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Preface

Nowaday, the progress of high-technologies allow us to handle increasingly large
datasets. These massive datasets are usually called ”high-dimensional data” . At the
same time, different ways of introducing some continuum in the data appeared (use
of sophisticated monitoring devices, function-based descriptors as the density func-
tion for instance, etc). Hence, the data can be considered as observations varying
over a continuum defining a subcategory of high-dimensional data called functional
data. Statistical methodologies dealing with functional data are called Functional
Data Analysis (FDA), the ”functional” word emphasizing the fact that the statistical
method takes into accound the functional feature of the data. The failure of stan-
dard multivariate statistical analyses, the numerous fields of applications as well as
the new theoretical challenges motivate an increasingly statistician community to
develop new methodologies. The huge research activity around FDA and its related
fields produces very fast progress. Then, it is necessary to propose regular snapshots
about the most recent advances in this topic.

This is the main goal of the International Workshop on Functional and Oper-
atorial Statistics (IWFOS’2011, Santander, Spain) which is the second edition of
the first successful one (IWFOS’2008, Toulouse, France) initiated by the working
group STAPH (Toulouse Mathematics Institute, France). This volume gathers peer-
reviewed contributions authored by outstanding confirmed experts as well as young
brillant researchers. The presentation of these contributions in a short (around 6
pages a contribution) and concise way makes the reading and use of this book very
easy. As a by-product, the reader should find most of representative and signifi-
cant recent advances in this field, mixing works oriented towards applications (with
original datasets, computational issues, applications in numerous fields of Sciences
- biometrics, chemometrics, economics, medicine, etc) with fundamental theoretical
ones. This volume contents a wide scope of statistical topics: change point detec-
tion, clustering, conditional density/expectation/mode/quantiles/extreme quantiles,
covariance operators, depth, forecasting, functional additive regression, functional
extremality, functional linear regression, functional principal components analy-
ses, functional single index model, functional varying coefficient models, gener-
alized additive models, hilbertian processes, nonparametric models, noisy obser-
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vations, quantiles in functions spaces, random fields, semi-functional models, sta-
tistical inference, structural tests, threshold-based procedures, time series, variable
selection, wavelet-based smoothing, etc. These statistical advances deal with nu-
merous kind of interesting datasets (functional data, high-dimensional data, lon-
gitudinal functional data, multidimensional curves, spatial functional data, sparse
functional data, spatial-temporal data) and propose very attractive applications in
various fields of Sciences: DNA minicircles, electoral behavior, electricity spot mar-
kets, electro-cardiogram records, gene expression, irradiance data (exploitation of
solar energy), magnetic resonance spectroscopy data (neurocognitive impairment),
material sciences, signature recognition, spectrometric curves (chemometrics), trac-
tography data (multiple sclerosis), etc.

Clearly, this volume should be very attractive for a large audience, like academic
researchers, graduate/PhD students as well as engineers using regularly recent sta-
tistical developments in his work.

At last, this volume is a by-product of the organization of IWFOS’2011 which
is chaired by two other colleagues: Juan A. Cuesta-Albertos (Santander, Spain)
and Wenceslao Gonzalez-Manteiga (Santiago de Compostela, Spain). Their trojan
work as well as their permanent support and enthusiasm are warmly and gratefully
thanked.

Toulouse, France Frédéric Ferraty
March 2011 The Editor and co-Chair of IWFOS’2011
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Chapter 1
Penalized Spline Approaches for Functional
Principal Component Logit Regression

A. Aguilera, M. C. Aguilera-Morillo, M. Escabias, M. Valderrama

Abstract The problem of multicollinearity associated with the estimation of a func-
tional logit model can be solved by using as predictor variables a set of functional
principal components. The functional parameter estimated by functional principal
component logit regression is often unsmooth. To solve this problem we propose
two penalized estimations of the functional logit model based on smoothing func-
tional PCA using P-splines.

1.1 Introduction

The aim of the functional logit model is to predict a binary response variable from a
functional predictor and also to interpret the relationship between the response and
the predictor variables. To reduce the infinite dimension of the functional predictor
and solve the multicollinearity problem associated to the estimation of the functional
logit model, Escabias et al. (2004) proposed to use a reduced number of functional
principal components (pc’s) as predictor variables. A functional PLS based solution
was also proposed by Escabias et al. (2006). The problem associated with these
approaches is that in many cases the estimated functional parameter is not smooth
and therefore difficult to interpret. Different penalized likelihood estimations with
B-spline basis were proposed in the general context of functional generalized linear
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models to solve this problem (Marx and Eilers, 1999; Cardot and Sarda, 2005).
In this paper we introduce two different penalized estimation approaches based on
smoothed functional principal component analysis (FPCA). On one hand, FPCA of
P-spline approximation of sample curves is performed. On the other hand, a discrete
P-spline penalty is included in the own formulation of FPCA.

1.2 Background

Let us consider a sample of functional observations x1 (t) ,x2 (t) , . . . ,xn (t) of a fixed
design functional variable and let y1,y2, . . . ,yn be a random sample of a binary re-
sponse variable Y associated to them. That is, yi ∈ {0,1}, i = 1, . . . ,n. The functional
logistic regression model is given by

yi = πi + εi, i = 1, . . . ,n,

where πi is the expectation of Y given xi (t) modeled as

πi = P[Y = 1|{xi (t) : t ∈ T}] = exp{α+
∫

T xi (t)β (t)dt}
1 + exp{α+

∫
T xi (t)β (t)dt} , i = 1, . . . ,n,

α being a real parameter, β (t) a parameter function, {εi : i = 1, . . . ,n} independent
errors with zero mean and T the support of the sample paths xi (t).

The logit transformations can be expressed as

li = ln

[
πi

1−πi

]

= α+
∫

T
xi (t)β (t)dt, i = 1, . . . ,n. (1.1)

A way to estimate the functional logit model is to consider that both, the sample
curves and the parameter function, admit an expansion in terms of basis functions.
Then, the functional logit model turns into a multiple logit model whose design
matrix is the product between the matrix of basis coefficients of sample paths and
the matrix of inner products between basis functions (Escabias et al., 2004). The
estimation of this model is affected by multicollinearity due to the high correlation
between the columns of the design matrix. In order to obtain a more accurate and
smoother estimation of the functional parameter than the one provided by standard
functional principal component logit regression (FPCLR), we present in this pa-
per two penalized estimation approaches based on P-spline smoothing of functional
PCA.
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1.3 Penalized estimation of FPCLR

In general, the functional logit model can be rewritten in terms of functional princi-
pal components as

L = α1+Γ γ, (1.2)

where Γ = (ξi j)n×p is a matrix of functional pc’s of x1 (t) , . . . ,xn (t) and γ is the
vector of coefficients of the model.

By considering that the predictor sample curves admit the basis expansions
xi (t) = ∑p

j=1 ai jφ j (t) , the functional parameter can be also expressed also in terms
of the same basis, β (t) = ∑p

k=1βkφk (t) , and the vector β of basis coefficients is

given by β̂ = F γ̂, where the way of computing F depends on the kind of FPCA
used to obtain the pc’s.

An accurate estimation of the parameter function can be obtained by considering
only a set of optimal principal components as predictor variables. In this paper we
select the optimal number of predictor pc’s by using a leave-one-out cross valida-
tion method that maximizes the area under ROC curve computed by following the
process outlined in Mason and Graham (2002). To obtain this area, observed and
predicted values are required. In this case, we have considered yi the ith observed

value of the binary response and ŷ(−i)
i the ith predicted value obtained by deleting

the ith observation of the design matrix in the iterative estimation process.
Let us consider that the sample curves are centered and belong to the space L2[T ]

with the usual inner product defined by < f ,g >=
∫

T f (t)g( f )dt. In the standard
formulation of functional PCA, the jth principal component scores are given by

ξi j =
∫

T
xi (t) f j (t)dt, i = 1, . . . ,n, (1.3)

where the weight function or factor loading f j is obtained by solving

{
Max f Var [

∫
T xi (t) f (t)dt]

s.t. ‖ f‖2 = 1 and
∫

f� (t) f (t)dt = 0, � = 1, . . . , j−1.

The weight functions f j are the solutions to the eigenequation C f j = λ j f j, with λ j =
Var[ξ j] and C being the sample covariance operator defined by C f =

∫
c(.,t) f (t)dt,

in terms of the sample covariance function c(s,t) = 1
n ∑

n
i=1 xi (s)xi (t) .

In practice, functional PCA has to be estimated from discrete time observations
of each sample curve xi(t) at a set of times {ti0,ti1, . . . ,timi ∈ T, i = 1, . . . ,n}. The
sample information is given by the vectors xi = (xi0, . . . ,ximi)

′, with xik the observed
value for the ith sample path xi (t) at time tik (k = 0, . . . ,mi).

When the sample curves are smooth and observed with error, least squares ap-
proximation in terms of B-spline basis is an appropriate solution for the problem
of reconstructing their true functional form. This way, the vector of basis coef-
ficients of each sample curve that minimizes the least squares error is given by
âi = (Φ ′

iΦi)
−1Φ ′

i xi, with Φi = (φ j (tik))mi×p and ai = (ai1, . . . ,aip)′.
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Functional PCA is then equivalent to the multivariate PCA of AΨ 1
2 matrix,Ψ 1

2

being the squared root of the matrix of the inner products between B-spline basis
functions (Ocaña et al. 2007). Then, matrix F that provides the relation between the
basis coefficients of the functional parameter and the parameters in terms of princi-

pal components is given by F =Ψ− 1
2

p×pGp×n, where G is the matrix whose columns

are the eigenvectors of the sample covariance matrix of AΨ1/2. This non smoothed
FPCA estimation of functional logit models with B-spline basis was performed by
Escabias et al. (2004).

1.3.1 Functional PCA via P-splines

Now, we propose a penalized estimation based on functional PCA of the P-spline
approximation of the sample curves. The basis coefficients in terms of B-splines
are computed by introducing a discrete penalty in the least squares criterion (Eilers
and Marx, 1996), so that we have to minimize (xi−Φiai)′ (xi−Φiai) + λa′iPdai,

where Pd =
(�d
)′�d and �d is the differencing matrix that gives the dth-order

differences of ai. The solution is then given by âi = (Φ ′
iΦi +λPd)

−1Φ ′
i xi, and the

smoothed parameter is chosen by leave-one-out cross validation.
Then, we carry out the multivariate PCA of AΨ

1
2 matrix as explained above. The

difference between smoothed FPCA via P-splines and non smoothed FPCA is only
the way of computing the basis coefficients (rows of matrix A), with or without
penalization, respectively.

1.3.2 P-spline smoothing of functional PCA

Now we propose to obtain the principal components by maximizing a penalized
sample variance that introduces a discrete penalty in the basis coefficients of princi-
pal component weights.

The jth principal component scores are defined as in equation (1.3) but now the
weight functions f j are obtained by solving

⎧
⎨

⎩
Max f

var[
∫

xi (t) f (t)dt]
‖ f‖2 +λPENd ( f )

s.t. ‖ f‖2 = b′Ψb = 1 and b′Ψbl + b′Pdbl = 0, � = 1, . . . , j−1,

where PENd( f ) = b′Pdb is the discrete roughness penalty function, b being the
vector of basis coefficients of the weight functions, f (t) = ∑p

k=1 bkφk, and λ the
smoothing parameter estimated by leave-one-out cross validation.

Finally, this variance maximization problem is converted into an eigenvalue prob-
lem, so that, applying the Choleski factorization LL′ =Ψ +λPd, P-spline smooth-
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ing of functional PCA is reduced to classic PCA of the matrix AΨ(L−1)′. Then,
the estimated vector β of basis coefficients of the functional parameter is given by
β̂ = F γ̂ =

(
L−1
)′

Gγ̂, where G is the matrix of eigenvectors of the sample covariance
matrix of AΨ(L−1)′.

1.4 Simulation study

We are going to illustrate the good performance of the proposed penalty approaches
following the simulation scheme developed in Ferraty and Vieu (2003) and Es-
cabias et al. (2006). We simulated 1000 curves of two different classes of sample
curves. For the first class we simulated 500 curves according to the random function
x(t) = uh1 (t)+(1−u)h2 (t)+ ε (t) , and another 500 curves were simulated for the
second class according to the random function x(t) = uh1 (t)+(1−u)h3 (t)+ε (t) ,
u and ε (t) being uniform and standard normal simulated random values, respec-
tively, and h1 (t) = max{6− |t− 11|,0},h2 (t) = h1 (t−4) ,h3 (t) = h1 (t + 4). The
sample curves were simulated at 101 equally spaced points in the interval [1,21].

As binary response variable, we considered Y = 0 for the curves of the first class
and Y = 1 for the ones of the second class. After simulating the data, we performed
least squares approximation of the curves, with and without penalization, in terms
of the cubic B-spline functions defined on 30 equally spaced knots of the interval
[1,21].

non smoothed FPCA FPCA via P-splines P-spline smoothed FPCA

Number pc’s 3 2 3

ROC area 0.9986 0.9985 0.9988

Table 1.1: Area under the ROC curve for the test sample with the optimum mod-
els selected by cross validation with the three different FPCA approaches (non
smoothed FPCA, FPCA via P-splines (λ = 24.2) and P-spline smoothed FPCA
(λ = 5)).

In order to estimate the binary response Y from the functional predictor X we
have estimated three different FPCLR models by using non smoothed FPCA and
the two P-spline estimation approaches of FPCA proposed in this work. A training
sample of 500 curves (250 of each class) was considered to fit the model and a
test sample with the remaining 500 curves to evaluate the forecasting performance
of the model. The pc’s were included in the model by variability order and the
optimum number of pc’s selected by maximizing the cross validation estimation
of the area under the ROC curve. In Table 1.1 we can see that P-spline smoothed
FPCA estimation provides a slightly higher area and FPCA via P-splines requires
fewer components.
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Escabias et al. (2006) estimated the parameter function using different methods
as functional PLS logistic regression and functional principal component logit re-
gression, obtaining in both cases a non smooth estimation. In Figure 1.1 we can see
that both penalized estimations of FPCA based on P-splines provide a smooth esti-
mation of the functional parameter. This shows that using a smoothing estimation of
FPCA is required in order to obtain a smooth estimation of the functional parameter
that makes the interpretation easier. Although there are not significant differences
between the estimation of the parameter function provided by FPCA via P-splines
and P-spline smoothed FPCA, the second approach spends much more time in cross
validation procedure so that, in practice, the estimation of FPCLR based on FPCA
via P-splines is more efficient.
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Fig. 1.1: Estimated parameter function with the three different considered FPCA
estimations: non smoothed FPCA (black and continue line), FPCA via P-splines
(red and long dashed line, λ = 24.2) and P-spline smoothed FPCA (blue and short
dashed line, λ = 5)

Acknowledgements This research has been funded by project MTM2010-20502 from Ministerio
de Ciencia e Innovación, Spain.

References

1. Eilers, P.H.C., Marx, B.D.: Flexible smoothing with B-splines and penalties. Stat. Sci. 11(2),
89–121 (1996)

2. Cardot, H., Sarda, P.: Estimation in generalized linear models for functional data via penalized
likelihood. J. Multivariate Anal. 92(1), 24–41 (2005)



1 Penalized Spline Approaches for Functional Principal Component Logit Regression 7

3. Escabias, M., Aguilera, A. M., Valderrama. M. J.: Principal component estimation of func-
tional logistic regression: discussion of two different approaches. J. Nonparametr. Stat. 16(3-
4), 365–384 (2004)

4. Escabias, M., Aguilera, A. M., Valderrama. M. J.: Functional PLS logit regression model.
Comput. Stat. Data An. 51, 4891–4902 (2006)

5. Ferraty, F., Vieu, P.: Curves discrimination: a nonparametric functional approach. Comput.
Stat. Data An. 44, 161–173 (2003)

6. Marx, B.D., Eilers, P.H.C.: Generalized linear regression on sampled signals and curves. A
P-spline approach. Technometrics 41, 1–13 (1999)

7. Mason, S.J., Graham, N.E.: Areas beneath the relative operating characteristics (ROC) and
relative operating levels (ROL) curves: Statistical significance and interpretation. Q. J. Roy.
Meteor. Soc. 128, 291–303 (2002)

8. Ocaña, F.A., Aguilera, A.M. and Escabias, M.: Computational considerations in functional
principal component analysis. Computation. Stat. 22(3), 449–465 (2007)



Chapter 2
Functional Prediction for the Residual Demand
in Electricity Spot Markets

Germán Aneiros, Ricardo Cao, Juan M. Vilar-Fernández, Antonio
Muñoz-San-Roque

Abstract The problem of residual demand prediction in electricity spot markets
is considered in this paper. Hourly residual demand curves are predicted using non-
parametric regression with functional explanatory and functional response variables.
Semi-functional partial linear models are also used in this context. Forecasted val-
ues of wind energy as well as hourly price and demand are considered as linear
predictors. Results from the electricity market of mainland Spain are reported. The
new forecasting functional methods are compared with a naive approach.

2.1 Introduction

Nowadays, in many countries all over the world, the production and sale of elec-
tricity is traded under competitive rules in free markets. The agents involved in this
market: system operators, market operators, regulatory agencies, producers, con-
sumers and retailers have a great interest in the study of electricity load and price.
Since electricity cannot be stored, the demand must be satisfied instantaneously
and producers need to anticipate to future demands to avoid overproduction. Good
forecasting of electricity demand is then very important from the system operator
viewpoint. In the past, demand was predicted in centralized markets (see Gross and
Galiana (1987)) but competition has opened a new field of study. On the other hand
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prediction of residual demand of an agent is a valuable tool to establish good bid-
ding strategies for the agent itself. Consequently, prediction of electricity residual
demand is a significant problem in this sector.

Residual demand curves have been considered previously in the literature. In
each hourly auction, the residual demand curve is defined as the difference of the
combined effect of the demand at any possible price and the supply of the gener-
ation companies as a function of price. Consequently 24 hourly residual demand
curves are obtained every day. These curves are useful tools to design optimal of-
fers for companies operating in a day-ahead market (see Baillo et al. (2004) and Xu
and Baldick (2007)). We focus on one day ahead forecasting of electricity residual
demand curves. Therefore, for each day of the week, 24 curve forecasts need to be
computed.

This paper proposes functional and semi-functional nonparametric and partial
linear models to forecast electricity residual demand curves. Forecasted wind energy
as well as forecasted hourly price and demand are incorporated as explanatory vari-
ables in the model. Nonparametric regression estimation under dependence is a use-
ful tool for time series forecasting. Some relevant work in this field include Härdle
and Vieu (1992), Hart (1996) and Härdle, Lütkepohl and Chen (1997). Other papers
more specifically focused on prediction using nonparametric techniques are Carbon
and Delecroix (1993), Matzner-Lober, Gannoun and De Gooijeret (1998) and Vilar-
Fernández and Cao (2007). The literature on methods for time series prediction in
the context of functional data is much more limited. The books by Bosq (2000) and
Ferraty and Vieu (2006) are comprehensive references for linear and nonparamet-
ric functional data analysis, respectively. Faraway (1997) considered a linear model
with functional response in a regression setup. Antoch et al. (2008) also used func-
tional linear regression models to predict electricity consumption. Antoniadis, Pa-
paroditis and Sapatinas (2006) proposed a functional wavelet-kernel approach for
time series prediction and Antoniadis, Paparoditis and Sapatinas (2009) studied a
method for smoothing parameter selection in this context. Aneiros-Pérez and Vieu
(2008) have dealt with the problem of nonparametric time series prediction using
a semi-functional partial linear model and Aneiros-Pérez, Cao and Vilar-Fernández
(2010) used Nadaraya-Watson and local linear methods for functional explanatory
variables and scalar response in time series prediction. Finally, Cardot, Dessertaine
and Josserand (2010) use semi-parametric models for predicting electricity con-
sumption and Vilar-Fernández, Cao and Aneiros (2010) use also semi-functional
models with scalar response to predict next-day electricity demand and price.

The remaining of this paper is organized as follows. In Section 2, a mathematical
description of the functional nonparametric model is given. The semi-functional
partial linear model is presented in Section 3. Section 4 contains some information
about the data and the empirical study concerning one-day ahead forecasting of
electricity residual demand curves in Spain. The references are included at the final
section of the paper.
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2.2 Functional nonparametric model

The time series under study (residual demand curve) will be considered as a realiza-
tion of a discrete time functional valued stochastic process, {χt (p)}t∈Z

, observed

for p ∈ [a,b). For a given hour, r, (r ∈ {1, . . . ,24}) of day t, the values of χ (r)
t (p)

indicate the energy that can be sold (positive values) or bought (negative values) at
price p and the interval [a,b) is the range for prices. We first concentrate on predict-

ing the curve χ (r)
n+1 (p), after having observed a sample of values

{
χ (r)

i (p)
}

i=1,2,...,n
.

For simplicity the superindex r will be dropped off.
In the following we will assume that the sequence of functional valued random

variables {χt (p)}t∈Z
is Markovian. We may look at the problem of predicting the

future curve χn+1 (p) by computing nonparametric estimations, m̂(χ), of the au-
toregression function in the functional nonparametric (FNP) model

χi+1 (•) = m(χi)+ εi+1 (•) , i = 1, . . . ,n, (2.1)

which states that the values of the residual demand at day i + 1 is an unknown
nonparametric function of the residual demand at the previous day plus some error
term. These errors εi (•) are iid zero mean functional valued random variables. Thus,
m̂(χn) gives a functional forecast for χn+1 (•).

In our context this approach consists on estimating the autoregression functional,
m, using hourly residual demand curves and apply this estimated functional to the
last observed day.

Whereas the Euclidean norm is a standard distance measure in finite dimensional
spaces, the notion of semi-norm or semi-metric arises in this infinite-dimensional
functional setup. Let us denote by H = { f : C→R} the space where the functional
data live and by d(•,•) a semi-metric associated with H . Thus (H ,d) is a semi-
metric space (see Ferraty and Vieu (2006) for details).

A Nadaraya-Watson type estimator (see Nadaraya (1964) and Watson (1964)) for
m in (2.1) is defined as follows

m̂FNP
h (χ) =

n−1

∑
i=1

wh(χ ,χi)χi+1(•), (2.2)

where the bandwidth h > 0 is a smoothing parameter,

wh(χ ,χi) =
K (d(χ ,χi)/h)

∑n
j=1 K (d(χ ,χ j)/h)

, (2.3)

and the kernel function K : [0,∞)→ [0,∞) is typically a probability density function
chosen by the user.

The choice of the kernel function is of secondary importance. However, both the
bandwidth and the semi-metric are relevant aspects for the good asymptotic and
practical behavior of (2.2).
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A key role of the semi-metric is that related to the so called “curse of dimension-
ality”. From a practical point of view the “curse of dimensionality” can be explained
as the sparsness of data in the observation region as the dimension of the data space
grows. This problem is specially dramatic in the infinite-dimensional context of
functional data. More specifically, Ferraty and Vieu (2006) have proven that it is
possible to construct a semi-metric in such a way that the rate of convergence of
the nonparametric estimator in the functional setting is similar to that of the finite-
dimensional one. It is important to remark that we use a semi-metric rather than a
metric. Indeed, the “curse of dimensionality” would appear if a metric were used
instead of a semi-metric.

In functional data it is usual to consider semi-metrics based on semi-norms. Thus,
Ferraty and Vieu (2006) recommend, for smooth functional data, to take as semi-
norm the L2 norm of some q-th derivative of the function. For the case of rough data
curves, these authors suggest to construct a semi-norm based on the first q functional
principal components of the data curves.

2.3 Semi-functional partial linear model

Very often there exist exogenous scalar variables that may be useful to improve
the forecast. For the residual demand prediction this may be the case of the hourly
wind energy in the market and the hourly price and demand. Although these values
cannot be observed in advance, one-day ahead forecasts can be used to anticipate
the values of these three explanatory variables. Previous experience also suggests
that an additive linear effect of these variables on the values to forecast might occur.
In such setups, it seems natural to generalize model (2.1) by incorporating a linear
component. This gives the semi-functional partial linear (SFPL) model:

χi+1 (•) = xT
i+1β (•)+ m(χi)+ εi+1 (•) , i = 1, . . . ,n, (2.4)

where xi = (xi1, . . . ,xip)T ∈ R
p is a vector of exogenous scalar covariates and

β (•) = (β1 (•) , . . . ,βp (•))T is a vector of unknown functions to be estimated.
Now, based on the SFLP model, we may look at the problem of predicting

χn+1 (•) by computing estimations β̂ and m̂ (χ) of β and m(χ) in (2.4), respec-
tively. Thus, xT

n+1β̂ (•)+m̂(χn) gives the forecast for χn+1 (•).
An estimator for β (•) based on kernel and ordinary least squares ideas was pro-

posed in Aneiros-Pérez and Vieu (2006) in the setting of independent data. More
specifically, recall the weights wh(χ ,χi) defined in the previous subsection and
denote X̃h = (I−Wh)X and χ̃h = (I−Wh)χ , with Wh = (wh(χi,χ j))1≤i, j≤n−1,
X = (xi j)1≤i≤n−1,1≤ j≤p and χ (•) = (χ2 (•) , . . . ,χn (•))T , the estimator for β is de-
fined by

β̂h (•) = (X̃T
h X̃h)−1X̃T

h χ̃h (•) . (2.5)
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It should be noted that β̂h is the ordinary least squares estimator obtained when
one linearly links the vector of response variables χ̃h with the matrix of covariates
X̃h. It is worth mentioning that kernel estimation is used to obtain both χ̃h and X̃h.
Actually, both terms are computed as some nonparametric residuals.

Finally, nonparametric estimation is used to construct the estimator for m(χ) in
(2.4)

m̂SFPL
h (χ) =

n−1

∑
i=1

wh(χ ,χi)
(
χi+1 (•)−xT

i+1β̂h (•)
)

. (2.6)

Other estimators for m in (2.1) (and therefore for β and m(χ) in (2.4)) could
be obtained by means of wavelet-kernel approaches (see Antoniadis et al 2006)
or local linear functional procedures (see Aneiros-Pérez, Cao and Vilar-Fernández
2010), among others.

2.4 Data description and empirical study

The data consists of the 24 hourly residual demand curves for all the days in years
2008 and 2009. One-day ahead forecasts for the hourly wind energy production and
the hourly demand or price are also avaliable. Our aim is to predict the 24 hourly
residual demand curves for all the days in eight different weeks along 2009. The
learning sample considered for the whole forecasting process consists of 58 days
(not necessarily consecutive). The whole sample is used to select the smoothing pa-
rameter and the semi-norm, while only the last 34 observations are used to build the
predictor itself. The semi-norm used is the L2 norm of the q-th derivative (q = 0,1,2)
and q has been selected by minimizing some cross-validation criterion. This is also
the criterion used to select the smoothing parameter h with a k-nearest neighbour
approach.

Since working days and weekends have very different electricity demand pat-
terns, four different scenarios are considered for prediction: (a) Sunday, (b) Monday,
(c) Tuesday-Friday and (d) Saturday. The eight test samples were the eight weeks in
February 8-21, May 3-16, August 2-15 and November 8-21, all in 2009. In scenar-
ios (a), (b) and (d) the training sample consists of the hourly residual demand curve
at the hour and day of the week to be predicted pertaining to the previous 58 weeks
to the actual day. The training sample in scenario (c) uses the hourly demand curve
for the 58 preceeding days in the range Tuesday-Friday within the current and the
previous 15 weeks.

Several forecasting methods have been considered: (i) the naı̈ve method (which
just uses the hourly demand curve of previous day in the training sample), (ii) the
functional nonparametric approach presented in Section 2, (iii) the semi-functional
partial linear model, presented in Section 3, using the predicted demand as explana-
tory variable for the linear component, (iv) the semi-functional partial linear model
using the predicted price as explanatory variable for the linear component, (v) the
semi-functional partial linear model using the predicted wind energy as explanatory
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variable for the linear component, (vi) the semi-functional partial linear model using
jointly the predicted demand, the predicted price and the predicted wind energy as
explanatory linear variables.

Since the design of an optimal strategy for a production company is an inverse
problem in terms of the residual demand curve, an alternative approach has been
considered by just inverting all these curves. Inverse residual demand curvesϒi(s) =
χ−1

i (s) are considered and the previous methods have been applied to these new
data.

Preliminary numerical results show the good behaviour of the functional nonpa-
metric method and semi-functional partial linear model for residual demand fore-
casting. Final empirical results will be presented at IWFOS2011.
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Chapter 3
Variable Selection in Semi-Functional
Regression Models

Germán Aneiros, Frédéric Ferraty, Philippe Vieu

Abstract We deal with a regression model where a functional covariate enters in
a nonparametric way, a divergent number of scalar covariates enter in a linear way
and the corresponding vector of regression coefficients is sparse. A penalized-least-
squares based procedure to simultaneously select variables and estimate regression
coefficients is proposed, and some asymptotic results are obtained: rates of conven-
gence and oracle property.

3.1 Introduction

Modeling the relationship between a response and a set of predictors is of main
interest in order to predict values of the response given the predictors. The larger
the number of predictors is, better fitted the model will be. But, if some predictors
included in the model really do not influence the response, the model will not be
good for predicting. Thus, in practice, it is needed some kind of methodology for
selecting the significant covariates.

In a setting of linear regression with sparse regression coefficients, Tibshirani
(1996) proposed the LASSO method, a version of Ordinary Least Squares (OLS)
that constrains the sum of the absolute regression coefficients, and Efron et al.
(2004) gave the LARS algorithm for model selection (a refinement of the LASSO
method). Fan and Li (2001) proposed and studied the use of nonconcave penalized
likelihood for variable selection and estimation of coefficients simultaneously. Fan
and Peng (2004) generalized the paper of Fan and Li (2001) to the case where a
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diverging number pn < n of parameters is considered, and they noted that the prize
to pay is a slower rate of convergence ((n/pn)−1/2 instead of n−1/2). Huang et al.
(2008a) and Huang et al. (2008b) focused on particular classes of penalty func-
tions (giving marginal bridge and adaptive LASSO estimators, respectively). Under
a partial orthogonality condition on the covariance matrix, they obtained that their
procedure can consistently identify the covariates with zero coefficients even when
pn > n.

Other authors dealt this topic in the setting where the regression function is the
sum of a linear and a nonparametric component (that is, in Partial Linear Regression
(PLR) models). Liang and Li (2009) considered a PLR model with fixed number p
of covariates in the linear part, and measurement errors. In order to extend the proce-
dure of Fan and Li (2001) to the new semi-parametric setting, they used local linear
regression ideas. Ni et al. (2009) allowed a diverging number pn < n of parameters
and studied a double-penalized least squares. These authors used spline smoothing
to estimate the nonparametric part of the model, and penalized both the roughness
of the nonparametric fit and the lack of parsimony. Xie and Huang (2009) used a pe-
nalized least squares function based on polynomial splines, and also considered the
case of a diverging number pn < n of parameters. Their main contribution consists
in building an estimator as a global minimum of a penalized least squares function
(in general, the estimators proposed in the statistical literature are obtained as local
minimum). The rate of convergence obtained by all these authors was the same as
that obtained in pure linear models (i.e. (n/pn)−1/2).

In this paper we focus on a PLR model where the covariate that enters in a non-
linear way is of functional nature, such as a curve, an image, . . . (see Aneiros-Pérez
and Vieu (2006) for a first paper). In addition, the number of (scalar) covariates in
the linear part is divergent, and the corresponding vector of regression coefficients
is sparse. The topic we deal is that of variable selection and estimation of coeffi-
cients simultaneously. We extend to this new functional setting the methodology
proposed when all the covariates are scalar, and we obtain rates of convengence and
oracle property. Finally, in order to illustrate the practical interest of our procedure,
a modest simulation study is reported. As far as we know, this is the first paper
attacking (from a theoretical point of view) the problem of variable selection in a
semi-functional PLR model.

3.2 The methodology

We are concerned with the semi-functional PLR model

Yi = X′
iβ 0 + m(Ti)+ εi,∀i = 1, . . . ,n, (3.1)

where β 0 = (β01, ...,β0pn)
′ is a vector of unknown sparse real parameters, m is an

unknown smooth real function and εi are i.i.d. random errors satisfying
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E(εi | Xi,Ti) = 0. (3.2)

The covariates Xi = (Xi1, ...,Xipn)
′ and Ti take values in R

pn and some abstract semi-
metric space H , respectively.

The regression function in (3.1) has a parametric and a nonparametric compo-
nent. Thus, we need to simultaneously use parametric and nonparametric techniques
in order to construct good estimators. On the one hand, the nonparametric approach
that we consider is that of kernel estimation. More specifically, a Nadaraya-Watson
type estimator is constructed by using the weight function

wn,h(t,Ti) =
K (d (t,Ti)/h)

∑n
j=1 K (d (t,Tj)/h)

, (3.3)

where d (·, ·) is the semi-metric associated to H , h > 0 is a smoothing parameter
and K : R

+ → R
+ is a kernel function. On the other hand, the parametric procedure

that we use is that of penalized least squares.
The steps to construct our estimator are, first, using kernel regression to trans-

form the semi-parametric model (3.1) into a parametric model; then, apply to the
transformed model the penalized-least-squared procedure in order to estimate β 0.
To show this procedure clearer, let us denote X = (X1, ...,Xn)′, Y = (Y1, ...,Yn)′ and,
for any (n×q)-matrix A (q≥ 1), Ãh=(I−Wh)A, where Wh=

(
wn,h (Ti,Tj)

)
i, j. Be-

cause
Yi−E(Yi | Ti) = (Xi−E(Xi | Ti))

′β 0 + εi,∀i = 1, . . . ,n

(see (3.1) and (3.2)), we consider the approximate model

Ỹh ≈ X̃′
hβ 0 + ε,

where ε = (ε1, . . . ,εn)
′ (note that Ỹh and X̃h are formed by partial nonparametric

residuals adjusting for T ). Thus, in order to estimate β 0, we minimize the penalized
least squares function

Q(β ) =
1
2

(
Ỹh− X̃hβ

)′(
Ỹh− X̃hβ

)
+ n

pn

∑
j=1

Pλ jn
(
∣
∣β j
∣
∣), (3.4)

where Pλ jn
(·) is a penalty function with a tuning parameter λ jn. Once one has the

Penalized Least Squares (PLS) estimator β̂ 0, a natural estimator for m(t) is

m̂(t) =
n

∑
i=1

wn,h(t,Ti)(Yi−X′
iβ̂ 0). (3.5)
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3.3 Asymptotic results

Under suitable conditions, we obtain a rate of convergence of n−1/2 logn for β̂ 0,
and we prove an oracle property; that is, with probability tending to 1, the estima-
tor β̂ 0 correctly identifies the null and non-null coefficients, and the corresponding
estimator of the non-null coefficients is asymptotically normal with the same mean
and covariance that it would have if the zero coefficients were known in advance.
Thus, our approach gives sparse solutions and can be used as a methodology for
variable selection and estimation of coefficients simultaneously in semi-functional
PLR models: if the estimate of the parameter β0 j ( j = 1, . . . , pn) is not equal to zero,
then the corresponding covariate Xj is selected in the final model. In addition, for
the nonparametric estimator m̂(t), we obtain a uniform rate of convergence (on the
compact set C ) of hα +

√
ψC (n−1)/(nφ (h)) (α denotes a constant coming from a

Hölder condition, φ (·) is the small ball probability function or concentration func-
tion and ψC (ε) denotes the ε-entropy of the set C ).

In summary, our main contributions are: (i) we extend the usual models to a
functional setting, (ii) we improve the usual rate of convergence (n−1/2 logn instead

of n−1/2 p1/2
n ) and (iii) we use weaker conditions on pn than those in the statistical

literature (p2
nn− logn = o(1) instead of p2

nn−k = o(1)).

3.4 A simulation study

A modest simulation study was designed in order to illustrate the practical behaviour
of the proposed procedure.

The semi-functional PLR model

Yi = Xi1β01 + Xi2β02 + · · ·+ Xipnβ0pn + m(Ti)+ εi,∀i = 1, . . . ,n, (3.6)

was considered. The i.i.d. covariate vectors Xi = (Xi1, ...,Xipn)
T were normally dis-

tributed with mean zero and covariance matrix
(
ρ | j−k|)

jk, and the functional co-

variates were Ti(z) = ai(z− 0.5)2 + bi (z ∈ [0,1]). Values ρ = 0 and ρ = 0.5 were
considered, while ai and bi were i.i.d. according to a U(0,1) and a U(−0.5,0.5), re-
spectively (these curves were discretized on the same grid of 100 equispaced points
in [0,1]). The independent random errors εi were generated from a N(0,σε ) distri-
bution, where σε = 0.1(maxT m(T )−minT m(T )). Finally, the unknown vector of
parameters was

(β01, . . . ,β0pn)
′ = (3,1.5,0,0,2,0, . . . ,0),

while the unknown function m(·) was

m(Ti) = exp(−8 f (Ti))− exp(−12 f (Ti)),

where
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f (Ti) = sign(T ′
i (1)−T ′i (0))

√

3
∫ 1

0
(T ′

i (z))2dz.

M = 50 samples of sizes n = 50, 100 and 200 were drawn from model (3.6) and,
for each of these values n, the size pn of the vector of parameters was p50 = 5,
p100 = 7 and p200 = 10, respectively. For each of the M replicates, we compute
both the PLS and the OLS estimates, as well as the Oracle (OR) estimate (that is,
the OLS estimate based on the true submodel). The smoothness of the curves Ti

lead us to consider semi-metrics based on the L2 norm of the q-th derivative of the
curves. In addition, we considered λ j = λ sd(β̂0, j,OLS) and bandwidths hk allowing
to take into account k terms in (3.5). Values for the tuning parameters θ = (q,λ ,k)
were selected by means of the fivefold cross-validation method . The Epanechnikov
kernel was used, while the penalty function was the SCAD penalty (a = 3.7).

Fig. 3.1 displays the M quadratic errors obtained for each combination consid-
ered (the quadratic error of β̂ for estimating β is defined as (β̂ − β)′(β̂ −β )). In
addition, Table 3.1 reports the averages (on the M replicates) of both the number
and the percentage (among the true null coefficients) of coefficients correctly set to
zero (no coefficient was incorrectly set to zero).
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Fig. 3.1: Quadratic errors when ρ = 0 (left panel) and ρ = 0.5 (right panel).

Remark Naturally, the results of any simulation study are valid only for the
models considered, and in that sense should be interpreted. As expected, Fig. 3.1
suggests that the OR estimate performs the best, and the PLS is better than the OLS.
Table 3.1 shows how, as the sample size increases, our procedure for selecting vari-
ables correctly detects a greater percentage of nonsignificant variables. In addition,
it indicates that our procedure is not affected by the dependence structure in the
vector of covariates.
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Zero coefficients
n pn True Correct Incorrect

ρ = 0 ρ = 0.5
50 5 2 0.90 [45%] 0.96 [48%] 0

100 7 4 2.84 [71%] 2.72 [68%] 0
200 10 7 5.42 [77%] 5.44 [78%] 0

Table 3.1: Averages of both the number and the percentage of coefficients cor-
rectly and incorrectly set to zero.
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Chapter 4
Power Analysis for Functional Change Point
Detection

John A. D. Aston, Claudia Kirch

Abstract Change point detection in sequences of functional data is examined where
the functional observations are dependent. The theoretical properties for tests for at
most one change are derived with a special focus on power analysis. It is shown that
the usual desirable properties of PCA to represent large amounts of the variation in
a few components can actually be detrimental in the case of change point detection.

4.1 Introduction

This abstract is concerned with the power of detection of change-points, specifi-
cally at-most-one-change (AMOC) points in functional data. This work generalises
remarks in Berkes et al (2009) with our results also extended to the case of weakly
dependent functional data as defined in Hormann and Kokoszka (2010). The results
show that a counter-intuitive effect occurs in the power analysis. Methods such as
functional PCA rely on sparse representations of the data. However, in change point
detection, if the data is generated from a process where the underlying system (with-
out any change point) cannot be sparsely represented, then it can be easier to detect
any change points present with a relatively small number of components. In con-
trast, data where the underlying system is very sparse may need large changes to be
present before detection is possible.

The results in this abstract are for the AMOC model which is given by

Xi(t) = Yi(t)+ μ1(t)1{i≤θn}+ μ2(t)1{θn<i≤n}, (4.1)
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where the mean functions before and after the change μμμ j = μ j(·) as well as the
functional time series {Yi(·) : 1 ≤ i ≤ n} are elements of L2(Z ), that are (a.s.)
continuous, 0 < θ ≤ 1 describes the position of the change, EYi(t) = 0. μμμ1, μμμ2 as
well as θ are unknown.

4.2 Testing for a change

We are interested in testing the null hypothesis of no change in the mean

H0 : EXi(·) = μ1(·), i = 1, . . . ,n,

versus the AMOC alternative

H(A)
1 : EXi(·) = μ1(·), i = 1, . . . ,�θn�,

EXi(·) = μ2(·) = μ1(·), i = �nθ�+ 1, . . . ,n, 0 < θ < n

Note that the null hypothesis corresponds to the case where θ = 1.
The idea is to use a projection into a lower dimensional space and use standard

change-point statistics for the projected data. Berkes et al. propose, for instance, to
use the space spanned by the first d principal components, where frequently this
subspace is not known but needs to be estimated from the data.

Denote by η̂i,l the estimated scores, i.e. the projection coefficients of a d-
dimensional estimated orthonormal system v̂l , l = 1, . . . ,d. To elaborate

η̂i,l = 〈Xi, v̂l〉=
∫

Xi(t)v̂l(t)dt, i = 1, . . . ,n, l = 1, . . . ,d.

Since {v̂l} forms an orthonormal system η̂i,1, . . . , η̂i,d are uncorrelated for any fixed
i. Furthermore η̂ηη i = (η̂i,1, . . . , η̂i,d)T is a d-dimensional time series exhibiting the
same type of change as the functional sequence {Xi(·) : 1 ≤ i ≤ n} if the change is
not orthogonal to the subspace spanned by v̂1(·), . . . , v̂d(·). To see this, let

η̌i,l = 〈Yi, v̂l〉=
∫

Yi(t)v̂l(t)dt. (4.2)

Then it holds

η̂i,l = η̌i,l + 1{i≤θn}
∫
μ1(t)v̂l(t)dt + 1{i>θn}

∫
μ2(t)v̂l(t)dt (4.3)

in case of AMOC change.
Furthermore let Σ̂ be a consistent estimator for Σ , the long run covariance matrix

of the d-dimensional time series, and Bl(·), l = 1, . . . ,d, be independent standard
Brownian bridges. It can be proved that the following statistic is suitable to detect
AMOC-change alternatives. Under H0 it holds:
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T (A1)
n := 1

n2 ϒ̂ ′Σ−1ϒ̂ −→ ∑1≤l≤d
∫ 1

0 B2
l (x)dx

where the lth element ofϒ is estimated as ϒ̂l = ∑n
k=1

(
∑1≤i≤k η̂i,l − k

n ∑
n
i=1 η̂i,l

)
.

4.3 Asymptotic Power Analysis

From above, it is easy to prove that the tests have asymptotic power one and the
estimators are consistent if the change Δ(t) = μ1(t)− μ2(t) is not orthogonal to
the contaminated projection subspace defined from taking the empirical covariance
function and using it to define an orthonormal eigen-system. The contaminated co-
variance function depends directly on both the change point and the change itself as
well as on the underlying true covariance function c(s,t). The following theorem al-
lows a characterisation of detectable changes in terms of the non-contaminated pro-
jection subspace and even more importantly shows that the change has a tendency
to influence the contaminated projection subspace in such a way that it becomes
detectable.

Theorem

1. (a) Let Δ(t) = μ1(t)− μ2(t), then

∫
Δ(t)vl(t)dt = 0 for some l = 1, . . . ,d

⇒ ∫ Δ(t)wl(t)dt = 0 for some l = 1, . . . ,d,

where vl(t), l = 1, . . . ,d, are eigenfunctions of the uncontaminated covariance
and wk(t) are those of the contaminated covariance. This shows, that any change
that is not orthogonal to the non-contaminated subspace is detectable.

2. (b) Let ΔD(t) = DΔ(t),
∫
Δ2(t)dt = 0. Then, there exists D0 > 0 such that
∫

ΔD(t)w1,D(t)dt = 0

for all |D| ≥ D0, where w1,D is the eigenfunction belonging to the largest eigen-
value of the contaminated covariance kernel. This shows, that any large enough
change is detectable.

The theorem part a) shows that we will be able to detect at least all changes that
are not orthogonal to the non-contaminated subspace spanned by the first d princi-
ple components. Part b) shows that frequently changes can be detected even if they
are orthogonal to the non-contaminated covariance. The reason is that large mean
changes lead to a larger variability of the empirical covariance function and thus the
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contaminated covariance function k(t,s) = c(t,s)+ θ (1− θ )Δ(t)Δ(s) in the com-
ponents that are not orthogonal to the change, while not changing the variability in
the components that are orthogonal. In the following example such a change in the
subspace takes place: Let {b j : j ≥ 1} be an orthonormal basis of the continuous
functions on Z . Furthermore X ,Y are i.i.d. N(0,1), and Y (t) = 2Xb1(t)+Y b2(t).
Obviously c(t,s) has the eigenvalues 4 with eigenfunction b1 as well as the eigen-
value 1 with eigenfunction b2 in addition to the eigenvalue 0. Let θ = 1/2 and
consider Δ(t) = 4b2(t) which for d = 1 is obviously orthogonal to b1, but it is easy
to see that the eigenvalues of k(t,s), are now 5 corresponding to b2 and 4 corre-
sponding to b1 in addition to the eigenvalue 0. This shows that the mean change is
no longer orthogonal to the space spanned by the eigenfunction corresponding to
the largest eigenvalue, which is the one spanned by b2.

An immediate corollary to the Theorem also gives rise to a surprising fact for
multivariate data. PCA is well known to work poorly as a representation of the data
when the covariance matrix of the multivariate observations is close to a multiple of
the identity matrix. In fact, the scree plot will be linear in nature in the case when the
covariance is an exact multiple of the identity. This implies that there is no effective
sparse representation of the data. However, by the theorem above, this situation for
the uncontaminated covariance is optimal for detecting a change point. Only choos-
ing a single principal component from the contaminated covariance will guarantee
the power of detection is asymptotically one (as by the theorem, the change will
cause the first component to be non-orthogonal to the change with largest eigen-
value). Thus PCA based change point detection (for either epidemic or AMOC)
works best when PCA itself works worst for the uncontaminated system regardless
of the direction of the change.

This fact also translates over to functional data, but by the nature that the eigen-
values are square summable, the degenerate case will not occur. However, situations
where the eigenvalues decay very rapidly in the uncontaminated case will require
bigger changes in the mean to occurring in directions orthogonal to eigenfunctions
associated with the large eigenvalues and naturally situations with more slowly de-
creasing eigenvalues will require smaller changes, to achieve asymptotic power one
of detection with a small number of chosen basis functions.

References

1. Berkes, I., Gabrys, R., Horvath, L., Kokoszka, P.: Detecting changes in the mean of functional
observations. J. R. Stat. Soc. Ser. B 71, 927–946 (2009)
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Chapter 5
Robust Nonparametric Estimation for
Functional Spatial Regression

Mohammed K. Attouch, Abdelkader Gheriballah, Ali Laksaci

Abstract This contribution deals with robust nonparametric regression analysis
when the regressors are functional random fields. More precisely, we propose a fam-
ily of robust nonparametric estimators for nonparametric functional spatial regres-
sion based on the kernel method. The main results of this work are the establishment
of the almost complete convergence rate of these estimators.

5.1 Introduction

The statistical problems involved in the modelization of spatial data have received
an increasing interest in the literature. The infatuation for this topic is linked with
many fields of applications in which the data are collected in the spatial order. The
nonparametric treatment of such data is relatively recent. The first results have been
obtained by Tran (1990). For relevant works on the nonparametric modelization
of spatial data, see Biau and Cadre (2004), Carbon et al. (2007), Li et al. (2009)
or Gheriballah et al. (2010). In this work, we are interested in the nonparametric
spatial regression, when the covariates are of functional nature, by using a robust
approach.
Currently, the progress of informatics tools and the modern technology permits the
recovery of increasingly bulky data which are recorded densely over time. They are
typically treated as curve or functional data. This presents the advantage to give
a framework which fits better to the functional nature of the observations. For an
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overview on functional data analysis, we refer the reader to the monographs of Ram-
say and Silverman (2005), Bosq (2000) for parametric models and Ferraty and Vieu
(2006) for the nonparametric area . In this nonparametric context, the robust estima-
tion of the regression function is an interesting problem in statistical inference. It is
used as an alternative approach to classical methods, in particular when the data are
affected by the presence of outliers. There is an extensive literature on robust estima-
tion (see, for instance Huber (1964), Robinson (1984), Collomb and Härdle (1986),
Fan et al. (1994) for previous results and Boente et al. (2009) for recent advances
and references). The first results concerning the nonparametric robust estimation in
functional statistic were obtained by Azzedine et al. (2008). They studied the almost
complete convergence of robust estimators based on a kernel method, considering
independent observations. Crambes et al. (2008) stated the convergence in Lq norm
in both cases (i.i.d and strong mixing). While the asymptotic normality of these
estimators is proved by Attouch et al. (2010).
The main aim of this contribution is to extend the results of Collomb and Härdle
(1986) and Gheriballah et al. (2010) in the real case to the functional spatial pro-
cesses. In our knowledge, this work is the first contribution on nonparametric robust
regression for functional spatial variables. Specifically, we investigate almost com-
plete convergence of the kernel estimator of the robust regression function. The in-
terest comes mainly from the fact that an important field of application of functional
statistical methods relates to the analysis of continuously indexed spatial processes.

5.2 The model

Consider Zi = (Xi,Yi), i ∈ N
N be a F × IR-valued measurable strictly station-

ary spatial process, defined on a probability space (Ω , A , IP), where F is a
semi-metric space, d denoting the semi-metric. We assume that the process un-
der study (Zi) is observed over a rectangular domain In =

{
i = (i1, ..., iN) ∈ N

N ,
1≤ ik ≤ nk, k = 1, ...,N}, n = (n1, ...,nN) ∈ N

N . A point i will be referred to as a
site. We will write n → ∞ if min{nk} → ∞ and | n j

nk
| < C for a constant C such that

0 < C < ∞ for all j, k such that 1 ≤ j,k ≤ N. For n = (n1, ...,nN) ∈ N
N , we set

n̂ = n1× ·· ·× nN. The nonparametric model studied in this paper, denoted by θx,
is implicitly defined, for all x ∈ F , as a zero with respect to (w.r.t.) t ∈ IR of the
equation

Ψ(x,t) := IE [ψ(Yi,t) | Xi = x] = 0.

where ψ is a real-valued Borel function satisfying some regularity conditions to be
stated below. In what follows, we suppose that, for all x∈F , θx exists and is unique
(see, for instance, Boente and Fraiman (1989)).

For all (x,t) ∈F × IR, we propose a nonparametric estimator ofΨ (x,t) given by

Ψ̂ (x,t) :=
∑i∈In K(h−1d(x,Xi))ψ(Yi,t)

∑i∈In K(h−1d(x,Xi))
,
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where K is a kernel and h = hn is a sequence of positive real numbers. A natural
estimator θ̂x of θx is a zero w.r.t. t of the equation

Ψ̂(x,t) = 0.

In this work, we will assume that the random field (Zi, i∈N
N) satisfies the following

mixing condition:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

There exists a function ϕ (t) ↓ 0 as t → ∞, such that
∀E, E

′
subsets of N

N with finite cardinals

α
(
B (E) , B

(
E
′))

= sup
B∈B(E),C∈B(E ′)

|IP(B∩C)− IP(B) IP(C)|

≤ s
(

Card(E) ,Card
(

E
′))ϕ

(
dist
(

E,E
′))

,

(5.1)

where B (E)(resp. B
(

E
′)

) denotes the Borel σ -field generated by (Zi, i ∈ E)

(resp.
(

Zi, i ∈ E
′)

), Card(E) (resp. Card
(

E
′)

) the cardinality of E (resp. E
′
),

dist
(

E,E
′)

the Euclidean distance between E and E
′

and s : N
2 → IR+ is a sym-

metric positive function nondecreasing in each variable such that

s(n,m)≤C min(n,m) , ∀n,m ∈ N. (5.2)

We also assume that the process satisfies the following mixing condition:

∞

∑
i=1

iδϕ(i) < ∞, δ > 4N. (5.3)

The conditions (5.2) and (5.3) measure the spatial dependence of the process. These
conditions are used in Tran (1990). They are satisfied by many spatial models (see
Guyon (1987) for some examples).

5.3 Main results

From now on, x stand for a fixed point in F , we assume that the Zi’s have the same
distribution with (X ,Y ) and all along the paper, when no confusion is possible,
we denote by C and/or C′ any generic positive constant. For r > 0, let B(x,r) :=
{x′ ∈F/ d(x′,x) < r}. Moreover, for all i ∈ In, we put Ki(x) = K(h−1d(x,Xi))
and we set

Ψ̂(x,t) =
Ψ̂N(x,t)

Ψ̂D(x)

with
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Ψ̂D(x) =
1

n̂IE[K1(x)]
∑

i∈In

Ki(x) and Ψ̂N(x,t) =
1

n̂IE[K1(x)]
∑

i∈In

Ki(x)ψ(Yi,t).

where 1 is the site of components fixed to 1.
In order to derive the almost complete convergence (a. co.) of the kernel estimate θ̂x

of θx, some conditions are necessary. Recall that a sequence Zn is said to converge
a. co. to Z if and only if, for any ε > 0, ∑n IP(|Zn−Z|> ε) < ∞.

(H1) ∀r > 0, IP(X ∈ B(x,r)) =: φx(r) > 0. Moreover, φx(r)−→ 0 as r −→ 0.
(H2) ∀i = j,

0 < sup
i=j

IP
[
(Xi,Xj) ∈ B(x,h)×B(x,h)

]≤C(φx(h))(a+1)/a, for some 1 < a < δN−1.

(H3) ψ is bounded function, strictly monotone and continuously differentiable

function, w.r.t. the second component, and its derivative
∂ψ(y,t)
∂ t

is bounded and

continuous at θx uniformly in y.
(H4) The functionΨ (·, ·) satisfies Hölder’s condition w.r.t. the first one, that is:

there exist strictly positives constants b1 and δ0 such that:

∀x1,x2 ∈Nx, ∀t ∈ [θx− δ0,θx + δ0], |Ψ(x1,t)−Ψ(x2,t) |≤Cdb1(x1,x2)

where Nx is a fixed neighborhood of x.
(H5) The function Γ (·, ·) := IE

[
ψ ′x(Y, ·)|X = ·] satisfies Hölder’s condition w.r.t.

the first one, that is: there exists a strictly positive constant b2 such that:

∀ x1,x2 ∈ Nx, ∀t ∈ [θx− δ0,θx + δ0], |Γ (x1,t)−Γ (x2,t)| ≤C′db2(x1,x2).

(H6) K is a function with support [0,1] such that C1I(0,1)(·)≤ K(·)≤C′1I(0,1)(·).
(H7) There exists η0 > 0, such that, Cn̂

4N−δ
δ +η0 ≤ φx(h).

Remarks on the assumptions. Our conditions are very standard in this context. In-
deed, the conditions (H1) is the same as those used by Ferraty et al. (2006). Noting
that, the function φx(.) defined in this assumption can be explicited for several con-
tinuous processes (see Ferraty et al. (2006). The local dependence (H2) allows to
get the same convergence rate as in the i.i.d. case (see Azzedine et al. (2008). These
hypotheses could be weakened, but the convergence rate would be perturbed by the
presence of covariance terms. Condition (H3) controls the robustness properties of
our model. We point out that the boundedness hypotheses overψ can be dropped by
using the truncation method as in Laı̈b and Ould-Saı̈d (2000). But it is well known
that the boundedness of the score function is an fundamental constraint of the ro-
bustness properties of the M-estimators. Conditions (H4) and (H5) are regularity
conditions which characterize the functional space of our model and are needed to
evaluate the bias term in the asymptotic properties. Assumptions (H6) and (H7) are
standard technical conditions in nonparametric estimation. They are imposed for the
sake of simplicity and brevity of the proofs.
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The following result ensures almost complete consistency of the kernel robust re-
gression function when the observations (Xi,Yi) satisfy (5.1), (5.2) and (5.3), in the
previous Section.

Theorem 5.1. Assume that (H1)-(H7) are satisfied and ifΓ (x,θx) = 0, then θ̂x exists
and is unique a.s. for all sufficiently large n̂, and we have

θ̂x−θx = O
(

hb1

)
+ O

(√
log n̂

n̂φx(h)

)

a.co. as n→ ∞
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Chapter 6
Sequential Stability Procedures for Functional
Data Setups

Alexander Aue, Siegfried Hörmann, Lajos Horváth, Marie Hušková

Abstract The talk concerns sequential procedures detection of changes in linear
relationshipYk(t) =

∫ 1
0 Ψk(t,s)Xk(s)ds+εk(t), 1≤ k <∞, between random functions

Yk and Xk on [0,1], where errors {εk} are curves on [0,1], and {Ψk} are operators.
Test procedures for testing the constancy of the operatorsΨk’s (i.e.,Ψ1 =Ψ2 = . . .)
against a change point alternative when a training sample is available is proposed
and studied. The procedure utilizes the functional principal component analysis.
Limit behavior of the developed test procedures are investigated.

6.1 Introduction

We assume that the explanatory variables Xk(t) and the response variables Yk(t) are
connected via the linear relation

Yk(t) =
∫ 1

0
Ψk(t,s)Xk(s)ds+ εk(t), 1≤ k < ∞, (6.1)

where Yk(t),Xk(t) and εk(t) are random functions on [0,1]. The considered setup is
sequential with a training sample of size m with no change (i.e.,Ψk does not depend
on k ≤m) is available.
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We are interested in testing if the relations in (6.1) hold with the sameΨ ’s, i.e. we
want to check if

H0 : Ψ1 =Ψ2 =Ψ3 = . . . (6.2)

against the alternative that the Ψ ’s have changed at an unknown time during the
observation period. More precisely, the following alternative is considered:

HA : there is k∗ ≥ 1 such that Ψ1 =Ψ2 = . . . =Ψm = . . . =Ψm+k∗−1 =Ψm+k∗ = . . . ,
(6.3)

k∗ is unknown.
There is a number of practical situations where such problems occur. In econo-
metrics or finance, for example, Yk(t) and Xk(t) represent the selling prices of two
stocks during day k or the exchange rates between two currencies, see Cyree et al.
(2004). Another example is the connection between bid and ask curves investigated
by Elazović (2009).

So far the sequential setup formulated above has been considered for finite dimen-
sional situations, typically for a change in linear models or time series, e.g., Chu et al
(1996), Horváth et al (2004), Aue et al (2006), Berkes et al (2004). Their procedures
are typically based on functionals of partial sums of various residuals. Here we pro-
pose a sequential procedure that suits for functional data model. The procedures are
described by the stopping rule

ηm = inf{k ≥ 1 : Q(m,k) ≥ cq2
γ(k/m)}, (6.4)

with inf /0 := +∞, where Q(m,k)’s are statistics (detectors) based on the observations
(Y1,X1) . . . ,(Ym+k,Xm+k) , k = 1,2, . . . , the function q(t), t ∈ (0,∞), is a (critical)
boundary function, and the constant c = c(α) is chosen such that, under H0 , for
α ∈ (0,1) (fixed),

lim
m→∞P

(
ηm <∞

)
= α, (6.5)

and, under HA ,
lim

m→∞P
(
ηm < ∞

)
= 1. (6.6)

In other words, we require the asymptotic levelα and a consistent test. Alternatively,
the procedure can be described as follows: we stop and reject the null hypothesis as
soon as at first time Q(m,k) ≥ cq2

γ (k/m), we continue otherwise. The fundamental
problem is a suitable choice of the sequence {Q(m,k),k≥ 1}. This will be discussed
in the next section.

6.2 Test procedures

The scalar product and the norm of functions in L2([0,1]) are denoted by < f ,g >=
∫ 1

0 f (t)g(t)dt and ‖ f ‖= (< f ,g >)1/2, respectively.
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Since by the assumption the observations {Yk(t),Xk(t),t ∈ [0,1]} are functions, i.e.
infinite dimensional, a method which uses the projections of the observations into
finite dimensional spaces is proposed. So a functional version of the principle com-
ponent analysis is employed. The projections into a finite dimensional space should
explain a large percentage of the randomness in the observations. The sequence
{Xk(·),εk(·)} is allowed to be dependent. It is required:

Assumption A.1 {(Xk(·),εk(·)),−∞< k < ∞} is a stationary and ergodic sequence
satisfying EXk(t) = Eεk(t) = 0∀t ∈ [0,1],

∫ 1

0
E|Xk(t)|4+κdt < ∞ and

∫ 1

0
E|εn(t)|4+κdt < ∞ (6.7)

for some κ > 0.

Under this assumption

C(t,s) = EXk(t)Xk(s), D(t,s) = EYk(t)Yk(s), t,s ∈ [0,1]

exist and do not depend on k. Since C(t,s) is a positive semi-definite function, the
eigenvalues λ1 ≥ λ1 ≥ . . . are non-negative. The corresponding eigenfunctions are
denoted by v1,v2, . . ., they can be assumed orthonormal. We project the Xk’s into
the subspace spanned by {vi,1 ≤ i≤ p}. Choosing p appropriately, the projections
can explain a large percentage of randomness in the Xk’s. Since C(t,s) and therefore
{λi,1≤ i≤ p} and {vi,1≤ i≤ p} are unknown, we need to estimate them from the
observations. Since the training sample is stable, we use the estimator

Ĉm(t,s) =
1
m

m

∑
k=1

Xk(t)Xk(s)

Let λ̂1,m≥ λ̂2,m≥ . . .≥ λ̂p,m denote the p largest eigenvalues of Ĉm and v̂1,m, . . . , v̂p,m

be the corresponding eigenfunctions of Ĉm. It is assumed that {v̂i,m,1≤ i≤m} is an
orthonormal system.
Similarly for Yk we introduce

D(t,s) = EYk(t)Yk(s).

and denote by τ1 ≥ τ2 ≥ . . . the eigenvalues and by w1,w2, . . . the corresponding
eigenfunctions. Using the training sample we estimate D(t,s) it by

D̂m(t,s) =
1
m ∑

1≤k≤m

Yk(t)Yk(s).

The eigenvalues and the corresponding eigenfunctions of D̂m are denoted by τ̂1,m ≥
τ̂2,m ≥ . . . and ŵ1,m, ŵ2,m, . . ., respectively. It is assumed that ŵ1,m, ŵ2,m, . . . are or-
thonormal functions. We also assume that

Assumption A.2
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||Ψ ||2 =
∫ 1

0

∫ 1

0
ψ2(t,s)dtds < ∞

holds, whereΨ denotes the common value of theΨk’s under H0 and ψ(t,s) denotes
a kernel function in L2([0,1]2).

Since {wi(t)v j(s),(t,s) ∈ [0,1]21 ≤ i, j < ∞} is an orthonormal basis of L2([0,1]2)
we have that

ψ(t,s) = ∑
1≤i, j<∞

ψi, jwi(t)v j(s)

with some ψi, j‘s satisfying ∑1≤i, j<∞ψ2
i, j < ∞.

Therefore projecting Yn into the subspace spanned by ŵ1,m, . . . , ŵq,m and projecting
Xn into the subspace spanned by v̂1,m, . . . , v̂p,m under H0 we get from (6.1)

< Yi, ŵ j,m >=
p

∑
s=1
β js < Xi, v̂s,m > +Δi j, i = 1,2, . . . , j = 1, . . .q (6.8)

where
β js = d̂ jmψ jsĉsm, j = 1, . . . ,q, s = 1, . . . , p

with d̂ jm and ĉsm being random signs such that d̂ jmwj are close ŵ j,m and ĉsmvs are
close ŵs,m in certain sense. Also Δi j’s play formally the role of the error terms, they
include not only < εi, ŵ jm > but also other terms in order the equations (6.1) and
(6.8) are in accordance.
Next we rewrite the relations (6.8) differently. Let

βββ = vec(β js, j = 1, . . . ,q, s = 1, . . . , p),

ŶYY i = (< Yi, ŵ1,m >,. . . ,< Yi, ŵq,m >)T ,

Δ̂ΔΔ i = (< Δi, ŵ1,m >,. . . ,< Δi, ŵq,m >)T ,

ŶYY
T
n,N = (ŶYY

T
n , . . . ,ŶYY

T
N), Δ̂ΔΔ

T
n,N = (Δ̂ΔΔ

T
n , . . . , Δ̂ΔΔ

T
N).

Now the equations in (6.8) for the variables (Yi,Xi),n < i≤ N can be rewritten as

ŶYY n,N = ẐZZn,Nβββ + Δ̂ΔΔn,N ,

where
ẐZZ

T
n,N = (ẐZZ

T
n , . . . , ẐZZ

T
N)

with ẐZZi = x̂xxi ⊗ III p, x̂xxi = (< Xi, v̂1,m >,. . . ,< Xi, v̂p,m >)T , III p stands for the p× p
identity matrix and⊗ denotes the Kronecker product. The least squares estimator is
given by

β̂ββ n,N =
(
ẐZZ

T
n,NẐZZn,N

)−1
ẐZZ

T
n,NŶYY n,N .

Now the detector is defined as
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Q(m,k) = (β̂ββm,m+k− β̂ββ 0,m)TV̂VV mΣ̂ΣΣ
−1
m V̂VV m(β̂ββm,m+k − β̂ββ 0,m), k ≥ 1

where V̂VV m = ẐZZ0,mẐZZ
T
0,m/m and Σ̂ΣΣm is a suitable standardization matrix based on on

the training data. Particularly, it is assumed that, as m→ ∞,

|Σ̂ΣΣm− (d̂ddm⊗ ĉccm)ΣΣΣ |= oP(1), (6.9)

where d̂ddm = vec(d̂1,m, . . . , d̂q,m), ĉccm is defined analogously,⊗ is the Kronecker prod-

uct of matrices. Here ΣΣΣ is the asymptotic variance matrix of Δ̂ΔΔ i.

Clearly, due to the definition of βi j the above statistics are sensitive w.r.t. a change
in ψi j, 1 ≤ i ≤ q, 1 ≤ j ≤ p. The procedure is not sensitive w.r.t. a change in ψi j if
either i > q or/and j > p. Limit properties are stated in the following section.

6.3 Asymptotic properties

We still need some assumptions on the dependence structure:

Assumption A.3 There are functionals a and b such that

Xn = a(γn,γn−1, . . .) and εn = b(δn,δn−1, . . .),

where {γk(t),−∞< k <∞} and {δk(t),−∞< k <∞} are i.i.d. sequences of random
elements with values in some measurable spaces.

The assumption states that both Xn and εn are Hilbert space valued Bernoulli shifts.
We consider only weakly dependent random processes in this paper which is for-
mulated as

Assumption A.4 There are C0 and A > 2 such that

(
E| ‖Xn−X (k)

n ‖ |4+κ
)1/(4+κ)

+
(

E| ‖ εn−ε(k)
n ‖ |4+κ

)1/(4+κ)≤C0k−A, 1≤ k <∞
(6.10)

with
X (k)

n = a(γn,γn−1, . . . ,γn−k+1,γ
(k)
n−k,γ

(k)
n−k−1, . . .)

where {γ(k)
� ,−∞< k, � <∞} are i.i.d. copies of γ0., {ε(k)

� ,−∞< k, � <∞} are defined
accordingly.

Note that these assumptions means that (Xn,εn) can be approximated with the k

dependent sequences (X (k)
n ,ε(k)

n ),−∞< n <∞ and this approximation is improving
with the rate k−A as k increases.
The following requirement is standard in functional data analysis (cf. Bosq (2000)):

Assumption 2.5
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λ1 > λ2 > .. . > λp > λp+1, τ1 > τ2 > .. . > τq > τq+1.

The last set of conditions are on the boundary function g:

Assumption A.6 (i) g(t) is continuous on [0,1]
(ii) infε≤t≤1 g(t) > 0 for every 0 < ε < 1
(iii) there are C0 > 0 and 0≤ γ < 1/2 such that C0xγ ≤ g(x) for all 0 < x ≤ 1.

Now we are ready to state the main result of this paper.

Theorem If H0, if assumptions A.1, – A.6 and (6.9) hold, then

lim
m→∞P

{

Q(m,k)> c
m
k2

(

1 +
k
m

)

g2
(

k
k + m

)

for somek≥ 1

}

= P

{

sup
0<≤t≤1

Γ (t)
g2(t)

> c

}

with
{
Γ (t),0 ≤ t ≤ 1

}D=
{ pq

∑
�=1

W 2
� ,0≤ t ≤ 1

}
,

where {W�(t),1≤ �≤ pq} are independent standard Brownian motions.

The above theorem provides reasonable approximation for the constant c in the
stopping rule. Under mild conditions the tests are consistent.
In the talk some further results, discussion and some examples will be presented.
The above results are part of the paper in preparation by Aue et al (2011).

Acknowledgements Research partially supported by NSF grant DMS 0905400 and by GAČR
2010/09/J006, MSM 0021620839.
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9. Horváth, L., Hušková, M., Kokoszka, P.: Testing the stability of the functional autoregressive
process. J. Multivariate Anal. 101, 352–367 (2010)
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Chapter 7
On the Effect of Noisy Observations of the
Regressor in a Functional Linear Model

Mareike Bereswill, Jan Johannes

Abstract We consider the estimation of the slope function in functional linear re-
gression, where a scalar response Y is modeled in dependence of a random function
X , when Y and only a panel Z1, . . . ,ZL of noisy observations of X are observable.
Assuming an iid. sample of (Y,Z1, . . . ,ZL) we derive in terms of both, the sample
size and the panel size, a lower bound of a maximal weigthed risk over certain ellip-
soids of slope functions. We prove that a thresholded projection estimator can attain
the lower bound up to a constant.

7.1 Introduction

A common problem in a diverse range of disciplines is the investigation of the de-
pendence of a real random variable Y on the variation of an explanatory random
function X (see for instance Ramsay and Silverman [2005] and Ferraty and Vieu
[2006]). We assume that X takes its values in an infinite dimensional separable
Hilbert space H which is endowed with an inner product 〈·, ·〉 and its associated
norm ‖·‖. In functional linear regression the dependence of the response Y on the
regressor X is then modeled by

Y = 〈β ,X〉+σ ε, σ > 0, (7.1a)

where β ∈ H is unknown and the error ε has mean zero and variance one. In this
paper we suppose that we have only access to Y and a panel of noisy observations
of X ,

Z� = X + ς Ξ�, ς � 0, � = 1, . . . ,L, (7.1b)
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where Ξ1, . . . ,ΞL are measurement errors. One objective is then the non-parametric
estimation of the slope function β based on an iid. sample of (Y,Z1, . . . ,ZL).

In recent years the non-parametric estimation of the slope function β from a sam-
ple of (Y,X) has been of growing interest in the literature (c.f. Cardot et al. [1999],
Marx and Eilers [1999], Bosq [2000] or Cardot et al. [2007]). In this paper we fol-
low an approach based on dimension reduction and thresholding techniques, which
has been proposed by Cardot and Johannes [2010] and borrows ideas from the in-
verse problems community (c.f. Efromovich and Koltchinskii [2001] and Hoffmann
and Rei [2008]).

The objective of this paper is to establish a minimax theory for the non-parametric
estimation of β in terms of both, the size L of the panel Z1, . . . ,ZL of noisy mea-
surements of X and the size n of the sample of (Y,Z1, . . . ,ZL). In order to make
things more formal let us reconsider model (1a) - (1b). Given an orthonormal basis
{ψ j} j�1 in H (not necessarily corresponding to the eigenfunctions of Γ ) we assume
real valued random variables ξ j,� := 〈Ξ�,ψ j〉 and observable blurred versions of the
coefficient 〈X ,ψ j〉 of X ,

Zj,� := 〈X ,ψ j〉+ ς ξ j,�, � = 1, . . . ,L and j ∈ N. (7.2)

The motivating example for our abstract framework consists in irregular and
sparse repeated measures of a contaminated trajectory of a random function X ∈
L2[0,1] (c.f. Yao et al. [2005] and references therein). To be more precise, suppose
that there are L uniformly-distributed and independent random measurement times
U1, . . . ,UL for X . Let V� = X(U�)+η� denote the observation of the random trajec-
tory X at a random time U� contaminated with measurement error η�, 1 � � � L.
The errors η� are assumed to be iid. with mean zero and finite variance. If the
random function X , the random times {U�} and the errors {η�} are independent,
then, it is easily seen that for each � = 1, . . . ,L and j ∈ N the observable quantity
Zj,� := V�ψ j(U�) is just a blurred version of the coefficient 〈X ,ψ j〉 corrupted by an
uncorrelated additive measurement error V�ψ j(U�)−〈X ,ψ j〉. Moreover, those er-
rors are uncorrelated for all j ∈ N and different values of �. It is interesting to note
that recently Crambes et al. [2009] prove minimax-optimality of a spline based es-
timator in the situation of deterministic measurement times. However, the obtained
optimal rates are the same as for a known regressor X since the authors suppose
the deterministic design to be sufficiently dense. In contrast to this result we seek
a minimax theory covering also sparse measurements. In particular, it enables us to
quantify the minimal panel size in order to recover the minimal rate for a known X .

In Section 2 we introduce our basic assumptions and recall the minimax theory
derived in Cardot and Johannes [2010] for estimating β non-parametrically given an
iid. sample of (Y,X). Assuming an iid. sample of size n of (Y,Z1, . . . ,ZL) we derive
in Section 3 a lower bound in terms of both, n and L, for a maximal weighted risk.
We propose an estimator based on dimension reduction and thresholding techniques
that can attain the lower bound up to a constant. All proofs can be found in Bereswill
and Johannes [2010].
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7.2 Background to the methodology

For sake of simplicity we assume that the measurement errors ε and {ξ j,�} j∈N,1���L

are independent and standard normally distributed, i.e, Ξ1, . . . ,ΞL are independent
Gaussian white noises in H. Furthermore, we suppose that the regressor X is Gaus-
sian with mean zero and a finite second moment, i.e., E‖X‖2 < ∞, as well as in-
dependent of all measurement errors. Taking the expectation after multiplying both
sides in (1a) by X we obtain g := E[Y X ] = E[〈β ,X〉X ] =: Γβ , where g belongs to
H and Γ denotes the covariance operator associated with the random function X . In
what follows we always assume that there exists in H a unique solution of the equa-
tion g = Γβ , i.e., that g belongs to the range of the strictly positive Γ (c.f. Cardot et
al. [2003]). It is well-known that the obtainable accuracy of any estimator of β can
essentially be determined by the regularity conditions imposed on both, the slope
parameter β and the covariance operator Γ . We formalize now these conditions,
which are characterized in this paper by different weighted norms in H with respect
to the pre-specified basis {ψ j} j�.

Given a positive sequence of weights w := (wj) j�1 we define the weighted norm
‖ f‖2

w := ∑ j�1 wj|〈 f ,ψ j〉|2, f ∈ H, the completion Fw of H with respect to ‖·‖w

and the ellipsoid F c
w :=

{
f ∈Fw : ‖ f‖2

w � c
}

with radius c > 0. Here and subse-
quently, given strictly positive sequences of weights γ := (γ j) j�1 and ω := (ω j) j�1

we shall measure the performance of any estimator β̂ by its maximal Fω -risk over
the ellipsoid F

ρ
γ with radius ρ > 0, that is supβ∈F

ρ
γ

E‖β̂−β‖2
ω . This general frame-

work allows us with appropriate choices of the basis {ψ j} j� and the weight se-
quence ω to cover the estimation not only of the slope function itself (c.f. Hall
and Horowitz [2007]) but also of its derivatives as well as the optimal estimation
with respect to the mean squared prediction error (c.f. Crambes et al. [2009]). For
a more detailed discussion, we refer to Cardot and Johannes [2010]. Furthermore,
as usual in the context of ill-posed inverse problems, we link the mapping prop-
erties of the covariance operator Γ and the regularity conditions on β . Denote by
N the set of all strictly positive nuclear operators defined on H. Given a strictly
positive sequence of weights λ := (λ j) j�1 and a constant d � 1 define the sub-
set N d

λ := {Γ ∈ N : ‖ f‖2
λ/d2 � ‖Γ f‖2 � d2 ‖ f‖2

λ , ∀ f ∈ H} of N . Notice that

〈Γψ j,ψ j〉 � d−1λ 1/2
j for all Γ ∈N d

λ , and hence the sequence (λ 1/2
j ) j�1 is neces-

sarily summable. All the results in this paper are derived with respect to the three
sequences ω , γ and λ . We do not specify these sequences, but impose from now on
the following minimal regularity conditions.

ASSUMPTION (A.1) Let ω := (ω j) j�1, γ := (γ j) j�1 and λ := (λ j) j�1 be strictly
positive sequences of weights with γ1 = 1, ω1 = 1 and λ1 = 1 such that γ and
(γ j/ω j) j�1 are non decreasing, λ and (λ j/ω j) j�1 are non increasing with Λ :=

∑∞j=1λ
1/2
j < ∞.

Given a sample size n � 1 and sequences ω , γ and λ satisfying Assumption A.1
define



44 Mareike Bereswill, Jan Johannes

m∗
n := m∗

n(γ,ω ,λ ) := arg min
m�1

{

max

(
ωm
γm ,∑m

j=1
ω j

n
√
λ j

)}

and

δ ∗n := δ ∗n (γ,ω ,λ ) := max

(
ωm∗n
γm∗n

,∑m∗n
j=1

ω j

n
√
λ j

)

. (7.3)

If in addition� := infn�1{(δ ∗n )−1 min(ωm∗nγ
−1
m∗n ,∑m∗n

j=1ω j(n
√
λ j)−1)}> 0, then there

exists C > 0 depending on σ2,ρ ,d, � only such that (c.f. Cardot and Johannes
[2010]),

inf
β̆

inf
Γ∈N d

λ

sup
β∈F

ρ
γ

{
E‖β̆ −β‖2

ω

}
� Cδ ∗n for all n � 1.

Assuming an iid. sample {(Y (i),X (i))} of size n of (Y,X), it is natural to consider
the estimators g̃ := 1

n ∑
n
i=1 Y (i) X (i) and Γ̃ := 1

n ∑
n
i=1〈·,X (i)〉X (i) for g and Γ respec-

tively. Given m � 1, we denote by [Γ̃ ]m the m×m matrix with generic elements
[Γ̃ ] j,� := 〈Γ̃ ψ�,ψ j〉 = n−1∑n

i=1〈X (i),ψ�〉〈X (i),ψ j〉, and by [g̃]m the m vector with
elements [g̃]� := 〈g̃,ψ�〉 = n−1∑n

i=1 Y (i)〈X (i),ψ�〉, 1 � j, � � m. Obviously, if [Γ̃ ]m
is non singular then [Γ̃ ]−1

m [g̃]m is a least squares estimator of the vector [β ]m with
elements 〈β ,ψ�〉,1 � � � m. The estimator of β consists now in thresholding this
projection estimator, that is,

β̃m :=
m

∑
j=1

[̃β ] jψ j with [̃β ]m :=

⎧
⎨

⎩

[Γ̃ ]−1
m [g̃]m, if [Γ̃ ]m is non-singular

and ‖[Γ̃ ]−1
m ‖� n,

0, otherwise.
(7.4)

Under Assumption A.1 and supm�1 m4λm/γm < ∞ it is shown in Cardot and Jo-
hannes [2010] that there exists C > 0 depending on σ2,ρ ,d,Λ only such that

sup
Γ∈N d

λ

sup
β∈F

ρ
γ

{
E‖β̃m∗n −β‖2

ω

}
� Cδ ∗n ,

where the dimension parameter m∗
n is given in (4).

Examples of rates. We compute in this section the minimal rate δ ∗n for two standard
configurations for γ, ω , and λ . In both examples, we take ω j = j2s, s ∈R, for j � 1.
Here and subsequently, we write an � bn if there exists C > 0 such that an � C bn

for all n ∈ N and an ∼ bn when an � bn and bn � an simultaneously.
(p-p) For j � 1 let γ j = j2p, p > 0, and λ j = j−2a, a > 1, then Assumption A.1

holds, if −a < s < p. It is easily seen that m∗
n ∼ n1/(2p+a+1) if 2s + a > −1, m∗

n ∼
n1/[2(p−s)] if 2s+a <−1 and m∗

n ∼ (n/ log(n))1/[2(p−s)] if a+2s =−1. The minimal
rate δ ∗n attained by the estimator is max(n−(2p−2s)/(a+2p+1),n−1), if 2s + a = −1
(and log(n)/n if 2s + a = −1). Since an increasing value of a leads to a slower
minimal rate, it is called degree of ill-posedness (c.f. Natterer [1984]). Moreover,
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the case 0 � s < p can be interpreted as the L2-risk of an estimator of the s-th
derivative of β . On the other hand s = −a/2 corresponds to the mean-prediction
error (c.f. Cardot and Johannes [2010]).

(p-e) For j � 1 let γ j = j2p, p > 0, and λ j = exp(− j2a), a > 0, where Assumption

A.1 holds, if p > s. Then m∗
n ∼ (logn− 2p+(2a−1)+

2a log(logn))1/(2a) with (q)+ :=
max(q,0). Thereby, (logn)−(p−s)/a is the minimal rate attained by the estimator.

7.3 The effect of noisy observations of the regressor

In order to formulate the lower bound below let us define for all n,L � 1 and ς � 0

m∗
n,L,ς := m∗

n,L,ς (γ,ω ,λ ) := arg min
m�1

{

max

(
ωm
γm ,∑m

j=1
ω j

n
√
λ j

,∑m
j=1

ς2ω j
Lnλ j

)}

and

δ ∗n,L,ς := δ ∗n,L,ς (γ,ω ,λ ) := max

(ωm∗n,L,ς
γm∗n,L,ς

,∑
m∗n,L,ς
j=1

ω j

n
√
λ j

,∑
m∗n,L,ς
j=1

ς2ω j
Lnλ j

)

. (7.5)

The lower bound given below needs the following assumption.

ASSUMPTION (A.2) Let ω , γ and λ be sequences such that

0 <� := infL,n�1

{

(δ ∗n,L,ς )
−1 min

(ωm∗n,L,ς
γm∗n,L,ς

,∑
m∗n,L,ς
j=1

ω j

n
√
λ j

,∑
m∗n,L,ς
j=1

ς2ω j
Lnλ j

)}

� 1.

THEOREM (Lower bound) If the sequences ω , γ and λ satisfy Assumptions A.1 -
A.2, then there exists C > 0 depending on σ2,ς2,ρ ,d, and � only such that

inf
β̆

inf
Γ∈N d

λ

sup
β∈F

ρ
γ

{
E‖β̆ −β‖2

ω

}
� Cδ ∗n,L,ς for all n,L � 1.

Observe that the lower rate δ ∗n,L,ς is never faster than the lower rate δ ∗n for known
X defined in (3). Clearly, we recover δ ∗n for all L � 1 in case ς = 0. On the other

hand given an iid. sample {(Y (i),Z(i)
1 , . . . ,Z(i)

L )} of size n of (Y,Z1, . . . ,ZL) we de-
fine estimators for the elements [g] j := 〈g,ψ j〉 and [Γ ]k, j := 〈Γψk,ψ j〉, k, j � 1,
respectively as follows

[̂g] j :=
1
n

n

∑
i=1

Y i 1
L

L

∑
�=1

Z(i)
j,�, and [̂Γ ]k, j :=

1
n

n

∑
i=1

1
L(L−1)

L

∑
�1,�2=1
�1 =�2

Z(i)
j,�1

Z(i)
k,�2

. (7.6)

We replace in definition (4) then the unknown matrix [Γ̃ ]m and vector [g̃]m respec-

tively by the matrix [̂Γ ]m with elements [̂Γ ]k, j and the vector [̂g]m with elements [̂g] j,
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that is,

β̂m :=
m

∑
j=1

[̂β ] jψ j with [̂β ]m :=

⎧
⎪⎨

⎪⎩

[̂Γ ]
−1

m [̂g]m, if [̂Γ ]m is non-singular

and ‖[̂Γ ]
−1

m ‖� n,

0, otherwise.

(7.7)

The next theorem establishes the minimax-optimality of the estimator β̂m provided
the dimension parameter m is chosen appropriate, i.e m := m∗

n,L,ς given in (5).

THEOREM (Upper bound) If Assumptions A.1 - A.2 and supm�1 m4λmγ−1
m < ∞ are

satisfied, then there exists C > 0 depending on σ2,ς2,ρ ,d,Λ only such that

sup
Γ∈N d

λ

sup
β∈F

ρ
γ

{
E‖β̂m∗n,L,ς

−β‖2
ω

}
� Cδ ∗n,L,ς for all n � 1,L � 2 and ς � 0.

Examples of rates (continued). Suppose first that the panel size L � 2 is con-
stant and ς > 0. In example (p-p) if 2s + 2a + 1 > 0 it is easily seen that m∗

n,L,ς ∼
n1/(2p+2a+1) and the minimal rate attained by the estimator is δ ∗n,L,ς ∼ n−(2p−2s)/(2a+2p+1).
Let us compare this rate with the minimal rates in case of a functional linear
model (FLM) with known regressor and in case of an indirect regression model
(IRM) given by the covariance operator Γ and Gaussian white noise Ẇ , i.e.,
gn = Γβ + n−1/2Ẇ (c.f. Hoffmann and Rei [2008]). The minimal rate in the FLM
with known X is n−2(p−s)/(a+2p+1), while n−2(p−s)/(2a+2p+1) is the minimal rate in
the IRM. We see that in a FLM with known X the covariance operator Γ has the
degree of ill-posedness a while it has in a FLM with noisy observations of X and
in the IRM a degree of ill-posedness 2a. In other words only in a FLM with known
regressor we do not face the complexity of an inversion of Γ but only of its square
root Γ 1/2. The same remark holds true in the example (p-e), but the minimal rate is
the same in all three cases due to the fact that for λ j ∼ exp(−r| j|2a) the dependence
of the minimal rate on the value r is hidden in the constant. However, it is rather sur-
prising that in this situation a panel of size L = 2 is sufficient to recover the minimal
but logarithmic rate when X is known. In contrast, in example (p-p) the minimal
rate for known X can only be attained in the presence of noise in the regressor if
the panel size satisfies L−1

n = O(n−a/(a+2p+1)) as the sample size n increases, since
δ ∗n,L,ς ∼max(n−(2p−2s)/(a+2p+1),(Lnn)−(2p−2s)/(2a+2p+1)).
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Chapter 8
Testing the Equality of Covariance Operators

Graciela Boente, Daniela Rodriguez, Mariela Sued

Abstract In many situations, when dealing with several populations, equality of the
covariance operators is assumed. In this work, we will study a hypothesis test to
validate this assumption.

8.1 Introduction

Functional data analysis provides modern analytical tools for data that are recoded
as images or as a continuous phenomenon over a period of time. Because of the
intrinsic nature of these data, they can be viewed as realizations of random functions
often assumed to be in L2(I), with I a real interval or a finite dimensional Euclidean
set.

On the other hand, when working with more than one population, as in the finite
dimensional case, a common assumption is to assume the equality of covariance
operators. In the case of finite-dimensional data, test for equality of covariance ma-
trices have been extensively studied, see for example Seber (1984), even when the
sample size is smaller than the size of the variables see Ledoit and Wolf (2002) and
Schott (2007). Ferraty et.al. (2007) have proposed tests for comparison of groups
of curves based on the comparison of covariances. The hypothesis tested are that
of equality, proportionality, and others based on the spectral decomposition of these
covariances.

In the functional setting, we will study a proposal for testing the hypothesis that
the covariance operators of k−populations of random objects are equal. If we have
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two populations where ΓΓΓ 1 and ΓΓΓ 2 are their covariance operators, we can consider
consistent estimators Γ̂2 and Γ̂2 of both operators, such as those given by Dauxois,
Pousse, and Romain (1982). It is clear that under the null hypothesis the difference
in the estimates of the operators of both populations should be small. The idea is
to build a test based on the norm of the difference between the estimates of the
operators and then, generalize this approach to the k−populations case. We will
obtain the asymptotic distribution of the test statistics under the null hypothesis.
Also, we will study bootstrap procedures and their validation.

8.2 Notation and preliminaries

Let Xi,1(t), · · · ,Xi,ni(t) ∈ L2(I ) for i = 1, . . . ,k be independent observations from
k independent samples of smooth random functions with mean μi(t), without loss
of generality, we will assume that I = [0,1]. Denote by γi and Γ i the covariance
function and operator, respectively, related to each population. To be more pre-
cise, we are assuming that {Xi,1(t) : t ∈ [0,1]} are k stochastic processes defined
in (Ω ,A ,P) with continuous trajectories, mean μi and finite second moment, i.e.,

E (Xi,1(t)) = μi(t) and E
(

X2
i,1(t)
)

< ∞ for t ∈ [0,1]. We will denote by

γi(t,s) = E ((Xi,1(t)− μi(t))(Xi,1(s)− μi(s)))

their covariance functions, which is just the functional version of the variance–
covariance matrix in the classical multivariate analysis. As in the finite–dimensional
case, each covariance function has an associated linear operator Γ i : L2[0,1] →
L2[0,1] defined as (Γ i u)(t) =

∫ 1
0 γi(t,s)u(s)ds, for all u ∈ L2[0,1]. Throughout this

paper, we will assume that the covariance operators satisfy

∫ 1

0

∫ 1

0
γ2

i (t,s)dtds < ∞ . (8.1)

Cauchy-Schwartz inequality implies that |Γ iu|2 ≤ ‖γi‖2|u|2, where |u| stands for
the usual norm in the space L2[0,1], while ‖γ‖ denotes the norm in the space F =
L2 ([0,1]× [0,1]). Therefore, Γ i is a self–adjoint continuous linear operator.

An natural way to estimate the covariance operators Γ̂ i for i = 1, . . . ,k is to con-
sider the empirical covariance operator given by

Γ̂i =
1
ni

ni

∑
j=1

(
Xi, j −Xi

)⊗ (Xi, j−Xi
)

,

where Xi(t) = 1/ni∑ni
j=1 Xi, j(t). Dauxois, Pousse and Romain (1982) proved that

√
ni

(
Γ̂ i−Γ i

)
converges in distribution to a zero mean gaussian random element,

UUUi, on F with covariance operatorϒϒϒ i given by
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ϒϒϒ i =E ((Xi,1⊗Xi,1)⊗̃(Xi,1⊗Xi,1))−E (Xi,1⊗Xi,1)⊗̃E (Xi,1⊗Xi,1) . (8.2)

Smooth estimators Γ̂
s
i of the covariance operators was studied in Boente and

Fraiman (2000) and they proved that the smooth estimators have the same asymp-
totic distribution that the empirical version, under mild conditions. The smoothed
version is defined as

γ̂s
i (t,s) =

ni

∑
j=1

(
Xi, j,h(t)−Xi,h(t)

)(
Xi, j,h(s)−Xi,h(s)

)
/ni ,

where Xi, j,h(t)=
∫

Kh(t−x)Xi, j are the smoothed trajectories and Kh(·)= h−1K(·/h)
is a nonnegative kernel function and h a smoothing parameter.

8.3 Hypothesis Test

In this Section, we study the problem of testing the hypothesis

H0 : Γ 1 = Γ 2 against H1 : Γ 1 = Γ 2 . (8.3)

A natural approach is to consider the empirical covariance operators of each pop-
ulation Γ̂ i and construct a statistic based on the difference between the estimators
corresponding to the covariance operator at each population.

The following result allows to construct a test for the hypothesis (8.3) of equality
of covariance operators when we consider two populations.

Theorem 3.1. Let Γ̂ i be an estimator of the i−th population covariance operator
and assume that E(‖Xi,1‖4) < ∞ for i = 1,2. Denote by {θ}i≥1 the sequence of
eigenvalues associated to the operator 1

τ1
ϒϒϒ 1 + 1

τ2
ϒϒϒ 2 , where ϒϒϒ i are the covariance

operator associated for the asymptotic distribution of Γ̂ i and ni/N → τi, for i = 1,2.
Assume that ∑i≥1 θi < ∞. Then,

Tn = N‖(Γ̂ 1−Γ 1)− (Γ̂ 2−Γ 2)‖2 D−→∑
i≥1
θiZ

2
i , (8.4)

where Zi are i.i.d. standard normal distributions and N = n1 + n2.

The previous results motivate the use of the bootstrap methods, due the fact that
the asymptotic distribution obtained in (8.4) depends on the unknown eigenvalues
θi. We will consider a bootstrap calibration for the distribution of the test that can
be described as follows,

Step 1 Given a sample Xi,1(t), · · · ,Xi,ni(t) we estimate ϒ̂ϒϒ = n1+n2
n1

ϒ̂ϒϒ 1 + n1+n2
n2

ϒ̂ϒϒ 2,

where ϒ̂ϒϒ i are consistent estimators ofϒϒϒ i for i = 1,2.
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Step 2 For i = 1, . . .kn denote by θ̂i the positive eigenvalues of ϒ̂ϒϒ .
Step 3 Generate Z∗1 , . . . ,Z∗kn

random variables i.i.d. according to a standar normal

distribution. Let T ∗
n = ∑kn

j=1 θ̂ jZ∗j
2.

Step 4 Repeat Step 3 Nboot times, to get Nboot values of T ∗
ni for 1≤ i≤ Nboot.

The (1−α)−quantile of the asymptotic distribution of Tn can be approximated by
the (1−α)−quantile of the empirical distribution of T ∗ni for 1 ≤ i ≤ Nboot. The
p-value can be estimated by p̂ = s

Nboot where s is the number of T ∗
ni which are larger

or equal than the observed value of Tn.

Remark 3.2. Note that this procedure depends only on the asymptotic distribution
of Γ̂ i. If we consider any other asymptotically normally estimator of Γ i for example
the smoothed estimators Γ s

i , the results may be adapted to this new setting.

The following theorem entails the validity of the bootstrap method. It is impor-
tant to note that the following theorem entails that, under H0 the bootstrap distri-
bution of Tn converges to the asymptotic null distribution of Tn which ensures that
the asymptotic significance level of the test based on the bootstrap critical value is
indeed α.

Theorem 3.3. Let kn such that kn/
√

n→ 0 and X̃n = (X1,1, · · · ,X1,n1 ,X2,1, · · · ,X2,n2).
Consider FT∗n |X̃n

(·) = P(T ∗
n ≤ · |X̃n). Then, under the same hypothesis of Theorem

3.1, we get that
ρK(FT∗n |X̃n

,FT )
p−→ 0 , (8.5)

where FT denotes the distribution function of T = ∑i≥1θiZ2
i , with Zi are i.i.d. stan-

dard normal distributions and ρK is the Kolmogorov distance between distribution
functions.

8.4 Generalization to k-populations

In this Section, we consider tests for the equality of the covariance operators of k
populations. That is, if ΓΓΓ i denotes the covariance operator of the ith population, we
wish to test the null hypothesis

H0 : ΓΓΓ 1 = · · ·= ΓΓΓ k against H1 : ∃ i = j such that ΓΓΓ i = ΓΓΓ j (8.6)

Let N = n1 + · · ·+ nk and assume that ni/N → τi. A natural generalization of the
proposal given in Section 3 is to consider the following statistic test

Tk,n = N
k

∑
j=2
‖Γ̂ j − Γ̂ 1‖2,
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where Γ̂ i are the empirical covariance operators of ith population. The following
result states the asymptotic distributions under the null hypothesis of Tk,n.

Theorem 4.1. Let Γ̂ i be an estimator of the covariance operator of the ith population

such that
√

N(Γ̂ i−Γ i)
D−→Ui, where Ui is zero mean gaussian random element of

F with covariance operator 1
τi
ϒϒϒ i.

Denote by θi the sequence of eigenvalues associated to the operator ϒϒϒW given by

ϒϒϒW (y1, . . . ,yk−1) =
(

1
τ2
ϒϒϒ 2(y1), . . . , 1

τk
ϒϒϒ k(yk−1)

)
+ 1

τ1
ϒϒϒ 1(∑k−1

i=1 yi). If ∑i≥1 θi < ∞,

we have

Tk,n = N
k

∑
j=2

‖Γ̂ j − Γ̂ 1‖2 D−→∑
i≥1

θiZ
2
i

where Zi are i.i.d standard normal distribution.
As in Section 3, a bootstrap procedure can be considered. In order to estimate

θ j for j ≥ 1, we can consider estimators of the operators ϒϒϒ i for 1 ≤ i ≤ k and

thus estimate ϒϒϒW . Therefore, if θ̂i are the positive eigenvalues of ϒ̂ϒϒW , a bootstrap
procedure follows as in Steps 3 and 4.
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Chapter 9
Modeling and Forecasting Monotone Curves by
FDA

Paula R. Bouzas, Nuria Ruiz-Fuentes

Abstract A new estimation method and forecasting of monotone sample curves is
performed from observations in a finite set of time points without a previous trans-
formation of the original data. Monotone spline cubic interpolation is proposed for
the reconstruction of the sample curves. Then, the interpolation basis is adapted to
apply FPCA and forecasting is done by means of principal components prediction.

9.1 Introduction

Functional data analysis (FDA) deals with the modeling of sample curves. Ramsay
and Silverman (1997) is a basic review of some techniques of FDA as functional
principal components analysis (FPCA) or functional linear models. Ramsay and
Silverman (2002) presents interesting applications of FDA to real data. Valderrama
et al. (2000) presents several ways of approximation of FPCA and reviews models
of linear prediction by principal components in order to forecast a stochastic process
in terms of its past.

The aim of this work is to apply techniques of FDA to the sample paths of a
stochastic process which are monotone. The usual way to treat this type of sample
paths is to transform them to unconstrained curves and work with their transformed
values. This paper propose to work with the original data in the following way. In
practice, the sample paths of a stochastic process can be observed only in a finite
set of time points so it is needed to reconstruct their functional form. We propose
to use the cubic monotone interpolation of Fritsh and Carlson (1980) to reconstruct
the sample paths. Then, the interpolation basis is adapted in order to apply FPCA.
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Having derived the stochastic estimation, the forecasting of a new sample path
can be achieved by prediction with principal components (PCP). Finally, the mod-
eling and forecasting is applied to the real data of the growth of girls up to 18 years.

9.2 Functional reconstruction of monotone sample paths

Let {X(t);t ∈ [T0,T1]} be a second order stochastic process, continuous in quadratic
mean and monotonous sample paths. Let us consider a sample of n realizations of it
observed in a finite set of instants of time t0 = T0, . . . ,tp = T1, which will be denoted
by {Xw(t) : t ∈ [t0,tp],w = 1, . . . ,n}.

Firstly, the functional form of each sample path must be reconstructed estimating
them in a finite space generated by a functions basis. In our case, the interpolation
data are (t0,Xω (t0)), . . . ,(tp,Xω(tp)). In order to preserve the monotonicity, the first
derivative has to be nonnegative for the nondecreasing case and nonpositive for the
opposite case. The derivatives in the observed points, denoted by dω0, . . . ,dω p, are
calculated as proposed by Fritsch and Carlson (1980). The same authors propose
the following monotone piecewise polynomial interpolation:

IXω j(t) = Xω(t j)H1(t)+ Xω(t j+1)H2(t)+ dω jH3(t)+ dω j+1H4(t),

for t ∈ [t j,t j+1], j = 0, . . . , p−1, where dω j = dIXω j(t)
dt

∣
∣
∣
t=t j

, dω j+1 = dIXω j(t)
dt

∣
∣
∣
t=t j+1

and Hs(t) are the usual Hermite functions for the interval [t j,t j+1]. We have chosen
this type of interpolation because it joints the flexibility of cubic spline with the
monotonicity preservation.

In order to use the interpolation in FPCA, it should be expressed in the whole
observation interval in terms of a basis. After some manipulations it can be written
as

IXω(t) =
p

∑
j=0

Xω(t j)Φ j(t)+
p

∑
j=0

dω jΨj(t), t ∈ [t0,tp], ω = 1, . . . ,k (9.1)

where the functions are

Φ j(t) =

{
φ( t−t j−1

h j−1
), t ∈ [t j−1,t j]

φ( t j+1−t
h j

), t ∈ [t j,t j+1]
, j = 0, p

Ψj(t) =

{
h j−1ψ( t−t j−1

h j−1
), t ∈ [t j−1,t j]

−h jψ( t j+1−t
h j

), t ∈ [t j,t j+1]
, j = 0, p (9.2)

Φ0(t) = φ(
t1− t

h0
),Ψ0(t) =−h0ψ(

t1− t
h0

), t ∈ [t0,t1]

Φp(t) = φ(
t− tp−1

hp−1
),Ψp(t) = hp−1ψ(

t− tp−1

hp−1
), t ∈ [tp−1,tp]
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with h j = t j+1 − t j, φ(x) = 3x2 − 2x3 and ψ(x) = x3 − x2. Then, the functions of
(9.2) form the Lagrange basis of cubic splines of dimension 2(p+1) (see Bouzas et
al., 2006). Equation (9.1) for all the sample paths can be written jointly as

IX(t) = AB(t), t ∈ [t0,tp]

where the matrices are defined as

IX(t) = (IX1(t), . . . , IXn(t))T ; B(t) = (Φ0(t), . . . ,Φp(t),Ψ0(t), . . . ,Ψp(t))T

A =

⎛

⎜
⎝

X1(t0) . . . X1(tp) d10 . . . d1p
...

...
...

...
...

...
Xn(t0) . . . Xn(tp) dn0 . . . dnp

⎞

⎟
⎠

where T denotes the transpose matrix. But in order to unify the notation, let us
rewrite the basis and the coefficients matrix as

B(t) =
(
B1(t), . . . ,Bp+1(t),Bp+2(t), . . . ,B2(p+1)(t)

)T

A = (aωl)ω=1,...,k ; l=1,...,2(p+1)

so, the interpolation polynomial of equation (9.1) becomes

IXω(t) =
2(p+1)

∑
l=1

aωlBl(t); t ∈ [t0,tp], ω = 1, . . . ,n.

9.3 Modeling and forecasting

The stochastic structure of the process X(t) with monotone sample paths is derived
applying the usual methodology of FPCA with the proper basis found in Section 2.
In this case, it is specially interesting because the basis dimension has been increased
due to the coefficients of the monotone interpolation.

Considering the centered interpolated process

IX(t) = IX(t)− μIX(t) =
(
A− Ā

)
B(t)

where Ā = (aωl) with elements aωl = 1
n ∑

n
ω=1 aωl (l = 1, . . . ,2(p+1),ω = 1, . . . ,n),

and μIX (t) = ĀB(t). Let us denote by P the matrix whose elements are the usual
inner products of the basis functions given by

〈
Bi,B j

〉
u =
∫ tp

t0 Bi(t)B j(t)dt. Then,
the FPCA of IXω(t) in the space generated by the basis B(t) with respect to the usual

metric in L2[t0,tp] is equivalent to the multivariant PCA of the matrix
(
A− Ā

)
P

1/2

with respect to the usual one in R
2(p+1).

Once the eigenvectors, g j, of the covariance matrix of
(
A− Ā

)
P

1/2 are obtained,
the sample paths of IX(t) are represented in terms of their principal components as
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IXω (t) =
2(p+1)

∑
j=1

ζω j f j(t), ω = 1, . . . ,n (9.3)

were f j(t) are the eigenfunctions of the sample covariance of X(t) given by f j(t) =

∑2(p+1)
l=1 fl j Bl(t) where the vector of coefficients f j = P

−1/2 g j, and the principal
components are obtained as generalized linear combinations of the sample paths of
the interpolated process

ζω j =
∫ tp

t0
IXω (t) f j(t)dt =

(
Aω − Āω

)
P

1/2 g j

where
(
Aω − Āω

)
is the ω-th row of

(
A− Ā

)
.

Finally, the stochastic estimation is the orthogonal representation which mini-
mizes the mean squared error after truncating expression (9.3)

Xq(t) = μIX (t)+
q

∑
j=1
ζ j f j(t).

Then, the dimension 2(p + 1) is reduced to q, so that an amount of variability as
closed to 1 as wanted is reached and given by

∑q
j=1λ j

∑2(p+1)
j=1 λ j

,

where λ j is the variance of the j-th principal component, ζ j, given by the j-th eigen-
value of the covariance matrix of

(
A− Ā

)
P

1/2 associated to the j-th eigenvalue g j.
Prediction by means of principal components of a stochastic process gives a con-

tinuous prediction of the process in a future time interval from discrete observations
of the process in the past which was introduced by Aguilera et al. (1997). Having
known the evolution of an stochastic process {X(t);t ∈ [T0,T1]}, PCP models esti-
mate it in a future interval {X(t);t ∈ [T1,T2]} using FPCA. The process must be of
second order, continuous in quadratic mean and squared integrable sample paths in
their corresponding intervals. If the available data are several sample paths of X(t),
the PCP model has to be estimated (see also Aguilera et al. (1999) and Valderrama
et al. (2000) for a deeper study).

Firstly, FPCA of the process in both intervals is carried out

Xq1(t) = μ1
IX (t)+

q1

∑
j=1

ξ j f j(t); t ∈ [t0 = T0,T1]

Xq2(s) = μ2
IX (s)+

q2

∑
j=1
η j g j(s); s ∈ (T1,T2)

(9.4)

Secondly, the principal components of the past that predict the principal compo-
nents of the future are selected by means of having significantly high correlation.
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Let us denote by η̃ p j
j = ∑

p j
i=1 b j

i ξi the estimator of η j, j = 1, . . . ,q2 in terms of the
p j principal components ξ j. Therefore, we can rewrite (9.4) so that

Xq2(s) = μ2
IX (s)+

q2

∑
j=1

(
p j

∑
i=1

b j
i ξi

)

g j(s); s ∈ (T1,T2) (9.5)

This is the estimated stochastic structure of X(t) in a future time interval from its
knowledge in the past. The selected PCP model contents those pairs of future-past
principal components with significant linear correlation, which are included in order
of magnitude of the proportion of future variance explained by a PCP model only
including the pair, until the relative high proportion of future variance explained is
achieved.

Finally, the evolution of any other new sample path of the process observed in
the past is predicted in the future interval using the FPCA in the future with the
principal components predicted by the past ones using equation (9.5).

9.4 Application to real data

In order to illustrate the method explained in the previous sections, we have chosen
a known example of real data, the heights of 54 girls measured at a set of 31 ages
unequally spaced along their first 18 years, which have been analyzed by Ramsay et
al. (2009). The data was organized in two groups, the first one contains 50 sample
paths to model the process and the other 4 are kept apart to forecast.

Modeling theory of Section 2 has been applied to the data and it was found
out that 4 principal components explain 98.77% of the total variability. Figure 1
illustrates it in two sample paths. Forecasting theory of Section 2 has been applied
in order illustrate the forecasting method. The past interval has been chosen [0,7] so
the future one is (7,18]. Figure 2 shows two examples. The MSE of the predictions
has become 0.5451.

9.5 Conclusions

This paper proposes a methodology for modeling monotone curves from the original
data by means of fitting cubic splines that preserve the monotonicity. The results are
similar to those of Ramsay et al. (2009) but this present modeling is more direct and
has much less computational cost.
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Fig. 9.1: Monotone curve modeling (solid line) to the observed heights of two
girls.
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Fig. 9.2: Forecasting (solid line) the heights of three girls.
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Chapter 10
Wavelet-Based Minimum Contrast Estimation of
Linear Gaussian Random Fields

Rosa M. Crujeiras, Marı́a-Dolores Ruiz-Medina

Abstract Weak consistency of the wavelet periodogram is established for a class
of linear Gaussian random fields, considering a Haar type isotropic wavelet basis.
A minimum contrast estimation procedure is introduced and the weak consistency
of the estimator is derived, following the methodology introduced by Ruiz-Medina
and Crujeiras (2011).

10.1 Introduction

Consider the class of d−dimensional linear Gaussian random fields (RFs)

X(z) =
∫

D
a(β ,z,y)ε(y)dy = A β (ε)(z),

given in terms of the kernel a(β , ·, ·), with β ∈Λ , beingΛ a compact subset of R+,
which defines the integral operator A β , where ε denotes a Gaussian white noise
on D ⊆ R

d , i.e., a generalized zero-mean Gaussian RF satisfying E[ε(φ)ε(ψ)] =

〈φ ,ψ〉L2(D), with ε(ψ) =
∫

D
ψ(x)ε(x)dx, ∀ψ ,φ ∈ L2(D). Here, a(β , ·, ·) is a semi-

parametric kernel satisfying the following condition:

C1. When ‖x− y‖ −→ 0, the following asymptotic behavior holds, for a certain
positive constant C:

a(β ,x,y)
‖x− y‖β−d/2

−→C.
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Remark. If the reproducing kernel Hilbert space (RKHS) of X is isomorphic to a
fractional Sobolev space of order β , with β ∈ (d/2,d), the class of RFs consid-
ered is included in the one studied in Ruiz-Medina and Crujeiras (2011), which
was previously introduced in Ruiz-Medina, et al. (2003) in a fractional generalized
framework.

In this work, we propose a minimum contrast estimator for β in the class of RFs
given by condition C1. The wavelet-based estimation procedure is similar to the one
proposed by Ruiz-Medina and Crujeiras (2011). Weak consistency of the wavelet
periodogram, based on Hermite expansion, and weak consistency of the minimum
contrast estimator are derived. This paper is organized as follows. In Section 2,
the wavelet scenario is specified. Asymptotic properties in the scale for the two-
dimensional wavelet transform of the kernel and the covariance function are also
obtained. Consistency of the wavelet periodogram is studied in Section 3. From
these results, the minimum contrast estimator proposed in Section 4 is proved to
be consistent. Final comments are given in Section 5, with discussion on possible
extensions.

10.2 Wavelet generalized RFs

For simplicity and without loss of generality, assume that the compact domain D
where the wavelet functions are defined, is of the form D = [−M,M]d , for a cer-
tain positive constant M. In dimension d, the continuous discrete wavelet transform
is defined in terms of the basic wavelet functions ψ i, i = 1, . . . ,2d − 1. For each
resolution level j ∈ Z, and for every x ∈ D

ΨΨΨ j,b(x) =
2d−1

∑
i=1

ψ i
j,b(x) = 2 jd/2

2d−1

∑
i=1

ψ i(2 jx−b) = 2 jd/2ΨΨΨ(2 jx−b), b ∈ Lj,

is the d−dimensional wavelet function translated at the center b. Domain Lj can be
defined as Lj = [0,2 j]d , becoming the d−dimensional space R

d
+ as j −→ ∞. Note

that, since the asymptotic results derived in this paper hold for an increasing res-
olution level in the wavelet domain, this approach corresponds to a fixed domain
asymptotic setting in the spatial domain D. Denoting by β0 the true parameter char-
acterizing the kernel, the continuous discrete wavelet RF, for b ∈ Lj and j ∈ Z, is
given by:

X(ΨΨΨ j,b) =
∫

D×D
ΨΨΨ j,b(x)a(β0,x,y)ε(y)dydx =

∫

D
A β0(ΨΨΨ j,b)(y)ε(y)dy

and the two-dimensional wavelet transform of the kernel a(β0, ·, ·) is computed as:

A β0(ΨΨΨ j,u)(ΨΨΨ j,b) =
∫

D×D
ΨΨΨ j,b(x)a(β0,x,y)ΨΨΨ j,u(y)dxdy, b,u ∈ Lj, j ∈ Z.



10 Wavelet-Based Minimum Contrast Estimation of Linear Gaussian Random Fields 65

In order to derive Lemma 1, the following condition is also assumed.
C2. The wavelet basis selected is an isotropic wavelet basis with the mother wavelet
functionΨΨΨ satisfying:

ΨΨΨ(‖z‖) =

⎧
⎨

⎩

1, 0≤ ‖z‖< 1/2,
−1, 1/2≤ ‖z‖< 1,

0, otherwise.

Lemma 1. (i) Under condition C1, as j −→ ∞, the following asymptotic approxi-
mation holds:

A β0(ΨΨΨ j,u)(ΨΨΨ j,b)� [2− j]β0+d/2CA
ΨΨΨ (β0,b,u, j), b ∈ Lj,

where lim
j−→∞

CA
ΨΨΨ (β0,b,u, j) = CA

ΨΨΨ (β0,b− u,∞) =
∫

Rd
‖h‖β0−d/2γΨΨΨ (h− (b− u))dh,

with γΨΨΨ (h− (b−u)) =
∫

Rd
ΨΨΨ(z)ΨΨΨ(z−h +(b−u))dz.

(ii) Moreover, under condition C2, for ‖b−u‖� 1,

CA
ΨΨΨ (β0,b,u,∞)=

∫

Rd
‖z‖β0−d/2

[∫

Rd
ΨΨΨ(x)ΨΨΨ (x− z+(b−u))dx

]

dz∼O
(
‖b−u‖β0−5d/2

)
.

(10.1)

Otherwise, CA
ΨΨΨ (β0,b,u,∞) =

1
(β0 + d/2)(β0 + 3d/2)

ξA
v (b−u), and

ξA
v (b−u) = ‖b−u− v‖β0+3d/2−4(‖b−u− v/2‖)β0+3d/2

+ 6‖b−u‖β0+3d/2−4‖b−u + v/2‖β0+3d/2 +‖b−u + v‖β0+3d/2,(10.2)

for v ∈ R
d
+ such that ‖v‖= 1. In particular,

lim
j→∞

CA
ΨΨΨ (β0,b, j) = CA

ΨΨΨ (β0,∞) = L̃A
d (β0) =

2(1−2−(β0+3d/2−2))
(β0 + d/2)(β0 + 3d/2)

.

Proof of Lemma 1. Under condition C1, as j −→ ∞,

A β0(ΨΨΨ j,u)(ΨΨΨ j,b) �
∫

D×D
2 jdΨΨΨ(2 jx−b)ΨΨΨ(2 jy−u)‖x− y‖β0−d/2dxdy

= 2− j(β0+d/2)
∫

Dj×Dj

ΨΨΨ(z−b)ΨΨΨ(v−u)‖z− v‖β0−d/2dzdv

= 2− j(β0+d/2)CA
ΨΨΨ (β0,b,u, j),

where D j = 2 jD = [−2 jM,2 jM]d , and by direct computation, we obtain

lim
j−→∞CA

ΨΨΨ (β0,b,u, j)=CA
ΨΨΨ (β0,b−u,∞)=

∫

Rd
‖h‖β0−d/2

[∫

Rd
ΨΨΨ(z)ΨΨΨ(z−h +(b−u))dz

]

dh
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(ii) From the fourth-order expansion of (10.2) in (1/‖b−u‖), equation (10.1) is
obtained. Note that equation (10.2) is derived by direct computation of CA

ΨΨΨ (β0,b−
u,∞) under condition C2 (see, for example, Ruiz-Medina and Crujeiras (2011) for
RFs with RKHS isomorphic to a fractional Sobolev space).

Corollary 1. Under conditions C1 and C2, as j−→∞, the two-dimensional wavelet
transform of the covariance function of X can be asymptotically approximated by

Bβ0
X (ΨΨΨ j,b,ΨΨΨ j,u)=

∫

D×D
Bβ0

X (x,y)ΨΨΨ j,b(x)ΨΨΨ j,u(y)dxdy� [2− j](2β0+d)CBX
ΨΨΨ (β0,b,u, j),

for b,u ∈ Lj, where CBX
ΨΨΨ (β0,b,u, j) =

∫

Lj

CA
ΨΨΨ (β0,b,v, j)CA

ΨΨΨ (β0,v,u, j)dv and

lim
j−→∞CBX

ΨΨΨ (β0,b,u, j) = CBX
ΨΨΨ (β0,b−u,∞) =

〈
ΨΨΨ0,b,ΨΨΨ0,u

〉
[HWβ0−d/2

]∗ ,

with HWβ0−d/2
denoting the RKHS of the fractional Brownian motion Wβ0−d/2.

Moreover, for ‖b−u‖>> 1,

CBX
ΨΨΨ (β0,b,u,∞)� O

(
‖b−u‖2β0−d

)
.

Otherwise, CBX
ΨΨΨ (β0,b,u,∞) =

1
(2β0 + d)(2β0 + 2d)

ξBX
v (b−u), with

ξBX
v (b−u) = ‖b−u− v‖2β0+2d −4(‖b−u− v/2‖)2β0+2d

+ 6‖b−u‖2β0+2d −4‖b−u + v/2‖2β0+2d +‖b−u + v‖2β0+2d ,

for v ∈ R
d
+ such that ‖v‖= 1. In particular,

lim
j→∞CBX

ΨΨΨ (β0,b, j) = CBX
ΨΨΨ (β0,∞) = L̃BX

d (β0) =
1−2−(2β0+2d−2)

(2β0 + d)(2β0 + 2d)
.

10.3 Consistency of the wavelet periodogram

The wavelet periodogram provides an unbiased nonparametric estimator of the di-
agonal of the two-dimensional wavelet transform of the covariance function. In our
setting, the wavelet periodogram at resolution level j ∈ Z and location b ∈ Lj is
defined as

S( j,b,b)=
∣
∣X(ΨΨΨ j,b)

∣
∣2 =
∣
∣
∣
∣

∫

D×D
ΨΨΨ j,b(x)a(β0,x,y)ε(y)dxdy

∣
∣
∣
∣

2

=
∣
∣
∣
∣

∫

D
[Aβ0 ]∗(ΨΨΨ j,b)(y)ε(y)dy

∣
∣
∣
∣

2

.

(10.3)
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Proposition 1. Let ω ∈ L1(Rd
+) be a weight function such as the integral in (10.4) is

well-defined. Under conditions C1 and C2, the following limit holds in probability,
as j −→ ∞:

I ( j) =
∫

Lj

ω(b)
[
S( j,b,b)−Bβ0

X (ΨΨΨ j,b,ΨΨΨ j,b)
]

db−→ 0, b ∈ Lj. (10.4)

Proof of Proposition 1. Taking into account the unbiasedness property, in order to
prove that (10.4) holds, it is sufficient to check that E(I 2( j)) tends to zero as j−→
∞. Denote by XN

W the normalized wavelet RF, which is given, at each resolution level
j ∈ Z, by

XN
W ( j,b) =

X(ΨΨΨ j,b)
[
Bβ0

X (ΨΨΨ j,b,ΨΨΨ j,b)
]1/2

, b ∈ Lj.

Consider also the function F(z(b)) = [z(b)]2 applied to the values of the normalized
wavelet RF. Function F admits an Hermite expansion with rank r = 1, which leads
to the following expression for E(I 2( j)):

E(I 2( j))=
∞

∑
k=1

C2
k

k!

∫

Lj×Lj

ω(b)ω(u)Bβ0
X (ΨΨΨ j,b,ΨΨΨ j,b)B

β0
X (ΨΨΨ j,u,ΨΨΨ j,u)Bk

XN
W
( j,b,u)dbdu,

where Ck denotes the k-th Hermite coefficient of function F with respect to the k-th
Hermite polynomial Hk, for k ∈ N and BXN

W
( j,b,u) = E

[
XN

W ( j,b)XN
W ( j,u)

]
. For j

sufficiently large, from Corollary 1, the above equation can be approximated by:

E(I 2( j)) � [2− j](4β0+2d)
∞

∑
k=1

C2
k

k!
Ik( j) with

Ik( j) =
∫

Lj×Lj

ω(b)ω(u)CBX
ΨΨΨ (β0,b, j)CBX

ΨΨΨ (β0,u, j)
[CBX
ΨΨΨ (β0,b,u, j)]k

[CBX
ΨΨΨ (β0,b, j)CBX

ΨΨΨ (β0,u, j)]k/2
dbdu.

(10.5)
For k = 1, as j −→ ∞, from Corollary 1, the integral I1( j) converges to:

I1(∞)= L̃BX
d (β0)

∫

Rd\Bd
R(0)
‖x‖2β0−dω ∗ω(∞,x)dx+

L̃BX
d (β0)

(2β0 + d)(2β0 + 2d)

∫

Bd
R(0)
ξv(x)ω ∗ω(∞,x)dx,

which is finite for ω ∈ L1
(
R

d
+
)
. Therefore, lim

j→∞(2
− j)(4β0+2d)C2

1I1( j) = 0. For k≥ 2,

the terms Ik( j) are bounded by Gk( j), applying Corollary 1 and Cauchy-Schwarz
inequality. The function Gk( j) converge to:



68 Rosa M. Crujeiras, Marı́a-Dolores Ruiz-Medina

Gk( j)
j→∞−→ L̃BX

d (β0)‖ω‖L1(Rd
+)

[∫

Rd\Bd
R(0)

‖x‖4β0−2dω ∗ω(∞,x)dx

+
1

[(2β0 + d)(2β0 + 2d)]2

∫

Bd
R(0)

[ξBX
v (x)]2ω ∗ω(∞,x)dx

]1/2

,

which is finite forω ∈L1
(
R

d
+
)
. Therefore, for any k≥ 2, lim

j→∞
(2− j)(4β0+2d)C2

k

k!
Ik( j)=

0. Hence, the integral in (10.5) goes to zero, as j −→ ∞, and weak consistency of
the functional wavelet periodogram holds.

10.4 Minimum contrast estimator

For the class of linear RFs considered and in the wavelet scenario previously estab-
lished, a minimum contrast estimator for β0 is proposed. The methodology is similar
to the one developed by Ruiz-Medina and Crujeiras (2011) for fractal RFs, and it
is based on the wavelet periodogram introduced in the previous section. Define the
contrast function:

K(β ,β0) =−
∫

Rd

[

log

(
L̃BX

d (β0)

L̃BX
d (β )

)

− L̃BX
d (β0)

L̃BX
d (β )

+ 1

]

ω(b)db,

whereω is a suitable weight function. The sequence of random variables {Uj(β ), j ∈
Z}, given by:

Uj(β ) =
∫

Lj

[

log
(

BβX(ΨΨΨ j,b,ΨΨΨ j,b)
)

+
S( j,b,b)

BβX(ΨΨΨ j,b,ΨΨΨ j,b)

]

ω(b)db, β ∈Λ ,

defines a contrast process for the contrast function K, since the sequence {Uj(β )−
Uj(β0)} converges in probability to K(β ,β0), which is positive with a unique min-

imum at β0. For each resolution level j ∈ Z, the minimum contrast estimator β̃ j is
then defined as the random variable satisfying

β̃ j = argmin
β∈Λ

Uj(β ). (10.6)

Under similar conditions to (A3-A4) of Ruiz-Medina and Crujeiras (2011) on the
asymptotic, in scale, integrability order of ω , as well as on the existence of a suit-
able sequence of equicontinuous functions with respect to β , the following result is
derived.

Proposition 2. Under conditions C1-C2 and A3-A4 in Ruiz-Medina and Crujeiras
(2011), as j −→ ∞, the minimum contrast estimator β̃ j −→ β0, in probability.
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10.5 Final comments

Asymptotic normality of the minimum contrast estimator can be obtained using cen-
tral limit results for multiple stochastic integrals, from Nualart and Pecatti (2005).
The previous result can be extended to the non-Gaussian case, in terms of Appell
polynomials expansion, provided that the functionals involved admit such an ex-
pansion. Central limit results for integral non-linear functionals and quadratic forms
involving Appell polynomials have been derived, for example, by Surgailis (2000)
(considering linear, moving average sequeces with long-range dependence) and, re-
cently, by Avram et al. (2010).
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Chapter 11
Dimensionality Reduction for Samples of
Bivariate Density Level Sets: an Application to
Electoral Results

Pedro Delicado

Abstract A bivariate densities can be represented as a density level set containing
a fixed amount of probability (0.75, for instance). Then a functional dataset where
the observations are bivariate density functions can be analyzed as if the functional
data are density level sets. We compute distances between sets and perform standard
Multidimensional Scaling. This methodology is applied to analyze electoral results.

11.1 Introduction

The most important way of political participation for people in democratic coun-
tries is certainly to vote in electoral calls. Nevertheless the participation in elections
is usually far for 100%: many people decide not going to vote for several reasons. A
relevant question is if there exists some relationship between the political ideology
of a given voter and its decision of going or not to vote in a particular election. In
Spain it is given as a fact that potential left parties voters usually participate in elec-
tions less than right parties voters. In this work we analyze the relationship between
position on the left-right political dimension and the willingness to vote. Given that
individual data are not available we use aggregated data at level of electoral districts
(”mesas electorales” in Spanish: lists of around 1000 people that vote at the same
ballot box because they live in the same small area). Specifically we use electoral
results from 2004 Spanish general elections.

For each electoral district the available information allows us to define these two
variables: participation (proportion of potential voters that finally vote) and propor-
tion of votes for right parties. Observe that this last variable is not exactly the same
as the proportion of potential voters with right political ideology. Unfortunately we
only know what is voting people that vote indeed. Nevertheless, if the size of the
electoral district is small compared with the size of the city it is sensible to believe
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that both quantities should be similar. We assume that, given the electoral district,
the political orientation (left-right) is independent from the decision of voting or
not.

We consider the 50 cities in Spain with the bigger numbers of electoral districts
(157 districts or more). For each of these cities we have a list of observations of
the bivariate random variable (participation, proportion of votes for right parties),
an observation for each electoral district. We use then a kernel density estimator to
obtain from this list an estimation of the joint distribution of these two variables in
each of the 50 cities considered in our study. Therefore we have a functional dataset
of length 50 consisting on bivariate densities.

A preliminary dimensionality reduction step is usually very useful to perform
the exploratory analysis of functional datasets. Given that the dataset we are con-
sidering consists on bivariate densities, it is possible to adapt the dimensionality
reduction techniques considered in Delicado (2011) for functional datasets formed
by unidimensional densities. Nevertheless we propose here an alternative way.

A bivariate density f (x,y) is frequently represented by some of its density level
sets, defined as L(c) = {(x,y) ∈R2 : f (x,y)≥ c}, for c > 0, or just their boundaries,
in a contour plot. Bowman and Azzalini (1997) propose to display only the contour
level plots that contain specific probabilities (they use 0.25, 0.50 or 0.75, reminisc-
ing a boxplot) as a effective way to characterize the shape of a bivariate density. The
roll of density level sets is also relevant in the area of set estimation (see Cuevas and
Fraiman 2009).

Bowman and Azzalini (1997, Section 1.3) give a very nice illustration of the
use of density level sets for exploratory data analysis. They study data on aircraft
designs from periods 1914-1935, 1936-1955 and 1956-1984. They obtain the first
two principal components and represent their joint density using a single level plot
(that corresponding to probability 0.75) for each period. In a single graphic Bowman
and Azzalini (1997, Figure 1.8) are able to summarize the way in which aircraft
designs have changed over the last century.

We borrow this way to summarize a bivariate density (the density level plot cor-
responding to probability 0.75). Therefore our functional dataset is finally formed
by 50 such density level sets. As an example Figure 11.1 shows the density level
sets corresponding to the 5 largest municipalities in Spain, jointly with the density
level set corresponding to the whole country as a reference. The standard correlation
coefficient for each case has been annotated. It is clear that there is a considerable
variability between different level sets. Moreover the relationship between participa-
tion and vote orientation is clearer when considering homogeneous sets of electoral
districts (those corresponding to a specific city) than when considering the whole
country (top left panel).
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Fig. 11.1: Example of 6 density level sets.

11.2 Multidimensional Scaling for density level datasets

The functional data we are analyzing are sets (density level sets). When looking for
a dimensionality reduction technique for this kind of data it is much more natural to
turn to Multidimensional Scaling (MDS) than to some kind of Principal Component
Analysis (PCA). The main reason is that there exist several well known definitions
of distance between sets but there is not a clear Hilbert space structure on the set of
sets allowing to define PCA for datasets of sets.

Two distances between sets used frequently (see Cuevas 2009, for instance) are
the following:

Distance in measure: Given U,V ⊆R2,

dμ(U,V) = μ(U ΔV ),

where U ΔV = (U ∪V )− (U ∩V ) is the symmetric difference of U and V , and
μ is the Lebesgue measure in R2.

Hausdorff metric: Given U,V ⊆ R2,

dH(U,V ) = inf{ε > 0 : U ⊆ B(V,ε),V ⊆ B(U,ε)},
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where for A ⊆ R2, B(A,ε) = ∪x∈AB(x,ε), and B(x,ε) is the closed ball with
center x and radius ε in R2.

In this work we use distance in measure between density level sets. Once the
distance matrix is calculated the MDS procedure follows in a standard way (see
Borg and Groenen 2005, for instance).

11.3 Analyzing electoral behavior

Figure 11.2 represents the plane of the first two principle coordinates obtained from
the MDS analysis of the distance in measure matrix between the 50 density level
sets in our study. The labels used in this graphic indicate the province where the
50 big cities are placed (observe that some of them belong to the same province).
The percentage of variability explained by these two principal coordinates is around
60%, so it could be interesting to explore additional dimensions. There is not any
nonlinearity pattern neither clustering structure.
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Fig. 11.2: Plane of the first two principle coordinates obtained from the MDS.
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In order to have a better interpretation of these first two principle coordinates
additional graphics are helpful. Jones and Rice (1992) propose the following way to
represent functional principal coordinates (or principal components). They suggest
picking just three functional data in the dataset: the data corresponding to the me-
dian principal coordinate score, and those corresponding to quantiles α and (1−α)
of these score values (α close to zero guarantees that these functional data are repre-
sentative of extreme values of principal component scores). Alternatively, functional
data corresponding to the minimum and maximum scores could go with the median
score functional data. This is exactly what we represent in Figure 11.3, using blue
color for the minimum, black color for the median and red color for the maximum.

The first principal coordinate goes from negative relationship between participa-
tion and proportion of votes to right parties (a city in the province of Santa Cruz de
Tenerife) to almost independence (a city in the province of Barcelona) to a positive
relationship (Sevilla). The interpretation of the second principal coordinate is not
so clear. We observe that the area of the density level sets decreases when mov-
ing from the minimum scores (Badajoz) to the maximum (a city in the province of
Santa Cruz de Tenerife, different from that cited when talking about the first princi-
pal coordinate), but a deeper analysis should be done in order to establish a clearer
interpretation.
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Chapter 12
Structural Tests in Regression on Functional
Variable

Laurent Delsol, Frédéric Ferraty, Philippe Vieu

Abstract This work focuses on recent advances on the way general structural testing
procedures can be constructed in regression on functional variable. Our test statistic
is constructed from an estimator adapted to the specific model to be checked and
uses recent advances concerning kernel smoothing methods for functional data. A
general theoretical result states the asymptotic normality of our test statistic under
the null hypothesis and its divergence under local alternatives. This result opens
interesting prospects about tests for no-effect, for linearity, or for reduction dimen-
sion of the covariate. Bootstrap methods are then proposed to compute the threshold
value of our test. Finally, we present some applications to spectrometric datasets and
discuss interesting prospects for the future.

12.1 Introduction

A great variety of real world issues involve functional phenomena which may be
represented as curves or more complex objects. They may for instance come from
the observation of a phenomenon over time or more generally its evolution when
the context of the study changes (e.g. growth curves, sound records, spectrometric
curves, electrocardiograms, images). It is nowadays common to deal with a large
amount of discretized observations of a given functional phenomenon that actually
gives a relevant understanding of its dynamic and regularity. Classical multivariate
statistical tools may be irrelevant in that context to take benefit from the underlying
functional structure of these observations.
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Recent advances in functional statistics offer a large panel of alternative methods
to deal with functional variables (i.e. variables taking values in an infinite dimen-
sional space) which become popular in real world studies. A general overview on
functional statistics may be found in Ramsay and Silverman (1997, 2002, 2005),
Bosq (2000), Ferraty and Vieu (2006), and more recently Ferraty and Romain
(2010). This talk focuses on the study of regression models involving a functional
covariate:

Y = r(X )+ ε,

where Y is a real valued random variable, X is a random variable taking values in
a semi-metric space (E ,d) and E[ε|X ] = 0.
A lot of works have already been done on the estimation of the regression operator
r through various versions of this model corresponding to structural assumptions on
r. The most famous example is certainly the functional linear model introduced by
Ramsay and Dalzell (1991):

Y = α0+ < α,X >
L2([0;1]) +ε, (α0,α) ∈ R×L

2([0;1]).

This model has received a lot of attention and is still a topical issue. This is illus-
trated through the contributions of Cardot et al. (1999, 2000, 2007), Ramsay and
Silverman (1997, 2005), Preda and Saporta (2005), Hall and Cai (2006), Crambes
et al. (2009), or Ferraty and Romain (2010, Chapter 2) among others.
Several other examples of models based on a given structure of r have been con-
sidered. For instance Sood et al. (2009) studied a multivariate additive model based
on the first coefficients of a functional P.C.A., Ait Saidi et al. (2008) focused on the
functional single index model, Aneiros-Perez and Vieu (2009) investigated on the
partial linear model.
On the other hand, nonparametric functional models in which only the regularity
(Hölder) of r with respect to the semi-metric d is assumed, have been considered by
Ferraty and Vieu (2000). Many references on recent contributions on this topic are
given in Ferraty et al. (2002), Masry (2005), Ferraty and Vieu (2006), Delsol (2007,
2009) together with Ferraty and Romain (2011, Chapters 1, 4, and 5).

12.2 Structural tests

12.2.1 A general way to construct a test statistic

As discussed in the previous paragraph, a lot of work as been done on the estima-
tion of the regression operator r. This work focuses on a different issue and proposes
statistical tools for the construction of testing procedures allowing to check if r has
a given structure (e.g. constant, linear, multivariate, . . . ). Such testing procedures
are interesting by themselves to test the validity of an a priori assumption on the
structure of the regression model. They are also complementary tools to estimation
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methods. They may be used as a preliminary step to check the validity of a struc-
tural assumption used to construct an estimator and may be relevant to test some
structural assumption arising from the result of r estimation. To the best of our
knowledge, the literature on this kind of problem is restricted to Cardot et al. (2003,
2004), Müller and Stadtmüller (2005) in the specific case of a linear model, Gadiaga
and Ignaccolo (2005) on no effect tests based on projection methods, and Chiou and
Müller (2007) on an heuristic goodness of fit test. Hence it seems no general theoret-
ical background has been proposed to test the validity of the different modelizations
discussed in the introduction part. In the remainder of this note R stand for a family
of square integrable operators and w a weight function. Our aim is to present and
discuss in this work a general methodology allowing to test the null hypothesis:

H0 : {∃r0 ∈R,P(r(X ) = r0(X )) = 1}

under local alternatives of the form

H1,n : { inf
r0∈R

‖r− r0‖L2(wdPX ) ≥ ηn}.

Extending the ideas of Härdle and Mammen (1993), we construct our test statistic
from an estimator r̂ adapted to the structural model (corresponding to the null hy-
pothesis, i.e. induced by R) we want to test and functional kernel smoothing tools
(K denotes the kernel):

Tn =
∫

(
n

∑
i=1

(Yi− r̂(Xi))K
(

d(Xi,x)
hn

)

)2w(x)dPX (x).

For technical reasons, we assume the estimator r̂ is constructed on a sample D1 in-
dependent from D = (X ,Yi)1≤i≤n. A theoretical result in Delsol et al. (2011) states
under general assumptions the asymptotic normality of Tn under the null hypothesis
and its divergence under the local alternatives. This result opens a large scope of
potential applications of this kind of test statistic. Here are few examples:

• test of an a priori model: R = {r0}, r̂ = r0.
• no effect test: R = {r : ∃C ∈R, r ≡C}, r̂ = Y n.
• test of a multivariate effect: R = {r : r = g◦V, V : E →R

p known,g : R
p →R}, r̂

multivariate kernel estimator constructed from (Yi,V (Xi))1≤i≤n.
• linearity test: R = {r : r = α0+ < α, . >,(α0,α) ∈ R×L

2[0;1]}, r̂ functional
spline estimator (see Crambes et al. 2009).

• test of a functional single index model: R = {r : r = g(< α, . >),α ∈ E , g : R→
R}, r̂ estimator proposed in Ait Saidi et al. (2008).

Other situations may also be considered whenever it is possible to provide an esti-
mator r̂ satisfying some conditions.
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12.2.2 Bootstrap methods to get the threshold

The practical use of our test statistic requires the computation of the threshold value.
One could propose to get it from the asymptotic distribution. However, the estima-
tion of dominant bias and variance terms is not easy, that is why we prefer to use
bootstrap procedures. The main idea is to generate, from the original sample, B sam-
ples for which the null hypothesis approximately holds. Then, compute on each of
these samples the tests statistic and take as threshold the 1−α empirical quantile of
the values we have obtained.

We propose the following bootstrap procedure in which steps 2-4 are made sepa-
rately on samples D : (Xi,Yi)1≤i≤n and D1 : (Xi,Yi)n+1≤i≤N . In the following lines
r̂K stands for the functional kernel estimator of the regression operator r computed
from the whole dataset.

Bootstrap procedure:
Pre-treatment:

1. ε̂i = Yi− r̂K (Xi)
2. ε̃i = ε̂i− ¯̂ε

Repeat B times steps 3-5:

3. Generate residuals (3 different methods NB, SNB or WB)

•NB (εb
i )1≤i≤n drawn with replacement from (ε̃i)1≤i≤n

•SNB (εb
i )1≤i≤n generated from a ”smoothed” version F̃n of the empirical cumulative

distribution function of (ε̃i)1≤i≤n (εb
i = F̃−1

n (Ui) , Ui ∼U (0,1))
•WB (εb

i ) = ε̃iVi where Vi ∼ PW fulfills some moment assumptions: E [Vi] = 0,
E
[
V 2

i

]
= 1 and E

[
V 3

i

]
= 1.

4. Generate bootstrap responses “corresponding” to H0

Y b
i = r̂ (Xi)+ εb

i

5. Compute the test statistic T b
n from the bootstrap sample (Xi,Y b

i )1≤i≤N

Compute the threshold value

6. For a test of level α , take as threshold the 1−α quantile of the sample (T b
n )1≤b≤B.

Three examples of distributions PW given in Mammen (1993) are considered. The
different methods used to generate bootstrap residuals globally lead to similar re-
sults but some of them perform slightly better in terms of level or power. ¿From the
results obtained in simulation studies, it seems relevant to use wild bootstrap meth-
ods (WB) which lead to more powerful tests and are by nature more robust to the
heteroscedasticity of the residuals.

Finally the integral with respect to PX which appears in Tn’s definition may be
approximated by Monte Carlo on a third subsample independent from D1 and D2.
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12.3 Application in spectrometry

Spectrometric curves are an interesting example of functional data. They correspond
to the measure of the absorption of a laserbeam emitted in direction of a product in
function of its wavelength. Spectrometric curves have been used to give an estima-
tion of the chemical content of a product without spending time and money in a
chemical analysis (see for instance Borggaard and Thodberg, 1992). It is usual in
chemometrics to make a pretreatment of the original curves (corresponding in some
sense to considering derivatives). The approach described in this work may be used
in this context to provide part of an answer to questions dealing with

• the validity of a model proposed by specialists.
• the existence of a link between one of the derivatives and the chemical content to

predict.
• the nature of the link between the derivatives of the spectrometric curve and the

chemical content of the product
• the validity of models in which the effect of the spectrometric curve is reduced

to the the effect of some of its features (parts of the spectrum, few points).

The use of the proposed testing procedures to address such questions is briefly dis-
cussed through the study of real world data.

12.4 Discussion and prospects

Let us first discuss shortly the impact of the semi-metric d in our testing procedures.
Assume d actually takes into account only some characteristics (e.g. derivatives,
projections, ...) X̃ of the explanatory curve X . Because of its definition the test
statistic Tn only depends on these characteristics. Hence the null and alternative
hypothesis are actually made on the regression model

Y = rd(X̃ )+ εd,

with E[εd |X̃ ] = 0. Consequently, the use of a semi-metric based on first functional
PCA scores will only be able to test assumptions on the regression model corre-
sponding to these first scores and when a semi-metric based on derivatives is used
structural assumptions concern the effect of the derivatives.
The general method described above is a first attempt in the construction of gen-
eral structural testing procedures in regression on functional variable (see Delsol,
2008, and Delsol et al., 2011 for a more detailed discussion). The use of these tests
on spectrometric data provide relevant informations on the structure of the link be-
tween the spectrometric curve and the chemical content of a product. Such tools
may be also useful in procedures that aim to extract informative features from the
explanatory curve. However it seems relevant to try to improve our approach and
propose other test statistics that does not require to split our sample into three sub-
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samples what may cause troubles in practice. To this end, we are now considering
the following test statistic:

T2,n =∑
i= j

(Yi− r̂(Xi))(Yj − r̂(X j))K
(

d(Xi,X j)
hn

)

w(Xi)w(X j)

The theoretical study of this new test statistic is in progress. However, in the case
of no effect tests, it seems T2,n have the same kind of asymptotic properties than Tn.
Moreover, the new statistic T2,n seems more powerful (from simulations made with
the same value of n). To conclude, the structural procedures presented in this paper
open a large potential scope of applications. They could be used in an interesting
way as part of an algorithm allowing to extract informative features (parts, points,
...) of the explanatory curve. An other prospect concerns their use in the choice of
the semi-metric d since they may used to test the regularity of r with respect to a
semi-metric d1 against its regularity with respect to d2 if d1 ≤ d2. We finally discuss
potential improvements and conclude on potential prospects for the future.
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Chapter 13
A Fast Functional Locally Modeled Conditional
Density and Mode for Functional Time-Series

Jacques Demongeot, Ali Laksaci, Fethi Madani, Mustapha Rachdi

Abstract We study the asymptotic behavior of the nonparametric local linear es-
timation of the conditional density of a scalar response variable given a random
variable taking values in a semi-metric space. Under some general conditions on
the mixing property of the data, we establish the pointwise almost-complete con-
vergence, with rates, of this estimator. Moreover, we give some particular cases of
our results which can also be considered as novel in the finite dimensional setting:
Nadaraya-Watson estimator, multivariate data and the independent and identically
distributed data case. On the other hand, this approach is also applied in time-series
analysis to the prediction problem via the conditional mode estimation.

13.1 Introduction

Let (Xi,Yi) for i = 1, . . . ,n be n pairs of random variables that we assume are drawn
from the pair (X ,Y ) which is valued in F × IR, where F is a semi-metric space
equipped with a semi-metric d.

Furthermore, we assume that there exists a regular version of the conditional prob-
ability of Y given X , which is absolutely continuous with respect to the Lebesgue
measure on IR and admits a bounded density, denoted by f x. Local polynomial
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smoothing is based on the assumption that the unknown functional parameter is
smooth enough to be locally well approximated by a polynomial (cf. Fan and Gij-
bels, 1996).

In this paper, we consider the problem of the conditional density estimation by using
a locally modeling approach when the explanatory variable X is of functional kind
and when the observations (Xi,Yi)i∈IN are strongly α-mixing (cf. for instance, Rio
(2000), Ferraty and Vieu (2006), Ferraty et al. (2006) and the references therein). In
functional statistics, there are several ways of extending the local linear ideas (cf.
Barrientos-Marin et al. (2009), Baı̀llo and Grané (2009), Demongeot et al. (2010),
El Methni and Rachdi (2011) and the references therein). Here we adopt the fast
functional locally modeling, that is, we estimate the conditional density f x by â
which is obtained by minimizing the following quantity:

min
(a,b)∈IR2

n

∑
i=1

(
h−1

H H(h−1
H (y−Yi))−a−bβ (Xi,x)

)2
K(h−1

K δ (x,Xi)) (13.1)

where β (., .) is a known bi-functional operator from F 2 into IR such that, ∀ξ ∈F ,
β (ξ ,ξ ) = 0, with K and H are kernels and hK = hK,n (respectively hH = hH,n) is
chosen as a sequence of positive real numbers and δ (., .) is a function from F 2

into IR such that |δ (., .)| = d(., .). Clearly, by simple algebra, we get explicitly the
following definition of f̂ x:

f̂ x(y) =
∑n

i, j=1 Wi j(x)H(h−1
H (y−Yi))

hH∑n
i, j=1Wi j(x)

(13.2)

where

Wi j(x) = β (Xi,x)(β (Xi,x)−β (Xj,x))K(h−1
K δ (x,Xi))K(h−1

K δ (x,Xj))

with the convention 0/0 = 0.

13.2 Main results

In what follows x denotes a fixed point in F , Nx denotes a fixed neighborhood of x,
S will be a fixed compact subset of IR, and φx(r1,r2) = IP(r2 ≤ δ (X ,x)≤ r1).

Our nonparametric model will be quite general in the sense that we will just need
the following assumptions:

(H1) For any r > 0, φx(r) := φx(−r,r) > 0.
(H2) The conditional density f x is such that ∃b1 > 0, b2 > 0, ∀(y1,y2)∈ S2 and ∀(x1,x2)∈

Nx×Nx :
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| f x1(y1)− f x2(y2)| ≤Cx

(
|δ b1(x1,x2)|+ |y1− y2|b2

)
,

where Cx is a positive constant depending on x.
(H3) The function β (., .) is such that:

∀y ∈ F , C1 |δ (x,y)| ≤ |β (x,y)| ≤C2 |δ (x,y)|, where C1 > 0, C2 > 0.

(H4) The sequence (Xi,Yi)i∈N satisfies:

∃a > 0,∃c > 0 such that ∀n ∈ N, α(n)≤ cn−a

where α is the mixing coefficient, and

max
i= j

IP((Xi,Xj) ∈ B(x,h)×B(x,h)) = ϕx(h) > 0

(H5) The conditional density of (Yi,Yj) given (Xi,Xj) exists and is bounded.
(H6) The kernel K is a positive, differentiable function and supported within

(−1,1).
(H7) The kernel H is a positive, bounded and Lipschitzian continuous function,

satisfying that: ∫
|t|b2H(t)dt < ∞ and

∫
H2(t)dt < ∞.

(H8) The bandwidth hK satisfies:

∃n0 ∈ IN, such that ∀n > n0, − 1
φx(hK)

∫ 1

−1
φx(zhK ,hK)

d
dz

(
z2K(z)

)
dz > C3 > 0

and

hK

∫

B(x,hK)
β (u,x)dP(u) = o

(∫

B(x,hK)
β 2(u,x)dP(u)

)

where dP(x) is the probability measure of X .
(H9) The bandwidth hH satisfies:

lim
n→∞hH = 0 and ∃β1 > 0 such that lim

n→∞nβ1 hH = ∞

(H10)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

lim
n→∞hK = 0, lim

n→∞
χ (1/2)

x (hK) logn
nhH φ2

x (hK)
= 0,

and ∃η0 > 3β1+1
a+1 , Cn

(3−a)
(a+1) +η0 ≤ hHχ

1/2
x (hK)

where χx(h) = max(φ2
x (h),ϕx(h))

Then, the following theorem gives the almost-complete convergence1 (a.co.) of f̂ x.

1 Let (zn)n∈IN be a sequence of real random variables. We say that zn converges almost-completely
(a.co.) to 0 if, and only if, ∀ε > 0, ∑∞n=1 IP(|zn|> ε) < ∞. Moreover, let (un)n∈IN∗ be a sequence of
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Theorem 13.1. Under assumptions (H1)-(H10), we obtain that:

sup
y∈S

| f̂ x(y)− f x(y)|= O
(

hb1
K + hb2

H

)
+ Oa.co.

⎛

⎝

√
χ (1/2)

x (hK) logn
nhH φ2

x (hK)

⎞

⎠ .

13.3 Interpretations and remarks

• On the assumptions: The hypotheses used in this work are not unduly restrictive
and they are rather classical in the setting of nonparametric functional statistics.
Indeed, the conditions (H1), (H3), (H6) and (H8) are the same as those used by
Benhenni et al. (2007) and Rachdi and Vieu (2007). Specifically (H1) is needed
to deal with the functional nonparametric characteristics of our model by con-
trolling the concentration properties of the probability measure of the variable
X . This latter is quantified, here, with respect the bi-functional operator δ which
can be related to the topological structure of the functional space F by taking
d = |δ |. While (H3) is a mild regularity condition permitting to control the shape
of the locating function β . Such condition is verified, for instance, if we take
δ = β . However, as pointed out in Barrientos-Marin et al. (2009), this consid-
eration of δ = β is not very adequate in practice, because these bi-functional
operators do not play the same role. We refer to Barrientos-Marin et al. (2009)
for more discussions on these conditions and some examples of β and δ . As usu-
ally in nonparametric problems, the infinite dimension of the model is controlled
by mean of the smoothness condition (H2). This condition is needed to evaluate
the bias component of the rate of convergence. Notice that the first part of the
assumption (H4) is a standard choice of the mixing coefficient in the time series
analysis, while the second part of this condition measures the local dependence
of the observations. Let us point out also that this last assumption has been ex-
ploited in the expression of the convergence rate. On the other hand, assumptions
(H7), (H9) and (H10) are standard technical conditions in the nonparametric es-
timation literature. These assumptions are imposed for the sake of simplicity and
brevity of the proofs.

• Some particular cases:

– The Nadaraya-Watson estimator: In a first attempt we will look at what hap-
pens when b = 0. It is clear that, in this particular case, the conditions (H3)
and (H8) are not necessary to get our result and thus the Theorem 13.1 can be
reformulated in the following way.

Corollary 13.1. Under assumptions (H1), (H2), (H4)-(H7), (H9) and (H10),
we obtain that:

positive real numbers; we say that zn = Oa.co.(un) if, and only if, ∃ε > 0, ∑∞n=1 IP(|zn|> εun) < ∞.
This kind of convergence implies both almost-sure convergence and convergence in probability.
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sup
y∈S

| f̂ x
NW (y)− f x(y)|= O

(
hb1

K + hb2
H

)
+ Oa.co.

⎛

⎝

√
χ (1/2)

x (hK) logn
nhH φ2

x (hK)

⎞

⎠ ,

where f̂ x
NW (y) is the popular Nadaraya-Watson estimator.

– The multivariate case: In the vectorial case, when F = IRp for p ≥ 1, if
the probability density function of the random variable X (respectively, the
joint density of (Xi,Xj)) is continuously differentiable, then φx(h) = O(hp)
and ϕx(h) = O(h2p) which implies that χx(h) = O(h2p). Then our Theorem
13.1 leads straightforwardly to the following corollary.

Corollary 13.2. Under assumptions (H2), (H3) and (H5)-(H10), we obtain
that:

sup
y∈S

| f̂ x(y)− f x(y)|= O
(

hb1
K + hb2

H

)
+ Oa.co.

(√
logn

nhH hp
K

)

.

We point out that, in the special case when F = IR our estimator is identified
to the estimator studied in Fan and Yim (2004) by taking β (x,X) = |X − x|=
δ (x,X).

– The i.i.d. and finite dimensional case: the conditions (H4), (H5) and the last
part of (H10) are automatically verified and: χx(h) = ϕx(h) = φ2

x (h). So, we
obtain the following result.

Corollary 13.3. Under assumptions (H1)-(H3) and (H6)-(H9), we have that:

sup
y∈S

| f̂ x(y)− f x(y)|= O
(

hb1
K + hb2

H

)
+ Oa.co.

(√
logn

nhH φx(hK)

)

.

• Application to functional time-series prediction: The most important application
of our study, when the observations are dependent and of functional nature, is the
prediction of future values of some continuous-time process by using the condi-
tional mode θ (x) = argsupy∈S f x(y) as a prediction tool. This latter is estimated

by the random variable θ̂ (x) which is such that:

θ̂ (x) = argsup
y∈S

f̂ x(y).

In practice, we proceed as follows: let (Zt)t∈[0,b[ be a continuous-time real val-
ued random process. From Zt we may construct N functional random variables
(Xi)i=1,...,N defined by:

∀t ∈ [0,b[, Xi(t) = ZN−1((i−1)b+t)

and a real characteristic Yi = G(Xi+1). So, we can predict the characteristic YN

by the conditional mode estimator: Ŷ = θ̂ (XN) given by using the (N−1) pairs
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of (Xi,Yi)i=1,...,N−1. Such a prediction is motivated by the following consistency
result.

Corollary 13.4. Under the hypotheses of Theorem 13.1, and if the function f x is
j-times continuously differentiable on the topological interior of S with respect
to y, and that:

⎧
⎨

⎩

f x(l)(θ (x)) = 0, if 1≤ l < j
and f x( j)(·) is uniformly continuous on S
such that | f x( j)(θ (x))|> C > 0,

(13.3)

then we get:

|θ̂ (x)−θ (x)| j = O(hb1
K )+ O(hb2

H )+ Oa.co.

⎛

⎝

√
χ (1/2)

x (hK) logn
nhH φ2

x (hK)

⎞

⎠ .
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Chapter 14
Generalized Additive Models for Functional
Data

Manuel Febrero-Bande, Wenceslao González-Manteiga

Abstract The aim of this paper is to extend the ideas of generalized additive models
for multivariate data (with known or unknown link function) to functional data co-
variates. The proposed algorithm is a modified version of the local scoring and back-
fitting algorithms that allows for the non-parametric estimation of the link function.
This algorithm would be applied to predict a binary response example.

14.1 Introduction

For multivariate covariates, a Generalized Linear Model (GLM) (McCullagh and
Nelder, 1989) generalizes linear regression by allowing the linear model to be re-
lated with a response variable Y which is assumed to be generated from a partic-
ular distribution in the exponential family (normal, binomial, poisson,...). The re-
sponse is connected with the linear combination of the covariates, Z, through a link
function. Generalized Additive Models (GAM) (Hastie and Tibshirani, 1990) are
an extension of GLMs in which the linear predictor is not restricted to be linear
in the covariates but is the sum of smoothing functions applied to the covariates.
Some other alternatives are the Single Index Models (SIM) (Horowitz, 1998), and
the GAM with an unknown link function (Horowitz, 2001), the latter nesting all the
previous models. Our aim is to extend these ideas to the functional covariates. There
are some previous works in this direction. The functional logit model is considered
in Escabias et al. (2004, 2006) using principal components or functional PLS to
represent the functional data. A similar idea is used in Müller and Yao (2008) to
extend additive models to functional data. The aim of this paper is to extend the
local scoring and backfitting algorithm to functional data in a non-parametric way.
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In Section 2 we describe some background in GLM and GAM focused in binary re-
sponse regression models. If the link is supposed to be known, the procedure could
be extended to other exponential distribution families. If not, some modifications
should be done. Section 3 is devoted to describe a generalized version of the local
scoring algorithm that allow us (a) to estimate non-parametrically the GAM (with
unknown link function), and thus (b) to obtain the corresponding predictive equa-
tions. In the nonparametric estimation process, kernel smoothers are used, and the
bandwidths are found automatically by generalized cross-validation. Finally, section
4 is devoted to applications.

14.2 Transformed Binary Response Regression Models

Let Y be a binary (0/1) response variable, and Z = {X i}p
i=1 a set of functional

covariates with values in the product of the p infinite dimensional spaces E =
E 1× . . .×E p. In this framework, denoting p(Z) = p(Y = 1|Z) and mimicking the
generalized linear model (GLM) (McCullagh and Nelder, 1989), the model takes
the form:

p(Z) = H(ηz) = H(β0 + 〈Z,β 〉) (14.1)

where β is a functional parameter taking values in E and H is a fixed increasing
monotone link function, describing the functional relationship between p(Z) and the
systematic component ηz = 〈Z,β 〉. Other possibility that does not asume linearity
in the covariates is to adapt to functional context the GAM model. The GAM can
be expressed as:

p(Z) = H(ηz) = H

(

β0 +
p

∑
j=1

f j(X j)

)

(14.2)

where the partial function f j’s are assumed to be unknown but smooth. The above
models make the hypothesis that the link function has a known form. This fixed
form is, however, rarely justified. Respect to this, the semiparametric single index
model (SIM)(Horowitz, 1998) generalizes the GLM (14.1) by allowing the link to
be an arbitrary smooth function that has to be estimated from the data. The SIM can
be expressed as:

p(Z) = H(ηz) = H(β0 + f (〈Z,β 〉)) . (14.3)

The main goal of this paper is to propose an algorithm to solve this broader class
of models to deal even in those practical situations in which there is not enough
information either about the form of the link (as in the SIM) or about the shape of
the partial functions (as in the GAM). Such a general formulation will be presented
here as G-GAM (GAM with unknown link function) with the purpose of widening
the assumptions regarding the link in generalized additive models.
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14.3 GAM: Estimation and Prediction

A GAM (or a G-GAM) takes the form given in (14.2), where the link H is a known
(an unknown) increasing monotone function. In this section we propose to adapt
the techniques shown in Roca-Pardiñas et al (2004) in such a way that it will per-
mit the non-parametric estimation of the partial functions f j and, if needed the joint
non-parametric estimation of the link H, when the covariates are curves. But before
estimating the partial functions and the link, some restrictions have to be imposed
in order to ensure the GAM (G-GAM) identification. This is an usual topic in multi-
variate GAM and SIM models. In the GAM context, identification is guaranteed by
introducing a constant β0 into the model and requiring a zero mean for the partial
functions (E( f j) = 0). In the SIM and G-GAM, however, given that the link function
is not fixed, it is necessary to establish futher conditions in order to avoid different
combinations of H and f js that could lead to the same model. In this paper, when
estimating a GAM we impose the condition:

1. (General condition) E [ f j] = 0,( j = 1, . . . , p)

2. (G-GAM only) β0 = 0 and E

[(
∑p

j=1 f j

)2
]

= 1.

These are the same two conditions as in Roca-Pardiñas et al. (2004). Note that, from
these conditions, the systematic component ηz becomes standardized.

The proposed algorithm is as follows:
For a given (Z,Y ), the local scoring maximizes an estimation of the expected

log-likelihood E [l{ηz;Y}|Z], being

l{ηz;Y}= Y log [H(ηz)]+ (1−Y) log [1−H(ηz)] (14.4)

by solving iteratively a reweighted least squares problem in the following way.
In each iteration, given the current guess η̂0

Z , the linearized response Ỹ and the
weight W̃ are constructed as

Ỹ = η̂0
Z +

Y −H(η̂0
Z)

H′(η̂0
Z)

, and Ŵ = Var(Ỹ |Z)−1 =
H′(η̂0

Z)2

H(η̂0
Z)
(
1−H(η̂0

Z)
)

(14.5)
H′ being the first derivative of H. To estimate the f js, we fit an additive regression
model to Ỹ , treating it as a response variable with associated weight Ŵ . The resulting
estimation of η̂Z is η̂0

Z of the next iteration. This procedure must be repeated until
small changes in the systematic component. For the estimation of the f js and H the
following two alternating loops must be perfomed.

Loop 1. Let η̂0
Z , p̂0(Z) = Ĥ0(η̂0

Z) and Ĥ′0(η̂0
Z) be the current estimates. Re-

placing functions H and H′ by their current estimates, Ĥ0 and Ĥ′0, in formulas
given in (14.5), η̂Z = β0 +∑p

j=1 f̂ j(X j) is then obtained by fitting an additive

model of Ỹ on Z with weights Ŵ . Here we use backfitting techniques based on
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Nadaraya-Watson kernel estimators with bandwith automatically chosen by Gener-
alized Cross-Validation.

Loop 2. (G-GAM only). Fixing η̂Z , the two estimates p̂0(Z) = Ĥ(η̂Z) and
Ĥ′(η̂Z) are then obtained by fitting a regression model of Y on Z weighted by
(

p̂0(Z)
(
1− p̂0(Z)

))−1
. Here we use linear local kernel estimators in order to have

estimations of the first derivative.
These two loops are repeated until the relative change in deviance is negligible.
At each iteration of the estimation algorithm, the partial functions are estimated

by applying Nadaraya-Watson weighted kernel smoothers to the data {X j,R j}with
weights Ŵ , R j being the residuals associated to X j obtained by removing the effect
of the other covariates. In this paper, for each f̂ j the corresponding bandwidth h j is
selected automatically by minimizing, in each of the cycles of the algorithm, the
weighted GCV error criterion whereas the bandwidth for estimating the link func-
tion (if needed) is found minimizing the cross-loglikelihood error criterion (analo-
gous to (14.4)).

14.4 Application

In this section, we present an application of GAM model (14.2) to the Tecator
dataset. This data set was widely used in examples with functional data (see Ferraty
& Vieu, 2006) to predict the content of fat content on samples of finely chopped
meat. For each food sample, the spectrum of the absorbances recorded on a Tecator
Infratec Food and Feed Analyzer working in the wavelength range 850-1050 mm by
the near-infrared transmission (NIT) principle is provided also with the fat, protein
and moisture contents, measured in percent and determined by analytic chemistry.
We had n = 215 independent observations usually divided into two data sets: the
training sample with the first 165 observations and the testing sample with the oth-

ers. In this study, we are trying to predict Y = I{Fat > 65|Z} where Z =
(
A ,A

′′)

being A the absorbances and A
′′

its second derivative. The use of the second
derivative is justified by previous works (see for example Aneiros-Pérez & Vieu,
2006, among others) where those models with information about the second deriva-
tive have better prediction results.

So, in this case the model can be expressed:

E(Y = 1|Z) = p(Z) = p(A ,A
′′
) = H(ηz) = H

(
β0 + f1(A )+ f2(A

′′
)
)

(14.6)

where H is the logit link.
The curves and the second derivative are shown in figure 14.1. Here, the red

group (fat over 65%) is clearly quite well separated when considering the second
derivative and quite mixing when considering the spectrum itself. This suggests
that the relevant information about high percentage of fat is mainly related with
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Fig. 14.1: Spectrum and second derivative of training sample coloured by binary
response
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Fig. 14.2: Final results with the effects of every functional covariate

the second derivative. This impression could be confirmed in figure 14.2 where the
contribution of every functional covariate to η are shown in central and right plots.
The spectrum curves show a chaotic behaviour respect to η whereas the second
derivative of these curves shows a clearly increasing pattern. Indeed, the trace of
the smoothing matrices S1, S2 associated with f1, f2 are respectively 1.64 and 67.12
which indicates a higher contribution of the second covariate. Classifying every
observation according to the estimated probability, the percentage of good classifi-
cation in the training sample is 96.36% which raises to 98% in the testing sample.

We have also repeated this analysis 200 times changing at random which data are
included in the training sample and keeping the size of the training sample in 165
observations. The results are summarized in table 14.1 and are quite promising. As
a conclusion, we have proposed an algorithm to estimate a wide class of regression
models for functional data with response belonging to the exponential family. Nev-
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Sample Min. 1st. Qu. Median Mean 3rd. Qu. Max.
Training 91.5% 96.4% 97.0% 97.2% 98.2% 100%
Testing 86.0% 94.0% 96.0% 95.6% 98.0% 100%

Table 14.1: Percentage of good classification

ertheless, some two questions arise in the application to real data: (i) the algorithm is
quite high consuming specially when the link function have to be estimated and the
convergence is slow and, (ii) the error criteria for automatic choice of bandwidths
must be revised in order to work properly. It seems that GCV and CV criteria give
small bandwidths.
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Chapter 15
Recent Advances on Functional Additive
Regression

Frédéric Ferraty, Aldo Goia, Enersto Salinelli, Philippe Vieu

Abstract We introduce a flexible approach to approximate the regression function
in the case of a functional predictor and a scalar response. Following the Projection
Pursuit Regression principle, we derive an additive decomposition which exploits
the most interesting projections of the prediction variable to explain the response.
The goodness of our procedure is illustrated from theoretical and pratical points of
view.

15.1 The additive decomposition

Let (X ,Y ) be a centered r.v. with values in H×R where H =
{

h :
∫

I h2 (t)dt < +∞
}

,
I interval of R, is a separable Hilbert space equipped with the inner product 〈g, f 〉=
∫

I g(t) f (t)dt and induced norm ‖g‖2 = 〈g,g〉. The regression problem is stated in
a standard way as

Y = r [X ]+E

with r [X ] = E [Y |X ]. As usual, we assume E [E |X ] = 0 and E
[
E 2|X]< ∞.

We approximate the unknown regression functional r by a finite sum of terms

r [X ]≈
m

∑
j=1

g∗j
(〈
θ ∗j ,X

〉)
(15.1)
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Università del Piemonte Orientale, Novara, e-mail: ernesto.salinelli@eco.unipmn.it

Philippe Vieu
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where θ ∗j ∈ H with
∥
∥
∥θ ∗j
∥
∥
∥

2
= 1, g∗j , for j = 1, . . . ,m, are real univariate functions

and m is a positive integer to determine. The aim is to project X onto the predictive
directions θ ∗1 , θ ∗2 , . . . that are the most interesting for explaining Y and, at the same
time, describing the relation with Y by using a sum of functions g∗j . We make this by

looking at the pairs
(
θ ∗j ,g∗j

)
iteratively. At first step, we determine θ ∗1 by solving

min
‖θ1‖2=1

E

[
(Y −E [Y | 〈θ1,X〉])2

]
.

Once θ ∗1 is obtained, we have g∗1(u) = E [Y |〈θ ∗1 ,X〉= u]. If we set E1,θ∗1 = Y −
g∗1 (〈θ ∗1 ,X〉), then E1,θ∗1 and 〈θ ∗1 ,X〉 are uncorrelated. So, in an iterative way, we
can define

E j,θ∗j = Y −
j

∑
s=1

g∗s (〈θ ∗s ,X〉) j = 1, . . . ,m

with at each stage E

[
E j,θ∗j |

〈
θ ∗j ,X

〉]
= 0. Then, one can obtain for j > 1 the j-th

direction θ ∗j by solving the minimum problem

min
‖θ j‖2

=1
E

[(
E j−1,θ∗j−1

−E

[
E j−1,θ∗j−1

|〈θ j,X
〉])2
]

and then define the j-th component as g∗j(u) = E

[
E j−1,θ∗j−1

|〈θ ∗j ,X〉= u
]
.

By this way, the directions θ ∗j entering in (41.8) are explicitely constructed and so,
after the m-th step, one has the additive decomposition with E

[
Em,θ∗m | 〈θ ∗m,X〉]= 0:

Y =
m

∑
j=1

g∗j
(〈
θ ∗j ,X

〉)
+Em,θ∗m .

15.2 Construction of the estimates

We illustrate how to estimate the functions g∗j and θ ∗j from a sample (Xi,Yi), i =
1, . . . ,n, drawn from (X ,Y ). We base the procedure on an alternating optimization
strategy combining a spline approximation of directions and the Nadaraya-Watson
kernel regression estimate.
Denote by Sd,N the (d + N)-dimensional space of spline functions defined on I with
degree d and with N−1 interior equispaced knots (with d > 2 and N > 1, integers).
Let
{

Bd,N,s
}

be the normalized B-splines. For j = 1, . . . ,m, the spline approximation
of θ j is represented as γT

j Bd j ,Nj (t), where Bd j ,Nj (t) is the vector of all the B-splines
and γ j is the vector of coefficients satisfying the normalization condition
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γT
j

∫

I
Bd j ,Nj (t)Bd j ,Nj (t)

T dt γ j = 1. (15.2)

The estimation procedure is based on the following steps:

• Step 1 - Initialize the algorithm by setting m = 1 and current residuals Êm−1,γ̂m−1,i =
Yi, i = 1, . . . ,n.

• Step 2 - Choose the dimension Nm + dm of Sdm,Nm and fix the initial direction

setting the vector of inital coefficients γ(0)
m satisfying (15.2).

Find an estimate ĝ−i

m,γ(0)
m

of gm using the Nadaraya-Watson kernel regression ap-

proach excluding the i-th observation Xi:

ĝ−i

m,γ(0)
m

(z) =∑
l =i

Km

(
z−(γ0

m)T
bm,l

hm

)

∑l =i Km

(
z−(γ0

m)T
bm,l

hm

) Êm−1,γ̂m−1,l

where bm,l =
〈
Bdm,Nm ,Xl

〉
.

Then, compute an estimate γ̂m by minimizing

CVm (γm) =
1
n

n

∑
i=1

[(

Êm−1,γ̂m−1,i− ĝ−i

m,γ(0)
m

(
γT

mbm,i
)
)2
]

over the set of vectors γm ∈ R
Nm+dm satisfying (15.2). Update γ(0)

m = γ̂m, and
repeat the cycle until the convergence: the alghoritm terminates when the varia-
tion of CVm passing from the previous to the current iteration (normalized by the
variance of current residuals) is positive and less than a prespecified threshold.

• Step 3 - Let un be a positive sequence tending to zero as n grows to infinity. If
the penalized criterion of fit

GCV (m) =
1
n

n

∑
i=1

⎡

⎣

(

Êm−1,γ̂m−1,i−
m

∑
j=1

ĝ−i
m,γ̂m

(
γ̂T

mbm,i
)
)2
⎤

⎦(1 + un)

does not decrease, then stop the algorithm. Otherwise, construct the next set of
residuals

Êm,γ̂m,i = Êm−1,γ̂m−1,i− ĝm,γ̂m
(
γ̂T

mbm,i
)
,

update the term counter m = m+ 1, and go to Step 2.

Once the m∗ most predictive directions θ ∗j and functions g∗j which approximate the
link between the functional regressor and the scalar response are estimated, it could
be possible to improve the prediction performances, by using a boosting procedure
with a final full nonparametric step: we compute the residuals
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Yi−
m∗

∑
j=1

ĝ j,θ̂ j

(〈
θ̂ j,Xi

〉)

and we estimate the regression function between these residuals and the whole func-
tional regressors Xi by using the Nadaraya-Watson type estimator.

15.3 Theoretical results

We resume the most important theoretical results. At the first step, supposing that
the directional parameters θ1, . . . ,θm are fixed/known, we state that one can estimate
each component involved in the additive decomposition without being affected by
the dimensionality of the problem. In fact the rates of convergences obtained are the
optimal ones for univariate regression problems. More precisely, assuming that i)
the functions g j,θ j satisfy a Hölder condition of order β and has q j > 0 continuous
derivatives, ii) each kernel Kj has support (−1,1), is of order k j (with k j ≥ q j and

k j < k j−1) and each bandwith h j satisfies h j ∼
(

1
n

) 1
2k j+1 , then for n→ ∞ one has:

sup
u∈C

∣
∣
∣ĝ j,θ j(u)−g j,θ j(u)

∣
∣
∣ = O

⎛

⎝
(

logn
n

) β
2β+1

⎞

⎠ , a.s.

and

E

[∫

C

(
ĝ j,θ j (u)−g j,θ j(u)

)2
du

]

∼
(

1
n

) 2k j
2k j+1

where C is a compact subset of R.
This first result can be used for deriving the optimality of the estimate θ̂1, . . . , θ̂m for
any fixed value m, as n grows to infinity. In particular we prove that the estimated
directions θ̂ j, j = 1, . . . ,m, are L2-asymptotically optimal in the sense that they min-
imize, as n grows to infinity, the following L2 theoretical measure of accuracy:

MISE j(θ j) = E

[∫

C

(
g j,θ∗j (u)− ĝ j,θ j(u)

)2
du

]

.

In fact, under suitable hypothesis on the approximation space in which we work and
on the distribution of the functional variable X , one has for any j = 1, . . . ,m:

MISE j(θ̂ j)

MISE j(θ̃ j)
→ 1, a.s., as n→ ∞

where θ̃ j is the theoretical L2-optimal value of θ j defined as θ̃ j = argminθ j∈Θ MISE j(θ j).
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15.4 Application to real and simulated data

The methodology developed (named FPPR in the sequel) is applied to real and sim-
ulated data in order to asses its performances. For each case considered, we compute
the estimates on a training set and the goodness of prediction is evaluated on a test-
ing sample by using the Mean Square Error of Prediction (MSEP):

MSEP =
1

nout

nout

∑
i=1

(yi− ŷi)2

where, yi and ŷi are the true value and the corresponding prediction, and nout is
the size of the testing sample. The results are compared with those obtained by the
functional linear model (FLM) and the nonparametric method (NPM) based on the
Nadaraya-Watson approach.
About the simulation study, we present here only a significant example among many,
and we consider the model

Yi =
∫ 1

−1
Xi (t) log |Xi (t)|dt +σEi , i = 1, . . . ,300

where curves Xi are generated according to

Xi (t) = ai + bit
2 + ci exp(t)+ sin(dit) , t ∈ [−1,1]

with ai (respectively bi,ci and di) uniformly distributed on (0,1) (respectively on
(0,1), (−1,1) and (−2π ,2π)). We work with both dense and sparse design of mea-
surement locations, corresponding to 100 and respectively 6 equispaced points. The
r.v. Ei are i.i.d. with zero mean and unitary variance, and σ is equal to ρ times
(ρ = 0.1, 0.3) the standard deviation of the regression functional. We consider two
distributions of error: the standard normal N (0,1) and the standardized gamma
γ (4,1), which is right-skewed. We base our study on samples of 300 couples (Xi,Yi):
we use the first 200 as training-set and the remaining 100 as testing-set. The Table
15.1 provides both the MSEP and MSEP divided by the empirical variance of Y ’s
(in brackets). We can note that it is sufficient a one step FPPR (eventually followed
by a full nonparametric on residuals) to achieve superior results with respect to the
NPM approach.
For the application to real data, we refer to the Tecator data-set, a benchmark for test-
ing regression models. The data-set consists of 215 Near Infrared (NIR) absorbance
spectra of finely chopped pure meat samples, recorded on a Tecator Infratec Food
Analyzer in the wavelength range 850-1050 nm. Each functional observation is dis-
cretized over 100 channel spectrum of absorbance; to every curve corresponds a
content in percentage of water, fat and protein determined by analytic chemistry.
Our goal is to predict the fat content on the basis of its NIR absorbance spectrum.
The data set has been split in a training-set including the first 160 elements and a
testing-set with the remaining 55 ones. Since spectrometric curves suffer from a cal-
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ρ = 0.1, N (0,1) ρ = 0.1, γ (1,4) ρ = 0.3, N (0,1) ρ = 0.3, γ (1,4)
Method Dense Sparse Dense Sparse Dense Sparse Dense Sparse
FLM 0.0849 0.0817 0.1059 0.1020 0.1378 0.1337 0.1838 0.1786

(0.2629) (0.2530) (0.2741) (0.2638) (0.3626) (0.3519) (0.3679) (0.3576)
NPM 0.0423 0.0422 0.0627 0.0652 0.0953 0.0957 0.1426 0.1466

(0.1310) (0.1306) (0.1622) (0.1688) (0.2509) (0.2520) (0.2856) (0.2936)
FPPR (m = 1) 0.0389 0.0400 0.0502 0.0507 0.0846 0.0854 0.1252 0.1107

(0.1205) (0.1238) (0.1298) (0.1313) (0.2228) (0.2248) (0.2507) (0.2217)
FPPR & NPM 0.0304 0.0320 0.0370 0.0380 0.0803 0.0817 0.1086 0.0979

(0.0942) (0.0990) (0.0956) (0.0983) (0.2114) (0.2151) (0.2174) (0.1959)

Table 15.1: MSEP and Relative MSEP for the simulated data.

ibration problem intrinsic to the NIR spectrometer analyzer, the second derivative
spectra is used.
We have run our procedure and we have stopped the algorithm at m̂ = 2. A pure non-
parametric step on the residuals after these two steps has been performed. The out-
of-sample performances, collected in Table 15.2, show that our method is equivalent
to the nonparametric estimation and, using the boosting procedure, we have the best
results.

Method FLM NPM FPPR (Step 1) FPPR (Steps 1 & 2) FPPR & NPM
MSEP 7.174 1.915 3.289 2.037 1.647

Table 15.2: MSEP for the Tecator data.

To conclude, this additive functional regression is a good predictive tool (compara-
ble with the nonparametric approach in some situations) while providing interesting
outputs for describing the relationship: the predictive directions and the additive
components.
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Chapter 16

Regression with Scalar Response

Frédéric Ferraty, Adela Martı́nez-Calvo, Philippe Vieu

Abstract In this work, we have focused on the nonparametric regression model
with scalar response and functional covariate, and we have analyzed the existence
of underlying complex structures in data by means of a thresholding procedure.
Several thresholding functions are proposed, and a cross-validation criterion is used
in order to estimate the threshold value. Furthermore, a simulation study shows the
effectiveness of our method.

16.1 Introduction

Many recent contributions have studied the functional regression model with scalar
response from both parametric viewpoint (see Ramsay and Silverman (2005)) and
nonparametric one (see Ferraty and Vieu (2006)). In this work, we have consid-
ered the more general nonparametric framework, and we have studied the regression
model given by

Y = r(X)+ ε, (16.1)

where Y is a real random variable, X is a random variable valued in a separable
Hilbert space (H ,〈·, ·〉), r : H → R is the regression operator, and ε is a real cen-
tered random variable such that E(ε2) = σ2

ε .
Sometimes we are confronted with complex regression structures which are un-

likely detectable using standard graphical or descriptive techniques (for instance,
the existence of several subsamples of curves or different regression models in the
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sample). The objective of this work is to present an exploratory method that allows
us to discover certain kind of hidden structures. Our approach analyzes the existence
of threshold in the covariable X and/or the real response Y and, when the threshold
exists, estimate its value by means of a cross-validation procedure. Moreover, the
cross-validation criterion can be plotted and used as a graphical support to decide if
there is any type of threshold in the data. We have tested our method with a simula-
tion study and several real data applications. However, space restrictions forced us
to reduce the simulation results and remove real data applications from this paper.

16.2 Threshold estimator

The key of our procedure is to rewrite the regression operator r(x) = E(Y |X = x)
as the sum of two components as follows. First of all, let us fix a function Ψ :
H ×R → E , where E is a beforehand fixed space, and an associated set of pairs
{(Eτ1 ,Eτ2 )}τ∈Tn such that Eτs ⊂ E for s ∈ S = {1,2}, and

P(Ψ(X ,Y ) ∈
⋂

s∈S

Eτs ) = 0, P(Ψ(X ,Y ) ∈
⋃

s∈S

Eτs ) = 1, ∀τ ∈ Tn.

¿From now on, let {(Xi,Yi)}n
i=1 be a sample of independent and identically dis-

tributed pairs as (X ,Y ). For each observation (Xi,Yi), let us define δτi,s = 1{Ψ(Xi,Yi)∈Eτs }
and Y τi,s = Yiδτi,s, for i ∈ {1, . . . ,n} and s ∈ S.

Consequently, the regression model (16.1) can be expressed as

Yi =∑
s∈S

Y τi,s =∑
s∈S

rτs (Xi)+ εi = r(Xi)+ εi, for i = 1, . . . ,n,

where rτs (x) = E(Y 1{Ψ(X ,Y )∈Eτs }|X = x) for s ∈ S. Once we have written the regres-
sion operator as r(x) =∑s∈S rτs (x), a new family of estimates can be built considering
separately each component, that is,

r̂τ(x) :=∑
s∈S

r̂τs (x), ∀τ ∈ Tn, (16.2)

where each r̂τs is constructed from {(Xi,Y τi,s)}n
i=1. In particular, for each s ∈ S, we

have used the following kernel-type estimator

r̂τs (x) =
∑n

i=1 Y τi,sK(h−1
s ||Xi− x||)

∑n
i=1 K(h−1

s ||Xi− x||) ,

where || · ||= 〈·, ·〉1/2 is the induced norm of H , K is a kernel function, and hs is a
sequence of bandwidths such that hs ∈ Hn ⊂ R

+.
Let us remark that, when the same bandwidth is selected for the two components

(i.e., h = h1 = h2), the proposed estimator (16.2) is just the standard kernel-type
estimator given by
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r̂(x) =
∑n

i=1 YiK(h−1||Xi− x||)
∑n

i=1 K(h−1||Xi− x||) , (16.3)

which was studied in the recent literature (see Ferraty and Vieu (2006) or Ferraty et
al. (2007)).
Threshold function: some examples
Our method needs the user to select a threshold function in advance, and this choice
should be done as far as possible in accordance with the pattern that user wants to
find in the data. Some interesting threshold functions can be taken into consideration
when E = R, and Eτ1 = (−∞,τ] and Eτ2 = (τ,+∞) for each τ ∈ Tn.

When we suspect there is a threshold connected to the response, we can con-
sider functions which only depend on Y ,Ψ(x,y) = f (y). According to the kind of
structure we want to detect, we will select the most adequate function (for instance,
f (y) = |y|, f (y) = log(y), f (y) = exp(y), f (y) = cos(y),. . . ).

If we look for a threshold related to the covariable, thenΨ(x,y) = g(x) and we
can use any norm or semi-norm on H . For example, one can consider the following
family of threshold functions

gd(x) = ||x(d)||,

where x(d) is the d-derivative of the curve x (if d = 0, g is the norm of H ). On the
other hand, if we select an orthonormal basis of H , {e j}+∞

j=1, and project the data
onto the first J elements, we can define

gJ(x) = ||xJ||J ,

where xJ = (〈x,e1〉, . . . ,〈x,eJ〉)t , and || · ||J is a norm in R
J (e.g., gJ(x) =

√
xt

JMxJ

with M a fixed J × J-matrix). Furthermore, other type of datasets can lead us to
choose g(x) = maxt |x(t)|, g(x) =

∫
x(t)dt, g(x) = ||x− x0|| for a fixed x0 ∈H ,. . .

Obviously, we can select more complicatedΨ such as threshold functions which
depend simultaneously on X and Y , or related with the projection on several direc-
tions. However, we must bear in mind that these options probably imply an incre-
ment of the computational cost of estimating process.

16.3 Cross-validation criterion: a graphical tool

In our estimator (16.2), there are clearly three parameters which need to be es-
timated: the threshold τ , and the two bandwidths (h1,h2). From now on, we are
going to simplify notation using ω ≡ (τ,h1,h2), and Ω ≡ Tn×Hn×Hn. To obtain
adequate values for ω , we propose to use one of the most extended techniques in
the literature: a cross-validation method. In our case, the aim is to find ω ∈ Ω such
that minimizes the next cross-validation criterion
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CV (ω) =
1
n

n

∑
j=1

(Yj − r̂τ,(− j)(Xj))2,

being

r̂τ,(− j)(x) =∑
s∈S

r̂τ,(− j)
s (x) =∑

s∈S

r̂τ,(− j)
s,N (x)

r̂τ,(− j)
s,D (x)

=∑
s∈S

1
n ∑i= j Y

τ
i,sΔi,s(x)/E(Δ0,s(x))

1
n ∑i= jΔi,s(x)/E(Δ0,s(x))

.

Hence, we estimate ω by ωCV = argminω∈Ω CV (ω).
Moreover, selecting a grid of possible τ values and plotting CV (ωCV (τ)), where

ωCV (τ) = argminh1,h2∈Hn CV (ω), we are going to obtain a constant graphic if there
is no threshold in the data, or a convex curve with minimum in τ0 when the theshold
exists for τ = τ0. As a result, depicting CV criterion as function of τ becomes in a
graphical tool in order to analyse the existence of threshold in data.

The optimality of our cross-validation procedure with respect to the mean inte-
grated squared error given by

MISE(ω) = E((r(X0)− r̂τ(X0))2),

is shown in the following theorem which ensures thatωCV approximates the optimal
choice in terms of MISE criterion (see Ait-Saı̈di et al. (2008) for a similar result in
the single-functional index model context).

Theorem 16.1. Under certain hypotheses,

MISE(ω∗)
MISE(ωCV )

→ 1 a.s.

where ω∗ = argminω∈Ω MISE(ω) and ωCV = argminω∈Ω CV (ω).

Furthermore, the next result shows that CV and MISE criteria have similar shape
when they are taken as functions of τ . Thanks to this fact, we can deduce the be-
haviour of the MISE criterion, which can not be obtained from a practical point of
view, by means of the analysis of the CV criterion that can be derived from the data.

Theorem 16.2. Under hypotheses of Theorem 16.1,

sup
τ∈Tn

∣
∣
∣
∣
CV (ωCV (τ))−MISE(ω∗(τ))− σ̂2

ε
MISE(ω∗(τ))

∣
∣
∣
∣→ 0 a.s.

whereωCV (τ) = argminh1,h2∈Hn CV (ω),ω∗(τ) = argminh1,h2∈Hn MISE(ω) for each
τ ∈ Tn, and σ̂2

ε is defined as σ̂2
ε = 1

n ∑
n
i=1 ε2

j .
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16.4 Simulation study

In this study, we have consider H = L2[0,π ], and ‖ · ‖L2 the standard L2-norm. We
have drawn ns = 200 samples of size n = 200 from

{
Yi = r1(Xi)+ εi = maxt∈[0,π ] |Xi(t)|+ εi, i = 1, . . . ,n1,
Yi = r2(Xi)+ εi = ||Xi||L2 + εi, i = n1 + 1, . . . ,n = n1 + n2,

being n1 = n2 = 100, and εi ∼N (0,σε) with σε = 0.01. The covariables Xi were
simulated as

Xi(t) = ai

√
2/π cos(2t), t ∈ [0,π ], i = 1, . . . ,n,

where

ai ∼U (0,1) for i = 1, . . . ,n1, ai ∼U (m,m+ 1) for i = n1 + 1, . . . ,n,

with m∈{0,1/2,1}. The impossibility of dealing with continuous curves in practice
leads us to discretize {Xi}n

i=1 in a equidistant grid composed of p = 100 values in
[0,π ].

We have calculated the standard nonparametric estimator r̂ given by (16.3), and
the estimator based on our procedure for the following threshold function

Ψ(Xi) = ||Xi||L2 =
[∫ π

0
X2

i (t)dt

]1/2

= |ai|,

and for Eτ1 = (−∞,τ] and Eτ2 = (τ,+∞). Furthermore, we have also built another
estimator for the regression operator as follows. We consider the threshold value τ̂
estimated during the calculation of r̂τ , and define Îs = {i ∈ {1, . . . ,n}|Ψ(Xi) ∈ E τ̂s }
for s ∈ S. For a new observation Xn+1, we obtain ŝ ∈ S such thatΨ(Xn+1) ∈ E τ̂ŝ , and
we predict the response value Yn+1 by

Ŷn+1 = r̂τ̂ (Xn+1) = ∑
i∈Îŝ

YiK(h̃−1
ŝ ||Xi−Xn+1||)/∑

i∈Îŝ

K(h̃−1
ŝ ||Xi−Xn+1||).

Let us observe thatΨ(Xi) = ai ∈ [0,1] for i = 1, . . . ,n1, whereas

• if m = 0,Ψ(Xi) = ai ∈ [0,1] for i = n1 + 1, . . . ,n,
• if m = 1/2,Ψ(Xi) = ai ∈ [1/2,3/2] for i = n1 + 1, . . . ,n, and
• if m = 1,Ψ(Xi) = ai ∈ [1,2] for i = n1 + 1, . . . ,n.

Hence, we get that there is no threshold when m = 0. The case m = 1/2 is an in-
termediate situation, since the images ofΨ for each subsample are overlapped, so
perhaps values in the interval [1/2,1] could be detected as threshold. Finally, τ = 1
is the threshold value for m = 1.

The cross-validation criteria for the 200 simulated samples are plotted in Fig-
ure 16.1, where each column correspond to the different values for m. As we ex-
pected, when m = 0 the curves are almost constant and no threshold is detected.
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If m = 1/2, the CV criteria seems to detect something in [1/2,1] for some curves.
Finally, for m = 1, the threshold is correctly estimated.
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Fig. 16.1: CV criteria for ns = 200 samples (grey curves) for the three different
cases. Black solid line is the mean of the cross-validation curves, and the black
point its minimum. Vertical dashed line indicates the threshold value (when it
exists).

To assess the performance of all the computed estimates in terms of prediction
error, for each learning sample {(Xi,Yi)}n

i=1, we have also generated a testing sample
{(Xi,Yi)}2n

i=n+1. We have constructed by means of the learning sample the different
estimators r̃ ∈ {r̂, r̂τ , r̂τ̂}, and we have used the testing one to calculate the mean
squared error of prediction

MSEP =
2n

∑
i=n+1

(Yi− r̃(Xi))2.

This quantity has been obtained for each replication, and we show the mean of these
values in Table 16.1. We can conclude that the errors of prediction are similar for the
three estimators when there is no threshold (m = 0), whereas r̂τ̂ produces smaller
MSEP values than the standard kernel estimator when the threshold exists (m = 1).

m r̂ r̂τ r̂τ̂

0 0.00372 0.00378 0.00378
1/2 0.00339 0.00346 0.00338
1 0.00035 0.00034 0.00019

Table 16.1: Mean of MSEP.
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Chapter 17
Estimation of a Functional Single Index Model

Frédéric Ferraty, Juhyun Park, Philippe Vieu

Abstract Single index models have been mostly studied as an alternative dimen-
sion reduction technique for nonparametric regression with multivariate covariates.
The index parameter appearing in the model summarizes the effect of the covari-
ates in a finite dimensional vector. We consider an extension to a functional single
index parameter which is of infinite dimensional, as a summary of the effect of a
functional explanatory variable on a scalar response variable and propose a new
estimator based on the idea of functional derivative estimation.

17.1 Introduction

We are concerned with the functional regression model where the response variable
Y is a scalar variable and the explanatory variable X is functional in the class of
L2(I ). Denote the mean response of Y given X by

m(X) = E[Y |X ] ,

and consider the regression model

Y = m(X)+ ε ,

where m is a smooth functional from L2(I ) to the real line. The linear regression
model assumes that
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m(X) = β0+ < X ,β >= β0 +
∫

I
X(t)β (t)dt

and the coefficient function β (·) is used as a summary of the effect of X . When the
functional form m is completely unspecified, the regression problem becomes non-
parametric functional regression. In this article we focus on studying a functional
single index model, a semiparametric approach where the effect of the regressor X
is captured through a linear predictor under an unknown link function.

In classical multivariate regression with a scalar response variable Y and a d-
dimensional covariate X , the single index model assumes

m(X) = rθ (X) = r(θT X) ,

where r is a unknown link function and θ is a d-dimensional vector. This is a flexible
semiparametric approach generalizing the multiple linear regression and providing
an effective dimension reduction technique compared to the fully nonparametric
approach which is subject to the curse of dimensionality.

Extending this relationship to the case of a functional covariate X defines a func-
tional single index model the same way as

m(X) = rθ (X) = r(< X ,θ >) .

Here rθ is a smooth functional from L2(I ) to the real line, whereas r is a smooth
function on the real line. Similarly to the multivariate regression, this model is a
generalization of the functional linear regression with an identity or a known link
function r and provides a useful alternative to the fully nonparametric functional
regression approach.

We have used the term functional to emphasize the functional nature of the index
parameter θ . There are other extensions of the single index model to the functional
regression in the literature. A different version of a functional single index model
appears in Jiang and Wang (2011) where the term is used when both X and Y are
functional but the index parameter θ there refers to a vector valued parameter. Li et
al. (2010) uses a type of single index model with functional covariates and a scalar
response variable however the index parameter of their interest is also a vector val-
ued parameter. Although both models are developed with more complex scenarios
with functional variables in mind, they do not bear resemblance to the model re-
ferred here.

The main contribution of our work is to investigate the problem of estimating the
functional parameter θ based on the idea of functional derivative estimation studied
by Hall et al. (2010). It turns out that we can naturally extend the definition of the
average derivative for the single index model proposed in Härdle and Stoker (1989)
to the functional case, presented in Section 2. However, the underlying estimating
equation that was the basis of the construction of the estimator for the multivariate
case does not work for the functional case and we need the new approach tailored to
a functional variable. The directional derivative estimation is reviewed in Section 3
and the new estimator for the functional single index model is proposed in Section
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4. A detailed theoretical analysis as well as numerical examples will be skipped
here but will be presented in the main talk. We will also discuss extensions of our
approach in functional regression with several functional variables. We believe that
this view sheds new lights on the usage of the functional single index model in
broader applications.

17.2 Index parameter as an average derivative

In multiple regression problem, θ is known to be related to the average derivative
m′ (Härdle and Stoker, 1989), that is,

θ = E[m′(X)] , (17.1)

where m′ is the vector of partial derivatives and the expectation is taken with respect
to the marginal distribution of X . Based on this relationship and some further ma-
nipulation, they constructed a two-stage estimator where θ̂ is an empirical average
of the derivative estimator and r̂ is a one dimensional nonparametric smoother.

At first glance, it seems natural to apply this relationship to the functional case
but care needs to be taken, as this requires a generalization of the finite dimensional
relationship to an infinite dimensional one. In functional regression, the derivative
of m should be understood as a derivative in functions space. Recently Hall et al.
(2010) studied the problem of derivative estimation in functions space, where the
directional derivative of m at x is defined to be the linear operator mx satisfying

m(x + δu) = m(x)+ δmx(u)+ o(δ ) .

Applying the same idea, we can extend the relationship (17.1) for the single index
model to the functional case in the following sense:

mx(u) = lim
δ→0

1
δ
{m(x + δu)−m(x)} (17.2)

= lim
δ→0

1
δ
{r(< x + δu,θ >)− r(< x,θ >)}

= < u,θ r′(< x,θ >) > .

By Riesz representation theorem, there exists an element m∗
x ∈ L2(I ) that satisfies

the relation
mx(u) =< u,m∗

x >,

where m∗
x = θ r′(< x,θ >). Therefore, we obtain the following equality:

E[m∗
X ] = θ ·E[r′(< X ,θ >)] = const ·θ ,
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in the same spirit as in the result (17.1) but now for the case of functional predictor.
As shown in Härdle and Stoker (1989), the constant is related to parametrization
and may be set to be 1 by reparametrizing the functions r and θ accordingly.

Although the idea of the average derivative is naturally linked to the derivative
of the marginal density for the multivariate regression, which hence leads to con-
struction of an estimator (Härdle and Stoker, 1989), its extension to the functional
case is not straightforward. In fact the notion of marginal density is not well under-
stood for functional variables and is very difficult to define precisely (Delaigle and
Hall, 2010). Instead we rely on the development of the directional derivatives for
the operator to construct a direct estimator for the functional single index model.

17.3 Estimation of the directional derivatives

Let {ψ j, j = 1,2, · · · } be an orthonormal basis function in L2(I ). For any β ∈
L2(I ), we may write β = ∑∞j=1 < β ,ψ j > ψ j. Then we have

mx(β ) =
∞

∑
j=1

mx(< β ,ψ j > ψ j) =
∞

∑
j=1

< β ,ψ j > mx(ψ j) =< β ,
∞

∑
j=1

mx(ψ j)ψ j >,

with the second last equality following from the linearity of the operator mx. Thus,
we may write

m∗
x =

∞

∑
j=1

mx(ψ j)ψ j =
∞

∑
j=1

γx, jψ j ,

where γx, j = mx(ψ j).
Suppose that {(Xi,Yi), i = 1,2, · · · ,n} be an i.i.d. sample from (X ,Y ). In practice,

the ψ j’s denote the eigenfunctions derived from the functional principal component
analysis of the process X . A standard estimator ψ̂ j of ψ j is obtained by achieving
a spectral analysis of the empirical covariance operator of X . Hence, a consistent
estimator of γx, j for a fixed direction is proposed in Hall et al. (2010), which is
defined to be

γ̂x, j =
∑∑( j)

i1,i2
(Yi1 −Yi2)Kj(i1, i2|x)

∑∑( j)
i1,i2

ξ̂ j(i1, i2)Kj(i1, i2|x)
,

with

Kj(i1, i2|x) = K1
(
h−1

1 ‖x−Xi1‖
)

K1
(
h−1

1 ‖x−Xi2‖
)

K2

(

1− ξ̂ j(i1, i2)2

‖Xi1−Xi2‖2

)

,

ξ̂ j(i1, i2) =
∫
(Xi1 − Xi2)ψ̂ j measures the difference in the projection of the pair

(Xi1,Xi2) of functional trajectories onto the direction of ψ̂ j, K1(.) and K2(.) are

kernel functions, and where ∑∑( j)
i1,i2

denotes summation over pairs (i1, i2) such that
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ξ̂ j(i1, i2) > 0. The mechanism of this estimator is the following. For given x and
the direction ψ̂ , define the δ -neighborhood of x in the direction of ψ̂ and select
the sub-sample falling in the δ -neighborhood. The numerator is the mean differ-
ence between two responses, which can be approximated by the weighted average
difference in responses (Yi1,Yi2) of each pair of the sample {(Xi1 ,Yi1),(Xi2 ,Yi2)}.
The denominator can be approximated by the weighted average distance between
(Xi1,Xi2). The weights are determined according to the closeness to the direction of
ψ̂ as well as that to x.

17.4 Estimation for functional single index model

Viewing θ as the average of the directional derivatives, its estimator θ̂ can be con-
structed from the empirical counterpart. Specifically we consider the two-stage es-
timator where at the first step, the estimator θ̂ is obtained by

θ̂ = n−1
n

∑
i=1

m̂∗
Xi

,

where m̂∗
X = ∑kn

j=1 γ̂X , jψ̂ j with kn → ∞ as n → ∞. Given θ̂ and x in L2(I ), define

a new random variable Zi =< Xi, θ̂ > and a real number z =< x, θ̂ >. In the sec-
ond step, the estimator of the link function r is obtained from a one-dimensional
nonparametric kernel regression with {(Zi,Yi) : i = 1, . . . ,n} as

r̂(x) =
∑n

i=1 YiWh
(
Zi− z

)

∑n
i=1 Wh

(
Zi− z

) ,

where Wh(·) = W (·/h) is a symmetric kernel weight function defined on a real line.
Properties of the estimators: Given a consistent estimator of θ , it can be easily

shown that r̂ is a consistent estimator. However, notice that the consistency of γ̂x, j is
not sufficient to guarantee the consistency of θ̂ . We can prove, under some regularity
conditions, that θ̂ is indeed a consistent estimator.

References

1. Delaigle, A., Hall, P.: Defining probability density for a distribution of random functions.
Ann. Stat. 38 (2), 1171–1193 (2010)

2. Hall, P., Müller, H. G., Yao, F.: Estimation of functional derivatives. Ann. Stat. 37, 3307-3329
(2009)
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Chapter 18
Density Estimation for Spatial-Temporal Data

Liliana Forzani, Ricardo Fraiman, Pamela Llop

Abstract In this paper we define a nonparametric density estimator for spatial-
temporal data and under mild conditions we prove its consistency and obtain strong
orders of convergence.

18.1 Introduction

Spatial-temporal models arise when data are collected across time as well as space.
More precisely, a spatial-temporal model is a random hypersurface which evolves at
regular intervals of time (for instance, every day or every week). The data analysis
therefore exhibits spatial dependence, but also observations at each point in time are
typically not independent but form a time series of random surfaces. For this kind
of models, over the last decade there has been very rapid growth in research mainly
looking at parametric ones (see for instance the recent book by Tang et al., 2008).

The goal of this paper is to define a nonparametric estimator for the marginal den-
sity function of a random field in this setup and give its order of convergence. Our
approach falls in the functional data framework which, as it is well known, is a very
important topic in modern statistics and a great effort is being done to provide statis-
tical tools for its analysis (see for instance, Ramsay and Silverman, 2002, Ramsay
and Silverman, 2005, Ferraty and Vieu, 2006, González Manteiga and Vieu, 2007,
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and the handbook by Ferraty and Romain, 2011). In this context, the problem of
estimating the marginal density function when a single sample path is observed con-
tinuously over [0,T ] has been studied starting in Rosenblatt (1970), Nguyen (1979),
and mainly by Castellana and Leadbetter (1986), where it is shown that for contin-
uous time processes a parametric speed of convergence is attained by kernel type
estimates. More recently, it has also been considered by Blanke and Bosq (1997),
Blanke (2004), Kutoyants (2004) among others. In particular, Labrador (2008) pro-
pose a k-nearest neighbor type estimate using local time ideas and, based in this
estimator, Llop et al. (2011) showed that a parametric

√
n speed of convergence is

attained when independent samples are available.
For random fields defined in the d-dimensional integer lattice Z

d with values in
R

N , Tran and Yakowitz (1993) showed the asymptotic normality of the k-nearest
neighbour estimator under random field stationary and mixing assumptions. For
kernel estimators, Tran (1990) proved the asymptotic normality under dependence
assumptions, the L1 convergence of this type of estimators have been studied by
Carbon et al. (1996) and Hallin et al. (2004). Hallin et al. (2001), without assuming
dependence conditions by assuming linearity, showed the multivariate asymptotic
normality of the kernel density estimator at any k-tuple of sites and also computed
their limiting covariance matrix. The uniform consistency of this estimator was stud-
ied by Carbon et al. (1997).

In this paper we computed a marginal density estimator for a random field X (s)
verifying the model

X (s) = μ(s)+ e(s), s ∈ S⊂R
p (18.1)

where μ(s) stands for the mean function, and e(s) is a zero mean, first-order sta-
tionary random field with density unknown function fe. Throughout this work, we
will assume that e(s) admits a local time (see Geman and Horowitz, 1981). Using
the ideas given in Llop et al. (2011) we will introduce a k–nearest neighbor type
estimate based on the occupation measure and prove its consistency both, for the
stationary and the nonstationary cases.

18.2 Density estimator

In this section we define and give the order of convergence for a marginal den-
sity estimator for a random field verifying (18.1) when {X1(s), . . . ,XT (s)} ran-
dom fields with the same distribution as X (s) are given. For s fixed, the errors
{e1(s), . . . ,eT (s)} have the geometrically α-mixing dependence property, i.e., there
exists a non-increasing sequence of positive numbers {α(r),r ∈ N} with α(r)→ 0
when r → ∞ such that α(r)≤ aρ r, with 0 < ρ < 1, a > 0 and

|P(A∩B)−P(A)P(B)| ≤ α(r),

for A ∈M tu
t1 and B ∈M lv

l1
where M tb

ta = σ{et(s),ta ≤ t ≤ tb} is the σ -algebra gen-

erated by {et(s)}T
t=1 and 1≤ t1 ≤ . . .≤ tu < tu + r = l1 ≤ . . .≤ lv ≤ T .
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18.2.1 Stationary case: μ(s) = μ constant

First let us observe that if μ(s) is constant the sequence {X1(s), . . . ,XT (s)} inher-
its all the properties of the sequence {e1(s), . . . ,eT (s)}. This means that X (s) is
a first order stationary random field which admits a local time, and the sequence
{X1(s), . . . ,XT (s)} is a geometrically mixing sequence of random fields. It is clear
however, that this is not the case if μ(s) is not constant, we will consider this prob-
lem in the next section.

As X (s) has the same properties as e(s) its density estimator f̂X , will be com-
puted in the same way as f̂e and the results given for f̂e will hold for f̂X . The
estimator for the density function of e(s) is defined as follows.

For {kT}, kT /T < |S|, a real number sequence that converges to infinity, we
define the random variable he

T
.= he

T (x) such that

kT =
T

∑
t=1

∫

S
II(x,he

T (x))
(et(s))ds, (18.2)

where I(x,r) = [x− r,x + r] and the marginal density estimator for fe is defined as

f̂e(x)
.=

kT

2T |S|he
T (x)

. (18.3)

If the process e(s) admits a local time, then f̂e is well defined since he
T exists and it

is unique (see for instance Llop et al., 2011).

18.2.2 Non-stationary case: μ(s) any function

Now let us observe that if μ(s) is non constant, the sequence {X1(s), . . . ,XT (s)}
is not a first order stationary random field any more. That means that its density
function is diferent for any point of the space. It will be denoted by fXs . We define
the density estimator for fXs as

f̂Xs(x) = f̂u(x− X̄T (s)),

where

f̂u(x)
.=

kT

2n|S|hu
T (x)

, (18.4)

with u = {UT 1, . . . ,UT T } given by

UTt(s) = Xt(s)− X̄T (s) = et(s)− ēT (s).

Here {e1(s), . . . ,eT (s)} is a sequence with the same distribution as the stationary
random field e(s) and hu

T is defined as (18.2) replacing {e1(s), . . . ,eT (s)} by u.
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18.2.3 Hypothesis

In order to obtain the rate of convergence of the estimators defined on (18.3) and
(18.4), we will assume the following set of assumptions.

H1. {et(s),1≤ t ≤ T,s∈ S} is a random field sequence with the same distribution
than e(s) that admits a local time.

H2. e(s) is a stationary process with unknown density function fe strictly posi-
tive.

H3. The density fe is Lipschitz with constant K.
H4. For each s fixed, the sequence {et(s),1 ≤ t ≤ T} of random variables is

geometrically α-mixing.

H5. {kT} and {vT} are sequences of positive numbers such that vT

(
kT
T

)
= o(1)

and ∑∞T=1 exp

{

−a 1
T1/4

(
kT
vT

)1/2
}

< ∞ for each a > 0.

18.2.4 Asymptotic results

Theorem 18.1. Rates of convergence: Suppose H1-H4 holds. Then,
I. Stationary case: Suppose furthermore that H5 holds. Then, for each x ∈ R,

lim
T→∞

vT ( f̂e(x)− fe(x)) = 0 a.co.

II. Non-stationary case: Let us choose two sequences of real positive numbers
{kT} and {vT} both of them going to infinity such that vT (T/kT )|ēT (s)| → 0 a.co.
For those sequences {kT} and {vT} let us assume H5. Then, for each x ∈ R,

lim
n→∞vT ( f̂Xs(x)− fXs(x)) = 0 a.co.

Remarks:
(a) In the stationary case, we can choose kT such that vT = T γ for any γ < 1

4 .
More precisely, let kT = T β and vT = T γ . For conditions (kT /T )vT = o(1) and

1
T 1/4

(
kT
vT

)1/2 → ∞ holds it is enough that β < 1− γ and β > γ + 1
2 . Then, given

γ < 1
4 , we can choose β such that these conditions are true.

(b) In the non-stationary case, we can choose kT such that vT = T γ for any γ <
1
4 . More precisely, if kT = T β and vT = T γ , for conditions (kT /T )vT = o(1) and

1
T 1/4

(
kT
vT

)1/2 → ∞ hols it is enough that β < 1− γ and β > γ + 1
2 . In addition, for

vT (T/kT )|ēT (s)| → 0 a.co. holds, if there exists M > 0 such that |e(s)| < M with
probability one, since ēT (s) = o(T−α) with α < 1/2 using Bernstein’s inequality
we need that β > γ + 1

2 . Therefore, given γ < 1
4 we can choose β such that these

conditions are true.
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The proof of part I is a consequence of the Bernstein inequality for α-mixing
process. Since for each s fixed, the random variables {UT 1(s), . . . ,UT T (s)} are iden-
tically distributed but not necessarily α-mixing dependent, the proof of part II will
be not a direct consequence of part I however it will be a consequence of part I and
a result that prove the Lispschitz continuity of he

T and hu
T .
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Chapter 19
Functional Quantiles

Ricardo Fraiman, Beatriz Pateiro-López

Abstract A new projection-based definition of quantiles in a multivariate setting
is proposed. This approach extends in a natural way to infinite-dimensional Hilbert
and Banach spaces. Sample quantiles estimating the corresponding population quan-
tiles are defined and consistency results are obtained. Principal quantile directions
are defined and asymptotic properties of the empirical version of principal quantile
directions are obtained.

19.1 Introduction

The fundamental one-dimension concept of quantile function of a probability distri-
bution is a well known device going back to the foundations of probability theory.
The quantile function is essentially defined as the inverse of a cumulative distribu-
tion function. More precisely, given a real valued random variable X with distribu-
tion PX , the α-quantile (0 < α < 1) is defined as

QX(α) =: Q(PX ,α) = inf{x ∈ R : F(x)≥ α}, (19.1)

where F denotes the cumulative distribution function of X .
In spite of the fact that the generalization of the concept of quantile function to a

multivariate setting is not straightforward, since the lack of a natural order in the d-
dimensional space makes the definition of multivariate quantiles difficult, a huge lit-
erature has been devoted to this problem in the last years. Different methodological
approaches have been proposed, from those based on the concept of data depth, to
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those based on the geometric configuration of multivariate data clouds, see Chaud-
huri (1996). We refer to the survey by Serfling (2002) for a complete overview and
a exhaustive comparison of the different methodologies. Our proposal in this work
is based on a directional definition of quantiles, indexed by an order α ∈ (0,1) and
a direction u in the unit sphere. An important contribution in this sense has been
made recently by Kong and Mizera (2008). For a given α , they define directional
quantiles by projecting the probability distribution onto the straight line defined by
each vector on the unit sphere, extending in a very simple way the one-dimensional
concept of quantile. A shortcoming of their approach is the lack of any reasonable
form of equivariance of the resulting quantile contours, even with respect to trans-
lation, since their definition of quantiles heavily depends on the choice of an origin.
Anyway, as we shall see, it is easy to modify the simple and more intuitive definition
of directional quantiles given by Kong and Mizera (2008) in order to attain the main
equivariance properties that are adequate for a quantile function.

On the other hand, beyond the lack of a widely accepted definition of multivariate
quantiles there is also an increasing need for quantile functions valid for infinite-
dimensional data (a problem recently posed by Jim Ramsay) in connection with the
increasing demand of statistical tools for functional data analysis (FDA) where the
available data are functions x = x(t) defined on some real interval (say [0,1]). See
e.g., Ferraty and Romain (2011), Ferraty (2010), Ramsay and Silverman (2005) or
Ferraty and Vieu (2006) for general accounts on FDA.

Therefore, the goal of this work is to provide an intuitive definition of directional
quantiles that allows us to describe the behaviour of a probability distribution in
finite and infinite-dimensional spaces.

19.2 Quantiles in Hilbert spaces.

In the remainder of this paper, X will denote a functional random variable valued
in some infinite-dimensional space E . We do not bother to distinguish in our nota-
tion between functions, scalar quantities and non-random elements of E and we use
standard letters for all cases. Since we will still need to introduce multivariate vari-
ables in some definitions and examples, we adopt the convention of writing vectors
as boldface lower case letters and matrices in boldface upper case.

Let H be a separable Hilbert space where 〈·, ·〉 denotes the inner product and
‖·‖ denotes the induced norm in H . Let X be a random element in H with dis-
tribution PX and such that E(‖X ‖) <∞. Our extension of the concept of quantiles
to multidimensional and infinite-dimensional spaces is based on a directional defi-
nition of quantiles. Thus, we denote B = {u ∈H : ‖u‖= 1} the unit sphere in H
and define, for 0 < α < 1, the α-quantile in the direction of u ∈ B, QX (α,u) ∈H ,
as

QX (α,u) = Q〈X −E(X ),u〉(α)u +E(X ). (19.2)
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In some sense, this definition reminds us the quantiles definition (in a finite-
dimensional setting) given by Kong and Mizera (2008). They define directional
quantiles as the quantiles of the projections of the probability distribution into the
directions of the unit sphere. However note that, in (19.2), the α-quantile in the di-
rection of u ∈ B is defined from the α-quantile of the corresponding projection of
Z = X −E(X ). Centering the random element before projecting is essential in
order to obtain quantile functions fulfilling desirable equivariance properties. Now,
let PZ (u) denote the probability distribution of the random variable 〈Z ,u〉. Follow-
ing the notation introduced in (19.1) for the univariate case, the α-quantile in (19.2)
can also be written as

QX (α,u) = Q(PZ (u),α)u +E(X ). (19.3)

For convenience, we will use both the notations (19.2) and (19.3) throughout this
paper. For fixed α , the quantile function QX (α, ·) indexed by u in the unit sphere
naturally yields quantile contours {QX (α,u), u ∈ B}.

Equivariance properties. The quantiles defined by (19.2) fulfill the following
equivariance properties: location equivariance, equivariance under unitary oper-
ators and equivariance under homogeneous scale transformations.

Quantile contours in the multivariate setting. The preceding definition of quan-
tiles in a separable Hilbert space applies directly to the Euclidean space R

d . As in the
general case, these directional quantiles yield quantile contours {QXXX(α,uuu), uuu ∈B}.
Figure 19.1 illustrates our definition of quantile contours in the finite dimensional
case.

19.2.1 Sample quantiles

In order to define the sample version of the quantiles, let us first consider the uni-
variate case. Given the observations X1, . . . ,Xn, denote by Pn the empirical measure,
that is, the random measure that puts equal mass at each of the n observations. For
0 < α < 1, the sample α-quantile, Q(Pn,α), is defined as

Q(Pn,α) = inf{x ∈R : Fn(x)≥ α}, (19.4)

where Fn denotes the sample cumulative distribution function, Fn(x)= 1
n ∑

n
i=1 I{Xi≤x}.

Clearly, if X1,X2, · · · ,Xn, are independent and identically distributed observations
from a random variable X with distribution PX , then Q(Pn,α) will act as an estimate
of QX(α) based on those observations.

For the general setting, let X be a random element in H with probability dis-
tribution PX such that E(‖X ‖) < ∞. Then, let Z = X −E(X ) with distribution
PZ . Given X1, . . . ,Xn a random sample of elements identically distributed as X ,
denote Zni = Xi− X̄ , i = 1, . . . ,n. Now, for u ∈ B, let Pn(u) denote the empirical
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Fig. 19.1: (a) A three-dimensional view of a Normal distribution in R
2 with zero

mean and covariance matrix ΣΣΣ = (σi j), σii = 1, σi j = 0.75, i = j, with two-
dimensional quantile contours for α = 0.5,0.55, . . . ,0.95 projected onto the top.
(b) Two-dimensional view of the quantile contours.

measure of the observations 〈Zn1,u〉 , . . . ,〈Znn,u〉. We define the empirical version
of the quantiles in (19.2) by replacing the univariate α-quantile, Q〈X −E(X ),u〉(α),
with the sample α-quantile Q(Pn(u),α) as given in (19.4). That is, we define

Q̂X (α,u) = Q(Pn(u),α)u + X̄ (19.5)

where now Q(Pn(u),α) = inf{x ∈ R : Fu
n (x)≥ α} and Fu

n (x) = 1
n ∑

n
i=1 I{〈Zni ,u〉≤x}.

19.2.2 Asymptotic behaviour

Before we tackle the asymptotic behaviour of the sample quantiles Q̂X (α,u) in
(19.5), we will need some auxiliary results on the convergence of the empirical
measure Pn(u). Classical results on the consistency of the univariate sample quan-
tiles are obtained as a consequence of the consistency of the empirical distribution
function. However, the consistency of the empirical distribution function relies on
the assumption of independent and identically distributed random variables, which
is not the case in our setting. Note that in the definition of Q(Pn(u),α), the empir-
ical distribution function is computed from the observations 〈Zn1,u〉 , . . . ,〈Znn,u〉,
which are clearly not independent. For each h ∈H denote by Fh(t) the probability
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distribution function of the random variable 〈Z ,h〉. We obtain the following sharp
result.

Proposition 1 Let H be a separable Hilbert space. Then,

lim
n→∞ sup

‖h‖=1,t∈R

|Fh
n (t)−Fh(t)|= 0 a.s.

if and only if

lim
ε→0

sup
‖h‖=1,t∈R

P({x ∈H : | 〈h,x〉− t|< ε}) = 0. (19.6)

It can be proved that, for the Euclidean space R
d , Condition (19.6) is straightfor-

wardly satisfied.
Based on the previous results we show the pointwise consistency of Q(Pn(u),α)

to Q(PZ (u),α) (for each fixed direction u), the uniform convergence of Q(Pn(u),α)
and the uniform convergence of the sample quantiles to the population version under
mild conditions.

19.3 Principal quantile directions

One of the goals of the multivariate data analysis is the reduction of dimensionality.
The use of principal components is often suggested for such dimensionality reduc-
tion. More recently, the PCA methods were extended to functional data and used for
many different statistical purposes, see Ramsay and Silverman (2005).

A way to summarize the information in the quantile functions is to consider prin-
cipal quantile directions for a given level α , defined as follows. The first principal
quantile direction is the one that maximizes the norm of the centered quantile func-
tion QX (α,u)−E(X ), i.e. the direction u1 ∈ B satisfying

u1 = argmaxu∈B

∣
∣Q〈X −E(X ),u〉(α)

∣
∣ . (19.7)

The k–principal quantile direction is defined as the direction uk ∈ B satisfying

uk = argmaxu∈B,u⊥Hk−1

∣
∣Q〈X −E(X ),u〉(α)

∣
∣ , (19.8)

where Hk−1 is the linear subspace generated by u1, . . . ,uk−1.

Proposition 2 Let XXX be a random vector with finite expectation and elliptically
symmetric distribution. Then, the principal quantile directions defined by (19.7) and
(19.8) coincide with the principal components.

Proposition 3 Let X = {X(t), t ∈ [0,1]} be a Gaussian process in L2[0,1] with
covariance function

γ(s,t) = Cov(X(t),X(s)),
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which we assume to be square integrable. Then, the principal quantile directions
defined by (19.7) and (19.8) coincide with the principal components. Moreover,

max
u∈B,u⊥Hk−1

∣
∣Q〈X −E(X ),u〉(α)

∣
∣=Φ−1(α)

√
λk,

where Φ stands for the cumulative distribution function of a standard Normal ran-
dom variable and λ1 ≥ λ2, . . . is the sequence of eigenvalues of the covariance op-
erator.

19.3.1 Sample principal quantile directions

The first sample principal quantile direction is defined as the one that maximizes
the norm of the centered empirical quantile function Q(Pn(u),α), i.e. the direction
û1 ∈ B satisfying

û1 = argmaxu∈B|Q(Pn(u),α)|.

The sample k–principal quantile direction is defined as the direction ûk ∈ B satisfy-
ing

ûk = argmaxu∈B,u⊥Hk−1
|Q(Pn(u),α)|,

where Hk−1 is the linear subspace generated by û1, . . . , ûk−1.

19.3.2 Consistency of principal quantile directions

Let us denote F1 = {u ∈ B : u = argmaxu∈B|Q(PZ (u),α)|}, F1n = {u ∈ B : u =
argmaxu∈B|Q(Pn(u),α)|}, and consider the following additional assumption.

Assumption C1. Given ε > 0 and u1 ∈F1, there exists δ > 0 such that |Q(PZ (u),α)|<
|Q(PZ (u1),α)|−δ ∀u /∈B(F1,ε), where B(F1,ε) =∪u∈F1B(u,ε), being B(u,ε) the
ball with centre u and radius ε . In the finite-dimensional case, Assumption C1 will
hold if for instance Q(PZ (u),α) is a continuous function of u.

Proposition 4 Under the additional Assumption C1 we have that
i) Given ε > 0, un ∈ F1n implies that un ∈ B(F1,ε) if n≥ n0 a.s.
ii) If the principal population quantile directions are unique then,

lim
n→∞‖ûk−uk‖= 0 a.s. ∀k ≥ 1.
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Chapter 20
Extremality for Functional Data

Alba M. Franco-Pereira, Rosa E. Lillo, Juan Romo

Abstract The statistical analysis of functional data is a growing need in many re-
search areas. In particular, a robust methodology is important to study curves, which
are the output of experiments in applied statistics. In this paper we introduce some
new definitions which reflect the “extremality” of a curve. Given a collection of
functions, these definitions establish the “extremality” of an observation and pro-
vide a natural ordering for sample curves.

20.1 Introduction

The analysis of functional data is receiving a steadily increasing attention in recent
years (see, e.g., Ramsay and Silverman (2005)). In particular, a robust methodol-
ogy is important to study curves, which are the output of experiments in applied
statistics. A natural tool to analyze functional data aspects is the idea of statistical
depth. It has been introduced to measure the ‘centrality’ or the ‘outlyingness’ of an
observation with respect to a given dataset or a population distribution.

The notion of depth was first considered for multivariate data to generalize or-
der statistics, ranks, and medians to higher dimensions. Several depth definitions for
multivariate data have been proposed and analyzed by Mahalanobis (1936), Tukey
(1975), Oja (1983), Liu (1990), Singh (1991), Fraiman and Meloche (1999), Vardi
and Zhang (2000), Koshevoy and Mosler (1997), and Zuo (2003), among others.
Direct generalization of current multivariate depths to functional data often leads
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to either depths that are computationally intractable or depths that do not take into
account some natural properties of the functions, such as shape. For that reason,
several specific definitions of depth for functional data have been introduced; see,
for example, Vardi and Zhang (2000), Fraiman and Muniz (2001), Cuevas, Febrero
and Fraiman (2007), Cuesta-Albertos and Nieto-Reyes (2008), Cuevas and Fraiman
(2009) and López-Pintado and Romo (2009, 2011). The definition of depth for
curves provides criteria for ordering the sample curves from the center-outward
(from the deepest to the most extreme). Laniado, Lillo and Romo (2010) introduced
a new concept of “extremality” to measure the “farness” of a multivariate point with
respect to a data cloud or to a distribution. In this paper, we extend this idea to define
‘extremality’ of a curve within a set of functions.

The half-graph depth for functional data introduced by López-Pintado and Romo
(2011) is based on the notion of ‘half graph’ of a curve. The half-graph depth gives
a natural criterion to measure the centrality of a function within a sample of curves.
Here we introduce two definitions which are based on a similar idea to measure the
extremality of a curve.

20.2 Two measures of extremality for functional data

We recall the definitions of hypograph and hypergraph given in López-Pintado and
Romo (2011). Let C(I) be the space of continuous functions defined on a compact
interval I. Consider a stochastic process X with sample paths in C(I) and distribution
P. Let x1(t), . . . ,xn(t) be a sample of curves from P. The graph of a function x is the
subset of the plane G(x) = {(t,x(t)) : t ∈ I}. The hypograph (hg) and the hypergraph
(Hg) of a function x in C(I) are given by

hg(x) = {(t,y) ∈ I×R : y ≤ x(t)},
Hg(x) = {(t,y) ∈ I×R : y ≥ x(t)}.

Next, we introduce the two following concepts that measure the extremality of a
curve within a set of curves.

Definition 20.1. The hyperextremality of x with respect to a set of functions x1(t), . . . ,xn(t)
is

HEMn(x) = 1− ∑
n
i=1 I{G(xi)⊂hg(x)}

n
= 1− ∑

n
i=1 I{xi(t)≤x(t),t∈I}

n
. (20.1)

Hence, the hyperextremality of x is one minus the proportion of functions in the
sample whose graph is in the hypograph of x; that is, one minus the proportion of
curves in the sample below x. The population version of HEMn(x) is

HEM(x) = 1−P(G(X)⊂ hg(x)) = 1−P(X(t)≤ x(t),t ∈ I). (20.2)

Definition 20.2. The hypoextremality of x with respect to a set of functions x1(t), . . . ,xn(t)
is
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hEMn(x) = 1− ∑n
i=1 I{G(xi)⊂Hg(x)}

n
= 1− ∑n

i=1 I{xi(t)≥x(t),t∈I}
n

. (20.3)

Hence, the hypoextremality of x is one minus the proportion of functions in the
sample whose graph is in the hypergraph of x; that is, one minus the proportion of
curves in the sample above x.

The population version of hEMn(x) is

hEM(x) = 1−P(G(X)⊂ Hg(x)) = 1−P(X(t)≥ x(t),t ∈ I). (20.4)

It is straightforward to check that, given a curve x, the larger the hyperextremality
or the hypoextremality of x is, the more extreme is the curve x. Therefore, both
concepts measure the extremality of the curves, but from a different perspective.

20.3 Finite-dimensional versions

The concepts of hypograph and hypergraph introduced in the previous section can
be adapted to finite-dimensional data. Consider each point in R

d as a real function
defined on the set of indexes {1, ...,d}, the hypograph and hypergraph of a point
x = (x(1),x(2), ...,x(d)) can be expressed, respectively, as

hg(x) = {(k,y) ∈ {1, ...,d}×R : y ≤ x(k)},
Hg(x) = {(k,y) ∈ {1, ...,d}×R : y ≥ x(k)}.

Let X be a d-dimensional random vector with distribution function FX . Let
X ≤ x and X ≥ x be the abbreviations for {X(k) ≤ x(k),k = 1, ...,d} and {X(k) ≥
x(k),k = 1, ...,d}, respectively. If we particularize our extreme measures to the
finite-dimensional case, we obtain

HEM(x,F) = 1−P(X ≤ x) = 1−FX(x),

and
hEM(x) = 1−P(X ≥ x) = FX(x);

that is, the hyperextremality (hypoextremality) of a d-dimensional point x indicates
the probability that a point is componentwise greater (smaller) that x. Let x1, . . . ,xn

be a random sample from X , the sample version of our extreme measures are

HEMn(x) = 1− ∑n
i=1 I{xi≤x}

n
,

and

hEMn(x) = 1− ∑n
i=1 I{xi≥x}

n
. (20.5)

Let Cu
x be a convex cone with vertex x obtained by moving the nonnegative or-

thant and translating the origin to x. Then, the finite dimensional version of the
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hyperextremality can be also seen as the probability that the vector x belongs to Cu
x

where u = (1,1) and the hypoextremality can be also seen as the probability that the
vector x belongs to Cu

x where u = (−1,−1). Therefore, the hyperextremality and the
hypoextremality coincide with the extreme measure for multivariate data introduced
by Laniado, Lillo and Romo (2010), which is computationally feasible and useful
for studying high dimensional observations.
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Chapter 21
Functional Kernel Estimators of Conditional
Extreme Quantiles

Laurent Gardes, Stéphane Girard

Abstract We address the estimation of “extreme” conditional quantiles i.e. when
their order converges to one as the sample size increases. Conditions on the rate of
convergence of their order to one are provided to obtain asymptotically Gaussian
distributed kernel estimators. A Weissman-type estimator and kernel estimators of
the conditional tail-index are derived, permitting to estimate extreme conditional
quantiles of arbitrary order.

21.1 Introduction

Let (Xi,Yi), i = 1, . . . ,n be independent copies of a random pair (X ,Y ) in E ×R

where E is a metric space associated to a distance d. We address the problem of es-
timating q(αn|x) ∈R verifying P(Y > q(αn|x)|X = x) = αn where αn → 0 as n→∞
and x∈ E . In such a case, q(αn|x) is referred to as an extreme conditional quantile in
contrast to classical conditional quantiles (known as regression quantiles) for which
αn = α is fixed in (0,1). While the nonparametric estimation of ordinary regression
quantiles has been extensively studied, see for instance the seminal papers (Rous-
sas, 1969), (Stone, 1977) or (Ferraty and Vieu, 2006, Chapter 5) less attention has
been paid to extreme conditional quantiles despite their potential interest. Here, we
focus on the setting where the conditional distribution of Y given X = x has an
infinite endpoint and is heavy-tailed, an analytical characterization of this property
being given in the next section. We show, under mild conditions, that extreme condi-
tional quantiles q(αn|x) can still be estimated through a functional kernel estimator
of P(Y > .|x). We provide sufficient conditions on the rate of convergence of αn

to 0 so that our estimator is asymptotically Gaussian distributed. Making use of
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this, some functional kernel estimators of the conditional tail-index are introduced
and a Weissman type estimator (Weissman, 1978) is derived, permitting to estimate
extreme conditional quantiles q(βn|x) where βn → 0 arbitrarily fast.

21.2 Notations and assumptions

The conditional survival function (csf) of Y given X = x is denoted by F̄(y|x) =
P(Y > y|X = x). The kernel estimator of F̄(y|x) is defined for all (x,y) ∈ E×R by

ˆ̄Fn(y|x) =
n

∑
i=1

K(d(x,Xi)/h)Q((Yi− y)/λ )

/
n

∑
i=1

K(d(x,Xi)/h), (21.1)

with Q(t) =
∫ t
−∞ q(s)ds where K : R

+ → R
+ and q : R → R

+ are two kernel func-
tions, and h = hn and λ = λn are two nonrandom sequences such that h → 0 as
n → ∞. In this context, h and λ are called window-width. This estimator was con-
sidered for instance in (Ferraty and Vieu, 2006, page 56). In Theorem 1, the asymp-
totic distribution of (21.1) is established when estimating small tail probabilities, i.e
when y = yn goes to infinity with the sample size n. Similarly, the kernel estimators
of conditional quantiles q(α|x) are defined via the generalized inverse of ˆ̄Fn(.|x):

q̂n(α|x) = inf{t, ˆ̄Fn(t|x)≤ α}, (21.2)

for all α ∈ (0,1). Many authors are interested in this type of estimator for fixed
α ∈ (0,1): weak and strong consistency are proved respectively in (Stone, 1977)
and (Gannoun, 1990), asymptotic normality being established when E is finite di-
mensional by (Stute, 1986), (Samanta, 1989), (Berlinet et al., 2001) and by (Ferraty
et al., 2005) when E is a general metric space. In Theorem 2, the asymptotic distri-
bution of (21.2) is investigated when estimating extreme quantiles, i.e when α = αn

goes to 0 as the sample size n goes to infinity. The asymptotic behavior of such es-
timators depends on the nature of the conditional distribution tail. In this paper, we
focus on heavy tails. More specifically, we assume that the csf satisfies

(A1): F̄(y|x) = c(x)exp

{

−
∫ y

1

(
1
γ(x)

− ε(u|x)
)

du
u

}

,

where γ(.) is a positive function of the covariate x, c(.) is a positive function and
|ε(.|x)| is continuous and ultimately decreasing to 0. (A1) implies that the condi-
tional distribution of Y given X = x is in the Fréchet maximum domain of attraction.
In this context, γ(x) is referred to as the conditional tail-index since it tunes the tail
heaviness of the conditional distribution of Y given X = x. Assumption (A1) also
yields that F̄(.|x) is regularly varying at infinity with index −1/γ(x). i.e for all
ζ > 0,

lim
y→∞

F̄(ζy|x)
F̄(y|x) = ζ−1/γ(x). (21.3)
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The function ε(.|x) plays an important role in extreme-value theory since it drives
the speed of convergence in (21.3) and more generally the bias of extreme-value es-
timators. Therefore, it may be of interest to specify how it converges to 0. In (Gomes
et al., 2000), the auxiliary function is supposed to be regularly varying and the es-
timation of the corresponding regular variation index is addressed. Some Lipschitz
conditions are also required:

(A2): There exist κε , κc, κγ > 0 and u0 > 1 such that for all (x,x′) ∈ E2 and
u > u0,

∣
∣logc(x)− logc(x′)

∣
∣ ≤ κcd(x,x′),

∣
∣ε(u|x)− ε(u|x′)∣∣ ≤ κεd(x,x′),
∣
∣1/γ(x)−1/γ(x′)

∣
∣ ≤ κγd(x,x′).

The last assumptions are standard in the kernel estimation framework.
(A3): K is a function with support [0,1] and there exist 0 < C1 < C2 < ∞ such

that C1 ≤ K(t)≤C2 for all t ∈ [0,1].
(A4): q is a probability density function (pdf) with support [−1,1].

One may also assume without loss of generality that K integrates to one. In this case,
K is called a type I kernel, see (Ferraty and Vieu, 2006, Definition 4.1). Finally, let
B(x,h) be the ball of center x and radius h. The small ball probability of X is defined
by ϕx(h) = P(X ∈ B(x,h)). Under (A3), for all τ > 0, the τth moment is defined by

μ (τ)
x (h) = E{Kτ(d(x,X)/h)}.

21.3 Main results

Let us first focus on the estimation of small tail probabilities F̄(yn|x) when yn → ∞
as n → ∞. The following result provides sufficient conditions for the asymptotic
normality of ˆ̄Fn(yn|x).
Theorem 21.1. Suppose (A1) – (A4) hold. Let x ∈ E such that ϕx(h) > 0 and in-
troduce yn, j = a jyn for j = 1, . . . ,J with 0 < a1 < a2 < · · · < aJ and where J is a
positive integer. If yn→∞ such that nϕx(h)F̄(yn|x)→∞, nϕx(h)F̄(yn|x)(λ/yn)2 → 0
and nϕx(h)F̄(yn|x)(h logyn)2 → 0 as n→ ∞, then

{√
nμ (1)

x (h)F̄(yn|x)
(

ˆ̄Fn(yn, j|x)
F̄(yn, j|x) −1

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix C(x) where Cj, j′(x) =

a1/γ(x)
j∧ j′ for ( j, j′) ∈ {1, . . . ,J}2.
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Note that nϕx(h)F̄(yn|x) → ∞ is a necessary and sufficient condition for the al-
most sure presence of at least one sample point in the region B(x,h)× (yn,∞) of
E ×R. Thus, this natural condition states that one cannot estimate small tail prob-
abilities out of the sample using ˆ̄Fn. This result may be compared to (Einmahl,
1990) which establishes the asymptotic behavior of the empirical survival func-
tion in the unconditional case but without assumption on the distribution. Letting

σn(x) = (nμ (1)
x (h)αn)−1/2, the asymptotic normality of q̂n(αn|x) when αn → 0 as

n→ ∞ can be established under similar conditions.

Theorem 21.2. Suppose (A1) – (A4) hold. Let x ∈ E such that ϕx(h) > 0 and in-
troduce αn, j = τ jαn for j = 1, . . . ,J with τ1 > τ2 > · · · > τJ > 0 and where J
is a positive integer. If αn → 0 such that σn(x) → 0, σ−1

n (x)λ/q(αn|x) → 0 and
σ−1

n (x)h logαn → 0 as n→ ∞, then

{

σ−1
n (x)

(
q̂n(αn, j|x)
q(αn, j|x) −1

)}

j=1,...,J

is asymptotically Gaussian, centered, with covariance matrix γ2(x)Σ where Σ j, j′ =
1/τ j∧ j′ for ( j, j′) ∈ {1, . . . ,J}2.

The functional kernel estimator of extreme quantiles q̂n(αn|x) requires a stringent
condition on the order αn of the quantile, since by construction it cannot extrapolate
beyond the maximum observation in the ball B(x,h). To overcome this limitation, a
Weissman type estimator (Weissman, 1978) can be derived:

q̂W
n (βn|x) = q̂n(αn|x)(αn/βn)γ̂n(x).

Here, q̂n(αn|x) is the functional kernel estimator of the extreme quantile considered
so far and γ̂n(x) is a functional estimator of the conditional tail-index γ(x). As illus-
trated in the next theorem, the extrapolation factor (αn/βn)γ̂n(x) allows to estimate
extreme quantiles of order βn arbitrary small.

Theorem 21.3. Suppose (A1)–(A4) hold. Let us introduce

• αn → 0 such that σn(x)→ 0, σ−1
n (x)λ/yn → 0 and σ−1

n (x)h logαn → 0 as n→∞,
• (βn) such that βn/αn → 0 as n→ ∞,

• γ̂n(x) such that σ−1
n (x)(γ̂n(x)− γ(x)) d−→N (0,v2(x)) where v2(x) > 0.

Then, for all x ∈ E,

σ−1
n (x)

log(αn/βn)

(
q̂W

n(βn|x)
q(βn|x) −1

)
d−→N (0,v2(x)).

Note that, when K is the pdf of the uniform distribution, this result is consistent with
(Gardes et al., 2010, Theorem 3), obtained in a fixed-design setting.
Let us now give some examples of functional estimators of the conditional tail-
index. Let αn → 0 and τ1 > τ2 > · · · > τJ > 0 where J is a positive integer. Two
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additionary notations are introduced for the sake of simplicity: u = (1, . . . ,1)t ∈
R

J and v = (log(1/τ1), . . . , log(1/τJ))t ∈ R
J . The following family of estimators is

proposed

γ̂n(x) =
ϕ(log q̂n(τ1αn|x), . . . , log q̂n(τJαn|x))

ϕ(log(1/τ1), . . . , log(1/τJ))
,

where ϕ : R
J → R denotes a twice differentiable function verifying the shift and

location invariance conditions ϕ(θv) = θϕ(v) for all θ > 0 and ϕ(ηu + x) =
ϕ(x) for all η ∈ R and x ∈ R

J . For instance, introducing the auxiliary function
mp(x1, . . . ,xJ) = ∑J

j=1(x j − x1)p for all p > 0 and considering ϕH(x) = m1(x) gives
rise to a kernel version of the Hill estimator (Hill, 1975):

γ̂H
n (x) =

J

∑
j=1

[log q̂n(τ jαn|x)− log q̂n(αn|x)]
/

J

∑
j=1

log(1/τ j) .

Generalizations of the kernel Hill estimator can be obtained with ϕ(x)= mp(x)/mp−1
1 (x),

see (Gomes and Martins, 2001, equation (2.2)), ϕ(x) = m1/p
p (x), see e.g. (Segers,

2001, example (a)) or ϕ(x) = m1/θ
pθ (x)/mp−1(x), p ≥ 1, θ > 0, see (Caeiro and

Gomes, 2002). In the case where J = 3, τ1 = 4, τ2 = 2 and τ3 = 1, the function

ϕP(x1,x2,x3) = log

(
expx2− expx1

expx3− expx2

)

leads us to a kernel version of Pickands estimator (Pickands, 1975)

γ̂P
n(x) =

1
log2

log

(
q̂n(αn|x)− q̂n(2αn|x)

q̂n(2αn|x)− q̂n(4αn|x)
)

.

We refer to (Gijbels and Peng, 2000) for a different variant of Pickands estimator
in the context where the distribution of Y given X = x has a finite endpoint. The
asymptotic normality of γ̂n(x) is a consequence of Theorem 2.

Theorem 21.4. Under assumptions of Theorem 2 and if σ−1
n (x)ε(q(τ1αn|x)|x)→ 0

as n → ∞, then, σ−1
n (x)(γ̂n(x)− γ(x)) converges to a centered Gaussian random

variable with variance

V (x) =
γ2(x)
ϕ2(v)

(∇ϕ(γ(x)v))tΣ(∇ϕ(γ(x)v)).

As an illustration, in the case of the kernel Hill and Pickands estimators, we obtain

VH(x) = γ2(x)

(
J

∑
j=1

2(J− j)+ 1
τ j

− J2

)/(
J

∑
j=1

log(1/τ j)

)2

.

VP(x) =
γ2(x)(22γ(x)+1 + 1)

4(log2)2(2γ(x)−1)2
.
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Clearly, VP(x) is the variance of the classical Pickands estimator, see for instance
(de Haan and Ferreira, 2006, Theorem 3.3.5). Focusing on the kernel Hill estima-
tor and choosing τ j = 1/ j for each j = 1, . . . ,J yields VH(x) = γ2(x)J(J− 1)(2J−
1)/(6log2(J!)). In this case, VH(x) is a convex function of J and is minimum for
J = 9 leading to VH(x)� 1.25γ2(x).
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Chapter 22
A Nonparametric Functional Method for
Signature Recognition

Gery Geenens

Abstract We propose to use nonparametric functional data analysis techniques
within the framework of a signature recognition system. Regarding the signature
as a random function from R (time domain) to R

2 (position (x,y) of the pen), we
tackle the problem as a genuine nonparametric functional classification problem, in
contrast to currently used biometrical approaches. A simulation study on a real data
set shows good results.

22.1 Introduction

The problem of automatic signature recognition has attracted attention for a long
time, since signatures are well established in our everyday lives as the most com-
mon means of personal identification, with applications in commerce, banking trans-
actions or any other official use. There is therefore a clear need for accurate and
reliable signature recognition systems, and it is no surprise that many digital pro-
cedures aiming at discriminating forgeries from genuine signatures have been pro-
posed in biometrics, pattern recognition and engineering literature. Impedovo and
Pirlo (2008) comprehensively summarize the most valuable results up to 2008, and
Impedovo et al (2010) complete that study with the most recent works.

However, it turns out that even those methods which claim to be functional or
dynamic are actually based on a finite number of parameters describing the tempo-
ral evolution of some considered characteristics, like pen pressure or azimuth for
example. Never, to our knowledge, has the problem been addressed from a purely
functional point-of-view, that is, keeping the whole “signature-function” as the ob-
ject of central interest. Ramsay and Silverman (1997) and Ramsay (2000) present
handwriting analysis as an important application of functional data analysis, but do
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not really focus on the signature recognition problem. In contrast, this work mainly
aims at using modern functional data analysis tools, like nonparametric functional
regression ideas, to think up, develop and implement an efficient signature recog-
nition system, and to check whether this exclusively statistical method is able to
match the currently used pattern recognition and biometrical methods in terms of
simplicity, ease of implementation and, of course, efficiency at exposing fakes.

22.2 Signatures as random objects

The method that we propose is based on the natural idea of modelling a signature as
a random function

S : T ⊂ R
+ →P ⊂ R

2 : t →S (t) = (X (t),Y (t))

where S (t) = (X (t),Y (t)) represents the position of the pen in P , a given por-
tion of the two-dimensional plane, at time t ∈ T , the considered time domain. We
therefore assume that the signature S lies in an appropriate infinite-dimensional
functional space, say Σ . The random nature of the so-defined object obviously ac-
counts for the natural variability between successive signatures from one writer. The
benefit of working directly with a whole function is evident : it automatically gives
access to some features ‘hidden’ in S . In particular, the first and second derivative
vectors of S (t) provide information about the temporal evolution of the speed and
acceleration of the pen during the signing process. Precisely, we propose to analyze
that acceleration. It is commonly admitted that the acceleration of the pen is mainly
dictated by the movement of the wrist of the person signing. Besides, it is quite clear
that the “genuine” wrist movement is very hard, if not impossible, to detect and re-
produce even for a skilled faker. Unlike the drawing itself, or any other global char-
acteristic, this movement and the acceleration it induces are consequently unique to
every single person and should be very efficient discriminatory elements. Of course,
analyzing second derivatives of random functions requires functional data analy-
sis (FDA) methods : linking FDA to the signature recognition problem is what this
work attempts to do.

Suppose we observe a realization ς of the random object S , and we have to
make a decision as to whether this observed signature is a fake or not. This is ob-
viously nothing else but a classification problem. The decision will be based on an
estimation of the probability of ς being a fake, that is

π(ς) = P(Z = 1|S = ς),

where Z is a binary random variable, taking the value 1 if S is a forgery and 0 if
it is a genuine signature. Note that, due to the binary nature of Z, this conditional
probability can also be written



22 A Nonparametric Functional Method for Signature Recognition 143

π(ς) = E(Z|S = ς),

so that π(ς) can be estimated by functional regression methods. Here, “functional
regression” refers to situations where the predictor itself is a whole function, as
opposed to the more classical situation of “vectorial regression”, when we wish to
predict a response from a (finite) set of univariate predictors. In this functional case,
it appears that fitting any parametric problem would be very hazardous. Indeed, none
of the classical parametric models for binary regression, e.g. logit, probit, etc., pos-
sess any physical interpretation in our application. Besides, there is no visual guide
available as any graphical representation is inconceivable in an infinite-dimensional
space like Σ . As graphical representations like scatter-plots or residual plots are usu-
ally the primary tools to define and validate a suitable parametric regression model,
it turns out that the risk of model misspecification is even higher in this setting than
in classical parametric regression. Consequently, we turn to nonparametric regres-
sion methods. The theoretical foundation of Nonparametric Functional Analysis has
been quite recently initiated by Ferraty and Vieu (2006). Since then, a wide literature
in the field has rapidly come up, see Ferraty and Romain (2011) for a comprehensive
and up-to-date reference.

22.3 A semi-normed functional space for signatures

It is the case that any nonparametric regression method is essentially local, see clas-
sical texts like Wand and Jones (1995) or Fan and Gijbels (1996). Consequently,
this means that only information ‘close’ to the observed signature ς will be used
to estimate π(ς). Therefore, a notion of closeness (or similarity) between two sig-
natures in the considered functional space has to be properly defined. Ferraty and
Vieu (2006) suggest to work in a semi-normed space as an elegant way to account
for the proximity between functions. Unlike a distance, a semi-distance, say δ , is
such that δ (ς1,ς2) = 0 does not imply that ς1 = ς2, for two functional objects ς1 and
ς2. Being less stringent than a genuine distance, a semi-distance dictates that two
functional objects which might be different but which share some common charac-
teristics are close. An appropriate choice of semi-distance therefore allows one to
focus on features of the functional objects that we know to be particularly relevant
in the considered context, whilst avoiding (or at least reducing) an extreme impact
of the so-called ‘curse of dimensionality’ on the quality of the estimators, see the
above references for a detailed discussion about this infamous phenomenon.

For the reasons mentioned in Section 1, we propose to measure the proximity
between two signatures ς1 and ς2 with the semi-distance

δ (ς1,ς2)
.=
(∫

(ς ′′1 (t)− ς ′′2 (t))2 dt

)1/2

, (22.1)
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where ς ′′(t) is the tangential projection of the vector of second derivatives with re-
spect to time of the signature-function ς , as this would account for the similarity (or
dissimilarity) in tangential acceleration between ς1 and ς2. Moreover, this obviates
the need for an important pre-processing of the recorded signatures, as the second
order differentiation cancels out any location or size effect. In the sequel, we there-
fore assume that S belongs to Σ , the space of functions from R

+ to R
2, both of

whose components are twice differentiable, dotted with the semi-distance δ .

22.4 Nonparametric functional signature recognition

Now, assume that we have a sample of i.i.d. replications of (S ,Z) ∈ Σ ×{0,1}. To
make it more explicit, we assume that we have a first sample of specimen signa-
tures (ς1,ς2, . . . ,ςn), replications of the genuine signature of a given person (those
observations such that Z = 1 in the global sample), and a second sample of forg-
eries (ϕ1,ϕ2, . . . ,ϕm) (ones such that Z = 0). Note that assuming we have access to
forgeries is by no means constrictive : the fakes need not really mimic the true one,
but could just be signatures of other persons in the database, or whatever. However,
we can expect the procedure to be more efficient if it is trained on a set of “skilled”
forgeries. Then, observing a signature ς , a Nadaraya-Watson-like estimator for the
conditional probability π(ς) is given by

π̂(ς) =
∑m

j=1 K
(
δ (ς ,ϕ j)

h

)

∑n
i=1 K

(
δ (ς ,ςi)

h

)
+∑m

j=1 K
(
δ (ς ,ϕ j)

h

) , (22.2)

where K is a nonnegative kernel function, supported and decreasing on [0,1], and
h is the bandwidth, both of which being usual parameters in nonparametric kernel
regression. See that π̂(ς) is nothing else but the weighted average of the binary
responses Z associated with all signatures of the global sample, with more weight
(given through K) to the signatures close to ς , the notion of “closeness” being quan-
tified by h. It directly follows that π̂(ς) always belongs to [0,1], and is close to 0
(respectively 1) when ς is very close (respectively distant) to all the genuine signa-
tures. Note that we here define the case 0

0 to be equal to 1, in the event the observed
signature is very different, in terms of the considered closeness notion, to any sig-
nature of the database. The decision then directly follows by comparing π̂(s) with a
given threshold, say c : if π̂(ς) > c, the observed signature is likely to be a fake and
is therefore rejected. If π̂(ς) ≤ c, the signature is accepted. The usual Bayes rule
would set c to 1/2, however, depending on the application, this threshold value can
be adjusted to match the required standards.

5. From theory to practice
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The above procedure has been implemented in R software, and tested on a freely
available signature data set : the one used for the First International Signature Ver-
ification Competition (SVC2004), see Yeung et al (2004). In that database, each
signature is represented as a discrete sequence of points (from 136 to 595 points,
depending on the signature), each point being characterized by the X -coordinate, the
Y -coordinate, the time stamp (cpu time) and the button status (pen up/pen down).
A first task was thus to smooth those discrete representations of the signatures-
functions, in order to be able to differentiate their components X (t) and Y (t) later
on. To keep some uniformity between the signatures, we first rescaled the time stamp
to between 0 and 1. Then, we used a Local Polynomial kernel smoother, with Gaus-
sian kernel and bandwidth of type k-nearest neighbor with k = 10, admittedly se-
lected quite subjectively, to estimate the first and second derivatives of both X (t)
and Y (t).

Now, given that the tangential acceleration is defined as the projection of the
vector of second derivatives onto the unit vector tangent to the curve (that is, the
normalized vector of first derivatives), we estimate the tangential acceleration func-
tion by

Ŝ ′′(t) = (X̂ ′′(t), Ŷ ′′(t))t (X̂ ′(t), Ŷ ′(t))
‖(X̂ ′(t), Ŷ ′(t))‖

where (X̂ ′(t), Ŷ ′(t)) and (X̂ ′′(t), Ŷ ′′(t)) are the previously mentioned kernel es-
timates of the first and second derivative vectors. Five tangential acceleration func-
tions for genuine signatures, as well as a ‘fake’ tangential acceleration function, are
represented in Figure 22.1 below for one user. The consistency of the tangential ac-
celeration over the genuine signatures is clear, in contrast to what is shown for the
forgery.

It is now easy to compute numerically the semi-distance (22.1) between any two
signature-objects, and then to estimate the fake probability (22.2) for an observed
signature ς . This was done using a Gaussian kernel and a bandwidth of type k-
nearest neighbor, determined by least-squares cross-validation. Notably, the value k
is seen to vary considerably from one user to another.

The database we used consisted of 100 sets of signatures data, each set containing
20 genuine signatures from one signature contributor and 20 skilled forgeries from
at least four other contributors. For each user, we decided to split the 40 available
signatures in two : 10 genuine signatures and 10 forgeries would be utilized as the
training set, so supposedly the samples (ς1,ς2, . . . ,ςn) and (ϕ1,ϕ2, . . . ,ϕm) that we
have in hand, with the other 20 (again, 10 genuine signatures and 10 forgeries) being
our testing set. We ran the procedure over that testing set and computed the equal
error rate (EER), that is, the false rejection rate plus the false acceptance rate, for
each user. We observed important variations over the users, which renders the fact
that some signatures are easier to reproduce than others - even in terms of tangential
acceleration. For some users, the EER was 0, but for some others it was around 25%.
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Fig. 22.1: Five ‘genuine’ tangential acceleration functions (plain line) and one
‘fake’ tangential acceleration function (dotted line)

On average, the EER was 9%, with a median of 5%, which is quite an encouraging
result. Let us bear in mind that the proposed methodology has been applied to raw
data (only a basic smoothing step has been carried out to estimate the derivatives
of the functions of interest). Admittedly, an appropriate pre-processing of the data
could dramatically improve the efficiency of the method proposed. What we have in
mind for instance is the registration of the tangential acceleration functions, which
would aim at aligning as close as possible the peaks and troughs observed in Figure
22.1 for example (see Ramsay (1998)). This would make different tangential accel-
eration functions of the same user still closer to one another, and therefore ease the
recognition process. Note that other possibly useful pre-processing techniques are
presented in Huang et al (2007). These ideas are left for future research.

22.5 Concluding remarks

In this work we propose an automatic signature recognition system, based on non-
parametric functional regression ideas only. As opposed to currently used biomet-
rical methodologies, often based on intricate and computationally intensive algo-
rithms (neural networks, hidden Markov Chains, decision tress, etc.), this proce-
dure is conceptually simple to understand, as the decision (fake or not) readily fol-
lows from the direct estimation of the probability of the observed signature being a
forgery, and easy to implement, as kernel regression and related tools are now well
understood and available in most statistical software. Besides, the method applied to
raw data has shown pretty good results, while it is reasonable to think that an appro-
priate pre-processing of the data, like registration inter alia, would further improve
the error rates observed so far.
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Chapter 23
Longitudinal Functional Principal Component
Analysis

Sonja Greven, Ciprian Crainiceanu, Brian Caffo, Daniel Reich

Abstract We introduce models for the analysis of functional data observed at mul-
tiple time points. The model can be viewed as the functional analog of the classical
mixed effects model where random effects are replaced by random processes. Com-
putational feasibility is assured by using principal component bases. The method-
ology is motivated by and applied to a diffusion tensor imaging (DTI) study on
multiple sclerosis.

23.1 Introduction

Many studies now collect functional or imaging data at multiple visits or time-
points. In this paper we introduce a class of models and inferential methods for
the analysis of longitudinal data where each repeated observation is functional.

Our motivating data set comes from a diffusion tensor imaging (DTI) study ana-
lyzing cross-sectional and longitudinal differences in brain connectivity in multiple
sclerosis (MS) patients and controls. For each of the 112 subjects and each visit,
we have functional anisotropy (FA) measurements along the corpus callosum tract
in the brain. Figure 23.1 shows 2 example patients with 5 and 6 complete visits,
respectively. Each visit’s data for a subject is a finely sampled function, registered
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using 7 biological landmarks, with the argument of the function being the spatial
distance along the tract.

Fig. 23.1: Two example subjects (both MS patients) from the tractography data
with 5 and 6 complete visits, respectively. Shown are the fractional anisotropy
along the corpus callosum, measured at 120 landmark-registered sample points.
Different visits for the same subject are indicated by line type and overlaid.

Longitudinal scalar data is commonly analyzed using the very flexible class of
linear mixed models (Laird and Ware, 1982), which explicitly decompose the varia-
tion in the data into between- and within-subject variability. We propose a functional
analog of linear mixed models by replacing random effects with random functional
effects. We propose an estimation procedure that is based on principal components
bases and extends functional principal component analysis (FPCA) to the longitu-
dinal setting. Computation is very efficient, even for large data sets.

Our approach is different from functional mixed models based on the smoothing
of fixed and random curves using splines or wavelets (Brumback and Rice, 1998;
Guo, 2002; Morris and Carroll, 2006). In contrast to these methods focusing on
the estimation of fixed and random curves, our approach is based on functional
principal component analysis. In addition to the computational advantages, we are
thus able to extract the main differences between subjects in their average profiles
and in how their profiles evolve over time. Such a signal extraction, not possible
using smoothing methods alone, allows the relation of subject-specific scores to
other variables such as disease status or disease progression. Our approach can be
seen as an extension of multilevel functional principal component analysis (Di et al.,
2008). Our methods apply to longitudinal data where each observation is functional,
and should thus not be confused with nonparametric methods for the longitudinal
profiles of scalar variables (e.g. Yao et al., 2005).
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23.2 The Longitudinal Functional Model and LFPCA

Consider first the functional analog of the popular random intercept-random slope
model,

Yi j(d) = η(d,Ti j)+ Xi,0(d)+ Xi,1(d)Ti j +Ui j(d)+ εi j(d), (23.1)

where Yi j(·) is a random function in L2[0,1] observed at a grid of values d ∈ [0,1],
and Ti j is the jth time-point for subject i, i = 1, . . . , I, j = 1, . . . ,Ji. In this repre-
sentation, η(d,Ti j) is a fixed main effect surface, Xi,0(d) is the random functional
intercept for subject i, Xi,1(d) is the random functional slope for subject i, Ui j(d)
is the random subject- and visit-specific functional deviation, and εi j(d) is random
homoscedastic noise. We assume that Xi(d) = {Xi,0(d),Xi,1(d)}, Ui j(d) and εi j(d)
are zero-mean, square-integrable, mutually uncorrelated random processes on [0,1],
and εi j(d) is white noise measurement error with variance σ2.

Model (23.1) can be generalized to a functional analog of a linear mixed model,

Yi j(d) = η(d,Zi j)+V ′
i jXi(d)+Ui j(d)+ εi j(d), (23.2)

with vector-valued random process Xi(d) and covariate vectors Vi j and Zi j, but we
will here focus on model (23.1) for simplicity.

To estimate model (23.1), we build on FPCA (e.g. Ramsay and Silverman,
2005) and extend multilevel FPCA (Di et al. 2008), using Mercer’s theorem and
the Karhunen-Loève expansion. We expand the covariance operators of the bivari-
ate and univariate processes Xi(d) = {Xi,0(d),Xi,1(d)} and Ui j(d) as KX(d,d′) =
∑∞k=1λkφX

k (d)φX
k (d′)′ and KU (d,d′)=∑∞k=1 νkφU

k (d)φU
k (d′), where φX

k (d)= {φ0
k (d),φ1

k (d)}′
and φU

k (d) are the eigenfunctions corresponding to the eigenvalues λ1 ≥ λ2 ≥
·· · ≥ 0, respectively ν1 ≥ ν2 ≥ ·· · ≥ 0. The Karhunen-Loève expansions of the
random processes are Xi(d) = ∑∞k=1 ξikφX

k (d) and Ui j(d) = ∑∞k=1 ζi jkφU
k (d), with

principal components scores ξik =
∫ 1

0 Xi,0(s)φ0
k (s)ds+

∫ 1
0 Xi,1(s)φ1

k (s)ds and ζi jk =
∫ 1

0 Ui j(s)φU
k (s)ds being uncorrelated mean zero random variables with variances λk

and νk, respectively. The bivariate φX
k capture the potential correlation between ran-

dom functional intercept and slope, which are allowed to co-vary between subjects.
They allow the extraction of information on the main modes of variation with respect
to both static and dynamic behavior of the functions. In practice, finite-dimensional
approximations result in the following approximation to model (23.1),

Yi j(d) = η(d,Ti j)+
NX

∑
k=1

ξikV
′
i jφ

X
k (d)+

NU

∑
l=1

ζi jlφU
l (d)+ εi j(d), (23.3)

where Vi j = (1,Ti j)′, ξik ∼ (0,λk), ζi jl ∼ (0,νl), εi j(d) ∼ (0,σ2). xl ∼ (0,a) de-
notes uncorrelated variables with mean 0 and variance a. Normality is not assumed
but groups of variables are assumed uncorrelated, corresponding to our previous as-
sumptions on the random processes. Model (23.3) is a linear mixed model. Model
selection or testing for random effects could thus be used to choose NX and NU
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(e.g. Greven and Kneib, 2010). We use the simpler and intuitive approach of choos-
ing components up to a previously specified proportion of variance explained. We
can show that the overall variance can be written as

∫ 1

0
Var{Yi j(s)}ds =

∞

∑
k=1

λk +
∞

∑
k=1

νk +σ2

if η(d,Ti j) ≡ 0 and the Ti j are random variables independent of all other variables
with E(Ti j) = 0 and Var(Ti j) = 1.

23.3 Estimation and Simulation Results

We estimate model (23.3) as follows. The fixed effect mean surface η(d,T ) can be
consistently estimated using a bivariate smoother such as penalized splines in d and
T under a working independence assumption. We use the empirical covariances and
the fact that Cov{Yi j(d),Yik(d′)} can be expanded as

K0(d,d′)+ TikK01(d,d′)+ Ti jK01(d′,d)+ Ti jTikK1(d,d′)+ [KU(d,d′)+σ2δdd′ ]δ jk,

to estimate the covariance operators based on linear regression. Here, K0(d,d′),
K1(d,d′) and K01(d,d′) denote the auto-covariance and cross-covariance functions
for Xi,0(d) and Xi,1(d), and δ jk is Kronecker’s delta. We incorporated a bivariate
smoothing step in the estimation of KU (d,d′) and KX (d,d′), which also allows esti-
mation of σ2. Eigenfunctions and variances can then be estimated from the spectral
decomposition of the covariance functions. Estimation of the scores ξik and ζi jl is
based on best linear unbiased prediction in the linear mixed model (23.3). Matrix
algebra involving Kronecker product, Woodbury formula etc. allows our implemen-
tation in an R function to be computationally very efficient, even for large data sets.

Fig. 23.2: The first true principal components (φ 0
1 ,φ 1

1 ) for X and φU
1 for U (thick

solid lines), the mean of the estimated functions (dashed), pointwise 5th and 95th
percentiles of the estimated functions from 1000 simulations (thin solid), and es-
timated functions from 20 simulations (grey), without smoothing of covariances.
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Our estimation approach performed well in extensive simulations, spanning dif-
ferent numbers of subjects and visits per subject, balanced and unbalanced designs,
normal and non-normal scores, different eigenfunctions and mean functions. As an
example, for one setting with 100 subjects, 4 unequally spaced time-points Ti j per
subject and 120 sampling points d per curve, Figure 23.2 illustrates that eigenfunc-
tions are well estimated; as are mean function, variances and scores (results not
shown).

23.4 Application to the Tractography Data

Diffusion tensor imaging (DTI) is able to resolve individual functional tracts within
the central nervous system white matter, a frequent target of multiple sclerosis (MS).
DTI measures such as fractional anisotropy (FA) can be decreased or increased in
MS due to lesions, loss of myelin and axon damage. A focus on single tracts can help
in understanding the neuroanatomical basis of disability in MS. We are interested
in differences between subjects both with respect to their mean tract profiles (static
behavior) and the changes in their tract profiles over time (dynamic behavior).

Figure 23.3 exemplarily shows estimates for the first principal component (φ0
1 ,φ1

1 ).
Positive scores correspond to a lower function with a particularly deep dip in the
isthmus (at 20), but only to small changes over time. Estimated scores ξ̂i1 are signif-
icantly higher in MS patients than controls. The patient group in particular seems to
have a higher mean and a heavier right tail. This could be an indication of a mixture
in this group of patients who are more or less affected by MS along this particular
tract. Potential loading-based clustering into patient subgroups will be of interest in
future work. Interestingly, FA for this component is not decreased uniformly along
the tract, but only posterior to the genu (ca. 1-100), with the decrease being espe-
cially pronounced in the area of the isthmus (ca. 20). Our results thus identify the
region of the corpus callosum (the isthmus) where MS seems to take its greatest
toll. Other components indicate the ways in which that portion of the tract changes
from one year to the next. In future work, we plan to examine whether these changes
can portend disease course. This result could not have been obtained by using the
average FA instead of our functional approach.
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Fig. 23.3: The first estimated principal component (φ 0
1 ,φ 1

1 ) for the random in-
tercept (left) and slope (middle) process X . Depicted are estimates for the overall
mean η(d) (solid line), and for η(d) plus/minus 2

√
λk times the component. Box-

plots on the right show estimates of the corresponding scores ξik by case/control
group. The two example patients shown in Figure 23.1 are indicated by A and B.
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Chapter 24
Estimation and Testing for Geostatistical
Functional Data

Oleksandr Gromenko, Piotr Kokoszka

Abstract We present procedures for the estimation of the mean function and the
functional principal components of dependent spatially distributed functional data.
We show how the new approaches improve on standard procedures, and discuss
their application to significance tests.

24.1 Introduction

The data that motivates the research summarized in this note consist of curves
X(sk;t), t ∈ [0,T ], observed at spatial locations s1,s2, . . . ,sN . Such functional data
structures are quite common, but typically the spatial dependence and the spatial
distribution of the points sk are not taken into account. A well–known example is
the Canadian temperature and precipitation data used as a running example in Ram-
say and Silverman (2005). The annual curves are available at 35 locations, some of
which are quite close, and so the curves look very similar, others are very remote
with notably different curves. Figure 24.1shows the temperature curves together with
the simple average and the average estimated by one of the methods proposed in
this paper. Conceptually, the average temperature in Canada should be computed
as the average over a fine regular grid spanning the whole country. In reality, there
are only several dozen locations mostly in the inhabited southern strip. Computing
an average over these locations will bias the estimate. Data at close by locations
contribute similar information, and should get smaller weights than data at sparse
locations. This is the fundamental principle of spatial statistics which however re-
ceived only limited attention in the framework of functional data analysis. Another
example of this type is the Australian rainfall data set, recently studied by Delaigle
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and Hall (2010), which consists of daily rainfall measurements from 1840 to 1990
at 191 Australian weather stations. Many other environmental and geophysical data
sets fall into this framework; examples are discussed in Gromenko et al. (2011), on
which this note is based.
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Fig. 24.1: Average annual temperature curves at 35 locations in Canada used as a
running example in Ramsey and Silverman (2005). The continuous thick line is
the simple average, the dashed line is an estimate that takes into account spatial
locations and dependence.

Delicado et al. (2010) review recent contributions to the methodology for spa-
tially distributed functional data; for geostatistical functional data, several ap-
proaches to kriging have been proposed. The focus of this note is the estimation
of the mean function and of the functional principal components (FPC’s). Accurate
estimates of these quantities are required to develop many exploratory and inferen-
tial procedures of functional data. In order to define the mean function and the FPC’s
in an inferential setting, we assume that {X(s)} is a random field taking values in
L2 = L2([0,1]) which is is strictly stationary, i.e. for every shift h,

(X(s1),X(s2), . . . ,X(sk))
d= (X(s1 + h),X(s2 + h), . . . ,X(sk + h)) , (24.1)

and square integrable in the sense that E‖X(s)‖2 < ∞, where the norm is induced
by the usual inner product in L2. Under these conditions, the mean function μ(t) =
EX(s;t) is well–defined. The FPC’s also exist, and are defined as the eigenfunctions
of the covariance operator

C(x) = E [〈(X(s)− μ),x〉(X(s)− μ)] , x ∈ L2.

We also assume that the field is also isotropic. A sufficient background in spatial
statistics required to understand this note is presented in Chapters 2 and 3 of Gelfand
et al. (2010).

For a sample of functions, X1,X2, . . . ,XN , the sample mean is defined as X̄N =
N−1∑N

n=1 Xn, and the sample covariance operator as
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Ĉ(x) = N−1
N

∑
n=1

[〈(Xn− X̄N),x〉(Xn− X̄N)] , x ∈ L2.

The sample FPC’s are typically computed as the eigenvalues of Ĉ. These are the
estimates produced by several software packages, including the popular R package
fda, see Ramsay et al. (2009). If the functions Xk = X(sk) are spatially distributed,
the sample mean and the sample FPC’s need not be consistent, see Hörman and
Kokoszka (2010). This happens if the spatial dependence is strong or if there are
clusters of the points sk. We will demonstrate that in finite samples better estimators
are available.

24.2 Estimation of the mean function

One approach to the estimation of mean function μ is to use the weighted average

μ̂N =
N

∑
n=1

wnX(sn) (24.2)

with the weights wk minimizing E‖∑N
n=1 wnX(sn)− μ‖2 subject to the condition

∑wn = 1. It can be shown that these weights satisfy the following system of N + 1
linear equations:

N

∑
n=1

wn = 1,
N

∑
k=1

wkCkn− r = 0, n = 1,2, . . . ,N, (24.3)

where
Ck� = E[〈X(sk)− μ ,X(s�)− μ〉] (24.4)

The estimation of the Ck� is the central issue. Due to space constraints, we cannot
provide all the details of the methods described below, we refer to Gromenko et
al.(2011).

Method M1. This method postulates that at each time point t j the scalar random
field X(s;t j) follows a parametric spatial model. The covariances Ck� can be com-
puted exactly by appropriately integrating the covariances of the models at each t j,
or approximately. This lead to two methods M1a (exact) and M1b (approximate).

Method M2. This method is based on the functional variogram

2γ(sk,s�) = E‖X(sk)−X(s�)‖2 (24.5)

= 2E‖X(sk)− μ‖2−2E [〈X(sk)− μ ,X(s�)− μ〉]
= 2E‖X(s)− μ‖2−2Ck�.
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The variogram (24.5) can be estimated by its empirical counterparts, similarly
as for scalar spatial data. A parametric model is fitted, and the Ck� can then be
computed using (24.5).

Method M3. This method uses a basis expansion of the functional data, it does
not use the weighted sum (24.2). If the B j form a basis, it estimates the inner prod-
ucts 〈B j,μ〉, and reconstructs an estimate of μ from them.

To compare the performance of these methods, Gromenko et al. (2011) simulated
data at globally distributed points corresponding to the actual location of ionosonde
stations; an ionosonde is a radar used to study the ionosphere. The quantity L is
defined by

L =
1
R

R

∑
r=1

∫
|μ̂r(t)− μ(t)|dt, (24.6)

where R is the number of replications, was used to compare the methods. Figure 24.2
presents the results. It is seen that while methods M1 are the best, M2 is not signifi-
cantly worse, and can be recommended, as it requires fitting only one variogram (the
functional variogram (24.5)) rather than a separate variogram at every time point t j.
All methods that take spatial dependence into account are significantly better than
the sample mean.
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Fig. 24.2: Errors in the estimation of the mean function for sample sizes: 32, 100,
218. The dashed boxes are estimates using the Cressie Hawkins variogram, empty
are for the Matheron variogram. The right–most box for each N corresponds to the
simple average. The bold line inside each box plot represents the average value of
L (24.6). The upper and lover sides of rectangles shows one standard deviation,
and horizontal lines show two standard deviations.
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24.3 Estimation of the functionalprincipal components

We now assume that the estimated mean function has been subtracted from the data,
so in the following we set EX(s) = 0. For the estimation of the FPC’s, analogs of
methods M2 and M3 can be developed. Extending Method M1 is also possible, but
presents computational challenges because a parametric spatial model would need
to be estimated for every pair (ti,t j). Evaluating the performance of such a method
by simulations would take a prohibitively long time.

In both approaches, which we term CM2 and CM3, the FPC’s are estimated by
expansions of the form

v j(t) =
K

∑
α=1

x( j)
α Bα(t), (24.7)

where the Bα are elements of an orthonormal basis.
Method CM2. Under the assumption of zero mean function, the covariance op-

erator is the defined by C(x) = E[〈X(s),x〉X(s)]. It can be estimated by the weighted
average

Ĉ =
N

∑
k=1

wkCk, (24.8)

where Ck is the operator defined by Ck(x) = 〈X(sk),x〉X(sk). The weights wk are
computed by minimizing the Hilbert–Schmidt norm of the difference Ĉ−C ex-
panded into the basis {〈·,B j〉〈·,Bk〉, 1 ≤ j,k ≤ K}, with suitably chosen K. A var-
iogram in the space of Hilbert–Schmidt operators is suitably defined to fit a spatial
dependence model. The orthonormality of the B j plays a role in deriving the algo-
rithm for the estimation.

Method CM3. The starting point is the expansion X(s;t) ≈ ∑K
j=1 ξ j(s)B j(t),

where, by the orthonormality of the B j, the ξ j(s) form a stationary and isotropic
mean zero spatial processes with observed values ξ j(sk) = 〈B j,X(sk)〉. Using the
orthonormality of the B j again, the estimation of C, can be reduced to the estimation
of the means of the scalar spatial fields ξi(s)ξ j(s), 1≤ i, j ≤ K. The eigenfunctions
of the estimated C can then be computed.

For the data generating processes designed to resemble the ionosonde data, meth-
ods CM2 and CM3 are fully comparable, but both are much better that the standard
method which does not account for the spatial properties of the curves. Methods
CM2 and CM3 have the same computational complexity.

24.4 Applications to inference for spatially distributed curves

Gromenko et al. (2011) developed a test of independence of two families of curves;
there are curves X(sk) and Y (sk), and the problem is to test if the functional spatial
fields X and Y are independent. The procedure requires estimation of the mean func-
tions of the X(sk) and the Y (sk), as well as their FPC’s. The problem is motivated by
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testing if decadal trends in the internal magnetic field of the Earth are correlated with
the apparent long term trends in the ionospheric electron density. The test shows that
the two families of curves are strongly dependent, but a highly significant conclu-
sion is possible only after the spatial properties of the curves are taken into account.
Using the estimators described in the previous sections, Gromenko and Kokoszka
(2010) developed a test for the equality of means of the fields X and Y .
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Chapter 25
Structured Penalties for Generalized Functional
Linear Models (GFLM)

Jaroslaw Harezlak, Timothy W. Randolph

Abstract GFLMs are often used to estimate the relationship between a predictor
function and a response (e.g. a binary outcome). This manuscript provides an ex-
tension of a method recently proposed for functional linear models (FLM) - PEER
(partially empirical eigenvectors for regression) to GFLM. The PEER approach to
FLMs incorporates the structure of the predictor functions via a joint spectral de-
composition of the predictor functions and a penalty operator into the estimation
process via a generalized singular value decomposition. This approach avoids the
more common two-stage smoothing basis approach to estimating a coefficient func-
tion. We apply our estimation method to a magnetic resonance spectroscopy data
with binary outcomes.

25.1 Introduction

The coefficient function, β , in a GFLM represents the linear relationship between
a transformed mean of the scalar response, y, and a predictor, x, formally written
as g(E[y]) =

∫
x(t)β (t)dt, where g(·) is a so called link function. The problem

typically involves a set of n responses {yi}n
i=1 corresponding to a set of obser-

vations {xi}n
i=1, each arising as a discretized sampling of an idealized function;

i.e., xi ≡ (xi(t1), ...,xi(tp)), for some, t1, ...,tp, of [0,1]. We assume the predictors
have been sampled densely enough to capture a spatial predictor structure and thus
p >> n.

Classical approaches (see for example, Crambes et.al., 2009 and Hall et.al., 2007)
to the ill-posed problem of estimating β use either the eigenvectors determined by
the predictors (e g. principal components regression - PCR) or methods based on
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a projection of the predictors onto a pre-specified basis and then obtaining an esti-
mate from a generalized linear model formed by the transform coefficients. These
methods, however, do not provide an analytically tractable way of incorporating the
predictor’s functional structure directly into the GFLM estimation process.

Here, we extend the framework developed in Randolph et al. (2011) which ex-
ploits the analytic properties of a joint eigen-decomposition for an operator pair—
a penalty operator, L, and the operator determined by the predictor functions, X .
More specifically, we exploit an eigenfunction basis whose functional structure is
inherited by both L and X . As this basis is algebraically determined by the shared
eigenproperties of both operators, it is neither strictly empirical (as with principal
components) nor completely external to the problem (as in the case of B-spline re-
gression models). Consequently, this approach avoids a separate fitting or smoothing
step. We refer to this approach as PEER (partially empirical eigenvector regression)
and here provide an overview of PEER as developed for FLMs and then describe
the extension to GFLMs.

25.2 Overview of PEER

We consider estimates of the coefficient-functionβ arising from a squared-error loss
with quadratic penalty. These may be expressed as

β̃α ,L = argminβ{||y−Xβ ||2Rn +α||Lβ ||2L2}, (25.1)

where L is a linear operator.
Within this classical formulation, PEER exploits the joint spectral properties of

the operator pair (X ,L). This perspective allows the estimation process to be guided
by an informed construction of L. It succeeds when structure in the generalized
singular vectors of the pair (X ,L) is commensurate with the appropriate structure of
β . How L imparts this structure via the GSVD is detailed in Randolph et al. (2011),
and so the discussion here is restricted to providing the notation necessary for the
GFLM setting.

A least-squares solution, β̂ , satisfies the normal equations X ′Xβ = X ′y. Estimates
arise as minimizers, β̂ = argminβ ||y−Xβ ||2, but there are infinitely many such so-
lutions and so regularization is required. The least-squares solution with a minimum
norm is provided by the singular value decomposition (SVD): X = UDV ′ where the
left and right singular vectors, uk and vk, are the columns of U and V , respectively,
and D = diag{σk}p

k=1, with σ1≥σ2 ≥ . . .≥σr (r = rank(X), σr ≈ 0). The minimum-

norm solution is β̂+ = X†y = ∑σk =0(1/σk)u′kyvk, where X† denotes the Moore-
Penrose inverse of X : X† = VD†U ′, where D† = diag{1/σk if σk = 0; 0 if σk = 0}.

For functional data, however, β̂+ is an unstable estimate which motivates PCR
estimate: β̃PCR = VdD−1

d Ud
′y where Ad ≡ col[a1, ...,ad ] denotes the first d columns

of a matrix A. Another classical way to obtain a more stable estimate in terms of the
ordinary singular vectors is to impose a ridge penalty, L = I (see Hoerl et.al., 1970)
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for which the minimizing solution to (25.1) is

β̃α ,R = (X ′X +αI)−1X ′y =
r

∑
k=1

(
σ2

k

σ2
k +α

)
1
σk

u′kyvk, (25.2)

For a given linear operator L and parameter α > 0, the estimate in (25.1) takes the
form

β̃α ,L = (X ′X +αL′L)−1X ′y. (25.3)

This cannot be expressed using the singular vectors of X alone, but the generalized
singular value decomposition of the pair (X ,L) provides a tractable and interpretable
vector expansion.

We provide here a short description of the GSVD method. Additional details
are available in the Randolph et al. (2011). It is assumed that X is an n× p matrix
(n ≤ p) of rank n, L is an m× p matrix (m ≤ p) of rank m and the null spaces of X
and L intersect trivially: Null(L)∩Null(X) = {0}. This condition is needed to obtain
a unique solution and is natural in our applications. It is not required, however, to
implement the methods. We also assume that n ≤ m ≤ p, with m + n ≥ p, and the
rank of Z := [X ′L′]′ is at least p.

Then there exist orthogonal matrices U and V , a nonsingular matrix W and diag-
onal matrices S and M such that

X = USW−1 , S =
[

0 S
]
, S = diag{σk}

L = VMW−1 , M =
[

I 0
0 M

]

, M = diag{μk}.
(25.4)

The diagonal entries of S and M are ordered as

0≤ σ1 ≤ σ2 ≤ ...σn ≤ 1

1≥ μ1 ≥ μ2 ≥ ...μn ≥ 0
where σ2

k + μ2
k = 1, k = 1, ...,n. (25.5)

Denote the columns of U , V and W by uk, vk and wk, respectively. For the majority
of matrices L the generalized singular vectors uk and vk are not the same as the
ordinary singular vectors of X . One case when they are the same is for L = I.

The penalized estimate is a linear combination of the columns of W and the
solution to the penalized regression in (25.1) can be expressed as

β̃α ,L =
p

∑
k=p−n+1

(
σ2

k

σ2
k +αμ2

k

)
1
σk

u′kywk , (25.6)

We refer to any β̃α ,L (L = I) as a PEER (partially empirical eigenvectors for regres-
sion) estimate. The utility of a penalty L depends on whether the true coefficient
function shares structural properties with this GSVD basis. With regard to this, the
importance of the parameter α may be reduced by a judicious choice of L (Varah,
1979) since the terms in (25.6) corresponding to the vectors {wk : μk = 0} are inde-
pendent of α .
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25.2.1 Structured and targeted penalties

A structured penalty refers to a second term in (25.1) that involves an operator
chosen to encourage certain functional properties in the estimate. Here we give ex-
amples of such penalties. If we begin with some knowledge about the subspace
of functions in which the informative signal resides, then we can define a penalty
based on it. For example, suppose β ∈ Q := span{q j}d

j=1 for some q j ∈ L2(Ω).
Set Q = ∑d

j=1 q j ⊗ q j and consider the orthogonal projection PQ = QQ†. Define

LQ = I−PQ, then β ∈Null(LQ) and β̃α ,LQ
is unbiased.
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Fig. 25.1: Partial sums of penalized estimates. The first five odd-numbered partial
sums from (25.6) for three penalties, L: 2nd-derivative (dotted black), ridge (solid
gray), targeted (solid black); see text. The last panel exhibits β (solid black) and
several predictors, xi (light gray), from the simulation.

Figure 25.1 illustrates the estimation process with plots of some partial sums
from equation (25.6) for three estimates. The ridge estimate is, naturally, domi-
nated by the leading eigenvectors of X . The second-derivative penalized estimate
is dominated first by low-frequency structure. The targeted PEER estimate shown
here begins with the largest peaks corresponding the largest GSV components, but
quickly converges to the informative features.
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25.2.2 Analytical properties

For a general linear penalty operator L, the analytic form of the estimate and its
basic properties of bias, variance and MSE are provided in Randolph et al. (2011).
Any direct comparison between estimates using different penalty operators is con-
founded by the fact there is no simple connection between the generalized singular
values/vectors and the ordinary singular values/vectors. Therefore, Randolph et al.
(2011) first considered the case of targeted or projection-based penalties. Within
this class, a parameterized family of estimates is comprised of ordinary singular
values/vectors. Since the ridge and PCR estimates are contained in (or a limit of)
this family, an analytical comparison with some targeted PEER estimates is possi-
ble.

25.3 Extension to GFLM

Generalization of PEER to the GFLM setting proceeds via replacement of the con-
tinuous responses y1, . . . ,yn by responses coming from a general exponential family
whose expectations g(μi) are linearly related to a functional predictor Xi. We specif-
ically focus here on the binary responses and logistic regression setting. We replace
the least squares criterion by a likelihood function appropriate for the member of
the exponential family distribution and find the estimate of β by minimizing the
following expression:

β̃α ,L = argminβ{∑
i

l(g(yi),Xiβ )+α||Lβ ||2L2}, (25.7)

where l(·) is the log-likelihood function. The fitting procedure for PEER in GFLM
setting is a modification of an iteratively reweighted least squares (IRLS) method.
In a similar spirit to the BLUP and REML estimation of the tuning parameter in
the linear mixed model equivalent setting, we select the tuning parameter using
the penalized quasi-likelihood (PQL) method associated with the generalized linear
mixed models. REML criterion is preferred here, since it has been been shown to
outperform the GCV method (see Reiss and Ogden, 2007).

25.4 Application to a magnetic resonance spectroscopy data

We apply the GFLM-PEER method to study the relationship of the magnetic res-
onance spectroscopy (MRS) data and neurocognitive impairment arising from the
HIV Neuroimaging Consortium (HIVNC) study (see Harezlak et al., 2011 for the
study description). In particular, we are interested in studying the relationship of the
metabolite level concentrations in the brain and classification of the patients into
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Fig. 25.2: A sample magnetic resonance spectroscopy (MRS) spectrum displaying
brain metabolite levels in one frontal gray matter (FGM) voxel.

neurologically asymptomatic (NA) and neurocognitively impaired (NCI) groups.
The predictor functions come in the form of spectra for each studied voxel in the
brain (see Figure 25.2). Our method provides promising results when compared to
the more established functional regression methods which do not take into account
the external pure metabolite spectra profiles . We also obtain interpretable func-
tional regression estimates that do not rely on a two–step procedure estimating the
metabolite concentrations first and then using them as predictors in a logistic regres-
sion model.

25.5 Discussion

Estimation of the coefficient function β in a generalized functional linear model
requires a regularizing constraint. When the data contain natural spatial structure
(e.g., as derived from the physics of the problem), then the regularizing constraint
should acknowledge this. In the FLM case, exploiting properties of the GSVD pro-
vided a new analytically-rigorous approach for incorporating spatial structure into
functional linear models. In the GFLM case, we extend the IRLS procedure to take
into account the penalty operator.

A PEER estimate is intrinsically based on GSVD factors. This fact guides the
choice of appropriate penalties for use in both FLM and GFLM. Heuristically, the
structure of the penalty’s least-dominant singular vectors should be commensurate
with the informative structure of β . The properties of an estimate are determined
jointly by this structure and that in the set of predictors. The structure of the gen-
eralized singular functions provides a mechanism for using a priori knowledge in



25 Structured Penalties for Generalized Functional Linear Models (GFLM) 167

choosing a penalty operator allowing, for instance, one to target specific types of
structure and/or avoid penalizing others. The effect a penalty has on the properties
of the estimate is made clear by expanding the estimate in a series whose terms are
the generalized singular vectors/values for X and L.
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Chapter 26
Consistency of the Mean and the Principal
Components of Spatially Distributed Functional
Data

Siegfried Hörmann, Piotr Kokoszka

Abstract This paper develops a framework for the estimation of the functional mean
and the functional principal components when the functions form a random field. We
establish conditions for the sample average (in space) to be a consistent estimator of
the population mean function, and for the usual empirical covariance operator to be
a consistent estimator of the population covariance operator.

26.1 Introduction

In this paper we study functional data observed at spatial locations. That is, the data
consist of curves X(sk;t), t ∈ [0,T ], observed at spatial points s1,s2, . . . ,sN . Such
data structures are quite common, but often the spatial dependence and the spatial
distribution of the points sk are not taken into account. A well–known example is
the Canadian temperature and precipitation data used as a running example in Ram-
say and Silverman (2005). The annual curves are available at 35 locations, some of
which are quite close, and so the curves look very similar, others are very remote
with notably different curves. Ramsay and Silverman (2005) use the functional prin-
cipal components and the functional linear model as exploratory tools.

Due to the importance of such data structures it is useful to investigate when
the commonly used techniques designed for iid functional data retain their consis-
tency for spatially distributed data, and when they fail. We establish conditions for
consistency, or lack thereof, for the functional mean and the functional principal
components. Our conditions combine the spatial dependence of the curves X(sk; · )
and the distribution of the data locations sk.
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While in time series analysis, the process is indexed by an equispaced scalar pa-
rameter, we need here a d-dimensional index space. For model building this makes
a big difference since the dynamics and dependence of the process have to be de-
scribed in “all directions”, and the typical recurrence equations used in time series
cannot be employed. The model building is further complicated by the fact that the
index space is often continuous (geostatistical data). Rather than defining a random
field {ξ (s); s ∈ R

d} via specific model equations, dependence conditions are im-
posed, in terms of the decay of the covariances or using mixing conditions. Another
feature peculiar to random field theory is the design of the sampling points; the
distances between them play a fundamental role. Different asymptotics hold in the
presense of clusters and for sparsely distributed points. At least three types of point
distributions have been considered in the literature: When the region RN where the
points {si,N ;1 ≤ i≤ N} are sampled remains bounded, then we are in the so-called
infill domain sampling case. Classical asymptotic results, like the law of large num-
bers or the central limit theorem will usually fail, see Lahiri (1996). The other ex-
treme situation is described by the increasing domain sampling. Here a minimum
separation between the sampling points {si,N} ∈ RN for all i and N is required. We
shall also explore the nearly infill situation studied e.g. by Lahiri (2003) and Park
et al. (2009). In this case the domain of the sampling region becomes unbounded
(diam(RN) → ∞), but at the same time the number of sites in any given subregion
tends to infinity.

26.2 Model and dependence assumptions

We assume {X(s),s ∈ R
d} is a random field taking values in L2 = L2([0,1]), i.e.

each X(s) is a square integrable function defined on [0,1]. The value of this function
at t ∈ [0,1] is denoted by X(s;t). With the usual inner product in L2, the norm of
X(s) is

‖X(s)‖= 〈X(s),X(s)〉1/2 =
{∫

X2(s;t)dt

}1/2

.

We assume that the spatial process {X(s),s∈R
d} is strictly stationary, i.e. for every

h ∈R
d ,

(
X(s1),X(s2), . . . ,X(sk)

) d=
(
X(s1 + h),X(s2 + h), . . . ,X(sk + h)

)
. (26.1)

We also assume that it is square integrable in the sense that

E‖X(s)‖2 <∞. (26.2)

Under (26.1) and (26.2), the common mean function is denoted by μ = EX(s).
To develop an estimation framework for μ , we impose different assumptions on
the decay of E〈X(s1)− μ ,X(s2)− μ〉, as the distance between s1 and s2 increases.
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We shall use the distance function defined by the Euclidian norm in R
d , denoted

‖s1− s2‖2, but other distance functions can be used as well.

Assumption 1 The spatial process {X(s),s ∈ R
d} is strictly stationary and square

integrable, i.e. (26.1) and (26.2) hold. In addition,

|E〈X(s1)− μ ,X(s2)− μ〉| ≤ h
(‖s1− s2‖2

)
, (26.3)

where h : [0,∞)→ [0,∞) with h(x)↘ 0, as x → ∞.

The following example illustrates how Assumption 1 can be veryfied under
strong mixing.

Example 1 Let {e j} be the orthonormal basis obtained from the eigenfunctions
of the covariance operator C(y) = E〈X(s)− μ ,y〉(X(s)− μ). Then we obtain the
Karhunen-Loève expansion of

X(s)− μ = ∑
j≥1

ξ j(s)e j, (26.4)

with ξ j(s) = 〈X(s)− μ ,e j〉, j ≥ 1. Suppose that the functional field {X(s), s ∈ R
d}

is strictly stationary and α-mixing. That is

sup
(A,B)∈σ(X(s))×σ(X(s+h))

|P(A)P(B)−P(A∩B)| ≤ α(h),

with α(h)→ 0 if ‖h‖2 → ∞. Then the ξ j(s) inherit the α-mixing property, and thus
(26.3) can be established using

|E〈X(s1)− μ ,X(s2)− μ〉| ≤ ∑
j≥1

|E[ξ j(s1)ξ j(s2)]|

in combination with classical covariance inequalities for mixing scalar processes
(e.g. those in Rio (1993)). We refer to Hörmann and Kokoszka (2011+) for details.

Assumption 1 is appropriate when studying estimation of the mean function. For
the estimation of the covariance operator, we need to impose a different assumption.
Recall that if z and y are elements in some Hilbert space H with norm ‖ · ‖H , the
operator z⊗ y, is defined by z⊗ y(x) = 〈z,x〉y. Further, if K is a linear operator
in a separable Hilbert space H, then it is said to be Hilbert-Schmidt, if for some
orthonormal basis {ei} of H

‖K‖2
H :=∑

i≥1
‖K(ei)‖2

H < ∞.

Then ‖ · ‖H defines a norm on the space of all operators satisfying this condition.
The norm is independent of the choice of the basis. This space is again a Hilbert
space with the inner product

〈K1,K2〉H =∑
i≥1
〈K1(ei),K2(ei)〉.
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In the following assumption, we suppose that the mean of the functional field
is zero. This is justified by notational convenience and because we deal with the
consistent estimation of the mean function separately.

Assumption 2 The spatial process {X(s),s ∈ R
d} is strictly stationary with zero

mean and with 4 moments, i.e. E〈X(s),x〉 = 0, ∀x ∈ L2, and E‖X(s)‖4 < ∞. In
addition,

∣
∣E〈X(s1)⊗X(s1)−C , X(s2)⊗X(s2)−C〉H

∣
∣≤ H

(‖s1− s2‖2
)
, (26.5)

where H : [0,∞)→ [0,∞) with H(x)↘ 0, as x→ ∞.

26.3 The sampling schemes

As already noted, for spatial processes assumptions on the distribution of the sam-
pling points are as important as those on the covariance structure. To formalize the
different sampling schemes introduced in the Introduction, we propose the follow-
ing measure of “minimal dispersion” of some point cloud S:

Iρ(s,S) = |{y ∈S : ‖s−y‖2 ≤ ρ}|/|S| and Iρ(S) = sup
{

Iρ(s,S), s ∈S
}

,

where |S| denotes the number of elements of S. The quantity Iρ(S) is the maximal
fraction of S–points in a ball of radius ρ centered at an element of S. Notice that
1/|S| ≤ Iρ(S)≤ 1. We call ρ "→ Iρ(S) the intensity function of S.

Definition 1 For a sampling scheme SN = {si,N ;1≤ i≤ SN}, SN →∞, we consider
the following conditions:

(i) there is a ρ > 0 such that limsupN→∞ Iρ(SN) > 0;
(ii) for some sequence ρN → ∞ we have IρN (SN)→ 0;
(iii) for any fixed ρ > 0 we have SNIρ(SN)→ ∞.

We call a deterministic sampling scheme SN = {si,N ;1≤ i≤ SN}
Type A if (i) holds;
Type B if (ii) and (iii) hold;
Type C if (ii) holds, but there is a ρ > 0 such that limsupN→∞ SNIρ(SN) < ∞.

If the sampling scheme is stochastic we call it Type A, B or C if relations (i), (ii)
and (iii) hold with Iρ(SN) replaced by EIρ(SN).

Type A sampling is related to purely infill domain sampling which corresponds
to Iρ(SN) = 1 for all N ≥ 1, provided ρ is large enough. However, in contrast to
the purely infill domain sampling, it still allows for a non-degenerate asymptotic
theory for sparse enough subsamples (in the sense of Type B or C). A brief reflec-
tion shows that assumptions (i) and (ii) are mutually exclusive. Combining (ii) and
(iii) implies that the points intensify (at least at certain spots) excluding the purely
increasing domain sampling. Hence the Type B sampling corresponds to the nearly
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infill domain sampling. If only (ii) holds, but (iii) does not (Type C sampling) then
the sampling scheme corresponds to purely increasing domain sampling.

26.4 Some selected results

Our first goal is to establish the consistency of the sample mean for functional spatial
data. We consider Type B or Type C sampling and obtain rates of convergence. We
consider here only a general setup. In Hörmann and Kokoszka (2011+) we have
demonstrated that the obtained rates can be substantially improved in special cases.
We also refer to Hörmann and Kokoszka (2011+) for the proofs of the following
results.

For independent or weakly dependent functional observations Xk,

E

∥
∥
∥
∥

1
N

N

∑
k=1

Xk− μ
∥
∥
∥
∥

2

= O
(
N−1) . (26.6)

Proposition 1 below shows that for general functional spatial processes, the rate of
consistency may be much slower than O

(
N−1
)
; it is the maximum of h(ρN) and

IρN (SN) with ρN from (ii) of Definition 1. Intuitively, the sample mean is consistent
if there is a sequence of increasing balls which contain a fraction of points which
tends to zero, and the decay of the correlations compensates for the increasing radius
of these balls.

Proposition 1 Let Assumption 1 hold, and assume that SN defines a non-random
design of Type A, B or C. Then for any ρN > 0,

E

∥
∥
∥
∥

1
N

N

∑
k=1

X(sk,N)− μ
∥
∥
∥
∥

2

≤ h(ρN)+ h(0)IρN(SN). (26.7)

Hence, under the Type B or Type C non-random sampling, with ρN as in (ii) of
Definition 1, the sample mean is consistent.

A question that needs to be addressed is whether the bound obtained in Proposi-
tion 1 is optimal. It is not surprising that (26.7) will not be uniformly optimal. This
is because the assumptions in Proposition 1 are too general to give a precise rate
for all the cases covered. In some sense, however, the rate (26.7) is optimal, as it is
possible to construct examples which attain the bound (26.7). (See Example 5.2 in
Hörmann and Kokoszka (2011+).)

Next we formulate the analogue of Proposition 1 establishing the rate of consis-
tency of the empirical covariance operator

ĈN =
1
N

N

∑
k=1

Xk⊗Xk.
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(We assume that EX1 = 0.)

Proposition 2 Let Assumption 2 hold, and assume that SN defines a non-random
design of Type A, B or C. Then for any ρN > 0

E
∥
∥ĈN −C

∥
∥2

H
≤ H(ρN)+ H(0)IρN (SN). (26.8)

Hence under the Type B or Type C non-random sampling, with ρN as in (ii) of
Definition 1, the empirical covariance operator is consistent.

The eigenvalues λ̂i,N and eigenfunctions êi,N , i ≥ 1, of the empirical covariance
operator ĈN are used to estimate the eigenvalues and eigenfunctions λi and ei, re-
spectively, of its population version C = EX1 ⊗X1. Using standard arguments the
rates obtained in (26.8) can be transformed directly to the convergence rates of
eigenvalues and eigenfunctions.

Corollary 1 Assume that λ1 > λ2 > · · · > λq+1 and let the assumptions of Propo-
sition 2 hold. Define ĉ j = sign〈e j, ê j,N〉. Then there is a constant κ depending only
on the process {X(s, ·);s ∈R

d}, such that

max
1≤i≤q

{
E|λ̂i,N −λi|2 + E‖êi,N− ĉiei‖2

}
≤ κ (H(ρN)+ H(0)IρN(SN)

) ∀N ≥ 1.

Corollary 1 is important, as it shows when the functional principal components,
defined by Yi = 〈X(s),ei〉, can be consistently estimated. The introduction of the
constants ĉ j is necessary, as the normalized eigenfunctions e j (we assume ‖e j‖= 1)
are only unique up to sign.

Our last result shows when the estimator ĈN can be inconsistent.

Proposition 3 Suppose representation (26.4) holds with stationary mean zero Gaus-
sian processes ξ j such that

E[ξ j(s)ξ j(s+ h)] = λ jρ j(h), h = ‖h‖,

where each ρ j is a continuous correlation function, and ∑ j λ j < ∞. Assume the
processes ξ j and ξi are independent if i = j. If SN = {s1,s2, . . . ,sn} ⊂ R

d with
sn → 0, then

lim
N→∞

E‖ĈN −X(0)⊗X(0)‖2
H = 0. (26.9)

The proposition shows that the empirical operator approaches the random oper-
ator X(0)⊗X(0). Thus it cannot be consistent.
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4. Park, B.U., Kim, T.Y., Park, J-S., Hwang, S.Y.: Practically applicable central limit theorems
for spatial statistics. Mathematical Geosciences, 41, 555–569 (2009)

5. Ramsay, J.O. and Silverman, B.W.: Functional Data Analysis. Springer, New York (2005)
6. Rio, E.: Covariance inequalities for strongly mixing processes. Ann. Inst. H. Poincaré Probab.
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Chapter 27
Kernel Density Gradient Estimate

Ivana Horová, Kamila Vopatová

Abstract The aim of this contribution is to develop a method for a bandwidth matrix
choice for kernel estimate of the first partial derivatives of the unknown density.

27.1 Kernel density estimator

Let a d-variate random sample X1, . . . , Xn come from distribution with a density f .
The kernel density estimator f̂ is defined

f̂ (x,H) =
1
n

n

∑
i=1

KH(x−Xi) =
1
n
|H|−1/2

n

∑
i=1

K
(
H−1/2(x−Xi)

)
.

H is a symmetric positive definite d×d matrix called the bandwidth matrix, where
|H| stands for the determinant of H. The kernel function K is often taken to be a
d-variate probability density function satisfying

∫
Rd K(x)dx = 1,

∫
Rd xK(x)dx = 0,∫

xxT K(x)dx = β2Id , Id is an identity matrix and x = (x1, . . . ,xd)T ∈R
d is a generic

vector.

27.2 Kernel gradient estimator

Let D f (x) denote a vector of the first partial derivatives, also referred as a gradient.
Kernel gradient estimator is defined in a similar way as the kernel density estimate:
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D̂ f (x,H) =
1
n

n

∑
i=1

DKH(x−Xi),

where DKH(x) = |H|−1/2H−1/2DK
(
H−1/2(x)

)
is a column vector of the first partial

derivatives of the kernel function.
For a gradient estimator D̂ f (x,H) the Mean Integrated Square Error (MISE), the

measure of the quality, is a matrix. Since performance based on scalar quantities
rather than on matrices is easier, it is appropriate to apply a matrix norm. In accor-
dance with the paper by Duong et al. (2008) the trace norm will be used and thus the
trace of asymptotic mean square error (TAMISE) can be expressed as a sum of the
trace of integrated variance (TIVar) and the trace of integrated square bias (TIBias2).
The resulting TAMISE-formula is of the form

TAMISE
[
D̂ f (· ,H)

]
= TAMISE(H) = TIVar(H)+ TIBias2(H)
= n−1|H|−1/2tr

[
H−1R(DK)

]
+ 1

4β2(K)2 vechT HΨ6vechH,

where R(g) =
∫
Rd g(x)gT (x)dx for any square integrable vector-valued function g,

and vech is the vector half operator, so that vechH is a d(d + 1)/2× 1 vector of
stacked columns of the lower triangular half of H. The term Ψ6 involves partial
derivatives up to the sixth order (for details see e.g. Duong et al. (2008), Vopatová
et al. (2010)). Duong et al. (2008) proved the following proposition.

Proposition 27.1. Let HT be a bandwidth matrix minimizing TAMISE(H), i.e.

HT = arg minTAMISE(H).

Then HT = O
(
n−

2
d+6
)
J, where J is a d×d matrix of ones.

The paper Horová et al. (2010) has been dealing with bandwidth matrix choice
for bivariate density estimates. In this case assuming that the bandwidth matrix is
diagonal there exist explicit solutions of the corresponding minimization problem
Hopt = arg minAMISE(H). Then the following relation is valid:

AIVar(Hopt) = 2AIBias2(Hopt).

Unfortunately, for d > 2 there is not closed form expression for the optimal smooth-
ing matrix. Nevertheless, the following theorem brings an analogous relation be-
tween TIVar and TIBias2 without knowledge of the explicit form of HT .

Theorem 27.1. Let HT be a minimizator of TAMISE(H). Then

d + 2
4

TIVar(HT ) = TIBias2(HT ).

This equation can be rewritten as

|HT |1/2 =
d + 2

4

tr
[
H−1

T R(DK)
]

nTIBias2(HT )
. (27.1)
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This relation is a basis of a method for bandwidth matrix choice we are going to
present.

Corollary 27.1. Let HT be a minimizator of TAMISE(H). Then

TAMISE(HT ) = d+6
4 TIVar(HT )

= d+6
4 n−1|HT |−1/2 tr

[
(HT )−1R(DK)

]
,

i.e.
TAMISE(HT ) = O

(
n−

4
d+6
)
.

This result corresponds to the result by Duong et al. (2008) and Chacón et al. (2009).
Let HT be a diagonal matrix. Without lost of generality we can assume that there

are constants ci, i = 1, . . . ,d, c1 = 1, such that

h2
i,T = c2

i h2
1,T , i = 1, . . . ,d.

The problem how to choose the constants ci, i = 1, . . . ,d, or their suitable estimates
will be treated later. Substitution of these entries in (1) and some computations lead
to the interesting expression for h1,T :

hd+6
1,T =

d + 2
n

|C|−1/2
∑d

i=1
1
c2

i

∫ ( ∂K
∂xi

)2
dx

β2(K)2 vechTCΨ6vechC
,

where C = diag
(
1,c2

2, . . . ,c
2
d

)
. This expression generalizes our result for d = 2 (see

Vopatová et al. (2010)).

27.3 A proposed method

Our method is based on the equation given in Theorem. This approach consists in
finding such a matrix HT satisfying that equation. Since TIBias2(HT ) depends on
unknown partial derivatives of the density f , we use a suitable estimate of it

T̂IBias
2
(HT ) = tr

[
1
n2 ∑n

i, j=1
∫ [

(KH ∗DKH −DKH)(x−Xi)
]

× [(KH ∗DKH −DKH)(x−X j)
]T

dx
]
.

Let ĤT be a solution of the equation

|ĤT |1/2 =
d + 2

4n

tr
[
Ĥ−1

T R(DK)
]

T̂IBias
2
(ĤT )

(27.2)
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This equation represents a nonlinear equation for d(d + 1)/2 unknowns entries of
vechĤT . In order to find these entries we need additional d(d + 1)/2−1 equations
for bandwidths hi j,T .

Firstly, let us assume that HT = diag(h2
1,T , . . . ,h2

d,T ). Then, |HT |1/2 = h1,T · · ·hd,T

and the previous equation takes the form

ĥ1,T · · · ĥd,T =
d + 2

4n

tr
[
Ĥ−1

T R(DK)
]

T̂IBias
2
(ĤT )

.

In the previous paragraph it has been shown how the relation (1) could be sat-
isfied in the case of diagonal matrix HT . The problem now consists in finding an
appropriate estimates of c j, j = 2, . . . ,d. To solve this problem we propose to use
ideas of Scott (1992) and Duong et al. (2008). According to the Scott’s rule the
suitable estimates for bandwidths hi, i = 1, . . . ,d, for kernel density estimates are

ĥi = σ̂in
−1/(d+4),

where σ̂i, i = 1, . . . ,d, is an estimate of a sample standard deviation.
In the paper by Duong et al. (2008) the suitable estimates of bandwidths for

kernel gradient estimators have been proposed:

h2
i,T = h2

i n
4

(d+4)(d+6)
(
σ̂2

i

) 4
(d+4)(d+6) .

Combining previous ideas we obtain

( ĥi,T

ĥ1,T

)2
=
( σ̂2

i

σ̂2
1

) (d+4)(d+6)+4
(d+4)(d+6)

.

It means that for i = 2, . . . ,d

ĥ2
i,T = ĥ2

1,T · c2
i , c2

i =
( σ̂2

i

σ̂2
1

) (d+4)(d+6)+4
(d+4)(d+6)

.

Finally, we arrive at the relation

ĥd+2
1,T =

d + 2
4n

|C|−1/2
∑d

i=1 c−2
i

∫ ( ∂K
∂xi

)2
dx

T̂IBias
2
(ĤT )

,

This equation can be solved by an appropriate numerical method.
Let us turn our attention to the full bandwidth matrix for the case d = 2. Let

HT =
(

h2
1 = h11 h12

h12 h2
2 = h22

)
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be a positive definite matrix. We adopt a similar idea as in the case of the diagonal
matrix (see also Terrell (1990)). Let Σ be a sample covariance matrix and Σ̂ its
estimate

Σ̂ =
(
σ̂2

11 σ̂12

σ̂12 σ̂2
22

)

.

In accordance with the expression for hd+2
1,T we can assume

ĥ11,T = ĥ2
1,T =

(
σ̂2

11

)13/12
n−1/4

ĥ22,T = ĥ2
2,T =

(
σ̂2

22

)13/12
n−1/4

ĥ2
12,T =

(
σ̂2

12

)13/12
n−1/2

ĥ12,T = sign σ̂12|σ̂12|13/12n−1/4

Then
|ĤT | = ĥ11ĥ22− ĥ2

12

= ĥ2
11,T

[(
σ̂2

11σ̂2
22

)13/12− (σ̂2
12

)13/12
]/(

σ̂4
11

)13/12

= ĥ2
11,T ·S(σ̂).

Hence

ĥ11,T = ĥ2
1,T =

tr
[
Ĥ−1

T R(DK)
]

√
S(σ̂) · T̂IBias

2
(ĤT )

.

This is a nonlinear equation for the unknown h11,T . This equation can be solved by
an appropriate numerical method.

27.4 Simulations

In order to verify the quality of the proposed method, we conduct a short simulation
study. As a quality criterion we used an average of the integrated Euclidean norm
(IEN) of difference vector, i.e.

IEN(H) = avg
∫

R2
‖D̂ f (x,H)−D f (x)‖2 dx,

where the average is taken over simulated realizations.
Samples of the size n = 100 were drawn from densities listed in the following

table (X ∼N2(μ1,μ2;σ2
1 ,σ2

2 ,ρ)). Bandwidth matrices were selected for 100 random
samples generated from each density.
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(a) X ∼ N2
(
0,0;1,1/4,0

)

(b) X ∼ N2
(
0,0;1,1/4,2/3

)

(c) 1
2N2(1,0;4/9,4/9,0)+ 1

2N2(−1,0;4/9,4/9,0)
(d) 1

2N2(−1,1;4/9,4/9,3/5)+ 1
2N2(1,−1;4/9,4/9,3/5)

(e) 1
3N2(0,0;1,1,0)+ 1

3N2(0,4;1,4,0)+ 1
3N2(4,0;4,1,0)

(f) 1
5N2(0,0;1,1,0)+ 1

5N2(1/2,1/2;4/9,4/9,0)
+ 3

5N2(13/12,13/12;25/81,25/81,0)
Target densities.

The next table summarizes the results of IEN computed for the proposed band-
width matrix Hiter and for the TAMISE-optimal bandwidth matrix HT .

data IEN(Hiter) IEN(HT )
(a) 0.0801 (0.0306) 0.0866 (0.0263)
(b) 0.1868 (0.0705) 0.1998 (0.0605)
(c) 0.0599 (0.0109) 0.0500 (0.0115)
(d) 0.1709 (0.0242) 0.1049 (0.0269)
(e) 0.0055 (0.0013) 0.0049 (0.0010)
(f) 0.0889 (0.0294) 0.0907 (0.0265)
Average of IEN with a standard deviation.
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3. Horová, I., Koláček, J., Vopatová, K.: Visualization and Bandwidth Matrix Choice. To appear
in Commun. Stat. Theory (2010)

4. Scott, D.W.: Multivariate density estimation: Theory, practice, and visualization. Wiley, New
York (1992)

5. Terrell, G.R.: The maximal smoothing principle in density estimation. J. Ame. Stat. Assoc.
85 470–477 (1990)
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Chapter 28
A Backward Generalization of PCA for
Exploration and Feature Extraction of
Manifold-Valued Shapes

Sungkyu Jung

Abstract A generalized Principal Component Analysis (PCA) for manifold-valued
shapes is discussed with forward and backward stepwise views of PCA. Finite and
infinite dimensional shape spaces are briefly introduced. A backward extension of
PCA for the shape spaces, called Principal Nested Spheres, is shown in more detail,
which results in a non-geodesic decomposition of shape spaces, capturing more
variation in lower dimension.

28.1 Introduction

Shapes of objects have long been investigated. A shape is often described as a math-
ematical property that is invariant under the similarity transformations of transla-
tion, scaling and rotation. Statistical shape analysis quantifies shapes as mathemat-
ical objects, understood as random quantities, and develops statistical procedures
on the space of shapes. A traditional shape representation is obtained by locating
landmarks on the object; see Dryden and Mardia (1998). On the other hand, mod-
ern shape representations are diverse; examples include the medial representations,
(Siddiqi and Pizer (2008)), automatically generated landmarks and spherical har-
monic representations (Gerig et al. (2004)) and the elastic curve representation (Sri-
vastava et al. (2010)).

While these representations provide rich descriptions of the shape, the sample
spaces of these representations, called shape spaces, naturally form non-Euclidean
manifolds, the reason of which is either the invariance under the similarity trans-
formations or the fact that the representation itself involves angles and directions.
Due to the curvature involved in the geometry of the shape space, the usual meth-
ods using Euclidean geometry are not directly used, therefore a generalization of
Euclidean method is needed to analyze the manifold-valued shapes.
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We focus on a generalization of Principal Component Analysis (PCA), which
is a widely used data exploration method in a variety of fields, for many purposes
including dimension reduction and visualization of important data structures. Gen-
eralized PCA methods for manifold data can be viewed as forward or backward
stepwise approaches (as proposed in Marron et al. (2010)). In the traditional for-
ward view, PCA is constructed from lower dimension to higher dimension. In the
backward point of view, PCA is constructed in reverse order from higher to lower
dimensions. In other words, while PCA finds successive affine subspaces of dimen-
sions, the forward PCA accretes the direction of great variance at each step and the
backward PCA removes the direction of least variance. Both of these different views
lead to the usual Euclidean PCA given by the eigen-decomposition of a covariance
matrix, but lead to different methodologies for manifold data.

A usual approach in the manifold extensions of PCA uses the local approxima-
tion of manifold by a tangent space (see Dryden and Mardia (1998) and Fletcher
et al. (2004)), which can be viewed as forward extensions. Recently, Huckemann et
al. (2010) developed Geodesic PCA, that fits the first and second geodesic principal
components without restriction of a mean, where a geodesic is the shortest path be-
tween two points on the manifold and is an analog of a line in Euclidean space. This
is understood as a partially backward approach, since the advantage of the method
comes from reverting the first and second steps of the successive procedure. Anal-
ysis of Principal Nested Spheres (Jung et al. (2010)) was developed to extend PCA
in a non-geodesic (non-linear) way, which was possible by taking a full backward
approach.

Note that we take the advantage of focusing on a specific geometry of manifolds.
In particular, the sample space of shapes involves spherical geometry, on which we
exemplify the backward generalization of PCA. We briefly introduce the geometry
of finite dimensional shape space, due to Kendall’s shape theory, and also of an
infinite dimensional shape space of space curves. After understanding the geometry
of the shape spaces, we revisit analysis of Principal Nested Spheres and introduce
a natural framework to extend the method to the functional shape space of space
curves.

28.2 Finite and infinite dimensional shape spaces

We briefly give basic background for finite dimensional or infinite dimensional
shape spaces. Detailed introduction and discussions can be found at Dryden and
Mardia (1998) for the finite dimensional shape space and Srivastava et al. (2010) for
the infinite dimensional functional shape space.

Landmark-based shape space: The shape of an object with k > 2 geometric
landmarks in m ≥ 2 dimension is identified as a point in Kendall’s shape space
(Kendall (1984)). An object is represented by the corresponding configuration ma-
trix X , which is a k×m matrix of Cartesian coordinates of landmarks. The preshape
of the configuration is obtained by removing the effect of translation and scaling
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and is given by Z = HX/‖HX‖, where H is the (k−1)× k Helmert sub-matrix (p.
34 of Dryden and Mardia (1998)), which is a form of centering matrix. Provided
that ‖HX‖ > 0, Z ∈ Sk

m := Sm(k−1)−1, where Sd = {x ∈ R
d+1 : ‖x‖2 = 1} is the unit

hypersphere of dimension d embedded in the Euclidean space R
d+1

The shape of a configuration matrix X is represented by the equivalence set under
rotation, [Z] = {ZΓ : Γ ∈ SO(m)}, where SO(m) is the set of all m×m rotation
matrices. The space of all possible shapes is then a non-Euclidean space called the
shape space and is denoted by Σ k

m. Since the shape space is not explicitly expressed,
sometimes it is helpful to define Σ k

m as a quotient of the preshape space, i.e. Σ k
m =

Sk
m/SO(m). In practice, the shape space is often approximated by the preshape space

through a Procrustean method. Sometimes strictly focusing on the shape space is
preferred, but the computations are based on the metric of preshape space.

Square-root velocity representation of space curves: A space curve in m ≥ 1
dimension can be used to represent a boundary of an object. Let β ∈ L2([0,1],Rm) =
{ f :
∫
[0,1] ‖ f (t)‖2dt <∞} be a square integrable parameterized curve in R

m that rep-
resents a shape of an object. While this functional form is a straightforward exten-
sion of the finite dimensional landmarks, the invariance under similarity transfor-
mations is not yet obtained.

Srivastava et al. (2010) introduced the square-root velocity representation of
space curves, which leads to a preshape space. Specifically, the square-root velocity

function q of β is defined as q(t) = β̇ (t)/
√
‖β̇ (t)‖. The q function is invariant to

scaling and translation of the original function β , and thus the space of q functions
is the preshape space of the curves.

Since ‖q‖2 =
∫ 〈q(t),q(t)〉dt =

∫ 〈β̇ (t), β̇ (t)〉dt/‖β̇‖ = 1, the space of such q
functions is a subset of the infinite dimensional unit sphere in L2 space, i.e.

q ∈ S∞m = { f ∈ L2([0,1],Rm) : ‖ f‖= 1}.

The shape space of curves is defined as a quotient of the preshape space S∞m/SO(m).
Srivastava et al. also established an invariance under re-parameterization. Similar
to the finite dimensional shape space, it is a common practice to approximate the
shape space by the preshape space or to make use of metrics on the preshape space
in defining a metric of the shape space.

28.3 Principal Nested Spheres

The shape spaces introduced in the previous section are quotient spaces of the pre-
shape spheres Sd , where the dimension d being either finite or infinite. The analysis
of Principal Nested Spheres (PNS), proposed in Jung et al. (2010), was first devel-
oped as a backward generalization of PCA for Sd , d < ∞. A natural extension of
PNS to the infinite dimensional sphere is shown.

When the sample space is the finite dimensional unit d-sphere Sd (which is an
approximation of the Kendall’s shape space), PNS gives a decomposition of Sd that
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captures the non-geodesic variation in a lower dimensional sub-manifold. The de-
composition sequentially provides the best k-dimensional approximation Ak of the
data for each k = 0,1, . . . ,d − 1. Ak is called the k-dimensional PNS, since it is
essentially a sphere and is nested within (i.e. a sub-manifold of) the higher dimen-
sional PNS. The sequence of PNS is then

A0 ⊂A1 ⊂ ·· · ⊂Ad−1 ⊂ Sd.

The analysis of PNS provides intuitive approximations of the directional or shape
data for every dimension, captures the non-geodesic variation, and provides intuitive
visualization of the major variability in terms of shape changes.

The procedure involves iterative reduction of the dimensionality of the data. We
first fit a d− 1 dimensional subsphere Ad−1 of Sd that best approximates the data
by a least squares criterion. A subsphere is defined by an axis v ∈ Sd and radius
r ∈ (0,π/2] as Ad−1 = {x ∈ Sd : ρ(x,v) = r}, where ρ is a metric on Sd . Given
x1, . . . ,xn ∈ Sd , the principal subsphere minimizes ∑n

i=1ρ(xi,Ad−1)2. This principal
subsphere is not necessarily a great sphere (i.e. a sphere with radius 1, analogous
to the great circle for S2), which makes the resulting decomposition non-geodesic.
Each data point has an associated residual, which is a signed distance to its projec-
tion on Ad−1. Then with the data projected onto the subsphere we continue to search
for the best fitting d−2 dimensional subsphere. These steps are iterated to find lower
dimensional principal nested spheres. For visualization and further analysis, we ob-
tain a Principal Scores matrix of the data, essentially consisting of the residuals of
each level and is a complete analog of Principal Component scores matrix.

Now for the infinite dimensional sphere, the same idea can be carried over.
However, since the sample space is infinite dimensional the iterative reduction
of dimensions starts not at the original S∞ := S∞m but at some finite dimensional
sphere SN . Specifically, suppose we choose a set of countably many basis functions
{ψ1,ψ2, . . .} of S∞, where ψi ∈ S∞, ‖ψi‖ = 1 for each i, and 〈ψi,ψ j〉 = 0 for i = j,
that spans L2([0,1],Rm). For each q∈ S∞, there exists a sequence of real numbers λ j

such that q = ∑∞i=1λ jψ j satisfying ∑∞j=1λ 2
j = 1. Then the finite dimensional sphere

SN for some N is defined as SN = {q∈ S∞ : q =∑N
j=1λ jψ j,∑N

j=1λ 2
j = 1}. In practice

N can be chosen to be larger than the sample size, and the basis functions {ψ j} shall
be chosen to contain most variation of random quantity.

Once we have the finite dimensional approximation SN of S∞, the dimension
reduction becomes a complete analogue of the vector space version. The application
of principal nested spheres for the shape space of curves is discussed in a working
paper with J. S. Marron and A. Srivastava.

28.4 Conclusion

We briefly introduced two different forms of shape spaces, both related to the spher-
ical geometry. By explicitly using the specific geometry, a backward generalization
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of PCA for the shape spaces, called the analysis of Principal Nested Spheres, is
developed. An advantage of taking the backward viewpoint is that a non-geodesic
extension of PCA is possible, and thus gives a more succinct representation than
geodesic-based methods.

The backward viewpoint can also be exploited stirctly to the Kendall’s shape
space, leading to lower dimensional shape spaces successively, i.e. Σ k

m ⊃ Σ k−1
m ⊃

·· · ⊃ Σ3
m. For the planar shapes (m = 2), Jung et al. (2011) propose to use the suc-

cessive reduction to predict the number of effective landmarks and to choose fewer
landmarks while preserving the variance power.

Some sample spaces of shapes are not simply related to the spherical geome-
try. In particular, the sample space of the medial representations is a direct product
of simple manifolds. A non-geodesic PCA for that types of manifolds can also be
developed by taking a backward generalization, see Jung et al. (2010a, 2011a).
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Chapter 29
Multiple Functional Regression with both
Discrete and Continuous Covariates

Hachem Kadri, Philippe Preux, Emmanuel Duflos, Stéphane Canu

Abstract In this paper we present a nonparametric method for extending functional
regression methodology to the situation where more than one functional covariate is
used to predict a functional response. Borrowing the idea from Kadri et al. (2010a),
the method, which support mixed discrete and continuous explanatory variables, is
based on estimating a function-valued function in reproducing kernel Hilbert spaces
by virtue of positive operator-valued kernels.

29.1 Introduction

The analysis of interaction effects between continuous variables in multiple regres-
sion has received a significant amount of attention from the research community.
In recent years, a large part of research has been focused on functional regres-
sion where continuous data are represented by real-valued functions rather than
by discrete, finite dimensional vectors. This is often the case in functional data
analysis (FDA) when observed data have been measured over a densely sampled
grid. We refer the reader to Ramsay and Silverman (2002, 2005) and Ferraty and
Vieu (2006) for more details on functional data analysis of densely sampled data
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or fully observed trajectories. In this context, various functional regression mod-
els (Ramsay and Silverman, 2005) have been proposed according to the nature of
explanatory (or covariate) and response variables, perhaps the most widely studied
is the generalized functional linear model where covariates are functions and re-
sponses are scalars (Cardot et al., 1999,2003; James, 2002; Müller and Stadtmüller,
2005; Preda, 2007).

In this paper, we are interested in the case of regression models with a functional
response. Two subcategories of such models have appeared in the FDA literature:
covariates are scalars and responses are functions also known as “functional re-
sponse model” (Faraway, 1997; Chiou et al., 2004); both covariates and responses
are functions (Ramsay and Dalzell, 1991; He et al., 2000; Cuevas et al., 2002; Pr-
chal and Sarda, 2007; Antoch et al., 2008). In this work, we pay particular attention
to this latter situation which corresponds to extending multivariate linear regres-
sion model to the functional case where all the components involved in the model
are functions. Unlike most of previous works which consider only one functional
covariate variable, we wish to perform a regression analysis in which multiple func-
tional covariates are used to predict a functional response. The methodology which
is concerned with solving such task is referred to as a multiple functional regression.

Previous studies on multiple functional regression (Han et al., 2007; Matsui et
al., 2009; Valderrama et al., 2010) assume a linear relationship between functional
covariates and responses and model this relationship via a multiple functional lin-
ear regression model which generalizes the model in Ramsay and Dalzell (1991) to
deal with more than one covariate variable. However, extensions to nonparametric
models have not been considered. Nonparametric functional regression (Ferraty and
Vieu, 2002,2003) is addressed mostly in the context of functional covariates and
scalar responses. More recently, Lian (2007) and Kadri et al. (2010a) showed how
function-valued reproducing kernel Hilbert spaces (RKHS) and operator-valued ker-
nels can be used for the nonparametric estimation of the regression function when
both covariates and responses are curves. Building on these works, we present in this
paper a nonparametric multiple functional regression method where several func-
tions would serve as predictors. Furthermore, we aim at extending this method to
handle mixed discrete and functional explanatory variables. This should be helpful
for situations where a subset of regressors are comprised of repeated observations
of an outcome variable and the remaining are independent scalar or categorical vari-
ables. In Antoch et al. (2008) for example, the authors discuss the use of a functional
linear regression model with a functional response to predict electricity consump-
tion and mention that including the knowledge of special events such as festive days
in the estimation procedure may improve the prediction.

The remainder of this paper is organized as follows. Section 2 reviews the mul-
tiple functional linear regression model and discusses its nonparametric extension.
This section also describes the RKHS-based estimation procedure for the nonpara-
metric multiple functional regression model. Section 3 concludes the paper.
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29.2 Multiple functional regression

Before presenting our nonparametric multiple function regression procedure, we
start this section with a brief overview of the multiple functional linear regression
model (Matsui et al., 2009; Valderrama et al., 2010). This model extends functional
linear regression with a functional response (Ramsay and Dalzell, 1991; Ramsay
and Silverman, 2005) to deal with more than one covariate and seeks to explain a
functional response variable y(t) by several functional covariates xk(s). A multiple
functional linear regression model is formulated as follows:

yi(t) = α(t)+
p

∑
k=1

∫

Is
xik(s)βk(s,t)ds+ εi(t), t ∈ It , i = 1, . . . ,n, (29.1)

where α(t) is the mean function, p is the number of functional covariates, n is
the number of observations, βk(s,t) is the regression function for the k-th covari-
ate and εi(t) a random error function. To estimate the functional parameters of this
model, one can consider the centered covariate and response variables to eliminate
the functional intercept α . Then, βk(., .) are approximated by a linear combination
of basis functions and the corresponding real-valued basis coefficients can be es-
timated by minimizing a penalized least square criterion. Good candidates for the
basis functions include the Fourier basis (Ramsay and Silverman, 2005) and the
B-spline basis (Prchal and Sarda, 2007).

It is well known that parametric models suffer from the restriction that the input-
output relationship has to be specified a priori. By allowing the data to model the
relationships among variables, nonparametric models have emerged as a powerful
approach for addressing this problem. In this context and from functional input-
output data (xi(s),yi(t))n

i=1 ∈ (Gx)p×Gy where Gx : Is −→ R and Gy : It −→ R , a
nonparametric multiple functional regression model can be defined as follows:

yi(t) = f (xi(s))+ εi(t), s ∈ Is, t ∈ It , i = 1, . . . ,n,

where f is a linear operator which perform the mapping between two spaces of
functions. In this work, we consider a slightly modified model in which covariates
could be a mixture of discrete and continuous variables. More precisely, we consider
the following model

yi(t) = f (xi)+ εi(t), i = 1, . . . ,n, (29.2)

where xi ∈ X is composed of two subsets xd
i and xc

i (s). xd
i ∈ R

k is a k×1 vector of
discrete dependent or independent variables and xc

i (s) is a vector of p continuous
functions, so each xi contains k discrete values and p functional variables.

Our main interest in this paper is to design an efficient estimation procedure of
the regression parameter f of the model (29.2). An estimate f ∗ of f ∈ F can be
obtained by minimizing the following regularized empirical risk
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f ∗ = arg min
f∈F

n

∑
i=1

‖yi− f (xi)‖2
Gy

+λ‖ f‖2
F (29.3)

Borrowing the idea from Kadri et al. (2010a), we use function-valued reproducing
kernel Hilbert spaces (RKHS) and operator-valued kernels to solve this minimiza-
tion problem. Function-valued RKHS theory is the extension of the scalar-valued
case to the functional response setting. In this context, Hilbert spaces of function-
valued functions are constructed and basic properties of real RKHS are restated.
Some examples of potential applications of these spaces can be found in Kadri et
al. (2010b) and in the area of multi-task learning (discrete outputs) see Evgeniou
et al. (2005). Function-valued RKHS theory is based on the one-to-one correspon-
dence between reproducing kernel Hilbert spaces of function-valued functions and
positive operator-valued kernels. We start by recalling some basic properties of such
Spaces. We say that a Hilbert space F of functions X −→ Gy has the reproducing
property, if ∀x ∈ X the evaluation functional f −→ f (x) is continuous. This conti-
nuity is equivalent to the continuity of the mapping f −→ 〈 f (x),g〉Gy for any x ∈ X
and g ∈ Gy. By the Riesz representation theorem it follows that for a given x ∈ X
and for any choice of g ∈ Gy, there exists an element hg

x ∈F , s.t.

∀ f ∈F 〈hg
x , f 〉F = 〈 f (x),g〉Gy

We can therefore define the corresponding operator-valued kernel K(., .) ∈L (G y),
where L (G y) denote the set of bounded linear operators from Gy to Gy, such that

〈K(x,z)g1,g2〉Gy = 〈hg1
x ,hg2

z 〉F
It follows that 〈hg1

x (z),g2〉Gy = 〈hg1
x ,hg2

z 〉F = 〈K(x,z)g1,g2〉Gy and thus we obtain
the reproducing property

〈K(x, .)g, f 〉F = 〈 f (x),g〉Gy

It is easy to see that K(x,z) is a positive kernel as defined below:

Definition 29.1. We say that K(x,z), satisfying K(x,z) = K(z,x)∗, is a positive
operator-valued kernel if given an arbitrary finite set of points {(xi,gi)}i=1,...,n ∈
X ×Gy, the corresponding block matrix K with Ki j = 〈K(xi,x j)gi,g j〉Gy is positive
semi-definite.

Importantly, the converse is also true. Any positive operator-valued kernel K(x,z)
gives rise to an RKHS FK , which can be constructed by considering the space
of function-valued functions f having the form f (.) = ∑n

i=1 K(xi, .)gi and taking
completion with respect to the inner product given by 〈K(x, .)g1,K(z, .)g2〉F =
〈K(x,z)g1,g2〉Gy .

The functional version of the Representer Theorem can be used to show that the
solution of the minimization problem (29.3) is of the following form:
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f ∗(x) =
n

∑
j=1

K(x,x j)g j (29.4)

Substituting this form in (29.3) , we arrive at the following minimization over the
scalar-valued functions gi rather than the function-valued function f

min
g∈(Gy)n

n

∑
i=1
‖yi−

n

∑
j=1

K(xi,x j)g j‖2
Gy

+λ
n

∑
i, j
〈K(xi,x j)gi,g j〉Gy (29.5)

This problem can be solved by choosing a suitable operator-valued kernel. Choosing
K presents two major difficulties: we need to construct a function from an adequate
operator, and which takes as arguments variables composed of scalars and functions.
Lian (2007) considered the identity operator, while in Kadri et al. (2010) the authors
showed that it will be more useful to choose other operators than identity that are
able to take into account functional properties of the input and output spaces. They
also introduced a functional extension of the Gaussian kernel based on the multi-
plication operator. Using this operator, their approach can be seen as a nonlinear
extension of the functional linear concurrent model (Ramsay and Silverman, 2005).
Motivated by extending the functional linear regression model with functional re-
sponse, we consider in this work a kernel K constructed from the integral operator
and having the following form:

(K(xi,x j)g)(t) = [kxd (xd
i ,x

d
j )+ kxc(xc

i ,x
c
j)]
∫

ky(s,t)g(s)ds (29.6)

where kxd and kxc are scalar-valued kernels on R
k and (Gx)p respectively and ky the

reproducing kernel of the space Gy. Choosing kxd and ky is not a problem. Among
the large number of possible classical kernels kxd and ky, we chose the Gaussian
kernel. However, constructing kxc is slightly more delicate. One can use the inner
product in (Gx)p to construct a linear kernel. Also, extending real-valued functional
kernels such as those in Rossi et Villa. (2006) to multiple functional inputs could be
possible.

To solve the problem (29.5), we consider that Gy is a real-valued RKHS and ky its
reproducing kernel and then each function in this space can be approximated by a
finite linear combination of kernels. So, the functions gi(.) can be approximated by
∑m

l=1αilky(tl , .) and solving (29.5) returns to finding the corresponding real variables
αil . Under this framework and using matrix formulation, we find that the nm× 1
vector α satisfies the system of linear equation

(K +λ I)α = Y (29.7)

where the nm× 1 vector Y is obtained by concatenating the columns of the matrix
(Yil)i≤n, l≤m and K is the block operator kernel matrix (Ki j)1≤i, j≤n where each Ki j

is a m×m matrix.
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29.3 Conclusion

We study the problem of multiple functional regression where several functional ex-
planatory variables are used to predict a functional response. Using function-valued
RKHS theory, we have proposed a nonparametric estimation procedure which sup-
port mixed discrete and continuous covariates. In future, we will illustrate our ap-
proach and evaluate its performance by experiments on simulated and real data.
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Chapter 30
Combining Factor Models and Variable
Selection in High-Dimensional Regression

Alois Kneip, Pascal Sarda

Abstract This presentation provides a summary of some of the results derived in
Kneip and Sarda (2011). The basic motivation of the study is to combine the points
of view of model selection and functional regression by using a factor approach.
For highly correlated regressors the traditional assumption of a sparse vector of
parameters is restrictive. We therefore propose to include principal components as
additional explanatory variables in an augmented regression model.
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30.1 Introduction

We consider a high dimensional linear regression model of the form

Yi = βββ T Xi + εi, i = 1, . . . ,n, (30.1)

where (Yi,Xi), i = 1, . . . ,n, are i.i.d. random pairs with Yi ∈R and Xi = (Xi1, . . . ,Xip)T ∈
R

p. We will assume without loss of generality that E(Xi j) = 0 for all j = 1, . . . .p.
Furthermore, βββ is a vector of parameters in R

p and (εi)i=1,...,n are centered i.i.d. real
random variables independent with Xi with Var(εi) = σ2. The dimension p of the
vector of parameters is assumed to be typically larger than the sample size n.

Model (30.1) comprises two main situations which have been considered inde-
pendently in two separate branches of statistical literature. On one side, there is the
situation where Xi represents a (high dimensional) vector of different predictor vari-
ables. Another situation arises when the regressors are p discretizations (for example
at different observations times) of a same curve. In this case model (30.1) represents
a discrete version of an underlying continuous functional linear regression model.
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The first situation is studied in a large literature on model selection in high di-
mensional regression. The basic structural assumption can be described as follows:
There is only a relatively small number of predictor variables with |β j| > 0 which
have a significant influence on the outcome Y . In other words, the set of nonzero
coefficients is sparse, S := #{ j|β j = 0}$ p.

The most popular procedures to identify and estimate nonzero coefficients β j are
Lasso and the Dantzig selector. Some important references are Tibshirani (1996),
Meinshausen and Bühlmann (2006), Zhao and Yu (2006), , Candes and Tao (2007)
van de Geer (2008) Bickel et al. (2009). An important technical condition in this
context is that correlations between explanatory variables are “sufficiently weak”.

In sharp contrast, the setup considered in the literature on functional regres-
sion rests upon a very different type of structural assumptions. Some references
are Ramsay and Dalzell (1991), Cardot et al. (1999), Cuevas et al. (2002), Yao et
al. (2005), Cai and Hall (2006), Hall and Horowitz (2007), Cardot et al. (2007)
and Crambes et al. (2009). We consider the simplest case that Xi j = Xi(t j) for ran-
dom functions Xi ∈ L2([0,1]) observed at an equidistant grid t j = j

p . The main

structural assumption on coefficients can then be subsumed as follows: β j := β (t j)
p ,

where β (t) ∈ L2([0,1]) is a continuous slope function, and as p → ∞, ∑ j β jXi j =

∑ j
β (t j)

p Xi(t j)→
∫ 1

0 β (t)Xi(t)dt.
Obviously, in this setup no variable Xi j = Xi(t j) corresponding to a specific ob-

servation at grid point t j will possess a particulary high influence on Y , and there
will exist a large number of small, but nonzero coefficients β j of size proportional to
1/p. Additionally, there are necessarily very strong correlations between explana-
tory variables Xi j = Xi(t j) and Xil = Xi(tl), j = l.

Further analysis then usually relies on the Karhunen-Loève decomposition which
provides a decomposition of random functions in terms of functional principal com-
ponents of the covariance operator of Xi. In the discretized case analyzed in this
paper this amounts to consider an approximation of Xi by the principal components
of the covariance matrix ΣΣΣ = E(XiXT

i ). In practice, often a small number k of prin-
cipal components will suffice to achieve a small L2-error.

Based on this insight, the most frequently used approach in functional regression
is to approximate Xi ≈ ∑k

r=1(ψ̂ψψ
T
r Xi)ψ̂ψψr in terms of the first k estimated principal

components ψ̂ψψ1, . . . , ψ̂ψψk, and to rely on the approximate model Yi ≈∑k
r=1αrψ̂ψψ

T
r Xi +

εi. Here, k serves as smoothing parameter. The new coefficients ααα are estimated by
least squares, and β̂ j =∑k

r=1 α̂rψ̂r j . Resulting rates of convergence are given in Hall
and Horowitz (2007).

The above arguments show that a suitable regression analysis will have to take
into account the underlying structure of the explanatory variables Xi j. The basic
motivation of this paper now is to combine the points of view of the above branches
of literature in order to develop a new approach for model adjustment and variable
selection in the practically important situation of strongly correlated regressors.
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30.2 The augmented model

In the following we assume that the vectors of regressors Xi ∈ R
p can be decom-

posed in the form of a factor model

Xi = Wi + Zi, i = 1, . . . ,n, (30.2)

where Wi and Zi are two uncorrelated random vectors in R
p. The random vector

Wi is intended to describe high correlations of the Xi j while the components Zi j,
j = 1, . . . , p of Zi are uncorrelated. This implies that the covariance matrix ΣΣΣ of Xi

adopts the decomposition
ΣΣΣ = ΓΓΓ +ΨΨΨ , (30.3)

whereΓΓΓ = E(WiWT
i ), whileΨΨΨ is a diagonal matrix with diagonal entries var(Zi j)>

0, j = 1, . . . , p. Note that factor models can be found in any textbook on multivariate
analysis and must be seen as one of the major tools in order to analyze samples of
high dimensional vectors. Also recall that a standard factor model is additionally
based on the assumption that a finite number k of factors suffices to approximate Wi

precisely. This means that Wi = ∑k
r=1(ψψψT

r Wi)ψψψr, where ψψψ1, . . . ,ψψψk are orthonor-
mal eigenvectors corresponding to the k largest eigenvalues λ1 > · · ·> λk > 0 of the
standardized matrix 1

pΓΓΓ .
Each of the two components Wi and Zi separately may possess a significant

influence on a response variable Yi. Indeed, if Wi and Zi were known, a possibly
substantial improvement of model (30.1) would consist in a regression of Yi on the
2p variables Wi and Zi

Yi =
p

∑
j=1
β ∗j Wi j +

p

∑
j=1
β jZi j + εi, i = 1, . . . ,n (30.4)

with different sets of parameters β ∗j and β j, j = 1, . . . , p, for each contributor. We
here again assume that εi, i = 1, . . . ,n are centered i.i.d. random variables with
Var(εi) = σ2 which are independent of Wi j and Zi j .

By definition, Wi j and Zi j possess substantially different interpretations. Zi j de-
scribes the part of Xi j which is uncorrelated with all other variables. A nonzero
coefficient β j = 0 then means that the variation of Xi j has a specific effect on Yi. We
will of course assume that such nonzero coefficients are sparse, �{ j|β j = 0} ≤ S for
some S $ p.

In contrast, the variables Wi j are heavily correlated. It therefore does not make
any sense to assume that for some j ∈ {1, . . . , p} any particular variable Wi j pos-
sesses a specific influence on the predictor variable. However, the term ∑p

j=1β
∗∗
j Wi j

may represent an important, common effect of all predictor variables. The vectors
Wi can obviously be rewritten in terms of principal components.

Noting that β jZi j = β j(Xi j −Wi j) and Wi = ∑k
r=1(ψψψT

r Wi)ψψψr, it is easily seen
that there exist coefficients α1, . . . ,αk such that (30.4) can be rewritten in the form
of the following augmented model:



200 Alois Kneip, Pascal Sarda

Yi =
k

∑
r=1
αrξir +

p

∑
j=1
β jXi j + εi, (30.5)

where ξir = ψψψT
r Wi/

√
pλr. The use of ξir instead of ψψψT

r Wi is motivated by the fact
that Var(ψψψT

r Wi) = pλr, r = 1, . . . ,k. Therefore the ξir are standardized variables
with Var(ξi1) = · · ·= Var(ξi1) = 1.

Obviously, the augmented model may be considered as a synthesis of the stan-
dard type of models proposed in the literature on functional regression and model
selection. It generalizes the classical multivariate linear regression model (30.1). If
a k-factor model holds exactly, i.e. rank(ΓΓΓ ) = k, then the only substantial restriction
of (30.4)- (30.5) consists in the assumption that Yi depends linearly on Wi and Zi.
The analysis of Kneip and Sarda (2011) is somewhat more general and includes the
case that a factor model only holds approximately. Also the problem of determining
a suitable dimension k is considered.

30.3 Estimation

Assuming a sparse set of nonzero coefficients, the basic idea of our approach con-
sists in applying Lasso in order to retrieve all nonzero parameters αr, r = 1, . . . ,k,
and β j, j = 1, . . . , p.

Since ξir are latent, unobserved variables they are replaced by the predictors

ξ̂ir = ψ̂ψψT
r Xi/

√
pλ̂r, where λ̂1 ≥ λ̂2 ≥ . . . are the eigenvalues of the standardized

empirical covariance matrix 1
p Σ̂ΣΣ = 1

n ∑
n
i=1 XT

i Xi, while ψ̂ψψ1, ψ̂ψψ2, . . . are associated
orthonormal eigenvectors.

When replacing ξir by ξ̂ir in (30.5), a direct application of model selection pro-
cedures does not seem to be adequate, since ξ̂ir and the predictor variables Xi j are
heavily correlated. Therefore, instead of the originals vectors Xi we use the corre-
sponding projections X̃i = P̂kXi, where P̂k = Ip−∑k

r=1 ψ̂ψψrψ̂ψψ
T
r ..

For a pre-specified parameter ρ > 0 estimators α̃αα = (α̃1, . . . , α̃k)T and β̃ββ =
(β̃1, . . . , β̃p)T are then obtained by minimizing

1
n

n

∑
i=1

(
Yi−αααT ξ̂ξξ i−βββT X̃i

)2
+ 2ρ

(
k

∑
r=1

|αr|+
p

∑
j=1
|β j|
)

over all vectors ααα ∈ R
k and βββ ∈ R

p. Here, ξ̂ξξ i = (ξ̂i1, . . . , ξ̂ik)T .
In a final step a back-transformation is performed, and the final estimators of αr

and β j are given by
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β̂ j =
β̃ j

(
1
n ∑

n
i=1(P̂kXXXi)2

j

)1/2
, j = 1, . . . , p,

α̂r = α̃r−
√

pλ̂r

p

∑
j=1

ψ̂r jβ̂ j, r = 1, . . . ,k.

30.4 Theoretical properties of augmented model

A precise theoretical analysis based on finite sample inequalities can be found in
Kneip and Sarda (2011). In this section we will confine ourselves to sum up some
of the main results from the point of view of an asymptotic theory as n, p→ ∞ with
log p

n → 0.
For a precise description of setup and necessary assumptions we again refer

to Kneip and Sarda (2011). Qualitatively it is required that the tails of the distri-
bution of the variables Xi j,Wi j and Zi j decrease sufficiently fast, while the error
terms εi j are normal. Furthermore, there has to exist a constant D1 > 0 such that
inf j=1,...,pVar(Zi j) ≥ D1 for all p. A third essential condition is that each principle
component of 1

pΓΓΓ explains a considerable proportion of the total variance of Wi, for

all r = 1, . . . ,k and all p we have λr
1
p ∑

p
j=1 E(W 2

i j)
≥ v for some v > 0.

The main underlying condition ensuring identifiability of the coefficients and al-
lowing to derive consistency results is sparseness of β j, �{ j|β j = 0} ≤ S for some
S $ p. We hereby rely on recent results in the literature on model selection which
also apply for the case p > n. Established theoretical results show that under some
regularity conditions (validity of the “restricted eigenvalue conditions”) model se-
lection procedures allow to identify sparse solutions even if there are multiple vec-
tors of coefficients satisfying the normal equations. For a discussion of these issues
see Candès and Tao (2007) or Bickel et al. (2009).

If k and S ≥ �{ j|β j = 0} are fixed, then under some regularity conditions it can

be shown that as n, p→ ∞, log p/n→ 0, we obtain with ρ ∼
√

log p
n

k

∑
r=1

|α̂r−αr| = OP(

√
log p

n
)

p

∑
j=1

|β̂ j−β j| = OP(

√
log p

n
).

Moreover,

1
n

n

∑
i=1

(
k

∑
r=1

ξ̂irα̂r +
p

∑
j=1

Xi jβ̂ j− (
k

∑
r=1

ξirαr +
p

∑
j=1

Xi jβ j)

)2

= OP(
log p

n
+

1
p
)
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Kneip and Sarda (2011) also present an extensive simulation study. It is shown
that if Wi possesses a non-negligible influence on the the response variable, then
variable selection based on the standard regression model (30.1) does not work at
all, while the augmented model is able to yield sensible parameter estimates.
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Chapter 31
Factor Modeling for High Dimensional Time
Series

Clifford Lam, Qiwei Yao, Neil Bathia

Abstract We briefly compare an econometric factor model and a statistical factor
model, the latter being to capture the linear dynamic structure of the data yt only.
We propose a method for decomposing {yt} into a common component and a white
noise in the sense of a statistical factor model, together with an eye-ball test for
finding the number of factors. Rates of convergence for various estimators are spelt
out explicitly.

31.1 Introduction

A large panel of time series is a common endeavor in modern data analysis. In fi-
nance, understanding the dynamics of the returns of large number of assets is the key
to asset pricing, portfolio allocation, and risk management. Environmental time se-
ries are often of a high dimension because of the large number of indices monitored
across many different locations. Vector Autoregressive-Moving-Average model is
useful for moderate dimension, but practically not viable when the dimension of
the time series p is high, as the number of parameters involved is in the order of
p2. Therefore dimension-reduction is an important step in order to achieve an effi-
cient and effective analysis of high-dimensional time series data. In relation to the
dimension-reduction for independent observations, the added challenge here is to
retain the dynamical structure of time series.
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Modeling by common factors is one of the most frequently used methods to
achieve dimension-reduction in analyzing multiple time series. In fact it is con-
stantly featured in econometrics literature. They are used to model different eco-
nomic and financial phenomena, including asset pricing models (Ross 1976), yield
curves (Chib and Ergashev 2009), macroeconomic behavior such as sector-effect or
regional effect from disaggregated data (Quah and Sargent 1993, Forni and Reich-
lin 1998), macroeconomic forecasting (Stock and Watson 1998, 2002), consumer
theory etc (Bai 2003).

The following econometric model represents a p×1 time series yt as the sum of
two unobservable parts:

yt = ft + ξξξ t ,

where ft is a factor term and is driven by r common factors with r smaller or much
smaller than p, and ξξξ t is an idiosyncratic term and consists of p idiosyncratic com-
ponents. Since ξξξ t is not necessarily a white noise, the identification and the infer-
ence for the above decomposition is inevitably challenging. For example, ft and ξξξ t
are only asymptotically identifiable when p, the number of components yt , tends to
∞; see Chamberlain and Rothschild (1983). The generalized dynamic factor model
proposed by Forni et al. (2000) is also of this form, which further allows compo-
nents of {ξξξ t} to be weakly correlated with each other, and ft has dynamics driven
by q common (dynamic) factors. See also Forni et al. (2004, 2005), Deistler et al.
(2009), and Barigozzi et al. (2010) for further details, and Hallin and Liška (2007)
for determining the number of factors.

The statistical factor model focuses on capturing the linear dynamic structure of
yt :

yt = Axt + εεεt ,

where xt is an r× 1 latent process with (unknown) r < p, A is a p× r unknown
constant matrix, and εεε t ∼WN(μμμε , ΣΣΣε) is a vector white noise process. No linear
combinations c′xt should be a white noise process as they should be absorbed in
εεεt . This setting can be traced back to Peña and Box (1987); see also its further
development in dealing with cointegrated factors in Peña and Poncela (2006). With
r much smaller than p, we achieve effective dimension reduction, where the serial
dependence of {yt} is driven by a much lower dimensional process {xt}. The fact
that {εεεt} is white noise eases the identification of A and xt tremendously. Although
(A,xt) can be replaced by (AH,H−1xt) without changing the model, so that they
are unidentifiable, it is easy to see that the r-dimensional linear space spanned by
the columns of A, denoted by M (A), is uniquely defined. In particular, for each p
fixed, the model is identifiable in the sense that Axt , called the common component,
is uniquely defined. Furthermore, such model allows for estimation through simple
eigenanalysis, as laid out in the next section.
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31.2 Estimation Given r

Detailed assumptions for the statistical model are given in Lam, Yao and Bathia
(2010) or Lam and Yao (2011). One important feature is that ΣΣΣε is allowed to have
O(1) elements, so that strong cross-sectional dependence of the noise is allowed,
and as p → ∞, the eigenvalues of ΣΣΣε can grow like p. This is more relevant in
spatial data, where time series in a local neighborhood can have similar trend and
noise series, so that cross-sectional dependence of the noise can be strong. Some
real data examples with this feature will be presented in the talk.

Through the QR-decomposition A = QR, we can write the model as

yt = Qft + εεεt ,

where Q′Q = I. Notice that

ΣΣΣ y(k) = cov(yt+k,yt) = QΣΣΣ f(k)Q′+ QΣΣΣ f,εεε (k),

where ΣΣΣ f(k) = cov(ft+k, ft) and ΣΣΣ f,εεε (k) = cov(ft+k,εεε t). For k0 ≥ 1 given, define

L =
k0

∑
k=1

ΣΣΣy(k)ΣΣΣ y(k)′

= Q
( k0

∑
k=1

{ΣΣΣ f(k)Q′+ΣΣΣ f,εεε (k)}{ΣΣΣ f(k)Q′+ΣΣΣ f,εεε(k)}′
)

Q′.

If we apply spectral decomposition to the term sandwiched by Q and Q′, then we
can write L = QUDU′Q′, where D is a diagonal matrix, and U is r× r orthogonal.
Hence the columns of QU are the eigenvectors of L corresponding to its r non-zero
eigenvalues. We take QU as the Q to be used in our inference. A natural estimator
of Q is then

Q̂ = (q̂1, · · · , q̂r),

where q̂i is the unit eigenvector corresponding to the i-th largest eigenvalue of L̂,
which is a sample version of L, with ΣΣΣ y(k) replaced by the corresponding sample
lag-k autocovariance matrix for yt . Consequently, we estimate the factors and the
residuals respectively by

f̂t = Q̂T yt , et = yt − Q̂f̂t = (Ip− Q̂Q̂T )yt .

Some theories will be given in the talk with rate of convergence specified.
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31.3 Determining r

The eigenvalues of L̂, denoted by λ̂ j for the j-th largest one, can help determine
the number of factors r. In particular, if we have strong factors (see Lam, Yao and
Bathia (2010) for the definition of the strength of factors), then the following holds:

λ̂ j+1/λ̂ j % 1, j = 1, · · · ,r−1, and λ̂r+1/λ̂r = OP(n−1).

The rate n−1 is non-standard, and is a result of defining L to include products of
autocovariance matrices. This result suggests an eye-ball test of r, where a plot of
the ratio of eigenvalues λ̂ j+1/λ̂ j is made, and the first sharp drop in the plot indicates
r.

More general results involving different strength of factors will be given in the
talk, with simulation results and real data analyses presented as well.
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Chapter 32
Depth for Sparse Functional Data

Sara López-Pintado, Ying Wei

Abstract The notions of depth for functional data provide a way of ordering curves
from center-outward. These methods are designed for trajectories that are observed
on a fine grid of equally spaced time points. However, in many applications the
trajectories are observed on sparse irregularly spaced time points. We propose a
model-based consistent procedure for estimating the depths when the curves are
observed on sparse and unevenly spaced points.

32.1 Introduction

Functional data analysis is an exciting developing area in statistics. Many different
statistical methods, such as principal components, analysis of variance, and linear
regression, have been extended to functional data. The statistical analysis of curves
can be significantly improved using robust estimators. New ideas of depth for func-
tional data have been studied recently (see, e.g., Fraiman and Muniz, 2001, Cuevas
et al., 2007, and López-Pintado and Romo, 2009. These concepts provide a way of
ordering curves from center-outward and L-statistics can be defined for functional
data. All these methods work well when the trajectories are observed on a fine grid
and equally spaced time points (see Ramsay and Silverman, 2005). However, many
times the trajectories are observed on irregularly spaced time points that vary a lot
across trajectories. In this situation, some preliminary smoothing step like kernel
smoothing, smoothing splines or local linear smoothing needs to be applied. When
the number of observations for individual paths is small these methods do not per-
form well (Yao et al, 2005). In this paper we extend the ideas of band depth and
modified band depth introduced in López-Pintado and Romo, 2009 to sparse func-
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tional data, where the data is onl! y observed on a set of sparse and unevenly spaced
points.

The study is motivated by an early-life human growth research using the data
from 1988 National Maternal and Infant Health Survey (NMIHS) and its 1991
Longitudinal Follow-up. The study included 2555 boys and 2510 girls national-
wide who were born in the U.S. in the calendar year of 1988. Their heights and
weights were taken sporadically only when they visited a hospital. Consequently,
their growth paths were recorded on a set of sparse and irregularly-spaced time
points and the number of measurements per subject is small. Moreover, among
those subjects, low birth-weight infants(≤ 2500 g) were over-sampled, which con-
stitute approximately 25% of the data. To understand the growth patterns of low
birth-weight infants has been a long term research topic in epidemiology. The most
informative growth pattern is represented by the underlying height process as a con-
tinuous function of age, since height growth is directly associated with individual
growth hormone levels. T! he idea of depth provides a way of ordering the curves
from the sample and a median growth curve can be defined. Moreover, a rank test
based on depth can be used to test if boys born with normal weight have a different
growth pattern in height than those who were born with low weight.

32.2 Method

32.2.1 Review on band depth and modified band depth

The concepts of band depth and modified band depth were introduced and analyzed
in López-Pintado and Romo, 2009. These ideas provide a way of ordering curves
from center-outward and classical order statistics can be generalized to functional
data. We summarize next the band depth definitions.

Let C be the space of continuous real valued functions on the compact interval
[0,1] with probability measure P and let x1(t), ...,xn(t) be a random sample of i.i.d.
curves drawn from the probability space (C ,P). Any k curves from the sample
determine in R

2 bands defined as

B = B
(
xi1 , ...,xik

)
=
{

(t,y) ∈ I×R : min
r=1,...k

xir(t)≤ y ≤ max
r=1,...,k

xir(t)
}

.

For simplicity we will consider k = 2 although all the results hold for any kgeq2.
We denote the graph of x by G(x) = {(t,x(t)) : t ∈ I} ⊂ R

2.
The band depth of a function x in (C ,P) was defined in López-Pintado and

Romo, 2009, as D(x;P) = P(G(x) ⊂ B(X1,X2)), where P is the probability distri-
bution of the process X which generates the sample X1,X2. Alternatively, we can
also express the band depth as

D(x;P) = E [I(G(x)⊂ B(X1,X2))] . (32.1)
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Let x1, ...,xn be an i.i.d. sample of functions with probability distribution P. The
sample band-depth of x with respect to x1, ...,xn is

Dn(x) =
∑

1≤i1<i2≤n
I(G(x)⊂ B(xi1,xi2))
(n

2

) .

Essentially, the sample band depth is just the proportion of bands B defined by pairs
of curves from the sample containing the graph of x.

An alternative and more flexible notion of depth is the modified band depth
also introduced in López-Pintado and Romo, 2009). It is defined as MD(x) =
EX1,X2 [λ (A(x;X1,X2))], where λ = λl/λl(I), λl is Lebesgue measure in R and

A(x;x1,x2) =
{

t ∈ I : min
r=1,2

xr(t)≤ x(t)≤ max
r=1,2

xr(t)
}

.

Basically, MD(x) measures how long is the curve x expected to be inside a
stochastic band determined by two stochastic functions X1 and X2. The sample mod-
ified band-depth of any curve x with respect to an i.i.d. random sample x1, ...,xn is

MDn(x) =
(

n
2

)−1

∑
1≤i1<i2≤n

λ (A(x;xi1 ,xi2)).

.
The band depth and the modified band depth satisfy natural depth properties

such as: invariance, monotonicity with respect to the deepest point, consistency and
uniform consistency (see López-Pintado and Romo, 2009). Both of these notions of
depth can be denoted as

D(x;P) = EX1,X2 [g(x;X1,X2)].

where g(x;X1,X2)= I {G(x)⊂ B(X1,X2)} for band depth, and g(x;X1,X2)= λ (A(x;X1,X2))
for the modified band depth.

In order to apply these notions of depth, the curves should be measured at a
regular grid. In practice, this is rarely the case, usually each curve from the sample
is observed at sparse and unevenly spaced time points. In the next section we extend
the definition of (modified) band depth to this context of sparse functional data.

32.2.2 Adapted conditional depth for sparse data

Let C be the space of continuous real valued functions on the compact interval [0,1]
with probability measure P , and X ,X1, ...,Xn be a random sample of i.i.d. curves
drawn from the probability space (C ,P). Each curve is observed only on a set of
random time points Ti = (ti,1,ti,2, ...,ti,mi), where mi is total number observations of
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the ith curve. The individual measurement times ti, j’s could be sparse and unevenly
spaced. The proposed methods aim at estimating the depth of trajectory Xi(t) while
they are observed incompletely and sparsely.

We denote wi, j as the jth observation of the random function Xi at a random
time ti, j with possible measurement errors ei, j. Specifically, we assume that wi, j are
obtained from the following model

wi, j = Xi(ti, j)+ ei, j, (32.2)

where the error term ei, j are i.i.d. with E(ei, j) = 0 and constant variance σ2. Let
π(t) = (π1(t), ...,πk(t)) be a k dimensional B-spline basis functions given the order
of spline and a set of internal knots. Any smooth curves Xi(t)’s can be well approxi-
mated by a linear combination of π(t) with appropriately chosen coefficients. Let βi

be the best fitting b-spline coefficients for Xi(t), Model (32.2) can be approximated
by the following nonparametric random coefficient model

wi, j = π(ti, j)&βi + ei, j. (32.3)

We further assume that the coefficients βi are iid following certain multivariate dis-
tribution. Based on Model (32.3), we can predict the βi’s . Consequently, the trajec-
tory Xi(t) can also be predicted by X̂i(t) = π(t)&β̂i. One can show that it is the best
linear predictor of Xi(t). Finally, we estimate the depth of Xi(t) based on the sample
collection of X̂i(t)’s.
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Chapter 33
Sparse Functional Linear Regression with
Applications to Personalized Medicine

Ian W. McKeague, Min Qian

Abstract McKeague and Qian (2011) recently introduced a functional data-analytic
approach to finding optimal treatment policies in the setting of personalized medicine
based on genomic data. The policies are specified in terms of thresholds of gene
expression at estimated loci along a chromosome. Methods for assessing the effec-
tiveness of such treatment policies are described.

33.1 Introduction

Recent developments in high-throughput gene expression technology have the po-
tential to advance the clinical prediction of disease origin, prognosis, and therapeu-
tic response. This has opened up the possibility of tailoring treatments to individual
patients by taking into account biomarker information extracted from biopsy tis-
sue or sera. There is now an extensive literature on personalized medicine based
on the analysis of genetic profiles, including gene expression; see, e.g., van ’t Veer
and Bernards (2008). Unfortunately, however, it is very difficult to establish the ef-
fectiveness of such treatment policies, not only from the practical point of view
of designing clinical trials that can exploit the new understanding of the human
genome, but also because the statistical methodology to assess the effectiveness of
such treatment policies has received limited attention.

Consider a randomized clinical trial in which the goal is to develop an effective
individualized treatment policy based on the gene expression profile of the patient.
Our aim is to introduce policies determined by thresholds in gene expression at a
small number of estimated genetic loci; such policies are easier to interpret and more
feasible to implement (in bioassays, say) than policies based on a complete gene ex-
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pression profile. Given gene expression profiles, treatment assignments, and clinical
outcomes of all the patients in the trial, we then provide a way of simultaneously
evaluating the effectiveness of such a treatment policy that optimizes interactions
between gene expression and treatment, as well as locating genes that possibly ac-
count for such interactions. Here the effectiveness of a treatment policy is measured
by the mean outcome when all patients follow the policy.

Early research in the area of individualized treatment concentrated on identify-
ing qualitative interactions between treatment and patient pretreatment clinical vari-
ables, with treatments for various subsets of patients selected by hypothesis testing.
In recent years, statistical methods for estimating a patient’s risk category based on
genetic information have been developed, and such estimates can help inform deci-
sions as to the best treatment. This approach is only appropriate in settings where
the best therapy (from among competing therapies) in each risk category is known.
There is also an abundance of literature focusing on methods for identifying genes
associated with clinical outcomes. These methods can be used to predict outcome
under each competing treatment, so an individualized treatment policy can be for-
mulated by choosing the treatment that achieves the best predicted outcome. Such
treatment policies are generally less cost effective, though, since they are likely to
involve genes that do not interact with treatment.

We take the point of view that gene expression profiles can be regarded as func-
tional predictors with a continuous “time” index representing the genetic locus along
a chromosome. A class of treatment policies that take interaction between treatment
and an individual gene expression profile into account is then formulated in terms of
a point impact linear regression model [McKeague and Sen (2010)], which specifies
the functional predictor as having an impact on the outcome at a sparse collection of
unknown time points (loci of genes). This type of model naturally leads to a class of
treatment policies based on thresholding gene expression at such loci. The treatment
policy we propose is then derived using a two step procedure that first estimates (by
least squares) the effect of interaction on the outcome, and second, optimizes the
interaction effect over competing treatments. This approach leads to a simple and
interpretable treatment policy in terms of a sparse collection of genetic loci that best
explain the interaction between gene expression and treatment.

33.2 Threshold-based point impact treatment policies

For simplicity we consider only two competing treatments (denoted by A = ±1),
and a scalar outcome Y for which large values are desirable. We represent the gene
expression profile in terms of a functional predictor X = {X(t),t ∈ [0,1]} having
sample paths in X , where t indicates the locus along the genome or a specific
chromosome. We will study threshold-based point impact (TPI) treatment policies
d : X →{−1,1} that assign treatment solely on the basis of whether the value of X
at a single locus exceeds a threshold, e.g., d(X) = 1 if X(θ ) > c, −1 otherwise, for
some θ ∈ [0,1] and c ∈ R. Our approach could be extended to allow multiple loci
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and thresholds, or to include additional pretreatment covariates, but we will avoid
such complications for clarity of presentation.

A natural measure of the effectiveness of a general treatment policy d is the ex-
pected outcome, Pd[Y ], that would have resulted if d had been used to choose treat-
ment for the entire study population; here Pd denotes the distribution of (X ,A,Y )
given A = d(X), and V (d) ≡ Pd [Y ] is called the value of the policy. For simplicity
we assume throughout that we have i.i.d. data on (X ,A,Y ) ∼ P from a randomized
clinical trial (as when unbiased coin tosses are used to assign subjects to treatment
groups), although our approach could readily be extended to observational studies
in which the treatment assignment probability is unknown.

A treatment policy that maximizes the function d "→ V (d) over all possible d is
called globally optimal. It is easy to verify that any d0(x)∈ argmaxa∈{−1,1}E(Y |X =
x,A = a), x ∈X , is globally optimal, where E denotes expectation under P. Since
A is independent of X and has mean zero,

E(Y |X ,A) = E(Y |X)+ T0(X)A, (33.1)

where T0(X) = E(Y |X ,A = 1)−E(Y |X) is the treatment effect, so we can write
d0(x) = sign(T0(x)) where sign(0)≡ 1. Unfortunately, such a policy would be dif-
ficult to implement and estimate because it involves the nonparametric regression
function T0(x) with an infinite dimensional predictor. For this reason, we restrict
our attention to TPI policies, which are easier to implement and interpret.

We consider a regularization approach in which T0(x) is approximated in a
way that allows direct estimation of the optimal TPI policy. More specifically,
our proposed approach is to model the treatment effect in (33.1) by a point im-
pact model in which T0(X) depends on X only through its value at a single locus:
T0(X) = α+βX(θ ), where the intercept α represents the main effect of treatment,
and the slope β represents the interaction between treatment and the gene expres-
sion at locus θ . Under this model, the globally optimal policy d0 is TPI, and we
propose to replace the parameters (α,β ,θ ) by estimates (α̂n, β̂n, θ̂n), leading to the
TPI policy

d̂n(x) = sign(α̂n + β̂nx(θ̂n)), x ∈X . (33.2)

To furnish such estimates, we need to introduce a model for the main effect of
gene expression, E(Y |X), and for simplicity we use a linear model: E(Y |X) = UUUTδ ,
where UUU = (U1, . . . ,UJ)T is a given J-dimensional vector-valued function of X ,
and δ ∈ R

J is a vector of parameters. For example, each Uj could be of the form
∫ 1

0 φ(t)X(t)dt for a given real-valued function φ , or depend only on the value of X
at a pre-specified locus (e.g., representing a specific gene). This leads to the model
for the full conditional mean function:

E(Y |X ,A) = UUUTδ +(α+βX(θ ))A. (33.3)

The parameters η = (δ ,α,β ,θ ) can be estimated by least squares:

η̂n = (δ̂n, α̂n, β̂n, θ̂n) = arg min
δ ,α ,β ,θ

Pn[Y −UUUTδ − (α+βX(θ ))A]2, (33.4)
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where Pn is the empirical distribution for a sample of size n from the randomized
clinical trial. It can be shown that the resulting estimated TPI policy d̂n is asymptot-
ically globally optimal in the sense that V (d̂n) converges in probability to V (d0) as
n → ∞, provided the point impact model for the treatment effect is correctly spec-
ified. Moreover, this result holds even if the linear model used for the main effect
of gene expression is misspecified; this robustness property is a consequence of
E(A|X) = 0, implying that (α̂n, β̂n, θ̂n) and δ̂n are asymptotically independent.

33.3 Assessing the estimated TPI policy

To assess the effectiveness of the estimated TPI policy d̂n, we use an estimator of
the form V̂ (d̂n), for various choices of estimators V̂ (d) of V (d). The estimators
V̂ are based on exploiting different aspects of the model (33.3). In each case, un-
der suitable conditions it can be shown that the error involved in this assessment,
V̂ (d̂n)−V (d̂n), is asymptotically normal with mean zero and a variance that can
be consistently estimated, see McKeague and Qian (2011). This leads to asymptoti-
cally valid Wald-type confidence intervals for V (d̂n) in the sense that the probability
of V (d̂n) falling in the interval tends to the nominal coverage level. These intervals
can then provide an attractive way of assessing the potential clinical effectiveness
of d̂n in the study population.

Three estimators of V (d) are studied in detail by McKeague and Qian (2011).
Before we define these estimators, note that V (d) is identifiable in terms of the
randomization probability p(a|x) (earlier assumed to be 1/2 for simplicity) on the
basis of the identity:

V (d) = Pd [Y ] =
∫

YdPd =
∫

Y
dPd

dP
dP = E

[
W (X ,A;d)Y

]
, (33.5)

where the weight W (X ,A;d) = 1A=d(X)
/

p(A|X) is a version of the Radon–Nikodym
derivative dPd/dP, and we have used the assumption that p(a|X) > 0 almost surely
for each value of a. Also note that EW (X ,A;d) = 1, but in an empirical version of
(33.5) it is preferable to normalize the observed weights by their sample mean.

This leads to the inverse probability of treatment weighted (IPTW) estimator:

V̂I(d) =
Pn[W (X ,A;d)Y ]
Pn[W (X ,A;d)]

.

Clearly, in our randomized trial setting where p(a|x) is known, VI is consistent (by
the law of large numbers). Alternatively, the randomization probability can be elim-
inated by re-expressing (33.5) as

V (d) = E
[
1d(X)=1E(Y |X ,A = 1)+ 1d(X)=−1E(Y |X ,A =−1)

]
. (33.6)
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The value can then be estimated by plugging-in the estimator of E(Y |X ,A) specified
by the model (33.3), resulting in the so-called G-computation estimator (Robins,
1986):

V̂G(d) = Pn
[
UUUT δ̂n +(21d(X)=1−1)(α̂n + β̂nX(θ̂n))

]
.

This estimator does not involve p(a|x) and is consistent if the model (33.3) is cor-
rectly specified, since η̂n is a consistent estimator of η0. Moreover, since E(A|X) =
0, V̂G is consistent even if the main effect of X in (33.3) is misspecified (as long as
T0(X) is correctly specified and there is a constant term in UUU). Although V̂G(d) has a
more restricted scope than the other estimators, it is more stable in the sense that, in-
stead of using a weighted average of Y , it uses a weighted average of a model-based
estimator of the conditional expectation of Y .

The third estimator is a version of an estimator derived by Murphy et al. (2001)
based on semiparametric efficiency theory. This estimator utilizes both the random-
ization probability and a plug-in estimator of E(Y |X ,A) specified by the model:

V̂L(d) = V̂G(d)+Pn[W (X ,A;d)R̂n],

where R̂n = Y −UUUT δ̂n− (α̂n + β̂nX(θ̂n))A is the residual from fitting model (33.3).
This estimator is derived by projecting the score function W (X ,A;d)(Y −V (d)) of
the IPTW estimator onto the orthogonal complement of the tangent space for the
treatment assignment probability. It is consistent (given knowledge of p(a|x)) even
if (33.3) is misspecified, and it is locally efficient at model (33.3).

We have restricted attention to a single-stage decision problem. However, time-
varying treatments are common, and are needed, e.g., for individuals with a chronic
disease who experience a waxing and waning course of illness. The goal then is to
construct a policy that tailors the type and dosage of treatment through time accord-
ing to the individual’s changing health status. There is a thriving statistical literature
in this area, but, to our knowledge, high-dimensional/functional predictors have not
been considered. In future work it would be interesting to extend our approach to
this multi-stage setting.
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Chapter 34
Estimation of Functional Coefficients in Partial
Differential Equations

Jose C. S. de Miranda

Abstract We present a methodology to estimate, up to a constant factor, functional

parameters in PDE models of the following type: f ∂
2u
∂ t2 + g ∂u

∂ t + hu = ∂
∂x

[
K ∂u

∂x

]
.

The parameters f ,g,h and K depend solely on x. We assume we know N functions
v1(x,t), ...,vN(x,t) that satisfy, for each i, 1≤ i≤ N, vi = ui + εi, where ui is a solu-
tion of the PDE and εi is uncorrelated zero mean noise which satisfies a frequency
domain condition.

34.1 Introduction

Dynamical systems where the state space is a function space can, in some instances,
be described by partial differential equations. This is the case of the classical mod-
elling of the dynamical behaviour of heat transfer and wave propagation whose
mathematical modelling is successfully performed using partial differential equa-
tions. The parameters that define these dynamical systems are in many cases the co-
efficients that appear in their corresponding PDEs. In case of linear homogeneous,
i.e., without forcing factors, PDEs, given a sufficiently large set of linearly inde-
pendent solutions, in a deterministic setting, it is possible, at least theoretically, to
exactly find these coefficients up to some multiplicative common factor. However,
in a random setting, where these solutions are subject to noise, the determination of
the coefficients becomes a dynamical systems’ inference problem with functional
data. This work is in the intersection of two areas: Inverse Problems and Functional
Data Analysis. For IP see Isakov (2006) and Kirsch (1996). A comprehensive ex-
position of FDA is found in Ferraty and Vieu (2006), Ramsay and Silverman (2004
and 2005) and references therein. See also Dabo-Niang and Ferraty (2008) for the
collection of IWFOS 2008 works.
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The estimation of functional coefficients associated to systems of ODEs can be
found in Ramsay (2007). In Huttunen (2007), the estimation of the non-homogeneous
heat equation is studied and extensions to more general equations are indicated. The
focus is on fast numeric algorithms.

In this work we present a methodology to estimate the functional coefficients,
f (x), g(x), h(x), and K (x) that appear in the following PDE:

f
∂ 2u
∂ t2 + g

∂u
∂ t

+ hu =
∂
∂x

[

K
∂u
∂x

]

. (34.1)

This PDE has as its particular cases both heat and wave equations with func-
tional coefficients which are used for the modelling of heat and wave phenomena in
non-homogeneous space-varying conditions. We assume we have at our disposal
N functions v1(x,t), ...,vN(x,t) that satisfy, for each i, 1 ≤ i ≤ N, vi = ui + εi,
where ui is a solution of the PDE and εi is uncorrelated zero mean noise which
satisfies a frequency domain condition. We have perfect knowledge of the func-
tions vi but we do not know neither the solutions ui nor the realizations of the
random noise εi. The variables x and t will belong to the intervals [0,L] and
[0,T ] respectively. Based on these data, we will construct consistent estimators
f̂ , ĝ, ĥ, ˆK , of f , g, h, and K . More precisely, we will construct consistent es-
timators of the equivalent class to which the vector ( f ,g,h,K ) belongs under
the equivalence relation defined by ( f1,g1,h1,K1) ≡ ( f2,g2,h2,K2) ⇐⇒ ∃c ∈
R ( f1,g1,h1,K1) = c( f2,g2,h2,K2). We will denote this class by ( f ,g,h,K ) and
call it shape. Whenever ( f ,g,h,K ) = 0, a standard representative of shape is

sng(K (0)) ( f ,g,h,K )
||( f ,g,h,K )||2 , where ||( f ,g,h,K )||2 =

√
|| f ||22 + ||g||22 + ||h||22 + ||K ||22,

and sng(a) = 1 if a > 0 and sng(a) =−1 if a < 0. If we have additional information
about ( f ,g,h,K ), for example by means of the value y of a functional J applied
to it, such as J[( f ,g,h,K )] =

∫ L
0 K (x)dx = y ∈ R, then we will also be able to

estimate ( f ,g,h,K ).
This extended abstract is organized as follows: in section 2 we construct the

estimators for the functional parameters of the PDE; in section 3 we present the main
result concerning the properties of these estimators; and, in section 4, we conclude
this work with some final remarks.

34.2 Estimator construction

For ease of presentation we will suppose that N, the number of observed solutions,
i.e., vi, is a multiple of four, N = 4n say, and we will divide the functions vi in four
sets with n elements, I1 = {v1, ...,vn}, I2 = {vn+1, ...,v2n}, I3 = {v2n+1, ...,v3n}, and
I4 = {v3n+1, ...,v4n}, for example. Let λ , and μ be real numbers in the interval (0,1).

Partial integration with respect to the second variable over the interval [λT −
μλ t,λT + μ(1−λ )t] followed by integration with respect to t over [0,T ] and inte-
gration with respect to (λ ,μ) ∈ (0,1)2 of equation (1) furnishes
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f (x)
(

1
T 3

∫ T

0
t2u(x, t)dt− 1

T 2

∫ T

0
tu(x, t)dt +

1
6T

∫ T

0
u(x, t)dt

)

+

g(x)
(∫ T

0
u(x, t)R(t)dt

)

+

h(x)
∫ T

0
u(x, t)S (t)dt =

∂
∂x

[

K (x)
∂
∂x

∫ T

0
u(x, t)S (t)dt

]

(34.2)

where R(t) =
∫ 1

0 (1− μ)2

(
(1∧ t

T−μT )2−(0∨ t−μT
T−μT )2

2 + t
T − (1∧ t

T−μT )
)

dμ

and S (t) =
∫ T

0

∫ 1
0 μ(1− μ)2

(
λ 2

6 (3−2λ )|λ=1∧ t
T−μz

λ=0∨ t−μz
T−μz

)

dμdz.

Denoting ū j =
∑i∈I j

ui

n , due to linearity of the PIDE above, we can write, for
1≤ j ≤ 4,

f (x)
(

1
T 3

∫ T

0
t2ū j(x, t)dt− 1

T 2

∫ T

0
tū j(x, t)dt +

1
6T

∫ T

0
ū j(x, t)dt

)

+

g(x)
(∫ T

0
ū j(x, t)R(t)dt

)

+h(x)
∫ T

0
ū j(x, t)S (t)dt =

∂
∂x

[

K (x)
∂
∂x

∫ T

0
ū j(x, t)S (t)dt

]

(34.3)

Let

α(ū j,x) = α j(x) =
(

1
T 3

∫ T

0
t2ū j(x, t)dt− 1

T 2

∫ T

0
tū j(x, t)dt +

1
6T

∫ T

0
ū j(x, t)dt

)

, (34.4)

β (ū j,x) = β j(x) =
(∫ T

0
ū j(x, t)R(t)dt

)

, and γ(ū j,x) = γ j(x) =
∫ T

0
ū j(x, t)S (t)dt. (34.5)

We can thus write the system of four equations

α j(x) f (x)+β j(x)g(x)+ γ j(x)h(x) =
∂
∂x

[

K (x)
∂
∂x
γ j(x)

]

= K ′(x)γ ′j(x)+K (x)γ ′′j (x) (34.6)

for 1≤ j ≤ 4.
Now, denote α = (α1,α2,α3,α4), β = (β1,β2,β3,β4), γ = (γ1,γ2,γ3,γ4), γ ′ =

(γ ′1,γ ′2,γ ′3,γ ′4), γ ′′ = (γ ′′1 ,γ ′′2 ,γ ′′3 ,γ ′′4 ), ∗α = (α1,α2,α3), ∗β = (β1,β2,β3), ∗γ = (γ1,γ2,γ3).
Solving the system leads to the following:

K (z) = K (0)exp

(

−
∫ z

0

det(α ,β ,γ ,γ ′′)
det(α ,β ,γ ,γ ′)

dx

)

(34.7)

f = K
det(∗γ ′′ − det(α,β ,γ,γ ′′)

det(α,β ,γ,γ ′)
∗γ ′, ∗β , ∗γ)

det(∗α , ∗β . ∗γ)
(34.8)

g = K
det(∗α , ∗γ ′′ − det(α,β ,γ,γ ′′)

det(α,β ,γ,γ ′)
∗γ ′, ∗γ)

det(∗α , ∗β . ∗γ)
(34.9)

h = K
det(∗α , ∗β , ∗γ ′′ − det(α,β ,γ,γ ′′)

det(α,β ,γ,γ ′)
∗γ ′)

det(∗α , ∗β , ∗γ)
(34.10)
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More briefly:
K = κ(α,β ,γ) = κ∗(ū1, ū2, ū3, ū4), f = F(α,β ,γ) = F∗(ū1, ū2, ū3, ū4),
g = G(α,β ,γ) = G∗(ū1, ū2, ū3, ū4), and h = H(α,β ,γ) = H∗(ū1, ū2, ū3, ū4).

Denoting v̄ j =
∑i∈I j

vi

n , for 1 ≤ j ≤ 4, define α̂ j(x), β̂ j(x) and γ̂ j(x) by substitut-
ing ū j with v̄ j in equations (4) and (5), and use the previous notations concerning
vectors.

Now, we define our estimators for the functional coefficients as
ˆK = κ(α̂, β̂ , γ̂) = κ∗(v̄1, v̄2, v̄3, v̄4),

f̂ = F(α̂ , β̂ , γ̂) = F∗(v̄1, v̄2, v̄3, v̄4),
ĝ = G(α̂, β̂ , γ̂) = G∗(v̄1, v̄2, v̄3, v̄4),
ĥ = H(α̂, β̂ , γ̂) = H∗(v̄1, v̄2, v̄3, v̄4).
Once again, we observe that the model (1) is unidentifiable as can be clearly seen

by the presence of the constant K (0) in (7), and, consequently, in (8), (9) and (10).
However, if, for example, we know that

∫ L
0 K (x)dx = y, then, from (7) we have that

K (0) = y
[∫ L

0 exp
(
−∫ z

0
det(α ,β ,γ,γ ′′)
det(α ,β ,γ,γ ′) dx

)
dz
]−1

, and identifiability is guaranteed.

34.3 Main results

Let us assume noise has a representation in the frequency domain. Using complex
notation we write

εi(x,t) = ∑
l,m∈Z

ai,l,meι(
2πlx

L + 2πmt
T ). (34.11)

From here on we will assume that noise satisfies the following conditions:

1. for all i, l and m, Eai,l,m = 0;
2. for all i, j, l,m, p and q, such that (i, l,m) = ( j, p,q), Cov(ai,l,m,a j,p,q) = 0;
3. 1

n2 ∑n
i=1∑l,m∈Z l4

E(a2
i,l,m)→ 0 as n→ ∞.

Clearly, condition [3] is fulfilled in case noise is identically distributed (which
means that, in the frequency domain, for all i and j and for all l and m we have
ai,l,m = a j,l,m) and satisfies ∑l,m∈Z l4

E(a2
i,l,m) < ∞. Condition [2] imposes uncorre-

latedness of both inter and intra noise Fourier coefficients. In case we have pair-
wise independent noise, i.e. εi ⊥ ε j, for i = j, we still need the fulfillment of
Cov(ai,l,m,ai,p,q) = 0 in order to obey [2]; this is also the case if we have inde-
pendent noise.

Observe that Theorem 1, Corollary 1 and Theorem 2 concern shape estimation.
We may assume an arbitrary non zero value for ˆK (0) = K (0) or consider the
standard representatives in the class, for pairing the functions. Using the notation
established thus far, we can state the following:

Theorem 34.1. Let the functional coefficients f ,g,h and K that appear in (1)
be such that ( f ,g,h,K ) = (0,0,0,0) and, for all x ∈ [0,L], det(α,β ,γ,γ ′) =
0 = det(∗α, ∗β . ∗γ). Assume that noise satisfies conditions 1, 2 and 3 stated
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above. Then, the mean integrated squared errors E(‖ ˆK −K ‖2
2), E(‖ f̂ − f‖2

2),
E(‖ĝ−g‖2

2), and E(‖ĥ−h‖2
2) go to zero as N goes to infinity.

This result is independent of the value of K (0). The condition det(α,β ,γ,γ ′) = 0
implies that {ū1, ū2, ū3, ū4} is linearly independent.

Corollary 34.1. Under the same assumptions of Theorem 1, the estimators f̂ , ĝ, ĥ,
and ˆK , are consistent.

We write φ ′(p)(w) for Hadamard derivative of φ at p calculated at the vector w.
Using the functional delta method, see van der Vaart (1996) and Kosorok (2006),
we can also prove the following convergence in distribution results

Theorem 34.2. Under the hypothesis of Theorem 1 and the additional assumption
that noise is i.i.d. like ε, we have√

N( f̂ − f ) � Tf (ν),
√

N(ĝ− g) � Tg(ν),
√

N(ĥ− h) � Th(ν), and
√

N( ˆK −
K ) � TK (ν), where
Tf (ν) = F∗′(ū1, ū2, ū3, ū4)(ν1,ν2,ν3,ν4),
Tg(ν) = G∗′(ū1, ū2, ū3, ū4)(ν1,ν2,ν3,ν4),
Th(ν) = H∗′(ū1, ū2, ū3, ū4)(ν1,ν2,ν3,ν4),
and TK (ν) = κ∗′(ū1, ū2, ū3, ū4)(ν1,ν2,ν3,ν4).
Here {ν1,ν2,ν3,ν4} are i.i.d. like ν and ν has spectral representation given by

ν(x,t) = ∑l,m∈Z bl,meι(
2πlx

L + 2πmt
T ) with uncorrelated coefficients bl,m ∼ N (0,σ2

l,m),
where σ2

l,m is the common variance of ai,l,m.

34.4 Final remarks

We observe that the methodology presented here, i.e., the integration of the PDE in a
conveniently chosen region, the analytic solution of the new integrated PIDE for the
functional coefficients and, finally, the substitution of the true PDE solutions with
averages of the measured solutions in the analytical expressions for the functional
coefficients, can be applied for a larger class of PDEs that include PDEs of the type:

∑m
i=0 fi(x) ∂

iu
∂ ti (x,t) = ∂

∂x

[
K ∂u

∂x

]
and others.

We can define other estimators for f ,g,h, and K by first smoothing our func-
tional data. This can be done, for example, by simply smoothing vi using a low pass
filter and then using the smoothed versions of vi in the estimators’ equations. We
expect this procedure to yield good results in case of high frequency noise, more
specifically, in case Fourier coefficients of noise are completely negligible in all
frequencies from zero till a threshold frequency where all the Fourier coefficients
and the energy of all the solutions ui are negligible for frequencies greater than this
threshold frequency.

The conditions that we have assumed regarding the frequency domain behaviour
of the noise can be relaxed, more specifically, there may be some moderate corre-
lation among Fourier coefficients, both inter and intra noise, and the consistency of
the estimators will still be maintained.
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Observe that, although the estimators f̂ , ĝ, ĥ, ˆK , are consistent, they are, in prin-
ciple, dependent on the choice of the sets I1, I2, I3, I4. However, we can symmetrize
this estimator to get one which is independent of this choice by taking the average
of the estimators based on all possible partitions of {1, ...,N} in four sets with the
same size. Although in a practical situation we will not be able to calculate all these

N!
(n!)44!

estimators for large N, we will still considerably reduce this “choice” effect

by choosing a random subset of these partitions with a reasonable number of ele-
ments and then taking the average of the estimators associated to these partitions.
Clearly, this symmetrization or proxy-symmetrization must be subjected to fulfill-
ment of Theorem 1 hypothesis in order for us to have final consistent estimators.

Acknowledgements The author thanks OLSJC.

References

1. Dabo-Niang, S., Ferraty, F.: Functional and Operatorial Statistics (eds.) Contributions to
statistics, Physica Verlag, Heidelberg (2008)

2. de Miranda, J.C.S.: Functional parameter estimation in Partial Differential Equations. Preprint
(2009).

3. Ferraty, F., Vieu, P.: Nonparametric functional data analysis. Springer, New York (2006)
4. Huttunen, J. M. J., Kaipio, J. P.: Approximation error analysis in nonlinear state estimation

with an application to state-space identification. Inverse Probl. 23, 2141–2157 (2007)
5. Isakov, V.: Inverse problems for partial differential equations. Springer Science + Business

Media, Inc. (2006)
6. Kirsch, A.: An introduction to the mathematical theory of inverse problems. Springer Verlag,

New York (1996)
7. Kosorok, M.R.: Introduction to Empirical Processes and Semiparametric Inference. Springer

Science + Business Media Inc. (2006)
8. Ramsay, J. O., Hooker, G., Cao, J., Campbell, D.: Parameter estimation for differential equa-

tions (with discussion). J. Roy. Stat. Soc. B 69, 741–796 (2007).
9. Ramsay, J. O., Silverman, B. W.: Applied Functional Data Analysis. Springer Verlag, New

York (2002)
10. Ramsay, J. O., Silverman, B. W.: Functional data analysis (Second Edition). Springer Verlag,

New York (2005)
11. van der Vaart, A. W., Wellner, J. A.: Weak Convergence and Empirical Processes With Ap-

plications to Statistics. Springer Verlag, New York (1996)



Chapter 35
Functional Varying Coefficient Models

Hans-Georg Müller, Damla Şentürk

Abstract Functional varying coefficient models provide a versatile and flexible
analysis tool for relating longitudinal responses to longitudinal predictors. Two key
innovations are: Representing the varying coefficient functions through auto- and
cross-covariances of the underlying stochastic processes; and including history ef-
fects through a smooth history index function. This presentation is a review of the
paper Şentürk and Müller (2010).

35.1 Introduction

We consider functional data as independent and identically distributed realizations
of a stochastic process. A basic problem is that these realizations are rarely directly
observed. Commonly, one instead has available measurements of the trajectories
that are obtained at discrete time points. These measurements are usually contami-
nated by measurement errors. In many longitudinal studies, the number of available
measurements per subjects is quite small and often also the distribution of the mea-
surement times is irregular and may be assumed to follow a random distribution
for each subject. Then the times where measurements are obtained are considered
to be sparse and irregular. Often one observes two or more random trajectories per
subject and is interested in relating these trajectories to each other. In the following,
we consider predictor trajectories X and response trajectories Y , and aim at regress-
ing functional responses Y on functional predictors X , where X ,Y ∈ L2([0,T ]) for a
T > 0.

For an overview of functional data analysis, see Ramsay and Silverman (2005)
and Ferraty and Vieu (2006). For the purpose of regressing trajectories Y on trajec-
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tories X , various functional regression models have been proposed. These include
the functional linear model (Ramsay and Dalzell, 1991; Cuevas et al., 2002; Cardot
et al., 2003, Yao et al., 2005a) or the functional additive model (Yao and Müller,
2008). The functional linear regression model with functional predictors and func-
tional responses is given by

E(Y (t)|X) = μY (t) +
∫

(X(s)− μX(s))β (s,t)ds,

where μY (t) = EY (t), μX (s) = EX(s) are the mean functions and β (·, ·) is a smooth
regression parameter function (surface).

A problem with this model is that its implicit time relations are often not realistic:
Values of the predictor trajectories X(s) influence current responses Y (t), for s > t.
This can be perceived as the future influencing the past, if the two functions share
the same time axis, while it is not an issue if the two random functions are not
time-related (see, e.g., Yao et al., 2008, where such a situation is discussed for gene
expression trajectories). Thus the model might be hard to interpret when both X and
Y are recorded concurrently, as is typically the case in longitudinal studies. In such
cases one might prefer models that respect time order; compare the discussion in
Malfait and Ramsay (2003) and Müller and Zhang (2005).

A well-established model that passes the time respecting criterion is the varying
coefficient model

E(Y (t)|X) = β0(t)+β1(t)X(t),

which reduces the regression relation to a linear relation at current times t. This
model has been proposed in Cleveland et al. (1991) and has been widely studied,
among others by Wu and Chiang (2000), Huang et al. (2004) and Fan and Zhang
(2008). The following is a review of proposals in Şentürk and Müller (2010), where
more details can be found.

35.2 Varying coefficient models with history index

Current implementations of varying coefficient models have a number of shortcom-
ings: One is that effects of time-lagged predictors X(s) for s < t are not included,
while it is likely that in many longitudinal relationships there will be lingering ef-
fects of predictor values at preceding times. An example is the effect of calorie in-
take on body mass index. Secondly, available implementations do not work well for
sparse longitudinal data – there may not be enough data available in local windows
around t to reasonably estimate the regression coefficient functions β0(t),β1(t) by
the usual fitting of parametric regression models within a local window around t.
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Thirdly, if predictors are measured with noise, as is common in longitudinal studies,
these estimates are biased, as has been demonstrated in Şentürk and Müller (2008).

The above discussion motivates alternative approaches for varying coefficient
modeling. An extension of the varying coefficient model is

E{Y (t)|X}= β0(t)+β1(t)
∫ Δ

0
γ(u)X(t−u)du,

for a suitable lag Δ > 0. Here γ is a history index function, while β1 quantifies
the effect of the recent history of the predictor function on the response and β0

is an intercept function. Thus, the varying coefficient function β1 represents the
magnitude of the history influence which may vary over time. All functions are
assumed to be smooth. For identifiability, it is opportune to require

∫ Δ
0 γ2(u)du = 1

and γ(0) > 0.
Since the history index function γ is time-invariant, the varying coefficient model

with history index model separates history and time effects, which aids in its inter-
pretability. A particular challenge arises in the case of longitudinal data, charac-
terized by sparse and irregular observations per trajectory. The importance of such
data for functional data analysis was discussed in James et al. (2000) and Yao et al.
(2005b). While in traditional functional data analysis, one assumes samples of fully
observed functions, measured without noise at arbitrarily dense grid points, a more
realistic assumption is additive measurement errors (εi j,εi j). For longitudinal data,
in addition one needs to deal with sparse and irregular designs, with measurements
of X and Y given by

Xi j = X(Si j)+ εi j, Yi j = Y (Ti j)+ εi j,

where Si j,Ti j are random times and their numbers NXi,NYi for the i-th subject are
random and finite, e.g., bounded or Poisson distributed.

35.3 Functional approach for the ordinary varying coefficient
model

When γ(·) is known, the history index model

E{Y (t)|X}= β0(t)+β1(t)
∫ Δ

0
γ(u)X(t−u)du

reduces to an ordinary varying coefficient model. With centered predictors and re-
sponses YC(t) =Y (t)−μY (t) and XC(t) = X(t)−μX(t), one may rewrite this model
as

E{YC(t)|X(t)}= β1(t)XC(t),

with β0(t) = μY (t)−β1(t)μX (t), β0,β1 “smooth”. For longitudinal data, fitting this
simpler model is already problematic.
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The key is that these covariances can be consistently estimated for both lon-
gitudinal and dense designs, along with mean functions μX ,μY . To obtain all of
these quantities, one may simply pool all data and the products of observations
coming from the same subject and then judiciously apply smoothing methods. This
approach has been described in Yao et al. (2005b) and is referred to as PACE –
principal analysis by conditional expectation. A Matlab implementation is available
at http://anson.ucdavis.edu/∼mueller/data/pace.html. The covariance
estimation steps in PACE (for the estimation of covariances GXX ,GYY ,GXY ) elim-
inate the effect of the noise contamination of the observations, which otherwise
can be a difficult to address problem, since predictors are contaminated and pre-
smoothing predictor trajectories is not an option for sparse longitudinal designs.
PACE addresses the problems associated with the sparseness of the design through
borrowing strength across subjects.

For the ordinary varying coefficient model, simple calculations lead to

β1(t) = argminθ{E(YC(t)−θXC(t))2}=
GXY (t,t)
GXX (t,t)

β0(t) = μY (t)−β1(t)μX(t).

Therefore it suffices to substitute estimates ĜXX , ĜXY , μ̂Y that one obtains from
PACE. The properties of these estimates have been well studied, and are then in-
herited by the resulting varying coefficient function estimates β̂0, β̂1, for both dense
and sparse longitudinal designs with noisy predictors.

35.4 Fitting the history index model

Writing

E{YC(t)|XC(s),s ∈ [t−Δ ,t]} = β1(t)
∫ Δ

0
γ(s)XC(t− s)ds

=
∫ Δ

0
αt(s)XC(t− s)ds

with new regression parameter functionsαt(s)= β1(t)γ(s), one finds from
∫ Δ

0 γ2(s)ds =
1 that for each fixed time point t,

γ(s) =
αt(s)

{∫ Δ0 α2
t (s)ds}1/2

.

In the functional approach, one targets the covariances

GXY (s,t)= cov(X(s),Y (t)), GXX(s,t)= cov{X(s),X(t)}, GYY (s,t)= cov{Y (s),Y (t)}.

http://anson.ucdavis.edu/%E2%88%BCmueller/data/pace.html
http://anson.ucdavis.edu/%E2%88%BCmueller/data/pace.html
http://anson.ucdavis.edu/%E2%88%BCmueller/data/pace.html
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Although not strictly necessary, it turns out practically advantageous to average over
finitely many time points, so that

γ(s) = ∑R
r=1αtr (s)

[
∫ Δ

0 {∑R
r=1αtr (s)}2 ds]1/2

,

for a small integer R.
Once the history index function γ is recovered, the history index model essen-

tially reduces to an ordinary varying coefficient model and the previously described
procedure applies. Representing functions αt in the eigenbasis {φtm, m = 1,2, . . .}
of the processes Zt(s) = XC(t− s), s ∈ [0,Δ ], with auto-covariance function

Gt(s1,s2) = GXX(t− s1,t− s2) =∑
m
ρtmφtm(s1)φtm(s2) fors1,s2 ∈ [0,Δ ],

with eigenvalues ρtm and minimizing the expected squared deviation E{YC(t)−
∫ Δ

0 αt(s)XC(t− s)ds}2 leads to the minimizer

α∗t (s) =
1
ρtm

∫ Δ

0
GXY (t− s,t)φtm(s)ds.

Due to the relationship with GXX , eigenfunctions and eigenvalues {φtm,ρtm m =
1,2, . . .} can be easily computed, once GXX has been estimated. Consistency prop-
erties of ĜXX , ĜXY are then inherited by α̂∗t and thus by the resulting estimate γ̂ of
the history index function.

A difficulty for the longitudinal case is the evaluation of X̃(t) =
∫ Δ

0 γ(s)XC(t−
s)ds, which is needed to transform the history index model into the varying coeffi-
cient model

E{Y(t)|X}= β0(t)+β1(t)
∫ Δ

0
γ(u)X(t−u)du,

as the integrals defining X̃ cannot be evaluated, even if γ is known, due to the sparse-
ness of the data. Fortunately, the varying coefficient function β1 in this model is
found to have the representation

β1(t) = GXY (t,t)/
∫ Δ

0
γ(s)GXX (t− s,t)ds,

and it then suffices to substitute consistent estimates for GXX ,GXY ,γ , which are
available also for the longitudinal case.

For the implementation of these methods, one needs to choose a number of aux-
iliary parameters. These include the lag parameter Δ , which determines the his-
tory domain and can be chosen by minimizing a suitable prediction error crite-
rion. For selecting smoothing bandwidths to estimate the cross-sectional quantities
μX ,μY ,GXX ,GXY , generalized cross-validation is an option and for the number of
included components in the representation of the history index function, one may
use fraction of variance explained or AIC-type criteria.
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One may show under suitable regularity conditions that for longitudinal designs
the estimators for the model functions β0,β1,γ are consistent.
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Chapter 36
Applications of Funtional Data Analysis to
Material Science

S. Naya, M. Francisco-Fernández, J. Tarrı́o-Saavedra, J. López-Beceiro, R. Artiaga

Abstract Thermogravimetric curves (TG) and statistical functional nonparametric
methods are used to classify (supervised) 7 wood species and to measure the in-
fluence of adding silica micro and nano-particles on the thermal degradation of an
epoxy resin. A technique based on the Bayes rule and the Nadaraya-Watson re-
gression estimator and a functional ANOVA for a one way treatment are applied
respectively.

36.1 Introduction

Many problems in the material science field can be tackled using statistical func-
tional data analysis (FDA) methodologies. In this work, we present two of these
problems and describe the functional techniques used to analyze them. The first ap-
plication refers to the classification of different wood species. The identification of
wood is one of the most difficult tasks to perform related with the technology of
this material. Wood identification analysis is typical in the furniture industries and
the wood panel production. Often, the performed analysis has a non-uniform accu-
racy because of the operator. Therefore, the implementation of quantitative mod-
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els and automatic recognition methods of wood samples are justified and useful.
Wood samples are mainly classified based on the results of two techniques: image-
and spectrum-based processing systems. In this work, the thermograms obtained by
thermogravimetric analysis (TG) are used as a discriminant characteristic (Prime et
al., 2009). The wood degradation in an inert atmosphere is dominated by the degra-
dation behavior of its three main components (cellulose, lignin, and hemicellulose).
The proportion of each wood component varies depending on the species (Tarrı́o et
al., 2010b) and influences in the shape of the TG curves. Therefore, TG analysis be-
comes an interesting option to discriminate between classes of timber. These curves
can be processed in a relatively simple way with functional analysis (Ferraty and
Vieu, 2006).

The second problem analyzed in this work is that of performing an experimental
design to evaluate the effect of the addition of fumed silica on the thermal degrada-
tion of an epoxy resin. The fumed silica epoxy-resin composites are prepared and
characterized by TG and a one-way functional ANOVA method is applied. This
procedure allows to test the possible differences in responses according to the treat-
ments used, considering that the data are functions or curves. In our case, the silica
content in each sample,with three levels (0, 10 and 20 wt%, weight percentage of
fumed silica) is chosen as the treatment factor. Five experiments or replicates for
each level are considered, which gives a balanced design. The response variable
is functional and represents the mass of material depending on the temperature at
which it is subjected to. Our analysis allows to answer questions like, can it be said
that the thermal stability of the material increases or decreases with statistical sig-
nificance? (Tarrı́o et al., 2010a).

36.2 Materials testing and data collecting

In the first problem, tests for 7 different wood species (European beech or Fagus
sylvatica, European oak or Quercus robur, chestnut or Castanea sativa, Eucalyptus
globulus, jatobá or Hymenaea courbaril, scots pine or Pinus silvestris and insignis
pine or Pinus radiata) are carried out. Seven samples per each specie are tested.
With respect to the second experiment, an epoxy resin matrix based on the digly-
cidyl ether of trimethylolpropane, Triepox GA, manufactured by Gairesa, and 1,3-
benzenedimethanamine, is used. The fumed silica has been provided by Ferroatl-
ntica I+D, Spain. Its average particle size is 0.15 μm. The samples are prepared for
contents of 0, 10, and 20 wt% of fumed silica. In the two cases, tests are performed
on a SDT 2960 TA Instruments thermo balance. This apparatus provides TG curves
used in this study. A heating ramp of 20oC min−1 is applied in the range from 20 to
600oC at a rate of 50 mL min−1 of N2.
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36.3 Statistical methods

Different statistical procedures for functional data were applied to each one of the
problems analyzed here and described in the Introduction section. Regarding the
problem of classifying wood species, two nonparametric kernel functional discrim-
inant methods (Ferraty and Vieu, 2006) and two approaches based on the boosting
algorithm were applied to construct a classification rule to discriminate between the
studied species. Each TG curve was classified as belonging to the specie to which
the highest posterior probability is obtained, using leave-one-out cross validation.

The functional Nadaraya-Watson kernel nonparametric method (K-NPFDA),
shown in (36.1), is used to carry out a supervised classification. Given a new TG
curve, x = x(t), obtained from a material to classify, the estimator of the posterior
probability of belonging to a class g, with g ∈ {0,1, . . . ,G}, is given by:

r̂(g)
h (x) =

n
∑

i=1
I{Yi=g}K

( ‖x−Xi‖
h

)

n
∑

i=1
K
( ‖x−Xi‖

h

) , (36.1)

where the observed TG curves, Xi = Xi(t), are a sample of explanatory variables,
while the response sample consists of the observations Yi of a discrete random vari-
able taking values in the set {0,1,. . . ,G}, the different classes. The parameter h is
the bandwidth or smoothing parameter and ‖·‖ denotes the L2 distance between the
curves.

After a careful examination of the TG curves, further processing of the data has
been found useful for standardizing them: f̃ (x) = α f (x)+β with

α =
√

b−a
√
∫ b

a

(
f (t)− 1

b−a

∫ b
a f (s)ds

)2
dt
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in order to achieve

1
b−a
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a
f̃ (t)dt = 0 ,

1
b−a

∫ b

a

(

f̃ (t)− 1
b−a

∫ b

a
f̃ (s)ds

)2

dt = 1

This transformation should act on the mean and variance to improve the discrim-
inant power of the curves.

In our research, the Gaussian kernel, K, is used and the smoothing parameter, h,
was selected according to a cross-validation method.

Additionally, a k Nearest Neighbors version of the kernel estimator (named
KNN-NPFDA) is considered (Ferraty and Vieu, 2006), as well as two additional
nonparametric methods based on the boosting algorithm, the B and the B-PCA
methods.

As for the problem of studying the effect of adding fumed silica on the ther-
mal degradation of an epoxy resin, when the data are functional (as in this case),
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an alternative to the classical Analysis of Variance (ANOVA) is the named func-
tional ANOVA (FANOVA) (Cuevas et al., 2004). The covariates are factors while
the response is functional. This technique, compared with the classical one, has the
advantage of using all the information in the curves, instead of some specific values
on them.

Following the nomenclature of (Cuevas et al., 2004), each functional datum can
be written as Xi j(t), where t usually represents time, with t ∈ [a,b], i is the sub-
script that indicates the level of factor and j the replication number ( j = 1,2, . . . ,ni

and i = 1,2, . . . ,k). Variables Xi j(t) can be considered as k independent samples of
trajectories drawn from L2-processes Xi, i = 1, . . . ,k.

The mean for each level is given by E(Xi(t)) = mi(t), while the covariance be-
tween two specific values of a curve, Cov(Xi(s),Xi(t)), can be easily estimated as-
suming stationarity.

We want to test:

H0 : m1 = m2 = . . . = mk (36.2)

The statistic implemented by (Cuevas et al., 2004) to test (36.2) is as follows:

Vn =∑
i< j

ni
∥
∥Xi· −X j·

∥
∥2 (36.3)

The use of (36.3) avoids the requirement of the hypothesis of homoscedasticity
in the usual ANOVA. Under some assumptions (see Cuevas et al., 2004), it can be
proved that the asymptotic distribution of Vn, under H0, coincides with that of the
statistic

V =
k

∑
i< j

∥
∥Zi(t)−Ci j ·Zj(t)

∥
∥2

, (36.4)

where Ci j = (pi/p j)1/2 (with pi the limit of ni/n) and Z1(t), . . ., Zj(t) are indepen-
dent Gaussian processes with mean zero and covariance Cov(Xi(s),Xi(t)).

To apply the test, if the ni are large enough, hypothesis H0 is rejected, at a level
α , whenever Vn > Vα where PH0(V > Vα) = α . In a practical situation, the distribu-
tion of V under the null hypothesis can be approximated by applying a parametric
bootstrap and the Monte Carlo method. This allows estimation of the value of the
α-quantile, Vα . In this case, the use of the parametric bootstrap is justified because
the distribution of V is a complicated function of k Gaussian processes.

36.4 Results and discussion

Figure 1 shows the two datasets. Starting with the wood species classification prob-
lem, in Table 36.1, the probabilities of correct classification and the temperature
ranges for which they are maxima are shown. They have been calculated to classify
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Fig. 36.1: Left panel: Transformed TG curves corresponding to the 7 wood
species. Right panel: reescaled TG curves corresponding to epoxy-silica compos-
ites and adjusted with a penalized b-spline basis with 80 elements.

among 7 different species. This is the result of evaluating the probabilities at 1280
intervals of eight different sizes, from 50 to 400oC.

The overall probabilities of correct classification when one wants to discriminate
between the 7 species of wood is very high. Especially interesting are the results
obtained using the methods K-NPFDA and B (7 elements in the basis and deph of
tree equal to 3). In the first case we get a probability of correct classification of
0.88 for the interval 192.5-292.5 (see Table 36.1). This may succeed because of
the different hemicellulose content and may be due to differences in hemicellulose
degradation depending on the species, but we must do more experiments to prove
it. The optimal interval (217.5-417.5oC) obtained by the method B includes the
degradation processes of the hemicellulose, cellulose and lignin getting a slightly
higher probability of correct classification.

As for the problem of measuring the influence of adding fumed silica on the
thermal degradation of an epoxy resin, the FANOVA test described in Section 3 is
applied to the rescaled TG curves. The null hypothesis to be tested is H0 : m1 =
m2 = m3, where mi is the mean of the functional data within each of the three levels
studied belonging to the factor amount of fumed silica.

The result of the application of this procedure in the case of the rescaled TG
curves is the following: Vn = 34470.8 and Vα = 1235.671. Therefore, Vn >> Vα .
The test is highly significant. At least one of the functional means is different from
the others. The thermal stability of epoxy resin, which forms part of the compos-
ite material, undergoes a highly significant statistical increment with the addition
of an increased amount of fumed silica (it supports higher temperatures before de-
grading). This is the indicator of an interaction between the epoxy resin and fumed
silica. But, what levels are really different? Since only three groups are considered
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7 Groups Classification
Methods Optimal Prediction

Interval (oC) Prob.
K-NPFDA 192.5-292.5 0.88

Knn-NPFDA 182.5-282.5 0.88
B 217.5-417.5 0.90

B-PCA 195.0-345.0 0.83

Table 36.1: Prediction probabilities and optimal intervals obtained by each classi-
fication method. The TGA data were tested with 7 classes.

Groups compared V0.05 V0.015 Vn Result
0wt%–10wt% 1506.59 2252.66 13654.93 Significant
0wt%–20wt% 1439.34 2135.89 16199.65 Significant
10wt%–20wt% 774.42 1121.88 4616.23 Significant

Table 36.2: Pairwise comparisons using the functional ANOVA test with TG
curves.

here, three pairwise comparisons, using the same functional ANOVA method, can
be used as a first attempt to tackle this problem. To correct the problem of multiple
testing, a Bonferroni correction is used. The idea behind this approach is to consider
a new significance level, αBonf =α/J, J being the number of groups to be compared
(J = 3, in our case), and compute individual tests using this new level. Table 36.2
shows the results of all pairwise comparisons with the functional ANOVA test using
α = 0.05 and αBonf = 0.05/3 ≈ 0.015. As it can be observed, according to these
tests, the three groups are significant different.

36.5 New research lines

FDA methods have many applications in material science research. Some of them
to be studied by us in the near future are, for example, classifying different types
of bitumen and other materials for industrial applications and reverse engineering
or using functional nonparametric methods applied to thermal and rheological func-
tional data.
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Chapter 37
On the Properties of Functional Depth

Alicia Nieto-Reyes

Abstract The properties that a functional depth should satisfy are proposed and a
functional depth that fulfills them is defined. Before, the properties of the multidi-
mensional depth were sought when dealing with functional depths.

37.1 Introduction

The notion of depth was introduced in Mahalanobis (1936). The main objective
being to give a sense of order in a multidimensional data set, or distribution.

Subsequently, many definitions of multidimensional depth have being proposed,
the most well-known are in Tukey (1975), Oja (1983), Liu (1990), ... When intro-
ducing this last definition of depth some properties were proposed to justify it as a
multidimensional data depth. They were later adapted in Zuo and Serfling (2000) as
the key properties required for any statistical depth function.

Thus, denoting by P the class of distributions on the Borel sets of R
p and by

PX the distribution of a general random vector X , in Zuo and Serfling (2000) the
bounded and nonnegative mapping D(·, ·) : R

p ×P −→ R is called a statistical
depth function if it satisfies the following properties:

1. D(Ax+b,PAX+b) = D(x,PX) holds for any R
p-valued random vector X , any p× p

nonsingular matrix A and any b ∈ R
p.

2. D(θ ,P) = supx∈Rp D(x,P) holds for any P ∈P having a center of symmetry θ .
3. For any P ∈P having deepest point θ , D(x,P)≤ D(θ +α(x−θ ),P) holds for
α ∈ [0,1].

4. D(x,P)→ 0 as ‖x‖→ ∞, for each P ∈P.
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Note that the above properties are affine invariance, maximality at center, mono-
tonicity relative to the deepest point and vanishing at infinity and that they were
given for multidimensional spaces.

As it is explained in Dabo-Niang and Ferraty (2008), with the progress in tech-
nology there has being an increase in functional data. This has resulted in the
need of using depth for functional data. Thus, some definitions have appeared in
Fraiman and Muniz (2001), Cuevas et al. (2007), López Pintado and Romo (2006)
and (2009), Cuesta-Albertos and Nieto-Reyes (2008) and (2010) and Cuevas and
Fraiman (2009).

Most of these depths are defined as an extension of the multidimensional ones.
Probably, for this reason, the properties the authors have looked for has being the
ones stated in Zuo and Serfling (2000).

In Section 2 we show the lack of adequacy of most of the properties in Zuo
and Serfling (2000) for the functional setting while proposing the properties that a
functional depth should fulfill. In Section 3 we give a new definition of functional
depth directly thought for functional spaces, which meet these properties. Finally,
in Section 4 we end with a conclusion where the layout of the talk is exposed.

37.2 Properties of functional depth

Let F be a functional metric space, P a class of distributions on it, P ∈P and PX

the distribution of a general random function X . Let us denote by d(·, ·) the associate
distance to F. Thus, we propose that the mapping D(·, ·) : F×P −→R should fulfill
the following properties:

1. D( f (x),Pf (X)) = D(x,PX ) with x ∈ F and f : F → F such that d( f (x), f (y)) =
a ·d(x,y)+ b with x,y ∈ F, a,b constants in R and a > 0.

Note that when working in a functional space, the affine invariance should be trans-
lated into an invariance with respect to the functions that preserve the relative dis-
tances among the elements of the space.

2. D(θ ,P) = supx∈F D(x,P) holds for any P ∈P having θ as center of halfspace
symmetry.

The second property is analogous to the one for multidimensional spaces but there
the symmetry being halfspace is not specified. The reason we have specified it is
because it is more general than other types of symmetry like central and angular,
and we consider it necessary for obtaining the idea of order in functional spaces we
look for when using a functional depth.

3. For any P ∈P having deepest point θ , D(x,P) ≤ D(y,P) holds for any x,y ∈ F
such that y is contained in the close band formed by x and θ .

Note that this is a more general property than the one asked for multidimensional
depths because in the multidimensional depth the values of y have a particular form
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with respect to x. Here, it is only the set containing y which is defined, and not the
form in the set.

4. For each P ∈P, D(x,P)→ 0 as |x(v)| → ∞ for almost every v ∈ I, where I is
the domain of definition of the elements of F.

The main reason for changing ‖x‖ → ∞ by |x(v)| → ∞ for almost every v ∈ I, is
that in cases like the following the depth of the functions should not tend to zero:
xn(t) = 1/δn if t ∈ [0,δn) and zero otherwise, where {δn}n ⊂ R

+ with limn δn = 0.

5. supx∈F |D(x,Pn)−D(x,P)| → 0 almost surely [P], where Pn is a sequence of em-
pirical distributions computed on a random sample taken from P.

Although this property was not stated as a property that a multidimensional depth
should fulfill, it has being usually proved by some authors for the existent depths.
We have written it here because of its major importance due to the main aim of a
depth is to order a set of data.

6. “The regions were the functions are close by have less weight in computing the
depth than those where they are farther.”
That is, denoting by E the expected value, by Pn is the empirical distribution and
by C the support of Pn, if there exists a J contained in the functions domain,
I, such that {maxd(x(J),y(J)) : x,y ∈ C} << E[d(x(Jc),y(Jc)) : x,y ∈ C], with
Jc = I− J, then, D(x,Pn) ≈ D(x(Jc),Pn(Jc)), where x(J) refers to the curve x
restricted to the domain J.

This last property is a philosophical one but of great importance due to it is quite
likely to happen with real data that there are regions in which the curves may be quite
similar. In fact, the previous known functional depths have this common problem.
Particularly, we find this kind of curves when working with the functional version
of microarray data. The main reason for introducing this property is that a curve
can be in the middle, or near to, of the curves cloud in the interval(s) in which the
curves are similar and far from the curves cloud in the interval(s) in which the curves
differ. Thus, a curve satisfying this would be consider to have a high depth while it
should have a low depth. Analogously, a curve that is far from the center area in the
interval(s) in which the curves are alike and in the center or quite near to it in the rest,
would be consider to have a low depth while it should have a high depth. Therefore
a property that a functional depth should have is to take into account the intervals in
which the curves are similar. A possible solution for that could be to consider only
the intervals in which the distances among the curves were larger than a constant;
but this is an ad hoc solution and so, not the one we should look for. A solution is
found with the definition given in the following section.

Note that we have not said that a functional depth should be bounded and non-
negative. Although these two properties are natural for the idea of depth and so, they
are satisfied by the known functional depths and by the one we propose, they are not
necessary for giving an idea of order.
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37.3 A well-behave functional depth

The functional depth we propose consists in defining a layer formed by the most
distance functions (or curves). Then, subsequent layers are defined inside the pre-
vious ones by the subsequent more distance curves. See the left plot on the Figure
above, where the first layer is in blue, the second in red and the third in green.

Thus, the depth of a curve is given by the number of layers to which the curve
belongs. Therefore, what makes this depth behave well is the fact that the regions
in which the curves are close have less weight in computing the distances among
curves than other regions. In addition, this definition of depth is robust in the sense
that it does not matter how far away is a curve, or a region of the curve, from the
curves cloud as it is in the same layer as if it were closer. Particularly, we can say that

Fig. 37.1: Representation of six curves and their corresponding layers. In the left
plot the images of the curves are different through all the domain and in the right
tend to be equal in part of it.

this depth behaves well as it satisfies the properties of functional depth introduced
in Section 2. Note that instead of distances we could work with areas, obtaining the
same behavior for the depth.

Definition of depth given a set of curves
As above, let F be a functional metric space and P a probability in it. Let us denote
by d(·, ·) the associate distance to F. To compute the depth of a curve C ∈ F with
respect to a set of curves C := {C1, . . . ,Cn} ⊂ F, we use the empirical distribution.
Let us now introduce the notation for the layers.
L1 := {F ∈ F : d(F,Ci)≥ d(C1,C2) for an i = 1,2 with C1,C2 ∈B1}
Lk := {F ∈ F−∪k−1

l=1Ll : d(F,Ci)≥ d(C1,C2) for an i = 1,2 with C1,C2 ∈Bk},k≥
2,
where
B1 := {argmaxd(Ci,Cj)/Ci,Cj ∈ C},
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Bk := {argmaxd(Ci,Cj)/Ci,Cj ∈ C−∪k−1
l=1 Bl}, for k = 2, ...,k0.

k0 is such that C−∪k0
l=1Bl contains only one curve or is equal to Bk0+1. In addition,

let us denote
M := {C ∈ C : minT∈SC d(C,T )≤minV∈RC d(Bk −C,V) with k s.t. C ∈Bk},
where SC = C− (∪k−1

l=1 Ll ∪C) and RC = (C−∪k
l=1Ll)∪C. Given a curve C in F

there exist a k such that C is in the closure of Lk minus Bk. Then, the depth of a
curve C in L̄k+1−Bk+1 with respect to P is D(C,P) := P(DC) where

DC :=
{∪k

l=1Ll if C ∈M

∪k−1
l=1 Ll ∪C if C /∈M.

Thus, the deepest curve/s among C1, . . . ,Cn is/are in Bk0+1 and Bk is empty for
k > k0 + 1.

Regarding the applications, when the cardinal of Bk0+1 is larger than one and we
want the deepest curve to be only one but do not need it to be in C, we can take as
deepest curve the mean of the curves in Bk0+1 (assuming it is in F). Note that, in
fact, any curve of F whose image is between the images of the curves in Bk0+1 has
maximum depth.

37.4 Conclusions

The presentation will be devoted to, departing from the properties for a multidimen-
sional depth, propose the adequate ones for a functional depth. Particularly, we will
study these properties with the existing functional depths. In addition, the behavior
of the previous new functional depth will be studied and shown that it satisfies the
above proposed properties for a functional depth. Finally, some applications will be
shown where the importance of the proposed properties and depth can be observed.

Acknowledgements Thank you to J.A. Cuesta-Albertos for his help and useful comments.
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Chapter 38
Second-Order Inference for Functional Data
with Application to DNA Minicircles

Victor M. Panaretos, David Kraus, John H. Maddocks

Abstract The problem of comparison of second-order (covariance) properties of
two samples of random curves is considered. The work is motivated by the study of
the mechanical properties of short strands of DNA. Our test is based on the common
empirical Karhunen–Loève expansion and truncated approximation of the Hilbert–
Schmidt distance of the empirical covariance operators.

38.1 Introduction

The development of the statistical methods described here was motivated by a dataset
consisting of reconstructed three-dimensional electron microscope images of loops
(called minicircles) obtained from short strands of DNA (Amzallag, Vaillant, Jacob,
Unser, Bednar, Kahn, Dubochet, Stasiak and Maddocks, 2006). There are two types
(called TATA and CAP) of DNA minicircles with identical base-pair sequences, ex-
cept for short susubsequence where they differ. The main question is whether this
difference affects the geometry of the minicircle.

Mathematically, DNA minicircles are closed curves in R
3. Figure 38.1 shows

projections of these curves on the planes given by the axes of the coordinate sys-
tem. In Figure 38.2 coordinates on the axes are plotted against the arc length of the
curve. This plot suggests that the data could be analysed by means of functional data
analysis.
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Fig. 38.1: Projections of DNA minicircles on the planes given by the principal
axes of inertia (three panels on the left side: TATA curves, right: CAP curves).
Mean curves are plotted in white.

Fig. 38.2: Coordinates of DNA minicircles on the principal axes of inertia. Mean
curves are plotted in white.
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Plots of estimated mean functions do not suggest any difference between the two
types of curves. We tested the hypothesis of equal mean functions and the results
were insignificant. Therefore we focused on second-order properties and developed
methods for comparing covariance operators.

In this extended abstract we sketch the main idea of the testing procedure (Sec-
tion 2) and summarise results of the analysis of DNA minicircles (Section 3). De-
tails of the statistical methods and data application mentioned here can be found in
Panaretos, Kraus and Maddocks (2010).

38.2 Test

Let X1, . . . ,Xn1 and Y1, . . . ,Yn2 be two independent samples of stochastic processes
with paths in L2[0,1] with mean functions μX ,μY and covariance operators RX ,RY .
The aim is to test the null hypothesis RX = RY against the general alternative RX =
RY .

The problem of comparing covariance operators of functional data has received
relatively little attention in the literature. Related but different second-order prob-
lems were studied by Benko, Härdle and Kneip (2009) and Horváth, Hušková and
Kokoszka (2010).

Our test is based on the comparison of the empirical covariance operators

R̂X =
n1

n1 + n2

n1

∑
i=1

(Xi− X̄)⊗ (Xi− X̄), R̂Y =
n1

n1 + n2

n2

∑
i=1

(Yi− Ȳ )⊗ (Yi− Ȳ).

The test will reject the null hypothesis when the operator D = R̂X − R̂Y is signifi-
cantly far from the zero operator.

The distance of D from zero can be measured by the squared Hilbert–Schmidt
norm

‖D‖2 =
∞

∑
j=1

∞

∑
k=1

〈ϕ j,Dϕk〉2

where {ϕ j, j = 1,2, . . .} is any orthonormal basis of the sample Hilbert space
L2[0,1]. This random variable does not have a tractable asymptotic distribution.
Therefore we perform dimension reduction and study the infinite-dimensional ob-
ject D on a finite-dimensional subspace. Let Φ be the K-dimensional linear sub-
space generated by an orthonormal basis {ϕ1, . . . ,ϕK} (where K is a finite number
small than or equal to the rank of the covariance operator). Instead of measuring
the difference of D from zero on the whole Hilbert space L2[0,1], we restrict our
attention to Φ . More precisely, instead of D we use the operator πΦDπΦ where
πΦ = ∑K

k=1ϕk ⊗ ϕk is the projection operator on Φ . The square of its Hilbert–
Schmidt norm equals
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‖πΦDπΦ‖2 =
K

∑
j=1

K

∑
k=1

〈ϕ j,Dϕk〉2.

In light of the Karhunen–Loève expansion and Mercer’s theorem, it is natural to
choose the functions ϕk as the first K eigenfunctions ϕ̂k of the pooled sample co-
variance estimator R̂ = n1

n1+n2
R̂X + n2

n1+n2
R̂Y . (Note that one cannot perform eigen-

decomposition of each covariance operator separately because a common basis is
needed.)

The terms S jk = 〈ϕ j,Dϕk〉 can be seen as differences of the empirical covariances
of the Fourier coefficients of the observations with respect to ϕ1, . . . ,ϕK . That is, for
βX

ik = 〈Xi,ϕk〉, βY
ik = 〈Yi,ϕk〉 one can see that S jk = λ̂X

jk− λ̂Y
jk where

λ̂X
jk =

1
n1

n1

∑
i=1

(βX
i j − β̄X

j )(βX
ik − β̄X

k ), λ̂Y
jk =

1
n2

n2

∑
i=1

(βY
i j − β̄Y

j )(βY
ik − β̄Y

k ).

The variable ‖πΦDπΦ‖2 thus equals the squared Frobenius norm of the difference
of the empirical covariance matrices of the Fourier scores.

Instead of simply summing the squares of S jk, one combines the K(K + 1)/2
different terms S jk, 1 ≤ j ≤ k ≤ K in a quadratic form reflecting their covariance
structure as follows. Under certain assumptions it can be shown using the Hilbert
space Central Limit Theorem that under the null hypothesis the test operator

n1/2
1 n1/2

2

(n1 + n2)1/2
D

is asymptotically distributed as a zero-mean Gaussian random linear operator on
L2[0,1]. Consequently, in view of the consistency of empirical eigenfunctions the
vector with components S jk, 1 ≤ j ≤ k ≤ K converges to a mean zero Gaussian
vector whose covariance matrix can be consistently estimated by the empirical co-
variance matrix, say W , of the summands in S jk. Then the quadratic test statistic
follows the form n1n2

n1 + n2
STWS.

Its asymptotic distribution under the null is chi-square with K(K + 1)/2 degrees of
freedom. The test rejects H0 when the value of the statistic is significantly large.

In the case of Gaussian data the limiting covariance structure of S simplifies. It
turns out that the components S jk are asymptotically independent and their limiting
variances can be expressed in terms of the eigenvalues of R1 = R2. This leads to
the statistic

T =
n1n2

n1 + n2

K

∑
j=1

K

∑
k=1

(λ̂X
jk− λ̂Y

jk)
2

2( n1
n λ̂

X
j j +

n2
n λ̂

Y
j j)(

n1
n λ̂

X
kk + n2

n λ̂
Y
kk)

with asymptotic χ2 distribution with K(K + 1)/2 degrees of freedom. When one a
priori expects the eigenfunctions in the two samples to be equal, the test can be based
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only on the diagonal ( j = k) terms in the sum above (comparing only variances, not
covariances of the scores). Such a statistic is asymptotically χ2

K-distributed. Modifi-
cations of the test statistics can be obtained by variance stabilising transformations
of the summands.

The truncation level K can be selected with the help of scree plots and cumulative
variance plots. We have also proposed an automatic procedure based on a penalised
fit criterion.

38.3 Application to DNA minicircles

The original original (x,y,z)-coordinates of the curves were obtained from electron
microscope images of a frozen liquid containing the minicircles. Therefore the orig-
inal curves are randomly rotated and shifted, thus not directly comparable. So it
is necessary to align them. We cannot apply landmark alignment methods because
there are no landmarks (the sequence of DNA base-pairs is not observed). Warping
methods are not appropriate as they could modify the second-order properties. In-
stead, after centering (setting the center of mass to 0) and scaling to unit length, we
align each curve separately by rotating it in a way given by the moment of inertia
tensor.

The moment of inertia tensor is defined as

J(u) =
∫

R3
‖(I−uuT)x‖2μ(dx)

where u is a unit vector in R
3 and μ is the uniform distribution of mass on the

curve. By integrating the squared distance of the points on the curve from the axis,
the tensor measures how difficult it is to rotate the curve around the axis given by u.
The first eigenvector (corresponding to the largest eigenvalue) determines the first
principal axis of inertia (PAI1) around which the curve is most difficult to rotate.
The projection on the plane orthogonal to PAI1 is most spread. Then PAI2 given by
the second eigenvector is the axis orthogonal to PAI1 around which the projection
of the curve on the first principal plane is most difficult to rotate. Within this plane,
the projection on the axis PAI3 orthogonal to PAI2 is most spread.

For each curve we computed the principal axes of inertia and rotated the curve
so that its principal axes agree with the (x,y,z)-axes. This procedure is similar to
the balancing of a tyre. Figure 38.1 shows the rotated minicircles. These closed
curves have no starting point and no orientation. As the starting point of each curve
we chose the point where the projection of the curve on the first principal plane
intersects the positive horizontal semi-axis; we chose the counter-clockwise orien-
tation. As the ‘time’ argument of each functional observation we use the arc length
of the curve from the starting point. The resulting functional data set is plotted in
Figure 38.2.

The test comparing the covariance operators suggests significant differences be-
tween the samples. For example, when applied to the projections on the first princi-
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pal plane (PAI2,3) with K = 7 (selected by the automatic procedure), the p-value is
0.023.
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Chapter 39
Nonparametric Functional Time Series
Prediction

Efstathios Paparoditis

Abstract We consider the problem of predicting a time series on a whole interval
in terms of its own past. An approach based on a wavelet decomposition and an ap-
propriate distance measure between time series curves is introduced. Applications
of this approach to nonparametric conditional mean estimation, clustering and boot-
strap of time series curves are discussed.

39.1 Wavelet-kernel based prediction

Consider the prediction problem of a time series on a whole time interval in terms
of its own past. The approach that we adopt is based on functional kernel non-
parametric regression estimation techniques where observations are discrete record-
ings of segments of an underlying stochastic process considered as curves. More
specifically, we assume that segments Zk(t), k = 1,2, . . . ,n of an underlying contin-
uous time stochastic process {X(t),t ∈ R} are observed, where for k = 1,2, . . . ,n,
Zk(t) = X(t +(k− 1)δ ) and t ∈ [0,δ ). δ is a parameter that controls the length of
the time series curve Zk(t) and depends on the particular application at hand. Fur-
ther, we assume that the the time series curves Zk(t) are observed at P discrete time
points of the corresponding time interval t + (k− 1)δ , k = 1,2, . . . ,n; that is the
observations consist of n time series curves Zk(t j), k = 1,2, . . . ,n and each one of
them is recorded at t1,t2, . . . ,tP equidistant time points in the interval t +(k− 1)δ .
One situation where this kind of data occur is that of forecasting the daily power
demand of electricity. Suppose that the daily power demand is recorded every 15
minutes, then δ describes the time interval containing the load of one day and each
time series curve Zk(t) consists of P = 96 points, the 96 quarters of a day at which
the power demand is recorded.
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Now, given the observed time series curves Z1(t),Z2(t), . . . ,Zn(t), our goal is to
predict the whole feature curve Zn+1(t), that is the behavior of this curve at the P
time points Zn+1(t1),Zn+1(t2), . . . ,Zn+1(tP). Notice that because P is usually large,
classical methods of time series prediction (parametric or non-parametric) are not
appropriate since they lead to multi-step forecasting with a long forecasting horizon
which implies an increase of the mean square error of prediction as the prediction
horizon increases. In contrast to more classical methods, and in order to perform the
prediction we consider Zn(t) as a time series curve and calculate the prediction by
means of nonparametric kernel estimator of the conditional mean based on a wavelet
decomposition of the time series curves. The use of wavelet decomposition of the
segment sample paths is very useful in order to take into account the inhomogeneity
and the local irregularities of the different time series curves. Based on this wavelet
decomposition a notion of similarity is introduced which is used to calibrate the
prediction.

To be more specific, assume that P = 2J , J ∈ N, and let

ϑ (s)
j,k , s = 1,2, . . . ,n,

be the discrete wavelet coefficients of the time series curve Zs(t)= (Zs(t1),Zs(t2), . . . ,Zs(tP))
at scale (or resolution) j, j = j0, j0 +1, . . . ,J−1 and location k, k = 0,1, . . . ,2 j−1.
The use of wavelet coefficients after scale j0 implies that the scaling coefficients
below this scale do not have any discriminative power. Let ϑ (s) denote the set of the
discrete wavelet coefficients of the time series curve Zs(t), that is,

ϑ (s) = (ϑ (s)
j,k : j = j0, j0 + 1, . . . ,J−1, and k = 0,1, . . . ,2 j−1).

To quantify similarity of any two time series curves Zr(t) and Zs(t) at each scale j
we use the distance measure

d j(ϑ (r),ϑ (s)) =

√
√
√
√

2 j−1

∑
k=0

(ϑ (r)
j,k −ϑ (s)

j,k )2,

and to combine the distances at different scales we use

D(ϑ (r),ϑ (s)) =
J−1

∑
j= j0

1

2 j/2
d j(ϑ (r),ϑ (s)). (39.1)

Denote by Ξs = (ξ (s)
J,k ,k = 0,1,2, . . . ,J−1) the scaling coefficients of the time series

curve Zs(t) at the finest scale J. The first step in our procedure is to predict the set of
scaling coefficients Ξn+1 of the segment Zn+1(t) which we denote in the following
by Ξ̂n+1. This is done by means of the kernel smoothing

Ξ̂n+1 =
∑n−1

m=1Ξm+1K(D(ϑ (n),ϑ (m))/h)
n−1 +∑n−1

m=1 K(D(ϑ n,ϑm)/h)
,
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where K : R → [0,+∞) is a kernel function, K((x,y)/h) = K(x/h,y/h) and h a
bandwidth. Notice that the predicted scaling coefficients Ξ̂n+1 are obtained as a
weighted average of the scaling coefficients Ξm+1 of the time series curves Zm+1(t),
m = 1,2, . . . ,n− 1, where more weight is given to the scaling coefficients Ξm+1 for
which the set wavelet coefficients ϑ (m) of the preceding time series curve Zm(t) is
close (in the sense of the distance measure (39.1)) to the set of wavelet coefficients
ϑ (n) of the last observed time series curve Zn(t). The last step of the prediction
procedure is then to transform the set of predicted scaling coefficients back to the
time domain in order to obtain the predictor of the time series curve Zn+1(t) at the
P time points. Denote the corresponding predictor by Ẑn+1(t), then this predictor is
obtained as

Ẑn+1(tr) =
2J−1

∑
k=0

ξ̂ (n+1)
J,k φJ,k(tr), r = 1,2, . . . ,P,

where ξ̂ (n+1)
J,k , k = 0,1, . . . ,2J −1 are the components of the predicted scaling coef-

ficients Ξ̂n+1. Asymptotic properties of the predictor Ẑn+1(t) under mild conditions
and when the number of observed segments n grows to infinity has been derived by
Antoniadis et al. (2006).

39.2 Bandwidth Choice

As any nonparametric procedure, the prediction procedure proposed based on a
wavelet decomposition of the time series curves, heavily depends on the choice
of the bandwidth parameter h which essentially controlls the number of time series
curves that are effectively used for prediction. We propose a novel method to select
the bandwidth which is taylor made for the problem of functional time series predic-
tion. The idea underlying this method is to calculate the empirical risk of prediction
using past segments of the observed series and to select as value of the bandwidth
for performing the prediction the bandwidth which minimizes this empirical risk.

To be more specific, let un = u(n) be the number of segments that will be used to
evaluate the empirical risk, 1 < un$ n. Then the last un segments Zn−un+1,Zn−un+2, . . . ,Zn

are predicted using the past r = n− un segments. That is the segment Zn−un+s,
s∈ {1,2, . . . ,un} is predicted using the segments Zn−un+s−1,Zn−un+s−2, . . . ,Zs for all
bandwidths h = hn in the set Hn = {KCn/L,2KCn/L, . . . ,KCn}where C=(log2(n)/n)1/(P+4),
K is a positive constant and L depends on the smallest bandwidth one wants to try.

Let Ẑ(hn)
n−un+1, Ẑ

(hn)
n−un+2, . . . , Ẑ

(hn)
n be the predictions obtained using the prediction

method described in the previous Section and the bandwidth hn and define the em-
pirical risk of prediction using the bandwidth hn,

Rn(hn) =
1

unP

P

∑
i=1

un−1

∑
j=0

(
Zn− j(ti)− Ẑ(hn)

n− j (ti)
)2

.
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The bandwidth selected for prediction is then the one that minimizes Rn(hn), that is

h∗n = argminhn∈Hn
Rn(hn).

It can be shown along the same lines as in Antoniadis et al. (2009) that if

un → ∞ such that un/n→ 0, as n→ ∞,

then the proposed bandwidth estimator imitates (asymptotically) the value of the
bandwidth which minimizes the unknown theoretical risk of prediction.

39.3 Further Issues

We consider the issue of constructing pointwise prediction intervals for the trajec-
tories predicted. For this an appropriately designed bootstrap procedure is proposed
which resamples the observed curves in a nonparametric way assigning different
resampling weights to these curves. We show that the prediction intervals achieves
the desired pointwise coverage probability. Furthermore, the idea of a wavelet de-
composition of a time series curve together with the defined distance measure
D(ϑ (r),ϑ (s)) between the time series curves Zr(t) and Zs(t) obtained by evaluating
the distance of the corresponding set of wavelet coefficients ϑ (r) and ϑ (s) respec-
tively, can be used for other purposes as well. One important application is that of
functional time series clustering which will be discussed in the talk. Finally appli-
cations of the methodology proposed to real-life data will be presented.
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Chapter 40
Wavelets Smoothing for Multidimensional
Curves

Davide Pigoli, Laura M. Sangalli

Abstract We describe a wavelet-based method that provides accurate estimates of
curves in more than one dimension and of their derivatives. The method is partic-
ularly attractive when the curves to be estimated have a varying smoothness and
present strongly localized features. The proposed multidimensional wavelet esti-
mation technique is thus applied to multi-lead electrocardiogram records, where
strongly localized features are indeed expected.

40.1 Introduction

The estimation of smooth functions from their noisy and discrete observations is
the first step in Functional Data Analysis. The choice of the basis of functions to
be used in the smoothing is crucial, since its properties influence the subsequent
analysis. Usual choices are Fourier bases and spline bases (see, e.g., Ramsay and
Silverman, 2005). Wavelet bases have been so far mainly applied in problems where
there is no interest in derivatives, because of the absence of close analytical forms
for smooth wavelet bases. To overcome this limitation, in Pigoli and Sangalli (2010)
we resorted to a numerical method that allows one to obtain derivatives of wavelet
estimated data. We moreover extended traditional wavelet estimators to curves in
general dimensions; this requires the development of a new estimation procedure
which takes into account simultaneously all the space coordinates of the multidi-
mensional curve. A stimulating application for this research has been the fitting of
multi-lead electrocardiogram records, illustrated in Section 4.
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40.2 An overview on wavelets

In this section we briefly recall wavelet bases for L2(R). For a systematic intro-
duction to wavelets, see, e.g., Nason (2008). Wavelets are defined starting from an
orthogonal multiresolution:

Definition 40.1. Let {Vj} j∈Z be a sequence of closed subspaces Vj ⊆ L2(R) and let
ϕ ∈V0. An orthogonal multiresolution for L2(R) is a couple ({Vj} j,ϕ) such that:

1. Vj ⊂Vj+1

2.
⋃

j Vj = L2(R) and
⋂+∞

j=−∞Vj = {0}
3. {l "→ f (l)} ∈Vj ⇔ {l "→ f (2l)} ∈Vj+1

4. {ϕ(l− k)}k∈Z is an orthonormal basis for V0 and
∫
R
ϕ = 0.

The projections of f ∈ L2(R) on the sequence {Vj} j give a progressively better
approximation of f as j increases. The function ϕ is called a scaling function or
father wavelet. Thanks to property 3 above, {2 j/2ϕ(2 jl− k)}k is an orthonormal
basis for Vj. However, it is often more useful to explore the detailed information
needed to go from the space Vj to the space Vj+1, starting from a coarse space V0.
This is the reason for introducing the sequence of complement spaces Wj =Vj+1\Vj.
A mother wavelet is a function ψ ∈ W0 with the property that {ψ(l − k)}k is a

basis for W0. As a consequence, L2(R) =
⊕

j∈Z Wj and {ψ j,k(l)}k = {2
j
2ψ(2 jl−

k)}k is an orthonormal basis for L2(R). Therefore, any function f ∈ L2(R) has the
following wavelet representation:

f =∑
j
∑
k

〈 f ,ψ j,k〉ψ j,k =∑
k

〈 f ,ϕ j0 ,k〉ϕ j0,k +
+∞

∑
j= j0
∑
k

〈 f ,ψ j,k〉ψ j,k =

=∑
k

s j0,kϕ j0,k +
+∞

∑
j= j0
∑
k

d j,kψ j,k,

where 〈·, ·〉 is the scalar product in L2(R), s j0,k := 〈 f ,ϕ j0,k〉 and d j,k := 〈 f ,ψ j,k〉. The
coefficients {s j0,k}k∈Z, {d j,k} j∈Z∩{ j>= j0},k∈Z are called discrete wavelet transforms
of f . It can be shown that ϕ and ψ satisfy the dilation/refinement equations:

ϕ(l) =∑
k

hk

√
2ϕ(2l− k) and ψ(l) =∑

k

gk

√
2ϕ(2l− k) (40.1)

for sequences {hk}k and {gk}k, named respectively scaling filter and wavelet filter.
It is important to note that smooth and compactly supported wavelet bases have no
analytical form, and that they are instead defined via their scaling and wavelet filters.
However, thanks to a numerical method (see Strang, 1989), it is possible to compute
pointwise values of scaling/wavelet functions and of their derivatives. In Pigoli and
Sangalli (2010) we resort to this method to obtain pointwise values of functional
data derivatives.
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40.3 Wavelet estimation for p - dimensional curves

In this Section we generalize to the p-dimensional case the shrinkage estimator with
universal threshold proposed by Donoho et al. (1995) for the monodimensional case.

Let {wk ∈ R
p;k = 1, . . . ,n = 2J} be a noisy and discrete observation of a p-

dimensional parametric curve f, with f : R * l "→ ( f1(l), . . . , fp(l)
) ∈ R

p, on a grid
of 2J equispaced points. Assume that these data are generated by the model

wk = f(lk)+ εεεk k = 1, . . . ,n = 2J, (40.2)

where the error εεεk has a multivariate normal distribution with mean 0 ∈ R
p and

variance-covariance matrixσ2
Ip. Our goal is to accurately estimate the p-dimensional

curve f and its derivatives. Analogously to the 1-dimensional case, we thus consider
the corresponding model on the space of wavelet coefficients. Thanks to the orthog-
onality of the wavelet transform, this is given by

d j,k = d0
j,k +ρρρ j,k, (40.3)

with d j,k,d0
j,k,ρρρ j,k ∈ R

p, where d j,k are the vectors of the empirical wavelet coeffi-

cients corresponding to the data, d0
j,k are the vectors of the true wavelet coefficients

of f, and ρρρ j,k are the wavelet transforms of the noise and have a multivariate normal
distribution with mean 0 and variance-covariance matrix σ2

d Ip. As commonly done
in the 1D case, we thus aim at obtaining an estimator of the curve f, via estimation
of its true wavelet coefficients d0

j,k, starting from the empirical ones d j,k. This could
be achieved by considering separately the p-entries of the wavelet coefficients, and
thus applying to each of the p-corresponding models on wavelets coefficients a 1D
soft-thresholding technique, such as the popular one described by Donoho et al.
(1995); this would hence lead to a separate estimation of each of the coordinate
functions f1, . . . , fp. However, we notice that if the curve f has a significant feature
at some point of the physical space, we expect that this will be reflected on all p
coordinates concurrently. For this reason, in Pigoli and Sangalli (2010) we develop
an estimation technique that works jointly on the p coordinate functions, taking into
account the vectorial structure of the function to be estimated. Specifically, the pro-
posed estimation technique is such that the same wavelet basis functions are used for
estimation of all coordinate functions f1, . . . , fp of f; a specific wavelet basis func-
tion, with a specific frequency and location, is either used for each of the coordinate
functions, in order to capture a feature of the p-dimensional function f, or is not
used for any of the coordinate functions, if unnecessary to capture relevant features
of f. In particular, extending the rationale behind the 1D soft-thresholding technique
to the p-dimensional case, we set a threshold on the square norm of wavelet vector
coefficient ||d j,k||22 and proceed as follows. If the empirical wavelet coefficients d j,k

have square norm smaller than the threshold, then they are considered as coming
only from noise, and the corresponding true coefficients d0

j,k are thus estimated by

the null vector 0; otherwise, the estimator of the true coefficients d0
j,k is obtained

from the empirical coefficients d j,k applying a shrinkage operation, with the aim of
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removing the part due to noise; the proposed shrinkage takes accurately into account
all p-coordinates concurrently.

To fix a threshold on ||d j,k||22, we follow and extend the argument used by Donoho
et al. (1995). Since ||ρρρ j,k/σd||22 ∼ χ2(p), we look for a threshold which contains
with high probability n observations from a random variable having the χ2(p) dis-
tribution. In Pigoli and Sangalli (2010) we prove the following result.

Proposition 40.1. Let {Yn}n be a sequence of i.i.d. χ2(p) random variables and
An = {maxi=1,...,n Yi ≤ cp logn}, where cp = 2 if p = 1 and cp = 3 if p≥ 2. Then

P(An)→ 1 for n→+∞.

This proposition leads to the universal threshold proposed by Donoho et al. (1995)
in the case p = 1. In the case p≥ 2, the same proposition support instead to use the
following threshold on ||d j,k||22 (see Pigoli and Sangalli, 2010):

tp = σ̂2
d (3logn),

where the standard deviation is estimated using the median of the absolute deviation
from the median on the wavelet coefficients of level J−1, which are assumed to be
pure noise (see e.g. Donoho et al., 1995). The proposed soft-thresholding estimator
is

d̂ j,k =
(

1−
√

tp

||d j,k||2

)

+
d j,k . (40.4)

Geometrically, this soft-thresholding procedure works as follows. Consider a p-
dimensional sphere with radius

√
tp and centered in the origin; if the p-dimensional

vector d j,k lies completely inside the sphere, then the estimated wavelet coefficient
d̂ j,k is set to 0; otherwise, d̂ j,k is obtained from d j,k by removing the part of d j,k that
lies inside the sphere. Figure 40.1, left panel, gives a visual representation of this
procedure for p = 3. Notice that the shrinkage estimator (40.4) gives an estimate
of d0

j,k that has the same direction of the empirical coefficient d j,k. This is justified
by the hypothesis that the variance of the error on the coefficients is the same in all
p directions, so that the direction of the vector d j,k can be consider to be mainly
determined by that of the true coefficient d0

j,k.
In Pigoli and Sangalli (2010), by means of simulation studies, we compare the

proposed method with another locally adaptive regression technique for multidi-
mensional curves, based on free-knots regression splines. The simulations show that
wavelet based methods are particularly attractive when the data are characterized by
strongly localized features. In the absence of these characteristics, wavelet method
provide estimates that have a level of accuracy comparable to that of free-knots
regression splines.
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Fig. 40.1: Left: Visual representation in three dimensions of the soft-thresholding
procedure: only the part of the vector d j,k that lies outside the sphere with radius√

tp is retained as significant. Center: Scheme of the directions along which the
potential difference is measured for every lead. Right: Template of a physiological
ECG record on Lead I.

40.4 Application to ECG data

In this section we briefly illustrate an application of the described multidimensional
wavelet fitting technique to the estimation of Electro Cardio Gram (ECG) records.
The data come from the 118 Dispatch Center, the medical operating emergency unit,
operating in Milano, Italy. These records were collected as part of the PROMETEO
(PROgetto Milano Ecg Teletrasmessi ExtraOspedaliero) Project, the aim of which
is to anticipate diagnostic time in heart attacks, in order to improve the prognosis
of reperfusive treatments and reduce infarction complications. The processing of
ECG records as functional data is becoming increasingly important with the advent
of statistical techniques that exploit curve shapes in the analysis of these records
(see, e.g, Boudaoud et al., 2007). These data have a multidimensional nature, be-
cause ECG records provide potential differences, named leads, between multiple
electrodes. In particular, ten electrodes are used for a standard “12-leads” ECG.
Figure 40.1, central panel, shows the positions of electrodes and leads. Eight of
these leads are jointly needed to describe the complex heart dynamics, both on the
sagittal plane (Leads I and II) and on the horizontal plane (Leads V1, V2, V3, V4,
V5 and V6). When smoothing these data it is thus appropriate to use a technique
which takes into account all eight significant leads simultaneously; moreover, this
helps in detecting significant features, which reflect on more than one lead. Further-
more, wavelet bases are particularly suited to capturing ECG shapes, because these
are characterized by localized strong oscillations. Figure 40.1, right panel, gives a
scheme of the typical structure of Lead I. Figure 40.2 shows one of the ECG records
stored in the PROMETEO database. The eight figure panels display the raw data of
the eight significant ECG leads for a patient affected by ST Elevation Myocardial
Infarction. Superimposed are the estimates of these eight-dimensional functional
data, obtained by the proposed technique using Daubechies wavelet basis with 10
vanishing moments (see, e.g., Nason, 2008) and the generalized soft-thresholding
estimator (40.4). Figure 40.3 shows the estimated first and second derivatives of
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Fig. 40.2: Eight significant leads in a 12-leads ECG for a patient affected by ST
Elevation Myocardial Infarction; raw data (grey) and multidimensional wavelet
estimate (blue).
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Fig. 40.3: Left: Estimate of first derivative of Lead I (blue), superimposed to first
central differences of raw data (grey). Right: Estimate of second derivative of Lead
I (blue), superimposed to second central differences of raw data (grey).

Lead I for this patient. The obtained estimates of the eight-lead traces and of their
derivatives, for the records in the PROMETEO database, are the starting point of ex-
tensive analyses that aim at identifying existing pathologies via ECG shapes, as well
as exploring epidemiologic correlations among different cardiovascular diseases. A
first promising result in this respect is for instance the identification of patients af-
fected by Bundle Branch Blocks (see Ieva et al., 2010).
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Chapter 41
Nonparametric Conditional Density Estimation
for Functional Data. Econometric Applications

Alejandro Quintela-del-Rı́o, Frédéric Ferraty, Philippe Vieu

Abstract We present some recent results about nonparametric conditional density
estimation, when we consider a functional explanatory variable, and some appli-
cations of these techniques to econometrics. In a first part, we construct a test to
check the parametric form of the conditional density function. In a second part,
we estimate two well-known risk measures, the conditional Value-at-Risk and the
conditional expected shortfall. Some simulations are shown.

41.1 Introduction

In a functional data setting, the conditioning variable is allowed to take its values in
some abstract semi-metric space. In Ferraty and Vieu (2006) kernel nonparametric
estimators of the conditional density and the conditional distribution are defined,
and they give the rates of convergence (in an almost complete sense) to the corre-
sponding functions. In this book, the practical interest of these kind of techniques
are shown in different scientific fields, such as econometrics. Several papers in the
last decades use functional data ideas to deal with econometric data; see e.g. Bugni
et al. (2009) for some examples or references.
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41.2 The conditional density estimator

Let {(χi,Yi), i = 1, . . .n} a sample of n independent random pairs, each one being
distributed like (X ,Y ). We consider that X is a random variable valued in some-
metric space (E,d) which is (possibly) infinitely dimensioned. The response vari-
able Y is scalar (i.e. Y takes its values in R). The conditional cumulative distribution
of Y given X is defined for any y ∈ R and any χ ∈ E by:

F(y/χ) = P[Y ≤ y/X = χ ],

while the conditional density, denoted by f (y/χ), is defined to be the density of this
distribution with respect to Lebesgue measure on R. The conditional density f (y/χ)
can be estimated using kernel functions. Such an estimate can be defined as follows:

f̂n(y/χ) =
1
g ∑

n
i=1 K

(
d(χ ,χi)

h

)
K0

(
y−Yi

g

)

∑n
i=1 K

(
d(χ ,χi)

h

) , (41.1)

where K and K0 are kernel functions, and where g and h are sequences of smoothing
parameters. The conditional distribution F(·/χ) can be estimated by

F̂n(y/χ) =
∑n

i=1 K
(

d(χ ,χi)
h

)
H
(

y−Yi
g

)

∑n
i=1 K

(
d(χ ,χi)

h

) , (41.2)

with the function H(·) defined by H(x) =
∫ x
−∞K0(u)du.

41.3 Testing a parametric form for the conditional density

Any information on the conditional density function is always of great practical
interest. We propose a statistic test for the null hypothesis

H0 : ∃θ0, f (y/χ) = fθ0(y/χ),

where { fθ (./χ), θ ∈Θ} is a specific parametric family of densities. We propose a
local alternative of the form

H1 : inf
θ∈Θ

| f (y/χ)− fθ (y/χ)|= εns(y),

The test statistic proposed has the form

In =
∫ [

1
nϕχ(h)

n

∑
i=1

K

(
d(χ ,Xi)

h

)(
1
g

K0

(
y−Yi

g

)

− fθ̂0
(y/χ)

)]2

w(y)dy,
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and our testing procedure is based on the following normalized version of this statis-
tic:

Jn =

√
nϕχ (h)

g4

(
In−g4B

)

√
V

, (41.3)

with B and V depending on K0,K and the derivatives of the function f . Under certain
general assumptions, we can prove the two following theorems.

Theorem 41.1. Under H0 we have: Jn −→ N(0,1), as n→ ∞.

Theorem 41.2. Under H1 we have: |Jn| −→ ∞, in probability.

41.4 Value-at-risk and expected shortfall estimation

A major concern for regulators and owners of financial institutions is the risk anal-
ysis. The Value-at-Risk (VaR) (Embrechts et al., 1997) is one of the most common
risk measures used in finances. It measures down-side risk and is determined for a
given probability level α . In a typical situation, measuring losses, the VaR is the
lowest value which exceeds this level (that is, the quantile of the loss distributions).
The expected shortfall (ES) (Acerbi, 2002) is the average of the 100(1-α)% worst
losses. It takes into account all possible losses that exceed the severity level corre-
sponding to the VaR. Since the first Basel Accord (1996), the VaR (and recently the
ES) forms the essential basis of the determination of market risk capital.

In this work, we consider the question of how to estimate the VaR and the ES
when auxiliary information about returns Yt is available, through a set of predictor
variables. The conditional information can contain economic and market (exoge-
nous) variables and past observed returns. In a general way, if Yt is the return of a
portfolio at time t, the VaR (conditional) is defined, for a fixed level α, as the value
vα such that P(Yt < vα/Ft−1) = α, with Ft−1the information available at time t−1.
The (conditional) ES is defined as μα = E[Yt/Yt < vα ,Ft−1]. Most studies estimate
VaR through quantile estimation (Gaglianone et al., 2009). When we summarize
the conditional information through a functional data χ0, the VaR estimate can be
computed as

v̂α(χ0) = F̂−1
n (α/χ0), (41.4)

that is, the conditional quantile (41.2), and we can also compute the CES by

μ̂α(χ0) = α−1
∫ +∞

vα (χ0)
y f̂n(y/χ0)dy. (41.5)

Classical nonparametric kernel estimates has been used in VaR and CES estima-
tion (Scaillet (2004), Cai and Wang (2008)). But the functional data analysis allows
us to treat the conditional information in a more successful form by taking into
account the functional feature of the data.

Theorem 41.3. Under general conditions, we have that
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v̂α(χ0)−→ vα(χ0) and μ̂α(χ0)−→ μα(χ0) a.co.

41.5 Simulations

Let us consider an autoregressive model and let Zt be the process such that

Zt = 0.9Zt−1 + at , at ∼N (0,0.1), (41.6)

and next consider the average

Z∗t =
Zt + Zt+1 + Zt+19

20
, t = 1, ...,N. (41.7)

We take a total sample size of N = 100× n consecutive times. These data can be
splitted into n paths of size 100, leading to a set of n trajectories χi = {χi(t) =
Z∗(t +10×(i−1)), t = 1, . . . ,100}, i = 1, . . . ,n. These n paths χi are the functional
explanatory variables in our experiment. The real valued responses Y are generated
by

Yi = r(Xi)+ εi, i = 1, . . .n, r(X ) =
∫

X (t)cos(t)dt. (41.8)

The various parameters of the methods were chosen in the following ways:
- The kernel function K was taken to be the uniform density on (0,1) and K0 was
taken to be the usual Epanechnikov kernel.
- The semi-metric d was taken to be the usual L2 distances between curves.
- The bandwidth parameters were selected in the intervals [d1,d2], being d1 = mindi j

and d2 = maxdi j (di j =
{

d(χi,χ j)
}n

i, j=1) for h and g in [g1,g2] with g1 = (max(Yi)−
min(Yi))/20 and g1 = (max(Yi)−min(Yi))/2.

41.5.1 Results for the hypothesis testing.

The null hypothesis consists in simulating the innovation errors as H0 : ε ∼N (0,σ0).
Under H0 this conditional distribution is just N (μχ ,σ0). The alternative H1 is con-
structed by simulating the errors as a mixture of N (−d,σ1) and N (d,σ1) distri-
butions.

We tried various null hypotheses by changing the value of σ0. Precisely, denoting
the signal-to-noise ratio by snr we used values of σ0 of the form σ0 = c×0.1× snr,
and we express the results as a function of c. Tables 41.1 and 41.2 show that, even
for moderate sample sizes (n = 100) and for high signal-to-noise ratio, the testing
procedure is good since the percentage of acceptation is always close to the true
theoretical level.

Now, we check the results under the alternative hypothesis H1. We look at how
the power of the test procedure changes. We choose various null hypotheses H1,
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c 1 2 3 4 5
% acceptance of H0 0.91 0.90 0.95 0.98 1

Table 41.1: Results under H0 when σ0 varies (n = 100).

Sample size % acceptance of H0 % acceptance of H1

100 0.91 0.13
200 0.93 0.03
500 0.98 0

Table 41.2: Results under H0 when the sample size n varies (c = 1).

constructed from different values of d and σ1. As before, the values of σ1 are chosen
of the form σ1 = c× 0.1× snr. Tables 41.3 and 41.4 show the evolution of the
percentage of rejection as a function of d and σ1.

d 0.1 0.25 0.3 0.5
% Rejection of H0 1 0.96 0.94 0.38

Table 41.3: Results under H1 when d varies (n = 100 and c = 1).

c 1 2 4 5 10 20
% Rejection of H0 1.0 0.93 0.91 0.86 0.91 0.86

Table 41.4: Results under H1 when σ1 varies (n = 100 and d = 0.1).

For moderate sample size and high signal-to-noise ratio, the power of the test
is rather high. The only counterexample is when the distance between both modes
of the density is high (see Table 3 and large value of d) because the nonparametric
estimate tends to oversmooth the distribution. Except for this situation, which is
rather unusual in practice (and easy to detect empirically), the procedure has good
power.

41.5.2 Results for the CVaR and CES estimates

For χ0 fixed, the conditional density f (y/χ0) is a Gaussian density with mean r(χ0)
and standard deviation σ0. Several econometric models for volatility dynamics as-
sume the conditional normality, as for instance J.P. Morgan’s Riskmetrics (Riskmet-
rics, 1995). Thus, the CVaR can be exactly computed as

vα(χ0) = F−1(α/χ0), F ∼N ,
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that is, the conditional quantile of a normal distribution, and we can also compute
exactly the conditional expected shortfall by calculating (or approximating) the in-
tegral

μα(χ0) = α−1
∫ +∞

vα (χ0)
y

1

σ0
√

2π
e(y−r(χ0))2/2σ2

0 dy.

Now, each time we generate the sample, {(Xi,Yi), i = 1, . . .n}, we also gener-
ate a grid of new functional points χ1

0 , ..., χm
0 , and we can calculate the perfor-

mance of the estimators in terms of the mean absolute deviation error, defined as
m−1∑m

k=1

∣
∣vα(χk

0)− v̂α(χk
0)
∣
∣ (the same definition for the conditional expected short-

fall). We checked several values for n from 100 to 250, for m = 10 to 50, and repli-
cating the experiment r = 500 times (the level α was 0.05 and 0.01). We observed
that the errors of the estimates decreased when sample size increased, making es-
timations become stable as the sample size increases. We show a specific example,
when the sample size was n = 250 and for a value of the level α = 0.05. The grid
consisted of m = 50 new points χk

0 . Table 41.5 shows the results.

Min. 1st Quartile Median Mean 3rd Quartile Max.
CVaR 0.02066 0.02961 0.03385 0.03412 0.03776 0.05277
CES 0.05809 0.09274 0.10360 0.10420 0.11530 0.16570

Table 41.5: Summary statistics for CVar and CES estimates.
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Chapter 42
Spatial Functional Data Analysis

James O. Ramsay, Tim Ramsay, Laura M. Sangalli

Abstract We describe a spatial spline regression model, that efficiently deals with
data distributed over irregularly shaped regions featuring complex boundaries. The
model also accounts for covariate information. Efficient spline bivariate smoothing
is achieved by resorting to the finite element method.

42.1 Introduction

Our work aims at extending techniques typical of functional data analysis (FDA),
such as penalized smoothing, to the analysis of spatial and spatio-temporal argu-
ments. There exists in fact a natural link between FDA methodology and the mod-
eling of spatial (spatio-temporal) phenomena that still remains largely unexplored.

In Ramsay et al. (2011) we describe a spatial spline regression model for data
distributed over complex bidimensional domains. One of the main limitations of
classical methods for spatial data analysis is in fact that they cannot efficiently deal
with data distributed over irregularly shaped regions, featuring complex boundaries,
concavities and interior holes. Consider for instance the data over the C-shaped
domain displayed in the top right panel of Figure 1; the lower values of the response
variable in the lower arm of the C are faced by higher values in the higher arm (size
of the point marker proportional to data value). Most spatial methods would in this
case smooth across the boundary between the two arms of the C, overestimating the
response in the lower arm and underestimating it in the higher.
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Fig. 42.1: Top left: true surface function. Top right: sampled data (size of the point
marker proportional to sampled data value), replicate 1. Bottom left: domain tri-
angulation, replicate 1. Bottom center and right: scatter plots of response variable
vs covariates, replicate 1.

The described spatial spline regression model is able to accurately handle data
distributed over complex domains, and also accounts for covariate information. The
model incorporates and ameliorates the penalized bivariate spline smoother intro-
duced by Ramsay (2002); in this smoother, the roughness penalty consists in a
Laplace operator that is integrated only over the region of interest thanks to a fi-
nite element formulation.

42.2 Data, model and estimation problem

Consider a set of n points {pi = (xi,yi); i = 1 . . . ,n}, on a polygonal domainΩ ⊂R
2.

The domain Ω can be quite complex; for instance, it can be non-convex and have
holes and islands. Let zi be the value of a real valued variable of interest, observed
at point pi, and let wi = (wi1, . . . ,wiq)t be a q-vector of covariates associated to
observation zi at pi. Summarizing, our data are

{
(p1,z1,w1), . . . ,(pn,zn,wn)

}⊂Ω ×R×R
q.

Assume the model

zi = wt
iβββ + f (pi)+ εi i = 1, . . . ,n
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where εi, i = 1, . . . ,n, are i.i.d. errors with mean 0 and variance σ2
ε , and where

βββ ∈R
q is a vector of coefficients and f is a twice differentiable real-valued function

on Ω . We are thus considering an additive model, with a parametric part that is a
regression on the covariates, and a non-parametric part that is defined as a surface
over the region of interestΩ , and deals with the spatial structure of the phenomenon.

Building on the work of Ramsay (2002), in Ramsay et al. (2011) we propose
to estimate βββ and f by minimizing the following penalized sum-of-square-error
functional

Jλ (βββ , f ) =
n

∑
i=1

(
zi−wt

iβββ − f (pi)
)2 +λ

∫

Ω
(Δ f )2dΩ (42.1)

where Δ f is the Laplacian of f , i.e.,

Δ f =
∂ 2 f
∂x2 +

∂ 2 f
∂y2 .

Recall that Δ f is a measure of the local curvature of f . Moreover, the Laplace oper-
ator is invariant to rotations and translations of the coordinate system. This property,
which is thus inherited by the estimator, is of paramount importance, being the co-
ordinate system often arbitrary. Notice that the penalty in (1),

∫
Ω{( fxx)2 +2 fxx fyy +

( fyy)2}dxdy, is similar to the one used by thin-plate splines, i.e.,
∫
R2{( fxx)2 +

2( fxy)2 + ( fyy)2}dxdy, the latter being though integrated over the entire plane R
2

(here, fxy := ∂ 2 f /∂x∂y).
Let Hm(Ω) be the set of all continuous functions on Ω whose mth-order partial

derivatives are all square integrable and whose partial derivatives of order less than
m are all continuous; moreover, let Hm

n0(Ω) be the subset of Hm(Ω) consisting of
those functions whose normal derivatives are 0 on the boundary ofΩ . The functional
(1) is guaranteed to have a unique minimizer over βββ ∈ R

q and f ∈ H2
n0(Ω) (see

Ramsay et al., 2011).
Denote by W the n × q matrix whose ith row is given by wt

i and assume
that W has full rank. Moreover, denote by H the orthogonal projection matrix
H = W (WtW )−1Wt . Furthermore, set z := (z1, . . . ,zn)t and, for a given function
g on Ω denote by gn the vector of evaluations of g at the n data locations,
gn := (g(ppp1), . . . ,g(pppn))

t . In Ramsay et al. (2011) we show that the estimators β̂ββ
and f̂ that jointly minimize (1), over βββ ∈ R

q and f ∈ H2
n0(Ω), are given by

� β̂ββ = (WtW )−1Wt(z− f̂n)
� f̂ is solution of the variational problem: find ( f ,g) ∈ H2

n0(Ω)×H2(Ω) that sat-
isfy ⎧

⎪⎨

⎪⎩

ut
n (I−H) fn−λ

∫

Ω
(∇u ·∇g) = ut

n (I−H)z
∫

Ω
vg−

∫

Ω
(∇v ·∇ f ) = 0

(42.2)

for all (u,v) ∈ H2
n0(Ω)×H2(Ω), where ∇ is the gradient operator.
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42.3 Finite element solution of the estimation problem

In this section we briefly describe how an approximate solution to the estimation
problem can be obtain using the finite element method.

Finite elements analysis has been mainly developed and used in engineering ap-
plications (for an introduction to finite element analysis see, e.g., Braess, 2007). Its
strategy is very similar in spirit to that of univariate splines. In fact, it consists of
partitioning the problem domain in small disjoint sub-domains and then construct-
ing a separate polynomial function on each of these sub-domains, in such a way that
the union of these pieces closely approximates the solution. This simplified problem
is made computationally tractable by a clever choice of the basis functions for the
space of piecewise polynomials on the domain partition. Each piece of the partition,
equipped with the basis functions defined over it, is named finite element.

In our context, a convenient partition of the domainΩ is given by a triangulation
T where each data point pi is a triangle vertex. Figure 1, bottom left panel, shows
the triangulation of the C-domain corresponding the the data sample shown in the
top right panel of the same figure. We thus consider a base of piecewise polynomi-
als over the domain triangulation. In particular, each triangle vertex is associated a
simple basis function, defined in such a way that the set of all basis spans the space
H1

T (Ω) of all continuous functions on Ω which are linear when restricted to any
triangle of T . Ramsay et al. (2011) review the construction of this finite element
space.

Now, notice that the variational problem (2) involve no second-order partial
derivatives and is therefore well defined in H1(Ω); moreover, H1

T (Ω) ⊂ H1(Ω).
An approximated solution of the variational problem can thus be obtained looking
for ( f ,g) ∈ H1

T (Ω)×H1
T (Ω) that satisfy (2) for all (u,v) ∈ H1

T (Ω)×H1
T (Ω).

Thanks to the clever choice for domain partition and function basis, this reduces to
solving a linear system. The approximate solution f̂ thus obtained is named Finite
Element L-spline (FELspline). The corresponding estimator f̂n, and thus also β̂ββ , turn
out to be linear functions of the data values z, so that their properties can be easily
derived. An estimator of the error variance σ2

ε is also easily obtained, and the selec-
tion of the smoothing parameter λ is straightforward to accomplish via generalized
cross-validation. See Ramsay et al. (2011).

42.4 Simulations

In this Section we briefly illustrate the advantages of the proposed spatial spline re-
gression model with respect to a more classical model based instead on thin-plate
splines. In Ramsay et al. (2011) we describe a larger comparison study that also con-
siders filtered kriging and the soap film smoother introduced by Wood et al. (2008).
We shall here consider the same surface test function used by Wood et al. (2008), but
also include covariates. The surface test function f , defined on a C-shaped domain,
is shown in Figure 1, top left. For N = 50 replicates, we simulate data as follows. We
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sample n locations, p1, . . . ,pN , uniformly on this domain. Independently for each pi,
we sample two independent covariates wi1 and wi2; these are generated respectively
from a N(μ1,σ2

1 ) and a N(μ2,σ2
2 ) distribution. The values of the response variable,

z1, . . . ,zn, at the sampled data points and with the sampled covariates, are thus ob-
tained as follows:

zi = β1 wi1 +β2 wi2 + f (pi)+ εi i = 1, . . . ,n

where εi, i = 1, . . . ,n, are independent errors with N(0,σ2
ε ) distribution.

The parameter values used in the simulation are: n = 200, β1 = −0.5, β2 = 0.2,
σε = 0.5, μ1 = 3, σ1 = 1.5, μ2 = 7, σ2 = 5. Figure 1, top right, shows the data
sampled in the first replicate, with the size of the point marker proportional to sam-
pled data value. The center and right bottom panels of the same figure display the
corresponding scatter plots of the response variable versus the two covariates.

Thin−plate spline FELspline

0.
1

0.
2

0.
3

0.
4

Root Mean Square Error f

Fig. 42.2: Box-
plots of RMSE
for the estima-
tors of f .

The values of the smoothing parameters for the two methods
are selected, for each replicate, by generalized cross-validation.
The Root Mean Square Errors (RMSE) of the estimators of the
parameters β1, β2 and σε are smaller for the model based on
FELsplines than on thin-plate splines (0.023 vs 0.025 for β1;
0.008 vs 0.009 for β2; 0.029 vs 0.061 for σε ). Figure 2 com-
pares the boxplots of the RMSE for f̂ evaluated on a fine grid
of points over the C-domain, showing that the RMSE associated
to FELspline model is stochastically lower. With the proposed
model, approximate confidence intervals for the coefficients βββ
and approximate confidence volumes for the surface f can also
be obtained (see Ramsay et al., 2011).

Figure 3, top panels, compares the estimated surfaces, for the first replicate. The
bottom panels of the same figure display the absolute residuals of the estimated
surfaces with respect to the true surface f . Note the high absolute errors near the
inner borders of the C arms, for the surface estimate provided by the thin-plate spline
model: this is due to the fact that this method smooth across the boundaries. The
proposed spatial spline regression model instead efficiently deals with this complex
domain.

42.5 Discussion

We briefly illustrated as penalized smoothing, a technique that is typical of FDA,
can be profitably extended to deal with spatial phenomena. Simulation studies de-
tailed in Ramsay et al. (2011) show that the described model outperforms thin-plate
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Fig. 42.3: Top: surface estimates provided by thin-plate spline model (left) and
FELspline model (right), replicate 1. Bottom: corresponding absolute residuals.

splines, filtered kriging and other state-of-the-art methods for spatially distributed
data.

The proposed model can comply with different boundary conditions, such as
fixed surface values on the domain boundary or along part of it (see Ramsay et al.,
2011). This possibility is per se of great interest, also in more standard surface es-
timation problems, not involving covariates. Moreover, the described technique can
be generalized in several directions, for instance
- to the case of repeated observations at each data location,
- to general link functions, such as the logit,
- to loss-functions other than the classical sum-of-squared-error,
- to roughness penalties based on more complex differential operators,
thus allowing for very large potential application. The covariates themselves, when
having a spatial structure, can be modeled as surfaces. Moreover, this technique can
be extended to three-variate functional data, i.e. volumes; this would have a great
impact on forefront applications such as brain-imaging, where methods able to ef-
ficiently comply with the organ external and internal boundaries would be highly
desirable. Furthermore, this approach also constitutes a very promising line of re-
search for the modeling of spatio-temporal phenomena, including dynamical func-
tional data, such us curves and surfaces deforming over time.

Acknowledgements L.Sangalli acknowledges funding by Ministero dell’Istruzione dell’Univer-
sità e della Ricerca, FIRB research project “Advanced statistical and numerical methods for the
analysis of high dimensional functional data in life sciences and engineering”.
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Chapter 43
Clustering Spatially Correlated Functional Data

Elvira Romano, Ramon Giraldo, Jorge Mateu

Abstract In this paper we discuss and compare two clustering strategies: a hierar-
chical clustering and a dynamic clustering method for spatially correlated functional
data. Both the approaches aim to obtain clusters which are internally homogeneous
in terms of their spatial correlation structure. With this scope they incorporate the
spatial information into the clustering process by considering, in a different manner,
a measure of spatial association ables to emphasize the average spatial dependence
among curves: the trace-variogram function.

43.1 Introduction

The study of techniques for spatial functional data has recently attracted the interest
of the functional data analysis research community due to the fact that many real ap-
plications manage data observed in the space that change continuously with respect
to time. It is the case when samples of functions are observed in different sites of a
region (the so called spatially correlated functional data) or when these functions are
observed over a discrete set of time points (temporally correlated functional data).
Recent contributions in this framework deal with different topics (see Delicado et
al., 2010).

In this paper we focus on clustering. The purpose of clustering methods in the
spatial functional framework is to find subgroups of spatial homogeneous curves.
To the best of our knowledge, very few clustering methods incorporating spatial
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dependence information between curves exist (see Giraldo et al., 2009, Romano et
al., 2010a, 2010b, Jiang and Serban, 2010).

We describe and compare two of these clustering strategies that are based on
a common variability structure: the trace-variogram function. Both the strategies
allow to find spatially homogeneous groups of sites when the observations at each
sampling location consist of samples of random functions by considering the spatial
association among functions. However the approaches are different.

The first (Giraldo et al., 2009) is a hierarchical approach based on a spatial
weighted dissimilarity measure between curves. The weight is the trace-variogram
function or the multivariable variogram calculated on the coefficients of the basis
function.

The second (Romano et al., 2010b) is a Dynamic approach which looks for the
best partition optimizing a criterion of spatial association among functional data,
moreover it is such that a summary of the variability structure of each cluster is
discovered.

The following sections describe briefly the spatial functional data structure, the
clustering procedures and their main characteristics.

43.2 Spatially correlated functional data

Let
{
χs(t) : s ∈ D⊂ Rd,t ∈ T ⊂ R

}
be a stationary isotropic functional random

process. We assume to observe a realization of this random process observed at
n locations, χs1(t), . . . ,χsi(t), . . . ,χsn(t) for si ∈D.

The observed data for a fixed site si, follows the model:

χsi(t) = μsi(t)+ εsi(t), i = 1, . . . ,n (43.1)

where εsi(t) are residuals with independent zero mean and μsi(·) is the mean func-
tion which summarizes the main structure of χsi .

The assumption of isotropy and stationarity (that is, the mean and variance func-
tions are constant and the covariance depends only on the distance between sampling
sites) imply that exist a function γ(h,t) called semivariogram of χs(t) such that:

γ(h,t) = γsis j (t) =
1
2

V(χsi(t)− χs j(t)) =
1
2

E
[
χsi(t)− χs j(t)

]2
(43.2)

where h =
∥
∥si− s j

∥
∥ and all si,s j ∈ D. which by using Fubini’s theorem, becomes

γ(h) =
∫

T γsis j (t)dt for
∥
∥si− s j

∥
∥= h.

This function, called trace-variogram function can be estimated by the classical
methods of the moments by means of (Giraldo et al. 2010):

γ̂(h) =
1

|2N(h)| ∑
i, j∈N(h)

∫

T

(
χsi(t)− χs j(t)

)2
dt (43.3)
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where N(h) =
{
(si;s j) :

∥
∥si− s j

∥
∥= h

}
for regular spaced data and |N(h)| is the

number of distinct elements in N(h). When data are irregularly spaced the N(h) be-
comes N(h) =

{
(si;s j) :

∥
∥si− s j

∥
∥ ∈ (h− ε,h + ε)

}
with ε ≥ 0 being a small value.

We consider that the functions are expanded in terms of some basis functions by:

χsi(t) =
Z

∑
l=1

ailBl(t) = ai
T B(t), i = 1, . . . ,n (43.4)

The coefficients of the curves can be consequently organized in a matrix as follows:

A =

⎛

⎜
⎜
⎜
⎝

a1,1 a1,2 . . . a1,Z

a2,1 a2,2 . . . a2,Z
...

. . . . . . . . .
an,1 an,2 . . . a2,Z

⎞

⎟
⎟
⎟
⎠

n×Z

thus, the empirical trace-variogram function can be expressed by

γ(h) =
1

2 |N(h)| ∑i, j∈N(h)

[
(aaai−aaaj)

T WWW (aaai−aaaj)
]
∀i, j | ∥∥si− s j

∥
∥= h

where aaai,aaa j are vectors of the basis coefficients for the χsi and χs j curves, and W =
∫

T BBB(t)BBB(t)T dt is the Gram matrix that is the identity matrix for any orthonormal
basis while for other basis as B-Spline basis function, W is computed by numerical
integration.

43.3 Hierarchical clustering of spatially correlated functional
data

Hierarchical clustering is one of the most well known approaches for clustering.
There are two main types of hierarchical clustering methods: agglomerative and di-
visive. The agglomerative techniques proceed by series of fusions of the n objects
into groups, while the divisive methods separate the n objects successively into finer
groupings. The results may be represented by a two dimensional diagram known as
dendrogram which illustrates the fusions or divisions made at each successive stage
of analysis. In this framework a central role is played by the measure of similar-
ity/dissimilarity among the object.

The hierarchical method we refer (Giraldo et al., 2009) for spatial functional data
is a natural extension to the functional framework of the approaches proposed for
geostatistical data, where the the L2 norm between curves χsi ,χs j is replaced by a
weighted norm among the georeferenced functions. Especially two alternatives are
proposed, respectively for univariate and multivariate context. The first one is based
on a weighted dissimilarity measure among the georeferenced curves expressed by
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dw(χsi ,χs j ) =
n

∑
j=1

d(χsi ,χs j )γi j(h) (43.5)

where d
(
χsi(t),χs j (t)

)
=
√∫

T (χsi(t)− χs j(t))2dt is the distance between the

curves without considering the spatial component, and γi j(h) corresponds to the
trace-variogram function calculated for the distance between sites si and s j. The
main characteristic of this approach is that several distances among curves can be
considered. Once the trace-variogram function is estimated for a sequence of values
of h, a parametric model is fitted by any of the classical and widely used models.
The parametric trace-variogram is always valid because its properties are those of a
parametric variogram fitted from a univariate gestotastical data set.

The second for the multivariate spatial process consists in estimating variogram
and cross-variograms of coefficients basis functions used for smoothing the ob-
served data and applying a hierarchical approach to a dissimilarities measure con-
structed by using the variogram of the first principal component or a sum of vari-
ograms of the first principal components.

43.4 Dynamic clustering of spatially correlated functional data

Dynamic clustering algorithm (DCA) or Nueés Dynamiques (Diday, 1971) is an
unsupervised batch training algorithm. Like in the classical clustering techniques
the aim is to find groups that are internally dense and sparsely connected with the
others.

Let E be a set of n objects, the Dynamic Clustering Algorithm finds a partition
P∗ = (C1, . . . ,Ck, . . . ,CK) of E in K non empty clusters and a set of representative
prototypes L∗ = (G1, . . . ,Gk, . . . ,GK) for each Ck cluster of P so that both P∗ and L∗
optimize a criterion Δ :

Δ(P∗,L∗) = Min{Δ(P,L) / P ∈ Pk,L ∈Λ k} (43.6)

with Pk the set of all the K-clusters partitions of E and Λ k the representation space
of the prototypes. Δ(P,L) is a function which measures how well the prototype Gk

represents the characteristics of objects of the cluster and it can be usually inter-
preted as an heterogeneity or a dissimilarity measure of goodness of fit between Gk

and Ck.
The aim is to partition a sample of curves {χs1(t), . . . ,χsi(t), . . . ,χsn(t)} for t ∈ T

into a set of K clusters such that the obtained clusters can be described by a trace-
variogram model (Romano et al., 2010b).

In this context it is assumed as criterion function:

Δ(P,L) =
K

∑
k=1

∑
h∈Nk(h)

(γk(h)− γ∗k (h))2 (43.7)
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where Nk(h)⊆ N(h) is the set of ordered h =
∥
∥si− s j

∥
∥ for all χs j (t),χs j (t) ∈Ck.

This criterion is based on the best fit function φ(γk(h),γ∗k (h)) between the empir-
ical trace-variogram γk(h) and the theoretical trace-variogram γ∗k (h), for each cluster
Ck, according to a chosen model γ∗(h) of variogram.

Thus it is assumed that the estimated trace-variogram functions γ∗k (h) (for k =
1, . . . ,K) as prototypes of the clusters.

Starting from a random initialization partition P of the of n functions in K clus-
ters, this algorithm alternatively performs a representation and an allocation step.

The representation step estimates the theoretical trace-variogram γ∗k (h), for each
cluster Ck, by Ordinary Least Square method. In order to allocate a curve to a clus-
ter, a natural way consistent with the objective function is to calculate again the
emphirical trace-variogram and to evaluate the fitting with the prototype. It is note
worthy that the emphirical trace-variogram can be expressed by:

γk(h) =
1

∑|Ck|
m=1 |Nm(h)|

|Ck|
∑
m
δm,k(h)∗ ∣∣Nm,k(h)

∣
∣ (43.8)

where for each χsm(t) the function δm,k(h) is expressed by:

δm,k(h) =
∫

T
δm,k(h,t)dt =

∫

T
V (χsm(t)− χsi(t))dt (43.9)

with: χsi(t) ∈Ck and ‖ sm− si ‖= hm,i ∈ Nm,k(h), where Nm,k(h) is the set of or-
dered hm,i =‖ sm−si ‖ for all χsi(t)∈Ck. The function δm,k(h) is a spatial variability
function obtained by comparing all the curves of the cluster with the candidate curve
to allocate.

Then, χsm(t) is assigned to a cluster Ck according to the minimum mean squared
distances between δm,k(h) and γ∗k (h) (for k = 1, . . . ,K):

∑
h∈Nm,k(h)

(δm,k(h)− γ∗k (h))2 ≤ ∑
h∈Nm,k′ (h)

(δm,k′(h)− γ∗k′(h))2 k′ = k. (43.10)

43.5 Discussion

The two clustering methods we have presented are to our knowledge among the first
proposals to solve the problem of clustering spatially correlated functional data.

The hierarchical clustering approach uses a weighted distance measure for the
function comparison. This approach as the advantage that the number of clusters are
not priorly established and the cluster structure can be observed at different level of
similarity.

On the contrary the Dynamic approach depends from the chosen number of clus-
ters but is able to discover both the spatial partition of the data and the spatial vari-
ability structures representative of each cluster.
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The performance of the methods will be analyzed by means of several simulation
experiments and will be illustrated by means of real data examples.
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Chapter 44
Spatial Clustering of Functional Data

Piercesare Secchi, Simone Vantini, Valeria Vitelli

Abstract We propose a new algorithm for clustering spatially dependent functional
data that accounts for spatial dependence by repeatedly clustering functional local
representatives of a random system of neighborhoods. The algorithm output is the
frequency distribution of cluster assignment for each site of a given map. We il-
lustrate different implementations of the algorithm by analyzing synthetic and real
data.

44.1 Introduction

We consider the problem of unsupervised classification of spatially dependent func-
tional data, where each curve of a finite, albeit possibly very large, data set is indexed
by the sites of a spatial finite lattice S, defining the region of interest for the analysis.
The problem consists in associating to each site x∈ S a label l ∈ {1, ...,K}, such that
sites in subregions of S homogeneous with respect to the distribution generating the
functional data are labeled the same. The cardinality K of the label set is given; the
aim of the analysis is the reconstruction of the latent field of labels.

We propose a new clustering procedure that exploits spatial dependence by re-
peatedly generating random connectivity maps and by clustering, at each iteration,
local representatives of neighboring functional data. More precisely, given the num-
ber K of clusters, the algorithm iteratively proceeds along four basic steps: gen-
eration of a spatial Voronoi tessellation, identification of a representative for each
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of the n elements of the tessellation, p-dimensional reduction and clustering of the
representatives, cluster matching. For each site of the lattice S, the final output is a
frequency distribution of assignment to each of the K clusters; this can be summa-
rized in a classification map via a majority vote on the cluster assignment. Moreover,
we propose an evaluation of the quality of the final classification based on entropy.

The fact that our data is functional is not irrelevant to the computational cost of
standard procedures for the analysis of lattice data; hence the motivation for our
method, which implicitly performs a reduction both in the dimension of the sample
(by clustering a small number n of representatives) and in the infinite dimension of
functional data (through the p–dimensional reduction of the representatives). The
performances of the algorithm have been tested in various situations; a selected
number of them are illustrated in Section 3. Finally, Section 4 describes an applica-
tion of the algorithm to irradiance data analysis.

44.2 A clustering procedure for spatially dependent functional
data

We propose an iterative algorithm whose four basic steps are hereafter summarized:

1. capture potential spatial dependence through the generation of a random Voronoi
tessellation of the spatial lattice of sites indexing the functional data. Different
choices for the distance between sites are allowed (e.g., Euclidean, geodesic, . . .);

2. identify a local representative for each element of the random tessellation (e.g.,
a weighted mean value, a medoid, a loess curve, . . .); the representative sums up
local information, since neighboring functional data are most likely drawn from
the same functional distribution;

3. perform functional dimensional reduction on the sample of local representatives
(e.g., functional principal components, wavelets, . . .), to select relevant functional
features in the data and cluster the projections of local representatives on the
space spanned by the previously obtained basis, via a suitable classification tech-
nique (e.g., K-means clustering, PAM, hierarchical clustering, . . .).

4. match the cluster labels of the current iteration with those of the previous iteration
(this step is missing in the first iteration).

The procedure repeats these four basic steps M times, obtaining at each iteration a
different tessellation, and thus different local representatives of functional data: the
greater is M, the higher is the algorithm accuracy.

More precisely, the algorithm is initialized by fixing the number M of iterations
of the four basic steps, the number n of elements of the Voronoi tessellation, the
dimension p of the basis for dimensional reduction of the local representatives and
the number K of clusters considered in the clustering procedure.

Hence, for m = 1, . . . ,M, steps 1-4 are repeated. A set of nucleiΦm
n = {Zm

1 , . . . ,Zm
n }

is sampled at random among the sites in S, and a random Voronoi tessellation of
the lattice S, {V (Zm

i |Φm
n )}n

i=1, is obtained by assigning each site x ∈ S to the near-
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est nucleus Zm
i , according to a specified distance (e.g., Euclidean, geodesic, . . .).

For i = 1, . . . ,n, the local representative gm
i (t), corresponding to the nucleus Zm

i of
the i-th element V (Zm

i |Φm
n ) of the tessellation, is obtained; for instance, through a

weighted mean of the functional data associated to the sites belonging to the Voronoi
element (a Gaussian density with diagonal covariance matrix and centered in the
nucleus Zm

i is a standard option for the weighting function). Other possible imple-
mentations of the algorithm identify the representative as the medoid, or estimate
it through loess, of the curves corresponding to sites belonging to the tessellation
element. Then, dimensional reduction of the n representatives gm

1 (t), ...gm
n (t) is per-

formed by projecting them on the space spanned by a proper p–dimensional func-
tional basis, thus generating the p-dimensional scores vectors {gm

1 , . . . ,gm
n }, which

are then clustered in K groups according to a suitable unsupervised method, depend-
ing on the application. Let Γm

1 , . . . ,Γm
n denote the labels of the local representatives;

for i = 1, ...,n, all sites x in V (Zm
i |Φm

n ) get the label Γm
i . For l = 1, ...,K, indicate

with Cm
l the set of x∈ S whose label is equal to l. Finally, if m≥ 2, the labels identi-

fying the clusters Cm
1 , ...,Cm

K are renamed by matching them with the cluster assign-
ments Cm−1

1 , ...,Cm−1
K obtained at the previous iteration; indeed the algorithm looks

for the label permutation {l1, . . . , lK} in the set {1, . . . ,K} that minimizes the total
sum of the off-diagonal frequencies in the contingency table describing the joint dis-
tribution of sites along the two classifications Cm−1

1 , ...,Cm−1
K and Cm

l1
, ...,Cm

lK
. Other

different procedures for cluster matching are conceivable.
The final classification map of the lattice S is obtained by considering the fre-

quency distribution of assignment of each site to each of the K clusters along the
M iterations. In fact, for each site x ∈ S, we compute f l

x = #{m ∈ {1, ...,M} :
x ∈ Cm

l }/M, for l = 1, . . . ,K. A final assignment of site x to one of the K clus-
ters can be obtained by selecting that corresponding to a mode of the distribution
fx = ( f 1

x , ..., f K
x ). Moreover, the final classification can be evaluated via a quality

index based on entropy, ηK
x = −∑K

k=1 f k
x · log( f k

x ), which assumes minimum value
0 when the classification is neat, and maximum value log(K) when it is highly un-
certain. For comparisons, the quantity ηK

x is commonly normalized by its maximum
value; indeed, if K is not known, a comparison of the normalized entropy for differ-
ent values of K is performed in order to choose the optimum value of K.

44.3 A simulation study on synthetic data

In this Section we report the results of a simulation study performed to test the
proposed spatial clustering algorithm under stronger/weaker spatial dependence in
the latent field of labels, while also varying the choice for the parameter n controlling
the density of the nuclei sets Φm

n , i.e., the coarseness of the Voronoi tessellation; the
functional signals associated to the sites of the field belong to a finite dimensional
functional space.

The space S is a two-dimensional square lattice of 50× 50 sites and the latent
field of labels is generated by a Ising Markov Random field L : S →{−1,1}, where
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Fig. 44.1: Results of simulation study: misclassification error of spatial clustering
over different choices for n and β – mean over 30 repetitions of the procedure
(top, left); true labels, Ising field with β = 1 (top, right); final classification map
obtained via spatial clustering with n = 500 (bottom, left); final classification map
obtained via non-spatial clustering (bottom, right).

the strength of spatial dependence is controlled by the parameter β , higher values of
β implying a stronger spatial dependence (see Cressie, 1993 for details). For each
site x ∈ S, denote by Lx its true label drawn from a Ising field. For our simulation
studies, we let β range in the interval (0.5,1).

Conditionally on the realization of the latent field, in each site of S we generate
independently a random function belonging to a p-dimensional space, spanned by a
Fourier basis; the distribution of the random function depends exclusively on the site
label. For x ranging in S, we thus obtain a sample of dependent functions fx(t) =
∑p

h=1 cxhϕh(t), with cx|Lx = l ∼ Np(μμμ l ,Σ); ϕh(t) is the h-th element of the Fourier
basis, and cx ∈ R

p is the vector of basis coefficients, drawn from a multivariate
Gaussian distribution; Σ = σIp, with Ip being the identity matrix in p-dimensions,
σ = 2, and μμμ−1 = 0 while μμμ1 = (−2,−1,0,1,2).

The parameters controlling the algorithm are fixed as follows: M = 50, K = 2 and
n ∈ {1,5,10,25,50,100,500,1000,2500}. The Voronoi tessellations are generated
by means of the Euclidean distance, the n representatives are identified as weighted
means with Gaussian isotropic weights while no dimensional reduction of the repre-
sentatives is performed since they already belong to a finite dimensional functional
space; finally, clusterization of the representatives is obtained through K-means on
the basis coefficients. The final classification map is obtained through a majority
vote on cluster assignment, and the result is evaluated by computing a misclassifica-



44 Spatial Clustering of Functional Data 287

tion error rate with respect to the true realization of the field. The final evaluation of
the algorithm is obtained by repeating the simulation 30 times, and by calculating a
mean misclassification rate.

Results are illustrated in Figure 44.1. Consider the top/left panel of the picture,
showing the mean misclassification error rate for different values of β and n: we
appreciate the existence of a value of n which minimizes the misclassification error.
Moreover, misclassification error is uniformly smaller (with respect to n) for higher
values of β : hence the improvement introduced by the algorithm is stronger in the
presence of a stronger spatial dependence in the latent field of labels. Note that the
limiting case n = 50×50 = 2500 corresponds to a non-spatial clustering procedure,
which gives worse results than spatial clustering for nearly all values of n.

Finally, in the top/right panel, the true latent field of labels for one of the simu-
lated data sets is shown, while in the bottom panels appear the results obtained via
spatial clustering with n = 500 (left), and via non-spatial clustering (right). It is evi-
dent from the picture that, although the final map obtained via non-spatial clustering
is suggestive of the true label pattern, the final result obtained via spatial clustering
is far more precise, and the classification map nearly coincides with the true la-
bel field (misclassification errors are 3.28% and 23.08% for spatial and non-spatial
clustering, respectively).

44.4 A case study: clustering irradiance data

We now summarily report on an application of our classification algorithm to irra-
diance data, carried out to investigate exploitation of solar energy in different areas
of the planet. In particular, power production via collectors that are able to track the
sun diurnal course is strongly influenced by solar irradiance and atmospheric con-
ditions. In fact, solar thermal power employs only direct sunlight and it is therefore
best positioned in areas, such as deserts, steppe or savannas, where large amounts
of humidity, fumes or dust, that may deviate the sunbeams, do not occur (Richter et
al., 2009).

We try to identify these optimal areas by analyzing a quantity related both to
the average solar irradiance and to the maximal number of consecutive no-sun
days along the year, observed over a period of 22 years from 1983 to 2005, in
47880 worldwide non-polar districts (see NASA, Surface meteorology and Solar
Energy database). In particular, we examine the annual pattern of the maximum
solar radiation deficit below expected value incident on a horizontal surface over
a consecutive–day period (kWh/m2), which is increasing in the monthly average
irradiance (we call this quantity buffer capacity, since it is directly related to the
amount of energy that needs to be stored in a solar power plant in order to success-
fully cover for gaps in energy supply due to unfavorable environmental and weather
conditions).

For this application, we set M = 100 and n = 300; the set of nuclei is repeatedly
drawn from a uniform distribution on the sphere and Voronoi tessellation is based
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Fig. 44.2: Results of spatial clustering of irradiance data: sample of local repre-
sentatives obtained via spatial clustering procedure with n = 300 (left panel), and
corresponding cluster centroids (centre panel). In the right panel are shown clus-
ter centroids of the final classification map shown in Figure 44.3: different colors
correspond to different cluster labels.

on geodesic distance. We choose the first p = 3 functional principal components
to project data; we then perform hierarchical clustering using the L2 semi-metric
induced by the principal components and using a Ward linkage. Finally, we choose
the optimal K through the evaluation of the classification map by means of entropy.

The spatial clustering algorithm identifies different homogeneous macro-areas
which – prima facie – seem interpretable in terms of the observed phenomenon,
even though a climatological analysis, which is beyond the scopes of this paper,
could deepen their explanation; indeed, the same macro-areas are not captured by
customary unsupervised classification procedures, that do not take into proper ac-
count the spatial dependence among data. The best classification, according to spa-
tial entropy evaluation (Figure 44.3, bottom), is obtained for K = 5: final results for
this choice of K are shown in Figures 44.2 and 44.3. In Figure 44.2 a sample of local
representatives is shown (left panel), together with cluster centroids corresponding
to cluster assignments of the same local representatives (centre); in the right panel of
the same picture cluster centroids corresponding to the final classification map (Fig-
ure 44.3) are depicted: each centroid color correspond to the color of the macro-area
in the map it belongs to. The similarity between the last two pictures confirms the
fact that – due to the spatial dependence among close data – no important informa-
tion is lost in the replacement of the entire dataset with a suitable number of local
representatives.

The red cluster is characterized by a non-seasonal pattern, and by high average
buffer capacity along the year; it covers Africa, Middle-East and equatorial America
and its presence is not explained only in terms of latitude. From North to South we
can then identify four clusters with seasonal patterns depending on the hemisphere
and on the average buffer capacity along the year: north-low (yellow), north-high
(blue), south-high (violet), south-low (green). It is interesting to note the absence
of the north-high and south-high clusters in Europe and Africa, the absence of the
non-seasonal cluster in Asia and Australia, and the presence of all clusters in the
Americas.
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Fig. 44.3: Results of spatial clustering on buffer capacity data from the Surface
meteorology and Solar Energy database: in the top panel, final classification map
obtained by setting K = 5 via a majority vote on frequencies of assignment; in
the bottom panel, normalized spatial entropy associated to the classification with
K = 5. In the bottom panel, colors from red to white correspond to values from 0
to 1; higher values identify areas where classification is more uncertain.
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Chapter 45
Population-Wide Model-Free Quantification of
Blood-Brain-Barrier Dynamics in Multiple
Sclerosis

Russell Shinohara, Ciprian Crainiceanu

Abstract The processes by which new white matter lesions in multiple sclerosis
(MS) develop are only partially understood. Recently developed lesions tend to en-
hance on magnetic resonance imaging (MRI) scans following the intravenous ad-
ministration of a contrast agent. In this paper, we develop a model-free framework
for the analysis of these data that provides biologically meaningful quantification of
this blood-brain barrier opening.

45.1 Introduction

Multiple sclerosis (MS) is an inflammatory disease that causes demyelinating le-
sions in the central nervous system. Although gray-matter lesions are common
(Calabrese et al., 2010), white-matter lesions are easiest to identify, both patho-
logically and radiologically, due to their loss of normal myelin and often high de-
gree of inflammation. In the first clinical stage of MS, these lesions appear rela-
tively frequently and can occur in unpredictable locations at unpredictable times.
The disease-modifying drugs that are currently used to treat MS can reduce the in-
cidence of these lesions (Calabresi et al., 1997).

The processes by which new lesions develop are only partially understood. Much
of this understanding has come through magnetic resonance imagine (MRI) of the
brain. These lesions have long been known to form around veins (Dawson, 1916)
where inflammatory cells, especially T lymphocytes, form perivenular cuffs. One of
the hallmarks of newly forming lesions is enhancement on MRI following the in-
travenous administration of gadolinium-based contrast agents that shorten the lon-
gitudinal (T1) relaxation time of the tissue (Grossman et al., 1988). This visible
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enhancement in the MRI results from opening of the blood-brain barrier (BBB)
and reveals areas of active inflammation. Lesion enhancement typically lasts 4 to
8 weeks and may be accompanied by neurological signs and symptoms, but new
lesions are often asymptomatic (Capra et al., 1992). The incidence and number of
existing enhancing lesions are common outcome measures used in MS treatment
clinical trials.

The exact nature of BBB opening in new MS lesions and the selectivity of the re-
sulting permeability remain unclear. The analysis of contrast-agent uptake can pro-
vide only limited insight into these issues. Dynamic-contrast-enhanced MRI (DCE-
MRI) has been used for the past two decades to quantify the rate at which contrast
agents pass from the plasma to MS lesions as a measure of BBB permeability (Ker-
mode et al., 1990).

DCE-MRI data are typically analyzed using deterministic pharmacokinetic mod-
eling techniques based on multi-compartment tissue models with exchange (David-
ian and Giltinan, 1995). These techniques are limited for four major reasons. The
first is that the tissue composition, specifically the number of compartments in the
pharmacokinetic model, is unknown, posing technical and interpretive difficulties.
Secondly, the number of compartments may vary within and between tissue types,
which makes the a-priori choice of a number of compartments for every single voxel
in the brain a difficult proposition. Thirdly, saturation of these models leads to inter-
polation, which in itself does not help with the quantification and dimension reduc-
tion. Finally, when fitting these models to the DCE-MRI data from our study, the
standard deterministic algorithms fail to converge in over 80% of the voxels.

In this paper, we consider a subject with relapsing-remitting multiple sclerosis
selected because of active disease, as evidenced by the development of contrast-
enhancing lesions on a monthly scan. We observed one DCE-MRI scan recorded
during a single clinical visit. The DCE-MRI consisted of short T1-weighted scans
recorded as the contrast agent flows through the brain; details concerning the ac-
quisition of these data can be found in our complete paper (Shinohara et al., 2010).
Our goal was to provide a statistically principled platform for the quantification of
observed lesion enhancement. To achieve these goals, in Section 3 we use func-
tional principal components analysis (FPCA) (Ramsay and Silverman, 2002, 2005)
to study directions of variation in the voxel-level time series of intensities. We fin-
ish the paper with a brief description of further work that we have detailed in our
complete work (Shinohara et al., 2010).

45.2 Methods and Results

We start by introducing some prominent characteristics of the data. As the contrast
agent propagates through the areas under observation via MRI, the signal intensity
on T1-weighted images increases because the gadolinium shortens the T1 relaxation
time of the tissue. This increase in the signal is related to the concentration of the
contrast agent in the tissue. However, exact calibration is not possible without care-
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ful T1 mapping, which we explicitly avoided in order to decrease scan time, reduce
variability, and limit the number of assumptions of our analysis. Without such map-
ping as well as knowledge of the relaxivity properties of gadolinium, units of MRI
signal cannot be taken as indicative of gadolinium concentration (Tofts, 1997). The
interpretation of the recorded intensity varies with respect to the location and base-
line magnetic properties of the various voxels in the brain. Quantifying the temporal
and spatial behavior of the signal intensity in white matter is the primary goal of this
paper.

Fig. 45.1: DCE-MRI scans three time points both before and after contrast in-
jection. Black contour lines indicate the spatial extent of the lesions as seen on
T2-weighted FLAIR scans obtained during the same session.

For illustration, the intensity maps in a sagittal slice are displayed in Figure 1 at
three time points: before the injection and 2.5 and 30 minutes afterward. Although
we only show three time points, many more volumes are typically observed for
each subject. The subject analyzed in this paper was scanned over 155 minutes,
and 67 volumes were acquired during the single scan. The solid black contours in
Figure 1 are the reconstructed in-slice boundaries of the lesions obtained using the
Lesion-TOADS automatic segmentation algorithm (Shiee et al., 2010). Most of the
delineated lesions had been present on previous scans of the same subject and did
not enhance with contrast.

Several characteristics of the data are immediately apparent. First, in the time
point measured 2.5 minutes after contrast injection, the blood vessels are bright,
indicating a high concentration of the contrast agent. The rest of the brain remains
essentially unchanged at this time. Second, as time progresses some of the voxels in
regions of interest (ROI) within the lesions enhance.

Another way of looking at the data is to plot the time series for each voxel.
More specifically, the data from a single subject can be written as a T x V matrix,
where T is the number of time points and V is the number of voxels. For the first
subject, T =67 and V=7.2 million (corresponding to the volume of dimension 182 x
218 x 182, where each voxel is interpolated to 1mm x 1mm x 1mm cuts from an
acquired resolution of 2mm3). The skull-stripping procedure [Carass et al., 2007]
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reduces V from 7.2 million to 1.6 million. The time series for 0.1% of these 1.6
million voxels are displayed in Figure 2. Unfortunately, the sheer number of voxels
masks important features in the data, such as the large spikes in some of the voxels
immediately following injection (time 0).

Fig. 45.2: Raw MR signal time series plotted over time. Intensity is measured in
arbitrary units.

Given the complexity and size of the data, a natural next step in the exploratory
data analysis is to find the number and shape of patterns at the subject level. Our
primary goal is to quantify these patterns. We start by applying FPCA to the col-
lection of time series. The first three principal components (PCs) from this analysis
are depicted in Figure 3. The first PC (orange) is roughly a vertical shift; this cor-
responds to baseline discrepancies between voxels. For example, the intensity in
gray matter voxels and NAWM voxels changes little over time; however, the gray
matter voxel intensities tend to be shifted downwards compared to the white matter
due to their longer intrinsic T1. Similarly, there is variance in the baseline intensity
within each of these sections in the brain; some parts of the gray matter are darker
than other parts. We conclude that the first PC captures natural differences in the
magnetic properties of voxels that are independent of the contrast agent’s presence.
The second PC (red) depicts a sudden increase in intensity after injection followed
by an exponential decline. This behavior is identical to that seen in blood vessels in
Figure 1. In terms of physiology, this is consistent with the delivery of the contrast
agent in high concentrations immediately following injection, followed by its effi-
cient clearance. The third PC (blue) is a gradual increase in intensity followed by a
plateau, which is strikingly similar to the shape of the time series in the enhancing
ROI. This indicates that blood is not rapidly introduced to these regions; rather, it
slowly seeps in over time.
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Fig. 45.3: First three PCs from the FPCA. The color indicates the index of the PC.
The noticeable jumps in intensity are noise, likely related to scanner drift, onset
of scanning, subject movement, and possibly other factors.

The first three PCs, which explain 99% of the variation in the data, are inter-
pretable and apparently correspond to real features in the observed time series. To
further investigate our empirical findings, we analyze the spatial patterns associated
with the loadings of the voxel time series. To accomplish this, we calculate the PC
loadings on each of these components for each voxel. Specifically, for a voxel v with
corresponding observed time series Y O(t,v) and a principal component φ j(t), we
find the loading ξ (v) = < Y O(t,v),φ j(t) > = ∑t Y O(t,v)φ j(t). We then map these
scores, ξ (v), back to the three-dimensional brain volume. Figure 4 is a map of the
spatial patterns of these loadings for the second and third PCs in the same sagittal
slice from Figure 1. The first PC as it only shows baseline differences and is not
of general interest. The second PC loads heavily only in the blood vessels (yellow
spots), as expected. The third PC loads in the enhancing ROI and in residual highly
vascularized extracranial tissues (such as the scalp).

(a) First PC (b) Second PC (c) Third PC

Fig. 45.4: Maps indicating the first through third PC loadings in a sagittal slice.

45.3 Conclusions

The above subject-by-subject analysis is enlightening, but the analysis is subject-
specific and the measures defined therein are only valid within the particular subject.
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In our work (Shinohara et al., 2010), our primary goal is to quantify these subject-
specific patterns using measures that are meaningful across subjects. Thus, we: 1)
normalize and interpolate the data to a common grid; 2) obtain population-level PCs;
3) ensure that the features identified by the above subject-level analyses are also
identified by the population-level method; and 4) generate hypotheses concerning
the nature of enhancement patterns and outline appropriate statistical methods. We
also consider spatiotemporal modeling that quantifies centripetal and centrifugal
enhancement properties described in Gaitan et al. [2010]. This work opens several
directions for future studies, including extension of the analysis to large populations
of subjects.
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Chapter 46
Flexible Modelling of Functional Data using
Continuous Wavelet Dictionaries

Leen Slaets, Gerda Claeskens, Maarten Jansen

Abstract A random effects model for functional data based on continuous wavelet
expensions is proposed. It incorporates phase variation without the use of warping
functions. Both coarse-scale features and fine-scale information are modelled parsi-
moniously, yet flexible. The regularity of the estimated function can be controlled,
creating a joint framework for Bayesian estimation of smooth as well as spiky and
possibly sparse functional data.

46.1 Introduction

Functional data have been around for centuries, but the availability of methodol-
ogy recognizing their functional nature and corresponding features has blossomed
more recently. Overviews and great contributions in the field, both for academic
researchers and practitioners, are the works by Ramsay and Silverman (2006) and
Ferraty and Vieu (2006).

A great deal of attention has been devoted to the study of variation in samples
of curves with the purpose of gaining insight in the mechanisms that drive the data.
Such samples yn j = yn(t j) are often encountered when observing a process over a
certain time interval (at discrete time points t j, j = 1, . . . ,Tn) for several subjects or
instances n = 1, . . . ,N. A key element of the functional data framework is the recog-
nition of phase variation (variation in timing of features) as a source of variability
in the data, in addition to amplitude variation (variation in amplitude of features).
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A monotone increasing function transforming the time-axis, called a warping func-
tion, is typically used to take phase variation into account, before or joint with the
analysis of amplitudes. These warping functions behave differently than the actual
curves in the sample, complicating a combined analysis and proper understanding
of the total variation as a mixture of the two. With clustering in mind, Liu and Yang
(2009) circumvented the warping function by representing the curves as B-splines
with randomly shifted basis functions.

Along that line we introduce a model which incorporates phase variation in a nat-
ural and intuitive way, by avoiding the use of warping functions, while still offering
a good and controllable degree of complexity and flexibility. By building a model
around wavelet transformations, we can use the location and scale notion of wavelet
functions to model phase variation. The coefficients corresponding to the wavelet
functions represent amplitude. Wavelets have already greatly shown their efficiency
for the representation of single functions, and those strengths are exactly what we
aim to generalize towards samples of curves. Morris and Carroll (2006) recently
used wavelet transformations in a functional context to generalize a classic mixed
effects model. They use the wavelet transformation as an estimation tool, while our
goal is to use wavelet functions for direct modelling of the data, not to fit general
functional mixed effects models. An additional advantage of using wavelets is that
by choosing an appropriate wavelet many types of data can be analyzed, ranging
from smooth processes to spiky spectra. The proposed model serves as a basis for a
variety of applications, such as (graphical) exploration and representation, cluster-
ing and regression with functional responses.

46.2 Modelling Functional Data by means of Continuous
Wavelet dictionaries

The proposed model is built around a scaling function φ and wavelet functionψ , the
latter often used to form an orthonormal basis ψ jk, j,k ∈Z, by shifting and rescaling
the mother wavelet ψ , subject to the dyadic constraints: ψ jk(t) = 2 j/2ψ

(
2 jt− k

)
. A

downside of obtaining orthonormality, is the fact that functions need to be observed
on an equidistant grid of time points. Therefore continuous wavelet transformations,
using an overcomplete set of wavelet functions with arbitrary locations and scales,
continue to gain popularity. In a functional setting, an overcomplete wavelet dictio-
nary can represent the sample of curves in the following way:

yn(t j)=
M

∑
m=1

cn,m
√

an,mφ (an,m(tn, j −bn,m))+
M+K

∑
k=M+1

cn,k
√

an,kψ
(
an,k(tn, j −bn,k)

)
+en, j,

(46.1)
with random scales an,m,an,k, random shifts bn,m, bn,k, random amplitudes cn,m,cn,k

and independent random errors en, j. Take an,k ≥ an,m, ∀m = 1, . . . ,M,k = M +
1, . . . ,K and denote:
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an,M = (an,1,an,2, . . . ,an,M), an,K = (an,M+1,an,M+2, . . . ,an,M+K),
bn,M = (bn,1,bn,2, . . . ,bn,M), bn,K = (bn,M+1,bn,M+2, . . . ,bn,M+K),
cn,M = (cn,1,cn,2, . . . ,cn,M), cn,K = (cn,M+1,cn,M+2, . . . ,cn,M+K),

which have the following random effects distributions:

(an,M,bn,M,cn,M)∼NK(μμμM,ΣM), for n = 1, . . . ,N

(an,K ,bn,K ,cn,K)∼NK(μμμK ,ΣK), for n = 1, . . . ,N

en, j ∼N (0,σ2), for n = 1, . . . ,N and j = 1, . . . ,Tn,

with μμμK = (αααK ,βββK ,γγγK) = (α1,α2, . . . ,αK ,β1,β2, . . . ,βK ,γ1,γ2, . . . ,γK) and like-
wise for M. The index K (and M) refers to the dimensionality of the vector which
depends on the number of wavelet functions, K (or scale functions M), in expansion
(46.1). While M is a fixed constant, K is also a parameter in the model. We will
assume ΣK = σσσ2

ψ IK .
The scale functions can be interpreted as representing the main features in a ho-

mogeneous functional data sample. Plugging in the estimated mean of the random
effects, the functions γm

√
αmφ (αm(t−βm) give an idea of the underlying pattern in

the sample. The random effects an,m, bn,m, cn,m allow for curve-specific deviations in
respectively scale, location and amplitude from these average features, while main-
taining parsimony. Phase and amplitude variation are thus being modelled in an
intuitive way, by means of a random scale, location (both representing phase) and
amplitude of scale functions.

The covariance matrix ΣM explains how the random effects corresponding to
a certain feature relate to others. ΣM can thus uncover complicated patterns in a
functional data sample, which are often impossible to detect by eye or by more
simple methods. Widths of initial peaks could be related to increased amplitudes
of peaks at later time points. For the special case ΣM = σσσ2

φ IM all data features are
independent of each other.

In this model there is no need for a fixed or equispaced grid of time points, as
continuous wavelets are being used and information is borrowed within and across
curves by means of the random wavelet functions. This makes the method suitable
for the analysis of sparse data as well.

For a single curve y (N = 1), model (46.1) fits the framework introduced in
Abramovich et al. (1999). They established conditions on the model parameters
under which the smoothness of the expansion can be controlled. In the Bayesian
framework, Chu et al. (2009) do so by an appropriate choice of priors on the model
parameters. For the estimation they use a reversible jump Markov Chain Monte
Carlo algorithm to improve computational efficiency. The ideas in both papers are
used to generalize these results to those of a random effects models for samples of
curves.

The idea behind model (46.1) is that the data follow one main pattern with curve-
specific deviations in location, scale and amplitude. In case the data are heteroge-
neous, the model can be used for a clustering procedure following a k-centers type
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algorithm. The model can also be extended by incorporating additional covariates,
giving rise to a regression model with functional responses. Extensions of (46.1)
with a continuous regressor x include:

yn(t j) = ζxn +
M

∑
m=1

cn,m
√

an,mφ (an,m(tn, j −bn,m))+

M+K

∑
k=M+1

cn,k
√

an,kψ
(
an,k(tn, j−bn,k)

)
+ en, j,

yn(t j) =
M

∑
m=1

(cn,m + ζmxn)
√

an,mφ (an,m(tn, j−bn,m))+

M+K

∑
k=M+1

cn,k
√

an,kψ
(
an,k(tn, j−bn,k)

)
+ en, j,

yn(t j) = cn,1

√
ζ2xn ·an,1φ

(
ζ2xn ·an,1(tn, j− (bn,1 + ζ1x2

n))
)

+
M

∑
m=2

cn,m
√

an,mφ (an,m(tn, j −bn,m))

+
M+K

∑
k=M+1

cn,k
√

an,kψ
(
an,k(tn, j−bn,k)

)
+ en, j,

In summary, we create a framework to analyze many different types of functional
data (smooth, spiky, sparse), while still being flexible and easy to understand, esti-
mate and use.
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Chapter 47
Periodically Correlated Autoregressive
Hilbertian Processes of Order p

Ahmad R. Soltani, Majid Hashemi

Abstract We consider periodically correlated autoregressive processes of order p in
Hilbert spaces. Our studies on these processes involve existence, strong law of large
numbers, central limit theorem and parameter estimation.

47.1 Introduction

The Hilbertian autoregressive model of order 1 (ARH(1)) generalizes the classi-
cal AR(1) model to random elements with values in Hilbert spaces. This model
was introduced by Bosq (1991), then studied by several authors, as Mourid (1993),
Besse and Cardot (1996), Pumo (1999), Mas (2002, 2007), Horvath, Huskova and
Kokoszka (2010). Periodically correlated processes in general and PC autoregres-
sive models in particular have been widely used as underlying stochastic processes
for certain phenomena.
PC Hilbertian processes, of weak type, were introduced and studied by Soltani and
Shishehbor (1998, 1999). These processes assume interesting time domain and spec-
tral structures. The periodically correlated autoregressive Hilbertian processes of or-
der one were introduced by Soltani and Hashemi (2010). The existence, covariance
structure, strong law of large numbers and central limit theorem, are the topics that
are covered by them.
In this work, we consider PC autoregressive Hilbertian processes of order p ≥ 1.
We defined periodically correlated autoregressive Hilbertian processes of order p
(PCARH(p)) as follows:
A centered discrete time second order Hilbertian process X = {Xn,n∈Z} is called
PCARH(p) with period T, associated with (ε,ρ1,ρ2, · · · ,ρ p) if it is periodically
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correlated and satisfies

Xn = ρ1,n(Xn−1)+ρ2,n(Xn−2)+ · · ·+ρp,n(Xn−p)+ εn, (47.1)

where εn = {(εnT , · · · ,εnT+T−1)′,n ∈ Z} is a zero mean, strongly second order pro-
cess with orthogonal values and orthogonal components, ρ i = (ρi,0, · · · ,ρi,T−1), i =
1, · · · , p and for each i = 1, · · · , p, {ρi,n,n ∈ Z} is a T-periodic sequence in L (H)
with respect to n, with ρp,n = 0 . Condition ρp,n = 0 is of course necessary for iden-
tifiability of p.
We let Hilbert space Hp to be the Cartesian product of p copies of H, equipped with
the inner product

< (x1, · · · ,xp),(y1, · · · ,yp) >p:=
p

∑
j=1

< x j,y j >, (47.2)

where x1, · · · ,xp,y1, · · · ,yp ∈ H. We denote the norm in Hp by ‖ . ‖p, the Hilbert
space of bounded linear operators over Hp by L (Hp).
Now let us set Y = {Yn, n ∈ Z}, where

Yn = (Xn,Xn−1, · · · ,Xn−p+1)′, n ∈ Z, (47.3)

and

ξ = {ξ n, n ∈ Z}, (47.4)

with ξ n = (εn,0, · · · ,0)′, n∈Z, where 0 appears p-1 times. We define the following
operator on Hp

ΠΠΠ n =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

ρ1,n ρ2,n · · · 0 ρp,n

I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (47.5)

where I denotes the identity operator.
We have the following simple but crucial lemma.

Lemma 47.1. Let X be a PCARH(p) with period T, associated with (ε,ρ1,ρ2, · · · ,ρ p).
Then Y is an PCARH p(1) process associated with (γ ,ΠΠΠ) where ΠΠΠ is given in (5)
and γn = (ξ nT ,ξ nT+1, · · · ,ξ nT+T−1)

′.

For expressing limiting theorems we need some extra notations. Let W = {Wn;n ∈
Z}, where

WWW n = (YYY nT ,YYY nT+1, · · · ,YYY nT+T−1)′, (47.6)



47 Periodically Correlated Autoregressive Hilbertian Processes of Order p 303

and

δ n = (δ n,0,δ n,1, · · · ,δ n,T−1)′, n ∈ Z, (47.7)

where δ n,i = ∑i
k=0 Ak,iξ nT−k+i for i = 0, · · · ,T − 1, and Ak,i = ΠΠΠ i · · ·ΠΠΠ i−k+1, k =

1,2, · · · and A0,i = Ip. We note that δ n = VVV γn, and

CCCγn
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Cξ nT
0 0 · · · 0

0 Cξ nT+1
0 · · · 0

...
...

...
. . .

...
0 0 0 · · · Cξ nT+T−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (47.8)

and

VVV =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ip 0 0 · · · 0
A1,1 Ip 0 · · · 0
A2,2 A1,2 Ip · · · 0

...
...

...
. . . 0

AT−1,T−1 AT−2,T−1 AT−3,T−1 · · · Ip

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (47.9)

Let us set UUU = VVV−1. The we easily see that

UUU =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ip 0 0 0 · · · 0
−ΠΠΠ1 Ip 0 0 · · · 0

0 −ΠΠΠ2 Ip 0 · · · 0
...

...
...

...
. . . 0

0 0 0 · · · −ΠΠΠT−1 Ip

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (47.10)

Also for given ΠΠΠ 0, · · · ,ΠΠΠT−1, we define the following operators on HT p

ΔΔΔ =

⎛

⎜
⎜
⎜
⎝

0 0 · · · 0 ΠΠΠ 0

0 0 · · · 0 ΠΠΠ 1ΠΠΠ 0
...

...
. . .

...
...

0 0 · · · 0 ΠΠΠT−1 · · ·ΠΠΠ 0

⎞

⎟
⎟
⎟
⎠

. (47.11)

and α = UUUΔΔΔUUU−1,

α =

⎛

⎜
⎜
⎜
⎝

ΠΠΠ 0ΠΠΠT−1 · · ·ΠΠΠ 1 ΠΠΠ 0ΠΠΠT−1 · · ·ΠΠΠ 2 · · · 0 ΠΠΠ 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

. (47.12)

We will use the natural ”projector” of Hp onto H defined as
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π(x1, · · · ,xp) = x1, (x1, · · · ,xp) ∈Hp (47.13)

Assumption AAA1: There are integers k0, · · · ,kT−1 ∈ [1,∞) such that ∑T−1
i=0 ‖ΠΠΠ i ‖ki<

1.

Theorem 47.1. Under the assumption A1, the equation Xn = ρ1,n(Xn−1)+ρ2,n(Xn−2)+
· · ·+ρp ,n(Xn−p)+ εn has a unique solution given by

XnT+i =
∞

∑
j=0

(πA j,nT+i)ξ nT+i− j, n ∈ Z, (47.14)

where A j,t =ΠΠΠ tΠΠΠ t−1 · · ·ΠΠΠ t− j+1 and the series (14) converges in L2
H(Ω ,F ,P) and

with probability one as well.

Theorem 47.2. Let Xn be a PCARH(p) process with period T. Suppose that there
exist ν ∈H and {αi, j}, i = 1, · · · , p, j = 0, · · · ,T −1 such that

ρ∗i, j(ν) = αi, jν, i = 1, · · · , p, j = 0, · · · ,T −1,

and minn E < εn,ν >2> 0. Then {< Xn,ν >, n ∈ Z} is a PCAR(p) process that
satisfies

< Xn,ν >=α1,n < Xn−1,ν > +α2,n < Xn−2,ν > + · · ·+αp,n < Xn−p,ν > + < εn,ν > .

X is said to be a standard PCARH(p) if assumption A1 is satisfied.

47.2 Large Sample Theorems

Theorem 47.3. (SLLN). Let X be a standard PCARH(p) and X0, · · · ,Xn−1 be a
finite segment from this model, and Sn(X) = ∑n−1

i=0 Xi. Then as n→ ∞,

n
1
4

(logn)β
Sn(X)

n
a.s−→ 0, β >

1
2
. (47.15)

By defining IIIT p as follows, we have Lemma 2 given below.

IIIT p =

⎛

⎜
⎜
⎜
⎝

III p 0 · · · 0
0 III p · · · 0
...

...
. . .

...
0 0 · · · III p

⎞

⎟
⎟
⎟
⎠

. (47.16)

Lemma 47.2. IT p−α is invertible if and only if Ip−AT,T is invertiable in Hp.

We now give a Central Limit Theorem.
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Theorem 47.4. Let X be a standard PCARH(p) associated (ε,ρ1, · · · ,ρ p), and εn

are independent and identical distributed and such that Ip−AT,T is invertible. Then

Sn(X)√
n

D−→N (0,Γ ), (47.17)

where

Γ =
1
T
πAAA′UUU−1(IT −Δ)−1CCCγn

(IT −Δ∗)−1UUU∗−1AAAπ , (47.18)

and AAA = (Ip, Ip, · · · , Ip)′; and π is defined in (13).

47.3 Parameter estimation

In applications it is indeed crucial to estimate the PCARH(p) coefficients ρ1,ρ2, · · · ,ρ p.
For estimating the parameters, we use from Y processes and define R(n,m) =
CYYY n,YYYm in (n,m), we obtain the following equations

R(�−1, �) =ΠΠΠ �R(�−1, �−1), � = 0, ...,T −1, k ≥ 1; (47.19)

Now set DYYY
�−1 = EYYY �−1⊗YYY �, then

DYYY
�−1 =ΠΠΠ �C

YYY
�−1, � = 0, ...,T −1, k ≥ 1; (47.20)

when the inference onΠΠΠ l is based on the moment equation (20), identifiability holds
if and only if ker(CYYY

�−1) = 0.

CYYY−1

�−1 is extremely irregular, we should propose a way to regularize it i.e. find out

CYYY⊥
�−1 say, a linear operator close to CYYY−1

�−1 and having additional continuity properties.
We set

CYYY⊥
�−1 = ∑

j<kn

1
λ j,�−1

e j,�−1⊗ e j,�−1, (47.21)

where (kn)n∈N is an increasing sequence tending to infinity. If (20) is the starting
point in our estimation procedure, replacing the unknown operators by their empir-
ical counterparts gives:

Π̂ΠΠ � = D̂YYY
�−1ĈYYY⊥

�−1, � = 0, ...,T −1, k ≥ 1; (47.22)

where

ĈYYY
�−1(x) =

1
N

N−1

∑
k=0

< YYY �−1+kT ,x > YYY �−1+kT , x ∈Hp. (47.23)
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D̂YYY
�−1(x) =

1
N

N−1

∑
k=0

< YYY �−1+kT ,x > YYY �+kT , x ∈Hp. (47.24)

ĈYYY⊥
�−1 = ∑

j<kn

1

λ̂ j,�−1
ê j,�−1⊗ ê j,�−1, (47.25)

and λ̂ j,�−1, ê j,�−1 are eigenvalue and eigenvector of ĈYYY
�−1.

By estimating Π�, in fact we estimate ρ1,�,ρ2,�, · · · ,ρp,�.

References

1. Besse, P., Cardot, H.: Approximation spline de la prévision d’un processus fonctionnel au-
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Chapter 48
Bases Giving Distances. A New Semimetric and
its Use for Nonparametric Functional Data
Analysis

Catherine Timmermans, Laurent Delsol, Rainer von Sachs

Abstract The BAGIDIS semimetric is a highly adaptive wavelet-based semimetric. It
is particularly suited for dealing with curves presenting horizontally- and vertically-
varying sharp local patterns. One can advantageously make use of this semimetric
in the framework of nonparametric functional data analysis.

48.1 Introduction

This communication aims firstly at highlighting a new semimetric for measuring
dissimilarities between regularly discretized curves, typically time series or spectra.
Its main originality is that it is based upon the expansion of each series of a dataset
into a different wavelet basis, one that is particularly suited for its description. Mea-
suring dissimilarities in such a way implies comparing not only the projections of
the series onto the bases, as usual, but also the bases themselves. As a consequence
of this feature, our semimetric has the ability to capture the variations of patterns
occurring in series along both the vertical and the horizontal axis. This property
makes the semimetric particularly powerful when dealing with curves with sharp
local features that might be affected simultaneously by horizontal shifts and vertical
amplification.

Secondly, this communication aims at illustrating how we can advantageously
make use of our semimetric in the framework of nonparametric functional data anal-
ysis (as developped in Ferraty and Vieu (2006)) when the curves we are dealing with
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are characterized by some horizontally- and vertically-varying sharp patterns. Sim-
ulated examples are shown as well as a real data example.

48.2 Definition of the semimetric

Our semimetric has been introduced in Timmermans and von Sachs (2010), under
the acronym BAGIDIS, that stands for BAses GIving DIStances. Key ideas are as
follows.

Preliminary observation. When we evaluate dissimilarities between series vi-
sually, we intuitively investigate first the global shapes of the series for estimating
their ressemblance, before refining the analysis by comparing the smaller features
of the series. In other words our comparison is based upon a hierarchical compre-
hension of the curves. This visual approach inspired us to define our semimetric: we
expand each series in a (different, series-adapted) basis that describes its features
hierarchically, in the sense that the first basis vectors carry the main features of the
series while subsequent basis vectors support less significant patterns; afterwards,
we compare both the bases and the expansions of the series onto those bases, rank
by rank, according to the hierarchy.

Expanding each series of the dataset in the Unbalanced Haar Wavelet Ba-
sis that is best suited for the hierarchical description of its shape. The family
of Unbalanced Haar Wavelet Bases has been introduced by Girardi and Sweldens
(1997). It consists in orthonormal bases that are made of one constant vector and
a set of Haar-like (i.e. up-and-down shaped) orthonormal wavelets whose disconti-
nuity point (hereafter the breakpoint) between the positive and negative parts is not
necessarily located at the middle of its support. The Bottom Up Unbalanced Haar
Wavelet Transform (BUUHWT), an algorithm that was developped in Fryzlewicz
(2007), allows to select amongst this family of bases the best basis for describing a
given series hierarchically. Besides this hierarchical organisation, the selected basis
inherits the good capacity of Haar wavelets to efficiently capture sharp patterns.

We denote the expansion of a series xxx(i) in that basis as xxx(i) = ∑N−1
k=0 d(i)

k ψψψ
(i)
k ,

where the coefficients d(i)
k (hereafter the detail coefficients) are the projections of

the series xxx(i) on the corresponding basis vectors ψψψ(i)
k and where the set of vec-

tors {ψψψ(i)
k }k=0...N−1 is the Unbalanced Haar wavelet basis that is best suited to the

series xxx(i), as obtained using the BUUHWT algorithm. Besides, we denote b(i)
k , the

breakpoint of the wavelet ψψψ(i)
k , at every rank k = 0.

Defining a semimetric by taking advantage of the hierarchy of those expan-
sions. As shown in Fryzlewicz (2007), the ordered set of breakpoints {b(i)

k }k=1...N−1

determines the basis {ψψψ(i)
k }k=0...N−1 uniquely. As a consequence, the set of points

{y(i)
k }k=1...N−1 = {(b(i)

k ,d(i)
k )}k=1...N−1 determines the shape of the series xxx(i) uniquely

- i.e. it determines the series, except for a change of the mean level of the series, that

is encoded by the additional coefficient d(i)
0 . Given that, we define the BAGIDIS
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Fig. 48.1: Illustration of the simulated examples described in Section 3.

semimetric as a p-norm (weighted) distance in the breakpoints-details plane:

dBAGIDIS
p (xxx(1),xxx(2))=

N−1

∑
k=1

wk

∥
∥
∥yyy

(1)
k − yyy(2)

k

∥
∥
∥

p
=

N−1

∑
k=1

wk

(∣
∣
∣b

(1)
k −b(2)

k

∣
∣
∣

p
+
∣
∣
∣d

(1)
k −d(2)

k

∣
∣
∣

p)1/p

with p = 1,2, . . . ,∞, and where wk is a well suited weight function. As such, this
semimetric takes advantage of the hierarchy of the well adapted unbalanced Haar
wavelet bases: breakpoints and details of similar rank k in the hierarchical descrip-
tion of each series are compared to each other, and the resulting differences can be
weighted according to that rank. As the breakpoints point to level changes in the

series, the term
∣
∣
∣b

(1)
k −b(2)

k

∣
∣
∣ can be interpreted as a measure of the difference of lo-

cation of the features, along the horizontal axis. Being a difference of the projections

of the series onto wavelets that encode level changes, the term
∣
∣
∣d

(1)
k −d(2)

k

∣
∣
∣ can be

interpreted as a measure of the differences of the amplitudes of the features, along
the vertical axis.

Investigating the balance between breakpoints and details differences. We
introduce an extension of the BAGIDIS semimetric as follows:

dBAGIDIS
pλ (xxx(1),xxx(2)) =

N−1

∑
k=1

wk

(
λ
∣
∣
∣b

(1)
k −b(2)

k

∣
∣
∣

p
+(1−λ )

∣
∣
∣d

(1)
k −d(2)

k

∣
∣
∣

p)1/p

with λ ∈ [0;1] . This parameter λ actually defines a scaling in the breakpoints-details
plane, and hence in the original units of the problem. Setting λ at its extreme values
0 or 1 allows to investigate the contributions of the breakpoints differences and de-
tails differences separately. In a prediction setting, λ can easily be optimized using
cross-validation. Besides, the presence of this parameter allows the semimetric to
be robust with respect to scaling effects: if λ is optimized according to a given crite-
ria (such as the mean square error of a prediction model), the relative dissimilarities
between the series of a dataset will remain the same, whatever the scales of measure-
ments along the horizontal and vertical axes, so that the predictive qualities of the
model will not be affected by such a change in the units of measurements. Choosing
the weights. In a prediction setting, weights should ideally be 1 at rank k if that rank
carries information for discriminating the series, and 0 otherwise. This is easily ob-
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tained using a cross-validation procedure. When no prediction criterium is at hand,
or in order to get a first idea of how the dissimilarities do behave, we suggest in Tim-
mermans and von Sachs (2010) to a priori use the weight function wk = log(N+1−k)

log(N+1) .

This allows to associate a large weight to the comparison of features encoded at the
first rank of the hierarchy, and a decreasing weight to the smaller features at the end
of the hierarchy, which is empirically what we expect.

48.3 Nonparametric functional data analysis

We want to make use of our semimetric together with the extended Nadaraya-
Watson estimators for regression and classification on functional data that have
been proposed in Ferraty and Vieu (2006). Under quite general hypotheses, we have
shown that a curve xxx is of fractal order N∗ − 1 with respect to the BAGIDIS semi-
metric, where N∗ is the number of non-zero weights wk. This ensures we can reach
a quite good rate of convergence for predictions based upon those estimators used
together with the BAGIDIS semimetric, provided N∗ is small enough - i.e. provided
that the number of significantly discriminative features in the curves of the dataset is
not too large - and provided that the general theoretical properties stated in Ferraty
and Vieu (2006) are satisfied. Three simulated examples of nonparametric functional
regressions are presented here. They are illustrated in Figure 48.1.

First, we investigate how BAGIDIS handles horizontal shift and vertical amplifi-
cation of patterns, separately:
A shifted pattern is related to its delay. The first example involves series of length
21, being zero-valued except for the presence of an up-and-down pattern (10,−10)
that is horizontally shifted from one series to the next one. Each series is related to
the delay at which the up-and-down pattern occurs.
An amplified pattern is related to its height. The second example involves series
of length 21 being zero-valued except for an up-and-down pattern at abscissa 10
and 11, that is more or less amplified from one series to the next one, from ampli-
tude 1 to amplitude 20. Each series is associated with the height of the up-and-down
pattern.

The series are affected by a gaussian noise with standard deviation σ = 0.1 and
the responses are affected by a gaussian noise with standard deviation σ = 1. The
following test is performed 100 times: we generate 60 time series following each
the above described models, with 3 noisy replications for each possible value of the
delay and/or height. Then, we select randomly 45 series out of those 60 series, and
use them as a training set to calibrate the regression model. Using the model for
predicting the responses associated with the 15 remaining series and comparing it
with their ’true’ associated responses, we calculate the associated mean square error
(MSE). The performances of the BAGIDIS semimetric with various values of λ , and
with the ’a priori’ weights are compared to the ones of classical semimetrics: the
functional pca-based semimetric with with various number of principal components,
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Fig. 48.2: Results of the simulated examples described in Section 3.

the derivative-based semimetric with various order of derivation, the hshift semi-
metric (all these semimetrics are described in Ferraty and Vieu (2006)). Moreover,
performances of a simple L2 distance are provided, as well as a no effect prediction
(i.e. a prediction by the mean of the response values of the training set), that acts
as a benchmark for the performances. Resulting empirical distributions of the MSE
for each semimetric are presented in Figure 48.2. Afterwards, the parameter λ and
the weigths wk are simultaneously optimized using a cross-validation procedure for
each sampled training set. The resulting mean number of selected weights and the
mean MSE achieved in such a way are also indicated in Figure 48.2.

As expected, BAGIDIS has excellent performances, compared to all competitors,
for dealing with the shifted pattern, as soon as λ > 0 - i.e. as soon as the differ-
ences between the breakpoints are taken into account. The performance is further
improved when λ is optimized and the discriminative ranks are selected. On average
only N∗ = 1.63 non-zero weights are needed. Not surprisingly, the not-shifted am-
plified pattern is best tackled by the PCA semimetrics. Nevertheless, it is interesting
to note that our semimetric BAGIDIS performs quite well too, with λ close to 0 - i.e
where only amplitude differences are taken into account.

Our third example involves both horizontal shifts and vertical amplification: an
amplified and shifted pattern in time series is related to a value depending on
its height and delay. We consider series of length 21, being zero-valued except for
the presence of an up-and-down pattern. That pattern appears after a certain delay
and at a certain amplitude, this amplitude increasing with the delay for one half of
the dataset and decreasing with it for the other half of the dataset. The responses
associated with those curves are defined so as to not depend only on the height nor
on the delay. For the family of curves with an amplitude of the pattern increasing
with the delay, the response is the delay. For the family of curves with an amplitude
of the patterns decreasing with the delay, the response is delay−20. The series are
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Fig. 48.3: Results and illustration of the H-NMR spectra analysis.

affected by a gaussian noise with standard deviation σ = 0.1 and the responses are
affected by a gaussian noise with standard deviation σ = 1.

A regression model is estimated for 100 randomly generated training set of 60
series out of 80, and the corresponding validation sets of 20 series are used to esti-
mate the MSE, for various semimetrics. Results are presented in Figure 48.2. Once
again, BAGIDIS performs very well, and significantly better than competitors. As
expected, an intermediate value of λ seems to be the best choice as both differences
in the localizations and in the amplitudes are informative for the prediction. The
performance is significantly improved when λ and wk are optimized. On average
only N∗ = 3.48 non-zero weights are selected.

A real data example. We consider 193 H-NMR serum spectra of length 600, as
illustrated in Figure 48.3, 94 of which corresponding to patients suffering from a
given illness, the other ones corresponding to healthy patients. We aim at predict-
ing from the spectrum if a patient is healthy or not. A training set of 150 spectra
is randomly selected and a functional nonparametric discrimination model is ad-
justed, with various semimetrics. In order to avoid a confusion of the features in
such long series, we make use of the BAGIDIS semimetric together with a sliding
window of length 30. This test is repeated 80 times. In each case, the number of mis-
classification observed on the remaining 43 spectra is recorded. First, the BAGIDIS

semimetric is used with its ’a priori’ weight function and with λ = 0.5. Results are
summarized in Figure 48.3. We observe that the non-optimized BAGIDIS obtains no
error 10% more often than its best competitor, being a pca-based semimetric with
at least 6 components. Afterwards, we optimize the weights and the λ parameter of
the BAGIDIS semimetric using a cross-validation procedure within the training set,
and the resulting model is tested on the remaining 43 series. This test is repeated 12
times on different randomly selected training set, and no prediction error occurs. At
each repetition, only 1 non-zero weight is selected, and λ is chosen to be zero. This
indicates that horizontal shifts do affect the series but only the amplitudes of the
patterns are discriminative. It illustrates well the ability of BAGIDIS to take into ac-
count both horizontal and vertical variations of the patterns, as well as its flexibility
in the use of those informations.
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Siegfried Hörmann (chapters 6, p33; 26, p169)
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Université P. Mendès France, Grenoble, France, e-mail: Mustapha.Rachdi@upmf-
grenoble.fr
James O. Ramsay (chapter 42, p269)
McGill University, Montreal, Canada, e-mail: ramsay@psych.mcgill.ca
Tim Ramsay (chapter 42, p269)
Ottawa Health Research Institute, Canada, e-mail: tramsay@ohri.ca
Timothy W. Randolph (chapter 25, p161)
Fred Hutchinson Cancer Research Center, Seattle, USA, e-mail: trandolp@fhcrc.org
Daniel Reich (chapter 23, 149)
National Institutes of Health, Bethesda, USA, e-mail: daniel.reich@nih.gov
Daniela Rodriguez (chapter 8, p49)
Universidad de Buenos Aires and CONICET, Argentina, e-mail: dro-
drig@dm.uba.ar
Elvira Romano (chapter 43, p277)
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