the type of problems considered in Section 3.5, such as indepen- 
dence and sphericity. A test for I: = X, is given by Khatri and Srivastava 
[1975]. 

An alternative approach to growth models, which fits polynomials to group 
differences rather than the groups, is given by Madsen [1977]. In (9.39) and 
(9.40) it is assumed that the growth curves for the two populations have the 
same degree and are sampled at the same points (t,) in time. A method for 
relaxing both these assumptions is given by Zerbe and Walker [1977]. A useful 
class of models that uses gains (e.g., in weight) rather than the actual measure- 
ments was proposed by Snee and Acuff [1979]. Gafarian [1978] gave confidence 
bands for a multivariate polynomial regression, while Zerbe and Jones [1980] 
applied growth curve techniques to time series data. The problem of prediction 
is considered by Lee and Geisser [1972, 19751. For further references and 
reviews of growth curve analysis, see Woolson and Leeper [1980] and Timm 
[1975, 19801. 

A closely related topic to growth curve analysis is allometry, which may be 
described as the study of differences in shape associated with size. For 
example, instead of relating two size measurements x and y (e.g., lengths of two 
bones) to time, we may be interested in relating them to each other so that 
both absolute (i.e., size) and relative (i.e., shape) measurements are important. 
This bivariate case has been studied for over 50 years, with attention devoted 
largely to the modely = axB,  or 

logy = loga i- Blogx. (9.61) 

Growth is often proportional, so that a simple model would assume that an 
increase dx in x during a small time interval of duration dt is proportiona1 to x 
and dt, that is, dx = k,x dt or 

1 dx 
x dt k x *  
- -= 

Assuming the same model for y, and defining p = k,/k,, then 

(9.62) 

(9.63) 

Canceling out dt and integrating leads to (9.61). The ratios on the left-hand 
side of (9.62) and (9.63) are called the specific growth rates. The assumption 
that these rates are constant (independent of x and y) is sufficient, but not 
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necessary, for (9.63) and (9.61). The extension of this approach to more than 
two variables is not straightforward, and some authors have proposed using 
principal components and factor analysis. However, one of the first attempts to 
give clear definitions of what are meant by size and shape is the article by 
Mosimanii [1970]. For further references on the subject, see Sprent [1972], 
Mosimann et al. [1978], and Siege1 and Benson [1982]. 

EXERCISES 9 

9.1 Show that when I = 2, the likelihood ratio statistic for testing pl = p2 in 
the one-way classification is equivalent to T: of (3.86). 

9.2 In the one-way classification model show that yl is the least squares 
estimate of pl.  

9.3 Derive a Hotelling's T' statistic for testing p, =; p r  in thc one-way 
classification model based on the pooled estimate of Z [i.e., based on 
E/(n - 0 1 .  

9.4 For the linear model of Equation (9.9, verify that X > l n  = 0. 
9.5 Verify Equation (9.1 1). 
9.6 For the two-way classification model of Section 9.4, show that ylJ is the 

least squares estimate of p,,. Obtain a set of simultaneous confidence 
intervals for C,c,B;b for all contrasts (C,c, = 0) and all b. 

9.7 Verify Equation (9.29). 
9.8 In Section 9.5.2 prove that any column of B and any column of fG have 

9.9 Referring to Example 9.7 in Section 9.5.2, show rhat 
zero covariance. 

~ ~ , = C C ~ Y l , - ~ l ~ ~ ~ , , - - z , ~ / C C ~ ~ , , - ~ l . ~ 2  
I /  1 1  

is an unbiased estimate of y. Find the dispersion matrix of ?(;. Derive a 
test statistic for testing y1 -- y2 = - - - == 'yd. 

9.10 In multivariate bioassay we have two models (for the control and treat- 
ment), namely, 

Yljh  = PI + Ylz, -k %,k' 

Y z ~ ~ = P ~ + Y ~ Z ,  -I E2,k ( J = l , 2 , . . . , J ; k = 1 , 2 , . . . , n ) ,  

where the elJk are i.i.d. Nd(o,2). Derive a liotelling's T 2  test for H,: 
Y1 = Y2. 

9.11 Let Y = XB + U, where X is n X p of rank p and the rows of U are i.i.d. 
N d ( 0 ,  2). Let a; be thejth row of (XX)-', and thejth row of B. If 0, is 
the least squares estimate of pJ,  show that 0, - N,,(p,, IIXa,l12Z). Derive a 
Hotelling's T 2  statistic for testing H,: p, = 0. Use the general theory of 
testing the linear hypothesis AB = 0 for the model Y = XB + U to 
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obtain the same test. Derive the same test for testing fl, = 0 using the 
analysis of covariance theory with r = pi. 

9.12 Let v1,v2,.  . . ,v, be i.i.d. Nd(Ky, Z), where K is d X k of rank k. If 
S = &(vj - V)(v, - V)’/(n - l), show that f = (K’S-’K)-’KS-’V is the 
maximum likelihood estimate of y. 

9.13 Use the Rao-Khatri analysis of covariance method to derive a Hotelling’s 
T 2  test for testing y2 = 8, in (9.40). Express the hypothesis that the two 
quadratic growth curves in (9.40) are identical in the form AAD = 0. 

9.14 Prove that (9.59) reduces to (KK)-’KV when Z = K@K’ + (7*Id, where 
Z and @ are positive definite and the columns of K are linearly indepen- 
dent. [Hint: Use B3.51 

9.15 For the general analysis of covariance model of Section 9.5.2, show that 

var[a’AB,b] = a’[A(X’X)-’A’ + ALML’A’la. b’Zb, 

where L and M are defined in Section 9.5.1. Find a set of simultaneous 
confidence intervals for all linear combinations a’ABb. 

9.16 Consider the one-way classification model of Section 9.2.5 with typical 
row vector 

&[y’(x’] = p; + X ’ b ,  

where PI = ji., & = (al, a,,. . . ,a,-l)’, and x’ is a row of X, indicating 
which of the I populations y comes from, that is, x’ takes values 
(1,0,. . . ,O), (0, 1, . . . ,O), . . . ,(O, 0,. . . ,0, l), and (0, 0, . . . ,O), respectively. 
Here x is usually described as the vector of dummy variables. The 
likelihood ratio test for equal means is [by (2.48)] 

Show that $ = q2, the square of the j th  sample canonical correlation 
between the y and x variables. [Hint: Use (10.25) and (10.26).] 



CHAPTER 10 

Special Topics 

1 0.1 C 0 M PUT AT1 0 N A 1. ’TEC HN I Q U E S 

10.1.1 Sokring the Normal Equations 

In least squares estimation for linear models, we have to solve the so-called 
normal equations 

FB = X‘Y, (10.1) 

where F = X’X, X IS  n X y and B is p X d. If X has rank p, F is nonsingulas 
(in fact, positive definite), and (10.1) has a uilique solution 6 = F ‘X’Y. Two 
basic met hods for finding this solution are described briefly below. They both 
consist ot reducing the problem to that of solving a triangular system of 
equations, as such systems can be solved very accurately (Wilkinson [1965, 
19671). A third method is given in Section 10.1.5b, and all three inetliods can 
be adapted to handle the case when X has rank less than p .  A number of 
general references are available, including Golub [ 19691, Lawson and Hanson 
[1974], Seber [1977: Chapter 111, Chambers [1977: Chapter 51. Kennedy a id  
Gentle 119801, and, in particular, Maindonald [1984]. Useful algorithms for 
solving various matrix problenrs are given by Wilkinson and Reiiisch [1971]. A 
helpful general reference on matrix computations is given by Stewart [1973]. 

a CHOl,I!SKY DECOMPOSI I ION 

Since F is positive definite, it can be expressed uniquely in the foirn (see A5.12) 
F = U’U, where U is a real upper triangular p x p matrix with positive 
diagonal elements. Once U is found, we solve U’TJB = X’Y by solving two 
triangular systems of equations, 

U’Z = X’Y for Z and UB = 2 for B. (10.2) 
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We can then calculate the matrix of residuals Y - a, and E = (Y - Xh)’ 
(Y - a). For later reference we note that 

(10.3) 

say, where V is also upper triangular, since the inverse of an upper triangular 
matrix is upper triangular. Details of algorithms for finding U, V, and F-’ are 
given, for example, by Seber [1977: Section 11.2.21 and Maindonald [1977, 
19841. 

A helpful modification is to use the augmented matrix 

and find the Cholesky decomposition FAUG = ULuGUAuG. If E = T’T is the 
Cholesky decomposition of E, then, by (10.3), Z’Z = T’T + Y’Y and 

(10.5) 

as 

= (’”, ’”) [by (10.2)]. 
Y’X, Y’Y 

Thus if we find the Cholesky decomposition of FAUG instead of F, we obtain U, 
Z, T, and E = T’T. For further statistical properties, see Hawkins and Eplett 
[1982]. 

b QR-ALGORITHM 
A more accurate method, which avoids the errors in computing X’X (and 
squaring the condition number of X), goes for U directly. Using the 
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Gram -Schmidt orthogonalization process, we can find an orthogonal matrix 
Q = (Qp, Qn-p), where the p columns of Q, form an orthonormal basis for X 
(i.e., QL pX = 0), such that 

x = QPU (10.6) 

=; Q( g) (= Q R ,  say). (10.7) 

From (10.2), Z = (U-')'X'Y -- Q;Y. Also, Q i X  = U, so that 

say. From = (X'Y)'QQ'(X,Y) of (10.4), we find that K'K = E. If Q is 
chosen so that K is upper triangular with positive diagonal elernents, then 
K = T, by the uniqueness of the Cholesky decomposition. 

Several methods for finding the orthogonal matrix Q are available, namely, 
the modified Gram- Schmidt algorithm based on constructing an orthonormal 
basis for the space spanned by the columns of X; the lloiiseholder method, 
which uses column transformations (reflections) to change X into R; and the 
Givens method, which rotates the rows of X two at a time. 'These methods are 
preferable to the Cholesky method when X'X is close to singularity (i.e., ill 
conditioned): it is then better to work directly with X rather than form X'X. 

Both the Cholesky and QR-methods cpn be adapted to deal with the case 
when X does riot have rull rank (Golub and Styan [2973]; Seber [1977: Section 
11.51). One approach is to obtain a solution of the normal equations in the 
form B = F-(X'Y), where F is a generalized inverse of F, or in the form X* Y, 
where X* is a generalized inverse of X with certain properties, for example, 
X* = X i ,  the Moore -fenrose inverse (see Noble [1976] for a helpful disctis- 
sion). These methods can also be modified to avoid square soots and to 
incorporate weighted least squares. When the rank of X is unknown, the 
singular value decomposition method of Section 10.1.5b can be used. 

10.1.2 Hypothesis Matrix 

Consider the linear model &"Y] = XB, where X is n x p of rank p, and 
hypothesis H0 : AB = C, where A is 4 X p of rank q. We have already discussed 
the computation of E = (U - Xb)'(Y - a) in the previous section and we 
now turn our attention to [from (8.47)1 
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The following method for computing H was essentially proposed by Golub 
and Styan [1973]: 

(1) Find the Cholesky decomposition X’X = U’U. 
(2) Solve the triangular system of equations U’K, = A’ for K,. 
(3) Find the Cholesky decompositon K;KIA = UiU,. 
(4) Solve the triangular system U1‘K2 = AB - C for K2. 
(5) Calculate K2K2. 

We note that 

A(X’X)-’A’ = AU-’(U-’)’A’ = K;K, = U{U, 

and 

K;Kz = (AB - C)’UT’(U<’)’(AB - C) 

= (AB - C)’(U{U,)-’(AB - C) 

= H. 

The matrices U and U, can also be found using a QR-algorithm, thus avoiding 
the formation of X’X and KiK,. 

10.1.3 Calculating Hotelling’s T2 

Hotelling’s T 2  test takes the form T: = ky’W-’y, and this can be computed 
as follows. First find the Cholesky decomposition W = U‘U, where U is upper 
triangular, and then solve the triangular set U’z = y for z. The answer we 
require is T: = kz‘z, as 

y’w-’y = y’(u’u)-’y = (u’-1y)’(ur-1y) = 2’2. 

For example, suppose we are given a random sample xl, x2,. . . , x, from 
N d ( p ,  2). Then to test Ho:p = p, we use (see Section 3.3.1) 

T ,  = n ( n  - I)(% - p,)’w-’(% - p,), 

where 
n 

w = c ( X i  - %)(Xi - x)’ = X’X 
1-1 

(10.8) 

- and X’ = (xl - z, x2  - x,. . . , x, - f). We can find U either from the Chole- 
sky decomposition of W, or else by applying the QR-algorithm to X. The 
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separate computation of W or X can be avoided if we begin with the 
augmented matrix ( l n ,  X). lnstead of U, we now get 

Alternatively, as kindly pointed out by Professor Gene Golub, we can obtain 
T: directly by applying just d steps of the Cholesky algorithm as follows: 

Another application of Hotelling’s T 2  is in testing for equality of two 
normal means, given samples vl, v,, . . . ,vn, and w,, w,, . . . , w,,~. The test statistic 
is 

n n ( n ,  + n 2  -- T2 = -!2---- 2, (v - W)’W ‘(v - w), 
n ,  + n 2  0 

where 

“ I  “1 

w = c (v, - V)(Vi v)’ -t c (Wi - W ) ( W i  - w)’. 
, = l  l = l  

The steps in the triangular reduction are now 

I 0 v; 

’ 0 v,;, 

0 1 w; 

0 1 w;, 

. .  . . .  . . .  

. .  . .  . .  . 

(10.9) 

where W = U’u. 

10. I .  4 Generalized Symriretric Eigenproblem 

In Section 10.1.5~ we mention procedures for finding eigenvalues and eigenvec- 
tors in relation to principal components. However, in multivariate analysis, ;I 
comnion problem is the calculation of the eigenvalues +, of D-’C (or, 
equivalently, of CD-’ by A1.4), where C is syminetric and D is positive 
definite. A simple procedure is as follows: (1) Find the Cholesky decomposi- 
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tion D = T’T, where T is upper triangular; (2) form the matrix A, = 

(T‘)-’Cl-‘, which has the same eigenvalues as D-’C (by A1.4); and (3) find 
the eigenvalues 9, (and the eigenvectors a, if necessary) of the symmetric 
matrix A using a standard package. 

The matrix A, is found by forward substituting for the columns of 2 in 
T’Z = C and the columns of A, in T’A, = Z‘. If c, is an eigenvector of D-’C 
corresponding to +,, then 

D-’Cc, = +,ci, 

or 

that is, 

AITc, = +,Tci. 

We therefore find c, by solving Tc, = a, for each i. 
Algorithms for the above reduction to A, are given, for example, by Martin 

and Wilkinson [1971]. The eigenproblem is also discussed briefly by C. Cohen 
[1977]. We now consider some applications of the above procedure. 

a MULTIVARIATE LINEAR HYPOTHESIS 

When testing a linear hypothesis H, for a multivariate linear model, we require 
the eigenvalues +i of HE-’, which are the same as those of E-’H, where H is 
the “hypothesis” matrix and E is the “error” matrix. The four test statistics 
that are used, namely, Wilks’ likelihood ratio statistic A, Hotelling’s T i ,  Pillai’s 
V”), and Roy’s +,,,a, are all functions of the +; (see Sections 8.6.2 and 2.5.5). 
Thus 

i=  1 

T i  = rn,tr[HE-’] = m,C+; ,  
i 

9; 
1 ++;’ I/(’) = tr[H(E + H)-’] = - 

If the linear model is b[Y]  = XB, then the reduction of (X,Y) to upper 
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triangular form (10.5) using the Cholesky or QR-methods automatically gives 
us T, where E = T'T is the Cholesky decomposition of E. We then find 
A, = (T') 'HT-', as described above; H can be found using Section 10.1.2. 

Alternative methods are available for the most common form of hypothesis 
testing in linear models, namely, H,, : B, = 0, where 

(see Section 9.2.5). Partitioning Z in the same way as B, that is, 

we have. from (10.3), 

The eff'ect of deleting X, and I.$ from XB on the triangular reduction (10.5) of 
(X, Y) is lo delete Z, from Z. Hence E, == Y 'Y - Z;Z,, I3 = E, - 
and 

Tp" = m E  tr [Hl- ' ]  

=: m R  tr[Z;Z,T.-'(T')-'] 

= mE tr[(T')-'Z;Z,T-'] 

= nzE tr[G'G], 

. E = z;z,, 

(10.11) 

where G is the solution of the triangular set of equations T'G' = Z;. If the 
matrix 

is also reducted to the upper triangular matrix, V, sxj, then 

T'T + Z:Z, = E + H = V'V. (10.12) 

Since the determinant of a triangular matrix is the product of its diagonal 



10.1 Computational Techniques 503 

elements, 

d 

j =  1 
(10.13) 

= b,b2 * * * bd [See (2.70)]. 

Also, if we repeat the argument that leads to (lO.ll), 

V(') = tr[H(E + H)-'] 

= tr[G;G,], (10.14) 

where G ,  is the solution of V'G; = Z;. 

A, = (T')-'Z;Z2T-', as prescribed by the general eigenvalue method. 
In the above application we do not need to find the eigenvalues of 

b ONE-WAY CLASSIFICATION 

For the one-way classification described in Section 9.2.1 we have the model 
yi, - N d ( p i , Z )  ( i  = 1,2 ,..., I; j = 1,2 ,..., n i )  and hypothesis H,,:pl = p2 
= ... = p r .  The required matrices are 

H = C n i ( y I . -  y..)(yi.- y..)' 
I 

(10.1 5 )  

and 

In this case we have 



UA", = 

.. 

0 +l; * * .  

: 

0 0 * . .  

I I) 

we have H = ZiZ,, and we can use the methods of ( l O . l l ) ,  (20.13), afid 
(1 0.14). 

C DISCRIMINANT CXlORDINATES 

From Section 5.8, the matrices under consideration are B = H and W = E, 
where H and E are given by (10.15) and (10.16). Finding the discrinlinant 
coordinates therefore reduces to finding the eigenvalues and eigenvectors of 
W-'B (= E-'H). 

10. I .  5 Singuiur Value Decomposition 

a DEFINITION 

Any ti X m matrix A of rank r ( r  5 m 2 n )  can be expressed in the form 
(Seber [1977: Appendix AlO]) 

A = L,AM' , 
( n X P I )  ( ) I  X m)( rn x rn)( m X w )  

(10.17) 

where L, is an ti X m matrix with cohrmns consisling of 111 orthogonal unit 
eigenvecturs associated with tlic m largest eigenvalues of A A  (i.e., K,L,,, = Im), 
M is an 111 X m orthogonal rnatrix consisting of the orthogonal unit  eigenvec- 
tors of the na X rn matrix A'A, and A = diag(S,, Sz, ..., S m )  is an m X m 
diagonal matrix. Here 

and these diagonal elements of A, called the singular values of A, are the 
positive syuarc roots of the eigenvalues of A'A. We note that AA' and A'A are 
positive sernidefinite with tn common eigenvalues, inclirding some zeros when 
r < m (sce A1.4). The reiriaining n - m eigenvalues of AA' are equal to zero. 
The decomposition (10.17) is called the singular value decomposition (SVD) 
of A. 
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An alternative version of (10.17) is 

A = L( ;)M, (10.18) 

where L is an orthogonal n X n matrix with columns that are eigenvectors of 
AA’; the first m columns of L form L,. If m 2 n,  then 

A = L(A,O)M’ = LAM:, (10.19) 

where M, consists of the first n columns of M. A more general form, which 
includes all the above versions, is 

A = LDM’, (10.20) 

where D is an n x m matrix with r positive leading diagonal elements 
IS,, I S 2 , .  . . , IS , ,  and the remaining elements zero. All three forms (10.17), (10.19), 
and (10.20) are used in the literature, though, in practice, only the first s 
(= minimum [ m ,  n]) columns of L and M are required in (10.20). We can also 
write 

(10.21) 

Is the decomposition unique? If we assume that m I n, A will be unique, as 
the eigenvalues of A’A are unique. However, the eigenvectors making up L,,, 
and M in (10.17) will not be unique unless the eigenvalues are distinct and an 
appropriate sign convention is adopted for eigenvectors (see A1.3). 

b SOLUTION OF NORMAL EQUATIONS 

Let X be an n X p matrix of rank r and consider the SVD X = L,AM’. Then 
the Moore-Penrose generalized inverse of X is X+= MA+L,, where 

A + =  diag( IS;’, . . . , I S ;  ’, 0,. . . ,O). 

A solution of the normal equations X’a = X’Y is now given by B = X’Y, 
since X’X@ = X’XX’Y = X‘Y. This method is particularly useful when r = p 
but X’X is highly ill conditioned, and when r < p and r is unknown; a ai is 
deemed to be zero if its value is less than a certain tolerance. The most 
common algorithm consists of the following steps: (1) reduce X to upper 
bidiagonal form [only the ( 2 ,  i )  and ( i ,  i + 1) elements are nonzero] using 
Householder reflections from the left and the right; (2) compute the SVD of 
the bidiagonal form; and (3) transform back using reverse reflections (Lawson 
and Hanson [1974: Chapter 181). Algorithms are given in FORTRAN (e.g., 
Businger and Golub [1965], Lawson and Hanson [1974]) and in ALGOL60 
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(e.g., Golub and Reinsch [1971]). Another algorithm, suitable for a small 
computer, is given by Nash and Letlcovitch [1976]. 

Noble [I9741 proved a theorem that states that if a matrix X = A i B is 
near A but has rank greater than A, then Xt can be “larger” and completely 
diKerent from A ’: The smaller K, the worse the trouble can he. I t  is clear, 
therefore, that r needs to he kiiown a6 sane  stage of the calculation. If I’ is 
known from the beginning, then a QR-algorithm using, for example, House- 
holder transformations is preferled, as the SVD method is two to four times as 
expensive and is less adaptable with regard to other aspects of regression such 
as updating. 

C PRINCIPAL COMPONENTS 

Given W of (10.8), we can find the eigenvalues and eigenvectors of W, 
S -- W / ( n  - l), or 2 = W / n  directly using a standard eigenvalue package 
such as the ALGOL procedures of Wilhnson and Reinsch [1971: Part 111, and 
the FORI’KAN procedures of Sparks and Todd [1973]. An alternative method, 
however, is to calculate the SVL‘) of the n X d matrix X. Writing X = L,AM’, 
the diagonal elements of A2 are the eigenvalues of X’X = W, and the colunws 
of M are the corresponding eigenvectors. 

d CANONICAL CORRELATIONS 

Let z,, z2,. . . , z , ~  be a random sample and suppose z; = (xi, y,’). Then 

if = (z, - z,zz - z ,..., z,, - n )  

say. Using the QR-algorithm (10.6) twice, we have X = Qd,T,,, where Q d ,  is an 
ti x d ,  matrix with orthogonal columns and TI, is a d ,  X d ,  upper triangular 
matrix; similarly, we have = QdF22, where Qd2 is n X d ,  and T,, is d ,  X d, .  
Referring to Section 5.7.2, we have the Cholesky factorizations Q,l = X’X = 
T;,T,, and Q2, = Y‘q = T;21’22. Then 

= (Tii1)fQ12TG1 

-- c, 
say, where C is the d ,  X d, matrix of (5.97). Assuming that d ,  5 d2, consider 
the SVD of C, namely, 

C = LAM;,. 
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Then, referring to Section 5.7.2, we can identify 

L = (hO1,iio2,. . . ,hOdl) = ko = Tllk, 

and Mdl = Bh = Tz2B‘. We therefore have the following computational 
procedure (Golub [1969: pp. 393-1395]): Compute Qdi and Qd2 using a 
QR-algorithm, form e using an accurate (e.g., double precision) inner product 
procedure, compute the SVD of e, and use back-substitution to solve the 
triangular sets of equations 

Tllk = L and T22B’ = Mdl 

for .&’ and 8’. From (5.98), the canonical variates for xl, x2, .  . . ,x, are given by 
the rows of U = w, and those for the yi by the rows of V = M’. The 
diagonal elements of A (the square roots of the eigenvalues of C’C and of 
Q ~ 1 Q 1 2 Q ~ ~ Q , l )  are the sample canonical correlations @. 

10.1.6 Selecting the Best Subset 

In designing a multivariate experiment, one is faced with the problem of 
choosing appropriate variables for measurement. Usually experimenters quite 
reasonably tend to measure as many variables as possible to avoid missing any 
that might prove relevant. Unfortunately this approach commonly leads to 
excessive values of the dimension d of the data vectors, and very large samples 
are then usually required for an adequate analysis. Furthermore, the inclusion 
of irrelevant variables not only increases the cost of the experiment, but it can 
also cause a marked reduction in the effectiveness of a multivariate technique. 
For example, in multiple linear regression, an additional x-variable leads to an 
increase in the variance of prediction; in discriminant analysis (see Chapter 6) 
the precision of estimation and the robustness of various discriminant func- 
tions falls off with increasing d. Test procedures, like Hotelling’s T2 test for 
comparing two population means, can also be adversely affected by increasing 
d (Das Gupta and Perlman [1974]). 

Graphical methods for reducing dimensionality are given in Chapter 5 and 
we shall now consider more formal procedures for dimension reduction. The 
problem is one of two types, depending on whether we are considering 
response ( y ) variables or regressor (x) variables. 

a RESPONSE VARXABLES 

Suppose we have a multivariate linear model Y = XB + U, where Y is n X d, 
and a linear hypothesis H,: AB = C. From Chapter 8, Ho can be tested using 
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where U - Ud3 n,,f, m~ vvheii H ,  is true. If we wished to reduce the dimension d,  
we would try and eliminate the y-variables that make an insignificant contribu- 
tion to the test of H,. From Section 2.5.6 we have the factorization of (2.62). 

U = b1b2 - 7 * bd, 

where bk = ?kk/zHhk, and, from (2.60), 

‘kk = - e; lE i ! l ek-  1 - - ekk 1.2, ,k 1 3  (10.22) 

say. The statistic bk provides a likelihood ratio test for additional jnformatioii 
from the k th variable. Under the null hypothesis of no additional information 
(see also Section 9.5.3), we have, from (2.72), 

( 1 0.23) 

As A, = blh2 - . h, is the test statistic for H,  based on r variables, a common 
criterion for choosiug the best subset of r variables is to find the subset that 
minimizes A,. To find the best overall sulxets then requires, in principle, the 
calculation of 2d - 1 values of A,. However, this is not feasible for large d 
(say, d > 20), and an alternative procedure is to use a stcpwise method. 
Hawkins 119761 described the following algorithm for doing this using the 
so-called sweep and reverse sweep operations, widely used in stepwise regres- 
sion analysis (Seber [1977: Section 12.4]), for removing and adding variables. 

Step 1.  Search the diagona\ elements of E and Elf to find k for which 
elL/eNkk is a minimum. If this ratio is sufficiently small, then include variable 
k. Renumber it variable 1 and sweep it out of E and E,. 

Suppose that repeated applications of step 3 have introduced 
variables 1,2, .  . . , r .  For k = 1 to r ,  test whether variable k has retained its 
significance by examining the “b-ratio” [see ( 10.22)) 

Step 2. 

ekh .1 ,2  ,_.., k - 1 , k  t I , . . . . r  

et ihk  .1,2.. . . ,k -- 1, k t 1,. . . ,r 
(10.24) 

If the largest such ratio is sufliciently large [or the corresponding Pratio of 
(10.23) is suficiently small, say, less than FOuT), then eliminate the correspond- 
ing variable. Reverse sweep it into E and E,, and renumber the variables 
1,2 ,..., r - 1. 

Step 3. Suppose that the variables 1,2,..  . , r  have been introduced. For 
k = r + 1 to d ,  test wliether the variable k is significant by examining the 
b-ratio 

e k k . l  ,2,.  . . .r 

elrkk .1.2.. . . ,r 
- ~ - -  (10.25) 
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If the smallest such ratio is sufficiently s m d  (i.e., the F-ratio greater than Fm), 
then introduce the corresponding variable k. Renumber it r + 1 and sweep it 
out of E and E,,. 

Steps 2 and 3 are repeated until a situation is reached in which all the 
variables that have been introduced retain their sigtllficance and none of those 
excluded is significant. The procedure will terminate in a finite number of steps 
if FoUT I FIN. Of course, the renumbering of the variables is not necessary, 
having been introduced for ease of exposition. If E and EH are swept “in 
place,” and e k k  and e H k k  are the current kth diagonal elements, then it 
transpires that the b-ratio for inclusion is f ? k k / e H k k ,  and that for elimination is 
e H k k / e k k .  Using a Bonferroni approach, Hawkins [1976] suggests the bounds 

and 

where a < a’. These values are conservative in that they tend to lead to a 
subset with fewer variables. 

If d is large, the major source of computation is the sweeping operation at 
each step. According to Hawkins, this involves 6d2  + O ( d )  computer opera- 
tions. Assuming that a stepwise MANOVA typically involves $d sweeps, the 
total number of operations is roughly 3d3 + O(d2).  This is much less than 
that required for computing all 2” - 1 subsets. However, by careful coding, it 
is possible to obtain A, for any subset by means of a single sweep of a matrix 
computed earlier, so that the number of operations can be reduced to about 
3d3 X 2d. Such a method was described, for example, by Furnival [1971] for 
regression, and adapted by McCabe [1975] to MANOVA. McCabe focused his 
discussion on the one-way MANOVA of Section 9.2; this is sometimes referred 
to as the discrimination problem. Using the significance of A, as a measure of 
discrimination, the aim is to find the subset that gives the maximum dis- 
crimination (minimum A,) among the I samples (see Section 6.10). McCabe 
compared an “all subset” program called DISCRIM with the stepwise proce- 
dure in BMD07M using simulated data and demonstrated that the stepwise 
procedure frequently did not produce the best r-subsets. 

Because of the close parallel in the computational procedures for the above 
stepwise algorithm and stepwise regression, the so-called branch-and-bound 
algorithms of stepwise regression (Furnival and Wilson [1974], Seber [1977: 
Section 12.31) can be readily adapted so that one can obtain the best r-subset 
without having to look at all r-subsets. In this case about 175(1.39)” operations 
are required. 

Another procedure, which is a compromise between the stepwise and all 
subset procedures, has been proposed by McHenry [1978]. The basic algorithm 
utilizes the close association of the factorization of U with the Cholesky 
decomposition [see (2.70)]. Given a subset S, of r variables, we now consider it 
as a candidate for the best r-subset. This is done by examining the remaining 
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d - r variables, denoted by Sd-r. For each variable k (I I fc 5 r )  in S,, we 
compute the ratio (10.24) and compare it with the d - r ratios obtained by 
replacing variable k by a member of s&r. I f  variable k gives the smallest ratio, 
then it  stays in; otherwise it is replaced by the member of s&r that gives the 
smallest ratio. The process is continued until none of the variables in the final 
r-subset can be replaced. ‘This usually, but not invariably, produces the best 
r-subset in terms of mininiiiing A,. A further check to see if a better r-subset is 
available can also be incorporated: We delete one variable at a time, bringing 
in the best of the remainder and repeating the above procedure (the deleted 
variable is not allowed to reenter). Once we have finalized our r-subset, we 
obtain a candidate for the best ( r  -t 1)-subset by bringing in the variable that 
minimizes (10.25). Although the above procedure does not guarantee the best 
subsets for each r, experiments by McHenry indicates that there is a very high 
probability of obtaining the best subsets. 

b REGRESSOR VARIABLES 

We now focus our attention 011 the x-variables in the d-dimensional multi- 
variate linear regression model Y = XB + IJ, where the first column of X is l,, 
that is. 

say, and XB = l,,& + X,Bl .t X,&, where X, represents n measurements on 
the first r x-variables. It is assumed that X is n X p of rank p. A test for no 
regression [i.e., (B,,&) = 01 is given by U, = lE1/lEHl, where 

E = Y’(I* - X(X’X) -‘X’)Y, 

-- y’y  = Qyy,  (‘10.26) 
- 

say, and Y = (yl -- 3, y2 - y, . . . ~ y,, - 9)’. Defining X, the same way. we can 
also write (see Exercise 8.7) 

= Q,”, -- Q,xQ%Q,yy (10.27) 

say. We “accept” the hypothesis of no regression at the a level of significance if 
u, udqp-l,n-p = u,.. 
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To test whether the subset S of the first r x-variables is “adequate” (i.e., H, : 
& = 0 is “true”), we require 

say, and a test statistic for H, is 

IQyy - QyxQiiQxyl 

IQ, - QYsQiiQsyl ’ 
us = 

We accept Ho if Us > Udqp-l-r,n-p. McKay [1979] has extended Aitkin’s 
[1974] ideas about adequate subsets in regression analysis (see also Seber 
[1977: Section 12.2.31) to the above multivariate situation. McKay suggested 
simultaneously testing all subsets for adequacy by comparing Us with U;. A 
subset is said to be adequate if Us > Uz, and we can use such a subset as a 
candidate for the subset stakes, Unfortunately, the actual significance level as 
of an individual test in the simultaneous procedure (i.e., as satisfying 
UdqSp -- 1 - r ,  n - p  = U;) may be too small, so that too many subsets may be 
adequate. McKay [1979] used an approach of Spjertvoll [1977] to reduce the 
number of subsets, and provided a plotting technique for assessing the relative 
merits of subsets. He noted that the above procedure can also be based on one 
of the other test statistics such as Roy’s maximum root test instead of the 
likelihood ratio statistic U. 

Another univariate procedure, due to Newton and Spurrell[1967a, b], called 
“elemental analysis” has been extended to the multivariate case by Hintze 
[1980]. His procedure is also based on testing for no regression using [see 
(10.27) and (10.26)] 

IQ, - QyxQ~,’Qxyl 
I QYY I 

u, = 

= IQ,, - QxyQ~~QyxI / IQxxl .  (10.28) 

This statistic is also the test statistic for testing the independence of the Y and 
X data sets [see (3.42)], so that it is not surprising that x and y can be 
interchanged in U,. Hintze uses the latter formulation (10.28), as it is more 
convenient computationally. What he is in fact doing is simply changing the 
problem into one of selecting y-variables by interchanging the roles of x and y. 
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The gain in Uo when an x-variable is dropped is computed and the difference is 
used to measure the “elements.” ‘These elements can then be used as a basis for 
selecting good subsets. 

10.2 LOG-LINEAR MODELS FOR BINARY DATA 

In this section it is convenient to distinguish between random variables and 
their values. Let X = (XI, X2)’,  where XI and X2 are binary random variables 
with joint probability function 

(TW, X I  = o ,  x , = o ,  

where q,,, + rOol + rlo + rll = 1. Then, the so-called log-linear model for 
binary data uses the representation 

log Vi)] = u + u1 - u2 .- 2412, 

log nIo = u - 2.41 + u2 - u,*, 

log TIl = u - u1 - u2 + 2412. 

If there is no structure on the r u b ,  then we simply have a reparameterization 
with four n-parameters replaced by four u-parameters. Any hypothesis about 
the nu, generates a corresponding hypothesis about the u ‘s. For example, the 
hypothesis that XI and X ,  are independent, namely, roo~ll -- 7 ~ ~ ~ r ~ ~ ,  corre- 
sponds to uI2 = 0 so that uI2 can be interpreted as an “interaction” between 
XI and X,. We also note that 

logvah = logpr[X, = a,  X ,  = b ]  

= u + u,(l - 2 0 )  + u2(1 - 26)  + U 1 2 ( l  - 2a)( l  - 26) 

( I  0.29) 

= u + u l ( - . l ) “ +  u2( -1 )  h -t U 1 2 ( - 1 ) u + h  (1 0.30) 

If Z, -- I - 2 A‘,, then Z, takes values +_ 1 and 

logpr[Z, -- zl, 2, = z2] = u + ulz ,  t- uzz2 + U ~ ~ L ~ Z ~ , .  (10.31) 
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A further linear representation, which may be more familiar to the readers, is 

log nab = p + a:’) + as) + a(12) ab 9 (10.32) 

where, from (10.29), p = u, a:) = ul(l - 2a), and so on. It is readily verified 
that Ca@ = &pi2) = CaaLy) = &,c&Y’ = 0, and we recognize the usual main 
effects and interactions associated with a two-way classification. 

If X = ( X , ,  X 2 ,  . . . ,X,)’ is now a d-dimensional vector of binary variables, 
then X can take 2, different values with probabilities (a, b,. . . , r  = 0 or 
1). The log-linear model now reparameterizes log nab...r as a sum and difference 
of an overall mean u, main effects ui for Xi, two-factor interactions uij  for X, 
and XJ, three-factor interactions U i j k  for q., 3., and x , ,  and higher-order 
interactions, ending with u l Z . . . d ,  the d-factor interaction. Since 

the above u’s can be listed in a 2d-dimensional vector, u, say. If L = log n is 
the vector of log then L = Ku, where K is a 2d X 2, orthogonal matrix 
with elements f l .  As the notation, and to some extent the interpretation, is 
reminiscent of a 2, factorial design, we can use the “standard order” in writing 
out u. For example, if d = 3, 

1 1 1 1 1 1 1 1  
1 -1 1 -1 1 -1 1 -1 
1 1 -1 -1 1 1 -1 -1 
1 -1 -1 1 1 -1 -1 1 
1 1 1 1 -1 -1 -1 -1 
1 -1 1 -1 -1 1 -1 1 
1 1 -1 -1 -1 -1 1 1 
1 -1 -1 1 -1 1 1 -1 

U 

u1 

u2 

u12 

u3 

‘13 

23 

‘123 

or L = Ku. The corresponding model for Zj = 1 - 2 3  is 

logpr[Z = z] = u + ulzl + + * f + u12tlz2 + * * + u ~ ~ . . . ~ ~ ~ z ~  * - * z d ’  

(10.33) 

When there are no constraints on the nab...r,  we have the same number of 
u’s as IT ’S and the model is said to be (fully) saturated. However, if the 
elements of X are mutually independent, then all the interactions are zero and 
we only have d + 1 parameters u, ul, u2 , .  . . , u,, to estimate: The model (10.33) 
is then linear in z. These two models, saturation and complete independence, 
may be regarded as extremes, and we would hope that an intermediate model 
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with not too many parameters is applicable, for exarnple, 

logpr[Z = z] = u -t ulzl + * * '  + UdZ,, -t U l L z l Z Z  + ' ' .  + l id  .j,dZd-1Zd. 

where the three-factor and higher interactions are assumed to be Lero. 
falling in the category with 

probability vab r ,  then we can construct a 2" contingency table and estimate 
?rab by 7j ,b  = nab Jn. This leads to an estimate i of L, and an estimate 
of u. To avoid dividing by n, we can add log n to u and model log(E[nab ,]) = 

log(n?ra,, r )  as above. The general theory arid analysis of such models is 
described in detail by A. H. Anderson [1974], Haberman [1974], and Bishop et 
al. [1975]. An interesting application of this method to capture-recapture data 
is given by Cormack [19Sl]. For a general review, see Imrey et al. {IiSSl, 19823. 

A number of other models have been developed for handling multivariate 
binary data, and these are surveyed briefly by Cox [1972]. Log-linear models 
are also used in discriminant analysis (Section 6.3.3). A related topic is logistic 
regression (see Kleinbauni et al. f19821). 

If we have n observations on X with nab 

1 0 . 3  INCOMPLETE D A T A  

Dempster et al. [1977] give a general method of iteratively computing maxi- 
mum likelihood estimates where there is incomplete data due, for exarnple, to 
missing observations. Since each iteration of the algorithm consists of an 
expectation step followecl by a maximization step, the authors call it the EM 
algorithm. Let x = (xi, x;, . . . , xl,)' denote the vector of "complete" data, and 
let ; = (i;, i;,. . . , $ A )  denote the data actually aviiilable; the elements of i, are 
a subset of the elements of x,. It is assumed that sampling is  from an 
exponential family, of which the MVN is a member. Let CP be the matrix (or 
vector) of unknown parameters and let T(x) be a sufficient statistic for Q, based 
on the complete data. Since x is only partly known, the EM procedure 
amounts to simultaneously estimating T and a. If Wk) is the current value of 
@ after k cycles of the algorithm, then the next cycle has two steps, the E-step, 
which estimates T(x) by 

~ ' k )  = E[TI%, (10.34) 

and the M-step, which determines as the solution of 

E[T(iP] = (10.35) 

converges to the maximum likelihood estimate of CP Based 

For the special case of the MVN distribution, @ = (p,  2), T = (X, S), and 

@(k+l) = T(k). (10.36) 

Eventually 
on x. 

(10.35) reduces to 
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The main computational burden then consists of finding for each i the 
parameters of the conditional normal distribution of the missing values of xi 
conditional on Ri, evaluated at the current value of iP. Equation (10.34) 
amounts to replacing the missing parts of T by their conditional expectations, 
and Equation (10.36) tells us to use this estimated T as the next estimate of a. 
A detailed example is given below. 

EXAMPLE 10.1 Suppose that we have a random sample xl, x2,.  . . ,x, from 
N d ( p ,  2) .  Using a slight change in notation, let xi(l) denote the available part 
of x, (instead of Ri above) and xi(2) the missing part. Let yi = (xicl,, xi(2))' with 
mean p, and dispersion matrix Xi, where yi, pi, and Xi are appropriate 
permutations of xi, p, and C (the permutation depending on i ) .  Instead of 
choosing X and S as our sufficient statistics, we can also use 

say. Now, from Theorem 2.l(viii) of Section 2.2, the kth iteration estimate of 
xi(2), given estimates p(k)  and Z ( k )  of p and Z, respectively, is 

= 8 [ xi(2) I Xi(1) 9 pi ( k ) , Z ! k ) ]  

= ' [ X ~ ( ~ ) I A ( ~ ) ]  say, 

= piti) + q;]{ X $ f J }  -l(xi(l) - pit;)). 

Similarly, 
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can be found by summing over the above equations. Since the maximum 
likelihood estimates for the complete data are 

Equation (10.35) leads to the estimates 

The procedure is then repeated. U 

Dempster et al. [I9771 apply the EM algorithm to more general families of 
distributions and review several applications, including (1) missing data for the 
MVN and multinomial distributions; (2) grouped, censored, and truncated 
data; (3) variance components; (4) iteratively reweighted least squares; and ( 5 )  
finite mixtures. In the mixture problem (see Sections 6.7 and 7.5.4). we have it 
observations x,, x2, .  . . , x, froin g MVN distributions, and the nlissing infor- 
mation is a corresponding set of g-dimensional vectors y,, y2 , .  . . , yn, where y, is 
an indicator vector with all its elements zero except for one element equal to 
unity in the position indicating from which population x, was taken. The 
article by Dempster et al. [1977], along with the discussion. gives a useful 
survey of the whole area o f  nlissing observations. 

In the special case of sampling from M,(p, Z), the same algorithm for 
finding the maximum likelihood estimates of p and 2. when there are missing 
data, is given by Beak and Little [1975]: A method for pooled data is given by 
Huseby et al. [1980], and questions of inference are discussed by Little [1976]. 
The bivariate case is considered by Naik [1975], Little [ 19761, A. Cohen [7977], 
and Dahiya and Korwar [1980: equal variances] for the ca5e of inissing 
observations on one variable only, and by Bhoj [1978, 19791 for the case of 
missing observations on both variables. For general d ,  likelihood ratio tests 
have been given by Rliargava [1962] for several one- and two-population 
problems for the special case when the pattern of missing Observations in the 
data matrix X is triangular (called "monotonic"), that is, there are n,, n 2 , .  . . ,nd 
observations on each of the respective x-variables x , ,  xZ,. . . , x d ,  with n, s- i t 2  

2 - * - z rid 2 d. Approximations for these tests are given by Rhoj [1973a, b]. 
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Some Matrix Algebra 

Below we list a number of matrix results used in this book. Most of the omitted 
proofs are given, for example, in Seber [1977: Appendix A]. 

A 1  TRACE AND EIGENVALUES 

1 Provided that the matrices are conformable, we have the following: 
(a) tr[A + B] = tr A + tr B. 
(b) tr[AC] = tr[CA]. 

2 For any n X n matrix A with eigenvalues A,, A,,. .  . ,A,,  we have the 
following: 

n 

(a) trIAI= c A; 

(b) I A I  = I l A i .  

i = l  

i = l  

(c) 

Proof IAI, - A1 = n,(A - h i )  = A" - A"-'(A, + A, + + A,) + 
. - .  +(- l )"A,A, . . .  A, .  Expanding 1x1, - A ( ,  we see that the coeffi- 
cient of A"-' is - ( a l l  + a,, + - - . + a,,), and the constant term is 
1 - A 1 = (- 1)"IA 1. Hence the sum of the roots is tr A, and the product 
IAl. Furthermore, 11, + A1 = 17,di ,  where di is the ith root of 0 = 181, 
- (I,, + A)I = l (d  - 1)1, - Al. Hence 8; - 1 = X i ,  and so on. 

3 Spectral decomposition. Let A be an n X n symmetric matrix. There 
exists an orthogonal matrix T = (tl, t,, . . . , t,) such that 

11, k A1 = n ( 1  i- A,). 
i = l  

T'AT = diag(A,, A, ,..., A,) = A ,  

where A, 2 A, 2 . - * 2 A, are the ordered eigenvalues of A. With this 
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s =  

4 For conforniable matrices, the nonzero eigenvalues of AB are the same 
as those of BA. The eigenvalues are identical for square matrices. 

Proof Let A be a non~ero eigenvalue of AB. Then there exists u ( f 0) 
such that ABu = Au, that is, BARu = ABu. Hence BAv = Av, where 
v = Ru + 0 (as ABu # O), and A is an eigenvalue of BA. The argument 
reverses by interchanging the roles of ;r and B. 

0 s, * . .  0 
. . , s, E T(m,), 

A2 RANK 

1 If A and B are conformable matrices, then 

rank[AB] 5 nunimum(rank[A], rank[B]). 

2 If A is any matrix and I' and Q are conformable nonsingular matrices, 
then rank[PAQ] == rank A. 

3 rank A = rank A =r rank[AA] = rankfAA']. 
4 If A is symmetric and rankA -- 1, then 

11 + A1 = 1 -k trA. 

Proof From A1.3, there exists orthogonal T such that T'AT I= A. Then 
1 = rankA = rank A (by A2.2), so that therc is only one nonzero 
eigenvalue, A,, say. Hence, by A1.2, 11 + A1 = 1 + A, = 1 + tr A. 
If A is m x n, then rankA f nullityA = n, where the nullity of A is the 
dimension of the null space or kernel of A. 

5 
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6 I f A i s n  X m o f r a n k m a n d B i s m  Xpofrankp,  thenABhasrankp. 
7 The rank of a symmetric matrix is equal to the number of nonzero 

eigenvalues. 
8 Let X' = (xI,x2,. . . , x n )  be a d X n matrix of random variables and let 

A be a symmetric n X n matrix of rank r .  If the joint distribution of the 
elements of X is absolutely continuous with respect to the nd-dimen- 
sional Lebesgue measure, then the following statement holds with proba- 
bility 1: rank[XAX] = min(d, r )  and the nonzero eigenvalues of X'AX 
are distinct. For a proof see Okamoto [1973]. 

The conditions in 8 are satisfied if the x i  have independent nonsingular 
multivariate normal distributions. Therefore, if we set A = I,, the eigenvalues 
of a Wishart matrix (represented by X'X) are positive and distinct with 
probability 1 if d 5 n. Furthermore, from (1.13), the same applies to Q = 

C, (xi - %)(xi - %)' if (n - 1) 2 d (since A = I,, - P, has rank n - 1). 

A3 PATTERNED MATRICES 

1 If A and D are symmetric and all inverses exist, 

where E = D - BA-'B and F = A-'B. 

ID1 [ A  - BD-'CI 
IAl ID - CA-'B(, 

if D-' exists, 
if A-' exists. 

2 

Proof If D-' exists, then 

The first result follows immediately by taking determinants and noting 
that the determinant of the lower triangular matrix on the left-hand side 
is the product of the diagonal elements, that is, unity. The second result 
follows in a similar fashion. 

3 (A + UBV)-' = A-1 - A-~UB(B + BVA-~UB)-'BVA-' 

(provided that inverses exist). 

The above result and A3.1 are proved by verifying that the given matrix 
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multiplied by its inverse gives the identity matrix. For the particular case 
B = 1, U = u, and V = v', we have 

(A + uV/) I == A-- l  - A -  1 uv'A-'(1 t vA-'u) - I .  

Fur thermorc, 

A =  . . . . . .  . .  . .  . .  

4 Let I: = I'I" + 'k, where I: and * are nonsingular. Then, from A3.3 
above, 

2-1 *-I - q-Ir(1 + r/q-lr)-lrq- 1 

If J = I''q-'I', then, from J = I + J - I, we have J(I t J) ' = I - (1 
+ ,I)- '. 

5 Consider the tz x n patterned matrix 

= ( U  -- b)I ,  + bJ,f ( U  # h ) ,  

= ( U  -- h)" + tZb(0 -- h ) , - ' .  

(b) If IAl f 0, then A - '  has the same form as A, namely, 

A ^ '  = (C - d)I, + dJ,, 

where 

c =  
- [ b ( n  -- 2) + .] 

( b  - U)[b(N - 1) + U ]  

and 

b d=.--- _______- 
( b  - ~ ) [ b ( n  - 1) + U ]  



A5 Positive Definite Matrices 521 

A4 POSITIVE SEMIDEFINITE MATRICES 

A symmetric matrix A is said to be positive semidefinite? (p.s.d) if and only if 
XAX 2 0 for all x. We shall write A 2 0, where 0 is a matrix of zeros. 

1 

2 
3 

4 
5 

6 

7 

A5 

A symmetric matrix is p.s.d. if and only if its eigenvalues are nonnega- 
tive. 
If A 2 0, then, by A1.2, trA 2 0. 
A is p.s.d. of rank r if and only if there exists a square matrix R of rank r 
such that A = R’R. 
Given A 2 0, then C’AC 2 0; in particular, C’C 2 0. 
If A is p.s.d. and CAC = 0, then AC = 0; in particular, C’C = 0 
implies C = 0. 
Given A 2 0, there exists a p.s.d. matrix All2 such that A = (A1/2)2. 
The eigenvalues of All2 are the square roots of those of A. 
Proof From A1.3, A = TAT’ = TA1/2T’TA’/2T’ = (A’/2)2, where All2 
= diag( hi{2, All2, .  . . ,A*i2) 2 0 and All2 = TA1l2T’ 2 0 (by A4.4). 
Also, T’A1I2T = All2. 
Given any symmetric matrix C, tr[(C’C)’/2] = tr[(CC’)’/2]. 
Proof By A4.1 and A1.4, C’C and CC‘ have the same positive eigenval- 
ues, their remaining eigenvalues being equal to zero. The result follows 
from A4.6 and A1.2. 

POSITIVE DEFINITE MATRICES 

A symmetric matrix A is said to be positive definite (p.d.) if X’AX > 0 for all x, 
x # 0. We shdl write A > 0. We note that a p.d. matrix is also p.s.d. A 
symmetric matrix A is said to be negative definite if -A is p.d. 

1 A symmetric matrix is p.d. if and only if its eigenvalues are all positive. 
2 If A 2 0 and IAI # 0, then A > 0 [by A4.1 and A1.2(a)]. 
3 A is p.d. if and only if there exists a nonsingular matrix R such that 

A = R’R. 
4 Given that A is p.d., there exists a p.d. matrix A‘/’ such that A = (A1/2)2 

(see A4.6). 
5 If A is p.d., so is A-’. 
6 If A is p.d., then rank[CAC’] = rank[C]. 
7 Given that A is an n X n p.d. matrix and C is p X n of rank p, then 

CAC’ is pd. 
8 If A is p.d. and B = [(bi ,)]  is symmetric, then A - B is p.d., provided 

that all the lbijl are sufficiently small. In particular, A - t B  is p.d. for 
I t 1 sufficiently small. 

borne authors use the term nonnegative definite. 
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u -  

9 

10 
11 

12 

13 

If 

0 u22 . . -  u 2 n  . 

u n n  

with positive diagonal elements (u,, > 0), such that A = U'U. We note 

There also exists a unique lower triangular matrix I, with positive 
diagonal elements such that A = EL. 
Let C and D be n x n symmetric matrices and suppose that C is 
positive definite. Then there exists a nonsingular matrix R sush that 
RCR = r and R D R  = I,,, where I' = diag( yl, yz,. . . , y,) and the 'y, are 
the eigenvalues of D-'C (or CD' I, by A1.4). 
Let X' = ( x ~ ,  x 2 , .  . . ,xn), where the x,  are n independent d-dimensional 
vectors of random variables, and let A be a positive semidefinite n X n 
matrix of rank r ( r  2 d). Suppose that for each x ,  and all b and c 
(b # 0), pdb'x, -- c] = 0. Then 

pr[X'AX > 01 = 1; 

that lUl = ~ 1 1 ~ 2 7 ,  * . u,,,,. 

that is, X'AX is positive definite with probability 1. 

Proof 'This is given independently by Ilas Gupta [1971: rheorern 51 
and Eaton and Perlrnan [1973: Theorem 2.31. 

x, -- N d ( e , ,  2) and 2 > 0, b'xi - Nd(M,,b'Xb). This distribution is 
nondegenerate as WXb 7 0; hence pr[b'x, = c] = 0. Hence the above result 13 
holds for the multivariate normal. For this case, an elementary proof that 
Q = C, (x, - ?t)(x, - E)' > 0 with probability 1 when d I n - P (= rank[Aj) 
is given by Dykslra [1970]. 

If W - Wd(m, Z), where 2 > 0 and m z d,  then we can express W in the 
form W = X'x, where the rows of x are i.i.d. N d ( 0 ,  2). I-Ience W 7 0 with 
probability 1 (see also A2.8). 

A6 IDEMPOTENT MATRICES 

A matrix P is idernpotent if P' = P. A syrnmetric idempotent matrix is called 
a projection matrix. 

If P is an n X n symmetric matrix, then P is idempotent of rank r if and 
only if  it has r eigenvalues equal to 1 and n - r equal to 0. 

1 



2 

3 
4 
5 

6 

7 

A 1  
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If P is a projection matrix of rank r ,  then it can be expressed in the form 

r 

P = c t i t ; ,  
i-1 

where t , ,  t , , .  . . , t ,  form an orthonormal set. 
Proof From the end of A1.3 we have A = C:,,A,t,t;, and the result 
follows from A6.1. 
If P is a projection matrix, then rankP = t r P  (by A1.2 and A6.1). 
If P is idempotent, then so is I - P. 
Given y - Nd(O, a21d) and P a d x d symmetric matrix, then y’Py/02 
- xf  if and only if P is idempotent of rank r. 
Suppose y - Nd(0, a21d) and Qi = y,’&yi/a2 is distributed as xf, ( i  = 

1,2). Then Q, and Q 2  are statistically independent if and only if 

Proof Given that Q, and Q, are independent, then, since the sum of 
independent chi-square variables is chi square, y’(Pl + P2)y/a2 is x:~+,,. 
Hence, by A6.5, Pl, P2 and Pl + P2 are idempotent, so that Pl + P2 + 
PIP2 + P,P, = (P, + P2), = Pl + P,, or P1P2 + P2P1 = 0. Multiply- 
ing this last equation on the left, respectively right, by PI gives us two 
equations that lead to PIP2 = P2P1; that is, P1P2 = 0. 

Conversely, if P,P, = 0, then Q[P,Y,P,Y] = P,B[y]P; = a2PlP2 = 

0, and Ply and P,y are statistically independent [Theorem 2.1(v)]. 
Hence the Q, are independent at llpiy112 = y ’ e 2 y  = y’&y = u2Ql.  (The 
assumption that Q, is chi square is not actually needed; however, the 
proof is then much longer and not as instructive; and the interested 
reader is referred to Lancaster [1969]). 
Given that X is n x p of rank p, then P = X(X’X)-’X’ is a projection 
matrix, PX = X, and (by Al.l) 

P,P2 = 0. 

t r P  = ~~((X’X)-’X’X] = tr[IpJ = p. 

OPTIMIZATION AND INEQUALITIES 

1 Consider the matrix function f,  where 

f ( 2 )  = loglZl + tr[Z-’A]. 

If A > 0, then, subject to 2 > 0, f (X)  is minimized uniquely at 
X = A. 
Proof Let A,, A,,. . .,A, be the eigenvalues of Z-’A, that is, of 
X-’/2A2-1/2 (by A5.4 and A1.4). Since the latter matrix is positive 
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definite (A5.7), the A ,  are positive. Hence 

f ( Z ) - - f ( A )  -- loglZA-'( + tr[C.-'A] - trI,  

= -log1C-'Al + tr[X'-'A] - d 

= -log nA, -I- ZX, - d (byA1.2) 
( i  I 

d 

= c (-logA, + A ,  .- 1 )  2 0, 
1 = 1  

as log x 5 x - 1 for x > 0. Equality occurs when each A ,  is unity, that 
is, when C = A. (This proof is due to Watson [1964].) 

2 Let f :  8 -+ f ( 0 )  be a real-valued function with domain 0, and let 
g:  8 -+ g(8) = @ be a bijective (one-to-one) function from 63 onto @. 
Since g is bijective, it has an inverse, g-  I ,  say, and we can define 
h ( + )  = f ( g - ' ( + ) )  for 9 E @. 
(a) rfj(e) attains a maximum at 8 = 6, h ( $ )  attains its niaxinium at 

4 = g(6). 
(h) If the inaxiriium of f(8) occurs uniquely at 4, then the maximurn 

of h ( + )  occurs uniquely at  4. 
Proof (a) f(ti> 2 f(e) for all 8 E O, and 

h ( 4 )  = f (K l (6) )  = f(0 2. f ( V  = f ( g - ' W )  = h(4+ 

FIentx 
h ( + )  attains a maximum at 6. 

(1)) If the niaximum occiirs uniquely at 0, then the above inequalities 
are stiict for 8 f 6, that is, h ( 6 )  > h ( + )  for 6 # @. 

Frubenrus iiorni cipproxrmation. Let B be a p X q matrix of rank r with 
singular value decomposition [see (10.20)) X;=1611,m',, and let C be. a 
p x q matrix of rank s (s  < r). Then 

3 

P 4  

llB - CIl2 = c c (4, - C,,Y 
1-1 / " I  

is minimized when 
S 

C = Bcs, = S,I,m',. 
1-1 

The minimum value is a:+ + a:, .t * * + S,?. 
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This result is due to Eckart and Young [1936] (see also Householder 
and Young [1938]). When B is symmetric, mi = fi. For a general 
reference on matrix approximation see Rao [1980]. 

4 Let A be an n X n symmetric matrix with eigenvalues A, 2 A, 2 - - . 
2 A,, and a corresponding set of orthonormal eigenvectors t,, t,, . . . , t, 
(see A1.3). Define Tk = (tl, t2 , .  . . , tk )  ( k  = 1,2,. . . ,n  - l), and T = 
(t,, t , , .  . . ,t,). Then, if we assume that x # 0, we have the following: 
(a) 

x 'Ax 

X x'x 
supremum { -1 = A,,  

and the supremum is attained if x = t,. 
(b) 

supremum{ -1 XAX = h k + l ,  

TLx-0 x'x 

and the supremum is attained if x = tk+l. 
(c) 

X'AX 
x'x 

infimum { -1 = A,, 

X'AX infimum { -} = A , , - k ,  
Ti -p -0  XIX 

and the infimum is attained if x = t,-k. 
(e) Courant-Fischer min-max theorem. 

XAX 
L L'x-0 x'x 

inf sup (-) = A ~ + ~ ,  

where inf denotes the infimum with respect to an n x k matrix L, 
while sup denotes the supremum with respect to an n X 1 vector x 
satisfying L'x = 0. The above result is attained when L = Tk and 
x = f k + l .  

XAX 

L L'x-0 x'x 
sup inf { -} = h , - k ,  
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with equality wheny, = l,y2 = y ,  = * * * = y, = 0, that is, when x = t,. 

then follows with the argument used in proving (a). 
(c) and (d). These follow in a similar fashion to (a) and (b), but with 
the inequality reversed. 
(e) Let x = Ty; then L’x = 0 if and only if LTy = 0. I f  M = T‘L, 
then M is n x k of rank less than or equal to k. The problem now 
reduces to finding 

(b) If X 1 { t , , t z , .  . I . t k  1, then = )% = ’ * * = yk = 0. The result 

We first note that 

{ h k + l )  = A k + ! ,  
M‘y=O 

provided that the set of y satisfying M‘y = 0 and y,, = Y k +  = . . 
-: v,, = 0 is not empty. If we write M’ = (Mi ,Mi) ,  where M; IS 

k x (k  + l), then rankM; I k, and (by A2.5) Mi has nullity at leaat 
1. The required sei {y, : Miy, = 0} is therefore not empty. We have 
found a lower bound A,, I that is independent of M so that it is a lower 
bound it’ we take the infimum with respect to M. Using (b), we see that 
the lower bound is achieved with L = ‘ r k .  

( f )  
5 Let A be an n X n symmetric matrix and let D be any n x ti positive 

definite matrix. Let y, 2 yz 2 . * . 1 yfl be the eigenvalues of D - ‘A 
with corresponding eigenvectors v,, v,, . . . , v,,. Then 

This follows in a similar fashion to (e). 

with the bounds being attained when x = vl and x = v,, respectively. 
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Proof By A5.3 there exists a nonsingular matrix R such that D = R'R. 
Let y = Rx, then 

where yl is the maximum eigenvalue of (R-')AR-l, that is, of 
(Ft'R)-'A = D-'A (by A1.4). The supremum occurs when y .satisfies 
(R-')AR-'y = yly, that is, D-'Ax = ylx. The second result follows in 
a similar fashion. 

6 If D is positive definite, then for any a 

The supremum occurs when x is proportional to D-'a. Although this 
result is usually proved using the Cauchy-Schwartz inequality (D = I), 
it can be deduced directly from A7.5 above. 

7 If M and N are positive definite, then 

where em, is the largest eigenvalue of M-'LN-'L', and of N-'L'M-'L. 
The supremum occurs when x is an eigenvector of M-'LN-'L' corre- 
sponding to ern,, and y is an eigenvector of N-'L'M-'L correspond- 
ing to Omax. 

Proof Let z = Ly. Then, if we assume nonzero vectors x and y, we 
have 

X'MX y'Ny Y "Y 

Y Z ' M - ~ L ~  
= sup( } (by A7.6) 

Y Y "Y 

= emax, 

where, by A7.5, ern, is the largest eigenvalue of N-lL'M-lL, and 
therefore of M-'LN-'L (by A1.4). The first supremum is attained 
when x = M-'z = M-'L y, and the second when y is an eigenvector of 
N-'L'M-'L corresponding to ern,, that is, N-lL'M-lLy = Om,y. 
Multiplying this last equation on the left by iWIL, we have 
M-'LN-'L'x = &,x, and x is the required eigenvector that gives the 
supremum. 
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8 Let C be a y X y matrix of rank m and let p: 2 p; 2 . . - 2 pk > 0 be 
the nonzero eigenvalues of CC’ (and of C’C). Let t,. t,, . . . , t, be the 
corresponding eigenvectors of CC‘ and let w,, w,, . . . ,w, be the corre- 
sponding eigenvectors of C’C. If Tk = (tl. t2 , .  . . , tk)  and W, := 

(w,,w2,. . . ,wk) ( k  < m), then 

and the supremuni occurs when x == tk+,  and y = w,, I. 

Proof Adding in the eigenvectors corresponding to zero eigenvalues, 
let the columns of T = (t,, t2,.  . . , t,?) be a set of orthonorniai eigenvec- 
tors of CC’, and let the columns of W = (w~, w2,. . . ,wq) be a set for 
C’C. ‘Then we liave the singular value decomposition [see (10.20)] 
C -- TDW’, where D = diag( p , ,  pz,. . . ,p,, 0,. . . ,O). Setting x = Tm 
and y = Wv, we have 

m 

X’CY = u’T’CWV = U’DV = p,u,u,. 
1 = 1  

If we argue as in the proof of A7.4(b) above, the constraint x .L 
{t,, t,,. . . , t k }  implies that u1 = u2 = - . . = u,; = 0. Similarly, u1 = r j 2  

= uk = 0. Hence, subject to TLx = 0 and Wky = 0, - - ... 

(since [a’b12 5 a’a b’b) 

L 
5 t 1 .  

Equality occurs when uk = 

1, and u k + ,  = uh , = ‘ .  . = uq = 0, that is, when x = t,, , and y -= 

9 Let A and B be n X n symmetric matrices with eigenvalues pl(A) 2 
p2(A) 2 * . . >_ p,(A) and pl(B) 2 p2(B) 2 . . . 2 p,(B). respectively. 
If A - R 2 0, then we have the following: 
(a) 
(b) trA 2 trB. 
(4 IA I  2 IB/. 
(d) IlAll 2 11B11, where IlAll = (tr[AA’]}1/2. 

= 1, uk + z  = uk + 
= . . = up  = 0,  uk + 

wk 4 1’ 

p,(A) 2 p,(B) ( I  := 1 , 2 , . .  . , a ) .  
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Proof 
(a) Since x’(A - B)x 2 0, XAX 2 x’Bx. By A7.4 there exists an 

n x (i - 1) matrix K such that 

X’BX 
K’x=O 

x’Bx - > inf sup { x) 
L L’x=O 

(b) and (c) follow from A1.2, while (d) follows by noting that 

n 
tr[AA’] = trA2 = p:(A). 

i -  1 

We note that we must have at least one strict inequality in (a) if A # B; 
otherwise tr[A - B] = trA - trB = 0, and A - B = 0, as the eigen- 
values of A - B are nonnegative. Property (a) is frequently expressed 
in the form pj(A - B + B) 2 p,(B). 

10 Let A, B, and A - B be n X n positive semidefinite matrices, with 
rankB I r ,  and let p i ( . )  represent the ith largest eigenvalue. Then 

i = 1,2,  ..., n - r 
i = n -  r +  1 , n  - r +  2 ,..., n. pi(A - B) 2 

Equality occurs if 

where t I, t 2 , .  . . , t are orthonormal eigenvectors corresponding to 
&(A), CLAA),. * * ,P”(A)* 
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Proof By A7.4Cb) there exists, for each i, an n x ( i  - I) matrix K such 
that 

p i ( A - B ) =  SUP 
K‘x=O 

2 sup 
K x  -0, B’x -0 

X’AX 
= SUP (-z-} 

(K. B)’x-O 

2 P,+,(A) ,  by A7.4(e), 
since the matrix (K, B) is, at most , of rank r + i - 1.  

Finally, by A1.3, 
tl n 

A = p,(A)t,t: and A - &, = p,(A)t,t:. 

I’ostmultiplying A - El, by t,, we see that the eigenvalues of A T W, 
are p,, l(A),..  .,pn(A),O ,..., 0, and we have shown that B = B,, is a 
sufficient condition for equality; it is also a necessary condition 
(Okamoto [ 19691). 
Note: Our inequality can be expressed in the form p, (A  -I B) 2 p,.+,(A 
- B -1 B). However, a more general inequality duo to WeyP (Bellman 
[ 1960: p. 1191) exists lor symmetric matrices. If C and D are symmetric 
I I  X n matrices, then 

, = 1  i = r  t 1 

CL,w + CL,(D) 2 cL,+/-I(c + D) ( I  + i - 1 5 n). 

Our particular result follows by setting C = A - B, D = B, and j -= r 
t 1. Similar inequalities relating to products of eigenvalues are given 

by Anderson and Das Gupta [1963] and Thompson and Therianos 
[1973]. 

A8 VECTOR A N D  M A T R I X  DIFFERENTIATION 

1 If d/dS = I( J/ap,)],  then we have the following: 

2 If M = [(rn,,)] is a matrix with distinct elements, and d / d M  = 

[( d /drn , , ) ] ,  then we have the following: 
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tr[MZMN1 = 2LMN (L and N symmetric). d M  (b) 

(') d M  
Since tr[LMN] = tqN'M'L'] and tr[(M'L)(MN)] = tr[(MN)(M'L)], we 
can deduce the following: 

(d) d M  

(9 d M  

dloglMl = (M!)-l (M nonsingular). 

dtr[LM'NI = m. 
tr[MNM'L1 = 2LMN (L and N symmetric). 

A9 JACOBIANS A N D  TRANSFORMATIONS 

1 If the distinct elements of a symmetric d X d matrix W have a joint 
density function of the form g(h,, A,,. . . ,A,), where h, > h,  > - - > 
Ad are the eigenvalues of W, then the joint density function of the 
eigenvalues is 

where 
d 

For a proof see Anderson [1958: Theorem 13.3.11. 
2 Let X be an m X n matrix of distinct random variables and let Y = a(X), 

where Y is m X n and a is a bijective (one-to-one) function. Then there 
exists an inverse function b = a-', so that X = b(Y). If X has density 
function f and Y has density function g, then 

where the symbol dX/d Y represents the Jacobian of the transformation 
from X to Y. Specifically, if x i  is the ith element of vecX [see (1.10) and 
the following discussion there], and yj is the j th  element of vecY, then 
dX/dY is the determinant of the matrix with ( i ,  j ) t h  element dx,/dy. 
Some useful Jacobians are as follows: 
(a) If X = AYB, where A and B are m X m and n X n nonsingular 

matrices, respectively, then 

- lAl"lBl" 
dX 
dY 
-- 

Special cases are obtained by setting A = I, or B = I,. 
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(b) If X and Y are n X n symmetric matrices, A is nonsingular, and 
X = AYK, then 

(c) Let E and H be d X d positive definite matrices, and let. 1; = E + W 
and V = (E + k€-”’H(E -5 I-Q--’/2. Then 

Proof For (a) and (b) see, for example, Deenier and Olkin [1951] or 
Muirhead [1982: Chaptcr 21. To prove (c) we note that Jacobians are 
mu1 tiplicative, so that, symbolically, 

d(V, Z) 
d ( H ,  E) 

d(V, Z) d(H, Z) 
d(H,  Z) d(H, E) ’ 

- ___=  

Setting V = Z-1/’zHZ--’/2 and W = Z, we see that aw, /dh,  = 0 arid 
aw,/az, = ti,,. Hence 

I av aw 

or dV/dH with Z fixed, that is, (Z(  -(dt ‘)I2 [by (b) above]. Similarly, 
d(H, Z)/d(H, ti) 1, and the result follows from 

A10 ASYMI’TO‘IIC NORMALITY 

1 Central limit theorem. 1x1 x , , x z r .  . .,xn be B random sample from a 
d-dimensional distribution with mean p and dispersion matrix 2. Then, 
as n -+ 00, J ~ ‘ ( x  - p) is asymptotically N,(o, 2). 

2 Suppose h i ( y  - 8 )  is asymptotically NJO, C), and let f = ( f , ,  f 2 , .  . . ,f,)’ 
be a q-dimensional rcal-valued function differentiable at 8. If Ii -- [ (A,)] ,  
where f,,. = i?/,(y)/ay, evaluated at y = 8, then f i ( f (y)  - f(O)] is 
asymptotically NJO, F’XI;). 



APPENDIX B 

Orthogonal Projections 

B 1  ORTHOGONAL DECOMPOSITION OF VECTORS 

1 Given P, a vector subspace of R" (n-dimensional Euclidean space), every 
n x 1 vector y can be expressed uniquely in the form y = u + v, where 
u E 52 and v E 52* . 
Proof Suppose there are two such decompositions y = ui + vi ( i  = 1,2); 
then u1 - u2 + v1 - v, = 0. Because u1 - u2 E 52 and vl - v, E 52l, 

we must have u1 = u2 and v, = v,. 
2 u = Pay and PQ is unique. 

Proof Given two such matrices Pi ( i  = 1,2), then, since u is unique for 
every y, (PI - P,)y = 0 for all y; hence Pl - P2 = 0 [set y = 

(1,0,. . . ,O)', etc.] and Pa is unique. (The existence of Pa is proved in 
B1.7.) 

3 I,, - Pa represents the orthogonal projection on 52l . 

Proof Using the identity y = Pay + (I, - Pa)y, it follows, from B1.l 
above, that v = (I, - PQ)y. 

4 Pa and I, - Pa are symmetric and idempotent. 

Proof Paa E P and (I, - Pa)b E P' so that 0 = a'PS;(I, - Pa)b, that 
is, PS;(I, - Pa) = 0. Hence PS; = PbPa so that Pa is symmetric, and 

Note: We could have also written Pay = u = P$ = Piy for all y, so 
that Pi = PQ. Thus idempotency follows from the fact that Pa represents 
a projection; it is also symmetric, as the projection is orthogonal. 
Oblique projections are also used in statistics (e.g., Rao [1974]). 

5 a[P,] = P, and the dimension of P is trP,. 

Proof Pay = u E 52 so that 9 [ P a ]  c 52. Conversely, if x E 52, it follows 
from B1.l that the unique orthogonal decomposition of x is x = x + 0, 

P,Z = Pa. Also, (I, - Pa)2 = I,, - 2Pn + Pi = I, - Pa. 
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so that x = P$ E %'[P,]. Hence the two spaces are the same. Finally 
dim 81 = rank Po = tr P,. By A6.3. 
If P i s  a symmetric idenipotent n X n matrix, then I' represents an 
orthogonal projection onto .%'[PI. 

Pruof Let y = Py t (1, -- P)y. Then (Py)'(I,, .- P)y = y'(P - P2)y = 

0, so that this decomposition gives orthogonal components of y. The 
result now follows from B1.5. 

7 If t2 = 9[X], then pSl = X(X'X) -X', where (X'X)- is any generalized 
inverse of X'X (ie., if B = X'X, then BB-B = B). 

Proof Let c = X'y. Then fi = B - c  is a solution of I@ = c, that is, of 
X'XS = X'y, since B(B- c) = BB- B@ = B@. Ifence, writing 6 = X& we 
have y = 6 f (y - 6), where 

6 

Thus we have an orthogonal decomposition of y such that 6 E .Ye[X] and 
(y - 6) I 5P[X]. Hence u = 6 = X@ = X(X'X)-X'y = P,y and Pa .= 
X(X'X)- X', by B1.2. 

8 When the columns of X are linearly independent in B1.7, Ps2 = 

9 If the r columns of T form an or(honorma1 basis for Q, then, setting 
X = T, we have Po = 'IT'. Conversely, if P, = 'lT' with 1"T = I,, then 

X(X'X) - 'x.  

!2 = 9[T. 

B2 ORTHOGONAL COMPLEMENTS 

1 For any matrix A, the null space (kernel) of A is (lie orthogonal 
complement of the range space of A', that is, ."A] = {&?[A']} . 

2 If the colurnns of A' are linearly independent, then the orthogonal 
projector onto &"(A] is I - A'(AA'--'A. 

Prouf If Q = &"[A], then = a[KJ (by B2.1) and PQL = A'(AA')-'A 
(by B1.8). Finally, Psi = I - Pal . 

3 If 1' = 9 [ C ] ,  where C isp x 4 of rank 4, then there exists a ( p - 4) x p 
matrix B satisfying BC ;= 0 such that V = "B]. 

Proof By B1.8 and 81.5, P, = C(C'C) 'C' has rank q and I, - P, is 
a p x p matrix of rank p - 4. Let B be any p - q linearly independent 
rows of I, - P,. Then ( I p  - P,)P, = 0 implies that BC = 0. Also, 

4 (a, n Q2)* = Q; i- a ; .  
.A"[B] = (9[R']) '. = { 911, - P,]} I.: 
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Proof Let C, be such that 51, = M[Ci] ( i  = 1,2). Then 

= 9 [ C ; , C ; ]  (by B2.1) 

= 9[c;] + 9 [ C J  

B 3  PROJECTIONS O N  SUBSPACES 

1 Given w C 51, then POP, = POPn = P,. 
Proof Since w c P and w = 9[P,] (by B1.5), we have Pap, = P,. The 
result then follows by the symmetry of P, and Pn. 

Proof Consider Pay = P,y + (Pa - P,)y. Now Pay and P,y belong to 
P so that (P* - P,)y E 52. Hence the equation for Pay represents an 
orthogonal decomposition of W into w and w' n W, since P,(PQ - P,) = 

0 (by B3.1). 
3 If A, is any matrix such that w = ."A,] n W, then w' nW = W[P,A;]. 

Proof 

2 P* - P, = Poln*. 

O* nW = { w n N [ A , ] }  nP 

= { P* +9[A;]}  n Q (by B.l and B2.4). 

If x belongs to the right side, then 

x = P# = PQ{(I, - Po). + A',P} = P,A',B E 9[P,A;]. 

Conversely, if x E 9[PQA',], then x E 9[Po] = 51. Also, if z E o, A,z = 

0 and x'z = B'A,P,z = pIA,z = 0, that is, x E wi. Thus x E wi no. 
4 If A, is a q X n matrix of rank q, then rank[P,A',] = q if and only if 

S[A;] n 9* = 0. 

Proof rank[P,A;] I rankA, (by A2.1). Let the rows of A, be a: ( i  = 

1,2,. . . , q)  and suppose that rank[P,A;] < q. Then the columns of P,A; 
are linearly dependent so that Cf=,c,Pnai = 0, that is, there exists a 
vector C j  cia, E 9[A',] that is perpendicular to W. Hence9[A',] n 51' # 0, 
which is a contradiction. [By selecting the linearly independent rows of 
A,, we find that the above result is true if A, is k X n (k 2 q).] 
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5 Let V be a d x d positive definite matrix, G a d x g matrix of rank g 
(g  r; d), and F a d X fnialrix (f -- d - g )  of rank jsuch that G’F = 0. 
Then 

F ( ~ v F ) - ’ F *  = v-1 -. v -‘G(G’v--‘G)- 1~;jv-l. 

Proof Using A5.4, let Fl = V’/’F and G, = V - ‘ I2G.  Then we have lo 
prove that 

F~(F ,w~)  -IF; + G ~ ( G ; G ; ) % ~  = I,. 

Both matrices are projection matrices (BI.8)) so that the above result will 
hold if they project onto orthogonal complements, that is, if 9 f F J  = 

(%’[G,]}’ (by R1.2). Now G;Fl = G‘V-’/2V’/2F = G’F = 0 and, by 
B2.1,9[F1] c N [ G ; ]  = { 9[C1]}  . However, by A2.2, 

dim(9i?[G1])*=d- rankG, = = J - g = r a n k F =  rankFl. 

Lf a vector space is contained in another yet both spaces have the same 
dimension, then they are identical and the required result iollows. 

6 Let y = Kfl + v, where v - N,,(O, uzfn)  and K is n X p of rank p. Let 
y = (y,’,yi)’ and K = (K;,K;)’, where y1 is n, X 1 and K, is n1 X p of 
rank p. Then 

has a beta distribution with $(n, - p) and $(n - n l )  degrees of free- 
dom, respectively. 

Prooj 

E = Y l [ I n ,  - K , ( K ; K ~ ) - ~ K ; ] ~ ~  

= y;(Jn, - P~, )Y , ,  say, 

= v& - P*,)v,, 

since (I,,, - Pll)Kl = 0. As Pl, is symmetric and idernpoletit of rank p ,  
it follows from A6.5 that E / u 2  - x: ,  . ~ .  Setting 
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we have E = v'(In - P,)v. With a similar argument to that above, 

E + H = vr[In - K(K'K)-'K']v 

= v'(In - P)v, 

say. Since PllK, = K,, 

K, (K'K) -'K;, K, (K'K) -'K$ 

K 2  (K'K) - 'K;, K,  (K'K) - 'K$ 

= P. 

Transposing, we also get PP, = P, so that 

(P, - P)' = P? - PIP - PP, + P2 = PI - P. 

Now H = E + H - E = v'(P, - P)v and, since Pl - P is symmetric 
and idempotent, we have (A6.3) 

rank[P, - P] = tr[P, - P] 

= trP, - t r P  

= ( p  + n - n,) - p  = n - "1. 

Hence, by A6.5, H / a 2  - x : - ~ , .  Also, (Pl - P)(I, - Pl) = 0, so that E 
and H are independent (A6.6). Finally, 

and, from (2.21), 

1 
1 + HE-' 

b =  

has a beta distribution with $(n l  - p) and i ( n  - n l )  degrees of free- 
dom. 
Note: Using generalized inverses, the above result can be generalized to 
the case when rankK = r and rankK, = r,. Then b has a beta distribu- 
tion with J ( n ,  - r,) and +(n - n, + r, - r )  degrees of freedom, respec- 
tively. 
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7 Let Y = KB f V, where the rows of V are i.i.d. Nd(O, 2). Using the 
notation of B3.6 above, let 

E = V’(ln - P,)V and E + H = V’(In - P)V. 

Proof Using the same arguments in H3.6, but with v replaced by V, we 
can apply Corollaries 1 and 2 of Theorem 2.4. Thus E - Wd( n1 - p, C), 
H - wd(n - n l ,  X), and E is independent of H. The result follows from 
(2.48). 



APPENDIX C 

Order Statistics and 
Probability Plotting 

C1 SAMPLE DISTRIBUTION FUNCTIONS 

Suppose we have a random sample of ordered observations x(:) I x(*) f . . - 
I x ( ~ )  from a distribution with density function f and distribubon function F. 
If u = F ( x ) ,  then x = F-'(u) (= x[(u], say) and u has density function 

= 1. 

Setting u(; )  = F(x( ; ) ) ,  then u0) I u(2) I I u ( ~ )  is an ordered random 
sample from the uniform distribution on [O, 11. From symmetry, we would 
expect the u( ; )  to, on the average, divide the interval [0,1] into n + 1 equal 
parts. Thus (see David [1970]) 

For future reference we also note that 
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for some probability p, that will depend 011 F. Various approximations for p ,  
have been used such as i / ( w  + 1) or, more commonly, ( i  - $ ) / t i ,  which works 
well when I;  is normal (David [1970: pp. 64--671). These are both special cases 
of p I  = ( i  - a)/(n + 1 - 2a), which can be used for symmetric distributions. 

CZ GAMMA DlSTRIBUTION 

The gamma distribution, wluch includes the chi-square and exponential distri- 
butions as special cases, has numerous applications in statistics. In particular, 
it is a useful approximation to the distribution of a positive semidefinite (p.s.d.) 
quadratic form in normal variables (see Box [1954]). For example, consider the 
quadratic fornr XAX, where x - iV& 2 )  and A is a d x d p.s.d. matrix o f  
rank r. From A54 we can define > 0, and, by A4.4 and A2.2, X’/2AX’/2 
is p.s.d. of rank r. Hence there exists orthogonal T such that 

T’X‘/*AX’/2T = diag( A,, A,, . . . ,A,,O,. . , ,0) = A ,  

where each A, > 0. Let w = (y, w,,. . . ,wd)‘ = T’Z--L/2~;  then 

= W’AW 

where S[w] == T’Z-’12p = 8, say, and 

Hence w - Nd(8,1d) and the wl are independently distributed as Nl(dl,l). 
Since w: has a noncentral chi-square distribution with one degree of freedom, 
x’Ax is a linear combination of independent noncentrai chi-square variables. 
By, for example, equating the tirst two inornerits (Patnaik [1949]), one can 
approxiniate this linear combination by a scaled chi-square variable, that is, by 
a gamma variable. In some applications 8 r= 0 so that xAx is then a linear 
combination of independent (central) chi squares. 

A random variable Y with a gamma distribution has density function 

where X 1 0 and TI > 0 are the “scale” and “shape” parameters, respectively. 
As order statistics are frequently used for assessing underlying distributions, 
Wilk et al. [1962b] developed the following method for finding the maximum 
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likelihood estimates x and 4 based on the m smallest order statistics y(l) I y(2) 
- < 5 y(ml for a random sample of size n from (3). The estimates are 
functions of 

so that given P ,  S ,  and n/m,  4 and ji = + / ( h ~ ( ~ ) )  can be read from tables 
given by Wilk et al. [1962b: n/m + K / M ] .  Detads of bilinear interpolation 
are also given. How do we choose n/m? Although clear guidelines are not 
given, Roy et al. [1971: pp. 103-1041 stated that estimates are rather insensitive 
to n for a fixed value of m ,  provided that n is not too close to m (say, 
n / m  > 4). The loss of efficiency in choosing m/n  small appears to have little 
effect on conclusions drawn from gamma plots (see Appendix CA below). 

When the complete sample is used, that is, m = n ,  4 satisfies 

where R = P/S (I l), the ratio of the geometric mean to the arithmetic mean. 
h is then given by 

Wilk et al. [1962b] noted that the root of (4) is nearly linear in (1 - R)- '  = 

S / ( S  - P), and that linear interpolation in their table (reproduced here as 
Appendix D2) will give results accurate to four decimal places everywhere in 
the table, except between the first two values. Various approximate solutions 
are available as functions of -log R (Shenton and Bowman [1972]). 

C3 BETA DISTRIBUTION 

Suppose we have order statistics q1) 5 y(2) 5 + * I y(m) for a random sample 
of n observations from the beta distnbution 

f(y; a, P )  = qa, p )  y"-'(l - y p ,  0 I y I 1, a > 0, p > 0. 

Then the maximum likelihood estimates d and ) of the shape parameters a and 
/3 are complex functions of m / n ,  y(,,, and the two geometric means 
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When m = n ,  the estimates satisfy 

IogG, = 9(&) - 9(& i- j) 

and 

where q ( x )  E= d o g  I ‘ ( x ) / d x  = Y ( x ) / r ( x ) ,  the so-called digamma function. 
Gnanadesikan et al. [1967] give a small table of & and 4 for a few values of G ,  
and G, and provide a useful appendix on the numerical methods used. 

C4 PROBABILITY PLOTTING 

Let y = F ( x )  = pr[X 5 . x ]  be the graph of the distribution function for a 
random kariable X. Wilk and Gnanadesikan [1968] described two plotting 
techniques for comparing the “closeness” of two such graphs. We can either 
compare theiry (probability) values for a set of common x-values (a P-P plot), 
or else compare their x (quantile) values for a set of common y values (a 
yuantile -quantile or Q-Q plot) using the inverse relationship x = F - ’ ( y ) .  If 
the two random variables to be compared are X ,  and X, = (Xi -- p ) / u ,  then 

y == pr[ X, 5 x,1 = pr X, 5 --. (== pr[ X, i, x,], say), [ u  x1 -7 
so that for a common y, the x-values satisfy the linear relation x, = ux, -t ,u. 
Therefore if the distributions are identical, x1 = x2 and the Q--Q plot is a 
straight line through the origm with unit slope. However, if the distributions 
differ only in location and/or scale, then the Q-Q plot is still linear, with a 
nonzero intercept if there is a location difference, and a slope diKerent from 
unity if there is a scale difference. This linear invariance property of a Q-Q 
plot is not shared by the P-P plot which is linear only if the two distributions 
are identical. 

’The most common type of Q-Q plot consists of comparing an empirical 
distribution function F ( x ( , ) )  = i/n based on an ordered random sample 
x(l) s x(2) 5 . - . 5 x(“), with a theoretical distribution function G(x; a), where 
8 is specified or, more frequently, estimated from the sample. The Q-Q plot 
then consists of plotting the pairs ( G - ’ { i / n } ,  x(,)) and looking €or departures 
from linciirity. However, the point corresponding to i = n cannot be plotted 
and i / n  has commonly been replaced by ( i  + l)/n [see (l)] or ( i  - + ) / n .  We 
can also regard the plot as a comparison of x(,) with its expected value under 
G, namely [see (2)], QX(,~] = C -  ’( p , ) ,  where p ,  is estimated by, for example, 
( i  - i ) / n ,  ( i  + l)/n, or ( i  - $)/(n t a )  (see Mage [1982]). 
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To reduce the number of parameters 6 to be estimated, we can standardize 
G so that the origin or location parameter is zero and the scale parameter is 
unity. This will have no effect on the linearity of the Q-Q plot, as we noted 
above. For example, if we wish to see if X comes from a normal distribution, 
we can set G = a, the distribution function for the standard N,(O, 1) variable, 
and there are no parameters to be estimated. In the normal case, special graph 
paper, called normal probability paper or arithmetic probability paper, is 
available that has a special nonlinear scale that converts ( i  - i ) / n  into 
@-'(i - $)/a We then simply plot the pairs ( { i  - Q}/n, x ( ~ ) )  and check for 
linearity (see Barnett [1975] and Gerson [1975]). If the plot is linear, it can be 
used to provide estimates of location and scale (Barnett [1976b]). These days 
we do not need special graph paper, as most statistical packages (e.g., SAS, 
MINITAB) provide automatic plots of the pairs (@-I{  p l } ,  x l I ) ) .  If the plot is 
not linear, its shape will suggest the likely departure from normality. For 
example, plots for short-tailed (e.g., uniform) and long-tailed (e.g., Cauchy) 
distributions will look like Figs. Cla and 6. Since the exponential distribution 
is short tailed on the left and long tailed on the right, it will be a combination 
of Figs. Cla and b, namely, Fig. Clc. A number of tests for normality based 
on the nonlinearity of the plot are available (see LaBrecque [1977]). Several 
quick graphical techniques for Lillefors' test (Lillefors (1967)) can also be used 

( b )  (4 
Fig. C1 Q-Q plots for four distributions compared with the normal. ( a )  Short-tailed. ( b )  
Long-tailed. ( c )  Skewed to the right. ( d )  Skewed to the left. 
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(lman [ 1982, Mage [1982]). A related technique, called ha1 f-normal plotting, 
has been developed for investigating a series of hypotheses on contrasts from a 
2k design (Daniel 119591, Zahn \1975a, b]). An application to correlation 
coefficients is mentioned briefly at the end of Section 3.5.7. Experiments wirh 
normal distribution would suggest that we must have n > 20 (preferably 
n =- 50) for useful plots. 

To see if G is a gamma distribution, we use xo), xtz),. . . ,x( , , , )  (nt I n )  to 
obtain 5 from, say, Wilk ct al. 11962b: m < n] or Appendix D2 ( m  = n). Since 
we can change the scale without affecting the linearity of a Q-Q plot, we use 
the values ?J and A = 1 and solve [see (3)) 

pi = 1 dr 

for x,!' using a suitable algorithm (Wik et al. [1962a]). For example, the 
statistical package SAS has a procedure GAMIN(P, ETA) that uses the biszc- 
tion method for finding x:. If only a crude estimate of 17 is available, then plots 
of the pairs (x;, x ~ , ) )  for several values of 4 could be carried out. In most 
practical situations we would use all the data (i.e., m = n) ,  as .il is apparently 
not greatly affected by the large ordered observations (Rohlf [1975]); it IS 
reasonably insensitive to any outliers we may be trying to identify using the 
plot. The use of truncated data arises, for example, in analysis of variancc 
models such as 2k designs where there are a number of squared contrasts, each 
with one degree of freedom, representing main eff'ects and interactions. The 
smallest of these will generally be nonsignificant, with the same null gamma 
distribution, and can be used to estimate q and A. However, the larger 
significant squares will not belong to this gamnia distribution and will deviate 
from the linear plot determined by the first few squares. As we have noted in 
Appendix C2 above, is insensitive to n / m ,  provided that m is not too close to 
n. Gnanadesikan [1977: p. 2361 endorses the recommendation n / m  > 3 and 
yves graphs to support it. Any loss of efficiency in estimating 3 [or large n / m  
ieems to have little eflect on the interpretation of the plot. 

For a helpful review of plotting methods, see Gnanadesikan [1980]. 
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Table of tCnLr', where pr", z l:?"'] = u r / ( 2 r )  and 1 , .  is the t-distribution with 
v degrees of freedom (frcini 13ailey [ 1977: Tahle I ] :  values for u = 0.01 are also 
available there). 

*.it 
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1 0 = j 2 )  1 2 . 3 = ( 3  4 5 6 --(:I 7 8 9 
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5.4366 
4.6553 
4.2209 
3.9467 
3.7588 
3.6219 
3.5182 
3.4368 
3.3714 
3.3177 
3.2727 
3.2346 
3.2019 
3.1735 
3.1486 
3.1266 
3,1070 
3.0895 
3.0737 
3.0595 
3.0465 
3.0346 
3.0237 
3.0137 
3.0045 
2.9959 
2.9060 
2.9554 
2.531 4 
2.9130 
2.6984 
2.8866 
2.0768 
2.0615 
2.8502 
2.8414 
2.8344 
2.8287 
2.8240 
2.7972 
2.7850 
2.7790 
2.7729 

14.0890 
7.4533 
5.5976 
4.7733 
4.3168 
4.0293 
3.8325 
3.6897 
3.5814 
3.4966 
3.4284 
3.3725 
3.3257 
3.2860 

3.2520 
3.2224 
3.1966 
3.1737 
3.1534 
3.1352 
3.1188 
3.1040 
3.0905 
3.0782 
3.0666 
3.0565 
3.0469 
3.0380 
3 . w a  
2.9960 
2.9712 
2.9521 
2.9370 
2.9247 
2.9146 
2.8987 
2 8870 
2.8779 
2.8707 
2.8648 
2.8599 
2.8322 
2.8195 
2.8133 
z.eo70 

546 



D1 (Continued) 

a = 0.05 
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3.2973 
3.2087 
3.2399 
3.2103 
3.1952 
3.1764 
3.1595 
3.1441 
3.1302 
3.1175 
3.1058 
3.0851 
3.0052 
3.0700 
3.0675 
3.0326 
3.0009 
2.9872 
2.9716 
2.9509 
2.9405 
2.9321 
2.9200 
2.9100 
2.9032 
2.8971 
2.8921 
2.8835 
2.6505 
2.0440 
2.8370 

15.4435 
7.9390 
5.0853 
4.9825 
4.4858 
4.1743 
3.9618 
3.8079 
3.6915 
3.6004 
3.5274 
3.4874 
3.4173 
3.3749 
3.3386 
3.3070 
3.2794 
3.2550 
3.2333 
3.2139 
3.1965 
3.1807 
3.1663 
3.1532 
3.1412 
3.1301 
3.1199 
3.1105 
3.1017 
3.0650 
3.0393 
3.0191 
3.0030 
2.9900 
2.9792 
2.9024 
2.9500 
2.9403 
2.8327 
2.9264 
2.921 2 
2.8919 
2.8705 
2.8719 
2.8853 

16.0780 
8.1625 
0.0154 
5.0764 
4.5012 
4.2388 
4.0191 
3.6602 
3.7401 
3.6402 
3.5709 
3.5091 
3.4676 
3.4139 
3.3785 
3.3440 
3.3156 
3.2908 
3.2083 
3.2483 
3.2304 
3.2142 
3.1994 
3.1859 
3.1736 
3.1022 
3.1517 
3.1420 
3.1330 
3.0962 
3.0890 
3.0482 
3.0318 
3.0184 
3.0074 
2.9901 
2.9773 
2.9675 
2.8590 
2.9532 
2.9479 
2.9178 
2.9041 
2.8973 
2.8805 

18.8883 
8.3738 
6.1380 
5.1844 
4.6317 
4.2989 
4.0724 
3.9000 
3.1852 
3.6887 
3.61 12 
3.5478 
3.4949 
3.4501 
3.41 18 
3.3703 
3.3492 
3.3235 
3.3008 
3.2802 
3.2018 
3.2451 
3.2300 
3.2102 
3.2035 
3.1918 
3.1811 
3.1712 
3.1020 
3.1242 
3.0964 
3.0751 
3.0582 
3.0446 
3.0333 
3.01 50 
3.0026 
2.9924 
2.9844 
2.9778 
2.9724 
2.9416 
2.9276 
2.9207 
2.9137 

17.2772 
8.5752 
6.2541 
5.2474 
4.6979 
4.3553 
4.1224 
3.9542 
3.8273 
3.7283 
3.6489 
3.5838 
3.5290 
3.4637 
3.4443 
3.4102 
3.3804 
3.3540 
3.3306 
3.3097 
3.2908 
3.2739 
3.2584 
3.2443 
3.2313 
3.2194 
3.2064 
3.1962 
3.1888 
3.1502 
3.1218 

3.1000 
3.0820 
3.0688 
3.0573 
3.0393 
3.0259 
3.0158 
3.0073 
3.0007 
2.9951 
2.9837 
2.9494 
2.9423 
2.9352 

17.8406 
8.7670 
0.3843 
5.3259 
4.7804 
4.4084 
4.1693 
3.8969 
3.8869 
3.7854 
3.0842 
3.8170 
3.6821 
3.5151 
3.4749 
3.4400 
3.4095 
3.3820 
3.3507 
3.3373 
3.3181 
3.3007 
3.2049 
3.2705 
3.2572 
3.2451 
3.2339 
3.2235 
3.2130 
3.1744 
3.1455 
3.1232 
3.1057 
3.0914 
3.0798 
3.0613 
3.0476 
3.0371 
3.0287 
3.0219 
3.0182 
2.9842 
2.9686 
2.9024 
2.9552 

18.3904 
8.9521 
0.4893 
5.4005 
4.0198 
4.4586 
4.2137 
4.0371 
3.9041 
3.8004 
3.7173 
3.8493 
3.5628 
3.5447 
3.5038 
3.4800 
3.4309 
3.4094 
3.3850 
3.3832 
3.3438 
3.3259 
3.3097 
3.2950 
3.2815 
3.2691 
3.2577 
3.2471 
3.2373 
3.1971 
3.1070 
3.1450 
3.1271 
3.1125 
3.1005 
3.0818 
3.0679 
3.0572 
3.0487 
3.0417 
3.0360 
3.0034 
2.9085 
2.8812 
2.9738 

18.9341 
9.1294 
8.W97 
5.4715 
4.8758 
4.5082 
4.2558 
4.0752 
3.Q94 
3.8335 
3.7487 
3.8793 
3.8214 
3.5725 
3.5306 
3.4944 
3.4826 
3.4347 
3.4090 
3.3670 
3.3870 
3.3496 
3.3331 
3.3101 
3.3044 
3.2918 
3.2001 
3.2694 
3.2594 
3.2105 
3.1884 
3.1854 
3.1472 
3.1 324 
3.1202 
3.1012 
3.0870 
3.0701 
3.0674 
3.0804 
3.0545 
3.0213 
3.m3 
2.9908 
2.9913 

19.4551 
9.3001 
8.6659 
5.5393 
4.9295 
4.5514 
4.2955 
4.1114 
3.9728 
3.0848 
3.7783 
3.7076 
3 . M 7  
3.5889 
3.5562 
3.5193 
3.4870 
3.4585 
3.4332 
3.4106 
3.3903 
3.3719 
3.3552 
3.340(3 
3.3200 
3.3132 
3.3013 
3.2904 
3.2802 
3.2386 
3.2081 
3.1818 
3.1601 
3.151 1 
3.1387 
3.1194 
3.1050 
3.0939 
3.0851 
3.0779 
3.0720 
3.0383 
3.0230 
3.0154 
3.0070 
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D1 (Continued) 
-- -- -___I--- 

a = 0.05 

20 
v l  r 

100alr 0.2500 0.2381 0.1786 0.1389 0.1111 0.0909 0.0758 0.0641 

2 
3 
4 
5 
8 
7 

8 

10 
11 

12 
13 
14 
15 
16 
17 
'1 8 

20 
21 
22 
23 
24 
25 
28 
27 
28 

29 
30 
35 
40 
45 
50 
55 
60 
70 
80 

90 
100 
110 
120 
250 
500 
1000 

m 

a 

ia 

18.9825 
9.4649 
6.7563 
5.8042 
4.8807 

4.5948 
4.3335 
4.1458 
4.0045 
3.0945 
3.8065 
3.7345 
3.6746 
3.6239 
3.5805 
3.5429 
3.5101 
3.48 12 
3.4564 
3.4325 
3.4118 
3.3931 
3.3761 
3.3608 
3.3464 
3.3334 

3.3214 
3.3102 

3.2999 
3.2577 
3.2268 
3.2028 
3.1640 
3.1668 
3.1562 
3.1366 
3.1220 
3.1106 
3.1016 
3.0945 
3.0685 
3.0543 
3.0387 
3.0310 
3.0233 

20.4573 
9.6242 
0.6471 
6.6685 

6.0287 
4.6359 
4.3699 
4.1766 
4.0348 
3.9229 
3.8334 
3.7602 
3.6992 
3.6477 
3.8030 
3.5654 
3.5321 
3.5027 
3.4785 
3.4532 
3.4322 
3.4132 
3.3980 
3.3803 
3.3659 
3.3526 
3.3404 

3.3291 
3.3188 
3.2756 
3.2443 
3.2201 
3.2010 
3.1856 
3.1728 
3.1529 
3.1381 
3.1267 
3.1176 
3.1102 
3.1041 
3.0694 
3.0537 
3.0459 
3.0381 

23.6326 
10.6166 
7.3924 
6.0447 

5.3255 

4.8039 
4.5869 
4.3744 
4.2150 
4.0913 
3.9925 
3.91 18 
3.8446 
3.7882 
3.7396 
3.6geo 
3.6614 
3.6292 
3.6006 
3.5751 
3.5522 
3.5314 
3.5128 
3.4955 
3.4797 

3.4653 
3.4520 

3.4397 
3.4282 

3.3473 
3.321 1 
3.3003 
3.2636 
3.2697 
3.2481 
3.2321 
3.2197 
3.2099 

3.3818 

3.201~ 
3.1952 
3.1577 
3.1406 
3.1322 
3.1237 

28.8049 
11.5832 

7.6998 
6.391 4 

5.5837 

5.1088 
4.7810 

4.5485 
4.3747 
4.2400 
4.1327 
4.0452 
3.9725 
3.91 13 
3.8589 
3.8137 
3.7742 
3.7395 
3.7087 
3.6812 
3.5564 
3.6341 
3,6139 
3.5954 
3.5765 

3.5629 
3.5486 

3.5354 
3.5231 
3.4730 
3.4362 
3.4081 
3.3058 
3.3679 
3.3530 
3.3299 
3.3127 
3.2995 
3.2890 
3.2804 
3.2733 
3.2332 
3.2150 
3.2059 
3.1970 

29.9750 
12 4715 

8.3763 
6.7126 

5.3101 
4.9570 
4.7058 
4.5164 
4.37 35 
4.2562 
4.1643 
4.0865 
4.0208 
3.9649 
3.9165 
3.8744 
3.8373 

3.7750 
3.7487 
3.7249 
3.7033 
3.6836 
3.6656 
3.6491 

3.8338 
3.6198 

3.6087 
3.5534 
3.5143 
3.4845 
3.4609 
3.4410 
3.4260 
3.4015 
3.3633 
3.3693 
3.3582 
3.3491 
3.3416 
3.2991 
3.2798 
3.2703 
3.2000 

5.8399 

3.8044 

33.1436 
13.3471 
8.827 1 

7.01 28 

8,0880 
5.4973 
5.1 183 
4.8484 
4.6492 
4.4947 
4.3718 
4.2721 
4.1894 
4.1196 
4.0604 
4.0091 
3.9644 
3.9251 
3.8993 
3.8583 
3.6314 
3.8062 
3.7634 
3.7626 
3.7436 

3.7281 
3.7101 

3.6952 

3.8814 
3.6252 
3.5840 
3.5525 
3.5277 
3.5076 
3.4910 
3.4652 
3.4460 
3.4313 
3.4196 
3.4100 
3.4021 
3.3575 
3.3373 
3.3272 
3.3172 

3G.3112 
14.1943 

9.2558 
7.2952 

6.2810 

5.5712 
6.2875 

4.7695 
4.8059 
4.4761 
4.3706 
4.2633 
4.2099 
4.1473 
4.0033 
4.0463 
4.0050 

3.9357 
3.9064 
3.8800 
3.8560 
3.8342 
3.8142 
3.7959 
3.7790 

3,7634 

3.7480 
3.8900 
3.6466 
3.6138 
3.5878 
3.5668 
3.5494 
3.5224 
3.5024 
3.4870 
3.4747 
3.4648 
3.4565 
3.4099 
3.3887 
3.3763 
3.3678 

4.98ia 

3.9683 

39.4778 
15.0165 
9.6655 
7.5625 

5.8339 
5.4085 
5.1048 
4 8810 
4.7067 
4.5722 
4.4614 
4.3098 
4.2928 
4.2272 
4.1708 
4.1214 
4.0761 
4.0396 
4.0056 
3.9750 
3.9474 
3.9223 
3.8995 
3.8787 

3.8595 
3.841 9 
3.6256 

3.8105 
3.7490 
3.7040 
3.6696 
3.6426 
3.6206 
3.6025 
3.5744 
3.5536 
3.5375 
3.5248 
3.5144 
3.5056 
3.4573 
3.4354 
3.4245 
3.4136 

6 . 4 m  

548 



D1 (Continued) 

a = 0.05 

lOOol r 0.0548 0.0476 0.0417 0.0368 0.0327 0.0292 0.0263 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
35 
40 
45 
50 
55 
60 
70 
80 
90 
100 
110 
120 
250 
500 
1000 

m 

42.6439 
15.8165 
10.0585 
7.8166 
6.6705 
5.9868 
5.5368 
5.2197 
4.9849 
4.8044 
4.6815 
4.5457 
4.4500 
4.3695 
4.301 1 
4.2421 
4.1907 
4.1458 
4.1057 
4.0701 
4.0382 
4.0095 
3.9834 
3.9597 
3.9380 
3.9181 
3.8997 
3.8828 
3.8671 
3.8032 
3.7564 
3.7206 
3.6926 
3.6699 
3.651 1 
3.6220 
3.6004 
3.5837 
3.5705 
3.5598 
3.5509 
3.5007 
3.4779 
3.4668 
3.4554 

45.8094 
16.5964 
10.4367 
8.0591 
6.8500 
8.1313 
5.8594 
5.3278 
5.0823 
4.8939 
4.7450 
4.8243 
4.5247 
4.4410 
4.3696 
4.3085 
4.2551 
4.2083 
4.1669 
4.1300 
4.0989 
4.0871 
4.0400 
4.0154 
3.9929 
3.9723 
3.9533 
3.9357 
3.9195 
3.8533 
3.8049 
3.7680 
3.7389 
3.7154 
3.6960 
3.6656 
3.6435 
3.6263 
3.6127 
3.6016 
3.5924 
3.5405 
3.5170 
3.5054 
3.4938 

48.9745 
17.3582 
10.8016 
8.2913 
7.0210 
8.2684 
5.n55 
5.4295 
5.1740 
4.9781 
4.8233 
4.8981 
4.5947 
4.5079 
4.4341 
4.3706 
4.3154 
4.2669 
4.2240 
4.1858 
4.1516 
4.1207 
4.0928 
4.0674 
4.0441 
4.0228 
4.0032 
3.9850 
3.9682 
3.8999 
3.8499 
3.8118 
3.7818 
3.7576 
3.7376 
3.7065 
3.6835 
3.6658 
3.6517 
3.6403 
3.6308 
3.5774 
3.5532 
3.5412 
3.5293 

52.1392 
16.1 035 
11.1545 
8.5143 
7.1844 
6.3990 
5.6657 
5.5260 
5.2608 
5.0576 
4.8972 
4.7875 
4.6606 
4.5706 
4.4946 
4.4289 
4.371 9 
4.3218 
4.2776 
4.2381 
4.2026 
4.1710 
4.1422 
4.1160 
4.0920 
4.0700 
4.0498 
4.031 1 
4.0138 
3.9434 
3.8819 
3.8527 
3.8216 
3.7969 
3.7763 
3.7444 
3.7207 
3.7025 
3.6860 
3.6763 
3.6665 
3.61 17 
3.5868 
3.5745 
3.5623 

55.3037 
18.8336 
11.4966 
8.7290 
7.3410 
8.5236 

5.6177 
5.3431 
5.1330 
4.9672 
4.6332 
4.7228 
4.6302 
4.5516 
4.4639 
4.4251 
4.3738 
4.3280 
4.2874 
4.2510 
4.2183 
4.1886 
4.1616 
4.1370 
4.1144 
4.0936 
4.0744 
4.0566 
3.9842 
3.9314 
3.891 1 
3.8594 
3.8337 
3.6126 
3.7798 
3.7555 
3.7389 
3.7220 
3.7100 
3.7000 
3.8437 
3.6182 
3.6056 
3.5931 

5.9908 

58.4679 
19.5467 
11.8288 
8.9362 
7.4914 
8.8430 
8.0809 
5.7051 
5.4215 
5.2048 
5.0338 
4.8956 
4.7818 
4.6865 
4.6056 
4.5360 
4.4755 
4.4225 
4.3756 
4.3339 
4.2868 
4.2829 
4.2325 
4.2047 
4.1794 
4.1562 
4.1349 
4.1151 
4.0969 
4.0226 
3.9884 
3.9271 
3.8946 
3.8884. 
3.6467 
3.8131 
3.7883 
3.7681 
3.7539 
3.7418 
3.7313 
3.8737 
3.6477 
3.6348 
3.6219 

61.6320 
20.2528 
12.1519 
9.1365 
7.6363 
6.7577 
8.1868 
5.7868 
5.4963 
5.2729 
5.0969 
4.9549 
4.8379 
4.7400 
4.6588 
4.5853 
4.5232 
4.4688 
4.4208 
4.3780 
4.3397 
4.3052 
4.2739 
4.2455 
4.2196 
4.1958 
4.1739 
4.1537 
4.1350 
4.0590 
4.0035 
3.9612 
3.9279 
3.9010 
3.6789 
3.8445 
3.8191 
3.7995 
3.7840 
3.7714 
3.7609 
3.7020 
3.6754 
3.6822 
3.8491 
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550 Slotisticd Tables 

D2 
DISTRIBUTION 

M A X I M U M  LIKELIHOOD ESTIMATES FOR THE GAMMA 

A table (reproduced from Wilk et al. [1962b: Table I], by permission of the 
Biomettika Trustees) is given for finding the maximum likelihood estimates fi 
and 1, based on a random sample of size n from the gamma distribution 

We enter the table with 1/(1 -- H), where 
R = geometric mean of .y,/arithmetic mean of y, , 

and read off 4. Linear interpolation will give four decimal accuracy everywhere 
in the table, except between the first two values. Although h is not needed for 
probability plotting (we use h =-- I), it is given by = q/J .  

ll(1-R) 
1.000 
1.001 
1.002 
1.003 
1.001 

1.006 
1.008 
1.007 
1.008 
1.009 

1.010 
1.012 
1-014 
1.016 
1.018 

1.020 
1-022 
1.024 
1-026 
1.028 

1.030 
1.036 
1.040 
1.046 
1.060 

1.066 
1.060 
1.065 
1.070 
1.075 

1.080 
1.090 
1.100 

ii 
0~00000 
0.11639 
0.12663 
0.13434 
0.14043 

0.14668 
0*16005 
0.16408 
0.16775 
0.16116 

0.16432 
0*17011 
0.17635 
0.1 80 17 
0.18464 

0.18884 
0.19282 
0.19659 
0.20020 
0.20386 

0.20700 
0.21486 
0,22217 
0.22904 
0.23564 

0.24176 
0.24771 
0.25346 
0.25688 
0.28437 

0.28959 
0.27966 
0.28928 

V(1-W 
s.11 
1-12 
1.13 
1.14 
1.16 

1-16 
1-16 
1.20 
1.22 
1.24 

1.28 
1.28 
1.30 
1.32 
1.34 

1.36 
I .38 
1.40 
1.45 
1.50 

1.65 
1.80 
1.65 
1.70 
1.75 

1.80 
1,85 
1.90 
1.96 
2.00 

2. i0 
2.20 
2.30 

Fi 
0.29864 
0.30749 
0.31816 
0.32461 
0.33285 

0.34000 
0.36854 
0.37185 
0.38831 
040060 

0.41457 
0.42025 
0.44 I 7  0 
0,45492 
0.467B5 

0.48081 
0.49351 
0.50608 
0.53694 
0,687 16 

0.69082 
0432804 
0.85488 
0.68340 
0.71103 

0.739G1 
0-16737 
0.79494 
0-82233 
0.84957 

0,90364 
0.98724 
1.01048 

ll(1-R) 
2-4 
2.6 
2-6 
2.7 
2.8 

2-9 
3.0 
3.2 
3.4 
3 4  

3.8 
4-0 
4.2 
4.4 
4.8 

4.8 
6.0 
5.5 
6.0 
6.5 

7.0 
8.0 
9.0 
10.0 
12.0 

14.0 
16.0 
18.0 
20.0 
30.0 

40.0 
50.0 

A 

D 
1.08335 
I. 11698 
1.16833 
1.22050 
1,27248 

1.32430 
1.37689 
1.47899 
1.58158 
148386 

1,78585 
1.88783 
1.90921 
2.09063 
2.19191 

2.29308 
2.39414 
2.64643 
2.89830 
3.14984 

340116 
3.90326 
4.40482 
4.9060R 
5.90790 

6.90914 
7.91006 
8.91073 
9.91125 
14.91301 

1%; 1401 
2 4.9 I467 
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10 5 2 . 5  1 0 . 5  0 . 1  

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

0.831 
0.821 
0.795 
0.782 
0.765 
0.746 
0.728 
0.710 
0.693 
0.677 
0.662 
0.648 
0.635 
0.622 
0.610 
0.599 
0.588 
0.578 
0.568 
0.559 
0.550 
0.542 

0.987 
1.049 
1.042 
1.018 
0.998 
0.977 
0.954 
0.931 
0.910 
0.890 
0.870 
0.851 

0.834 
0.817 
0.801 
0.786 
0.772 
0.758 
0.746 
0.733 
0.722 
0.710 

1.070 
1.207 
1.239 
1.230 
1.208 
1.184 
1.159 
1.134 
1.109 
1.085 
1.061 
1.039 
1.018 
0.997 
0.978 
0.960 
0.942 
0.925 
0.909 
0.894 
0.880 
0.866 

1.120 
1.337 
1.429 
1.457 
1.452 
1.433 
1.407 
1.381 
1.353 
1.325 
1.298 
1.272 
1.247 
1.222 
1.199 
1.176 
1.155 
1.134 
1.114 
1.0% 
1.078 
1.060 

1.137 
1.396 
1.531 
1.589 
1.605 
1.598 
1.578 
1.553 
1.526 
1.497 
1.468 
1.440 
1.412 
1.385 
1.359 
1.334 
1.310 
1.287 
1.265 
1.243 
1.223 
1.203 

1.151 
1.464 
1.671 
1.797 
1.866 
1.898 
1.906 
1.899 
1.882 
1.859 
1.832 
1.803 
1.773 
1.744 
1.714 
1.685 
1.657 
1.628 
1.602 
1.575 
1.550 
1.526 

D3 UPPER TAIL PERCENTAGE POINTS F O R 6  

The above table (reproduced from Mulholland [1977] by permission of the 
Biometrika Trustees) gives the upper tail percentage points of 

i = l  i - 1  

the sample coefficient of skewness, for a random sample of size n from a 
normal distribution. 6 is independent of the mean and variance of x and its 
distribution is symmetric about the origin. For other values of n see Appen- 
dix D4. 

D4 
OF 

On 

COEFFICIENTS 

6 
IN A NORMALIZING TRANSFORMATION 

the following page are given values of S and l / h  (reproduced from 
DAgostino and Pearson [1973: Table 41 by permission of the Biometrika 
Trustees) such that 

is approximately N ( 0 , l ) .  bl is defined in Appendix D3. 



n a 
6.L63 
4-260 
3-734 

3.447 
3.270 

3.069 
3-010 

2468 
2437 
2-916 
2.000 
2-890 

2.884 
2.882 
2.882 
2.884 

a m  

2 . 8 ~ ~  

2.806 
2.902 
2-010 
2420 
2.930 

1/A 

0-3030 
0.4080 
0.4794 

0.6330 
0.6781 
04163 
0.647s 
0-6763 

0-7001 
0.7224 
0.7426 
0.7610 
0*7779 

0.7034 
0.8078 
0-8211 
0.8336 
0.8462 

0.8661 
0.8664 
0.8160 

0.8938 
0.a86i 

R 

62 
64 
66 
68 
70 

a 
3,389 
3.420 
3.460 
3.480 
3.610 

1/A 
1.0400 
1.0449 
1,0496 
1.0640 
1.0581 

n 

260 
270 
280 
200 
300 

310 
320 
330 
340 
360 

360 
370 
380 
300 
400 

410 
420 
430 
440 
460 

480 
470 
480 
400 
600 

520 
640 
660 
680 
600 

a 
6.787 
6.853 
6.948 
6.030 
6.130 

6.220 
6.308 
6-398 
6.482 
6.667 

~ 6 1  
8.733 
6,816 
0.896 
6.976 

7.066 
7.134: 
7.211 
7.288 
7.363 

7438 
7.613 
7.686 
7*850 
7.731 

1lA 

i-mi 
1.1744 

1.1779 
1-1793 
1.1808 

1.1821 
1.1834 
1.1846 
1.1858 
1.1868 

1,1879 
l"1888 
1,1897 
1.1008 
1.1014 

1.1022 
1.1929 
1.1937 
1.1043 
1*1950 

1*1066 
1.1902 
1.1968 
1,1974 
1.1979 

8 
9 

10 

11 
12 
1s 
14 
14 

16 
17 
1s 
19 
20 

21 
22 
23 
24 
24 

26 
27 
28 
29 
so 

72 
74 
76 
78 
80 

82 
84 
86 
88 
90 

92 
94 
00 
98 

100 

I06 
1 Ill 
116 
120 
126 

3.640 
3.669 
3.609 
3428 
3.667 

3.686 
3-7 16 
3.744 
3.772 
3.801 

3.829 
3.867 
3.885 
3.013 
3.940 

4,000 
4.076 
4.142 
4.207 
4.272 

4.336 
4.398 
4.460 
4,621 
4.682 

1.0021 

1-0696 
1.0730 
1.0703 

1.071)6 
1,0826 
1.0854 
1,0882 
1*0900 

1.0934 
1.0059 
1.0083 
1~1000 
1.1028 

1-1080 
1.1128 
1.1172 
1.1212 
1,1250 

i.oa59 

31 
32 
33 
34 
36 

36 
37 
38 
30 
40 

2.941 
2.052 
2.964 
2.977 
2.990 

3.003 
3-016 
3.030 
3.044 
3.068 

04020 
0.0007 
0.9171 
0.0241 
04308 

0.9372 
0.0433 
0,9402 
0-9648 
04601 

130 
136 
140 
146 
160 

1.1286 
1.1318 
1.1 3.M 
1.1377 
1.1 403 

7.873 
8.013 
8.161 
8,286 
8.419 

i . m g  
1.1098 
1.2007 
1*2016 
1.2023 

14030 
1.2036 
1.2043 
1,2049 
1 a2054 

1.2060 
1.2066 
1.2080 
1,2073 
1.2078 

1.2082 
1.2088 
1.2089 
1.2093 
1.2006 

156 
160 
166 
170 
176 

4.641 
4.700 
4.768 
4.816 
4,873 

4.929 
4.985 
6.040 
6.004 
6.148 

G.202 
6.266 
6.307 
6368 
5.410 

1.1428 
1,1452 
t.1474 
1.1496 
1-1616 

1.1636 
1.1553 
1.1670 
1.1586 
1.1602 

i . iaiu 
1 . 1  a:i 1 
1.1044 
1-1857 
1~1660 

620 
640 
660 
680 
700 

720 
740 
700 
780 
800 

820 
840 
860 
880 
900 

8.550 
8.679 
8.806 
8.031 
0.084 

0.178 
9.297 
9,416 
9.633 
0.649 

9.763 
9.878 
0.w3& 

10.098 
10.208 

41 
42 
43 
44 
46 

46 
47 
48 
40 
60 

62 
64 
66 
68 
60 

3-073 
3.087 
3.102 
3.117 
3.131 

3.146 
3-161 
3.176 
3.192 
3.207 

3.237 
3-268 
3.298 
3.328 
5.369 

0-0663 
0.9702 
0.9760 
0.0796 
0.0840 

0.9882 
0.9923 
0.0963 
1.0001 
1.0038 

1.0108 
1.0174 
1,0236 
1.0203 
1.0348 

180 
186 
100 
106 
200 

206 
210 
215 
220 
226 

230 
236 
240 
245 
260 

6.46 1 
6*611 
6.681 
6.61 1 
6-660 

1-1601 
1~1809 
1*1704 
1,1714 
1.1724 

920 
940 
B60 

1000 
980 

10.318 
10.42s 
10,629 

10*73R 
10c14 

1.2100 
1,2103 
1.2106 
1.2109 
1.2111 

552 



D5 Simulation Percentilesfor b, 553 

D5 SIMULATION PERCENTILES FOR b2 

Below is a table of percentiles (reproduced from DAgostino and Tietjen [1971: 
Table 11 by permission of the Biometrika Trustees) for 

i = l  i-1 

the sample coefficient of kurtosis, from a random sample of size n from a 
normal distribution. b, is independent of the mean and variance of x. For 
other values of n see Appendix D6. 

Percentilea 
Ssmple r 

size 

7 
8 
9 

10 
12 

16 
20 
26 
30 
36 

40 
46 
60 

1 

1.26 
1-31 
1.36 
1.39 
1.48 

1.66 
1.66 
1.72 
1.79 
1.84 

1.89 
1.93 
1.96 

2 

1.30 
1.37 
1.42 
1.46 
1.62 

1.61 
1.71 
1.79 
1.88 
1.01 

1.98 
2.00 
2.03 

2.6 

1.34 
1.40 
1.46 
1.49 
1.66 

1.64 
1.74 
1.83 
1.90 
1.96 

1.98 
2.03 
2.06 

6 

1-41 
1.48 
1.63 
1.66 
1.84 

1.72 
1.82 
1.91 
1.98 
2.03 

2.07 
2.11 
2.16 

10 

1.63 
1.68 
1.83 
1.68 
1.76 

1.84 

2.03 
2.10 
2.14 

2.19 
2.22 
2.26 

1.96 

20 

1.70 
1-76 
1.80 
1.86 
1.93 

2.01 
2.13 
2.20 
2.28 
2-31 

2.34 
2-37 
2.41 

80 

2.78 
244  
2.98 
3-01 
3-06 

3-15 
3.21 
3.23 
3.26 
3.27 

3-20 
3.28 
3.28 

00 86 87.6 88 O i  

3.20 3.66 3.86 3.03 4-23 
3.31 3.70 4.09 4.20 4.63 
9.43 3.88 4.28 4.41 4.82 
3-53 3-96 4-40 4-66 6.00 
3.56 4.06 4.66 4.73 6.20 

3.62 4.13 4-66 4-81 6.30 
5-68 4.17 4-86 4-81 6-96 
3.68 4-16 4.66 4.82 6.30 
348  4-11 4.69 4-75 6.21 
3.88 4.10 4.63 4.88 6.13 

3-87 4.08 4-46 4.81 6.04 
9-66 4.00 4.30 4.62 4.04 
3-82 8.00 4-39 4.46 4.88 
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D6 CHARTS FOR THE PERCENTILES OF h2 

Charts for the percentiles of b, (defined in Appendix D5), based on a sample of 
size n from a normal distribution, are given below. We enter P and read off 
b2( P), where 

pr[ h, 5 b2( P ) ]  = P. 

(Reproduced from D’Agoslino and Pearscm 11973: Figs. 1 and 21 by permis- 
sion of the Biometrika Trustees.) 

20 25 30 35 40 45 30 60 70 80 90 100 I20 I 4 0  160 180 200 
1 



20 25 30 35 40 45 50 60 70 80 90 100 I20 140 160 180 200 

n 
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D'7 COEFFICIENTS FOR THE WILK-SHAPIRO (W) TEST 

Coefficients {a:?,, are given for the Wik-Shapiro statistic 

where 5 +, I - - . I x(,) is an ordered random sample of size n from the 
normal distribution, and n = 2 k  or 2 k  + 1 (reproduced from Shapiro and 
Wilks [1965: Table 51 by perniission of the Riometrika Trustees). For the 
percentiles of W see Appendix D8. 

C:oefficients a $!; + x 2  3 4 5 6 7 8 9 10 

1 0.7071 0.1071 0.6872 0.6646 0.0431 0.6333 0.6062 06888 0.6739 
2 -  *OOOO -1877 -2413 ,2800 ,3091 -3164 a3244 ,3291 
3 -  .- - *OOOO ,0875 -1401 -1743 *1978 -2141 
4 -  - - - - -0000 *0661 ~0947 el224 

-- - - .OOOO -0399 6 -  .-- - -- 

11 12 . 13 

0*6359 
*3325 
,2412 
el707 
.lob9 

0*0639 
.oooo 
- 

14 

0.15261 
a3318 
*2460 
,1802 
.1240 

0.0727 
-0240 

-- 

1s 

0-6160 
-3300 
~2486 
-1878 
-1363 

0.0880 
-0433 
.oooo 

16 

0.6065 
,3280 
-2821 
,1930 
,1447 

0.1006 
*0693 
.0196 

17 

0.4868 
a3273 
a2640 
a1988 
dl524 

0*110@ 
-0726 
-0368 
.oooo 

18 

0.4886 
,3263 
,2663 
-2027 
*1687 

0.1197 
-0837 
*0486 
-0183 - 

28 

0.4328 
a2092 
*2510 
62151 
-1857 

0*1601 
-1372 
,1162 
a0966 
a0778 

0*06I)8 
*0421 
*0263 
-0084 - 

19 

0,4808 
,3232 
-2681 
a2069 
-1641 

0.1271 
~0932 
,0612 
,0303 
.oooo 

29 

0.4291 
*2868 
~2490 
,2160 
a1804 

01616 
el395 
,1192 
el002 

0.0660 
,0483 
.0320 
*0158 
*oooo 

.oa22 

20 

0.4734 
4211 
-2666 
,2086 
,1686 

0.1334 
-1013 
,0711 
-0422 
*0140 

30 

0.4254 
-2944 
*2487 
*2148 
*1870 

Q.1630 
-1416 
-1219 
,1036 
,0862 

0*0697 
-0537 
40381 
-0227 
~0076 

1 0*6601 
2 ,33111 
3 ,2260 
4 -1428 
5 ,0696 

6 O*OOOO 
7 -  
8 -  
9 -  

10 .- 

21 

1 0.4643 
2 *3186 
3 ,2678 
4 ,2118 
5 ,1736 

6 01398 
7 el092 
8 *0804 
9 *0630 

10 *0263 

11 0~0000 
12 - 
13 - 
14 - 
15 - 

0.6476 
,3326 
-2347 
-1586 
*OD22 

0.0303 
- 

22 

0.4600 
-3160 
,2671 
-2131 
el764 

0- 1443 
-1160 
~0878 
-0018 
,0308 

0.0122 
- 
-- 

23 

0.4542 
,3120 
*2663 
,2138 
.1787 

0.1480 
41201 
*OD41 
.0096 
*0469 

0.0228 
+oooo - 

24 

0.4498 
*3088 
a26154 
~2145 
-1807 

0.1512 
~1245 
-0997 
.0764 
~0630 

0.0321 
"0107 - 

25 

0,4450 
,3069 
,2543 
.2148 
.I822 

0,1639 
,1283 
-1040 
~0823 
s o 0  10 

0.0403 
-0200 
*oooo 

26 

04407 
.3043 
-2633 
-2161 
*la36 

0.1663 
,1316 
-108D 
*0876 
,0072 

0.0476 
*0284 
-0084 

27 

0.43116 
*3O18 
.2622 
a2162 
,1848 

0- 1684 
,1346 
-1128 
,0023 
*0728 

0.0840 
-0368 
,0178 
.oooo - 
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31 

1 0.4220. 
2 .2021 
3 .2475 
4 .2145 
5 ,1874 

6 0.1641 
7 .1433 
8 ,1243 
9 .lo66 

10 *0899 

11 0.0739 
12 .0585 
13 a0435 
14 -0289 
15 .0144 

16 0.0000 
17 - 
18 - 
19 - 
20 - 

41 

1 0.3940 
2 .2710 
3 .2357 
4 .2091 
5 -1876 

6 0.1693 
7 -1531 
8 -1384 
9 el240 
10 *1123 

11 0.1004 
12 .0801 
I3 4782 
14 ,0677 
15 .0575 

16 0.0476 
17 .0379 
18 ,0283 
19 .0188 
20 .0094 

21 0~0000 
22 
23 - 
24 - 
25 - 

32 

0.4188 
a2898 
*2463 
$2141 
-1878 

0*1651 
el440 
*1265 
-1083 
-0831 

0.0777 
-0629 
.0485 
-0344 
*0200 

0.0068 - - - - 
42 

0.3017 
.2701 
,2345 
*2085 
-1874 

0.1004 
*1535 
-1362 
* 1259 
-1130 

0.1020 
*oooo 
-0804 
.0701 
*0602 

0.0500 
,0411 
,0318 
,0227 
*0136 

0.0045 
- 
- 
- 
- 

33 

04156 
-2876 
.2451 
-2137 
*1880 

0*1660 
.1463 
.1284 
-1118 
*0981 
0.0812 

*0680 
-0530 
-0395 
.0262 

0.0131 
.oooo - - - 
43 

0.3894 
-2684 
-2334 
a2078 
-1871 

0.1605 
-1539 
-1398 
q1209 
a1149 

' 0.1035 
.0927 
*0824 
-0724 
-0628 

0.0534 
*0442 
-0352 
*02G3 
.0175 

0.0087 
.oooo 
- 
- 
- 

34 

0.4127 
,2854 
a2430 
*2132 
,1882 

0*1667 
.1475 
a1301 
,1140 
*0988 
0,0844 
*0700 
,0572 
,0441 
.0314 

0.0187 
-0002 - - - 
41 

0.3872 
*20G7 
*2323 
a2072 
el868 

-1542 
a1405 
-1278 
~1100 

0.1049 
.0043 
4842 
a0745 
.Of351 

0.0500 
*0471 
.0383 
.0206 
.0211 

0.0128 
-0042 

0.1095 

- 
- 
- 

35 

0.4000 
.2834 
.2427 
*2127 
~1883 

0.1673 
.1487 
-1317 
.11GO 
-1013 

0,0873 
.0739 
.0010 - 0464 
.0361 

0.0239 
.011@ 
*oooo - - 
45 

0.3850 
.2651 
.2313 
*2065 
.1865 

0.1605 
.1545 
-1410 
a1280 
*1170 

0.1062 
,0059 
.0800 
.0765 
.0073 

0.0584 
.0497 
.0412 
.0328 
.0245 

0.0163 
.0081 
.oooo - 
- 

36 

0.4068 
a2813 
*2415 
.2121 
.*1883 

0.1678 
.14@6 
,1331 
-1170 
-1036 

0.0000 
,0770 
~0645 
*0323 
-0404 

0.0287 
,0172 
*0057 - - 
46 

0,3830 
-2635 
.2302 
a2058 
el862 

0.1005 
.A548 
*1415 
*1293 
. l l80 
0.1073 
-0972 
-0876 
-0783 
.0604 

0.0007 
.0522 
.0439 
.0357 
.0277 

0.0197 
.0118 
.0030 - 
- 

37 

0.4040 
-2794 
*2403 
*2116 
,1883 

0.1683 
-1505 
~1344 
-1198 
*lo68 
0.0024 
*0708 
a0677 
-0559 
a0444 

0.0331 
-0220 
*0110 
.oooo - 

47 

0.3808 
-2620 
a2201 
-2052 
.1859 

0*1695 
*1550 
-1420 
-1300 
*I188 
0.1085 

-0086 
*0892 
a0801 
.0713 

0.0628 
*0546 
-0465 
-0385 
.0307 

0.0229 
4153 
a0070 
*oooo - 

38 

0.4016 
-2774 
-2391 
-2110 
-1881 

0.1688 
-1513 
*1356 
61211 
-1075 

0.0847 
~0824 
a0706 
-0502 
*0481 

0,0372 
,0264 
-0158 
*0053 - 

48 

0,3789 
a2804 
,2281 
.2045 
~1856 

0*1603 
*1551 
*1423 
-1306 
-1197 

0*1096 
*0998 
.0008 
~0817 
.0731 

0.0648 
*0568 
.0480 
-041 I 
*0335 

0.0259 
-0185 
a0111 
.0037 - 

39 40 

0.3988 0.3064 
*2765 -2737 
-2380 .a368 
*2104 -2098 
-1880 *1878 

0.1689 0*189l 
,1520 -1526 
-1366 el376 
el225 a1237 
~1092 61108 

0.0067 0*0980 
.0848 *0870 
*0733 *0759 
-0822 -0651 
*0515 a0346 

0.0409 0.0444 
*0305 a0343 
,0203 ,0244 
*0101 ,0140 
.oooo .004e 

49 50 

0.3770 0.3751 
.2580 -2574 
,2271 .2260 
*2038 a2032 
.la51 ,1847 

0.1082 0.1691 
a1553 -1554 
*1427 ,1430 
,1312 -1317 
,1205 ,1212 

0*1105 0.1113 
-1010 ,1020 
-0Ol9 *0932 

.0748 -0704 

0.0007 0.0685 
,0588 -0609 
.0511 .0532 
$0436 .0459 
a0301 ,0380 

0.0288 0.0314 
*0215 .We44 
-0143 .0174 
~0071 ~0104 
*OOOO a0035 

.0840 

551 
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n 

3 
4 
6 

6 
7 
8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
’20 

21  
22 
23 
24 
25 

5 %  

0.767 
~ 7 4 8  
,782 

0.788 
0808 
,818 
-829 
*842 

0.860 
-889 
-866 
-874 
-881 

0.887 
*892 
*897 
-901 
-905 

0.908 
-911 
-914 
*916 
~ 9 1 8  

1 %  

0.753 
4 8 7  
,686 

0.713 
a730 
,749 
-764 
“781 

0.792 
*&06 
,814 
426 
4 3 6  

0.844 
-851 
-868 
,863 
*868 

0.873 
.878 
a881 

a888 
4 8 4  

n 

26 
27 
28 
29 
30 

31 
32 
33 
34 
35 

36 
37 

39 
40 

41 
42 
43 
44 
45 

46 
47 
48 
49 
50 

38 

D8 PERCENTILES FOR T H E  W l L K - S H 4 P I R O  ( W )  TEST 

Percentage poiiits for tile W-test of normality, defined in Appendix 117, are 
given above (reproduced from Shapiro and Wilk (1965: Table 61 by permission 
of the Biometrika Trustees). Any departure from normality is detected by a 
small value of W, n is the number of observations. 

119 D’AGOSTINO’S ms‘r FOR N O R M A L I T Y  

Percentage points (reproduced from D’Agostino “71, 19721 by permission of 
the Bionietrika Trustees) are given for the statistic 

y = _ _ _ ~ - -  i i [ D  -(2J17) ‘1 
0.02998598 ’ 

and x(,) r x ( ~ )  I - - -  i x~,,)  is an ordered random sample of I I  observations 
from a normal distribution. The hypothesis of nbrmality is rejected if 1 Yl is 
too large. As the range of Y is small, D should be calculated to Live decimal 
places. 
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n 

10 
12 
14 
16 
18 
20 

22 
24 
26 
28 
30 

32 
34 
36 
38 
40 

42 
44 
46 
48 
60 

60 
70 
80 
90 
100 

160 
200 
260 
300 
3Kn 

D'AGOSTINO'S TEST FOR NORMALITY 

Pmentiles of P 
-. \ 

0.6 
- 4.88 - 4.63 - 4.67 - 4.52 
- 4.47 
-4.41 

- 4.36 - 4.32 - 4.27 
-4.23 
-4.19 

-4.16 
-4.12 - 4.09 - 4.06 - 4.03 
- 4.00 - 3.98 - 3.96 - 343 - 3.91 
- 3.81 - 3-73 
-3.67 
- 3.81 - 3.57 
- 3.409 
- 3.302 
- 3.227 
-3.172 
-3.129 

1.0 
- 4.06 - 4.02 - 3.97 
- 3.92 - 347 - 3.23 
- 3-18 
- 3.76 - 3.71 - 3.68 - 3-84 
- 3.61 - 3.69 - 3.68 
- 3.54 - 3-11 
- 3.49 
- 3.47 - 3;46 - 3.43 - 341 
- 3.34 - 9-27 - 3.22 
-3.17 
- 3.14 

- 3.009 
- 2.922 - 2,861 - 2.816 
-2.781 

2.6 

- 3.26 - 3-20 
- 3.12 
- 3.08 - 3.04 
- 3.01 - 2.98 - 2.96 
-2.93 - 2.91 
- 2.88 - 2.88 
- 2.86 
- 2.83 - 2.81 
- 2.80 
- 2.78 - 2.77 - 2.76 
- 2.74 

- 9-18 

- 2.88 - 2.84 
- 2-80 
- 2.67 - 2.64 

- 2.462 
- 2.391 
- 2.348 - 2.316 - 2.291 

400 -3.094 -2.763 -2.270 
460 -3.064 -2.720 -2.263 
500 -3.040 -2.709 -2.230 
550 -3.019 -2.691 -2.226 
600 -3.000 -2.676 -2.216 

6 
- 2-82 - 2.68 - 2.63 - 2.60 
- 2.47 
- 2.44 
- 2.41 
- 2.38 - 2.37 - 2.36 
- 2-93 
- 2.32 
- 2.30 
- 2.29 
- 2.28 - 2.26 
- 2.25 
- 2.24 - 2.23 - 2.22 
- 2.21 

- 2.17 - 2.14 
-2.11 
- 2.09 - 2.07 

- 2.004 
- 1.960 
- 1426 
- 1.908 
- 1,888 

- 1.873 
- 1.861 
- 1.850 
- 1.841 
- 1433 

650 -2.984 -2.663 -2.206 - 1.826 
700 -2.969 -2.661 -2.197 -1.820 
760 -2,966 -2'640 -2.189 -1.814 
800 -2.944 -2.830 -2.182 -1.809 
860 -2.933 -2.621 -2.176 -1.804 

10 - 1.80 - 1.04 - 1.90 
- 1.87 - 1.85 - 1.82 
- 1-81 - 1.79 - 1.77 - 1-78 - 1.76 
- 1.73 - 1.72 
-1.71 - 1.70 - 1.70 
- 1-89 - 1.88 - 1.87 - 1.87 - 1.66 
- 144 
.- 1-81 - 1.69 - 1.68 - 1.67 

- 1.620 
- 1.491 - 1,471 
- 1.444 
- 1.466 

- 1.434 
- 1.426 
- 1.419 - 1.413 
- 1.408 

- 1.403 - 1.399 
- 1.396 
- 1,382 
- 1.389 

00 06 07.6 

0.140 0.235 0.299 
0.237 0.320 0.381 
0.308 0499 0.460 
0.387 0.469 0.526 
0.417 0.616 0.674 
0.480 0.666 0428 

0.497 0409 0.677 
0.630 0.848 0,720 
0.569 0.682 0*780 
0.686 0.714 0.797 
0.810 0.743 0.830 

0.631 0.770 0.862 
0451 0.794 0.891 
0.669 0.818 0.917 
0.686 0.837 0:94l 
0.702 0.867 0464 

0.718 0.8'lG 0.988 
0.730 0.892 1.01 
0-742 0,908 1.02 
0,764 0.923 1.04 
0.766 0437 1.08 

0.812 0407 1.13 
0.848 '1.06 1.10 
0478 1.08 1.24 
0402 1.12 1.28 
0.823 1-14 1-31 

0.990 1.233 1423 
1.032 1,290 1.498 
1.060 1.328 1.646 
1.080 1.367 1.628 
1.096 1.378 1.610 

1.108 1.306 1.633 
1.119 1.411 1.662 
1.127 1.423 1.668 
1.136 1.434 1.882 
1.141 1.443 1494 

1.147 1.461 1.704 
1.162 1,468 1.714 
1.167 1.486 1.722 
1.161 1,471 1.730 
1.166 1.476 1.737 

900 -2.923 -2.613 -2.170 -1.800 -1.386 
050 -2.914 -2.606 -2.164 -1.796 -1.383 
1000 -2.906 -2.609 -2.169 -1.792 -1'381 

1.168 1-481 1.743 
1.171 1.486 1.749 
1.174 1.489 1.764 

90 
0*368 
0440 
0.615 
0.687 
0436 
0-690 

0.744 
0.783 
0.827 
0.808 
0.906 

0.942 
0.976 
1 .oo 
1.03 
1.00 

1.08 
1.11 
1.13 
1.16 
1.18 

1.28 
1.33 
1.38 
1.44 
1-48 

1.623 
1.715 
1.779 

1)94 

0.385 
0479 
0.566 
0413 
0.667 
0.720 

0.775 
0422 
0.867 
0~910 
0.941 

0483 
1.02 
1.05 
1.08 
1.11 

1.14 
1.17 
1.19 
1.22 
1-24 

1-94 
1.42 
1-48 
1.64 
1.68 

1.748 
1.863 
1.827 

1.883 2.061 
1418 2.000 
1.938 2.114 
1.967 2.136 
1.972 2.164 

1.988 2.171 
1.909 2.186 
2.010 2.199 
2.020 2,211 
2.029 2.221 

2.037 2.231 
2.046 2.241 
2.062 2.248 

559 
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D10 A N D E K S O N - D A R E I N G ( A ~ )  TEST F O R  N O R M A L I T Y  

Let x(l) I- xcz) I . * _<. x(,) be an ordered random sample of n observations 
from a normal distribution. Percentage points for the statistic 

where z, = cP([x(,, - X]/s), s2 = C,(x( , )  -. X)*/(n - l), and @ is the distribu- 
tion function for N(0,  l),  can be obtained from the table below (reproduced 
from Pettitt [1977: Table 11). Givenp = pr[Ai I a,], a, is calculated from the 
expression 

(1, = a,(l + c,n-1 -f c p  - - 2 )  

The hypothesis of normality is rejected if A: is too large. 

- 5 1 2  
- .552 - 608 
- ~643 - -707 
-*I35 - #I72 
-a770 - a778 
-.I79 
-a803 
-.818 
- *818 
-a801 - *800 
-a756 - ,749 
-*750 - .I95 
-9881 
-1.013 - 1.063 

2.10 
1-25 
1 *07 
a93 

I a03 
1.02 
1 +04 
-90 
-80 
-67 
-70 
a58 
*42 
*I2  - -09 - *39 - 39 - *80 - ~ 8 9  

- -94 - *93 - 1.34 

- 1  674 
,1938 
-2147 
a2333 
a2.509 
a2681 
-2853 
-3030 
-321 3 
,3405 
~3612 
*3836 
-4085 
,4367 
4695 
,5091 
4397 
,6305 
,7514 
4728 
1.0348 
1.1578 
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D11 DISCORDANCY TEST FOR SINGLE GAMMA OUTLIER 

Below are critical values from Kimber 11979: Table 1, n = 5(1)20] and Barnett 
and Lewis [1978: Table I, r = 0.5, n > 201 for 5% and 1% discordancy tests of 
a single outlier in a sample xl, x 2 , .  . . ,x, of size n from a gamma distribution 
(defined in Appendix D2). The test statistic is 

Z =  max (%), 
l 5 i lS ;n  

where ui = -logui - (n - l)log((n - u i ) / ( n  - 1)) and ui = x , / X .  2 is sig- 
nificant if it exceeds the tabulated value. For further details see Section 4.5. 

n 5% level 1% level 

5 0.756 
6 0.721 
7 0.684 
8 0.649 
9 0.615 

10 0.584 
11 0.555 
12 0.529 
13 0.505 
14 0.484 
15 0.464 
16 0.446 
17 0.430 
18 0.414 
19 0.440 
20 0.387 
24 0.343 
30 0.293 
40 0.237 
60 0.174 

120 0.100 
m 0 

0.834 
0.810 
0.785 
0.756 
0.726 
0.6% 
0.667 
0.640 
0.614 
0.590 
0.568 
0.547 
0.528 
0.510 
0.494 
0.478 
0.425 
0.363 
0.294 
0.215 
0.123 

0 
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d =  2 n= 3 d -  4 d =  5 - - n -  
5% 1% 5% 1% 5% 1% 5% 1% 

--- - 
5 
6 
7 
8 
9 

10 
12 
14 
16 
18 
20 

25 
30 
35 
40 
45 
50 

100 
200 
500 

3.17 
4.00 
4.7 1 
5.32 
5.85 
6.32 
7.10 
7.74 
8.27 
8.73 
9.13 

9.94 
10.58 
11.10 
11.53 
11.90 
12.23 

14.22 
15.99 
18.12 

3.19 
4.11 4.14 
4.95 5.01 
5.70 5.77 
6.37 6.43 
6.97 7.01 

8.00 7.99 
8.84 8.78 
9.54 9.44 

10.15 10.00 
10.67 10.4Y 

11.73 11.48 
12.54 12.24 
13.20 12.85 
13.74 13.36 
14.20 13.80 
14.60 14.18 

16.95 16.45 
18.94 18.42 
21.22 20.75 

4.16 
5.10 
5.97 
6.76 
7.47 
8.70 
9.71 

10.56 
11.28 
11.91 

13.18 
14.14 
14.92 
15.56 
16.10 
16.56 

19.26 
21.47 
23.95 

5.12 
6.01 
6.80 
7.50 
11.67 
Y.61 

10.39 
11.06 
11.63 

12.78 
13.67 
14.37 
14.96 
15.46 
15.89 
18.43 
20.59 
23.06 

5.14 
6.09 
6.97 
7.79 
9.20 

10.37 
11.36 
12.20 
12.93 

14.40 
15.51 
16.40 
17.13 
17.74 
18.27 

21.30 
23.72 
26.37 

6.1 1 
7.01 
7.82 

9.19 
10.29 
11.20 
11.96 
12.62 
13.94 
14.95 
15.75 
16.41 
16.97 
17.45 

20.26 
22.59 
25.2 1 

6.12 
7.08 
7.98 

9.57 
10.90 
12.02 
12.98 
13.81 

15.47 
16.73 
17.73 
18.55 
19.24 
19.83 

23.17 
25.82 
28.62 

D12 D I S C O R D A N C Y  TEST FOR SINGLE MULTIVARIATE 
NORMAL OUTLIER 

Above are critical values from Barnett and Lewis [1978: Table XXVIII] for 5% 
and 1% discordancy tests of a single outlier in a sample of size IZ from 
NJp, I:); p and I: are unknown. The test stahtic is 

= max ( x I  - %)'S--'(X~ - x), 
I _ c r < n  

where S = C,(x, - X)(xi - X)'/(n - 1). The table grves upper bounds only 
for the true critical values, so that a test is significant if Dtn; exceeds the 
tabulated value. 

at3 W I L K S '  L I K E L I H O O D  RATIO m s ' r  

Let U = IEI/(E + HI, where H and E have independent Wishart distribu- 
tions Wd(mf, ,  2) and Wd(rn,, Z), respectively. Then C' - Ud, , ~ , l . n l E  and 



D1S Lnwley-Hotelling Trace Statistic 563 

where 

Given a and x;,,,,,(a), where pr[xi,, > xdmH (a)] = a, the upper a quantile 
value for -flog U is C,&,,(a). Values of C, and xirn,(a) are given in the 
following tables for the parameters d, m H  (d < m H ,  mE) ,  and 

M E  - d -I- 1 = (mE + mu) - m H  - d -k 1. 

For d > m H  we interchange d and mH. Both f and M are unchanged, as the 
value of no = mE + mu is unchanged with regard to the distribution of W 
(now Urn,, d ,  r n E + r n H - d ) .  If the parameter values lie outside the tables, we can 
use the 8'-approximation (2.45). When s = min(d, m H )  is 1 or 2, we use the 
upper tail of an appropriate F-distribution [see (2.49) and (2.50)]. The follow- 
ing tables, pages 565 to 592, are taken from Schatzoff [1966a], Wai and Gupta 
[1969], Lee [1972], and Davis [I9791 by permission of the Biometrika Trustees. 

D14 ROY'S MAXIMUM ROOT STATISTIC 

Let Om, be the largest eigenvalue of H@ + €I-', where H and E have 
independent Wishart distributions W,(m,, Z) and W,( m E ,  Z), respectively. 
Defines = min(d, mu), v1 = * ( Id - mui - 1) and v, =: f ( m E  - d - 1). Up- 
per percentage points for em, are given in the tables on pages 593 to 598 (from 
Davis, personal communication, and Pillai [1960]) for s = 2(1)7. For v2 > 50, 
240/v2 may be used as an argument in harmonic interpolation. For example, 
240/v2 = 5,4,3,2,1,0 for v2 = 48,60,80,120,240,oo. Entries for s = 6(1)10 
and selected values of v2 are given in Pearson and Hartley [1972: Table 481 (see 
also Pillai [1964, 19651); s = 11,12 are in Pillai [1970]; and s = 14,16,18,20 
are in Pillai [1967]. Percentage points for odd values of s are obtained by 
interpolation. Charts are also available for s = 2(1)5 from Heck [1960], and 
more extensive percentage points for s = 2,3,4 are given by Pearson and 
Hartley [1972: Table 491. 

D15 LAWLEY-HOTELLING TRACE STATISTIC 

Let Tg' = mEtr[HE-'], where H and E have independent Wishart distributions 
Wd(mH,  C )  and Wd(mE,  C), respectively. Upper percentage points for 
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are given in the tabies on pages 599 to 607 (reprinted from Davis [1970a by 
permission of the Biometrika Trustees, 1070b, 1980a by courtesy of Marcel 
Dekker, Inc., and personal communication: d = 21) for values of d ,  mM, and 
mE, with d I mH, m E .  If  niH < d, we make the transformatiori d + mH, 
mH --+ d .  nzE 3 m E  + m H  -- d .  and enter these tables using the transformed 
values of the triple (d, n t H ,  mE). 

For other values of the parameters we have, approximately, 

where a, b, and c are defined in Section 2.5.3a. We use the upper tail values of 
this F-di stribution. 

The statistic Tp' is also known as Hotelling's generalized T,* statistic. 

D16 PILLAI'S TRACE STATISTIC 

Let V(') = tr[H(E 1- H) '1, where H and E have independent Wishart distri- 
butions Wd(ni,,, X) and W $ ( m E ,  X), respectively. Define s = min(d, m H j ,  
v 1  = ;(Id - mlfl - I), and v2 = $(mE - d - 1). Upper percentage points are 
given in the tables on pages 608 to 611 (from Schuurmann et ai. [19751) for 
values of S, vl, and v2. 

For other parameter valiies we have, approximately. 
2 9  + s + 1 V(A1 
-_--.__I- __- - K < h , + % i  l ) , S ( Z V , i  $ + I ) '  281 + s + 1 s - v ( S J  

D17 TEST FOR M U T U A L  INDEPENDENCE 

Upper 5% and 1% points for - m  log A,  the likelihood ratio test statistic for 
testing that the dispersion matrix of a d-dimensional multivariate normal 
distribution is diagonal, are given on page 612 (reproduced from Mathai and 
Katiyar (1979al by permission of the Biometrika Trustees). Here tr is the 
sample size, m --- n - (2d 1- 11)/6, and A is given by (3.51). As n -+ 00, 

-mlog A -.a x: ,  where v = +d(d  - 1). Percentage points for this limiting 
chi-square distribution are also tabulated for comparison. 

D18 
SAMPLE SIZES 

TEST FOR EQUAL DISPERSION MATRICES W I T f I  EQUAL 

A modified likelihood ratio test statistic for testing the equality of I dispersion 
matrices is -2  log M ,  where M is given by (9.15). Assuming multivariate 
normality and equal sample sizes (n l  = n 2  = . . + =s n,  = no)? upper 5% points 
for the test statistic are given on pages 613 and 614 (from J. C. Lee et al. 
[1977]). Here d is the number of variables and fo = no -- 1. Chi-square and 
F-approxirnations are given by (9.16) and (9.17). 
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d= 3 

1 
2 
3, 
4 
6 

7 
8 
9 

10 

12 
14 
16 
18 
20 
24 
30 
40 
60 

120 

e 

03 

X L H  

x 
1 
2 
3 
4 
5 

e 
7 
8 
9 

10 
12 
14 
18 
18 
20 
24 
30 
40 

120 
eo 

03 

"LH 

0.100 

1.322 
1.127 
1.071 
1.046 
1.032 

1.023 
1.018 
1.014 
1.012 
1.010 

1.007 
1.006 
1.004 
1.003 
1.003 
1.002 
1.001 
1.001 
1.000 
1.000 

1.000 
14.8837 

0.100 

1.433 
1.191 
1.113 
1.076 
1.056 

1.042 
1.033 
1.027 
1.022 
1.019 
1.014 
1.010 
1.008 
1.007 
1 006 
1.004 
1.003 
1.002 
1.001 
1'000 

1.000 

22.3071 

0.060 

1.369 
1.140 
1477 
1.049 
1.036 

1.020 
1.018 
1.013 
1.011 

1.008 
1.006 
1.006 
1.004 
1.003 
1.002 
1.001 
1.001 
1,000 
1.000 
1.000 

16.9190 

1.028 

0.050 

1.481 
1.208 
1.122 
1.082 
1.059 

1.046 
1.036 
1.029 
1424 
1.020 
1.015 
1.011 
1.009 
1.007 
1.008 

1.004 
1.003 
1,002 
1.001 
1.000 

1.000 
24.9958 

m H - 3  

0.026 

1.394 
1.163 
1.084 
1,063 
1.037 

1.028 
1.021 
1.017 
1.014 
1.011 

1.008 

1.005 
1.004 
1.003 
1.002 
1.001 
1.001 
1.000 
1.000 

1.000 
19.0228 

i.ooe 

mH=5 

0.025 

1.627 
1.224 
1,131 
1.087 
1.063 
1.048 
1.038 
1.030 
1,025 
1.021 
1.015 
1.012 
1.009 
1.008 
1.006 

1.005 
1.003 
1.002 
1.001 
1.000 

1.000 

27-4884 

0.010 

1.437 
1-168 
1.092 
1.068 
1.041 

1.030 
1.023 
1.018 
1.015 
1.012 

1.009 
1.007 
1.006 
1.004 
1.004 
1.002 
1.002 
1.001 
1.000 
1.000 
1.000 

2 i m e o  

0.010 

1.684 
1.246 
1.142 
1.094 
1.068 

1.051 
1.040 
1.033 
1.027 
1.023 

1.017 
1,013 
1.010 
1.008 
1.007 
1,005 
1,003 
1.002 
1,001 
1.000 

1.000 

30,5779 

0.005 

1.468 
1.178 
1.098 
1.002 
1.043 

1.032 
1.026 
1.019 

1.013 

1.009 
1.007 
1.006 
1406 
1.004 

1.003 
1.002 
1.001 
1.000 
1.000 
1.000 

23.5894 

i+oie 

0.005 

1425 
1.200 
1.150 
1.099 
1.071 

1.054 
1.041 
1.034 
1.028 
1.024 

1.017 
1.013 
1.011 
1.009 
1,007 

1.005 
1.005 
1.002 
1 .oo I 
1.000 

1.000 

32,8013 

0.100 

1.379 
1.159 
1.091 

1.043 
1.032 
1,026 
1.020 
1.017 
1,014 

1.010 
1.008 
1.006 
1.006 
1.004 

1.003 
1.002 
1.001 
1.000 
1.000 
1.000 

18.6494 

i-oeo 

m ~ = 4  

0.060 0.026 

1.422 1.4133 

i.oe6 1.070 

1.174 1.188 
1,099 1.107 

1.046 1.060 
1.036 1.037 
1.027 1,029 
1.022 1.023 
1.018 1.019 
1.016 1.016 
1.011 1.012 
1.008 1.009 
1.007 1.007 
1.006 1.008 
1.004 1.006 
1.003 1.003 
1.002 1.002 
1.001 1.001 
1.001 1.001 
1.000 1.000 
1.000 1.000 

21.02e1 23.33137 

0.010 

1.614 
1.20'1 
1.118 
1,076 
1.064 
1.040 
1.091 
1.025 
1.021 
1,017 

1.012 
1.010 
1.007 
1.008 
1.006 
1.004 
1.002 
1.001 
1.001 
1.000 
1.000 

ae.2170 

0.006 

1.660 
1.220 
1.123 
1.080 
1.067 
1.042 
1.033 
1.028 
1.022 
1.018 

1.013 
1.010 
1.008 
1.008 
1.006 
1.004 
1.002 
1.001 
1.001 
1.000 
1.000 

28.2996 

0.100 

1.482 
1.222 
1.136 
1.092 
1.088 
1.052 
1,041 
1,034 
1.028 
1.024 
1.018 
1,014 
1.011 
1.009 
1.007 
1.006 
1.004 
1.002 
1.001 
1-000 
1.000 

0.060 

1.636 
1.241 
1.146 
1.009 
1.072 
1.058 
1,044 

1.030 
1.026 
1.019 
1.014 
1.012 
1.009 
1.008 

1.004 
1.002 
1.001 
1,000 
1.000 

1 . o ~  

1.008 

m H = 6  

0.026 0,010 

1.586 1.649 
1.259 1.282 
1.166 1.167 
1.106 1.113 
1.077 1.082 
1.059 1,083 
1,047 1.060 
1.038 1.041 
1.032 1,034 
1.027 1.028 
1.020 1.021 

1.012 1.013 
1.010 1.011 
1.008 1.009 

1.016 1.018 

1.008 1.006 
1.004 1.004 
1.002 1.002 
1.001 1.001 
1.000 1.000 
1.000 1.000 

0.006 

1.894 
1.298 
1.176 
1.119 
1.086 
1.068 
1.062 
1.042 
1.036 
1.030 
1.022 
1.017 
1.014 
1.011 
1.008 
1,007 
1.004 
1.003 
1.001 
1.000 
1.000 



D13 (Continued) 
-- _l_----- 

d =  3 
__--.---- _----_--_ __I-- 

\= 
M\ 

a 
1 

3 
4 
6 

7 
8 
9 
10 

12 
14 
18 
19 
20 

24 
30 
40 
60 
120 

e 

co 

xim" 

x 
1 
2 
3 
4 
5 

6 
7 
8 
9 
10 

12 
14 
16 
18 
20 

24 
30 
40 
60 
120 

00 

XCL" 

oion 

1.820 
1.251 
1.166 
1.109 
1.081 

1.063 
1.050 
1.041 
1.034 
1.029 

1.022 
1.017 

1.011 
1.009 

1.007 
1.005 
1,003 
1.001 
1.000 

1.000 

294151 

1.014 

0.100 

I412 
1.307 
1.108 
1,141 
1.107 

1,084 
1,008 
1457 
1.048 
1.041 

1.031 
1.025 
1.020 
1.016 
1.014 

1.010 
1,007 
1,004 
1.002 
1.001 

1.000 

387412 

0*050 

1,686 
1.272 
1.168 
1.110 
1.080 

1,067 
1.053 
1.044 
1437 
1.031 

1.023 
1.018 
1.014 
1.012 
1.010 

1.007 
1,005 
1.003 
1.001 
1400 

i m o  
3243700 

0.050 

1.076 
1.391 
1.211 
1.150 
1.113 

1.089 
1.072 
1.000 
1.061 
1,043 

1.033 
1.026 
1421 
1,017 
1.014 

1.011 
1.007 
1.004 
1.002 
1 .oo 1 
1 .ooo 
40.1133 

mH 7 

0.026 

1.640 
1.202 
1.178 
1.123 
1.091 

1.070 
1.050 
1.040 
1.038 
1.033 

1,024 
1-01u 
1.016 
1.018 
1.010 

1.008 
1.005 
1.003 
1.001. 
1.000 

1.000 

36.418~ 

inl, = 9 

0.026 

1,737 
1,354 
1.224 
1.168 
1.116 

1.094 
1,070 
1.063 
1.053 
1.045 

1.034 
1.027 
1.028 
1.018 
1,015 

1.011 
1.008 
1.004 
1.002 
1.001 

1.000 

43.1946 

0.010 

1.708 
1.317 
1.192 
1,132 
1.097 

1.076 
I.0CU 
1.049 
1.04 I 
1.035 

1.028 
1.020 
14Jld 
1.013 
1-01 I 

1.008 
1.00G 
1.003 
1.001 
1.003 

1.000 

384322 

0.010 

1.814 
1-382 
1.240 

1,127 
i.ia!I 

1.w 
1~08U 
140'1 
I.ORI1 
1.04R 

1,03(1 
1,028 
1.023 
I.01U 
1.018 

1.014 
1.008 
1.006 
1.002 
1,OLll 

1.000 

4 0 4 0 ? 0  

0.006 

1.768 
1.336 
1.202 
l*l$B 
1.102 

1.078 
1,063 
1.051 
1.043 
1.030 

1.027 
1.021 
1.017 
1.014 
1.011 

1.008 
1.006 
1.003 
1,002 
1.000 

1.000 

41.401 1 

0-005 

I .87 I 
1.403 
1,251 
1.17U 
1.132 

1.103 

I.UtiU 
I 4 G n  
1~05U 

1.0;tll 
I4KIU 
I W I  
1.0"U 
14J111 

1.012 
I . U W  
1405 
I.UO:! 
1 4 J 1  

I.UO0 

40~U.I . IU 

i.0n.t 

0.100 

1.672 
1.280 
1.177 
1.125 
1.004 

1.073 
1.059 
1.049 
1.041 
1.035 

1.026 
1.021 
1417 
1.014 
1.011 

1.008 
1.008 
1.003 
1.002 
1.000 

1"OOO 

0.050 

1.632 
1.302 
1.190 
1.133 
1.100 

1.078 
1,003 
1.052 
1.043 
1.037 

1.028 
1-022 
1.018 
1.014 
1.012 

1.000 
1.006 
1.004 
1.002 
1.000 

1.000 

mM-8 

0425 

1.690 
1.324 
1.201 
1.141 
1.106 

1.082 
1.066 
1.064 
1.046 
1.039 

1,029 
13023 
1.018 
1.016 
1,013 

1.000 
1.006 
1.004 
1.002 
1.000 

1.000 

0.010 0.005 

1.763 l-Hl6 
1.350 1.370 
i.210 1.227 
1,150 1.167 
1.112 1.117 

1.087 1.(JYl 
1.070 A.073 
1.088 14GO 
1.048 1.050 
1.041 1.543 

1.031 1.032 
1.024 1.025 
1.019 1.020 
1.016 1.317 
1.013 1.014 

1.010 1.010 
1,007 1.007 
1.004 1404 
1402 I402 
1.000 1.001 

1.000 1.000 

ml, = 10 

0.100 

1.050 
1.333 
1.218 
1.157 
1.120 

1.095 
1.078 
1,005 
1.056 
1.047 

1.036 
1.02L) 
1.023 
1.019 
1.016 

1.012 
1.008 
1.005 
1.002 
1.001 

1.000 

0.080 0.025 

1.716 1.781 
1.369 1.363 

1.167 1,176 
1.127 1.133 

1.101 1.108 
1.082 1.086 
1.0C8 1.072 
1.068 1.061 
1.060 1.08% 

1,038 1.040 
1.030 1.031 
1.024 1.026 
1.020 1,021 
1.017 1.018 

1.012 1.01,) 
1.008 1.009 
1.005 1.005 

1.001 1.001 

1.000 1.000 

1.232 r.245 

1.002 1.003 

0.010 

14E2 
1.413 
1.262 
1.187 
1.141 

1.112 
1.091 
1.075 
1.064 
1.055 

1.042 
1.033 
1.021 
1.022 
1.010 

1014 
1.008 
1.006 
1.003 
1,001 

1.000 

0.006 

1.921 
1:436 
1.274 
1.195 
1.147 

1.118 
1.094 
1.078 
1.068 
1.067 

1.043 
1.094 
1.028 
1,023 
1,019 

1.014 
1.010 
1.000 
1.003 
1.001 

1.000 

40.2680 43.7730 46.9702 50.8022 53,0720 
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D13 (Continued) 

d -  3 

m H =  12 

0026 
0.006 0.010 

0.100 0.060 0.010 0.006 

1 1.686 1-764 
2 1-368 1.386 
3 1,237 1.262 
4 1.173 1.183 
5 1.133 1.140 

8 1.108 1.112 
7 1.087 1.092 
8 1.073 1-077 
9 1.082 1.086 

LO 1.064 1.066 

12 1.041 1443 
14 1,033 1.034 
16 1.027 1,028 
18 1.022 1.023 
20 1.019 1.020 

24 1.014 1.014 
so 1*009 1.010 
40 1.006 1.008 
60 1.003 1.003 
20 1.001 1~001 

co 1.000 1*OOo 

X 2 m H  43.746 47.400 

1.821 
1.410 
1.266 
1.192 
1.147 

1-117 
1.098 
1.080 
1.068 
1.069 

1.046 
1.036 
1-029 
1.024 
1.020 

1.016 
1.010 
1.008 
1.003 
1.001 

1.000 

60.726 

1.907 
1.442 
1,284 
1.204 
1.168 

1.124 
1.101 
1.084 
1.072 
1.082 

1.047 
1.037 
1.030 
1.026 
1.021 

1.018 
1.011 
1.007 
1.003 
1.001 

1.000 

54.776 

1.989 
1,468 
1.297 
1.213 
1.162 

1.128 
1.105 
1.087 
1.074 
1.084 

1.049 
1.039 
1.031 
1,028 
1.022 

1.018 
1.011 
1.007 
1.003 
1.001 

1.OOO 

67,648 

1.718 
1.382 
1.266 
1.188 
1.146 

1.117 
1.097 
1.081 
1.069 
1.060 

1.046 
1.037 
1.030 
1.026 
1.021 

1.016 
1.011 
1.007 

1.001 
14Joo 

47.2122 

i.ooa 

1.791 
1.410 
1.272 
1.199 
1.164 

1,123 
1.101 
1.086 
1.073 
1.063 

1.048 
1.039 
1.032 
1.026 
1.022 

1,017 
1.011 
1.007 
1~003 
1.001 
1.000 

60*9986 

1460 
1.437 
1.287 
1.209 
1.161 
1.129 
1.106 
1.089 
1.078 
1.066 

1.060 
1.040 
1.033 
1.027 
1.023 
1.017 
1.012 
1.007 
1.004 
1.001 
1.000 

54.4373 

1.949 
1.470 
1.308 
1.221 
1.170 

1.138 
1.111 
1.083 
1.080 
1.069 

1.063 
1.042 
1.034 
1.029 
1.024 
1.018 
1.012 
1.008 
1.004 
1.001 
1.000 

584192 

2.013 
1.496 

1.230 
1.178 
1,141 
1.116 
1.097 
1.082 
1.071 

1.064 
1.043 
1.036 
1.028 
1.026 
1.019 
1.013 
1.008 
1.004 
1.001 
1.000 

61.6812 

i.aie 

mH= 13 

0.026 0*006 0.100 0.050 0*010 0.100 0.060 0.010 0.005 

1.760 
1.406 
1.274 
1.203 
1.168 

1.128 
1.108 
1.088 
1.07 8 
1.088 

1.062 
1.041 
1.034 
1.028 
1.024 

1.018 
1.012 
1.008 
1.004 
1.001 

1.000 

60460 

1.824 
1.434 
1.291 
1.214 
1.187 

1.134 
1.111 
1.094 
1.080 
1.089 

1.064 
1.043 
1.036 
1.028 
1.026 

1.019 
1.013 
1.008 
1.004 
1.001 

1.000 

64.672 

1.898 
1.482 
1-308 
1.226 
1.174 

1.140 
1.118 
1.098 
1.083 
1-072 

1.066 
1.046 
1.037 
1.03 1 
1.026 

1.019 
1.013 
1.008 
1.004 
1.001 

1.000 

58.120 

1.988 
1.497 
1.326 
1.238 
1.184 

1.148 
1.122 
1.102 
1.088 
1.078 

1.069 
1.047 
1.038 
1.032 
1.027 

1.020 
1.014 
1.009 
1.004 
1.001 

1.000 

82.428 

2.066 
1.622 
1.340 
1.241 
1.191 

1.163 
1.128 
1.106 
1.090 
1.078 

1.061 
1.048 
1.040 
1.033 
1.028 

1.021 
1.014 
1.009 
1.004 
1.001 

1.000 

86,478 

1.780 
1.427 
1.292 
1.217 
1.171 

1.138 
1.116 
1.097 
1.084 
1.073 
1.067 
1.046 
1.037 
1.031 
,1.027 
'1.020 
1,014 
1.009 
1.004 
1.001 
1.000 

64.0802 

1.867 
1.468 
1.309 
1.229 
1.179 
1-146 
1.121 
1.102 
1.088 
1.076 
1.06% 
1.048 
1,039 
1.033 
1,028 
1.021 
1.016 
1.009 
1.004 
1.001 
1.000 

68,1240 

1 
2 
3 
4 
5 

6 
7 
8 
9 

10 

12 
14 
16 
18 
20 

24 
30 
40 
80 
120 

W 

Xirn"  

1.931 
1.488 
1.328 
1.240 
1.188 
1.162 
1.126 
1.106 
1.091 
1.079 
1.081 
1.049 
1.041 
1.034 
1.029 
1.022 
1.016 
1.009 
1.006 
1.001 
1.000 

81.7768 

2.028 2.095 
1'523 1.649 
1.348 1.381 
1.264 1,284 
1.198 1.206 

1.159 1.186 
1.132 1.136 
1.111 1.115 
1.096 1.099 
1.082 1.086 
1.004 1,066 
1.062 1.053 
1.042 1.044 
1.035 1.036 
1.030 i.oai 
1.023 1423 
1.016 1.016 
1.010 1.010 
1,006 1.006 
1.001 1.001 
1.000 1.000 

88.2082 694380 
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\ a  
M\ 

1 
2 
3 
4 
6 

0 
7 
8 
9 

10 
12 
14 
18 
18 
20 
24 
30 
40 
60 

120 
m 

0.100 

1.808 
1-449 
1.309 
1.292 
1.183 
1.148 
1.124 
1.105 
1.091 
1.079 
1,082 
1.060 
1 *04 1 
1.035 
1.030 
1422 
1.018 
1.010 
1.006 
1 .oo 1 
1.000 

0.060 

1.887 
1.480 
1.327 
1.244 
1.182 

1.130 
1.110 
1.095 
1.083 
1.086 
1.052 
1.043 
1.038 
1.031 
1.023 
1.018 
1*010 
1,006 
1.001 
1.000 

i-ise 

1 
2 
3 
4 
6 

8 
7 
8 
9 

10 
12 
14 
18 
18 
20 
24 
90 
40 
60 

120 
W 

Xi," 

0.100 

1.881 
1.489 
1.341 
1.260 
1.208 
i.ia 
1.142 
1,122 
1,105 
1.092 
1.073 
1,069 
1.049 
1.04 I 
1,035 
1-027 
1.018 
1412 
1.006 
1.002 
1.000 

84.896 

0450 

1.944 
1422 
1.381 
1.273 
1.210 
1.117 
1.149 
1.127 
1.110 
1.008 
i.07a 
1.061 
1461 
1.013 
1.037 
1.028 
1.020 
1.012 
1.008 
1.002 
1 .om 

08.889 

m H =  I5 

0.060 

I .984 
1-610 
1.344 

1.200 

1.136 
1.116 
1499 
1.088 

1.087 
1454 
1.046 
1437 
1.032 
1.024 
1.017 
1.010 
I .006 
1.001 
1*000 

66.410 

1.268 

1.1~13 

nr,, - I 7  

0.026 

2426 
1.664 
1.370 
1.280 
1-226 
1,184 
1.164 
1.132 
1.114 
1.100 
1.079 
1.064 
1.063 
1 4 4 4  

1w!9 
1.020 
1.013 
1.00(1 
1.002 
1.000 

72.016 

1 . m  

0.010 

2.081 
1.647 
1.386 
1.270 
1.211 
1,171 
1,142 
1.120 
1.103 
1.090 

1.070 
1458 
1.047 
1.038 
1.033 
1.026 
1.017 
1.011 
1.005 
1.001 
1 .ooo 

8B,t)57 

0.100 0.006 

1.835 2.139 
1.576 

1.326 1.381 
1.246 1.280 

1.218 1.196 

14a9  

1.177 1,168 
1.147 1.133 
1.124 1.114 

1,093 1486 
1.072 1.067 
1.068 1.064 
1.048 1.046 
1.040 1.038 

1432 1.034 

1.107 1.098 

1.026 
1.017 
1.01 1 
1.005 
1.002 

1 *020 
0.018 
1.01 I 
1406 
1,002 
1.000 1.000 

0.060 

1.018 
1.601 
1,344 
1.268 
1.204 
1.187 
1.138 
1,119 
1,102 
1,088 
1.070 
1.087 
1.047 
1.038 
1.034 

1.018 
l.011 
1.008 
1.002 
1.000 

i.oza 

m ~ = 1 6  

0.02G 

1.996 
1.632 
1.382 
1.271 
1.213 
1.174 
1.148 
1.123 
1.106 
1.092 
1.073 
1.068 
1.040 
1.041 
1.036 
1.028 
1.018 
1.011 
1.008 
1.002 
1.000 

0.0 10 

2-096 
1-671 
1,384 
1,286 
1.224 
1.182 
1.152 
1.129 
1,111 
1,087 
1.078 
1.081 
1461  
1443 
1.038 
1.027 
1.018 
1.012 
1.008 
1.002 
1.000 

0.006 

2.169 

1.400 
1.298 
1.232 
1.188 
1.167 
1,133 
1.116 
1.099 
1.078 
1,003 
1.062 
1.044 
1.037 
1.028 
1,020 
1.012 

1,002 
1~000 

1 . 6 ~ ~  

i m a  

0405 

2.803 
1423 
1.419 
1.312 
1,246 
1,200 
1,167 
1,142 
1.123 
1.107 

1.084 
1.008 

1.047 
1.04 I 
1.03 1 
1.022 
1.013 
1.007 
1.002 

1.000 
80.747 

1.068 

0.100 

1,886 
1.608 
1.367 
1.278 
1.218 
1.170 
1.161 
1.120 
1.112 
1-090 
1.076 

1.053 
1.045 
1.03H 

1.029 
1.021 
1.013 

1.002 
1.000 

1.004 

1.006 

ai.a728 

0060 

1.m 
1.642 
1.377 
1.288 
1.228 
1.188 
1.158 
1.136 
1.117 
1.103 
1.081 
1~000 
l.OliG 
1.040 
1.040 
1.030 
1.021 
1.013 
1.007 
1.002 
1,000 

72.1632 

2.053 
1.576 

1.299 
1.236 
1.196 
1.104 
1.140 
1.121 
1.105 
1.084 
1,008 
1.067 
1.018 
1.041 
1.031 
1.022 
1.014 
1.007 
1.007. 
1.000 

70.1920 

i m a  

041q 

9.168 
1418 
1.420 
1415 
1.249 
1.204 
1.171 

1.127 
1.1 11 
1.087 
1.071 
1.068 
1.060 
I .043 
1.032 
1,028 
1.014, 
1,007 
1.002 
1.000 

1.14a 

8i.oa88 

0.006 

2.235 
14340 
1.437 
1.327 
1.268 
1.211 
1.177 
1.161 
1.130 
1.114 
1.090 
1.073 
1.061 
1.061 
1.044 
1.033 
1.023 
1,016 
1.007 
1402  
1.000 

84.6018 

568 



D13 (Continued) 

d =  3 

mu= 19 
"H 3 20 

0.100 0,060 0.026 0.010 0.006 
0.100 0.060 0.026 0010 0.006 

1 
2 
3 
4 
6 

8 
7 
8 
8 
10 

12 
14 
18 
18 
20 

24 
30 
40 
80 
120 

1408 
1.628 
1.372 

1,229 

1.188 
1.180 
1.137 
1.118 
1.106 

1.084 
1.088 
1.067 
1448 
1,041 

1.032 
1.022 
1.014 
1.007 
1.002 

i.a86 

1.898 
14581 
1493 
1.300 
1.240 

1.198 
1.187 
1.143 
1.124 
1.109 

1,087 
1.071 
1,069 
1.060 
1.043 

1,033 
1.023 
1.015 
1.007 
1.002 

2.080 
1.686 
1,412 
1,313 
1.260 

1.206 
1.173 
1.148 
1.129 
1.113 

1.090 
1.073 
1.081 
1.062 
1.044 

1.034 
1.024 
1.016 
1.008 
1.002 

2,188 
1.837 
1.437 
1430 
1.262 

1,216 
1.181 
1.156 
1.134 
1-118 

1-083 
1.078 
1.063 
1.064 
1.046 

1.035 
1.025 
1.016 
1.008 
1.002 

2.287 
1468 
1.464 
1.341 
1.271 

1.222 
1,188 
1.169 
1,138 
1.121 

1.088 
1,078 
1.086 
1.06 6 
1.047 

1.038 
1.026 
1.018 
1*008 
1*002 

1432 
1.644 
1.387 
1.298 
1.240 

1.199 
1.188 
1.145 
1.127 
1.112 
1.080 
1.073 
1.081 
1.062 
1.044 

1.034 
1.024 
1415 
1.008 
1.002 

2.02 1 
1.680 
1,408 
1.313 
1.251 

1.208 
1.178 
1.151 
1.132 
1.118 
1.092 
1.075 
1.083 
1.063 
1.048 

1.036 
1.026 
1-018 
1.008 
1.002 

2.108 
1.614 
1.428 
1.327 
1.281 

1.218 

1.167 
1.138 
1.120 
1.086 
1,078 
1.085 
1.066 
1.048 

1.038 
1.028 
1.015 
1.008 
1.002 

1.182 

2.215 
1457 
1.463 
1.344 
1.274 
1.226 
1.180 
1.183 
1.142 
1.126 
1.088 
1.081 
1.087 
1.067 
1.048 

1.038 
1.027 
1.017 
1.008 
1.002 

2.287 
1.688 
1.472 
1.356 
1.283 

1.233 
1-196 
1.188 
1.148 
1.128 
1.102 
1.083 
1.088 
1.058 
1.060 

1.038 
1.027 
1.017 
1.009 
1.003 

00 1.000 1.000 1.OOo 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

X i r n H  71,040 76424 79.762 84.733 88.238 74.3870. 78.0818 83.2876 88.3784 81~861'7 

1 
2 
3 
4 
6 

6 
7 
8 
9 
10 
12 
14 
16 
18 
20 
24 
30 
40 
60 
120 
00 

X L "  

0.100 

1.964 
1601 
1.401 
1410 
1.250 

1.208 
1.177 
1.153 
1.133 
1-118 

1.094 
1.077 
1.086 
1.065 
1.048 

1.038 
1.028 
1.016 
1.008 
1,002 

1.000 

77.746 

0.050 

2.044 
1.698 
1.423 
1,326 
1.282 

1.217 
1,184 
1.159 
1.130 
1.122 

1.088 
1.080 
1.067 
1.067 
1.049 

1.038 
1.027 
1.017 
1.009 
1.002 

1.000 

824528 

ma = 21 

0.026 0.010 0*006 

2.131 2.243 2425 
1433 1.877 1,708 
1.444 1.470 1,488 
1-340 1.367 1470 
1.273 1.288 1.296 

1,228 1.238 1.243 
1-191 1.200 1,206 
1.186 1.172 1,178 
1.144 1.160 1.164 
1.127 1.132 1.136 

1.101 1.106 1,108 
1.083 1.088 1.088 
1.068 1.072 1.074 
1.069 1.081 1.063 
1.061 1.053 1.054 

1.039 1.040 1.041 
J.028 1.029 1.028 
'1.018 1.018 1.019 
1.008 1.009 1.009 
1.003 1.003 1.003 

1.000 1~OOo 1.000 

88.830 92.010 95.849 

0.100 

1,976 
1.678 
1,416 
1.322 
1.281 

1.218 
1.185 

1.142 
1.124 
1.09B 

1.069 
1.059 
1.051 
1.039 
1.028 
1.018 
1.009 
1,003 
1.000 

81.0856 

i.ieo 

1.082 

mH = 22 

0.060 0.026 

2.067 2.168 
1.618 1.061 
1.438 1.469 
1.338 1.363 
1.273 1.284 
1.227 1.236 
1.193 1.200 
1,107 1.173 
1.147 1.161 
1.128 1.133 
1.103 1.108 
1.086 1.087 
1.071 1.073 
1.081 1,063 
1,052 1,054 
1.040 1.041 
1.029 1.030 
1.018 1.019 
1.009 1.010 
1,003 1.003 
1.000 1.000 
86.8849 90,3489 

0.010 0.006 

2.289 2.363 
1.098 1,729 
1.485 1.504 
1.371 1.384 
1.297 1,307 
1.246 1.264 
1.208 1.216 
1.180 1,186 
1.157 1,181 
1.138 1.141 
1.110 1.113 
1491 1.083 
1.078 1.078 
1.085 1.086 
1.068 1.057 
1.043 1.044 
1.031 1.031 
1.020 1.020 
1.010 1.010 
1.003 1.003 
1.000 1.000 

86.8257 88.3304 

569 



D 1 3  (C o 11 t in  ucd) 

1 
2 
3 
4 
6 

8 
7 
8 
8 
10 

12 
14 
16 
18 
20 

24 
30 
40 
80 
120 

m 

x:* ,I 

x 
1 
2 
3 
4 
6 

6 
7 
8 
9 
10 

12 
14 
16 
1H 
20 

24 
30 
40 
60 
120 

W 

X'fl,,, 

570 

0.100 

1,406 
1.178 
1.105 
1.071 
1.061 

1.039 
1.031 
1.026 
1.020 
1.017 

1.013 
1.010 
1.008 
1.008 
1.005 

1.004 
1.002 
1-001 
1.00 1 
1.000 

14)oo 

23.8418 

mt1* 4 

0.060 0-026 0,010 0.005 

1.461 1,494 1.6liO 1,689 
1.194 1.209 1.220 1.243 
1.111 1.122 1.132 1.139 
1.078 1.081 I.OR8 1.092 
1.056 1.068 1.063 1.006 

1.042 1.044 1.048 1.060 
1.033 1.036 1.037 1,039 
1.027 1.028 1430 1.032 

1,018 1,019 1.011 1.022 

1.014 1.014 1.015 1.010 
1.010 1.011 1,012 1412 
1.008 1.00Y 1.0@@ 1.010 
1.007 1.007 1.008 1.008 
1.008 1*006 l.O@B 1.007 

1.004 1.004 1.004 1,006 
1.003 1,003 1.003 1.003 
1.002 1.002 1.002 1.002 
1.001 1.001 1.001 1.001 
1~000 1.000 1.000 1.000 

1.000 1.000 1.0c0 1.000 

28.2062 28.8464 31.9999 34,4672 

1.022 1,023 1,026 1.020 

mtg - 6 

0.100 0.050 0.025 0.010 

1.486 1.617 1.668 1.628 
1.222 1.240 1,267 1.270 

1.000 1.102 1,108 1.115 
1.071 1,076 1,080 1.085 

1'065 1.069 1.062 l.OR(; 
1.044 1.047 1.04R 1.062 
1.036 1.038 1.010 1.043 
1.030 1.032 1,034 1,036 
1.028 1.027 1.029 1.030 

1.019 1.020 1.0!31 1.023 
1.016 1,018 1017 1.U18 
1,012 1.013 1.013 1,014 
1.010 1410 1,011 1.012 
1'00R 1.000 1.009 1.010 

1.008 1.000 1.007 1,007 
1.004 1.004 1,004 1,006 
1,002 1.002 1.003 1.003 
1.001 1.001 1,001 1.001 
1~000 1.000 1.000 1.00@ 

1~000 1.000 1.000 1.000 

33.1963 38.4161 39.3841 42.0788 

1.138 1.148 1 . 1 ~ 7  i.im 

0.006 

1,674 
1,206 
1.177 
1,121 
1'089 

1,068 
1,066 
1.046 
1.037 
1.032 

1424 
1,018 
1,016 
1.012 
1~010  

1,007 
1.006 
1.003 
1.001 
1.000 

1~000 

456685 

rn" = 5 

0.100 0,060 0.025 0.010 0.006 

1.436 1.483 14330 1489 1.632 
1.190 1.216 1.233 1.253 1.269 
1,121 1.130 1.138 1.160 1.168 
1.083 1.089 1.094 1,101 1,106 
1.061 1.066 1.060 1.074 1.077 

1.047 l*OBO 1.063 1.058 in068 
1.037 1.040 1,042 1.044 1.048 
1.030 1.032 1.034 1.038 1.038 
1.028 1.027 1~028 1.030 1.031 
1.021 1.023 1,024 1.028 Y.026 

1.016 1.017 1.018 1.019 1,020 
1.012 1.013 1.014 1.014 1.015 
1.010 1.010 1.011 1.012 1.012 
1.008 1.008 1,01)9 1.009 1,010 
1.007 1,007 1.007 1.008 1.008 

1.005 1.006 1.005 1-006 1.000 
1.003 1.003 1.004 1.004 1.004 

1.001 1.001 14lo1 1.001 ?.001 
1000 1.000 1.000 1.000 1.000 

1.000 1,000 I ~ O O U  1.000 1.0ou 

28.4120 31.4104 34.1690 37.6682 39.0988 

1.002 1.002 1.002 1.002 1.002 

'"H = 7 

0.100 0.050 0.025 0.010 0.005 

1.497 1.660 1.801 1.867 1.716 
1.244 1,283 1.281 1.306 1.322 
1.165 1.166 1.176 1.188 1.187 
1.109 1.118 1.122 1.130 1,130 
1.082 1.087 1492 1.097 t.101 

1.084 1.068 1.071 1.076 1.079 
1.062 1.056 1.057 1.061 1.063 
1.043 1.045 1.047 1.050 1.062 
1.038 1.038 1.040 1.042 1,044 
1.031 1.032 1.034 1.036 1.037 

1.023 1-024 1420 1.027 1,028 
1.016 1.019 1.020 1,021 1.022 
1.015 l * O I G  1.016 1.017 l.017 
1.012 1.013 1.013 1.014 1.014 
1.010 1.011 1411 1.012 1012 

1.005 1.005 1 . ~ ~ 6  1.000 1.006 
1.00~ 1.003 1.003 1.003 1.004 
1.001 1.QOl 1.002 1.002 1.002 
1.0ou 1.000 140v 1400 1.000 

1.000 1.000 t40a 1.000 1,OOU 

:mol6~1 41.3372 44.4807 48.2782 60.9~3 

1407 1.008 1,008 1.008 1.009 



D13 (Continued) 

d -  4 

m H = 8  

0.100 0.060 0.026 

1 1.628 1.683 1.636 
2 1.266 1.286 1.306 
3 1.172 1.183 1.103 
4 1.123 1.130 1.137 
6 1.093 1.090 1.103 

6 1.074 1.078 1.081 
7 1.060 1.063 1.066 
8 1.060 1.052 1.066 
g 1.042 1.044 1.046 

10 1*036 1.038 1.030 

12 1.027 1.020 1.030 
14 1.021 1.023 1.023 
16 1.017 1.018 1.010 
18 1.014 1,016 1.016 
20 1.012 1013 1.013 

24 1.009 1.OP0 1.010 
30 1.006 kb06 1.007 
40 1.003 1.004 1.004 
60 1.002 1.002 1.002 

120 1.000 1.000 1.000 

Q3 1.000 1.000 1.000 

xdmH 42.6847 46.1943 49.4804 

0.010. 0.006 0.100 

~ 

m H = 9  

0.060 0.026 0.010 0.006 

1.704 
1.330 
1.207 
1,146 
1.100 

1.086 
1.070 
1.068 
1.048 
1.041 

1.031 
1.026 
1.020 
1.016 
1.014 

1.010 
1.007 
1.004 
1.002 
1.001 

1.000 

63,4868 

1.764 
1.348 

1,162 
1.114 

1.080 
1.072 
1.060 
1.060 
1.043 

1.033 
1.026 
1.021 
1.017 
1.014 

1.010 
1.007 
1.004 
1.002 
1.001 

1.000 

56.3281 

1 . p  

1.557 
1.288 
1.189 
1.137 
1.106 

1.083 
1.068 
1.067 
1.048 
1.041 

1.032 
1.026 
1.020 
1.017 
1.014 

1.010 
1.007 
1.004 
1.002 
1.001 

1.000 

47.2122 

1.614 1,660 
1.300 1429  
1.201 1.212 
1.144 1.152 
1.110 1-116 

1.088 1.091 
1.071 1.016 
1.060 1.062 
1.050 1,063 
1,043 1.046 

1.093 1,034 
1.026 1.027 
1.021 1.022 
1.018 1.018 
1.016 1.015 

1.011 1.011 
1.007 1.008 
1.004 1.005 
1.002 1.002 
1.001 1.001 

.l.OOO 1.000 

60.0985 64.4373 

1.740 1.792 
1-366 1.373 
1.226 1.236 
1.161 1.167 
1.122 1.127 

1.006 1.100 
1.078 1.081 
1.066 1.068 
1,066 1.067 
1.047 1.049 

1,036 1.037 
1.020 1.020 
1.023 1.024 
1.019 1.020 
1.016 1.017 

1.012 1.012 
1.008 1.008 
1.005 1-006 
1.002 1.002 
1.001 1.001 

1.000 1.000 

68.6192 61.6812 

m H =  10 m H = l l  

0.100 0.060 0.026 0.010 0.006 0.100 0.060 0.026 0.010 0.001 

1 
2 
3 
4 
5 

6 
7 
8 
0 

10 

12 
14 
16 
18 
20 

24 
30 
40 
60 

120 

Q3 

x L m ,  

1.586 
1.300 
1.206 
1.150 
1.116 

1.093 
1.076 
1.064 
1.064 
1.047 

1.036 
1.020 
1.023 
1.019 
1.016 

1.012 
1.008 
1.006 
1.002 
1.001 

1.000 

514050 

1444 
1.331 
1.218 
1.160 
1.122 

1.007 
1.080 
1.067 
1.057 
1.040 

1.038 
1.030 
1.024 
1.020 
1,017 

1.013 
1.009 
1.005 
1.003 
1.001 

1.000 

66.7686 

1.701 
1.352 
1.230 
1.166 
1.128 

1.102 
1.083 
1.070 
1.050 
1.061 

1.039 
1.031 
1.026 
1.021 
1-018 

1,013 
1.009 
1.005 
1.003 
1.001 

1.000 

60.8417 

1.774 
1.379 
1.244 
1.176 
1.134 

1-107 
1.088 
1.073 ' .062 
1.064 

1.041 
1,033 
1.026 
1.022 
1.019 

1.014 
1.009 
1.006 
1.003 
1.001 

1.000 

e3mo7  

1,828 
1.398 
1.255 
1.183 
1.130 

1.111 
1.080 
1.076 
1.064 
1,055 

1.042 
1.034 
1.027 
1.023 
1.019 

1,014 
1.010 
1.006 
1.003 
1.001 

1.000 

68.7658 

- - 
1430 1.362 
1.222 1.236 
1.184 1.173 
1.127 1.134 

1.103 1.107 
1.086 1.080 
1.071 1.076 
1.081 1.064 
1.063 1.055 

1.041 1.043 
1.033 1.034 
1.027 1.028 
1.022 1.023 
1.019 1.020 

1.014 1.016 
1.010 1.010 
1406 1.006 
1.003 1.003 
1401 1.001 

1.000 1.000 

66.369 80.481 

- - 
1.374 1.402 
1.247 1.262 
1.181 1.191 
1.140 1.147 

1.112 1.118 
1.092 1.007 
1.077 14S1 
1.066 1.069 
1.067 1.060 
1.044 1.046 
1.036 1.037 
1.020 1.030 
1.024 1.026 
1.020 1.021 

1.016 1.016 
1.010 1.011 
1.006 1.007 
1.003 1.003 
1.001 1.001 

1-000 1.000 

64.201 68.710 

- 
1.422 
1.274 
1.198 
1.162 

1.122 
1.100 
1.084 
1.071 
1.062 

1.047 
1.038 
1,031 
1.026 
1.022 

1.018 
1.011 
1.007 
1.003 
1.001 

1 . W  

71.809 

571 



D13 (Continued) 

d =  4 -- -- 

1 1.838 
2 1.960 
3 1.238 
4 1.177 
6 1.130 

8 1.112 
7 1,093 
8 1.079 
9 1.068 
10 1.060 

12 1.048 
14 1.037 
16 1.030 
18 1.026 
20 1.021 

24 1.016 
30 1.011 
40 1,007 
60 1.003 
120 1.001 
03 1.000 

0.060 

1.700 
1.373 
1-252 
1.186 
1.146 

1.118 
1.087 
1.082 
1.070 
1.061 

1.041 
1.038 
1.031 
1.026 
1-022 

1.017 
1.011 
1.001 
1.003 
1.001 
1.000 

m H =  I2 

OG!6 

1.760 
1.396 
1.204 
1.186 
1.162 

1,122 
1.101 
1.086 
1.073 
1.068 

1.049 
1.030 
1.032 
1.027 
1-023 

1*017 
1.012 
1.007 
1.004 
1.001 
1.000 

0.010 

1.838 
1.424 
1.280 
1.205 
1.168 

1.128 
1 * 1.06 
1.088 
1.076 
i.oee 
1.061 
1.041 
1.033 
1.028 
1.024 

1.018 
1.012 
1.008 
1.004 
1.001 
I ,000 

0,006 

1.886 
1.446 
1.292 
1.213 
1. I06 

1.132 
1.109 
1.092 
1.078 
1 4 0 8  

1.063 
1.042 
1.034 
1.020 
1.024 

1.018 

1.008 
1.004 
1.001 
1.000 

i.oia 

X:,,,,, 80~9066 86.1708 69.0228 73,0826 70.0688 

1 
2 
3 
4 
6 

6 
7 
8 
0 
10 

12 
14 
16 
18 
20 

24 
30 
40 

120 
eo 

00 

0.100 

i a e  
1-388 
1.209 
1,203 
1.101 

1.131 

1.084 
1.081 
1.071 

1.066 
1.046 
1.037 
1.031 

1.020 
1.014 
1.008 
1.004 
1.001 
1.000 

1.110 

1.028 

x : ~ ,  68.9186 

512 

0.060 

1-761 
1.413 

1.213 
1.168 

1.137 
1.116 
1.00'1 
1.084 
1.073 

1.068 
1.04U 
1.038 
1,032 
1-027 

1.02 I 
1.014 
1.009 
1.004 
1 m 1  
1.000 

1.2~4 

74.41383 

m,I = 14 

0.026 

1.814 
1,436 
1.2B7 
1.222 
1.176 

1,142 
1.119 
1.1u1 
1.087 
1.076 

1,069 
1,048 
1.039 
1.033 
1.028 

1.021 
1.016 
1.008 
1.006 
1.001 
1.000 

78.6871 

0.010 

1~896 
1,467 
1.314 
1.234 

1.148 
1.124 
1.106 
1.081 
1,070 

1.082 
1.050 
1.041 
1434 
1.029 

i.022 
1.016 
1.000 
1.006 

1.000 

83,6134 

1 . 1 ~ 3  

i m  

0.005 

1.950 
1.480 
1.327 
1.243 
1.188 

1.154 
1.128 
1.109 
1,0L)3 
1.081 

1.004 
1.061 
1.042 
1.036 
1.030 

1.023 
1.016 
1.010 
1.006 
1.001 
1-000 

86~9837 

0.100 

- 
1.369 
1.264 
1.190 
1.160 

1,122 
1,102 
1.086 
1.074 
1.065 

1.060 
1.041 
1.033 
1.028 
1.024 

1.018 
1.018 
1.008 
1.004 
1.001 

1.000 

0.060 

- 
1.393 
1.268 
1.200 
1.167 

1.127 
1.108 
1.090 
1.077 
1.087 

1.052 
1.042 
1 4 3  6 
1.029 
1,026 

1.019 

1.008 
1.004 
1.001 

1.000 

1.013 

86.426 60432 

0,100 

- 
1.406 
1.284 
1.216 
1.172 

1.141 
1,118 
1.101 
1,087 
1,077 

1~060 
1.048 
1.040 
1.034 
1.029 

1.022 
1,016 
1.010 
1.006 
1.001 

1 .000 

74,397 

0.060 

- 
1.432 
1.299 
1.226 
1.179 

1.147 
1.123 
1.106 
1.091 
1.080 

1.001 
1.061 
1.042 
1,036 
1.030 

1.028 
1.016 
1.010 
1.006 
1.001 

1.000 

79.082 

ml, = 11 

0.026 

- 
1417 
1.281 
1409 
1.183 

1.132 
1.110 
1.003 
1.080 
1.070 

1.064 
1.044 

1.090 
1.026 

1.Q19 
1.013 
1.008 
1.0m 
1.001 

1.000 

73410 

1.038 

ni,l -- 15  

0,026 

-- 
1.466 
1.313 
1.238 
1.187 

1.163 
1.128 
1.109 
1.094 
1.082 

1.066 
1.062 
1,043 
1.036 
1.031 

1.023 

1.010 
1.006 
1.001 

1.000 

83.208 

1.018 

0.010 

1 

1446 
1.298 
1.820 
1.171 

1,139 
1.116 
1.097 
1.083 
1.073 

1.086 
1.045 
1.037 
1-031 
1.027 

1.020 
1.014 
1408 
1.004 
1.001 

1.000 

78416 

0.010 

-. 
1.488 
1.331 
1.248 
1.196 

1.180 
1.133 
1.113 
1.008 
1.086 

1 .om 
1.064 
1.046 
1.038 
1.032 

1.024 
1.017 
1.011 
1.006 
1.001 

1*000 

88.379 

0m6 

- 
1.468 
1.310 
1.228 
1.177 

1.143 
1.118 
1.100 
1.086 
1476 

1.098 
1.047 
1,038 
1,032 
1.027 

1.014 
1.009 
1.004 
1 4 0  1 

1.000 

82.001 

1.020 

0.006 

- 
1.611 
1.344 
1.2m 
1.202 

1.164 
1.137 
1.116 
1.101 
1.086 

i.oan 
1.058 
1.046 
1.038 
1.033 

1.02Fi 
1.017 
1.011 
1.006 
1.001 

l*OrJO 

91462 



D13 (Continued) 

d =  4 

x O*lo0 
1 1.731 
2 1.423 
3 1.299 
4 1.228 
6 1.182 
8 1.160 
7 1.127 
8 1.108 
9 1.004 

10 1.083 
12 1.086 
14 1.063 
18 1.044 
18 1,037 
20 1.032 
24 1.024 
30 1.017 
40 1,011 
60 1.006 

120 1.001 
m 1.000 

0.050 

1.799 
1.460 
1.314 
1.239 
1.190 
1.167 
1.132 
1.113 
1.098 
1,088 
1.068 
1,065 
1.045 
1.038 
1.033 
1,026 
1.018 
1.011 
1.005 
1.002 
1.000 

X:,,,,, 78.8697 83.8763 

0.100 

1 1.773 
2 1.467 
3 1.327 
4 1.252 
6 1.203 
6 1.160 
7 1.143 
8 1.123 
9 1.107 

10 1-096 
12 1.076 
14 1.061 
16 1.061 
18 1.044 
20 1.037 
24 1,029 

40 1.013 
60 1.008 

5 1.000 
Xi,,,,, 87.7431 

30 1.020 

120 1.002 

0.060 

1.843 
1.485 
1.343 
1.264 
1.212 
1.178 
1.149 
1.128 
1.111 
1.098 
1.078 
1.083 
1,063 
1.045 
1-039 
1.030 
1.021 
1,013 
1.007 
1.002 
1.000 

924083 

m ~ =  16 

0.026 

1.864 
1.476 
1.329 
1.249 
1.198 
1.183 
1.138 
1.117 
1.101 
1.089 
1.070 
1-066 
1-047 
1.040 
1.034 
1.028 
1.018 
1.01 1 
1.008 
1.002 
1.000 

88.0040 

0.010 

1.949 
1.607 
1.347 
1.281 
1,207 
1.169 
1.142 
1.121 
1.106 
1.092 
1,073 
1.068 
1.049 
1.041 
1.036 
1.027 
1.019 
1.012 
1.008 
1.002 
1.000 

83.2188 

0.100 
0.006 

- 
1.440 
1.313 
1.240 
1.193 
1.180 
1.136 
1.1 18 
1.101 

2.012 
1.631 
1.380 
1.270 
1.213 
1,174 
1.140 
1.126 
1.108 
1.094 1.089 
1.074 1.070 
1.060 1.067 
1,060 1.048 
1.042 1.040 
1.038 1.036 
1.027 1.028 
1.019 1.019 
1.012 1.012 
1.008 1.008 
1.002 1.002 
1.000 1-000 

83.308 98.8781 

m H - 18 

0.026 0.010 0.006 

1.911 
1.611 
1.369 
1-274 
1.220 
1.182 
1.164 
1.132 
1-116 
1.101 
1.080 
1.066 
1.064 

1.040 
1.030 
1.022 
1.014 
1,007 
1.002 
1-000 

97.3631 

i.04e 

l4N9 
1.546 
1.378 
1.287 
1.230 
1.180 
1.160 
1,137 
1.119 
1.105 
1.083 
1.088 
1.066 
1.048 
1.041 
1.031 
1.022 
1.014 
1.007 
1.002 
1.000 

102418 

2,086 
1.670 
1,392 
1.297 
1.237 
1.196 
1.164 
1.141 
1.122 
1.108 
1.086 
1.089 
1-068 
1,049 
1.042 
1,032 
1,023 
1.014 
1,007 
1.002 
1.000 

108.848 

0.100 

- 
1.473 
1.340 
1-264 
1.214 
1.178 
1.161 
1.130 
1.114 
1.101 
1.080 

1.066 
1.047 
1.040 
1.031 
1.022 
1.014 
1.007 
1.002 
1.000 

92.188 

1 . 0 ~ 8  

0.060 

- 
1.488 
1,329 
1,262 
:*201 
1.188 
1.140 
1.120 
1.106 
1.092 
1.073 
1.069 
1,043 
1.042 
1.038 
1.027 
1.019 
1.012 
1 -008 
1 .002 

1-000 
88.260 

0.060 

- 
1.602 
1.367 
1.276 
1.223 
1.186 
1,167 
1.136 
1.118 
1.104 
1.083 
1.088 
1.067 
1.048 
1-042 
1.032 
1.023 
1.014 
1.007 
1.002 
1.000 

mH-17 

0.026 

- 
1.494 
1.344 
1.282 
1.209 
1.172 
1.146 
1.124 
1.108 
1.006 
1.076 
1.061 
1.061 
1443 
1.037 
1.028 
1.020 
1.012 
1.008 
1.002 
1.OoO 

92.889 

mH = 1 9  

0.026 

- 
1.629 
1.373 
1.287 
1.291 
1.191 
1.182 
1.140 
1.122 
1.107 
1-088 
1.070 
1,060 
1.060 
1.043 
1,033 
1.023 
1.016 
1.007 
1.002 
1.000 

0010 

- 
1.627 

1.276 
1.218 
1.160 
1.161 
1.129 
1.111 
1.088 
1.078 
1.083 
1.063 
1.046 
1,038 
1.029 
1.020 
1.013 
1.008 
1.002 
1*000 

98.028 

1.aa3 

0.010 

- 
1.683 
1.393 
1400 
1.241 
1.199 
1.189 
1.146 
1.128 
1.111 
1.089 
1.073 
1.081 
1.061 
1.044 
1.034 
1.024 
1.016 
1.008 
1.002 
1.000 

97.361 1014W9 107.683 

0.006 

- 
1.661 
1.377 
1.281 
1.226 
1.186 
1.166 
1.133 
1.116 
1.101 
1.080 

1.064 
1.048 
1.039 
1.030 
1.021 
1.013 
1.007 
1.002 
1.000 

101-778 

i-oes 

0.006 

-- 
1.688 
1,408 
1.310 
1.248 
1.206 
1.173 
1.149 
1.130 
1.114 
1.091 
1.074 
1,082 
1.063 
1.046 
1.036 
1.026 
1.016 
1.008 
1.002 
1.000 

I 1  1.486 

573 



D13 (Continued) 

1 1.812 
2 1.488 
3 1.863 
4 1.276 
6 1,224 
6 1.187 
7 1.169 
8 1.138 
9 1.121 

10 1.107 
12 1.086 
14 1.070 
16 1.069 
18 1.060 
20 1.043 
24 1.033 
30 1.024 
40 1.015 
60 1.008 

120 1.002 
m 1.000 

0.060 

1.884 
1.618 
1.371 
1.288 
1.233 
1.194 
1.166 
1.143 
1.126 
1.110 
1.088 
1.072 
1.061 
1.058 
1.045 
1.034 
1.024 
1.016 
1.008 
1.002 
1400 

X i m , ,  90,6782 101.870 

mH = 20 

0.026 

1.964 
1.646 
1-387 
1.299 
1.241 
1.201 
1.170 
1.147 
1.129 
1.114 
1.091 
1.074 
1.082 
1.053 
1.048 
1.036 
1.026 
1.016 
1.008 
1.002 
1.000 

106429 

0.01 0 

2.046 
1.680 
1.408 
1.313 
1.252 
1.208 
1,177 
1.163 
1.133 
1.118 
1.094 
1.077 
1.004 
1.055 
1.047 
1-03U 
1.020 
1.010 
1.008 
1.002 
1.000 

112,329 

0.006 

2,113 

1.422 
1.323 
1,259 
1.216 
1.182 
1.157 
1.137 
1.121 
1.096 
1.078 
1.006 
1,050 
1.018 
1.037 

1.017 
1.008 
1,002 
1.000 

116.381 

i.roa 

1.020 

1 
2 
3 
4 
6 

6 
7 
8 
9 

10 

12 
14 
16 
18 
20 

24 
30 
40 
60 

120 
03 

0.100 

1.848 
1,618 
1,379 
1.208 
1.243 
1.204 
1.176 
1.152 
1,134 
1.1 1B 

1,086 
1.078 
1,006 
1.057 
1.049 
1.038 
1.027 
1,017 
1,009 
1.003 
1.000 

ion.372 

0 050 

1 8 2 2  
1.641) 
1387 
1.310 
1.253 
1.212 
1-181 
1,167 
1.138 
1.123 

1.098 
1.081 
I 4 6 8  
1,058 
1.061 
1.039 
1.028 
1.018 
1.008 
1.003 
1.000 

i i o a 8  

mH - 22 

0.025 

1.984 
1.677 
1.414 
1.322 
1.282 

1,219 
1.187 
1.162 
1.142 
1.12u 
1.101 
1.083 
1070 
1.060 
1,062 
1.040 
1.029 
1.018 
1.009 
1,003 
1.000 

116*841 

0.100 

-- 
1.604 
1.367 
1.287 
1.234 

1.105 
1.167 
1.146 
1.127 
1.113 
1.001 
1,076 
1.063 
1.064 
1.046 
1.036 
1.025 
1.016 
1.008 
1.002 
1.000 

100.080 

0.010 

2.088 
1,014 
1.438 
1337 
1.273 
1,228 
1.194 
1.108 
1.147 
1.130 
1.104 

1.072 
1.002 
1,063 
1.041 
1.030 
1.019 
1.010 
1.003 
1.000 

1.088 

0050  

-- 
1.633 
1.384 
1.299 
1.243 
1.203 
1.173 
1.160 
1.132 
1.116 
1.084 
1.077 
1.066 
1.066 
1.048 
1.037 
1.020 
1.017 
1.008 
14l02 
1.000 

106~396 

0.005 

2.158 
1.041 
1.451 
1.347 
i -mi  

1.234 
1.lY9 
1.172 
1.151 
1-134 
1.107 
1.088 
1.074 
1.063 
1.055 
1.042 
1.030 
1.019 
1.010 
1.003 
1400 

mH = 21 

0.026 

-_ 
1.662 
1.401 
1.311 
1.262 
1.210 
1.170 
1.166 
1.136 
1.120 
1.096 
1.079 
1.066 
1.067 
1.049 
1.038 
1.027 
1.017 
1.001) 
1.003 
1.000 

111,242 

0.010 

.- 
1.698 
1-422 
1.326 
1.282 

1.218 
1.186 
1.160 
1.140 
1,124 
1-099 
1,082 
1.069 
1.069 
1.061 
1.039 
1.028 
1.018 
1.009 
1.003 
1.000 

0.036 

- 
1.624 
1.437 
1,336 
1.270 

1.224 
1.180 
1.1 84 
1.144 
1.127 
1;Y 02 
1*084 
1.070 
1m0 
1.062 
1440 
1.028 
1.018 
1.009 
1,003 
1*000 

117.067 121.126 

514 



D13 (Continued) 
- 

d -  5 

1 
2 
3 
4 
6 

6 
7 
8 
0 

10 
12 
14 
16 
18 
20 
24 
30 
40 
60 

120 
co 

X t ,  

x 
1 
2 
3 
4 
6 

6 
7 
8 
9 

10 
12 
14 
16 
18 
20 
24 
30 
40 
60 

120 
00 

X , L "  

0.100 

1.448 
1.212 
1.132 
1.092 
1.088 

1.063 
1.042 
1.036 
1.020 
1.026 
1.018 
1-014 
1.011 
1.008 
1,008 
1.006 
1.004 
1.002 
1.001 
1.000 
1.000 

34.3816 

0.100 

1.484 
1.244 
1.168 
1.113 
1.086 

1.068 
1.066 
1.046 
1.038 
1.033 
1.026 
1.020 
1.016 
1.013 
1.011 
1.008 
1.006 
1.003 
1.002 
1.000 
1.000 

46.0688 

0.060 

1.486 
1.230 
1.141 
1.008 
1.072 
1.066 
1.046 
1,037 
1,031 
1.026 
1.020 
1.016 
1.012 
1-010 
1,008 
1.006 
1.004 
1.002 
1.001 
1.000 

1.000 
37.86211 

0.060 

1.636 
1.262 
1*.168 
1.119 
1.000 
1.071 
1.068 
1.048 
1.040 
1.036 
1.026 
1.021 
1.017 
1.014 
1.012 
1.008 
1.006 
1.003 
1.002 
1.000 
1.000 

49.8019 

m H = f  

0.026 

1444 
1.246 
1.160 
1.103 
1.076 
1.069 
1.047 
1.030 
1.032 
1.027 
1.020 
1.016 
1,013 
1.010 
1*000 

1.008 
1.004 
1.002 
1.001 
1.000 

1.000 
404466 

mH = 7 

0.026 

1.684 
1.280 
1.177 
1.126 
1.096 
1.074 
1.060 
1.060 
1.042 
1.036 
1,027 
1.021 
1,017 
1.014 
1,012 
1.009 
1.006 
1,004 
1.002 
1.000 
1.000 

63.2033 

0.010 

1404 
1.267 
1.161 
1.110 
1,081 
1.063 
1.060 
1.041 
1,034 
1.029 

1.022 
1.017 
1.013 
1.011 
1-009 
1.007 
1,004 
1.003 
1.001 
1.000 
1.000 

44.3141 

0.010 

1.648 
1.302 
1,180 
1,133 
1.100 
1.078 
1.063 
1.062 
1.044 
1.038 
1.029 
1.022 
-.018 
1.016 
1.013 
1.009 
1.006 
1.004 
1.002 
1.000 
1.000 

67.3421 

0.006 

1.649 
1.283 
1.160 
1.110 
1.085 
1.065 
1.062 
1.043 
1.036 
1.030 
1.022 
1,017 
1.014 
1.011 
1.008 

1.007 
1.006 
1.003 
1.001 
1.000 

1.000 
46.0270 

0.006 

1.696 
1.318 
1.198 
1.130 
1.104 
1.081 
l*066 
1,064 
1.046 
1,039 
1.030 
1.023 
1.010 
1.016 
1.013 
1.010 
1.008 
1.004 
1.002 
1.000 
1.000 

60.2748 

0.100 

1.466 
1.228 
1.144 
1.102 
1.077 
1.060 
1,048 
1.040 
1.034 
1,029 
1.022 
1,017 
1.014 
1.011 
1.000 
1.007 
1-006 
1.003 
1.001 
1.000 
1.000 

0.060 

1.614 
1.246 
1.164 
1.108 
1.081 
1-063 
1.061 
1.042 
1,036 
1-030 
1.023 
1.018 
1.014 
1.012 
1.010 
1.007 
1.006 
1.003 
1.001 
1.000 
1.000 

m ~ = 6  

0.026 0.010 0.006 

1.663 1.626 1,671 
1,262 1.284 1.300 
1,163 1.176 1.183 
1.114 1.121 1.127 
1.086 1.090 1.094 
1-066 1.070 1.073 
1,063 1.068 1*060 
1.044 1.046 1.048 
1.037 1.038 1.040 
1.031 i.oa3 i-oar 
1.024 1.026 1.026 
1.018 1.018 1.020 
1.018 1.016 1.016 
14012 1.019 1.013 
1.010 1.011 1.011 
1.007 1.008 1.008 
1-006 1.006 1.006 
1.009 1.003 1.003 
1.001 1.001 1.002 
1.000 1.000 1.000 

1.000 l(000 1.000 

0.100 

1.506 
1.261 
1.171 
1.124 
1.086 

1.076 
1.062 
1.062 
1.044 
1-038 
1.020 
1.023 
1.018 
1,016 
1.013 
1*000 
1.006 
1.004 
1.002 
1.001 
1.000 

0.060 

1.666 
1,280 
1,182 
1.131 
1.100 
1.079 
1.066 
1.064 
1.046 
1-030 
1.030 
1.024 
1.018 
1.016 
1,013 
1.010 
1.007 
1.004 
1.002 
1.001 
1.000 

m H = 8  

0.026 

1.607 
1.208 
1.192 
1.137 
1.106 
1.083 
1.068 
1.066 
1.048 
1.041 
1,031 
1,026 
1,020 
1.017 
1.014 
1.010 
1.007 
1.004 
1,002 
1.001 
1.000 

0.010 

1472 
1.321 
1.204 
1.146 
1.110 
1.087 
1.071 
1.060 
1.060 
1,043 
1.033 
1.026 
1.021 
1.017 
1.016 
1.011 
1.007 
1.004 
1.002 
1.001 
1.000 

0.006 

1,721 
1.338 
1.213 
1.161 
1.114 
1.080 
1.073 
1.061 
1.062 
1.044 
1.034 
1,027 
1.022 
1.018 
1.016 
1.011 
1.008 
1.006 
1.002 
1.001 
1~000 

51-8060 66.7686 88.3417 63.6607 66*7669 

575 



D13 (Cont inued)  

1 

3 
4 
6 

6 
7 
8 
9 

10 

12 
14 
I 6  
18 
20 

22 
30 
40 
60 

120 

a 

a2 

0.100 

i m e  

1.138 

1.278 
1.185 

1.106 

1.084 

1.068 
1,049 
1.048 
1.033 
1.020 
1.021 
1,018 
1.016 

1.011 
1.008 
1.006 
1.002 
1.001 
1.000 

67.6063 

1.009 

x O.lo0 
1 
2 
3 
4 
6 

6 
1 
8 
9 

10 
12 
14 
16 
18 
20 

24 
30 
40 
60 

120 
m 

- 
1.312 
1.213 
1.169 
1.126 
1.101 
1-084 
1.071 
1.061 
1.063 
1.041 
1.033 
1.027 
1,023 
1.019 
1.014 
1.010 
1.006 
1.003 
1.001 
1 .ooo 

0.060 

1-678 
1.208 
1.1@6 
1.143 
1.110 

1 ,088 
t.072 

1.061 
L.044 
1.034 
1.027 
1.022 
1.018 
1.016 

1.011 
1.008 
1.006 
1-002 
1.001 

1.000 

014602 

1.080 

0.050 

- 
1.333 
1.226 

1-130 
1-106 
1-087 
I -074 
1.063 
1.066 
I 3043 
1.034 
1.028 
1-023 
1.020 
1.016 
1.010 
1*006 
1,003 
1.001 
1-000 

13.311 

1-m 

mts = 9 

0.026 

1430 

1.206 
1.160 
1.116 

1.092 
1.076 
1.003 
1.063 

i w e  

i . 0 ~  

1.036 
1.028 
1.023 
1.019 
1.018 

1.012 
1.008 
1*006 
1402 
1.001 
1.000 

e5.4102 

m H =  I1 

0.026 

- 
1.362 
1.236 
1.174 
1.136 
1.110 
1,091 
1.077 
1.068 
1.067 
1444 
1,036 
1.020 
1.024 
1.02 1 
1.016 
1.011 
1.006 
1403 
1.001 
I*OOO 

77.380 

0010 

1.697 
1.340 
1 *219 
1.168 
1.121 

1.096 
1.078 
1.066 
1.060 
1,048 
1.037 
1.029 
1.0'14 
1420 
1.017 

1*012 
1,008 
1.006 
1.002 
1.001 
1.000 

094h%8 

0.010 

- 
1.378 
1.250 
1.183 
1.142 

1.11a 
1,0116 
1.080 
1.088 
1.089 
1.046 
1.037 
1.030 
1.026 
1.021 
1.016 
1.011 
1.007 
1.003 
1.001 
14loo 

82.202 

0.006 0.100 

1.746 1,647 
1.358 1,296 

1-184 1.147 
1.126 1.116 

1.099 1.092 
1.081 1.076 
1.008 1.064 
1.068 1.066 
1-OR0 1,048 

1.038 1.087 

1.024 1,024 

1.017 1.017 

1.013 1.013 
1.009 1.009 
1.006 1.006 
1-003 1,003 
1.001 1.001 
1.000 1.000 

1.220 1.188 

1.030 1.020 

1.020 i-oao 

0.060 

i.eoo 
1.316 
1.211 
1.166 
1.120 

1.087 
1.080 
1.087 
1.067 
1.060 

1.031 
1,026 
1.021 
1.018 
1.013 
1.009 
1.006 
1.001 
1.001 
1.000 

1.038 

m j f =  10  

0.026 

1.663 
1.334 
1.221 
2.162 
1.128 

1.101 
1-083 
1.070 
1.069 
1.051 

1.040 
1.032 

1.022 
1.018 

1.014 
1.009 

1-003 
1.001 
1.000 

i.oee 

1.008 

0.006 

- 
1.396 
1.280 
1.1(10 
1.147 

14UM 
1.082 
1.070 
1.001 

1.047 
1,038 
1.031 
1.026 
1,022 
1.016 
1.011 
1.007 
1.003 
1.001 
1'000 

86.740 

1,118 

0*100 

1.6L17 
1.329 
1,227 
1.171 
1.136 
1.1 10 
1.002 

1,087 
1.068 

1.046 
1.337 
1.030 
1,026 
1.022 

i , O l B  
1.011 
1.007 
1.003 
1.001 
1.000 

74.3970 

1.078 

0.060 

I 4 4 3  
1.360 
1430 
1.170 
1.141 
1. I14 
1,095 
1.08 I 
1.070 
1.081 
1.047 
1.038 
1,031 
1,026 
1.022 

1.017 
1.012 
1.007 
1.003 
1.001 
1.000 

79.0819 

niH = 1 2  

0,026 

1.00'1 
1.370 
1,261 
1,160 
1.146 
1.110 
1.099 

1.072 
1.063 
1,040 
1.030 
1.03% 
1.027 
1.023 

1417 
1,012 
1.007 
1,004 
1.001 
1.000 

83.2077 

1.094 

0.010 

1.721 
1.369 
1-288 
1-171 
1.131 

1.106 
1.087 
1.073 

1-054 

1.041 
1.033 
1.027 
1.022 
1.018 
1.014 
1.010 
1.000 
1.003 
1.002 
1.000 

1.0e2 

0.006 

1.772 
1.977 
1.244 
1,177 
1.136 

1.100 
1.089 
1476 

1.056 

1.048 
1.034 
1.028 
1423 
1ag18 

1.014 
1.010 
1.006 
1.009 
1402 
1.000 

1.084 

0410 

1.758 

1.286 
1.108 
1.153 

1.124 
1.103 
1.087 
1.076 
1466 
1,051 
1.041 
1.033 
1.028 
1.024 

1.018 
1412 
1.008 
1.004 
1.001 

1*000 

883794 

i m e  

0.006 

1.821 
1.416 
1,276 
1.203 
1.168 

1.128 
1.108 
148k 
1.077 
1.067 
1.062 
1.042 
1.034 
1.029 
1.024 

1.018 
1-013 
1.008 
1.004 
1.001 
I-ooc 

01.95I 



D13 (Continued) 

\a * 
1 
2 
3 
4 
6 

6 
7 
8 
9 
10 

12 
14 
16 
18 
20 

24 
30 
40 
60 
120 

CQ 

x t ,  

0.100 

- 
1.346 
1,241 
1.182 
1.146 

1.118 
1.099 
1.084 
1.073 
1.064 

1.050 
1.040 
1.033 
1.028 
1.024 

1.018 
1.013 
1.008 
1 . W  
1.001 

1400 

79.973 

x O-l0O 
1 
2 
3 
4 
6 

8 
7 
8 
9 
10 

12 
14 
16 
18 
20 

24 
30 
40 
60 
120 

OD 

- 
1.377 
1.267 
1.206 
1.164 

1.136 
1.116 
1.098 
1.086 
1.076 

1.069 
1.048 
1.040 
1.034 
1.029 

1.022 
1.016 
1.010 
1.006 
1.001 

1-000 

0.060 

- 
1.367 
1.253 
1.191 
1,151 

1.123 
1.103 
1.088 
1.076 
1.066 

1.062 
1.042 
1.036 
1.029 
1.025 

1.019 
1.013 
1.008 
1 * 004 
1.001 

1.000 

84,821 

0.060 

- 
1.399 
1-281 
1,214 
1.171 

1.141 
1.119 
1.102 
1.088 
1.078 

1.061 
1 .OK0 
1,041 
10036 
1.030 

1.023 
1.016 
1.010 
1.006 
1.001 

1.000 

96.217 

m,, = 13 

0.026 

- 
1.387 
1.285 
1.199 
1.167 

1.128 
1,107 
1.091 
1.078 
1.088 

1.064 
1.043 
1.036 
1.030 
1.028 

1.019 
1.013 
1.008 
1.004 
1.001 

1.OoO 

89.177 

m H =  IS 

0.026 

- 
1.421 
1.293 
1.225 
1.177 

1.146 
1.123 
1.106 
1.081 
1.080 

1.083 
1.061 
1.043 
1.036 
1,031 

1.023 
1.016 
1.010 
1 m 6  
1.001 

1.000 

100.839 

0.010 

- 
1.414 
1.280 
1.208 
1.164 

1.133 
1.111 
1.094 
1.081 
1-071 

1,066 
1.046 
1,097 
1.031 
1.026 

1.020 
1.014 
1.000 
1.004 
1.001 

1.000 

94.422 

0'010 

- 
1,449 
1.309 
1.233 
1.186 

1.162 
1.127 
1.108 
1.094 
1.083 

1.066 
1.063 
1.044 
1.037 
1.032 

1.024 
1.017 
1.011 
1.006 
1.001 

1.000 

106*393 

0.005 

- 
1.433 
1.290 
1.215 
1.169 

1,137 
1.114 
1.097 
1.083 
1.073 

1.057 
1.046 
1.038 
1.032 
1.027 

1.020 
1.014 
1.009 
1.004 
1.001 

1.000 

98*lO6 

0.006 

- 
1.469 
1.320 
1.240 
1-190 

1.166 
1,131 
1.112 
1.097 
1.086 

1.067 
1,064 
1.045 
1.038 
1,033 

1.026 
1.017 
1.011 
1.005 
1.002 

1400 

110.288 

0.100 

1.626 
1.561 
1.264 
1.194 
1.166 

1.127 
1.107 
1.091 
1.079 
1.069 

1.055 
1.044 
1.037 
1.031 
1.026 

1.020 
1.014 
1.009 
1.004 
1.001 

1.000 

86.6210 

0~0100 

1463 
1.392 
1.280 
1,218 
1.174 

1.144 
1.122 
1.106 

1.081 

1.064 
1,052 
1.043 
1.037 
1.032 

1.024 
1.017 
1.011 
1.006 
1.002 

1.000 

i m  

0050 

1.683 
1.983 
1.867 
1.203 
1.161 

1.132 
1.111 
1,006 
1.082 
1.072 

1.017 
1-048 
1.038 
1.032 
1.027 

1.021 
1.014 
1.009 
1.004 
1.001 

1.000 

90.6312 

0.050 

1,722 
1416 
1.294 
1.226 
1.181 

1.160 
1.127 
1.109 
1.095 
1.083 

1.066 
1-064 
1.046 
1.038 
1.033 

1.026 
1.018 
1.011 
~1.006 
1.002 

1.000 

m H =  14 

0.026 

1.740 
1.404 
1.279 
1,211 
1.167 

1.137 
1.116 
1.098 
1.085 
1.074 

1-058 
1.047 
1.039 
1.033 
1.028 

1.021 
1.016 
1.009 
1.006 
1.001 

1.000 

0.010 

1,813 

1,294 
1.221 
1.174 

1.143 
1.118 
1.102 
1.088 
1.077 

1.060 
1.049 
1.040 
1.034 
1,029 

1.022 
1.016 
1.010 
1.006 
1.001 

1.000 

1.1~1 

0.006 

1.887 
1451 
1.305 
1.228 
1.180 

1.147 
1.123 
1.104 
1.090 
1.079 

1.062 
1 .OK0 
1.041 
1.055 
1.030 

1.022 
1.016 
1.010 
1.006 
1.001 

1.000 

96.0233 100.4262 104.2149 

mH = 16 

0.025 

1.780 
1.437 
1.307 
1.234 
1.188 

1.165 
1.131 
1.112 
1.098 
1.088 

1.068 
1.066 
1.046 
1.099 
1.033 

1.026 
1.018 
1.011 
1.006 
1.002 

1.000 

0.010 

1.856 
1.466 
1.323 
1.245 
1.196 

1.161 
1.13f) 
1.116 
1.101 
1.089 

1.070 
1.067 
1.048 
1.040 
1.036 

1.026 
1.010 
1.012 
1.006 
1.002 

1.000 

0.005 

1.911 
1.486 
1.334 
1.263 
1.201 

1.166 
1.139 
1.119 
1,104 
1.091 

1.072 
1.069 
1.049 
1.041 
1.036 

1.027 
1.019 
1.012 
1.006 
1.002 

1.000 

96.5782 1014795 1064286 112-3268 116~3211 

517 



D l 3  (Continued) 

1 
2 
3 
4 
6 

6 
7 
8 
Q 

10 
12 
14 
ie 
i a  
20 

24 
30 
40 
60 

120 

m 

":.I, 

x 
1 
2 
3 
4 
6 

6 
7 
8 
8 

10 
12 
14 

18 
20 

24 
30 
40 
80 

120 

i e  

00 

"'& 

0.100 

- 
1.407 
1.203 
1.227 
1,184 
10163 
1.190 
1.112 
1.008 

1.068 
1,068 
1.047 
1.040 
1.034 
1.028 
1.010 
1.012 
1~008 
1~002 
1.000 

102.070 

i.oao 

0.100 

- 
1.438 
1.318 
1.249 
1.203 
1,170 
1.146 
1.128 
1.110 
1.087 
1-078 
1,064 
1.064 

1.040 
1,031 
1.022 
1.014 
1,007 
1.002 
1 .om 

113,038 

1.04e 

0.060 

- 
1.431 
1,307 
1-237 
1.181 
1-168 
1.134 

1.101 
1.089 
1.071 
1.068 
1.048 
1.041 
1.035 
1,027 
1.010 
1.012 
1.008 
1.002 
1~000 

107.622 

1 . m  

0.0GO 

- 
1-480 
1.332 
1.261) 
1-210 
1.176 
1.160 
1.130 
1.114 
1.101 
1.081 
1.008 

1.047 
1.041 
1431 
1.022 
1.014 
1.007 
1.002 
1.000 

118.762 

1.068 

mn= I 7  

0.026 

- 
1 *463 
1.320 
1,246 
1-188 

1.138 
1.118 
1.104 
1.082 
1.073 
1,080 
1.060 
1.042 
1438 

1,028 
1.020 
1.012 

1.002 
1.000 

112.393 

1.184 

1.000 

mH :: 10 

0.026 

- 
1.483 
1.346 
1.!268 
L.217 
1.181 
1.164 
1.134 
1.117 
1.103 
1.083 
1.088 
1.067 
1.040 
1.042 
1.032 
1.023 
1.016 
1.007 
1.002 

1.oou 
123.868 

0.010 

- 
1.402 
1.3311 
1.257 
1.206 
1.170 
1,144 
1.124 
L*lOR 
1.085 

1.076 

1.061 
1.044 
1437 
1.021) 
1.020 
1.013 

1.002 
1.000 

i.oe2 

1.000 

i i 8 m  

0.010 

- 
1.613 
1.363 
1.2RO 
1.226 
1.i8H 
1.160 
1.138 
1.121 
1-10? 

1.08G 
1.070 
1.019 
1.060 
1.043 
1.033 
1.024 
1.016 
1.008 
1 002 
1.000 

129.073 

0.006 

- 
1.803 
1-348 
1.265 
1.212 
1*L76 
1.i47 
1.127 
1.110 
1.087 
1.077 
1.063 
1.062 
1.044 
1-038 
1.029 
1-021 
1,013 
1.008 
1.002 

1~000 

122.326 

0.006 

- 
1.636 
1.376 
1.288 
1.232 
1.193 
1.104 
1.141 
1.124 
1,108 
1.087 
1.072 
1.000 
1.061 
1.044 
1.034 
1.024 
1.016 
1.008 
1.002 
1.000 

134.247 

0.100 

1.698 
1.421 
1,305 
1.238 
1.183 
1.161 
1.137 
1.118 
1.104 
1.092 

1,073 
1.080 
1.060 
1.049 
1,037 
1.028 
1.020 
1.013 
1406 
1.002 

1.000 

0.060 

1,758 
1.445 
1.320 
1.248 
1.201 
1.107 
1.142 
1,123 
1.107 
1.095 

1.076 

1.062 
1.044 
1.030 
1.020 
1.021 
1.013 
1.007 
1.002 

1.000 

1.002 

m H =  I 8  

0.026 

1.818 

1,333 
1.267 
1,208 

1.173 
1.147 
1.128 
1.110 
1.098 

1.078 
1.084 
1.063 
1.045 
1.03R 

1.030 
1.011 
1,013 
1.007 
1.002 
1.000 

1.488 

0410 

1.886 
1.498 
1.360 
1.288 
1.218 

1-179 
1.152 
1.131 
1.114 
1.101 

1480 
1,080 
1.056 
1447 
1~040 
1.031 
1.022 
1.014 
1-007 
1.002 
1.000 

0~006 

1.953 
1.618 
1.302 
1.277 
1.222 

1,184 
1,160 
1.134 
1.117 
1.103 

1.082 

1.056 
1.048 
1.041 
1.03 1 
1.022 
1 4 1 4  
1-007 
1.002 
1.000 

1.007 

107*6660 113.1463 118.1359 1241183 128.2889 

0. I00 

1.731 
1.449 
1.330 
1.269 
1.212 

1.178 
1.162 
1.132 
1.116 
1.103 

1.083 
1.060 
1.058 
1,048 
1.043 
1.033 
1-024 
1.016 
1-008 
1.002 
1.000 

0.060 

1.703 
1.414 
1.346 
1,270 
1.280 

1,184 
1.167 
1,137 
1.120 
1~100 
1.080 
1.071 
1.069 
1.051 
1,044 
1.034 
1424 
1.016 
1.008 
1,002 
1.000 

mh, : 20 

0.026 

1.R63 
1.498 
1.358 
1.219 
1.227 

1.190 
1.162 

1.123 
1,109 

1.068 
1.072 
1.061 
1.062 
1.045 

1.095 
1.025 
1.016 
1.008 
1.002 

1.141 

1.000 

0*010 

1,933 

1,376 
1.291 
1.238 

1.197 
1.188 
1.146 
1.157 
1,113 
1.081 
1 4 7 G  
1.083 
1.053 
1.046 
1.030 
1.025 
1.018 
1.008 
1.002 

1.628 

I .on0 

0.006 

1.992 
1.551 

1.300 
1.242 

1.202 
1.172 
1.149 
1.130 
1.116 
1.082 
1.078 
1.004 
1.064 
1*0C7 

1,030 
1.0'20 
1.010 
1~006 
1.002 

1,000 

m a  

118,4980 124.5421 129.6812 1568067 140- 1896 

578 
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d =  6 

x 
1 
2 
3 
4 
6 

6 
7 
8 
9 

10 
12 
14 
16 
18 
20 
24 
30 
40 
60 

120 
00 

ximH 

\a 
M\ 
1 
2 
3 
4 
6 

6 
7 
8 
9 
10 

12 
14 
18 
18 
20 
24 
30 
40 
60 

120 
m 

x t, 

0.100 

1471 
1.23'1 
1,163 
1.109 
1.083 
1,066 
1.063 
1.044 
1,037 
1,032 
1.024 
1.019 
1.016 
1.013 
1.011 
1.008 
1.006 
1.003 
1.002 
1.000 
1.000 

0.060 

1.620 
1.266 
1.163 
1.116 
1.088 
1.069 
1.056 
1.046 
1,039 
1.034 
1.026 
1.020 
1.018 
1.013 
1.011 
1.008 
1.006 
1.003 
1.002 
1.000 

1.OoO 

mH=6 

0.026 

1.668 
1472 
1.172 
1.122 
1.092 
1.072 
1*068 
1.048 
1,041 
1.036 
1.026 
1.021 
1.017 
1.014 
1.012 
1.009 
1.008 
1,003 
1.002 
1*000 

1.000 

0.010 

1.631 
1.294 
1.183 
1.129 
1.097 
1.076 
1.061 
1.061 
1.043 
1.037 
1.028 
1-022 
1.018 
1.014 
1.012 
1.009 

1.004 
1.002 
1.000 
1.000 

1.008 

0.006 

1,877 
1.310 
1.192 
1.134 
1.101 
1.079 
1.084 
1.063 
1.044 
1.038 
1.029 
1.022 
1.018 
1.016 
1.013 
1.009 
1.006 
1.004 
1.002 
1.000 
1.000 

0.100 

1481 
1.249 
1.163 
1.118 
1.090 
1.072 
1.059 
1.049 
1.042 
1.036 
1.027 
1.022 
1.018 
1.014 
1.012 
1*000 
1.006 
1-004 
1.002 
1.000 
1.000 

0.060 

1.630 
1.266 
1.173 
1.124 
1*006 
1.076 
1.062 
1.061 
1.043 
1.037 
1.029 
1.023 
1.018 
1.016 
1.013 
1*009 
1.006 
1.004 
1.002 
1.000 
1.000 

nH=7 

0.026 

1.570 
I-284 
1.182 
1.131 
1.099 

1.079 
1,064 
1.063 
1.046 
1,030 
1.030 
1.023 
1.019 
1.016 
1.013 
1.010 
1,007 
1.004 
1.002 
1.001 
1.000 

0.010 

1442 
1.500 
1.194 
1-138 
1.106 
1.083 
1.067 
1.058 
1.047 
1.041 
1.031 
1.024 
1.020 
1.016 
1.014 
1.010 
1.007 
1.004 
1.002 
1.001 
1.000 

0.006 

1,688 
1.322 
1.203 
1.144 
1.100 
1.086 
1.070 
1.058 
1.049 
1.042 
1.032 
1.025 
1.020 
1017 
1.014 
1.010 
1.007 
1.004 
1.002 
1.001 

1.000 
47.2122 50.9986 64.4373 68.6192 61.6812 64.0002 68.1240 61.7768 86.2062 69.3360 

0.100 

1494 
1.261 
1,174 
1.127 
1.098 

1,079 
1.066 
1,064 
1.046 
1,040 
1.031 
1.024 
1.020 
1.016 
1.014 
1.010 
1.007 
1.004 
1.002 
1.001 
1.000 

0050 

1.543 
1.279 
1.184 
1.134 
1,103 
1.082 
1,088 
1.067 
1.048 
1.042 
1.032 
1.028 
1.021 
1.017 
1.014 
1.011 
1.007 
1.004 
1.002 
1.001 
1.000 

m H = 8  

0,025 0,010 0.005 

1.692 1.858 1.703 
1.297 1.319 1.330 
1.194 1.206 1.214 
1.140 1.148 1.153 
1,108 1.113 1.117 
1.086 1.080 1.093 
1.070 1.074 1.076 
1.059 1.062 1.0G3 
1.060 1.062 1.054 
1.043 1-046 1.046 
1.033 1.035 1.036 
1.020 1.027 1.028 
1.021 1.022 1.022 
1.018 1.018 1.019 
1.016 1.016 1.010 

1.011 1.011 1.012 
1.008 1.008 1.008 
1.005 1.006 1,005 
1.002 1.002 1.002 
1.001 1.001 1.001 

0.100 0.060 

1.608 1.568 
1.275 1.293 
1.186 1.106 
1.137 1,144 
1.107 1,112 
1.086 1.090 
1.071 1.074 
1.060 1.062 
1.061 1.053 
1.044 1.040 
1.034 1,036 
1.027 1.028 
1.022 1.023 
1.019 1.019 
1.016 1.016 
l.Oi2 1.012 
1.008 1.008 
1.005 1,005 
1.002 1.002 
1.001 1.001 

r n m - 9  

0.026 

1407 
1.311 
1.206 
1.160 
1i116 
1.003 
1.077 
1,065 
1.056 
1.048 
1.036 
1.029 
1.024 
1.020 
1.017 
1.013 
1.009 
1.005 
1.003 
1.001 

1.671 1.719 
1,333 1.360 
1.218 1,227 
1.168 1.164 
1.122 1.126 
1.098 1.101 
1.080 1.083 
1.067 1.069 
1,068 1.059 
1.060 1.061 
1.037 1,037 
1.031 1.031 
1.024 1.026 
1.020 1.021 
1.017 1.018 
1.013 1.013 
1.009 1.000 
1.006 1.006 
1,003 1.003 
1.001 1.002 

1.000 1.000 1.000 1.000 1.000 

674728 72.1632 76.1921 81.0688 84.6016 
1.000 1.000 1.000 

60*9066 66.1708 69.0226 73,6826 76.9688 
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I 1.527 
2 1.288 
3 1.197 
4 1.147 
5 1.115 

6 1.093 
7 1.078 
8 1.066: 
9 1.0% 

10 1.049 
12 1.0.78 
14 1.031 
16 l.fl2.5 
18 1.021 
20 1.018 

24 1.013 
30 1.009 
40 1.008 
60 1.003 

I20 1.001 
00 Loo0 

0.050 

1.573 
1.307 
1.208 
1.175 
1.120 

1.097 
I.OHI 
1.om 
1.059 
1.051 

1.032 
1.028 
1.021 
1.0lU 

1.014 
1.010 
1 . W 8  
1 
1.001 
1.ooo 

i.om 

nil/ = 10 
0.035 

1.873 
1.3%5 
1.218 
1.161 
1.125 

1.101 
1.084 
1.071 
1.081 
1 .ox1 

1.041 
I .u.u 
1.026 
1.022 
1,019 
1.014 
1.010 
ISXI6 
1.003 
1.001 
I.O(X) 

0.010 

1.M7 

J .2W 
1.169 
1.1:11 

1.106 
1.087 

1.063 
1.0.5S 
1.042 
1.031 
1.027 
1.023 
1.019 

1.015 
1.010 
1.008 
1 .003 
I .MI I 
1.00O 

u + n  

I .n74 

0.005 

1.7.% 
I .:as 
1.239 
1.173 
1.135 

I. 109 
1090 
1.076 
l.WS 
1.0,M 

1.043 
1.034 
1.0% 
1.023 
1.020 
1.015 
1.010 
1.008 
1.(m3 
1.001 
1.OW 

x:,,,,, 743070 79.oU19 83.2876 88.3794 91.4517 

I 
2 
3 
4 
5 

6 
7 
U 
9 

10 
12 
14 
16 
18 
20 
24 
30 
40 
60 

120 
00 

I .554 
1.316 
1.221 
1.167 
1.133 
1.109 
1.091 
1.078 
1.067 
1.059 

1.037 
1031 
1.026 
1.022 

1.017 
1.012 
1.007 
1.004 
1.001 
1 o(x) 

1.046 

0.050 

1.W5 
1.3j5 
1.232 
1.175 
1.lM 

1.113 
1,095 
1.oRl 
1.070 
1.081 

I .W8 
1.039 
I .a32 
1.027 
1.027 

1.012 
I .(lo7 
I .OM 
1.001 
1.otM) 

I ,017 

) ) I / ,  = 12 

0.025 

1.655 
1.3% 
1.242 
1.182 
1.144 

1.117 

1.083 
1.072 
1 .W3 

1.049 
1.040 
1 033 
1.027 
1.023 
1.018 
1.012 
1.008 
1.004 
1.001 
1 .OM) 

1.098 

0 010 

1 722 
137u 
I 2x5 
I 1%) 
1 1!50 

1122 

I 086 
1074 
1 065 
1 051 
I .  041 
1 OR4 
1028 

I 102 

1 024 

1018 
1013 
1008 
1olJ.l 
1001 
1 0 0  

(l.OO.5 

1.771 
1.3395 
1.285 
1.197 
1.m 

1.125 
1.104 
1.089 
1.076 
1.067 
1.052 
1.042 
I .03li 
1.029 

1.019 
1.013 
1.008 
1.004 
1.001 

I.Ov0 

0.100 

1.5% 
1.002, 
1.200 
1.157 
1.124 
1.101 
1 .OR4 

I ,062 
1.0>S4 

1.042 
1 .u34 
I .O2R 
l.W.3 
1.020 
1.01.5 
I010 
1.006 
Loo0 
1.001 

1.000 

81.085 

I .on 

0 100 

1.569 
1.53) 
1 .2w 
1.178 
1 142 

1.117 
1.098 
1 .OR4 
1.073 

1.OX) 
1.041 

1.028 
1.024 
1.018 
1.01.) 
1.008 
1.004 
1.001 

loo1 

I ow 

1 .n,H 

94.374 

naw 

I .  5N9 
I .321 

1,104 
1.129 

I .  In5 
1.088 
J ,074 
1.004 
I .a55 

I .  044 
1.035 

1.024 
1.020 
1.015 
1.01 1 
1.007 
1.003 
1.001 
I .tMM 

I .  znn 

i .nzg 

ni l /  - 11 

(1.025 

1 ,639 
1.339 
1.230 
1.171 
1.134 
1.109 
1091 
1.077 
1.060 
1.058 
1.045 
1 .036 
1.0;m 
1.025 
1.021 
1.016 
1.011 
1.007 
1 .003 
1 .oo 1 

I .OM) 

8S.91140 90.349 

o.or<~ 

1.6S1 
1.349 
1.244 
1,185 
1.118 

1.1'21 
1.102 
1.088 
1.075 
1.066 

1.052 
1.042 
1.0:15 
1.039 
1 .@% 

1.019 
1.013 
1.008 
1.004 
1.001 

1.080 

n1/, = 13 

(1.0%5 

1.673 
1.368 
I ,255 
1.192 
1,157 

1.125 
1. 105 
I 090 
1.078 
1.068 
1 .om 
1.043 
1.030 

1.026 
1.020 
1.01'1 
I .no8 
1.004 
1.001 

I.(Kx) 

I ,030 

0.010 

1.7n4 
1. xi3 
1. '243 
1. It30 
!.14n 

1.114 
1.094 
1.om 
1.069 

1.047 
1.037 
1.030 
1.020 

1.016 
1.011 
1.007 
1.003 
1.001 

1.o(x) 

1 . m  

1.022 

o.(w 

1 . m  
- 

1.252 
1.186 
I. 14:; 
1.117 
I . O K  
1.082 
1.0'70 
1.06 I 

1.048 
1.0,W 
1.031 
1.020: 

1.017 
1.018 
i ,007 
1.003 
1.001 

1.001, 

1.02: 

9.5.6257 m3:m 

0 010 

1 739 
1.393 
1.268 
1201 
1.159 

1.130 
1.109 
1,093 
1.080 
1.070 
i .nx 
1.044 
1.0.37 
1 .a31 
1.026 
1.020 
1.014 
1.009 
I 004 
I on1 
1.ooO 

0 005 

__ 
1 d i n  
1278 
I 208 
1 104 

1 1% 
1112 

1082 
1072 
1057 
1046 
1 OOH 
10t32 
102; 

1021 
1014 
1009 
1004 
1001 

1 0lx) 

1 nns 



D13 (Continued) 

d -  6 

1 
2 
3 
4 
6 

6 
7 
8 
9 

10 
12 
14 
16 
18 
20 

24 
30 
40 
60 

120 
co 

x i m H  

1 
2 
3 
4 
6 

6 
7 
8 
9 

10 

12 
14 
16 
18 
20 
24 
30 
40 
60 

120 
00 

&I" 

mzH=14 

0100 0.060 0.026 0.010 0*006 

1,686 1.637 1.688 1.766 1.806 
1.343 1.363 1.383 1.407 1.426 
1.244 1.266 1.267 1.281 1.291 
1.188 1.198 1.203 1,212 1.219 
1.161 1.167 1.162 1.189 1.1-4 

1.126 1.129 1.133 1.189 1.142 
1.106 1.109 1.112 1.117 1.119 
1.000 1.003 1.098 1.100 1.102 
1.078 1.081 1.083 1.086 1.088 
1.069 1.071 1.073 1.076 1.078 

1.066 1.066 1,068 1.060 1.081 
1,044 1.046 1,047 1.049 1.060 
1.037 1.038 1.030 1.040 1.041 
1.031 1.032 1.033 1.034 1.036 
1.027 1.028 1.028 1,029 1.030 

1.020 1.021 1.021 1.022 1.023 
1,014 1.016 1.016 1.016 1.016 
1*000 1.000 1.000 1.010 1-010 
1.004 1.006 1.006 1.006 1.006 
1.001 1.001 1.001 1.001 1.001 
1.000 1.000 1.000 1.000 1.000 

100.9800 108-3048 111.2423 117.0666 121.1263 

mH = 16 

0.100 0060 0,026 0.010 0,006 

1416 
1.370 
1.267 
1.208 
1.168 

1.140 
1.119 
1.103 
1.090 
1.079 

1.063 
1.052 
1.043 
1.037 
1.032 
1.024 
1.017 
1.011 
1.006 
1.002 
1.000 

114.1307 

1.668 
1.391 
1.280 
1.218 
1.176 
1.146 
1.123 
1.106 
1.093 
1.082 
1.066 
1.063 
1.046 
1.038 
1.033 
1.026 
1.018 
1.011 
1.006 
1.002 
1.000 

119.8709 

1.721 
1.411 
1.291 
1,224 
1.181 
1,160 
1.127 
1.109 
1.096 
1.084 
1.067 
1,056 
1.048 
1.039 
1.033 

1.026 
1.018 
1.011 
1.006 
1.002 

1-000 

126.0001 

1.780 
1.436 
1.306 
1.234 
1.188 

1.166 
1.131 
1.113 
1,099 
1.087 
1.069 
1.068 
1.047 
1,040 
1.034 
1.026 
1.019 
1.012 
1.008 
1.002 
1.000 

131.1412 

1.841 
1.466 
1.316 
1.241 
1.193 
1.169 
1.136 
1.116 
1.101 
1.089 
1.071 
1.058 
1.048 
1,041 
1.035 
1.027 
1.010 
1.012 
1.006 
1.002 

1.000 

136.4330 

M H  = IS 

0.100 0.060 0.026 0.010 

- 
1.367 
1.268 
1,198 
10180 
1,132 
1.112 
1.097 
1.084 
1.074 
1.069 
1.048 
1.040 
1.034 
1.029 
1.022 
1.016 
1.010 
1.001 
1.001 
1 *M)o 

107*666 

- 
1.377 
1.288 
1.208 
1.168 
1.137 
1.118 
1.100 
1.087 
1.076 
1,061 
1*060 
1.041 
1.036 
1.030 
1,023 
1.016 
1.010 
1.006 
1.001 
1.000 

iia.141~ 

- 
1.397 
1.279 
1.214 
1.171 
1.142 
1.120 
1.103 
1.080 
1.079 
1.082 
1.061 
1-042 
10.38 
1.031 
1.023 
1.017 
1-010 
1.006 
1.001 
1.000 

118.138 

- 
1.422 
1.293 
1.233 
1.178 
1.147 
1.124 
1.108 
1.092 
1,081 
1,084 
1.068 
1.044 
1.097 
1.032 
1.024 
1.017 
1.011 
1406 
1.002 
1.000 

121.116 

mH = 17 

0.100 0.060 0.026 0.010 

- 
1,383 
1.279 
1.218 
1.177 
1.148 
1.126 
1.100 
1.0M 
1.086 
1.068 
1.068 
1.047 
1.040 
1.034 
1.026 
1.019 
1.012 
1.006 
1.002 
1 a000 

120.679 

- 
1,404 
1.291 
1.226 
1.184 
1.163 
1.130 
1.113 
1.099 
1.087 
1.070 
1.067 
1.048 
1.041 
1.036 
1.027 
1.019 
1.012 
1.006 
1.002 
1.000 

128.674 

- 
1.424 
1.303 
1.234 
1.190 

1.168 
1.134 
1.116 
1.101 
1.090 
1.072 
1.069 
1.048 
1.042 
1.036 
1.028 
1.020 
1.012 
1.006 
1.002 
1 *om 

131.838 

- 
1.460 
1.317 
1444 
1.107 
1.164 
1.139 
1.120 
1.106 
1.002 
1.074 
1*061 
1.061 
1.043 
1.037 
1.028 
1.020 
1.013 
1.006 
1.002 
1.000 

138.134 

0.006 

- 
1.440 
1.303 
1.230 
1.183 

1.161 
1.121 
1.108 
1.006 
1,083 
1.068 
1.064 
1.046 

1.032 
1.026 
1.017 
1.011 
1.006 
1.002 

1.000 
128,299 

1.0a8 

0.006 

- 
1.460 
1.328 
1.261 
1.202 
1.168 
1.142 
1.123 
1.107 
1.094 
1.076 
1-082 
1.062 
1.044 
1.038 
1.029 
1.021 
1.013 
1.007 
14?02 
1.000 

142.632 
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1 
2 
3 
4 
6 

6 
7 
6 
8 

10 
12 
14 
16 
18 
20 
24 
30 
40 
60 

120 
Qo 

X L ,  121.81 I 1  

0.100 

1.844 
1.386 
1.290 
1.928 
1.188 

1.166 
1.133 
1.116 
1.101 
1.090 

1.073 
1.060 
1.U60 
1.043 
1.037 
1.028 
1.020 
1.013 
1.006 
1.002 
1.000 

0.060 

1.6Q8 
1.417 
1.303 
1.237 
1.193 

1.161 
1.138 
1.118 
1.106 
1.003 
1.074 
1.081 
1.061 
1.044 
1.038 

1.029 
1.021 
1.013 
1.007 
1.002 
1.000 

mH= 18 

0.025 

i m a  
1.438 
1.316 
1.246 
1*198 

1.166 
1.142 
1.123 
1.107 
1.086 

1.076 
1.063 
1.083 
1.046 
1.039 
1.030 
1.021 
1.013 
1.007 
1.002 

14l00 

0.010 

1.822 
1.484 
1.328 
1.265 
1.20tl 

1.172 
1.146 
1.127 
1.111 
1.088 
1.070 
1.065 
1.064 
1.040 
1.040 

1.031 
1.022 
1.014 
1 4 0 1  
1.002 

1.000 

0.005 0.100 

1.874 - 
1483 1.408 
1.340 1.301 
1.262 1.237 

1.176 1.164 
1,160 1.140 

1.113 1,107 
1.100 1.096 

1.080 1.077 

1.056 1.063 
1,047 1.046 
1.041 1.038 
1.031 1.030 
1.022 1.022 
1.014 1.014 
1.007 1.007 
1402 1.002 
1.000 1.000 

1.212 1"185 

1,129 1.122 

1.086 1.083 

133.2669 138'660U 146.0988 149.6994 133.729 

\a 
M\ 

1 
2 
3 
4 
5 

6 
7 
8 
0 

10 

12 
14 
16 
18 
20 

24 
30 
40 
60 

120 

co 

0.100 

1.872 
1,420 
1,312 
1.247 
1.203 

1.171 
1-14? 
1.128 
1,113 
1.101 

1,081 
1.067 
1.067 
1.04.9 
1.042 

1,033 
1.0%3 
1.016 
1.008 
1430% 

1~000 

0.060 

1.741 
1.443 
1,326 
I.2R8 
1.210 

1.177 
1.162 
1.132 
1.116 
1.103 
1.084 
1.069 
1.058 
1.050 
1.043 
1.033 
la24 
1,016 
1.008 
1.002 

1.000 

mH .. 2G 

0.02b 

1.781 
1404 
1.337 
1.285 
1.217 
1.182 
1,168 
1.186 
1.118 
1.108 

1,086 
1.07 1 
1,060 
1,061 
1.044 

1,034 
1.025 
1410 
1.008 
1.002 

1.000 

0.010 

1.863 
1.480 
1.363 
1,276 
1.224 

1.188 
1.161 
1,140 
1.123 
1.100 

1.088 
1.0'13 
1.061 
1.062 
1.046 
1.035 
1,026 
1.010 
1*008 
1.002 

1.000 

0.060 

- 
1.430 
1.314 
1,246 
1.201 
1.169 
1.146 
1.128 
1.110 
l*U96 
1.079 
1.066 
1.066 
1.047 
1,041 
1.031 
1.022 
1.014 
1.007 
1.002 

1.000 
139~921 

R)" = 19 

0.026 

- 
1,451 
1.326 
1.266 
1.208 

1.114 
1.140 
1.129 
1.115 
1.101 

1.081 
1.067 
l.Ob6 
1.048 
1.041 
1.032 
1.023 
l.Ol.5 
1.007 
1.002 
1.000 

146.441 

0.010 

- 
1.477 
1.341 
1.266 
1.216 
1.180 
1.164 
1.138 
1.117 
1.104 

1.083 
1*060 
1*058 
1.040 
1.043 
1.033 
1.023 
1.016 
1.008 
1 402 
1 *OoO 

162.031 

0-00b 

-- 
1.487 
1.362 
1.213 
1.221 
1.184 
1.167 
1,136 
1.110 
1.106 
1.086 
1470 

1.060 
1,043 
1,033 
1.024 
1.016 
1.008 
1.003 
1~000 

1664l37 

1.069 

0,005 

1*900 
1.510 
1.384 
1.283 
1.230 

1.193 
1.185 
1.143 
1.128 
1.111 

1.090 
1.074 
1.062 
1.063 
1.048 

1.036 
1.026 
1.010 
1.01)8 
1 .002 

1.000 

Xi,,,,, 140.2328 140.6074 162*2114 168.8602 163.6182 
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D13 (Continued) 

d =  7 

1 
2 
3 
4 
6 

6 
7 
8 
9 
10 

12 
14 
10 
18 
20 

24 
30 
40 
60 
120 

CD 

.LH 

x 
1 
2 
3 
4 
G 

8 
7 
8 
9 
10 

12 
14 
18 
18 
20 

24 
30 
40 
80 
120 

m 

";mH 

0100 

1.484 
1.266 
1.170 
1.126 
1.096 

1.077 
1.063 
1,063 
1.046 
1*089 

1*080 
1.024 
1.019 
1.016 
1.014 

1.010 
1,007 
1.004 
1.002 
1.001 

1.000 

62.0376 

0.100 

1.499 
1.276 
1.188 
1.140 
1.110 

1.089 
1.074 
1.083 
1.064 
1,047 

1.036 
1.029 
1,024 
1,020 
1.017 

1.013 
1.009 
1.006 
1.003 
1.001 

1.000 

77.7464 

0.060 

1.682 
1.278 
1.180 
1.181 
1.101 

1.081 
1.068 
1.066 
1.047 
1,041 

1*081 
1.026 
1.020 
1.017 
1.014 

1.010 
1.007 
1.004 
1.002 
1.001 

1.000 

66.3386 

0.060 

1.647 
1.292 
1.198 
1.147 
1,116 

1.093 
1.077 
1.086 
1.068 
1.048 

1.038 
1.030 
1.021 
1.021 
1.018 

1.013 
1.009 
1.008 
1.003 
1.001 

1.000 

82.6287 

m H = 7  

0.026 

1.580 
1.290 
1.189 
1.137 
1.106 

1.084 
1.069 
1.068 
1.049 
1.042 

1,032 
1.028 
1.021 
1.017 
1.016 

1.011 
1.007 
1.004 
1.002 
1.001 

1.000 

70.2224 

m H = 9  

0.026 

1.694 
1.309 
1.207 
1.163 
1,119 

1.098 
1.080 
1.087 
1.058 
1.050 

1.039 
1.031 
1,026 
1.021 
1.018 

1.013 
1.009 
1.008 
1.003 
1.001 

1-000 

864296 

0.010 

1.643 
1.312 
1.201 
1.146 
1.111 

1.088 
1.072 
1.080 
1.061 

1.034 
1.027 
1.022 
1.018 
1.016 

1.011 
1.008 
1406 
1.002 
1.001 

1.000 

74.9196 

i m  

0.010 

1466 
1.331 
1.219 
1.181 
1.126 

1.100 
1.083 
1.070 
1.060 
1.052 

1.040 
1.032 
1.028 
1.022 
1.019 

1.014 
1.010 
1.006 
1.003 
1.001 

1.000 

92.0100 

0.006 

1488 
1.329 
1.210 
1.160 
1.114 

1.091 
1.074 
1.082 
1.063 
1.041 

1.036 
1,028 
1.022 
1.019 

1.012 
1.008 
1.006 
1.002 
1.001 

1.000 

784307 

1.018 

0*006 

1.703 
1.348 
1.228 
1.186 
1.126 

1.103 
1.086 
1.072 
1.082 
1.053 

1.041 
1,033 
1.027 
1,023 
1.019 

1.014 
1.010 
1.008 
1.003 
1.001 

1.000 

96.8493 

0.100 0-060 

1.490 1.538 
1.265 1,282 
1,179 1.189 
1.132 1.139 
1.103 1.108 

1.083 1.088 
1.058 1.071 
1.068 1.060 
1.049 1.061 
1-048 1.044 

1.038 1.084 
1.028 1.027 
1.021 1.022 

1.016 1.016 

1.011 1.012 
1.008 1.008 
1.005 1.006 
1.002 1.002 
1.001 1.001 

1.000. 1.000 

1.018 -2.018 

mH=8 

0.026 0.010 

1.686 1.648 
1.299 1.321 
1-198 1.210 
1.146 1.162 
1.112 1.117 

1.090 1.094 
1.074 1.077 
1.002 1.066 
1,063 1.068 
1.046 1.048 

1.038 1.037 
1.028 1.028 
1.023 1.023 
1.019 1.020 
1.018 1.017 

1.012 1.012 
1.008 1.009 
1.006 1.006 
1.002 1.003 
1.001 1.001 

1.000 1.000 

0.006 

1.594 
1-88? 
1.218 
1.168 
1.121 

1.097 
1.080 
1.087 
1.067 
1.049 

1.038 
1.029 
1.024 
1.020 
1.017 

1.013 
1.009 
1.006 
1.003 
1.001 

1.000 

89.9186 74.4083 18.6672 834134 864938 

0.100 

1.509 
1.285 
1.197 
1.148 
1.117 

1.096 
1.080 
1.088 
1.068 
1.061 

1.040 
1.032 
1.028 
1.022 
1.019 

1.014 
1.010 
1.006 
1.003 
1.001 

1.000 

0.060 

1.567 
1.309 
1.208 
1.166 
1.122 

1.098 
1.083 
1.070 
1.080 
1.063 

1.042 
1.034 
1.028 
1.023 
1.019 

1,014 
1.010 
1.006 
1-003 
1.001 

1.000 

m H = 1 0  

0.026 

1404 
1.320 
1.217 
1.162 
1.127 

1.103 
1.086 
1,073 
1.062 
1.064 

1.042 
1.034 
1.028 
1.023 
1.020 

1.016 
1.010 
1.006 
1.003 
1.001 

1.000 

0.010 

1.686 
1.342 
1.228 
1*18B 
1.132 

1.107 
1.089 
1.075 
1.068 
1.066 

1.044 
1.036 
1.029 
1.024 
1.020 

1.018 
1.011 
1.007 
1.009 
1.001 

1.000 

0.006 

1.716 
1.359 
1.238 
1.176 
1.130 

1.110 
1.091 
3.077 
1.088 
1.068 

1.046 
1.036 
1.029 
1.024 
1.021 

1.016 
1.011 
1.007 
1.003 
1.001 

1*000 

86.6971 90.6312 96.0231 100*4260 104.2160 

583 



D13 (Continued) 

d =  1 
---I_ 

1 -  
2 1.297 
3 1.207 
4 1.167 
6 1-126 
6 1.102 
7 1.088 
8 1.073 
9 1.083 

10 1.066 
12 1.043 
14 1.036 
16 1.028 
18 1.024 
20 1.021 
24 1.018 
30 1.011 
40 1.007 
60 1-003 

120 1.001 
rn 1*OOo 

&,, 93.270 

1 
2 
3 
4 
6 

8 
7 
8 
D 
10 

12 
14 
18 
18 
20 
24 
30 
40 
60 

120 
co 

X L "  

0.100 

- 
1.320 
1.228 
1-176 
1.141 
1.118 
1.098 
1.084 
1.073 
1.064 
1.061 
1.042 
1.036 
1.029 
1.026 

1.018 
1.013 
1.008 
1.004 
1.001 
1~000 

108*881 

584 

rnn-I1 

0,060 0.026 

- - 
1.316 1.932 
1.218 1.227 
1,164 1.171 
1.130 1.136 
1.108 1.110 
1.089 1.092 
1.078 1.018 

1.067 l*OSU 
1.045 1.046 
1.038 1.037 
1.030 1.031 

1.021 1.022 
1.018 1-017 
1.ot1 1.012 
1.007 1.007 
1.005 1.004 
1.001 1.001 
1*ooo 1.000 

98.484 103*168 

i.oe6 1.087 

1.026 1.020 

0.060 

- 
1.338 
1,238 
1.182 
1.148 
1.120 
1.102 
1.087 

1.068 
1-063 
1.043 

1.030 
1,028 

1.020 
1.014 
1.009 
1.004 
1.001 
1 *om 

114.288 

1.07a 

1.03e 

m , = 1 3  

0.026 

- 
1.968 
1.248 
1.189 
1.lbl 
1.124 
1.106 
1.090 
1,078 
1.088 
1*064 
1.044 

1.031 
1.028 
1.020 
1.014 
1.008 
1.004 
1.001 
1.000 

119.282 

1.038 

0.010 0.006 0.100 

- 
1,364 
1.239 
1.179 
1.140 
1,114 
1.096 
1.081 
1.070 
1.081 
1-048 
1438 
1432 
1.027 
1.023 
1.017 
1.012 
1.007 
1.004 
1*001 

1.000 
108,771 

0.010 

-. 
t.378 
l.Pd1 
1.197 
1.167 
1.120 
1.108 
1,093 
1.080 
1.071 
1*068 
1.045 
1.038 
1.032 
1.027 

1421 
1.014 
1.000 
1,004 
1401 
1.000 

125.289 

- 
1.371 
1.248 
1.184 
1.145 
1.118 
1.098 
1.083 

1.082 
1.048 
1,038 
1.032 
1.027 
1.023 
1.017 
1 4 1 2  
1.008 
1.004 
1.001 

1.000 

1 .~72  

112.704 I 

1.631 
1.308 
1.217 

1,133 
1.109 
1.002 
1,078 
1.088 
1.000 

1.047 

1.032 
1.027 
1.023 
1,017 
1.012 
1.008 
1.004 
1*001 

I400 
OO.ll800 

1.188 

1,038 

0.005 0.100 

- 1.668 
1.395 1.331 
1.270 1.238 
1.103 1.184 
1.161 1.148 

1.132 1.123 
1.111 1,106 
1,096 1,080 
1,082 1478 
1.072 1,060 

1.057 l.Ob6 
1.046 1.046 
1.038 1,037 
1.032 1.032 
1.028 1.027 
1.021 1.021 
1.016 1.016 
1.009 1.008 
1.005 1.006 
1,001 1.001 

1.000 1.000 

1.679 
1.320 
1.228 
1.173 
1,138 
1.113 
1.095 
1.081 
1.070 
1.002 

1.049 
1.038 
1.033 
1428 
1.024 
1.018 
1.012 
1.008 
1.004 
1.001 

1.000 

100.3948 

0.0GO 

1404 
1.360 
1.249 
1.192 
1-164 
1.128 
1.108 
1.003 
1.081 
1.071 
1,067 
1446 
1*030 
1,033 
1.028 

1.021 
1,016 
1.009 
1,006 
1.001 

1~000 

1.627 
1.344 
1.238 
1.180 
1.143 
1.117 
1.098 
1.084 
1,073 
1*0d4 
1.050 
1.011 
1.034 
1.028 
1.024 
1.018 
1.015 
1.008 
1.004 
1.001 
1.000 

111*2423 

1490 
1.386 
1.250 
1.188 
1.148 
1.122 
1.102 
1.087 
1.076 
1.008 

1.062 
1.042 
1.035 
i.029 
1.026 
1.019 
1.019 
1.008 
1.004 
1*001 

1*000 

117.0605 

m f + =  14 

0.026 

1.052 
1.388 
1.259 
1.198 
1.168 
1.132 
1.111 
1498 
1.083 
1473 
1.066 
1.047 

1.033 
1.029 
1.022 
1.016 
1.010 
1*oon 
1.001 

1.000 
127.2821 

1.038 

, /  

0.010 

1.715 
1.391 
1.272 
1407 
1*I06 
1.137 
1.116 
1.099 
1.088 
1.078 

1.000 
I.O& 
1.041 
1.034 
1.030 
1.022 
1.018 
1.010 
1.0OG 
1.001 
1.000 

0-005 

1.737 
1.383 
1,280 
1.194 
1.163 

1.126 
2.104 
1.06B 
1.011 
1.087 

1.063 
1.043 
1436 
1,030 
1.026 
1.019 
15013 
1.008 
1W4 
1.001 

1.000 
121.1203 

0.006 

1.703 
1.408 
1.281 
1.213 
1.170 
1,140 
1.118 
1.101 
1.088 
1.077 
I.OQl 
1.080 
1.041 
1.036 
1,030 
1,023 
1.016 
1.010 
1.006 
1.001 

1400 



D13 (Continued) 

1 -  
B 1.843 
8 1.248 
4 1.193 
6 1.167 
6 1,131 
7 1.111 
8 1.096 
9 1.084 

10 1.074 
12 1.060 
14 1.048 
16 1.040 
18 1.034 
20 1.030 
24 1.023 
30 1.016 
40 1.010 
60 1.006 

120 1.001 
OD 1*OOo 
&, 123.947 

~~ 

0.060 

- 
1.363 
1.269 
1.201 
1.162 
1.136 
1.116 
1.099 
1.086 
1,076 
1.061 
1.060 
1.042 
1,036 
1.030 
1.023 
1.016 
1.010 
1.006 
1.001 
1.000 

129.918 

"IH = 15 

0.026 

- 
1.380 
1,270 
1.208 
1.168 
1,139 
1.118 
1.102 
1.089 
1.078 
1.062 
1-061 
1443 
1.036 
1.031 
1.024 
1.017 
1.011 
1.006 
1.002 
1.000 

136-247 

0.010 

- 
1.403 
1.283 
1.216 
1.174 
1,144 
1.122 
1.106 
1.002 
1.081 
1.064 
1.063 
1.044 
1.037 
1.032 
1.024 
1.017 
1.011 
1.006 
1,002 
1*OOO 

141.620 

0406 

- 
1.420 
1.202 
1.223 
1.179 
1.148 
1.125 
1.107 
1.094 
1.082 
1.068 
1.064 
1.046 
1.038 
1.033 
1.026 
1.018 
1.011 
1.006 
1.002 
1.000 

146.070 

\a 
M\ 

1 
2 
3 
4 
6 

6 
7 
8 
0 

10 
12 
14 
16 
18 
20 
24 
30 
40 
60 

120 
03 

"MH 

m H =  17 

0.100 0.060 0.026 0.010 0.006 

- - - I - 
1.366 1.386 1,403 1.427 1,446 
1.288 1,280 1.291 1.304 1.314 
1.211 1.219 1.228 1.236 1.242 
1.173 1.179 1,184 1.101 1.m 

1.1% 1.128 1.131 i.i3e 1.130 
1.146 1.160 1.164 1.169 1.163 

1.108 1.111 1.114 1.117 1,120 
1.096 1.097 1.100 1.103 1.106 
1.084 1.086 1.088 1.091 1.093 
1.067 1.069 1.071 1.073 1,074 

1.047 1.048 1.049 1.060 1.061 
1.040 1.041 1.042 1.043 1.044 
1.034 1.035 1.036 1.037 1.038 
1.026 1.327 1.028 1.028 1.029 
1.018 1.018 1.020 1.020 1.021 
1.012 1.012 1.013 1.013 1.013 
1.008 1.008 1.006 1,007 1.007 
1.002 1.002 1.002 1.002 1.002 
1.000 1.000 1.000 1.000 1.000 

139.149 146.481 161.084 167400 162.481 

1.066 1.067 1.068 1.060 i.oei 

0.100 0.060 

1.680 1.629 
1.364 1-373 
1.268 1.270 
1.202 1.210 
1.166 1,171 
1.138 1.142 
i.118 1-121 
1.102 1-106 
1.089 1.092 
1.079 1.08l 
1.063 1.068 
1.062 1.063 
1.044 1.046 

1.032 1.088 
1.024 1.026 
1,017 1.018 
1.011 1.011 
1.006 1.006 
1.002 1.002 
1.000 1.000 

131.6676 137.7016 

i.oa7 i.osa 

"IH= 16 

0.026 

1-678 
1-382 
1.280 
1.217 
1.176 
1.147 
1-12.5 
1.108 
1.094 
1.083 
1.087 
1.066 
1,046 

1.034 
1.026 
1.018 
1.012 
1.006 
1.002 
1.000 

143.1801 

i.oao 

0100 

1.606 
1.377 
1,278 
1.220 
1.181 
1.152 
1.131 
1.114 
1.100 
1.089 

1.072 
1.069 
1.060 
1.043 
1.037 
1.028 
1.020 
1.013 
1.007 
1.002 

1,000 
146-7241 

mH = 18 

0.060 0.026 

1,664 1.703 
1.386 1.416 
1.290 1.301 
1.228 1.236 
1.187 1.192 
1.167 1.161 
1.134 1.138 
1,117 1.120 
1.103 1.108 
1.081 1.093 
1.074 1.075 

1.061 1.062 
1.044 1.046 
1.038 1.039 
1.029 1.030 

1.013 1.014 
1.007 1.007 
1.002 1.002 

1.000 1.000 
163.1979 1684624 

1.061 1.082 

1.021 1.021 

0010 0.006 

1.742 1.790 
1-416 1.492 
1.293 1.303 
1,226 1.232 
1,182 1.187 
1.162 1.166 
1-129 1.132 
1.111 1.114 
1.097 1-099 
1.086 1.088 
1.069 1.070 
1.066 1.067 
1.047 1.048 
1.040 1.041 
1.084 1.036 
1.026 1.027 
1.019 1.019 
1.012 1.012 
1.006 1*006 
1.002 1.002 
1.000 1.000 

149.7269 164-2944 

0.010 0*006 

1.768 1.816 
1439 1-467 
1.316 1.324 
1.246 1.252 
1.199 1.204 
1.167 1,171 
1.142 1.146 
1.124 1.126 
1.108 1.111 
1.096 1.098 
1.077 1.079 
1-064 1.066 
1.064 1.066 
1.046 1.047 
1,040 1'040 
1*031 1.031 
1.022 1.022 
1-014 1.014 
1~001 1.007 
1.002 1.002 

1~000 1.000 

166434t0 110.6341 

585 



D13 (Continued) 

1 -  
2 1.388 
3 1.288 
4 1.229 
5 1.188 

6 1,168 
7 1.137 
8 1,118 
9 1.105 
10 1.084 

12 1.078 
14 1.063 

18 1-046 
20 1.039 

24 1.030 
30 1.022 
40 1.014 
60 1,007 
120 1.002 

00 1.000 

i e  1.063 

0*060 

- 
1.408 
1.300 
1.237 
1.186 

1.184 
1.141 
1.123 
1.108 
1,086 

1.078 
1.066 
1.064 
1.047 
1.040 

1.031 
1.022 
1.014 
1.007 
1.002 

1400 

160.916 

mH = I Y  

0,028 

- 
1.427 
1.311 
1.246 
1.201 

1.180 
1.146 
1.126 
1.111 
1.089 

1.080 
1.066 
1.066 
1.048 
1.041 

1.032 
1.023 
1.016 
1.007 
1.002 

1.000 

166.816 

0410 

- 
1.461 
1,325 
1.254 
1.208 

1.174 
1.140 
1.130 
1.114 
1. LO1 

1.008 
1.067 
1.048 
1.042 

1.033 
1.023 
1.016 
1.008 
1402 

1.000 

173.864 

1.082 

0.006 0~100 

1.629 
1,469 1.399 
1.336 1.20R 
lea1 1.238 
1,213 1~196 

1,178 1,160 
1.162 1.144 
1.132 1.126 
1.116 1.111 
1.103 1.089 

1.083 1.080 

1,068 t m o  
1.060 1.048 
1.043 1.042 

1.033 1.033 
1024 1.024 
1.016 1.016 
1.008 1.008 
1.002 1.002 

1.000 1.000 

- 

i.oa9 1.ow 

0,060 

1.679 
1.419 
1,310 
1.246 
1.203 

1.172 
1.148 
1.129 
1.114 
1.101 

1.082 
1.088 
1.068 
1.060 
1,043 

1.033 
1.024 
1.016 
1408 
1.002 

1.000 

m,, = 20 

0.026 

1.728 
1-438 
1.321 
1.264 
1.209 

1.176 
1.151 
1.132 
1.111 
1.104 

1.084 
1.070 
1.069 
1,061 
1.044 

1.034 
1.028 
1.0!.6 
1.008 
1.002 

1.000 

O*OIQ 

1,793 
1.482 
1.336 
1,263 
1-218 

1.182 
1.166 
1.138 
1.120 
1-10: 

1.088 
1-072 
1*080 
1.062 
1.046 

1.036 
1.026 
1.010 
1.008 
1.002 

1.000 

0.005 

1.843 
1.480 
1.346 
1.270 
1.221 

1.186 
1.169 
1.139 
1.122 
1.109 

1.08R 
1.073 
1.062 
1.063 
1.048 

1.035 
1.020 
1.010 
1.00H 
1.002 

1.000 
1711.766 161.8270 168.6130 174.8478 i B l d O a  1864l408 

586 



D13 (Continued) 

1 
2 
3 
4 
6 

6 
7 
8 
8 

10 

12 
14 
16 
18 
20 
24 
30 
40 
60 

120 
03 

X L ”  

1 
2 
3 
4 
6 

e 
7 
8 
9 

10 
12 
14 

18 
20 

24 
30 
40 
80 
20 

ie 

Q) 

d m H  

0.100 

1.481 
1.270 
1.186 
1.138 
1.108 
1.088 
1.073 
1.061 
1.063 
1-046 

1.036 
1.028 
1.023 
1.020 
1.017 

1.012 
1.008 
1.006 
1.003 
1.001 
1.000 

78.8596 

0.100 

1.601 
1.288 
1.200 
1.151 
1.120 
1.098 
1.082 
1.070 
1.061 
1.063 

1.042 
1.034 
1.028 
1.023 
1.020 
1.016 
1.011 
1.008 
1.003 
1.001 
1.000 

mH=8 

0.060 0.026 

1.638 1.686 
1-288 1406 
1.186 1.204 
1.144 1.160 
1.113 1-117 
1.081 1.085 
1.076 1.078 
1.064 1.066 
1,055 1.057 
1.048 1.049 

1.038 1.039 
1.030 1.091 
1.026 1,026 
1.021 1.022 
1.017 1,018 

1.013 1,013 
1.008 1.000 
1.006 1.006 
1.003 1.003 
1.001 1.001 
1.000 1.000 

8367b3 88.0041 

0,050 

1.647 
1-303 
1.208 
1.158 
1.125 

1.102 
1.086 
1.073 
1.063 
1.066 

1.043 
1.036 
1.029 
1.024 
1.021 
1.106 
1.011 
1.007 
1.003 
1.001 
1.000 

mH = 10 

0.026 

1.683 
1.319 
1,218 
1.164 
1,130 
1.106 
1.088 
1.076 
1.086 
1.067 
1.044 

1.030 
1.026 
1.021 

1.106 
1.011 
1.007 
1.003 
1.001 
1.000 

i.03e 

0.010 

1.846 
1.928 
1.216 
1.168 
1.123 
1.090 
1.082 
1.069 
1.059 
1.061 

1.040 
1.031 
1.028 
1.022 
1,018 
1.014 
1.009 
1.006 
1.003 
1.001 
1.000 

93.2169 

0.010 

1 . t ~  
1441 
1.230 
1.172 
1.136 

1.110 
1.092 
1.078 

l.OS9 

1.046 
1.037 
1.030 

1.022 
1.016 
1.011 
1.007 
1.003 
1.001 
1.000 

1.087 

1.0213 

0.006 

1.682 
1,342 
1.224 
1.163 
1.126 
1.102 
1.084 
1,071 
1.060 
1,062 
1,041 
1.032 
1,027 
1.023 
1.018 

1.014 
1.010 
1.006 
1.003 
1.001 
1.000 

964781 

0.006 

1.888 
1.367 
1.238 
1.177 
1.138 
1.113 
1.084 
1.080 
1.080 
1.080 

1.047 
1.038 
1.031 
1.026 
1.022 
1.017 
1.012 
1.007 
1.004 
1.001 
1.000 

0100 

1.496 
1.277 
1,182 
1.144 
1.114 
1.083 
1.077 

1.057 
1.049 

1.038 
1.031 
1,028 
1,021 
1.018 

1.014 
1.010 
1.008 
1.003 
1.001 
1.000 

87.7430 

i.oee 

0100 

- 
1.284 
1.208 
1.168 
1.127 
1.104 
1.088 
1,076 
1.066 
1.067 
1,046 
1.037 
1.030 
1.026 
1.022 
1.017 
1.012 
1.007 
1.004 
1.001 
1.000 

106.372 

0.060 

1.641 
1.296 
1.202 
1.161 
1.118 
1.087 
1.080 
1.068 
1.058 
1.061 
1.040 
1,032 
1.028 
1.022 
1.019 

1-014 
1.010 
1.008 
1.003 
1.001 
1.OoO 

02.8083 

0.060 

- 
1.312 
1.218 
1.186 
1.132 
1.108 
1.081 
1.078 

1.068 
1.046 
1.038 
1.031 
1.026 
1.022 
1.017 
1.012 
1.007 
1.004 
1.001 
1.000 

110488 

i.oe7 

m H = 9  

0.026 

1.687 
1.311 
1.211 
1-167 
1.123 
1.100 
1-083 
1.070 
1.081 
1.063 
1.041 
1.033 
1.027 
1.023 
1.018 
1,016 
1.010 
1.008 
1.003 
X~oO1 
1.000 

07.3531 

m H =  I I  

0.026 

- 
1.328 
1,227 
1.172 

1.112 
1.084 
1.080 
1.068 
1,081 

1,048 
1,039 
1.032 
1.027 
1.023 
1.017 
1.012 
1-008 
1.004 
1.001 
1.000 

116.841 

1.136 

0.010 0*006 

1.848 1.894 

1.222 1-231 

1.129 1.132 
1.104 1.107 
1.088 1.088 
1.078 1.076 
1*083 1.064 

i m a  1.849 

i.ie6 1.170 

1.066 1,068 

1.043 1.044 
1.031 1.096 
1,028 1.029 
1-024 1.024 
1.020 1.020 
1.016 1.016 
1.010 1.011 
1.008 1.007 
1*003 1.003 
1.001 1.001 
1.000 1.000 

102.~ie3 io t~ .u7~1 

0*010 

- 
1460 
1.239 
1.179 
1.142 
i . i ie 
1.087 
1,083 
1.072 
1.083 

1.049 
1.040 
1.033 
1.028 
1.024 
1.018 
1.013 
1.008 
1.004 
1401 
1.000 

0.006 

- 
1.368 
1-247 

1,146 
1.118 
1.100 
1.086 
1.073 
1.064 
1.060 
1,041 
1.034 
1.028 
1.024 
1.018 
1.013 
1.008 
1,004 
1.001 
1 -000 

i.isa 

121.787 126.819 

587 
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d -  8 

x 
1 
2 
3 
4 
6 

7 
8 
8 

10 

14 
16 
18 
20 

24 

40 
60 

120 
m 

e 

la 

ao 

0100 

1.618 
1.304 
1.216 
1.166 
1.134 

1.111 
1.003 
1.080 
1.070 
1.061 
1.049 
1.030 
1.033 
1.02H 
1.024 

1.018 
1.013 
1.008 
1.004 
1.001 
1.000 

0.060 

1.662 
1-321 
1.226 
1.173 
1.139 

1.114 
1-00? 
1*oos 
1.072 
1.069 

1.060 
1.041 
1.034 
1.029 
1.024 
l * O l B  
1.013 
1.008 
1.004 
1.001 
1.000 

mH= 1 2  

0.026 

1.808 
1.338 

1-1 00 
1.L43 
1.118 
1*009 
1.085 
1.074 
1*0M 

1.061 
1.042 
1.035 
1429 
1.026 
1.01s 
1.013 
1.008 
1.004 
1.001 
1.000 

1.230 

0010 

1.667 
1.36t) 
1.248 
1.187 
1.140 

1.122 
1.103 
1.088 
1.076 
1.087 
1.053 
1.043 
1.030 
1.030 
1-0‘20 

1.020 
1.014 
1.000 
1.004 
1.001 
1.000 

0.006 

1.713 
1.376 
1.268 
1.183 
1.153 

1.126 
1.106 
1-080 
1.078 
1.008 

1.064 
1.044 
1.036 
1.081 
1.020 
1.020 
1.014 
I.000 
1.004 
1.001 
1.000 

X b , ,  1141307 119.8709 126*0001 191.1412 1364330 

1 
2 
S 
4 
5 

6 
7 
8 
9 

10 
12 
14 

18 
20 

24 
SO 
40 
60 

120 

i n  

W 

0*100 

1.636 
1.323 
1.234 
1.182 
1,148 
1.123 
1*106 
1.081 
1.070 
1.070 
1*056 
1.046 
1.038 
1.032 
1.028 

1.021 
1.015 
1.010 
1.008 
1.001 
1.000 

0*060 

1.681 
1.341 
1.244 
1,189 
1.165 

1.187 
1.108 
1,093 
1,082 
1.072 
1.057 
1.047 
l.039 
1.033 
1.021) 
1.022 
1.018 
1.010 
1.006 
1.001 
1.000 

“ I H =  I 4  

0.026 

1.628 
1.367 
1,264 
1.180 
1.158 
1,131 
1.111 
1.006 
1.084 
1.074 

1.069 
1.048 
1.040 
1.034 
1.021) 
1.022 
1.010 
1.010 
1.006 
1.001 

1.000 

0410 

1.686 
1.379 
1.260 
1.204 
1-184 
1.130 
1-116 
l.OB0 
1.086 
1.078 
1.061 
1.050 
1.04 I 
1.035 
1*030 
1.023 
1~016 
1.010 
1.006 
1.001 
1.000 

0.006 

1.791 
1,396 
1,275 
1.2 LO 
1.168 

1.139 
1.118 
1.101 
1.088 
1.070 
1.062 
1.061 
1.042 
1.038 
1.031 

1.023 
1.017 
1.010 
1.006 
1.001 
1.000 

0,100 

- 
1.315 
1.226 
1.174 
1.141 
1.117 
1.090 
1.086 
1414 
1,066 
1.062 
1,043 
1,038 
18030 
1.026 
1a!o 
1.014 
1.001) 
1,004 
1.001 
1.000 

122.868 

0,100 

I 

1.333 
1.243 
1.190 
1.166 
1.130 
1.111 
1.006 
1,004 
I .074 
1.000 
1.048 
1.041 
1.036 
1.030 

1.023 
1.016 
1.010 
1.005 
1.002 

1 .000 

140.233 

0.060 

- 
1,331 
1.236 
1.181 
1.148 
1.121 
1.102 
1.088 
1.017 
1.087 
1.064 
1.044 
1.036 
1.031 
1.027 
1.020 
1.014 
1-008 
1.004 
1.001 
1.000 

128404 

0.060 

- 
1.361 
12G3 
1.198 
1.100 
1.134 
1.114 
1.098 
1.087 
1.078 
1,081 
1.080 
1.042 
1.036 
1 4x3 1 
1.024 
1.017 
1.011 

1.002 
1.000 

140.187 

1.005 

m H =  I 3  

0.026 

-- 
1.347 
1.246 
1.188 
1.161 
1.128 
1.106 
1490 
1.079 
1.089 
1.056 
1,046 
1.C37 
1.032 
1.027 
1.021 
1.015 
1.009 
1.005 
1.001 
1.000 

134.1 1 1 

ni,, = I I 

0.026 

- 
1.368 
1.263 
1,204 
1-166 
1.138 
1.117 
1.101 
1.089 
1.078 
1463 
1.OG2 
1.04 3 
1.037 
1.032 

1m?4 
1.017 
1.01 1 
1~00R 
1.002 
1.000 

0.010 

- 
1.386 
1.267 
1.196 
1.158 
1.129 
1.109 
1.083 
1.081 
1.071 
1.057 
1.046 
1.038 
1.033 
1.028 

1.021 
1.016 
1 400 
1.005 
1.001 
1.000 

140.469 

0.010 

- 
1,389 
1.276 
1.212 
1.171 
1.143 
1.121 
1.106 
1.091 
1.081 
1.065 
1.063 
1.044 

1.032 
1 4 2 5  
1.018 
1.011 
1.006 
1.002 

1.000 

I .03a 

162.21 1 168.950 

0.006 

-_ 
1.386 
1.260 
1.201 
1.161 
1.132 
1.111 

1.083 
1.073 
1.058 
1.047 
1.039 
1.033 
1.028 
1.022 
1.916 
1.010 
1406 
1.001 
1.000 

144.891 

i a e  

0.006 

- 
1-400 
1.284 
1.218 
1.176 
1.146 
1.124 
1.107 
1.093 
1.082 

1.064 
1.045 
1.038 
1.033 
1.026 
1.018 
1.01 1 
1.008 
1.002 
1.000 

163448 

1 -0A’tr 
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d -  8 

x 
1 
2 
3 
4 
6 

8 
7 
8 
9 
10 

12 
14 
16 
18 
20 

24 
30 
40 
80 
120 

co 

0.100 

1.666 
1.343 
1.262 
1.198 
1.182 

1,136 
1-117 
1.101 
1.089 
1.079 

1.064 
1.062 
1.044 
1.038 
1.032 

1.026 
1.018 
1.011 
1.006 
1.002 

1.000 

0060 

1.601 
1.361 
1.263 
1.206 
1.168 

1.141 
1.120 
1,104 
1.092 
1.081 

1.086 
1.064 
1.046 
1.038 
1.033 

1.026 
1,018 
1,012 
1.008 
1.002 

1.000 

mH- 16 

0.026 

1.646 
1.378 
1.272 
1.212 
1.173 

1.146 
1.123 
1.107 
1.094 
1.083 

1.067 
1.066 
1.046 
1.038 
1.034 

1.028 
1.019 
1.012 
1.006 
1.002 

1.000 

0.010 

1,706 
1.400 
1,286 
1.221 
1.179 

1.149 
1.137 
1.110 
1.087 
1.086 

1.069 
1.066 
1.017 
1.040 
1.038 

1.027 
1.019 
1.012 
1*008 
1.002 

1.000 

0.006 

1.761 
1.418 
1.294 
1.227 
1.183 

1.163 
1.130 
1-113 
1*0W 
1.087 

1.070 
1.067 
1.046 
1,041 
1.036 

1,027 
1.019 
1.012 
1.006 
1.002 

1.000 

X&,H 148-8868 166.4041 161,2087 188.1332 172.9676 

\a 
M\ 

1 
2 
3 
4 
6 

6 
7 
8 
9 
10 

12 
14 
16 
18 
20 

24 
30 
40 
60 

120 

aJ 

0.100 

1-676 
1.363 
1.270 
1-216 
1-177 

1.160 
1.129 
1.112 
1.099 
1.088 

1.07 1 
1.069 
1.060 
1.043 
1.037 

1.029 
1.021 
1.013 
1.007 
1.002 

1.000 

0060 

1-621 
1.381 
1.281 
1.222 
1.183 

1.164 
1.133 
1.116 
1.102 
1.091 

1.073 
1.061 
1.061 
1.044 
1.038 

1.029 
1.021 
1.014 
1.007 
1.002 

1.000 

mH = 18 

0.026 

1.687 
1.398 
1.291 
1.229 
1-188 

1.168 
1.136 
1.118 
1.104 
1.093 

1.076 
1.062 
1.052 
1.046 
1.039 

1.030 
1.022 
1.014 
1,007 
1.002 

1.000 

0.100 

- 
1.363 
1.261 
1.207 
1.170 

1.143 
1.123 
1.101 
1.094 
1.084 

1.067 
1.068 
1.047 
1.040 
1.035 

1.027 
1.019 
1.012 
1.006 
1.002 

1.000 

0.060 

- 
1.371 
1.272 
1.214 
1.176 

1.147 
1.126 
1.110 
1,097 
1.086 

1.069 
1.057 
1,048 
1.041 
1,036 

1.027 
1.020 
1,013 
1.006 
1.002 

1.000 

167.618 164.216 

0.010 

i m 7  
1.420 
1.304 
1.238 
1.194 

1.163 
1.140 
1.122 
1.107 
1.096 

1.077 
1.064 
1.064 
1.046 
1.040 

1.031 
1,022 
1.014 
1,007 
1.002 

1.000 

0406 

1.778 
1437 
1-313 
1,244 
1.198 

1.167 
1.143 
1.124 
1.109 
1.097 

1.078 
1.066 
1.066 
1.047 
1.040 

1.031 
1.022 
1.014 
1.007 
1.002 

1.000 

m/+- 17 

0.026 

- 
1.388 

1-221 
1.180 

1.161 
1.150 
1.113 
1.089 
1.088 

1.071 
1.068 
1.048 
1.042 
1.096 

1.028 
1.020 
1.013 
1.007 
1.002 

1.000 

170.176 

1.2138 

0.010 

- 
1.410 

1.229 
1.187 

1-134 
1.116 
1.102 
1.090 

1.079 
1.060 
1.060 
1.043 
1.037 

1.028 
1.021 
1.019 
1.007 
1.002 

1.000 

177.280 

1.8~4 

1.m 

0006 

- - 
1.903 
1.238 
1.181 

1.160 
1.138 
1.118 
1 * 104 
1.002 

1.074 
1.061 
1.061 
1,044 
1.038 

1.029 
1.021 
1.013 
1.007 
1.002 

1.000 

182228 

xi,,," 166.1318 173.0041 179.1137 186.3890 181.4686 

589 
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d -  9 

x. 
1 
2 
3 
4 
6 

6 
7 
8 
9 

10 

12 
14 
16 
18 
20 

24 
30 
40 
60 

120 
03 

X L "  

x 
1 
2 
3 
4 
6 

6 
7 
8 
9 

10 
12 
14 
16 
18 
20 
24 
30 
40 
60 

120 
m 

X L "  

0.100 

1496 
1.282 
1.187 
1.149 
1*119 

1.007 
1.081 
1,068 
1.060 
1.062 
1.041 
1.033 
1.027 
1.023 
1.020 

1,016 
1.010 
1.006 
1.003 
1*001 

1.000 

0.06U 

1.640 
1.299 

1.166 
1.123 
1.101 
1,084 
1.072 
1.062 
1.064 
1.043 
1.034 
1,028 
1,024 
1.020 

l*O16 
1-011 
1.007 
1403  
1.001 
1.000 

1.207 

m H = 9  

0.026 

1.686 
1.316 

1.162 
1.128 
1.104 
1.087 
1.074 
1.064 
1.066 
1.044 
1,036 
1.029 
1.024 
1.021 

1.016 
1.011 
1,007 
1.003 
1.001 
1~000 

1.216 

0.010 

1446 
1.337 
1.227 
l.ltl9 
1.133 

1.108 
1.090 
i ,077 
1.066 
l.OhR 

1.045 
1.036 
1.030 
1.026 
1.021 

1.018 
1.011 
1.0Oi 
1403 
1.001 
1.000 

0.006 

14300 
1.363 
1.236 
1.176 
1.137 

1.111 
1.093 
1.079 
1.068 
1.069 

1.046 
1.037 
1.031 
1.026 
1.042 

1.017 
1.012 
1-007 
1.003 
1*001 

1.000 

0.100 

- 
1,294 
1,210 
1.161 
1-130 
1.107 
1.091 
1.078 
14M8 
1.058 
1.047 
1.038 
1.032 
1.027 
1.023 
1.018 
1.012 
1.008 
1.004 
1.001 
1.000 

117.407 

0,060 

.- 
1,311 
1.219 
1.168 
1-134 
1,111 
1.094 
1~080 
1.070 
1.001 
1,048 
1.039 
1.033 
1,028 
1.024 
1.018 
1.013 
1,008 
1.004 
1.001 

1.000 

123.225 

m,,= I I  

0.025 

- 
1.327 
1.229 
1.174 
1.138 
1.114 
1.096 
1.083 
1-07?, 
1463 
1.060 
1.040 
1.034 
1.028 
1.024 

1.013 

1.004 
1.001 

1.000 

128.422 

i.oin 

i.oon 

0.010 

- 
1.348 
1.240 
1.182 
1.144 
1.118 
1.100 
1.086 
1.074 
1,065 
1.061 
1.042 
14395 
1.029 
1,025 

1.018 
1,013 

1,004 
1.001 
I .000 

134.641 

1 .eon 

0.006 

- 
1,364 
1.248 
1-187 
1.148 
1.122 
1.102 
1.087 
1.076 
1.060 

1.052 
1.043 
1.035 
1.030 
1,026 

1.018 
1.014 
1.008 
1.004 
1 .oo 1 
1.000 

138.987 

0,100 

1.497 
1.288 
1.203 
1.166 
1.124 

1.102 
1.086 
1.073 
1.064 
1.056 

1.044 

1.030 
1.026 
1.021 

L*Oltl  
1.011 
1.007 
1.003 
1.001 
1.000 

1.038 

0.060 

1.642 
1.306 
1.213 
1.162 
1.129 

1.106 
1.089 
1.076 
1.068 
1.068 

1.046 
1.037 
1-030 
1.026 
1.022 

1.017 
1*012 
1.007 
1-004 
1.001 
1.000 

m, = IU 

0,026 

148U 
1.321 

l.lU8 
1.133 

1.100 
1.092 
1.078 
1.068 
l*OGD 
1.047 
1.038 
1.031 
1.026 
1.023 

1.017 
1.012 
1.007 
1.004 
1.001 
1.000 

1.222 

0.010 

1.046 
1.342 
1.233 
1.1715 
1.139 

1.113 
1.096 
1.081 
1.070 
1-061 

1.048 
1.038 
1.032 
1,027 
1.028 

1.018 
1-012 
1.008 
1.004 
1.001 
1.000 

0406 

1.690 
1.867 
1,242 
1.181 
1.143 
1,116 
1,097 
1,083 
1,072 
1.063 
1,049 
1,040 
1.033 
1.028 
1.024 

i .oie 
1.013 
1408 
1.004 
1.001 

1.000 
107.5660 113.1463 118.1369 124~1163 128.2989 

0.100 

1.508 
1.302 
1.217 
1.188 
1.138 

1.113 
1.096 
1.082 
1.072 
1463 

1.050 
1.041 
1.034 
1 4 2 9  
1.025 
1.319 
1.013 
1.008 
1.004 
1.001 

1.000 

0,060 

1,660 
1.318 
1.227 
I176  
1.141 

1.116 
1.099 
1.086 
1.074 
1.086 

1.052 
1.042 
l4X35 
1,030 
1,026 

imfi 
1.014 
1.009 
1.004 
1001 
1.000 

127.2 I1  1 133.2569 

rnl, I 2  

0.025 

1.504 
1.336 
1.230 
1.181 
1.146 
1.120 
1.101 
1.087 
1.0711 
1.007 
1.053 
1.043 
1.030 
1.030 
1.0211 

1.020 
1.014 
1.009 
1.004 
1.001 

1.000 

0~010 

1452 
1.351 
1.247 
1,188 
1,161 

1.124 
1.105 
1.090 
1.078 
1.068 

1.056 
1,044 
1.037 
1,031 
1.027 

1.020 
1.014 
1.0oL) 
1.005 
1401 

1*000 

0.006 

1.696 
:.371 
1.266 
I. 104 
1.165 
1.127 
1.107 
1.082 
1.080 
!.070 

1.066 
1.046 
1.038 
1.032 
1.027 
1.021 
1.01& 
1.009 
1.005 
1,001 

1.000 

138,11608 145.0088 149.600 
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D13 (Continued) 

d 5 9  

1 -  
2 1.310 
3 1.224 
4 1.175 
6 1 . 1 4 ~  

8 1.118 
7 1.101 
8 1.087 
9 1.076 

10 1.067 

12 1.054 
14 1,044 
16 1.037 
18 1.031 
20 1.027 

24 1.020 
30 1.015 
40 1.009 
60 1.005 

120 1.001 

co 1.000 

X&, 136.982 

\a 
M\ 

1 
2 
3 
4 
6 

6 
7 
8 
9 

10 

12 
14 
16 
18 
20 

24 
30 
40 
60 

120 

0) 

“&IH 

0.100 

- 
1.326 
1,240 
1.189 
1.155 

1-130 
1.111 
1.097 
1.085 
1.076 

1.061 
1,050 
1.042 
1.038 
1.031 

1.024 
1.011 
1.011 
1.005 
1.002 

1.000 

166.440 

0.050 

- 
1,326 
1.234 
1.181 
1.147 

1.122 
1.104 
1.089 
1.078 
1.068 

1,055 
1,046 
1.038 
1,032 
1.028 

1.021 
1.016 
1.009 
1.006 
1.001 

1.000 

143,246 

0,050 

- 
1.343 
1.260 
1.198 
1.160 

1.134 
1.115 
1.099 
1.087 
1.077 

1.062 
1.051 
1.043 
1.037 
1.032 

1.024 
1.017 
1.011 
1.006 
1.002 

1.000 

163.116 

mH = 13 

0.026 

- 
1.Y43 
1.243 
1,188 
1.161 

1.128 
1.107 
1.092 
1.080 
1.071 

1.066 
1-046 
1.030 
1.033 
1.028 

1.021 
1-016 
1.010 
1.005 
1.001 

1-000 

148.829 

m H - 1 5  

0.025 

- 
1.359 
1.269 
1.202 
1.165 

1.138 
1.118 
1.102 
1.089 
1.079 

1.064 
1.052 
1.044 
1.037 
1.032 

1.026 
1.018 
1.011 
1.006 
1.002 

1.000 

0.010 

- 
1.383 
1.266 
1.196 
1.157 

1,130 
1.110 
1.006 
1.083 
1.073 

1.058 
1.047 
1.040 
1.034 
1.029 

1.022 
1.016 
1.010 
1,005 
1.001 

1.000 

165~496 

0.010 

- - 
1.271 
1.210 
1.170 

1,142 
1.121 
1.105 
1.092 
1.081 

1.066 
1.064 
1.045 
1.038 
1,033 

1.025 
1.018 
1.012 

1.002 

1.000 

1 .ooe 

169.068 176.138 

0.005 

- 
1.379 
1.283 
1.201 
1.161 

1.133 
1.11s 
1.097 
1.084 
1.074 

1.069 
1.048 
1.040 
1.034 
1.029 

1.022 
1.016 
1.010 
1.005 
1.001 

1.000 

160.146 

0.005 

- - 
1.279 
1.216 
1.174 

1.145 
1.124 
1.107 
1.094 
1.083 

1.066 
1.065 
1,040 
1.039 
1.034 

1.026 
1.018 
1.012 
1.006 
1.002 

1.000 

181*070 

0.100 

1.520 
1418 
1.232 
1.182 
1.148 

1.124 
1.100 
1.092 
1.080 
1.071 

1,067 
1.047 
1.039 
1,033 
1.029 

1.022 
1.016 
1.010 
1,006 
1.001 

1.000 

146.7241 

0.100 

1.536 
1,335 
1.248 
1.196 
1.101 

1.136 
1.117 
1.102 
1.089 
1,079 

1.064 
1.063 
1.046 
1.038 
1.033 

1.026 
1.018 
1.012 
1.008 
1.002 

1.000 

I 

0.060 

1.663 
1.336 
1.242 
1.189 
1.163 

1.128 
1.109 
1.094 
1.083 
1.073 

1.069 
1.048 
1.040 
1.034 
1.030 

1.023 

1.010 
1.006 
1.001 

1.000 

1.018 

n t ~ ” 1 4  

0.026 

1.607 
1.361 
1.261 
1.196 
1.168 

1.132 
1.112 
1.097 
1.086 
1,075 

1.080 
1.049 
1.041 
1.035 
1.030 

1.023 
1.018 
1.010 
1.006 
1.002 

1.000 

0.010 

1.664 
1.371 

1.203 
1.184 

1.136 
1.116 
1.100 
1.087 
1.077 

1,082 
1.051 
1.042 
1.036 
1.031 

1.024 
1.017 
1.011 
1.005 
1.002 

1.000 

1m3 

0.006 

1.708 
1,381 
1.271 
1.208 
1.168 

1.139 
1.118 
1.102 
1.089 
1.079 

1,063 
1.051 
1.043 
1.037 
1.032 

1.024 
1.017 
1.011 
1.006 
1.002 

1.000 

63.1979 168.9624 1664410 170.6341 

0.060 

1.579 
1.352 
1.258 
1.203 
1.166 

1.140 
1.120 
1.104 
1.092 
1.082 

1.068 
1.064 
1.046 
1.039 
1.034 

1.026 
1.019 
1.012 
1.006 
1.002 

1.000 

mH = 16 

0.025 

1.622 
1.368 
1.267 
1.210 
1.171 

1.144 
1.123 
1.107 
1.094 
1.083 

1.067 
1.068 
1.047 
1.040 
1.035 

1.027 
1.019 
1.012 
1.006 
1.002 

1.000 

0~010 

1.679 
1.389 
1.278 
1.218 
1.177 

1,148 
1-127 
1.110 
1,097 
1.988 

1.069 
1-067 
1.048 
1.041 
1.036 

1.027 
1.020 
1.012 
1.006 
1.002 

1.000 

0.006 

1.722 
1.404 
1.288 
1.223 
1.181 

1.162 
1.130 
1.112 
1.099 
1.087 

1.070 
1.068 
1.049 
1.042 
1.036 

1.028 
1.020 
1.013 
1.006 
1.002 

1.000 

166.1318 173.0041 179.1137 186.3930 191.4685 
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D 1 3  (Continued) 

1 
2 
3 
4 
6 

6 
I 
8 
9 
10 

12 
14 
16 
18 
20 

24 
30 
40 

120 
eo 

a0 

0~100 

1.406 
1.201 
1.208 
1.160 
1.128 

1.108 
1.000 
1.077 

1.069 
1.047 
1.038 
1.031 
1.027 
1.023 
1.017 
1.012 
1.008 
1.004 
1.001 

i.oe7 

1.000 

0.060 

1.640 
1408 
1.217 
1.166 
1.133 

1.110 
1.003 
1.079 
1.000 
1.061 

1.048 
1.030 
1,032 
1.027 
1.023 
1.018 
1.013 
1.008 
1.004 
1.001 
1.000 

m H -  to 
0,026 

1,684 
1.324 

1.172 
1.137 

1.113 
1.006 
1.082 
1471 

1.049 
1.040 
1.033 
1.028 
1.024 

1.013 
1.008 
1.004 
1.001 

1.000 

1.226 

1.002 

t w i  

&,, 118~4080 124.3421 128,6612 136~0067 140~1606 

0.010 

1.041 
1.345 
1.238 
1.180 
1.143 

1.117 
1.000 
1.084 
1.079 
1.0tJ4 

1.061 
1.041 
1.034 
I420 
1,026 
1.010 
1.013 
1 m a  
1~004 
1,001 

1.000 

0.006 

1.085 
1.900 
1.246 
1.185 
1.147 

1.120 
1.101 
1.086 
1.075 
1.060 

1.052 
1.042 
1.035 
1.020 
1.026 
1.019 
1.013 
1.008 
1.004 
1.001 
1.000 

\a 
M\ 

1 
2 
3 
4 
6 

6 
I 
8 
0 

10 
12 
I4 
10 
18 
20 
24 
30 
40 
60 

120 
cn 

0.100 

1400 
1.302 
1.219 
1.170 
1.138 
1.116 
1.098 
1.086 
1.074 
1.066 
1.062 
1.043 
1.036 
1.030 
1.026 
1.020 
1.014 
1.000 
1.004 
1.001 

1.000 

0.060 

1.643 
1.318 
1.228 
1.177 
1.143 
1.118 
1.101 
1,087 
1.076 
1.007 
1.064 
1.044 
1.037 
1.031 
1.027 
1.020 
1.018 
1.000 
1.006 
1.001 
i.ono 

m j t =  I ?  

0.026 

1486 
1,334 
1.837 
1,183 
1.148 
1.123 
1.104 
1.090 
1.078 
1.068 

1.066 
1.046 
1.038 
1.032 
1.027 
1.021 
1.016 
1.000 
1.006 
1.001 

1’001) 

0.010 

1.641 
1.364 
1.248 
1.10‘9 
I * l h 3  

1.127 
1.107 
1.092 
1.001 
1.071 
1.067 
I.04U 
1,039 
1 033 
1.028 

1,021 
1.016 
1.010 
I OGG 
1001 
1.000 

) I  

592 

0.006 

1484 
1.360 
1.267 
1.190 
1.167 
1.130 
1~110 
1,094 
1.082 
1,072 
1.053 
1.041 
1,039 
1.033 
1.029 
1.022 
1.016 
1.010 

1.001 
1~000 

1034l482 

1,005 

0.100 

- 
1.298 
1.213 
1.166 
1,133 
1.111 
1.004 
1,081 
1.070 
1.082 
1,049 
1.040 
1,034 
1.028 
1,024 
1,019 
1.013 
1.008 
1,004 
1.001 
1.000 

120.386 

0.100 

1.609 
1.316 
1.232 
1.182 
1.140 
1,126 
1.107 
1.003 
1.Q82 
1.073 
1468 
1.048 
1,040 
1.036 
18030 
1423 
1.016 
1410 
1.006 
1.002 
1400 

0 060 

-- 
1.313 
1,222 
1.171 
1.138 
1.114 
1.087 

1.072 
1.083 

1.084 
i w  
1.041 
1‘034 
1.029 
1.026 
1.019 
1.013 
1.008 
1.004 
1.001 
1 a00 

lYG-4t10 

0.060 

1.661 
1.331 
1.241 
1.189 
1.164 

1.129 
1.I11 
1.096 
1.084 
1,076 
1.000 
1.040 
1.042 
1,036 
1.031 
1.024 
1.017 
1.011 
1.006 
1.002 
1~000 

m H = I I  

0.026 

- 
1.329 
1.231 
1.177 
1.142 
1.118 
1*09Q 
1.086 
1,074 
1.066 
1,062 
1,042 
1431  
1.030 

1.020 
1.014 
1.009 
1.004 
1.001 
1.000 

140.8 17 

1.0213 

m H Y  13 

0.02ti 

1.603 
1,347 
1.260 
1.106 
1.160 
1.133 
1.113 
1.008 
1.086 
1.078 
1.001 
1.081 
1,042 
1.030 
1.031 
1.024 
1.017 
1.011 
1*000 
1.002 
1,000 

0.010 

- 
1.340 
1.243 
1,186 
1.148 
1.122 
1.103 
1.088 
1.077 
1.067 
1.054 
1.042 
14JM 
1.031 
1.026 
1.020 
1.014 
1 .ooo 
1.004 
1.001 
1.000 

47.414 

0.010 

1448 

1.201 
1.203 
1.164 
1.137 
1.117 
1.101 
1.089 
1.078 

i.3e7 

1 .oq  
1.062 
1,043 
1.037 
1.032 

1.021 
1.018 
1.011 
1.008 
1.002 

1.000 

0.006 

- 
__ 
1.261 
1,190 
1.162 
1126 
1.105 
1.090 
1 a07 8 
1.069 
1.065 
1,044 
1.037 
1.031 
1,027 
1.020 
1.014 
1409 
1.006 
1.001 

1 .ooo 
1614348 

0.006 

1 . 6 ~ 0  
1.382 
1~269 
1,208 
1168 
1141 
1119 
1.103 

1.080 

1,064 
1.063 
1,044 
1.038 
1.033 

1-026 
1.018 
1.011 
1.008 
1.002 
1.000 

1 o w  



D14 ROY’S M A X I M U M  ROOT STATISTIC 

a = 0.05 s = 2  

\1 0 1 2 3 4 5 7 10 15 

2 
3 
4 
5 
6 
7 
8 
9 

10 
15 
20 
25 
30 
35 
40 
48 
60 
80 

120 
240 
ffi 

,7919 
,7017 
,6267 
,5646 
,5130 
.46% 
.4328 
,4011 
.3737 
.2781 
,2211 
,1835 
,1568 
.1369 
,1242 
,1031 
.0836 
.0638 
,0433 
,0220 
.oooo 

,3514 
,7761 
,7090 
,6507 
,6002 
,5564 
,5182 
,4846 
,4550 
,3477 
,2810 
,2355 
.2027 
,1780 
.I585 
,1352 
,1103 
,0846 
.0577 
,0295 
.m 

,8839 
,8197 
,7600 
,7063 
,6585 
,6160 
,5782 
,5445 
,5143 
,4015 
,3287 
,2780 
.2408 
.2124 
I898 
,1626 
,1333 
.lo27 
,0704 
,0362 
.oooo 

.9045 
,8487 
.7953 
,7459 
,7010 
,6604 
,6238 
.5906 
S606 
,4455 
,3688 
,3143 
,2738 
,2425 
,2175 
,1870 
,1540 
,1192 
.0821 
,0424 
.oooo 

,9189 
,8696 
3213 
,7758 
,7337 
.6952 
,6599 
.6276 
,5980 
,4826 
.4034 
,3463 
.3031 
.26% 
,2425 
.2093 
.1731 
.I346 
0931 
,0483 
.m 

.9295 

.8853 
,8413 
.7992 
.7598 
.7232 
.6893 
.6581 
,6293 
,5145 
,4339 
,3478 
.3296 
.2924 
.2655 
,2299 
,1909 
.1409 
.lo35 
,0540 
.m 

,9441 
.9075 
,8702 
,8337 
,7988 
,7658 
,7348 
.7058 
,6786 
,5670 
,4855 
,4239 
,3760 
.3377 
,3064 
.2670 
.2233 
A756 
A230 
.0647 
.oooo 

,9573 
,9283 
.8980 
,8676 
,8380 
.8095 
.7822 
.7562 
,7316 
,6266 
.5463 
.4835 
.4333 
.3924 
.3585 
.3150 
.2661 
.2114 
,1498 
,0798 
.oooo 

.9693 

.9478 
,9247 
.9011 
,8775 
.a544 
,8318 
.a100 
,7889 
.6955 
.6198 
5580 
,5071 
.4644 
.4282 
.3807 
.3260 
.2630 
.1896 
.1030 
.m 

a = 0.01 \ 0 1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
15 
20 
25 
30 
35 
40 
48 
60 
80 

120 
240 
03 

.8826 
,8074 
,7381 
.6770 
,6237 
,5773 
,5369 
,5014 
,4701 
,3573 
.2876 
.2404 
,2065 
,1811 
,1610 
.I372 
,1117 
.0855 
.0582 
.0297 
.m 

.9173 
,8575 
.7989 
.7446 
.6954 
,6512 
,6116 
,5762 
.5443 
,4247 
,3473 
,2935 
.2540 
,2239 
.2OOo 
,1712 
,1403 
.lo80 
.0740 
,0380 
.m 

2 

.9358 
3863 
,8357 
,7873 
,7422 
,7008 
,6630 
,6285 
,5971 
.4757 
.3941 
.3360 
.2926 
,2592 
.2325 
.1999 
,1646 
,1273 
.0877 
.@I53 
.oooo 

3 

,9475 
,9051 
,8607 
,8171 
.7758 
,7371 
.7013 
,6683 
.6378 
,5168 
.4329 
.3719 
,3258 
.2898 
.2608 
,2251 
S863 
,1448 
.loo2 
.0520 
.m 

s - 2  

4 

,9556 
.9185 
.8789 
3394 
.8013 
,7652 
,7313 
.6997 
.6703 
s511 
.4661 
.4032 
.3550 
,3171 
.2863 
.2480 
.2061 
.1609 
.1118 
,0583 
.m 

5 

,9615 
.9286 
,8929 
,8568 
3215 
,7877 
,7556 
,7255 
A972 
S803 
,4951 
,4309 
,3812 
.3417 
,3094 
,2689 
.2244 
,1759 
,1228 
.0644 
.oooo 

7 

,9695 
,9427 
,9129 
,8820 
,8514 
.8215 
,7927 
,7652 
,7391 
,6279 
s435 
,4782 
,4265 
,3847 
,3503 
,3064 
,2576 
,2035 
,1433 
,0758 
.m 

10 

,9768 
,9557 
.9318 
,9066 
.8810 
,8556 
3308 
,8067 
,7834 
.6812 
S998 
,5347 
,4819 
,4383 
,4017 
,3544 
,3008 
,2402 
,1711 
,0917 
.oooo 

15 

.9834 
,9679 
,9499 
.9306 
.9106 
,8903 
,8702 
,8503 
.a309 
,7418 
,6670 
,6045 
,5521 
5077 
.4697 
.4193 
.3607 
.2925 
.2120 
.1160 
.m 
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a = 0.05 J = 3  

c \ o  1 2 3 4 7 10 15 

2 ,8646 ,8986 
3 ,7922 ,8386 
4 ,7266 ,7815 
5 5689 .7292 
6 ,6185 ,6820 
7 ,5745 ,6398 
8 5359 ,6019 
9 ,5019 ,5679 

10 .471X 5173 
15 3620 ,4219 
20 .2931 .3465 
25 ,2461 ,2937 
30 ,2120 .2548 
35 ,1863 .2250 
40 ,1660 ,2013 
48 1417 ,1726 
60 ,1157 ,1417 
80 ,0888 .I093 

120 ,0606 ,0750 
240 ,0310 .03K6 
00 .oooo .(Hw 

,9188 
,8676 
,8172 
,7698 
,7261 
.OX61 
,6497 
6165 
.5862 
,4690 
,3898 
3332 
,2907 
2579 
,2316 
,1994 
,1644 
,1274 
,01179 
,0455 
.oooo 

,9322 
,8876 
.8426 
,7994 
,7589 
,7212 
.6864 
.6544 
,6249 
,5079 
,4265 
,3671 
,3221 
.2869 
,2584 
.2234 
,1850 
,1440 
.0999 
,0519 
.oo(x) 

,9417 
,9022 
,8617 
,8221 
,7844 
,7489 
,7158 
,6850 
.6564 
.5407 
.4SR2 
,3970 
. 3  500 
,3129 
,2828 
,2452 
,2042 
,1592 
,1111 
,0580 
.m 

9489 
9134 
8766 
8 4 0  
8040 
7715 
7400 
7104 
6828 
5691 
4862 
4237 
3752 
3366 
7050 
2654 
2217 
1740 
1217 
0639 
oooo 

,9590 ,9684 ,9771 
,9296 ,9450 ,9596 
,8983 ,919s ,9402 
,8668 ,8934 ,9199 
,8358 3672 ,8992 
.8060 ,8416 3785 
,7774 ,8167 ,8580 
,7503 ,7926 ,8380 
,7246 ,7696 ,8185 
.6158 ,6687 ,7299 
,5334 ,5889 ,6559 
.4697 ,5252 ,5944 
,4192 .4734 S429 
,3784 ,4308 ,4993 
,3447 ,3905 ,4620 
,3018 ,3486 ,4125 
2538 ,2961 .3550 
,2008 ,2366 .2880 
,1415 ,168’1 ,2089 
,0750 .OW5 ,1143 
.oooo .ooM) .m 
-___-- _____ 

s = 3  

1. 2 3 4 5 7 10 15 
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3 
4 

h 
7 
8 
9 

10 
15 
20 
25 
30 
35 
40 
48 
60 
80 

120 
240 

r 

00 

9248 
8680 
8113 
7562 
7096 
6657 
6262 
5906 
5586 
4375 
3586 
3034 
2629 
2119 
2073 
1776 
1456 
1121 
0769 
0395 
m 

9441 

.a505 
8040 
7601 
7195 
6821 
6478 
61 64 
4937 
41 04 
3 506 
3058 
2712 
2434 
2095 
1727 
1338 
0922 
0477 
IKKX) 

8983 
4554 
9170 
8757 
8344 
7947 
7571 
7220 
6893 
6590 
5’374 
4Sl9 
3893 
3416 
3043 
2742 
2364 
1963 
1528 
1059 
0551 
oooo 

9629 
9298 
8934 
8564 
8201 
7853 
7524 
72 I 4  
b923 
5730 
4867 
4223 
3726 
3332 
7012 
2613 
2175 
1701 
1185 
0619 
oooo 

9682 
‘9391 
9066 
8731 
H397 
80 14 
7764 
7470 
719‘2 
6023 
5167 
451 1 
3999 
7591 
1256 
2835 
2369 
1861 
1302 
0684 
m 

,9721 
,9461. 
,9169 
,8862 
,8554 
,8252 
,7960 
,768 1 
,7416 
,6285 
,5428 
,4767 
,4245 
,3824 
,3477 
.3038 
,2549 
.2010 
,1413 
,0746 
.oooo 

,9777 
,9564 
.9318 
,9056 
,8789 
,8523 
,8262 
.no10 
,7767 
,6703 
,5866 
S203 
,4670 
,4233 
-3869 
.3401 
,2874 
,2284 
,1619 
.0863 
.oooo 

Q82P 
9660 
9462 
9247 
9025 
8799 
8576 

8141 
7172 
6376 
5726 
$189 
4741 
4161 
3865 
3298 
2648 
1899 
1025 
ooon 

8356 

9876 
9751 
9602 
9437 
9263 
YO84 
8901 
K723 
8544 
7708 
6985 
6370 
5846 
5397 
501 0 
4491 
3883 
3166 
2309 
1272 
0 0 0  
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a = 0.05 s = 4  

\ o  1 2 3 4 5 7 10 15 
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3 
4 
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6 
7 
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9 

10 
15 
20 
25 
30 
35 
40 
48 
60 
80 
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240 
00 

.9045 
3463 
,7904 
,7388 
.6920 
6499 
,6120 
s779 
S472 
,4307 
,3543 
.3006 
.2609 
.2306 
,2063 
,1770 
.1454 
I122 
.0770 
.0397 
.oooo 

,9259 
3773 
,8287 
,7825 
,7396 
.7ooo 
,6638 
.6307 
,6004 
,4822 
,4017 
,3439 
.3004 
,2667 
,2396 
.2065 
.17o4 
.1322 
,0913 
,0473 
.m 

,9393 
.8976 
.8548 
3132 
.7737 
,7367 
,7024 
,6706 
.6412 
,5235 
. w 9  
,3802 
,3341 
,2978 
,2685 
,2323 
,1927 
.1501 
.lo42 
,0542 
.m 

,9486 
,9121 
,8738 
,8360 
.8OOO 
,7650 
,7325 
,7021 
,6737 
,5578 
,4742 
,4117 
.3636 
,3254 
,2943 
,2555 
,2129 
2666 
.1162 
,0608 
.m 

.9554 
,9229 
.8884 
,8537 
,8199 
,7875 
,7568 
.7277 
,7004 
,5869 
SO31 
.4395 
.3899 
3502 
,3177 
,2768 
,2315 
,1820 
,1274 
,0670 
.m 

,9606 
.9313 
,8998 
.8679 
3364  
,8060 
.7769 
.7492 
.7229 
,6121 
.5286 
,4644 
.4137 
.3728 
3391 
.2964 
.2488 
.1964 
.1381 
.0730 
.oooo 

,9680 
.9436 
.9169 
3892 
,8616 
,8345 
,8083 
.7830 
.7588 
,6538 
S719 
,5072 
.4552 
.4127 
,3773 
3317 
.2805 
.2230 
.1581 
.0843 
.m 

.9751 

.9555 

.9337 

.9108 

.8875 

.8643 

3192 
,7976 
,7012 
.6228 
,5590 
5064 
.4626 
.4256 
,3772 
3219 
.2586 
.1854 
.loo2 
.oooo 

.n414 

~~ 

.9818 
,9671 
.9504 
,9326 
.9141 
.8954 
.8767 
A583 
.8401 
.7561 
.6843 
.6235 
5720 
,5279 
.4899 
.4391 
.3796 
3094 
.2257 
,1243 
.oooo 

s - 4  

1 2 3 4 5 7 10 15 

2 
3 
4 
5 
6 
7 

9 
10 
15 
20 
25 
30 
35 
40 
48 
60 
80 

1 20 
240 

n 

00 

,9473 
,9032 
.8567 
,8110 
.7477 
,7275 
.6903 
,6561 
,6247 
SO16 
,4175 
,3570 
3117 
,2765 

,2138 
,1763 
,1367 
,0943 
,0488 
.m 

,2483 

.9593 
9231 
.8836 
,8436 
.8M9 
.7680 
.7333 
.7010 
,6708 
.54w 
,4627 
,3992 
3502 
,3126 
,2819 
.2438 
.2021 
,1575 
,1092 
,0568 
.m 

.9668 

.9361 
9017 
.8663 
.8312 
,7973 
.7650 
.7345 
,7057 
3 6 7  
,4997 
,4343 
.3837 
3435 
.3108 
,2699 
,2249 
,1760 
,1227 
.0642 
.oooo 

.9719 
,9453 
.9149 
,8830 
.8510 
,8197 
.7895 
.7607 
.7334 
.6177 
5309 
,4645 
.4125 
.3707 
3365 
.2933 
.2454 
,1930 
,1350 
.0711 
.m 

.9157 

.9521 

.9248 
,8959 
3665 
.8375 
.8092 
.7820 
.7560 
.6439 
,5579 
,4910 
.4380 
,3951 
,3596 
.3145 
.2643 
,2087 
.1469 
,0777 
.oooo 

.9785 
,9574 
.9327 
.9062 
,8790 
,8519 
.8254 
.79% 
.7748 
.6664 
,5815 
,5146 
.4609 
.4171 
3807 
,3341 
.2818 
,2234 
,1579 
.0839 
.m 

,9826 
,9651 
,9443 
.9216 
.8980 
.8742 
.8505 
.8273 
.8o47 
,7034 
,6213 
S550 
,5007 
,4558 
,4181 
,3691 
,3135 
.2505 
,1785 
.0957 
.m 

,9865 
,9726 
,9557 
.9371 
.9174 
3972 
.8769 
.8567 
3369 
.7452 
,6678 
.6033 
,5494 
,5039 
.4651 
.4139 
3548 
.2864 
,2065 
,1122 
.oooo 

,9901 
.9797 
.%70 
.9526 
.9371 
,9211 
,9047 
,8882 
.8717 
.7930 
.7234 
.6631 
,6111 
5661 
5270 
.4742 
.4118 
3373 
.2474 
,1371 
.oooo 
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oi = 0.05 s 3 5 

\ " 2  0 I 2 3 4 5 7 10 
- - - - - - - - - - ~ - ~ ~ -  

2 ,9289 ,9432 ,9527 ,9594 ,9645 .~684 ,9741 .Y-M 
3 ,881s ,9032 ,9181 ,9289 .wi2 ,9437 9534 ,9629 

6 .74s6 ,7822 ,8091 ,8299 .n46s .~600 .nxo'> .YOX 
7 ,7063 ,7451 .7752. ,7983 .UI 69 ,8323 ,8563 .mi 5 

4 ,8338 ,8617 ,8814 ,8960 .YO74 ,9165 ,9302 ,9439 
S ,7882 3210 .8447 3627 ,8768 ,8883 ,9058 ,9236 

8 ,6702 .7117 ,7432 ,7681 ,7884 8054 ,8321 ,8605 
9 ,6372 .6801 .7131 ,7395 ,7612 ,7795 ,8085 ,8399 
10 ,6069 ,6507 ,6849 ,7125 ,7354 ,7547 ,7858 ,8197 

20 ,4072 ,4495 .4847 5 1  50 5414 ,5647 ,6043 ,6511 
25 .348X ,3881 ,4215 ,4507 .4764 .4995 ,5394 ,5877 
30 .304Y ,3413 .3726 .4003 ,4250 ,4474 ,4865 ,5349 

40 ,2434 ,2746 3021 .3267 ,3490 ,3696 ,4061 ,4525 

60 ,1732 ,1973 .21XX ,2385 .25b7 ,2736 .3W5 .3450 
80 ,1344 ,1539 ,1714 .1877 .2028 ,2171 ,2433 ,2785 
120 .0Y28 ,1068 . I  1Y6 .I316 l42.8 ,1535 ,1735 ,2038 

aJ .oooo .oooo .oooo .o(xH) .oooo .m .ooo0 .arm 

is ,4883 ,5328 .MYO ,5993 ,6252 ,6477 .as0 ,7277 

35 ,2708 ,3045 .333n ,3599 ,3834 ,4049 ,4428 ,4904 

48 2097 ,2377 ,2625 ,2849 .3054 ,3244 .3585 .4026 

240 ,0481 . o m  .0627 ,0693 . o m  ,0816 . o m  .ioi)i 

__--.I-----.- ---- ----_____ 

15 

,9850 
,9724 
,9577 
.941y 
,9252 
,9082 
.8911 
,8740 
8571 

.77'13 
,7077 
,6480 
5967 
5525 
,5141 
.4624 
.a13 

2409 
,1335 
.oooo 

,3286 

, n = 0.01 ,y E 5 
\ "X 0 1 2 3 4 5 7 10 15 

2 
3 
4 
S 
6 
7 
8 
9 
10 
I S  
20 
25 
30 
35 
40 
4K 
60 
80 
120 
240 
m 

,9610 
.9258 
,8871 
.x47x 
no94 
.7729 
.7%5 
,7062 
.6762 
,5544 
,4677 
,4038 
,3549 
3165 
-2854 
.2469 
,2048 

.I108 
s.577 
.(wxK) 

,1596 

.- 

.%x9 

.93Y6 
,9064 
,8719 

.8043 
,7124 
,7422 
,7136 

,5074 
,4415 
,3904 
,3498 
.3166 
.2751 
,2293 
,1796 
,1253 
,0656 
.owU 

,8376 

,5948 

,9742 
,9490 
,9200 
.uxw 
. n s u  
,8278 
.79xi) 
,7696 
,7426 
6274 
5404 
.4735 

,3786 
3438 
,2999 
2512 
,197'1 
,1386 
,0730 
O(w 

,4208 

___ 

.9779 

.955Y 

.9300 
,9023 
.8739 
,8457 

,7914 
.7658 
.6546 
S685 
.so1 1 
,4475 
.4041 
,3681 
.3222 
2710 
.2142 
,1509 
4799 
.MI00 

.xixi 

,9806 
,9611 
,9378 
,9125 
,8805 
,8603 
,8345 
,8093 
.7850 
.6717 
,5928 
,5255 
,4713 
,4270 
.3W) 
,3426 
,2893 
,2296 
,1625 
,0865 
.ocw 

.9Y28 .ox59 

.9651 ,9712 
,9440 ,9533 
,9208 ,9334 
,8967 ,9124 
,8723 .8909 
.8480 ,8693 
,8242 ,9479 
,8011 ,8269 
.6977 ,7306 
,6143 ,6505 

,4927 ,5301 

,4101 ,4457 
,3614 ,3950 
,3063 ,3371 
,2441 ,2706 
,1735 ,1940 
,0927 ,1047 
.oo(K) .oooo 

,5473 ,5846 

,478 ,4844 

,9889 .Y918 
,9771 ,9830 

,94461 ,9591 
.Y285 ,9453 
,9103 ,9308 

,9625 .~7in 

. w n  ,9158 

.x7x .~ooo 
,8548 ,8853 
.76PO ,8111 
,6930 .7440 
,6295 ,6581 
,5751 .b337 
5299 ,5889 
.4906 ,5497 
.43U2 ,4962 
,3772 ,4326 
..lo59 3559 
,2217 ,2624 
,1212 ,1464 
.ow0 .m 
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s = 6  

1 2 3 4 5 7 10 15 
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3 
4 
5 
6 
7 
8 
9 

10 
15 
20 
25 
30 
35 
40 
48 
60 
80 

120 
240 
W 

,9450 
,9058 
.8649 
3246 
,7861 
.7499 
,7160 
.6845 
,6552 
,5372 
,4535 
,3919 
,3447 
,3076 
.2775 
,2403 
,1995 
,1556 
,1081 
,0563 
.oooo 

,9551 
,9216 
3858 
,8499 
.8149 
,7814 
,7496 
,7198 
.6917 
,5759 
,4913 
,4276 
,3782 
,3390 
.3069 
.2668 
.2226 
,1745 
.1218 
,0638 
.m 

,9620 
,9328 
,9010 
,8686 
,8365 
,8054 
,7757 
,7474 
,7206 
,6077 
,5231 
,4583 
,4014 
.3665 
,3329 
,2905 
,2434 
,1916 
,1344 
.0708 
.oooo 

.9670 
,9411 
.9126 
A830 
,8535 
3245 
,7966 
,7698 
,7442 
,6346 
,5506 
.4852 
,4333 
,3912 
,3563 
,3120 
.2624 
.2075 
,1463 
,0775 
.oooo 

.9709 
,9476 
.9217 
,8945 
.8671 
.a401 
3138 
,7884 
.7640 
,6577 
s746 
.M91 
.4565 
.4135 
.3777 
,3317 
.2801 
.2224 
,1574 
,0838 
.oooo 

.9740 
,9528 
,9290 
,9039 
.a784 
,8531 
,8282 
.a041 
,7808 
,6779 
,5960 
,5306 
,4775 
.4338 
.3973 
.3500 
,2966 
.2364 
,1681 
.0899 
.oooo 

.9185 
,9606 
,9402 
,9185 
.8960 
,8735 
,8511 
,8292 
,8078 
,7115 
,6324 
S677 
,5144 
.4699 
.4322 
,3830 
.3267 
,2623 
,1880 
,1014 
.oooo 

,9829 
,9684 
,9517 
.9335 
,9145 
.a952 
,8758 
,8566 
,8377 
,7500 
,6754 
,6128 
,5600 
,5151 
.4767 
,4265 
,3662 
,2969 
,2151 
,1176 
.oooo 

.9873 
,9763 
,9633 
,9491 
,9340 
,9184 
,9026 
,8867 
.8708 
,7951 
.7278 
,6692 
,6184 
,5743 
5357 
,4833 
.4210 
.3462 
.2551 
.1422 
.oooo 

s = 6  

1 2 3 4 5 7 10 15 

2 
3 
4 
5 
6 
7 
8 
9 

10 
15 
20 
25 
30 
35 
40 
48 
60 
80 

120 
240 
m 

,9699 
,9412 
,9086 
,8745 
,8406 
,8075 
,7758 
,7458 
.7173 
,5986 
.5 l l l  
,4450 
.3936 
,3527 
,3194 
,2775 
.2315 
.1814 
I266 
,0663 
.oooo 

,9755 
.9512 
.9230 
3930 
.8625 
,8323 
,8031 
,7750 
,7482 
,6334 
,5462 
,4792 
.4261 
,3835 
,3484 
.3040 
.2548 
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. l a 7  
.0741 
.m 

,9793 
.9583 
,9334 
,9065 
,8789 
.8512 
,8241 
,7978 
.7724 
,6619 
,5757 
SO81 
.4542 
,4103 
.3740 
,3276 
.2757 
,2181 
,1538 
.0841 
.oooo 

,9820 
.%35 
9 1 3  
.9169 
3917 
3661 
.a409 
.8161 
.7922 
.6858 
.6010 
,5335 
.4789 
.4342 
,3969 
,3488 
.2948 
,2342 
I659 
.0883 
.oooo 

.9842 

.%76 
,9475 
,9252 
,9019 
,8782 
,8546 
3313 
3086 
,7063 
.6231 
3 5 9  
S O 1 1  
,4557 
.4177 
,3683 
,3125 
.2493 
,1774 
.0949 
.m 

.9858 
,9708 
.9525 
.9320 
.9104 
.8883 
,8661 
3441 
.8225 
.7241 
,6426 
,5760 
,5211 
.4754 
.4367 
.3863 
.3289 
,2634 
.1882 
.lo12 
.oooo 

.9883 

.9757 

.9600 
,9424 
,9236 
,9040 
.a842 
3645 
,8449 
,7535 
.6757 
,6106 
3 6 1  
S100 
.4706 
,4187 
.3588 
,2894 
,2085 
,1132 
.oooo 

,9907 
,9805 
,9677 
,9531 
.9313 
,9207 
,9037 
,8865 
,8694 
.7872 
,7147 
,6524 
,5990 
,5531 
-5134 
,4602 
,3977 
.3240 
.2360 
.1298 
.oooo 

,9931 
,9854 
.9756 
,9642 
.9517 
,9384 
,9241 
,9106 
,8964 
,8262 
.7616 
.7042 
,6536 
.6090 
,5698 
,5160 
,4515 
,3730 
,2763 
A550 
.oooo 
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s - 7 

1 2 3 4 5 7 10 IS 
9,- 0.05 "2 0 
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5 
6 
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8 
9 
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15 
20 
25 
30 
35 
40 
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60 
80 
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00 

,9561 
,9232 
,8879 
,8523 
4176 
,7843 
,7527 
,7229 
,6949 
,5792 
.4944 
,4305 
.3 809 
,3415 
,3093 
,2690 
,2244 
,1759 
. I  229 
,0644 
.ooOo 

,9635 
,9351 
,9040 
3722 
,8406 
,8099 
,7804 
.7S23 
,7257 
.6130 
S282 
.4631 
,4119 
3707 
,3369 
,2941 
,2465 
,1942 
.I363 
.0718 
.oooo 

,9687 
.9438 
.9160 
,8872 
,8582 
,8298 
3022 
,7757 
,7503 
.M11 
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30 

42.136 
26.044 
19.783 
16.553 
14.607 

13.313 
11.428 
10.414 
9.7820 
9.3508 

8,8009 
8.4651 
8.2388 
8.0759 

7.8572 
7.4494 
7.2219 
7.1487 

7.0768 

76.845 
39.466 
27.215 
21.498 
18.273 

16.229 
13.397 
11.969 
11.074 
10.490 

9.7587 
9.3202 
9.0281 
8.8195 

8.5414 
8.0295 
7.7473 
7.6570 

7.5685 

35 

41.993 
25.925 
19.677 
16.455 
14.513 

13.223 
11.343 
10.331 
9.7003 
9.2699 

8.7207 
8.3851 
8.1589 
7.9959 

7.7771 
7.3685 
7.1403 
7.0668 

6.9945 

76.474 
39.206 
27.004 
21.314 
18.105 

16.071 
13.254 
11.814 
10.943 
10.361 

9.6333 
9.1963 
8.9050 
8.6968 

8.4193 
7.9075 
7.6249 
7.5344 

7.4456 
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8 

85.040 
42.850 
29.968 
24.038 
20.692 

18.561 
15.587 
14.049 
13.113 
12.485 

11.h95 
11.219 
10.901 
10.674 

10.371 
9.8118 
9.5037 
9.4051 

9.3085 

185.93 
71.731 
44.255 
33.097 
27.273 

23.157 
19.117 
16.848 
15.512 
14.634 

13.553 
12.914 
'12.492 
12.193 

11.797 
11.077 
10.685 
10.561 

10.439 

10 

84.082 
62,126 
29.313 
23.5!9 
20.222 

18.175 
15.202 
13.693 
12.776 
12.160 

11.386 
10.991 
10.610 
10.388 

10.091 
9.5448 
9.2438 
9.1475 

9.0531 

182.94 
69.978 
47.978 
32.057 
26.374 

22.969 
18.440 
16.239 
14.945 
14.095 

13.049 
12.432 
12.024 
11.736 

11.353 
10.658 
10.280 
10.160 

10.043 

12 

83.426 
41.627 
28.961 
23.158 
19.893 

17.819 
14.930 
13.440 
12.535 
11.927 

11.165 
10.706 
10,400 
10.181 

9.8806 
9.3504 
9.0539 
8.9591 

8.8662 

180. 90 

42.099 
60.779 

31.339 
25.750 

22.:\08 
17. !)65 
15.810 
14.544 
13.113 

12.691 
12.088 
11.690 
11.408 

11.034 
10.256 
9.9866 
9.8693 

J =  1 

15 

82.755 
41.113 
28.534 
22.781 
19.549 

17.498 
14.662 
13.172 
12.278 
11.679 

10.927 
10.475 
10.173 
9.9567 

9.6688 
9.1384 
8.8462 
8.7527 

8.6612 

118.83 
61.552 
41.197 
30.599 
25.105 

21 .804 
17.469 
15.360 
14.121 
13.309 

12.310 
11.720 
11.332 
11.056 

10.691 
10.028 
9.6679 
9.5533 

9.7547 9.4413 

20 

82.068 
40.583 
28.091 
22.389 
19.189 

17.159 
14.337 
12.884 
12.002 
11.411 

10.668 
10.221 
9.9233 
9.7102 

9.4259 
8.9021 
8.6136 
8.5211 

8.4306 

176.73 
66.296 
40.269 
29.034 
24.435 

21.195 
16.947 
14.882 
13.670 
12.876 

11.899 
11.323 
10.942 
10.673 

10.31fi 
0.6670 
9.3140 
9.2017 

25 

81.648 
60.257 
27.817 
2 2 . 1 4 s  
18.964 

16.947 
14.143 
12.701 
11.825 
1 1 . 2 3 7  

10.500 
10.056 
9.7596 
9.5478 

9.2652 

8.4563 
8.3618 

8.2747 

8.7441 

175.44 
65.528 
39.698 
29.361 
24.019 

20.816 
16.619 
14.580 
13.383 
12.599 

11.634 
11.065 
10.689 
10.422 

10.070 
9.4273 
9.0776 
8.9663 

9.0920 8.8575 

30 

81 .3b4 
40.037 
27.631 

18.809 

16.800 
14.009 
12.573 
11.7C*O 
11.115 

10.381 

21.978 

9.9383 
9.6429 
9.L317 

9.1448 
8.6295 
8.3424 
8.2504 

8.1603 

174.57 
65.010 
39.31 1 
29.079 
23.735 

20.S56 
11.392 
14.370 
13.183 
12.405 

11.448 
10.882 
10.509 
10.244 

9.8935 
9.2545 

8.7950 

8.6865 

e, 9060 

35 

81.159 
39.877 
27.4 9.5 
21.857 
38.646 

16.694 
13.911 
12.478 
11.608 
11.025 

1 0 . 2 9 )  
9.8500 
9.5550 
9.344 0 

9.0622 
8.5419 
8.7543 
8.1621 

8.0718 

173.92 
64.636 
39.032 
28.806 
23.529 

20.367 
16.227 
14.216 
13.036 
12.262 

11.309 
10.746 
10.374 
10.1113 

9.7607 
9.1228 
8.7744 
8.6634 

8.5548 
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42.516 
31 .894 
26.421 

23.127 
18.770 
16.626 
15.356 
14.518 

13.482 
12.866 
12.459 
12.169 

11.785 
11.084 
10.701 
10.579 

10.459 

65.793 
44.977 
35.265 
29.786 

23.001 
19.867 
18.077 
16.924 

15.528 
14.711 
16.184 
13.810 

13.317 
12.429 
11.951 
11.800 

.11.652 

10 

41.737 
31.242 
25.847 

22.605 
18. 324 
16.221 
14.977 
16.156 

13.142 
12.560 
12.142 
11.858 

11.483 
10.798 
10.423 
10.304 

10.188 

66.035 
43.633 
36.146 
28.808 

22.212 
19.173 
17.440 
16.324 

14.975 
14.190 
13.671 
13.315 

12.839 
11.983 
11.521 
11.375 

11.233 

12 

41.198 
30.788 
25.446 

22.239 
18.009 
1.5.934 
14.707 
13.898 

12.898 
12.305 
11.912 
11.634 

11.264 
10.589 
10.221 
10.104 

9.9892 

62.828 
62.707 
33.373 
28.129 

21.661 
18.686 
16.991 
15.900 

14.582 
13.815 
13.313 
12.960 

12.496 
11.660 
11.210 
11.067 

10.928 

ti= 8 

15 

40.641 
30.318 
25.028 

21.856 
17.677 
15.629 
14.418 
13.621 

12.636 
12.051 
11.665 
11.390 

11.026 
10.362 
9.9993 
9.8840 

9.7712 

61.592 
41.756 
32.573 
27.625 

21.085 
18.173 
16.516 
15.451 

14.163 
13.414 
12.925 
12.580 

12.127 
11.311 
10.871 
10.732 

10.597 

20 

40.066 
29.829 
24.591 

21.456 
17.325 
15.303 
14.109 
13.322 
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11.774 
11.393 
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10.763 
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60.323 
60.771 
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17.631 
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13.711 
12.980 
12.502 
12.165 

11.722 
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10.227 
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39.7 I 
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10.590 
9.9389 
9.5836 
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31.232 
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20.100 
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14.662 

13.420 
12.698 
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11.457 
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9.9778 
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11.088 
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9.9270 
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11.455 
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22.443 
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14.348 
13.310 
12.756 
12.581 

12.412 
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61.196 

32.680 
27.702 

21.548 
18.695 
17.059 
16.000 

14.714 
13.962 
13.469 
13.121 

12.663 
11 .833  
11.385 
11.243 

11.105 
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35.419 
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19.650 
18.238 
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13.981 
12.968 
12.427 
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d -  9 

15 

60.456 
40.980 
32.169 
27.245 

21.165 
10.350 
16.737 
15.694 

14.427 
13.687 
13.201 
12.859 

12.407 
11.591 
11.150 
11,011 

10.874 

98.387 
58.518 
42.697 
34.564 

25.292 
21.310 
19.120 
17.741 

16.105 
15.169 
14.563 
14.139 

13.585 
12.597 
12.070 
11.904 

11.743 

20 

59.694 
40.312 
31.637 
26.766 

20.759 

16.391 
1.5.363 

14.115 
13.385 
12.907 
12.570 
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11.321 
10.R87 
10.749 

10.615 

17.982 
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41.662 
33.676 
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20.696 
18.556 
17.210 

15.612 
14,698 
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13.693 

13.152 
12.188 
11.673 
11.511 

11.353 
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59.224 
39.990 
31.305 
26.466 

20.503 
17.747 
16.170 
15.150 

13.912 
13.188 
12.714 
12.380 

11.938 
11.141 
10.710 
10.573 

10.440 
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33.126 
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20.308 
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16.870 

15.294 
14.393 
13.810 
13.401 

12.868 
11.915 
11,407 
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31.079 
26.260 

20.326 
17.584 
16.015 
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13.768 
13.049 
12.577 
12.243 

11.804 
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10.580 
10.444 

10.311 

94.74 
55.90 
40.587 
32.750 

23. as0 
20.040 
17.949 
16.632 

15.071 
14.177 
13.599 
13.194 

12.664 
11.719 
11.214 
11.054 

10.899 
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58.b8 
39.542 
30.914 
26.110 

20.196 
17.464 
15.900 
14.889 

13.661 
12.944 
12.472 
12.141 

11.703 
10.910 
10.480 
10.344 

10.211 

94.2 
55.51 
40.272 
32.417 

23.629 
19.843 
17.765 
16.457 

14.905 
14.016 
13.441 
13.038 

12.511 
11.569 
11.066 
10.907 

10.752 
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89.068 
59.564 
45.963 

31.774 
26.115 
23.116 
21.267 

19.114 
17.901 
17.124 
16.583 

15.881 
14.641 
13.986 
13.780 

13.581 
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98.013 
57.814 
42.454 
34.620 

25.660 
21.773 
19.618 
18.252 

16.622 
15.684 
15.074 
14.647 

14.087 
13.085 
12.548 
12.379 

12.214 

178.28 
87.414 
58.328 
44.951 

31.029 
25.189 
22.556 
20.749 
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16.703 
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14.280 
13.641 
13.441 
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d =  10 

15 20 25 30  35 

97.002 
57.050 
41.824 
34.071 

25.219 
21.384 
19.260 
17.914 

16.309 
15.385 
14.786 
14.365 

13.814 
12.828 
12.301 
12.134 

11.972 

175.62 
85.270 
57.055 
43.905 

30.253 
24.832 
21.966 
20.201 

18.148 
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15.738 

15.069 
13.889 
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95.963 
56.260 
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20.970 
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42.150 
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23.701 
20.939 
19.241 

17.266 
16.154 
15.443 
14.948 

14.305 
13.169 
12.569 
12.381 

12.198 
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55.44 
40.485 
32.895 

24.255 
20.523 
18.458 
17.151 

15.592 
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14.113 
13.705 

13.170 
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11.699 
11 -538 
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20.388 
18.331 
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14.002 
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- 
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23.177 
20.459 
18.787 

16.842 
15.748 
15.046 
14.559 

13.925 
12.803 
12.210 
12.023 

11.842 
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1117 TEST FOR MUTUAL. INDEPENDE,NCE 

5% 4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Xt 

8.020 
7.834 
7.814 
7.811 
7.811 
7.811 
7.812 
7.812 
7.813 
7.813 
7.813 
'1.813 
7.814 
7.814 
7.814 
7.814 
7.814 

7.815 

15.22 
13.47 
13.03 
12.8.5 
12.76 
12.71 
12.68 
12.66 
12.65 
12.64 
12.63 
12.62 
12.62 
12.62 
12.61 
12.61 

12.59 

24.01 
20.44 
19.45 
19.02 
18.80 
18.67 
18.58 
1X.52 
18.48 
18.45 
18.43 
18.41 
18.40 
18.38 
18.3'7 

18.31 

34.30 
28.75 
27.11 
26.37 
25.96 
25.71 
25.55 
25.44 
25.36 
25.30 
25.25 
25.21 
25.19 
25.16 

25.00 

46.05 
38.41 
36.03 
34.91 
34.28 
33.89 
33.63 
33.44 
33.31 
33.20 
33.12 
22.06 
33.01 

32.67 

59 25 
49.42 
46.22 
44.67 
43.78 
43.21 
42.82 
42.55 
42.34 
42.19 
42.06 
41.97 

41.34 

73.79 
61.76 
57.68 
55 65 
54.46 
53 69 
53 15 
52.71 
52.48 
52 26 
52.08 

51.00 

89.92 
75.45 
70.43 
67.87 
66.34 
65.33 
64.63 
64.12 
63.73 
63.43 

61.66 

1% 4 11.79 
5 11.41 21.18 
6 11.36 18.27 32.16 
7 11.34 17.54 26.50 44.65 
8 11.34 17.24 24.95 36.0Y 58.61 
9 11.34 17.10 24.29 33.63 47.05 

10 11.34 17.01 23.Y5 32.54 43.59 
11 11.34 16.96 23.75 31.95 42.00 

13 11.34 16.90 23.53 31.36 40.59 
14 11.34 16.89 23.47 31.20 40.23 
15 11.34 16.87 23.42 31.0Y 39.97 
16 11.34 16.86 23.39 31.00 39.79 
17 11.34 16.86 23.36 30.94 39.65 
18 11.34 16.85 23.34 30.88 39.54 
19 11.34 16.85 23.32 30.84 39.46 
20 11.34 16.84 23.31 30.81 39.39 

X t  11.34 16.81 23.21 30.58 38.93 

12 11.34 16.Y3 23.62 31.60 4.1.13 

- -_ 

74.01 
59.36 
54.83 
52.70 
51.49 
50.73 
50.22 
49.85 
49.59 
49.38 
49.22 
49.09 

48.28 

90.87 
73.03 109.53 
67.37 88.05 
64.64 81.20 
63.06 77.83 
62.05 75.84 
61.36 74.56 
60.86 '73.66 
60.49 73.01 
60.21 72.52 
59.99 72.15 

58.57 69.92 
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D18 
SAMPLE SIZES 

TEST FOR EQUAL DISPERSION MATRICES WITH EQUAL 

d =  2 

3 12.18 
4 10.70 
5 9.97 
6 9.53 
1 9.24 
8 9.04 
9 8.88 
10 8.76 
11 867 
12 8.59 
13 8.52 
14 8.47 
I5 8.42 
16 8.38 
17 8.35 
18 8.32 
19 8.28 
20 8.26 
25 8.17 
30 8.11 

18.70 
16.65 
15.63 
15.02 
14.62 
14.33 
14.11 
13.94 
13.81 
13.70 
13.60 
13.53 
13.46 
13.40 
13.35 
13.30 
13.26 
13.23 
13.10 
13.01 

24.55 
22.00 
20.73 
19.97 
19.46 
19.10 
18.83 
18.61 
18.44 
18.30 
18.19 
18.10 
18.01 
17.94 
17.87 
17.82 
17.77 
17.72 
17.55 
17.44 

30.09 
27.07 
25.51 
24.66 
24J5 
23.62 
23.30 
23.05 
22.85 
22.68 
22.54 
22.42 
22.33 
22.24 
22.17 
22.10 
22.04 
21.98 
21.79 
21.65 

35.45 
31.97 
30.23 
29.19 
28.49 
21.99 
27.62 
27.33 
27.10 
26.90 
26.75 
26.61 
26.50 
26.40 
26.31 
26.23 
26.16 
26.10 
25.87 
25.72 

40.68 
36.75 
34.79 
33.61 
32.83 
32.26 
31.84 
31.51 
3 1.25 
31.03 
30.85 
30.70 
30.57 
30.45 
30.35 
30.27 
30.19 
30.12 
29.86 
29.69 

45.81 
41.45 
39.26 
37.95 
37.08 
36.44 

35.6 1 
35.32 
35.08 
34.87 
34.71 
34.57 
34.43 
34.32 
34.23 
34.14 
34.07 
33.78 
33.59 

35.98 

50.87 
46.07 
43.67 
42.22 
41.26 
40.57 
40.05 
39.65 
39.33 
39.07 

38.66 
38.50 
38.36 
38.24 
38.13 
38.04 
37.95 
37.63 
37.42 

38.84 

55.86 
50.64 
48.02 
46,45 
45.40 
44.64 
44.08 
43.64 
43.29 
43.00 
42.76 
42.56 
42.38 
42.23 
42.10 
41.99 
41.88 
4 1.79 
41.44 
41.21 

d = 3  

f O J 1  2 3 4 5 6 7 8 9 10 

4 22.41 35.00 
5 19.19 30.52 
6 17.57 28.24 
1 16.59 26.84 
8 15.93 25.90 
9 15.46 25.22 

10 15.11 24.71 
1 1  14.83 24.31 
12 14.61 23.99 
13 14.43 23.73 
14 14.28 23.50 
15 14.15 23.32 
16 14.04 23.16 
17 13.94 23.02 
18 13.86 22.89 

20 13.72 22.69 
25 13.48 22.33 
30 13.32 22.10 

19 13.79 22.78 

46.58 
40.95 
38.06 
36.29 
35.10 
34.24 
33.59 
33.08 
32.67 
32.33 
32.05 
31.81 
31.60 
31.43 
31.26 
31.13 
31.01 
30.55 
30.25 

57.68 68.50 
50.95 60.69 
47.49 56.67 
45.37 54.20 
43.93 52.54 
42.90 51.33 
42.11 50.42 
41.50 49.71 
41.00 49.13 
40.60 48.65 
40.26 48.26 
39.97 47.92 
39.72 47.63 

39.31 47.16 
39.15 46.96 
39.00 46.79 
38.44 46.15 
38.09 45.73 

39.50 47.38 

79.11 
70.26 
65.69 
62.89 
60.99 
59.62 
58.57 
57.76 
57.1 I 
56.56 
56.11 
55.73 
55.40 
55.1 I 
54.86 
54.64 
54.44 
53.70 
53.22 

89.60 
79.69 
74.58 
71.44 
69.32 
'67.78 
66.62 
65.71 
64.97 
64.36 
63.86 
63.43 
63.06 
62.73 
62.45 
62.21 
61.98 
61.16 
60.62 

99.94 110.21 
89.03 98.27 
83.39 92.09 
79.90 88.30 
77.57 85.73 
75.86 83.87 
74.58 82.46 
73.57 81.36 
72.75 80.45 
72.09 79.72 
71.53 79.11 
71.05 78.60 
70.64 78.14 
70.27 71.76 
69.97 77.41 
69.69 77.11 
69.45 76.84 
68.54 75.84 
67.94 75.18 
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D18 (Cont inued)  

d = 4  

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2s 
30 - 

35.39 
30.06 
27.31 
25.61 
24.45 
23.62 
22.98 
22.48 
22.08 
21.75 
21.47 
21.24 
21.03 
20.86 
20.70 
20.56 
20.06 
19.74 

56.10 
48.62 
44.69 
42.24 
40.57 
39.34 
38.41 
37.67 
37.08 
36.59 
36.17 
35.82 
35.52 
35.26 
35.02 
34.82 
34.06 
33.59 - 

75.36 
65.YO 
60.89 
57.17 
55.62 
54.04 
52.84 
51.90 
51.13 
50.50 
49.97 
49.51 
49.12 
48.78 
48.47 
48.21 
47.23 
46.61 

91.97 
82.60 
76.56 
72.77 
70.1'7 
68.26 
66.81 
65.66 
64.73 
63.95 
63.30 
62.76 
62.28 
61.86 
61.50 
61.17 
59.9a 
59.21 -- 

112.17 
98.93 
91.88 
87.46 
84.42 
82.19 
80.48 
79. I4 
78.04 
77.13 
76.37 
75.73 
75.16 
74.68 
74.25 
73.87 
72.47 
71.58 

d =  5 

130.11 
I 15.03 
106.98 
101.94 
98.46 
95.90 
93.95 
92,41 
91.15 
90.12 
$9.26 
88.51 
87.87 
87.31 
86.82 
66.38 
84.78 
83.74 -- 

147.81 
130.94 
121.90 
116.23 
112.32 

107.27 
105.54 
104.12 
102.97 
101.99 
101.14 
100.42 
99.80 
99.25 
98.75 
96.95 
95.79 

109.46. 

165.39 
146.69 
136.71 
130.43 
126.08 
122.91 
120.46 
118.S5 
116.98 
115.69 
114.49 
113.67 
112.87 
112.17 
111.56 
111.02 
109.01 
107.71 

182.80 
162.34 
151.39 
144.50 
133.74 
136.24 
133.57 
131.45 
129.74 
128.32 
127.14 
126.10 
125.22 
124.46 
123.79 
123.18 
120.99 
119.57 

fol' 2 3 4 5 6 I 8 9 10 

6 
7 
8 
9 

10 
I1 
12 
13 
14 
15 
16 
17 
18 
I9 
20 
25 
30 -- 

51.11 
43.40 
39.29 
36.71 
34.93 
33.62 
32.62 
31.83 
31.19 
30.66 
30.22 
29.83 
29.51 
29.22 
28.97 
28.05 
27.48 

81.99 
71.06 
65.15 
61.39 
58.78 
56.85 
55.37 
54.19 
53.23 
52.44 
51.76 
51.19 
50.69 
50.26 
49.88 
48.48 
47.61 

110.92 138.98 
97.03 122.22 
89.45 113.03 
84.62 107.17 
81.25 103.06 
78.75 100.02 
76.83 97.68 
75.30 YS.82 
74.05 94.29 
7301 93.02 
72.14 91.94 
71.39 91.03 
70.74 9023 
70.17 8954 
69.67 88.93 

66.71 85.20 
67x6 06 70 

166.54 
146.95 
136.18 
129.30 
124.48 
120.92 
118.15 
115.96 
114.16 
112.66 
111.41 
110.34 
109.39 
108.57 
107.85 
105.21 
103.56 

193;71 
171.34 
159.04 
151.17 
145.64 
141.54 
138.38 
135.86 
133.80 
13'2.07 
I N.6 1 
129.36 
128.29 
127.36 
126.52 
123.51 
121.60 

220.66 
195.49 
181.65 
172.80 
166.56 
161.93 
158.38 
155.54 
153.2 I 
151.29 
149.66 
148.24 
147.03 
145.97 
145.02 
141.62 
I39 .47 

247.37 
2 19.47 
204.14 
194.27 
1 87 37 
182.24 
178.23 

172.49 
170.36 
166.53 
166.Y9 
165.65 
164.45 
163.38 
159.60 
157.22 

175.10 

--- 

273.88 
243.30 
226.48 
215.64 
208.02 
202.37 
198.03 
194.51 
191.68 
189.38 
187.32 
185.61 
184.10 
182.81 
181.65 
17'7.49 
174.87 
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Outline Solutions to Exercises 

EXERCISES 1 

EXERCISES 2 

1 x = Z-l/'y - N,(p,I,),wherep = Z-1/28(seeA5.4).Hencey'Z-'y = x'x 
is noncentral chi square, with S = p'p = O'X-lO. 

2 Suppose y - NJO, 2) by Definition lb. Then, for all G, d'y - Nl(p, 02) .  

with moment generating function (m.g.f.) exp(rp + $u2r2), where p = t ' O ,  
u2 = d'ZL With t = 1, Qexp(d'y)] gives the correct m.g.f, which, by the 
uniqueness of the m.g.f, implies that y has density (2.1). 

3 (i) d'Cy = a'y is univariate normal for all 4 CZC' > 0 (A5.7) 
(ii) Set t' = (4,O). 
(iii) Since t'y is univariate normal, Qexp(st'y)] = exp(st'8 + +s2t'zt). Set 

(iv) Use (iii) and Zl2 = 0 to factorize (2.2). 
s = 1. 

4 If a'y = b, 0 = vNa'y] = a'Za and Z > 0 implies a = O?? 
5 (a) 9[e] = a2(1, - P), rank(1, - P) = n - p < n (by Exercise 1.5). 

(b) P(1, - P)y = a'y is univariate normal for all L 
(c) X has column 1,. Then lh(1, - Ply = 0, as X(1, - P) = 0. 

(b) C,a,t?"y, = C,a,x, is univariate normal for all L 
6 (a) ~exP( t '~ ,~ ,Y , ) l  = exP[t'(C,a,O,) + 3t'(C,@,)tl. 
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616 Ourline Solutions to Exercises 

7 Use Definition l b  with t" = (4, ti:. ..,ti). Then Py = C,cy, = G,z,  is 
univariate normal. Hence y is multivariate normal with parameters b[y] 
and 9[y].  

8 (a) Use Theorem 2.l(v) with y - N,,(BI,,, ~ ' 1 , )  to prove that is indepen- 
dent of y - l n j ,  that is, of Q = Ily - 1JV. 
(b) 

1 - l / n  -l/n - - '  

A = [  i - :In 1, A2 = A, trA = n - 1. 
- l /n  - l / n  I.. 1 - I/fJ 

9 The integral of (2.3) is unity; that is, Qetr(UW)] equals c-'//W I"-"-'etr[ -- 
t(2-1 - 2U)W] dx = 12--1 - 2UI -m '2121-m'2 .  

10 B[W] = C,&[x,x~] = nz2, where the x, are i.i.d. Nd(O, 2). 
11 Using Definition 2a, set d == 1 in (2.4) to get f(wll). Using Definition 2b, 

W, = Clx:,  where the x,  are i.i.d. N,(O, a,). 
12 (a) E[etr(tt'Wt>] = E[etr(tdt'W] = 1ld - 2r&"Xl - n * / 2  = [1 - 

2t ) - m l 2 .  

(b) 

2ttr(dd'Z)]-"/2 = (I - 2td'2t)-m/2,  using A2.4. The m.g.f. is (1 - 

(c) F~exp(lCiwji)] = uetr(Uw)] = 11, - 2UZl- m / 2  = 11, - 2121 - - m / 2  
= r1,(1 .- 2th,)-- m / 2  =- E [ ex p(tC,h,x,)], where the X i  arc the eigeir- 
values of 2, the x i  are i.i.d. x: and ui j  = aijt. 

(d) Multiply the m.g.f.'s of W, and W,. 
14 W,, = &X~')X$')', where the xi') are i.i.d. NJO, 
15 2.-' > 0 and, by A5.8, 2- ' -- 2tA > 0 for It1 < 6. 
16 qetr(WU)] = Ili~etr(x;Ux,)] = l - I i l I , ,  - 2UCI -',I2 =i 11, - 2U21-n'/2, 

which uniquely determines the distribution. 
17 Show that the covariance is zero and invoke Theorem 2.l(v). 
18 cov[yi ., zrs] = CnlCnCpCqaimbfl,icrpd pV[x,,, x I = 

X m x n h p x  a i m  bn jcrpdq.r6mpan qun q = &maimcLd r d t k q b ~ n ~ n  q d q s  

(AC)ir  d ~ )  j r  * 

19 fi(x) = If(., V )  4 / f ( - u l ~ ) f 2 ( ~ )  4 ~ ( x I Y ) ;  thus f(x, Y )  == 

I,( x )fi( .Y ). 
20 Partition 2 and use AX1 with E = Z,,., and F -- X<1'Z,2. Multiply out the 

quadratic and show that the difference is (p, -- FpI)'E-'(p2 - Fpl).  
Since 2-.' > 0, we use modified A5.9 to show E-' > 0. 
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21 IZ-'/zWlZ-1/21/]Z-1/2(Wl f Wz)2-'/'l = ~ Z l ~ / ~ Z l  + Z,I, where, by 

22 Use (2.60) and Lemma 2.10 successively, with Theorem 2.2, Corollary 2. 
23 E[I'W-'I] = KZ-'I/k ( k  = in - d - 1). If I' = ( l ,O, .  . . ,O), then E[w"] = 

# / k .  If I' = (1,1,0,. . . ,O), then qw" + wZ2 + 2w"] = (dl + uZ2 + 
2 d 2 ) / k .  Hence E[w"] = d 2 / k ,  and so on. Then E[yW-'y] = 

tr{ ~ [ ~ - ' y y ' ] }  = tr{ &[W-']&[yy']) = tr{ 2-'Z/k] = d /k .  

Theorem 2.2, Z i  - Wd(m;,Id). 

24 Use Theorem 2.4 Corollary 1, with a = f and b = f 4. 
25 Expand the argument following (2.12) to r independent sets of i.i.d Nd(O, 2). 
26 {CiCi(xi  - pi)(* - p j ) a ' i } 3  has zero expectation, as q ( x i  - = 0 

for univariate normal. Furthermore, z = (x - p)'Z-'(x - p) - x i  and 
qt'] = d(d  + 2). 

EXERCISES 3 

1 Use (3.17) with A = (1, -1). 
2 Use B3.5 with F = A', V = S-', and G = 1,. 
3 Steps are as follows: 

(a) cov[X., - X.., x i j  - X i . -  X . j  + Z..] = 0 implies that QH and QE are 
independent by Theorem 2.l(v). 

(b) &/(1 - p )  = Z'AZ, where [n/(l - ~ ) ] ' / ~ ( 9  - p1,) = Z is 
N,(O, Z/[1 - p ] )  when H, is true, and E' = (X .l, Z . 2,. . . ,X .,). Since 
AZA/(1 - p )  = A, QH/(l - p )  - xi- '  (by Exercise 1.9); 

(c) z = (1 - p)-'/'(x - ~ 1 , ~ )  - Nnd(O, 2,) when H, is true, where x is 
the vector of x i j  and Z, = diag(2, 2,. . . ,X)/(l - p ) .  Finally, QH = 

. .  z'AOZ .- xtn-1j(,-1), Ao&Ao = A,. 
4 UnderH,:p,=p,= 

Substitute in T: = n(X'S-'X - R'S-'l,ji). 
5 Zf:;hi+; = Cf::hlpi - (E!::hj)p,. Set ci = hi ( i  = 1,2,. . . , d  - 1) and cd 

= -Cf,;'hi. Hence show that a member of one set is a member of the 
other, and vice versa. 

= p d ( = p ) a n d j i = C i C j s  i j  ( X .  + x , .)/2CiCjS'J. 

6 

and trA, = trA, (by A H ) .  
7 When H ,  is true, t = & { Z i ( x i ,  - X. 1 1 1  )' s2  '1' = r ( n  - 2)'12/ 

(1 - r2 ) l I2 .  Obtainf(r) from the t-density function. 
8 Under H, the maximum likelihood estimates are ji = Z (arguing as in 

Theorem 3.2) and, by differentiation, d 2  = Ci(x ,  - %)'(xi - E)/nd = 

tr@/d]. Then t2 = L(Z, &'I,)/L(R, 2). 
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- h -- 1 (1 - b-1)  ... -b-l  

\ - b  - 1  -b-1 . . .  (1 - b - ' ) j  

-b-'Ido ... (1 - b-')Ido 

The columns of C are therefore orthogonal sets of independent vectors. 
12 Use* = a2andb  = a'psothat2 = 2 ( a ,  b).Diff'erentiatelogL[X,Z(a,b)] 

with respect to a and b using A 3 5  
I3  Use Exercise 3.12 and t6 = L[X, Z(d, &)]/L(X,  2) [see (3.6)) 
15 Use the method of Section 3.2.1 t o  show that C =- 

L ~ ( P ,  B)L (p, ~ ) / L ~ ( v ,  2)1,~(w, 2>, w~iere ii = ( n ~  + n p ) / n ,  n = 

2 = [C,(V, - v)(v, - vy -t x,(? - w)(m; -- s ) ' ] / n  = ~ / n .  BY writing V, - 
p = v, - V + V - p, and so on, we have C2/' = \QI/IQol = IQI/IQ t 
n l n 2 ( n l  i n 2 ) - ' ( v  - W)(P - ~ ) l l  = [I + (nl + t iL - 2)-'~;j-', as in 
Theorem 3.2. 

n, + n2,  E = [C,(V, - ji)(v, - iiy + C,(W, - P)(W, - F>']/!Z = Q o / n ,  and 

16 To2 ..- T d , n ,  1' 

17 f - W - Nd(p1 - p2. [n; + ( k n 2 ) - ' ] Z , ) ,  Q1 = C,(V, - V)(V, - f)' - 
J Y A n ,  - 1, 21)~  kQ2 - K ( n 2  - 1, XI), (Q1 + k Q 2 )  - &(v, 2'1, where 
v = n1 + n 2  - 2. Use (2.19) to show that 

kn,n2v  
T,: = n-c-kn, (V - W)'(Q, + kQ2)- ' (V - W) - T i r .  

18 r = l'Ql/lf2,1 - x: ~ I when H, is true. If b = x", 1( a/2)  and cz = x",- ,(I 
- a/2) ,  the acceptance region is n ,{xl, x2.. . , ,x, : u 5 r 5 b }  --- 
{xl,x2 ,..., x , : n < i n f r d s u p r s b } -  {x1,x2 ,..., X ~ : Q Z : ~ & , < + , ~ ~ S ~ } ,  

where +~,, and $- are eigenvalues of Zi'Q, by A7.5. 
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EXERCISES 4 

1 j!!,,cosatcosbtdt = j?,,,sinatsinbtdt= lIa67c, j“_sinatcosbtdt =O. 
2 z:l) = xi + ( - 1 so that $) - Z(’) = xi - X. 
3. See Section 3.3.1. 
4 2[L,,(&) - Lmm(81d)] is approximately 

5 From Exercise 1.6, 4D;J = (n - l)d/n. 
6 See Rao [1973: p. 1431 for #I2 - #I1 2 1. Since [&(x i  - X)2]2 2 & ( x i  - X)4, 

b, s n. Furthermore, QUI = X (= p) and E[(U - pI3] = & ( x i  - Z ) 3 / n ,  
and so on, so that b2 - 6, 2 1, that is, b, I 6, - 1 5 n - 1. 

7 Substitute for j z  in Q using R - i  = Z - d,/(n - I), where di = xi - 8. Thus 
Q = Q-i + d,d;/(n - 1) + did:, and we take traces. 

8 Let yi = (x i  - p p ;  then 0 = &$#xi - ji)/ol= c i $ ( y i )  - ciicl‘(yi)o-’ 

where 8 minimizes 
- +niog121 + c,c,(e - i ) x i j .  

x ( / i  - p ) ,  J ; f ( / i  - p )  o n - ” 2 C i ~ ( Y i ) / n - 1 C j i c l ’ ( Y i )  

~ ~ - l ’ ~ ~ i ~ t ~ i ) / ~ i c l ’ ( ~ ) ~ ,  and V U [ ~ ( P  - P ) ]  = ~~~~~(y)1 /{~[ ic l I / ’ (y) l )2 .  
Replace expected values by sample means, (I by s, and p by p. 

9 Using the notation of Exercise 4.7 and A2.4, we have IQ-;Q-’l = !Id - 
[n/(n - 1)]Q-’did;l = 1 - [ n / ( n  - 1)2]dlS-’d;. 

EXERCISES 5 

1 tr[TCT] = tfiTI”C]; IT’Crl = IT’I ICI IT1 = lTTl ICl. 
2 With A5.12, 0 5 R’(A - B)R = I’ - I or yi 2 1. Then lAl/lBl = 

3 Equality occurs in (5.3) as 
IR’ARI/IR’BRI = Irl = niyi 2 1. 

4 y1 = ( X I  + x z ) / J Z , y z  = (XI - .,>/a. 
5 cov[x,, yj] = W[e;x, t;x] = e(2tj = A,e(tj = A j t i j .  
6 C1, = (n + 1)021, and 1,/ 6 is a unit eigenvector. Furthermore, 

var[l/;;X] = (n + l)a2, which is more than half of trZ (= 2na2),  so that, 
y, = fix. 

7 3 + a, a, a and y1 = OX. 
8 Since TlT, = I,, Q ,  = (x - p)TT(x - p) - yk)y, = y‘y - yk)yk. 

9 G(f\ - A) - Nd(0,2A2), approximately, where A = diag(X,, A 2 , .  . . ,A,). 
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Also, pq .= f ( A )  and 

If f -- [( f ,) ] ,  then o = 2 f ' t f .  
11 Let A .-- MA--'M'. Since B'B = MA'M' [by (5.34)j and M'M = I,, 

BRAR'B = B'B. 
12 H, is m x r of rank r so that HI(H,Hf')-H, is an r X r projection matrix 

projecting onto an r-dimensional space, that is, it must equal I,. By B1.9, 
B(B'B)'-B projects onto 0, say, where the columns of  Gi form an orthonor- 
ma1 basis for bb. Thus G I  = G,R (R nonsingular) and GIGf  = I, imply 
R'R -- 1,. 

13 llA11' = trlA'A], IIB - R(s,l(2 = IIC;~s.+16if,m:112 = C,CjGiGjf~~jm',m, = 

14 Use x, - x, = x, -. X - ( x J  -- K). 
15 Suppose yrl # 0; then, in  Tf, y,, andf, are confounded, as they only occur 

17 g(flx) = h,(xlf)h,(f)/h(x). Furthermore, 11, -4- 9-1/21'I"f--1/21 = 11, 

18 Show that f'\f--'f' = 8 - 1 rn, * then use @f-'/2S\f--1/2Q = Q0 to prove 

19 Use A3.4 and (5.53) to show that tr[Se-'] = tr[S\f - ' I  - tr[f'f''$-.'] = 

20 &[f] =- &[f] = 0 and, conditioning first on f ,  &[ff'] = (I,n + J) .-'J (= 9[f] 

21 /3 = p, the c;orrelaIion of j l  and!,. y, == 0, - p8,. y2 = %a No, not without 

22 In general, y - Jl,, -- (1, -- n - l l , l l ~ ) y .  Apply this to each column of 

23 The points are ( -  1, I), ( 3 ,  I), (- 1, - l), (1, - 1). 
24 The aiaximum value of TA is (A'A)-', which is p.s.d. Conversely, if TA is 

p.s.d., there exists an orthogonal matrix M such that TA = MDM, where 
D is the diagonal matrix of nonnegative eigenvalues listed in  decreasing 
order of magnitude. Then A = TMDM' = LDM' is a singular value 
decomposition of A, that is, D = A and tdTAj = tr A 

c:=,+ 1s;. 

in the product yJ1. 

+ r'W1I'{, as both matrices have the same eigenvalues. 

(5.53). 

tddiag(S - ff')\f '1 = tfl'$@ '1 by (5.54). 

= S[ff']). Then &"(f - 9(f - f)'] = 9[ f ]  - C-@" [use A3.4 (second part)]. 

knowing p. 

[(a,, - a,,$)]. Now consider the rows of  R. 

25 p2(zl, p'y) = ( 4 j 3 ) " / 0 ~ ~ f i ' Z ~ ~ ~ ;  then use A7.6. 
26 From A3.2 121 = 12,2(IZl,  - Z,,Z;;2:211. If pZ = 1, then 

~ ~ ~ l ' 2 , z ~ ~ ~ 2 z l  - 11 := 0 and 121 = 0, a contradiction. 
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27 R = D-1/2XD-1/2, where D = diag(o,,, a,,,. . . ,add). 0 = 12fi1Z,2Z~122, 
- p21d( implies 0 = ID’/2112;1Z~2ZT~Z21 - p21dllD-1/21 = 

28 covIui, u,] = a;Z,,%. Show that aj = ZfilZ,,bj satisfies Zfi’Z12Z,;’Z2,aj = 
p;aj. Then a;Z12bj = a:Z,,a, = 0 [Theorem 5.9(ii)]. 

29 Let L = (a’X,2fl)2 + A,(a’Z,,a - 1) + X2(P’Z2,fl). Differentiate partially 
with respect to a and fl using A8.1, and show that A, = A, = (a’Z,,fl)2 = 

A’, say, and Zfi’Z12Z~’Z,,a = A2a. Thus A2 = p:. 

IR,’R,,R;;R21 - PZIdI. 

30 p2 = c~Z,,Z~~X~~C/C’Z~~C; then use A7.5. 
31 Show that Z111212ZG1Z21 = [2b2/(1 + a)(l + c)V2 = dJ,, where J, is a 

2 x 2 matrix of 1’s. As J2 has eigenvalues 2 and 0, p: = 2d. Solve J2a = 2a 
to get u1 = ( x ,  + x2) /  r/z and, by symmetry, u1 = ( y ,  + y2) /  a. 

EXERCISES 6 

1 Afpl 2 A’p, as Z 2 0 implies A’@, - p,) 2 0. 
2 Choose G ,  : x - N1(8.5, 1). 

(a) Assign to G, if x > 8.0628. Using (6.10) and (6.11), P(211) = 0.3311, 
P(112) = 0.0011, and eopt = 0.0044; q1(7) = 0,024, and q2(7) = 0.976. 

(b) Assign to G ,  if x > 6.75, P = P(2 11) = 0.0401. 
(c) If P(211) = 0.1, then assign to G, if x > 7.2184; P(112) = 0.0133 and 

P = 0.0142. 
(d) co = 3log(a,z/af) - $&/a: + $&/a,’. Assign to G, if xz - 3x - 

42.017 > 0 or x > 8.1533; P(211) = 0.4033, P(112) = 0.008, and eopt 
= 0.0048. 

3 Assign to G, if xlog[8,(1 - 82)/82(1 - el)] + nlog[(l - 01)/(1 - O,)] > 
log(.rr,/n,), or x > c (a 4 > 0,). W12)  = crc,+lf2(x). 

4 Optimal rule: Assign to G ,  if x < log2. P(112) = 3, P(211) = a, eopt = 4. 
Minimax rule: Assign to G ,  if x < c, where P(112) = 1 - ePc = e-2c  = 

P ( 2 )  I), that is, c = 0.481 and P = 0.382 (= e-”). 
5 See Exercise 4.7. 
6 When z comes from G,, interchange suffixes 1 and 2 and change the sign in 

DL(z). If z comes from G,, then 

+ d k (  A)}. 
If z comes from G,, replace 1 by 2 and change the sign of the term in 
braces. 

7 Conditional on the data and x E G,, EfDs(x)] = Ds(pi), var[D,(x)] = k’2i 
= a’. Then argue as in (6.10) and (6.11). 



622 Outline Solutions to Exercises 

9 Use (1 + x / n ) "  -+ exp(x) as it -+ 00. 

10 Since x,., %,., and Sp are mutually independent, E[Q,,(x)] = (x - 
~ , ~ ~ [ s , - ' I ( x  - p,) i- tr(&[(x,.- pr)(gr,--.  p,)']B[S,-']). Use Exercise 2.23 
with vSp - Wd(v, Z). 

12 Differentiate L = log L, -t- Al(C,px - 1) + A,[C,p,exp(a -t P'x) - 11 
with respect to a, p , ,  and fJ, Solve for A, and A, and substitute in L,. 

1 3  C i n , C ( i )  = C j C j j R , c (  j l i ) v , f , ( x )  d x  = L , j R , c ( j l x ) j ( x )  d x  = 
j R C j x R , ( x ) c ( j } x ) / ( x )  dx == jRg(x )  dx .  Proceed as in Theorern 6.3 in Sec- 
tion 6.9 with c ( i l x )  instead of qi(x). 

14 Use Exercise 6.13 with ( v r ) :  maxC*(i) = CivrC*( i )  5 C,v:C(i) I 
(Cjv:)max C(i) .  

15 (a( - +A) decreases as A increases. From Exercise 2.20, A* - A'-, = 

16 W = vSp - Wd(v, Z), v = 11,  + n, -- 2, and x = c,(?z, - 2 ' )  - N d ( p ,  21, 

\ 

p;.'2;21.1p2.1 2 0. 

where p = cojpl - pz), co -- [n,n2/(n, -t n2)]'/'. Then 

T: - T i  v - d - t  1 
v +  T: d - k  v / c : + D i  d - k  

0; - 0: nl -t n 2  - d -  I 
= F. = -___-- 

17 Use A3.1 to show that f$ = E-'& .- E--'F'6,. 
18 Suppose that m i j  of the n, observations from Gi are classified in Gj by the 

assignment rule. Let mji  be correctly classified in Gi. 'Then P ( j 1 i )  can be 
estimated using the apparent error rate rn,,/n, ( i  # j ) ,  and P ( i l i )  can be 
estimated by mii/nI.  Use B similar approach for the Ieaving-.one-out and 
bootstrap methods. Plug-in estimates are more difficult, as they require 
integration of the multivariate normal over unbounded convex regions ic), . 
Use (6.94) to estimate P(R, f). 

20 A2 = (p:  + p:  - 2 p p l p 2 ) / ( 1  - p2).  When p = 0, A' = p i  + ,u: = A:. Fol- 
lowing (6.11), the total probability of misclassification is a( - + A ) .  A2 < A$ 
if 0 < p < 2p1p2A02. If p ,  = p,, m y  positive correlation will increase 
@( - $A) .  

EXERClSES 7 

1 Let xo -- B'/*x (A5.4); then A(x,y) = }lxo - yell. 
2 See Section 3.3.1. 
3 d , ,  = #, d, ,  == &, d,,  = !$. 
4 Let A12 = w- 'A(x ,y ) ,  and so on. Then 
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6 Choose x, y, z such that a = (x - y)'(y - z) > 0. Then D(x,  y) + D(y, z) = 

7 Jaccard: 3 ,  0 , i .  Matching: 6, &, &. 
8 s1 = 1 + (/? + y ) / a  and s2 = 1 + ( P  + y)/2a increase together. 

IIX - y + y - 2112 - 2a < D(x,z) .  

9 y; = $ X i  + f. 
10 d,, = (/? + v)/[(a + PI  + (a + ~11.  
12 Here n = a + B +  y + S and 

13 O1 = 4, 0, = 2, 0, = 5, 0, = 3, 0, = 1. 
14 Same clusters as for single linkage. 
15 Prove (7.33) using yjj - y..= ytj - yz.+ h.- y... 
17 Use (7.17) and Exercise 7.16 for the median and incremental methods. 
18 6(1,3) = 1, S(2,4) = 2, S(2,5) = 6(4,5) = 3, 6(1,2) = S(1,4) = 6(1,5) = 

19 (a) 0, = 4, 0, = 2, 0, = 5, 0, = 3,05 = 1. 
(b) 0, = 2, 0, = 6, O3 = 8, 0, = 9, 0, = 1, 0, = 5, 0, = 3, 

0, = 7, 0, = 10, 0,, = 4 (this order is not unique.) 

S(3,2) = 6(3,4) = 6(3,5) = 4. 

20 x,  - a =  x, - SZ + ?i - a. 

22 B = @,.- 7,.)(y1.- 7,3'n,n2/(n1 + n,) has rank 1. 
23 (a) o (c) as IT-'/2WT-'/2J = JId - T-'/2BT-1/2) = 1 - tr[BT-'] = 1 

- d + tr[WT-'I. 
(b) - (c) as tr[WT-'1 = {tfiTW-']}-' = { d + qBW-']}-l. 

EXERCISES 8 

1 From A7.9, (Y - XB)'(Y - XB) 2 (Y - a)'@ - a) if and only if the 
inequality holds for traces. 

2 4, = H Y ,  + Y2 + Y3), 4 = t(Y3 - Y2)/2. 
3 x;(X'x)-'x,Z [use V [ & ,  o,] = uij(XX)-']. Estimate Z by S = (Y - 

~ Y ( Y  - X f i ) / n  - p ) .  u = a'y, - a'lkx, - N,(O,~~ZNI + X~(X'X)-'X,~>, 

(n - p)a'Sa/a'Za - x i - ,  and independent of B. A 100 (1 - a)% c o d -  
dence interval is atBxo f ti!i{a'Sa[l + ~ ~ ( X ' x ) - ~ x ~ ] } ~ / ~ .  

4 Y = I,pt + u, p' = (V"l,)-lY"Y = y. 
5 H is independent of E. d'[E-'H] = d"[E-']d'[fl= Z-l(q2 + D)/(n - p 
- d - 1). 



x;(y - l ay ' )  = x;y. 
x'x- ("  0 ) 

0 x;x, ' 

(b) E,, =L Y'Y and H = E, - E. 
8 trP, = tr[Phd - PWllli2] = r - q. 
9 From Exercise 8.3, a'8b = b'B'a - N,(a'Bb,bZb . a'(XX) 'a) b indepen- 

dent of b'Eb = ( n  - p)bSb - bXbXi-p. The confidence interval is dbb 
f t,"/;(b'Sb . a'(XX) Use tu'2m. n - P  

10 E = Y'(1, - X(XX)-'X)Y, E ,  = Y'(l,, - X,(X;X,) 'X;)V, and A = 
lel/lh - Ud,p2 ,u  p when !Io is true. 

11 Since C, is ( J  - 1) X d of rank d - 1, ( n  - K ) C I S p C ;  - Wd.,(n - 
K, C,ZC;). When H ,  is tnie, C,f - Nd-l (O,  C,ZC;) independently of Sp .  
Use (2.19). 

12 (a) 
1 XI 1 X l  x: 

1 x, 1 x, x i  

. . . .  . . . .  . . . .  

0 1 0 1 0  
0 0 0 0 1  

Since X, has rank 3, three rows of X, are linearly independent and form a 
basis o f  R3. Then (0, 1 , O )  and ( O , O ,  1) are linearly dependent on this basis. 
Similarly for (b) and (c). For (d) and (e) to be testable we must have 
C,x, = 1 and C,x, = 0, a contradiction. 

13 V[U('), u q  = U,Jd. 

EXERCISES 9 

4 

x, = 

O 1  
0 . . .  
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5 (9.11) = Ciyi!Wiyi.- ydWyw = (9.10). 
6 (XX)-'XY = (yil., . . . ,y;'.). C,c,&b f { +z{C,c;/IK)bEb}'/2, where +z 
7 AS 9[y] = u21n and X'R = 0, Es[XX)-'Xy, (Z'RZ)-'Z'Ry] = 0 by Ex- 

8 V[y('), Y ( ~ ) )  = ujkIn and V[XX)-'Xy('), (Z'RZ)-'ZRY(~)] = 0. 
9 qG = C.C.y,,(z,, - Zi.)/R and 

is the a significance level of the maximum root test of HO2. 

ercise 1.1. 

= RZ/R2 = Z/R. Ho:Cly = 0 [see 
(3.18)I.ldere are two approaches. 
(a) Use the general theory with 
(b) Consider a T 2  test based on ClqG - Nd-l(C1y,CIZC;/R) that is 
independent of vC,SC; = C,EC; - W,-,(v,CIZC;), v = ZJ - Z - 1, 
namely, T: = (Cl$G)'[CISC~]-'Cl$GR - Td-'," when H, is true [by 
(2.19)]. 

10 Use T i . ;  then f i  = Xi@,.- yi..)(2, - Z.)/c,(z, - Z.)' = E,,,/E,, - 
Nd(yi,  $4nE2,]), by Exercise 9.9. Furthermore, Ei = Ei ,  - E,,,,E~,,JE,, 

q2)E,, - Td,2(Jn-2) when Ho:yl = y2 is true, by (2.19). 
11 Use 6, = Y(Xaj) and Lemma 2.3 of Section 2.3.2. T: = 6;S-l flj/llXajl12, 

where S = (Y - Xb)'(Y - a). Then T t  - T i n i p  when Ho is true (see 
(2.19)]. Finally, use the technique leading to (3.11). 

12 Let L ( y ,  Z) be the log likelihood. By differentiation, L ( 7 , Z )  2 L ( y ,  Z) for 
all Z > 0, where q = (K'X-'K)-'K'Z-'V. Show that L(q, Z) = c 
- Snlog Z - +tr[Z-'C,(v, - V)'(T - V)]. Use A7.1 to show that I,($,$) 2 
L(p,  Z), where 2 = Ci(vi - V)(vi - V)'/n.  

13 D' = (O,O, l), (X'X)-'XY = (V,W)', -ED = vD'(K'S-'K)-'D = vb, where 
Y = nl + n 2  - 2 and V S  = [Cj(ui - h)(ui - u)' + C,(? - V)(V, - C)']. NSO 
H, = (T2 - a2)'/c where Tz - h2 = (V - iV)'S-'K(K'S-'K)-'D and c = 

n;' + n,' + (C - W)'[S-' - S-'K(K'S-'K)-'KS-'](V - @))/v. AS H, 
has rank 1 (see Section 9.7.3), T: = rn,tr[H,E;'] = rn,(f2 - b,)2/bcv - 

rnE = n, + n2  - d + 1, when H, is true. (1, -l)A13 = 0 .  
14 Let Z be d x (d - k)  of rank d - k such that K'Z = 0. From B3.5, 

= (0, c1)(  :) = 0. 

- wd(Jn - 2, X / f l ) .  T: = (ft - 92)'[(EI -t E2)/(2Jn - 4)]-'($1 - 
2 

- 

2 

K(K'Z-'K)-'K'Z-' = Id - Z z ( z ' Z z ) - ' z '  = 1, - z(z'z)-'z' = 

K(KK)-'K. Multiply on the left by (KK)-'K'. 
15 BG = (XX)-'X[I, - Z(Z'RZ)-'Z'R]Y = CY. Then b'BhAa = b'Y'CAa 

= bY'c. By Lemma 2.3(ii), ~ [ Y ' c ]  = Zll~11~ and the variance is bZbllc112 = 

bZb . a'ACCAa. Use RX = 0 to simplify CC. From Section 8.6.3 the 
intervals are a'ABGb f { +:a'ACCA'a . b'Eb}'I2, where $J: is the a level of 
the max root test of AB = A,@ = 0. 

16 IEI/IEHI = 11, - Q p Q . L ? Q X Y Q ~ ~ I *  
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actual error rates, see e m r  rate(s) 
adaptive estimator, 157 
adaptive kernel method, see kernel method of 

estimation 
additional information, test for, 48, 54, 471, 

508 
additive constant, see multidimensional scaling 
adequate subsets, see best subset selection 
admissibility, 61 
agglomerative techniques, 350, 359 
AID (automatic interaction detection): 

description of, 378 
multivariate version of (MAID-M), 378 

ALLOC (discriminant analysis package), 341 
allometry, 493 
ALSCAL (multidimensional scaling package), 

analysis of covariance: 
247 

multivariate: 
computations for, 468 
estimation and, 465 
hypothesis tests for, 465 
Rao-Khatri method in growth curves using, 

simultaneous confidence intervals for, 465, 

step-down procedure and, 427 
test for additional information and, 471 
two-step least squares procedure for, 465 
unequal dispersion matrices, 468 

hypothesis testing, 464 
least squares estimation, 464 

480 

495 

univariate. 395, 463 

analysis of variance: 
multivariate, see one-way classification; 

randomized block design (univariate); 
two-way classification (multivariate) 

univariate: 
one-way classification, 435 
randomized block design, 454 
two-way classification, 458 

Anderson-Darling (A:) test for normality: 

description of, 146 
example of, 146 
percentage points for, 560 

Andrews’ Fourier plot, 127, 130 
Andrews’ sine function, 160 
ANOVA, see analysis of variance, univariate 
ant-eater skulls, see data 
apparent error rates, see e m r  rate(s) 
approximate degrees of freedom test for equal 

association, measures of, 356 
asymmetric matrix, graphical representation of, 

asymmetric proximity data, 244 
asymmetric trimming, 159 
asymptotic normality: 

means, 115 

137 

central limit theorem for, 98, 532 
of function of asymptotic MVN, 99, 532 

atypicality index, 292 
average entity stability, 384 

V‘& see, skewness (univariate) 
b, see kurtosis, univariate 
&clustering see cluster analysis 
Bayesian inference: 

and cluster analysis, 387 
and discriminant analysis, 285, 292, 301, 

and growth curves, 486 
and multivariate linear model, 407 

bean infestation data, see data 
Behrens-Fisher problem, 1 14 
best subset selection: 

adequate subsets, 338, 51 I 
all subsets, 338, 340 
branch and bound method, 509 
discrete data, 340 
elemental analysis, 51 1 
forward selection method, 338, 340 
regressor variables, 5 10 
response variables, 507 
stepwise procedure, 338 

305, 330 
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beta distribution and F-distr ihutioii, 33.  
Sfe also multivariate distribution; univariate 

beta distribution 
beta function: 

multivariate. 34 
univariate, I 

between-groups matrix, 269, 381 
binary reprcsentalion of qualiiative variables, 3, 

262. 298, 306. 377 
binary variable, scc variable 
biplot, 204, 216 
biquartiiriin, see Factor analysis 
bivariate triniming, see tiininling 
blockwise independence, 87- 92 
BLLJE (best linear unbiased cstinmte). J1&, 

BMD statistical package, 225, 289, 294 
Bonferroni inequality, 12 
Bonferroni intervals. 81, 97, 419, 439, 456, 

400 -401 

483. 491 
f-percenuge p in ts  for, 54b 

bootstrap estimates of error rates, set m o r  

Box -Cox transfoiniation: 
rak(S) 

inultivariate, 140 
tests based on, 148, 152 
univariate, 138 

Box’s technique of splitting samples into 
subsamples, 101 

branch-and-bound algorithm, 509 
BrayCurtis measure, 355, 392 
breakdown point, 156, I67 

C (covariancc operator), 6 
Canberra metric , see metric 
canonical coordinates, see discriminant 

coordinates (canonical vilriates) 
canoriical correlatioiis: 

computation of sample. 506 
independence, test for. 8Y 
inference for, 264 
more than two sets of variables, 261 
one-way classification and, 495 
populaticin, 89 
sample, 260 

canonical variables: 
mixed data, 262 
number of, 26h 
for outlier detection, 262 
population, 257 
sample, 261 

canonical variates, see discriminant coordinates 
(two groups) 

castles, .we trees and castles 

Cauctry distribution. 157, 159. 342. See &J 

Cauchy-Schwarz iriequality, 527 
centered data, 9 
central limit theorun (multivariate), 98-99, 532 
centroid method, see cluster analysis 
chaining, sce single linkage 
characteristic roots, see eigenvalues 
Chenioff faces, 128 
children, scores 011 nomiill and TNT groiips, see 

data 
chiquared distribution: 

multivariatc distribution 

idempotent matrix and. 16, 523 
likelihood ratio test and, 14 
marginal distribution of Wishart diagonal 

notation, 2 
square-root transformation, I68 

Cholesky decomposition, 522 
canonical correlations, 506 
Hotelling’s T’. 64 
hypothesis matrix, 498 
multivariate betu distribution and, 35 
solving nonnal equations, 496 
test statistics for inultivariate linear hypothesis 

and, 502 
(I-statistic and. 41 

elernent, 22 

city block metric, .see metric 
CLASS, 364 
classical scaling, 235 
classification and mixture methods in cluster 

analysis. 3x7 
clumping. see overlapping clustera 
CLUSTAN, 364. 376, 388 
cluster analysis: 

agglomerative niethods. comparison of, 368 
H,-clustering, 387 
centroid inethod of, 362 
classification method of, 387 
conibinatorial method of, 375 
complete linkage (farthest rreiglihor), 134, 361 
constrained, 392 
contiguous sequence of objects, 761 
contraction in, 373 
dilation in, 373 
diasiinilarity measures for, 35 I 
Factor analysis nnd, 222 
fuzzy sets and, 348 
group average linkage, 200, 363, 376 
incremental sum of squares (Wad’s) method 

of, 363 
information methods of, 365 
k-clustering, 366 
k-means, 380. 382 
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cophenetic correlation, see correlation coefficient 
cork data, see data 
correlation coefficient: 

cophenetic, 273, 371 
Fisher’s 2-transformation of, 97, 99, 165, 170 
robust estimation of, 164 
sample, 9 
sensitive to outliers, 170 
similarity measure, 356, 359 
&distribution and, 125 

diet differences of sheep and cattle, 196 
equicorrelation pattern, 73, 95, 520 
factor analysis on, 220 
Israel rainfall data, 209-210 
pitprop data, 190 
population, 10 
principal components from, 188 
reordered, 137 
robust estimate of, 165-168 
sample, 10 
simulation of, 10 
simultaneous confidence intervals for, 96 
TV programs, 137 
winged aphids, 193 

correlation matrix: 

correspondence analysis, 209 
Courant-Fischer minimax theorem, 525 
covariance, notation, 2 

covariance matrix, see dispersion matrix 
covariance operator (e), 5 
cranial measurements on frogs, see data 
cross-validation: 

robust estimation of, 164 

error rates, estimate of, 289 
principal components, for number of, 187 
robust estimates, for constructing, 157 

cube-root transformation for gamma variable, 

cutting tools example, 251 
Czekanowski’s coefficient, see similarity 

coefficient 

171 

Lance-Williams flexible method, 364 
median method of, 363 
mixture method of, 386 
missing values and, 359, 363 
monotonicity, 368 
multidimensional scaling, compared with, 390 
nuclei for, 379 
number of clusters, 388 
overlapping clusters, 387 
partitioning methods, 379 
principal components and, 390 
r-diameter clustering, 366 
reassigning objects in, 380 
recurrence relationship for cluster distance, 

scaling variables, effect of on, 352-354 
similarities, using, 365 
single linkage (nearest neighbor), 200, 360 
ties, 374 
(I-statistic method of, 366 
variables clustered, 359 

364 

Cochran’s theorem on quadratics (multivariate), 

color circle, 250 
combinatorial clustering, see cluster analysis 
common factor, see factor analysis 
common variance, see factor analysis 
communality, see factor analysis 
complete linkage, see cluster analysis 
complete separation, see discriminant analysis, 

complex multivariate normal, 19, 87 
computational techniques, 496 

canonical correlations, 506 
discriminant coordinates, 504 
generalized symmetric eigenproblem, 500 
Hotelling’s P, 499 
hypothesis matrix, 498 
least squares, 496 
multivariate linear hypothesis test, 501 
principal components, 506 
Wilks’ Lr-statistic, 501, 503 

concomitant variables, 463, 466 
conditionally-present variable, see variable 
conditional multivariate normal, see multivariate 

normal distribution 
conditional sampling, see logistic discriminant 

function (LGD) 
confidence intervals, shgle, 81. See also 

simultaneous confidence intervals 
constellations (graphical representation), 127 
contraction, see cluster analysis 
contrasts, 76, 83, 85, 438, 455, 460 
convex hull trimming, see trimming 

58, 472 

two groups 

9‘ (variance-covariance operator), 6 
D1, A? (Mahalanobis’ squared distance), see 

Mahalanobis distance 
D’ Agostino’s large sample test for normality: 

description of, 145 
percentage points for, 558 

for ant-eater skulls, 435 
for bean infestation with leaf miners, 456 
for children, scores on normal and TNT 

for cork borings, 74, 84 

data: 

groups, 121 
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data (Continued) 
for crinial measurements on frogs, I10 
for (log responses, 488 
for elderly people, survey of, I33 
for fled-beetles, 295, 334 
for head measurcnients, 363 
for paspaluni grass, 461 
Tor Peruvian indians, 64. 141, 149, 154 
for ramus bone of boys. 80 
for Republican voters, prcent;iges of, 130 
for urine samples, 468 
see ulso correlation matrix; similarity matrix 

data matrix, definition of, 4 
dendrogram, 350, 361, 372 
design matrix, 395, 397 

lesk than full rank. 396. ,413. 424, 496 
determinant, notation, 1 

patterned matrix, 520 
product of eigenvalues, 5 I 7  

diagnostic keys, 279 
diagonal matrix, notation, 1 
dichotomous variable, see variable 
dilation. see cluster analysis 
direct product, see Kronrcker product 
discordancy test for outlieifs): 

from gamma distribution, 171, 561 
from multivariate normal distribution, 171 
from univariate normal distribution. 170 

discrete variable. see vniablc 
DISCRIM. 341. 509 
discriniinant analysis: 

two groups; 
binary data, 284, 303 
Rayesiaa niethods, 2x5. 2Y2, ,101 
cases of doubt, 329 
ccrmpiu-ison of plug-iii ant1 predictibe rules, 

complete separation, 3 I3 
conditional sampling, see lugistic 

discriminant function (1,GD) 
discrete-continuous data. 300 
discrete data, 306 
distance methods, 324 

equal mean vectors and, 284 
heart attack example, 5 
likelihood ratio allocation, 255. 303 
minimax allocation, 286 
misclassification errors. 280 
missing values, 300, 323 
niixture sampling and, 293, 309--3 10, 323, 

nearest neighbor niethod, 32'3 
nonparametric methods, 323 

302 

ClTlpty Cells. 305 

3 29 

nuniber of positive symptoms. 306 
outliers and, 294 
partitioning methods, 324 
plug-in (estimative) rule, 302 
predictive rule, 301 
rank prnccdures, 324 
selection of variables for, I37 
separate sartipling, see logistic discrirninant 

sequential, 326 
unclassified observations, 3277329 
zero marginal proportions, see logistic 

discriminant function (LOD) 
see also Kernel method of estimation; 

linellr discriminant function (LDF). 
logistic discriminant function (Ixil)); 
quadratic discriminant function (QDF) 

fuiiction (LGD) 

niore than two groups, 330 
group classification function, 333 
grctup separation function, 333 
logistic, 335 
minimax niethod, 345 
selection of variables, 341 

discriminant coordinates (canonical variates). 

tliscriininant functions, termindogy, 332. See 
269. 504 

d s o  linear discriminant function (LDF); 
logistic discriminant function (LGU); 
quadratic discriminant function (QDF) 

disordered rnultistare variable, sec variable 
dispersion matrices: 

graphical cnrnparisnii of, 132, 451 
tables for testing equality (equal sample 

tcst for equality, 103. 448 

circulirr, 102 

sizes), 564 

dispersion matrix. 6 

compound syniinetry , 74 
diagonal, I 
large sample inference for, 98 
inaxiniurn likelihood estimate of. 59 
one-sample tests for: 

blockwise independence, 86- 02  
equal correlations and variances. 87 
equal diagonal blocks, 87 
jackknife method, 101 
known nlawix, 87, 126 
large sample inference, 98 
niutual independence, 87 
sphericity, 87, 93 

population, 6 
positive definite, 19. 522 
ieducible, 74 
singulm, I I 
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EM algorithm, see incomplete data 
empty cells in discrimination, 305 
entropy, 147 
equal correlations and variances, test for, 95 
equal diagonal blocks, test for, 94 
equal dispersion matrices, tests for, see 

dispersion matrix, one-sample tests for; 
dispersion matrix, two-sample tests for 
equality of 

equal mean vectors, see one-way classification; 
two-sample tests for equal mean vectors 

equivalence of multivariate tests, 43-44 
error rate(s): 

actual (ex,), 288 
apparent (e,& 289 
bootstrap estimate ( e d  of, 290 
cross-validation estimate (e,) of, 289 
expected actual ( E [ e d ) ,  288 
leaving-one-out method, 289, 344 
optimum, 288 
plug-in estimate (Ed of, 288 
total (probability of misclassification), 342 
widely different, 318 

errors in variable. regression, 85 
estimability, 398, 403 
estimable functions, 339, 403 
estimation: 

dispersion matrix, 8 
population mean, 8 
see also least-squares estimation; maximum 

likelihood estimation; robust estimation 
Euclidean dissimilarity matrix, 236 
Euclidean distance, see distance; metric 
Euclidean space (P), 1 
expectation operator, 5 
expected value of quadratic, 14 

faces, see Chemoff faces 
factor analysis, 213 

biquartimin, 215 
cluster analysis and, 222 
common factors, 213 
common variance, 216 
communalities, 216 
correlation matrix, 218, 220 
factor scores, 220 
goodness of fit, 218 
improper solutions, 2 17 
Joreskog's algorithm, 218 
loadings, 213 
maximum likelihood estimation, 216, 230 
nonuniqueness of loadings, 214 
number of factors, 218, 219, 231 

test for. 218 

unbiased estimation of, 9 
two-sample tests for equality of: 

large sample, 107 
likelihood ratio test, 103 
modified likelihood ratio statistic (M), 104 
robustness of, 106 
union-intersection test, 105 

dissimilarity, 236, 351 
asymmetric, 244 
matrix, 236 
monotonic function of, 241 
triangle inequality and, 355 
see also distance; metric 

dissimilarity matrix: 
definition of, 236 
Euclidean, 236 

Euclidean, 352 
Mahalanobis, 354 
see also metric 

measures of, 371 
minimum spanning tree and, 274 

divisive techniques for cluster analysis: 
monothetic, 376-378 
polythetic, 378 

dog response data, see data 
dot and bar notation, 2 
double centering, 239 
double exponential distributions, 159 

distance: 

distortion: 

&, expectation operator, 5 
E (error) matrix for multivariate linear models, 

eigenvalues: 
398 

computation of, 500, 506 
distribution of, 199 
inequalities for, 529 
optimality properties involving, 525 
positive definite matrix, 521 
positive semidefinite matrix, 521 
principal components and, 506 
quadratic ratios, 525 
Q-Q plot for, 187, 414 
spectral decomposition theorem, 517 
Wishart matrix, 27 

canonical variables and, 258 
distribution of, 197-199 
principal components and, 176 

elemental analysis (subset selection), 51 1 
ellipsoidal trimming, see trimming 
elliptically symmetric distribution, see 

multivariate distribution 

eigenvec tors: 
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factor analysis (Cuntinued) 
oblique rotations, 215, 220. 228. 235 
orthogonal rotations. 214. 235 
principal component analysis and, 21 5 
principal factor analysis (PFA), 219, 225 
Q-mode, 235 
quiutimax, 215 
quartirniri, 226 
reduced correlation matrix, 220 
residual variuice, 216 
rotation of Factors, 214. 23.5 
scale invariant properties, 21 8 
specific factors, 213 
unique factor, 213 
unique variance, 216 

factor indeterminacy , 2 14 
factor loading, 213 
factor scores, estiniation of', 213 
farthest neighbor (complete linkage) nietliod, see 

F-distributioii, 2 

V U h d X .  215, 226 

cluster analysis 

beta distribution and, 3 3 
Hotelling's I? and, 3 I ,  I I4 
noncentral, 32 
noninteger degrees of freedom, I 14, 1 17, 

444, 450 
U-distribution, approximation to. 41 

feature vector, 280 
finite intersection test, 12 
Fisher's disciiniinant function. 109. 283 
Fisher's iris example, 294 
Fisher's square-root transfonnation. 168, 171 
Fisher's Z~ttiinslormation, see correlation 

flea-beetles, see data 
forward selection, .we hest subset selection 
Fourier plot, see Andrews' Fourier plot 
Froebenius norm of matrix, see iiratrix 
functional relationship, 85 
fuzzy sets, 348 

cwfl icient 

gamma distribution. 540 
cube-root transforrnatioii fur, 1'71 
discordancy test for outlier frorn. 171 -172 

niaximuin likelihood estirn;ltion, table for, 550 
ordered sample from, 54 I 
probability (Q-Q) plot, 152--lS4, 204. 4S1, 

474, 544 
scale and shape parameters, 540 

gamma function: 
multivariate, 20 
univariate. 2 

table for, 561 

Gauss-Markov tlieorem. 400 
generalized beta distribution, 36 
gerieralized inverse, I ,  19, 396, 498 
generalized least squares, 79 
generalized linear hypothesis: 

multivariate normal mean, 425 
profile analysis, 420 
theory of, 423 

generalized principal cuinpoiient analysis, 203 
geiieralizcd quadratic form, 6, 22 

idempotent matrix and, 25 
sec crlsu Cocliran's theorem 

discriminant coordlnates, 504 
inultivariate linear hypothesis, 501 
one-way classification, 503 

generalized syrrirnctric eigenproblem, 500 

generalized viiancc, 27 
GENSTAT statistical package, 209 
Givens' nietliod, 498 
GLIM, 448 
glyphs and metroglyphs. 127 
Goodman-Kmskal measure of association, 273, 

37 I 
Gowrr's similarity coefficient, SCY similarity 

coefficient 
Grm-Schmidt algorithm, 498 
graphical methods. 

hiplot. '205 
c:anonical uariahles, 262, 265 
discriminant coordinates. 27 I 
tlisperson matrices, 45 I 
factor loadings, 222 

likelihood ratio plot to choose transformation, 

principal components, 189, 195, 200 
see also outlicrs; prubability plotting; Q-Q 

h-plot, 20x 

I39 

(quantile-quantile) plot 

AnJrews' Fouriei plots, 130 
castles, 134 
Chemdf faces, 128 
constellations, I27 
dendrugrain, 361 
glyplis, 127 
inctroglyphs, 127 
iiiinimuni spanning trcc. 152. 273, 361 
profiles, 129 

graphical repmentation of niultiviuiate data, 127 

srms. 127 
trees, 134 
weathervanes. 127 

graph theory and diister analysis, 348 
group average linkage, see cluster analysis 
growth curve analysis, 474 
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two-sample: 
large sample test for equal dispersion 

likelihood ratio test, 109 
profile analysis and, 117 
testing equal mean vectors, 108, 494 

matrices, 107 

Householder method, 498 

Huber’s + function, 160, 167 
hypothesis matrix, computation of, 498 

idempotent matrix, see matrix 
identifiability restrictions, 398 

growth curves and, 477 
multivariate linear model, 398 

identity matrix, see matrix 
improper prior distribution, 301 
inadmissibility, 61 
incomplete data: 

h-plot, 208 

EM algorithm for, 514 
monotone data matrix from, 516 
sampling from MVN with, 515 
see also missing values 

incremental sum of squares, see cluster analysis 
independence: 

of multivariate normal variables, 18, 19 
of quadratic forms, 523 
of sample mean and dispersion matrix, 63 
tests of hypotheses for, 87, 90 

individual-average (I-A) plots, 452 
individual differences scaling, see INDSCAL 
INDSCAL, 246, 248 
influence function, 156, 170 
information method, see cluster analysis 
intraclass correlation model, 74 
invariance: 

of Hotelling’s Tz ,  65 
of Mahalanobis distance, 354 

inverse Wishart distribution, 26 
ISODATA method (of clustering), 380-381, 388 
isopleth, 10 

Jaccard’s similarity coefficient, 252, 356, 358, 

jackknife method, 101, 266 
Jacobian, 34, 139, 531 
James’ expansion test for equal means, 115 

392 

allometry, 493 
Bayesian approach, 486 
general theory, 478 
internal adequacy, test for, 486 
method, choice of, 483 
missing observations, 492 
Potthoff-Roy method, 479 
randomized block design and, 474 
Rao-Khatri method, 480,495 
simultaneous confidence intervals for, 483 
single growth curve, 77, 474, 476, 483, 484 
two-dimensional, 477 
two growth curves, 475 
unequal dispersion matrices, 492 
using gains, 493 

half-normal plot, 98, 544 
Hampel’s 6 function, 160 
head length and breadth data, see data 
hierarchical clustering, see agglomerative 

techniques; divisive techniques for cluster 
analysis 

Hodges-Lehmann estimator, 161 
horseshoe phenomenon, 249 
Hotelling‘s generalized Ti, see Lawley-Hotelling 

trace statistic 
Hotelling’s T2 distribution: 

definition, 28, 42 
derivation, 30-1 
F-distribution, relation to, 31 
noncentral, 32 

one-sample: 
Hotelling’s T2 statistic: 

computation of, 64 
equivalent to likelihood ratio statistic, 67 
equivalent to union-intersection statistic, 

F-distribution and, 3 1, 114 
invariance of, 65 
large sample test for dispersion matrix, 101 
linear hypothesis test, 72 
mean, test for, 63 
minimization technique for, 77 
permutation distribution for, 69 
properties of, 67 
power of test, 69 
ranks, based on, 70 
repeated measurement design, 72 
robustness of, 69 
single growth curve and, 77, 485 
specified contrasts, test for, 76 
step-down procedure instead of, 70 
symmetry, test for, 76 
t-distribution, relation to, 68 

69 

kernel method of estimation: 
adaptive (variable), 323 
binary data, 322 
continuous and discrete, 323 
continuous data, 320 

kernel of matrix, see matrix 
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k-means method (of clustering). see cluster 

Kronecker product, 7, 23 
Kurtosis: 

analysis 

multivariate, see skewness and kurtosis 

univariate, b,: 
(multivariate) 

discordancy test for normal outlier, 170 
normality. test for, 144 
percentage points for. 553, 554 
population, 54 
sample, 144 

KYST multidimensional scaling package, 243 

Lance-Williams clustering criterion, see cluster 

latent root regression, 203 
latent roots, see eigenvalues 
latent StNCtUCC analysis, 216 
latent vectors, see eigenvectors 
Lawley-Hotclling trace statistic: 

definition, 38, 43 
percentage points for. 563 
see also multivariate linear hypothesis 

Icaf-miner insect data, see data 
least-squares estimation, 396, 39X 

analysis 

equivalent to niaxinium likelihood, 406 
monotone, 241 
niultivariate, 398 
residuals from, 408 
restricted. 4(13 
univariate, 396 
see also generalized least squares 

LDF, see linear discriininant Function (LDF) 
length of vector. I 
L-estimator: 

of mean, 158 
of standard deviation, 162 

LGD, see logistic discriminant function (LGD) 
likelihwd ratio method of discriiniriati~i~i. 285 
likelihood ratio test, general description, 14 
likelihood ratio tests for M V N  tlata. 

canonical correlation analysis, 266 
consecutive eigenvalues equal (isotropy), 108 
equal correlations and variances. 95 
factor analysis, 2 I8 
generalized linear hypothesis, 42.3 
multivariate linear hypothesls. 4 I2 
one-sample test on mean, 63 
one-sarnplc test on mean and dispersion 

one-sample tests on dispersion matrix 93--95 
two-saniplc test for equal dispersion inatIices, 

matrix, 94, 125 

I03 

two-sample test for equal means. 108 
see d s o  analysis of variance. lnultivariate 

Lillefors* test, 543 
linear discriminant. function (LI>F), 293 

binary data and, 284, 304 
logistic, compared with, 317 
inissing observations and, 300 
for normal populations, 109, 282, 287 
quadratic, cornpared with, 297 
ranks, based on, 325 
ridge-type adjustment to, 293 
robustness of, 297 
unbiased (ULDY), 302 

for mcan of MVN, 72 
for multivariate linear model. 409 
testable, 409 

binary data and. 284 
complete separation and, 3 13 
computation of, 312 
conditional sampling, 309 
corrections for hias, 315 
eye disease example, 315 
LDF, compared with, 317 
mixture sampling, 310 
inorc than two groups, 335 
predictive mcdel, 318 
quadratic discrimination, 31 9 
separate sampling, 310 
;:era marginal proportions, 3 I4 

linear hypothesis: 

logistic discriminant function (LGD), 308 

logistic regression. 5 I4 
log-linear models: 

description of, 512 
111 discriminant analysis, 305. 307 
saturated, 5 I3 

MAD (median of the absolute derivations), 160, 

Mahalanobis angle, 1 1  
Mahalanobis distance: 

164 

application of, 152, 208, 294, 383 
definition, 10 
discriminant analysis, 294 
dissimilarity measure, 354 
invariance of ,  354 
nyetric, 354 
population, 52, 338 
robust estimation and, 165 
sample, 10 

MAID-kI, see AID (automatic interaction 

MANOVA, see analysis of variance, 
detection) 

multivariate 
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percentage points for, 563 
M-D-SCAL, 243 
mean vector, see population mean; sample mean 
median( s): 

univariate, 158 
vector of, 162 

median method, see cluster analysis 
M-estimator: 

multivariate mean and dispersion, 166 
univariate mean, 159 

cluster analysis (mixture method), 386 
classification method, compared with, 387 
discriminant analysis, 328 
see also discriminant analysis 

Canberra, 355 
change in scale, 352, 355 
city block (L,) metric, 352, 355 
definition, 351 
Euclidean, 352 
Mahalanobis, 354 
Minkowski, 352 
one-complement of matching coefficient, 358 
sup-norm, 352 

method of mixtures: 

metric, 351 

metric multidimensional scaling, 235. See also 
principal coordinate analysis 

metroglyphs, see glyphs and metroglyphs 
microfilm plotter, 127 
minimax allocation, 286 
minimize total cost of misclassification, 285 
minimize total probability of misclassification, 

minimum spanning tree, 152, 273, 367 
minimum stress vs. dimension, 244, 246 
MINITAB, 543 
Minkowski metric, see metric 
misclassification probabilities: 

28 1 

decrease with increasing dimension, 337 
definition, 280 

EM algorithm, 514 
multivariate linear model, 422 
multivariate normal distribution, 515 
see also cluster analysis; discriminant analysis 

mixture of normals in cluster analysis, 349, 386 
mixture sampling, see discriminant analysis 
mode, estimation of, 10 
mode analysis for clustering, 386 
modulus transformation, 140 
monothetic methods, see divisive techniques for 

cluster analysis 
monotonicity of cluster methods, 368 
Moore-Penrose inverse, 498 

missing values: 

Mardia’s permutation test: 
applications, 69, 113 
general description, 416 

matching coefficient, see similarity coefficient 
matrix: 

deficiency, 77 
determinant, 1, 177 
diagonal, 1 
differentiation, 530 
eigenvalues, 517 
with equal diagonal and equal off-diagonal 

Froebenius norm, 177, 206, 524 
generalized inverse, I 
idempotent, 9, 14, 24, 25, 26, 50, 77, 410, 

identity, I 
lower rank approximation of, 206, 208-209, 

nonnegative definite, see positive semidefinite 

null space (kernel), 1 
optimization, 523 
patterned, 519 
positive definite, 1, 521 
positive semidefinite (p.s.d.) matrix, 1, 521 
range space, 1 
rank, 518, 521 
spectral decomposition theorem, 5 17 
square root, 521 
symmetric, 1 
trace, I ,  117, 517 
transpose, 1 
triangular, 496, 497 
see also partial ordering fot symmetric 

elements, 520 

522 

240, 320, 524 

(p.s.d.) matrix 

matrices 
matrix differentiation, see matrix 
maxima and minima (with quadratics), 525 
maximize the posterior probability, 286, 287, 

maximum likelihood estimation: 
33 1 

factor analysis, 216, 230 
growth curve, 480-481 
least squares, equivalent to, 406 
multivariate linear model, 406 
multivariate normal, 59 
one-to-one functions and, 524 
with ordered data, 540-541 
principal components, 197 
restricted, 407 

applications of, 89, 41 1 
charts for, 37 
description of, 37, 43 

maximum root statistic: 
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Morse code example, 244, 246 
multicollinearity, 202 
multidimensional scaling, 235 

choice of dimension, 245 
classical (metric), 235 
cluster analysis, conipared with, 390 
confidence regions lor points, 248 
fitting additive constant, 24 I 
inconiplete designs, 253 
individual differences scaling, 246 
initial solution using nietrie scaling, 244 
nonmetric, 241 
random s lar ts ,  274 
with restrictions, 247 
seriation, 249 
STRESS, 242, 245 

multinomal distribution, see multivariate normal 
distribution 

multiple correlation coefficient: 
population. 257 
selection of variables, 200 
starting ViIlues in principal factor analysis, 

219, 220 
niiiltiple design (MDM) model, 428 
multiple linear regression. 428 

principle components and, 202 
niultivariate analysis of variance. see analysis of 

variance, multivariate 
multivariate beta distribution: 

derivation of, 33 
determinant of, 40 
eigcnvalues, 35 

rnaxiniuin eigenvalue, 37 
minimum eigenvalue, 3? 

type 1 and 11, 33 
multivariate beta function, see bepa Function 
niultivariate beta matrix, 38 
rniiltivariate binary data, 275 
niultivluiate distribution: 

k t a ,  see multivariate beta Jistribuliori 
Cauchy, 166 
elliptically symmetric, 17, 92, 93. 108. 166 
F, 17 
logistic normal, 17 
lognormal. 17 
nomill, see multivariate noniial dibtribution 
stable, 17 
r ,  17, 166, 301 

multivariate F-matrix, 38 
multivariate gamma function, sre gamma 

function 
multivariate kurtosis, see skewness and kuiiosis 

(inultivariate) 
multivariate linear hypothesis: 

canonical form, 421 

generalized. 423 
hypothesis matrix, conipiilation of, 498 
Lawley-Hotelling trace statistic, 414, 563 
likelihood ratio test (Wilks' .A), 413, 562 
multiple design model. 428 
Pillai's trace statistic, 414, 564 
Roy's maximum root test, 412. 563 
step-down procedure, 426 
testability, 409, 429, 431 
lests, comparison of, 414 
test statistics., cotnputation of, 501 
Wilks' ratio, 413 
see also Mardia's permutation test 

multivariate linear model, 397 
Bayesian approach, 407 
ciinonical form, 421 
constrained least squares estimation, 403 
coordinate free approach, 402 
estiniability , 398 
least squares estimation, 398 
less than full rank, 398, 401, 403 
maximum likelihood estimation, 406 
missing observations, 422 
iionnal equalions, 398 
rink. test for, 423 
residual matrix, 408 
robust estimation, 408 
simultaneous confidence intervals, 417 
lrilnslated model, 404 

admissable estimation of. 61 
complex. 19, 87 
conditional, 19, 28, 46, 51, 58 .  338, 327, 

tlefinitit>ns, 18, 19 
discordancy test for outlier (table), 562 
kernel. 320 
marginal normality, 18. 148 
~naxirniirn likelihood estimation, 59 
missing observations, 5 I5 
mixtures of, 329, 349 
moment generating function, 18 
outliers, 171 
sequential estimation of mean, 61 
aingular, 19, 55 
transformations to, 140 

multivariate gap tests, 152 
probability plots, 152 
skewness and kuilosis, 149 
traiisforniation methods, 152 
transformation to uniform variabfes, 15 I 

inuliivariate quality control, I80 
multivariate skewness, see skewness and 

inultivttriate normal distribution, 17 

47 I 

multivariate normality, tests for. 148 

kurtosis (multivariate) 
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Bonfemni simultaneous intervals, 439, 440 
canonical correlations and, 495 
computational procedure for, 503 
contrasts, 438 
equal dispersion matrices, test for, 448 
exact test (unequal dispersion matrices), 452 
graphical comparison of dispersion matrices, 

hypothesis test for, 434 
James’ test (unequal dispersions), 445 
likelihood ratio test for means, 435 
Mardia’s permutation test, 443 
reparametrization of model, 447 
simultaneous confidence intervals, 437, 440, 

test statistics, comparison of, 440 
unbiased test (M) for equal dispersions, 449 

one-way MANOVA, see one-way classification 
optimum error rates, see error rate@) 
ordered multistate variable, see variable 
order statistics, 539 
ordinal variable, see variable 
ordination, 239 
orthogonal complement, 534 
orthogonal decomposition of vectors, 533 
orthogonal hypotheses, 473 
orthogonal matrix, see matrix 
orthogonal polynomials, 79 

orthogonal projections, 533. See also projection 

outliers: 

45 1 

454 

growth curves and, 480,482,487 

matrix 

bivariate, 170 
check for, 157 
discordancy, tests for, 170 
high proportion of, 156 
using influence function, 170 
Kimber’s test, 172 
masking, 169 
multivariate, 17 1 
Peruvian indians, 65 
principal components and, 171, 180, 187 
probability plotting and, 141-55 
residuals and, 408 
several outliers, 172 
spurious dimensions and, 169, 171 
univariate, 170 
Wilks’ test, 173 

overlapping clusters, 387 

multivariate trimming, see trimming 
mutual independence, I8 

percentage points for test, 564 
test for, 90 

MVN, see multivariate normal distribution 

-2 (null space), 1 
nearest neighbour method (single linkage), see 

cluster analysis 
Newton-Raphson method, 160, 3 13 
nominal variable, see variable 
noncentral chi-squared distribution, 19, 26, 55 
noncentral F-distribution, 32 
noncentrality matrix, 26, 41 1, 414 
noncentrality parameter, 19 
noncentral T2 distribution, 32 
noncentral Wishart distribution, see Wishart 

distribution(s) 
nonconformist clusters, 373 
noninteger degrees of freedom, see F- 

nonmetric multidimensionsal scaling, see 

norm: 

distribution 

multidimensional scaling 

Froebenius matrix, see matrix 
vector, 1 

normal distribution, notation, 2, 18. See also 
multivariate normal distribution; 
univariate normality, test based on 

normal equations: 
multivariate, 398 
solution of, 496, 505 
univariate, 396 

normality, tests for, see multivariate normality, 
tests for; univariate normality, tests based 
on 

normalized gaps, 148 
normal probability paper, 543 
normal probability plots: 

descnption, 543 
examples of, 170, 173 
see also half-normal plot 

NORMAP, 329 
NORMIX, 329 
notation, 1 
null space, see matrix 

oblique rotation, see factor analysis 
one-complement, 358 
one-sample tests: 

for dispersion matrix, 86-95 
for mean, 63 
for linear hypothesis for mean, 72 

anteater skulls example, 435, 440, 445 
one-way classification, 433 

paired comparison test, multivariate, 71 
parallelism, test for, 117, 425 
partial ordering for symmetric matrices, I ,  397 

eigenvalues and, 528-530 
principal components and, 177 
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partitioned matrix, see matrix 
partitioning inethod of discriminant arnlysis, 324 
partitioning methods of cluster analysis, 379 

ISODAIA, 380--38 1 
k-means method, 380, 382 
number of  partitions, 379 
quick panition algorithm, 380 
reassigning objects, 380 
sphere-factor starting algoiithrn, 380 
starting the process, 379 

partition rank, 370 
paspaluin grass. see data 
pattern recognition: 

with supervised learning, 279 
with unsupervised learning, 348 

p.d. (positive definite), see niatrin 
penalized riiaxiiiiuni liklihwd estimation, 3 12 
permutation test, sce Mardia's pennutation test 
Peruvian indians, see data 
P-estimator, see robust estiniatiori, umvdriate 
Pillai's trace statistic: 

definitiorr, 39, 40 
percentage points for, 564 
see also multivariate linear hypothesis 

pitprop data, see correlation matrix 
plug-in estiniates of error rates, .we emir rate(s) 
plug-in rule, we discriminant analysis 
F'C)LDIV (divisive clustering). 378 
political alignment example, 247 
population correlation matrix. see corrclation 

matrix 
population dispersioii niatrix, .see di3peraion 

nintrix 
population rncan, 6 
positive definite (p.d.) matrix, I ,  521 
positive definite with probability one, see 

probiibility one 
positive random spectrum, 187 
positive semidefinite (p s.d.) matrix, I ,  521 

partial ordering. 177 
posterior distribution, 292 
posterior odds, 308 
posterior probability, 28.5, 308, 33 I 
Potthoff-Roy method, see growth curve analysis 
power transformation, see Box-Cox 
P ,  plot. 338 
I'-Pplot, 114, 141, 542 
predictive Jcrisity, 292 
predictive discriminant, rec tliscrinrinsnt analysis 
predictive logistic model, sec logistic 

principal component analysis, 176 
discriminant function (1.S;D) 

cluster analysis and, 506 
computational method, 506 

ctwrelation matrix, I83 
correlation vs. dispersion matrix, 188 
detecting outliers, 171, 180 
detecting spurious dirnensions, 200 
diet differences of sheep and cattle, 196 
factor analysis, reIationship to. 215 
fixed-effects mtdels. 201 
frog data, 1 I 1  
generalized, 203 
geometrical properties, 182- 183 
hypotheses for, tests of, 187, 195-199 
maximum likelihood estimation, 197 
inullidirnensional scaling and. 244, 246 
non-scale-invariance, 187 
nonnal approximations, 198 
number of coinponents. 186--187, 188 
optimum propeities of. 181, 183-184 
pitprop examplc, 188 
population, 176 
preliminary selection of variables, 200 
principal coordinate analysis and, 24 
regression iind, 202 
residuals from. 180 
robust, 171 
sainplc. 184 
sampling properties, 197.- I99 
scnsitive to non-normality, 199 
sensitive to outliers, 18X, 2(ni 
standardized, 132, 176, 219 
and survey of elderly people, I33 
time series and, 201 
uniqueness of components, 186 
winged aphid example, 192 

principal component regression. SPL)  latent root 

principal coordinate analysis. 238.- 239, 274 
regression 

equivalent to principal comporicnt analysis, 
240 

c~:ied tu start noiinietric niultidimensionnal 
scaling, 274 

principal factor analysis, .see fiictor analysis 
probabilistic distance. 10 
probability of concordance, 340 
probability one. 522 

distinct eigenvalues with, 35 
full rank with, 5 0  
less than with, 291 
positive definite with, 8 ,  21, 3 3 .  35, 104, 

187, 41 I 
probability plotting, 542 

probit discrimination. 280 
Procrustes rotation, 253 
profile, 117. 129, 452 

applications, 141, 146. 151-154, 294, 451 
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profile analysis: 
more than two populations, 420 
two populations, 117 

projection matrix, 522 
examples of, 77 
least squares and, 396 
properties of, 533 
subspace, 535 
see also matrix, idempotent 

proximity, 349, 351 
proximity matrix, 349 

QDF, see quadratic discriminant function (QDF) 
Q-method (metric multidimensional scaling), 241 
Q-Q (quantile-quantile) plot, 141, 146, 294, 542 

description of, 542 
of eigenvalues, 187, 414 

QR algorithm, 497 
quadratic discriminant function (QDF): 

known normal distributions, 284 
leaving-one-out method, 344 
logistic model, 319 
predictive model, 301 
robustness of, 297 
unknown normal distributions, 297 

chi-squared distribution and, 16, 20 
expected value of, 14 
generalized, see generalized quadratic form 
independence of, 523 
optimization theorems relating to, 525 

quadratic loss function, 61 
qualitative variables, see variable 
quantitive variable, see variable 
quartimax, see factor analysis 
quasi-Newton methods, 313, 337 

quadratic forms: 

3 (range space), 1 
rainfall data, 209 
random matrix, notation, 2, 3 
randomized block design: 

multivariate, 454 
leaf-miner data, see data 
simultaneous confidence intervals, 455 
single growth curve and, 474 
underlying assumptions, 458 

univariate, 395, 454 
random graph, 389 
range space of matrix, see matrix 
rank, see matrix 
rank methods: 

discriminant analysis, 324 
one-sample test, 70 

Rao’s distribution, 50 

reduced correlation matrix, 220 
reduced-rank regression, 267, 423 
reparametrization of one-way classification 

model, 447 
repeated measurement design, 72. See also 

growth curve analysis 
residual matrix, 408 
residual variance, see factor analysis 
R-estimator: 

multivariate, 162 
univariate, 161 

reversals of log-likelihood, 297 
ridge regression, 398 
RLDF, 325, 342 
R-method (principal components), 241 
Robinson matrix, 251 
robust estimation: 

multivariate: 
correction for bias, 166, 168 
of correlation matrix, 165 
of dispersion matrix, 165 
of location, 162 
M-estimation, 166 

adaptive, 157 
confidence interval and, 161 
correction for bias, 163-164 
correlation, 164 
covariance, 164 
location, 156 
L-,M-9-,R-estimate, 157-159 
standard deviation, 162 
Studentized estimate, 161 
trimming and, 158-159, 163 
variance, 163 
Winsorization and, 158, 163 

univariate: 

Roy’s maximum root test, see maximum root 

RQDF, 325, 342 
RV-coefficient, 256 

statistic 

sample correlation coefficient, see correlation 

sample comelation matrix, see correlation matrix 
sample dispersion (covariance) matrix, 9 

coefficient 

unbiased estimate, 8 
updating, 15 

sample distribution function, 539 
sample mean, 8, 24 
sample splitting, 101 
SAS (statistical analysis system), 543, 544 
scaled data, 9 
scaled gamma distribution, see gamma 

distribution 
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selection of variables, see best subset selection 
separate sampling, 3 10 
separating hyperplane, 3 13 
sequentional discrimination, set  discriniiiiant 

seriation. 240 
SHADE, 373 
short-tailed distributions, 157 
similarity coefficient, 229, 3.57 

analysis 

association, measures of, 356 
correlatiori, 356, 359 
Czekanowski's. 356, 358. 393 
dissimilarity, converted lo, 239. 244, 358 
Cower's, 357. 393 
Jaccard's, 252, 356, 358, 392 
matching propoition. 356, 392 

for dialect similanties, 366 
positive semidefinite, 239. 358 

similarity matrix, 349 

simple matching coefficient, -3.56. 392 
simplex structural model, 102 
simultaneous confidence intcrvals: 

correlations, 96 
general principles, I I 
growth curve analysis, 483 
multivanatc analysis of covariance, 4% 
multivariate linear hypothesis. 417 
one-sample, 81 
one-way classification, 437 
randoiniz.cd block design, 455 
two-sample, 109 
two-way classification, 460 

simultaneous tests, 11, 424 
single linkage, 360 

algorithm for, 376 
chaining, 350, 373 
controversy over, 374 

singular dispersion matrix, see dispersion matrix 
singular nornial distribution. sw multivariate 

singular value dcconiposition (SVD), SO4 
ti~niia I distribution 

biplot, 205 
canonical correlations. 506 
principal components, 201, 606 
solution of normal eqnations. 505 

singular values, SO4 
singular Wishart distribution. seu Wishart 

dist ribution(s) 
size aid shape. 4Y4 
skewness (urtivariate): 

normality, tcst for using, 144 
normalizing transl'onnatioii, 144, 55 I 
percentage points for. 551 
population, 54 

sample, 144 

applications, 75, 76, 442 
ncmnality, tests for, 149 
norirrality, transformation to, I50 
population, 54 
sample. 55 

skewness and kurtosis (ntultivanatc): 

slippage tests for outliers, 172 
space-tirnc clustering, 391 
apatial properties of hierarchical clustering, 

specific factor, see factor analysis 
specific variance, see factor analysis 
spectral decomposition theorem, 5 17 
spherically syninieti ic distribution, 166 
sphericity test, 93, 493 
SPSS, 225. 230, 289, 294, 332. 341 
spurious dimension, detection 01, !69, 171 
square-root transformation. 168, 171  
SS'TRESS, 245 
standard deviation, robust estimation of, 162 
standardized principal components, ID2 
standard normal distribution, 2 
STARS, 127 
statistically equivalent blocks. 32.1 
statistical pattern recognition: 

with supervised learning, 279 
with unsupervised learning, 348 

373 

Stein estimator of mean, 62 
step-down proc:cdure, 13 

and additional information, test for, 472 
for mean of multivariate noniial. 70 
for multivariate linear hypothesls, 426 

stepwise procedure, see best subset selection 
STRESS, 242, 245 
sweep operation, 508 

tables, presentation of, I36 
TAXMAP, 352 
taxonomy, 347 
Taylor expansion, 99 
?-distribution: 

correlation coefficient and, 125 
multivariate, see multivariate distribution 
univariitte, 2 

T z  distribution, see Hotelling's T' distribution 
testable hypothesis for: 

multiple design niodel, 429. 43 1 
rnultivadate linear model, 409 

inlimnation, test for 

equal dispersion matrices, 108 
unequal dispersion matrices, I14 

test for additional informatioil, set' additional 

test For equal means: 
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normal approximation for, 42 
percentage points for, 562 
Rao’s F-approximation, 41 
selection of variables using, 341 

ultrametric, 370, 393 
ultrametric inequality, 370 
unbiased estimation: 

of dispersion matrix, 8 
of mean, 8 

uniform distribution, probability plot for, 151 
union-intersection principle, 13, 68, 89, 92, 93, 

96, 105, 109, 126,411, 418, 429 
union-intersection test: 

independence of two sets, 89 
multivariate linear hypothesis, 41 I 
one-sample, 68 
two-sample, 105, 109 

unique factor, see factor analysis 
unique variance, see factor analysis 
univariate beta distribution, 32, 45, 47, 153, 

536 
F-distribution and, 33 
ordered sample h m ,  153, 541 

univariate normalhy, tests based on: 
Q-Q plot, 153 

Anderson-Darling (A:) statistic, 146 
Bayesian statistics, 147 
D’Agostino’s D statistic, 145 
entropy, 147 
linearity of Q-Q plot, 146 
normalized gaps, 148 
power transformation, 148 
skewness and kurtosis, 144 
transformation of correlation, 147 
Wilk-Shapiro (W) statistic, 145, 556, 558 
Z-test, 147 

updating sample mean and dispersion matrix, 15 
upper triangular matrix, see matrix, triangular 
utilizing unclassified observations, see 

discriminant analysis 

variable: 
binary, 3 
binary variables, representation by, 3, 298, 

377 
change of type, 348 
conditionally-present, 348 
continuous, 3 
dichotomous, 348 
discrete, 3 
nominal (disordered multistate), 3 
ordinal (ordered multistate), 3 
qualitative, 3, 395 
quantitative, 3, 395 

tests for normality, see multivariate normality, 
tests for; univariate normality, tests based 
on 

TORSCA, 243 
total cost of misclassification, 285, 345 
total dispersion, 175 
total probability of misclassification, 281 
trace, see matrix 
trace B W - ’  criterion, 383 
trace W criterion, 382 
training data, 287 
transformation to normality: 

multivariate, 140 
univariate, 138, 140 

transformation to symmetry, 140 
trees and castles, 134 
triangle inequality, 352 
triangular matrix, see matrix 
triangular system of equations, 496 
trimmed mean: 

asymmetric trimming, 159 
multivariate, 162 
univariate, 158 

bivariate, 164 
convex hull, 164 
ellipsoidal, 164 
multivariate, 165 

trimming: 

Tukey’s biweight function, 160 
two-dimensional representations, 273 
two-sample test for equal dispersion matrices, 

two-sample tests, robust procedures: 
equal dispersion matrices, 107 
equal mean vectors, 115 

assuming equal dispersion matrices, 108 
assuming unequal dispersion matrices, 114 
computational algorithm, 500 
Mardia’s permutation test, 113 
profile analysis, 117 
robustness to non-normality, 112 
robustness to unequal dispersions, 11 1 
special case of multivariate linear model, 

102 

two-sample tests for equal mean vectors: 

419-421 
two-way classification (multivariate), 458 

hypothesis tests for, 459 
simultaneous confidence intervals, 460 

U-distribution: 
chi-squared approximation, 4 1 
definition, 40, 43 
factorizations of, 45, 48 
noncentral, 42 
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variable kernel method, see kernel method of 

variance-covariance matrix, see dispersion 

variiiiax rotation, see factor analysis 

vector, length of, 1 
vector differentiation, 530 

estimation 

matrix 

VeC OplXdtol-, 7, 531 

Ward's critciion. see cluster analysis 
I W( criterion, 382 
weathcrvane display, see graphical 

Weyl's inequality, 530 
Wilk-Shapiro (W) test lor normality: 

representation oi  multivariatc data 

coefficients for, tablc of, 556 
description, 145 
example of, 146 
percentage points for, 558 

Wilks' ratio, 413 
Wilks' A statistic, 413 
Wilson-Hilferty's transformation, see cube-root 

winged aphids, see correlation matrix 
transformation for gamma variable 

Winsarkation, L58 
Wishart distribution(s): 

definitions. 20, 21 
determinant of, 27 
eigenvalues of, 27 
generalized quadratic and, 24 
independent, 24, 57 
inverse. 26 
linear noncentral, 26 
inarghal, 56 
moment generating function of, 56 
noncentral, 26, 49. 41 I ,  414. 473 
partitioned, 50 
singular, 21 
sun1 of independent, 57 
trace of, 56 

within-groups matrix, 269, 381 

zero marginal proportions, see iogist ic 

zonal polynomials, 26 
Z-test for nomality, 147 
Z-transformation, see correlation coefficient 

discriminant function ( L O )  
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