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To Dennis Lindley, who has opened up new horizons in
statistics, law and forensic science



‘We should not look for truth, but should only become conscious
of our own opinions. We should not question nature but only
examine our consciences. At most I can question nature so that
it will give me data as elements of my judgments, but the answer
is not in the facts; it lies in my state of mind, which the facts
cannot compel but which nevertheless can spontaneously feel
itself compelled by them.’ (de Finetti 1989, p. 180)
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Foreword

David H. Kaye

Distinguished Professor of
Law and Weiss Family Scholar
Pennsylvania State University

Statistics and law make strange bedfellows. Both disciplines are concerned with
decision making under conditions of uncertainty, but lawyers work with words and
pictures, not numbers and graphs. As a result, among lawyers and judges, statistics
and statistical reasoning tend to generate feelings of aversion or trepidation rather
than comfort and comprehension. A New York trial judge once derided a probability
as “betting odds” and the “so-called [verbal] predicate” as “an impressive title . . .

which . . . roughly corresponded to a form chart for pari-mutuel horse racing.”
Angela B. v. Glenn D., 482 N.Y.S.2d 971 (Fam. Ct. 1984). Although the appellate
court regarded the questioned probability as “clear and convincing,” and therefore
reversed the trial court’s determination (502 N.Y.S.2d 19 (App. Div. 1986)), more
recent opinions can be found that echo the judge’s antagonism toward probabilities.
Nevertheless, scientific and statistical evidence has become increasingly important
in modern litigation. The trend is irreversible.

The resulting challenge for forensic scientists or statisticians is to produce,
process, and present accurate data that will assist legal decision makers in recon-
structing past events. The concomitant challenge for the legal system is to achieve
an optimal balance between completeness and comprehensibility of quantitative
testimony. This book advances this mutual endeavour by describing the tools of
modern Bayesian decision theory, by illustrating their application to paradigmatic
types of data in forensic science, and by defending the procedures against various
objections. The description is technically and philosophically sophisticated. With
remarkable rigour, the authors lay out the elements of the theory – probability,
likelihood, and utility – and apply them in the form of Bayes’ rule and loss func-
tions to the recurrent statistical problems of estimation, classification, and decision.
They advocate the personal or subjective theory of probability and frankly face the
daunting task of integrating this perspective into a system in which the “ultimate
issue,” as the rules of evidence characterize it, is the judge’s or jury’s to resolve.
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xiv Foreword

The book will not be easy going for readers with no exposure to elementary
statistics, but forensic scientists and analysts, as well as evidence scholars and prac-
tising lawyers, need to become familiar not only with the ideas behind classical
statistical inference (as developed by Fisher, Neyman, and Pearson), but also likeli-
hood theory (as defended by Edwards and Royall), and the reasoning pioneered by
Bayes in 1764 and elaborated upon by his successors (ably presented in this vol-
ume). Data from tests, experiments, and observations may speak loudly, but even
the most extreme data cannot be translated directly into statements of certainty.
Certainty is an asymptote, not an end point. When gathered appropriately, data can
help us choose between hypotheses about the world (or models of it), but these data
do not produce probabilities of zero or one, and they do not speak for themselves.
They inform forensic scientists, whose task it is to educate investigators, lawyers,
and factfinders.

This task is crucial. Naive calculations and loose talk about the meaning of
probabilities associated with forensic findings can cause serious problems for the
administration of justice. The extensive appeals and postconviction proceedings in
cases such as the prosecutions of Sally Clark in England (R v. Clark, 2003, EWCA
Crim 1020, 2003, All ER (D) 223 (Apr),CA and 2000, All ER (D) 1219, CA) and
Troy Brown in the United States (McDaniel v. Brown, 129 S.Ct. 1038 (2009))
illustrate the disturbing problems that inadequate statistical analysis and interpreta-
tion can produce. Likewise, analysts who match patterns and eschew quantitative
testimony in favour of claims of absolute identification increasingly have come
under attack. Such statistics-avoidance behaviour cannot prevail much longer.

Not everyone will agree with the strong subjectivist perspective advanced here.
Rational people can differ on the relative value of frequentist, likelihood, and
Bayesian methods of data analysis and exposition. But a wider understanding of
the mathematical techniques and the philosophical ideas in this book can and will
enhance the contributions of forensic science in criminal and civil investigations
and litigation. For these reasons and others, careful study of the chapters that follow
will be an illuminating and valuable undertaking.



Preface

This book was motivated by the facts (a) that the use of statistical methods to
analyse quantitative data in forensic science has increased considerably over the
last few years, (b) that students, researchers and practitioners in forensic science ask
questions concerning the relative merits of differing approaches, notably Frequentist
and Bayesian, to statistical inference, and (c) that the ideas of decision theory are
now being introduced to forensic science.

Moreover, generations of students in the applied sciences experience lectures
in statistics as frustrating. This may be in part due to the most commonly advo-
cated approach in this context, which is the frequentist and which has fundamental
philosophical flaws in its inferential procedures. Sometimes both Bayesian and
frequentist philosophies are proposed but without a careful comparison and discus-
sion of their relative qualities. In addition – as suggested by D’Agostini (2000) – it
is also time to stop the negative reaction developed by students and practitioners
towards words like ‘belief’ and ‘subjective’. More effort should therefore be placed
on clarifying the conceptual underpinnings of these schools of thought.

With regard to this, the present book intends to set forth procedures for data
analysis that rely on the Bayesian approach to inference. An emphasis will be
made on its foundational philosophical tenets as well as its implications in practice.
In effect, the book proposes a range of statistical methods that are useful in the
analysis of forensic scientific data. The topics include, for example, the comparison
of allele proportions in populations, the choice of sampling size (such as in a
seizure of pills) or the classification of items of evidence of unknown origin into
predefined populations.

Data are analyzed to aid with decision making. These decisions have con-
sequences the effect of which are measured by factors known as utilities. For
this reason, this book advocates the study of the decision-theoretic extension of
Bayesian inference. In fact, the application of decision theory to forensic science
is both original and novel and much in this area is still unexplored. The book thus
aims to introduce students and practitioners to the application, interpretation and
summary of data analyses from a Bayesian decision-theoretic perspective. The text
also includes selected code written in the statistical package R which offers to read-
ers an additional opportunity to explore the treated subjects. Further illustrations of
both Bayesian inference and decision theory are provided through graphical models
(Bayesian networks and Bayesian decision networks).

xv



xvi Preface

The book is organized in two parts. The first part explains and defines key con-
cepts and methods from historical, philosophical and theoretical points of view.
The second part follows a step-by-step approach for taking the reader through
applied examples, inspired and motivated by issues that may arise in routine foren-
sic practice. This mode of presentation includes discussions of the arguments and
methods invoked at each stage of the analyses, in particular where the Bayesian
decision-theoretic aspect intervenes.

In the opinion of the authors, this book could make an interesting addition to the
list of publications already offered in the forensic science and statistics collections.
It is obviously designed to fit well with previous books written by several of the
authors (Aitken and Taroni 2004; Taroni et al. 2006a). These existing works focused
essentially on scientific evidence evaluation and interpretation whereas rather little
mention was made of data analysis (with an exception of Chapter 5 in Aitken and
Taroni 2004). In addition, the topic of decision making had not been given the
main attention. This fundamental and critical point was mentioned by Professor
Dennis Lindley in a personal letter accompanying his Foreword in the Aitken and
Taroni (2004) book:

A general point that arises at several places in the book is that Bayesian anal-
ysis incorporates decision-making as well as inference and your near-silence
on the former was disappointing, though understandable. Some mention of
utility might be desirable.

Inspired by Professors Lindley’s fruitful comment, it is the hope of the authors
that they have added in this new book an acceptable extension to the decision-
analytic perspective. Aware of the list of specialized books dedicated to Bayesian
inference and decision, the authors’ primary intention was to provide a more intro-
ductory and case-based book on Bayesian decision theory that could also be of
benefit to scientists, eventually also from outside the traditional forensic disci-
plines, who are also interested in this kind of data analysis. As such, the book may
prepare the reader for more sophisticated books in this area.

From our point of view, an important message of the present book is (a) that
subjective probability is a natural concept to quantify the plausibility of events in
conditions of uncertainty, (b) that Bayes theorem is a natural way of reasoning
in updating probabilities, and (c) that when we wish to decide whether to adopt
a particular course of action, our decision clearly depends on the values to us of
the possible alternative consequences. This logic of thought leads to compelling
results that conform to the precepts of evidential assessment of forensic evidence.
It is thus hoped that it will attract and convince both researchers and practitioners.

As in the authors’ earlier projects, this new endeavour involved different back-
grounds from statistics, forensic science and philosophy. We think that such a
group can shape a well-balanced book and combine interdisciplinary aspects in a
distinct way. The different academic profiles allow the introduction of new knowl-
edge and stimulate challenges for all individuals interested in data analysis. The
three fields – statistics, forensic science and philosophy – have common features



Preface xvii

and co-operation amongst them may produce results that none of the disciplines
may produce separately.

We are very grateful to a number of people who contributed, in one way or
another, to the book. In particular we thank Marc Augsburger, Luc Besson, Cather-
ine Evequoz Zufferey, Raymond Marquis, Williams Mazzella, Fabiano Riva, Neil
Robinson and Matthieu Schmittbuhl for their support and the permission to use
original data from their personal works.

One of us, Alex Biedermann, has been supported by the Swiss National Science
Foundation and the Italian National Research Council through grant PIIT1-121282.

Several software packages were used throughout the book: R, a statistical pack-
age freely available at www.r-project.org, Xfig, a drawing freeware running under
the X Window System and available at www.xfig.org as well as Hugin which
allows the development of the graphical models described throughout the book.

Finally, we would like to express our indebtedness for support throughout the
whole project of this book to the Universities of Lausanne and of Edinburgh, the
Ca’ Foscari and IUAV Universities of Venice, and to our families.

F. Taroni, S. Bozza, A. Biedermann, P. Garbolino, C.G.G. Aitken
Lausanne, Venezia, Edinburgh





Part I

The Foundations
of Inference and Decision

in Forensic Science





1

Introduction

1.1 THE INEVITABILITY OF UNCERTAINTY

Gaius Julius Caesar was assassinated on March 15, 44 BC. Do you know his
last words? What is the capital of the South Asian country Bangladesh? What
will be the percentage gain of the Dow Jones Industrial Average during the next
six months?

Maybe the first of these questions makes you think of Shakespeare’s tragedy
Julius Caesar from which you might recall from Act three Scene one the widely
known first half of the macaronic line ‘Et tu, Brute? – Then fall, Caesar!’1

(Shakespeare 1994, p. 1032). Caesar’s last words before dying severely wounded
represent a contested topic among historians. How definite is your answer? With
regard to the second question, you might be fairly sure about Dhaka being the
capital of Bangladesh, but you may still prefer, for whatever reason, to check
your answer by consulting an up-to-date almanac. Finally, there are many relevant
events to come up yet during half a year – at present almost certainly unknown to
you – so that we dare to anticipate that your beliefs about the future state of the
stock market will be vague to at least some degree.

Yours, ours, anybody’s understanding of the past, the present and the future
is naturally incomplete. It is such imperfect knowledge which implies what we
commonly refer to as uncertainty , the natural state that inevitably attends all human
activities. Throughout this book, uncertainty is regarded in a personal way, that is
as a notion that describes the relationship between a person issuing a statement
of uncertainty and the real world to which that statement relates – and in which

1A literal translation is ‘And you, Brutus? Then fall, Caesar.’ Alternatively, the first part of the
expression may also be translated as ‘You too, Brutus?’ or ‘Even you, Brutus?’.

Data Analysis in Forensic Science: A Bayesian Decision Perspective Franco Taroni, Silvia Bozza, Alex Biedermann,
Paolo Garbolino and Colin Aitken
 2010 John Wiley & Sons, Ltd
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4 Introduction

that person acts. A unified language for understanding and handling uncertainty,
revising beliefs in the light of new information and usage for practical decision
making will be the main focus of attention.

Uncertainty is an omnipresent complication in life, and the case of forensic sci-
ence is no exception. As a distinct discipline of its own, along with the criminal
justice system at large, forensic science is typically concerned with past events
which are both unique and unreplicable. Knowledge about past occurrences is
bound to be partially inaccessible, however, because of spatial and temporal limi-
tations of our sensory capacities. Uncertainty is a fundamental problem underlying
all forensic sciences. Increasingly often, it is perceived as discomforting by both
scientists and other actors of the criminal justice system, which illustrates the
continuing need to give it careful attention.

Notwithstanding, an objection to this attention to uncertainty is immediately
possible. Suffice it to mention that past events, notably criminal activities, may
generate distinct remaining traces in the form of tangible physical entities (such
as blood stains or textile fibres) that can be discovered and examined. These are
thought to have a potential for revealing something useful to retrace past events. The
informed reader might even refer to the writings of the pioneer forensic scientist
Edmond Locard, some of whose now widely quoted words are as follows:

Nul ne peut agir avec l’intensité que suppose l’action criminelle sans laisser
des marques multiples de son passage [...] tantôt le malfaiteur a laissé sur les
lieux des marques de son activité, tantôt par une action inverse, il a emporté
sur son corps ou sur ses vêtements les indices de son séjour ou de son geste.2

(Locard 1920)

This quotation is still valid in these times but with the important difference that
forensic scientists are now in the privileged position to analyze crime-related mate-
rial of many more different kinds of nature as well as in much smaller quantities
than was possible at the time of Locard’s writing. A primary reason for this is
that, owing to vast developments made in science and technology, today’s forensic
scientists have a broad scope of methods and techniques at their disposal.

Although this instrumental support offers vast capacities for providing scien-
tists with valuable information, the outset is essentially paradoxical. On the one
hand, systematic analytical testing and observation may lead to abundant quanti-
ties of information, whereas, on the other hand, such information will often be
substantively lacking in the qualities that would be needed to entail (or make nec-
essary) particular propositions3 that are maintained by a reasoner. To state this

2‘No one can proceed with the intensity that the criminal act requires without leaving multiple
marks of his passing [ . . . ] either the wrongdoer has left on the scene marks of his activity, or, on the
other hand – by an inverse process – , he has taken away with him on his person (body) or clothes,
indications of where he has been or what he has done.’ Free translation by the authors.

3A proposition is interpreted here as an assertion or a statement that such-and-such is the case (e.g.
an outcome or a state of nature of the kind ‘the suspect is the source of the crime-stain’) and also as a
linguistic description of a decision. An important basis for much of the argument developed throughout
this book is that it is assumed permissible to assign personal degrees of belief to propositions.
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differently, forensic science is not, primarily, about the mise en œuvre of machin-
ery and equipment in artifical and controlled laboratory settings. It is the general
framework of circumstances within which testing is performed that makes forensic
science a very challenging undertaking. For example, material related to crimes
and to many real-world events in general may often be affected by contamination.
The material may also be degraded and/or of such low quantity that only a sin-
gle method or measurement can be applied. Sometimes it may not even be known
whether the material submitted for analysis is relevant4. So, laboratory performance
is undoubtedly important, but it is not a general guard against the rise of uncertainty
in attempts to reconstruct the past.

In this book we will repeatedly come upon observations, measurements or
counts, sometimes also referred to as ‘raw data’, and consider how such infor-
mation should – in the light of uncertainty – be used to inform beliefs and support
decision making. There is a practical necessity for this because such considerations
represent vital steps in guaranteeing that scientific evidence meaningfully serves
the purpose of a particular forensic branch of application. In order to comply with
this requirement, forensic science needs to enquire about ways that allow one to
learn about past events in the light of uncertain information, preferably in a manner
that is in some sense rational and internally consistent.

More detailed explanation of what we mean by ‘rational’ and ‘consistent’ is
delayed to a discussion in Chapter 2. For the time being, we solely note that these
ways are intended to provide assistance in examining whether people’s opinions
about unobserved matters of fact are justified and whether these people actually
have the reasons to believe that their decisions in the light of these opinions
are optimal.

The very idea of enquiring about how one ought to reason and act sensibly under
uncertainty takes such a central role that Ian Evett relied on it for the purpose of
providing a definition of forensic science:

[ . . . ] I will settle for a simple premise: forensic science is a state of mind,
I mean that whether a particular individual is behaving, at a given juncture,
as a scientist can be determined by the mental process underlying his/her
actions and words. (Evett 1996, p. 121)

1.2 DESIDERATA IN EVIDENTIAL ASSESSMENT

Prior to providing a more formal introduction to the methods we seek to implement
throughout this book, it is useful to set forth some very general, practical precepts
to which we wish our analytic thought and behaviour to conform. Such precepts
will be helpful, for example, to clarify why we will be giving preference to some
methods and views rather than to others.

4In forensic science, ‘relevance’ is commonly used as a qualifier for material that has a true con-
nection with the offence or the offender (Stoney 1994).



6 Introduction

Consideration is given hereafter essentially to six desiderata upon which the
majority of current scientific and legal literature and practice converge in their
opinion. These desirable properties are balance, transparency, robustness, added
value, flexibility and logic. These notions have been advocated and contextualized,
to a great extent, by some quarters in forensic science and from jurists from the
so-called ‘New Evidence Scholarship’ (Lempert 1988).

For an inferential process to be balanced , or in the words of some authors,
impartial (Jackson 2000), attention cannot be restricted to only one side of an
argument. Evett (1996, p. 122) has noted, for instance, that ‘a scientist cannot
speculate about the truth of a proposition without considering at least one alternative
proposition. Indeed, an interpretation is without meaning unless the scientist clearly
states the alternatives he has considered.’ The requirement of considering alternative
propositions is a general one that equally applies in many instances of daily life
(Lindley 1985), but in legal contexts, its role is fundamental. Evett, during an
interview, has expressed this as follows:

Balance means that when I am doing anything for a court of law, I do it
in full knowledge that there are two sides represented in that court. Even
though the evidence that I’ve found appears to favour one or the other of
those sides, my view of that evidence is directed not to proving the case for
that side, but to helping the court to set that evidence and the views of both
teams, prosecution and defence. (Joyce 2005, p. 37)

Note that there is more in this quotation than a sole requirement of considering
alternatives. It also states that forensic scientists should primarily be concerned
with the evidence and not with the competing propositions that are forwarded to
explain it. This distinction is crucial in that it provides for a sharp demarcation
of the boundaries of the expert’s and the court’s areas of competence. Failures
in recognizing that distinction are at the heart of pitfalls of intuition that have
caused – and continue to cause – much discussion throughout judicial literature
and practice.

Besides balance, a forensic scientist’s evaluation should also comply with the
requirements of:

• transparency , that is, in the words of Jackson (2000, p. 84), ‘[ . . . ] explaining in
a clear and explicit way what we have done, why we have done it and how we
have arrived at our conclusions. We need to expose the reasoning, the rationale,
behind our work.’

• robustness , which challenges a scientist’s ability to explain the grounds for his
opinion together with his degree of understanding of the particular evidence type
(Jackson 2000).

• added value, a descriptor of a forensic deliverable that contributes in some sub-
stantial way to a case. Often, added value is a function of time and monetary
resources, deployed in a way such as to help solve or clarify specific issues that
actually matter with respect to a given client’s objectives.
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These desiderata characterize primarily the scientist, that is his attitude in
evaluating and offering evidence, as well as the product of that activity. The
degree to which the scientist succeeds in meeting these criteria depends crucially
on the chosen inferential framework, which may be judged by the following
two criteria:

• flexibility , a criterion that demands a form of reasoning to be generally applicable,
that is, not limited to particular subject matter (Robertson and Vignaux 1998).

• logic, that is, broadly speaking, a set of principles that qualify as ‘rational’.
In turn, that rational system must also conform, as will be explained later in
Chapter 2, to certain minimum requirements (Robertson and Vignaux 1993).

These last two issues – properties of an inferential method rather than behavioural
aspects of the scientist – represent the principal topics to which the subsequent
parts of this book thematically connect.

1.3 THE IMPORTANCE OF THE PROPOSITIONAL
FRAMEWORK AND THE NATURE OF EVIDENTIAL
ASSESSMENT

A few additional remarks are necessary on the requirement of balance, a cri-
terion described so far as one that requires a scientist to consider at least two
competing propositions.

First, attention should be drawn to the exact phrasing of propositions, an idea
that underlies a concept known in the context as propositional level or hierarchy
of propositions (Cook et al. 1998). The reasons for this are twofold. On the one
hand, a proposition’s content crucially affects the degree to which that proposition
is helpful for the courts. For example, the pair of propositions ‘the suspect (some
other person) is the source of the crime stain’ (known in the context as a source-
level proposition) addresses a potential link between an item of evidence and an
individual (that is, a suspect) on a rather general level. Generally, activity-level
(e.g. ‘the suspect (some other person) attacked the victim’) or crime-level (e.g. ‘the
suspect (some other person) is the offender’) propositions tend to meet a court’s
need more closely. On the other hand, the propositional level defines the extent of
circumstantial information that is needed to address a proposition meaningfully. For
example, when reasoning from a source- to a crime-level proposition, consideration
needs to be given to the relevance of a crime stain (that is, whether or not it has
been left by the offender), an aspect that is not necessarily needed when attention
is confined to a source-level proposition.

Secondly, given a proposition of interest, forensic scientists usually assess the
relative degrees to which evidence is compatible with the various settings (that is,
the propositions) under consideration. The question, however, of what the believ-
ability of each setting actually ought to be, is not an issue for forensic scientists.
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Addressing a target proposition requires – for reasons given later in Chapter 2 – a
belief-state prior to the consideration of new facts as well as profound knowledge
of circumstantial information. Forensic scientists cannot comply with any of these
requirements. Even if they could, their focus on an issue (e.g. a proposition of the
kind ‘the suspect is the source of the crime stain’) rather than on the evidence
would amount to usurping the role of the court (Aitken and Taroni 2004).

Thirdly, it is worth insisting on having a well-defined framework of propositions.
This is in sharp contrast to occasionally held opinions according to which data
should be allowed to ‘speak for themselves’, a suggestion that evidential value
represents some sort of intrinsic attribute. This is viewed cautiously in forensic
science, where the following position has been reached:

In court as elsewhere, the data cannot ‘speak for itself’. It has to be interpreted
in the light of the competing hypotheses put forward and against a background
of knowledge and experience about the world. (Robertson and Vignaux 1993,
p. 470)

As may be seen, the concept of propositions is important because it is closely tied
to the notion of evidential value. For the time being, we tentatively consider the
latter as a personalistic function of the former, in the sense that value is assigned to
evidence by a particular individual depending on the propositions among which that
individual seeks to discriminate and auxilary contextual information that is avail-
able to that individual. Arguably, evidential value is neither seen as an abstract
property of the external world nor as one that can be elicited in a uniquely
defined way.

Generally, the propositional framework is organized as part of an evaluative
procedure, that is a model that specifies the relevant ingredients of an inferential
process, their relationships along with rules that state how these elements ought to
be used for inference. The issue that relates this brief mention of the propositional
framework to the main topic of this book – data analysis – is the fact that the
latter is needed in order to enable the former to provide quantitative expressions
that are appropriate for the purpose for which a particular inference procedure has
been designed.

1.4 FROM DESIDERATA TO APPLICATIONS

Although the general criteria to which we would like evidential assessment to
conform may appear intuitively reasonable, it may be far from obvious how to
implement them to bridge practical difficulties associated with forensic science
as a discipline of reasoning and acting under uncertainty. As for themselves, the
stated principles describe desirable, abstract properties rather than explicit ways in
which one ought to proceed. The criteria – if met by the scientist – should con-
tribute to the avoidance of the reduction of forensic expertise to ad hoc guesswork



From Desiderata to Applications 9

and unwarranted claims of ‘many years of experience’ (Evett 1996). Beyond this,
however, the mere statement of the principles also remains insufficient for the need.

Further concepts and discussion are thus needed for examining whether sci-
entists’ analyses, evaluations and reportings are trustworthy. Among these is an
approach to the description of uncertainty as well as rules that prescribe the com-
bination of expressions of uncertainty. For this purpose, Chapter 2 will outline
in detail a method for calculating with beliefs that is part of a package that also
contains a procedure to use personal beliefs to inform decision making. As will be
seen, these elements represent the fundamental tenets of the discipline of statistics
(Lindley 2000b).

In this book we argue that statistics is a beneficial resource with important
capacities for both clarifying and analyzing a wide range of practical problems.
In particular, we will focus on statistical concepts that allow one to make plain
and conceptualize the passage from the assessment of uncertainties associated with
evidence to the assessment of uncertainties associated with particular explanatory
propositions, including consistent choices amongst them. We justify this focus of
enquiry by our conviction that these concepts have a substantial potential for the
enhancement of the quality of forensic expertise.

Although we will argue that the methods yet to be introduced in later sections
and chapters are the most appropriate ones currently available, we will not address
the separate issue of how evidence is best presented before trial. This latter issue is a
distinct topic of its own which, in the context, is also referred to as the ‘presentation
problem’ (Redmayne 2001). This topic extends to additional complications that
touch on discussions beyond the scope of this book. Evett and Weir (1998, p. 29)
expressed this point concisely when they wrote that, ‘in particular, we are going
to take the evidence into the court room, where the proceedings owe no allegiance
to the laws of science or mathematics and many of the participants are stubbornly
nonnumerate.’

Notwithstanding the above, this book’s central points of attention – forensic
inference and decision analysis – draw their legitimacy from cogent practical rea-
sons. An illustrative example for this is provided by courts that, typically, seek to
reduce their uncertainty about a defendant’s true connection with a criminal act
(Lindley 2006). Often, part of this effort is thought to be achieved on the basis
of evidence as offered by forensic scientists. According to this view, evidential
assessment, that is a process of reasoning under uncertainty, constitutes a pre-
liminary to judicial decision making (e.g. deciding if a suspect should be found
guilty for the offence for which he has been charged) and taking such assessment
seriously reflects the intention of promoting accurate decision making (Fienberg
and Schervish 1986; Kaplan 1968; Kaye 1988; Redmayne 2001; Robertson and
Vignaux 1993).

In particular, a decision-based approach can help (i) to clarify the fundamental
differences between the value of evidence as reported by an expert and the final
decision that is to be reached by a customer, and (ii) to provide a means to show
a way ahead as to how these two distinct roles can be conceptualized to interface
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neatly with each other. Both of these are topics that are currently viewed differently
rather than in a unified manner. This illustrates the continuing need for research in
this area.

1.5 THE BAYESIAN CORE OF FORENSIC SCIENCE

Prior to proceeding with more technical chapters we anticipate at this point – still
with the intention of relying on an essentially informal style of presentation – some
of the main arguments and topics that will be advocated throughout this book, while
reserving elements of logical and philosophical justifications to later discussion.

One of the credences of which we seek to convince the reader is that uncer-
tainties about propositions should be expressed by the concept of probability. To
this viewpoint we immediately add, however, that we will be giving preference to
probability theory employed in that of its distinct interpretations which views prob-
abilities as degrees of belief, a standpoint commonly known as the subjectivist (or
personalist) interpretation of probability. Such degrees of belief are personalized
assessments of credibility formed by an individual about something uncertain, given
information which the individual knows or can discover. In short, the probability
apparatus will be used as a concept of reference to which personalized weights to
the possible states of the uncertain world that surrounds us may be attached.

Even though such uncertainty is inevitable, recall from Section 1.1 that we
live in a world in which further information may be gained by enquiry, analysis
and experimentation. As a consequence of this, some means is required to adjust
existing beliefs in the light of new evidence. A second credence which will thus
be emphasized here is that the revision of beliefs should be operated according to
Bayesian procedures. The term ‘Bayesian’ stems from a theorem – Bayes’ theorem
(Section 2.3.1) – that is a logical consequence of the basic rules of probability. We
will repeatedly come across the theorem because it is a very important result that
helps one to understand how to treat new evidence. As an aside, we note that,
although the theorem has about a 250-year history, the attribute ‘Bayesian’ as a
descriptor of a particular class of inference methods appears to have gained more
widespread use only since the middle of the twentieth century.

Given a set of beliefs about the unknowable states of the world, the general
objective is to identify an available course of action that is logically consistent
with a person’s personal preferences for consequences. This is an expression of a
view according to which one decides on the basis of essentially two ingredients.
These are, on the one hand, one’s beliefs about past, present or future happenings
and, on the other hand, one’s valuation of consequences. As noted above, the
former will be expressed by probability. The latter will be captured by invoking an
additional concept, known as utility. Both concepts can operate within a general
theory of decision that involves the practical rule which says that one should
select that decision which has the highest expected utility (or, alternatively, which
minimizes expected loss). When the class of such operations is based on beliefs
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that have received a Bayesian updating (statistical inference), then this process is
called Bayesian decision analysis.

Both within and outside forensic science, the Bayesian package for inference and
decision is considered – with continually increasing agreement – as the currently
most appropriate and comprehensive approach to the various issues pertaining to
the assessment of scientific evidence. In a legal context, the concept is particu-
larly relevant because of the support it provides in conforming with the principles
and requirements set forth in Section 1.2. Subscription to the Bayesian decision
approach, however, does not suggest that the approach is perfect, a point that is
noted by Evett and Weir (1998, p. 29):

It is not our claim that Bayesian inference is a panacea for all problems of
the legal process. However, we do maintain that it is the best available model
for understanding the interpretation of scientific evidence.

Practical applications of patterns of reasoning corresponding to a Bayesian
approach can be found, for example, as early as the beginning of the 20th cen-
tury (Taroni et al. 1998). Bayesian ideas for inference then entered legal literature
and debates more systematically only in the second half of the twentieth century.
Kingston (1965a), Finkelstein and Fairley (1970) and Lindley (1977a) are some of
the main reference publications from that period. Later, within the 1990s, special-
ized textbooks from Aitken and Stoney (1991), Aitken (1995) and Robertson and
Vignaux (1995) appeared. During the past decade, further textbooks – along with
a regular stream of research papers – focusing on Bayesian evaluations of partic-
ular categories of evidence, such as glass (Curran et al. 2000) or DNA (Balding
2005; Buckleton et al. 2004) were published. Compared to this, decision analy-
sis is a rather sparsely studied area, in particular within forensic science. Some
of the few available references are mostly from legal scholars, mentioned ear-
lier in Section 1.4. However, for forensic science applications, decision making
(e.g. about target propositions of interest) is a presently latent topic with room for
many thought-provoking and interesting issues that ask for explanations and the
formulation of effective answers.

It is worth noting that many discussions of probabilistic reasoning applied to
forensic and legal matters in general rely on probability as a concept that is defined
on propositions, that is linguistic entities of the kind that were presented at the
beginning of Section 1.1. A probability statement about such entities – that is to
say, some form of proposition or hypothesis – may typically have that character of
a personalized expression of belief, as was mentioned earlier in this section.

Besides this, there is an additional facet of probability relevant to forensic appli-
cations, known as the set-theoretical development of probability, introduced in the
last century by the Soviet mathematician A. N. Kolmogorov (Kolmogorov 1933).
In that development, probability is defined on subsets of some given set. It is cus-
tomary to denote the latter set as one that comprises all elementary possibilities,
often referred to as outcomes of an experiment (sample space). This approach lends
itself to a series of extensions that makes it of particular interest for the fields of
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mathematics and statistics (e.g. due to the applicability of the full differential and
integral calculus).

The latter development of probability is used essentially in contexts where the
main issue is uncertainty about the true value of a parameter5, such as a mean or
a proportion. The aim then is to use the probability calculus to obtain probability
statements about such parameters. To return to the above-mentioned argument,
these probability statements have a personalized interpretation in terms of degrees
of belief and such degrees are revised by the use of Bayes’ theorem, operating after
the provision of data. Since one is concerned with a set of objects or individuals
(a population), one can usually extract a subset of that set and investigate it. The
result of this is a set of numbers – the data – for which a statistic (e.g. a mean)
may be calculated and used as a basis for revising beliefs about the population
parameter held prior to inspection of those data. When in addition to that, the goal
is to choose a particular number as an estimate for the parameter, then this can be
conceptualized as a decision problem using the ingredients informally introduced
above, that is decisions and utilities.

These are, in brief, the main aspects of the Bayesian approach to statistics and
decision analysis, a more formal and detailed account of which is given in the next
two chapters.

1.6 STRUCTURE OF THE BOOK

In the previous sections of this chapter, a discussion was initiated on Bayes’
theorem, presented essentially as a formalization of logic and common sense
which makes it a valuable tool for reasoning about evidence in situations involving
uncertainty. In fact, forensic practice routinely involves the collection of sets of
observations or measurements, but they may be compatible with several distinct
hypotheses of interest given and some of them are (a priori) less plausible than
others. The problem, as stated, then consists in drawing conclusions in such situa-
tions while the idea underlying the inference analysis consists in offering guidance
and influencing one’s behaviour (Cornfield 1967).

Bayes’ theorem plays a central role in quantifying the uncertainty associated
with particular conclusions. The forthcoming Chapters, 2 and 3, provide a careful
outline of this role and its relation to the process of consistent choice between
hypotheses when available evidence is imperfect. The viewpoint will be that of a
unification of the theories of (subjective) probabilities (mainly Bayes’ theorem) and
utility within decision theory in order to set forth the construction of a co-ordinated
and structured whole.

Combining both theoretical elements and practical examples, Part II of the
book – Chapters 4 to 8 – will proceed with focusing in more detail on the idea

5For the time being, a parameter is taken as a characteristic of the distribution of the measurements
on, or categorization of, the entire set of members (e.g. individuals or objects) of a target population.
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of ‘judgements’, that is, stated otherwise, assessments, considered decisions or
sensible conclusions (not, however, in the sense of decisions of a court or judge).
Actually, day-to-day forensic practice involves judgements, in a variety of facets
and in contexts. For the purpose of illustration, consider the following:

1. How is one to judge an estimate of, say, the proportion of red car paint flakes
found on a victim of a car accident in a given town, or the alcohol concentration
given a series of measurements on a blood sample?

2. How is one to assess whether the value of a parameter of interest, such as the
colour dye concentration in ecstasy tablets, lies within a given interval?

3. How is one to decide among competing hypotheses according to which, for
example, a rate is greater (or not) than a given value, or two series of continuous
measurements differ (or do not differ)?

4. How ought the value of a particular item of evidence be assessed?
5. How many samples should be analyzed in a consignment of, say ecstasy pills

seized in a criminal investigation?
6. How ought one to proceed when an unknown item needs to be associated with

or arranged into one of different specific (and known) classes? In other words,
how is one to judge the appropriateness of two (or more) competing models for
a given forensic real-world phenomenon?

Questions of this kind will be described, exemplified, analyzed and commented
on in the light of Bayesian statistical methodology. Specifically, Chapter 4
approaches problems in point estimation, as given by question 1 above. Credible
intervals, addressed by question 2, are treated in Chapter 5. Chapter 6 focuses on
hypothesis testing to approach issues to which questions 3 and 4 relate. Question
5 relates to sampling problems, a recurrent topic in many forensic science
disciplines, and considered in Chapter 7. Finally, questions such as question 6 are
studied in Chapter 8.

The book focuses on a versatile list of statistical questions that may reasonably
be encountered in forensic practice. The aim is to show how the Bayesian frame-
work can be developed, understood and practically applied. Although the Bayesian
approach has been in place for some time already and it may be tempting to think
of it as an ‘old tool’, actual practice demonstrates that its help is more than ever
indispensable for addressing current problems in evaluating forensic evidence. This,
then, is an instance where we seek to answer a viewpoint taken by Good (Good
1962, p. 383), according to which it may be beneficial to ‘learn to use a little of the
language of the theory of rationality to understand what it means to be reasonably
consistent. “Rational” is to be interpreted in relation to the theory of rationality,
namely Bayes’ theory, in which emphasis is on judgments of probabilities, utilities
and expected utilities.’





2

Scientific Reasoning
and Decision Making

2.1 COHERENT REASONING UNDER UNCERTAINTY

The mathematical theory of probability can be interpreted as a logical calculus for
fitting together judgements of uncertainty: as the laws of deductive logic can be
used to define formal notions of coherence for beliefs entertained with certainty,
and provide constraints to deductive reasoning by means of rules of inference,
so the laws of probability can be used as a standard of coherence for beliefs you
entertain to a certain degree only, and can be used as rules of inference for reasoning
under uncertainty1.

The central idea is the concept of coherence between uncertainty judg-
ments. If You make some probability statements, then others are implied
by the calculus of probability, and effectively You have made those as well.
(Lindley 1990, p. 53)

The standard of coherence is a pragmatic standard. You are not obliged by what-
ever a priori reasons to have degrees of belief that satisfy the laws of probability
calculus, but if your beliefs do not, then they will be potentially pragmatically self-
defeating . That means that, if your degrees of belief are not coherent according to
the probabilistic standard, and you wish to use them as a guide for action, then

1Some introductions to the subjective interpretation of probability theory addresses the readers by
using the second person: this is a rhetorical artifice to help them to keep in mind that probabilities is
their own degrees of belief based upon information they have. We shall follow this usage throughout
this chapter but only this chapter.
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you will be acting in a way that will bring you consequences that are worse than
they might have been if your degrees of belief had been coherent.

If probability is interpreted this way, than it provides not only inference rules
but decision rules as well: if your preferences among actions with uncertain con-
sequences are coherent according to the probabilistic standard, then the values
(‘utilities’) these consequences have for you can be measured by probabilities; that
is, these ‘utilities’ obey, like degrees of beliefs, the laws of the probability calculus.

The Bayesian paradigm is a complete recipe for appreciation of the world by
You, and for Your action within it. The central concept is probability as the
sole measure of uncertainty and as a means of expressing Your preferences
through (expected) utility. Properly appreciated, both measures are adequate
for inference and decision-making. (Lindley 1990, p. 55)

The most important probabilistic rule of inference is the principle of condi-
tionalization , and the basic rule of decision is the principle of maximization of
expected utility .

In this chapter arguments are given for justifying the acceptance of the proba-
bility calculus as a standard of coherence for degrees of belief, and the acceptance
of the principle of conditionalization as a rule for coherent updating of degrees
of beliefs. Informal discussion is also given as to how this concept of coherent
reasoning under uncertainty can be extended to scientific thinking in general and
to statistical and forensic science inferences in particular. A formal treatment of
utility theory is provided in Chapter 3.

2.1.1 A rational betting policy

A centuries-old practice that connects degrees of beliefs with action is betting.
Betting jargon uses odds to quantify the relative chances for a proposition H and
its negation: odds m : n in favour of H correspond to a probability of H equal to
m/(m + n).

Suppose your odds for the proposition that the bus involved in a hit-and-run
accident yesterday was blue were 4:1. This means that your personal probability
for that proposition is 4/5 = 0.8, and that it should be indifferent for you either
to pay ¤4 for buying a wager that pays back ¤5 in case the bus was blue (with a
net gain of ¤1) or to sell the same wager for exactly the same amount, engaging
yourself to pay back ¤5 in case the bus was blue (with a net loss of ¤1). Another
way of saying the same thing is as follows: if your odds are 4:1 in favour of the
proposition that the bus was blue, then you think a price of 80 cents is fair for a
ticket worth ¤1 if the bus was blue and nothing if it was not.

Bets have been offered, and they still are, on a wide range of propositions con-
cerning events, from games to political elections, for which there can be statistics.
However, even if there are not statistics, betting is a method, practised for a long
time, for quantifying personal degrees of belief in connection with choices. Real
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wagers, of course, must be decided during the lifetime of the bettors: if you make
a real bet on the colour of the bus, you must have a method to verify whether the
bus involved in the accident was blue. This is why real bets are not made on legal
judgements or scientific theories: one can bet on the actual outcome of the trial, the
decision of the jury, but one cannot bet if that decision is the truth of the fact. Also
the truth of some scientific hypotheses or theories will not be known during our
lifetime, and maybe not during the life span of mankind either. But decisions are
taken on the basis of uncertain hypotheses, in everyday life, in courts of justice, in
laboratories. Any help is welcomed on this subtle and important issue, so consider
what betting behaviour can teach us about coherent decision making.

What is learnt is that all betting policies that violate the laws of probability
are incoherent in the sense that they will lead to a sure loss, no matter which
proposition turns out to be true. The proofs of this fact are referred to as Dutch
Book arguments : ‘In British racing jargon a book is the set of bets a bookmaker
has accepted, and a book against someone – a Dutch Book – is one the bookmaker
will suffer a net loss on no matter how the race turns out’ (Jeffrey 2004, p. 5). There
are two kinds of Dutch Book arguments in the literature: a synchronic Dutch Book
argument providing a pragmatic justification of the laws of probability as standards
of coherence for sets of beliefs held at the same time, and a diachronic Dutch Book
argument providing a pragmatic justification of the principle of conditionalization
as a standard of coherence for belief change.

Denote with pr the price you think ‘fair’ to pay for winning ¤1 if proposition
H is true, and winning nothing if false (it doesn’t matter, in that case, if you lose
the price pr you have paid in advance, or if you pay that amount pr after H has
been verified to be false). So far, no assumption is made about the mathematical
properties of this measure pr , but the assumption is made that your degree of belief
that the proposition H is true is measured by pr . In this chapter, the symbol pr
will always denote the price of a bet, the symbols P and Q will denote probability
measures, and the symbols p and q will denote particular probability values.

Any ‘reasonable’ price must range between 0 and 1 (inclusive):

0 ≤ pr ≤ 1. (2.1)

Indeed, you would be ‘unreasonable’ if you were willing to pay more than the
ticket is worth, and no ‘reasonable’ person can be willing to pay you for playing
against him. Moreover, if H is known to be true, the only ‘reasonable’ behaviour
is not to bet, that is, the unique fair price is equal to the ticket’s worth:

if H is true , pr = 1. (2.2)

Suppose now that you can buy a ticket worth ¤1 if H is true, and nothing if
false, at price pr1 and a ticket worth ¤1 if H is false, and nothing if true, at price
pr2. If you buy both tickets, you’ll win ¤1 for sure; therefore, the only ‘reasonable’
prices are all those prices for which:

pr1 + pr2 = 1. (2.3)
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Indeed, if you buy the two tickets your gains, say G1 and G2, will be:

G1 = 1 − pr1 − pr2 if H is true; (2.4)

G2 = 1 − pr1 − pr2 if H is false.

Then, G1 = G2 = 0 if and only if (2.3) holds. If your subjective evaluation
of the tickets were such that (pr1 + pr2) > 1, and you were willing to buy both
tickets at those prices, then you would incur in a sure loss. And if your subjective
evaluation were such that (pr1 + pr2) < 1, and you were willing to sell both tickets
at those prices, again you would incur a sure loss.

Of course, nobody would participate in such a Dutch Book because it is easily
recognizable in this case that there are only two mutually exclusive and exhaustive
propositions. The Dutch Book argument holds for H1, H2, . . . , Hn mutually exclu-
sive and exhaustive propositions, and under the very general assumption that the
values of n tickets are variables X1, X2, . . . , Xn . Under these general assumptions,
the price at which you will be willing to buy or sell a ticket will be a fraction
pri Xi of its winning worth Xi . Therefore, your gains are given by the linear set
of equations:

G1 = X1 − pr1X1 − pr2X2 − · · · − prnXn ; (2.5)

G2 = X2 − pr1X1 − pr2X2 − · · · − prnXn ;
...

Gn = Xn − pr1X1 − pr2X2 − · · · − prnXn ;

and, in order to be able to make a Dutch Book against you, a bookmaker has to
find some X1, X2, . . . , Xn such that all the Gi ’s are negative values. It can be proved
algebrically that a Dutch Book is not possible if and only if:

1 − pr1 − pr2 − · · · − prn = 0. (2.6)

Equations (2.1), (2.2) and (2.6) are the axioms of finitely additive probability
measures . Therefore, if your quantitative subjective degrees of belief pri satisfy
these equations, then they are finitely additive probabilities, in the sense that they
satisfy exactly the mathematical properties of such measures. Moreover, we say
that your subjective degrees of belief are coherent , in the sense that no Dutch Book
can be arranged against you, if and only if they are finitely additive probabilities.
The idea that a quantitative measure of degrees of belief is given by the prices
of ‘fair’ bets can be traced back to the seventeenth century fathers of the math-
ematical theory of probability, Blaise Pascal and Christiaan Huygens, who called
mathematical expectation the ‘fair’ price of a bet, even though the synchronic
Dutch Book Theorem was explicitly formulated and proved for the first time only
in the twentieth century by the mathematician Bruno De Finetti (de Finetti 1937).
It was also known by the philosopher and logician Frank Ramsey, although in his
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(1931) article he did not provide a formal proof. De Finetti and Ramsey have been
the most important representatives, in the last century, of the so-called subjective,
or personalist , interpretation of probability which is embraced in this book.

When the number of propositions is infinite, a Dutch Book argument for addi-
tivity can still be given, provided the infinite set of propositions is a countable set2.
A simple version of the Dutch Book argument for countable additive probability
measures can be found in Jeffrey (2004, pp. 6–9). An infinite countable bet can
be represented by a ticket that reads: ‘For each positive whole number n , pay
the bearer ¤1 if proposition Hn is true’. Of course, such a bet would be only a
hypothetical one. Therefore, pragmatic justification can be extended to countable
additive probability measures and, later in this chapter, it shall be seen what the
implication is for subjective Bayesians ‘to bet’ on generalizations (‘All x are such
that . . .’), that is, to bet on scientific theories.

2.1.2 A rational policy for combining degrees of belief

In the standard mathematical presentations of probability theory, the conditional
probability formula, which holds between any two propositions A and E , is given
as a definition:

P (A | E ) = P (A, E )

P (E )
provided that P (E ) > 0. (2.7)

In words, the probability that the proposition A is true, given that the proposition
E is true, is equal to the probability that propositions A and E are both true, divided
by the probability that E is true. The so-called product rule of probability is merely
a restatement of (2.7):

P (A, E ) = P (A | E )P (E ). (2.8)

From the subjective Bayesian point of view the product rule is not a definition
but a fundamental principle of coherent reasoning under uncertainty which can
be justified by a Synchronic Dutch Book argument , on a par with the probability
axioms: a Dutch Book cannot be arranged against you if and only if your subjective
degrees satisfy the product rule. The argument is based on another centuries-old
betting practice, that one of accepting conditional bets , and runs as follows (Jeffrey
2004, 1988).

You are uncertain about the truth of propositions A and E : this means that you
do not know which one of the possible propositions (A, E ), (A, Ē ), (Ā, E ) and (Ā, Ē )
is true (Ā and Ē denote the logical negations of A and E ). Assume now that your

2‘A countable set is defined as one whose members (if any) can be arranged in a single list, in
which each member appears as the n-th item for some finite n. Of course, any finite set is countable in
this sense, and some infinite sets are countable. An obvious example of a countable infinite set is the
set I + = {1, 2, 3, . . .} of all positive whole numbers.’ (Jeffrey 2004, p. 7).
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degree of belief in the truth of proposition A, on condition that the proposition E
turns out to be true, is the price pr1 for a ticket that is worth ¤1 if A and E both hap-
pen to be true, nothing if E turns out to be true but A is false, and it is worth exactly
pr1 if E happens to be false, no matter what A turns out to be. That is, if the condi-
tion of the bet on A does not occur, then the bet is ‘called off’ and you are given back
the amount paid for the ticket, i.e. pr1: this is called a conditional bet , and it was
used precisely by Thomas Bayes (Bayes 1763) to define the concept of conditional
probability in his Essay toward solving a problem in the doctrine of chances .

Suppose you are offered three tickets T1, T2 and T3, the values of which depend
upon all the possible logical combinations of A and E as shown in Table 2.1:

Table 2.1 The pay-off matrix.

(A, E ) (A, Ē ) (Ā, E ) (Ā, Ē )

T1 1 pr1 0 pr1

T2 0 pr1 0 pr1

T3 1 0 0 0

It can be seen that ticket T1 is a conditional bet on A, ticket T2 is a simple bet
with pay-off ¤ pr1 if Ē is true, and nothing if E is true, and T3 is a simple bet on
A and E whose pay-off is ¤1. Now, if you buy both tickets T2 and T3, this action
is equivalent to buying ticket T1 only, because they are worth together exactly the
same as T1 (see Table 2.2):

Table 2.2 The combined pay-off matrix.

(A, E ) (A, Ē ) (Ā, E ) (Ā, Ē )

T1 1 pr1 0 pr1

T2, T3 1 pr1 0 pr1

Therefore, it would be surely ‘irrational’ for you to buy T2 and T3 at prices pr2

and pr3 which did not satisfy the equation:

pr1 = pr2 + pr3. (2.9)

But, if you are coherent, these prices are your subjective probabilities for win-
ning, respectively, the fraction P (Ē ) of ¤pr1 if proposition Ē is true, and ¤1 if
proposition (A, E ) is true:

pr2 = pr1P (Ē ); (2.10)

pr3 = P (A, E ).
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Therefore, by substituting in (2.9), we obtain:

pr1 = pr1P (Ē ) + P (A, E ) = pr1 [1 − P (E )] + P (A, E ), (2.11)

and, solving for pr1:

pr1 = P (A, E )

P (E )
= P (A | E ). (2.12)

Violation of the conditional probability rule means ‘to place different values
in the same commodity bundle in different guises’ (Jeffrey 2004, p. 13). What
happens if your prices do violate (2.9)? It can be formally proved that a Dutch
Book could be made against you (de Finetti 1937).

The Synchronic Dutch Book Argument also provides a pragmatic justifica-
tion for the claim that the following elementary theorem of probability calculus,
the so-called theorem on total probabilities , is an all-important rule of reasoning
under uncertainty:

P (A) = P (A, E ) + P (A, Ē ) = P (A | E )P (E ) + P (A | Ē )P (Ē ). (2.13)

Dennis Lindley has called this rule the theorem of the extension of the
conversation:

The extension theorem is perhaps the most widely used of all probability
results and yet, at first glance, it looks as if it might be rarely useful, because
it evaluates P (A) by introducing another event E . What can be the point of
adding E to the consideration of the chance of A occurring? The answer is
that in many cases consideration of A alone is difficult and it is much easier
to break it down into separate parts, given E and given Ē . (Lindley 1985,
p. 40)

It shall soon be seen that these ‘cases’ occur precisely in scientific inference in
general, and in statistical inference in particular, where the theorem is extended to
any number of exclusive and exhaustive uncertain propositions E1, E2, . . . , En :

P (A) =
n∑

i=1

P (A | Ei )P (Ei ). (2.14)

2.1.3 A rational policy for changing degrees of belief

As has been seen so far, the probability axioms, the product rule and the extension
of conversation rule are rules for combining together degrees of belief based upon
a given body of evidence. The bets in Table 2.1 are offered simultaneously on the
basis of the same information: nothing has been said so far about how to change
degrees of belief when the body of evidence changes. However, the product rule
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immediately provides such advice if the so-called principle of conditionalization
is assumed.

The principle simply says that, if your degrees of belief at a certain time are
represented by a probability P , and then you acquire new evidence which makes
you know that a proposition E is true, then your new degrees of belief Q ought to
be equal to your old conditional probabilities P given E , that is, for any proposition
A such that P (A) > 0, and any proposition E such that P (E ) > 0 and Q(E ) = 1:

Q(A) = P (A | E ). (2.15)

A simple justification of the principle of conditionalization as a rule of coherence
can be given as follows (Jeffrey 1988). Suppose you are offered the choice between
buying today a ticket T1, which is again a conditional bet worth ¤1, at the price pr1

determined by your probability value p of today, and buying tomorrow both tickets
T2 and T3 at prices pr2 and pr3, which will be determined by your probabilities q
of tomorrow, whatever they will be (see Table 2.3).

Table 2.3 Pay-off matrix for today’s and tomorrow’s bets.

(A, E ) (A, Ē ) (Ā, E ) (Ā, Ē ) Prices

T1 1 pr1 0 pr1 pr1 = P(A | E )
T2 0 pr1 0 pr1 pr2 = pr1Q(Ē ) = P(A | E )Q(Ē )
T3 1 0 0 0 pr3 = Q(A, E )

You do not know today what your probabilities will be tomorrow: they shall
depend on what is going to happen tomorrow, but what you want to have today is
a rational policy for changing probabilities in case you will receive tomorrow new
evidence about A and E . But the action of buying tomorrow both tickets T2 and T3

will bring you the same pay-off as the action of buying today ticket T1, no matter
what your probabilities will be tomorrow: ¤1 if A and E are true, ¤pr1 if it is not
the case that E is true, and ¤0 if it is not the case that both A and E are true.

Therefore, what you do know today is that today’s probabilities p and your
tomorrow’s probabilities q must be related by the equation:

P (A | E ) = P (A | E )Q(Ē ) + Q(A, E ). (2.16)

Solving for P (A | E ) as before, we obtain:

P (A | E ) = P (A | E ) [1 − Q(E )] + Q(A, E ),

P (A | E ) = P (A | E ) − P (A | E )Q(E ) + Q(A, E ),

P (A | E ) − P (A | E ) + P (A | E )Q(E ) = Q(A, E ),

P (A | E ) = Q(A, E )

Q(E )
,
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and thus

P (A | E ) = Q(A | E ). (2.17)

Equation (2.17) yields the rational policy you were looking for: your today’s
and tomorrow’s conditional probabilities must be the same. It is easy to see that
this policy amounts to obeying the principle of conditionalization.

Indeed, suppose that tomorrow you know that E is true: Q(E ) = 1. Therefore,
your tomorrow’s price for ticket T2 will be zero and your tomorrow’s price for
ticket T3 will be:

P (A | E ) = Q(A, E ) = Q(A). (2.18)

It can be shown that, if your today’s and tomorrow’s degrees of belief are not
related as prescribed by equation (2.17), then a Dutch Book can be made against
you. This Conditional Dutch Book argument was put in print for the first time
by Teller (1973), who attributed it to the philosopher David Lewis, who in turn
gave the credit to another philosopher, Hilary Putnam, who mentioned this result
as early as in 1963, in a Voice of America broadcast, reprinted in Putnam (1975).

A very useful generalization of the principle of conditionalization is easily
obtained by equation (2.17). Suppose that the new body of evidence does not
allow you to know E with certainty, but it is such that your probability for E
changes: that is, P (E ) �= Q(E ) and Q(E ) < 1. We can rewrite (2.17) as follows:

Q(A, E )

Q(E )
= P (A, E )

P (E )
, (2.19)

i.e.

Q(A, E ) = Q(E )

P (E )
P (A, E ). (2.20)

Given that you can update also Q(A, Ē ) in the same way, by extension of
conversation your new probability is:

Q(A) = Q(A, E ) + Q(A, Ē ). (2.21)

You have a rule for changing degrees of belief in a coherent way also in case
you do not know E for certain. This rule is known in the philosophical literature
as Jeffrey’s Rule or Jeffrey’s conditionalization , from the name of the philosopher
who proposed it (Jeffrey 1983, 1988, 2004). Dutch Book arguments for Jeffrey’s
Rule have been given by Armendt (1980) and Skyrms (1987).
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2.2 COHERENT DECISION MAKING UNDER
UNCERTAINTY

Maybe you do not consider betting a serious business, but insurance is based on
the same principles. Maybe you have not made a bet on sport games or played a
lottery in your life, but your income also depends on the betting behaviour of the
financial markets. The acceptance of a bet is essentially the choice of an action
with an uncertain outcome as an alternative to the choice of another action, i.e. a
refusal of the bet and adherence to the status quo. The fact that betting in ordinary
life is a voluntary activity should not conceal the fact that

we are all faced with uncertan events and have to act in the reality of that
uncertainty. [. . .] In this sense all of us ‘gamble’ every day of our lives [. . .]
The essential concept is action in the face of uncertainty. (Lindley 1985,
p. 19)

When you have to make choices among alternative actions with uncertain conse-
quences the standard of coherence valid for wagers can be applied, if you think the
case is important enough to deserve a careful appraisal of which is the best course
of action. There are two main problems in applying the rational betting policy so
far outlined to real life: how to estimate the values of the possible consequences
of alternative decisions, and how to estimate the probabilities of propositions in
realistic, and complicated, scenarios. Consider the first problem.

2.2.1 A method for measuring the value of consequences

The consequences considered so far were small monetary rewards, equal to or less
than ¤1, and monetary prices have been used as measures of subjective degrees
of belief. But when we have to choose among alternative actions in real life the
possible consequences of most actions are neither monetary rewards nor can be
sensibly compared to monetary rewards. Even when consequences are quantifiable
as monetary rewards, their subjective evaluation, the ‘utility of money’, usually is
not linearly increasing with the increase of the amount of money, as economists
know well. The eighteenth century mathematician Daniel Bernoulli was the first
to suggest modification of the simple theory of mathematical expectation by the
use of what he called ‘moral expectation’: the value or the ‘utility’ for the owner
of a monetary gain should not only be proportional to the gain itself, but also
inversely proportional to the owner’s total income. The intuitive idea behind this
suggestion was that a gain of, say, ¤100 should be more subjectively valuable,
and a loss of ¤100 more painful, for poor people than for rich people. Bernoulli’s
hypothesis also implied that monetary losses are more strongly felt than gains of the
same amount: a 50%–50% gamble is disadvantageous, for although the expected
monetary loss is equal to the expected monetary gain, the loss of ‘utility’ would
be greater than the gain of ‘utility’. The hypothesis was a big step forward for
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economics for it provided an explanation of people’s observed behaviour like an
aversion to gambling and a propension to subscribe to insurances, but it seemed to
be bad news for the recommendation to apply rational betting policies to real life
problems: through Sections 2.1.1–2.1.3 monetary prices have been set low enough
to guarantee that the subjective ‘utility’ of money might not have a significant
impact on your judgements, but if the tickets’ values are significant with respect
to your income, and if Bernoulli is right, your prices will not only reflect your
subjective degrees of belief but also your subjective ‘utility’ of money. How are
these two components of your evaluation to be untangled?

In general, the ‘expected utility’ of an action for you (Bernoulli’s moral expecta-
tion) will depend not only on the probability of obtaining the desired consequence
but also on the value for you of that consequence compared with the values of
other consequences that could be obtained my taking alternative courses of action.
How is the value of consequences to be evaluated?

For a long time after Bernoulli’s invention of a mathematical utility fuction,
economists believed that it was only possible to ascertain a qualitative ordering of
preference among consequences, e.g. to ascertain by means of observed choices
that you prefer C to A and that, at the same time, prefer C to B , but a numerical
estimate of the strength of your preference of C over A and of C over B was
thought to be impossible. It was Frank Ramsey (1931), and a few years later, and
independently from him, the mathematician John von Neumann together with the
economist Oskar Morgenstern, who got the right insight: gambles were not the
problem, they were the solution! In their book Theory of Games and Economic
Behavior , first published in 1944, von Neumann and Morgenstern formulated the
basic idea in this way:

Let us for the moment accept the picture of an individual whose system of
preferences is all-embracing and complete, i.e. who, for any two objects or
rather for any two imagined events, possesses a clear intuition of preference.

More precisely, we expect him, for any two alternative events which are
put before him as possibilities, to be able to tell which one of the two
he prefers.

It is a very natural extension of this picture to permit such an individual
to compare not only two events, but even combinations of events with stated
probabilities (indeed this is necessary if he is engaged in economic activities
which are explicitly dependent on probability).

[. . .] Consider three events, C , A, B , for which the order of the individual’s
preferences is the one stated. Let α be a real number between 0 and 1, such
that A is exactly equally desirable with the combined event consisting of a
chance of probability 1 − α for B and the remaining chance of probability
α for C . Then we suggest the use of α as a numerical estimate for the
ratio of the preference of A over B to that of C over B . (von Neumann and
Morgenstern 1953, pp. 17–18)
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Table 2.4 A hypothetical gamble as to whether E or Ē is
true. Possible decisions are d1 and d2 with utilities U (A),
U (B), U (C ) for monetary rewards A, B , C , respectively.

E Ē

d1 U (A) U (A)
d2 U (C ) U (B)

Suppose that, given the choice between three non-monetary rewards A, B , C , you
prefer C to A and A to B and assume, for the sake of argument, that the ‘utilities’
these rewards have for you are measured by three non-negative real numbers U (C ),
U (A), U (B ), less than or equal to 1, such that U (C ) > U (A) > U (B ). Now imagine
a possible choice between a decision d1, which is the decision to do an action which
yields as a consequence reward A with certainty, and a decision d2, which is the
decision to do an action yielding reward C in the case a proposition E is true and
B in the case E is false (see Table 2.4).

Consider, for example, a hypothetical gamble where a chance device offers a
probability α of obtaining C , and (1 − α) of obtaining B , where α is continuously
distributed from zero to one. For example, you can imagine drawing a black ball
from a urn containing only black and white balls in a known proportion and such
that the total number of balls and its composition can be varied so that the value α

can be ‘fine tuned’ at will. The proposition E will be ‘a black ball is drawn’ and
‘a white ball is drawn’ will be the proposition Ē .

Now imagine that the composition of the urn is changed until a probability
α∗ is found such that you are indifferent between d1 and d2. But, if you are a
coherent bettor , then your fair ‘price’ of decision d2 must be given by the sum
α∗U (C ) + (1 − α∗)U (B ). Therefore, the fact that you are indifferent between the
choice of d1 and the choice of d2 means that, for you:

U (A) = α∗U (C ) + (1 − α∗)U (B ). (2.22)

The following expression for α∗ is then obtained:

α∗U (C ) − α∗U (B ) = U (A) − U (B ),

α∗ = U (A) − U (B )

U (C ) − U (B )
. (2.23)

This is von Neumann’s and Morgenstern’s ‘suggestion’, and it is easy to see
that such a probability α∗ can be taken as a measure of your subjective utility
U (A). As is explained later, it is possible, and convenient, to put U (C ) = 1 for
the best reward C and U (B ) = 0 for the worst reward B ; then, it immediately
follows that:

U (A) = α∗. (2.24)
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2.2.2 The consequences of rational preferences

In reframing von Neumann’s and Morgenstern’s quotation the cart has been put
before the horse, assuming (i) that a quantitative ordering in the set of real numbers,
U (C ) > U (A) > U (B ), corresponds to the qualitative ordering of preference C ,
A, B , and (ii) that you behave as a coherent bettor when you are faced with
a hypothetical gamble involving the three rewards. Now, the facts (i) and (ii)
can be rigorously proved to hold true, provided that your ordering of preferences
satisfies three conditions. An informal explanation of these conditions and their
consequences is given here, while a formal treatment is offered in Chapter 3.

Any real-world decision problem can be analyzed into three basic elements:

1. A set D of feasible alternative decisions d1, d2, . . . , dm : only one of them can
be taken at one time.

2. A finite set E of exhaustive and mutually exclusive uncertain events or states
of nature e1, e2, . . . , en : only one of them will occur.

3. A set C of rewards cij , which are the consequences of having taken decision di

when event ej occurs.

The probabilities of the events E can also depend upon your decision, so that
your probability pij of ej given decision di can be different from your probabil-
ity pkj of the same event given another decision dk . You are supposed to follow
a rational policy for assigning degrees of belief to states of nature, so that each
feasible decision is a ‘gamble’ di = (ci1, . . . , cin; pi1, . . . , pin ) consisting of the con-
sequences ci1, . . . , cin , with probabilities pi1, . . . , pin , such that

∑n
j=1 pij = 1. You

are now asked to consider, in addition to these gambles all the following hypotheti-
cal gambles: (i) all the compound gambles (c, c′; α, 1 − α) which can be composed
of any pair of different elements c, c′ in the set C , with probabilities 0 < α < 1;
(ii) all the compound gambles (d , d ′; α, 1 − α) which can be composed of any pair
of different elements d , d ′ in the set D , with probabilities 0 < α < 1; (iii) all the
‘degenerate’ gambles which yield any one of the rewards in C with probability 1.
Decisions d1 and d2 in Table 2.4 are ‘gambles’ of this kind: d1 is an instance of
(iii) and d2 is an instance of (i).

This enlarged set G of gambles f , g , h , . . ., is infinite, even though the sets D
and C are finite, because α can take all real values from zero to one, and you
are also asked to be able to express a preference between any two gambles in
G which are offered as possibilities. This psychological effort must be made in
order to have a rich mathematical structure on your preference system: this rich
mathematical structure is defined by the following conditions or axioms .

The first condition requires that your system of preferences on G is complete
and transitive. That the ordering is complete means, as already explained in von
Neumann’s and Morgenstern’s quotation, that for any two gambles f and g , you
are able to tell either which one of the two you prefer or that you are indifferent
between them. That the ordering is transitive means that if you prefer gamble f to
gamble g and prefer gamble g to gamble h , then you prefer also f to h; and if you
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are indifferent between f and g and between g and h , then you are also indifferent
between f and h .

The second condition requires that your ordering preference is invariant with
respect to compound gambles. More specifically, it requires that if you prefer
gamble f to gamble g (or you are indifferent between them), then, for any other
gamble h , and any probability α, you prefer the compound gamble that offers
probability α of playing gamble f and probability (1 − α) of playing gamble h , to
the compound gamble that offers probability α of playing gamble g and probability
(1 − α) of playing gamble h:

f is preferred (is indifferent) to g if and only if the gamble (f , h; α, 1 − α) is
preferred (is indifferent) to the gamble (g , h; α, 1 − α), for any h and any α.

The third condition requires the comparability of gambles, in the sense that there
are no gambles in the set G that are infinitely desirable or infinitely undesirable
for you:

let f , g and h be any three gambles such that f is preferred (is indifferent)
to g and g is preferred (is indifferent) to h . Then there exists probabilities
α, β ∈ (0, 1), such that (i) g is preferred to the gamble (f , h; α, 1 − α); (ii)
the gamble (f , h; β, 1 − β) is preferred to g .

If (i) does not hold, then you will prefer a chance of obtaining the best conse-
quence f , no matter how small it is, to g ; that is, you believe that f is infinitely
better than g (and h). If (ii) does not hold, then you will prefer g , no matter how
small is the chance of obtaining the worse consequence h; that is, you believe that
h is infinitely worse than g (and f ).

If these three axioms are satisfied by your preference system, then the
so-called expected utility theorem can be proved, that says that there exists
a function U on the set C of rewards such that, for any dj and dk belong-
ing to the set D , di = (ci1, . . . , cin; pi1, . . . , pin ) is preferred (indifferent) to
dk = (ck1, . . . , ckn ; pk1, . . . , pkn ) if and only if

n∑
j=1

pij U (cij ) ≥
n∑

j=1

pkj U (ckj ). (2.25)

This means that your choice depends only on the value of a unique parameter: the
expectation or mean value

∑n
j=1 pij U (cij ), called the expected utility of a decision

di . As a consequence, the best decision for you is the decision for which the value
of this parameter is highest, that is, the decision that maximizes the expected utility .

Moreover, this function U is unique up to linear transformations: if U (cij ) is
a utility function then aU (cij ) + b is another utility function which preserves the
same ordering of U (cij ), that is, the two functions can be equivalently used to
represent the same qualitative preference ordering, shifting only the origin of the
curves. This invariance under linear transformation is the mathematical property
that allows you to assign utility 1 freely to the best reward in the set C , and utility
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0 to the worst reward, as we have done in Table 2.4. Then, if your preference
ordering satisfies the axioms, it is true that:

(i) the ‘price’ for the gamble (C , B; α∗, 1 − α∗) will be evaluated by you as if you
were calculating its expected utility α∗U (C ) + (1 − α∗)U (B ).

(ii) for any A, there exists a value α∗ such that you will be indifferent between the
‘degenerate’ gamble (A, A; α∗, 1 − α∗) and the gamble (C , B; α∗, 1 − α∗).

Note that, in practice, this method to measure utility is subject to measurement
errors (like any measure of empirical quantities), especially when the value of α∗
is very near to either 0 or 1. Methods to improve the measurement can be found
in the technical literature (Keeney and Raiffa 1976).

Formal proofs of the expected utility theorem were given for the first time
by Ramsey (1931) and von Neumann and Morgenstern (1953). Marschak (1950)
provided the axiomatization in terms of ‘gambles’, or ‘prospects’ as he called
the probability distributions of rewards (ci1, . . . , cin; pi1, . . . , pin ), an axiomatiza-
tion which has been followed by the informal presentation given in the text.
De Groot (1970) provides a modern presentation of this axiomatic approach in
term of ‘gambles’.

According to von Neumann and Morgenstern (1953) the probabilities pij which
appear in gambles di = (ci1, . . . , cin; pi1, . . . , pin ) were frequencies in long runs,
but they wrote in a footnote that ‘if one objects to the frequency interpretation
of probability then the two concepts (probability and preference) can be axiom-
atized together’ (von Neumann and Morgenstern 1953, p. 19). When they wrote
this passage the joint axiomatization of subjective probability and utility had been
already given by Ramsey (1931), but his approach became widely known only
after Savage’s The Foundations of Statistics (1972) was published.

Savage’s axiomatization encompasses probabilities and utilities starting from a
preference ordering on the set D of decisions di = (ci1, . . . , cin ; e1, . . . , en ), that
is, without assuming that decision makers have already assessed their subjective
probabilities for the states of nature ej . Savage’s axioms include the condition of
completeness and transitivity for the preference ordering on D , and what he called
the sure-thing principle, which is the equivalent of our requirement of invariance
of preferences with respect to compound gambles.

Looking at Table 2.5 the principle says that, if d1 is preferred (is indifferent)
to d2, then d3 is preferred (is indifferent) to d4, for any reward c, r . The reason
why it has been called the ‘sure-thing principle’ should be obvious: the pairs of

Table 2.5 The ‘sure-thing’ principle.

e ē

d1 a c
d2 b c
d3 a r
d4 b r
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decisions (d1, d2) and (d3, d4) have the same consequence in the case, ē, that the
event e is false.

In Savage’s approach it can be proved that, if your preferences among decisions
D satisfy these two axioms, plus other axioms which play the same role of com-
parability of gambles, then your degrees of belief on the set E of states of nature
are represented by a unique numerical function P that satisfies the axioms of the
mathematical probability, like fair betting prices, and your ordering of preferences
on the set C of consequences is represented by a utility function U for which the
expected utility theorem holds.

2.2.3 Intermezzo: some more thoughts about rational preferences

It is important to understand the meaning and the scope of the expected utility
theorem. The theorem is what in the technical jargon of modern measure theory is
called a representation theorem (Krantz et al. 1971): it says that, if your preferences
among gambles have a certain non-numerical structure, namely, the structure satis-
fying the axioms, then your preferences can be represented numerically by an inter-
val function that agrees with them in the sense specified by equation (2.25). If your
preferences fail to satisfy any one of the axioms, then they cannot be represented by
such a numerical function. But why, or in which cases, should your preferences fail?

One must keep in mind that the preference ordering on the set G of ‘gambles’ is
constructed starting from a given decision problem, with sets D , E , and C which are
relative to that problem: this means that your utility function U is always relative
to that framework. In a sense, the Ramsey–von Neumann–Morgenstern utility
function U is context-dependent and it is significantly different from Bernoulli’s
‘utility’ and from the concept of ‘utility’ held by nineteenth century philosophers
and economists. Unlike Bernoulli, it is not supposed that all ‘rational’ men have
the same subjective utility function, i.e. that they are risk averters: a utility function
inversely proportional to the decision maker’s total income is now only one of the
possible shapes of the utility function U , when consequences are monetary rewards.
The actual shape of your function U relative to a given decision problem will be
revealed by your choices among gambles which are combinations of the rewards
in that decision problem. Nor is it asked of you to have a unique subjective utility
function over all possible decisions in your entire life. It is only required that,
for particular decision problems under uncertainty which you consider important
enough to think about, you can bring your own preferences among the rewards
involved in that decision into compliance with the conditions of the theorem. If
you are successful in doing that, then your preferences for that decision problem
can be represented by a utility function and the decision that maximizes expected
utility picks up what is the best decision according to the beliefs you entertain and
to your revealed preferences. If, after careful thought, you arrive at the conclusion
that your preference system cannot be brought to agree with the axioms, then the
decision that maximizes expected utility shall not be the best decision for you.
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Consider possible violations of the first axiom. Transitivity seems to be a
straightforward requirement for rational choices: if d1, d2 and d3 are alternative
one-time actions and you prefer d1 to d2, and d2 to d3 but also d3 to d1, then
you would be entrapped in a vicious circle at the moment of taking a decision.
Experiments show that transitivity can be violated. For example, by adding small
enough amounts of sugar to successive cups of coffee, I can arrange a sequence
of cups of coffee such that you will be indifferent between adjacent cups, but not
between the first and the last. You are ‘tricked’ into a transitivity failure because
our senses have a threshold of perception. If it were really important to distinguish
between adjacent cups, the problem could be ‘reframed’ by using chemical tests.

Completeness is a desirable property of rational preferences whose importance
increases with the importance of the decision at hand: failure of completeness can
be due to a coarse description of the alternatives and you can try to eliminate it
by refining the frame. Sometimes what looks like a failure of completeness can
be due to the complexity of the reward set C , when more components enter in
the specification of the consequences of a decision. Technically, this is called a
multi-attribute decision problem (Keeney and Raiffa 1976), and what can be done
is to try and analyze a reward c into its k components, called attributes , and then
compare decision d1 and decision d2 by a step-by-step comparison of each attribute.
An elementary exposition of this method is given in Smith (1988).

Consider now the third axiom, the comparability of gambles. This is not a ratio-
nality condition: it is a mathematical condition that must be satisfied in order that
the utility function U takes real numbers as its values. Indeed, the real number line
is continuous and enjoys the so-called Archimedean property: any pair of positive
numbers x and y are comparable, that is, the ratio x/y is not infinite. The axiom
requires that you use ‘a reward space whose components are not so different in
priority that they cannot be compared using lotteries’ (Smith 1988, p. 28). There is
nothing ‘irrational’ in violating such a condition: it is an empirical fact that your
reward set satisfies it. Here is an example given by Smith (1988, p. 28), involv-
ing a multi-attribute decision problem with two attributes, where the condition
can fail.

A doctor’s reward set is a pair (x , −y) where x = 1 if a patient survives a given
treatment and x = 0 if the patient does not survive, and y is the cost of treatment.
Treatment T1 has probability 1 of success and costs y1; also treatment T2 has
probability 1 of success but is more expensive: y2 > y1; treatment T3 is equally as
expensive as T2 but has only probability 1/2 of success (see Table 2.6).

Table 2.6 The doctor’s reward set.

Patient survives Patient does not survive

Treatment T1 c11 = (1, −y1); p11 = 1 c21 = (0, −y1); p21 = 0
Treatment T2 c12 = (1, −y2); p12 = 1 c22 = (0, −y2); p22 = 0
Treatment T3 c13 = (1, −y2); p13 = 1/2 c23 = (0, −y2); p23 = 1/2
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Clearly, T1 must be preferred to T2 and T2 to T3. But the doctor may well
prefer T2 to a ‘randomized’ treatment which gives treatment T1 with probability
α and treatment T3 with probability (1 − α), regardless of the value of α, because
the survival of the patient is infinitely more important than the cost of treatment.
The example is an extreme, and unrealistic, case because consequences having
probability one are involved: if probabilites of survival were less then one for T1

and T2, things might be different. This example is given to make the point that
violations of the axiom are empirically possible and that they are not necessarily
evidence of ‘irrational’ preferences but a reflection of a particular scale of values.

The moral is that you must always carefully analyze your reward set and, as
a forensic scientist, the reward set of your client, and you must not always take
for granted the applicability of expected utility theory to the problem at hand.
Indeed, the most fundamental problem to be dealt with in applying expected utility
theory to legal decisions has to do exactly with the comparability of decisions which
involve deep issues about ethical values of society: is the conviction of an innocent
person an infinitely bad outcome? If the answer is yes, then the theory cannot be
applied. This is not an issue that is of direct interest for forensic scientists, because
their decisions consider the analysis of data and not the final decision of a trial.
Something will be said about this issue at the end of the chapter.

Last but not least, consider the second axiom in both of the two versions that
have been presented: preferences are invariant with respect to compound gambles
and Savage’s ‘sure-thing principle’. This axiom is a rationality condition: it requires
that in your system of preferences compound gambles like (f , h; α, 1 − α) and
(g , h; α, 1 − α) be ranked as simple ones like f and g . In other words, it forces
you not to consider the anxieties (or the pleasures) associated with the very act
of gambling. This is a necessary condition for the existence of a utility function
which satisfies the expected utility property: indeed, equation (2.22) requires a
hypothetical comparison between a sure reward and a gamble. Notice that what is
being considered is not measurable by a Bernoulli utility function, for to measure
your subjective utility of money, in a form that could be Bernoullian, one must use
equations like (2.22), where A, B , and C are now monetary rewards, and therefore
one takes for granted the comparability of sure and uncertain rewards.

Von Neumann and Morgenstern (1953) asked in their book the questions:

May there not exist in an individual a (positive or negative) utility of the
mere act of ‘taking a chance’, of gambling, which the use of mathematical
expectation obliterates? How did our axioms get around this possibility? (von
Neumann and Morgenstern 1953, p. 28).

Their answer was:

As far as we can see, our postulates do not attempt to avoid it. Even that
one which gets closest to excluding a ‘utility of gambling’3 seems to be
plausible and legitimate, – unless a much more refined system of psychology

3The authors are referring to preferences that are invariant with respect to compound gambles.
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is used than the one now available for the purposes of economics. [. . .] We
have practically defined numerical utility as being that thing for which the
calculus of mathematical expectation is legitimate. Since [the axioms] secure
that the necessary construction can be carried out, concepts like a ‘specific
utility of gambling’ cannot be formulated free of contradiction on this level.
(von Neumann and Morgenstern 1953, p. 28)

It might be argued that a difference has to be made between real gambles and
the theoretical idealizations used for calibrating utility scales, and the axiom asks
you to be detached from a ‘specific utility of the mere act of gambling’ in those
idealizations. That this is difficult to do, even in hypothetical choices, is shown by
the famous ‘Allais paradox’, named from the French economist who presented it
(Allais 1953).

You are offered a hypothetical choice between two lotteries with 100 tickets
where all tickets are equally likely to win and the pay-offs are given according
to Table 2.7.

Table 2.7 The Allais’ Paradox: M stands for a million euros. d1 is the decision to take a
gamble that offers 1 million whichever ticket is drawn; d2 is the decision to take a gamble
that offers nothing if ticket number 1 is drawn, 5 million if tickets numbered from 2 to 11
are drawn, 1 million if tickets numbered from 12 to 100 are drawn; d3 is the decision to
take a gamble that offers 1 million if tickets numbered from 1 to 11 are drawn, and
nothing if tickets numbered from 12 to 100 are drawn; and d4 is the decision to take a
gamble that offers 5 million if tickets numbered from 2 to 11 are drawn, and nothing if all
the other tickets are drawn.

Ticket number

1 2 − 11 12 − 100

d1 1M 1M 1M
d2 0 5M 1M
d3 1M 1M 0
d4 0 5M 0

The ‘degenerate’ gamble d1 offers ¤1 million with certainty; the gamble d2

offers a 1% chance of winning ¤0, a 10% chance of winning ¤5 million and a
89% chance of winning ¤1 million: which one do you prefer?

Now you are offered the choice between gambles d3 and d4 (see Table 2.7)
which one do you prefer? If you have preferred d1 to d2 and d4 to d3, then you have
violated the ‘sure-thing principle’ and a utility function does not exist which agrees
with your preferences in this case and satisfies the expected utility property (2.25).

Allais’s counterexample has been the cause of many heated discussions since
its appearance. The standard Bayesian response is to claim that expected utility
theory is normative, and not descriptive: its axioms are conditions that characterize
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the preferences of an ideally rational agent, and the fact that empirically observed
behaviour violates them is not a valid argument against the hypothesis that they
are coherence requirements. The point is: should an ‘ideally rational agent’ have
a ‘utility of the mere act of gambling’? Advocates of expected utility theory say
‘no’. According to their intuition the ‘sure-thing principle’ is a condition that an
ideally rational agent ought to follow and one should try for it when and where
one can. In Allais’ case, the behaviour that contravenes the principle is considered
like a mistake in reasoning. Adversaries of the theory argue that the principle is
not such a compelling condition of rationality, and many alternative proposals have
been put forward in the literature (Allais and Hagen 1979).

Any scientific theory, any scientific research programme contains unsolved prob-
lems, ‘puzzles’ and ‘anomalies’, to use a term made popular by the historian of
science Thomas Kuhn, in his famous book The Structure of Scientific Revolutions
(Kuhn 1970). Allais’ paradox is an ‘anomaly’ of the Bayesian paradigm, but no
paradigm, and no theory, is rejected simply because there are anomalies: there
must exist an alternative theory which provides satisfactory solutions to some of
the anomalies, is able to ‘save’ in its framework most of the problems solved by the
old theory, and possibly formulates new problems and opens new research paths.
As it is attempted to be shown in the rest of the chapter, the Bayesian paradigm
links decision making and scientific and statistical reasoning in a rich, fruitful and
complete rational approach to everyday life. No alternative theory of rational choice
that has been proposed so far is as wide in its scope and as capable of producing
new results as the Bayesian paradigm.

It constitutes a much deeper problem to formulate a system, in which gam-
bling has under all conditions a definite utility or disutility, where numer-
ical utilities fulfilling the calculus of mathematical expectations cannot be
defined by any process, direct or indirect. [. . .] Some change of the sys-
tem [of axioms], at any rate involving the abandonment or at least a radical
modification of [the axiom of compound gambles] may perhaps lead to a
mathematically complete and satisfactory calculus of utilities, which allows
for the possibility of a specific utility or disutility of gambling. It is hoped that
a way will be found to achieve this, but the mathematical difficulties seem
to be considerable. (von Neumann and Morgenstern 1953, pp. 629–632)

We think it can be fairly said that no such new system is presently available.

2.2.4 The implementation of coherent decision making under
uncertainty: Bayesian networks

The fact that we have a standard for coherent reasoning under uncertainty does not
make the assessment of subjective probabilites an easy task. Also the judgements
of probabilistically well-trained people might happen not to satisfy the probability
axioms: there is extensive empirical evidence that people fall for probabilistic
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fallacies, that they make systematic errors in their explicit probabilistic judgements
and that they make incoherent decisions (Baron 2000; Goldstein and Hogarth 1997;
Kahneman et al. 1982; Tversky and Kahneman 1986). The best way of framing
problems of judgement under uncertainty that could help people to reason in a
probabilistically correct way is an issue under current debate amongst psychologists
(Gigerenzer and Hoffrage 1995; Gigerenzer et al. 1999; Girotto and Gonzalez 2001,
2002; Hoffrage et al. 2002; Kahneman and Tversky 2000).

If you are willing to obey the probability rules, the estimation of probability val-
ues for singular events turns out to be easy, and quite natural, in those cases where
you know frequencies . If you know the frequency of the occurrence of a given
event E and you don’t know anything else about E , then the Bayesian policy is to
use the known frequency as the measure of your subjective probability for the past
occurrence of E or for the next occurrence of E . The proviso is important, because
it may happen that you know something else about that particular occurrence that
is relevant for its probability. For instance, if you know the fraction of 60-year-old
people who live to be 80, you can take it as your subjective probability that Peter,
who is 60-years-old, will survive up to 80. But if you know also that Peter is a
healthy and non-smoking guy, your subjective probability may well be higher than
the overall statistical average. On the contrary, if you know that Peter is a heavy
smoker, your subjective probability may well be below that average.

When either you do not know frequencies, or you do know but also know
additional information such that your subjective probability leans above or below
the average, or you are asked to assign a number to a one-off event, you may feel
not very confident that you have got the ‘right’ number. In these cases scoring
rules can be used to improve people’s measurement of uncertainty (Lindley 1982).
A scoring rule is a rule which gives to any probability value p assigned to a given
proposition a score depending on whether the proposition is true or false. The basic
idea behind the use of scoring rules for measuring the ‘goodness’ of probabilistic
judgements is that it seems ‘natural to say that the measurement was good if you
had thought an event, subsequently shown to be true, had been likely, that is, given
a large p; and an event later seen to be false to have been given a small p’ (Lindley
1985, p. 22).

A widely used scoring rule is the quadratic (or Brier ) rule. The score is thought
of as a penalty (or loss) equal to (1 − p)2 if the event is true and your judgement has
been p, and equal to p2 if it is false: the smaller the loss the better the judgement.
In Table 2.8 the losses are shown for some p values.

It can be proved that, if you know the frequency with which event E happens,
then the choice of that frequency as your judgement p is the only policy that
minimizes the loss calculated with the quadratic rule: no other policy can fare
better. In case of sequences of probability forecasts about a particular repeatable
event, the rule can be used to measure one’s capability of making good probability
judgements. We say that a subject is well-calibrated if, over a sequence of forecasts
for which they give probability p for event E , the frequency of occurrences of E
is p. However, even in the case of one-off events, thinking in terms of the rule
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Table 2.8 Quadratic scoring rule.

P(E ) E Ē
p (1 − p)2 p2

1.0 0 1
0.9 0.01 0.81
0.8 0.04 0.64
0.7 0.09 0.49
0.6 0.16 0.36
0.5 0.25 0.25
0.4 0.36 0.16
0.3 0.49 0.09
0.2 0.64 0.04
0.1 0.81 0.01
0.0 1 0

when assessing your own personal probabilties can help to inprove the assessment.
Indeed, Table 2.8 encourages honest and accurate measurement of probabilities in
the sense that it penalizes both overbold and overcautious judgements: extreme
values of p, near 0 or 1, yield the highest losses if the truth is the opposite to
what you think, whereas you are encouraged to ‘fine tune’ any information you
have, because moving from p = 0.5, in both directions, might yield a significant
improvement in your performance.

Apart from the calibration problem, the satisfaction of the standards of pragmatic
coherence can be a difficult task in real life decision problems when chains of events
are involved. In these cases you must build a probabilistic model representing all
the relationships you believe to hold amongst events. The number of such events
to be taken into account can be large, and the task of computing the probabilities
of the joint occurrence of a finite set of events rapidly becomes very intractable
because its complexity increases exponentially with the number of events. However,
it is known how to build computationally tractable probabilistic models: Bayesian
Networks .

A Bayesian network is a directed graph without cycles. A directed graph is a
mathematical structure whose elements are a finite set of nodes and a finite set of
arrows (directed links) between the nodes. If there is an arrow pointing from node
X to node Y , it is said that X is a parent of Y and Y is a child of X . A sequence
of consecutive arrows connecting two nodes X and Y is a directed path between
X and Y . A directed graph without cycles is a Bayesian network where:

1. Nodes are variables with a finite set of mutually exclusive states (Boolean nodes
with only two states, t = true, and f = false, represent propositions or events).

2. Arrows represent direct probabilistic relevance relationships among nodes.
3. To each node X with parents Y1, . . . , Yn , is associated a probability table con-

taining all the conditional probabilities P (X | Y1, . . . , Yn ). If X has no parents,
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then its probability table reduces to probabilities P (X ), unconditional on other
nodes in the graph.

The directed graph in Figure 2.1 does not contain cycles, and there are arrows
from A and from B to C because the state of C is probabilistically dependent
upon the states of both A and B . Analogously, the arrow from C to E stands
for the fact that the state of E directly depends upon the state of C . The graph
becomes a Bayesian network when the conditional probability tables, Tables 2.9,
2.10 and 2.11, are completed:

C E

A B

Figure 2.1 An example of a directed acyclic graph with propositions as nodes. A: suspect
is the offender; B : blood stain at crime scene comes from offender; C : bloodstain at crime
scene comes from suspect; E : suspect’s blood sample and crime stain share the same DNA
profile. (Adapted from Taroni et al. 2006a.)

Table 2.9 Unconditional probabilities assigned to the nodes A
and B of Figure 2.1.

A: t f B : t f

P(A) a 1 − a P(B) r 1 − r

Table 2.10 Conditional probability table for the node C
of Figure 2.1.

A: t f

B : t f t f

C : P(C = t | A, B) 1 1 0 p
P(C = f | A, B) 0 0 1 1 − p

Table 2.11 Conditional probability table for
the node E of Figure 2.1.

C : t f

E : P(E = t | C ) 1 γ

P(E = f | C ) 0 1 − γ
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In the tables, assignments of probabilities 1 and 0 are straightforward, probability
γ is the so-called random match probability, calculated from statistical data, and a ,
r and p are subjective probabilities: a should be estimated on the basis of evidence
pertaining to the case other than DNA evidence, r should be estimated on the basis
of an analysis of the circumstances of the offence, and p, the probability that the
stain would have been left by the suspect even though he was innocent, should be
estimated on the basis of the alternative hypothesis proposed by the defence.

Notice that there are no arrows from either A or B to E , even though the states
of the first two nodes are obviously relevant for the state of the last node. This is
so because the influence that the states of A and B have on the state of E is only
indirectly transmitted through the state of C , which is directly dependent from A
and B , and in turn directly influences E (there are directed paths both from A and
B to E ). The state of E is said to be conditionally independent of the state of both
A and B , given the state of C .

For any propositions A, B and C , A is said to be conditionally independent of
C given B if and only if the conditional probability of A given B and C is equal
to the conditional probability of A given B for all the states of A, B and C (for
propositions for which there are only two states, t = true, and f = false):

P (A | B , C ) = P (A | B ). (2.26)

Conditional independence is the fundamental concept in building computation-
ally tractable probabilistic models, because the product rule of probability theory
(2.8) can be factorized in Bayesian networks, for all nodes X in the network, as the
product of their probabilities conditional only on the set PA(X ) of their parents :

P (X1, . . . , Xn ) =
n∑

i=1

P (Xi | PA(Xi )). (2.27)

For example, the network in Figure 2.1 can be factorized as follows:

P (A, B , C , E ) = P (A)P (B )P (C | A, B )P (E | C ). (2.28)

Networks which can be factorized in this way are said to satisfy the Markov
property , so called because formula (2.27) can be considered a generalization of a
Markov chain.

Judgments of dependence, and conditional independence, among variables reflect
your structural analysis of the problem, which is based on your theoretical and prac-
tical knowledge, and allow decomposition of complex problems into smaller and
more manageable modules. This decomposition also makes the task of measuring
uncertainty easier because you are now asked to focus, step-by-step, on condi-
tional probability tables which correspond to structural relationships about which
you have information.
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Bayesian networks have efficient algorithms to compute formulae like (2.27),
and to update probabilities on the states of the nodes, on receipt of new informa-
tion, by means of a mechanism called node instantiation: the state of one or more
nodes is exogenously fixed (the nodes are said to be instantiated), and the updating
algorithm propagates this information through the network, changing the probabil-
ities of all other nodes. For instance, probability one is assigned to the node E in
Figure 2.1, and the algorithm calculates the new probabilities of the nodes A, B ,
and C , in such a way that the principle of conditionalization is satisfied. Bayesian
networks obey pragmatic coherence. For a general introduction to Bayesian net-
works see Cowell et al. (1999), Jensen and Nielsen (2007), Kjærulff and Madsen
(2008); foundational issues about Bayes networks and the interpretation of proba-
bilistic dependencies as causal relationships are discussed in Glymour (2001), Pearl
(2000) and Williamson (2004); Sloman (2005) argues about the psychological plau-
sibility of such probabilistic models; Taroni et al. (2006a) provides an introduction
to Bayesian networks focused on their use in forensic science.

A graphical method of representing decision problems using decision trees was
introduced in the 1960s (Raiffa and Schlaifer 1961) and has become widely used
since then. In the 1980s a more compact representation than the one provided
by decision trees was devised: influence diagrams (Howard and Matheson 1984;
Shachter 1986). An influence diagram is a directed acyclic graph with three types
of nodes:

1. Chance nodes , represented by circles, which have a finite set E of exhaustive
and mutually exclusive events or states of nature;

2. Decision nodes , represented by square boxes, which have a finite set D of
feasible alternative decisions;

3. Utility nodes , represented by diamond boxes. Utility nodes have no states but
to each utility node is associated a utility function over its parents: it represents
the expected utility given the states of its parents;

and with the following properties:

4. Utility nodes have no children;
5. If there is more than one decision node, then there is a directed path consisting

of all decision nodes: this ensures that there is a temporal sequence of decisions.

Bayesian networks can be naturally extended to represent decision problems
by adding decision nodes and utility nodes. Decision nodes have no probability
tables associated with them, because it is not meaningful to assign probabilities to
a variable under the control of the decision-maker, and arrows pointing to decision
nodes do not carry quantitative information; they only indicate that the state of the
decision node’s parents is known prior to the decision. A conditional probability
table is associated with each chance node. The arguments of the table now can be
not only other chance nodes but also a decision node. An example of an influence
diagram for a forensic identification problem is given in Chapter 3 (Example 3.2.4).
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The conditional independence relationships embedded in the structure of an
influence diagram allow the decomposition of the conditional probability of all
chance nodes, given the state of all decision nodes, as the product of the conditional
probability of each chance node given its parents; that is, given the state only of
the decision node which is its direct predecessor. Let � denote the set of all chance
nodes and � denote the set of all decision nodes; then:

P (� | �) =
∏
X∈�

P (X | PA(X )).

In the literature there can be found algorithms for solving influence diagrams
(Jensen and Nielsen 2007; Kjærulff and Madsen 2008).

2.2.5 The connection between pragmatic and epistemic
standards of reasoning

An interesting connection between pragmatic principles and epistemic principles
of reasoning can be pointed out. If (2.17) is written as:

Q(A, E )

P (A, E )
= Q(E )

P (E )
, (2.29)

it can be seen that the rational policy for updating the probability of a proposition A,
upon new evidence bearing on the probability of a proposition E , can be formulated
as the following recommendation: redistribute all your probabilities in such a way
that all the ratios between new and old probabilities are equal to the ratio between
the new and the old probability of E .

This amounts to a rule that redistributes your probabilities among all the propo-
sitions, which are possible according to the new evidence, in the least biased way :
given that your new state of information has changed on learning only the new
probability of E , and nothing else (Q(E ) = 1 in the case of classical condition-
alization, and Q(E ) < 1 in the case of Jeffrey’s conditionalization), you have no
reason to make a change biased for or against particular propositions, that is, you
have no reason to change the probability ratio among propositions.

It has been proved (Domotor et al. 1980; Williams 1980) that classical con-
ditionalization and Jeffrey’s conditionalization amount to a minimization of the
‘distance’ between the old and new probabilities, p and q , as measured by the
relative entropy :

n∑
i=1

log

(
qi

pi

)
for n exclusive and exhaustive propositions.

The concept of relative entropy and its relation to probability updating is
described by Diaconis and Zabell (1982). Therefore these rules can be seen as
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epistemic principles of minimum change: changing your degrees of belief according
to these rules makes that minimum change in your probabilistic state of knowledge
which is needed to take into account the new information, and only that informa-
tion. It has also been proved (van Fraassen 1989) that they are the unique updating
rules which satisfy a very general symmetry principle saying, roughly, that one
should assign the same probabilities to logically equivalent statements of a problem.

Propagation of evidence in Bayesian networks is implemented using algorithms
which allow coherent updating of the probabilities of nodes according to the
generalized conditionalization formula (2.20). Therefore, we can say that evidence
is propagated in Bayesian networks according to a principle of minimum change:
on receipt of new inputs, the propagation algorithm changes all the probabilities of
the chance nodes in the net in such a way that the relative entropy between the old
and the new probability distributions over the net is minimized (Taroni et al. 2006a,
pp. 60–66). Notice that during the propagation of evidence in Bayesian networks
the probabilities of the nodes do change but the structure of the graph does not.
Conditional probabilities in the conditional probability tables are kept fixed: they
remain the same after one or more nodes have been instantiated, so that the
conditionalization principle is satisfied. This fact sheds new light on the principle:
it is a rational policy for belief updating whenever the empirical observations are
such that they do not influence the form of the theoretical relationships built in the
probabilistic model, that is, they do not change the form of the structural equations.

These results show the existence of a subtle link between the pragmatic standard
of coherence, i.e. avoiding self-defeating betting policies, and epistemic standards
of rationality, like minimum principles and symmetry principles , which are highly
regarded and have been successfully applied in modern science. The role of sym-
metry considerations in the foundations of statistical inference is described in
Section 2.3.4 below.

2.3 SCIENTIFIC REASONING AS COHERENT
DECISION MAKING

Scientific method is a ‘technique’ of rational reasoning, a basket of intellectual
tools which have been forged during centuries of scientific practice in order to
correct and reinforce the innate propensity of our perceptual apparatus to organize
the inputs from the environment and to form expectations about it. Confronted with
data coming from an uncertain and complex environment one develops hypotheses
and theories to explain the data and to serve as guidance to act in that environment.
There are hypotheses and theories that range from very simple ones (‘the car does
not start because the spark plugs are dirty’) to highly sophisticated ones such as
Schroedinger’s wave function. A good ‘theory’ implies some expectations about
future events and related actions: devising and implementing ‘experiments’ (‘check
the spark plugs and change them’) whose outcomes are highly probable if the
‘theory’ is true.
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The scientific method is not radically different from the rational attitude in
everyday life or in other domains of human knowledge. Historians, detec-
tives, and plumbers – indeed, all human beings – use the same basic method
of induction, deduction, and assessment of evidence as do physicists or
biochemists. Modern science tries to carry out these operations in a more
careful and systematic way, by using controls and statistical tests, insisting
on replication, and so forth. Moreover, scientific measurements are often
much more precise than everyday observations; they allow us to discover
hitherto unknown phenomena; and they often conflict with ‘common sense’.
(Sokal and Bricmont 1998, p. 56)

Some general epistemological principles can be listed which enjoy a wide accep-
tance because they have been successful in the past (for example, ‘good’ theories
must predict novel facts because it is always possible to arrange ad hoc explana-
tions for known data, but it is impossible to do that for yet unknown data). However
‘the scientific method’ cannot be defined once and for all, because it is continu-
ously evolving together with scientific results. The fact that scientific method is a
work in progress does not impede the recognition and acknowledgement of good
scientific practice.

To illustrate this, let us consider an example that is in a certain sense inter-
mediate between scientific and ordinary knowledge, namely that of criminal
investigations. There are some cases in which even the hardest skeptic will
find it difficult to doubt, in practice, that the culprit has been really found:
one may, after all, possess the weapon, fingerprints, DNA evidence, docu-
ments, a motive, and so forth. Nevertheless, the path leading to the discovery
of the culprit can be very complicated: the investigator has to make deci-
sions (on the leads to follow, on the evidence to seek) and draw provisional
inferences, in situations of incomplete information. Nearly every investiga-
tion involves inferring the unobserved (who committed the crime) from the
observed. Here, as in science, some inferences are more rational than others.
The investigation could have been botched, or the ‘evidence’ might simply
be fabricated by the police. But there is no way to decide a priori, indepen-
dently of the circumstances, what distinguishes a good investigation from a
bad one. Nor can anyone give an absolute guarantee that a particular investi-
gation has yielded the correct result. Moreover, no one can write a definitive
treatise on The Logic of Criminal Investigation . Nevertheless – and this is
the main point – no one doubts that, for some investigations at least (the best
ones), the result does indeed correspond to reality. Furthermore, history has
permitted us to develop certain rules for conducting an investigation: no one
believes anymore in trial by fire, and we doubt the reliability of confessions
obtained under torture. It is crucial to compare testimonies, to cross-examine
witnesses, to search for physical evidence, etc. Even though there does not
exist a methodology based on unquestionable a priori reasoning, these rules
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(and many others) are not arbitrary. They are rational and are based on a
detailed analysis of prior experience. (Sokal and Bricmont 1998, pp. 58–59)

Bayesian epistemology claims that the tools in the basket of scientific method,
whatever they might be, must surely satisfy the standard of pragmatic coherence
for combining and changing degrees of belief: therefore, the fundamental tool of
scientific method is Bayes’ theorem (Bovens and Hartmann 2003; Earman 1992;
Horwich 1982; Howson and Urbach 1996; Jaynes 2003; Jeffrey 2004; Jeffreys
1961; Maher 1993; Salmon 1990, 1967; Swinburne 2003).

2.3.1 Bayes’ theorem

Bayes’ theorem is a straightforward consequence of the product rule and the
theorem of the extension of the conversation and is so called after Thomas Bayes
who first derived it from the definition of a conditional bet (see Section 2.1.2
above):

P (A | E ) = P (A, E )

P (E )

= P (E | A)P (A)

P (E | A)P (A) + P (E | Ā)P (Ā)
, provided that P (E ) > 0. (2.30)

Used together with the conditionalization principle it yields a simple but power-
ful formula that captures all the logical relationships between theory and evidence,
when probabilities are interpreted as degrees of belief. Consider a set x of observa-
tions which will be thought of as evidence, H a hypothesis that has been put forward
to explain this set (evidence), and a set y of observations arising from a new exper-
iment devised to test H . Then, the rational policy for changing degrees of beliefs
(see Section 2.1.3 above) requires that the new degree of belief in the hypothesis
H , after having observed y , must be given by the old conditional probability of H
given y and x , and calculated accordingly:

P (H ) = P (H | x , y) = P (y | H , x )P (H | x )

P (y | x )
. (2.31)

Scientific hypotheses are introduced to simplify a complex web of real-world
connections, and this simplification usually means that evidences x and y can be
considered conditionally independent given H . Therefore we can rewrite (2.31)
as follows:

P (H | x , y) = P (y | H )P (H | x )

P (y | x )
. (2.32)

Probability P (H | x , y) is conventionally called the posterior , or final , probabil-
ity of H and P (H | x ) is conventionally called the prior , or initial , probability: of
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course, probabilities are a posteriori and a priori only relative to new evidence y .
What is prior with respect to y might very well have been obtained by a previous
application of the theorem on evidence x : your priors of today are your posteriors
of yesterday and your posteriors of today will be your priors of tomorrow. The
probability P (y | H ) is called the likelihood of H given y , the likelihood of H for
short. When H is a scientific hypothesis the numerical value of the likelihood can
usually be estimated by means of theoretical equations, and the use of the condi-
tionalization principle is justified because the form of these theoretical relationships
does not change from the time when x is observed to the time when y is observed.

If Bayes’ theorem is now written as:

P (H | x , y)P (y | x ) = P (y | H )P (H | x ), (2.33)

it is easy to see that the posterior probability of H , given x and y , is greater than
the probability of H , given x , if and only if the likelihood of H is greater than the
probability of y , given x :

P (H | x , y) > P (H | x ) if and only if P (y | H ) > P (y | x ). (2.34)

In such a case the new evidence y is said to support , or confirm , hypothesis
H ; otherwise it is said that it does not support, or disconfirms, H . Evidence y
confirms hypothesis H if y is unexpected , or surprising , unless H is true, e.g. P (y |
H ) > P (y | x ), and evidence y disconfirms H if y is unexpected , or surprising , if
H is true, e.g. P (y | H ) < P (y | x ).

The ‘qualitative’ behaviour of Bayes’ theorem shown by equation (2.34) sounds
good for both common sense and scientific reasoning. Imagine that y is the result of
a scientific experiment devised to test H : in such a case, y is usually a quantitative
result predicted by the theory with an uncertainty that depends only on the limits
of the theoretical computations, which involve several approximations, and on the
limits of the measuring instruments; for the sake of argument suppose that, within
these limits, H implies y : P (y | H ) = 1. Then (2.33) becomes:

P (H | x , y)P (y | x ) = P (H | x ) (2.35)

and the following important facts may be checked.

(i) The less probable evidence y is, unless H is true, i.e. the lower P (y | x ), the
more informative y is about H ; this agrees with Karl Popper’s recommendation
that good tests of a scientific theory look for improbable predictions, unless
the theory is true, and the more improbable the prediction is, the better the test
(Popper 1959).

(ii) Scientific hypotheses can never be verified , that is, no empirical evidence can
raise their probability to 1. Indeed, by the theorem of the extension of the
conversation, the value of P (y | x ) is factorized as:

P (y | x ) = P (y | H )P (H | x ) + P (y | H̄ )P (H̄ | x ). (2.36)
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It has been assumed that P (y | H ) = 1, therefore the minimum value for P (y | x )
would be such that P (y | x ) = P (H | x ), when P (y | H̄ ) = 0. But this minimum,
which implies P (H | x , y) = 1, cannot be attained when H is a high-level scien-
tific hypothesis and y is empirical evidence: there is always a possible alternative
explanation of an empirical fact, even though it may not be able to be worked
out. Thus P (y | H̄ ) > 0. This is what philosophers of science sometimes call the
‘catch-all hypothesis’.

The ‘catch-all hypothesis’ does not disturb current scientific practice: scientists
only consider one single theory and they do not take into account alternatives until
it is strictly necessary, and they are justified in doing that, according to Bayesian
epistemology.

Take x to be a sequence of observations all implied by H , i.e. x = (x1, x2, . . . ,
xn ), and y to be a further observation implied by H , y = xn+1; then, (2.35) can be
rewritten as follows:

P (H | x1, x2, . . . , xn+1) = P (H | x1, x2, . . . , xn )

P (xn+1 | x1, x2, . . . , xn)
. (2.37)

Now, given that P (H | x1, x2, . . . , xn+1) cannot exceed 1, and that P (H |
x1, x2, . . . , xn ) �= 0, then P (xn+1 | x1, x2, . . . , xn ) must tend to 1 as n increases.
Therefore, ‘repeated verifications of consequences of a hypothesis will make it
practically certain that the next consequence of it will be verified’ (Jeffreys 1961,
p. 43). Notice that P (xn+1 | x1, x2, . . . , xn ) involves neither H nor an alternative
to H but only the observable x ’s, and it holds whether H is true or not . The
‘catch-all hypothesis’,

if it had been thought of, would either (1) have led to consequences x1, x2,
. . . or (2) to different consequences at some stage. In the latter case the data
would have been enough to dispose of it, and the fact that it was not thought
of has done no harm. In the former case the considered and the unconsidered
alternatives would have the same consequences, and will presumably con-
tinue to have the same consequences. The unconsidered alternative becomes
important only when it is explicitly stated and a type of observation can
be found where it would lead to different predictions from the old one.
The rise into importance of the theory of general relativity is a case in
point. Even though we know now that the systems of Euclid and Newton
need modification, it was still legitimate to base inferences in them until
we knew what particular modification was needed. The theory of probability
makes it possible to respect the great men on whose shoulders we stand.
(Jeffreys 1961, p. 44)

This is a very important point because it explains why scientific laws are relied
upon and are willingly applied with practical certainty in particular instances, even
though they are not believed to be true, i.e. P (H | x1, x2, . . . , xn+1) < 1. Notice
also that, after a long sequence of positive observations, the difference [P (H |
x1, x2, . . . , xn+1) − P (H | x1, x2, . . . , xn )] will be very small, that is, the degree of
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support provided by the new instance will be negligible. This also provides a first
answer to the question raised at the end of Section 2.1.1, that is, what does it mean
for subjective Bayesians ‘to bet’ on generalizations (‘All x are such that . . .’) or
universal scientific laws: it means to bet in a certain way on next instances of the
law. As we have seen, the odds in favour of the next instance can be high, and
they will always be equal or higher than the odds in favour of the universal law,
because necessarily (see (2.37)):

P (xn+1 | x1, x2, . . . , xn ) ≥ P (H | x1, x2, . . . , xn ).

Scientists are obliged to consider alternatives when a failure in the observation of
y falsifies H : indeed, if P (ȳ | H ) = 0, then P (H | x , y) = 0. Therefore, falsification
of a scientific hypothesis is a particular case of Bayes’ theorem that applies when
H implies y .

Bayesian epistemology is a qualified ‘verificationism’ that

does not take the task of scientific methodology to be that of establish-
ing the truth of scientific hypotheses, but to be that of confirming or dis-
confirming them to degrees that reflect the overall effect of the available
evidence – positive, negative, or neutral, as the case may be. (Jeffrey 1975,
p. 104)

We know that decision making under uncertainty does not require certainty of
knowledge to take rational decisions. Going down from high theories to everyday
life the truth of hypotheses like ‘spark plugs are dirty’ can be verified but it should
be remembered that even in most cases of common sense reasoning what can be
attained is not certainty but a probability so near to certainty that it can be taken
as a practical certainty, ‘beyond any reasonable doubt’.

If it is possible to verify some low-level hypotheses, then it is symmetrically
possible to falsify other low-level hypotheses, like ‘the car is out of fuel’, but it is
not possible, pace Popper, to falsify scientific hypotheses: a high-level, interesting,
scientific hypothesis H does not imply observational consequences by its own,
but always in conjunction with some auxiliary hypotheses A which are usually
independent from H and, among other things, ‘describe special features of the
system under consideration’ (Jeffrey 1975, p. 105)4. Therefore Bayes’ theorem
should be written as:

P (H , A | x , y) = P (y | H , A)P (H | x )P (A | x )

P (y | x )
. (2.38)

This means that, if P (H , A | x , y) = 0, scientists can choose to put the blame
either on H or on A. The history of science shows that scientists’ first reaction

4Example : ‘Newton’s law of universal gravitation implies nothing observational about the motions
of the planets by itself. It is rather the conjunction of Newton’s law of gravitation with the law F = ma
and with the hypothesis that all forces except for the gravitational ones are negligible in determining
the motions of the planets which has observational consequences about those motions.’ (Jeffrey 1975,
p. 105)
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is to change the auxiliary hypotheses, instead of the beloved H : they shall toil
with A, trying modified, or totally new, A′. The planet Uranus was discovered in
1782 and astronomical observations showed that its orbit violated Newton’s law of
universal gravitation, but the law was not rejected and a new auxiliary hypothesis
predicting the existence of a new planet led to dramatic vindication of Newton’s
theory: the discovery in 1846 of Neptune. Then, another ‘falsification’ of Newton’s
universal gravitation popped out: the anomalous Mercury’s perihelion was observed
for the first time in 1859. Many new auxiliary hypotheses had been floating around
since then to save Newton’s law (among them the existence of a new planet,
Vulcanus) until 1915, when the astronomer Karl Schwarzschild calculated exactly
the observed value of the perihelion deviation using Einstein’s General Relativity
(Roseveare 1982). The prior probability of General Relativity could be very low
indeed by then, but the probabilities of the ad hoc auxiliary hypotheses put forward
to save Newton’s Laws were also low.

2.3.2 The theories’ race

What has been outlined above in Bayesian terms is similar to the story told by
Thomas Khun in The Structure of Scientific Revolutions (see Section 2.2.3, Kuhn
1970): no particular hypothesis or theory is rejected simply because there are
‘anomalies’, pieces of evidence disconfirming or even falsifying the theory, but it is
rejected only if an alternative is available that is capable of solving the ‘anomalies’
and of making novel predictions. In the history of science there is never only one
runner at a time: there are always two or more serious competitors at the start of the
race, that is, hypotheses and theories whose probabilities on the available evidence
are greater than zero. This race has been given the name “theories’ race”. Coper-
nicus put forward his hypothesis against that of Ptolomeus, Galileo defended his
hypotheses about motion against Aristotelian theories of motion, Newton’s corpus-
cular theory of light faced Huygens’ ondulatory theory, Darwin’s theory of natural
selection faced Lamarck’s evolutionism and eighteenth-century versions of Intelli-
gent Design. The race of scientific theories is not a matter of absolute probabilities
but a matter of relative probabilities, a matter of comparative judgements.

The Bayesian way of deciding the winner among alternative hypotheses which
are recognized as ‘starters’ in the race, that is, as worth testing, makes use of the
odds form of Bayes’ theorem. Let H1 and H2 be two mutually exclusive, but not
exhaustive hypotheses, that is, it is possible that both are false. This is the typical
situation for scientific laws and high-level scientific theories. By the odds on H1

against H2 is meant the ratio of your probability of H1 to your probability of H2.
The prior odds on H1 against H2, relative to evidence x , that is the odds based
only upon evidence x , are:

P (H1 | x )

P (H2 | x )
.
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Note that these odds are different from the odds on H1 (or H2) against its logical
negation , defined in Section 2.1.1 as:

P (H1 | x )

P (H̄1 | x )
,

unless, of course, H1 and H2 are also exhaustive5.
The posterior odds on H1 against H2, relative to evidence y (again, different

from the posterior odds on H1 against its logical negation) are:

P (H1 | x , y)

P (H2 | x , y)
.

Developing this last formula, we obtain:

P (H1 | x , y)

P (H2 | x , y)
=

P (y |H1,x )P (H1|x )
P (y |x )

P (y |H2,x )P (H2|x )
P (y |x )

= P (y | H1, x )

P (y | H2, x )
× P (H1 | x )

P (H2 | x )
. (2.39)

The ratio P (y | H1, x )/P (y | H2, x ) is called the likelihood ratio: therefore, the
posterior odds equal the likelihood ratio times the prior odds. The likelihood ratio
is also called the Bayes factor (see Section 6.2.1) and is a measure of the relative
strength of support which evidence y gives to H1 as against H2, given x . If the
relative strength of support is greater than 1, it is said that evidence y supports
H1 more than H2; if it is less than 1, it is said that evidence y supports H2 more
than H1, and if it is equal to 1, it is said that evidence y is not relevant for the
hypotheses at stake.

Suppose that, prior to the observation of evidence y , hypothesis H1 is believed
from the relevant scientific community, on the basis of evidence x , more credible
than H2; Bayesian epistemology dictates that they should reverse their preference
if and only if, after observation of y , the overall belief in H2 is greater than that
in H1. It is easy to see from (2.39) that:

P (H2 | x , y) > P (H1 | x , y) if and only if
P (y | H2, x )

P (y | H1, x )
>

P (H1 | x )

P (H2 | x )
. (2.40)

Preferences should be changed from H1 to H2 if and only if the likelihood ratio
of H2 to H1 is greater than the prior odds of H1 in favour of H2.

The odds form of Bayes’ theorem answers the problem related to the ‘catch-
all hypothesis’, namely, that no likelihood can be calculated for the ‘catch-all
hypothesis’: the denial of a scientific hypothesis is not a scientific hypothesis, and
it is void of any explanatory or predictive power. Now, the term P (y | x ) does not
appear in (2.40), so that no reference is made to the ‘catch-all hypothesis’. There
is a price to be paid for that, and it consists in the fact that no precise quantitative

5The formula for translating the posterior odds on H against its negation H̄ into probabilities is the
following, with O denoting the odds value: P (H | x , y) = O/(O + 1).
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posterior probabilities can be calculated for H1 and H2 when they are exclusive
but not exhaustive hypotheses. One cannot pretend to be able to execute such a
calculation for genuine scientific theories: an estimate of the posterior odds on
H1 against H2 is the best that can be aimed for, if quantitative likelihoods can
be calculated, and an estimate of the prior odds can be made. This comparison is
often sufficient to decide the winner of the race.

In fact, most applications of Bayesian standpoint in everyday life, in scientific
guessing, and often also in statistics, do not require any mathematical tool nor
numerical evaluations of probabilities; a qualitative adjustment of beliefs to
changes in the relevant information is all that may be meaningfully performed.
(de Finetti 1974, p. 117)

In cases where competitors can be reduced to a list of exclusive and exhaustive
hypotheses, the odds form of the theorem is well suited to a decision-theoretic
approach to the choice of hypotheses. Consider again the simplest case where
H1 and H2 are exhaustive hypotheses: one of them is the ‘true’ hypothesis, and
suppose interest is only in the truth about the world, so that ‘utility’ 1 is assigned
to the consequences of choosing the ‘true’ hypothesis, and ‘utility’ 0 is assigned
to anything else. Then, the associated decision matrix is given in Table 2.12 and
the ‘expected utility’ EU of choosing hypothesis Hi on data x ,y is equal to the
probability of Hi given those data:

EU (di | x , y) = U (di , Hi | x , y)P (Hi | x , y) + U (di , Hj | x , y)P (Hj | x , y)

= P (Hi | x , y).

Therefore, maximizing ‘expected utility’ yields the same decision as (2.40).
A more interesting utility structure can be obtained if a loss function is used.

The concept will be formally defined in Chapter 3 (Sections 3.2.3 and 3.4.2). For
the purposes of this chapter it will be sufficient to consider a loss function as a
negative utility , so that a certain ‘loss’ L is incurred when the ‘false’ hypothesis is
chosen, and there is no ‘loss’ when the ‘true’ hypothesis is chosen (Table 2.13).

Table 2.12 A decision matrix using utilities.

H1 H2

d1: choosing H1 1 0
d2: choosing H2 0 1

Table 2.13 A decision matrix using losses.

H1 H2

d1: choosing H1 0 L12

d2: choosing H2 L21 0
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There can be a symmetric loss L12 = L21, which reduces to the previous case,
and an asymmetric loss if L12 �= L21. In this second case, the ‘expected loss’ EL
of choosing hypothesis Hi on data x ,y will be:

EL(di | x , y) = Lij P (Hj | x , y). (2.41)

The rational decision is to take the action with the lowest ‘expected loss’.
Given that

EL(d2 | x , y) < EL(d1 | x , y) if and only if L21P (H1 | x , y) < L12P (H2 | x , y),

the choice involves a comparison of posterior odds with the ‘losses’ possibly
incurred in choosing the wrong hypothesis. Then H2 will be preferred to H1 if
and only if:

P (H1 | x , y)

P (H2 | x , y)
<

L12

L21

or, equivalently:

P (H2 | x , y)

P (H1 | x , y)
>

L21

L12
. (2.42)

Expression (2.42) can be compared with (2.40). Given that

P (H2 | x , y)

P (H1 | x , y)
= P (y | H2, x )

P (y | H1, x )
× P (H2 | x )

P (H1 | x )
,

it can be seen that hypothesis H2 will be preferred to hypothesis H1 if and only if:

P (y | H2, x )

P (y | H1, x )
× P (H2 | x )

P (H1 | x )
>

L21

L12
.

Rewriting this, H2 will be preferred to H1 if and only if:

P (y | H2, x )

P (y | H1, x )
>

L21P (H1 | x )

L12P (H2 | x )
. (2.43)

Therefore, (2.40) comes out to be the limiting case of (2.43), when L12 = L21.
The loss ratio in (2.42) fixes a threshold for posterior odds, sometimes called the
posterior odds cutoff : equation (2.42) says that if the posterior odds for H2 exceeds
the loss from incorrectly choosing action d2 divided by the loss from incorrectly
choosing action d1, then you should choose d2. Hypothesis testing as a special case
of decision making will constitute the topic of Chapter 6, where more technical
details will be given.

This account of the theories’ race provides also an answer to the point that
genuine scientific generalizations can only have a degree of belief proximate to
zero: ‘certainly, it seems mad to imagine that we shall ever find ourselves attributing
more than a very small positive probability to the whole corpus of physical theory,
as found in the textbooks of the day’ (Jeffrey 1975, p. 112), or to the whole
corpus of life science and social science theories as well. Bayes’ theory gives us
methodological advice to cope with a world in which human minds can only make
fallible guesses.
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The generally accepted scientific hypotheses of the day – the ‘laws’ – are
those serious competitors whose probabilities on the available evidence are
orders of magnitude greater than those of the recognized alternatives. But
the probabilities of such ‘laws’ must nevertheless be expected to be orders
of magnitude less than those of their denials. (Remember that the denial of
a scientific hypothesis is surely no scientific law – not because that denial is
improbable but rather because it is not ‘lawlike’, e.g. it will be essentially
devoid of explanatory or predictive content.) (Jeffrey 1975, p. 113)

The winner of the race needs neither to be believed with certainty nor with high
probability, but it is either the most probable of the starters on the ground of all the
available evidence, if the danger of choosing the wrong theory is the same, or that
competitor which minimizes the expected ‘loss’, if the danger is different (think
of the scientific hypotheses about the greenhouse effect). For scientific reasoning
as well as for everyday life, ‘decision-making under uncertainty – this is the home
ground of Bayesianism’ (Jeffrey 1975, p. 112).

2.3.3 Statistical reasoning: the models’ race

The basket of tools of scientific reasoning today contains statistical methods for
estimating errors of measurements and for making inferences on statistical data.
The Bayesian paradigm in statistical inference will be developed in full in Chapter
3. Here the discussion is limited to showing that statistical inference in particular
follows the same standard of coherence as scientific reasoning in general.

The fundamental problem of statistical inference is to use a set x = (x1, x2,
. . . , xm ) of random quantities, which are the result of observations made before
a decision has to be taken, to make predictions about another set y = (xm+1,
xm+2, . . . , xn) of random quantities, as yet unknown, which shall influence the
outcome of our decisions. It is usually very difficult to try to calculate predictive
probabilities , P (y | x ), directly because y is not independent of x . Therefore prob-
abilistic models of the data are introduced which simplify the computation of the
required probabilities by extending the conversation. A probabilistic model is basi-
cally a hypothesis about the mathematical form of the probability distribution that
provides the likelihoods of the observed results; this form contains one or more
characteristics of the population, called parameters , which are not known. The
model enables calculation of the likelihood for different values of the parameters.
A formal treatment of the concepts of a probability distribution and a probabilistic
model will be given in Chapter 3. In the following generic notation P (x | θ ) is
used to denote the likelihood of data x , given a particular value of parameter θ . A
probabilistic model can also state that all the observations are independent , condi-
tional on each particular value of the parameter6. In generic notation, we can write

6Correlated data such as quantities of drugs on adjacent notes in a bundle associated with drug
dealing are not considered. This is beyond the scope of the book.
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this as follows:

P (x , y | θ ) = P (x1, x2, . . . , xn | θ ) =
n∏

i=1

P (xi | θ ). (2.44)

In particular, future observations are taken to be independent from past obser-
vations, given the parameter:

P (y | θ , x ) = P (y | θ ). (2.45)

By saying that the values of the parameter are unknown, it is meant that they are
theoretical quantities, postulated to explain the data, and which can be estimated
from the data. Imagine a very large urn containing an unknown proportion of black
and white balls (a population): the urn is so large that, for all practical purposes,
is impossible to draw all the balls in the urn. Estimation of the proportion of black
balls in the urn (the ‘parameter’) is made only on the basis of a finite, and not
very long, sequence of drawings (a sample): the probability of any sequence of
drawings is given by a probability distribution (the hypergeometric distribution if
the drawings are without replacement, or the binomial distribution if they are with
replacement)7.

Suppose, for the sake of simplicity, that the parameter space � of the problem
of interest is a discrete set, taking its values over a finite set of values, as in the
example of the urn. Then, by extending the conversation over the elements θ ∈ �,
your predictive probability will be given by:

P (y | x ) =
∑
�

P (y , θ | x ) =
∑
�

P (y | θ , x )P (θ | x ).

This formula can be simplified, by (2.45), as follows:

P (y | x ) =
∑
�

P (y | θ )P (θ | x ). (2.46)

The numerical value of the first term of the sum on the right-hand side in (2.46)
can be easily calculated via (2.44). The second term is a conditional probability
that can be calculated via Bayes’ theorem, with your beliefs about the possible
values of θ , before observing x , being represented by an assessment of prior
probabilities P (θ ):

P (θ | x ) = P (x | θ )P (θ )∑
� P (x | θ )P (θ )

. (2.47)

This is also the basic formula for parameter estimation , i.e. in the Bayesian
framework, it is the formula for updating your beliefs about the ‘true’ value of the
parameter on data x .

7See Appendix A for mathematical details about binomial and hypergeometric distributions.
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Bayesian parameter estimation and statistical hypothesis testing are a matter
of comparison of different values of θ , exactly as happens with theories of large
scope and scientific ‘laws’. At the start of the ‘race’ in parameter estimation there
may be many competitors, that is, the priors P (θ ) are distributed over the set �,
and, after observation of x , the posteriors P (θ | x ) may be ‘peaked’ or around
only a few values of θ . In the case of statistical hypothesis testing, the same
theoretical framework, Bayes’ theorem, encompasses all the possible cases of model
comparison. One can have a comparison of simple versus simple hypotheses, if the
models assign probability one to specific values θ0 and θ1:

P (θ0 | x , y)

P (θ1 | x , y)
= P (y | θ0)P (θ0 | x )

P (y | θ1)P (θ1 | x )
.

The data affect the change of belief through the likelihood ratio, comparing
the probabilities of the data on θ0 and on θ1. This is in contrast with a
sampling-theory (or tail-area) significance test where only the null hypothesis
(say θ0) is considered by the user of the test. Of course, attempts to justify
these tests had to consider the alternatives but the user is freed from this
necessity. (Lindley 1990, pp. 48–49)

Significance tests can lead to rejection of the ‘null’ hypothesis even though the
evidence actually supports the ‘null’ hypothesis, because the evidence would be
even more unlikely given a plausible alternative hypothesis. The failure to consider
alternatives is not good scientific practice for, as we have seen in the previous
section, a scientific hypothesis can be evaluated only in comparison with at least
one genuine alternative hypothesis: for Bayesian epistemology, what is good for
scientific laws must be good also for statistical hypotheses8.

One can have a comparison of a simple hypothesis (θ = θ0) versus a com-
posite hypothesis, θ ∈ �1, where �1 = (θ1, . . . , θk ) (a finite discrete space) with
probability Pj (θ ) assigned to θj (j = 1, . . . , k ). In this case, the likelihood ratio is:

P (y | θ0)∑k
j=1 P (y | θj )P (θj | x )

.

For comparison of a composite hypothesis (θ ∈ �0) versus a composite hypoth-
esis (θ ∈ �1) (with �0, �1 discrete and exclusive) the likelihood ratio will be:∑

�0
P (y | θ )P0(θ | x )∑

�1
P (y | θ )P1(θ | x )

.

The previous comments about the minimization of the expected loss in
choosing between alternative theories, hold as well for probabilistic models. The
choice of methods to use in order to make decisions using probabilistic models
will be the main topic of this book.

8This point is particularly important because significance tests have been used, and are still used,
in forensic science. The problem of rejection of a hypothesis actually supported by evidence has been
raised and discussed in the literature (Evett 1991; Lindley 1977b). This situation will be fully discussed
in Chapter 6.
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An essential activity of all life is to make judgments about as yet unobserved
data y on the basis of observed data x . This is the problem of inference or
inductive logic. The Bayesian paradigm requires that this be done solely and
entirely within the calculus of probability; in particular, the above judgment is
P (y | x ). The calculation of such probabilities is substantially assisted by the
consideration of theories including hypotheses H , and models incorporating
a parameter θ . Independence, conditional on H or θ , appears to be basic to
the calculations. Statistical practice ought therefore to start from the data, x
and y , and regard the analysis, involving theories and models, as means of
evaluating the probabilities. (Lindley 1990, p. 50)

2.3.4 Probabilistic model building: betting on random quantities

According to the subjective or personalist Bayesian paradigm, probabilities are
always someone’s betting ratios. This is not to deny that there are numbers in the
world that you may adopt as your personal probabilities, if you knew them, like
observed relative frequencies and observed means . But parameters of probabilistic
models are not observed numbers, they are ‘theoretical quantities’. A parameter of
a probabilistic model is, for example, ‘the limit of the relative frequency of occur-
rence of a certain event as the number of observations grows to infinity’: but the
‘limit of an infinite sequence of observations’ cannot be observed, it is a theoretical
ideal. Parameters are not the ‘numbers’ that are out there, in the world, but they
are conceptual constructs which constitute the ‘bridge’ allowing you to pass from
your judgements about observed numbers to other judgements about observable
but as yet unobserved numbers. It is important to know when it is justifiable to
build this ‘bridge’. There are some very important results in theoretical statistics
which give a precise answer to this question, an answer that can be formulated in
terms only of actual betting ratios about observable events , that is, in terms of how
you would bet on the truth of statements concerning sequences of observations
(x1, . . . , xn). These results show how subjective Bayesians can ‘recycle’ observed
relative frequencies as betting odds for unobserved instances, without any need to
identify probabilities with mathematical limits of relative frequencies.

It has been said before, in Section 2.3.1, that Bayesians can legitimately have
opinions about hypotheses that, typically, contain theoretical entities which are not
directly observable but do have observable consequences: to have opinions about
scientific laws means to bet in a certain way on particular instances of the laws.
The same is true for probabilistic models: to have opinions about unobservable
parameters means to bet in a certain way on particular sequences of observations.
The ‘certain way’ has a name, exchangeability . The concept of exchangeability is
explained as follows.

Imagine you are thinking beforehand about all the possible results of an exper-
iment consisting of repeated observations of a certain real-valued random quantity
X ; i.e. you are thinking about a probability assignment p over all the possible
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sequences (X1 = x1, . . . , Xn = xn ). Suppose your state of information is such that
your p is symmetric, or invariant for each n-tuple of real numbers x1, . . . , xn , and
each possible permutation of the individual observations Xi , that is:

P (X1 = x1, . . . , Xn = xn ) = P (X1 = xπ(1), . . . , Xn = xπ(n)) (2.48)

for all permutations π on the set of individual subscripts {1, . . . , n}.
This means that only observed numbers matter, and not their particular order,

the place of the sequence in which they have been observed. If condition (2.48)
does hold for you, then the actual observed sequence (x1, . . . , xn ) is called finitely
exchangeable, and p is called an exchangeable probability assignment : intuitively,
the name comes from the fact that probabilities do not change by ‘exchanging’ the
place of individual observations in the sequence.

A sequence of tosses from a standard coin, where the random quantity X can
take only two values {0, 1}, or a sequence of drawings from an urn, known to be per-
formed under constant conditions, are typically considered exchangeable sequences.
A sequence of measurements of some physical or chemical property made in the
same laboratory on the same sample can be judged exchangeable. But suppose
you know that some faults occurred in the standard measurement procedure for a
subset of the sequence: then, you might not judge the complete sequence exchange-
able, but only the subset in which the procedure has been properly accomplished.
Alternatively imagine the sequence of measurements of the same substance as a
combination coming from different laboratories: then you might not consider the
complete sequence exchangeable, even if you believe it to be exchangeable for the
sequences coming from the different laboratories; then, if you know from which
laboratory each individual measurement comes, you can subdivide the complete
sequence into exchangeable sequences, one for each laboratory.

It should be evident from these examples that the notion of exchangeability
replaces, for subjectivist Bayesians, the classical notion of ‘conditional indepen-
dence given a parameter’, and the related notion of a random sample. This also
means that judgements of exchangeability overrule randomization . One can use
randomization devices as practical and economical means to create samples from a
population, or to form treatment and control groups in controlled experiments, but
their use does not free one from the burden of checking whether exchangeability
is satisfied in the samples, given all the available information, because improbable
events can occur.

Now, a finite exchangeable sequence (x1, . . . , xn ) is said to be extendible if it is
part of a longer sequence (x1, . . . , xN ) (N > n) which is still exchangeable. Actual
exchangeable sequences are of this kind: the outcome of an experiment can be
considered as part of a larger, but finite, sequence of observations which will be
obtained by replications of the experiment. An infinitely exchangeable sequence is
a sequence indefinitely extendible, i.e. extendible for all N > n , and such that every
finite subsequence is judged exchangeable.
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The fundamental results about exchangeability, which are called representation
theorems , can be informally summarized as follows: if p is your exchangeable prob-
ability assignment about a sequence of random quantities that can be indefinitely
extended, then your degree of belief can be represented as if it were obtained
by extending the conversation to a countable set of probabilistic models with a
(subjective) probability assignment µ over this set9.

The most general theorem which can be proved says, more formally, that:

(General representation theorem) if p is an exchangeable probability assign-
ment, for you, on an indefinitely extendible sequence of real-valued random
quantities (x1, x2, . . .), then there exists a prior probability measure µ in the
space � of all the probability distributions F on the set of real numbers such
that, for any finite sequence of observations (x1, . . . , xn)

P (x1, x2, . . . , xn ) =
∫

�

n∏
i=1

F (xi )µ(F )dF

where µ(F ) = limn→∞P (Fn ), Fn is the empirical distribution function given
by the observed sequence (x1, . . . , xn ), and µ represents your beliefs about
what would be the form of this distribution for n tending to infinity.

In other words, the theorem says that, for you, the probability distribution F
is mathematically well defined, and the observed sequence (x1, . . . , xn ) is as if
it were a sequence of independent observations conditional on this (unknown)
distribution F :

thus, ‘at a stroke’, we establish a justification for the conventional model
building procedure of combining likelihood and prior. The likelihood is
defined in terms of an assumption of conditional independence of observa-
tions given a parameter; the latter, and its associated prior distribution, acquire
an operational interpretation in terms of a limiting average of observables (in
this case a limiting frequency). (Bernardo and Smith 2000, p. 174).

The theorem provides no clues to the form of the distribution F , and the space
of all probability distributions on the real line is so big that other conditions, in
addition to exchangeability, are needed in order to be able to specify a particular
form. We say that the ‘parameter’ F is of infinite dimension and, conventionally,
in statistical literature, models involving infinite dimensional parameters are called
nonparametric models , whereas those involving finite dimensional parameters are
called parametric models . Fortunately, it is possible to impose some more restric-
tive conditions which allows the proof of representation theorems for more tractable

9For the definition of ‘countable set’ see footnote 2 above.
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and familiar classes of distributions such as binomial , Normal , Poisson and expo-
nential distributions, among others (for a survey of these results, see Bernardo and
Smith 2000, pp. 172–229)10.

The requirement that an exchangeable sequence of length n be infinitely
extendible is necessary to prove the representation theorems, but it might seem
contrary to the spirit of the Bayesian paradigm with its emphasis on observables.
Appropriate theorems on finite approximation of infinite exchangeability have been
proved which show that, if an exchangeable sequence of length n is extendible to
sequences of length N > n , for N very large but finite, then ‘no important distortion
will occurr in quantifying uncertainties’ (Bernardo and Smith 2000, p. 227).

In the following, details are given only of the representation theorem for the
binomial distribution, because it is a mathematically simple but very important
particular case. The first reason why it is so important is historical: it was the
subject of the first representation theorem for exchangeable random quantities,
proved by Bruno de Finetti in 1930 (de Finetti 1930, 1937). The second reason
is philosophical: it is the theorem that creates the ‘bridge’ between observed
frequencies and betting ratios, and that clarifies why and how probabilities, which
are subjective degrees of beliefs , can be estimated given knowledge of objective
relative frequencies .

The theorem can be stated informally as follows: if the class of observable
random quantities is restricted to binary quantities, which take only values {1, 0}
(i.e. ‘true’ and ‘false’ or ‘success’ and ‘failure’), then exchangeability is sufficient
to specify the form of the distribution F , and it is exactly the binomial or Bernoulli
distribution.

(De Finetti’s representation theorem) if p is an exchangeable probability
assignment, for you, on an indefinitely extendible sequence of binary random
quantities (x1, x2, . . .), then there exists a prior probability measure µ such
that, for any finite sequence of observations (x1, . . . , xn )

P (x1, x2, . . . , xn) =
∫ 1

0

n∏
i=1

θ xi (1 − θ )1−xi µ(θ )dθ

where the parameter θ is the limit of the relative frequency of 1’s (of ‘suc-
cesses’), as n tends to infinite (this limit exists by the strong law of large
numbers). Therefore, µ represents your beliefs about the value of this limit.

In other words, if you assign the same probability to all the sequences of length
n with the same number of ones, that is, only the number of ones in n trials

10In this book only parametric models are presented (see Section 3.2). See Appendix A and
Appendix B for the description of distributions.
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matters, and not the order in which they are observed, then any finite sequence
of observations can be considered as a unique ‘weighted’ mixture of draws with
replacement from a possibly infinite set of urns, containing balls marked 1 and 0
in different proportions θ (these fictional ‘proportions’ are mathematical limits but,
as such, the theorem proves that they exist). The ‘weights’ are the probabilities µ’s
expressing your beliefs about the ‘true’ urn from which the drawing is made.

Applying the theorem to both the numerator and denominator in (2.47), you
can update your beliefs about the ‘true’ urn on the basis of past trials, and then
calculate (by 2.46) your probability of ‘success’ in the next trial, or your probability
of observing a fixed relative frequency of ‘successes’ in a future sequence of trials,
together with every other piece of information you have (your probabilities µ). A
practical example of the calculations involved will be given in Section 3.3.

The fact that only the number of ‘successes’ (the sample frequency) is infor-
mative means that this number is what is called a sufficient statistic, that is, a
function of the data that summarizes all the relevant information (the sample mean
in a binomial distribution is another example of a sufficient statistic)11. The topic
cannot be dealt with here, but this simple example can give a hint about the rela-
tionship between exchangeability and the classical concept of sufficient statistics:
in many cases, the existence of a sufficient statistic that summarizes the data is a
consequence of a judgement of exchangeability.

It has been shown that the use of probabilistic models can be formally justified
as a logical consequence of the fact that our beliefs satisfy a very general symmetry
property, namely, exchangeability. Having said that, this section ends with a caveat
that will be followed in this book.

In practice, of course, there are often less formal, more pragmatic, reasons for
choosing to work with a particular parametric model [. . .] In particular, spe-
cific parametric models are often suggested by an exploratory data analysis
(typically involving graphical techniques to identify plausible distributional
shapes [. . .]), or by experience (i.e. historical reference to ‘similar’ situations,
where a given model seemed to ‘work’) or by scientific theory (which deter-
mines that a specific mathematical relationship must ‘hold’, in accordance
with an assumed ‘law’). In each case, of course, the choice involves subjective
judgments; for example, regarding such things as the ‘straightness’ of a graph-
ical normal plot, the ‘similarity’ between a current and a previous trial, and
the ‘applicability’ of a theory to the situation under study. From the standpoint
of the general representation theorem, such judgments correspond to acting
as if one has a µ12 which concentrates on a subset of � defined in terms of
a finite-dimensional labelling parameter. (Bernardo and Smith 2000, p. 229)

11A formal definition of a sufficient statistic will be given in Section 3.3.2
12The letter Q in the original text has been replaced with the letter µ for the sake of consistency

with the rest of the notation in this book.
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2.4 FORENSIC REASONING AS COHERENT
DECISION MAKING

According to the subjectivist Bayesian paradigm, probability always refers to a
single, well-specified , event. We have seen above how subjective coherent degrees
of belief concerning singular events, like a particular sequence of observations, are
combined with knowledge concerning what happens ‘in the long run’, like past
observed frequencies, and how this knowledge is used to estimate probabilities for
unique events, like the outcome of the next observation. The Bayesian paradigm
thus offers a powerful framework for the combination of personal judgements of
probability in a coherent way, and it fits well with the goals of forensic scientists,
who are typically asked to estimate the probabilities of the occurrence of unique
events, to evaluate evidence on the light of alternative hypotheses, and in doing
that they necessarily must combine judgements based upon both statistical and
non-statistical knowledge.

2.4.1 Likelihood ratios and the ‘weight of evidence’

The graph in Figure 2.1 above, with its probability tables (Tables 2.9, 2.10
and 2.11), shows a classical ‘blend’ of the different kinds of probabilistic
judgements a forensic scientist is required to make.

Node B represents the so-called relevance term (Stoney 1991), and r is the
probability that the blood stain is relevant for the case, a subjective probability
that the scientist should estimate on the basis of the information available about
the circumstances of the fact, information that can be also of a statistical nature
(this means that node B could be, in turn, further analyzed: see Aitken et al. 2003).
Probability γ , the random match probability of the DNA profile in the relevant
population (Balding and Nichols 1994), is calculated from statistical data; p is
another subjective probability, the probability that the stain has been left by the
suspect even though he is innocent, and it should be estimated on the basis of the
alternative hypothesis proposed by the defence. The probability a of node A is the
probability that the suspect is the offender given the available evidence different
from the DNA evidence. Probability can be considered the probability held, before
considering the DNA evidence, by anyone whose task is to evaluate all the evidence
(scientific and non-scientific) pertaining to the case, namely, the judge or the jury.
As such, it is not the task of the forensic scientist to give an estimate of this
probability, for the scientist is not asked to express an opinion on the question
which the court had to decide, the so-called ‘ultimate issue’. The scientist’s task is
to evaluate the likelihood ratio:

LR = P (E | A)

P (E | Ā)
.
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The LR measures the relative strength of support which evidence E gives to A as
against Ā. The judgements of conditional independence contained in the Bayesian
network of Figure 2.1, together with the probability assignments in Tables 2.10
and 2.11, allow the decomposition of this complex likelihood ratio according to
factorization (2.28), and its reduction to the following manageable formula (Taroni
et al. 2006a, pp. 97–101):

P (E | A)

P (E | Ā)
= P (B ) + P (B̄ )P (E | C̄ )

P (F | Ā, B̄ )P (B̄ ) + [
P (B ) + P (F̄ | Ā, B̄)P (B̄ )

]
P (E | C̄ )

.

Substitution of the numerical estimates provided by the forensic scientist, gives:

P (E | A)

P (E | Ā)
= r + (1 − r)γ

p(1 − r) + rγ + (1 − p)(1 − r)γ

= r + (1 − r)γ

rγ + (1 − r)
[
p + (1 − p)γ

] . (2.49)

Therefore, adoption of the Bayesian approach provides forensic scientists with
the appropriate formula in order to calculate the relative support that E gives to
the two parties’ propositions and to communicate the results as likelihood ratios
(Aitken and Taroni 2004; Balding 2005; Evett 1993; Jackson et al. 2006; Redmayne
2001; Robertson and Vignaux 1993, 1995).

Forensic scientists are most helpful in assisting the probabilistic evaluation
of evidence if they express their findings in terms of a likelihood ratio which
results from a comparison between the probability of the evidence given the
competing propositions in a case at hand. This is what in this context is
sometimes referred to as the ‘likelihood ratio approach’. One of the main
arguments for this standpoint is that a likelihood ratio is – due to its con-
venient multiplicative properties – directly and unambigously amenable for
belief updating by a recipient of expert evidence. (Biedermann et al. 2007a,
p. 86)

The forensic scientists can use in their assessments prior probabilities for the
propositions proposed by the parties, provided they make clear either that they are
using the parties’ prior probabilities, or that they are assuming certain priors in order
to carry on simulation of the effect of evidence on the parties’ propositions. In the
DNA example of Figure 2.1, it is the scientist’s task to estimate the probability r
of the ‘relevance’ of the stain, a ‘prior’ probability with respect to DNA evidence,
because ‘relevance’ is not the ‘ultimate issue’ in this context, whereas it is the
court’s task, and that of the parties, to estimate the ‘prior’ probability a that the
accused person is the offender, because the identity of the offender is, in this
context, the ‘ultimate issue’13.

A useful function of the likelihood ratio is its logarithm, called by Good the
weight of evidence (Good 1950, 1985, 1988).

13A verbal scale for interpreting likelihood ratio can be found in Section 6.2.1
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Let H denote a hypothesis, such as that an accused person is guilty, and
let E denote some evidence, such as that presented by a specific witness.
We ask how should we define W (H : E | I )14, the weight of evidence in
favour of H provided by E when background knowledge I is regarded as
given or previously taken into account. It is natural to assume that the new
evidence converts the prior probability into its posterior probability, that is,
that P (H | E , I ) is a mathematical function of P (H | I ) and of the weight of
evidence. Moreover, W (H : E | I ) should depend only on (i) the probability
of E given that the accused is guilty, and (ii) the probability of E given that
he is innocent [. . .] These desiderata lead to the conclusion that W (H : E | I )
must be a monotonic function of the Bayes factor and we may as well take
the logarithm of the Bayes factor as our explicatum because this leads to
desirable additive properties. (Good 1988, p. 389)15

In our notation, the posterior odds:

P (H | E , I )

P (H̄ | E , I )
= P (E | H , I )

P (E | H̄ , I )
× P (H | I )

P (H̄ | I )

can be rewritten as follows:

log

[
P (H | E , I )

P (H̄ | E , I )

]
= log

[
P (E | H , I )

P (E | H̄ , I )

]
+ log

[
P (H | I )

P (H̄ | I )

]
. (2.50)

The weight of evidence log
[
P (E | H , I )/P (E | H̄ , I )

]
is the additive change to

the log odds of H , due to evidence E only, without taking into account the initial
probability of H . Odds vary from 0 to ∞, while their logarithms vary from −∞
to +∞ (see Table 2.14).

Going from odds to log odds means to treat high and low probabilities symmet-
rically, and one unit of ‘weight’ corresponds to an increment (or to a decrement) of
one decimal place in the odds. This can help handle very low probabilities which
often appear when evaluating scientific evidence like DNA evidence, and formula
(2.50) makes it easy to calculate how much evidence one needs to turn the scale of
the balance, starting from given priors: for example, passing from prior log odds −6
to posterior log odds of 4 requires a weight of evidence equal to 10 (−6 + 10 = 4)
(Aitken and Taroni 2004).

14The letter G in the original text has been replaced with the letter I for the sake of consistency with
earlier works of the authors.

15The idea of using the log odds as a measure of the probative force of evidence goes back to
the American philosopher and mathematician Charles Sanders Peirce: his definition, given in a paper
published in 1878, The probability of induction, applies only to the special case where the prior odds
are 1, i.e. P (H | I ) = 0.5. In such a case, the prior log odds are 0 and the weight of evidence is equal to
the posterior log odds. The idea was ‘rediscovered’ by the great mathematician Alan Turing, while he
was working for the British intelligence to break the German code ‘Enigma’ during the Second World
War (see Good (1979)). Moreover, for a formal discussion about Bayes factor and likelihood ratio, see
Section 6.2.1.
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Table 2.14 Logarithmic scale for odds.

Odds Logarithm to base 10 Odds Logarithm to base 10

1:100.000.000 −8 1 0
1:10.000.000 −7 10 1
1:1.000.000 −6 100 2
1:100.000 −5 1.000 3
1:10.000 −4 10.000 4
1:1.000 −3 100.000 5
1:100 −2 1.000.000 6
1:10 −1 10.000.000 7

The weights of two pieces of evidence E and F add in the same way (background
knowledge I is omitted for ease of notation):

log

[
P (H | E , F )

P (H̄ | E , F )

]
= log

[
P (F | E , H )

P (F | E , H̄ )

]
+ log

[
P (E | H )

P (E | H̄ )

]
+ log

[
P (H )

P (H̄ )

]
.

When E and F are conditionally independent given H , the formula reduces to:

log

[
P (H | E , F )

P (H̄ | E , F )

]
= log

[
P (F | H )

P (F | H̄ )

]
+ log

[
P (E | H )

P (E | H̄ )

]
+ log

[
P (H )

P (H̄ )

]
.

The same technique which allows for the computation of probabilities for com-
plex bodies of evidence, namely analyzing them by means of Bayesian networks
which enjoy the Markov property (Section 2.2.4) makes it feasible to think about
the aggregate weight of evidence. If the full body of evidence can be divided
into different networks conditionally independent given the basic hypotheses of the
parties, or can be analyzed by a network which can be subdivided into condition-
ally independent clusters, then the aggregate weight is the sum of the individual
weights calculated for each network, or cluster, with regard taken for positive and
negative signs.

For example, in a criminal case, the DNA evidence might be evaluated inde-
pendently from other kinds of evidence, by means of the network in Figure 2.1
(but not, of course, independently by the evidence of witnesses that bears on the
probabilities p and r ; on the contrary, evidence that bears on the probability a
can be considered, in evaluating the DNA evidence as background knowledge I ).
Therefore, for that piece of evidence, the weight will be given by the logarithm of
formula (2.49):

log

[
r + (1 − r)γ

rγ + (1 − r)
[
p + (1 − p)γ

]
]

.

It must be emphasised that the same piece of evidence has as many differ-
ent weights as there are pairs of alternative hypotheses : formula (2.50) yields the
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posterior odds for a hypothesis H and its negation and, if the hypotheses are not
exhaustive, ‘true’ posterior odds cannot be calculated (recall the difference between
the odds on H1 against H2 and the odds on H against H̄ discussed in Section 2.3.2).
For the evaluation of a likelihood ratio, the starting point is always the defence’s
proposition, that is, the explanation put forward by the defence for the existence of
that particular physical trace. However, from a strictly logical point of view, that
explanation would not be the only possible alternative to the prosecution’s propo-
sition. It is true that the basic defence’s proposition, ‘the suspect did not commit
the fact’, is the logical negation of the basic prosecution’s proposition, but in order
to be able to evaluate likelihood ratios both at the ‘activity level’ and at the ‘source
level’, more specific propositions are needed to provide an alternative explanation
of data16.

There will be always alternative hypotheses available to explain the occurrence
of empirical facts, for example, the production of physical traces, such as blood
stains on the ground, or cellular stimulations on the retina of an eye-witness, so that,
in principle, the problem of the ‘catch-all hypothesis’ does exist in legal settings.
In this setting, though, usually the probability of the ‘catch-all hypothesis’ can be
considered to be so low that the prosecution and the defence propositions can be
safely taken as if they were exhaustive, and on that assumption, and only on that
assumption, it is permissible to pass from likelihood ratios and weights of evidence
to posterior odds.

The aspiration of the legal system is to approach an assessment of odds. The
means by which this is done in the vast majority of cases is to consider the
two parties’ respective hypotheses. It can be shown that a good approximation
of the probability of a hypothesis can usually be attained by comparing it
with the next most likely hypothesis. On the assumption that the two most
likely hypotheses in a legal case are those advanced by the respective parties,
this is what the legal system does. The adversarial process is thus an efficient
fact-finding process to the extent (and only to the extent) that this assumption
is true. (Robertson and Vignaux 1993, pp. 471–472)

2.4.2 The expected value of information

Information is not usually cost free: even when there is not a monetary price to be
paid, it takes time to obtain new data, and loss of time is a cost that sometimes
can be quantified. If information was costless, and there were no deadlines for the
taking of decisions, then it would always be rational to decide to search for new
information. However, this is not the case, and a typical problem scientists face
is to decide whether it is worth having new evidence, if it is worth performing a
new ‘experiment’, like another laboratory analysis, or to ask the police to search
for new witnesses. Given that this decision has to be taken before the data are

16For the concepts of ‘source level’, ‘activity level’, and ‘crime level’, see Cook et al. (1998).
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available, the problem is to calculate the expected gain of these new data, so that
the gain can be compared with the cost of the search. Provided that the utilities,
or the losses, of the outcomes of our decisions may be quantified in such a way
that they can be compared to the cost of the experiment, Bayesian decision theory
explains how the expected value of information may be calculated.

Imagine you are advising a client who has to decide which one of two alternative
hypotheses H1 and H2 to use, and suppose also that these two propositions can be
considered as if they were exhaustive. A loss will be incurred in using a ‘false’
hypothesis, so that the situation may be illustrated by Table 2.15.

Table 2.15 A decision matrix of losses.

H1 H2

d1: choosing H1 0 L12

d2: choosing H2 L21 0

You know that the best decision is that one for which the expected loss is the
minimum. In symbols (I denotes any evidence you already have about the two
hypotheses), you should take the decision di (i = 1, 2) as the one corresponding to
the i for which

2∑
j=1

Lij P (Hj | I ) (2.51)

is minimized.
You must decide whether to perform an ‘experiment’ whose possible result is E ,

and so your problem is to know how much should be paid for that ‘experiment’. As
a first step towards the solution of the problem, it shall be shown how to calculate
the expected value of perfect information , that is, how much it would be worth to
know with certainty which hypothesis is true.

If you knew the true hypothesis, you want to make the decision with the smallest
loss in the column corresponding to that hypothesis. Therefore, to calculate the
expected loss with perfect information you must multiply the minimum loss for
each hypothesis by the probability of that hypothesis, and sum all these products:

2∑
j=1

(min
i

Lij )P (Hj | I ). (2.52)

In this example, the calculus is very easy, for the minimum for each hypothesis
is, of course, zero, so that the expected loss with perfect information is zero.

Your choice before knowing the truth was given by formula (2.51); therefore,
the difference between (2.51) and (2.52) is the measure of the reduction in the
expected loss or, equivalently, the increase of the expected gain that could be
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obtained with perfect information. In other words, it is the measure of the expected
value of perfect information (with the sign inverted, given that we are using negative
‘utilities’, instead of ‘utilities’):

min
i

2∑
j=1

Lij P (Hj | I ) −
2∑

j=1

(min
i

Lij )P (Hj | I ). (2.53)

This is also the maximum price that one should be willing to pay for having
that perfect information. Notice that the expected value of perfect information will
always be greater than zero: indeed, whatever decision is taken without perfect
information, the value of (2.51) will be greater than the value of (2.52), since
every loss Lij in the former is replaced by a loss (mini Lij ) in the latter which
cannot be greater. This does not mean, of course, that perfect information always
reduces the expected loss of the best decision (or, equivalently, raises the expected
utility of the best decision): it can reduce your expectation, it can be ‘good’ or ‘bad’
news, but it always has an informative value, because ‘bad’ news also increases
your body of knowledge.

If your ‘experiment’ were of such a kind to tell you the truth, and all the truth,
this would be the end of the story. Unfortunately, it will provide only partial infor-
mation , changing your probabilities for H1 and H2 without letting them to go to 1
and 0. The best decision after having observed the result of the ‘experiment’ (E or
Ē ) will be the decision that minimizes the expected loss calculated using the poste-
rior probabilities. Equation (2.54) is also called the Bayes risk (see Section 7.4.1).

min
i

2∑
j=1

Lij P (Hj | E , I ). (2.54)

You don’t know what will be the outcome of the ‘experiment’ but you do
know the likelihoods; therefore, you can calculate the probabilities for the data by
extending the conversation:

P (E ) =
2∑

j=1

P (E | Hj , I )P (Hj | I ).

Now, given that you should choose the action that minimizes the loss for any
possible result of the ‘experiment’, your expected loss with partial information is
calculated by multiplying the minimum expected loss for each possible result of the
‘experiment’ (2.54) by the probability of that result, and sum all these products:

∑
E

min
i

2∑
j=1

Lij P (Hj | E , I )P (E | I ). (2.55)
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Application of the formula of Bayes’ theorem in (2.55), gives:

∑
E min

i

2∑
j=1

Lij

[
P (E | Hj , I )P (Hj | I )

P (E | I )

]
P (E | I )

∑
E min

i

2∑
j=1

Lij P (E | Hj , I )P (Hj | I ). (2.56)

Again, your choice before the ‘experiment’ was given by formula (2.51); there-
fore the difference between (2.51) and (2.56) is the measure of the expected value
of partial information (with the sign inverted):

min
i

2∑
j=1

Lij P (Hj | I ) −
∑

E

min
i

2∑
j=1

Lij P (E | Hj , I )P (Hj | I ). (2.57)

This is also the maximum price that one should be willing to pay for having
that partial information. Thus, the original problem has been solved: if you can
meaningfully compare the value (2.57) with a given cost of the ‘experiment’, you
will be able to decide whether it is worthwhile to conduct the ‘experiment’.

There now follow some numerical examples using a particular case. Consider
again the choice between two alternative and exhaustive hypotheses (Table 2.15)
and assume that the loss is symmetric: this is not a highly unrealistic assumption,
because in some cases it seems sensible to believe that the damage one shall
incur in choosing the false hypothesis will be the same regardless of which one
that is.

This case has the interesting feature that, without loss of generality, setting
Lij = 1, the expected loss is a probability. Suppose that P (H1 | I ) < P (H2 | I ):
then the best decision will be d2. The expected loss with perfect information is
zero and the expected value of perfect information will be equal to P (H1 | I ). Also
the expected value of partial information will be a probability, and this allows a
qualitative judgement to be made of the order of magnitude of the reduction in the
expected loss provided by the evidence, even though the reduction in the expected
loss cannot be directly compared to a quantitative cost of the ‘experiment’. The
calculations are shown in Table 2.1617. The decision matrix, the prior probabilities
and the likelihoods are entered in the first two numerical columns.

For any decision di and ‘experimental’ result E part of formula (2.56),
namely

2∑
j=1

Lij P (E | Hj , I )P (Hj | I ),

may be calculated as follows.

17This tabulation method is taken from Lindley (1985, p. 130).
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Table 2.16 Calculation of the expected losses of an experiment with two possible
mutually exclusive and exhaustive outcomes E and Ē and a choice (d1 or d2) between two
mutually exclusive and exhaustive hypotheses H1 and H2 with a symmetric (0–1) loss
function and different prior probabilities for H1 and H2 and likelihoods P(E | Hj , I ) and
P(Ē | Hj , I ) for j = 1, 2.

H1 H2 E Ē

Expected loss for

Decision matrix decisions d1 and d2

and outcomes E and Ē

d1: choosing H1 0 1 0.57 0.03
d2: choosing H2 1 0 0.004 0.396

Prior probabilities

P(Hj | I ) 0.4 0.6

Likelihoods

P(E | Hj , I ) 0.01 0.95
P(Ē | Hj , I ) 0.99 0.05

Consider each of the first two columns (i.e. each hypothesis Hj ), multiply
together the values for Lij , the prior and the likelihood for E , and sum the products
over the two hypotheses. For example, for d1 and E , we have:

(0 × 0.01 × 0.4) + (1 × 0.95 × 0.6) = 0.57,

and, for d1 and Ē , we have:

0 × 0.99 × 0.4) + (1 × 0.05 × 0.6) = 0.03.

These values are entered on the right-hand-side of the table, in the row corre-
sponding to d1, and in the columns labelled E and Ē , respectively. The values for
d2 are similarly entered. Then, the smallest values of columns E and Ē are selected
and added together, to give the expected loss with partial information (2.56). The
value for Table 2.16 is (0.03 + 0.004) = 0.034. Given that the minimum expected
loss without this information is 0.4, there will be a reduction of the expected loss
from the ‘experiment’ from 0.4 to 0.034.

If the uncertainty before the experiment were higher, say the two hypotheses
were equiprobable, the reduction in the expected loss from the same ‘experiment’
would also be higher: it is left as an exercise to the readers to check that this is
true for P (H1 | I ) = P (H2 | I ) = 0.5, and the same likelihoods as in Table 2.16.

This section concludes with another case that allows some interesting considera-
tions. Assume again that the loss is symmetric, and suppose now that the weight of
new evidence E is such that it yields equal posterior probabilities, as in Table 2.17.
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Table 2.17 Calculation of the expected losses of an experiment with two possible
mutually exclusive and exhaustive outcomes E and Ē and a choice (d1 or d2) between two
mutually exclusive and exhaustive hypotheses H1 and H2 with a symmetric (0–1) loss
function and equal posterior probabilities for P(E | H1, I ) and P(Ē | H2, I ).

H1 H2 E Ē

Expected loss for

Decision matrix decisions d1 and d2

and outcomes E and Ē

d1: choosing H1 0 1 0.0099 0.9801
d2: choosing H2 1 0 0.0099 0.0001

Prior probabilities

P(Hj | I ) 0.01 0.99

Likelihoods

P(E | Hj , I ) 0.99 0.01
P(Ē | Hj , I ) 0.01 0.99

The expected loss with this information is (0.0099 + 0.0001) = 0.01; the mini-
mum expected loss without is 0.01: therefore, the reduction of the expected loss is
zero. This result might seem, at first sight, counterintuitive: it says that the ‘exper-
iment’ is worthwhile to be carried out only if it is for free, while, on the other
hand, the ‘experiment’ looks like a good test for the ‘underdog’ H1, because E is a
highly improbable prediction, unless H1 is true (see Section 2.3.1). The explanation
for the Bayesian result is as follows.

It is true that, if the observed result were E , it would be a surprising and, in a
sense, an ‘informative’ result, because:

P (H1 | E , I )

P (H2 | E , I )
= 0.99

0.01
× 0.01

0.99
= 1.

But consider that, on one hand, the result might be Ē , and, in this case, it would
be much less ‘informative’, since H2 is already highly probable, and, on the other
hand, the result E would leave you in a situation of complete uncertainty about
the choice between H1 and H2, since the loss is perfectly symmetric. ‘Symmetry’
in this case means that you are interested only in the truth, and nothing but the
truth: which hypothesis is true does not make any difference with respect to what
is valuable for you. If this is really the case, then what the Bayesian result says is
that it is more convenient for you to look for another ‘experiment’ which is better
able to discriminate between the two hypotheses. If the ‘symmetry’ is broken, then
this experiment has an expected value greater than zero.
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Suppose that you ‘prefer’ that hypothesis H1 were true. This ‘preference’ can
be perfectly honest: all scientists have their preferred theories and they may well
think of a hypothesis that ‘it would be a pity if it were not true, because it is
mathematically beautiful (it fits well with other theories, it has interesting conse-
quences, and so on)’. These preferences can be represented in terms of ‘utilities’
and ‘losses’: if the ‘beautiful’ hypothesis were not true, they were losing some-
thing, their favourite ideas about how the fabric of the Cosmos should look like,
if nothing else. So make, for the sake of argument, the simplistic assumption that
you would prefer H1 were true ten times more than H2. Then the new calculations
are as shown in Table 2.18.

Table 2.18 Calculation of the expected losses of an experiment with two possible
mutually exclusive and exhaustive outcomes E and Ē and a choice (d1 or d2) between two
mutually exclusive and exhaustive hypotheses H1 and H2 with an asymmetric loss function
and equal posterior probabilities for P(E | H1, I ) and P(Ē | H2, I ).

H1 H2 E Ē

Expected loss for

Decision matrix decisions d1 and d2

and outcomes E and Ē

d1: choosing H1 0 1 0.0099 0.9801
d2: choosing H2 10 0 0.099 0.001

Prior probabilities

P(Hj | I ) 0.01 0.99

Likelihoods

P(E | Hj , I ) 0.99 0.01
P(Ē | Hj , I ) 0.01 0.99

Now, the expected loss with information is (0.0099 + 0.001) = 0.01, while the
minimum expected loss without is 0.1, and, this time, there is a reduction of the
expected loss by a factor 10. Thus, the answer is that, if you are a ‘supporter’ of
hypothesis H1, then it can be convenient (it will depend on the cost) to perform
that ‘experiment’; if you are a ‘supporter’ of hypothesis H2, or if you are ‘neutral’
between them, it is not.

This example shows how the Bayesian paradigm allows a deep understanding
of the real dynamics of scientific work. It is a matter of fact that scientists, in
any particular scientific branch, do not work in the same projects, do not share
the same opinions about which experiments are worth doing. Their actions are
oriented by their ‘preferences’ about theories, and not by a ‘disinterested’ love
of truth that would be reflected by a perfect symmetrical loss function. But there
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is nothing wrong in this ‘interest’: it legitimately influences which experiments
will be carried out but it does not influence which one, among several possible
experimental results, will occur (of course, manipulation of the results is not a
legitimate consequence of having certain theoretical preferences; it is cheating).

The Bayesian analysis emphasizes the importance of taking into due account the
consequences of acting according to a certain hypothesis, not only in deciding for
which kind of evidence it is worthwhile to search, but also in deciding how much
evidence one needs in order to be able to make a rational decision. If the former
is the question that forensic scientists very often address, the latter is fundamental
in the law, as shall be seen in the last section of this chapter.

2.4.3 The hypotheses’ race in the law

As we have already stressed, forensic scientists are not concerned with ‘ultimate
issues’. Their decisions have, of course, an influence on decision making about
‘ultimate issues’, so that the question whether the use of expected utility theory is
appropriate is meaningful, as part of the more general question as to whether or
not it is legitimate to apply expected utility theory to legal decisions. The debate
about this question originated with a paper by Kaplan (1968).

Within the past decade and a half, statisticians, mathematicians, and econo-
mists have developed a new field of learning, statistical decision theory,
that has already found its way into use in the highly pragmatic business
world. [. . .] This article will attempt to apply some of the basic tools of
decision theory to the factfinding process, particularly that of the criminal
trial. (Kaplan 1968, p. 1065)

The proposal aroused a wave of criticism, maybe the most influential of which
has been Tribe (1971), and the debate has been going on for 40 years. It will
probably be endless, because it concerns the very foundations of our society.
Among the advocates of the Bayesian side are Edwards (1991); Egglestone
(1983); Fienberg and Finkelstein (1996); Fienberg and Kadane (1983); Fienberg
and Schervish (1986); Finkelstein and Fairley (1970); Kaye (1999); Koehler
(1992); Lempert (1977); Lindley (1977a); Robertson and Vignaux (1993, 1995).
On the side of the critics, there was a philosopher whose ideas were quite popular
at the end of the last century (Cohen 1977), and a recent book from a philosopher
of science (Laudan 2006). It is not our goal to participate in this debate, therefore
we shall limit ourselves to presentation of the standard abstract decision matrix
proposed and discussed in the literature mentioned above, and to the provision of
an argument in defence of the thesis that expected utility theory is, in principle,
applicable in that decision matrix.

The ‘ultimate issue’ loss matrix (Table 2.19) has the following general aspect,
where Hd stands for the defendant’s proposition, and Hp for the prosecution’s,
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Table 2.19 The ‘ultimate issue’. Hd stands for the defendant’s
proposition, and Hp for the prosecution’s, or the plaintiff’s,
proposition, and X , Y , Z , and W denote the outcomes.

Hd Hp

d1: decision for Hd X Y
d2: decision for Hp Z W

or the plaintiff’s, proposition, and X , Y , Z , and W denote the outcomes; no
assumptions, at this point, have been made about the ‘value’ of these outcomes.

Now consider which assumptions can be reasonably made about this set of
uncertain outcomes: there is an ordering of preferences among them, and there
is at least one of them which is the best, and one which is the worst: X and W
are better than Y and Z , and, depending on the issue, X can be better than W , or
conversely, and Y can be better than Z , or conversely. Assume the ‘ultimate issue’
concerns a criminal case: as a consequence, nobody will deny that Y (acquitting a
guilty accused) is better than Z (convicting an innocent accused). The order of pref-
erence between X and W is arguable but, for the sake of simplicity, and without loss
of generality, assume that X is indifferent to W : X and W are at the top of the pref-
erence ordering with X = W , the bottom is Z , and an intermediate outcome is Y .

Given that a Ramsey–von Neumann–Morgenstern utility function is unique up to
linear transformations, the origin does not matter (Section 2.2.2), the problem is to
put Y somewhere on the utility scale between X and Z (assuming X �= W would
simply introduce two intermediate outcomes, without modifying the argument).
This can be done if and only if there exists probabilities α, β ∈ (0, 1), such that:

(i) Y is preferred to the gamble αX + (1 − α)Z ;
(ii) the gamble βX + (1 − β)Z is preferred to Y .

If either (i) or (ii), or both, is violated, then X , Y and Z can be ordered but
cannot be compared on a utility scale.

Gamble (i) offers a probability α of acquittal of an innocent person and a
probability (1 − α) of conviction of an innocent person. Violation of (i) means
that, for any probability α, one would prefer to gamble: no matter how high the
probability is of convicting an innocent person , one is willing to run that risk.
However, courts of justice do not behave in that way: (i) is satisfied for some α.

Given that we have assumed that acquittal of an innocent person is equivalent to
conviction of a guilty person, i.e. X = W , one can substitute W for X in gamble (ii)
and obtain an equivalent gamble. Therefore, gamble (ii) offers a probability β of
conviction of a guilty person and a probability (1 − β) of convicting an innocent
person. Violation of (ii) means that, for any probability β, one would prefer to
acquit a guilty person: no matter how high the probability is of convicting a guilty
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person , the verdict will be always acquittal. However, courts of justice do not
behave that way: (ii) is satisfied for some β.

Therefore, in principle, there exists a Ramsey–von Neumann–Morgenstern util-
ity function which represents the preference ordering among the outcomes of the
‘ultimate issue’. This is reflected in the law by the ‘reasonable doubt’ standard.
The problem is that, in practice, there are no means to measure the ‘utility’ of Y
in a meaningful way and, by consequence, no means to quantify the ‘reasonable
doubt’ threshold.

Having established the legitimacy, in principle, of thinking in terms of expected
utilities, and expected losses, the problem may be reframed using a loss matrix (the
symbols Ld and Lp are self-explanatory):

It is easy to see that, if the losses were measurable, the ‘reasonable doubt’ thresh-
old would be the posterior odds cutoff , fixed by the loss ratio (see Section 2.3.2);
E denotes the total evidence pertaining to the case, and I denotes the background
knowledge different from E :

EL(d2 | E , I ) < EL(d1 | E , I ) if and only if LpP (Hd | E , I ) < Ld P (Hp | E , I ).

Therefore, a guilty verdict should be issued if and only if:

P (Hp | E , I )

P (Hd | E , I )
>

Lp

Ld
. (2.58)

Development of (2.58) permits a specification as to the weight of evidence
necessary to justify a guilty verdict. Given that:

P (E | Hp , I )

P (E | Hd , I )
× P (Hp | I )

P (Hd | I )
>

Lp

Ld
,

it holds that

P (E | Hp , I )

P (E | Hd , I )
>

LpP (Hd | I )

Ld P (Hp | I )
. (2.59)

The chapter is finished with an exercise whose purpose is to show how the
Bayesian ‘scales of justice’ should work.

In criminal cases, guilt is to be proved ‘beyond a reasonable doubt’. [. . .]
Intuition is hesitant. Still, language such as ‘it is better to set ten guilty
persons free than to convict one innocent one’ provides a basis for inferring
a numerical standard [. . .] The principle that decisions should be made by
maximizing expected utility permits translation of such a value judgment into
an inequality limiting the posterior odds cutoff. [. . .] we have fairly pinned
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down the notion of reasonable doubt. (Edwards 1991, pp. 1063–1064)18

If we assume that the acquittal of n guilty people is preferable to the conviction
of one innocent person, then we might put Ld = 1 and Lp = n in Table 2.20.
Therefore, (2.58) says that, if n = 10, the ‘reasonable doubt’ would correspond to
a posterior probability of guilty equal to 0.91; if n = 1000, it would correspond to
a posterior probability of 0.99919.

Table 2.20 The ‘ultimate issue’ loss matrix where Hd stands
for the defendant’s proposition, and Hp for the prosecution’s,
or the plaintiff’s, proposition.

Hd Hp

d1: decision for Hd 0 Ld

d2: decision for Hp Lp 0

Suppose then that the prior probability of guilt is 1/m , (2.59) says that evidence
sufficient to a guilty verdict must be such that:

LR > n × (m − 1). (2.60)

The threshold (2.58) should hold in civil trials also, and in this case it might
present a problem. Whereas, in criminal cases, both n and m should be reasonably
high, so to make very high the required value of the weight of evidence, in civil
cases we have no clear intuition about the order of magnitude of the loss ratio, and
of the prior odds.

The apparently simpler issue of standard of proof in civil cases is actually
more difficult. The phrase ‘proof by the preponderance of evidence’ is often
taken to imply a posterior odds cutoff of 1:1, though the phrase seems to refer
to evidence, and so to an aggregate likelihood ratio, rather than to posterior
odds. The difficulty is that no standard, vague or otherwise, is proposed for
prior odds in civil cases. In the absence of such a standard, a posterior odds
cutoff is simply meaningless. (Edwards 1991, p. 1066)

Sometimes it has been proposed to take a prior odds of 1:1 for civil trials: in
that case, provided that also the loss ratio is 1:1, the ‘preponderance of evidence’

18Laudan (2006, p. 63) gives an interesting list of historical opinions about the issue: ‘It is better
that five guilty persons should escape punishment than one person should die (Matthew Hale 1678).
It is better that ten guilty persons should escape [punishment] than that one innocent suffer (William
Blackstone 1769). I should, indeed, prefer twenty guilty men to escape death through mercy, than
one innocent to be condemned unjustly (John Fortesque 1471). It is better a hundred guilty persons
should escape than one innocent person should suffer (Benjamin Franklin 1785). It is better to acquit a
thousand guilty persons than to put a single innocent man to death (Moses Maimonides, living from 1135
to 1204).’

19Remember that posterior probability equals O/(O + 1).
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standard would require an aggregate likelihood ratio simply greater than unity. The
problem here is that that weight of evidence seems quite small. It can be argued
that likelihood ratios measure the relative weight of evidence, making a comparison
between two parties’ propositions, and they do not measure the ‘absolute’ amount
of evidence, but the most reasonable answer seems to be that, in civil cases, the
assumption of equal losses on both sides is too simplistic. The values of the losses
reasonably depend on the importance of the issue, and in a litigation between
neighbours less is at stake than, say, in an environmental pollution case. This
would make necessary an evaluation, by the court, of the overall possible losses
in ‘utility’ the parties would suffer. Fortunately, this is not a problem forensic
scientists are asked to solve, and this topic may be left where it stands.



3

Concepts of Statistical Science
and Decision Theory

3.1 RANDOM VARIABLES AND DISTRIBUTION
FUNCTIONS

3.1.1 Univariate random variables

A statistician draws conclusions about a population. This may be done by con-
ducting an experiment or by studying a population. The possible outcomes of the
experiment or of the study are known as the sample space �. The outcomes are
unknown in advance of the experiment or study and hence are said to be variable.
It is possible to model the uncertainty of these outcomes because of the random-
ness associated with them. Thus the outcome is considered as a random variable.
Each random variable has a set of possible states which might be categorical (the
random variable has category labels as possible values) or numerical (the random
variable has numbers as possible values). Examples of category labels might be
‘positive’ or ‘negative’ in an experiment involving inspection of pills suspected to
contain drugs, or ‘guilt’ or ‘innocent’ in a verdict. Category labels might also be
more than two, such as hair colours.

In many experiments it is easier to deal with a summary than with the original
observations. For example, suppose it is of interest to know the proportion of
individuals (or objects) in a relevant population that have a certain characteristic.
Then, if the size of the population is, for example n = 100, the sample space (�)
for this experiment would be composed of 2100 elements, each an ordered string of

Data Analysis in Forensic Science: A Bayesian Decision Perspective Franco Taroni, Silvia Bozza, Alex Biedermann,
Paolo Garbolino and Colin Aitken
 2010 John Wiley & Sons, Ltd
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1s (if the observed item has the characteristic of interest), and 0s (if the observed
item does not have the characteristic of interest), of length 100. However, the only
quantity which is really of interest is the number (X ) of individuals (objects) that
present this characteristic. The quantity X is defined as a function (called a random
variable) from the original sample space � to a new sample space X (the possible
states of the random variable), usually the set of real numbers R.

Example 3.1.1 (Black toners). Consider a population of printed documents.
Documents are printed with black dry toner which may be one of two types:
single-component (S ) or bi-component (B) toners. A sample of three docu-
ments is extracted and analyzed. A sample point for this experiment is one
which indicates the result of each draw. For example, SSB indicates that two
documents printed with black toner of type S have been sampled and then
a third one printed with black toner of type B. The sample space for this
experiment has eight points denoted ωj , j = 1, 2, . . . , 8, namely

� = {SSS , SSB , SBS , BSS , BBS , BSB , SBB , BBB} .

Suppose we are interested in knowing the proportion of documents printed
with black toner of type S , and define a random variable X = ‘number of
observed documents printed with black toner of type S ’. In defining the ran-
dom variable X , we have also defined a new sample space, X = {0, 1, 2, 3},
the set of possible values xi , i = 1, . . . , 4, the variable can take (range of the
random variable). This is the usual distinction between a random variable,
an upper case letter, and the value that it takes, a lower case letter, here X
and x . Note that X = xi is observed if and only if the outcome of the random
experiment is a point ωj ∈ � such that X (ωj ) = xi . For example, if the out-
come is SSB (ω2), then X (ω2) = 2 (x3). The values assumed by the random
variable for each point ωj of the sample space are given in Table 3.1.

Table 3.1 Values (xi ) for the random variable X for each point ωj of the sample
space �.

j 1 2 3 4 5 6 7 8

ωj SSS SSB SBS BSS BBS BSB BSS BBB
X (ωj ) = xi 3 2 2 2 1 1 1 0

i 4 3 3 3 2 2 2 1
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A probability distribution PX on X is a function which shows how the probabil-
ities associated with the random variable are spread over the sample space. Thus,
considered the random variable X with range X = {0, 1, 2, 3} in Example 3.1.1, the
probability distribution is given by

PX (X = xi ) = P�

({
ωj ∈ � : X (ωj ) = xi

})
, i = 1, . . . , 4 ; j = 1, ...8,

where
{
ωj ∈ � : X (ωj ) = xi

}
is read as ‘the set of ωj belonging to (∈) � such that

(:) X (ωj ) = xi ’.
To each random variable X is associated a function called the cumulative dis-

tribution function (cdf), denoted by FX (x ), and defined by:

FX (x ) = PX (X ≤ x ), for all x .

Numerical random variables can be either discrete (the random variable takes values
in a finite or countable set, e.g. 1, 2, . . .) or continuous (the random variable takes
values in a continuum, e.g. the real numbers). A random variable X is discrete if
FX (x ) is a step function of x . An example of a discrete random variable is given in
Example 3.1.1. The associated probability distribution of a discrete random variable
is called a probability mass function (pmf) and is given by

fX (x ) = PX (X = x ), for all x .

The pmf is always non-negative and is such that
∑

X fX (x ) = 1.

Example 3.1.2 (Black toners – continued). Assume that, for the sake of sim-
plicity, the occurrences of the two types of black toners on printed documents
are equiprobable (P (S ) = P (B ) = 1

2 ). Then, the probability mass function
and the cumulative distribution function are given in Table 3.2. The step
function FX (x ) is illustrated in Figure 3.1.

Table 3.2 Probability mass function and cumulative distribution function of
the random variable X = ‘number (x ) of observed documents printed with
black toner of type S ’ in Example 3.1.1.

x 0 1 2 3

PX (X = x ) 1/8 3/8 3/8 1/8
PX (X ≤ x ) 1/8 4/8 7/8 1
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Figure 3.1 Cumulative distribution function of Example 3.1.1.

A random variable X is continuous if FX (x ) is a continuous function of x . In
this case the sample space � is given by a countable infinity of events: the task
consists of assigning a probability to the events in the sample space.

Example 3.1.3 (Weight of seized pills). A typical example for a continuous
random variable is the weight of seized pills with illicit content (e.g.
ecstasy pills). Observations on items of a given population are collected
into classes defined by weight. The relative frequency of each class
is reported. The probability density is the relative frequency per unit
weight; i.e., relative frequency divided by the range of class (Table 3.3).

Table 3.3 Weight measurements (x ) and distribution in classes.

Weight classes Relative Range of Probability
(mg) frequency class (mg) density

[155, 160) 0.0065 5 0.0013
[160, 165) 0.0495 5 0.0099
[165, 170) 0.1555 5 0.0311
[170, 175) 0.2850 5 0.0570
[175, 180) 0.2935 5 0.0587
[180, 185) 0.1560 5 0.0312
[185, 190) 0.0450 5 0.0090
[190, 195) 0.0090 5 0.0018

Total 1
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The limits of each class are specified with two numbers separated by a comma
and enclosed in brackets. The inclusion or non-inclusion of the limits in the
class follows the standard mathematical conventions, i.e. the square bracket
[means that the lower value is included, the round bracket) means that the
upper value is excluded. So, the class [155, 160) includes all weight measure-
ments 155 ≤ x < 160.

The weight classes in Example 3.1.3 can be seen as the elements constituting
the sample space, whose probability is given by the relative frequency. Suppose
now a single item is extracted from the population, and its weight measured. The
probability distribution for weights can be represented by means of a histogram
that assigns to each element in a given class a constant value equal to the ratio
between the relative frequency and the range of the class (Figure 3.2 (left)). This
quantity is known as probability density and, assuming the probability is equally
distributed in the class, is the probability of an interval of unitary range (in this case
an interval of 1 mg). The underlying idea is that the probability is equivalent to
an area. Consequently the probability of observing exactly a single value x is null
since it is the area of a rectangle with 0 base. It is also evident that the total area
of rectangles must be 1 since the total area represents the sum of the probabilities
of the elements of the sample space. Imagine a continuous curve that approximates
the shape of the histogram (Figure 3.2 (right)). This function is always positive.
The underlying area is equal to 1, and is called a probability density function (pdf).

x

P
ro

ba
bi

lit
y 

de
ns

ity

160 170 180 190

0.
00

0.
02

0.
04

0.
06

x

P
ro

ba
bi

lit
y 

de
ns

ity

160 170 180 190

0.
00

0.
02

0.
04

0.
06

Figure 3.2 Histogram of the distribution summarized in Table 3.3 (left); Histogram of the
distribution summarized in Table 3.3 with a probability density function overlaid (right).

A probability mass function (pmf) or a probability density function (pdf) is any
function fX (x ) satisfying the following two requirements:

1. fX (x ) ≥ 0, for all x
2.

∑
X fX (x ) = 1 if X discrete;

∫∞
−∞ fX (x )dx = 1 if X continuous.
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The probability that the continuous random variable X takes values in any
interval [a , b] is the area underlying the probability density function:

P (a ≤ X ≤ b) =
∫ b

a
fX (x )dx .

This is illustrated in Figure 3.3 with reference to Example 3.1.3. The shaded area is
equal to the probability that the weight of a single pill from the relevant population
lies in the interval [180, 186].
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Figure 3.3 Probability of the interval [180, 186] in Example 3.1.3.

Note that, as stated above, P (X = a) = 0, and P (a ≤ X ≤ b) = P (a < X < b).
The cumulative distribution function FX (x ) of a continuous random variable X

satisfies:

FX (x ) = P (X ≤ x ) =
∫ x

−∞
fX (t)dt , −∞ < x < ∞.

For a single value x of the random variable X , the cumulative distribution FX (x )
gives the probability of the interval (−∞, x ]. This is illustrated in Figure 3.4; for
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Figure 3.4 Probability of the interval (−∞, 170] in Example 3.1.3.
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x = 170. The cumulative distribution is equal to 0.2 (left), which is the shaded
area underlying the probability density function (right).

3.1.2 Measures of location and variability

The mean , or expected value, of a random variable X is a measure of central
tendency that summarizes the centre of the distribution. It is denoted by E (X ) and
is given by:

E (X ) =



∑
X xfX (x ) if X discrete∫∞

−∞ xfX (x )dx if X continuous

The quantile of order p (for any p between 0 and 1) of a discrete random variable
X is the smallest value of X , xp , such that

FX (xp) = P (X ≤ xp) > p.

If xh is a value in the range of X such that FX (xh ) = p exactly, then the quantile
of order p is conventionally taken to be xp = (xh + xh+1)/2. The quantiles of order
p = 0.25, p = 0.5, p = 0.75, are commonly identified as the lower quartile, the
median , and the upper quartile. For the ease of illustration, consider Example
3.1.1. The lower quartile is x0.25 = 1, the median is x0.5 = 1.5, the upper quartile
is x0.75 = 2 see Table 3.2. For a continuous random variable the quantile of order
p is that value xp that satisfies exactly FX (xp) = p.

The mode of a probability distribution is that value x of the random variable
X at which its pmf takes its maximum value if X is discrete, or its pdf attains
its maximum value if X is continuous (the mode is at the peak). The mode is
not necessarily unique; when a density function has multiple local maxima, it is
called multimodal. The mode and the median represent further measures of central
tendency of a distribution.

The variance of a random variable X is defined by Var(X ) = E (X − E (X ))2,
and gives a measure of the degree of spread of a distribution around its mean.
The positive square root of the variance, σX = √

Var(X ), is called the standard
deviation of X .

Common families of discrete and continuous random variables, together with
their means and variances, are given in Appendices A and B, respectively.

3.1.3 Multiple random variables

In many experimental situations, the value of more than one random variable may
be observed. Multiple observations could arise because several characteristics are
measured on each item or person. Considering again a population of individual
pills. It can be reasonably imagined that more characteristics are observed than
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just the weight (X ). For instance, one may also measure a pill’s diameter. A new
variable Y may thus be defined. Consequently, one has a two-dimensional random
vector (X , Y ) that associates to each item a couple of measurements, that is its
weight and its diameter. This corresponds to a point in the space R

2.

Definition 3.1.4 A p-dimensional random vector is a function from a sample
space � into the p-dimensional Euclidean space R

p .

Let (X , Y ) be a discrete two-dimensional random vector (also called a bivariate
random variable). The joint probability mass function of (X , Y ) is the function
from R

2 to R defined by

fX ,Y (x , y) = P (X = x , Y = y).

This function is always non-negative and such that
∑

(x ,y)∈R2 f (x , y) = 1, anal-
ogously to the univariate case. The marginal probability mass functions of X and
Y , fX (x ) = P (X = x ) and fY (y) = P (Y = y) are given by

fX (x ) =
∑
Y

fX ,Y (x , y) and fY (y) =
∑
X

fX ,Y (x , y),

and are illustrated in Table 3.4, where X = {x1, . . . , xh} and Y = {y1, . . . , yk }.

Table 3.4 Joint probability mass function and marginal probability mass functions f of a
bivariate discrete random variable (X , Y ).

Y y1 . . . yj . . . yk f (x )

X x1 f (x1, y1) . . . f (x1, yj ) . . . f (x1, yk ) f (x1)
..
.

..

.
..
.

..

.
..
.

xi f (xi , y1) . . . f (xi , yj ) . . . f (xi , yk ) f (xi )
..
.

..

.
..
.

..

.
..
.

xh f (xh , y1) . . . f (xh , yj ) . . . f (xh , yk ) f (xh )

f (y) f (y1) . . . f (yj ) . . . f (yk ) 1

The marginal distributions of X and Y by themselves do not completely describe
the joint distribution of X and Y . There are many different joint distributions that
have the same marginal distributions. The joint distribution contains additional
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information about the distribution of (X , Y ) that is not contained in the marginal
distributions.

The joint probability distribution of (X , Y ) can be completely described with
the joint cumulative distribution function (cdf), F (x , y), defined by:

F (x , y) = P (X ≤ x , Y ≤ y) , ∀(x , y) ∈ R
2.

Example 3.1.5 (Black toners – continued). Consider now a new experiment
in which only two documents are examined. Suppose that for each document
one also notes the resin group contained in each toner sample. For the ease of
argument, let this resin group be one of two possible kinds, called Epoxy A and
Epoxy C, each equally likely. Then, a new variable Y = ‘number of observed
documents printed with black toner with resin group Epoxy A’ is defined. The
random variable X = ‘number of observed documents printed with black
toner of type S’ defined in Example 3.1.1 has now range X = {0, 1, 2}, in
the same way the random variable Y has range Y = {0, 1, 2}, see Table 3.5.
The sample space defined by the observation of two characters, the type of
toner and the resin group, is given by a total of 16 sample points. For the
sample point (SA, SC ), where SA(C ) states for ‘black toner of type S and resin
group Epoxy A (C)’, the random variable X takes value 2, while the random
variable Y takes value 1. For each of the 16 sample points the values of X
and Y are computed, and the bivariate random variable (X , Y ) is defined. The
probabilities of events defined in terms of X and Y are just defined in terms
of the probabilities of the corresponding events in the sample space. So, the
probability of (X = 0, Y = 0) is 1/16 because there is only one sample point
that yields (X = 0, Y = 0), that is (BC , BC ), both documents are printed with
black toner of type B and resin group Epoxy C. The joint pmf of (X , Y ) and
the marginals are given in Table 3.6. The marginal pmf of X (Y ) is computed
summing over the possible values of Y (X ), for each possible value of X (Y ).

Table 3.5 Random variables X and Y in Example 3.1.5.

Type of toner X Resin group Y

Document 1 Document 2 Document 1 Document 2

S S 2 A A 2
S B 1 A C 1
B S 1 C A 1
B B 0 C C 0
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Table 3.6 Joint probability mass function and marginals in Example 3.1.5.

Y 0 1 2 f (x )

X 0 1/16 2/16 1/16 4/16
1 2/16 4/16 2/16 8/16
2 1/16 2/16 1/16 4/16

f (y) 4/16 8/16 4/16 1

Let (X , Y ) be a continuous bivariate random variable. A function f (x , y) from
R

2 to R is called a joint probability density function if for every A ⊂ R
2

P ((X , Y ) ∈ A) =
∫

A

∫
f (x , y)dxdy .

The marginal probability density function of X and Y are given by

fX (x ) =
∫ ∞

−∞
f (x , y)dy , −∞ < x < ∞,

fY (y) =
∫ ∞

−∞
f (x , y)dx , −∞ < y < ∞.

Note that the important relationship illustrated in the univariate (continuous) case
still holds:

F (x , y) = P (X ≤ x , Y ≤ y) =
∫ x

−∞

∫ y

−∞
f (s , t)dsdt .

When two random variables are observed, the values of the two variables are
often related. Let (X , Y ) be a discrete bivariate random variable with joint pmf
f (x , y) and marginal pmfs fX (x ) and fY (y). For any x such that fX (x ) > 0, the
conditional pmf of Y given that X = x is the function of y denoted by f (y | x ) and
defined by

f (y | x ) = P (Y = y | X = x) = f (x , y)

fX (x )
.

This is the proportion of those values that have the value X = x for which the
value of Y is equal to y .
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For any y such that fY (y) > 0, the conditional pmf of X given that Y = y is the
function of x denoted by f (x | y) and defined by

f (x | y) = P (X = x | Y = y) = f (x , y)

fY (y)
.

This is the proportion of those values that have the value Y = y such that the value
of X is equal to x .

Let (X , Y ) be a continuous bivariate random variable with joint pdf f (x , y) and
marginal pdfs fX (x ) and fY (y). For any x such that fX (x ) > 0, the conditional pdf
of Y given that X = x is the function of y denoted by f (y | x ) that is defined by

f (y | x ) = f (x , y)

fX (x )
.

(The value X = x is assumed fixed and may be thought of as a parameter.)
For any y such that fY (y) > 0, the conditional pdf of X given that Y = y is the

function of x denoted by f (x | y) that is defined by

f (x | y) = f (x , y)

fY (y)
.

(Note that the definitions of the conditional probability density functions involve
marginal functions.)

Let (X , Y ) be a bivariate random variable with joint pdf or pmf f (x , y) and
marginal pdfs or pmfs fX (x ) and fY (y). Then X and Y are called independent
random variables if, for every x ∈ R and y ∈ R,

f (x , y) = fX (x )fY (y).

If X and Y are independent, the conditional pdf of Y given X = x is (for fX (x ) �= 0)

f (y | x ) = f (x , y)

fX (x )
= fX (x )fY (y)

fX (x )
= fY (y),

regardless of the value of x . The knowledge that X = x gives no additional infor-
mation about Y . It can be easily verified that variables X and Y in the black toner
example are independent. Take for example X = 0, it can be observed

f (X = 0 | Y = 0) = 1/16

4/16
= 1

4
,

f (X = 0 | Y = 1) = 2/16

8/16
= 1

4
,

f (X = 0 | Y = 2) = 1/16

4/16
= 1

4
,
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that is, given the knowledge of Y , the conditional probability of X = 0 is equal to
the marginal fX (0). This has to be verified for all values of X and Y . Alternatively,
variables X and Y might not be independent, as in Example 3.1.6.

Example 3.1.6 (Black toners – continued). Imagine that the single compo-
nent toner could be either of resin group Epoxy A or Epoxy C as before,
however the bi-component toner (B) could be either of resin group say Epoxy
C or Epoxy D, different from A or C . If then a sample of two documents is
extracted, one can calculate the values of X (number of observed documents
printed with black toner of type S) and Y (number of observed documents
printed with black toner with resin group Epoxy A) for the 16 sample points.
The joint pmf of the bivariate random variable (X , Y ) and the marginals
are given in Table 3.7. It can be easily verified that the variables are not
independent, in that P (X = x , Y = y) �= P (X = x )P (Y = y).

Table 3.7 Joint probability mass function and marginals in Example 3.1.6.

Y 0 1 2 f (x )

X 0 4/16 - - 4/16
1 4/16 4/16 - 8/16
2 1/16 2/16 1/16 4/16

f (y) 9/16 6/16 1/16 1

The strength of the (linear) relationship between two random variables is mea-
sured through the covariance and the correlation. The covariance of X and Y is
defined by

Cov(X , Y ) = E [(X − E (X ))(Y − E (Y ))] .

The correlation of X and Y is defined by

ρX ,Y = Cov(X , Y )

σX σY
.

The sign of the covariance gives information regarding the direction of the relation-
ship between two random variables. The covariance is positive when large values
of X tend to be observed with large values of Y , and small values of X with
small values of Y . Conversely, when large values of X are observed in association
with small values of Y , and vice versa, the sign of the covariance is negative.
The covariance is influenced by the units of measurement of the random variables.
The numerical value itself does not give information about the strength of the
relationship between the variables; information about the strength is given by the
correlation. The correlation always lies between −1 and 1, with the values −1 and
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1 indicating a perfect linear relationship between the random variables of negative
and positive slope, respectively.

In the univariate case, the plot of the probability density represents a basic tool
to display the main aspects of the underlying distribution. For bivariate continuous
random variables, the graphical representation of the joint density can be less
informative due to the difficulties of representing a three-dimensional object in
two dimensions. In particular, it is hard to visualize the shape of a mode clearly.
A graphical summary that avoids this problem is the contour plot. A hypothetical
example is shown in Figure 3.5. The contour lines join points of equal joint density.
A mode is identified as the centre of a system of nested contour lines, joining
points of increasing density moving inwards. The elongation of the contours show
the strength of the relationship between the random variables. Figure 3.5 shows a
single mode around the point (1, 1) for respectively uncorrelated (left), positively
correlated (centre), and negatively correlated (right) variables.
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Figure 3.5 Examples of contour plots for uncorrelated (left), positively correlated (centre),
and negatively correlated (right) variables.

3.2 STATISTICAL INFERENCE AND DECISION THEORY

Statistical inference represents a fundamental problem towards which statistical
studies are addressed. Starting from scientific or observational results which gen-
erally consist of a set of data x1, . . . , xn , the principal aim of statistical methods
is to make statements, known as inference, about the process which has produced
those observations and on the expected behaviour of future instances of the same
process. The basic idea of statistical modelling is to consider data, x1, . . . , xn , as
the observed values of random variables X1, . . . , Xn . If the random variables are
mutually independent, and each of the Xi , i = 1, . . . , n , has the same probability
function fX (x ), then the collection (X1, . . . , Xn ) is said to be a random sample of size
n , and the collected data are the observed value of a random sample, (x1, . . . , xn).
The joint pdf or pmf of a set of observations from a random sample is given, using
the product rule for independent observations, by

fX (x1, x2, . . . , xn) = fX (x1) · ... · fX (xn ) =
n∏

i=1

fX (xi ).
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In practice, the probability function fX (x ) is unknown (in total or in part, as will
be explained later). Some of its properties might be inferred by summarizing the
observed data in terms of a few numbers. Any summary of a random sample,
expressed as a function t(X1, . . . , Xn ), is a random variable T = t(X1, . . . , Xn ) and
is called a statistic. The probability distribution of a statistic is called a sampling
distribution . The basic features of a sample are its typical value (location), and
a measure of how spread out the sample is (scale), that can be summarized with
the sample moments (e.g. the sample mean). Good and frequently used sample
summaries are the sample mean, sample variance and sample standard deviation.

The sample mean is the arithmetic average of the random variables, formally

X̄ = 1

n

n∑
i=1

Xi .

The sample variance is the statistic defined by

S 2 = 1

n − 1

n∑
i=1

(Xi − X̄ )2.

The sample standard deviation is the statistic defined by S =
√

S 2.
As usual, the observed values of random variables are denoted with lower-

case letters. So, x̄ = 1
n

∑n
i=1 xi , s2 = 1

n−1

∑n
i=1(xi − x̄ )2, and s =

√
s2 denote the

observed values of X̄ , S 2, S . The term ‘sample’ is used to avoid confusion with the
theoretical quantities (such as mean and variance), in the sense that sample values
are computed from the observed data.

Obviously, problems of inference can arise in a great variety of different circum-
stances. For example, consider a forensic laboratory that receives a consignment of
individual items (such as tablets, or electronic data storage devices), whose char-
acteristics may be of interest within a criminal investigation. Sampling inspection
produces an answer of type ‘yes’ or ‘no’ to the question as to whether the inspected
items contain something illegal. The process that gives rise to the observed data
consists of sampling without replacement from a population of individual items.
Each observation is assigned the value 1 if the corresponding item contains some-
thing illegal, and the value 0 otherwise. It is a realization from a binomial or
hypergeometric distribution, for large and small consignments, respectively (Aitken
and Taroni 2004). The aim is to find a probabilistic model that incorporates the
available information and the uncertainty characterizing this information. Infer-
ences are conditional on the adequacy of the probabilistic model: if such a model
is inadequate, relevant information can be distorted or excluded. In the hypotheti-
cal scenario considered, the distribution underlying the generation of observations
is assumed known (in this specific case a binomial), and is denoted f (x | θ ). The
only unknown feature is the proportion, θ , of items that possess the characteristic
of interest. The object of inference is to use the available information in the sample
to make statements about θ . The probabilistic model, that is the probability dis-
tribution underlying the generation of observations, is assumed to be of a known
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form but with a parameter θ , that is unknown. The model is called a parametric
model and is denoted f (x | θ ) where θ ∈ �, the parameter space.

It is worth noting that circumstances may be encountered where the process
which has produced the observations has other unknown features of interest; for
example, the sampling mechanism adopted may be ignored. In such cases, the
probability function underlying the generation of observations may be unknown,
and a model that enables estimation of the function should be used. This approach
is known as nonparametric. A general method is the kernel density estimation
(Silverman 1986; Simonoff 1996; Wand and Jones 1995). However, in this book
only parametric models will be considered. It will be assumed that the observa-
tions x1, . . . , xn have been generated from a parametrized distribution f (xi | θ ),
i = 1, . . . , n , such that the parameter θ is unknown and the function f is known.

In this book, a decision-oriented approach to statistical inference is supported.
There can be at least two motivations found for this choice (Robert 2001). First,
the purpose of many inferential studies is to inform a decision (e.g. whether the
defendant is the source of a crime stain, or about the necessity of performing DNA
analyses), which have uncertain consequences. Consequences may be favourable
or unfavourable, such as a correct or false identification in a trial, but will be
unknown at the moment the decision is taken. A second reason is that in order
to propose an inferential procedure, the statistician must be able to explain why
they are preferable to alternative procedures. Decision theory provides fundamental
tools that allow a comparison among alternative courses of action to guarantee a
rational behaviour in the presence of uncertainty.

A decision problem, as described in Chapter 2, can be defined as a situation
where choices are to be made among alternative courses of actions (alternatively
termed decisions) with uncertain consequences. Uncertainty may depend on observ-
able or unobservable circumstances. The proportion of items that contain something
illegal is unknown unless the entire consignment is inspected. Vice versa, uncer-
tainty may depend on circumstances which are unobservable because they refer to
something that happened in the past (e.g. the defendant is the offender), or because
they refer to something that will take place in the future (such as the outcome
of future DNA analyses). Scientists face uncertainty that cannot be suppressed
(Section 1.1): decision makers should find a way to handle it.

The basic elements of a decision problem can now be described using the more
formal symbolism of probability that will be used in the rest of the book:

1. A set of possible decisions (also called actions). Decisions will be denoted d ,
while the set of all possible decisions will be denoted D, the decision space.

2. A set of uncertain events (also called states of nature), denoted θ . The set of
all possible states of nature will be denoted �.

3. A set C of consequences (sometimes called rewards), where c(d , θ ) ∈ C denotes
the consequence of having taken decision d when event θ takes place.

The triplet {D, �, C} describes the structure of the decision problem.
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Example 3.2.1 (Forensic identification). Suppose material (a crime mark)
is collected at a crime scene and an individual is apprehended. A pair of
uncertain events are defined as ‘The suspect is the origin of the crime mark’
(θ1), and ‘Someone else is the origin of the crime mark’ (θ2). The set � of
these states of nature is discrete, � = {θ1, θ2}. Inevitably, decisions have to be
made with partial knowledge of facts. The process of claiming, or ‘identify-
ing’, an individual as being the source of a crime mark can be interpreted as a
decision (d1). Alternative decisions may cover statements such as ‘inconclu-
sive’ (d2) or ‘exclusion’ (d3) (Biedermann et al. 2008). This decision problem
is illustrated in Table 3.8. The outcomes of an ‘identification’ (‘exclusion’)
statement can be favourable if the suspect is truly (is truly not) the origin
of the crime mark. Consequences are then listed as ‘correct identification’
and ‘correct exclusion’ respectively. Vice versa, the outcomes of an ‘identifi-
cation’ (‘exclusion’) statement can be unfavourable whenever the suspect is
truly not (is truly) at the origin of the crime mark. Consequences are then
listed as ‘false identification’ and ‘false exclusion’ respectively. The decision
‘inconclusive’ does not convey any information that tends to associate or oth-
erwise the suspect with the issue of the source of the crime mark. Therefore,
the respective consequences are listed as ‘neutral’.

Table 3.8 Decision table for an identification problem with di , i = 1, 2, 3, denoting
decisions, θj , j = 1, 2, denoting states of nature and Cij denoting the consequence
of taking decision di when θj is the true state of nature.

States of nature

θ1 θ2

Decisions suspect is donor some other person is donor

d1: identification C11: correct identification C12: false identification
d2: inconclusive C21: neutral C22: neutral
d3: exclusion C31: false exclusion C32: correct exclusion

The consequences are uncertain because they depend on events whose status is
unknown at the time the decision is taken. It is therefore necessary to provide a
criterion for evaluation which assesses the consequences of alternative courses of
action, allows a comparison of different decisions and avoids irrational solutions.
Decision theory investigates decision making under uncertainty and offers valuable
assistance in terms of a formal model for determining the optimal course of action.
The formal decision model that will be developed involves the following:

1. It is assumed that the decision maker can express preferences amongst possible
consequences he might face. Preferences are measured with a function called



Statistical Inference and Decision Theory 91

a utility function and denoted U (·), which specifies their desirability on some
numerical scale.

2. The uncertainty about the states of nature is measured with a probability function
f (θ | I , D) describing the plausibility of these states given the specific conditions
under which the decision must be taken (e.g. previous information I , available
data D). For the sake of simplicity the letters I and D will be omitted.

3. The desirability of available actions is measured by their expected utility

Ū (d , f ) =



∑
� U (d , θ )f (θ ) if � discrete∫

�
U (d , θ )f (θ )dθ if � continuous

where U (d , θ ) represents the utility of taking decision d when θ turns out to be
the true state of nature. The best strategy is to take the action which maximizes
the expected utility.

In what follows, a more detailed presentation will be given of the set of logical
rules required for rational behaviour.

3.2.1 Utility theory

Consider a situation in which a decision maker is asked to make a decision which
will have uncertain consequences. Consequences summarize the set C of outcomes
resulting from a decision. They can be of various different kinds: the essential
requirement is that C must be a well-defined set of elements, in the sense that all
possible consequences are able to be defined explicitly. Note that outcomes are not
necessarily monetary, nor necessarily desirable. For instance, in an identification
process, consequences of an ‘identification’ statement might be a correct or a false
identification, depending on whether the suspect is guilty or not; conversely, conse-
quences of an ‘exclusion’ statement might be a false or correct exclusion, depending
again on whether the suspect is guilty or not. In another statistical scenario, such as
estimation, the outcome represents a measure of the distance between the estimate
and the true value of the parameter; consequences might be an overestimation or
underestimation of the parameter of interest.

Personal evaluations about the consequences of several actions will lead the
decision maker to have preferences among consequences in any set C. When any
two consequences c1, c2 ∈ C are compared, the notation c1 ≺ c2 indicates that
c2 is preferred to c1; c1 ∼ c2 indicates that c1 and c2 are equivalent (or equally
preferred), while c1 � c2 indicates that c1 is not preferred to c2 (when c1 � c2

then either c1 ≺ c2, or c1 ∼ c2 holds). In some situations these preferences are
readily recognizable: if the reward is monetary, then the greater the reward the
more preferable it is. However, situations may be encountered in which the order-
ing of the preferences may not be immediately recognizable. In such cases, for
the reasons discussed in Section 2.2.3, it is reasonable to ask the decision maker
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to be able to order the consequences in such a way as to satisfy the following
conditions:

1. For any couple of rewards (c1, c2) ∈ C, it must be always possible to express
a preference or equivalence among them (one of the following relations must
hold: c1 ≺ c2, c2 ≺ c1, c1 ∼ c2).

2. The preference pattern is transitive, that is for any c1, c2 and c3 ∈ C, if c1 � c2

and c2 � c3, then c1 � c3.

Finally, it is assumed that not all the consequences are equivalent to each other.
This situation is eliminated by assuming a strict preference for at least a pair of
consequences c1 ∈ C and c2 ∈ C, that is either c1 ≺ c2 or c2 ≺ c1.

Let P be the class of all probability distributions P on the set of consequences.
The decision maker’s preferences among consequences will lead him to have pref-
erences among probability distributions. As an explanation for this, let us recall
that an individual cannot choose the most desirable consequence because it is
uncertain. A probability distribution over consequences can be introduced, how-
ever. A question then is what gives ‘value’ to a particular probability distribution.
The expected value of what one expects to obtain is one answer. This takes into
account the desirability of the consequence, measured by the utility, and its plau-
sibility, measured by the probability distribution. For instance, an individual may
aim at a highly desirably consequence, but which may be one that is unlikely to
occur: therefore, the expected value is low. The ‘value’ of a probability distribu-
tion P is given by the expected utility of the reward that will be received under
that distribution: E P [U (c)]. Thus, on the basis of his preferences among these
distributions, the decision maker can specify an ordering on P; in other words the
order relation � is also assumed to be available on P. What in Chapter 2 has been
called a gamble can be thought of here as a probability distribution with a set of
consequences. The completeness condition of Section 2.2.2 can now be formulated
as follows.

A1. If P1, P2 ∈ P, then exactly one of the following three relations must hold:
P1 ≺ P2, P1 ∼ P2, P2 ≺ P1.

A2. For any P1, P2 and P3 ∈ P, such that P1 � P2 and P2 � P3, then P1 � P3.

Expected utilities are ordered in the same way as the preferences concerning
the class P. A probability distribution P2 will thus be preferred to another one, P1,
if and only if the expected utility of the reward to be received is larger under P2

than under the other distribution, P1, that is E P1 [U (c)] < E P2 [U (c)].
Two more axioms guarantee that the ordering among expected utilities satisfy

the ordering among probability distributions (Berger 1988; DeGroot 1970; Robert
2001). Define a distribution P which generates a reward from P1 with probability α,
and a reward from P2 with probability (1 − α), P = αP1 + (1 − α)P2. For instance,
αc1 + (1 − α)c2 is the distribution P which gives the reward c1 with probability
α, and the reward c2 with probability (1 − α).
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A3. If P1 � P2, then there must be conservation of the order under indifferent
alternatives:

αP1 + (1 − α)P � αP2 + (1 − α)P ∀P ∈ P , α ∈ (0, 1).

Consider two situations which are identical except in the first the uncertainty
is represented by αP1 + (1 − α)P and in the second by αP2 + (1 − α)P . Then
the situation involving P2 will be preferred.

A4. If P1 � P2 � P3, there must exist α and β ∈ (0, 1) such that

αP1 + (1 − α)P3 � P2 and P2 � βP1 + (1 − β)P3.

This means that, given a favourable P3, an unfavourable P1, and an interme-
diate probability distribution P2, it is possible to find weights such that mixing
the favourable one P3 with the unfavourable one P1 will make the result worse
(or better) that the intermediate. This axiom states that there are not infinitely
desirable (or bad) consequences. In other words, no probability P3 can be so
desirable that there would be no α for which P2 � αP1 + (1 − α)P3. Simi-
larly, no probability P1 can be so undesirable that there would be no β, no
matter how small, for which one would take the risk of having P1 occur (i.e.
P2 � βP1 + (1 − β)P3).

Consider any consequences c, c1, c2 ∈ C such that c1 ≺ c2 and c1 � c � c2.
Then, on the basis of Axioms A3 and A4, there exists a unique number α ∈ (0, 1)
such that

c ∼ αc1 + (1 − α)c2. (3.1)

When the relation (3.1) is satisfied, it can be proved that

U (c) = αU (c1) + (1 − α)U (c2). (3.2)

See DeGroot (1970) for a proof of (3.1) and (3.2).
This utility function U is such that for any (c1, c2) ∈ C, then c1 � c2 if and only

if U (c1) ≤ U (c2), and the order relation in C is preserved. Utility functions are
invariant under linear transformations. So, if U (c) is a utility function, then for
any a > 0, aU (c) + b is also a utility function since it leads to the same preference
pattern (Berger 1988).

There are several ways to proceed with the construction of the utility function. A
simple way, as mentioned in Section 2.2.1, is to start with a pair of consequences
c1, c2 ∈ C, that are not equivalent with c1 ≺ c2, and assign them a utility value.
In this way, the origin and the scale of the utility function is fixed. Then, each
consequence c ∈ C will be compared with c1 and c2, and its desirability will be
measured by assigning it a value which is felt to be reasonable in comparison with
the utilities assigned to c1 and c2. Since utility functions are invariant under linear
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transformations, the choice of c1 and c2 which are treated as benchmarks, and
the choice of the scale of the utility are not relevant; it can be easily proved that
different choices do not affect the optimal decision (Lindley 1985). Though any
choice of c1 and c2 is acceptable, they are generally identified with the worst and
the best consequence, respectively. It is assumed for simplicity that U (c1) = 0 and
U (c2) = 1. The utilities of the remaining consequences are computed using results
(3.1) and (3.2).

Example 3.2.2 (Forensic identification – continued). Consider the identifi-
cation problem illustrated in Table 3.8. Preferences among consequences may
be evaluated with the following ranking:

C12 ≺ C31 ≺ C21 ∼ C22 ≺ C32 ∼ C11

The construction of the utility function is started with a choice of the worst
consequence (C12) and the best consequence (in this case the pair C11 and
C32), and let U (C11) = U (C32) = 1 and U (C12) = 0. The utilities of the
remaining consequences, C21, C22 and C31, will be established by compari-
son with, respectively, the best and the worst consequences, assigning a value
which seems reasonable with respect to the fixed utilities. Let us start with
assigning a value to C21 (the ‘neutral’ consequence). The preference ranking
outlined above states that:

C12 ≺ C21 ≺ C11,

that is, C11 is preferred to C21, while C21 is preferred to C12. The utility of
C21 can be quantified using results (3.1) and (3.2). There exists a unique
number α such that the consequence C21 is equivalent to a gamble where the
worst consequence is obtained with probability α and the best consequence
is obtained with probability (1 − α):

C21 ∼ αC12 + (1 − α)C11.

The utility of C21 can then be computed as:

U (C21) = α U (C12)︸ ︷︷ ︸
0

+(1 − α) U (C11)︸ ︷︷ ︸
1

= 1 − α.

Determination of such an α is the most difficult part: what would make one
indifferent between a neutral consequence, and a situation in which a false
identification might incur? One might agree that to be indifferent, there must
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be a non-zero probability of a false identification: if such a probability were
zero, then one would prefer the gamble. One might also agree that α cannot
be too high: if there is an increased probability of finishing with a false iden-
tification, then the equivalence relation would become one of preference, that
is the neutral consequence would be preferred. Consider α = 0.001 is felt to
be correct. Then,

U (C21) = αU (C12) + (1 − α)U (C11) = 1 − α = 0.999.

Let us now consider the consequence C31 (false exclusion). The preference
ranking outlined above states that:

C12 ≺ C31 ≺ C11.

Likewise, the utility of C31 will be quantified in comparison with U (C12)
and U (C11),

U (C31) = αU (C12) + (1 − α)U (C11) = 1 − α.

For rational behaviour, the value of α must necessarily be higher than the
previous one (0.001) since the decision maker is facing, on the right side the
same gamble, while on the left side a less preferred consequence (C31 ≺ C21).
If the value of α was unchanged, then a rational decision maker would prefer
the gamble. Consider α = 0.01 is felt to be correct: U (C31) = 0.99.

Note that the order relation in the space of consequences is preserved.
Nevertheless, one might object that there is no assurance that guarantees
the coherence of the quantified utility values. Stated otherwise, does this util-
ity function reflect personal preferences? This question can be examined by
comparing different combinations of consequences, such as:

C31 ≺ C21 ≺ C11 ; C12 ≺ C31 ≺ C21

Consider the case on the left, for instance. According to (3.2),

U (C21) = αU (C31) + (1 − α)U (C11)

0.999 = α0.99 + (1 − α).

When solving this equation one obtains α = 0.1. Now, if this value is felt to
be correct, in the sense that one is indifferent between a neutral consequence
and a gamble where one might have a false exclusion with probability 0.1,
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then the utility function is coherent. Otherwise, one needs to go back and
check previous assessments. Likewise,

U (C31) = αU (C12) + (1 − α)U (C21)

0.99 = (1 − α)0.999.

Solving this equation yields α � 0.01. Now, if this value is felt to be correct,
in the sense that one is indifferent between a false exclusion and a gamble
where one might have a false identification with probability 0.01, then the
utility function is said to be coherent.

3.2.2 Maximizing expected utility

In the previous section it has been shown that the plausibility of the states of
nature and the value of uncertain outcomes of alternative actions can be quantified
numerically, in terms of probabilities and utilities, respectively. In this section it
will be shown that the desirability of each possible decision d can be measured in
terms of expected utility Ū (d , f ),

Ū (d , f ) =
∑
θ∈�

U (d , θ )f (θ ).

In the presence of uncertainty, a rational behaviour requires a person to choose
an action to maximize his personal expected utility (Bernardo and Smith 2000; de
Finetti 1937; Dickey 1973; Lindley 1977a, 1985; Raiffa 1968; Savage 1972):

max
d∈D

Ū (d , f ).

Assume decision d is taken and θ turns out to be the true state of nature, so
that the outcome is c(d , θ ). Equation (3.1) can be used to show that a value α can
be found such that the consequence c(d , θ ) is equivalent to a hypothetical gamble
where the worst consequence c1 occurs with probability α and the best consequence
c2 occurs with probability (1 − α)

c(d , θ ) ∼ αc1 + (1 − α)c2, c1 � c(d , θ ) � c2.

Then, Equation (3.2) allows calculation of the utility U (d , θ ) of the consequence
c(d , θ ):

U (d , θ ) = α U (c1)︸ ︷︷ ︸
0

+(1 − α) U (c2)︸ ︷︷ ︸
1

= 1 − α.
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Given that this hypothetical gamble can always be played, under any circumstances,
this means that, for any d and any θ , taking decision d is equivalent to taking
a probability U (d , θ ) of obtaining the most favourable consequence or, in other
words, that the conditional probability of obtaining c2, given decision d has been
taken and state of nature θ occurred, is:

P (c2 | d , θ ) = U (d , θ ).

Note that, by extending the conversation (Section 2.1.2),

P (c2 | d ) =
∑
θ∈�

P (c2 | d , θ )f (θ ). (3.3)

Therefore, Equation (3.3) can be rewritten as

P (c2 | d ) =
∑
θ∈�

U (d , θ )f (θ ) = Ū (d , f ),

the expected utility, that quantifies the probability of obtaining the best consequence
once decision d is taken. The strategy of taking the decision which maximizes the
expected utility is optimal because it is the decision which has associated with it the
highest probability of obtaining the most favourable consequence (Lindley 1985).

Example 3.2.3 (Forensic identification – continued). The expected utilities
of the alternative courses of action can be easily computed. Starting with the
decision d1,

Ū (d1) = U (C11)f (θ1) + U (C12)f (θ2).

Following the utilities summarized in Table 3.9, it is readily seen that the
expected utility of decision d1 reduces to:

Ū (d1) = f (θ1).

Table 3.9 Illustrative values for utilities and loss in an identification scenario (θ1:
‘suspect is donor’; θ2: ‘some other person is donor’).

Uncertain events

Decisions θ1 θ2 θ1 θ2

Utilities Losses

d1: identification 1 0 0 1
d2: inconclusive 0.999 0.999 0.001 0.001
d3: exclusion 0.99 1 0.01 0
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Analogously, the expected utilities of decisions ‘inconclusive’ (d2) and ‘exclu-
sion’ (d3) can be found as follows

Ū (d2) = U (C21)f (θ1) + U (C22)(1 − f (θ1))

= U (C21) = U (C22) since U (C21) and U (C22) both equal 0.999.

Ū (d3) = U (C31)f (θ1) + U (C32)(1 − f (θ1))

= U (C31)f (θ1) + (1 − f (θ1)).

The optimal decision depends on the relative magnitude of f (θ1), U (C21),
U (C31).

Example 3.2.4 (Bayesian networks for forensic identification). The formal
relationship between the various components of a decision problem can be
represented in terms of an influence diagram. An influence diagram is a
Bayesian network extended by nodes for decisions and utilities, commonly
represented as squares and diamonds, respectively, see Section 2.2.4 (and
Cowell et al. 1999; Jensen 2001, for example).

In forensic contexts, such influence diagrams support decision making by
offering an explicit representation of the decisions under consideration and
the value (utility) of the resulting outcomes, that is the states that may result
from a given decision (Taroni et al. 2006a).

Figure 3.6 represents the identification problem presented in Example 3.2.1
in terms of an influence diagram. The binary variable θ encodes the proposi-
tion ‘the suspect (or some other person) is the source of the crime mark’. The
node D represents the available decisions d1 (‘identification’), d2 (‘incon-
clusive’) and d3 (‘exclusion’). The node U accounts for the utility values as
defined in Example 3.2.2.

U

q D

Figure 3.6 Influence diagram for the identification problem.



Statistical Inference and Decision Theory 99

3.2.3 The loss function

Each pair (d , θ ) gives rise to a consequence c(d , θ ) whose desirability is measured
by the utility function. The utility U (d , θ ) represents the true gain to the decision
maker when decision d is taken and θ turns out to be the true state of nature.
In statistical inference, it is often convenient to work in terms of non-negative
loss functions . Suppose that information is available about the true state of nature,
say θ . Then, the decision maker will choose, in the column corresponding to the
true state of nature θ , that decision to which the highest utility is associated,
maxd∈D{U (d , θ )}. The loss function can be simply derived from the utility function
(Lindley 1985) as

L(d , θ ) = max
d∈D

{U (d , θ )} − U (d , θ ), (3.4)

and measures the penalty for choosing the wrong action, that is the true amount lost
by not having the most favourable situation occur. Press (1989, p. 26–27) noted
that loss indicates ‘opportunity loss’, that is the difference between the utility of
the best consequence that could have been obtained and the utility of the actual
one received. Note that the loss cannot by definition be negative since U (d , θ )
will be lower or at best equal to maxd∈D{U (d , θ )}. The expected loss, denoted by
L̄(d , f ), measures the undesiderability of each possible action, and can be quantified
as follows:

L̄(d , f ) =



∑
� L(d , θ )f (θ ) if � is discrete∫

�
L(d , θ )f (θ )dθ if � is continuous

The best strategy, which is that of taking the decision that maximizes
the expected utility, becomes that of choosing the action that minimizes the
expected loss:

min
d∈D

L̄(d , f ).

One might argue that the assumption of non-negativity of the loss function is too
stringent. It is observed, however, that the loss function represents the error due to
a bad choice. Therefore, it makes sense that even the most favourable action will
induce at best a null loss.

Example 3.2.5 (Forensic identification – continued). Table 3.9 summarizes
the loss function derived from the utility function previously computed using
Equation 3.4. The loss associated with each possible consequence is deter-
mined, for each possible θ , by subtracting the utility of the consequence at
hand from the utility of the most favourable situation.
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3.3 THE BAYESIAN PARADIGM

Assuming the distribution underlying the generation of observations is known, the
main purpose of statistical methods is to make an inference about a parameter of
interest θ , starting from the collected observations, while probabilistic modelling
provides the probability of any hypothetical data set before any observation is taken
conditional on θ . This inverting aspect can be found in the notion of likelihood
function.

Definition 3.3.1 Let f (x | θ ) denote the joint pdf or pmf of the sample X =
(X1, . . . , Xn ). Then, given that X = x is observed, the function of θ defined by

l (θ | x ) = f (x | θ )

is called the likelihood function.

The joint distribution is rewritten as a function of θ , conditional on the observed
value x . The intuitive reason for the term ‘likelihood’ is that the data x for which
f (x | θ ) is large are more ‘likely’ with that value of θ than for a value of θ for which
f (x | θ ) is small. If we compare the likelihood function at different parameter points,
θ1 and θ2, and find that l (θ1 | x ) > l (θ2 | x ), then the observed sample x is more
likely to have occurred if θ = θ1 since the probability density function is greater.

A general description of the inversion of probabilities is given by Bayes’
theorem, presented in Section 2.3.1. A continuous version of the Bayes’ theorem
states that given two random variables x and y , with conditional distribution
f (x | y) and marginal distribution g(y), the conditional distribution of y given x is:

g(y | x ) = f (x | y)g(y)∫
f (x | y)g(y)dy

.

The fundamental element of the Bayesian paradigm states that all uncertainties
characterizing a problem must be described by probability distributions (Bernardo
and Smith 2000). Probabilities are interpreted as a conditional measure of
uncertainty associated with the occurrence of a particular event given the available
information, the observed data and the accepted assumptions about the mechanism
which has generated the data. They provide a measure of personal degrees of
belief in the occurrence of an event in these conditions. Statistical inference about
a quantity of interest is described as the modification of the uncertainty about its
true value in the light of evidence, and Bayes’ theorem specifies how this should
be done. Hence, under the Bayesian paradigm, the uncertainty about a parameter
θ is modelled through a probability distribution π on �, called prior distribution,
that summarizes the knowledge that is available on the values of θ before the
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data are obtained. Notice that parameter θ is treated as a random variable in order
to describe the uncertainty about its true value and not its variability (parameters
are typically fixed quantities). Specifically, a Bayesian analysis treats parameters,
not having been observed, as random, whereas observed data are treated as fixed.
Contrary to this, frequentist analyses proceed in the opposite way: the data are
treated as random even after observation whereas the parameter is considered as
a fixed unknown constant to which no probability distribution can be assigned
(Bolstad 2004; Kadane 1995).

A Bayesian statistical model is made by a parametric statistical model,
{f (x | θ ), θ ∈ �}, and a prior distribution on the parameter, π (θ ). All probabilities
and distributions are subjective (Section 2.1): the function f (x | θ ) measures an
individual’s personal degree of belief in the data taking certain values given the
hypothetical information that θ takes a certain value, while the prior distribution
is a measure of personal degree of belief about θ prior to observing the data. The
Bayes’ theorem allows the initial information on the parameter (θ ) to be updated by
incorporating the information contained in the observations (x ). Inference is then
based on the posterior distribution, π (θ | x ), the distribution of θ conditional on x :

π (θ | x ) = f (x | θ )π (θ )∫
�

f (x | θ )π (θ )dθ
= f (x | θ )π (θ )

f (x )
, (3.5)

where f (x ) is the marginal distribution of x . Statistical inference about the
parameter θ is based on the modification of the uncertainty about its value in the
light of evidence. Note that a value of θ with zero density would led to a zero
posterior density. Thus, it is typically assumed that priors are strictly positive.

Available data x often take the form of a set x = {x1, . . . , xn} of ‘homogeneous’
observations, in the sense that only their values matter, and not the order in which
they appear. Formally, this is captured by the notion of exchangeability (Section
2.3.4). Consider the following scenario. A laboratory receives a consignment of
discrete units whose attributes may be relevant within the context of a criminal
investigation. A forensic scientist is called on to conduct analyses in order to
gather information that should allow one to draw an inference about, for instance,
the proportion of units that are of a certain kind. The term ‘positive’ is used in
order to refer to a unit’s property that is of interest; otherwise the result is termed
as ‘negative’. This allows a random variable X to be defined that takes the value 1
(i.e. success) if the analyzed unit is ‘positive’ and 0 (i.e. failure) otherwise1. This is
a generic scenario, which applies well to many situations such as surveys or more
generally sampling procedures conducted to estimate the proportion of individuals
or items in a population who share a given property or possess certain charac-
teristics. Suppose that n = 10 units are analyzed, so there are 2n = 1024 possible
outcomes. The forensic scientist should be able to assign a probability to each of the
1024 possible outcomes. The idea of exchangeability allows us to simplify greatly

1Experiments which lead to such events are called Bernoulli trials and the sequence of Xi s a Bernoulli
sequence.
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this task: it is assumed that all sequences are assigned the same probability if they
have the same number of 1s, successes. This is possible if it is believed that all the
items are indistinguishable, and that it does not matter which particular one pro-
duced a success (a positive response) or a failure. This means that the probability
assignment is invariant under changes in the order of successes and failures: if they
were permuted in any way, probabilities would be unchanged. Formally, the set of
observations x = {x1, . . . , xn} is said to be exchangeable if their joint distribution
is invariant under permutation. In the hypothetical scenario considered, if the idea
of exchangeability is accepted, the total number of probabilities to assign reduces
from 1024 to 11. Under the assumption of exchangeability, the set of observa-
tions constitutes a random sample from some probability model {f (x | θ ), θ ∈ �},
labelled by some parameter θ , that is the joint pdf or pmf is given by

f (x1, . . . , xn | θ ) =
n∏

i=1

f (xi | θ ).

Observations are identically distributed and are independent only conditionally on
the parameter value θ : exchangeability is not synonymous with independence. In
fact, when any of the random variables Xi s is observed, Bayesians will reconsider
their opinion about the remaining future observations (Section 3.3.4). It must be
underlined that in many statistical analyses data are assumed to be a random sample
of conditionally independent observations from the same probability model. Since∏n

i=1 f (xi | θ ) is invariant under permutation, any random sample is exchangeable,
but exchangeability is a more powerful concept. An important consequence of
exchangeability is that it provides an existence theorem for a probability distribu-
tion π (θ ) on the parameter space �. This, and further important consequences, are
discussed in Bernardo and Smith (2000), Singpurwalla (2006) and Section 2.3.4.

Example 3.3.2 (The Binomial model). Suppose that it is of interest to study
in which proportion of a given population a particular Y -chromosomal short
tandem repeat (STR) haplotype occurs. An example of a haplotype sequence
is presented in Table 3.10.

Define a random variable X which takes value 1 if the sequence of interest
is observed (call this event S, success), and 0 otherwise (call this event F,
failure). Let θ denote the probability of observing the given sequence2. A
sample of dimension n is inspected and the haplotypes sequences noted: let y
be the total number of observed S’s (successes), and n − y the total number

2Notice that the estimation of population frequencies of Y-chromosomal haplotypes is problematic
since haplotypes at different loci on the Y chromosome are not, owing to a lack of recombination,
statistically independent. This implies that the ‘Product rule’ as used for autosomal loci, is not appli-
cable. Haplotype frequencies cannot be extrapolated from allele frequencies simply by multiplication
(Krawczak 2001).
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Table 3.10 Example of a Y-chromosomal sequence.

Marker Haplotype

DYS19 17
DYS3891 13
DYS389II 30
DYS390 25
DYS391 10
DYS392 11
DYS393 13
DYS385 10–14

of observed F’s (failures). This experiment can be modelled as a sequence
X1, . . . , Xn of Bernoulli trials, Xi ∼ Br(θ ) (see Appendix A). The distribution
of the total number of observed S’s in n trials, Y = ∑n

i=1 Xi , is binomial
(see Appendix A for further details about this distribution), Y ∼ Bin(n , θ ),
with probability function

f (y | n , θ ) =
(

n

y

)
θ y (1 − θ )n−y .

The parameter θ is allowed to be continuous because the fraction among n
individuals that have a given sequence, lies between 0 and 1. Thus, a continu-
ous distribution is appropriate to capture the uncertainty about the value of θ .

Let us assume the prior knowledge about θ is described by a beta distri-
bution Be(α, β)3 (see Appendix B), with probability function

π (θ ) = θα−1(1 − θ )β−1 �(α + β)

�(α)�(β)
.

The marginal distribution of Y can be easily computed and is given by

f (y) =
∫ 1

0
f (y | n , θ )π (θ )dθ

=
(

n

y

)
�(α + β)�(α + y)�(β + n − y)

�(α)�(β)�(α + β + n)
.

3Note that in the context of the beta distribution, α > 0, β > 0 are parameter values and not proba-
bilities as they are in Section 3.2.1. Hopefully, the context will make clear the appropriate meaning of
α and β.
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The posterior distribution of θ is:

π (θ | y) = f (y | n , θ )π (θ )

f (y)

= �(α + β + n)

�(α + y)�(β + n − y)
θα+y−1(1 − θ )β+n−y−1, (3.6)

which is Be(α∗ = α + y , β∗ = β + n − y). Inference is based on the poste-
rior distribution, which gives a conditional measure of the uncertainty about
θ given the information provided by the data (n , y), the assumptions made
on the mechanism which has generated the data (a random sample of n
Bernoulli trials), and any relevant knowledge on the value of θ available a
priori, before observations become available. The beta distribution has very
convenient properties, in particular when observational data are assumed to
have been generated from a Binomial model. The posterior density of θ has
the same form as the prior: the acquisition of data has the effect of updating
α to α + y, and β to β + n − y. As the mean of the Be(α, β) is α

α+β
, the

posterior mean is α+y
α+β+n , which is roughly y

n in large samples. In the same

way, with the variance being equal to αβ

(α+β)2(α+β+1)
, the posterior variance

is (α+y)(β+n−y)
(α+β+n)2(α+β+n+1)

and tends to zero as the number of trials increases to
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Figure 3.7 Prior, likelihood and posterior distributions for the binomial trial model
(Example 3.3.2).
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infinity. The binomial distribution and the beta density are said to be ‘conju-
gate’, a concept that will be discussed in Section 3.3.3.

Next, suppose that y = 40 haplotypes sequences have been observed in a
sample of size n = 400. The parameters of the beta prior are chosen on the
basis of available prior knowledge4 equal to α = 18, β = 425. The posterior
distribution is of type beta with parameters α∗ = 58, β∗ = 785. The prior, the
standardized likelihood5, and the posterior density are plotted in Figure 3.7.
The figure shows the role of the likelihood function l(θ | x ) in Bayes’ formula.
It is the function through which the data modify prior knowledge of θ .

3.3.1 Sequential use of Bayes’ theorem

Bayes’ theorem allows a continual update of the uncertainty about the parameter of
interest θ as more observations become available. Suppose there is an initial sample
of observations, x = (x1, . . . , xn ), then Bayes’ theorem gives the posterior distribu-
tion, π (θ | x ), that incorporates the initial belief about θ , the information contained
in the observed data, x , and the assumptions made about the mechanism which has
generated the data. Suppose a second sample of observations w = (w1, . . . , wn) is
observed. The posterior distribution will be updated:

π (θ | x , w ) = f (w | θ , x )π (θ | x )∫
�

f (w | θ , x )π (θ | x )dθ
= f (w | θ , x )π (θ | x )

f (w | x )
. (3.7)

Notice that the posterior distribution of θ given x , π (θ | x ), becomes the prior
distribution once new information becomes available. Bayes’ theorem describes the

4Section 4.2.1 will illustrate in more detail how available information can be used to choose the
beta parameters.

5The standardized likelihood is computed as

l (θ | x )∫
�

l (θ | x )dθ
,

when the integral is finite, and the likelihood is scaled so that the area under the curve is 1. It is easy to
show that in this case the standardized likelihood is a beta density with parameters y + 1 and n − y + 1,
in fact

l (θ | x )∫
�

l (θ | x )dθ
=

(n
y

)
θy (1 − θ)n−y∫

�

(n
y

)
θy (1 − θ)n−y dθ

=
(n

y

)
θy (1 − θ)n−y

�(y+1)�(n−y+1)
�(n+2)

∫
�

�(n+2)
�(y+1)�(n−y+1)

(n
y

)
θy (1 − θ)n−y dθ

= θy (1 − θ)n−y �(n + 2)

�(y + 1)�(n − y + 1)
.
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process of learning from experience, and shows how beliefs about θ are continually
modified as new data are observed. This two stage process is equivalent to updating
directly from π (θ ) to π (θ | x , w ) by a single application of Bayes’ theorem with
the full data. If we rewrite in expression (3.7) the formula for π (θ | x ) given by
Bayes’ theorem, we get:

π (θ | x , w ) = f (w | θ , x )

f (w | x )
× f (x | θ )π (θ )

f (x )

= f (x , w | θ )π (θ )

f (x , w )
.

This is exactly what is obtained by a single application of the Bayes’ theorem to
the entire set of data z = (x , w ).

Example 3.3.3 (The Binomial model – continued). The sequential use of
Bayes’ theorem is illustrated in Table 3.11. Beta parameters are first updated
after observing x , which consists of n = 400 observations and y = 40 suc-
cesses. The prior parameters are further updated once additional observa-
tions, w, become available (y = 10 successes and n = 100 observations).
It is easily observed that they could have been directly updated by a single
application of Bayes’ theorem, by taking the total number of observations and
successes (last column) z = (x , w ) with n = 500, y = 50.

Table 3.11 Sequential use of Bayes’ theorem. Values for prior and posterior
parameters, α and β.

Para-
meters Prior Posterior

x w z = (x , w )
n = 400 ; y = 40 n = 100 ; y = 10 n = 500 ; y = 50

α 18 18 + 40 = 58 58 + 10 = 68 18 + 50 = 68
β 425 400 − 40 + 425 = 785 100 − 10 + 785 = 875 500 − 50 + 425 = 875

3.3.2 Principles of rational inference in statistics

Many statisticians have found it natural to adopt certain principles to justify the
choice or otherwise of proposed methodologies for statistical analysis. These are
principles of rational behaviour that a statistical methodology should follow in order
to be accepted. Three principles are considered here. The Bayesian paradigm natu-
rally incorporates two fundamental principles, namely the likelihood principle and
the sufficiency principle, which has led some statisticians to argue that any rational
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analysis must correspond to some form of Bayesian analysis (Berger 1988). Alter-
natively, Bayesian analyses are also said to be internally consistent (Kadane 1995).

The likelihood principle says that in making inferences or decisions about a
quantity of interest θ , all relevant experimental information is contained in the
likelihood function. Moreover, if the likelihood functions for different sample points
x and y are proportional, they contain identical information about θ , and lead to
identical posterior distributions, so the conclusions drawn from x and y should be
identical.

It is useful to note that any quantity that does not depend on θ cancels from
the numerator and denominator of (3.5). If f (x | θ ) is multiplied by an arbitrary
constant, or even a function of x , that constant will cancel since f (x | θ ) appears
in both numerator and denominator of (3.5), and the same posterior density of θ

will be obtained. For these reasons, the denominator of (3.5) is often omitted and
the following expression is used:

π (θ | x ) ∝ l (θ | x )π (θ ). (3.8)

Thus, two different experiments with likelihoods that are identical up to multi-
plication by an arbitrary function that does not depend on θ , contain identical
information about θ . Provided the same prior is used, they lead to identical infer-
ences. To illustrate this idea, consider the following example.

Example 3.3.4 (Black toners – continued). Consider the population of
printed documents introduced in Section 3.1. Suppose it is of interest to
make an inference about the unknown proportion θ of documents printed
with single-component toners (S ). An experiment is conducted in which four
documents are found to be printed with single-component toners and eight
documents with bi-component toners. There is not a unique way to specify
the probability distribution for these observations, because no information
is given about the way the experiment is performed. The experiment might
have consisted of a predetermined number, twelve say, of documents to be
analyzed. If so, the number X of documents printed with toner of type S
would be modelled as a binomial, X ∼ Bin(n = 12, θ ), and the likelihood
function would be:

l1(θ | x ) =
(

n

x

)
θ x (1 − θ )n−x =

(
12

4

)
θ4(1 − θ )8. (3.9)

But there is also a second possibility: the experiment might have consisted
in the analysis of printed documents until a number equal to four documents
printed with toner of type S were observed. If so, X would be modelled as
a negative binomial, a random variable that counts the number of Bernoulli
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trials required to get a fixed number of successes (r), X ∼ Nb(r = 4, θ ) (see
Appendix A for further details about this distribution). The likelihood function
would be:

l2(θ | x ) =
(

r + x − 1

x

)
θ r (1 − θ )x =

(
11

8

)
θ4(1 − θ )8. (3.10)

The two likelihoods in expressions (3.9) and (3.10) are identical, except for
the terms

(n
x

)
and

(r+x−1
x

)
which do not depend on θ , and will lead to identical

inferences.

Note that two different experiments (with different probability models) will gen-
erally provide different information. In the previous example we have supposed to
have the same number of observations and the same number of successes. Likeli-
hoods (3.9) and (3.10) are proportional only because the numbers of observations
and of successes coincide. Yet, if the actual results of different experiments yield
proportional likelihood functions, provided the same prior is used, identical poste-
rior distributions will result. The conclusion is that it does not matter whether the
number of trials was fixed and the number of successes random, or vice versa, the
number of trials random and the number of successes fixed: it matters only what
was observed.

This is a fundamental concept of statistical inference. It is not saying that all
relevant information is contained in the likelihood function, only that the experi-
mental information is. Other relevant information can be incorporated through the
prior distribution and the loss function. The likelihood principle is automatically
satisfied in a Bayesian setting. It is sufficient to observe that the posterior distri-
bution, on which the Bayesian statistical inference is based, depends on x only
through l (θ | x ): the posterior is proportional to the likelihood times the prior.

The concept of sufficiency, on the other hand, arises when part of the data does
not add relevant information. Suppose that z = (x , y) has been observed, and that
f (x | θ , y) = f (x | y). It follows from (3.7) that

π (θ | x , y) = f (x | θ , y)π (θ | y)

f (x | y)
= f (x | y)π (θ | y)

f (x | y)
= π (θ | y),

that is the value of x is irrelevant to inference about θ . Stated otherwise, it is
not necessary to observe the value of x , it is sufficient to observe y . Formally, a
function T of x , y = T (x ) is said to be sufficient if the distribution of x conditional
on T (x ) does not depend on θ : f (x | T (x ), θ ) = f (x | T (x )). A sufficient statistic
for a parameter θ contains all the sample information concerning θ : any additional
information in the sample is not relevant for inference about θ .

More formally, the sufficiency principle states that two sample points x1 and x2,
with T (x1) = T (x2), will lead to the same inference on θ . A statistic T (x ) may be
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shown to be sufficient in several ways. One can either show that f (x | T (x ), θ ) does
not depend on θ , or that π (θ | x , T (x )) does not depend on x , but these approaches
may not be simple. A third way uses the factorization theorem, a fundamental result
due to Halmos and Savage (1949). According to this theorem, a statistic T (x ) is
sufficient for θ if the likelihood function can be factorized as:

l (θ | x ) = f (x | θ ) = g(T (x ) | θ )h(x ),

where the function g is the density of T (x ) and the function h does not depend
on θ .

Example 3.3.5 Consider a random sample X = (X1, . . . , Xn ) of Bernoulli
trials, with probability of success θ . Then the likelihood is given by:

f (x | θ ) = θ
∑n

i=1 xi (1 − θ )n−∑n
i=1 xi . (3.11)

According to the factorization theorem, it can be easily observed that the
number of successes y = ∑n

i=1 xi is a sufficient statistic for θ . Formally,
expression (3.11) can be rearranged as the product of two factors:

f (x | θ ) =
(

n

y

)
θ y (1 − θ )n−y × 1(n

y

) .
The first factor is the probability of the number of successes y, while the
second factor does not depend on θ . The function y = T (x ) = ∑n

i=1 xi is then
a sufficient statistic for θ that captures all the relevant information about θ .
Moreover, one can observe that f (x | y , θ ) does not depend on θ , in fact it is:

f (x | y , θ ) = θ y (1 − θ )n−y(n
y

)
θ y (1 − θ )n−y

= 1(n
y

)
Thus, someone who observes x = (x1, . . . , xn) and computes y = T (x ) =∑n

i=1 xi , has the same information about θ with respect to a second
individual who is only told the number of successes T (x ) = ∑n

i=1 xi .

The likelihood principle implies that all decisions and inferences concerning
θ can be made through a sufficient statistic. O’Hagan (1994) observes that in a
Bayesian setting it is not necessary to check that a statistic is sufficient, or to look
for a sufficient statistic. The application of Bayes’ theorem will automatically take
sufficiency into account, so that if a statistic T (x ) is sufficient, then the posterior
inference will automatically depend on the data only through it. In fact, as the
likelihood function is proportional to g(T (x ) | θ ), it is easily established that the
posterior distribution depends on the data x only through the sufficient statistic and
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may be directly computed in terms of:

π (θ | x ) = π (θ | T (x )) ∝ g(T (x ) | θ )π (θ ). (3.12)

The third principle is the conditionality principle, a principle that is almost as
universally accepted as the sufficiency principle6.

Two experiments on the parameter θ are available. One is selected at random.
The conditionality principle states that the resulting inference should depend only
on the experiment performed and not on the one that may have been performed.
For the purpose of illustration, consider a consignment of seized tablets which may
be sent to two different laboratories for analysis. Assume that there is no reason to
believe that one produces more reliable responses than the other so that one may
choose between them at random. When a laboratory is chosen and experimental
results are received, it is generally accepted that only the experiment actually per-
formed is relevant; conclusions should not take into account the possibility that the
other laboratory could have been chosen. An example of the conditionality princi-
ple can be found in Cox (1958). The conditionality principle and the sufficiency
principle together are equivalent to the likelihood principle (Birnbaum 1962).

3.3.3 Prior distributions

Bayes’ theorem does not specify which prior distribution should be defined. Origi-
nally, Thomas Bayes proposed the Bayes’ theorem in a context where data followed
a binomial distribution with unknown probability of success θ , for which a uniform
prior was chosen. This implied that all possible values of the parameter were consid-
ered equally likely. However, the theorem is far more general, and a wide variety of
data distributions and prior distributions can be adopted. Generally speaking, prior
distributions are often classified as ‘subjective’ (‘personal’) or ‘non-informative’
(‘vague’), but there is considerable justification for a claim that these priors do
not exist (Howson 2002; O’Hagan 2006; Press 2003). For example, the frequently
termed ‘non-informative’ uniform distribution reflects a well-defined opinion and
as such it is just as specific as the belief that the probabilities are distributed in any
other perfectly specified manner (de Finetti 1993b).

Subjective priors

Subjective prior distributions represent an attempt to incorporate prior knowledge
in the analysis to take advantage of this additional information about the quan-
tity of interest. Preliminary knowledge (prior to data collection) may contribute to
the formulation of a subjective prior as a probability distribution. A simple way
for specifying a prior distribution consists in choosing a few summaries of the
prior, such as the mean, or the most probable value (the mode), or a value such

6The conditionality principle must not be confused with the conditionalization principle of
Chapter 2.
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that θ is equally likely to lie above or below it (the median). One should use all
the summaries which allow formulation of every important feature suggested by
the prior knowledge (O’Hagan 1994). Generally, the prior is specified in terms of
summaries of location and dispersion. Moreover, unimodality is generally assumed,
unless prior knowledge suggests differently. A graph of the resulting prior distribu-
tion allows one to check that the shape looks close to prior knowledge, in the sense
that the probability is reasonably spread over the range of values in which one trusts
the parameter could lie. Otherwise, it will be necessary to adjust it (Bolstad 2004).

Example 3.3.6 (Detection of nandrolone metabolites). Suppose the param-
eter of interest θ is the concentration of 19-norandrosterone in sportsmen
(ng/ml)7. The experimenter knows the value that the parameter assumed in
earlier studies, say θ∗, and can use this information as an a priori estimate
of the quantity of interest. Suppose also that there is no reason to believe the
uncertainty about θ is non-symmetric. Subjective prior information can be
introduced into the problem by assuming for θ a Normal prior centred about
θ∗ (see Appendix B for further details about this distribution). Prior infor-
mation will be used to decide on the spread of the distribution. For example,
suppose that θ∗ = 0.15 and that it is believed to be extremely unlikely that
either θ < 0.12 or θ > 0.18. These bounds, θ = 0.12 and θ = 0.18, can be
taken as three standard deviations on either side of the mean, so that

P
(
0.15 − 3σ < θ∗ < 0.15 + 3σ

) = 0.997.

The standard deviation being σ = 0.1, a prior distribution for θ is
N (0.15, 0.12) and is illustrated in Figure 3.8. This example is continued in
Example 6.3.3.

q

P
ro

ba
bi

lit
y 

de
ns

ity

0.12 0.15 0.18

0
10

20
30

40

Figure 3.8 Prior density for Example 3.3.6.

719-norandrosterone is a widely used anabolic steroid in sports where strength plays an
essential role.
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Note that parameters indexing the prior distribution are generally called hyperpa-
rameters , to avoid confusion with parameters about which it is desired to make
an inference. As far as the functional characteristics of the prior are concerned,
one must then adopt a distribution that conforms to the formulated conditions. Any
distribution that agrees with the specified summaries will be acceptable, but the
choice is generally made on grounds of convenience. In fact, a complication may
arise following the determination of the prior distribution. The resulting posterior
may not be able to be determined in a closed form. In particular, if an arbitrary
likelihood function l (θ | x ) is combined with an arbitrary prior distribution π (θ ),
then the product might be mathematically intractable and it will not be possible to
integrate out the parameter and compute the marginal distribution so as to determine
a form for the posterior distribution8.

There are several ways to tackle this problem. One is to approximate the value
of the integral expression for the posterior distribution using one of several numer-
ical techniques available. Another way is to opt for alternative, simpler forms
of the likelihood function and the prior density that can be used as approxima-
tions and lead to known posterior densities instead of expressing as accurately
as possible the investigator’s beliefs about the process generating the data and
the prior knowledge about θ . Prior distributions can be found in the conjugate
family F with respect to the sampling distribution f (x | θ ). The conjugate fam-
ily is a set of prior distributions such that, for a particular sampling distribution
f (x | θ ) and for every prior in the family, the posterior distribution is also in
the same family. The family F is also said to be closed under sampling from
f (x | θ ). An example has been presented in Section 3.3, Example 3.3.2, where
observations followed a binomial distribution. A beta prior distribution was chosen
so that the resulting posterior was a distribution of the same family, i.e. a beta
distribution (with updated parameters). For more general purposes, some of the
more common conjugate prior distribution families are listed in Table 3.12 and
in Appendixes A and B (a complete list can be found in Bernardo and Smith
2000).

Another class of subjective prior distributions is the class of mixture prior dis-
tributions . Consider a situation where prior beliefs suggest that it is most likely
that the distribution of the parameter θ has more than one mode; so any realistic
prior will be at least bimodal. It is evident that restricting the choice to conjugate
priors would make an honest prior specification almost impossible. A mixture of
a small number of standard distributions can be an effective way to generate far
more general classes of prior distributions that can then be used to adjust the prior
to wide varieties of prior information that cannot be satisfied by any one of those
distributions alone. Consider any convex combination (i.e. a linear combination

8Note that even if it is not always possible to identify the posterior distribution in closed form,
various summaries (e.g. the posterior mode), depend on differentiation and do not require the integral
in the denominator to be solved.
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Table 3.12 Some conjugate prior distribution families. Formulae
for these distributions are given in Appendixes A and B.

Probability distribution Conjugate prior distribution

Binomial: Beta:
f (x | θ ) = Bin(n, θ ) π (θ ) = Be(α, β)
Poisson: Gamma:
f (x | λ) = Pn(λ) π (λ) = Ga(α, β)
Exponential: Gamma:
f (x | λ) = Exp(λ) π (λ) = Ga(α, β)
Normal (known variance): Normal:
f (x | µ, σ 2) = N (µ, σ 2) π (µ) = N (θ , τ 2)
Normal (known mean): Inverted Gamma:
f (x | µ, σ 2) = N (µ, σ 2) π (σ 2) = IG(α, β)

where all coefficients are non-negative and sum up to 1) of m(m > 1) priors πi

(i = 1, . . . , m):

π (θ ) =
m∑

i=1

γi πi (θ ),

with γi > 0 (i = 1, . . . , m) and
∑m

i=1 γi = 1. It can then be shown that the posterior
π (θ | x ) can be expressed as a convex combination of the respective posteriors (Lee
2004; Press 2003), that is

π (θ | x ) =
m∑

i=1

γ ∗
i πi (θ | x ),

with γ ∗
i > 0 (i = 1, . . . , m) and

∑m
i=1 γ ∗

i = 1.
Let x = (x1, . . . , xn) be the observed outcomes of n Bernoulli trials with prob-

ability of success θ , and let y = ∑n
i=1 xi be the number of successes in the n

trials. It has been observed that the beta family distribution for θ is convenient,
but for any specification of hyperparameters α and β (> 1) it will necessarily be
unimodal. Multimodal shapes can be easily generated by considering mixtures of
beta densities

π (θ ) =
m∑

i=1

γi

B (αi , βi )
θαi −1(1 − θ )βi −1,

with
∑m

i=1 γi = 1, γi > 0, αi > 0, βi > 0 (i = 1, ...m).
By Bayes’ theorem, the posterior distribution for θ is also a mixture of beta

densities (the mixture class of beta distributions is closed under sampling from the
binomial) and takes the form

π (θ | x ) =
m∑

i=1

γ ∗
i

B (α∗
i , β∗

i )
θα∗

i −1(1 − θ )β
∗
i −1,
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where

γ ∗
i = γi B (α∗

i , β∗
i )∑m

i=1 γi B (α∗
i , β∗

i )
,

α∗
i = αi + y , β∗

i = βi + n − y , and y is the number of success in a trial. Note that
if each prior πi in the mixture is a member of a conjugate family F with respect to
a certain sampling distribution f (x | θ ), then the larger family of mixtures is also
a member of F (i.e. it is closed under sampling from f (x | θ )).

Example 3.3.7 (Proportion of items in a consignment). Consider the follow-
ing beta mixture:

0.6Be(3, 10) + 0.4Be(6, 2.5),

which corresponds to a mixture with m = 2, (γ1, γ2) = (0.6, 0.4),
(α1, α2) = (3, 6), (β1, β2) = (10, 2.5). The resulting mixture prior is bimodal
(Figure 3.9 (left)) and reflects, among other issues, a belief that θ is
most likely to be around 0.2, but it could also lie around 0.7. Now,
suppose that y = 3 successes have been observed in n = 20 trials. Then,
(γ ∗

1 , γ ∗
2 ) = (0.93, 0.07), (α∗

1 , α∗
2) = (6, 9), (β∗

1 , β∗
2 ) = (27, 19.5). The poste-

rior is illustrated in Figure 3.9 (right) and clearly depicts strong support for
small values of θ .
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Figure 3.9 Prior (left) and posterior (right) distributions from a two-component beta
mixture.

A typical situation in which a mixture prior may be useful is one that
involves competing prior beliefs. The numerical example given above could
refer, for instance, to settings in which a proportion (such as the proportion of
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items in a consignment that contain something illegal) is thought to be either
smaller than 0.5, that is about 0.2, or greater than 0.5, that is approximately
around 0.7. More specifically, it is thought that the mean is centred either
around the mean of a Be(3, 10) or a Be(6, 2.5) distribution, with more ‘weight’
placed on the former distribution than on the latter. That weight is actually
expressed by the two values 0.6 and 0.4. It appears worth noting that such an
approach to modelling a prior distribution may be of interest, for example,
in a setting that involves opposing parties (e.g. prosecution and defence),
which disagree with regards to their prior beliefs. A mixture prior allows
the competing views to be expressed as a single distribution along with a
weighting of their relative importance.

Effect of the amount of data on the relationship between the prior
distribution and the posterior distribution

There are instances in which the prior may be said to be dominated by the likeli-
hood . This is typically the case when abundant data are available.

If observations are precise, in a certain sense, relative to the prior distribution
on which they bear, then the form and properties of the prior distribution have
negligible influence on the posterior distribution. [...] [T]he untrammelled
subjectivity of opinion about a parameter ceases to apply as soon as much
data become available. More generally, two people with widely divergent
prior opinions but reasonably open minds will be forced into arbitrarily close
agreement about future observations by a sufficient amount of data. (Edwards
et al. 1963, p. 527).

An illustration of this is given in Example 3.3.8.

Example 3.3.8 (Surveillance cameras). Imagine that n distinct surveillance
camera recordings are available of a male individual. Assume that it is of
interest to estimate the height of that individual. Such an estimate may be
needed for the purpose of comparison with other estimates obtained from
recordings taken at other times and/or locations. The n experimental mea-
surements (expressed in cm), (x1, . . . , xn ), are assumed to be generated from a
Normal distribution with known variance σ 2 equal to 22, that is X ∼ N (θ , 22).

Suppose two experts (say expert A and expert B), are asked to estimate
the mean height θ . Let πA(θ ) = N (µA, τ 2

A) = N (178, 1) be the prior distribu-
tion expressed by expert A, and let πB (θ ) = N (µB , τ 2

B ) = N (172, 2.82) be the
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prior distribution expressed by expert B. These priors reflect different prior
knowledge, and this difference is illustrated in Figure 3.10(a).
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(a) Prior distributions for expert A and B
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(b) Posterior distributions for expert A and B (n = 1)

Expert A
Expert B

165 170 175 180 185

0.
0

0.
8

(c) Posterior distributions for expert A and B (n = 50)
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Figure 3.10 Prior and posterior distributions for expert A and expert B. Note the
changes of scale in the vertical axis.

The application of Bayes’ theorem allows to show how such opinions may
be modified by the information contained in the data. The posterior distribu-
tion of θ given x , for each expert, is still Normal since the distributions are
conjugate, with mean µp(x ) given by

µp(x ) = τ 2
p x̄ + µpσ

2/n

σ 2/n + τ 2
p

p = A, B

and variance τ 2
p (x ) given by

τ 2
p (x ) = τ 2

p σ 2/n

τ 2
p + σ 2/n

p = A, B .

The posterior mean is a weighted average of the prior mean and the obser-
vations (an example will be discussed in Section 4.4.1).

Suppose first that one observation (n = 1) is available, x̄ = x1 = 176 cm.
The resulting posterior distributions are plotted in Figure 3.10(b). The effects
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of the prior distributions expressed by the two experts are remarkably dif-
ferent: in particular, the observation has much more impact on the state of
uncertainty of expert B. This is not surprising because the uncertainty of
expert A was considerably smaller. The effect of the likelihood on the poste-
rior is more pronounced for expert B.

Suppose next that fifty observations (n = 50) are available, and that the
sample mean is equal to x̄ = 177 cm. Figure 3.10(c) shows that the posterior
distributions are very similar (note also the change of scale for the vertical
axis compared with case (a) and (b)), and that the two experts would now be
in close agreement. Compared with the likelihood function, both priors are
rather flat and have little influence in determining the posterior distribution.
This example is continued in Example 4.4.4.

However, it is emphasised that in many practical situations the observed data
are very poor in the sense of having high variability. An immediate consequence
is that personal knowledge might be relevant in determining the posterior
distribution. Notably, different priors might lead to different posteriors. This
has provoked many criticisms: some people are skeptical on the use of Bayes’
theorem essentially because they consider Bayesian measures to be subjective, and
regard subjectivity as a liability. It is argued in Box and Tiao (1973), however,
that this should not necessarily be considered a disadvantage of the Bayesian
approach since it allows one to learn from one’s own experience by allowing for a
personal update of beliefs. All inferences are made by individuals and so they are
necessarily subjective (in the sense of ‘personal’). An advantage of the Bayesian
approach is that it makes subjectivity explicit (Berry 1991) and allows different
opinions to be expressed and evaluated formally. The sensitivity of posterior
results to prior choices will be discussed in Section 4.2.1.

Subjective priors based on a limited amount of information

In some inference problems, the information available prior to data collection may
be limited. In such cases, the prior distribution to be adopted should reflect that fact
in some appropriate manner. In yet other situations, one may want results of scien-
tific experiments to be reported as a general result, that is, minimally dependent on
an expert’s prior beliefs or dependent on a prior on which many observers can agree.

Although a Bayesian should use her own prior, she may also need to exhibit
results from a range of priors for the benefit of other statisticians, and the
inclusion of one (or more) standard priors in this set makes it easier for
others to judge the strength of evidence in a given body of data. (Howard
1998, p. 353).

These are situations in which so-called vague priors are sometimes recommended.
It is of interest to determine the selection of a prior which provides poor
information compared to the information an experiment is expected to provide.
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When the unknown parameter lies in a finite interval, a uniform prior may
be readily applicable. However, when at least one end point of the domain of
the parameter is not finite (e.g. the mean of a Normal distribution), the uniform
prior becomes improper . An improper prior function is defined as a non-negative
function π (θ ) such that

∫
�

π (θ )dθ is not finite (that is, the function does not, for
its admissible range, integrate or sum to 1). For example, if π (θ ) is uniform over
the entire line,

π (θ ) ∝ k − ∞ < θ < ∞ , k > 0,

then
∫∞
−∞ kdθ is not finite, and π (θ ) is an improper prior function. This approach

of assessment is acceptable only when, in spite of the fact that the prior is not
proper, the application of Bayes’ theorem leads to a proper posterior distribution
over the entire line.

For the purpose of illustration, consider a random sample x = (x1, . . . , xn ) from
a Normal distribution N (θ , σ 2) with variance σ 2 known. The likelihood function
of θ is

l (θ | σ , x ) ∝ exp

[
−1

2

(
θ − x̄

σ/
√

n

)2
]

,

which can be represented as a Normal distribution centred around the sample mean
x̄ with standard deviation σ/

√
n . It has been argued that all experimental informa-

tion is contained in the likelihood function. In this case the experimental observation
only affects the location of the likelihood. Different observations simply translate
the likelihood on the θ axis, but leave the shape of the distribution unchanged, as
is shown in Figure 3.11. The likelihood function is said to be ‘data-translated’. The
concept that only poor knowledge is available a priori (compared to the information

q

4 10 16

(a) (b) (c)

Figure 3.11 Likelihood functions resulting from different experiments of equal size giving
rise to (a) x̄ = 4, (b) x̄ = 10, (c) x̄ = 16.
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the experiment is expected to provide), can be expressed by assuming indifference
between parameter values that lead to a likelihood which is completely determined
a priori, except for its location. The state of indifference about knowledge of θ , or
vagueness, may be expressed by adopting a uniform prior:

π (θ ) ∝ constant, −∞ < θ < ∞. (3.13)

In general, the likelihood function of the parameter of interest is not neces-
sarily data translated. Suppose it is possible to transform the unknown parameter
in terms of a metric such that the likelihood function is data translated and a
uniform prior can be introduced on all of its values. Take for instance the like-
lihood function of the unknown standard deviation σ of a Normal population,
known mean θ

l (σ | θ , x ) ∝ σ−n exp

(
− ns2

2σ 2

)
,

where s2 = ∑n
i=1 (xi − θ)2 /n . The likelihood is not data translated, as can be

observed in Figure 3.12 (left), which depicts the likelihood curves for σ obtained
from n = 10 observations with s = 5, s = 10, s = 20 (Box and Tiao 1973). How-
ever, the corresponding likelihood curves in terms of the transformation log σ are
exactly data translated, as shown in Figure 3.12 (right). In fact, it can be noted
that multiplication by the constant sn leaves the likelihood function unchanged
(data acting through s serve only to relocate the likelihood) and that the likelihood
function of log σ can be expressed as

l (log σ | θ , x ) ∝ exp
{
−n (log σ − log s) − n

2
exp

[−2 (log σ − log s)
]}

.

s log s

0 10 20 30 40

(a) (b) (c)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

(a) (b) (c)

Figure 3.12 Likelihood functions resulting from different experiments giving rise to
(a) s = 5, (b) s = 10, (c) s = 20 for the Normal standard deviation σ (left), and for log σ

(right).
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Thus, vagueness about σ may be expressed by adopting a uniform prior in log σ :

π (log σ ) ∝ constant, −∞ < log σ < ∞. (3.14)

Transforming variables back again gives the vague prior density:

π (σ ) ∝
∣∣∣∣d log σ

dσ

∣∣∣∣ = 1

σ
, 0 < σ < ∞. (3.15)

3.3.4 Predictive distributions

The general problem of statistical prediction may be described as that of inferring
the values of unknown variables from current available information (Bernardo and
Smith 2000). In fact, after having observed a random sample x = (x1, . . . , xn), it
may be of interest to predict the value of a future observation xn+1, generated
by the same random mechanism, {f (x | θ ), θ ∈ �}, which has generated the data.
Inference about the value of a future observation is derived from the predictive
distribution:

f (xn+1 | x ) =
∫

�

f (xn+1 | θ )π (θ | x )dθ , (3.16)

which summarizes the information concerning the value of a new observation given
the prior, and the data observed so far. Parameters θ can be viewed as nuisance
parameters and are integrated out from the posterior density. The predictive distri-
bution has the form of a weighted average of all possible distributions of x with
their corresponding posterior densities. It plays an important role in Bayesian anal-
ysis. The validity of the Bayesian model, that incorporates the assumptions of the
sampling density f (x | θ ) and the prior density π (θ ) and allows inferences to be
made about the parameter of interest θ , can be checked by inspecting the predictive
distribution. If the observed data are consistent with the predictive density, then
the model may be reasonable. Otherwise, if the observed data are in the extreme
tail portion of the predictive density, then some doubts should arise on the validity
of the Bayesian model, in the sense that the prior density or the sampling density
may have been misspecified (Albert 2007).

Example 3.3.9 (Errors in DNA analyses). Experience shows that errors in
DNA typing do occur. Although the proportion of errors occurring in foren-
sic DNA laboratories is perhaps low due to regular proficiency testing, for
practical reasons, it may be desirable to have some estimate of error rates
for a specific laboratory.

Considering errors as rare events, their occurrence may be modelled using
a Poisson distribution Pn(λ) with parameter λ, so that p(x | λ) = λx e−λ/x !,
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x = 0, 1, 2, . . . (see Appendix A for further details about this distribution). In
the absence of initial information about the value of λ, a vague prior may be
introduced, in particular π (λ) = λ−1/2. Note that the range of λ is (0, ∞),
and the ideas of Section 3.3.3 concerning the introduction of a prior density
based on a limited amount of information for the standard deviation of a
Normal distribution are applied here as λ1/2 is the standard deviation of the
Poisson distribution. The posterior distribution of λ given a random sample
x = (x1, . . . , xn ) is proportional to:

π (λ | x ) ∝ λy e−nλλ−1/2 = λy−1/2e−nλ,

where y = ∑n
i=1 xi . This is the form of a gamma density with location param-

eter α = y + 1/2 and scale parameter β = n (Appendix B). The marginal
distribution of x can be easily computed and is given by

f (x ) =
∫ ∞

0
f (x | λ)π (λ)dλ

= 1∏n
i=1 xi !

�(y + 1/2)

ny+1/2
.

The posterior distribution of λ is then given by

π (λ | x ) = f (x | λ)π (λ)

f (x )
= e−nλλy−1/2ny+1/2

�(y + 1/2)
.

The corresponding predictive distribution is the Poisson-gamma mixture

f (xn+1 | x ) =
∫ ∞

0

e−λλxn+1

(xn+1)!

e−nλλy−1/2ny+1/2

�(y + 1/2)
dλ

= ny+1/2

�(y + 1/2)

1

(xn+1)!

�(y + xn+1 + 1/2)

(n + 1)y+xn+1+1/2 , (3.17)

independent of λ as is required. Note that the sum, y, of the observations is
all that is needed, not the results of each individual test.

Consider, then, a forensic DNA laboratory with n = 15 internal tests with
no detected analytical errors (i.e. y = 0) and for which it may be of interest to
obtain a probability for an error in a future test. This probability is obtained
by Equation (3.17). In particular, f (xn+1 = 0 | x ) = 0.968, f (xn+1 = 1 | x ) =
0.030, f (xn+1 ≥ 2 | x ) = 0.002.
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3.3.5 Markov Chain Monte Carlo methods (MCMC)

Suppose that it is of interest to find the posterior mean of a vector-valued target
parameter θ , θ = (θ1, . . . , θp),

E (θ | x ) =
∫

�

θπ (θ | x )dθ .

Assume further that the integral does not have an analytical solution. In such
cases one can implement Monte Carlo sampling techniques. The key idea of these
methods is that, if one were able to sample from the posterior density, the draws
could be taken to compute sample-based estimates. For example, the posterior mean
could be estimated by computing the sample average of the sampled draws. Other
summaries, such as the posterior quantiles could be derived from the quantiles of
the sampled draws.

The task of drawing samples from the posterior density can be of modest
difficulty or very complicated, depending on the problem at hand. If the prior
distribution is chosen in the family of the conjugate distributions, then the pos-
terior distribution will be known and it will be possible in general to simulate
an independent sample θ (1), θ (2), . . . , θ (n) from the exact posterior distribution. The
Monte Carlo estimate of the posterior mean is given by the sample mean of the
simulated draws:

E (θ | x ) ∼= 1

n

n∑
i=1

θ (i ).

As the size of the simulated draws becomes large, the Monte Carlo estimate will
converge to the posterior mean. Then, it would be possible to obtain the Monte
Carlo estimate of the posterior mean of any function h(·) of the parameter of
interest, h(θ)

E (h(θ ) | x ) =
∫

�

h(θ)π (θ | x )dθ ∼= 1

n

n∑
i=1

h(θ (i )).

In other words, the computation of the integral is not necessary for parameter
estimation. The estimation is determined from features of the posterior density
which might be of interest (e.g. the posterior mean).

For statistical models of even moderate complexity, there may be no easy way
to sample directly from the posterior distribution. The integral in Equation (3.5)
may not be tractable in closed form (for example when a conjugate prior is not
appropriate), and algorithms must then be used that allow a simulated sample
to be obtained from the posterior density when the normalizing constant at the
denominator is unknown. Rejection sampling is one of the most commonly used
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techniques that is available because of its generality, but it can be difficult to set
up since it requires the construction of a suitable proposal density (Gelman et al.
2004; Gilks et al. 1996).

A set of methods which enables sampling from posterior densities is that of
the so-called Markov Chain Monte Carlo methods (Gamerman and Lopes 2006;
Gelman et al. 2004; Gilks et al. 1996). Their key feature is to produce draws by
recursively simulating a chain that converges to the posterior density π (θ | x ).
In general, the simulated values of the parameter of interest θ obtained at the
beginning of an MCMC run do not have the desired posterior distribution, because
of the effect of the starting values, and they are discarded. However, after some
number, say nb , of iterations have been performed (the so-called burn in period ),
the effect of the initial values wears off, and simulated values beyond the first
nb iterations

θ (nb+1), θ (nb+2), . . . , θ (nb+n)

can be taken as draws from the posterior density. Under general conditions, sample-
based estimates from the generated chain converge to the quantities of interest
as the number of iterations becomes sufficiently large. Good practice consists in
monitoring the convergence, that is to check whether the simulated sample provides
a reasonable approximation for the posterior density (Albert 2007; Gamerman and
Lopes 2006; Gelman et al. 2004). At first, if the number of iterations is not long
enough, simulations may be not representative of the target distribution. A second
problem which might arise is the correlation between draws: simulated values of
the parameter of interest at the (j + 1)th iteration are dependent on the simulated
values at the j th iteration. Serial correlation is not itself a problem for convergence,
but can cause serious inefficiencies in simulations. In fact, a strong correlation
between successive iterations may prevent the MCMC algorithm from exploring the
entire parameter space. Moreover, a strong correlation between successive values
will produce inefficient simulations because an immediate neighbouring value will
provide little additional information about the posterior distribution. Convergence
can be assessed by graphical and numerical (posterior summaries) diagnostics.
Fundamental graphical diagnostics are the trace and the autocorrelation plots. The
trace plot is obtained by plotting simulated draws against the iteration number:
a plot exhibiting the same behaviour through iterations after an initial period is
an indication of convergence. The autocorrelation plot is obtained by plotting the
autocorrelation between sets of values {θ j } and {θ j+L} against L, where L is the lag,
or the number of iterations separating these sets of values. If the chain is mixing
adequately, the values of the autocorrelation will decrease to zero as the lag value
(distance between successive sets of iterations) is increased.

Two well-known methods to construct a chain with these features are known
as the Metropolis–Hastings (M-H) algorithm and the Gibbs sampling algorithm, a
special case of the M-H algorithm.
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The Metropolis–Hastings algoritm

Call θ (0) the starting value of the chain, and suppose that the draws
θ (1), θ (2), . . . , θ (j−1) have been obtained. The next item of the chain θ (j ) is obtained
by a two-step process:

1. A proposal value, called θprop, is drawn from a density q
(
θ (j−1), θprop), called

the transition density or candidate-generating density;
2. The proposal value is accepted with probability

α(θ (j−1), θprop) = min

{
1,

π (θprop)

π (θ (j−1))

q(θprop, θ (j−1))

q(θ (j−1), θprop)

}
. (3.18)

Then,

θ (j ) =
{

θprop in case of acceptance
θ (j−1) otherwise.

It is evident that the Markov chain generated in this way can repeat the current
value θ (j−1) for several iterations. The transition density must be chosen to avoid the
event that the chain stays at the same point for many iterations and instead moves
efficiently to explore the support of the target density. If the candidate generating
density is built to have the mean equal to the current value of the parameter, the
algorithm is also called a random-walk algorithm. The candidate generating density
is generally a Normal proposal density, with mean equal to the current value of
the parameter, and a variance that must be carefully set as it defines the level
of acceptance rate on which the success of the method depends. If the variance
is too large, an extremely large proportion of iterations will be rejected and the
algorithm will therefore be inefficient. Conversely, if the variance is too small, the
random walk will accept nearly all proposed values but will explore the distribution
inadequately and it will take many iterations to converge. Many authors generally
agree that a good acceptance rate must be between 20% and 50% (Gamerman
2006). Other families of candidate-generating densities are possible, see Chib and
Greenberg (1995). Note that if the candidate-generating density is symmetric, the
probability of acceptance (3.18) reduces to

α(θ (j−1), θprop) = min

{
1,

π (θprop)

π (θ (j−1))

}
.

Multiple-block M-H algorithm

In some cases it is useful to split the parameter space into smaller blocks and
construct a Markov chain in each of these blocks, since it can be difficult to choose
a transition density on the full parameter space that allows generation of a chain
that is rapidly converging to the posterior distribution. Suppose the parameter θ is
split into two blocks (but the procedure is the same for any number of blocks),
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θ = (θ1, θ2). For each block a candidate-generating density qk (θ (j−1)
k , θprop

k ), k =
1, 2 will be chosen with a proposed value θ

prop
k conditioned on the previous value of

the block and on the current value of the other block, and the computed probability
of acceptance is given by

α
(
θ

(j−1)
k , θprop

k

)
= min

{
1,

π (θprop
k | θ−k )

π (θ (j−1)
k | θ−k )

qk (θprop
k , θ (j−1)

k )

qk (θ (j−1)
k , θprop

k )

}
,

where θ−k denotes the parameters of the remaining blocks, and π (θ (·)
k | θ−k ) is

called full conditional density for both situations prop and (j − 1) denoted (·) here
for brevity. The algorithm is summarized as follows:

1. Specify an initial value θ = (θ (0)
1 , θ (0)

2 );
2. Repeat for j = 1, . . . , nb + n iterations

Repeat for each block (k = 1, 2)

(a) Propose a value for the k th block

θ
prop
k ∼ qk (θ (j−1)

k , θprop
k );

(b) Calculate the acceptance probability α(θ (j−1)
k , θprop

k );
(c) Update the k th block

θ
(j )
k =

{
θ

prop
k in case of acceptance

θ
(j−1)
k otherwise.

3. Return the values {(θ (nb+1), θ (nb+2), . . . , θ (nb+n))}.

3.4 BAYESIAN DECISION THEORY

Bayesian statistical inference can be seen as a decision problem, where the class of
available decisions D is given by the possible conditional probability distributions
of θ given the data

D =
{
π (θ | x ); π (θ | x ) > 0 and

∫
�

π (θ | x )dθ = 1

}
.

A decision maker is asked to choose among actions which correspond to reporting
a probability distribution for some unknown quantity of interest.

A fundamental basis of Bayesian decision theory is that statistical inference
requires a rigorous determination of:

1. the probabilistic model underlying the observed data9;

9In this book only parametric models are considered, {f (x | θ); θ ∈ �}.
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2. the prior distribution π (θ ) which measures the uncertainty about the unknown
parameter θ ;

3. the loss function L(d , θ ) which specifies the undesirability of available decisions.

The statistical model then involves three spaces (sets of all possible values of
the appropriate concepts): the observation space X, the parameter space �, the
decision space D. A decision means an action. For this reason, the decision space
is sometimes known as the action space.

This approach is also known as a fully Bayesian approach:

A fully Bayesian approach can be distinguished from partial Bayesian
approaches, without meaning to imply that less than fully Bayesian is less
than good. A fully Bayesian approach is decision theoretic and posterior
probabilities are based on all available evidence, including that separate from
the trial at hand. There are at least two ways to be less than fully Bayesian.
First, one can calculate posterior distributions as data summaries without
incorporating them into a decision analysis. Second, one can calculate
posterior distributions using canonical prior distributions rather than prior
distributions based on the available evidence. (Berry and Stangl 1996, p. 8).

3.4.1 Optimal decisions

In decision problems that involve uncertainty, the actual incurred loss can never be
known with certainty. The best way of proceeding in contexts in which the decision
maker has to make the decision in the face of uncertain outcomes of experiments is
to consider the expected loss of making a decision, and choose an optimal decision
with respect to this expected loss (Savage 1972). The Bayesian expected loss of
a decision, denoted by L̄(d , π∗), averages the error (i.e. the loss) according to the
probability distribution π∗ of θ at the time of decision making:

L̄(d , π∗) = Eπ∗
[L(d , θ )]

=
∫

�

L(d , θ )π∗(θ )dθ.

An optimal decision, also called Bayes decision and denoted by dπ∗
, is a decision

d ∈ D that minimizes the Bayesian expected loss:

dπ∗ = min
d∈D

L̄(d , π∗).

Assume that X = x has been observed. Then, π∗ can be replaced with π (θ | x ).
The Bayesian (posterior) expected loss averages the error according to the posterior
distribution of the parameter θ , conditionally on the observed value x :

L̄ (d , π (θ | x )) = Eπ(θ |x ) [L(d , θ )]

=
∫

�

L(d , θ )π (θ | x )dθ.

The criterion of choice presented above, and generally adopted throughout this
book, assumes that the consequences of several actions can be identified with
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probability one, once decision d is taken and θ turns out to be the true state of
nature.

The forensic identification setting discussed in Example 3.2.1 illustrates a deci-
sion problem of this type: if the conclusion (i.e. the decision) is an identification and
the suspect is truly the source of the crime stain, the suspect is correctly associated
with the crime stain with probability one.

Decision problems might be more complicated, however, since there may be
situations where each decision d can be described by a set of probability distribu-
tions over consequences given each possible parameter value: pd (c | θ ). A simple
example of this kind is presented and discussed, for example, in Parmigiani (2002).
Assume that the decision maker must choose between two mutually exclusive treat-
ments, treatment A (d1) and treatment B (d2). The unknown state of nature is the
genotype, which might be ‘responsive’ (θ1), or ‘unresponsive’ (θ2). Specifically,
the treatment A is effective in patients with a responsive genotype, but not effec-
tive with others, while the treatment B is moderately effective in all patients. For
each combination of treatments and genotype, there is a potentially different prob-
ability distribution for recovery times. Both states of nature and consequences are
unknown: both are assigned a probability distribution. The Bayesian expected loss
is then obtained by integrating out both parameters and consequences:

L̄(d , π∗) =
∫
C

∫
�

L(d , θ )pd (c | θ )π∗(θ )dθdc,

where the expression pd (c | θ ) is to be integrated over both consequences c and
parameters θ . This line of reasoning is not pursued further in this book.

3.4.2 Standard loss functions

The form of a loss function has only briefly been discussed so far for a discrete
case in Section 3.2.3. The aim is to specify loss functions that adequately reflect a
decision maker’s personal preferences. In this section, standard loss functions will
be illustrated which are mathematically tractable and well documented. The first
loss function considered is the squared-error (or quadratic) loss :

L(d , θ ) = k (d − θ )2, (3.19)

where k denotes a constant (Press 2003). The loss associated with making a decision
d when the true state of nature is θ increases by the square of the difference between
d and θ . For example, if the difference doubles the loss quadruples (increases by
a factor of 4). The choice of a quadratic loss may be acceptable because it is
conservative in the sense that it assigns low losses to values close to the true state
of nature, and high losses to values far from the true state of nature. Notice that
the shape of this function (Figure 3.13) is such that large deviations from the true
value of the parameter θ are more strongly penalized.
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Figure 3.13 Quadratic loss function with d = 0.5 and k = 1.

One might also encounter statistical problems that call for a loss symmetric in
(d − θ ), while the exact functional form of the loss is not crucial. In these situations,
the loss function may be approximated appropriately by the quadratic loss (Berger
1988). Sometimes, the function is also chosen for reasons of simplicity since it
gives intuitive Bayesian solutions. Then, the Bayesian posterior expected loss is
given by:

L̄(d , π (θ | x )) =
∫

�

k (d − θ )2π (θ | x )dθ.

To find the minimum, we differentiate with respect to d and set the result equal
to 0:

∂

∂d

[∫
�

k (d − θ )2π (θ | x )dθ

]
=

= ∂

∂d

[
kd2

∫
�

π (θ | x )dθ + k
∫

�

θ2π (θ | x )dθ − 2kd
∫

�

θπ (θ | x )dθ

]
= 2kd − 2kEπ(θ |x )(θ ) = 0.

Solving for d gives

dπ∗ = Eπ(θ |x )(θ ).

Then, the Bayes decision under quadratic loss is the mean of the posterior distri-
bution of θ given x , which is intuitively satisfying. This result, the posterior mean,
indicates that this is the best estimator, rather than the posterior median or any other
statistic. Note, however, that this is not the only loss function which provides this
result. Other losses – called proper losses – share this property10 (Lindley 1985).

10A proper loss function is one for which a Bayesian’s best strategy is to tell the truth. Such a
property seems reasonable. To say that the Bayesian’s best strategy is to tell the truth is to say that the
best estimator of the parameter is the Bayesian’s best assessment of the probability of its occurrence
(Hwang et al. 1992). A complete characterization of proper losses is given in Schervish (1989).
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An example for a situation in which a symmetric loss could be used is one
in which, for the purpose of identification, the height of an individual needs to
be estimated from data extracted from surveillance camera images. The true state
of nature θ is the height of the individual in the image. It particular, it may be
accepted by a decision maker that under- and overestimation of the individual’s
height incurrs equal losses (see Example 4.4.4 in Section 4.4.3).

For a multidimensional model parameter θ = (θ1, . . . , θk ), the quadratic loss
generalizes to the quadratic form:

L(d, θ) = (d − θ)′ A (d − θ) ,

where A is a non-negative definite matrix (Lütkepohl 1996), and d = (d1, . . . , dk ).
It can be shown (O’Hagan 1994) that the Bayes decision (i.e. the decision that
minimizes the expected loss) is the mean vector:

dπ∗ = Eπ(θ |x )(θ ).

Another loss function is the piecewise linear loss function which is given, for
k0 > 0, and k1 > 0, by:

L(d , θ ) =
{

k0(θ − d ) if θ − d ≥ 0,
k1(d − θ ) if θ − d ≤ 0.

(3.20)

The constants k0 and k1 can be chosen so as to reflect the relative importance of
underestimation and overestimation. Figure 3.14 shows both of these situations.
The figure on the left represents a linear function that penalizes underestimation
(k0 > k1) more heavily. On the right, a linear function is shown that penalizes
overestimation (k0 < k1) more heavily. The linear loss function increases more
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Figure 3.14 Linear loss function L(d , θ ) = k0(θ − d ), (θ − d ) ≥ 0, L(d , θ ) = k1(d − θ ),
(θ − d ) ≤ 0, with d = 0.5. (a) k0 > k1, (b) k0 < k1.
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slowly than a quadratic loss and does not overpenalize large but unlikely errors. If
the constants k0 and k1 are equal, the loss function in (3.20) can be written as

L(d , θ ) = k | d − θ |,
and is called absolute error loss .

The Bayesian posterior expected loss for the piecewise linear loss function,
Equation (3.20), is given by:

L̄(d , π (θ | x )) =
∫ ∞

d
k0(θ − d )π (θ | x )dθ +

∫ d

−∞
k1(d − θ )π (θ | x )dθ.

To find the minimum, we differentiate the posterior expected loss with respect to
d and set the result equal to 011:

∂

∂d

[∫ ∞

d
k0(θ − d )π (θ | x )dθ +

∫ d

−∞
k1(d − θ )π (θ | x )dθ

]
= −k0 + k0Pπ(θ |x )(θ ≤ d ) + k1Pπ(θ |x )(θ ≤ d ).

Solving for Pπ(θ |x )(θ ≤ d ) gives

Pπ(θ |x )(θ ≤ d ) = k0

k0 + k1
.

11

L̄(d , π (θ | x )) =
∫ ∞

d
k0(θ − d )π (θ | x )dθ +

∫ d

−∞
k1(d − θ)π (θ | x )dθ

= k0

∫ ∞

d
θπ (θ | x )dθ − k0d

∫ ∞

d
π (θ | x )dθ

− k1

∫ d

−∞
θπ (θ | x )dθ + k1d

∫ d

−∞
π (θ | x )dθ.

Note that the second term can be rewritten simply as k0d
(
1 − Pπ (θ |x )(θ ≤ d )

)
, and the fourth equals to

k1dPπ (θ |x )(θ ≤ d ). To find the minimum we differentiate with respect to d and then set the result equal
to 0. Note that the range of the integrals depends on the unknown variable d , and that the application
of the Leibniz’s rule (Casella and Berger 2002) gives

∂

∂d

∫ ∞

d
θπ (θ | x )dθ = −dπ (d | x )

∂

∂d

∫ d

−∞
θπ (θ | x )dθ = dπ (d | x )

Then

∂

∂d

[∫ ∞

d
k0(θ − d )π (θ | x )dθ +

∫ d

−∞
k1(d − θ)π (θ | x )dθ

]
= −k0dπ (d | x ) − k0

+ k0dπ (d | x ) + k0Pπ (θ |x )(θ ≤ d ) − k1dπ (d | x ) + k1Pπ (θ |x )(θ ≤ d ) + k1dπ (d | x )

= −k0 + k0Pπ (θ |x )(θ ≤ d ) + k1Pπ (θ |x )(θ ≤ d ) = 0.
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Then, for any linear loss function (3.20), the Bayes decision is the k0
k0+k1

quantile
of the distribution of θ at the time of decision making. In particular, if k0 = k1

(i.e. in the case of absolute error loss), the Bayes decision is the posterior median.
Consider the problem of estimating blood alcohol concentration through the

analysis of breath. Here, a decision maker may prefer to penalize the underesti-
mation of the true alcohol concentration more than the overestimation. This may
be so because falsely concluding a low alcohol concentration in an individual with
increased blood alcohol is regarded as a more serious error (because such an indi-
vidual may represent a serious danger in traffic) than falsely assigning a high blood
alcohol concentration to an individual which has actually a low concentration level
(see Example 4.4.1 in Section 4.4.1).

There are also generalizations of the absolute error loss function for vector-
valued parameters, θ = (θ1, . . . , θk ). The problem is that, while there is a natural
definition of the mean of a vector random variable, there is no natural definition
of the median. Consider instead the following loss function:

L (d, θ) =
k∑

j=1

kj | dj − θj | .

The expected loss is also a sum whose components are minimized by letting each
decision dj be the median of the marginal distribution of θj (O’Hagan 1994).

A third loss function is the ‘0–1’ loss function which may be considered in
relation with a two-action decision problem: D = {d0, d1}. Let action d0 be correct if
θ ∈ �0 and action d1 be correct if θ ∈ �1. This corresponds to testing H0 : θ ∈ �0

versus H1 : θ ∈ �1. The ‘0–1’ loss function is then defined as:

L(di , θ ) =
{

0 if θ ∈ �i

1 if θ ∈ �j (j �= i ).
(3.21)

The loss is zero if a correct decision is made, and one if an incorrect decision is
made. The optimal decision is found by minimizing the posterior expected loss,
that is equal to

L̄(d0, π (θ | x ) =
∫

�

L(d0, θ )π (θ | x )dθ

=
∫

�1

π (θ | x )dθ = P (θ ∈ �1 | x) ,

for decision d0, and to

L̄(d1, π (θ | x ) = P (θ ∈ �0 | x) ,

for decision d1. Decision d0 should be taken when

L̄(d0, π (θ | x ) < L̄(d1, π (θ | x ),
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or equivalently when P (θ ∈ �0 | x)> P (θ ∈ �1 | x). See O’Hagan (1994) for a
generalization to the multidimensional case.

The ‘0–1’ loss may not be a good approximation of the true loss, however.
More realistic losses may be:

L(di , θ ) =
{

0 if θ ∈ �i

ki if θ ∈ �j (j �= i ).
(3.22)

and

L(di , θ ) =
{

0 if θ ∈ �i

fi (θ ) if θ ∈ �j (j �= i ).
(3.23)

The loss in (3.23) is a function (which could be linear, quadratic or something else)
of the distance between the decision and the true value of θ : the loss depends on
the severity of the mistake. This may be of interest, for example, in the context of
estimating proportions in sampling surveys, where one may need to decide whether
or not a proportion is greater than a certain threshold.

Considering the loss function in Equation (3.22), the Bayesian expected losses
for decisions d0 and d1 are readily computed as

L̄(d0, π (θ | x )) = k0P (θ ∈ �1 | x )

L̄(d1, π (θ | x )) = k1P (θ ∈ �0 | x ).

So, decision d0 should be taken when

k0P (θ ∈ �1 | x ) < k1P (θ ∈ �0 | x ),

or equivalently when

k0

k1
<

P (θ ∈ �0 | x )

P (θ ∈ �1 | x )
.

3.5 R CODE

A symbol ‘∗’, ‘+’, ‘,’ and so on at the end of a line indicates that the command
continuous to the following line. The absence of such a symbol indicates the end
of a command.

Example 3.3.2

Data and prior parameters

y=40
n=400
alpha=18
beta=425
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Posterior parameters

alphap=alpha+y
betap=beta+n-y
print(paste('alpha*=',alphap))
print(paste('beta*=',betap))

Prior, likelihood and posterior distributions

par(mfrow=c(3,1))
plot(function(x) dbeta(x,alpha,beta),0,0.25,ylim=c(0,45),
ylab=’’,xlab=expression(paste(theta)),
main=expression(paste("Prior (")*paste(alpha==paste(18, )*
paste(", ")*paste(beta==paste(425)))*paste(")")))

plot(function(x) dbeta(x,y+1,n-y+1),0,0.25,ylim=c(0,45),
ylab=’’,xlab=expression(paste(theta)),
main=expression(paste("Likelihood (")*paste(alpha==paste(41,)*
paste(", ")*paste(beta==paste(361)))*paste(")")))

plot(function(x) dbeta(x,alphap,betap),0,0.25,ylim=c(0,45),
ylab=’’,xlab=expression(paste(theta)),
main=expression(paste("Posterior (")*paste(alpha==paste(58,)*
paste(", ")*paste(beta==paste(785)))*paste(")")))

Example 3.3.7

Data, prior parameters and prior distribution

n=20
y=3
alpha1=3
beta1=10
alpha2=6
beta2=2.5
g1=0.6
g2=1-g1
plot(function(x) g1*dbeta(x,alpha1,beta1)+(1-g1)*
dbeta(x,alpha2,beta2),0,1,
xlab=expression(paste(theta)),ylab='Probability density')

Posterior parameters and posterior distribution

alphap1=alpha1+y
betap1=beta1+n-y
alphap2=alpha2+y
betap2=beta2+n-y
gp1=round((g1*beta(alphap1,betap1))/(g1*beta(alphap1,betap1)
+g2*beta(alphap2,betap2)),2)
gp2=1-gp1
plot(function(x) gp1*dbeta(x,alphap1,betap1)+(1-gp1)*
dbeta(x,alphap2,betap2),0,1,
xlab=expression(paste(theta)),ylab='Probability density')
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Example 3.3.8

Data, prior parameters

mu=c(178,172)
tau2=c(1,2.8^2)
n=1
xbar=176
sigma2=4

Posterior parameters

mux=c(0,0)
taux2=c(0,0)
for (i in 1:length(mu)){
mux[i]=(mu[i]*sigma2/n+tau2[i]*xbar)/(sigma2/n+tau2[i])
taux2[i]=sqrt((tau2[i]*sigma2/n)/(tau2[i]+sigma2/n))
}

For a sequential use of the Bayes theorem, assign
mu=mux
tau2=taux2

and rerun the codes above to compute posterior parameters.

Prior and posterior distributions

par(mfrow=c(2,1))
plot(function(x) dnorm(x,mu[1],sqrt(tau2)[1]), 165, 185,
main = 'Prior distributions for expert A and B',lty=1,
xlab=expression(paste(theta)),ylab=’’)
plot(function(x) dnorm(x,mu[2],sqrt(tau2)[2]), 165, 185,
main = ’’,lty=2,add=TRUE)
legend(164.5,0.4,c('Expert A','Expert B'),lty=c(1,2))

plot(function(x) dnorm(x,mux[1],sqrt(taux2)[1]), 165, 185,
main = paste('Posterior distributions for expert A and B (n=',
n,paste(')')),lty=1,xlab=expression(paste(theta)),ylab=’’)
plot(function(x) dnorm(x,mux[2],sqrt(taux2)[2]), 165, 185,
main = "",lty=2,add=TRUE)
legend(164.5,0.4,c("Expert A","Expert B"),lty=c(1,2))

Example 3.3.9

Data

n=15
y=0

Probability of future observations

x=c(0,1)
(n^(y+1/2))/(gamma(y+1/2)*factorial(x))*(gamma(x+y+1/2)/(n+1)^
(x+y+1/2))
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Point Estimation

4.1 INTRODUCTION

Point estimation , also called parameter estimation , essentially refers to the process
of using sample data to estimate the value of a population parameter, such as the
mean, the variance or the proportion1. As for many scientists in various disciplines,
parameter estimation is also of interest to forensic scientists. The idea of this chapter
is to illustrate how forensic scientists can ‘learn’ from past experience to draw
inferences about the value of a population parameter. Particular attention will be
drawn on how one may learn about, for example, a population proportion or a
population mean. The topic of multi-parameter (vector-valued parameter) learning
will also be covered.

Sample surveys, that is a means for collecting sample data, commonly serve
as a basis for estimating, for example, the proportion of items or individuals in a
given population that possess a certain characteristic. Suppose, for instance, that
the population is represented by a collection of individuals which can be divided
into categories according to the characteristic actually possessed by each member
of the population. For the purpose of illustration, a forensic scientist might be
interested in estimating the proportion of individuals whose mitochondrial DNA
sequence is of a certain kind. In such a case, the population can be divided into two
categories: the individuals that have the target DNA sequence (first category), and
the individuals which have another DNA sequence, different from the first (second
category). Another scenario in which estimation may play an important role could

1Note that, generally speaking, ‘point estimation’ is taken as some process of arriving at an estimate
without regard to its precision. Chapter 5 will focus on ‘interval estimation’ where the precision of the
estimate is to some extent taken into account.

Data Analysis in Forensic Science: A Bayesian Decision Perspective Franco Taroni, Silvia Bozza, Alex Biedermann,
Paolo Garbolino and Colin Aitken
 2010 John Wiley & Sons, Ltd

137



138 Point Estimation

be one in which each member of a population of interest (i.e. ecstasy pills) has
an associated continuous measurement, such as a weight. In such a setting, the
scientist may be interested in estimating the mean weight of the seized pills.

Let (x1, x2, . . . , xn) be the available data from a survey, which are assumed to
have been generated by a parametric statistical model {f (x | θ ), θ ∈ �}, where θ

denotes the unknown model parameter. In other words, the available data are the
observed values of a random sample (X1, . . . , Xn ) from a probability distribution
f (x | θ ). For the time being, only singular-valued parameters (scalars), θ , will be
considered. In the case of multi-parameter learning, the unknown parameter will
be vector-valued and will be denoted θ = (θ1, . . . , θp).

Estimation of θ is a natural requirement since knowledge of this parameter
provides knowledge of the entire population. The aim is to find an accurate proxy
for the actual but unknown value. A point estimator of the model parameter θ

can be defined as a statistic, or random variable, T = t(X1, . . . , Xn ), that is any
function of the random sample that does not depend on θ . When the observed
data are x1, . . . , xn , one can calculate the point estimate of θ , denoted θ̂ , as
t = t(x1, . . . , xn ). The latter is a realized value of the point estimator, or random
variable, and is a number.

A Bayesian statistical model is specified with the choice of a prior distribution
π (θ ) that allows the scientist to express his initial beliefs about the target parameter.
Assuming that the probability model is correct, all available information about the
value of the parameter θ , after observing the data, is contained in the posterior
distribution π (θ | x ). In other words, the posterior distribution encapsulates all that
is known about θ .

An intuitive summary of the main conclusions which may be possibly drawn
from knowledge of the parameter gained from the data can be obtained by plot-
ting the posterior probability density function; interesting features of the posterior
distribution (e.g. bimodality) may, in this manner, be simply revealed. Generally,
however, scientists seek to summarize the posterior distribution by a single ‘typical’
number. It is often found convenient to summarize the information contained in
the posterior distribution by providing values of the quantity of interest which are
likely to be good Bayesian estimates for its true value. Common Bayesian estimates
are the posterior mode (that is the value θ̂ at which the posterior probability density
function takes its maximum value), the posterior mean or the posterior median .

A summary value is usually accompanied by a dispersion measure that may be
interpreted as an indicator of its accuracy, that is the weakness or the strength of
the posterior information (O’Hagan 1994). While a customary Bayesian measure
of the accuracy of an estimator is the posterior variance of the estimator (Berger
1988), the question remains of how a scientist is to choose the best (in some sense)
Bayesian estimator. The question of interest may be formulated as follows:

Should the estimate chosen be the value with the highest probability (the
mode), a value such that the odds are one-to-one of being above or below
it (the median), a middle value in a center-of-gravity sense (the mean), or
something else? (Antelman 1997, p. 356)
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This issue can be dealt with in the decision approach to Bayesian statistical
inference. From a decision-theoretic point of view, the estimation of a parameter
θ is seen as a decision problem where the decision space D corresponds to the set
of all possible values of θ , the parameter space �. The decision maker chooses a
point estimate θ̂ and decides to act as though θ̂ were θ , that is deciding d = θ̂ . The
decision problem requires one to specify a loss function that represents the penalty
of acting as if the true value of the quantity of interest were d , when the true value
is actually θ , that is d �= θ . The simplicity of the Bayesian approach follows from
the fact that the optimal decision, called Bayesian decision , and so the Bayesian
estimate θ̂ , is defined as that function of the observations which minimizes the
posterior expected loss (see Section 3.4). This criterion is the only one a Bayesian
needs for point estimation. In fact, knowing θ , one would choose θ̂ = θ and one’s
loss would be zero. According to this, any possible parameter summary may turn
out to be a Bayesian decision: it all depends on the loss function, as shown earlier
in Section 3.4.2. As has been demonstrated, if a conventional loss function is used,
the derivation of the Bayesian estimator is greatly simplified.

4.2 BAYESIAN DECISION FOR A PROPORTION

It is a common need in forensic practice to obtain an idea of the proportion of
individuals or items that share a given characteristic (e.g. the proportion of red
woollen fibres in a given population, the proportion of pills that contain something
illegal, or of pirated CDs in a large seizure). In such settings, the outcome of an
experiment that reveals the presence (absence) of the characteristic of interest is
typically termed positive (negative).

Such questions may also be of interest in contexts involving DNA evidence.
For example, forensic DNA analysts may encounter particular sequences of a mt-
DNA region from both a recovered and a control sample, which may need to
be compared. If the sequences are unequivocally different, then the samples are
regarded as originating from different sources. Conversely, if the sequences can-
not be distinguished, then one cannot exclude the possibility that the recovered
and control samples potentially come from the same source2. When there is no
notable difference between the two samples, it is desirable to convey some infor-
mation about the number of times a particular sequence (or haplotype) is observed
in a relevant population. This problem can be approached with the beta-binomial
model earlier introduced in Section 3.3, notably throughout Example 3.3.2. Still
within this context, a particular complication that may occur is that there may be
zero occurrences of the sequence of interest in a given database (representing the
relevant population) at hand. The estimation of the proportion in such a situa-
tion may be somewhat troubling, essentially with regard to traditional maximum
likelihood estimators, which can be poor in such circumstances, even though a

2Notice that issues such as nucleotide differences, mutations or heteroplasmy are outside the scope
of what is considered in the remainder of this discussion.
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confidence interval giving an upper bound for the parameter may be provided. At
such junctures, Bayesian inference can show a viable way ahead.

Sections 4.2.1 and 4.2.2 address this topic through a Bayesian decision-analytic
approach with particular consideration being given to different prior distributions
and loss functions as well as the robustness of the proposed procedure.

A second issue, addressed in Section 4.2.4, is that of complications that arise
in counting experiments that are conducted under real-world circumstances. As
observed by D’Agostini (2004a), scientists may sometimes miss relevant items in
counting, whereas on other occasions they might be confused by other items that do
not belong to the classes that are actually being searched (presence of background).

A further topic considered at the end of this section is that of parameter learning
for a multinomial variable which represents a generalization to k outcomes of the
binomial case. The principal ideas are illustrated in terms of an example that relates
to the forensic examination of physical characteristics of questioned documents. At
times Bayesian networks will be used with the aim of providing further insight in
the proposed procedures.

4.2.1 Estimation when there are zero occurrences in a sample

Besides DNA-related matters, settings with zero occurrences in a sample may also
be encountered in relation to other types of scientific evidence. Stoney (1992), for
example, considered the following scenario involving glass evidence. The scientist
found a match in several physical properties between glass from a broken crime
scene window and glass fragments found in connection with a suspect. The scientist,
who is interested in estimating the proportion of glasses having such physical
properties, surveyed a sample of n = 64 glass objects and found that none of these
agreed with the glass found in their case. In other words, there is no match with
the crime-related items in a sample of size n = 64. How can they estimate the
proportion of interest, if 0 occurrences have been observed in the sample? From
a practical point of view, this can appear troubling; the sample is, however, of
modest size and intuitively, it may be felt that the sample is of insufficient size to
enable one to say that the glass of the crime scene window was unique.

Consider the following general scenario. Let θ denote the unknown proportion of
individuals or items in a given population having a target characteristic. A sample of
size n is inspected and no observation of a positive outcome is noted. An estimate
of the proportion θ can be obtained starting from the Bayesian statistical model
presented earlier in Example 3.3.2. The number of positive outcomes y in n trials
(e.g. the number of glass fragments with some physical properties) is then modelled
through a binomial distribution, that is f (y | n , θ ) = Bin(n , θ ). Since the proportion
θ is a continuous parameter, it will be necessary to construct a prior density π (θ )
on the interval (0, 1) that represents the initial beliefs. Typically, the prior density
for θ will be chosen in the conjugate family for the binomial likelihood, that is the
beta family (Section 3.3.3). Next, suppose that one has no preference for any of the
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possible values of the unknown proportion, so that one will fix the hyperparameters
α and β equal to 1, which corresponds to a uniform prior. The term uniform means
that the beta density is constant over all values of θ between 0 and 1. An implication
of this is that any interval of values between 0 and 1 has the same probability as
any other interval of the same width.

Consider, for the problem at hand, a piecewise linear loss function for the
estimate d of θ (Equation (3.20)):

L(d , θ ) =
{

k0(θ − d ) if θ − d ≥ 0
k1(d − θ ) if θ − d ≤ 0.

The constants k0 and k1 are fixed such that k0 �= k1, to allow the decision maker to
have different penalties for under- and overestimation of the parameter of interest
(i.e. the loss function is asymmetric). In particular, k0 is chosen to be greater than
k1 to indicate that underestimation is more severely penalized (Section 3.4.2). This
may appear reasonable to a forensic decision maker because a very rare event (e.g.
in case of an observation of zero occurrences of some characteristic of interest in
a sample) tends to strengthen evidence against a suspect who possesses this char-
acteristic (e.g. a glass fragment with a given characteristic). Figure 4.1 illustrates
two alternative linear loss functions, computed at d = 0.1, for different values of
k0 (k0 = 2 and k0 = 4, respectively), while the value of k1 is unchanged (k1 = 1).
Note that the greater the value of k0, the more one penalizes an underestimation
of the parameter θ . Figure 4.1 also shows the loss when d = 0.1, a particular
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Figure 4.1 Effect of different values of k0 on the incurred loss (for d = 0.1). L(d , θ ) = 0.2
for θ = 0.2, k0 = 2 and k1 = 1; L(d , θ ) = 0.4 for θ = 0.2, k0 = 4 and k1 = 1.
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case in which θ is actually 0.2. The decision maker underestimates the value of θ ,
a choice of k0 equal to 2 leads to an incurred loss L(d , θ ) = 0.2; if k0 = 4 were
chosen, then L(d , θ ) = 0.4. This example shows that the effect of the values for
k0 on L(d , θ ) are substantial: the incurred loss doubles. Note that the two loss
functions penalize equally an overestimation (d >θ ) of the parameter θ .

Once the decision maker has rigorously specified both a prior density that sum-
marizes their prior beliefs about θ , and a loss function that quantifies the undesir-
ability of the error of estimation, all elements necessary for the use of Bayesian deci-
sion theory for inference about θ are defined. The Bayesian decision in presence of a
linear loss function is the k0/(k0 + k1) quantile of the posterior distribution (Section
3.4.2), which is a beta density with updated parameters, Be(α + y , β + n − y).

Example 4.2.1 (Glass fragments). A sample of n = 64 objects is surveyed
and no positive outcomes are observed (y = 0). The beta prior density is
chosen to be uniform, that is α = β = 1, so that the posterior density is
a beta density with parameters α = 1 and β = 1 + 64. Assuming a linear
loss function with constants k0 = 2 and k1 = 1, the Bayes decision is the
2/(2 + 1) = 2/3 quantile of the Be(1, 65) distribution, which is equal to
0.017. Alternatively, assuming k0 = 4 and k1 = 1, the Bayes decision is the
4/5 quantile of the same distribution, that is equal to 0.024. This result
underlines the importance of the choice of the values for k0 and k1: the
greater the value of k0, the more an underestimation of the parameter of
interest is penalized.

Often, however, the scientist may reasonably be assumed to be more
knowledgeable about the model parameter, in the sense that he may wish the
prior distribution to be based on available knowledge. For example, when θ is
the probability of occurrence of a ‘rare’ event, a prior distribution with mass
concentrated on small values of θ may be more reasonable. For example, a
triangular prior, that is a Be(1, 2), π (θ ) = 2(1 − θ ), may be felt to be more
appropriate than a rectangular prior, Be(1, 1), π (θ ) = 1.

Suppose thus that a substantial amount of past experience (e.g. due to pre-
vious experiments) is available, and advantage is taken of this to specify a few
summaries of the prior distribution. Generally, this will be a location summary
(such as the mean) and a dispersion summary (e.g. the variance). The problem
then is to choose a beta prior whose shape matches these prior beliefs about the
mean and the variance. Let µ and σ 2 denote, respectively, the prior mean and the
prior variance for the proportion of interest as suggested by the available knowl-
edge. Recalling that the mean of Be(α, β) is Eπ [θ ] = α/(α + β), and the variance
is Varπ [θ ] = αβ/((α + β)2(α + β + 1)), parameters α and β can be chosen by
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solving the following system:

µ = α

α + β
,

σ 2 = αβ

(α + β)2(α + β + 1)
.

Solution of these two equations gives

α = µ

[
µ(1 − µ)

σ 2
− 1

]
, (4.1)

β = (1 − µ)

[
µ(1 − µ)

σ 2
− 1

]
, (4.2)

and hence the exact form of the prior density is determined. An example will be
given in Section 4.2.4.

Next, suppose that the available knowledge comes from a previous experiment
in the form of an observation of a random sample of size n from a Bernoulli process
with probability of success θ and a total number y = ∑n

i=1 xi of positive outcomes
(successes). A common estimator of the parameter θ is the sample proportion3

P = 1
n

∑n
i=1 Xi , which has a mean equal to θ and variance equal to {θ (1 − θ )/n}.4

Parameters α and β can be fixed by equating the mean and the variance of the
sample proportion to the prior mean µ and the prior variance σ 2 at p = 1

n

∑n
i=1 xi ,

the estimate of θ . Substituting µ = p and σ 2 = p(1 − p)/n in Equation (4.1) and
(4.2) gives

α = p

[
p(1 − p)n

p(1 − p)
− 1

]
= p(n − 1), (4.3)

β = (1 − p)

[
np(1 − p)

p(1 − p)
− 1

]
= (1 − p)(n − 1). (4.4)

One can readily see that the parameters obtained in this way are such that
n = α + β + 1, which means that one obtains a prior distribution that provides an

3This estimator is obtained by the maximum likelihood approach which consists of estimating the
unknown parameter θ by a number θ̂ which maximizes the likelihood function: θ̂ is the value of the
parameter for which likelihood is maximized.

4Let (X1, . . . , Xn ) be a random sample from a population with mean θ and variance θ(1 − θ). Then,
the mean of the sample proportion is

E (P ) = E

(
1

n

n∑
i=1

Xi

)
= 1

n

n∑
i=1

(E (Xi )) = 1

n

n∑
i=1

θ = 1

n
nθ = θ ,

and the variance

Var (P ) = Var

(
1

n

n∑
i=1

Xi

)
= 1

n2

n∑
i=1

(Var (Xi )) = 1

n2

n∑
i=1

θ(1 − θ) = 1

n2
nθ(1 − θ) = θ(1 − θ)

n
.
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amount of information about θ equivalent to the amount that comes from a random
sample of size n . This suggests an important caveat when the choice is made of
the form of a beta density from a given location summary (such as a prior mean)
and a given dispersion summary (such as a prior variance), that is computing α and
β directly from Equations (4.1) and (4.2) rather than from the number of positive
outcomes occurred in previous experiments. If the choice is made from location
and dispersion statistics, Bolstad (2004) proposes that, once α and β have been
obtained, the so-called equivalent sample size neq = α + β + 1 is computed and a
check is made as to whether the available knowledge is realistically comparable
with the knowledge that would have been obtained from an experiment of that size.
If not, one should increase the prior variance incrementally in order to avoid the use
of a prior density that reflects more knowledge than provided by the ‘prior data’.

Example 4.2.2 (Glass fragments – continued). Recall the previously dis-
cussed scenario (Example 4.2.1) where n = 64 glass objects are surveyed
and no positive outcomes are found (y = 0). Imagine that the prior knowl-
edge is given by a sample of 40 observations among which there is 1 positive
result. Then, p = 0.025 and the application of Equations (4.3) and (4.4)
gives α = 0.97 and β = 38.03, approximated to α = 1 and β = 38 respec-
tively, that is a Be(1, 38) prior density. The posterior distribution will be a
beta distribution with parameters α = 1 and β = 102. The effect of such an
informed prior is illustrated in Figure 4.2. Given the same linear loss func-
tion of Example 4.2.1 (k0 = 2, k1 = 1), the 2/3 quantile moves from 0.017 if
a Be(1,1) is adopted, to 0.011 if the parameters α and β are chosen on the
basis of the informed prior knowledge, Be(1,38).
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Figure 4.2 Effect of different beta priors on the Bayes decision in Example 4.2.2.
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4.2.2 Prior probabilities

At this point, it appears useful to take a closer look at the relation between a pos-
terior inference and assumptions about prior probabilities. As shown in Figure 4.2,
differences in prior opinions might affect Bayesian estimates and this may be rele-
vant within forensic contexts. A recurrent question thus is how one is to choose an
appropriate prior distribution. A general and common answer to this is to say that
appropriate prior distributions are simply those that reflect one’s beliefs about the
subject matter, conditioned as these may be by one’s background evidence (How-
son 2002). From a practical point of view, however, there is a tendency to seek
criteria for determining in some sense ‘objective’ prior distributions, even though
such endeavours are viewed cautiously. Fienberg (2006, p. 431) notes that ‘(. . .) the
search for the objective prior is like the search of the Holy Grail in Christian myth.
The goal is elusive, the exercise is fruitless, and the enterprise is ultimately divert-
ing our energies from doing quality statistics’. Other authors take the position that
there is no ‘objective’ prior, only an illusion of objectivity (Berger and Berry 1988).

A frequently invoked recommendation says that when an unknown parameter
lies in a finite interval, then the uniform distribution would serve one well, in an
‘objective’ way. It is generally useful, however, to see where recommendations
lead to in practice and to examine carefully if they reasonably reflect one’s prior
knowledge, as is illustrated by the following:

Suppose you are asked to assess a prior distribution for the density (weight
per unit volume) of potassium in your bloodstream, θ . Unless you have a
strong background in biology, at first you may throw up your hands and say
‘I am totally uninformed about θ ’, and then you may take all values of θ as
equally likely. But when you think about it a bit you realize that there are
really some things you know about θ . For example, since you know that a
potassium density can’t be negative, you know θ > 0. (Press 1989, pp. 48–49)

That is to say, so-called ‘subjective’ (i.e. personal) prior distributions represent
an attempt to bring prior knowledge about the phenomenon under study into the
problem. One takes full advantage of additional information. This is not so by
using a uniform prior density by default. Actually, it seems doubtful to consider
that an individual ‘has no idea at all’ about the possible values for a parameter of
interest. In forensic science contexts, there usually is substantial past experience
and literature that can offer a thorough background and a wealth of knowledge on
a wide range of specific subject matters.

An insightful discussion on this point is due to de Finetti (1993b) who argued
that situations rarely, if ever, arise, in which there is no knowledge of a priori
probabilities. De Finetti insists on being consistent about the implications of under-
standing probabilities in their very subjective sense, that is, if they are expressions
of one’s own belief, they cannot be unknown to oneself. An awareness is required
not to reduce probabilities to some abstract property but as a standpoint intimately
associated with an individual:
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The belief that the a priori probabilities are distributed uniformly is a well
defined opinion and is just as specific as the belief that these probabilities
are distributed in any other perfectly specified manner. Accordingly, there
is no reason why the absence of opinion on the distribution of the a priori
probabilities should be taken as equivalent to the opinion that their distribu-
tion is of this or that specified form. To be misinformed of the prevailing
temperature is not the same as to believe that it is zero degrees. (de Finetti
1993b, p. 382)

With regards to Example 4.2.1, it may thus be emphasized that the use of a
uniform prior as an a priori distribution for the parameter of interest, θ , should be
a choice of an opinion, as in all other cases, and not necessarily a consequence of
supposed absence of any opinion. To quote de Finetti again:

This opinion is therefore a subjective one, as is every other, and not one
specifically endowed with an objective significance. (de Finetti 1993b, p.
383)

A further issue to consider, for example in case of a beta density, is that
the choice of values for the prior parameters will not matter too much when
there is a large amount of data. For y successes in n trials, the posterior mean,
(α + y)/(α + β + n), is roughly y/n when y and n are large relative to α and β,
so that prior parameters α and β may have very little or even no effect on the
posterior. As underlined by Raiffa and Schlaifer (1961), this holds for both y and
n − y large: when the number of both positive (y) and negative (n − y) outcomes
is large, then even very different prior distributions lead to similar posterior distri-
butions. Conversely, if the number of positive outcomes is zero, as in the current
example, it can be shown that the posterior inference is sensitive to the choice of
the prior, even though the sample size n is large. An illustration of this is given in
Figure 4.3.

In forensic contexts, where scientists have access to considerable sources of
information (such as literature or past experience), efforts to use informed, sub-
jective prior distributions can be seen as an attempt to make the best use of the
full potential of the Bayesian method. However, such so-called prior elicitation ,
the translation of appropriate knowledge into a probability distribution, is a distinct
subject in its own right (O’Hagan et al. 2006). Whenever one commits oneself to a
particular prior distribution, it may be that another one sufficiently close could be
equally acceptable. If a conflict exists between several experts that hold far differ-
ent prior specifications, then it could be a matter for the customer of the inferential
process (e.g. a judge) to ignore the opinion of some or all of these experts, to ask
them to reformulate their priors in view of the conflicting opinions, to ask them to
consider a mixture of the prior specifications, or, finally, to decide that additional
data are to be collected in order to lower the influence of, and therefore possible
conflict amongst, the differing opinions.
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Figure 4.3 Comparison of posterior distributions. (a) Two different prior distributions,
Be(1, 2) and Be(0.1, 0.1). (b) The resultant posterior distributions given y = 10 and n = 40,
Be(11, 32) and Be(10.1, 30.1) with 2/3 quantiles equal to 0.2813 and 0.2773, respectively.
(c) The resultant posterior distributions given y = 0 and n = 40, Be(1, 42) and Be(0.1, 40.1)
with 2/3 quantiles equal to 0.0258 and 0.0003, respectively.

Besides prior probabilities, discussion on Bayesian decision-theoretic procedures
should also draw attention to the choice of the loss function. Bayesian estimates
are sensitive to the way in which losses are specified; for example, different values
for the constants k0 and k1 result in different posterior quantiles, and, consequently,
different parameter estimates. This should not be considered, however, as an incon-
venience because, as pointed out by O’Hagan (1994), there are situations in which
it may be worse to underestimate a parameter than to overestimate it, and con-
versely, so that it is rather natural that the resulting estimates will be dependent on
the context from which they were obtained.
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In summary thus, both prior distributions and loss functions should be carefully
chosen because inappropriate specifications may substantially affect an inference
process, especially in the presence of small amounts of data. This does not mean,
however, that different Bayesian estimates necessarily result in different decisions.
As argued by Box and Tiao (1973), different Bayesian estimates may be acceptable
because the decision remains the same. An illustration of this may be considered in
terms of the example of zero occurrences discussed earlier in this section where one
may well imagine alternative propositions for the loss function and the prior distri-
bution. Although these may result in different Bayesian estimates, this may not nec-
essarily lead a recipient of expert evidence to change a decision from, for example,
a guilty to a non-guilty verdict, or vice versa. A case is discussed in Example 4.4.2.

4.2.3 Prediction

So far, situations have been considered in this section where a decision maker
was interested in, for example, the proportion of items or individuals, θ , who
possess a characteristic of interest within a given population. A particular setting
of interest was one in which zero occurrences of a positive outcome are noted in
a sample of size n (y = 0). In such situations it may be that an additional sample
of size m will be collected. It may then become relevant to find the probability of
there being a number z of positive outcomes being found in the sample. This is
the task of statistical prediction which aims at inferring the value of an unknown
observable value, such as the number of positive outcomes, based on currently
available information. Following the same line of reasoning as outlined in Section
3.3.4, and recalling the posterior density in the beta-binomial model (Section 3.3)
the predictive density of the number of positive results is given by:

P (z | m , n , y) =
∫

�

P (z | m , θ )π (θ | y , n)dθ (4.5)

=
∫

�

(
m

z

)
θ z (1 − θ )m−z �(α + β + n)

�(α + y)�(β + n − y)
θα+y−1(1 − θ )β+n−y−1dθ

=
(

m

z

)
�(α + β + n)�(α + y + z )�(β + m + n − y − z )

�(α + y)�(β + n − y)�(α + β + m + n)
,

where Equation (4.5) is the probability mass function of a beta-binomial distribution
(see Appendix A for further details about this distribution).

Example 4.2.3 (Glass fragments – continued). Given the prior density in
Example 4.2.2, Be(1, 38), where no positive outcomes (y = 0) were found
among n = 64 trials, the probability of finding 0 objects fragments sharing
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the characteristic of interest among 100 trials is given by5:

P (0 | 100, 64, 0) =
(

100

0

)
�(103)�(1)�(202)

�(1)�(102)�(203)
= 102

202
= 0.505.

In the same way, one can compute:

P (1 | 100, 64, 0) = 100 × 102

202 × 201
= 0.251,

P (2 | 100, 64, 0) = 4950 × 2 × 102

202 × 201 × 200
= 0.124.

Any inferential statement about the number of positive outcomes observable in a
future sample is contained in the posterior predictive density. As no parameters are
involved, there are no further developments needed. Decision problems relating
to future observations will not be addressed here, but refer to Section 2.4.2 for
the notion of the ‘expected value of information’ and Section 7.4 for sampling
decision. It is solely noted that one would need to specify a utility function u(d , z )
to measure the gain in taking decision d when z turns out to be the observed value.
The optimal decision follows from maximizing the expected utility:

ū(d | y) =
∫

Z
u(d , z )P (z | m , n , y)dz .

Note that the posterior predictive distribution must be used and not the posterior
distribution as usual (Bernardo and Smith 2000).

4.2.4 Inference for θ in the presence of background data on the number
of successes

The scenarios set forth so far considered experiments that aimed at the estimation
of a proportion θ of elements within a given population that possesses a character-
istic of interest. An important assumption that has tacitly been admitted throughout
these settings was that the counting process is free of error. Unfortunately, how-
ever, experiments in real-world circumstances might be affected by inefficiencies
because of objects which might be lost in counting, or because of the presence
of a background, that is objects that are observationally indistinguishable from the
object of interest. This might alter the observed number of successes and/or the
observed number of trials (D’Agostini 2004a).

5Note that the gamma function �(·) satisfies the relation �(n) = (n − 1)!, for any integer n > 0,
0! = 1.
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For the purpose of illustration, consider a scenario in which the number of
observed successes, y , could contain an unknown number of background events.
An inference on the proportion of interest θ must then account for the fact that
the observed number of successes is due to the sum of two individually unobserv-
able contributions. On the one hand, there is the true but unobservable number
of inspected items that actually possess the characteristic of interest, ys . On the
other hand, there is a number of positive outcomes due to background, yb . The
binomial distribution is a widely applied discrete distribution for modelling exper-
iments which consist in counting objects. It can serve the purpose of modelling the
first component, that is a binomial distribution with parameters n and θ , written
Ys ∼ Bin(n , θ ) for short. The background component can be modelled by recurring
to a Poisson distribution as an approximation for the binomial. Actually, for large
n and small θ , the binomial distribution can be approximated by a Poisson distribu-
tion with parameter λ = nθ . The quantity of background items being unknown, the
number of occurrences yb can then be modelled with a Poisson distribution with
parameter λ that is always dimensionless, Yb ∼ Pn(λ). Suppose, for the time being,
that the expected value λ of the background component is known from previous
experiments, while the uncertainty about θ is modelled through a beta prior density
with parameters α and β, θ ∼ Be(α, β).

The distribution of the total number of successes, Y = Ys + Yb , can be obtained
by applying methods for finding the distribution of a sum of random variables
(Casella and Berger 2002). It can be shown that:

PY (y | n , θ , λ) =
y∑

yb=0

(
n

y − yb

)
θ y−yb (1 − θ )n−y+yb

e−λλyb

yb!
. (4.6)

The posterior distribution, up to the normalizing constant, is given by:

π (θ | n , y , λ) ∝ PY (y | n , θ , λ)π (θ ) =

=
y∑

yb=0

(
n

y − yb

)
θ y−yb (1 − θ )n−y+yb

e−λλyb

yb!

�(α + β)

�(α)�(β)
θα−1(1 − θ )β−1. (4.7)

The integral in the denominator of the Bayes’ theorem, Equation (3.5), is not
tractable analytically, therefore the posterior distribution cannot be obtained in
closed form. The unnormalized posterior, (4.7), can be obtained at a list of θ

values (0.000, 0.001, . . . , 1) by multiplying the prior density π (θ ) and the likelihood
function PY (y | n , θ , λ) at each point. Samples from the posterior distribution can
be obtained by normalizing the distribution on the discrete grid of θ values by its
sum (Gelman et al. 2004).

Example 4.2.4 (Textile fibres). Textile fibres found on a given surface, such
as a car seat, may need to be counted. This is typically done in so-called fibre
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population studies that focus on the occurrence of fibres, classified according
to fibre type and colour, for example, on various surfaces (such as T-shirts,
cinema seats etc.). For the purpose of the current example, it is assumed
that the scientist is interested in counting red-woollen fibres. The target sur-
face may however have been in contact with different sources of red-woollen
fibres so that the number of successes (that is the counts) may be affected
by the background. Previous knowledge on the subject matter may suggest a
background incidence of successes (that is observationally indistinguishable
fibres of another category of classification) of about 2 per unit of surface. The
expected value λ of the background component could thus be fixed equal to
2.5 in order to have the mode equal to 2 and the probability mass concen-
trated around this value. With regard to the mean of the beta prior density, it
is assumed that existing research suggests a value equal to 0.05. In addition,
it is believed that proportions lower than 1.5% or greater than 10% are very
unlikely, so the prior variance σ 2 is taken to be 0.0005. Equations (4.1) and
(4.2) allow one to determine the hyperparameters, α = 4.7 and β = 89.3,
such that the prior mean is equal to 0.05 (the location summary suggested by
available knowledge) and P (0.015 ≤ θ ≤ 0.1) ≈ 0.95, where θ is the pro-
portion of positive items. The prior density is depicted in Figure 4.4 (left). Sup-
pose that a unit of surface is examined and n = 100 textile fibres are counted
from which a total of 25 are noted as ‘red-wool’. Figure 4.4 (right) shows the
approximated posterior density obtained on a discrete grid of 1000 values.
Given an asymmetric linear loss function with constants k0 = 2 and k1 = 1,
the Bayes decision is the 2/3 quantile of the posterior distribution, which can
be computed numerically using the grid of values and is equal to 0.1405.
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Figure 4.4 Prior density (left) and approximated posterior density (right) for
Example 4.2.4. The dotted line indicates the Bayes estimate (2/3 quantile) for an
asymmetric linear loss function with constants k0 = 2 and k1 = 1; see Section 3.4.2.
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An additional complication that may need to be accounted for is that the expected
value of background events is actually unknown. Uncertainty about λ can, however,
be quantified by a gamma density with parameters a and b, λ ∼ Ga(a , b) (see
Appendix B for details about this distribution). The joint posterior distribution, up
to the normalizing constant, is given by:

π (θ , λ | n , y) ∝ PY (y | n , θ , λ)π (θ )π (λ)

∝
y∑

yb=0

(
n

y − yb

)
θ y−yb (1 − θ )n−y+yb

e−λλyb

yb!
θα−1(1 − θ )β−1λa−1e−bλ. (4.8)

The marginal posterior of θ , π (θ | n , y), cannot be obtained analytically, but a
sample from the posterior can be drawn using the MCMC techniques illustrated in
Section 3.3.5, in particular the multiple-block M-H algorithm (with k = 2 univariate
blocks, θ and λ). The candidate-generating density, for each block, is taken to be
Normal with mean equal to the current value of the parameter, and variance τ 2

k
(k = 1, 2) fixed to obtain a good acceptance rate (Gamerman 2006).

Start by considering the first block, that is the parameter θ . The full conditional
density which is necessary to compute the probability of acceptance can be easily
derived from the joint posterior density, Equation (4.8), and gives

π (θ | λ, n , y) ∝
y∑

yb=0

(
n

y − yb

)
θ y−yb (1 − θ )n−y+yb

λyb

yb!
θα−1(1 − θ )β−1. (4.9)

The candidate value for θ cannot be sampled directly from a Normal density, since
0 < θ < 1. The solution is straightforward. Consider the new parameter:

ψ = log

(
θ

1 − θ

)
, 0 < θ < 1,

which is defined over the interval (−∞, ∞). Then, instead of sampling a value
for θ , a value for ψ is sampled. Note that θ = eψ

(1+eψ )
, and denote this as g−1(ψ).

Given θ (j−1) as the current value of the chain, the candidate then is

ψprop ∼ N
(
ψ (j−1), τ 2

1

)
, with ψ (j−1) = log

(
θ (j−1)

1 − θ (j−1)

)
.

The candidate ψprop is accepted with probability

α
(
ψ (j−1), ψprop) = min

{
1,

π (ψprop | λ(j−1))

π (ψ (j−1) | λ(j−1))

}
,

where π (ψ | λ) is the reparametrized full conditional density of θ and is given by

π (ψ | λ) =
∣∣∣∣ d

d (ψ)

(
g−1(ψ)

)∣∣∣∣π (
g−1(ψ) | λ

) = eψ(
1 + eψ

)2 π
(
g−1(ψ) | λ

)
.
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If the candidate is accepted, then θprop = eψprop

1+eψprop becomes the current value θ (j )

of the chain.
Next, consider the second block, that is the parameter λ. The full conditional

density of the parameter λ is obtained from Equation (4.8) and gives

π (λ | θ , n , y) ∝
y∑

yb=0

(
n

y − yb

)
θ y−yb (1 − θ )n−y+yb

e−λλyb

yb!
λa−1e−bλ. (4.10)

As before, the candidate value for λ cannot be sampled directly from a Normal
density since λ > 0. Consider the new parameter

φ = log(λ), λ > 0,

which is defined over the interval (−∞, ∞). Then, instead of sampling a value for
λ, a value is sampled for φ. Note that λ = eφ and denote this as g−1(φ). Given
λ(j−1) as the current value of the chain, the candidate then is

φprop ∼ N
(
φ(j−1), τ 2

2

)
, with φ(j−1) = log

(
λ(j−1)) .

The candidate φprop is accepted with probability

α
(
φ(j−1), φprop) = min

{
1,

π (φprop | θ (j ))

π (φ(j−1) | θ (j ))

}
,

where π (φ | θ ) is the reparametrized full conditional density of λ and is given by

π (φ | θ ) =
∣∣∣∣ d

d (φ)

(
g−1(φ)

)∣∣∣∣π (
g−1(φ) | θ

) = eφπ
(
g−1(φ) | θ

)
.

If the candidate is accepted, then λprop = eφprop
becomes the current value λ(j ) of

the chain.
The algorithm can be summarized as follows:

1. Specify an initial value (θ (0), λ(0));
2. Repeat for j = 1, . . . , nb + n iterations:

(a) Propose a value for the rescaled θ :

ψprop ∼ N (ψ (j−1), τ 2
1 ).

Calculate the probability of acceptance

α
(
ψ (j−1), ψprop) = min

{
1,

π (ψprop | λ(j−1))

π (ψ (j−1) | λ(j−1))

}
.

Update

θ (j ) =




eψprop

1+eψprop in case of acceptance.

θ (j−1) otherwise.
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(b) Propose a value for the rescaled λ:

φprop ∼ N (φ(j−1), τ 2
2 ).

Calculate the probability of acceptance:

α
(
φ(j−1), φprop) = min

{
1,

π (φprop | θ (j ))

π (φ(j−1) | θ (j ))

}
.

Update

λ(j ) =



eφprop
in case of acceptance

λ(j−1) otherwise.

3. Return {θ (nb+1), λ(nb+1), . . . , θ (nb+n), λ(nb+n)}.

Example 4.2.5 (Textile fibres – continued). Uncertainty about λ is modelled
through a gamma distribution with parameters a = 3 and b = 2. A sample

(θ (nb+1), λ(nb+1)), . . . , (θ (nb+n), λ(nb+n))

of size n = 15000 (with a burn-in nb of 5000 iterations) is taken from the
posterior distribution, following the algorithm outlined above. Initial values
θ (0) and λ(0) are set equal to 0.5 and 10, respectively, while parameters τ 2

1
and τ 2

2 are set equal to 0.82 and 1.82, respectively (the resulting acceptance
rate is around 34%). Trace plots (Figure 4.5 top) exhibit the same behaviour
through iterations and do not show dependence on the starting values (the
reader can verify taking different starting values). The autocorrelation plots
(Figure 4.5 bottom) suggest a good performance of the algorithm since values
of the autocorrelation decrease to zero as the lag value is increased. Monte
Carlo estimates of the posterior quantities of interest can be obtained from
the simulated draws. The estimated posterior mean is equal to 0.1315, while
the 2/3 posterior quantile (the Bayes decision with linear loss function and
k0 = 2, k1 = 1), which is of interest here, is equal to 0.1427.

An algorithm using the R package is given at the end of the chapter.
Interested readers may also consider the BUGS Project (Bayesian inference
Using Gibbs Sampling6), a package specifically designed to carry out MCMC
computations for a wide variety of complex statistical models. This tool is
frequently referenced in specialized statistical literature on the topic.

6http://www.mrc-bsu.cam.ac.uk/bugs.
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Figure 4.5 MCMC diagnostic: Trace plots of simulated draws of θ (top left) and λ

(top right), autocorrelation plots of simulated draws of θ (bottom left) and λ (bottom
right).

4.2.5 Multinomial variables

The kind of samples discussed so far are particular in the sense that they consist of
sequences of independent trials in which the target characteristic will take exactly
one of two possible mutually exclusive outcomes.

A different situation is one that has been encountered earlier with Example 3.1.5,
where a population of printed documents was considered. In particular, attention
was being drawn to a descriptor that may assume one of more than two possible
outcomes (k > 2). In the case of black toner that may be found on printed docu-
ments, forensic scientists commonly analyze resins by means of Fourier Transform
Infrared Spectroscopy (FTIR), the results of which (so-called IR data) may be
classified in one of several mutually exclusive categories.

Let x1, . . . , xn be the observed values of n random variables, each of which can
take one of k possible values with probability θ1, . . . , θk . Suppose that one only
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notes the yj s (j = 1, . . . , k ), that is the number of xi s (i = 1, . . . , n) that fall into
each category. The likelihood function is

f (y1, . . . , yk | θ1, . . . , θk ) =
(

n

y1 · · · yk

)
θ

y1
1 · . . . · θ

yk
k .

This distribution is known as the multinomial distribution (see Appendix A). It is
a generalization of the binomial distribution to the situation in which each trial has
k (k > 2) distinct possible outcomes.

When evaluating evidence for IR data, forensic scientists may need to address
questions of the kind ‘What is the probability of an unknown item of black toner
being of type j ?’. A Bayesian approach to this learning task uses prior knowledge
about the k outcomes, expressed in terms of prior probabilities θ1, . . . , θk , which
are then adjusted in the light of multinomial data. A conjugate prior distribution for
the multinomial likelihood is the Dirichlet distribution, which is a generalization of
the beta distribution, with parameters α1, . . . , αk , and denoted Dk (α1, α2, . . . , αk )
(see Appendix B). As an aside, notice that parameters αj may be thought of as
‘prior observation counts’ for observations that are determined by θj , and that the
mean for the j th class is αj /α0, α0 = ∑k

j=1 αj ; j = 1, . . . , k .

The Dirichlet distribution has very convenient updating properties, comparable
to those of the beta distribution where the observed successes and failures add
to the parameters α and β (see Section 3.3). Given the multinomial likelihood
and the Dirichlet prior, the posterior distribution for (θ1, θ2, . . . , θk ) is found by
adding to each parameter αj the counts yj of items that are found to be of type j :
Dk (α1 + y1, α2 + y2, . . . , αk + yk ).

The model parameter θ = (θ1, . . . , θk ) being vector-valued, an appropriate gen-
eralization of the loss function to the multivariate case needs to be introduced.
Several choices are possible, as discussed in Section 3.4.2. If the loss is believed to
be quadratic, the optimal Bayes decision d = (d1, . . . , dk ) is equal to the mean of the
posterior distribution. No more information is needed. For the Dirichlet-multinomial
model, posterior means are easily derived since the posterior distribution is still in
the same family as the prior, with updated parameters, so that

E (θj | y1, . . . , yk ) = αj + yj

α0 + n
, j = 1, . . . , k .

Example 4.2.6 (Black toners). Consider a sample of n = 100 printed docu-
ments, for each of which the toner’s resin is analyzed. There are k = 7 resin
groups in total, so each variable xi (i = 1, . . . , n) can assume one of seven
possible values. The total number of analyzed documents falling into each
group, yj (j = 1, . . . , k), are noted. Data are illustrated in Table 4.1.
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Table 4.1 Total number of observations (counts) for each of seven resin
groups for black printer toner. The sample covers a total of 100 items
(documents with black toner), each of which falls in exactly one
category.

Resin group (number (j ) – name) counts (yj )

1 – Styrene-co-acrylate 83
2 – Epoxy A 11
3 – Epoxy B 2
4 – Epoxy C 1
5 – Epoxy D 1
6 – Polystyrene 1
7 – Unknown 1

For the seven classes represented in Table 4.1 the prior distribution may
be written as Dk (α1, α2, . . . , α7). Assume αj = 1 for all k categories. This is
equivalent to assuming a uniform prior. Given the observed data, Table 4.1,
the updating procedure leading to posterior distribution is outlined in
Table 4.2.

Given a quadratic loss function, the optimal Bayesian estimates of the
unknown parameters, θj , are given by the posterior means which are shown
in the column on the far right-hand side of Table 4.2.

Table 4.2 Example for updating a Dirichlet distribution with parameters
αj . The data are taken from Table 4.1 (represented here in column four)
and consist of the numbers yj of observations (counts) of items found to
be of type j (the sample size is 100). Column three represents the prior
means, column five the revised parameters and column six the posterior
means.

Resin group j αj αj /α0 yj αj + yj
αj +yj
α0+n

1 1 1/7 83 84 0.78505
2 1 1/7 11 12 0.11215
3 1 1/7 2 3 0.02804
4 1 1/7 1 2 0.01869
5 1 1/7 1 2 0.01869
6 1 1/7 1 2 0.01869
7 1 1/7 1 2 0.01869

Sums: α0 = 7 1 n = 100 α0 + n = 107 1
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Another example of an application of such a procedure can be found in Foreman
et al. (1997) where a genetic parameter of correlation, FST , used in forensic DNA
evidence evaluation, is estimated.

4.3 BAYESIAN DECISION FOR A POISSON MEAN

Some forensic science applications focus on the number of occurrences of certain
events that occur, at a constant rate, randomly through time (or space). Examples for
such events are corresponding matching striations in the comparative examination
of toolmarks or the numbers of gunshot residue (GSR) particles collected on the
surface of the hands of individuals suspected to be involved in the discharge of a
firearm.

A commonly used statistical model in such situations assumes that counts follow
a Poisson distribution with parameter λ, f (y | λ) = Pn(λ). The parameter λ may be
estimated on the basis of data collected in surveys or during experiments conducted
under controlled situations. As has been outlined already, since knowledge of the
parametric model yields knowledge of the entire population, it is natural to try
to estimate the value of the parameter. A Bayesian decision-theoretic approach
is developed for this scenario within perspectives that account for, respectively,
the presence and absence of background information that may affect a count. A
third part of this section will focus on the use of Poisson distributed variables
for forensic inference about the selected propositions of interest using graphical
models. An additional complication that will be addressed at that point is that a
given count may, in part, also originate from other sources unrelated to the alleged
incident.

4.3.1 Inference about the Poisson parameter in the absence
of background events

Consider a random sample (y1, . . . , yn ) from a Poisson distribution with parameter
λ. Then, the likelihood is given by:

l (y1, . . . , yn | λ) =
n∏

i=1

e−λλyi

yi !
= λ

∑n
i=1 yi e−nλ∏n

i=1 yi !
. (4.11)

At first, a prior density reflecting one’s initial beliefs must be specified. Typically,
the choice falls in the family of conjugate gamma densities Ga(α, β):

π (λ) = βα

�(α)
λα−1e−βλ. (4.12)
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The shape of the posterior distribution is obtained as follows:

π (λ | y) ∝ π (λ)l (y1, . . . , yn | λ)

= βαλα−1e−βλ

�(α)

λ
∑n

i=1 yi e−nλ∏n
i=1 yi !

∝ λα+∑n
i=1 yi −1e−(β+n)λ.

The final expression can be recognized to be in the form of a gamma density with
shape parameter α∗ = α +∑n

i=1 yi , and scale parameter β∗ = β + n .
In order to obtain a posterior distribution using Bayes’ theorem, a gamma prior

distribution needs to be specified for the Poisson parameter λ. There are several
possible ways to do this. Assuming no relevant prior knowledge is available,
the scientist can take a positive uniform prior density π (λ) = 1, for λ > 0, as in
Example 4.3.1.

Conversely, imagine that the scientist has relevant experience in the field (e.g.
from previous experiments conducted under controlled conditions) and is willing
to summarize his prior beliefs in terms of the prior mean µ and the prior variance
σ 2. Then, following the same line of reasoning illustrated in Section 4.2.1 for the
elicitation of the beta parameters, and recalling that the mean of a Ga(α, β) is
Eπ [λ] = α/β, and the variance is Varπ [λ] = α/β2, the shape parameter α and the
scale parameter β can be chosen by solving the following system:

µ = α

β

σ 2 = α

β2
.

Solution of these two equations gives

α = µ2

σ 2

β = µ

σ 2
.

A practical case will be discussed in Example 4.3.2.

Example 4.3.1 (Gunshot residue particles). The search, detection and iden-
tification of gunshot residue particles (GSR) is regularly conducted on individ-
uals (or items belonging to individuals) suspected of involvement in a shooting
incident. In order to help their clients to interpret GSR evidence appropriately,
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forensic scientists may need a clear idea of the occurrence of such evidence
on both (i) individuals known to be associated with the firing of a gun and (ii)
individuals unrelated to a shooting incident. The latter setting is also known
in the context as ‘accidental contamination’ or ‘presence by chance’.

Consider, for example, a situation in which a scientist intends to compute
probabilities for the number y of GSR particles (where y = 0, 1, 2, . . .) on
the hands of an individual unrelated to a shooting incident, based on data
obtained from a new experiment. The GSR count y is assumed to follow a
Poisson distribution with mean λ. Some knowledge about the value of λ is
available from literature, believed to be appropriate as a source of prior
information (because of, for example, similar experimental conditions). For
instance, there may be a survey in which a total of two GSR particles were
found after analysing samples taken from the surfaces of the hands of n = 50
individuals. A random sample (y1, . . . , yn ) thus is available with the reported
numbers of GSR particles for each individual. Assume a positive uniform
prior density π (λ) = 1, for λ > 0. Then, the posterior distribution is gamma
with parameters α = 3 and β = 50, Ga(3, 50). Notice that this distribution is
proper even though the positive uniform density π (λ) = 1 was not.

0.00 0.05 0.10 0.15 0.20

0
5

10
15

λ

D
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Figure 4.6 Ga(3,50) prior distribution (solid line) updated by Poisson distributed
data. The dashed line shows the Ga(4,85) posterior distribution. The vertical line
represents the 1/3 posterior quantile, λ = 0.034.
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Next, consider an additional experiment where the counts of GSR particles
are observed after analysing a further sample of m = 35 individuals. In total,
one additional particle is found. The resulting gamma posterior distribution
for λ has parameters α∗ = α + 1 = 4 and β∗ = β + m = 85. An asymmet-
ric linear loss function is introduced with constants k0 = 1 and k1 = 2. This
choice of constants favours an underestimate of the true number of GSR par-
ticles. Therefore, the Bayesian decision is the 1/3 quantile of the Ga(4, 85)
distribution, which is equal to 0.034. The posterior distributions obtained
sequentially are depicted in Figure 4.6. The vertical line represents the 1/3
posterior quantile for Ga(4, 85). The value 0.034 is the estimate of the rate
of finding GSR particles per individual in the general population.

Example 4.3.2 (Gunshot residue particles – continued). Consider a setting
in which a scientist intends to estimate the mean number of gunshot particles
that may be detected on samples taken from the surfaces of the hands of
individuals that discharged a firearm some specified time ago (e.g. 5 hours).

Imagine that the scientist assumes – based on similar past cases – a prior
mean of 6.5 and a prior standard deviation of 3. The gamma conjugate prior
that matches these two prior moments thus has the parameters α = 6.52/32 =
4.69 and β = 6.5/32 = 0.72.

When the scientist wishes to update this prior using data from a new exper-
iment in which a total particle count

∑m
i=1 yi = 26 is noted after analysing

samples taken from m = 6 individuals (5 hours after the discharge of a
firearm) – where yi is the particle count for individual i – , then the posterior
gamma distribution can be found as follows:

α∗ = α +
m∑

i=1

yi , β∗ = β + m.

Note that only
∑m

i=1 yi and m matter for the final inference and the individ-
ual yi ’s do not matter. The posterior distribution is Ga(30.69, 6.72). Given
the same linear asymmetric loss function of Example 4.3.1 (k0 = 1, k1 = 2),
the Bayesian deision is the 1/3 posterior quantile that is about 4.2 (4.174).
Note that the mean number of gunshot particles that may be detected on sam-
ples taken from the surfaces of the hands of individuals that discharged a
firearm some specified time ago is about 4.6: the specifc choice of the loss
function penalizes an overestimate of the number of particles more than an
underestimation.
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4.3.2 Inference about the Poisson parameter in the presence
of background events

Consider a scenario in which the number of occurrences of a given event (e.g.
the number of GSR particles) could contain an unknown number of background
events. The total number of counts is then given by two individually unobservable
contributions. On the one hand, there are the unknown number of occurrences
truly related to the event of interest (e.g. the transferred particles), ys . On the other
hand, there are a number of occurrences due to the background, yb , independent
of ys , (e.g. particles already present on the hands of individuals). Assume for
both components a Poisson distribution, that is Ys ∼ Pn(λs ) and Yb ∼ Pn(λb). The
distribution of the total number of counts, Y = Ys + Yb , is still Poisson, P (y | λ) =
Pn(λ), with parameter λ = λs + λb . Suppose that the expected value λb of the
background component is known from previous experiments, while the uncertainty
about λs is modelled through a gamma prior density with parameters α and β,
λs ∼ Ga(α, β). The posterior distribution, up to the normalizing constant, is given
by

π (λs | y1, . . . , yn , λb) ∝ l (y1, . . . , yn | λs , λb)π (λs )

= e−n(λs+λb )(λs + λb)
∑n

i=1 yi∏n
i=1 yi !

βα

�(α)
λα−1

s e−βλs . (4.13)

The integral in the denominator of the Bayes’ theorem, Equation (3.5), is not
tractable analytically in this example, therefore the posterior distribution cannot be
obtained in closed form. The unnormalized posterior, (4.13), can be obtained as a
list of λs values, as illustrated in Section 4.2.4.

Example 4.3.3 (Gunshot residue particles – continued). Consider the sce-
nario presented in Example 4.3.2 where the uncertainty about the mean of
the number of particles on an individual is represented by a gamma prior
distribution with hyperparameters α = 4.69 and β = 0.72. The prior dis-
tribution, λs ∼ Ga(4.69, 0.72), is shown in Figure 4.7 (left). A new experi-
ment reveals 26 particles on samples taken from m = 6 individuals. Know-
ing from previous studies that people at random in the relevant population
carry a tiny number of background particles on hands, parameter λb is fixed
equal to 0.05 and is substituted in Equation (4.13). The posterior distribution
for the unknown parameter λs is presented in Figure 4.7 (right). The 1/3
posterior quantile moves from 4.174 (the value given in Example 4.3.2) to
4.125.
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Figure 4.7 Prior density (left) and approximated posterior density (right) for
Example 4.3.3.

4.3.3 Forensic inference using graphical models

Forensic scientists commonly require probabilities – assuming varying circumstan-
tial settings (presented, for example, in the form of competing propositions for-
warded by the prosecution and the defence) – for scientific evidence that consists
of a count (such as a GSR particle count). The probabilities thus obtained are com-
pared against each other in order to obtain an indication of how well the evidence,
in the form of a count, allows one to distinguish between competing scenarios
(Aitken and Taroni 2004).

In the context, discrimination among propositions is typically referred to as
forensic inference. Examples 4.3.4 and 4.3.5 consider this topic, using graphi-
cal models, for situations in which the evidential counts are treated as Poisson
distributed variables.

Example 4.3.4 (Forensic inference based on a Poisson distributed variable
using Bayesian networks). Imagine a scenario in which three GSR particles
are detected on an individual suspected of involvement in a shooting incident.
A question of interest may then be the level of discrimination provided by
that evidence between the pair of propositions Hp (the suspect was recently
exposed to the discharge of a firearm, e.g. 5 hours ago) and Hd (the suspect
is not associated with a recent discharge of a firearm).
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A standard measure used for this purpose is a likelihood ratio7 V (V for
value of the evidence), which is the ratio of the probabilities of the observed
GSR count y = 0, 1, 2, . . . as given by two distinct distributions:

V = f (y | λHp )

f (y | λHd )
,

where λHp and λHd are the means of the Poisson distributions given,
respectively, the propositions Hp and Hd . Following the analyses outlined
in Examples 4.3.1 and 4.3.2, let λHp = 31/7 (exact value 30.69/6.72) and
λHd = 4/85; i.e., the means of the posterior distributions of λ for each of
the two propositions. Then, the likelihood ratio for a GSR count of y = 3 is
10423. Notice that values of the likelihood ratio greater than one support
the proposition Hp, values smaller than one support Hp and a value of one
favours neither of the two propositions (Aitken and Taroni 2004).

Figure 4.8 proposes a simple Bayesian network useable for calculating
Poisson probabilities for GSR counts y = 0, 1, 2, . . . . The node H is Boolean
whose states, true and false, represent, respectively, Hp and Hd . The nodes
aHp , bHp , aHd , bHd have numeric states that correspond to the value of the
parameters of the gamma distributed variables λHp and λHd . YHp and YHd are
numeric nodes that model the GSR particle count for the settings assuming the
truth of, respectively, Hp and Hd . The tables of YHp and YHd can be completed
using the expressions Poisson(aHp/bHp) and Poisson(aHd/bHd), respec-
tively ( Hugin syntax8). The node Y models the GSR count y = 0, 1, 2, . . . as
a function of the truthstate of H , that is Y = YHp if H = Hp and Y = YHd

if H = Hd . Thus, the node table of Y can be completed, referring again to
Hugin syntax, using the expression if(Hp, YHp, YHd).

YH

YHp

aHp bHp aHd bHd

YHd

Figure 4.8 Bayesian network for evaluating GSR particle evidence. The node
descriptors are given in Example 4.3.4.

7The concept of a likelihood ratio is introduced in Chapter 2 and more extensively discussed in
Chapter 6.

8The program Hugin is available at www.hugin.com.
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Figure 4.9 provides examples of calculations that the proposed Bayesian net-
work can offer. The node Y in the figure on the left displays the probabilities
for observing y = 0, 1, 2, . . . particle counts whereas the figure on the right
shows the inference about the main proposition of interest in a scenario in
which y = 3 particles are observed.

The model considered in Example 4.3.4 is a general one essentially because it
focuses solely on the presence of the overall GSR count after a given time, irrespec-
tive of fact that this count may include particles unrelated to the shooting incident
of interest. In fact, GSR particles may not only originate from the discharge of a
firearm, but also from a contaminated collection kit. Stated otherwise, there may
be GSR particles present on the lifting device prior to the sampling of the hands
of a suspect. The overall GSR count thus is, in a more strict sense, the sum of
the number of particles taken from the surface of a suspect’s hands and the num-
ber of particles already present – in the sense of a contamination – on the lifting
device. The probability of the number of contaminant particles on the collection
kit, written, for example, c = 0, 1, 2, . . . , may thus be modelled separately using
distributions with parameters varying according to the degree of contamination D .
To keep the development manageable, the degree of contamination may be allowed
to cover, for instance, the discrete possibilities ‘none’, ‘low ’, ‘medium’ and ‘high’.
Notwithstanding, the complexity of the approach may increase in case D cannot be
assumed to be known and a probability distribution needs to be specified over its
possible states. Example 4.3.5 illustrates that Bayesian networks can support the
hierarchical modelling of such issues.

Example 4.3.5 (Forensic inference based on a Poisson-distributed variable
using Bayesian networks – continued). Consider again the Bayesian network
shown in Figure 4.8 and let there be an additional node Y ′ that models the
overall GSR particle count. This variable differs from the previously defined
node Y because it includes particles that may originate from a contaminated
swab. The node Y ′ is incorporated in the Bayesian network as a descendant
of Y and C . The latter node, C , with states c = 0, 1, 2, . . . , accounts for the
GSR particles present on the lifting device prior to sampling. Both nodes, Y
and C , determine the actual state of the node Y ′, the node table of which is
completed as follows:

P (Y ′ = y ′ | Y = y , C = c) =
{

1, y ′ = y + c,
0, y ′ �= y + c.

(4.14)
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The node table of Y ′ may be readily completed using expression Y+C ( Hugin
syntax).

For brevity, the states of the node D are restricted to ‘clean’ and ‘not
clean’. The number of GSR particles that may be present on the surface
of the collection kit (node C ) is assumed to be Poisson distributed and
to depend on whether the kit is or is not contaminated (node D). For the
purpose of the current discussion, a Poisson distribution with parameter
λC = 0.1 is defined for P (C = c | D = not clean). Obviously, no particles
are present on a clean stub, so P(C = 0 | D = clean) = 1 and P (C �= 0 |
D = clean) = 0. The overall structure of the proposed Bayesian network is
shown in Figure 4.10.

D

Y’

CYH

YHp

aHp bHp aHd bHd

YHd

Figure 4.10 Extended Bayesian network for evaluating GSR particle evidence. Node
descriptors are given in Examples 4.3.4 and 4.3.5.

Consider, then, a case in which two GSR particles are observed, while
the sample collection kit is assumed to be one that was not clean. In such a
setting, the likelihood ratio writes:

V = P (Y ′ = 2 | Hp , D = not clean)

P (Y ′ = 2 | Hd , D = not clean)
.

For the Bayesian network shown in Figure 4.10 it can be shown that the
numerator of the likelihood ratio is a Poisson distribution with a parameter
that is given by the sum of the Poisson parameters λHp and λC ,

(Y ′ | Hp , D = not clean) ∼ Pn(λHp + λC ).

Following the previously defined parametric assumptions one obtains:

P (Y ′ = 2 | Hp , D = not clean) = e−(31/7+0.1)(31/7 + 0.1)2

2!
= 0.1107.
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Analogously, the denominator is given by:

(Y ′ | Hd , D = not clean) ∼ Pn(λHd + λC ),

which can be found to give:

P (Y ′ = 2 | Hp , D = not clean) = e−(4/85+0.1)(4/85 + 0.1)2

2!
= 0.0093.

Notice that the proposed Bayesian network also efficiently supports cal-
culations for situations in which the node D cannot assumed to be known.
In such a scenario the evidence would be propagated in the network while
leaving the node D uninstantiated (with probabilities assigned to the states
‘clean’ and ‘not clean’). Writing D and D̄ shorthand for ‘D = clean’ and
‘D = not clean’ the likelihood ratio then is:

V = P (Y ′ | Hp)

P (Y ′ | Hd )
= P (Y ′ | Hp , D)P (D) + P (Y ′ | Hp , D̄)P (D̄)

P (Y ′ | Hd , D)P (D) + P (Y ′ | Hd , D̄)P (D̄)
.

4.4 BAYESIAN DECISION FOR NORMAL MEAN

Quantitative data may be either counts – known as discrete data, since the counts
take discrete, integer values – or measurements – referred to as continuous data,
since the measurements may take any value on a continuous interval. Previous
sections dealt with discrete data to estimate a proportion, for example the propor-
tion of individuals sharing the same characteristics of interest (such as a given
DNA profile). The refractive index of glass fragments, the alcohol concentration
in blood, the widths of landmarks on firearm bullets or the weights of ecstasy
pills are examples of continuous measurements. This section presents the Bayesian
procedure for learning about population means of Normal variables.

Imagine, for example, a scientist who is interested in determining the alcohol
concentration on the basis of a series of measurements taken from a given individual
arrested by traffic police, or a firearm examiner who seeks to estimate the width
of grooves on a bullet fired through the barrel of a suspect’s gun. Section 4.4.1
deals with the special case of Bayesian inference about an unknown mean for a
known variance. Section 4.4.2 develops the methodology for the inference about
an unknown mean for an unknown variance. The possible presence of background
data is considered in Section 4.4.3, while Section 5.2 addresses the problem of
prediction.
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4.4.1 Case with known variance

Suppose the data from an experiment follow a Normal distribution with unknown
mean θ and known variance σ 2. The assumption of a known variance is a plausible
approximation in many cases, such as those involving an analytical instrument used
to measure some physical, chemical or biological quantity. As noted by Howson
and Urbach (1996, p. 354), such an ‘[. . .] instrument would, as a rule, deliver
a spread of results if used repeatedly under similar conditions, and experience
shows that this variability often follows a Normal curve, with an approximately
constant standard deviation. Making measurements with such an instrument would
then be practically equivalent to drawing a random sample of observations from a
Normal population of possible observations, whose mean is the unknown quantity
and whose standard deviation has been established from previous calibrations’.
Note that the precision of a distribution is often defined as the reciprocal of its
variance. The more precise an analytical device (that is, the lower the variance of
the resulting measurements), the higher the precision of the respective posterior
distribution of the quantity being measured, for given prior precision.

To begin with, suppose that there is very little information and that all values of
θ seem reasonably equally likely. Accordingly, let θ have a locally uniform prior
(one in which the probability density function for θ is a constant over any finite
interval),

π (θ ) ∝ constant. (4.15)

Given a random sample of n observations, x1, . . . , xn from a Normal distribution,
X ∼ N (θ , σ 2), the likelihood function can be written in terms of the sample mean
x̄ , which is a sufficient statistic (see Section 3.3.2). In fact,

l (θ | x1, . . . , xn) =
n∏

i=1

1√
2πσ

exp

[
− 1

2σ 2
(xi − θ)2

]
∝ exp

[
− 1

2σ 2

n∑
i=1

[(xi − x̄ ) + (x̄ − θ )]2

]
.

Completing the square gives

l (θ | x1, . . . , xn ) ∝ exp
[
− n

2σ 2
(x̄ − θ)2

]
.

The sample mean is Normally distributed, X̄ ∼ N
(
θ , σ 2

n

)
. Applying Bayes’

theorem and incorporating the uniform prior, Equation (4.15), the posterior
distribution is Normal with mean x̄ , and variance σ 2/n , in fact

π (θ | x1, . . . , xn) ∝ l (θ | x1, . . . , xn ) since π (θ ) is a constant

∝ exp
[
− n

2σ 2
(x̄ − θ)2

]
.
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Note that the posterior distribution is proper and Normal, although the prior
was improper. Very little information has been provided by the prior: the posterior
distribution is centred at the mean, which is also the maximum likelihood estimator.

Next, suppose that some background information is available so that a proper
prior may be used. A conjugate prior distribution for the mean is the Normal
distribution, therefore it is assumed that the parameter θ is Normally distributed
with mean µ and variance τ 2, θ ∼ N (µ, τ 2), with both µ and τ known. The
probability density of θ is thus given by

π (θ ) ∝ exp

[
− 1

2τ 2
(θ − µ)2

]
.

Then,

π (θ | x1, . . . , xn ) ∝ l (θ | x1, . . . , xn)π (θ )

∝ exp

[
− 1

2σ 2

n∑
i=1

(xi − θ)2

]
exp

[
− 1

2τ 2
(θ − µ)2

]
=

= exp

[
− 1

2σ 2

n∑
i=1

{(xi − x̄) + (x̄ − θ)}2 − 1

2τ 2
(θ − µ)2

]
.

Completing the squares, it follows with a small effort (Berger 1988; Press 2003,
e.g) that

π (θ | x1, . . . , xn) ∝ exp


−1

2

σ 2

n + τ 2

σ 2

n τ 2

(
θ −

(
σ 2

n
σ 2

n + τ 2
µ + τ 2

σ 2

n + τ 2
x̄

))2

 .

The posterior density is Normal N (µ(x ), τ 2(x )) with mean

µ(x ) =
σ 2

n
σ 2

n + τ 2
µ + τ 2

σ 2

n + τ 2
x̄ , (4.16)

and variance

τ 2(x ) =
σ 2

n τ 2

σ 2

n + τ 2
, (4.17)

or precision

1

τ 2(x )
= 1

τ 2
+ 1

σ 2/n
. (4.18)

The posterior mean is a weighted average of the prior mean µ and the sample mean
x̄ , with weights proportional to the variances corresponding to the prior distribution
and the sampling distribution. The mean of the distribution with lower variance
(higher precision) receives greater weight. The posterior precision is the sum of
the precisions of the prior and the likelihood.
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Example 4.4.1 (Alcohol concentration in blood). Consider a case in which
a person is stopped because of suspicion of driving under the influence
of alcohol. A sample taken from that individual is submitted to a forensic
laboratory. It is common practice in many forensic laboratories to estimate
the concentration of alcohol in blood by performing two independent
analytical procedures. Let them be denoted HS and ID. Two measurements
are obtained from each procedure. For HS, these are 0.6066 and 0.5778 g/kg.
For ID, these are 0.4997 and 0.5197 g/kg. Let X be the Normally distributed
random variable of measurements of blood alcohol for a particular person,
with x denoting the value of a particular measurement, X ∼ N (θ , σ 2

p ), where
θ is the same for both procedures and the variance σ 2

p has different values
for p = HS , ID. The variances σ 2

p are assumed known as they have been
estimated from many previous experiments conducted by both procedures.
In particular, it is assumed that the standard deviations are constants,
independent of θ , and both equal to 0.0229 (g/kg) for procedure HS, and
equal to 0.0463 (g/kg) for procedure ID. Available knowledge (typically,
circumstantial information, such as the fact that the person has been stopped
while driving at midnight, exceeding the speed limit, etc.) suggests, for
example, a prior mean µ = 1. The prior variance is chosen according to
the procedure described in Example 3.3.6. Values for θ < 0.1 and > 1.9 are
believed to be extremely unlikely, so that a value of τ = 0.3 is chosen for
the standard deviation. The prior distribution for θ is thus N (1, 0.32). The
readings for the first experiment are x1 = 0.6066 g/kg and x2 = 0.5778 g/kg.
The sample mean of the measurements recorded by the first procedure is
x̄ = (x1 + x2)/2 = (0.6066 + 0.5778)/2 = 0.5922 which is above the legal
limit of 0.5 (g/kg). The posterior distribution is still Normal with mean

µ(x ) = (0.02292/2)1 + 0.09(0.5922)

0.02292/2 + 0.09
= 0.593,

and variance

τ 2(x ) = (0.02292/2)0.09

0.02292/2 + 0.09
= 0.00026.

It can be observed that, after procedure HS , the probability of being over
the legal limit is

P (θ > 0.5 | θ ∼ N (0.593, 0.00026)) ≈ 1.

Bayes’ theorem allows a continual update of the uncertainty about the
alcohol concentration (Section 3.3.1) . Typically, this may be the case when
results of the second series of analyses (that is, by the ID method) become
available. The readings for the second experiment are x1 = 0.4997 g/kg
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and x2 = 0.5197 g/kg. The new sample mean for the quantity of alcohol is
x̄ = (x1 + x2)/2 = (0.4997 + 0.5197)/2 = 0.5097. Note that the posterior
density of θ from the first set of data becomes the prior density for the
new set of data. In the case at hand, the posterior belief for θ becomes
N (0.577, 0.00021); see row 2 of Table 4.3. Then, after procedure ID, the
probability of being over the legal limit is

P (θ > 0.5 | θ ∼ N (0.577, 0.00021)) ≈ 1.

The sequential use of Bayes’ theorem is illustrated in Figure 4.11 where the
posterior distributions are plotted sequentially.

The loss function is assumed, as mentioned earlier in Section 3.4.2,
to be piecewise linear and asymmetric, with k0 = 2 and k1 = 1, since an
underestimation of the alcohol concentration is regarded as a more serious
error. The Bayesian optimal decision following procedures HS and ID is the
2/(2 + 1) quantile of the posterior distribution, which is equal to 0.583; see
row 1 of Table 4.3.

An approach to inference based on hypothesis testing is illustrated in
Example 6.3.4
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Figure 4.11 Sequential use of Bayes’ theorem as outlined in Example 4.4.1. Posterior
distributions obtained with the HS data (solid line), subsequently updated by the ID
data (dotted line).

Example 4.4.2 (Alcohol concentration in blood – continued). In Section
4.2.2, it has been argued that the choice of prior distributions and loss
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functions may alter a decision. This is correct within a ‘point estimation’
perspective. But, even if such choices may lead to different Bayesian
estimates, this may not necessarily influence the decision to be taken
by a recipient of expert evidence. In a legal context, this may be, for
instance, a change from a guilty to a non-guilty verdict, or vice versa.
Table 4.3 illustrates this point using different prior distributions and loss
functions.

Neither a change in the prior distribution nor in the loss fuction influences
the decision according to which the parameter of interest is greater than the
(legally defined) threshold of 0.5.

Table 4.3 Sensitivity of the final decision on alcohol level (g/kg) to different
choices of the prior distribution and the loss function, using measurements for HS
(0.5922) and for ID (0.5097) from Example 4.4.1.

Prior distribution Loss function Point estimate Decision

N (1, 0.32) k0 = 2; k1 = 1 0.583 Over legal threshold
N (1, 0.32) k0 = 1; k1 = 1 0.577 Over legal threshold
N (0.5, 0.132) k0 = 2; k1 = 1 0.581 Over legal threshold
N (0.5, 0.132) k0 = 1; k1 = 1 0.575 Over legal threshold

4.4.2 Case with unknown variance

Consider now a situation in which the data X are still Normally distributed, X ∼
N (θ , σ 2), but with both the mean θ and the variance σ 2 unknown. It is then
necessary to consider a prior distribution on both parameters. If very little prior
information is available, a non-informative prior distribution on both parameters
can be defined (e.g., Bernardo and Smith 2000; Box and Tiao 1973; Robert 2001),
and is given by

π (θ , σ ) = 1

σ
.

If x1, . . . , xn are observed, the posterior distribution of (θ , σ ) associated to this
prior is:

θ | σ , x̄ , s2 ∼ N (x̄ , σ 2/n),

σ 2 | x̄ , s2 ∼ IG

(
n − 1

2
,

(n − 1)s2

2

)
,

where IG denotes an inverse gamma distribution (see Appendix B for more details
about this distribution), and s2 = 1

n−1

∑n
i=1 (xi − x̄)2. The marginal posterior
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distribution of the prior mean θ which is of interest here is

θ | x̄ , s2 ∼ St

(
(n − 1), x̄ ,

s2

n

)
,

i.e. θ has a Student t distribution (see Appendix B) centred about x̄ and with
(n − 1) degrees of freedom. An example can be found in Section 8.4.4.

Suppose now that some knowledge is available. Conjugate prior distributions
for this context are characterized by the fact that parameters are not independent.
Consider then

π (θ , σ 2) = π (θ | σ 2)π (σ 2),

where π (θ | σ 2) is a Normal distribution with mean µ and variance σ 2/n0 for some
fixed n0, (θ | σ 2) ∼ N (µ, σ 2/n0), and π (σ 2) is an inverse gamma distribution with
parameters α and β, σ 2 ∼ IG(α, β). Therefore, the prior distribution on the mean
depends on the precision associated with the mean. The appearance of σ 2 in the
conditional distribution of the mean θ indicates, for example, that if σ 2 is large, a
high variance on θ is induced. This dependency must be justified, considering that
conjugate prior distributions are chosen largely for convenience and that alternative
choices are possible. Although this dependency cannot hold in general for every
problem of estimation, it is argued in Robert (2001) that when the prior distribution
is built from previous observations, it makes sense that σ 2 is conditionally involved
in the prior variance of θ , in the sense that prior beliefs about the mean are calibrated
by the scale of measurements of the observations (Gelman et al. 1997).

The hyperparameter n0 expresses the strength of prior belief about the chosen
location µ for the mean of the data (Congdon 2001). In general, n0/n characterizes
the relative precision of the determination of the prior distribution as compared with
the precision of the observations. It can be observed that if the ratio is very small,
the posterior distribution approaches the posterior distribution that is obtained with
a uniform prior.

These prior distributions are conjugate, since, given a random sample x =
(x1, . . . , xn), the posterior distribution of the variance π (σ 2 | x ) is still an inverse
gamma with updated parameters

α∗ = α + n

2
,

β∗ = β + 1

2

[
n∑

i=1

(xi − x̄)2 + (x̄ − µ)2

1
n0

+ 1
n

]
,

while the posterior distribution of the mean π (θ | σ 2, x ) is Normal with mean

Eπ(θ |σ 2,x )(θ ) = n

n + n0
x̄ + n0

n + n0
µ, (4.19)
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and variance

Varπ(θ |σ 2,x )(θ ) = σ 2

(n + n0)
.

The posterior marginal distribution for the mean π (θ | x ) is a Student t distribution
with 2α∗ degrees of freedom centred at Eπ(θ |σ 2,x )(θ ).

Example 4.4.3 (Widths of landmarks on a firearm bullet). Suppose that
a bullet is recovered on a crime scene. Initially, the forensic scientist
may measure the width of the landmarks on the bullet. Let X be the
Normally distributed random variable of measurements on the width of
landmarks, X ∼ N (θ , σ 2). Both parameters are unknown. A database of
measurements on the bullets is available. The prior location measure µ is
fixed equal to 1.6965 (mm) for a population of caliber 38 guns (the relevant
population).

Considering the great variability that characterizes the available database,
the precision of the determination of the prior distribution is rather poor
and the parameter n0 is fixed equal to 0.1. Note that the elicitation of the
inverse gamma distribution for the variance is not necessary in this con-
text. A quadratic loss function is considered appropriate because the decision
maker accepts that under- and overestimation of the width incur equal losses.
Therefore, what is needed is the posterior mean of the marginal distribu-
tion of θ , that is a Student t distribution centred at the posterior mean of
(θ | σ 2, x ).

A sample of n = 36 observations is available, with a mean of x̄ = 1.9306.
The Bayesian optimal decision is the posterior mean which is given by
Equation (4.19) and is equal to

36

36.1
1.9306 + 0.1

36.1
1.6965 = 1.9299.

4.4.3 Estimation of the mean in the presence of background data

Consider again the scenario outlined in Example 3.3.8, where the aim was to
estimate the height of an individual from the image obtained from a surveillance
camera. The true height of the individual is denoted θ . The measured height Y of
the individual is assumed to have a Normal distribution. This measured height is
biased because of errors introduced by the context in which the image was taken,
such as the posture of the individual, the presence or absence of headgear and the
angle of the camera relative to the individual (Taroni et al. 2006b). Denote the
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bias by ξ . There are two sources of variance and these are assumed independent.
The first is the precision of the measurement device, denote its variance by σ 2.
The second is the variation associated with the context and is denoted δ2. Hence,
Y ∼ N (θ + ξ , σ 2 + δ2).

The uncertainty about θ is modelled through a Normal distribution with mean
µ and variance τ 2, θ ∼ N (µ, τ 2), while hyperparameters ξ and δ2 are assumed to
be known from the scenario of interest. This appears to be admissible because the
assumption is made that the case at hand is basic in the sense that several images
of an individual are available from video recording of one specific surveillance
camera. That is to say parameters ξ and δ2 could be obtained through an ad
hoc reconstruction. Whenever recordings are available from different surveillance
cameras on different locations, then the scenario is one in which it would be
necessary to model the prior mean and variance.

Following the same steps as outlined in Section 4.4.1, it can be shown that the
posterior distribution is still a Normal density with mean

µ(y) =
τ 2(ȳ − ξ ) + µ

(
σ 2+δ2

n

)
τ 2 + σ 2+δ2

n

,

and variance

τ 2(y) =
τ 2
(

σ 2+δ2

n

)
τ 2 + σ 2+δ2

n

.

The variance is clearly higher with respect to an error-free setting, while more
weight is given to the prior mean µ, according to the amplitude of the error
component. This is illustrated in Example 4.4.4.

Example 4.4.4 (Surveillance cameras – continued from Example 3.3.8).
Imagine a video recording is made by a surveillance camera during a
bank robbery. The recordings depict an individual appearing in n = 10
images. Measurements on the available recordings yield ȳ = 178(cm). It is
of interest to infer the mean height of that individual. The precision of the
measurement procedure (independent on the complexity of the scenario) is
known, and it is set to σ 2 = 0.1. Parameters µ and τ 2 are chosen following
the same line of argument illustrated in Example 3.3.6. In particular, there
is eyewitnesses evidence based on which the mean µ is fixed equal to
175. Values less than 170 and greater than 180 are considered extremely
unlikely, therefore the variance τ 2 is fixed equal to 2.67. Finally, repeated
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measurements are obtained in experiments under controlled conditions (i.e.
a reconstruction), which allows to choose values for the hyperparameters of
the Normal distribution of the error. These values are taken to be ξ = 1 and
δ2 = 1, respectively. Then,

µ(y) = 2.67(178 − 1) + 175
( 0.1+1

10

)
2.67 + 0.1+1

10

= 176.92cm.

Assuming a quadratic loss (since it may be accepted by a decision maker that
under- and overestimation of the individual’s height incur equal losses), this
is the optimal Bayesian estimate.

The posterior density is depicted in Figure 4.12 (solid line). The posterior
density obtained in the absence of a source of distortion is also shown.
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Figure 4.12 Posterior density for Example 4.4.4 obtained in presence (solid line),
and in absence (dashed line) of a source of distortion.

4.5 R CODE

A symbol ‘∗’, ‘+’, ‘,’ and so on at the end of a line indicates that the command
continuous to the following line. The absence of such a symbol indicates the end
of a command.
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Example 4.2.1

Data, prior parameters, loss values

n=64
y=0
alpha=1
beta=1
k0=2
k1=1

Posterior distribution and Bayes decision

alphap=alpha+y
betap=beta+n-y
plot(function(x) dbeta(x,alphap,betap),0,0.1,ylim=c(0,100),
xlab=expression(paste(theta)),ylab=expression(paste(pi)*
paste("(")*paste(theta)*paste('|') *paste(x) * paste(")")))
d=round(qbeta(k0/(k0+k1),alphap,betap),3)
print(paste('Bayes decision =',d))
lines(x=c(d,d),y=c(0,dbeta(d,alphap,betap)),lty=3)

Example 4.2.2

Data, prior parameters, loss values

n=64
y=0
nprev=40
p=1/nprev
alpha=round(p*(nprev-1))
beta=round((1-p)*(nprev-1))
k0=2
k1=1

Posterior distribution and Bayes decision

alphap=alpha+y
betap=beta+n-y
plot(function(x) dbeta(x,alphap,betap),0,0.1,ylim=c(0,100),
xlab=expression(paste(theta)),ylab=expression(paste(pi)*
paste("(")*paste(theta)*paste('|') *paste(x) * paste(")")))
d=round(qbeta(k0/(k0+k1),alphap,betap),3)
print(paste('Bayes decision =',d))
lines(x=c(d,d),y=c(0,dbeta(d,alphap,betap)),lty=3)

Example 4.2.4

Data, prior parameters and loss values

n=100
y=25
lambda=2.5
mu=0.05
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sigma2=0.0005
alpha=round(mu*((mu*(1-mu)/sigma2)-1),1)
beta=round((1-mu)*((mu*(1-mu)/sigma2)-1),1)
plot(function(x) dbeta(x,alpha,beta),0,0.3,
xlab=expression(paste(theta)),ylab=expression(paste(pi)*
paste("(") * paste(theta) * paste(")")),main='')
k0=2
k1=1

Approximated posterior distribution and Bayes decision

g=gamma(alpha+beta)/(gamma(alpha)*gamma(beta))
thetavalues=seq(0,1,0.001)
post=matrix(0,length(thetavalues))
for (i in 1:length(thetavalues)){
theta=thetavalues[i]
s=0
for (yb in 0:y){
s=s+choose(n,y-yb)*(theta^(y-yb))*((1-theta)^(n-y+yb))*
exp(-lambda)*(lambda^yb)/factorial(yb)
}
post[i]=g*theta^(alpha-1)*(1-theta)^(beta-1)*s
}
normpost=post/(sum(post*0.001))
plot(thetavalues,normpost,xlim=c(0,0.3),ylim=c(0,20),type='l',
xlab=expression(paste(theta)),ylab=expression(paste(pi)*
paste("(")*paste(theta) *paste('|') *paste(x) * paste(")")))

ord=k0/(k0+k1)
p=cumsum(normpost*0.001)
d=(thetavalues[sort(which(p<ord),decreasing=T)[1]]+
thetavalues[which(p>ord)[1]])/2
print(paste('Bayes decision =',d))

Example 4.2.5

Data, prior parameters

n=100
y=25
alpha=4.7
beta=89.3
a=3
b=2

Multiple-block M-H

n.iter=15000
burn.in=5000
acct=0
accl=0
tau2t=0.8
tau2l=1.8



180 Point Estimation

thetavalues=matrix(0,nrow=n.iter,ncol=1)
lambdavalues=matrix(0,nrow=n.iter,ncol=1)
thetacurr=0.5
lambdacurr=10
thetavalues[1]=thetacurr
lambdavalues[1]=lambdacurr

for (i in 2:n.iter){
psicurr=log(thetacurr/(1-thetacurr))
phicurr=log(lambdacurr)

psiprop=rnorm(1,mean=psicurr,sd=tau2t)
thetaprop=exp(psiprop)/(1+exp(psiprop))

s=0
for (yb in 0:y){
s=s+choose(n,y-yb)*(thetaprop^(y-yb))*((1-thetaprop)^(n-y+yb))*
(lambdacurr^yb)/factorial(yb)
}
pipsiprop=(exp(psiprop)/(1+exp(psiprop))^2)*(thetaprop^(alpha-
1))*(1-thetaprop)^(beta-1)*(s)

s=0
for (yb in 0:y){
s=s+choose(n,y-yb)*(thetacurr^(y-yb))*((1-thetacurr)^(n-y+yb))*
(lambdacurr^yb)/factorial(yb)
}

pipsicurr=(exp(psicurr)/(1+exp(psicurr))^2)*(thetacurr^(alpha-
1))*(1-thetacurr)^(beta-1)*(s)

d=pipsiprop/pipsicurr
u=runif(1)

if (u<d){
thetacurr=thetaprop
acct=acct+1
}
thetavalues[i]=thetacurr

phiprop=rnorm(1,mean=phicurr,sd=tau2l)
lambdaprop=exp(phiprop)

s=0
for (yb in 0:y){
s=s+choose(n,y-yb)*(thetacurr^(y-yb))*((1-thetacurr)^(n-y+yb))*
exp(-lambdaprop)*(lambdaprop^yb)/factorial(yb)
}
piphiprop=exp(phiprop)*lambdaprop^(a-1)*exp(-b*lambdaprop)*s

s=0
for (yb in 0:y){
s=s+choose(n,y-yb)*(thetacurr^(y-yb))*((1-thetacurr)^(n-y+yb))*
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exp(-lambdacurr)*(lambdacurr^yb)/factorial(yb)
}

piphicurr=exp(phicurr)*lambdacurr^(a-1)*exp(-b*lambdacurr)*s

d=piphiprop/piphicurr
u=runif(1)

if (u<d){
lambdacurr=lambdaprop
accl=accl+1
}

lambdavalues[i]=lambdacurr
}

print(paste('Acceptance rate theta - ',round(acct/n.iter,2)))
print(paste('Acceptance rate lambda - ',round(accl/n.iter,2)))

plot(thetavalues,type='l',xlab='Iterations',ylab='')
plot(lambdavalues,type='l',xlab='Iterations',ylab='')
acf(thetavalues[(burn.in+1):n.iter],type="correlation",
main='',ci=0)

acf(lambdavalues[(burn.in+1):n.iter],type="correlation",
main='',ci=0)

mean(thetavalues[(burn.in+1):n.iter])
mean(lambdavalues[(burn.in+1):n.iter])

l=n.iter-burn.in
ord=round(2*l/3,0)
d=round(sort(thetavalues[(burn.in+1):n.iter])[ord],4)
print(paste('Bayes decision = ',d))

Example 4.3.1

Data, prior parameters, loss values

n=50
y=2
alpha=1
beta=0
k0=1
k1=2

Sequential use of Bayes theorem and Bayes decision

alphap=alpha+y
betap=beta+n
alpha=alphap
beta=betap
n=35
y=1
alphap=alpha+y
betap=beta+n
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d=round(qgamma(k0/(k0+k1),alphap,betap),3)
print(paste('Bayes decision =',d))

Example 4.3.3

Data, prior parameters, loss values

n=6
sumy=26
mu=6.5
s=3
alpha=(mu^2)/(s^2)
beta=mu/(s^2)
plot(function(x) dgamma(x,shape=alpha,scale=1/beta),0,20,
xlab=expression(paste(lambda[s])),ylab=expression(paste(pi)*
paste("(")*paste(lambda[s]) * paste(")")))
lambdab=0.05
k0=1
k1=2

Posterior distribution and Bayes decision

lambdavalues=seq(0,10,0.01)
post=matrix(0,nrow=length(lambdavalues))
for (i in 1:length(lambdavalues)){
lambdas=lambdavalues[i]
post[i]=exp(-n*(lambdas+lambdab))*((lambdas+lambdab)^sumy)*
lambdas^(alpha-1)*exp(-beta*lambdas)
}
normpost=post/(sum(post*0.01))

plot(lambdavalues,normpost,xlab=expression(paste(lambda[s])),
ylab=expression(paste(pi)*paste("(") * paste(lambda[s])
*paste('|')*paste(y) * paste(")")),type='l')

ord=k0/(k0+k1)
p=cumsum(normpost*0.01)
d=(lambdavalues[sort(which(p<ord),decreasing=T)[1]]+
lambdavalues[which(p>ord)[1]])/2
print(paste('Bayes decision =',d))

Example 4.4.1

Data and prior parameters

x=c(0.6066,0.5778)
n=length(x)
xbar=mean(x)
s2_hs=0.0229^2
mu=1
tau2=0.3^2



R Code 183

Posterior parameters

mux=(mu*s2_hs/n+tau2*xbar)/(s2_hs/n+tau2)
taux2=(tau2*s2_hs/n)/(tau2+s2_hs/n)

Sequential use of Bayes’ theorem

x=c(0.4997,0.5197)
n=length(x)
xbar=mean(x)
s2_id=0.0463^2
mu=mux
tau2=taux2
mux=(mu*s2_id/n+tau2*xbar)/(s2_id/n+tau2)
taux2=(tau2*s2_id/n)/(tau2+s2_id/n)

plot(function(x) dnorm(x,mu,sqrt(tau2)), 0.2, 1,main = '',
xlab=expression(paste(theta)),ylab='Posterior distribution',
ylim=c(0,30))
plot(function(x) dnorm(x,mux,sqrt(taux2)), 0.2, 1,main = '',
xlab=expression(paste(theta)),ylab='Posterior distribution',
ylim=c(0,30),lty=2,add=TRUE)

Bayes decision

k0=1
k1=1
d=qnorm(k0/(k0+k1),mux,sqrt(taux2))
print(paste('Bayes decision =',round(d,4)))
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Credible Intervals

5.1 INTRODUCTION

Interval estimation represents another common approach to statistical inference.
Consider, for instance, a scientist who wishes to gain knowledge about a population
parameter of interest θ (e.g. the proportion of individuals in a given population
that have a given mt-DNA sequence, the proportion of red woollen fibres on a
car seat or the mean of the weight of a consignment of seized ecstasy pills).
All information that stems from prior beliefs and available data is contained in
the posterior distribution and can be summarized through appropriate summary
statistics (e.g. the posterior mean, median, quantile), as outlined in Chapter 4.
Another way to summarize the information contained in the posterior distribution
is to build a confidence set associated with which is a stated amount of probability,
that is a subset C of the parameter space � in which parameter θ is located
with that probability. For example, consider the weight of pills with illicit content
(e.g. ecstasy) seized on an individual. The range of uncertainty around the point
estimate can be assessed and visualized using confidence regions, commonly called
confidence intervals in one dimensional problems.

The meaning of confidence sets is sometime a cause of trouble and confuses
students (Albert 1992), lawyers (Kaye 1987a), and scientists (D’Agostini 2004a)
as well as forensic scientists (Evett and Weir 1998). From a Bayesian viewpoint,
once it is accepted that uncertainty about a parameter may be represented by a
probability distribution, i.e. the unknown parameter is being treated as a random
variable, then it is a straightforward matter to determine a subset such that the
probability that θ belongs to that region is equal to a given amount, a so-called
credible probability. For example, given a credible probability equal to 0.95, it is
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then possible to determine a subset C such that P (θ ∈ C ) = 0.95. The scientist
would be able to say, on grounds of logic, that his degree of belief that the parameter
is in fact in the realized subset is equal to 95%. Within the frequentist paradigm,
such an assertion is not valid since the parameter is assumed fixed. There is no
probability distribution associated to it. Formally, the frequentist confidence set is
random, and the realized set is one of the possible realized values of the random
set: the parameter being unknown but fixed, it will be inside the set with probability
either 0 or 1. In contrast, the Bayesian paradigm allows one to say that θ is inside
the specified set with some probability, not 0 or 1.

There is often confusion between credible probability and coverage probability .
Credible probability reflects the information contained in the posterior distribution
and allows the scientist to assert that the region contains the parameter with a
given probability. So, when the scientist asserts a credible probability equal to
0.95, this means that he is 95% certain that the interval or region contains the true
value of the parameter. Conversely, coverage probability reflects the uncertainty in
the sampling procedure and is a frequentist procedure. A coverage of 95% means
that, if it were possible to repeat the experiment in the same conditions, in a long
sequence of identical trials, 95% of the realized intervals or regions would contain
the parameter. A detailed comparison between frequentist and Bayesian methods
is, however, beyond the scope of this book and is not pursued further.

5.2 CREDIBLE INTERVALS AND LOWER BOUNDS

Consider the posterior distribution π (θ | x ) of the parameter θ . A subset C of �

is said to be a 100(1 − α)% credible set for θ if

1 − α = Pπ(θ |x ) (θ ∈ C ) =



∫
C π (θ | x ) dθ continuous case

∑
θ∈C π (θ | x ) discrete case.

If the set is not disjoint it is called a credible interval . For disjoint subsets or for
a vector parameter space the term region will be used. Thus C may be called
a credible interval or region of probability (1 − α). The construction of credible
intervals is straightforward in principle, as will be shown in Example 5.2.1, but it
should be noted that the credibility level α does not specify the extremes of the
interval exactly; there are many credible intervals of probability (1 − α). A simple
way to select the credible interval at credibility level α consists in fixing the lower
bound at the posterior quantile of order α/2, denoted πα/2, and the upper bound at
the posterior quantile of order 1 − α/2, denoted π1−α/2, such that

P
(
πα/2 ≤ θ ≤ π1−α/2

) = 1 − α.
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This method of selection uses as a criterion the equality of the tail-area probabilities.
The resultant interval is not necessarily symmetric about the point estimate as the
distribution may not be symmetric.

Suppose, for instance, it is of interest to obtain a 100(1 − α)% credible interval
for the mean θ of a Normally distributed random variable with known variance
σ 2, X ∼ N (θ , σ 2). A conjugate prior distribution for the unknown mean θ is the
Normal distribution, θ ∼ N (µ, τ 2), so that the posterior distribution π (θ | x ) is
Normal with parameters µ(x ) and τ 2(x ) as in (4.16) and (4.17). It follows that
under the posterior distribution

θ − µ(x )

τ (x )
∼ N (0, 1), (5.1)

and that

P

[
zα/2 ≤ θ − µ(x )

τ (x )
≤ z1−α/2

]
= 1 − α,

where zα/2 and z1−α/2 denote respectively the quantiles of order α/2 and 1 − α/2
of the standardized Normal distribution (i.e. a Normal distribution with zero mean
and unit variance, as in Equation (5.1)). Note that, as the distribution is symmetric,
z1−α/2 = −zα/2 holds. So, a 100(1 − α)% credible interval for θ is given by:[

µ(x ) − z1−α/2τ (x ), µ(x ) + z1−α/2τ (x )
]
. (5.2)

If both the mean θ and the variance σ 2 are unknown, and the noninformative prior

π (θ , σ 2) = 1

σ

is applied (a suggestion that very poor prior knowledge is available), then

θ − x̄

s/
√

n
∼ St(n − 1),

where s =
√

1
n−1

∑n
i=1 (xi − x̄)2, and St(n − 1) denotes the central Student t

distribution (see Appendix B). The 100(1 − α)% credible interval for µ is[
x̄ − t1−α/2,n−1s/

√
n , x̄ + t1−α/2,n−1s/

√
n
]

, (5.3)

t1−α/2,n−1 denotes the quantile of order 1 − α/2 of a central Student t distribu-
tion with (n − 1) degrees of freedom, and the interval corresponds to the same
confidence interval as in the frequentist approach.
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Example 5.2.1 (Alcohol concentration in blood – continued). Consider
again the scenario presented in Example 4.4.1. A sample of blood was
analyzed using two independent analytical techniques, each of which
produced two measurements. The alcohol concentration X (g/kg) in blood
was assumed to be Normally distributed with variance known equal to
0.02292, for the procedure HS and to 0.04632 for procedure ID. The prior
distribution of θ was assumed Normal with mean µ = 1 and variance
τ 2 = 0.32. The posterior distribution π (θ | x ) obtained was Normal with
parameters µ(x ) = 0.577 and τ 2(x ) = 0.00021. A 95% equi-tailed credible
interval for θ is obtained by substituting values in (5.2), where z1−α/2 = 1.96,
to give:[

0.577 − 1.96
√

0.00021, 0.577 + 1.96
√

0.00021
]

= [0.548, 0.605] .

Any interval, however, such that the probability that the parameter lies between
the lower and the upper bound is equal to 1 − α will result in a 100(1 − α)%
credible interval.

The interval thus is not uniquely defined. Which interval should be chosen?
Usually, the objective is to minimize the size (length) of the interval, that is to find
the set C that satisfies both conditions:

1)
∫

C π (θ | x ) dθ = 1 − α

2) Size C ≤ Size C ′

for any set C ′ satisfying
∫

C ′ π (θ | x )dθ ≥ 1 − α. The interval should occupy the
smallest possible volume in the parameter space. To find such an interval, one
should include those points with the largest posterior density, that is the interval
should have the property that the density for every point inside the interval is
greater than that for every point outside the interval. The shortest credible interval
for θ , for a given credibility level of α, is called a highest posterior density (HPD)
interval (or region), and is the subset Cα of � of the form:

Cα = {θ ∈ � : π (θ | x ) ≥ k (α)} where
∫

Cα

π (θ | x ) dθ = 1 − α.

The HPD interval consists of the values of the parameter for which the posterior
density is highest.

If the posterior density is unimodal and symmetric, the HPD interval will also be
symmetric: the HPD interval can simply be found by choosing an equal distance on
either side of the mode. The credible interval for a Normal variable, see Example
5.2.1, is symmetric around the mean, and is, in fact, an HPD interval.
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Credible and HPD intervals do not necessarily cover the same volume of the
parameter space. The shape of the HPD interval is determined by the shape of the
posterior distribution. So, if the posterior is asymmetric, the HPD region will not be
symmetric about a Bayes estimator (e.g. the posterior mean). In this case, assuming
unimodality for the posterior density, a 100(1 − α)% HPD interval can be easily
calculated numerically. One needs to write a routine that, in correspondence with
several values of k :

1. Finds the solutions a(k ) and b(k ) to the equation π (θ | x ) = k (k < max
π (θ | x ));

2. Computes ∫ b(k )

a(k )
π (θ | x ) dθ;

3. Finds the value of k , dependent on α but with the dependency suppressed in
the notation for ease of reading, such that∫ b(k )

a(k )
π (θ | x ) dθ = 1 − α.

There are several ways to write such a routine. A simple way is to start from the
posterior mode θ∗ and take k equal to {π (θ∗ | x )− ∈}, for some small ∈, as the
initial value. An HPD region for a skewed distribution is depicted in Figure 5.1;
note that it is not symmetric about the mode.

q

p
(q

|x
)

k

a(k) b(k)

1−a

Figure 5.1 A 100(1 − α)% HPD interval for θ where k is chosen such that
∫ b(k )

a(k ) π (θ | x )
dθ = 1 − α.



190 Credible Intervals

Example 5.2.2 (Gunshot residue particles – continued). Consider again
Example 4.3.1 involving the search for gunshot residue particles (GSR). In
this case, the scientist intends to estimate probabilities for the number y of
GSR particles (where y = 0, 1, 2, . . .) on the hands of an individual unrelated
to a shooting incident, based on data obtained from a new experiment. The
GSR count y is assumed to follow a Poisson distribution with parameter λ.
Consider a gamma prior distribution for λ, Ga(3, 50), based on a scientist’s
knowledge (previous experiments). Prior beliefs about the parameter λ are
updated by combining the prior with the results of a new experiment: 1
particle is found after analysing m = 35 individuals. The resulting gamma
posterior distribution for λ is Ga(4, 85). The 95% HPD interval for the
parameter θ is obtained by implementing the routine outlined above. The
mode of a gamma distribution Ga(α, β) is (α − 1)/β, so the routine is
initialized at θ∗ = (4 − 1)/85 and returns the interval [0.0083, 0.0939].
Note that when using Bayesian inference the experimental design does not
affect the inference. It could have been that 35 individuals were studied and
1 particle was found. Alternatively, individuals could have been studied until
1 particle was found and this happened with the 35-th individual. In each
situation, the inference is the same (see Example 3.3.4).

It can happen that an HPD credible interval looks unusual. Consider for example
a binomial random variable, X ∼ Bin(n , θ ), and its conjugate prior, θ ∼ Be(α, β).
The posterior distribution π (θ | x ) is the beta distribution Be(α + y , β + n − y).
Since the beta distribution is not, in general, symmetric, the HPD region is one of
four types, as shown in Figure 5.2, for a Be(α, β) distribution. The posterior HPD
interval depends on the values of α, β, y , n .

While the HPD region for a beta distributed parameter θ might consist of dis-
joint intervals, such a situation might also occur in the presence of a multimodal
posterior (e.g. a mixture of Normal distributions), in which case the computation
of an HPD can be much more complicated. In such cases, the scientist might be
tempted to abandon the HPD criterion and to look for more ‘usual’ connected
intervals, that is common intervals with equal tails (α/2). Berger (1988) discour-
ages such a choice, mentioning that disconnected intervals often occur when there
is discrepancy between the prior and the sampling distribution and that this phe-
nomenon should question the choice of the prior or of the sampling distribution.
In the presence of multimodal shapes where the computation of the HPD interval
can be much more complicated, Press (2003) suggests that the highest mode be
found first and that one then works down to lower modes. Methods for finding
HPD regions for any given density are discussed in Hyndman (1996).
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(a)

q

(b)

q

(c)

q

(d)

q

Figure 5.2 Beta HPD intervals, where (a) α ≤ 1, β > 1, (b) α > 1, β ≤ 1, (c) α > 1, β > 1,
and region (d) α ≤ 1, β ≤ 1.

Example 5.2.3 (Glass fragments – continued). Consider the same scenario
illustrated earlier in Example 4.2.2, where n = 64 glass objects were sur-
veyed with no positive outcomes (y = 0). The prior distribution was taken to
be beta with parameters α = 1 and β = 38, updated to α = 1 and β = 102
for the posterior distribution. An equi-tailed 95% credible interval for θ is
equal to [0.00025, 0.03552]. The HPD region differs slightly and can be
obtained in a straightforward manner, since the posterior distribution is
asymmetric and the HPD region will be of the type illustrated in Figure 5.2(a).
It will be sufficient to compute the posterior quantile of order 0.95, the HPD
region will therefore be [0, 0.02894]. This region is much more intuitively
sensible than the two-tailed credible interval.

Another context in which the estimate of a bound rather an interval is appropriate
is that of the determination of a quantity of an illegal substance. This is of interest,
for example, when the quantity is a factor in sentencing, e.g. sentencing guidelines
of the USA in drug-related cases.

It is important when sentencing individuals engaged in illegal drug dealing
to obtain valid estimates for the total quantity of drugs that have been handled,
in particular for determining the overall length of the sentence to be imposed.
The problem of estimation in such a context may be considered as a problem
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of estimating the distribution of a random variable Q , the total quantity of drugs
handled. Different methods for estimating the distribution of Q are given in Aitken
et al. (1997). In this section, the predictive approach will be considered. It involves
a predictive distribution for the quantity of handled drugs based on independent
prior distributions for both the mean and the variance.

Consider a setting in which a consignment of N = m + n packages is seized.
A number (m) of the units are examined and it is found that z units contain drugs
and that (m − z ) do not. The contents of the z units which contain drugs are
weighed and their weights (x1, . . . , xz ) recorded. The remainder (n = N − m) are
not examined.

The probability density function f (q) of Q has been derived, for small and large
consignments respectively, in Aitken and Lucy (2002). For the purpose of illustra-
tion, consider a small consignment and let Y denote the unknown number of units
not examined which contain drugs. Let X = (X1, . . . , Xz ) and W = (W1, . . . , Wy ) be
the weights of the contents of the units examined and not examined, respectively,
which contain drugs. It is assumed that these weights are normally distributed. The
total weight Q is then given by

Q = z X̄ + Y W̄ ,

where X̄ = ∑z
i=1 Xi /z , and W̄ = ∑y

j=1 Wj /y .
Let Q be the total quantity of drugs in the consignment. The number of units

examined equals m of which z (≤ m) contain drugs. The mean and standard devia-
tion of the quantity of drugs in the z units are denoted by x̄ and s , respectively. The
number of units not examined equals n , of which y (unknown) contain drugs and
for which the mean quantity of drugs in these y units is w̄ . Thus, Q = z x̄ + Y W̄
in which both Y and W̄ are random variables.

A Bayesian approach to the lower bound for the quantity Q of drugs is derived
as follows. First, condition on Y = y . Then

P (Q < q | y , z , x̄ , s , m , n) =
P (z x̄ + yw̄ < q | y , z , x̄ , s , m , n)

= P (W̄ <
q − z x̄

y
| y , z , x̄ , s , m , n).

Now, given Y = y ,
W̄ − x̄

s
√

1
z + 1

y

∼ St(z − 1).

For given values of m , z , n , y , x̄ and s , lower bounds for w̄ and hence q , can be
determined from the formula

w̄ = x̄ + stα,z−1

√
1

z
+ 1

y
. (5.4)
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Let T = (W̄ − x̄ )/{s√(1/z ) + (1/y)}. Then,

P (W̄ <
q − z x̄

y
| y , z , x̄ , s , m , n) =

P (T <
q − (z + y)x̄

sy
√

1
z + 1

y

| y , z , x̄ , s , m , n)

where T ∼ St(z − 1). Let

tqy = q − (z + y)x̄

sy
√

1
z + 1

y

.

Now, combine this with the result for the conditional distribution for Q , given
Y = y , and the marginal probability function for Y , to obtain

P (Q < q | z , x̄ , s , m , n) =
n∑

y=0

Pr(T <
q − (z + y)x̄

sy
√

1
z + 1

y

| y , z , x̄ , s , m , n)Pr(Y = y)

=
n∑

y=0

Pr(T < tqy | y , z , x̄ , s , m , n)Pr(Y = y). (5.5)

The probability density function f (q) of Q can be derived by differentiation of
the distribution function. Let ft ,z−1(.) denote the probability density function of the
t distribution with (z − 1) degrees of freedom. Then,

f (q) =
n∑

y=0

ft ,z−1




q − (z + y)x̄

sy
√

1
z + 1

y



{

sy

√
1

z
+ 1

y

}−1

Pr(Y = y).

Example 5.2.4 (Estimation of drug quantity). Consider an example from
Tzidony and Ravreboy (1992) in which a seized drug exhibit contained 26 (N )
street doses. A sample of six (m = 6) units was taken and each was analyzed
and weighed. Twenty (n = 20) units were not examined. It was found that all
six of the units examined contained drugs. The average net weight x̄ of the
powder in the six units was 0.0425 g with a standard deviation s of 0.0073 g.
A 95% (frequentist) confidence interval for the total quantity Q in the 26 doses
is 1.105 ± 0.175 g (Tzidony and Ravreboy 1992). This interval incorporates
a finite population correction factor

√
(N − m)/N to allow for the relatively
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large sample size (m = 6) compared with the consignment size (N = 26).
Results from a Bayesian analysis using (5.4) are given in Table 5.1.

Table 5.1 Estimates of quantities q g of drugs from (5.4), in a consignment of
m + n units, according to various possible burdens of proof, expressed as
percentages P = 100 × P(Q > q | m, z , n , x̄ , s) in 26 packages when 6 packages are
examined (m = 6, n = 20) and z = 6, 5, or 4 are found to contain drugs. The mean
(x̄ ) and standard deviation (s) of the quantities found in the packages examined
which contain drugs are 0.0425 g and 0.0073 g. The parameters for the beta prior
are α = β = 1. Numbers in brackets are the corresponding frequentist lower bounds
using the finite population correction factor, n/(m + n). (Aitken CGG and Lucy D
2002 Estimation of the quantity of a drug consignment from measurements on a
sample. Journal of the Forensic Sciences 47, 968–975.)

Percentage Number of units examined Possible burden
P which contain drugs of proof

6 5 4 (Illustrative)

99 0.617 (0.876) 0.435 (0.683) 0.290 (0.519)
97.5 0.689 (0.930) 0.501 (0.744) 0.345 (0.575)
95 0.750 (0.968) 0.559 (0.785) 0.397 (0.613) Beyond reasonable doubt
90 0.818 (1.005) 0.628 (0.823) 0.461 (0.647)
70 0.944 (1.067) 0.770 (0.885) 0.603 (0.704) Clear and convincing
60 0.982 (1.087) 0.819 (0.904) 0.655 (0.721)
50 1.015 (1.105) 0.862 (0.921) 0.704 (0.737) Balance of probabilities

5.3 DECISION-THEORETIC EVALUATION OF CREDIBLE
INTERVALS

The use of decision theory in interval estimation presents some drawbacks that
makes this approach less appealing than it appears, for example, in point esti-
mation, though interval estimators are used extensively in decisions. One reason
explaining the widespread preference for Bayesian credible intervals (without a
decision-theoretic approach), is the difficulty in the evaluation of an appropriate
loss function in these contexts.

What characteristics should a loss function have so as to be considered appro-
priate for the definition of a credible interval? In the previous section it has been
outlined that an optimal interval should meet two conditions: it should have a high
credible probability and be of the shortest size. If both of these requirements are
met by a loss function, then the optimal interval estimator can be found using a
decision approach.
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Initially, start by specifying the elements of the decision process in interval
estimation. The decision space D will consist of subsets of the parameter space
�. Possible decisions will be called C (in conformity with the notation introduced
earlier in this chapter). For any given loss function L(C , θ ) and prior distribution
π (θ ), the Bayes estimator C is a solution of the minimization problem

min L̄(C , π (θ | x )) = min
∫

�

L(C , θ )π (θ | x ) dθ.

The loss function L(C , θ ) must necessarily take account of two elements: a mea-
sure of whether the realized subset includes the value of θ (correctness of coverage),
and a measure of its size. As a measure of the correctness, an indicator function
IC (θ ) is considered, which takes value 1 if the subset contains the parameter, and
0 otherwise:

IC (θ ) =
{

1 θ ∈ C
0 θ /∈ C .

If the subset is an interval, the length can be taken as a measure of its size:
Length(C ) = length of C 1. The loss function should reflect the fact that an optimal
credible interval should include the parameter θ and should have a short size, that is
it should have E [IC (θ )] high and length Length(C ) small. A loss function satisfying
these requirements is the linear loss function:

L(C , θ ) = bLength(C ) − IC (θ ), (5.6)

where b is a positive constant that reflects the relative weight that is given to
the shortness of the interval. The smaller b is, the less the size of the interval
matters (the more the correctness matters). In fact, if b = 0 and only correctness
matters, the best decision will be the real line, C = (−∞, +∞), which has credible
probability equal to 1. Vice versa, the greater b is, the more the size of the interval
matters. In the next example, it will be shown that for values of b greater than a
given threshold, the Bayes decision corresponds to a point estimate.

Example 5.3.1 (Normal interval estimator). Consider a random sample from
a Normal distribution, X ∼ N (θ , σ 2), and assume σ 2 known. Let π (θ ) =
N(µ, τ 2), then

π (θ | x ) = N (µ(x ), τ 2(x )).

1In general, the credible set is not necessarily an interval, so a measure of the size of any set C is
the volume, denoted Vol (C ).
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The posterior distribution being symmetric around the posterior
mean µ(x ), define an interval estimator C symmetric around the mean,
C = [µ(x ) − cτ (x ), µ(x ) + cτ (x )] , c > 0. This interval has length 2cτ (x ).
The linear loss function will be:

L(C , θ ) = b2cτ (x ) − IC (θ ).

The posterior expected loss will be:

L̄ (C , π (θ | x )) =
∫

�

(b2cτ (x ) − IC (θ )) π (θ | x ) dθ

= b2cτ (x )
∫

�

π (θ | x ) dθ −
∫

�

IC (θ )π (θ | x ) dθ

= b2cτ (x ) − Pπ(θ |x ) [θ ∈ C ] .

The last term Pπ(θ |x ) [θ ∈ C ] can be expressed as

P [µ(x ) − cτ (x ) ≤ θ ≤ µ(x ) + cτ (x )] = P

[
−c ≤ θ − µ(x )

τ (x )
≤ c

]

= 1 − 2P

[
θ − µ(x )

τ (x )
≤ c

]
.

The best interval has a length that minimizes the posterior expected loss. To
find the minimun, the first derivative of the posterior expected loss is calcu-
lated and then set equal to zero:

∂

∂c
L̄ (C , π (θ | x )) = 2bτ (x ) − 2√

2π
exp

(
−c2

2

)
= 0.

The solution depends on the value of b. In particular,

• if bτ (x ) > 1√
2π

, the first derivative is positive for any c ≥ 0, so the expected
posterior loss is minimized with an interval of length 0 (c = 0). The best
interval is the point estimator C = [µ(x ), µ(x )].

• if bτ (x ) < 1√
2π

, the expected posterior loss is minimized at bτ (x ) =
1√
2π

exp
(
− c2

2

)
, that is for c =

√
−2 log

(
bτ (x )

√
2π
)

. If b is taken equal

to 1

exp
(

1
2 z 2

α/2

)
τ (x )

√
2π

, then c = zα/2 and the interval that minimizes the

expected loss is the usual 100(1 − α)% credible interval.
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A drawback of the linear loss function, Equation (5.6), is the difficulty in choos-
ing b. It has been observed in the previous example that a choice that might seem
reasonable could lead to results that are not intuitive. In fact, for bτ (x ) > 1/

√
2π ,

the procedure proposes a single point estimate (or an interval of length zero),
indicating certainty. An increasing value of the variance τ 2(x ), indicating more
uncertainty, should lead to increased uncertainty in the set estimator. However, to
the contrary, the optimal interval collapses to a single point. Student t intervals, as
in (5.3), lead to another example of disconcerting results if a linear loss function is
adopted. Casella et al. (1993b) showed a peculiar behaviour of the resulting Bayes
set in the sense that its size decreases as uncertainty increases.

This problem is connected to the asymmetry of the linear loss function. The
two criteria, size and coverage, are unequally penalized since the indicator function
varies between 0 and 1, while the volume can increase to infinity, and this favours
small credible sets. It is possible to derive Bayes sets that are trivial since they
may be either empty (the penalty for large sizes increases too rapidly), or equal
to the entire parameter space (the penalty increases too slowly). For this reason,
this function does not provide a coherent basis for decision-based set estimation.
A class of loss functions that avoids this problem and that allows the experimenter
to balance correctly size and coverage has been proposed by Casella et al. (1993b)
and has the form

L(C , θ ) = S [Vol (C )] − IC (θ ),

where S (·) is a size function. There are several classes of size functions. The class

S [Vol (C )] = Vol (C )

Vol (C ) + b
, b > 0, (5.7)

leads to the rational loss

L(C , θ ) = Vol (C )

Vol (C ) + b
− IC (θ ). (5.8)

Note that both terms are bounded by one: volume and coverage are weighted
equally, and this is necessary to avoid counterintuitive Bayes sets.

Conditions for the existence of nontrivial Bayes sets are given in Casella et al.
(1993a). For example, it is shown that for a Normal characteristic, and the size
function (5.7), there exists a smallest non-empty Bayes set for any b > 0, while
there exists no largest bounded set (the maximum value is infinity). It is observed,
however, that the behaviour of the Bayes sets varies with the density function and
the size function, and that there is not a loss that provides a nontrivial Bayes set
for any kind of problem. The behaviour of the loss function changes depending on
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whether or not the parameter space is bounded. For a bounded parameter space,
the loss function

L(C , θ ) = Vol (C )

Vol (�)
− IC (θ )

provides, for any distribution f (x | θ ) and for any prior distribution π (θ ), a non-
trivial Bayes set. Conversely, in the general case of unbounded parameter spaces,
some loss functions provide results that are not coherent.

Size and coverage are combined in a single-valued loss function, instead of
being treated separately, and this represents an advantage of the decision-theoretic
approach that appears to be a powerful tool for set estimation allowing complemen-
tary criteria to be balanced. Even allowing for this, the difficulties in the choice
of the loss function make the decision-theoretic approach less appealing as an
approach for the construction of a credible interval. It must be emphasized that the
decision framework is also not without difficulty in point estimation. Different loss
functions provide different Bayes decisions from the same posterior distribution.
An inconvenience in set estimation is that the choice of the loss function is less
intuitive and needs more careful thinking: size and coverage must be appropriately
balanced, not least to avoid trivial solutions. For these reasons, a decision-theoretic
approach to interval estimation is not considered in further detail here.

5.4 R CODE

A symbol ‘∗’, ‘+’, ‘,’ and so on at the end of a line indicates that the command
continuous to the following line. The absence of such a symbol indicates the end
of a command.

Example 5.2.2

Data, prior and posterior parameters

n=35
y=1
alpha=3
beta=50
alphap=alpha+y
betap=beta+n

HPD interval

mode=round((alphap-1)/betap,3)
m=round(qgamma(0.99,alphap,betap),3)
x=seq(mode,m,0.00001)
fx=dgamma(x,alphap,betap)
incr=0.0001
a=mode-incr
q=dgamma(a,alphap,betap)
ind=which(fx<=q)[1]
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b=x[ind]
p=pgamma(b,alphap,betap)-pgamma(a,alphap,betap)

while (p<=0.95){
a=a-incr
q=dgamma(a,alphap,betap)
ind=which(fx<q)[1]
b=x[ind]
p=pgamma(b,alphap,betap)-pgamma(a,alphap,betap)
}
print(paste('HPD interval =[ ',round(a,4),paste(','),round(b,4),
paste(']')))

Example 5.2.3

Data, prior and posterior parameters

n=64
y=0
alpha=1
beta=38
alphap=alpha+y
betap=beta+n-y

Equi-tailed credible interval and HPD interval

z=0.05
l=round(qbeta(z/2,alphap,betap),5)
u=round(qbeta(1-z/2,alphap,betap),5)
print(paste('Equi-tailed credible interval =[ ',l,paste(','),
u,paste(']')))

u=round(qbeta(1-z,alphap,betap),5)
print(paste('HPD interval =[ ',0,paste(','),u,paste(']')))
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Hypothesis Testing

6.1 INTRODUCTION

The concept of testing hypotheses is fundamental in statistics. It was initially devel-
oped by two statisticians, J. Neyman (1894–1981) and E.S. Pearson (1895–1980).
A null hypothesis or working hypothesis is established and data are collected to
test this hypothesis with the use of a statistic, known as a test statistic. Extreme
values of the test statistic, with respect to the null hypothesis, lead the experi-
menter to reject the null hypothesis in favour of an alternative hypothesis. A value
of the test statistic is deemed extreme if the probability of obtaining the observed
value of the statistic or a value further removed from the value expected if the null
hypothesis were true is small. Conventionally, a small value for this probability
is taken to be 0.05 or 0.01. There are two errors associated with this approach,
known as type 1 and type 2 errors. A type 1 error is to reject the null hypothesis
when the null hypothesis is true. The probability of a type 1 error is known as the
significance level of a test. A type 2 error is to fail to reject the null hypothesis
when the alternative hypothesis is true (and the null hypothesis is false). A related
probability is the power of a test. This is the probability that the null hypothesis
is rejected correctly, i.e. when the alternative is true. Much of the theory associ-
ated with hypothesis testing within the Neyman–Pearson paradigm is concerned
with developing tests of high power and low significance level; i.e. tests with a
high probability of correctly rejecting a null hypothesis and a low probability of
incorrectly rejecting a null hypothesis.

These ideas sit uncomfortably with the Bayesian paradigm with which this text
is concerned. There is an asymmetry associated with the hypotheses. Data have
(or evidence has) to be collected against the null hypothesis before it is rejected.

Data Analysis in Forensic Science: A Bayesian Decision Perspective Franco Taroni, Silvia Bozza, Alex Biedermann,
Paolo Garbolino and Colin Aitken
 2010 John Wiley & Sons, Ltd
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Only when there are sufficient data is the null hypothesis rejected in favour of
the alternative. This rejection may happen even if the data are more likely under
the null hypothesis than the alternative hypothesis. Hypothesis testing assumes the
hypotheses are fixed and it is the data which vary. Thus, one looks at the probability
of the data if the null (or alternative) hypothesis is true. For inferential purposes it
is of more interest to consider the probability of the null or alternative hypotheses
given the data which have been observed. Finally, no consideration is given in the
Neyman–Pearson paradigm to the consequences of a decision to reject or not a
null hypothesis.

The following parts in this chapter explain the inferential procedure of
the Bayesian paradigm and associated consequences (or losses) when testing
hypotheses.

Data are often collected in order to answer questions of forensic interest such as

(a) ‘Is the mutation rate for the chromosome X STR marker DXS7132 greater than
0.0038?’

(b) ‘Is the proportion of illicit pills in a large seizure of pills greater than a fixed
threshold, say 0.6?’

Answers to such questions can be obtained through a methodology that takes
the implicit null value as the status quo or null hypothesis and tests it against the
alternative implied by the question with data collected for the purpose. For the
above questions, the null hypotheses would be as follows.

(a) The mutation rate for the chromosome X STR marker DXS7132 is 0.0038.
(b) The proportion of illicit pills in a large seizure of pills is 0.6.

The alternative hypotheses would then be as follows.

(a) The mutation rate for the chromosome X STR marker DXS7132 is greater than
0.0038.

(b) The proportion of illicit pills in a large seizure of pills is greater than 0.6.

The statistical testing of a hypothesis involves a decision about the plausibility
of a hypothesis based on some data.

In forensic science as well as in other disciplines such as law, medicine or
physics, many scientists are attracted by, and reason according to, the falsificationist
scheme1. Therein, the aim is to reason with the use of data about the acceptability of
a theory or a hypothesis, either by confirming it or by disconfirming it. This scheme
of reasoning implies that a hypothesis should yield verifiable predictions, which
can be checked to be true or false. If the empirical consequence of a hypothesis is
shown in an experiment to be false, then the hypothesis is refuted2. Thus it is very

1The origin of falsificationism is commonly ascribed to Cournot (1843) and Popper (1959).
2As noted by D’Agostini (2004b), falsificationism is nothing but an extension of the proof by

contradiction to the experimental method. He noted that ‘[t]he proof by contradiction of standard
dialectics and mathematics consists in assuming true a hypothesis and in looking for (at least) one
of its logical consequences that is manifestly false. If a false consequence exists, then the hypothesis
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tempting for a scientist to test a theory by setting up a hypothesis that claims the
opposite of what he actually believes, that is a hypothesis he believes a priori to be
false, and then state – through appropriate experimental data – that this hypothesis,
known as the null hypothesis , is false.

The statistical formalization of this procedure is due to a statistician, R.A. Fisher
(1890–1962), who proposed a test of significance, the implementation of which
allows for the rejection of a null hypothesis if an appropriate test statistic exceeds
some particular value, based on a pre-assigned significance level. Neyman and
Pearson (1928a,b) subsequently extended this approach with the introduction of
the notions of alternative hypotheses and of type I and type II errors that could be
made in testing statistical hypotheses. The underlying ideas stipulate that, after the
determination of an appropriate test statistic, a practitioner computes the so-called
p-value (or observed significance) which represents the probability, assuming that
the null hypothesis is true, that one would obtain a value of the test statistic that
is as extreme as, or more extreme than, that obtained from the data. Following
this classical or frequentist line of reasoning (known as ‘classical’ because of its
widespread use over many years of the twentieth century and not because of any
longevity greater than that, known as ‘frequentist’ because the inferences rely on
the relative frequencies of events), the null hypothesis can thus be rejected if the p-
value is less than some pre-specified significance level (type I error rate). Otherwise,
whenever the p-value is greater than the significance level, no conclusion can be
drawn until additional evidence becomes available. Note that the significance level
is arbitrary. In practice, a 5% level is commonly used as the threshold for the
assessment of the significance of departures from a null hypothesis. This p-value is
sometimes interpreted (wrongly) as the probability that the null hypothesis is true.

The discussion of p-values is not pursued in further detail here because, from the
principles advocated throughout this book, there are several difficulties associated
with their use. A noteworthy difficulty is the well-known problem of the fallacy
of the ‘transposed conditional’ (Lindley 2006), which arises when the use of a
p-value introduces confusion about (a) a probability about some aspect of the data,
assuming the null hypothesis to be true, and (b) the probability the hypothesis
is true, assuming some aspect of the data. The point is that probability state-
ments about hypotheses lie within the province of the Bayesian approach. In the
frequentist concept, hypotheses do not have probabilities associated with them3

(Lindley 2000b).

under test is considered false and its opposite true’ (D’Agostini 2004b, p. 5). This means that, as we
should expect, once a hypothesis is refuted, no further evidence can ever confirm it, unless the refuting
evidence or some portion of the background assumptions (knowledge) is revoked (Howson and Urbach
1996, p. 119). Application in practice of the falsificationist reasoning scheme faces several problems
that conflict with a probabilistic view of the world. Falsificationism can be seen as a particular case of
Bayes’ theorem (see Section 2.3.1).

3The correct interpretation of the p-value is much more tortuous. Probabilities in the frequentist
approach must be based on repetition under identical conditions. So, if one were to repeat an analysis
many times, using data each time, and if the null hypothesis were actually true, then on only 5% of
those occasions one would (falsely) reject the null hypothesis. This definition refers to repetition of the
experiment. As mentioned by O’Hagan (2004, p. 42), ‘to interpret a p-value as the probability that the
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The main emphasis will be placed here on the Bayesian approach to hypothe-
sis testing as developed by Jeffreys (1961). This approach is soundly based and
intuitively more satisfactory than the Fisherian and Neyman–Pearson methods. It
concentrates on the application of Bayes’ theorem to answer the relevant scientific
question through the computation of the posterior probability of a hypothesis of
interest. It is often argued that there should be no testing since the posterior dis-
tribution contains all the knowledge of interest and is thus sufficient for making
conclusions about any question under investigation. Notice however that such a
line of reasoning refers to a partial Bayesian approach. A full Bayesian point of
view deals with decision making for which purpose loss (or utility) functions are
introduced. In the forthcoming sections, both of these approaches will be developed
and illustrated through examples.

One of the appealing features of Bayesian methods is that they allow one to
overcome the difficulties that arise with classical (frequentist) hypothesis testing. A
difficulty already noted is that users may tend to view the p-value as the probability
of the null hypothesis. That is, when p = 0.05, it is tempting to state that there is
only a 5% probability that the null hypothesis is true. The p-value cannot, however,
measure the probability of the truth of the null hypothesis because its calculation
assumes the null hypothesis is true. As mentioned by Goodman (2005, p. 284)
one ‘can’t have a measure assuming something to be true while simultaneously
measuring how likely the same thing is to be false’4. This is an important difference
with respect to Bayesian analysis, as distinct from frequentist analysis, in that
Bayesian analysis allows the definition of a (prior) probability (i.e., a probability
that is evaluated, usually subjectively, prior to observation of the data) for each
hypothesis (null and alternative), that is an expression of the personal degree of
uncertainty about a hypothesis’ truthfulness, on the basis of which a posterior
distribution (i.e., a probability that is evaluated posterior to observation of the
data) for the hypotheses can be inferred. Also, Bayesian testing procedures do not
require a pre-assigned significance level. However, it is emphasized that.

Some Bayesians actually think that there should be no testing, or, at least,
that there should be no point null hypothesis testing [. . .] But pragmatic
considerations are such that the Bayesian toolbox must also include testing
devices, if only because users of Statistics have been accustomed to testing
as a formulation of their problems [. . .] (Robert 2001, pp. 223–224).

A further concept considered in the next section is the notion of ‘evidence’ in
the context of statistical evidence. According to Goodman and Royall (1988, pp.
1568–1574), evidence may be defined as a property of data that makes one alter

null hypothesis is true is not only wrong but also dangerously wrong. The danger arises because this
interpretation ignores how plausible the hypothesis might have been in the first place’. Examples are
given in O’Hagan (2004).

4For a survey of the pitfalls of classical hypothesis testing in forensic science and in litigation cases,
and for some recommendations for improvements, see Kaye (1986a,b).
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one’s beliefs about how the world is working. Another way to say this is that
evidence is the basis upon which inferences are derived. The value of evidence is
measured by a ratio of likelihoods, that is the likelihood of the evidence (data) if
the null hypothesis is true and the likelihood of the evidence (data) if the alternative
hypothesis is true. The value of experimental evidence can therefore be measured
by how more probable that evidence makes the null hypothesis relative to the
alternative hypothesis than it was before the evidence was considered, conditioned
on prior information (Good 1950). Within such a setting, one hypothesis will be
preferred to another if the value of the evidence favours it.

In what follows, different approaches to testing hypotheses will be addressed,
including, notably, estimation of the posterior distribution of the hypothesis of
interest and the decision-theoretic approach in which utilities associated with the
hypotheses are considered. A more general discussion of complications with fre-
quentist methods is not within the main scope of this book, but the interested reader
is referred to Press (2003), Carlin and Louis (1998) and Leonard and Hsu (1999)
for technical overviews, to Goodman and Royall (1988), Goodman (1999), Marden
(2000) and Winkler (2001) for general (not technical) treatments and to Howson
and Urbach (1996) for a philosophical and historical discourse.

6.2 BAYESIAN HYPOTHESIS TESTING

6.2.1 Posterior odds and Bayes factors

Consider an unknown quantity X , such as the proportion of ecstasy pills in a seizure,
and suppose f (x | θ ) is a suitable probability model for X , where the unknown
parameter θ belongs to the parameter set �. Suppose also that the parameter set
is partitioned into two non-overlapping sets �0 and �1 such that � = �0 ∪ �1.
A question that may be of interest is whether the true but unknown value of the
parameter θ belongs to �0, or to �1, that is to test the hypothesis

H0 : θ ∈ �0,

usually called the null hypothesis , against the hypothesis

H1 : θ ∈ �1,

usually called the alternative hypothesis . A hypothesis is called simple if there is
only one possible value for the unknown parameter, say �0 = {θ0}; if a hypothe-
sis is not simple it is called composite. Let π0 = P (θ ∈ �0) and π1 = P (θ ∈ �1)
denote one’s prior probabilities for the truth of the null hypothesis and the alterna-
tive hypothesis, respectively. Suppose a random sample x = (x1, . . . , xn ) is avail-
able. Observational data will rarely provide conclusive evidence about the questions
of interest, but they do allow prior beliefs about the null and the alternative
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hypothesis to be updated and enhanced. Stated otherwise, the acceptance of a
null hypothesis by a scientist does not mean it is true, but that, given the available
information, it is more probable than the alternative.

First, consider a basic case of the test of a simple null hypothesis H0 : θ = θ0

against a simple alternative hypothesis H1 : θ = θ1. The parameter sets in this case
are �0 = {θ0} and �1 = {θ1}. Denote the prior probabilities by π0 = P (θ = θ0)
and π1 = P (θ = θ1). If π0 + π1 = 1, the ratio π0/π1 of the prior probabilities of
the null and alternative hypotheses is called the prior odds5 of H0 to H1. The odds
indicate whether the null hypothesis is more or less likely than the alternative (prior
odds being larger or smaller than 1), or whether the hypotheses are almost equally
likely (prior odds close to 1). The posterior probability of the null hypothesis in the
light of the data and prior probabilities is denoted α0 and can be easily computed
with an application of Bayes’ theorem:

α0 = P (θ = θ0 | x ) = f (x | θ0)π0

f (x | θ0)π0 + f (x | θ1)π1
. (6.1)

The posterior probability α1 of the alternative hypothesis is computed
analogously by

α1 = P (θ = θ1 | x ) = f (x | θ1)π1

f (x | θ0)π0 + f (x | θ1)π1
. (6.2)

The ratio of the posterior probabilities α0/α1 is called the posterior odds of H0 to
H1, and is equal to the product of the likelihood ratio and the prior odds in favour
of H0, that is

α0

α1
= f (x | θ0)

f (x | θ1)

π0

π1
. (6.3)

These elements allow one to test a null hypothesis, without fixing an arbitrary level
of significance. Following Jeffreys’ hypothesis testing criterion, the null hypothesis
is accepted (rejected) if the posterior odds are greater (lower) than unity. In other
words, the null hypothesis are rejected or accepted on the basis of its posterior
probability being greater or smaller than that of the alternative hypothesis. Notice
that the acceptance (or rejection) of the null hypothesis is not meant as an assertion
of its truth (or falsity), only that it is more (or less) probable than the alternative
hypothesis (Press 2003).

Testing simple versus simple hypotheses is only a particular setting amongst
many others. Practitioners may face, for instance, the more general situation of
testing a composite hypothesis . When a parameter θ is continuous, one or both

5As mentioned in Section 2.3.2, the ratio of the probabilities of two mutually exclusive and exhaustive
events (which of necessity add to 1) is called odds in favour of the event whose probability is in the
numerator of the ratio. The word ‘odds’ is sometimes used loosely in reference to the ratio of the
probabilities of two mutually exclusive events whose probabilities add up to something less than 1.
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of the two hypotheses may be composite. As an example, consider the testing of
H0 : θ ∈ �0 versus H1 : θ ∈ �1, and let π (θ ) denote the prior probability density.
Accordingly, in contrast to the discrete probabilities above of π0 = P (θ = θ0) and
π1 = P (θ = θ1), the prior probabilities π0 and π1 are now:

π0 = P (θ ∈ �0) =
∫

�0

π (θ )dθ ; π1 = P (θ ∈ �1) =
∫

�1

π (θ )dθ. (6.4)

The posterior probability of the null hypothesis can be easily computed as

α0 = P (θ ∈ �0 | x ) =
∫

�0

π (θ | x )dθ

=
∫

�0

f (x | θ )π (θ )dθ/m(x ),

where m(x ) is the normalizing constant

m(x ) =
∫

�

f (x | θ )π (θ )dθ.

Similarly, the posterior probability of the alternative hypothesis is of the form

α1 =
∫

�1

f (x | θ )π (θ )dθ/m(x ).

Hence the posterior odds are

α0

α1
=
∫
�0

f (x | θ )π (θ )dθ∫
�1

f (x | θ )π (θ )dθ
. (6.5)

The ratio of the posterior odds to the prior odds, that is

BF = α0/α1

π0/π1
, (6.6)

is called the Bayes factor in favour of H0. The Bayes factor measures the change
produced by the evidence in the odds when going from the prior to the posterior
distribution in favour of one scientific theory as opposed to another (Kass and
Raftery 1995; Lavine and Schervish 1999). If π0 = π1 = 1/2, then the prior odds
are equal to 1 and the Bayes factor is equal to the posterior odds.

In the case of testing a simple null hypothesis versus a simple alternative hypoth-
esis, it can be easily observed from (6.3) that the Bayes factor is just the likelihood
ratio of H0 to H1,

BF = f (x | θ0)π0

f (x | θ1)π1
× π1

π0
= f (x | θ0)

f (x | θ1)
. (6.7)
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A likelihood ratio, of say k , corresponds to evidence strong enough to cause a
k -fold increase in the prior odds, regardless of whether the prior odds are actually
available in a specific problem or not (Royall 1997, p. 13). In this case, the Bayes
factor depends only upon the sample data and reflects the extent to which the data
favour one hypothesis over another, without prior information. The hypothesis
better supported by the data is the hypothesis which better models the data.

In the more general case of testing composite hypotheses, the Bayes factor
becomes more complicated than a simple likelihood ratio and will depend on the
prior input. It is useful to rewrite the prior density π (θ ) in the following form. Let
πH0 (θ ) denote the restriction of the prior density on �0, and πH1 (θ ) denote the
restriction of the prior density on �1, that is

πH0 (θ ) = π (θ )

π0
for θ ∈ �0; (6.8)

πH1 (θ ) = π (θ )

π1
for θ ∈ �1. (6.9)

Densities πH0 (θ ) and πH1(θ ) are proper and describe how the prior probability is
spread over the two hypotheses. In other words they are the conditional densities
of θ given H0 and H1, respectively. Therefore, the prior density, π (θ ), can be
written as

π (θ ) =
{

π0πH0 (θ ) if θ ∈ �0

π1πH1 (θ ) if θ ∈ �1
. (6.10)

The posterior probabilities are easily rewritten as

α0 = π0

∫
�0

f (x | θ )πH0 (θ )dθ/m(x )

and

α1 = π1

∫
�1

f (x | θ )πH1 (θ )dθ/m(x ).

The Bayes factor is then of the form

BF =
∫
�0

f (x | θ )πH0 (θ )dθ∫
�1

f (x | θ )πH1 (θ )dθ
. (6.11)

The Bayes factor is now the ratio of weighted likelihoods under the postulated
hypotheses, and it appears that it no longer depends only upon the sample data. The
reason for this is that the prior enters via the weights πH0 (θ ) and πH1 (θ ). Graphical
displays of the Bayes factor as a function of the prior parameters can be used to
present scientific results to different users with different prior opinions (Dickey
1973). An example can be found later in Section 6.4.3, Figure 6.12, following
consideration of further complications in which other parameters are fixed.
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Example 6.2.1 (Prior density restriction for a beta uniform variable). Sup-
pose θ ∼ Be(1, 1), and it is desired to test H0 : θ ≤ θ0 against H1 : θ > θ0.
The restriction πH0 (θ ) of the prior density on �0 = [0, θ0] is given by

πH0 (θ ) = π (θ )

π0
= 1∫ θ0

0 1dθ
= 1

θ 0
, for θ ≤ θ0,

and similarly the restriction πH1 (θ ) of the prior density on �1 = (θ0, 1]

πH1 (θ ) = π (θ )

π1
= 1∫ 1

θ0
1dθ

= 1

1 − θ0
, for θ > θ0.

It can be easily verified that these are density functions.

A guide for interpreting Bayes factors offered by Jeffreys (1961) is shown in
Table 6.1.

Table 6.1 Verbal scale for interpreting the support of the
null hypothesis over the alternative hypothesis (Jeffreys
1961).

BF Evidence in favour of H0

1 to 3.2 Not worth more than a bare mention
3.2 to 10 Substantial
10 to 100 Strong
> 100 Decisive

It goes without saying that the range of the scale and its interpretation may
depend on the specific context. Multiple scales have been proposed and their prin-
cipal role is to offer a rough guide to support interpretation.

Both the use of scales, however, and the discussion of likelihood ratios applied to
real-case scenarios are sometimes viewed cautiously. Analogies to other measuring
settings, such as temperature, may thus be helpful. As mentioned by Goodman and
Royall (1988, pp. 1571–1572), for instance, few would argue that a thermometer
does not provide a measure of thermal energy that may, in at least some sense, be
called objective. Notwithstanding, a thermometer represents only a general index
of the subjective experience of ‘heat’. In particular, how hot one actually feels on a
40◦C day depends on factors such as humidity, wind, clouds, one’s ability to sweat
as well as one’s acclimatization. In the same way as temperature is a measure
of thermal energy and a guide to the sensation of heat, the likelihood ratio is a
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measure of evidence and a guide to belief. Neither the feeling of a given quantity
of degrees nor the meaning of a likelihood ratio of a given value can be described
exactly in words. Both scales acquire their meaning through use and experience.

In the context of forensic science applications, the quantitative value has also
been thought to be given a qualitative interpretation (Evett 1987, 1990; Evett et al.
2000). Table 6.2 summarizes a scale proposed by Evett et al. (2000) with Hp

denoting the proposition put forward by the prosecution.

Table 6.2 Verbal scale for expressing the evidential value BF in
support of the prosecutor’s proposition Hp over the alternative
(defence) proposition (Evett et al. 2000).

BF Evidence in favour of Hp

1 to 10 Limited evidence to support
10 to 100 Moderate evidence to support
100 to 1000 Moderately strong evidence to support
1000 to 10000 Strong evidence to support
> 10000 Very strong evidence to support

Note that this scale also works with values for Bayes factors smaller than
unity, that is in support of the alternative hypothesis, which is normally the one
favoured by the defence. When dealing with DNA evidence, however, where
very large Bayes factors may be obtained, the above-mentioned verbal scale
may be inadequate. This may also occur in cases where the forensic scientist
seeks to combine multiple items of evidence. For this reason, forensic scientists
may resort to the logarithm of the Bayes factor which has been conceptualized
as the weight of the evidence (Good 1950) (see Section 2.4.1). In this way, as
subsequent experiments become available, Bayes factors will multiply whereas the
weights of evidence add as one naturally thinks about evaluation in association
with scales of justice. A useful discussion on this topic is given in Kaye (1986b),
Schum (1994) and Aitken and Taroni (2004). Notice also that – as mentioned by
Singpurwalla (2006, p. 31) – with the use of verbal scales, some Bayesians have
declined to specify prior odds. In effect they have chosen to use Bayes factors
as an alternative to frequentist significance probabilities. While this strategy
may be appropriate in the case of simple hypotheses, it is inappropriate in the
case of composite hypotheses. With composite hypotheses the Bayes factor also
depends on how the prior mass is spread over the two hypotheses. In particular,
it cannot be interpreted as a summary of the evidence provided by the data alone,
because it requires knowledge of prior probabilities, as illustrated in Equation
(6.11). However, some authors observe that, for given priors, the Bayes factor
is reasonably stable and that it can effectively be interpreted as the measure of
the support given only by the data. The advantage of this interpretation is that,
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by starting from it, a practitioner can determine his ‘personal’ posterior odds by
multiplication of the Bayes factor with his ‘personal’ prior odds (Berger 1988).

6.2.2 Decision-theoretic testing

Hypothesis testing is a special case of decision making (Edwards et al. 1963;
Lindley 1961). Accordingly, hypotheses should be tested on the basis of the conse-
quences of making wrong decisions. When testing hypotheses H0 : θ ∈ �0 versus
H1 : θ ∈ �1, for instance, the decision space includes decisions d0 and d1, where
di denotes acceptance of Hi . The cost of possible erroneous decisions should be
taken into account by specifying a loss function for each alternative.

For the ease of argument, suppose that a correct decision incurs no loss and no
gain, that is it produces a zero loss. The loss function for a two-action problem
can be described by a two-way table that has entries of zeros on the diagonal. An
example of such a function is given by the ‘0–1’ loss function introduced earlier
in Sections 2.3.2 and 3.4.2, Equation (3.21), summarized here in Table 6.3.

Table 6.3 The ‘0–1’ loss function.

θ ∈ �0 θ ∈ �1

d0 0 1
d1 1 0

Following the discussion presented in Section 3.4, a decision maker should
compute the expected loss for each decision and choose the one which minimizes
the loss. The Bayes decision is to choose d1, which is equivalent to rejection of
the null hypothesis when

P (θ ∈ �0 | x) < P (θ ∈ �1 | x) , (6.12)

or to choose d0 otherwise which is to accept H0, otherwise. The Bayesian procedure
chooses the hypothesis with the largest posterior probability, and, thus, with a
symmetric loss function the decision which minimizes the expected loss.

A generalization of the above loss function is to penalize errors differently when
the null hypothesis is true from when it is false. This is managed with the ‘0–ki ’
loss function which was introduced in Equation (3.22) of Section 3.4.2, a summary
of which is given in Table 6.4.

Table 6.4 The ‘0–ki ’ loss function.

θ ∈ �0 θ ∈ �1

d0 0 k0

d1 k1 0
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Under this loss setting the null hypothesis should be rejected when

P (θ ∈ �0 | x)

P (θ ∈ �1 | x)
<

k0

k1
. (6.13)

The larger k0/k1 is, that is the more a wrong answer under the alternative hypothesis
(d0(θ ∈ �0) when θ ∈ �1) is penalized, the larger the posterior probability of H0

needs to be in order for H0 to be accepted.
A threshold for the interpretation of the Bayes factor can be obtained by multi-

plying both sides of Equation (6.13) by the prior odds π1/π0, that is

π1

π0
× P (θ ∈ �0 | x)

P (θ ∈ �1 | x)
<

k0

k1
× π1

π0
.

Therefore, when applying a ‘0–ki ’ loss, the optimal decision is d1 or, equivalently,
rejecting H0, whenever

BF <
k0

k1

π1

π0
, (6.14)

and to accept H0(d0) otherwise. Similarly, for a ‘0–1’ loss, the optimal decision is
d1 whenever

BF <
π1

π0
,

and to accept H0(d0) otherwise.
Loss functions, as described above, with their simplicity, do not take into account

the possible severity of a wrong decision. Consider �0 to be the set θ ≤ θ0. Situ-
ations may be encountered where the effect of making an incorrect decision, such
as d0, and so accepting H0 : θ ≤ θ0, depends on whether the true value of θ is
close to θ0, or not. For a given positive quantity ε, the true value might in fact
be (θ0 + ε) or (θ0 + 100ε) so that the consequences of a wrong decision would,
accordingly, be less or more serious (Bernardo and Smith 2000). In such a setting
it would be preferable to build a loss function that incorporates a measure of the
distance between the decision and the true value of the parameter of interest. Such
a function has been introduced in Section 3.4.2, Equation (3.23), and is summa-
rized here in Table 6.5. The function fi (θ ) is a positive function defined on �i . It
can be linear, quadratic, or something else depending on the context. A linear loss
function is developed in the next section.

Table 6.5 The ‘0–fi (θ )’ loss function.

θ ∈ �0 θ ∈ �1

d0 0 f0(θ )
d1 f1(θ ) 0
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6.3 ONE-SIDED TESTING

6.3.1 Background

One-sided hypothesis testing applies when the parameter set � is a subset of the
real line, and when �0 is entirely to one side of �1, that is either

θ0 < θ1 for θ0 ∈ �0, θ1 ∈ �1

or

θ0 >θ1 for θ0 ∈ �0, θ1 ∈ �1.

Consider, for instance, testing H0 : θ ≤ θ0 against H1 : θ > θ0 (i.e. �0 = {θ : θ ≤
θ0}, �1 = {θ : θ > θ0}). Recalling that π (θ | x ) is the posterior distribution of the
parameter of interest θ , the posterior probability of the null hypothesis is

α0 = P (θ ≤ θ0 | x) =
∫ θ0

−∞
π (θ | x )dθ , (6.15)

illustrated by the shaded area in Figure 6.1.

q

p
(q

|x
)

q0

Figure 6.1 Posterior probability of the null hypothesis (θ ≤ θ0) given data x .

An example for such a setting could be one involving a consignment of pills
where one is interested in testing if the proportion of pills containing an illegal
substance is lower or greater than a certain threshold. In such a case the posterior
probability of the null hypothesis becomes α0 = ∫ θ0

0 π (θ | x )dθ since it is not
possible to have a negative proportion and 0 ≤ θ0 ≤ 1.
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A loss function as defined by Equation (3.23) (with fi (θ ) = ki | θ − θ0 |), that
is one that takes into account the distance between the decisions (d0, d1) and the
true value of θ , may be considered:

L(di , θ ) =



0 if θ ∈ �i ,
ki (θ − θ0) if θ /∈ �i and θ > θ0,
ki (θ0 − θ ) if θ /∈ �i and θ < θ0,

, (6.16)

for �0 = [0, θ0] and �1 = (θ0, 1] and ki > 0. This is an asymmetric linear loss that
preferentially penalizes a wrong decision as the difference between the true value
θ and θ0 increases. The loss is equal to zero when the decision is correct.

Imagine, for instance, a scenario where a person is stopped because of a suspi-
cion of driving under the influence of alcohol. A blood sample is taken to estimate
the concentration of alcohol. One is interested in testing whether or not the alco-
hol concentration exceeds a given legal limit (e.g. 0.5 g/kg). More formally, the
aim is to test H0 : θ ≤ 0.5 g/kg versus H1 : θ > 0.5 g/kg. A false acceptance of the
hypothesis H0 (letting the person drive) would be less or more serious depending on
the real – but unknown – concentration of alcohol in blood, and should therefore
be penalized accordingly.

Given the stated loss function, the Bayesian posterior expected loss for decision
d0, that is accepting H0 : θ ≤ θ0, is:

L̄(d0, π (θ | x )) =
∫

�1

k0(θ − θ0)π (θ | x )dθ

=
∫

�1

k0θπ (θ | x )dθ −
∫

�1

k0θ0π (θ | x )dθ. (6.17)

Similarly, the Bayesian posterior expected loss for decision d1 is:

L̄(d1, π (θ | x )) =
∫

�0

k1θ0π (θ | x )dθ −
∫

�0

k1θπ (θ | x )dθ. (6.18)

The null hypothesis should be rejected if

L̄(d0, π (θ | x )) > L̄(d1, π (θ | x )).

6.3.2 Proportion

Suppose X ∼ Bin(n , θ ) and the aim is to test H0 : θ ≤ θ0 against H1 : θ > θ0. The
parameter sets thus are �0 = [0, θ0] and �1 = (θ0, 1] and a conjugate beta prior
density for the unknown parameter θ may be used, that is θ ∼ Be(α, β). A random
sample (x1, . . . , xn ) from this distribution is observed, with y = ∑n

i=1 xi . Following
the earlier discussion of Example 3.3.2, the posterior distribution π (θ | x ) is of the
form Be(α∗ = α + y , β∗ = β + n − y). The posterior probability of H0 is

α0 = P (θ ≤ θ0 | x) =
∫ θ0

0
π (θ | x )dθ ,

which can be easily computed since π (θ | x ) is in a closed form.
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Next, consider a linear loss function as in Equation (6.16), and compute the
Bayesian posterior expected loss for each decision. The first term of Equation
(6.17) can be rewritten as

∫
�1

k0θπ (θ | x )dθ = k0

∫ 1

θ0

θ · θα+y−1(1 − θ )β+n−y−1

B (α + y , β + n − y)
dθ

= k0B (α + y + 1, β + n − y)

B (α + y , β + n − y)

∫ 1

θ0

θα+y (1 − θ )β+n−y−1

B (α + y + 1, β + n − y)
dθ.

The integral can be readily calculated since the density of a beta variable with
parameters α∗ = α + y + 1 and β∗ = β + n − y can be recognized. Simple algebra
shows that B (α+y+1,β+n−y)

B (α+y ,β+n−y) = α+y
α+β+n . Therefore the Bayesian posterior expected loss

from (6.17) is equal to

L̄(d0, π (θ | x )) = k0
α + y

α + β + n
Pπ

(
θ > θ0 | α∗ = α + y + 1, β∗ = β + n − y

)
− k0θ0Pπ

(
θ > θ0 | α∗ = α + y , β∗ = β + n − y

)
. (6.19)

Similarly, the Bayesian expected loss from (6.18) for decision d1 is:

L̄(d1, π (θ | x )) = k1θ0Pπ
(
θ < θ0 | α∗ = α + y , β∗ = β + n − y

)
− k1

α + y

α + β + n
Pπ

(
θ < θ0 | α∗ = α + y + 1, β∗ = β + n − y

)
. (6.20)

Example 6.3.1 (Ion mobility spectrometer). Consider a detection apparatus,
such as an ion mobility spectrometer (IMS). Such devices have been devel-
oped and marketed for the detection of substances such as explosives and
illicit drugs. Target surfaces of interest such as banknotes, tablets, luggage,
clothing and so on may be vacuumed and particles thus collected analyzed.
When a detectable quantity of a target substance is present, then the IMS
would indicate that event by a sonar signal. Suppose that a given device fails
to detect the presence of a target substance ( e.g. cocaine) in, for example,
10% of the screened surfaces which do bear the substance, but may present
particular retention properties (matrix effects). A question that may be of
interest is how the performance of such an apparatus compares to that of
a given other device. In order to investigate this issue, a random sample
of n = 50 surfaces known to be contaminated are screened with the alter-
native apparatus. Assume, for illustration, that among these samples, y = 4
yielded a negative result. Let Xi = 1 denote the event of a negative result,
Xi = 0 the event of a positive result and θ the probability of interest, that
is the probability of not detecting the target substance with the alternative
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apparatus. If θ ≤ 0.1, the performance of the alternative device is better than
the IMS, therefore the competitive hypotheses of interest are H0 : θ ≤ 0.1
versus H1 : θ > 0.1. Given a prior density of type Be(1, 1), the posterior
density becomes a Be(5, 47). Approximate posterior probabilities of the null
and the alternative hypotheses are found to be α0 � 0.59 and α1 � 0.41 (see
Figure 6.2 (left))6. The posterior odds are α0/α1 = 1.42. Based on this cal-
culation, one may slightly increase one’s belief in the proposition according
to which the alternative device gives a better performance. Given that the
prior probabilities are π0 = 0.1 (P (θ ≤ 0.1)) and π1 = 0.9, the prior odds
are π0/π1 = 0.11. The Bayes factor, which measures the change in the prior
odds to the posterior odds equals 12.9 (1.42/0.11). This value suggests mod-
erate support in favour of H0. From a decision-theoretic point of view, by
taking a linear loss as in (6.16) with k0 = k1 = 1, the Bayesian posterior
expected losses may be computed from (6.19) and (6.20) and are equal to

L̄(d0, π (θ | x )) = 0.014

L̄(d1, π (θ | x )) = 0.018.

q
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Figure 6.2 The posterior probabilities of the null hypothesis tested in Example 6.3.1.
The probability of H0 : θ ≤ 0.1 is represented by the grey shaded area. The figure on
the left shows the Be(5, 47) posterior density and P(H0 : θ ≤ 0.1) = 0.59. The plot
on the right depicts the Be(12, 118) posterior density and P(H0 : θ ≤ 0.1) = 0.65.
Note that the right-hand end of the displayed horizontal scale is 0.3. The theoretical
maximum value for this scale is 1 but the probability density function is very close
to zero for θ > 0.3 and so is not displayed.

6Note that α0 and α1 represent the posterior probabilities of the null and the alternative hypothesis,
and must not be confused with parameter α of the Be(α, β) distribution.
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The optimal decision is d0 since it minimizes the loss. The null hypothesis is
not rejected.

Alternatively, suppose that the prior knowledge could be modelled through
a Be(8, 72) prior distribution. The posterior probability of the null hypothesis
would then become α0 = 0.65 (as shown in Figure 6.2 (right)), whereas the
Bayes factor would equal 1.56, which means limited support in favour of H0.
The effect of the change of the value of the prior odds of 0.11 arising from
a Be(1, 1) prior distribution to a prior odds of 1.17 arising from a Be(8, 72)
distribution is to change the posterior odds from 1.42 to 1.83. The poste-
rior density, Be(12, 118), is in fact more peaked. The range of non-negligible
parameter values for Be(12, 118) is less than the corresponding range for
Be(5, 47). Thus Be(12, 118) represents more information. It can be verified
that the optimal decision with this more informative prior is still d0.

Comparison of two proportions

Imagine that items are drawn from two populations of sizes n1 and n2, respectively,
and that each item can be classified either as a success or a failure. The success
rate in the first population is denoted θ1. Similarly the success rate in the second
population is denoted θ2. This situation can be described in terms of a 2 × 2 table
as shown in Table 6.6.

Table 6.6 Occurrences of successes (y) and failures
(n − y) in two populations (population 1 and
population 2) of size n1 and n2, respectively.

Population 1 Population 2

Successes y1 y2

Failures n1 − y1 n2 − y2

Total n1 n2

A typical request would be to determine the extent to which data support the
hypothesis that the success probability in the first population is lower than that in the
second population. Formally, the aim is to test H0 : θ1 ≤ θ2 against H1 : θ1 >θ2,
or, equivalently, H0 : θ1 − θ2 ≤ 0 against H1 : θ1 − θ2 > 0. Consider, for example,
the proportion of a given allele in two distinct populations. It is almost certain
that there is a difference between the two populations, but it may not be known
in which direction. A comparable problem may be encountered in the presence
of two treatment groups where one seeks to know which of two treatments has a
higher success rate. The Bayesian approach to such settings requires one, initially,
to choose a prior density over the unit space for θ1 and θ2 that will be weighted
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by the likelihood function and then normalized to obtain a posterior distribution.
There are several approaches to modelling prior beliefs about θ1 and θ2. They
mainly differ depending on whether θ1 and θ2 are believed to be dependent or
not. If they are judged to be independent, inference problems concerning θ1 are
independent of inference problems concerning θ2.

For the proportions θ1 and θ2, assume two informative and independent
beta priors, θi ∼ Be(αi , βi ), i = 1, 2. Further, suppose two independent samples
of size n1 and n2 are available for θ1 and θ2, written x1 = (x11, . . . , x1n1) and
x2 = (x21, . . . , x2n2). The posterior distribution of θi is still beta with parameters

α∗
i = αi + yi and β∗

i = βi + ni − yi for yi =
ni∑

j=1

xij , i = 1, 2.

It is often convenient to work with log-odds, defined by

� = log

(
θi

1 − θi

)
i = 1, 2,

where logarithms are taken to base e. This quantity is close to a Fisher’s z distri-
bution (see Appendix B) with mean

E (�) ≈ log
[
(α∗

i − 1/2)/(β∗
i − 1/2)

]
, i = 1, 2,

and variance

Var(�) ≈ α∗−1

i + β∗−1

i , i = 1, 2,

which is approximately Normal (Lee 2004). The comparison between the two
proportions can be based on the quantity given by the difference of the two log-odds

log

(
θ1

1 − θ1

)
− log

(
θ2

1 − θ2

)
= log

(
θ1(1 − θ2)

θ2(1 − θ1)

)
, (6.21)

to give a log-odds ratio which is approximately Normal with mean

µ12 = log

(
(α∗

1 − 1/2)(β∗
2 − 1/2)

(β∗
1 − 1/2)(α∗

2 − 1/2)

)
,

and variance

τ 2
12 = α∗−1

1 + β∗−1

1 + α∗−1

2 + β∗−1

2 .

The approximation can be considered acceptable only if all the entries in the associ-
ated 2 × 2 table are at least 5. The log-odds ratio is a sensible measure of the degree
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to which the two populations differ: the null hypothesis is rejected if and only if the
log-odds ratio is positive. Nevertheless nothing can be said about the probability of
the null hypothesis being true since knowledge of the posterior distribution of the
log-odds ratio does not imply knowledge of the posterior distribution of the differ-
ence θ = θ1 − θ2. The exact distribution of the difference of two beta variables was
established by Pham-Gia and Turkkan (1993) (a reproduction is available in John-
son et al. 1995 and is denoted the beta difference distribution BDI(α1, β1; α2, β2)).
This distribution is closed under sampling: if independent samples of size n1 and
n2 are available for θ1 and θ2, the posterior distribution still has the same form.
The exact probability of the null hypothesis H0 : θ1 < θ2 is

P (θ1 < θ2) =
α2−1∑

x=max(α2−β1,0)

(
α2+β2−1

x

)(
α1+β1−1

α1+α2−1−x

)
(
α1+β1+α2+β2−2

α1+α2−1

)
(see Altham 1969), and an expression for the more general hypothesis P (θ1 ≤ cθ2)
(0 < c ≤ 1) is given in Weisberg (1972). However, for sufficiently large n1 and
n2 – Pham-Gia and Turkkan (2003) suggest a number of observations larger than
30 – and θ1 and θ2 not too close to 0 or 1, the beta posterior distribution of each
proportion can be approximated by a Normal distribution with the same mean and
the same variance, that is π (θi | xi ) ≈ N (µi , τ 2

i ), i = 1, 2, where

µi = α∗
i

α∗
i + β∗

i

, (6.22)

and

τ 2
i = α∗

i β∗
i

(α∗
i + β∗

i )2(α∗
i + β∗

i + 1)
. (6.23)

The priors and the samples being independent, the posteriors are also independent
and the distribution of the difference θ = θ1 − θ2 is approximately Normal with
mean µ = µ1 − µ2 and variance τ 2 = τ 2

1 + τ 2
2 . The posterior probability of the

null hypothesis (θ < θ0 = 0; i.e. θ1 < θ2) can be easily computed from (6.15) with
a Normal distribution for π with θ = θ1 − θ2 and θ0 taken equal to 0.

Whenever non-informative independent priors seem to be more appropriate, a
development from Howard (1998) is available for obtaining the posterior proba-
bility of the null hypothesis and a Normal approximation for several classes of
vague priors. However, such independence can in some cases be rather unlikely
and practitioners would more reasonably expect positive correlation between θ1

and θ2. That is to say, knowledge of a proportion may influence prior beliefs about
the value of the second proportion.

For the purpose of illustration, consider a scenario where seized items (e.g.
individual white tablets in a consignment of white tablets) are tested in different
laboratories with each item able to be tested in only one place. Possible results
are successes or failures and, as usual, they are considered to be a realization of
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a Bernoulli process with success probabilities θ1 and θ2. In such a situation, it is
reasonable to assume that knowledge about θ1 will lead to a revision of the prior
expectation about θ2. Howard (1998) proposes a prior of the form:

π (θ1, θ2) ∝ e−(1/2)u2
θ

α1−1
1 (1 − θ1)β1−1θ

α2−1
2 (1 − θ2)β2−1, (6.24)

where

u = 1

ρ
log

(
θ1(1 − θ2)

θ2(1 − θ1)

)
.

The parameters α1, β1, α2, β2 reflect prior beliefs about the values of θ1 and θ2,
and the parameter ρ indicates prior beliefs about the dependence between the
two proportions. Note that Howard (1998) uses the notation σ to denote prior
beliefs in the dependence between the two proportions. However, σ is used in this
book to denote standard deviation so the notation ρ has been used here to denote
dependence. Parameters should be understood as a measure of personal beliefs.
Vague prior beliefs are modelled by α1 = β1 = α2 = β2 = 1. The contour plots of
Howard’s dependent prior, Equation (6.24), are shown in Figure 6.3 for different
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Figure 6.3 Contour plots of Howard’s dependent prior distribution for α1 = β1 = α2 =
β2 = 1 and different values of the dependence parameter ρ = 0.25, 0.5, 1, 2. Note that the
line θ1 = θ2 is for illustration only and is not a contour of the distributions.
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values of the dependence parameter ρ7. Notice that, the smaller the value of ρ,
the more informative is the prior in the sense that the joint distribution is more
peaked. Also, the bulk of the distribution is shifted towards the line θ1 = θ2 as ρ

decreases. For independence, ρ = ∞. As an example of less information, consider,
for instance, a dependent prior with ρ = 1. Such a choice means that if θ1 takes,
for example, the value 0.8, it is almost certain that θ2 is in the range (0.1, 0.99). If
it is felt that this range of values is too wide (or even too narrow), than ρ can be
adjusted to reflect prior beliefs more accurately.

The posterior density has the same functional form as Equation (6.24) with
updated parameters

(α1 + y1, β1 + n1 − y1, α2 + y2, β2 + n2 − y2, ρ) .

Note that ρ is unchanged. A further complication might apply whenever,
given the scenario discussed so far about items tested in different laboratories,
there are also items tested in both laboratories (complete observations), as
an addition to items tested in one and only one of the laboratories (marginal
observations). In such a case and in general where the practitioner must deal with
both marginals and complete observations, prior dependence can be modelled by
using a Dirichlet-beta prior as suggested by Antelman (1972).

Example 6.3.2 (Pitfalls of intuition). There are different practices among
forensic scientists for expressing the value of scientific evidence. Some may
sound more correct than others, yet some are fallacious. A particularly well
known and common pitfall of intuition is, for instance, the so-called ‘Prosecu-
tor’s fallacy’ (Thompson and Schumann 1987). Imagine a researcher who is
interested in comparing two populations of students and in detecting whether
there is a difference in the proportion of correct answers to questions relating
to the presentation of DNA evidence in a court of justice (Taroni and Aitken,
1998). In particular, the students were presented with different explanations
of the value of DNA evidence (Taroni and Aitken 1999). The target students
came from two European schools of forensic science; the first group is one
which teaches probabilistic foundations of evidence interpretation and the
second does not. With respect to a specific case in which a DNA expert’s testi-
mony constitutes a ‘Probability (another match) error’ (see Aitken and Taroni
(2004) for further details), the two groups of students reacted in the following
way: 10 out of 13 students from the school teaching evidence interpreta-
tion, correctly detected the fallacy that was committed by the DNA expert.
In the second group of students, 6 among 32 tested individuals correctly

7Contour plots are obtained using the routines in the Learn-Bayes R package (Albert 2007).
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answered the question. Consider then testing the following pair of hypotheses:
H0 : θ1 ≤ θ2 and H1 : θ1 > θ2, where θ1 and θ2 represent the proportions of
correct answers in the first and second population of students, respectively.
The sample estimates are 10/13 = 0.77 and 6/32 = 0.19, respectively. Assume
for the first population a Be(3.5, 2) density for describing the prior beliefs
on θ1, and for the second population a Be(3.5, 3.5) density for describing
prior beliefs on θ2. The two prior densities reflect a priori confidence in a
higher probability of success among students having a stronger background
on evidence interpretation (Figure 6.4).
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Figure 6.4 Prior distributions of the success rate θ in Example 6.3.2 for population
1 (Be(3.5, 2) on the left) and population 2 (Be(3.5, 3.5) on the right).

The distribution of the log-odds ratio (lOR), Equation (6.21), is approx-
imately N(2.23, 0.41) and P (lOR > 0) = 0.9997. The null hypothesis is
rejected in favour of the alternative hypothesis. Thus, it is accepted that
the first group gives more correct answers than the second group. A plot
of the posterior distribution of the log-odds ratio is given in Figure 6.5.
Alternatively, the beta posterior can be approximated by a Normal
distribution. Equations (6.22) and (6.23) give µ = µ1 − µ2 = 0.49 and
τ 2 = τ 2

1 + τ 2
2 = 0.015, and

P (θ ≤ 0 | θ ∼ N (0.49, 0.015)) ≈ 0.

Therefore, the null hypothesis H0 : θ1 − θ2 ≤ 0 is rejected.
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Figure 6.5 Posterior Normal distribution of the log-odds ratio (Equation (6.21)) in
Example 6.3.2. for the difference in responses for the two groups of students. A value
of 0 for the log-odds ratio corresponds to no difference in the responses.

The same conclusions can be obtained when assuming the dependent prior
density given by Equation (6.24), with parameters α1 = 3.5, β1 = 2, α2 =
3.5, β2 = 3.5 fixed as above and parameter ρ = 1 (knowledge of answers
from one group of students will influence belief about the answers from the
other group of students). The contour plot of the prior, depicted in Figure 6.6
(left), reflects a weak dependence a priori between the two proportions. The
posterior probability of the null hypothesis H0 : θ1 ≤ θ2 can be computed as
in Albert (2007, p. 68). The posterior probability of the null hypothesis is
0.0012, as confirmed by the contour plot of the posterior distribution that is
shifted almost entirely in the lower triangle (Figure 6.6 (right)). The poste-
rior probability is necessarily sensitive to the prior choice of ρ. Table 6.7
shows this for different values of the dependence parameter. However, in all
cases there is very strong evidence that there is a higher probability of suc-
cess amongst the students that were taught evidence interpretation. Similar
arguments can be applied in the contexts of drug sampling, pirated CDs and
computer pornographic images.
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Figure 6.6 Contour plots of the Howard’s dependence prior (left) and posterior
(right) in Example 6.3.2. Note that α1 = 3.5, β1 = 2, α2 = 3.5, β2 = 3.5; α∗

1 = 13.5,
β∗

1 = 5, α∗
2 = 9.5, β∗

2 = 29.5; ρ = 1.

Table 6.7 Posterior probability of the null hypothesis, H0 (the proportion
of correct answers in the first group is less than the proportion of correct
answers in the second group), for different values of ρ, the prior belief in
the dependence between the two proportions. The accuracy of the
calculations of the probability of H0 depends on the number of grid points
used for the construction of the contour plot. The R code for this example
used 10000 grid points. Repetition of the algorithm from the same starting
point will give small differences in the output.

Parameter ρ Probability of H0

0.5 0.0104
1 0.0012
2 0.0003

6.3.3 A note on multinomial cases (k categories)

Suppose one has a multinomial population with k categories and a natural order-
ing on the categories. For example, medical patients being treated by a particular
method may be rated in terms of their response as being much improved, somewhat



One-Sided Testing 225

improved, the same, and so on (Weisberg 1972). Let θ1, . . . , θk be the probabil-
ities associated with category j , j = 1, . . . , k , for the multinomial population. If
y = (y1, . . . , yk ) is the vector of the counts of the number of observations that fall
in each category, then

f (y1, y2, . . . , yk | θ1, . . . , θk ) ∝
k∏

j=1

θ
yj
j ,

k∑
j=1

θj = 1.

As it was outlined in Section 4.2.5, the conjugate prior distribution for a multi-
nomial population with k categories is the Dirichlet distribution, (θ1, . . . , θk ) ∼
Dk (α1, . . . , αk ), that is

f (θ1, . . . , θk ) ∝
k∏

j=1

θ
αj −1
j .

The posterior distribution is Dk (α1 + y1, . . . , αk + yk ).
It is of interest to evaluate the difference between the proportion of observations

falling in different categories, say category 1 and 2, and therefore the quantity θ1 −
θ2. For example, it could be of interest knowing the difference between people who
were rated as much improved and those who were rated as somewhat improved.
Values from the posterior distribution of θ1 − θ2 can be simulated drawing several
values (θ1, . . . , θk ) from the posterior Dirichlet distribution and computing θ1 − θ2

for each draw.
Another point of interest is the determination as to whether there is a differ-

ence between two populations of patients, for example patients treated by two
different methods. Let θ1j and θ2j be the probabilities associated with category j ,
j = 1, . . . , k , for the two populations, and yi = (yi1, yi2, . . . , yik ) be the vector of the
counts of the number of observations that fall in each category in population i , i =
1, 2. For each population, it will be assumed (θi1, . . . , θik ) ∼ Dk (αi1, . . . , αik ). The
posterior distribution is Dk (αi1 + yi1, . . . , αik + yik ). Let proposition H0 : P1 < P2

‘Population 1 has a lower response than population 2’. The derivation of the poste-
rior probability of (P1 < P2) is not straightforward, and can be performed through
ad hoc algorithms (see for example the proposal of Weisberg (1972)). However,
proposition P1 < P2 is equivalent to

m∑
j=1

θ1j ≥
m∑

j=1

θ2j , m = 1, . . . , k − 1. (6.25)

Several draws can be taken from the posterior Dirichlet distributions and the pro-
portion of time on which (6.25) is true is computed.
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Example 6.3.3 (Detection of nandrolone metabolites – continued from
Example 3.3.6). Nandrolone is an efficient drug to increase muscle mass.
This anabolic steroid is administered via intramuscular injections and its
major metabolites, 19-norandrosterone (NA) and 19-noretiocholoanolone
(NE) can be detected in urine. The level of nandrolone (NA-metabolite),
grouped in five ordered categories, in urine samples coming from samples
of 358 amateur football players and 126 students are shown in Table 6.8.
The prior parameters αi1, . . . , αik ; i = 1, 2; k = 5, are taken to be all
equal to 1 for purposes of illustration. Given prior knowledge, values
for the prior parameters can be determined from subjective beliefs about
the prior expectations and variances. The stronger the belief, the higher
the value of αi0, where αi0 = ∑k

j=1 αij , i = 1, 2. From the expression
for the variance of a Dirichlet distribution given in Appendix B it can
be seen that the higher the value of αi0, the smaller the value of the
variance and hence the greater the precision attached to the estimates.
The individual αij values can then be chosen to reflect subjective beliefs
about the relative values of the proportions θi1, . . . , θik , subject to∑k

i=1 αij = αi0.

Table 6.8 Results, in five levels k = 1, . . . , 5, of the measurements of NA (ng/ml)
in a sample of amateur football players (i = 1) and a sample of students (i = 2).

Population Level

0.0 − 0.2 0.2 − 0.5 0.5 − 1.0 1.0 − 2.0 2.0 − 3.0
(k = 1) (k = 2) (k = 3) (k = 4) (k = 5)

Football players (i = 1) 336 9 5 5 3
Students (i = 2) 126 0 0 0 0

Let P1 denote the response from the football players and P2 the response
from the students. Given values for the prior parameters and the data, sim-
ulations from the resultant posterior Dirichlet distribution enable probabil-
ities for the proposition P1 < P2 to be computed. For m = 1, . . . , 4, these
probabilities are (0.97, 0.89, 0.83, 0.70); see also Figure 6.7. Since all the
students fall into the first category, that of the lowest level of nandrolone, the
probability is very high that the football players’ response (i.e. the football
players’ levels of nandrolone) is higher than that of the students (since no
student has a level of nandrolone in a higher category than that of a football
player).
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Figure 6.7 Histograms of the values δm = ∑m
j=1 θ1j −∑m

j=1 θ2j , (6.25), for 10000
simulations from the posterior Dirichlet distribution for the detection of nandrolone
metabolite. Example, with αi1, . . . , αik (i = 1, 2; k = 5) all equal to 1.

6.3.4 Mean

Consider a continuous measurement X with Normal density and known vari-
ance, X ∼ N (θ , σ 2), and assume for the unknown mean µ a Normal density,
θ ∼ N (µ, τ 2). Distributions are conjugate, and the posterior distribution π (θ | x ) is
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Normal with mean µ(x ) and variance τ 2(x ), as in (4.16) and (4.17). The variances
σ 2 and τ 2 are assumed known. Suppose that one wishes to test the null hypothesis
H0 : θ ≤ θ0 against the alternative H1 : θ > θ0. The posterior probability of the
null hypothesis, Equation (6.15), and the other quantities of interest – notably, the
posterior odds ratio and the Bayes factor – can be easily computed since π (θ | x )
is known in closed form.

The determination of the loss function in order to find the optimal decision is
not easily achieved. Consider a loss function as given by (6.16), that is

L(d0, θ ) =
{

0 if θ ∈ �0

k0(θ − θ0) if θ ∈ �1
; L(d1, θ ) =

{
0 if θ ∈ �1

k1(θ0 − θ ) if θ ∈ �0
,

with k0 and k1 > 0. Under a Normal posterior distribution π (θ | x ), the Bayesian
posterior expected losses given by (6.17) and (6.18) can be computed as follows.
The Bayesian expected loss of decision d0 is equal to

L̄(d0, π (θ | x )) = k0

∫
θ > θ0

(θ − θ0)π (θ | x )dθ

= k0τ (x )�0 [τ (x ) (θ0 − µ(x ))] , (6.26)

where the function �0(·) takes the form

�0(t) = φ(t) − t
∫ ∞

t
φ(s)ds ,

and φ denotes the standard Normal density function. The first term represents the
density of a standardized Normal variable at the point t , while the second term is
the product of t and the probability that a standardized Normal variable is greater
than t .

Similarly, the Bayesian expected loss of decision d1 is equal to:

L̄(d1, π (θ | x )) = k1

∫
θ≤θ0

(θ0 − θ )π (θ | x )dθ

= k1τ (x )�1 [τ (x ) (θ0 − µ(x ))] , (6.27)

where the function �1(·) takes the form

�1(t) = φ(t) + t
∫ t

0
φ(s)ds .

The decision d0 is therefore optimal when

k0�0 [τ (x ) (θ0 − µ(x ))] < k1�1 [τ (x ) (θ0 − µ(x ))] . (6.28)
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Notice that if k0 = k1, i.e., the loss is symmetric, it will be sufficient to observe
whether θ0 is greater or lower than the posterior mean µ(x ). In particular, it turns
out that decision d0 is optimal if θ0 >µ(x ). The loss function is symmetric so
Equation (6.28) reduces to

−t
∫ ∞

t
φ(s)ds < t

∫ t

0
φ(s)ds ,

which is true if and only if t > 0, that is θ0 >µ(x ). Further details are available
from Bernardo and Smith (2000, p. 396).

Example 6.3.4 (Alcohol concentration in blood – continued). Consider
again the scenario described earlier in Example 4.4.1. A person suspected of
driving under the influence of alcohol is stopped. A sample taken from that
individual is submitted to a forensic laboratory. The sample means provided
by the toxicology laboratory are as follows: 0.5191 (using the HS method)
and 0.5093 (using the ID method). Recalling that the prior density was
N (1, 0.32), the sequential use of Bayes’ theorem gives a posterior density
N(0.5183, 0.01452). One is interested in knowing whether the estimated
quantity of alcohol is greater than the legal threshold of 0.5 g/kg. Thus,
one determines the probability of this event. To do so, the null hypothesis
H0 : θ ≤ 0.5 is tested against the alternative hypothesis H1 : θ > 0.5.

The prior probabilities of the null and the alternative hypotheses are taken
to be π0 = 0.05 and π1 = 0.95, so the prior odds are π0/π1 � 0.05. This indi-
cates that the null hypothesis is, a priori, unlikely. The posterior probabilities
of the null and the alternative hypothesis are α0 = 0.1034 and α1 = 0.8966
(Figure 6.8). The corresponding posterior odds are α0/α1 = 0.1153 and the
Bayes factor BF = 2.3. This value suggests limited evidence in favour of H0

that the alcohol level is < 0.5 g/kg. Notice that the probability of the null
hypothesis has increased from 0.05 to 0.1034.

Consider further an asymmetric linear loss function as in Equation (6.16),
with k0 = 2 and k1 = 1. Following the discussion presented in Section 3.4.2,
the weight k0 is chosen so as to be greater than k1 in order to express the
understanding that an error of second type (accepting H0 that θ < 0.5 when
it is false) is more serious. Bayesian expected losses are computed as in (6.24)
and (6.25) and give

L̄(d0, π (θ | x )) = 0.011,

L̄(d1, π (θ | x )) = 0.005.

Accordingly, the optimal decision is d1, since its expected loss is the smaller,
and the null hypothesis is rejected. The decision is made that the true quantity



230 Hypothesis Testing

0.40 0.45 0.50 0.55 0.60

0
5

10
15

20
25

q

p
(q

|x
)

Figure 6.8 Posterior distribution of the alcohol concentration in Example 6.3.4. The
posterior probability of the null hypothesis (θ < 0.5) is highlighted by the grey shaded
area.

of alcohol is greater than the legal threshold of 0.5 g/kg. This result has
been reached despite the evidence giving support to H0. This illustrates the
importance of the choice of the prior distribution and of the loss function.

Compare this result with that in Example 4.4.1. In both examples the pos-
terior probability for θ > 0.5 is greater than 0.5. However, in this example,
where testing of a hypothesis is the motivation, the evidence supports θ < 0.5.
This paradoxical result arises because the prior density has mean 1 whereas
the sample means are 0.5191 (HS) and 0.5093 (ID). Evidential support for
a particular hypothesis may still mean that the alternative hypothesis has a
higher probability of being true.

Comparison of two means

Consider two groups of observations, such as the continuous elliptical Fourier
descriptors of mandibular outline in the lateral view for females and males (Schmit-
tbuhl et al. 2002, 2001). The probability distribution in each group is assumed Nor-
mal with known variance, Xi ∼ N (θi , σ 2

i ), i = 1, 2. Two samples, one for females
and one for males, are taken independently of each other, x1 = (x11, . . . , x1n1 )
and x2 = (x21, . . . , x2n2 ), and it is of interest to test whether the first group has
a lower mean than the second group, that is to test the null hypothesis H0 :
θ1 − θ2 ≤ 0 against the alternative hypothesis H1 : θ1 − θ2 > 0. Independent Nor-
mal prior densities are assumed for both means, θi ∼ N (µi , τ 2

i ), i = 1, 2. The
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posterior distributions π (θ1 | x1) and π (θ2 | x2) of the two group means are Nor-
mal, with means and variances obtained using the updating formulae, Equations
(4.16) and (4.17), that is π (θi | xi ) = N

(
µi (xi ), τ 2

i (xi )
)
, i = 1, 2. The priors and the

samples are independent, so the posteriors are also independent and the difference
between the two means θ = θ1 − θ2 is Normally distributed with mean equal to
the difference of the means, and the variance equal to the sum of the variances,
that is π (θ1 − θ2 | x1, x2) = N

(
µ1(x1) − µ2(x2), τ 2

1 (x1) + τ 2
2 (x2)

)
.

This is the most favourable scenario since in most experimental situations vari-
ances are unknown, and for inference they may be equal or unequal. Consider the
situation where the variances σ 2

1 and σ 2
2 , although unknown, can be assumed to be

equal, say σ 2
1 = σ 2

2 = σ 2. Suppose further that independent local uniform priors
are assumed for θ1, θ2 and log σ . The difference θ = θ1 − θ2 has, a posteriori, a
non-central Student t distribution

St

(
n1 + n2 − 2, x̄1 − x̄2, s2

(
1

n1
+ 1

n2

))
,

where x̄i = ∑ni
j=1 xij /ni denotes the sample mean and

s2 =
∑2

i=1

∑ni
j=1

(
xij − x̄i

)2

n1 + n2 − 2
,

the pooled variance estimate (Box and Tiao 1973). Equivalently,

(θ1 − θ2) − (x̄1 − x̄2)

s
√

1
n1

+ 1
n2

∼ St (n1 + n2 − 2) , (6.29)

the central Student t distribution with n1 + n2 − 2 degrees of freedom.

Example 6.3.5 (Identity card analysis). Sophisticated measuring techniques
are available to estimate the width of specific characters (letters or num-
bers) printed on an identity card. A forensic examiner would like to compare
width measurements made on a particular character, say the vertical line of
a number 1 (e.g. one of the characters of the serial number of an identity
card), printed on an authentic identity card and on an identity card of ques-
tioned authenticity, respectively. The mean, θ1, of the measurements made on
an original card may be lower than the mean, θ2, of a card of questioned
authenticity. It thus may be of interest to test hypothesis H0 : θ1 ≤ θ2 versus
H1 : θ1 > θ2. The prior probabilities for H0 and H1 are taken to be equal,
π0 = π1 = 0.5.
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Suppose that n1 = 10 observations are obtained from the authentic iden-
tity card and n2 = 10 observations from the questioned identity card. The
sample means are equal to x̄1 = 201.854 and x̄2 = 202.182 microns for the
first and the second group of observations respectively. The sample vari-
ance is s2 = 31.47. The posterior probability of the null hypothesis is com-
puted according to Equation (6.29) with local uniform priors and is equal
to α0 � 0.55 and hence α1 � 0.45. The resulting posterior odds ratio is
α0/α1 = 1.23 (0.5513/0.4487). This value is equal to the Bayes factor, BF,
since uniform priors have been chosen. The data thus suggest slight support
of the null hypothesis.

Assuming a symmetric ‘0–ki ’ loss, the optimal decision is d0, decide that
the card is authentic. In fact,

BF = 1.23 >
k0

k1

π1

π0
= 1.

6.4 TWO-SIDED TESTING

6.4.1 Background

Practitioners often face the problem of testing a simple null hypothesis H0 : θ = θ0

versus a composite alternative hypothesis H1 : θ �= θ0. Such a practice is known as
a test of a point null hypothesis (against a two-sided alternative hypothesis) and is
characterized by the fact that even though the parameter θ may be continuous, �0

is simple, that is �0 = {θ0} and �1 is its complement (θ �= θ0).
For the moment consider the determination of an interval, known as a credible

interval , for the parameter θ . Assume a non-informative prior density for θ , π (θ ) ∝
constant, so that there is no particular reason to believe that θ takes value θ0 rather
than any value θ1 in the neighbourhood of θ0. Under this assumption, Lindley
(1965) proposed the development of a credible interval for the parameter θ at
some given level of credibility α as a test of a point null hypothesis. In this way, if
θ0 is not included in the (100 − α)% credible interval, there is evidence against the
null hypothesis and it is rejected. Examination of the interval will provide a good
indication of the magnitude of the distance between the true value of θ and θ0.
Conversely, if θ0 is included in the interval, hypothesis H0 is not to be rejected. This
procedure is only partially Bayesian since it still envisages the choice of a level
of credibility. In addition, it does not assign a probability value for the alternative
hypothesis. An argument against the use of confidence regions is given by Berger
and Delampady (1987). They write that a point can be outside the interval and not
be so strongly contraindicated by the data because the likelihood of a point that is
outside the interval is often not much smaller than the average likelihood of the
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parameter θ in the credible interval. Moreover, they argue that only a measure such
as the Bayes factor can indicate the strength of evidence against a particular point
θ0, while the credible interval indicates the magnitude of the possible discrepancy.

Hereafter, a full Bayesian procedure is developed. A test of the null hypothesis
θ = θ0 is to be developed. This is a different approach from consideration of a
credible interval. In particular, a continuous prior density on the parameter space
� cannot be assumed because that would result in a probability of zero for the
hypothesis H0 : θ = θ0 and hence a posterior probability of zero. Thus, there would
be no possibility of learning from experience. To avoid this problem, the prior den-
sity is built as a mixture of a discrete component that assigns to the null hypothesis
a prior mass of π0, and a continuous component that spreads the remaining mass
π1 = 1 − π0 over �1 according to the probability density πH1 (θ ). The posterior
probability α0 of the null hypothesis is

α0 = π0f (x | θ0)

π0f (x | θ0) + π1
∫
�1

f (x | θ )πH1 (θ )dθ
,

and, similarly, the posterior probability α1 of the alternative hypothesis is

α1 =
π1
∫
�1

f (x | θ )πH1 (θ )dθ

π0f (x | θ0) + π1
∫
�1

f (x | θ )πH1 (θ )dθ
.

It follows that the posterior odds are:

α0

α1
= π0f (x | θ0)

π1
∫
�1

f (x | θ )πH1 (θ )dθ
, (6.30)

and the Bayes factor, which allows a judgement as to how well the data support a
precise hypothesis H0, is

BF = f (x | θ0)

l1(x )
, (6.31)

where

l1(x ) =
∫

�1

f (x | θ )πH1 (θ )dθ

denotes the weighted likelihood of θ under H1. The posterior probability of the
null hypothesis can also be written as:

α0 =
[

1 +
π1
∫
�1

f (x | θ )πH1 (θ )dθ

π0f (x | θ0)

]−1

=
[

1 + π1

π0

1

BF

]−1

. (6.32)

The computation of the Bayes factor requires the specification of the prior density
for θ conditional on H1, πH1 (θ ), while the specification of a prior density function
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for θ , conditional on H0 is not necessary since H0 specifies θ as θ = θ0 precisely.
If πH1 (θ ) is given, the scientist can then compute the posterior probability α0 of
H0. If π0 = π1 = 1/2,

α0 =
(

1 + 1

BF

)−1 =
( BF

1 + BF

)
� BF

for small BF (see Example 6.4.2).
Some authors argue that there should be no point-null hypothesis testing. Though

it is very commonly suggested in practice, it will rarely be the case that one
entertains the hypothesis that θ takes exactly value θ0. Consider the following
example (Lee 2004, p. 124). A chemical is analyzed with respect to some aspect,
described by a parameter θ , of its reaction with a known chemical. It is of inter-
est to test whether or not an unknown chemical is a specific compound, with a
reaction strength θ0 known to an absolute accuracy of ε. In such circumstances,
the precise null hypothesis is better represented as the interval null hypothesis
H0 : θ ∈ �0 = (θ0 − ε, θ0 + ε), where ε > 0 is a constant such that any value in
�0 can be considered indistinguishable from θ0. So, given a continuous prior den-
sity π (θ ) for parameter θ , the prior probabilities π0 and π1, and the conditional
densities πH0 (θ ) and πH1 (θ ) of θ , are defined as in Section 6.2.1, Equations (6.4),
(6.8) and (6.9). Typically, πH0 (θ ) will be a sharply peaked density near θ0, while
πH1 (θ ) will be rather diffuse. One can work with the interval as the null hypothesis,
or approximate the interval hypothesis with the point null hypothesis. The latter
option may be preferable, because of the difficulties in specifying ε and πH0 (θ ). As
a second example, consider testing the null hypothesis H0 : females and males of a
species are the same in terms of a given characteristic, say A. This is not meant as a
precise hypothesis. There may be a difference, although negligible. The point null
hypothesis is a good approximation to many realistic scenarios. Ideally, for a good
approximation, the posterior probabilities obtained with and without approximation
should be nearly equal, a case that is guaranteed when the likelihood function is
nearly constant on �0. An example for a Normal population with known variance
is discussed in Berger (1988) and Lee (2004), where a bound for the variation of
the likelihood over the range of indistinguishable values in �0 is computed.

At this point, a cautionary note may be useful on the point that Bayesian and
frequentist methods may lead to radically different answers. Examples may be
found, for instance, where frequentist methods would reject a null hypothesis at
a significance level of α = 0.05 whereas from a Bayesian point of view, the pos-
terior probability of the null hypothesis is substantial, that is to say that the null
hypothesis should not be rejected. It might be argued that the discrepancy between
p-values and posterior probabilities in testing precise hypotheses is sensitive to the
chosen prior density, but it can be shown that it is a general phenomenon. Berger
and Delampady (1987), for example, present settings in which lower bounds on the
posterior probability are computed for a Normal population and a binomial popula-
tion over wide classes of prior densities and find that even these lower bounds are
much larger than the p-value. In Lee (2004), bounds are computed for a Normal
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population that does not depend on the prior distribution. From a decision-theoretic
point of view, however, diverging results may be regarded as irrelevant, as noted
by Berger and Delampady (1987, p. 330):

A frequent attempt to dismiss the conflict between p-values and Bayes factors
is to argue that neither is relevant: one should instead quantify losses in
incorrectly accepting or rejecting H0 and perform a decision analysis.

Consider the ‘0–ki ’ loss function, summarized in Table 6.4. According to
Equation (6.14), the optimal decision is to reject the null hypothesis when

BF = f (x | θ0)∫
�1

f (x | θ )πH1 (θ )dθ
<

k0

k1

π1

π0
. (6.33)

6.4.2 Proportion

The problem considered in this subsection is that of testing a binomial parameter.
Suppose, as usual, that y represents the number of successes in n trials, with θ being
the probability of success. A binomial variable Y ∼ Bin(n , θ ) can thus be defined.
Suppose further that it is of interest to test H0 : θ = θ0 against H1 : θ �= θ0, where
0 < θ0 < 1. Assuming a uniform prior density for the proportion θ , π (θ ) = 1, the
weighted likelihood l1(y) under H1 is equal to:

l1(y) =
∫

�1

(
n

y

)
θ y (1 − θ )n−y dθ =

(
n

y

)
B (y + 1, n − y + 1) ,

where � = (0, 1). Therefore, the Bayes factor turns out to be equal to

BF = θ
y
0 (1 − θ0)n−y

B(y + 1, n − y + 1)
. (6.34)

If the prior probabilities π0 and π1 of the null and alternative hypotheses are
available, then α0, the posterior probability of the null hypothesis, is given by

α0 =
[

1 + π1

π0

1

BF

]−1

=
[

1 + π1

π0

B(y + 1, n − y + 1)

θ
y
0 (1 − θ0)n−y

]−1

. (6.35)

For cases where prior knowledge is available and allows the specification of a more
informative Be(α, β) distribution, the weighted likelihood l1(y) with �1 = (0, 1) is

l1(y) =
∫

�1

(
n

y

)
θα+y−1(1 − θ )β+n−y−1

B (α, β)
dθ =

(
n

y

)
B (α + y , β + n − y)

B(α, β)
,
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and the Bayes factor is

BF = θ
y
0 (1 − θ0)n−y B(α, β)

B(α + y , β + n − y)
. (6.36)

Example 6.4.1 (Allele mutation). Consider a DNA allele-counting experi-
ment to identify the proportion θ of a certain type of phenomenon (e.g. the
mutation rate) within a specified population. A well-defined null hypothesis
is entertained, that is θ = 0.1, so that the aim is to test H0 : θ = 0.1. As
there is no specific alternative hypothesis, H1 : θ �= 0.1 is chosen. For a
count of n = 500 maternally transmitted alleles, y = 53 are found to be of
the specified mutated type. What is the strength of this evidence against H1?

Assuming a uniform prior, the Bayes factor can be computed by apply-
ing Equation (6.34) and is found to be BF = 26.28. This result suggests a
moderate support of hypothesis H0. In addition, assuming π0 = π1 = 1/2,
the posterior probability of the null hypothesis is equal to α0 = 0.96. The
same conclusions are obtained from a decision-theoretic approach by taking
a ‘0–ki ’ loss function. In order to reject H0, it follows from Equation (6.33)
that an asymmetric loss is necessary with k0 approximately 27 times larger
than k1, which is a rather unrealistic loss function.
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Figure 6.9 Plot of the posterior probability α0 of the null hypothesis as the prior
variance increases from 0.0004 to 0.06.
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For the purpose of illustration, imagine that available knowledge suggests
a prior mean equal to 0.1. The beta hyperparameters thus need to be chosen
such that α/(α + β) = 0.1. Assuming uncertainty about the prior variance,
a sensitivity analysis may be conducted in order to analyze the impact of
different values of prior variability on the posterior probability of the null
hypothesis. This is illustrated in Figure 6.9 which shows that a small variance
for the prior density under the alternative hypothesis does not influence the
optimal decision, which remains d0.

Comparison of two proportions

Consider two populations. It is of interest to test whether the proportions of elements
sharing a given property in the two populations are equal or not. The quantities
of interest are denoted with θ1 and θ2 for the first and the second population,
respectively. The competing hypotheses are H0 : θ1 = θ2 against H1 : θ1 �= θ2, more
conveniently rewritten as H0 : θ1 − θ2 = 0 and H1 : θ1 − θ2 �= 0. Beta prior distri-
butions, π (θi ) = Be(αi , βi ), i = 1, 2, are assumed for the parameters θ1 and θ2.

Let there be two independent random samples from the two populations,

x1 = (x11, . . . , x1n1 ) and x2 = (x21, . . . , x2n2 ),

where xij = 1 if the j -th member of the sample from the i -th population is a
success, and = 0 otherwise. The sum of the observed successes yi = ∑ni

j=1 xij ,
i = 1, 2, can be considered as a realization of a binomial variable with parameters
ni and θi , Yi ∼ Bin(ni , θi ). The posterior densities of the parameters θ1 and θ2 are
Be(α∗

i , β∗
i ), i = 1, 2, with parameters α∗

i and β∗
i , obtained following the updating

rules given in Example 3.3.2.
A natural choice for the probability density under the alternative hypothesis

would then be the distribution of the difference of two beta densities. This distri-
bution is not straightforward to handle but a Normal approximation may be used
(see Section 6.3.2).

The approximate posterior probability of the difference θ1 − θ2 can be written as

π (θ1 − θ2 | x1, x2) ≈ N
(
µ1 − µ2, τ 2

1 + τ 2
2

)
where

µi = α∗
i

α∗
i + β∗

i

; τ 2
i = α∗

i β∗
i

(α∗
i + β∗

i )2(α∗
i + β∗

i + 1)
, i = 1, 2.

One possibility for a test of the null hypothesis is to see whether the parameter value
specified by the null hypothesis (that is, 0) lies inside the 100(1 − α)% credible
interval (see Section 5.2, and Bolstad 2004):[

µ1 − µ2 − z1−α/2

√
τ 2

1 + τ 2
2 ; µ1 − µ2 + z1−α/2

√
τ 2

1 + τ 2
2

]
. (6.37)
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Another possibility for the test of the hypothesis of interest is that of simula-
tions. Draw m pairs of samples at random from the beta posteriors π (θi | xi ) =
Be

(
α∗

i , β∗
i

)
, i = 1, 2, and compute the difference in estimates of the parameters

θ1 and θ2 for each draw. The sample quantiles of order α/2 and 1 − α/2 provide
a (simulated) 100(1 − α)% credible interval for θ1 − θ2. The null hypothesis will
be rejected if the value (θ1 − θ2 = 0) under the null hypothesis lies outside the
interval.

However, as mentioned at the beginning of the section, a full Bayesian solution
would require probabilities to be assigned to the competing hypotheses. Moreover,
a fixed credibility level would not be needed. Consider, for example, the testing
of the hypotheses θ1 = θ2 versus θ1 �= θ2 by computing the posterior odds and
the Bayes factor as given by Equations (6.30) and (6.31). Since the posterior
distribution has been approximated by a Normal distribution, it is convenient to
consider the Normal approximation of the binomial distribution of the data, that is

Yi ≈ N(ni θi , ni x̄i (1 − x̄i )) i = 1, 2,

where x̄i is the proportion of successes in the i -th sample and is an estimate of
θi , i = 1, 2. The variance ni θi (1 − θi ) has been estimated using the sample mean
x̄i which is a consistent estimator of θi

8.
Consider the variable Zi = Yi /ni which is Normally distributed with mean θi

and variance x̄i (1 − x̄i )/ni . The difference Z = Z1 − Z2 is still, approximately, Nor-
mally distributed with mean θ1 − θ2:

Z ≈ N
(
θ1 − θ2, s2) ,

with
s2 = x̄1(1 − x̄1)

n1
+ x̄2(1 − x̄2)

n2
.

The Bayes factor can be written as

BF = f (z | (θ1 − θ2 = 0))∫
�1

f (z | θ1 − θ2)πH1 (θ1 − θ2)d (θ1 − θ2)
= f (z | 0)

l1(z )
.

It can be shown that the weighted likelihood ratio under H1, l1(z ), is N(µ1 −
µ2, s2 + τ 2

1 + τ 2
2 ) (Aitken and Taroni 2004, p. 324). At this point, then, all the

elements are available to compute the Bayes factor which can be found to be

BF =
(
s2
)−1/2

exp
[
− 1

2s2 z 2
]

(
s2 + τ 2

1 + τ 2
2

)−1/2
exp

[
− 1

2
(

s2+τ2
1 +τ2

2

) (z − (µ1 − µ2))2

] . (6.38)

8The property of consistency for an estimator requires that the estimator converges to the parameter
of interest as the sample size becomes infinite. Informally, as the sample size increases, a consistent
estimator will become arbitrarily close to the parameter of interest with high probability. For a formal
definition, see the concept of convergence in probability (Casella and Berger 2002, for example).
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The optimal decision can be identified from Equation (6.33).

Example 6.4.2 (Detection of nandrolone metabolites – continued). As in
Example 6.3.3, consider a setting in which urine samples are taken from foot-
ball players before and after a football game to find out whether there is a
significant difference before and after physical effort, and therefore, whether
traces of nandrolone detected after effort may have an endogenous origin
(natural generation), as claimed by some players. For this purpose, a total
of 137 urine samples belonging to amateur football players were collected
before and after effort (Robinson et al. 2001) and it is known that they have
not been taking the anabolic steroid. Analytical results are shown in Table 6.9
in terms of presence or absence of the metabolite in the urine samples.

Table 6.9 Results of the quantification of nandrolone in
amateur football players before and after physical effort.

Before After

Presence 0 8
Absence 137 129

The two groups (before and after) are described by two independent bino-
mial variables, with probability of success (say, the absence of the NA traces)
θ1 and θ2. Based on previous experience, a Be(20, 2) prior distribution is
introduced for both proportions. The aim may then be to test H0 : θ1 − θ2 =
0 versus H1 : θ1 − θ2 �= 0. The posterior distributions are Be(157,2) and
Be(149, 10), respectively.

First, consider the approach based on determination of a credible interval.
The posterior densities of the parameters are approximately Normal with
means

µ1 = 157

159
= 0.987 ; µ2 = 149

159
= 0.937,

and variances
τ 2

1 = 0.000077 ; τ 2
2 = 0.00037.

The posterior probability of the difference can be approximated with a Nor-
mal distribution of the form π (θ1 − θ2 | x1, x2) ≈ N(0.05, 0.0212). The 95%
credible interval, Equation (6.36), is

[0.05 − 1.96 · 0.021 ; 0.05 + 1.96 · 0.021] = [0.009 ; 0.09] .
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At a credibility level of α = 0.05, the null hypothesis is rejected because
the interval does not cover the point value 0. The same conclusion may
be obtained by drawing m = 1000 independent samples from the posterior
distributions Be(157, 2) and Be(149, 10). The sampling distribution of the dif-
ference between draws is illustrated in Figure 6.10. The sample quantiles of
order 0.025 and 0.975 are equal to 0.01 and 0.09, respectively, giving a 95%
quantile interval which does not include zero and hence results in a rejection
of the null hypothesis. Thus, there is evidence of a difference in the probabil-
ity of finding nandrolone in the urine before a game and the probability of
finding it after a game. This is the outcome of a test of a two-sided alternative
hypothesis. Further inspection of the data shows that the level of nandrolone
before the game is lower than the level after the game; i.e., there is evidence
of an endogenous origin for nandrolone. This result has not arisen solely
because of the choice of the prior. A uniform prior also provides a posterior
credible interval which supports this conclusion (with a Be(1, 1) prior the
credible interval is [0.014 ; 0.1]).
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Figure 6.10 Sampling posterior distribution of θ1 − θ2 obtained by taking m draws
from a Be(157, 2) and a Be(149, 10).

In a full Bayesian perspective, the Bayes factor (6.38) can be found to be
BF = 0.02 = 1/50. This result provides moderate supports for the hypothe-
sis H1, that there is a difference in nandrolone level between the two groups.
When assuming the competing hypotheses to be equally likely, a priori,



Two-Sided Testing 241

π0 = π1 = 1/2, then the posterior probability of the null hypothesis is

α0 =
(

1 + 1

0.02

)−1

� 0.02.

The null hypothesis that there has not been a change in the level of nan-
drolone can thus be rejected. Given any symmetric ‘0–ki ’ loss function, the
optimal decision is d1, there has been a change in the level of nandrolone.
Figure 6.11 shows that only a strong prior belief in the hypothesis H0 being
true (π0 > 0.98) would produce a posterior probability α0 greater than 0.5 in
favour of no change in the level of nandrolone, and thus a different decision.
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Figure 6.11 Posterior probability α0 of the null hypothesis H0 of no difference in
nandrolone levels before and after a game of football given varying prior beliefs
π0 in H0 being true. The dashed horizontal line at α0 = 0.5 indicates the optimal
decision threshold when π0 = 0.98 (given a symmetric loss function).

6.4.3 Mean

Consider a continuous measurement, such as the weight X of ecstasy pills, that
is Normally distributed with known variance σ 2, X ∼ N (θ , σ 2). Suppose that it is
of interest to test the null hypothesis H0 : θ = θ0 against the alternative hypothesis
H1 : θ �= θ0. The probability density of θ under the alternative hypothesis πH1 (θ ) is
taken to be Normal, πH1 (θ ) = N (µ, τ 2). As has been observed in Section 4.4.1, the
distribution of the sample mean of n Normally distributed random variables, X ∼
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N (θ , σ 2), is still Normal with the same mean θ and variance σ 2/n , X̄ ∼ N (θ , σ 2/n).
Suppose then that a random sample (x1, . . . , xn ) is observed. Considering that the
sample mean is a sufficient statistic for θ and recalling from Section 3.3.2, Equation
(3.12), that the posterior distribution depends on the data only through the sufficient
statistic, the probability density function f (x1, . . . , xn | θ ) reduces to

f (x1, . . . , xn | θ ) = 1√
2πσ 2/n

exp

(
− 1

2σ 2/n
(x̄ − θ )2

)
.

It can be shown (see for example Aitken and Taroni (2004, p. 324)) that the
weighted likelihood of the mean X̄ of n measurements under hypothesis H1, l1(x̄ ),
is N

(
µ, τ 2 + σ 2/n

)
. Therefore, the Bayes factor in Equation (6.31) turns out to

be equal to:

BF =
(σ 2/n)−1/2 exp

(
− 1

2σ 2/n
(x̄ − θ0)2

)
(τ 2 + σ 2/n)−1/2 exp

(
− 1

2(τ2+σ 2/n)
(x̄ − µ)2

) .

Then, if the prior probabilities π0 and π1 of H0 and H1, respectively, are available,
the posterior probability α0 is obtained in a straightforward way as in Equation
(6.32). Whenever values of θ close to θ0 are considered more likely, then a rea-
sonable choice for the prior mean is µ = θ0. The Bayes factor then reduces to

BF =
(

1 + nτ 2

σ 2

)1/2

exp

(
−1

2

(
1

σ 2/n
− 1

τ 2 + σ 2/n

)
(x̄ − θ0)

2
)

, (6.39)

and the posterior probability of the null hypothesis is

α0 =
[

1 + π1

π0

(
1 + nτ 2

σ 2

)−1/2

exp

(
−1

2

(
1

τ 2 + σ 2/n
− 1

σ 2/n

)
(x̄ − θ0)2

)]−1

.

As far as the choice of the prior under H1 is concerned, the standard deviation τ

is supposed to be considerably greater than the width of the interval of values of
the parameter considered indistinguishable from θ0 (Lee 2004).

Example 6.4.3 (Scales accuracy test). Suppose that it is of interest to test the
accuracy of a laboratory scale. Measurements X are assumed to be Normally
distributed with known variance, X ∼ N(θ , σ 2 = 0.012).

For this purpose, a weight standard of 1000 mg is used. It is, thus, of
interest to test whether the standard weight will be found to be equal to
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1000 mg or whether it will be found either smaller or larger than 1000 mg.
In other words, one is interested in testing the null hypothesis H0 : θ = 1000
against the alternative hypothesis H1 : θ �= 1000. Assume the null hypothesis
is believed, a priori, to be as likely as the alternative, that is π0 = π1 = 1/2,
and that the prior density under the alternative hypothesis is N(1000, 0.12).
Thirty measurements are taken with a mean x̄ = 999.996 mg. The Bayes
factor then is:

BF =
(

1 + 30 · 0.12

0.012

)1/2

exp

(
−1

2

(
1

0.012/30
− 1

0.012/30 + 0.12

)
(−0.004)2

)
= 4.97

and the posterior probability α0 in favour of H0 = (
1 + 1

4.97

)−1 = 0.83.
These values suggest substantial evidence in favour of H0 that the mean is
1000 mg. Figure 6.12 presents the Bayes factor obtained with different prior
opinions about the value of τ 2. Of course in practice the prior belief π0

that the weight of a standard is as specified should be very close to 1, and
π1 correspondingly very close to 0. The Bayes factor is independent of the
prior odds and is the factor by which the prior odds changes as a result of
the experiment. The R code at the end of the chapter allows for the user to
choose their own values of π0.
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Figure 6.12 The relationship of the Bayes factor in (6.39) to the increase of the
value of the prior variance τ 2 from 0 to 1 (n = 30, σ 2 = 0.012, x̄ = 999.996, θ0 =
1000, π0 = π1 = 1/2).
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Assuming a symmetric ‘0–ki ’ loss function, the term k0
k1

π1
π0

in Equation
(6.33) becomes 1. Therefore, the optimal decision is d0, accepting the null
hypothesis that the mean weight is 1000 mg, since the Bayes factor is greater
than 1.

Comparison of two means

Consider two groups of observations from two Normal populations with known
and equal variance, X1 ∼ N (θ1, σ 2) and X2 ∼ N (θ2, σ 2) and suppose that it is
of interest to test the equality of the means θ1 and θ2. Stated otherwise, the
two competing hypotheses are H0 : θ1 − θ2 = 0 against H1 : θ1 − θ2 �= 0. Assume
for the parameters of interest a conjugate Normal prior, π (θi ) = N (µ, τ 2/2), i =
1, 2, so that the prior probability density under the alternative hypothesis can
be taken to be πH1 (θ1 − θ2) = N (0, τ 2). Two random samples then are observed,
one for each population, x1 = (

x11, . . . , x1n1

)
and x2 = (

x21, . . . , x2n2

)
. Thus, X̄ =

X̄1 − X̄2 ∼ N (θ1 − θ2, σ 2/n1 + σ 2/n2), and the Bayes factor is

BF =
(

1 + n1n2τ
2

σ 2(n1 + n2)

)1/2

exp


−1

2


 1

σ 2

n1
+ σ 2

n2

− 1
σ 2

n1
+ σ 2

n2
+ τ 2


 x̄ 2


 .

Note that if n1 = n2 = n , it reduces to

BF =
(

1 + nτ 2

2σ 2

)1/2

exp

[
−1

2

(
1

2σ 2

n

− 1
2σ 2

n + τ 2

)
x̄ 2

]
. (6.40)

Example 6.4.4 (Firearms examination). Forensic scientists commonly seek
to determine the source of a bullet recovered on a crime scene. Among the ini-
tial steps in the examination process is the analysis of the widths in millimetres
of land and groove marks. Their widths may be measured using microscope
devices conceived for this purpose. Imagine that a series of measurements
of the width of groove marks have been made on a questioned bullet and on
a known bullet (fired, for example, using a suspect’s firearm), respectively.
These measurements may be considered Normally distributed with known
standard deviation σ = 0.02.

It may then be of interest to compare the means θ1 and θ2 of the two series of
measurements, with particular attention being drawn to a difference in width.
More specifically, a scientist may intend to test the null hypothesis H0 : θ1 −
θ2 = 0 versus the alternative hypothesis H1 : θ1 − θ2 �= 0. The prior density
under the alternative hypothesis is taken to be Normal with zero mean and
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standard deviation τ fixed on the basis of prior knowledge from an available
database, as suggested in Example 4.4.3. In particular, differences between
measurements greater, in absolute value, than 0.15 millimetres are believed
extremely unlikely, so that a value of τ = 0.05 is chosen so that 0.15 is three
standard deviations from the mean.

Suppose then that a total of n = 36 measurements are taken from a ques-
tioned and a known bullet. The sample mean width of groove marks x̄1 of
the questioned bullet is equal to x̄1 = 1.9314 millimetres, while the sample
mean x̄2 of the known bullet is x̄2 = 1.9508 millimetres. The Bayes factor,
Equation (6.40), is equal to BF = 0.002 = 1/500 and provides moderately
strong evidence for the alternative hypothesis, H1. With prior probabilities
π0 = π1 = 1/2, the posterior probability for H0 is approximately equal to
BF, which is 0.002. There is consequently a very large posterior probability
(0.998) that the mean widths of groove marks for the known and questioned
bullets are different and hence that the bullets come from different firearms.

6.5 R CODE

A symbol ‘∗’, ‘+’, ‘,’ and so on at the end of a line indicates that the command
continuous to the following line. The absence of such a symbol indicates the end
of a command.

Example 6.3.1

Prior odds

alpha=1
beta=1
theta0=0.1
pi0=pbeta(theta0,alpha,beta)
pi1=pbeta(theta0,alpha,beta,lower.tail=FALSE)
podds=pi0/pi1
print(paste('Prior odds =',round(podds,2)))

Posterior odds and Bayes factor

n=50
y=4
alphap=alpha+y
betap=beta+n-y
alpha0=pbeta(theta0,alphap,betap)
alpha1=pbeta(theta0,alphap,betap,lower.tail=FALSE)
postodds=alpha0/alpha1
print(paste('Posterior odds =',round(postodds,2)))
print(paste('Bayes factor =',round(postodds/podds,2)))
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Decision-theoretic approach

k0=1
k1=1
ld0=k0*((alpha+y)/(alpha+beta+n))*pbeta(theta0,alpha+y+1,
betap,lower.tail=FALSE)-k0*theta0*pbeta(theta0,alphap,betap,
lower.tail=FALSE)
ld1=k1*theta0*pbeta(theta0,alphap,betap)-k1*((alpha+y)/
(alpha+beta+n))*pbeta(theta0,alpha+y+1,betap)
l=c(ld0,ld1)
print(paste('Optimal decision: decision',which(l==min(l))-1))

Example 6.3.2

Data, prior and posterior information for population 1 and population 2

alpha1=3.5
beta1=2

alpha2=3.5
beta2=3.5

par(mfrow=c(1,2))
plot(function(x) dbeta(x,alpha1,beta1),0,1,main='Population 1',
xlab=expression(paste(theta)),ylab='Prior density')
plot(function(x) dbeta(x,alpha2,beta2),0,1,main='Population 2',
xlab=expression(paste(theta)),ylab='Prior density')

n1=13
y1=10
alpha1p=alpha1+y1
beta1p=beta1+n1-y1

n2=32
y2=6
alpha2p=alpha2+y2
beta2p=beta2+n2-y2

Comparison between the two proportions

print('Log-odds ratio')
mu=log((alpha1p-1/2)*(beta2p-1/2)/((beta1p-1/2)*(alpha2p-1/2)))
tau=alpha1p^(-1)+beta1p^(-1)+alpha2p^(-1)+beta2p^(-1)
p=pnorm(-mu/sqrt(tau),0,1,lower.tail=FALSE)
print(paste('Probability log-odds ratio greater than zero =',
round(p,4)))
plot(function(x) dnorm(x,mu,sqrt(tau)),-1,5,ylab='Density',
xlab='log-odds ratio')

print('Approximated distribution')
mu1=(alpha1+y1)/(alpha1+beta1+n1)
mu2=(alpha2+y2)/(alpha2+beta2+n2)
mu=mu1-mu2
tau1=(alpha1p*beta1p/((alpha1+beta1+n1)^2*
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(alpha1+beta1+n1+1)))
tau2=(alpha2p*beta2p/((alpha2+beta2+n2)^2*
(alpha2+beta2+n2+1)))
tau=tau1+tau2
alpha0=pnorm(0,mu,sqrt(tau))-pnorm(-1,mu,sqrt(tau))
print(paste('Posterior probability of the null hypothesis =',
alpha0))

print(paste('Howard prior'))
library(LearnBayes)
plo=0.0001
phi=0.9999
n.grid.points=10000
par=c(alpha1,beta1,alpha2,beta2)
rho=2
parp=c(alpha1p,beta1p,alpha2p,beta2p)
s=simcontour(howardprior,c(plo,phi,plo,phi),c(parp,rho),
n.grid.points)

alpha0=sum(s$x<s$y)/n.grid.points
print(paste('Posterior probability of the null hypothesis =',
alpha0))

par(mfrow=c(1,2))
mycontour(howardprior,c(plo,phi,plo,phi),c(par,rho))
title(main='Prior',xlab=expression(paste(theta[1])),
ylab=expression(paste(theta[2])))
lines(c(0,1),c(0,1))
mycontour(howardprior,c(plo,phi,plo,phi),c(parp,rho))
title(main='Posterior',xlab=expression(paste(theta[1])),
ylab=expression(paste(theta[2])))
lines(c(0,1),c(0,1))

Example 6.3.3

Data, prior and posterior information for population 1 and population 2

f=c(336,9,5,5,3)
s=c(126,0,0,0,0)
af=c(1,1,1,1,1)
as=c(1,1,1,1,1)
afpost=af+f
aspost=as+s

Simulations from the posterior Dirichlet distribution

library(MCMCpack)
n=10000
rf=rdirichlet(n,afpost)
rs=rdirichlet(n,aspost)

d=matrix(0,nrow=n,ncol=1)
par(mfrow=c(2,2))
for (i in 1:4){
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for (j in 1:n){
d[j]=sum(rf[j,1:i])-sum(rs[j,1:i])
}
hist(d,xlab=expression(paste(theta[1])*
paste(' - ')*paste(theta[2])),main='')
print(length(which(d<0))/n)
}

Example 6.3.4

Prior odds

s=c(0.0229^2,0.0463^2)
mu=1
tau=.3
theta0=.5
pi0=pnorm(theta0,mu,tau)
pi1=pnorm(theta0,mu,tau,lower.tail=FALSE)
podds=pi0/pi1
print(paste('Prior odds =',round(podds,3)))

Posterior odds and Bayes factor

m=c(0.5191,0.5093)
n=length(m)
for (i in 1:2){
mu=(mu*s[i]/n+tau^2*m[i])/(s[i]/n+tau^2)
tau=sqrt((tau^2*s[i]/n)/(tau^2+s[i]/n))
}
print(paste('Posterior mean =',round(mu,4)))
print(paste('Posterior standard deviation =',round(tau,4)))

alpha0=pnorm(theta0,mu,tau)
alpha1=pnorm(theta0,mu,tau,lower.tail=FALSE)
postodds=alpha0/alpha1
B=postodds/podds
print(paste('Posterior odds =',round(postodds,4)))
print(paste('Bayes factor =',round(B,2)))

Decision-theoretic approach

k0=2
k1=1
t=(theta0-mu)*tau
ld0=(k0*tau*(dnorm(t)-t*pnorm(t,lower.tail=FALSE)))
ld1=(k1*tau*(dnorm(t)+t*(0.5-pnorm(t))))
l=c(ld0,ld1)
print(paste('Optimal decision: decision',which(l==min(l))-1))

Example 6.3.5

Data

auth=c(203.33,204.06,202.62,200.65,199.77,203.25,
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202.28,201.22,200.3,201.06)
quest=c(206.17,195.78,197.44,200.61,196.19,213.18,
217.23,197.35,203.29,194.58)
n1=length(auth)
n2=length(quest)
xbar1=mean(auth)
xbar2=mean(quest)
s=(sum((quest-xbar2)^2)+sum((auth-xbar1)^2))/(n1+n2-2)

Posterior odds

tq=-(xbar1-xbar2)/(sqrt(s*(1/n1+1/n2)))
alpha0=pt(tq,n1+n2-2)
alpha1=pt(tq,n1+n2-2,lower.tail=FALSE)
postodds=alpha0/alpha1
print(paste('Posterior odds =',round(postodds,2)))

Example 6.4.1

Input values

theta0=0.1
n=500
y=53

Bayes factor and posterior odds

B=(theta0^y)*(1-theta0)^(n-y)/beta(y+1,n-y+1)
print(paste('Bayes factor =',round(B,2)))
pi0=.5
pi1=1-pi0
alpha0=(1+(pi1/pi0)*(1/B))^(-1)
print(paste('Posterior probability of the null hyp =',
round(alpha0,2)))

Example 6.4.2

Data, prior and posterior parameters

alpha=c(20,20)
beta=c(2,2)
n=c(137,137)
y=c(137,129)
alphap=alpha+y
betap=beta+n-y

Credible interval

mup=alphap/(alphap+betap)
taup=(alphap*betap)/((alphap+betap)^2*(alphap+betap+1))
cl=.05
z=round(qnorm(cl/2,lower.tail=FALSE),2)
u=(mup[1]-mup[2])+z*sqrt(taup[1]+taup[2])
l=(mup[1]-mup[2])-z*sqrt(taup[1]+taup[2])
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print(paste((1-cl)*100,'% credibility interval: [',round(l,3),
';',round(u,3),']'))

Simulations

m=10000
theta1=rbeta(m,alphap[1],betap[1])
theta2=rbeta(m,alphap[2],betap[2])
d=theta1-theta2
hist(d,freq=FALSE,xlab=expression(paste(theta[1])*paste(' - ')*
paste(theta[2])),main='')
cl=.05
q=c(quantile(d,cl/2),quantile(d,1-cl/2))
print(q)

Bayes factor and posterior probability of the null hypothesis

z=y[1]/n[1]-y[2]/n[2]
s2=((y[1]/n[1])*(1-y[1]/n[1])/n[1])+((y[2]/n[2])*
(1-y[2]/n[2])/n[2])
Bfnum=(s2)^(-1/2)*exp(-(1/(2*s2))*z^2)
v=s2+taup[1]+taup[2]
Bfden=v^(-1/2)*exp(-(1/(2*v))*(z-mup[1]+mup[2])^2)
BF=Bfnum/Bfden
print(paste('Bayes factor =',round(BF,2)))
alpha0=(1+1/BF)^(-1)
print(paste('Posterior probability of the null hyp =',
round(alpha0,2)))

pi0=seq(0.01,0.99,0.01)
pi1=1-pi0
alpha0=matrix(0,nrow=length(pi0),ncol=1)
for (i in 1:length(pi0)){
alpha0[i]=(1+(pi1[i]/pi0[i])*(1/BF))^(-1)
}
p=pi0[which(alpha0>=.5)][1]
print(paste('Lower limit of prior probability necessary to
change decision:',p))

Example 6.4.3

Input values

n=30
barx=999.996
sigma2=0.01^2
theta0=1000
mu=theta0
tau2=0.1^2
pi0=0.5
pi1=1-pi0
priorodds=pi0/pi1
print(paste('Prior odds =',priorodds))
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Bayes factor and posterior probability of the null hypothesis

B=sqrt(1+n*tau2/sigma2)*exp(-(1/2)*
(1/(sigma2/n)-1/(sigma2/n+tau2))*(barx-theta0)^2)
alpha0=(1+1/B)^(-1)
print(paste('Bayes factor =',round(B)))
print(paste('Posterior probability of the null hypothesis =',
round(alpha0,2)))

alternatively, it can be checked

alpha0=(1+(pi1/pi0)*(1+(n*tau2/sigma2))^(-1/2)*exp(-(1/2)*
(1/(sigma2/n+tau2)-1/(sigma2/n))*(barx-theta0)^2))^(-1)
alpha1=1-alpha0
postodds=alpha0/alpha1
B=postodds/priorodds

Example 6.4.4

Input values

n=36
sigma2=0.02^2
barx1=1.9314
barx2=1.9508
barx=barx1-barx2
tau2=0.05^2
pi0=.5
pi1=1-pi0

Bayes factor and posterior probability of the null hypothesis

B=sqrt(1+n*tau2/(2*sigma2))*
exp(-(1/2)*(1/(2*sigma2/n)-1/(2*(sigma2/n)+tau2))*barx^2)
alpha0=(1+(pi1/pi0)*(1/B))^(-1)
print(paste('Bayes factor =',B))
print(paste('Posterior probability of the alternative
hypothesis =',1-alpha0))
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Sampling

7.1 INTRODUCTION

Operational laboratories providing forensic science services commonly encounter
consignments of discrete units whose characteristics may be of interest within a
criminal investigation. Typical examples include consignments that consist of indi-
vidual items, such as tablets, bags or electronic data storage devices where each
item of such a consignment may, or may not, contain something illegal. That ille-
gal content could be drugs or pornographic images, for instance. Forensic science
laboratories may be called on to inspect individual items of a consignment in order
to gather information from which may be drawn an inference about the proportion,
θ , of items that contain something illegal. Only rarely, however, are circumstances
such that laboratories are in the advantageous situation that the entirety of a con-
signment may be inspected – a setting in which certainty about the proportion could
obviously be obtained (assuming error-free analyses).

Most often, laboratories face a high workload together with constraints of time
and finance. In addition, consignments may be very large or consist of items
that may contain hazardous substances whose analysis may require sophisticated,
expensive and time-consuming analytical procedures. For practical reasons, both
scientists and their clients thus seek to agree on ways to confine analyses to a
subset or sample of items. This results in incomplete information and subsequent
inferences about the composition of the whole consignment are affected by uncer-
tainty. However, this uncertainty may be quantified probabilistically. Some of the
commonly used approaches for the so-called ‘sampling problems’ are compiled in
a booklet issued by the ENFSI Drug Working Group (ENFSI 2004). All of these
approaches consider sampling essentially as a problem of the derivation of proba-
bilistic statements about the composition of a consignment in order to answer the

Data Analysis in Forensic Science: A Bayesian Decision Perspective Franco Taroni, Silvia Bozza, Alex Biedermann,
Paolo Garbolino and Colin Aitken
 2010 John Wiley & Sons, Ltd
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question of interest: ‘how big a sample should be taken?’ Although the handling
of uncertainty through probability is an essential aspect of sampling scenarios, the
situation actually faced by a customer of forensic expertise is one that contains
elements that allow the outcome to be considered as a problem of decision making.
Subsequent sections of this chapter will examine this point in futher detail.

Experimental design can be thought of in various different ways. According
to the so-called ‘classical (or frequentist) approach’, the sample information is
considered solely in order to draw an inference about the proportion of interest,
θ . Nevertheless, other relevant aspects of the problem, arising from sources other
than the statistical investigation, may be available.

A first source of non-sample information is the prior information, which reflects
a reasoner’s personal degree of belief about the composition of a consignment
(e.g. the proportion of units containing illegal substances) and which is measured
by a probability distribution for θ . A second source of non-sample information is
given by the possible consequences of decisions. These are quantified on the basis
of personal preferences by determining the loss that would be incurred for each
possible decision and for each possible value of the quantity of interest, θ .

These ingredients are combined with the aim of making an optimal decision
about the problem at hand, that is the size of sampling that should be done in order
to gather knowledge of the desired accuracy about the value of θ . In this chapter,
particular consideration will be given to a sequential way of proceeding, in which
the size of a sample is not predetermined. The proposed procedure involves – after
each observation of a sampled item – a decision about whether it is advisable to
draw a conclusion about the value of θ (e.g. the composition of a consignment) or
whether more observations should be gathered.

7.2 SAMPLING INSPECTION

7.2.1 Background

Consider a population which consists of discrete items. Each item may be catego-
rized in one and only one of two ways, e.g. effective or defective, legal or illegal. In
all other respects the items are identical. For example, for tablets this would imply
identity in size, colour, texture and logo. A statistical investigation is conducted
for the purpose of obtaining information about θ . The outcome is denoted X . The
set of possible outcomes of X is the sample space and is denoted X. A random
sample of items (X1, . . . , Xn ) is drawn for inspection where the Xi are considered
as independent observations from a common density f (x | θ ). The observed results
might either be denoted a ‘success’ (e.g. the observed item contains an illegal
drug, Xi = 1), or a ‘failure’ (e.g. the observed item does not contain an illegal
drug, Xi = 0). The sample is a random sample from a binomial or hypergeometric
distribution (see Appendix A) for large or small samples, respectively, for which
the sampling of units may be taken to be sampling with or without replacement.
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A single sampling plan and sampling based on a sequential analysis are among
the most common methods for taking observations. In a single sampling plan, a
sample size n is preselected and observations x1, . . . , xn are made, followed by an
inference about the composition of the consignment. Various methods for selecting
the sample size – based on the sample information – are available and have been
accepted by US Courts (Aitken and Taroni 2004; Frank et al. 1991; Izenman 2001).

It is worth noting that a single sampling plan can be inefficient, in the sense that
the examiner will continue to inspect items from a batch until the predetermined
sample size is reached, without regards to what has already been observed. Consider
the following example (Berger 1988). Suppose that a consignment contains a large
number of items which can be classified as ‘positive’ or ‘negative’ (e.g. containing
or not containing something illegal). The aim is to test H0 : θ = 0.05 versus H1 :
θ = 0.15, where θ is the proportion of positive items. Assume further that the
optimal fixed sample size experiment requires the inspection of a sample of size
n = 100 and that a partial examination of half of the sample showed that all items
are negative. Then there is overwhelming evidence that H0 is true. Vice versa, it
might be the case that the sample of the predetermined size is not sufficient and
that more observations are needed.

As a second example, consider a typical problem in quality control where indi-
vidual units are sampled from a batch and inspected to see whether they are effective
or defective. Such sample information is then used to decide whether or not to con-
sider a batch as acceptable. A basic sampling plan could state that a fixed number
n of items are to be examined, and the consignment is to be rejected if more
than c observations are defective (Wetherill and Glazebrook 1986). Imagine also
that a partial examination of the sample showed that more than c observations are
defective: it will then be unnecessary to inspect the remaining units.

If a sequential analysis is implemented, observations are taken one at a time,
with a decision being made after each observation either to cease sampling, or to
take another observation. The advantage of a sequential analysis is that it allows
one to gather the appropriate amount of data needed for a decision of a desired
accuracy.

Many procedures for drawing inferences about θ solely based on the sample
information are available and belong to the so-called ‘classical methods’. The like-
lihood principle (see Section 3.3.2) states that for an inference about θ – after the
observation of the sample – all relevant experimental information is contained in
the likelihood function, that is f (x | θ ).

There may, however, be other information relevant for the statistical investiga-
tion, namely prior information. Such information could be gathered, for example,
by considering an item’s physical properties such as colour or shape. Prior beliefs
about θ are expressed by a probability distribution π (θ ). As an example, assume
that units are sampled from a population with replacement (e.g. as may happen
with large consignments), so that a binomial distribution with parameters n (sam-
ple size) and θ can be introduced to model the number of successes. A conjugate
prior distribution for a binomial distribution is the beta distribution (Section 3.3).
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Under these assumptions, Aitken (1999) formalized a criterion which allows one
to determine the sample size required to be 100p% certain that the proportion of
items in the consignment which contains an illegal substance is greater than 100θ%
(when all the items in the sample are found to be of type ‘positive’). If some items
are found to be ‘negative’, then the methodology suggests the number of additional
items that need to be inspected.

Therefore, a Bayesian approach can provide summaries in probabilistic terms
such as (for a particular case, with p = 0.95 and θ = 0.50) ‘how big a sample
should be taken for it to be said that there is a 95% probability that the proportion
of units in the consignment which contain drugs is greater than 50%?’

7.2.2 Large consignments

A large consignment is taken to be one which is sufficiently large that sampling is
effectively with replacement. This can be as small as 50, though in many cases it
will be of the order of many thousands.

A consignment of drugs containing N units will be considered as a random
sample from some super-population of units which contain drugs. Let θ (0 < θ < 1)
be the proportion of units in the super-population which contain drugs.

Let n be the number of sampled units. Denote the number which are found to
contain drugs by y .

Consider the criterion that the scientist wishes to be 100p% certain that 100θ0%
or more of the consignment contains drugs when all units sampled contain drugs
(y = n). The criterion may be written mathematically as

P (θ > θ0 | y , n , α, β) = p,

or

∫ 1

θ0

θα+n−1(1 − θ )β−1

B (α + n , β)
dθ = p, (7.1)

using a beta conjugate prior distribution π (θ ) = Be(α, β) and a binomial distri-
bution f (y | n , θ ) = Bin(n , θ ) to give a beta posterior distribution π (θ | y = n) =
Be(α + n , β).

Table 7.1 contains, for different values of α and β, and different values of n ,
the corresponding probabilities p satisfying Equation (7.1) for θ0 = 0.5.

This criterion motivates an answer to the question ‘how many units should be
inspected to satisfy this criterion?’. An alternative way of looking at (7.1) is to
reverse the role of the parameters and solve for n . Given specified values for θ

and p and values for α and β chosen from prior beliefs, the appropriate value of
n to solve (7.1) may be found by trial and error.
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Table 7.1 Probability that the proportion of drugs in a large consignment is greater than
50% for various sample sizes n and prior parameters α and β, P(θ > 0.5 | y , n , α, β). Note
that y = n. (Adapted from Aitken 1999.)

n

α β 2 3 4 5

1 1 0.88 0.94 0.97 0.98
0.5 0.5 0.92 0.97 0.98 0.99
0.065 0.935 0.78 0.89 0.95 0.97

Table 7.2 The sample size required to be 100p% certain that the proportion of units in the
consignment which contain drugs are greater than θ , when all the units inspected are found
to contain drugs. The prior parameters α = β = 1. (Reproduced from Aitken 1999. Journal
of Forensic Sciences 44, 750–760.)

p

θ 0.90 0.95 0.99

0.5 3 4 6
0.6 4 5 9
0.7 6 8 12
0.8 10 13 20
0.9 21 28 43
0.95 44 58 89
0.99 229 298 458

The dependency of the sample size on the values of p and θ is illustrated in
Table 7.2 where the prior parameters α and β are set equal to 1. Consider p = 0.90,
0.95 and 0.99 and consider values of θ = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99. The
sample size n (given that y = n) required to be 100p% certain that θ is greater
than the specified value, say θ0, is then given by evaluating (7.1) at α = β = 1∫ 1

θ0

θn

B (1 + n , 1)
dθ = 1 − θn+1

0 = p.

Rearranging into a form that will determine n , that is

log(1 − p) = (n + 1) log(θ0),

the value of n is thus given by the smallest integer greater than [log(1 − p)/
log(θ0)] − 1.

For large consignments, of whatever size, one needs to examine only 4 units, in
the first instance. If all are found to contain drugs, there is a 95% probability that
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at least 50% of the consignment contains drugs; then, the criterion is satisfied. This
sample size is not large. However, there is not very much information gained about
the exact value of θ . It is only determined that there is a probability of 0.95 that
θ > 0.5. This is a wide interval (from 0.5 to 1) within which the true proportion
may lie.

Obviously, when considering the results in Table 7.2, the consignment size has
to be taken into account, in the sense that the sample size should be small enough
with respect to the size of the consignment. Thus, for the last row in particular to
be useful, the size of the consignment from which the sample is to be taken will
have to be of the order of several tens of thousands.

This procedure cannot be considered a single sampling plan, where the optimal
sample size is determined before sampling on the basis of the desired values for p
and for θ . The optimal sizes given in Table 7.2 are conditioned on the assumption
that all items will be found to be positive. However, when negative items are found,
the same methodology can be extended to allow for this.

Example 7.2.1 (Inspection of pills suspected to contain drugs). Imagine that
the prior distribution for the proportion θ of illicit drugs is given by π (θ ) =
Be(1, 1) and that a sample of size n = 4 from a consignment is inspected
in order to be 95% certain that 50% or more of the consignment contains
drugs. However, one of the four selected units is found not to contain drugs.
How many further items should therefore be inspected? Given the specified
value for θ (θ0 = 0.5), an appropriate value of the optimal sample size may
be found by solving:∫ 1

0.5
θα+y−1(1 − θ )β+n−y−1dθ/B (α + y , α + β + n) = p. (7.2)

In particular, it can be shown (by trial and error) that if the next three suc-
cessive inspected items are all found to be positive, so that six out seven items
contain drugs, then

P (θ > 0.5 | y = 6, n = 7, α = 1, β = 1) = 0.96.

Therefore, three additional items should be inspected. If they all contain
drugs, then it can be shown that the probability that θ > 0.5, given that six
out of seven contain drugs, is 0.96 and the criterion is satisfied. Conversely,
if any of the three items does not contain drugs, further items need to be
inspected, the number of which can be found following the same criterion.

There may be situations in which different choices of α and β may be required.
For instance, there may be substantial prior beliefs about the proportion of the
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Figure 7.1 The prior probability 1 − F (θ ) that the proportion of units in a consignment is
greater than θ , for various choices of α and β: α = β = 1 (dashed curve), α = β = 0.5
(solid), α = 0.065, β = 0.935, (dotted). (Reproduced from Aitken 1999. Journal of Forensic
Sciences 44, 750–760.)

consignment which contains drugs. Such beliefs may arise, for example, from
relevant, previous experience with similar consignments. In such cases, use can be
made of various properties of the beta distribution (as presented in Section 4.2.1)
so as to assist in choosing values for α and β. One can reproduce, for instance,
results in Table 7.1 for different values of α and β, or different values of θ0, in a
straightforward manner using R routines as given at the end of this chapter.

Variation in the prior beliefs, expressed through variation in the values of α and
β may have little influence on the conclusions, once some data have been observed.
Figure 7.1 illustrates the prior probability that the true proportion of illegal items
in a consignment is greater than a value θ , for 0 < θ < 1 for three choices of α

and β. Figure 7.2 illustrates the posterior probability that the true proportion of
illegal items in a consignment is greater than θ , for those choices of α and β, once
four items have been examined and all found to be illegal. Despite the substantial
difference in the prior probability curves, the respective posterior probability curves
are very close.

7.2.3 Small consignments

Suppose now that the size N of the consignment is small. A sample of n units from
the consignment is examined and y(≤ n) units are found to contain illicit drugs.
As before, let θ , satisfying (0 < θ < 1), be the proportion of units in the super-
population which contains illicit drugs. The probability distribution of y , given n
and θ , may be taken to be binomial. For each item, independently of the others
in the consignment, the probability it contains drugs is taken to be equal to θ .
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Figure 7.2 The posterior probability 1 − F (θ ) that the proportion of units in a consignment
is greater than θ , for various choices of α and β: α = β = 1, (dashed curve), α = β = 0.5,
(solid), α = 0.065, β = 0.935, (dotted), after observation of four units all found to be illegal.
The corresponding probabilities that at least 50% of the consignment contains illegal units
are 0.985 (α = β = 0.5), 0.970 (α = β = 1), 0.950 (α = 0.065, β = 0.935). (Reproduced
from Aitken 1999. Journal of Forensic Sciences 44, 750–760.)

With a Be(α, β) prior distribution for θ , the posterior distribution is another beta
distribution with parameters (α + y) and (β + n − y).

Since the consignment size is small, a better representation of the variability
of the number of units in the non-inspected consignment which contain drugs is
obtained by considering a probability distribution for this number, Z say, explicitly.
Let there be m units in the remainder of the consignment (such that n + m = N )
which have not been inspected. Then Z (unknown and ≤ m) is the number of items
in this remainder which contain drugs. Given θ , the distribution of (Z | m , θ ),
like that of (Y | n , θ ), is binomial. However, θ has a beta distribution, and the
distribution of (Z | m , θ ) and the distribution of (θ | n , y , α, β) can be combined
to give a Bayesian predictive distribution for (Z | n , m , y , α, β), also known as a
beta-binomial distribution (see Section 3.3.4 and Appendix A):

P (Z = z | n , m , y , α, β) = �(n + α + β)
(m

z

)
�(z + y + α)�(n + m − y − z + β)

�(y + α)�(n − y + β)�(n + m + α + β)
,

(z = 0, 1, . . . , m). (7.3)

Consider the beta-binomial distribution (7.3) with α = β = 1. It can be shown
(Aitken 1999) that

P (Z = z | n , m , y , 1, 1) =
(n + 1)

(n
y

)(m
z

)
(n + m + 1)

(n+m
y+z

) , (7.4)

for z = 0, 1, . . . , m .
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Example 7.2.2 (Inspection of pills suspected to contain drugs – continued
(Aitken and Taroni 2004, p. 189)). For sake of illustration, consider a con-
signment of size N = 10, where five units are inspected and all five are found
to contain drugs (y = n = 5). Assume the prior distribution for θ , the pro-
portion of the consignment that contains illicit drugs, is π (θ ) = Be(1, 1). For
the proportion of units in the consignment which contain drugs to be at least
0.7 (θ ≥ 0.7), it is necessary for the number of units Z in the five units not
inspected to be at least 2 (Z ≥ 2). The beta-binomial probability (7.4) gives
the result

P (Z ≥ 2 | 5, 5, 5, 1, 1, ) =
5∑

z=2

6
(5

5

)(5
z

)
11
( 10

5+z

) = 0.985.

The beta-binomial distribution assigns a probability of 0.985 to the event that
θ ≥ 0.7.

As with large consignments, values for α and β may be chosen subjectively so
as to represent prior beliefs before inspection about the proportion of the items in
the consignment (considered as a random sample from the super-population) which
contains drugs.

General results can also be obtained. The problem consists in choosing n ,
the value such that, given m , α, and β (and possible values for y , consequen-
tial on the choice of n and the outcome of the inspection), a value for z can
be determined to satisfy some probabilistic criterion, e.g. the value z0 such that
P (Z ≥ z0 | n , m , y , α, β) = p.

Example 7.2.3 (Inspection of pills suspected to contain drugs – continued).
Consider a consignment of size N = 30. If 6 pills are inspected and all of
them contain drugs, then there is a probability of 0.9 that the number of pills
that contain drugs in the remainder (24) of the consignment is at least 17,
P (Z ≥ 17 | 6, 24, 6, 1, 1, ) = 0.9.

If 6 pills are inspected and one or two do not contain drugs then this
number drops from 17 to 13 to 9:

P (Z ≥ 13 | 6, 24, 5, 1, 1, ) = 0.9

P (Z ≥ 9 | 6, 24, 4, 1, 1, ) = 0.9.

An extension to sampling with a categorical response in which there may be
more than two possible responses (e.g., with pills, the responses may be LSD,
ecstasy, and licit) is given in Mavridis and Aitken (2009).
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Besides prior information, sample information can also be combined with yet
another source of evidence, notably quantified possible consequences of decisions,
called the decision loss. In this context, decisions can consist in accepting or
rejecting a consignment or, alternatively, a hypothesis about the composition of
a consignment. These ideas are addressed Section 7.4.

7.3 GRAPHICAL MODELS FOR SAMPLING INSPECTION

7.3.1 Preliminaries

Bayesian approaches using beta and beta-binomial distributions, outlined in
Section 7.2, have been implemented in computerized formats; scripts for R

(R 2003) at the end of the chapter and Excel


spreadsheets are available1.
These ready-to use computerized implementations greatly facilitate the practical
application of thorough mathematical and statistical concepts.

The same issues can be framed within graphical models, notably Bayesian net-
works, which allow for (i) a flexible analysis of sampling issues with the user
being able to interact directly with the respective model, (ii) an explicit and visual
representation of underlying modelling assumptions, and (iii) calculation of pos-
terior probability distributions for a consignment’s true proportion of positives.
Moreover, Bayesian networks also support likelihood ratio calculations under user-
specified propositions as well as pre-assessment and case evaluations that account
for specific customer requirements, such as the handling of competing prior beliefs
(Biedermann et al. 2007b).

7.3.2 Bayesian network for sampling from large consignments

Figure 7.3 shows a Bayesian network useable for sampling from large consign-
ments (Biedermann et al. 2007b). The proportion θ of positives in a consign-
ment is modelled here with a discrete2 chance node Prop with intervals 0–0.05,
0.05–0.1, . . . , 0.95–1. The probabilities assigned to the intervals of Prop are deter-
mined by a beta distribution whose parameters (α and β) are provided by the
nodes a and b (parents of Prop). The states of nodes a and b are set to the
numbers 0.5, 1, 2, . . . , 10. The choice of values for these states is a subjective
one. Other values (> 0) can be defined as required. The value of 0.5 is included
because the nodes a and b instantiated to this value allow the node Prop to have a
Be(0.5,0.5) distribution which is sometimes used to represent prior beliefs according

1See, for example, homepage of David Lucy at (last accessed February 2009): http://www.
maths.lancs.ac.uk/~dlucy/computing.html

2Currently, Bayesian networks allow genuine continuous chance nodes only for variables with a
Gaussian (Normal) distribution function. One possibility of avoiding this restriction is to use a discrete
chance node whose states represent disjoint intervals between 0 and 1. This allows for acceptable
approximations of continuous variables.
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Figure 7.3 A Bayesian network for sampling from large consignments. The definitions
of the nodes are as given in Table 7.3. (Reproduced from Biedermann et al. 2008. Law,
Probability and Risk, 7, 35–60.)

to which either no (or nearly none of the) items or all (or nearly all) items are
positive.

A particular aspect of the Bayesian network shown in Figure 7.3 consists in the
way in which the sampling procedure is modelled. Instead of a variable y (y ≤ n)
for the overall number of positive units in the sample of size n (Section 7.2.2),
separate nodes are used to represent the target characteristic (‘positive’ or ‘nega-
tive’) of each item of a sample. In addition, a distinction is made between the true,
but unknown, condition of an item (i.e. containing or not containing an illegal sub-
stance) and what is observed in the course of an experiment designed to ‘detect’
the presence or absence of that target characteristic. Note that in Section 7.2.2,
the observation of a ‘positive’ (measurement) was equated with the examined unit
being truly positive, which is a simplification of the underlying states of reality.
Such distinctions are advocated, for example, in the context of DNA profiling anal-
yses (Thompson et al. 2003), but are also challenged in other forensic disciplines
(Saks and Koehler 2005).

The model shown in Figure 7.3 has the following structure. Binary nodes labelled
unit n with states ‘positive’ and ‘negative’ represent propositions according to
which the n-th item may or may not contain illegal substance. The result of a
diagnostic test applied to the n-th item is modelled by a binary node test n with
states ‘positive’ and ‘negative’. The outcome of a test depends directly on the
presence or absence of the respective characteristic. Directed edges are thus adopted
between the nodes test n and unit n . Five pairs of nodes unit n and test n are
incorporated in the current model. For routine use, more trials may be needed and
additional nodes can be added appropriately.
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There may be circumstances casting doubt on the result of a test. Possible
reasons for this are the condition of the sample or erroneous experimental settings.
A test may not always give a ‘positive result’ when the item is truly positive, or
may give a ‘positive result’ when in fact the item is not positive. Generally, two
probabilities can be used to describe the accuracy of a test: the probability of a
test being positive when the item is truly positive, P (test n = positive | unit n =
positive), and the probability of a test being negative when the item is actually
negative, P (test n = negative | unit n = negative). Sometimes, these two values
are referred to as the sensitivity and specificity of a test (Balding 2005; Kaye
1987b; Lindley 2006; Robertson and Vignaux 1995, for example). They can be
used to complete the probability table of the nodes test n . A test is taken to
indicate the presence or absence of a unit’s target characteristic with certainty only if
one assumes that P (test n = positive | unit n = positive) = P (test n = negative |
unit n = negative) = 1. For the purpose of the current discussion, a hypothetical
value of 0.99 is chosen for both of these probabilities.

The probability an individual item contains or does not contain an illegal sub-
stance depends directly on the proportion of items in the consignment that contain
illegal substances. Directed edges are thus drawn to the node unit n from the node
Prop. The probability tables of the nodes unit n can be completed, for example,
through the expression Distribution(Prop,1-Prop) (Hugin syntax).

Besides, the model also contains auxilary nodes, namely P , Prop > P?, Prop >

0.5?, Prop > 0.7?, Prop > 0.75?, Prop > 0.9? and Prop > 0.95?. These nodes define
a substructure from which cumulative probabilities may be evaluated. The defini-
tions of these variables are given in Table 7.3.

Table 7.3 Definitions of nodes used in the Bayesian network shown in Figure 7.3.

Node Definition States

a, b parameters α and β of the beta
distribution defined for the node Prop

0.5, 1, 2, . . . , 10

Prop proportion (θ ) of positives in the
consignment

0–0.05, . . . , 0.95–1

P lower limit for evaluating cumulative
probabilities of the proportion of
positives in the consignment

0, 0.05, . . . , 0.95, 1

Prop > P? is the proportion of the positives in the
consignment greater than P?

yes , no

Prop > 0.5 (0.7, . . .) is the proportion greater than 0.5 (0.7, . . .)? yes , no
test 1 (2, . . .) outcome of test conducted in order to

determine the characteristic of item 1
(2, . . .)

positive, negative

unit 1 (2, . . .) true (but unknown) characteristic of item 1
(2, . . .)

positive, negative
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Example 7.3.1 (Inspection of pills suspected to contain drugs – continued).
Consider again the sampling scenario introduced earlier in Example 7.2.1,
but assume that all n = 4 sampled units are found to be positive. In such
a situation, following the discussion in Section 7.2.1, there is – assuming a
uniform prior probability distribution for θ – a probability greater than 95%
that the proportion of positive items θ is greater than 0.5.

Figure 7.4 (i) depicts the Bayesian network described above with nodes
expanded and instantiations made at the relevant nodes. The parameters for
the beta distribution of the node Prop are set by instantiating both nodes
a and b to 1. The nodes unit 1 to unit 4 are set to ‘positive’. This repre-
sents the observation of the four items found to be positive. Instantiation of
nodes ‘unit n’ rather than nodes ‘test n’ follows from the assumption that
the determination of the characteristics of a sampled item is made without
error. The node Prop > 0.5? displays the target probability P(θ > 0.5 | n =
y = 4, α = 1, β = 1). The value 0.97 agrees with what has been found earlier
in Section 7.2.1. Notice also that the node Prop shows the updated (posterior)
probability distribution for the proportion of positives in the consignment. As
may be read from the graph, the result is that – compared to the assumed
uniform prior – higher proportions now are more probable. Cumulative prob-
abilities for various intervals of proportions (other than >0.5), are displayed
at the far right-hand side.

The proposed Bayesian network readily allows the examination of a set-
ting in which the determination of the analytical characteristics cannot be
assumed to be error-free. This is shown in Figure 7.4 (ii). Here, the nodes
‘test n’ are instantiated instead of the nodes ‘unit n’. By defining a value of
0.99 for the test’s sensitivity and specificity, each observation of a positive
test result provides a likelihood ratio of 99 for the proposition according to
which the respective unit is in fact positive. The effect of this uncertainty on
the value of the target cumulative probability is weak as it changes the result
by less than 0.01.

In a more general case, one could enter one observation at a time and sub-
sequently observe the changes in the probability distributions for the nodes of
interest. Notice further that one need not only consider the BN for evaluating
findings that have actually been obtained. One may also evaluate the proba-
bility with which future trials, given previous observations, can be expected
to yield positive and negative testing results, respectively. This is illustrated
in Figure 7.4 where a probability of approximately 0.83 is indicated for the
fifth item being positive.

Besides considering the probability of future trials resulting in positive or
negative findings, one may also evaluate the information that future findings
can be expected to provide. More can be learned about such a question by
instantiating, for example, the node test 5 (not shown in Figure 7.4). If a
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Figure 7.4 A Bayesian network for sampling from large consignments (Example
7.3.1). The definitions of the nodes are given in Table 7.3. Figure (i) displays the
analysis of a setting assuming a uniform prior distribution for the parameter θ (node
Prop) and four inspected items, all of which are found to be positive (assuming error-
free analyses). Figure (ii) shows an evaluation of the scenario allowing for error in
the analysis of the sampled items. Instantiations are shown in bold. (Reproduced from
Biedermann et al. 2008. Law, Probability and Risk, 7, 35–60.)
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positive result is obtained, one can find that the probability of the proportion
being greater than 0.5 would increase a further two percentage points to
approximately 0.98. In the case of a negative finding, this probability would
decrease by approximatively six percentage points.

7.3.3 Bayesian network for sampling from small consignments

Figure 7.5 depicts a Bayesian network for evaluating sampling scenarios that
involve small consignments involving, typically, less than 50 units (Biedermann
et al. 2007b). The probabilistic architecture underlying this network follows the
Bayesian procedure described in Section 7.2.3. The target node of the Bayesian
network is Z , the number of positive units among those not analyzed, and Z fol-
lows a binomial distribution. The node definitions are given in Table 7.4, except for
the variables Prop, a and b which are the same as those given earlier in Table 7.3.

The structure of the proposed Bayesian network is based on the following con-
siderations. There is a variable N , the consignment size, incorporated as a discrete
chance node. It is modelled as a root node because it is not thought to depend
on any other variable. The variable N is allowed to cover a total of 21 states, i.e.
0, 1, . . . , 20. A lower case letter3 n = 0, 1, . . . , 20 is used here to denote a particular
instance of N . This Bayesian network enables its user to analyse scenarios involving
up to 20 units.

b

V

S valid?

V valid?

N Prop

Z >=V?

Z

Y

M

S

a

Figure 7.5 A Bayesian network for sampling from small consignments. The definitions of
the nodes are given in Tables 7.3 and 7.4.

3Notice that this is a difference to the notation used in Section 7.2.3, where n denoted the number
of inspected units.
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Table 7.4 Definitions of nodes used in the Bayesian network shown in Figure 7.5.

Node Definition State

N consignment size n = 0, 1, . . . , 20
S sample size number of items inspected s = 0, 1, . . . , 20
M number of items not inspected m = 0, 1, . . . , 20
Y number of positive items in the sample y = 0, 1, . . . , 20
Z number of positives among the uninspected items z = 0, 1, . . . , 20
V lower limit for evaluating cumulative probabilities of the

number of positives among the uninspected items
v = 0, 1, . . . , 20

Z >= V ? are there at least V positives among the uninspected
items?

yes , no

S valid? constraint on S true, false
V valid? constraint on V true, false

S , the number of inspected items, is defined in the same way as N , that is
in terms of a numbered discrete chance node with states s = 0, 1, . . . , 20. The
prior probabilities to be specified for N and S are not a primary concern for
the analyses considered here. Their specification is a technical matter necessary
to run the model. When using the Bayesian network, the nodes N and S will
be instantiated. The prior probabilities initially assigned to nodes N and S then
become irrelevant. The rules for construction of Bayesian networks solely require
that

∑
n P (N = n) = ∑

s P (S = s) = 1.
The Bayesian network also contains a substructure that assures that the instanti-

ations that may be made at the nodes N and S satisfy the constraint n ≥ s (n , s =
0, 1, . . . , 20). That is, one cannot inspect more units (S ) than there are units in
the consignment (N ). This constraint is implemented through the definition of a
Boolean node S valid?. This node is a direct descendant of both N and S . The
node table is completed as follows:

P (S valid? = true | N = n , S = s) =
{

1, n ≥ s ,
0, n < s ,

(n , s = 0, 1, . . . , 20).

In the Hugin environment, for instance, an expression of the form N>=S can be
used to define this node table.

Knowledge about the consignment size N together with information about the
number of inspected items S allows one to determine the state of a variable M , the
number of units in the consignment that are not inspected. In analogy to N and S ,
M is defined as a discrete chance node with states m = 0, 1, . . . , 20.

The node Y , with states y = 0, 1, . . . , 20, represents the number of positives
among S , the number of inspected items. Y is a variable with a binomial distribution
whose arguments are provided by S and Prop. The node of primary interest, Z ,
is then defined analogously. It accounts for the number of positives among M ,
the units in the consignment that are not inspected. Following the discussion in
Section 7.2.3, the distribution of Z is binomial with parameters that are given here
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by the nodes Prop and M . In addition to the node Z , there is also a substructure that
is designed to provide more general statements about Z , i.e. a Boolean summary
node, denoted ‘Z ≥ V ?’, provides a probability for the event that the number of
positives among the units not inspected (node Z ) is at least, or greater than, V ,
a user-specified integer number. Here, the node V is a discrete chance node with
states v = 0, 1, . . . , 20. In analogy to the node S valid?, the node V valid? ensures
illogical queries of the kind v > m are not considered.

Example 7.3.2 (Inspection of pills suspected to contain drugs – continued).
Consider again a case of sampling from a small consignment as described
earlier in Example 7.2.2. It was found, in that example, that there was a
probability of 0.985 that there were at least 2 positive items among the 5 non-
inspected units of a consignment of size 10, when in a sample of 5 inspected
items all were found to be positive and a uniform beta prior distribution was
assumed for θ , the proportion of positives in the consignment.
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Figure 7.6 Bayesian network for the sampling problem as given by Example 7.3.2.
Instantiations are shown in bold. Definitions of nodes are given in Tables 7.3 and 7.4.
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This scenario is represented in Figure 7.6. The nodes representing the con-
signment size (N), the sample size (S), the number of observed positives (Y)
and the parameters for the beta prior distribution (a and b) are instantiated.
The node Z displays the probabilities for there being z = 0, 1, 2, . . . , m posi-
tives among the m = 5 non-inspected items. The node Z >= V ? displays the
probability that there are at least 2 positive units among the m non-inspected
items. This value, 0.985, is in agreement with the result found above.

7.4 SAMPLING INSPECTION UNDER A
DECISION-THEORETIC APPROACH

Suppose that the customer of a forensic laboratory, without knowing the outcome
of an experiment, must make a decision, the consequences of which depend on the
outcome of that experiment. Typically, the experiment is one that consists in the
examination of items from a consignment, while it is of interest to make inference
about some feature of the consignment (e.g. the proportion θ of items which
present a given characteristic). In such a context, two decisions must be taken: a
first decision about the size n of the sample, and a second decision d concerning
θ . Two approaches are available: a fixed sample size approach and a sequential
approach. In the first case the sample size is preselected and observations are
made, followed by a decision about the composition of the consignment. A full
Bayesian treatment for the problem at hand based on maximization of the expected
utility can be found in Lindley (1997) with a related discussion in Bernardo
(1997). In the second case, observations are made one at a time, with a decision
being made after each observation either to cease sampling or to take another
observation.

7.4.1 Fixed sample size

A decision problem is specified by a decision space, a parametric space, and a
loss function that takes into account the consequences of decisions, L(d , θ ). Note
that in this setting, there is a further element – other than the consequences of
decisions – that must be taken into account. That element appears in the form of
experimental cost, that is the cost of taking observations, whose magnitude depends
mainly on the total number of observations, n . It is then correct to define an overall
loss, L0(d , θ , n) that takes both of these aspects into account. In particular, it will
be assumed that the overall loss is given by the sum of the loss function and a
component of cost:

L0(d , θ , n) = L(d , θ ) + C (n). (7.5)
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Suppose that x = (x1, . . . , xn ) have been observed, and a posterior density πn =
π (θ | x ) becomes available. The expectation over θ of the overall loss function can
be calculated and then minimized over d to select the optimal decision. Thus, the
Bayesian posterior expected loss of decision d at time n (i.e. having observed n
units), written L̄(d , π (θ | x ), n), is defined as

L̄(d , π (θ | x ), n) = Eπ(θ |x ) [L0(d , θ , n)
]

(7.6)

=
∫

�

L(d , θ )π (θ | x )dθ + nc.

The Bayes risk at time n , written r (πn , n), is defined to be the minimum value
of the posterior expected loss over d :

r
(
πn , n

) = min
d∈D

L̄(d , π (θ | x ), n). (7.7)

The choice that satisfies this criterion, denoted dπn
, is called the Bayes decision

(defined in Section 3.4.1) and represents the decision to be taken about θ if sampling
has stopped after taking n observations. The objective thus is to select the decision
whose associated expected loss is equal to the Bayes risk: this decision is said
to be optimal because no lower risk can be attained with a different decision.
The optimal sample size is the value greater than n , say n∗, which minimizes the
Bayes risk:

n∗ = min
n∈N

r(πn , n). (7.8)

For example, consider a random sample (x1, . . . , xn) from a Normal distribution,
X ∼ N (θ , σ 2), with known variance σ 2, and suppose it is of interest to make an
inference about the unknown mean θ . Assume a Normal conjugate prior distribution
N (µ, τ 2) for θ . The posterior distribution will then be Normal N (µ(x ), τ 2(x )), with
mean µ(x ) and variance τ 2(x ) as in (4.16) and (4.17). Assume a quadratic loss
function L(d , θ ) = k (d − θ )2, that each observation has a constant observational
cost c and that the total cost is proportional to the number of observations, so that
C (n) = nc. With a quadratic loss function, the Bayes decision dπn

is the posterior
mean µ(x ) (see Section 3.4.2). Then, the Bayes risk at time n is:

r(πn , n) = min
d∈D

Eπ(θ |x ) [L(d , θ ) + nc] = Eπ(θ |x )
[
L(dπn

, θ )
]

+ nc

= Eπ(θ |x ) [k (µ(x ) − θ )2]+ nc

= kτ 2(x ) + nc.

To find the minimum, differentiate with respect to n and set the result equal to
zero:

∂

∂n

[
kσ 2τ 2

σ 2 + nτ 2
+ nc

]
= − kσ 2τ 4

(σ 2 + nτ 2)2
+ c = 0.



272 Sampling

Solving for n gives:

n∗ =
√

k√
c
σ − σ 2

τ 2
. (7.9)

Example 7.4.1 (Alcohol concentration in blood – continued). Imagine, as
in Example 4.4.1, that one is interested in the estimation of the alcohol con-
centration in a blood sample. The laboratory cost is fixed at ¤50 for each
analysis. Assume, as in Example 4.4.1, the standard deviation σ for the avail-
able measuring apparatus to be known and equal to 0.0463, and the standard
deviation τ for the prior density of the unknown mean to be equal to 0.3. A
quadratic loss k (d − θ )2 is chosen.

The optimal sample size has been computed, according to (7.9), for different
k-values, in particular k = (10000, 50000, 100000), with results n∗ = 1, 2, 3,
respectively. Note that a considerable increase in the loss does not corre-
spond to a substantial change in the optimal sample size. This is essentially
explained by the precision of the laboratory measurements.

Once the optimal sample size has been chosen, then the Bayes decision
about the unknown blood alcohol concentration is given by the posterior
mean.

Consider the scenario described in Section 7.2.2, and suppose it is of interest
to test the hypothesis H0 : θ > θ0 against H1 : θ ≤ θ0. The parametric space is
therefore given by � = �0 ∪ �1, where �0 = (θ0, 1] and �1 = [0, θ0]. A beta
conjugate prior distribution Be(α, β) and a binomial distribution Bin(n , θ ) are taken
to give a beta posterior distribution π (θ | x ) = Be(α + y , β + n − y). The decision
space is D = {d0, d1}, with d0 denoting acceptance of H0, and d1 acceptance of H1.
A ‘0–ki ’ loss function is chosen, that is

L(d0, θ ) =
{

0 θ ∈ �0

k0 θ ∈ �1
; L(d1, θ ) =

{
0 θ ∈ �1

k1 θ ∈ �0
, (7.10)

and the overall loss function L0(d , θ , n) is taken to be as in (7.5)

L0(d , θ , n) = L(d , θ ) + C (n), (7.11)

where the total cost is supposed to be proportional to the number of observations
and the observational cost is assumed constant, that is C (n) = nc. The posterior
expected losses are easily obtained

L̄(d0, π (θ | x ), n) =
∫

�

L(d0, θ )π (θ | x )dθ + nc

=
∫

�1

k0π (θ | x )dθ + nc = k0Pπ(θ |x )(θ ≤ θ0) + nc,
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and

L̄(d1, π (θ | x ), n) =
∫

�

L(d1, θ )π (θ | x )dθ + nc

=
∫

�0

k1π (θ | x )dθ = k1Pπ(θ |x )(θ > θ0) + nc.

The Bayes risk (7.7) is therefore

r(πn , n) = min
d0,d1

{
L̄(d0, π (θ | x ), n), L̄(d1, π (θ | x ), n)

}
(7.12)

and the optimal sample size n∗ is given by the minimum of (7.12) with respect
to n , as in (7.8).

Example 7.4.2 (Inspection of pills suspected to contain drugs – continued).
A large consignment of pills is seized and it is desired to analyze a sample
to test H0 : θ > 0.5 against H1 : θ ≤ 0.5. Choose a uniform prior π (θ ) =
Be(1, 1).

A ‘0–ki ’ loss function is used. This example is a good place at which to
introduce consideration of the quantification of a loss function in monetary
terms. There are two components to the loss function in this example. The
first, k0, is the amount of compensation which may need to be allocated to
an individual found to be guilty but who is truly innocent and subsequently
exonerated. The second component, k1, may be interpreted as the monetary
value that would have been confiscated by the government as a penalty if
the individual had not, incorrectly, been found not guilty. For the purpose
of illustration in this example, k0 and k1 have been chosen equal with value
¤100,000. There is also a laboratory cost of ¤50 for each item analyzed.

The optimal sample size is found by minimizing the Bayes risk with respect
to n:

r(πn , n) = min
d0,d1

{100000P (θ ≤ 0.5 | n , y , α, β)

+ 50n , 100000P (θ > 0.5 | n , y , α, β) + 50n}. (7.13)

Assuming that all items are found to be positive, the optimal sample size is
n∗ = 9. The size of the consignment has been assumed equal to 100, so the
Bayes risk has been computed for increasing values of n (n = 1, . . . , 100),
and then minimized over d0 and d1. The Bayes risk decreases until n = 9,
and then increases as the cost of analysis of an item is the dominant cost.

The effect on the sample size of variation in the values of k0 and k1, whilst
still retaining equality, is shown in Table 7.5. In the presence of negative
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Table 7.5 Optimal sample size for a symmetric loss.
A large consignment of pills is seized and it is desired
to analyze a sample to test H0 : θ > 0.5 against
H1 : θ ≤ 0.5, given π (θ ) = Be(1, 1), and a ‘0−ki ’ loss
function with k0 = k1 = k . The laboratory cost is ¤50.

Loss k optimal size n∗

10000 6
50000 8

100000 9

items, the same methodology can be extended to allow for units which do not
contain drugs. The minimization can be carried out using, for example, the
R routines given at the end of the chapter, where provision is made for the
situation where k0 �= k1.

7.4.2 Sequential analysis

Consider a consignment of size N and assume observations can be taken sequen-
tially. After observing (x1, . . . , xn ) at most m = N − n additional observations can
be taken. The sequential decision procedure incorporates two components: the stop-
ping rule sπ , that defines when to stop sampling, and the decision rule dπ , that
defines the action to be taken if the sampling has been stopped. Within a sequen-
tial sampling procedure, denoted d = (sπ , dπ ), the decision problem is rephrased
after each observation as starting at that point. The procedure works by making a
comparison between the Bayes risk that can be attained by stopping sampling and
taking a decision immediately, r0 (πn , n), and the smallest Bayes risk that can be
attained by taking more observations (up to m), rm (πn , n).

Imagine a client who, having observed (x1, . . . , xn ), must decide whether to
take a decision about the quantity of interest θ without further observations, or to
instruct the scientist to continue and observe Xn+1, whose outcome is unknown.
The Bayes risk of an immediate decision, r0(πn , n), is to be compared with the
Bayes risk that one can expect by observing Xn+1 (in which case at most (m − 1)
observations can be taken), namely

E X [rm−1
(
πn (θ | Xn+1), n + 1

)]
, (7.14)

where the expectation is taken over X with respect to the marginal density of X ,
m(x ). The smallest Bayes risk that can be attained, rm (πn , n), is given by
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rm (πn , n) = min
{
r0(πn , n), E X [rm−1

(
πn (θ | Xn+1), n + 1

)]}
. (7.15)

The optimal sampling inspection procedure is to cease when the overall risk is
minimized. Therefore, the optimal course of action is to stop sampling and make a
decision when r0(πn , n) = rm (πn , n). The procedure works iteratively as follows.
At stage 0, compare the Bayes risk of an immediate decision, r0(π , 0) (no obser-
vation taken) with the smallest Bayes risk that can be attained by inspecting at
most m items (at stage 0, m = N ), rm (π , 0). If r0(π , 0) is smaller than rm (π , 0)
make no observations and take a decision immediately, otherwise proceed to stage
1. At stage 1, once x1 has been observed, compare the Bayes risk of an immediate
decision, r0(π1, 1), with the smallest Bayes risk that can be attained by inspect-
ing at most (m − 1) items, rm−1(π1, 1); continue sampling if the latter is smaller,
and so on.

Assume a linear loss function as in (7.5) with C (n) = nc. The Bayes risk of an
immediate decision, is given by

r0(πn , n) = ρ0(πn ) + nc,

where ρ0(πn ) = Eπ(θ |x )
[
L(dπn

, θ )
]

denotes the posterior Bayes decision risk. It
follows from (7.15) that

ρm (πn ) = min
{
ρ0(πn ), E X [ρm−1

(
πn (θ | Xn+1)

)]+ c
}
. (7.16)

The optimal course of action is to stop sampling and make a decision at the point
of the first n observations for which

ρ0(πn ) = ρm (πn ). (7.17)

The difficulty of this approach can be effectively illustrated through a simple
example. Suppose it is desired to test H0 : θ = θ0 against H1 : θ = θ1. The param-
eter space thus has two points: � = {θ0, θ1}. Let πi denote the prior probability
that Hi is true. The decision space is D = {d0, d1}, with di denoting acceptance
of Hi , i = 0, 1. Consider a symmetric ‘0–ki ’ loss function. The loss is zero if the
decision is correct, a positive value k = k0 = k1 applies for decisions that are not
correct. The experimental cost for each inspected unit is c. Assume observations
are sampled sequentially and that the probability distribution for the outcome of
an inspection is taken to be binomial, Bin(1, θ ). At stage 0, the decision maker
must evaluate the opportunity of taking a decision immediately with no cost of
inspection, or observing one unit. The expected losses of an immediate decision
are respectively:

L̄(d0, π ) = Eπ [L(d0, θ )] = k (1 − π0),

L̄(d1, π ) = Eπ [L(d1, θ )] = kπ0.
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Therefore, the Bayes risk of an immediate decision, Equation (7.7), is

r0(π , 0) = ρ0(π ) = min (k (1 − π0), kπ0)

=
{

kπ0 0 ≤ π0 ≤ 1/2

k (1 − π0) 1/2 < π0 ≤ 1
. (7.18)

This should be compared with the Bayes risk expected with an observation of X1,
that is

E X [ρm−1 (π (θ0 | X1))
]+ c = ρm−1 (π (θ0 | 0)) m(0) + ρm−1 (π (θ0 | 1)) m(1) + c.

(7.19)

It is necessary to compute the posterior Bayes decision risk ρm−1 (π (θ | x )),
the marginal density m(x ), and the posterior distribution π (θ | x ) at x = 0, 1
to solve (7.19).

The marginal density m(x ) at x = 0, 1 is equal to

m(x ) = E π
[
f (x | θ )

] = f (x | θ0)π0 + f (x | θ1)π1

=



(1 − θ0)π0 + (1 − θ1)π1 if x = 0

θ0π0 + θ1π1 if x = 1
. (7.20)

The posterior distribution π (θ0 | x ) at x = 0, 1 is determined by

π (θ0 | x ) = π0f (x | θ0)

m(x )
= π0θ

x
0 (1 − θ0)1−x

m(x )

=




π0(1−θ0)
π0(1−θ0)+π1(1−θ1) if x = 0

π0θ0
π0θ0+π1θ1

if x = 1
. (7.21)

Finally, the posterior expected losses are

ρm−1 (π (θ0 | 0)) = min {kπ (θ0 | 0), k (1 − π (θ0 | 0))}
ρm−1 (π (θ0 | 1)) = min {kπ (θ0 | 1), k (1 − π (θ0 | 1))} .

Now the decision maker has all the structure necessary to implement a sequential
decision procedure. Consider k = 5, θ0 = 3/4, θ1 = 1/4, c = 1. The Bayes risk of
an immediate decision, Equation (7.18), is simply

ρ0(π ) =
{

5π0 0 ≤ π0 ≤ 1/2

5(1 − π0) 1/2 < π0 ≤ 1
.
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In the same way, from (7.20) and (7.21), the marginal density m(x ) and the posterior
distribution π (θ0 | x ) are computed at x = 0, 1, to be

m(x ) =



3−2π0
4 if x = 0

1+2π0
4 if x = 1

,

and

π (θ0 | x ) =




π0
3−2π0

if x = 0

3π0
1+2π0

if x = 1
.

Therefore, one can compute

ρm−1 (π (θ0 | 0)) = min {5π (3/4 | 0), 5 (1 − π (3/4 | 0))}

=



5π
( 3

4 | 0
)

if π
( 3

4 | 0
) ≤ 1/2

5
(
1 − π

( 3
4 | 0

))
if π

( 3
4 | 0

)
> 1/2

=




5π0
3−2π0

if π0 ≤ 3
4

5(3−3π0)
3−2π0

if π0 > 3
4

,

and similarly

ρm−1 (π (θ0 | 1)) = min {5π (3/4 | 1), 5 (1 − π (3/4 | 1))}

=



5π
( 3

4 | 1
)

if π
( 3

4 | 1
) ≤ 1/2

5
(
1 − π

( 3
4 | 1

))
if π

( 3
4 | 1

)
> 1/2

=




15π0
1+2π0

if π0 ≤ 1
4

5(1−π0)
1+2π0

if π0 > 1
4

.

Finally, considering separately the intervals (0, 1/4], (1/4, 3/4], (3/4, 1], the Bayes
risk expected with an observation X1 is given by

E X [ρm−1 (π (θ | X1))
] = ρm−1 (π (θ0 | 0)) m(0) + ρm−1 (π (θ0 | 1)) m(1)

=




(
5π0

3−2π0

)
3−2π0

4 + 15π0
1+2π0

1+2π0
4 if π0 ≤ 1

4

5π0
3−2π0

3−2π0
4 + 5(1−π0)

1+2π0

1+2π0
4 if 1

4 < π0 ≤ 3
4

5(3−3π0)
3−2π0

3−2π0
4 + 5(1−π0)

1+2π0

1+2π0
4 if π0 > 3

4

=




5π0 if π0 ≤ 1
4

5
4 if 1

4 < π0 ≤ 3
4

5(1 − π0) if π0 > 3
4

.
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Then, the smallest Bayes risk that can be attained is

ρm (π ) = min
{
ρ0(π ), E X [ρm−1 (π (θ | X1))

]+ c
}

=




5π0 if π0 ≤ 9
20

9
4 if 9

20 < π0 ≤ 11
20

5(1 − π0) if π0 > 11
20

.

Let π0 = 0.6, for example. Then, ρ0(π ) = 5 × 0.4 = 2, and ρm (π ) = 5 × 0.4 = 2,
and the optimal sequential procedure is to take a decision immediately (no sam-
pling). Conversely, imagine π0 = 0.5, then ρ0(π ) = 5 × 0.5 = 2.5, and ρm (π ) = 9

4 .
The optimal sequential decision procedure is to observe X1. Once x1 has been
observed, one must compare ρ0(π1) with ρm−1(π1), and so on. However, compu-
tations soon become unfeasible.

7.4.3 Sequential probability ratio test

The most commonly used sequential procedure is the sequential probability ratio
test (SPRT), introduced by Wald in the 1940s (Wald 1947). The SPRT is designed
to test a simple null hypothesis against a simple alternative hypothesis. Such
testing scenarios may not meet the requirements in some cases, in particular in
the area of forensic science. The procedure will thus be generalized to cases
of interest that involve composite hypotheses (Bozza and Taroni 2009; Bozza
et al. 2008a).

SPRT for testing simple hypotheses

Consider initially a pair of simple hypotheses about the composition of a consign-
ment: H0 : θ = θ0 and H1 : θ = θ1. Assume a sample of items can be inspected
sequentially at a constant cost c per observation. Formally, the parameter space is
� = {θ0, θ1}, so that a prior π can be specified by π0 = P (θ = θ0) ; π1 = P (θ =
θ1). The decision space, too, has only two elements, D = {d0, d1}:
d0: the proportion of ‘positive’ items is θ0;
d1: the proportion of ‘positive’ items is θ1.

Consider a ‘0–ki ’ loss function as in (7.10), and assume that L0(d , θ , n) = L(d , θ ) +
nc, where n is the sample size. As outlined in Section 7.4.2 the optimal decision
procedure consists in stopping sampling for the first n observations at which the
Bayes risk of an immediate decision, ρ0(πn ), equals the smallest Bayes risk that can
be attained among procedures that involve at least one and at most m observations,
ρm (πn ).
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Figure 7.7 Bayes risk ρ0(π ) associated with an immediate decision, solid line; smallest
Bayes risk ρm (π ) associated with procedures involving at least one observation and at most
m, dashed line. Case 1: ρ0(π ) ≤ ρm (π ) for all π0 (left); Case 2: ρ0(π ) > ρm (π ) for some
π0; π ′

0, π0 < π ′′
0 (right).

At stage 0, ρ0(π ) is compared with ρm (π ), that is a decision is to be taken
whether to make or not to make an observation. The Bayes risk at stage 0, Equation
(7.18), is a piecewise linear function, with ρ0(0) = ρ0(1) = 0, see Figure 7.7. As
far as ρm (π ) is concerned, it can be demonstrated that it is a concave continuous
function on the interval 0 ≤ π0 ≤ 1 (Berger 1988). Moreover, since it is computed
for decision procedures involving at least one observation, then the sampling cost
is at least c, so ρm (0) = ρm (1) = c, and ρm (π0) ≥ c for all values of π0. Two cases
need to be distinguished:

1. ρ0(π ) ≤ ρm (π ) for all π0 (Figure 7.7, left).
In this situation the Bayes procedure is to take no observations, since no lower
risk can be attained.

2. ρ0(π ) >ρm (π ) for some π0 (Figure 7.7, right).
There will be some values π0 for which it is optimal to terminate sampling.
Generally, these values are close to 0 or 1 because the reduced margin of
uncertainty does not suggest the inspection of more items. In particular, there
exist two bounds π ′

0 and π ′′
0 such that for any π0 < π ′

0 or π0 > π ′′
0 , then ρ0(π ) <

ρm (π ), and it is preferable to stop sampling. For other values of π0, in particular
π ′

0 ≤ π0 ≤ π ′′
0 , then ρ0(π ) >ρm (π ), and it is worthwhile to analyze more units

because the overall risk is smaller.

Suppose, for instance, that the prior probability π0 lies in the interval π ′
0 ≤ π0 ≤

π ′′
0 , so that it is worthwhile to take at least one observation. Suppose n observations

(x1, . . . , xn), denoted x , are taken, and the posterior probability is πn
0 = π (θ0 | x ).
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The optimal procedure is to inspect further units whenever π ′
0 < πn

0 < π ′′
0 , that is

π ′
0 <

∏n
i=1 f (xi | θ0)π0∏n

i=1 f (xi | θ0)π0 +∏n
i=1 f (xi | θ1)π1

< π ′′
0 . (7.22)

The posterior distribution πn
0 can be expressed as

1

1 + π1
π0

Ln
,

where Ln =
∏n

i=1 f (xi |θ1)∏n
i=1 f (xi |θ0) represents the likelihood ratio of θ1 against θ0 at time n . It

can easily be checked that the optimal procedure obtained in (7.22) can be rewritten
as follows:

A = π0(1 − π ′′
0 )

π1π
′′
0

< Ln =
∏n

i=1 f (xi | θ1)∏n
i=1 f (xi | θ0)

<
π0(1 − π ′

0)

π1π
′
0

= B . (7.23)

The optimal Bayes procedure is to continue with the inspection of items whenever
the last relation, (7.23), is satisfied. That is:

– if Ln ≤ A, stop sampling and decide d0;
– if Ln ≥ B , stop sampling and decide d1;
– if A < Ln < B , take another observation .

The procedure can be reformulated as follows. Define the random variable

Zi = log

(
f (xi | θ1)

f (xi | θ0)

)
.

Then, relation (7.23) becomes:

lA < Sn = log(Ln ) =
n∑

i=1

Zi =< lB , (7.24)

where lA = log A and lB = log B . The sequential probability ratio test then works
as follows:

– if Sn ≤ lA, stop sampling and decide d0;
– if Sn ≥ lB , stop sampling and decide d1;
– if lA < Sn < lB , take another observation .

The problem can then be rephrased as that of choosing lA and lB such as to
minimize the Bayes risk. Let:

α0 = Pθ0 (deciding d1) = Pθ0 (Sn ≥ lB )

α1 = Pθ1 (deciding d0) = Pθ1 (Sn ≤ lA) .

Let Eθ0 n∗ and Eθ1 n∗ denote the expected stopping times under θ0 and θ1,
respectively, where n∗ = min{n : Sn ≤ lA or Sn ≥ lB } denotes the unknown
stopping time. The optimal sequential procedure d is obtained by minimizing the
Bayes risk that is equal to

r(π , d) = π0
(
α0k1 + cEθ0 n∗)+ π1

(
α1k0 + cEθ1 n∗) . (7.25)
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The problem reduces to the calculation of α0, α1, Eθ0 n∗, Eθ1 n∗, and the subse-
quent minimization of (7.25) over lA and lB . Reasonably accurate approximations
exist and simplify the calculation considerably (Berger 1988).

SPRT for testing composite hypotheses

The aim is to test H0 : θ ≤ θ0 versus H1 : θ ≥ θ1, a setting for which the SPRT
needs some convenient generalization.

In the current sequential decision problem, the decision space is D = {d0, d1}:
d0: the proportion θ of ‘positive’ units is lower than θ0;
d1: the proportion θ of ‘positive’ units is greater than θ1,

while the parameter space is � = �0 ∪ �1, with �0 = [0, θ0] and �1 = [θ1, 1]. The
observational cost is still taken to be constant and equal to c, and the loss function
introduced above also remains unchanged, that is L0(d , θ , n) = L(d , θ ) + nc, with
L(d , θ ) being a ‘0–ki ’ loss function.

Here, θ0 and θ1 represent the boundaries of regions between which it is important
to distinguish, while the SPRT is designed to test simple hypotheses. In this specific
case, all possible values of θ may need to be considered. Hence, it is important to
investigate the error probabilities and the expected sample sizes of an SPRT for all
values of θ . Let:

β(θ ) = Pθ (deciding d1) = Pθ (SN ≥ lB )

α(θ ) = Pθ (deciding d0) = Pθ (SN ≤ lA),

and let Eθ (n∗) be the expected stopping time for an arbitrary value of θ . In analogy
to the SPRT designed for testing pairs of simple hypotheses, the problem can be
rephrased as that of choosing lA and lB such as to minimize the Bayes risk of the
sequential procedure, which is equal to:

r(π , d) =
∫

�0

[
β(θ )k1 + cEθn∗]π (θ )dθ +

∫
�1

[
α(θ )k0 + cEθn∗]π (θ )dθ. (7.26)

Error probabilities and expected sample sizes need to be approximated. The basic
tool that is used in approximating β(θ ) and Eθn∗ is the fundamental identity of
sequential analysis , first established by Wald (DeGroot 1970; Wald 1947). Sup-
pose that Z1, Z2, . . . is a sequence of independent and identically distributed random
variables such that Eθ (Zi ) = µθ and Eθ (Zi − µθ )2 = σ 2

θ . Then, under general con-
ditions, for any sequential procedure for which the moment generating function
Mθ (t)4 exists for t in a neighbourhood of the origin, the Wald approximations to

4Let X be a random variable with cumulative distribution function F (x ). The moment generating
function (mgf ) of X , denoted by MX (t) is

MX (t) = EetX .

As the name suggests, the moment generating functions can be used to calculate moments. However,
the main use is for help in the characterization of a distribution (Casella and Berger 2002).
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the error probability β(θ ) and to the expected number of observations Eθ n∗ can be
obtained. In particular, it can be shown that:

β(θ ) ∼= β̃(θ ) =
{ 1−exp(tθ lA)

exp(tθ lB )−exp(tθ lA) if µθ �= 0
−lA

lB −lA
if µθ = 0

, (7.27)

with tθ such that Mθ (tθ ) = 1 (tθ �= 0), and

Eθ n∗ ∼= Ẽθn∗ =



lA+(lB −lA)β̃(θ )
µθ

if µθ �= 0
−lAlB

σ 2
θ

if µθ = 0
. (7.28)

The Bayes risk of the sequential procedure will be that risk which is the mini-
mum value of

r(π , d) ∼=
∫

�0

[
β̃(θ )k1 + cẼθ n∗

]
π (θ )dθ +

∫
�1

[
α̃(θ )k0 + cẼθn∗

]
π (θ )dθ ,

(7.29)

and where minimization is over lA and lB .

Example 7.4.3 (Inspection of pills suspected to contain drugs – continued).
A consignment of individual tablets is seized and at least a certain proportion
of it is suspected to contain an illegal substance (e.g. a substance belonging
to the general class of amphetamines). Suppose that the positions taken by
the prosecution and the defence are such that the following pair of competing
propositions can be formulated:

Hp : θ ∈ [θp , 1]. The unknown proportion θ of pills in the consignment that
contain an illegal substance is greater than θp;

Hd : θ ∈ [0, θd ]. The unknown proportion θ of pills in the consignment that
contain an illegal substance is lower than θd , θd < θp .

The subscripts p and d are used here – in accordance with a predominant
part of literature on forensic statistics – as an indicator of the proposition
forwarded by, respectively, the prosecution and the defence.

Notice that θ may be considered as a threshold, for a court of justice,
to declare a guilty judgement. The defence might not sustain the hypothesis
of a proportion of positive items in the consignment as a sign of guilt. It
could argue that the presence of positive elements is an example of external
contamination for which the suspect is not responsible. For these reasons, the
boundary θd of the region for Hd may be much lower than the boundary θp
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for Hp. Here, a boundary of 0.65 for both hypotheses is considered for the
sake of illustration only.

When it is decided that individual tablets will be sampled and inspected,
then that process will end, at some point, with a decision which reflects the
acceptance or rejection of a target hypothesis. In particular, the decision
space is D = {dp , dd }:
– dp: the proportion θ of pills with illegal content is greater than θp;
– dd : the proportion θ of pills with illegal content is lower than θd .

Each item can be inspected separately at a constant laboratory cost c of
¤100. The consequences of a wrong decision are evaluated and quantified in
terms of ¤100,000 and are assumed symmetric, that is kp = kd = ¤100,000,
as in Example 7.4.2. Here, kp is the loss associated with dp when Hd holds
whereas kd is the loss associated with dd when Hp holds.

Generally, the physical aspect of the seized units, such as colour, size or
shape, may be used to shape a prior distribution of θ . For the purpose of
the current discussion, this is not investigated in further detail. As merely
a technical convention, a uniform beta distribution (with parameters α =
β = 1) is retained.

Observations can be considered as draws from a binomial distribution
Bin(1, θ ). Then, one has

Zi = log
f (xi | θp)

f (xi | θd )
= Xi log

θp

θd
+ (1 − Xi ) log

(
1 − θp

1 − θd

)

= log

(
θp(1 − θd )

θd (1 − θp)

)
Xi + log

(
1 − θp

1 − θd

)

and

Sn =
n∑

i=1

Zi = log

(
θp(1 − θd )

θd (1 − θp)

) n∑
i=1

Xi + n log

(
1 − θp

1 − θd

)
. (7.30)

Note that Zi can be rewritten, for short, as Zi = f Xi + g, where f =(
log θp (1−θd )

θd (1−θp )

)
and g = log

(
1−θp
1−θd

)
. The quantities µθ and σ 2

θ that are
needed for the Wald approximations, are then given by

µθ = Eθ (Zi ) = f θ + g

σ 2
θ = Eθ (Zi − µθ)

2

= Eθ

(
f 2(Xi − θ )2) = f 2θ (1 − θ ).
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A standard calculation (Casella and Berger 2002) shows that the moment
generating function of Zi , that is also necessary for the Wald approxima-
tions, is

Mθ (t) = Eθ

[
etZi

] = egt [θeft + (1 − θ )
]
.

The Bayes risk is calculated using approximations as in (7.27) and (7.28)
(Bozza 2008a).

The numerical minimization of the approximated Bayes risk, (7.29), gives
lA = −0.2 and lB = 0.2. According to the proposed procedure, individual
units are sampled and inspected sequentially, with Sn calculated according
to Equation (7.30) at each iteration. This process ends as soon as Sn ≤ −0.2
or Sn ≥ 0.2. In the current scenario a final sample size of n = 13 is obtained
if all items are found to be positive. This sequential decision procedure is
illustrated in Table 7.6.

Table 7.6 Sequential decision procedure when all inspected units are found to be
positive with Sn as given in (7.30) (Example 7.4.3: c = 100, kp = kd = 100000).

Item Characteristic Sn Decision

1 Positive 0.015 take another observation
2 Positive 0.031 take another observation
3 Positive 0.046 take another observation
4 Positive 0.062 take another observation
5 Positive 0.077 take another observation
6 Positive 0.093 take another observation
7 Positive 0.108 take another observation
8 Positive 0.124 take another observation
9 Positive 0.139 take another observation

10 Positive 0.155 take another observation
11 Positive 0.170 take another observation
12 Positive 0.186 take another observation
13 Positive 0.201 stop and decide dp

The optimal number of observations depends on the outcome of the exper-
iment, the laboratory cost and the assessment of the loss function.

Consider the same case study with unchanged overall loss, but with the
second item found to be negative. Table 7.7 shows that this results in a final
sample size increased by three items from that in Table 7.6.



Sampling Inspection under a Decision-Theoretic Approach 285

Table 7.7 Sequential decision procedure when the second unit inspected is
negative with Sn as given in (7.30) (c = 100, kp = kd = 100000).

Item Characteristic Sn Decision

1 Positive 0.015 take another observation
2 Negative –0.012 take another observation
3 Positive 0.002 take another observation
4 Positive 0.018 take another observation
5 Positive 0.033 take another observation
6 Positive 0.049 take another observation
7 Positive 0.064 take another observation
8 Positive 0.080 take another observation
9 Positive 0.095 take another observation

10 Positive 0.111 take another observation
11 Positive 0.126 take another observation
12 Positive 0.142 take another observation
13 Positive 0.157 take another observation
14 Positive 0.173 take another observation
15 Positive 0.188 take another observation
16 Positive 0.204 stop and decide dp

The laboratory cost has an influence on the sample size in the sense
that the higher the laboratory cost, the greater the Bayes risk. This will
result in a smaller final sample size with the aim of minimizing the Bayes
risk. Thus, consider a laboratory cost of ¤200 instead of ¤100, while the
loss function remains unchanged. The minimization of the Bayes risk gives
lA = −0.15 and lB = 0.15. Then, Table 7.6 shows that, if all items are
found to contain an illegal substance, the final sample size will be n = 10.
This contrasts with n = 13 which was found for c = ¤100. The higher
cost of experimentation thus tends to reduce the sample size. Conversely,
the lower cost allows one to examine more units to counterbalance
the loss.

The loss function has an inverse influence on the sample size. The more
severe the consequences of a wrong decision, the greater will be the number
of items that needs to be inspected, and vice versa. Suppose, for instance, that
the loss function is quantified to be kp = kd = 50000, while the laboratory
cost remains unchanged at its initial value of ¤100. Then the minimization
of the Bayes risk gives lA = −0.15 and lB = 0.15. The interval [lA, lB ] thus
is reduced and fewer observations will be necessary to reach a decision. In
particular, it can be found that, if all items are positive, it will be sufficient
to inspect a sample of size n = 10 (see Table 7.6).



286 Sampling

Different assessments of the loss functions, or of laboratory costs, do not
affect the decision but do affect the required amount of observations.

Finally, consider a comparison between the fixed and the sequential pro-
cedures. If all items are found to be positive, both procedures end with the
same optimal size (given an identical loss function and cost). In particular,
the result of the fixed sampling procedure is that n = 13 is the optimal sample
size to test H0 > θ0 against H1 ≤ θ0 given k0 = k1 = 100000 and a labora-
tory cost of ¤100 (it is sufficient to minimize the Bayes risk in Equation (7.13)
in correspondence with the boundary region θ0 = 0.65 and a laboratory cost
of ¤100). This output is the same as that given by the sequential procedure
developed in this example. However, whenever some items are found to be
negative, the sequential procedure allows for a lower number of observations.
Imagine one item is found to be negative. It has been shown for such a setting
that the sequential procedure ends with an optimal sample size of n = 16. The
fixed sampling procedure with the updated parameters α∗ = 13 and β∗ = 2
gives an optimal sample size of n = 5 (it is sufficient to minimize the Bayes
risk in Equation (7.13) for H0 : θ ≤ 0.65). Therefore, the total number of
observations required is n = 18.

7.5 R CODE

A symbol ‘∗’, ‘+’, ‘,’ and so on at the end of a line indicates that the command
continuous to the following line. The absence of such a symbol indicates the end
of a command.

Example 7.2.1

Input values

theta0=0.5
alpha=1
beta=1
n=4
y=3

Determination of the optimal sample size n

alphap=alpha+y
betap=beta+n-y
p=pbeta(theta0,alphap,betap,lower.tail=FALSE)
while (p<0.95){
n=n+1
print('additional item is found to be positive')
y=y+1



R Code 287

alphap=alpha+y
betap=beta+n-y
p=pbeta(theta0,alphap,betap,lower.tail=FALSE)
}
print(paste('Observations required if all successive items
are found to be positives: n =',n))

Example 7.2.2

Input values

N=10
n=5
y=5
alpha=1
beta=1
z0=2

Output

m=N-n
z=seq(z0,m,1)
sum((gamma(n+alpha+beta)*choose(m,z)*gamma(z+y+alpha)*
gamma(n+m-y-z+beta))/(gamma(y+alpha)*gamma(n-y+beta)*
gamma(n+m+alpha+beta)))

Example 7.4.1

Input values

c=50
sigma=0.0463
tau=0.3
k=c(10000,50000,100000)

Determination of the optimal sample size

n=ceiling(sqrt(k)*sigma/sqrt(c)-(sigma^2)/(tau^2))
for (i in 1: length(k)){
print(paste('Optimal sample size n =',n[i],'(k =',k[i],')'))
}

Example 7.4.2

Input values

c=50
theta0=0.5
k0=100000
k1=100000
alpha.in=1
beta=1
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Determination of the optimal sample size

N=100
r=matrix(0,nrow=N,ncol=3)
nopt=matrix(0,nrow=length(k),ncol=1)

for (i in 1 :N){
alpha=alpha.in+i
d0=k1*pbeta(theta0,alpha,beta)+i*c
d1=k0*pbeta(theta0,alpha,beta,lower.tail=FALSE)+i*c
r[i,1]=d0
r[i,2]=d1
r[i,3]=min(d0,d1)
}
nopt=which(r[,3]==min(r[,3]))
print(paste('Optimal sample size n =',nopt))
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Classification of Observations

8.1 INTRODUCTION

Forensic scientists are routinely faced with the problem of classifying an observa-
tion (e.g. an individual, an item) into one of several populations on the basis of the
available measurements of some attributes. Suppose for example that some skeletal
remains are recovered, and the mandible is available and suitable for inspection
(Schmittbuhl et al. 2007). The external appearances suggest that the recovered
remains belong to an adult individual from the hominoid species. Moreover, the
observation of the mandibular outline suggests the possible genus of the individual.
So, it might be of interest for the scientist to classify the individual on the basis
of the genus. Analogously, in a forensic scenario, consider a scientist who may be
called on to conduct laboratory analyses to aid in the determination of the source
of a particular sample. For example, imagine a case concerning the contamination
of bank notes. The scientist may be asked to classify single items (i.e. bank notes)
in a group of bank notes seized during drug trafficking investigations or in a group
of bank notes in general circulation. As a third example, an important decision of
medicine is diagnosis, for example in the task of assigning an individual to one
of two categories (diseased or not diseased) on the basis of available information
(Parmigiani 2002). Note that in medicine (as well as in the legal context), diagnosis
is not an end in itself, but rather a means of assisting a later decision on treatment.

A fundamental assumption throughout this chapter is that there are a finite num-
ber of populations (categories) from which the observation may have come, and
that each population is characterized by a probability distribution of the measure-
ments. Different observations belonging to different populations will yield different

Data Analysis in Forensic Science: A Bayesian Decision Perspective Franco Taroni, Silvia Bozza, Alex Biedermann,
Paolo Garbolino and Colin Aitken
 2010 John Wiley & Sons, Ltd
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measurements, and this variability will be expressed in probabilistic terms. There-
fore, the scientist can treat the observation as a random observation from one of
these populations, the distribution of which depends on the actual population. The
problem is to classify the observation in the correct population. In some cases the
populations are completely specified in the sense that the probability distributions
are assumed known; in other cases only the form of each distribution is specified,
but parameters need to be estimated. The problems that arise whenever the proba-
bilistic structure is not known will not be considered here (Duda et al. 2001; Neal
1996).

The problem of classification can be treated as a problem of testing statistical
hypotheses: each hypothesis is that the probability distribution that has originated
the observation has a given form. Acceptance or rejection of a specific hypothesis
allows the classification or not of an observation to a given population. If only two
populations are considered, then the Bayesian approach presented in Chapter 6 to
compare hypotheses can be applied here.

8.2 STANDARDS OF COHERENT CLASSIFICATION

Suppose only two populations are considered, say population 1 (p1) and popu-
lation 2 (p2). One possible approach to classification is known as the Bayesian
predictive approach (see Press 2003 and related references).

Assume that each population is characterized by a probability distribution, with
parameter θi (possibly vector-valued):

fi (x | θi , pi ) i = 1, 2 (8.1)

and that there are several observations available, known to have come from each
population. Suppose probability distributions (8.1) are completely specified and let
P (pi ) be the prior probability of population pi , i = 1, 2. This reflects the prior
knowledge of how likely it is to have an observation from population 1(2).

A new observation x̃ is available and known to come from one of these pop-
ulations, but it is not known which one. The observation is to be classified. Two
propositions – sometimes also called models – are considered:

H1: the observation comes from population 1;
H2: the observation comes from population 2.

The posterior probability of belonging to population i can be obtained by Bayes’
theorem (see Section 2.3.1):

P (pi | x̃ ) = P (pi )fi (x̃ | θi , pi )∑2
j=1 P (pj )fj (x̃ | θj , pj )

.

If the posterior probability P (p1 | x̃ ) is greater (lower) than P (p2 | x̃ ), then propo-
sition H1(H2) is supported and the scientist would be naturally inclined to classify
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the observation in population 1(2). As outlined in Section 6.2.1, one can compute
the ratio of the posterior probabilities, i.e. the posterior odds, that is

P (p1 | x̃ )

P (p2 | x̃ )
= P (p1)f1(x̃ | θ1, p1)

P (p2)f2(x̃ | θ2, p2)
,

and classify the observation in population 1(2) if the posterior odds is greater
(lower) than 1. The Bayes factor is the ratio of the posterior odds to the prior
odds,

BF = P (p1 | x̃ )

P (p2 | x̃ )
/

P (p1)

P (p2)
= f1(x̃ | θ1, p1)

f2(x̃ | θ2, p2)
,

and measures the change produced by the evidence x̃ in the odds when going from
the prior to the posterior distribution. It can be observed that the Bayes factor in this
case is just the likelihood ratio of H1 to H2, since the problem can be transformed
to one of testing a simple hypothesis versus a simple hypothesis. Note also that if
P (p1) = P (p2) (i.e. the prior odds equal 1) the posterior odds is equivalent to the
likelihood ratio.

In some cases, the form of the probability distributions are known but the values
of the parameters are not known so a prior distribution must be introduced. Let
πi (θi ) (θi ∈ �i ; and θi may be vector-valued, e.g. the mean and variance of a
Normal distribution) denote the prior distribution that incorporates prior beliefs
about the population parameters (this can also incorporate information available
from previous experiments, see Section 3.3.1 and the sequential use of Bayes’
theorem). Then, the predictive distribution fi (x̃ | pi ) can be computed, that is

fi (x̃ | pi ) =
∫

�i

fi (x̃ | pi , θi )πi (θi )dθi .

The posterior probability of each population is therefore

P (pi | x̃ ) = P (pi )fi (x̃ | pi )∑2
j=1 P (pj )fj (x̃ | pj )

.

The posterior odds is given by:

P (p1 | x̃ )

P (p2 | x̃ )
= P (p1)f1(x̃ | p1)

P (p2)f2(x̃ | p2)
, (8.2)

and the Bayes factor is the ratio of the predictive distributions,

BF = f1(x̃ | p1)

f2(x̃ | p2)
. (8.3)

Bayesian decision theory offers another approach to address the problem of clas-
sification in this context. Populations are described by a probabilistic distribution
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whose structure is known. This approach incorporates the quantification of the con-
sequences (losses) that accompany errors of classification. Let D = {d1, d2} denote
the decision space, where d1(2) represents the decision of classifying the observa-
tion x̃ in population 1(2), while there are two possible states of nature, population
1 (p1) or population 2 (p2). Consider a ‘0–ki ’ loss function as in Table 8.1, with
k1 representing the loss of classifying a member of population 2 as a member of
population 1 and k2 representing the loss of classifying a member of population
1 item in population 2. In a medical context (Parmigiani and Inoue 2009), letting
population 1 represent healthy patients and population 2 diseased patients, k1 will
represent the loss of diagnosing a diseased patient as healthy and k2 will represent
the loss of diagnosing a healthy patient as diseased.

Table 8.1 The ‘0–ki ’ loss function. Decision d1, d2:
classify observation in population 1 and 2, respectively.

Population 1 Population 2

d1 0 k1

d2 k2 0

A coherent classification procedure is the Bayes decision procedure since it
minimizes the probability of misclassification. According to this, decision d1 is
taken (i.e. the observation is classified in population 1) if (see Section 6.2.2)

P (p1 | x̃ )k2 > P (p2 | x̃ )k1,

that is if

P (p1 | x̃ )

P (p2 | x̃ )
>

k1

k2
. (8.4)

As observed in Section 6.2.2, the larger k1/k2, that is the more an incorrect decision
under H2 is penalized relative to that under H1, the larger the posterior probability
of population 1 needs to be in order for H1 to be accepted. A threshold for the
interpretation of the Bayes factor can be obtained by multiplying both sides of
Equation (8.4) by the prior odds P (p2)/P (p1), that is

P (p2)

P (p1)

P (p1 | x̃ )

P (p2 | x̃ )
>

k1

k2

P (p2)

P (p1)
.

Therefore, when applying a ‘0–ki ’ loss function, the optimal decision is d1

whenever

BF >
k1

k2

P (p2)

P (p1)
. (8.5)

Note that if P (p1) = P (p2) the threshold reduces to k1/k2.
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The problem of classification can be generalized to several populations, say
p1, . . . , pk . Each population is characterized by a probability distribution fi (x |
θi , pi ). Given prior probabilities for each population, say P (p1), . . . , P (pk ), and the
observation x̃ , the posterior probability of each population can be easily computed
and is

P (pi | x̃ ) = P (pi )fi (x̃ | θi , pi )∑k
j=1 P (pj )fj (x̃ | θj , pj )

. (8.6)

Consider now a ‘0–ki ’ loss function extended to the case of several populations, as
in Table 8.2 for k = 3, where kj |i , i , j = 1, 2, 3, i �= j , denotes the loss of misclas-
sifying an observation from population i as from population j . This loss function
will be termed as ‘0–kj |i ’. The optimal classification procedure (Anderson 2003)
is to assign an observation x̃ to population l if

k∑
i=1;i �=l

P (pi )fi (x̃ | θi , pi )kl |i <

k∑
i=1;i �=j

P (pi )fi (x̃ | θi , pi )kj |i

j = 1, . . . , k ; j �= l (8.7)

When kj |i = 1 for all i and j , i �= j , then the optimal classification procedure
reduces to the assignment of an observation x̃ to population l if

P (pj )fj (x̃ | θj , pj ) < P (pl )fl (x̃ | θl , pl ) j �= l . (8.8)

Table 8.2 The ‘0–kj |i ’ loss function for three populations. Decision
d1, d2, d3: classify observation in population 1, 2 and 3, respectively.

Population 1 Population 2 Population 3

d1 0 k1|2 k1|3
d2 k2|1 0 k2|3
d3 k3|1 k3|2 0

8.3 COMPARING MODELS USING DISCRETE DATA

8.3.1 Binomial distribution and cocaine on bank notes

Consider two populations formed by elements (e.g. individuals, items) of two pos-
sible kinds in different proportions. These populations are referred as population 1
(p1) and population 2 (p2). For example, imagine the case of a population of bank
notes from drug trafficking investigations (p1) and a population of bank notes in
general circulation (p2) that will be developed in Example 8.3.1. It is known that
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bank notes may be contaminated with cocaine in a higher or lower proportion
depending on whether they have or have not been involved in drug dealing. Imag-
ine a scenario where some bank notes are seized on a suspect and some of them,
after inspection, are found to be contaminated with cocaine. A typical question a
forensic scientist may be called to answer is whether or not the bank notes have
been connected with drug trafficking.

In a simplistic model, the number Xi of bank notes contaminated in samples
of size n1(2) from the two populations can be modelled by a binomial distribution,
Xi ∼ Bin(ni , θi ), i = 1, 2 where θ1(2) denotes the probability that a bank note is
contaminated in each of the two populations. This model is simplistic because it
ignores the possibility of the correlation of levels of cocaine between adjacent notes
in a bundle (see footnote 1 in Example 8.3.1).

Imagine now that some bank notes are seized on a suspect. The number seized
equals n and, after inspection, x̃ are found to be contaminated with cocaine. The
evidence E to be evaluated is the number x̃ of bank notes found to be contaminated
out of a sample of size n . The sample size n is taken to be fixed. Consider two
propositions of interest:

H1 : the bank notes seized on the suspect have been involved in drug dealing;
H2 : the bank notes seized on the suspect are part of general circulation.

In the simplest case the proportions θs are known: if H1 is true the probability
a single bank note is contaminated with cocaine is θ1 and, similarly, if H2 is true
the probability a single bank note is contaminated is θ2. The posterior odds reduces
to the product of the prior odds P (p1)/P (p2) times the value of the evidence that
can be determined by considering the ratio of the binomial likelihoods (Aitken and
Taroni 2004). In particular, the value V of evidence is given by

V = P (E | H1)

P (E | H2)
= f (x̃ | θ1)

f (x̃ | θ2)
=
(n

x̃

)
θ x̃

1 (1 − θ1)(n−x̃ )(n
x̃

)
θ x̃

2 (1 − θ2)(n−x̃ )
, (8.9)

and is equivalent to the Bayes factor, as discussed in the previous section. The
posterior odds is obtained multiplying (8.9) by the prior odds.

However, the probabilities of finding contaminated bank notes in the two pop-
ulations are generally unknown, though some knowledge may be available from
previous investigations. On the basis of the prior knowledge, a conjugate beta prior
density for the unknown proportions is introduced, θi ∼ Be(αi , βi ). The predictive
distribution f (x̃ | pi ) can be calculated as in Example 3.3.2 and is a beta-binomial
distribution with parameters n , αi and βi ,

f (x̃ | pi ) =
(

n

x̃

)
�(αi + βi )

�(αi )�(βi )

�(αi + x̃ )�(βi + n − x̃ )

�(αi + n + βi )
. (8.10)
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The posterior odds and the Bayes factor can be obtained by substituting (8.10)
in (8.2) and (8.3) respectively. Numerical difficulties that may arise (e.g. from
calculating factorials of large integers) when computing the beta-binomial density
can be overcome by taking the logarithm of the probability, log f (x̃ | pi ). Therefore,
the posterior odds can be computed as

P (p1 | x̃ )

P (p2 | x̃ )
= exp

{
log

P (p1)

P (p2)
+ log f (x̃ | p1) − log f (x̃ | p2)

}
, (8.11)

and, equivalently, the Bayes factor

BF = exp {log f (x̃ | p1) − log f (x̃ | p2)} . (8.12)

Example 8.3.1 (Contamination of bank notes). Consider the following sce-
nario. Some bank notes, n = 100, are seized on a suspect and, after inspec-
tion, x̃ = 76 are found to be contaminated with cocaine. The scientist is
interested in evaluating x̃ under the following two propositions, say H1, the
bank notes seized on the suspect have been involved in drug dealing, and H2,
the bank notes seized on the suspect are part of the general circulation.

Let θ1 and θ2 denote the probability that a bank note is contaminated with
cocaine from the drug dealing and from general circulation, respectively.
Parameters of the beta densities introduced to model the uncertainty about
the unknown proportions θ1 and θ2 are chosen according to the procedure
described in Section 4.2.1 that allows the prior distribution to be based on
available knowledge. In particular, it is known (Besson 2003) that among
a population of n1 = 462 bank notes from drug trafficking investigations, a
number of x1 = 382 have been found to be contaminated; moreover, among
a population of n2 = 992 bank notes from general circulation, a total of
x2 = 562 have been found to be contaminated. Parameters are then chosen
according to equations (4.3) and (4.4), and results in a Be(381, 80) distribu-
tion for θ1, and a Be(561, 430) distribution for θ2.

The values of the beta-binomial densities can be obtained using the R rou-
tines given at the end of the chapter, and are given by log f (x̃ | p1) = −3.639
and log f (x̃ | p2) = −9.887. The Bayes factor can be obtained by substituting
these values in Equation (8.12) and gives

BF = exp(−3.639 + 9.845) = 517,

in favour of the hypothesis of association with drug dealing.
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According to the verbal scale in Table 6.2, a Bayes factor equal to 517 rep-
resents moderately strong evidence to support that the bank notes seized on
the suspect have been involved in drug dealing1. If the prior odds (the ratio
between the prior probabilities that the recovered sample comes from popula-
tion 1 or 2) is set equal to r , then the posterior odds is 517r . Figure 8.1 shows
the impact of different prior probabilities for the classification in population
1 on the posterior odds. It can easily be checked that, whenever the prior
probability P(p1) ≥ 0.003, the posterior odds is greater than 1; this means
that the recovered sample should coherently be classified into population 1.
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Figure 8.1 Posterior odds P(p1 | x̃ )/P(p2 | x̃ ) obtained for increasing probability
values P(p1) of population 1.

The same conclusions in favour of proposition H1 may be obtained under
a decision-oriented approach. Assuming a ‘0–ki ’ loss function, the decision
criterion is the one outlined in Equation (8.4), but the values for k1 and k2

may be difficult to assess. However, what really matters is the ratio of the two
values. Assuming that classifying seized bank notes as having been involved
in drug dealing when they have not been involved is worse than the opposite,
that is classifying seized bank notes as from general circulation when they

1Note that such an example is a simplification of the reality, because the use of the binomial
distribution may be questioned here. One of the modelling assumptions for a binomial distribution is
that all members of the sample have a constant probability of ‘success’, independent of other members
of the sample. Models which allow for dependence amongst members of the sample are beyond the
scope of this book.
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have been involved in drug dealing, then the value of k1 will be greater than
k2. However, the consequences of erroneously taking decision d1 when H2 is
true will need to be very much greater than the consequences of taking d2

when H1 is true, in order to overturn a BF of nearly 500. Consider now prior
probabilities are not felt to be equal, and population 2 is believed a priori
much more probable, say P(p2) = 0.9, then Equation (8.5) becomes

517 >
k1

k2

0.9

0.1
,

so that decision d2 becomes the Bayes decision if and only if the ratio k1/k2

exceeds 57. Otherwise, a Bayes factor equal to 517 is still sufficiently large
to confirm d1 as the Bayes decision.

8.3.2 Poisson distributions and firearms examination

Consider the following scenario. A bullet is found at a crime scene and a suspect
is apprehended with a gun. The following propositions are of interest:

• H1: the bullet found at the crime scene was fired from the suspect’s gun;
• H2: the bullet found at the crime scene was fired from a gun other than the

suspect’s gun.

A statistic often used for quantifying the extent of agreement between marks
(left by firearms) is that of consecutive matching striations or CMS for short. An
examiner studies bullets under a macroscope and decides what is a striation and, for
comparison, what striations match between the two bullets. The recovered bullet
and a bullet fired from the gun which is suspected of being used in the crime
(suspect gun) are compared. Observations are made of the matching striations and
of the differences.

For the analysis of CMS , a scientist fires numerous bullets through many firearms
of the same make and model. A macroscopic comparison is then made of specimens
known to have been fired from the same barrel and specimens known to have been
fired from different barrels, and counts are made of the numbers of matching
striations. Bunch (2000) describes a model in which the only CMS run on a bullet
which matters is the one, or more, which features the maximum CMS count. Two
data sets can be compiled, one for pairs of bullets fired from the same gun and one
for pairs of bullets fired from different guns (i.e. different make and model). Let Y
be the maximum CMS count for a particular bullet found at a crime scene when
compared with a bullet fired from a gun, known as the suspect gun. One model for
the CMS count is a Poisson model with P (Y = y | λ) = Pn(λ), where the parameter
λ is the weighted average maximum CMS count. Two Poisson distributions are
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required, one for pairs of bullets fired from the same gun (S ), Pn(λS ) and one for
pairs of bullets fired from different guns (D), Pn(λD ). If the suspect gun is the
same gun as the one that fired the bullet found at the crime scene (H1 is true),
then

f (y | λS ) = λ
y
S

y!
e−λS y = 0, 1, . . .

If the suspect gun is a different gun to the one that fired the bullet found at the
crime scene (H2 is true), then

f (y | λD ) = λ
y
D

y!
e−λD y = 0, 1, . . .

The evidence E to be considered is the observed number ỹ of CMS . If parameters
λS and λD are known, the value of evidence is given by the following likelihood
ratio:

V = P (E | H1)

P (E | H2)
= f (ỹ | λS )

f (ỹ | λD )
=
(

λS

λD

)ỹ

eλD −λS .

The use of CMS through the likelihood ratio enables a summary of the evidence
of CMS to be in a phrase of the form ‘the evidence is so many times more likely if
H1 is true than if H2 is true’. This provides a good summary of what the statistics
of CMS means in the context of determining the origin of the bullet found at a
crime scene.

However, if parameters λS and λD are unknown, a gamma conjugate prior dis-
tribution can be assumed, λg ∼ Ga(αg , βg ), for g = S , D , as discussed in Section
4.3. The predictive distribution under hypothesis H1 is the Poisson-gamma mixture
(see also Example 3.3.9), that is

f (ỹ | H1) =
∫ ∞

0

e−λS λ
ỹ
S

ỹ!
Ga(αS , βS )dλS

= 1

ỹ!

β
αS
S

�(αS )

�(αS + ỹ)

(βS + 1)αS +ỹ
. (8.13)

Similarly, the predictive distribution under hypothesis H2 is

f (ỹ | H2) = 1

ỹ!

β
αD
D

�(αD )

�(αD + ỹ)

(βD + 1)αD +ỹ
. (8.14)

The posterior odds ratio can be obtained by substituting (8.13) and (8.14) in
(8.2).
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Example 8.3.2 (Firearm assessment). Consider a firearm examination sce-
nario in which the observed number of CMS counts is ỹ = 5. At first, consider
the case where parameters describing the two populations (S and D) are
known from previous experiments (see Examples 4.3.1 and 4.3.2). Consider
that, for bullets fired from the same gun (S ), the weighted average maximum
CMS (see Bunch 2000, for details) count is given by λS = 3.91. For bullets
fired from different guns (D), the weighted average maximum CMS count
is given by λD = 1.32. The ratio of f (ỹ | λS ) = 0.153 to f (ỹ | λD ) = 0.0089
equals 17.1 and is then the value of the evidence ỹ of the maximum CMS
count. This result moderately supports the proposition that the fired bullet
comes from the suspect’s gun.

Consider the same scenario but the parameters describing the two popula-
tions are unknown. Assume for λS and for λG a Ga(125, 32) and a Ga(7, 5)
prior density, respectively (Figure 8.2). Parameters have been chosen by
starting from prior beliefs about the mean and the standard deviation as
illustrated in Section 4.3.1. Given the predictive distributions in (8.13) and
(8.14), f (5 | H1) = 0.15 and f (5 | H2) = 0.016, approximately. The value
of the evidence is therefore 9.06 and represents limited evidence to support
the proposition that the fired bullet comes from the suspect gun. For equal
prior probabilities P(p1) = P (p2) = 0.5, this value is also the posterior
odds, which allows one to classify ỹ into population 1 (suspect’s gun).
Figure 8.3 shows the influence of different prior probabilities P (p1) on the
posterior odds. In particular, it can be seen from the right-hand figure that
prior probabilities P(p1) > 0.1 allows for classification of the observation in
population 1.
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Figure 8.2 Gamma prior densities, Ga(125, 32) (left) and Ga(7, 5) (right) describing
the prior beliefs about the mean and the standard deviation on the CMS from bullets
fired by the same (left) and different (right) firearms.
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Figure 8.3 Effect of prior probability P(p1) on the posterior odds in Example
8.3.2; the section of the left-hand graph for P(p1) < 0.20 is illustrated in the
right-hand graph.

From a Bayesian decision perspective, and using an asymmetric loss func-
tion ‘0–ki ’, the decision criterion is the one outlined in Equation (8.4). How
can k1 and k2 be assessed? As already outlined, what really matters is the
ratio of the two losses, k1/k2. At first, it is believed the ratio of the two losses
k1/k2 should be greater than 1 since to link falsely a bullet to the suspect’s
gun is considered worse than to exclude falsely a link. So, given a posterior
odds equal to 9.06, and the decision criterion in (8.4), the ratio of the losses
should be greater than 9 to change the classification decision from d1 (the
bullet has been fired from the suspect’s gun) to d2 (the bullet has been fired
from a different gun). Note that while a ratio of 9.06 could be considered
big enough to consider d1 as the Bayes decision (no matter how the loss val-
ues are quantified), it would be not so clear for different values of the prior
probabilities. Take for instance P(p1) = 0.3, then the posterior odds would be
3.88. Then, if taking decision d1 erroneously is four times worse than taking
decision d2 erroneously, the Bayes decision would be d2. This confirms the
limited evidence given by the data.

8.4 COMPARISON OF MODELS USING
CONTINUOUS DATA

8.4.1 Normal distribution and colour dye (case with known variance)

A scientist is interested in evaluating the measurement of colour dye concentra-
tion in ecstasy tablets. Imagine a scenario that involves the comparison between
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measurements (Y ) on a suspect tablet and measurements (Xc) on a consignment
of tablets (denoted C ) for which laboratory analysis has revealed the presence of
a certain kind of colour dye. One would like to evaluate the possibility that the
incriminated tablet is linked to the consignment above. Two hypotheses need to be
compared:

H1 : the existence of a link to a population C ;
H2 : the absence of a link.

Colour dye concentration, say X , is a continuous measurement for which a Normal
distribution is appropriate. The colour dye concentration in tablets for which lab-
oratory analyses are available, the results of which are denoted Xc , is assumed to
follow a Normal distribution, Xc ∼ N (θc , σ 2

c ). The evidence E to be considered is
the measurement y of colour dye concentration in the suspect tablet. The likelihood
ratio for evaluating the existence of a link to the consignment of tablets C can be
found by evaluating the probability densities of the colour dye concentration y
given the existence of a link, and given the absence of a link, to the consignment
at hand. In the latter case a population of unrelated cases, denoted P , is considered,
with measurements Xp , Normally distributed, Xp ∼ N (θp , σ 2

p ). So, the value of the
evidence

V = P (E | H1)

P (E | H2)
= f (y | θc , σ 2

c )

f (y | θp , σ 2
p )

=
(σ 2

c )−1/2 exp

{
− 1

2

(
y−θc
σc

)2
}

(σ 2
p )−1/2 exp

{
− 1

2

(
y−θp
σp

)2
} .

Alternatively, it may be of interest to test whether the suspect tablet is linked
to the consignment of a specific producer (Z ), where measurements, denoted Xz ,
are Normally distributed, Xz ∼ N (θz , σ 2

z ).
Consider a series of independent measurements y1, y2, . . . , yn on the n suspect

tablets. As was outlined in Section 6.4.3, the probability densities of the sample

are f (y1, . . . , yn | H1) = N (ȳ | θc , σ 2
c
n ) and f (y1, . . . , yn | H2) = N (ȳ | θp ,

σ 2
p
n ) with

ȳ = ∑n
i=1 yi /n .

Example 8.4.1 (Colour dye concentration in ecstasy tablets). A tablet is
analyzed (n = 1) and the colour dye concentration measured equals 0.155
[%]. Assume distributions of the competing populations C and P are known
(Goldmann et al. 2004), that is Xc ∼ N (0.14, 0.012), and Xp ∼ N (0.3, 0.062),
see Figure 8.4 (a).

The likelihood ratio for evaluating a linkage to C becomes:

V = f (0.155 | 0.14, 0.012)

f (0.155 | 0.3, 0.062)
= 36.12.
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Figure 8.4 (a) (left-hand diagram) Distributions of the competing populations,
Xc ∼ N (0.14, 0.012) (solid curve) and Xp ∼ N (0.3, 0.062) (dashed curve); (b) (right-
hand diagram) Distributions of the sample y1, . . . , y5 under the two hypotheses,
Xc ∼ N (0.14, 0.012/5) (solid curve) and Xp ∼ N (0.3, 0.062/5) (dashed curve). Note
the difference in scales on the axes labelled ‘Density’.

The observed colour dye concentration in the incriminated tablet may thus
be said to be approximately 36 times more likely if it is linked to C , than if it
were linked to a population of unrelated cases.

Imagine now that a sample of n = 5 incriminated tablets has been
observed, and a sample mean ȳ = 0.155 has been obtained. The distribu-
tions of the sample mean ȳ , under H1 and H2, are plotted in Figure 8.4 (b).
Then,

V = f (0.155 | 0.14, 0.012/5)

f (0.155 | 0.3, 0.062/5)
= 47451.

The uncertainty around the colour concentration measure decreases because
five samples have been analyzed. Therefore the value of the evidence is
increased by a factor of about 1300. This is illustrated by the relative heights
of the probability density curves under H1 and H2 in Figures 8.4 (a) and
8.4 (b), at the values of 0.155 of colour dye concentration.

Consider now the case where the means (θc , θp) of the colour dye concentration
distributions are unknown, and prior conjugate distributions are introduced, θc ∼
N (µc , τ 2

c ) and θp ∼ N (µp , τ 2
p ). The distribution under H1 is still Normal, but now

with f (y | H1) = N (µc , σ 2
c + τ 2

c ), and, equivalently, f (y | H2) = N (µp , σ 2
p + τ 2

p ).
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Therefore, the likelihood ratio for evaluating linkages to C becomes:

V = P (E | H1)

P (E | H2)
= f (y | µc , σ 2

c + τ 2
c )

f (y | µp , σ 2
p + τ 2

p )
.

Example 8.4.2 (Colour dye concentration in ecstasy tablets – continued).
Assume θc ∼ N (0.14, 0.0032) and θp ∼ N (0.3, 0.0162). Then,

f (0.155 | 0.14, 0.012 + 0.0032)

f (0.155 | 0.3, 0.062 + 0.0162)
= 32.37.

Note that the increasing uncertainty due to the prior distributions for θc and
θp reduces the value of the evidence for the concentration of a single tablet
from 36.12 to 32.37. For five tablets with a mean concentration of 0.155, the
value of the evidence is

f
(
0.155 | 0.14, 0.012/5 + 0.0032

)
f
(
0.155 | 0.3, 0.062/5 + 0.0162

) = 5709.

8.4.2 A note on the robustness of the likelihood ratio

In the scenario presented in Section 8.4.1, a comparison is wanted between an
incriminated tablet and a consignment C of tablets for which laboratory analysis
has revealed the presence of a certain kind of colour dye. One would like to evaluate
the possibility that the incriminated tablet is linked to C . The two hypotheses of
interest – under which the evidence should be compared – are the existence of a
link, denoted H1, and the absence of a link, denoted H2.

The colour dye concentration, X , is assumed to follow a Normal distribution,
X ∼ N (θ , σ 2). Using the ideas of Example 8.4.1 with a single measurement now
on the incriminated tablet of y = 0.165, a likelihood ratio of 3.3 is obtained for
evaluating the value of the evidence comparing the presence and absence of a link
between the incriminated tablet and C ,

V = f (0.165 | 0.14, 0.012)

f (0.165 | 0.3, 0.062)
= 3.3.

The scientist may thus report that his evidence slightly supports (see Table 6.2)
the prosecution’s case by a factor of about 3.3. Such a result may give rise to
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questions of the following kind (relating to what can be called the robustness of
the likelihood ratio):

• How often may a forensic scientist obtain such a likelihood ratio for tablets that
actually come from consignment C (as assumed by the prosecution’s case, H1)?

• How often may a forensic scientist obtain such a likelihood ratio for tablets
unrelated to consignment C that actually come from a population, say P (as
assumed by the defence case, H2)?

Knowledge of the distribution of the likelihood ratio itself is required to answer
these questions, irrespective of the observed evidence, but for members of given
populations. For the sake of illustration, consider again the colour dye scenario.

A way to approach such questions is to investigate the colour dye concentration
on training sets of tablets coming from both populations of interest and to calculate
a likelihood ratio for each of these tablets. If this procedure is conducted a certain
number of times, a scientist can obtain a likelihood ratio distribution for each of
the two studied populations (i.e. consignment C and population P ).

Such an investigation can be conducted experimentally but such investigations
may be time-consuming and demanding with respect to resources. Another possi-
bility consists in generating data for each of the two target populations, C and P , by
simulation. Such an approach may be acceptable, for instance, in settings in which
one has well-informed distributions from which appropriate random values can be
generated. A simulation of this kind is conducted here for the above-mentioned
scenario in which a likelihood ratio of 3.3 was found.

The simulation involves the same distributional assumptions as those mentioned
at the beginning of this example, say two Normal distributions. Following the stated
assumptions, 10 000 colour dye concentrations are generated for each of the two
target populations with a likelihood ratio being calculated for each concentration.
Table 8.3 shows – for each of the two target populations – the number of likelihood
ratio values obtained for the randomly generated colour dye concentration.

Table 8.3 Counts of values in four apportionnements of 10 000 likelihood ratio values
from simulations made in populations C (proposition H1) and P (proposition H2),
respectively. Repetition of simulations will give small differences in the output.

< 1 [1, 10) [10, 100) [100, 1000)

H1: 22 161 2099 7718
H2: 9864 50 59 27

For the simulation conducted here, 161 likelihood ratios with a value between
1 and 10 were obtained for the random colour dye concentration selected from the
first population, C . Fifty likelihood ratios with a value between the same range,
[1, 10) , were found for the random concentrations given from population P .
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These figures help answer questions of the kind stated above. The ratio between
the two proportions of values in the stated range [1, 10) offers an estimate of
the robustness of the likelihood ratio. It provides a figure of how many times a
likelihood ratio between 1 and 10 will point in the wrong direction.

In the colour dye concentration scenario, a likelihood ratio of 3.3 was calcu-
lated; this slightly supports the proposition that the incriminated tablet comes from
consignment C rather than coming from the population P . Simulations suggest that
about 24% (50/211) of the time that the scientist points (slightly) to the prosecu-
tor’s hypothesis, there is a risk of misleading evidence; the decision maker chooses
H1 when H2 should be chosen.

Note that such a simulation exercise allows a general assessment of false nega-
tives and positives for a given population (proportion of likelihood ratios less than
1 and greater than 1, respectively). Table 8.3 shows that about 0.2% (22/10000)
of the simulations offer a likelihood ratio less than 1 when hypothesis H1 (the
incriminated tablet is linked to consignment C ) should be supported. In approx-
imately 1.4% (136/10000), a likelihood ratio greater than 1 is (falsely) obtained
under hypothesis H2.

Thus, the scientist can assess the ‘discriminating power’ of an analytical process
(i.e. the colour dye concentration). The flexibility of the likelihood ratio statis-
tic gives it an advantage for discrimination over methods that do not vary with
respect to underlying hypotheses. Similar methodology has also been proposed, for
example, in DNA evidence evaluation in family searching (Taroni and Hicks 2008)
and in gunshot residues evaluation (Biedermann et al. 2009).

8.4.3 Normal distribution and questioned documents
(case with known variance)

Consider a scenario involving questioned documents which have been printed with
a laser-jet printer of unknown type. Imagine, for the sake of simplicity, that the
possible printers which might have been used are only two: say printer 1 and printer
2. For forensic purposes, two hypotheses need to be compared:

H1 : the questioned documents have been printed with printer 1;
H2 : the questioned documents have been printed with printer 2.

Several variables can be measured from the printed characters (e.g. the area and the
diameter, see Mazzella and Marquis 2007). Take for instance the area of a specific
printed character; measurements follow a Normal distribution with mean θ1(2) for
printer 1(2). The variance σ 2 is assumed known and equal for both populations of
characters (i.e. those documents printed with printer 1 or 2), say

Xi ∼ N (θi , σ
2), i = 1, 2.

Prior conjugate distributions are introduced for the unknown means, θ1 ∼ N (µ1, τ 2
1 )

and θ2 ∼ N (µ2, τ 2
2 ).
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Suppose n characters of the same type are measured from a questioned doc-
ument, y1, . . . , yn , the sample mean ȳ is calculated and is the evidence E . The
distribution under H1 is still Normal, that is f (ȳ | H1) = N (µ1, σ 2/n + τ 2

1 ), and
f (ȳ | H2) = N (µ2, σ 2/n + τ 2

2 ). Therefore, the likelihood ratio becomes

V = P (E | H1)

P (E | H2)
= f (ȳ | µ1, σ 2/n + τ 2

1 )

f (ȳ | µ2, σ 2/n + τ 2
2 )

.

Example 8.4.3 (Questioned document). The area of n = 10 characters of
type ‘a’ is measured from a questioned document and a sample mean ȳ =
454888 µm2 is obtained. Documents might have been printed with an Canon
model ir 400 (hypothesis H1), or with an HP model 4l (hypothesis H2). The
variance σ 2 is known and equal to 546187921 (units in µm2). Available
knowledge enables prior distributions for θ1 ∼ N (462825, 100002), and for
θ2 ∼ N (430350, 100002) to be specified. The likelihood ratio is

V = f (454888 | 462825, 546187921/10 + 100002)

f (454888 | 430350, 546187921/10 + 100002)
= 5.71.

There is limited evidence in favour of hypothesis H1.
Since there is no reason to believe one printer to be more likely than the

other, it is assumed that P (H1) = P (H2) = 0.5. Then, 5.71 is also the pos-
terior odds. Given a ‘0–1’ loss function (which seems perfectly reasonable
in this scenario since there are no reasons to penalize more or less one type
of misclassification error over another), the optimal decision, according to
Equation (8.4), will be to classify the observation as originating from printer
1, the Canon model ir400.

Example 8.4.4 (Questioned document – continued). Consider the same
scenario as in Example 8.4.3. As outlined in Section 8.2, the classifi-
cation procedure can be generalized to several populations. Imagine
there is a third printer that might have been used, an HP model 1300.
Available knowledge on that printer provides a prior distribution for
its mean θ3 ∼ N (476242, 100002). Assuming equal prior probabilities
P (p1) = P (p2) = P (p3) = 1/3, the posterior distribution, Equation (8.6),
can be computed for each printer:

P (p1 | 454888) = 0.69
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P (p2 | 454888) = 0.12

P (p3 | 454888) = 0.19.

Given a loss function as in Table 8.2 with kj |i = 1 for all i and j , i �= j ,
the optimal decision is to classify the questioned document as coming from
printer 1, since Equation (8.8) holds for j = 2, 3.

8.4.4 Normal distribution and sex determination
(case with unknown variance)

Imagine a scientist examines skeletal remains with a view to classifying them as
remains of females or of males. Analysis and measurements of the sacral base (basis
osseus sacri ) is considered a good determinant of sex (Benazzi et al. 2009). The
area of the sacral base is assumed to follow a Normal distribution, X ∼ N (θ , σ 2),
with unknown mean and variance.

Whenever limited information is available prior to data collection (imagine that
only a small database is available), a vague prior distribution can be adopted,
π (θ , σ ) ∝ 1

σ
(see Section 4.4.2). Suppose that n observations are taken on the

recovered skeletal remains: x = (x1, . . . , xn ). The predictive distribution of a mea-
surement, Y , is a non-central Student t distribution (Bernardo and Smith 2000),

(Y | x ) ∼ St

(
n − 1, x̄ ,

s2(n + 1)

n

)
, (8.15)

with mean x̄ = 1
n

∑n
i=1 xi , (n − 1) degrees of freedom, and s2 = 1

n−1

∑n
i=1(xi −

x̄ )2. This enables the Bayes factor and the posterior odds to be computed and the
standards of classification implemented as discussed in Section 8.2.

Whenever prior information is available, an informative prior distribution can
be assumed for the unknown parameters, π (θ , σ 2) = π (θ | σ 2)π (σ 2), where (θ |
σ 2) ∼ N (µ, σ 2/n0) and σ 2 ∼ IG(α, β), as in Section 4.4.2. In that case, having
observed x = (x1, . . . , xn ), the predictive distribution f (y | x ) is still a non-central
Student t distribution, with mean as in (4.19) and 2α + n degrees of freedom.

Example 8.4.5 (Sex determination of skeletal remains). Suppose that data
concerning the area of the profile of the sacral base are available. In a
female population, say F , of nF = 38 individuals the mean of the area is
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x̄F = 10.35 cm2 and the standard deviation is sF = 1.42 cm2. In the alterna-
tive population, say M , composed by nM = 35 males, the mean of the area
of the sacral base is x̄M = 14.09 cm2 and the standard deviation is sM =
1.52 cm2. A non-informative prior distribution π (θ , σ ) ∝ 1

σ
is adopted. The

predictive distributions (8.15) for the two populations are given in Figure 8.5.
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Figure 8.5 Predictive density of the sacral base area for the female (solid line) and
the male (dashed line) population. The vertical dotted line indicates the predictive
densities for a skeletal remain of area 12 cm2.

A skeletal remain is recovered and the sacral base area measures y =
12 cm2. There are two hypotheses of interest:

H1 : the skeletal remain belongs to population 1, the female population;
H2 : the skeletal remain belongs to population 2, the male population.

The value of the evidence is

V = f (y | H1)

f (y | H2)
= St

(
y | nF − 1, x̄F , s2

F (nF + 1)/nF
)

St
(
y | nM − 1, x̄M , s2

M (nM + 1)/nM
)

= St (12 | 37, 10.35, 2.07)

St (12 | 34, 14.09, 2.38)
= 1.79.

As may expected by observing the predictive distributions in Figure 8.5, there
is limited evidence in support of hypothesis H1. The reader is left to develop
this scenario, computing the posterior odds and finding the optimal decision
according to their state of knowledge (e.g. using conjugate priors).
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8.5 NON-NORMAL DISTRIBUTIONS
AND COCAINE ON BANK NOTES

Consider the two populations of bank notes described in Section 8.3.1, the first
given by bank notes coming from drug trafficking (say population 1), and the
second given by bank notes in general circulation (say population 2). It is assumed
that the intensities with which a drug is present on the bank notes will be different
depending on whether the notes have or have not been involved in drug dealing.
Consider a scenario where some bank notes are seized on a suspect: a typical
question that may need to be addressed in such a situation is whether or not they
have been involved with drug trafficking (see for example Besson 2003, 2004).
In Section 8.3.1 a situation was described where the laboratory simply took into
account the presence or the absence of traces of drugs on the bank notes. Suppose
now the laboratory measures the intensity of drug present on the bank notes, and
wishes to determine the probability distribution underlying the generation of the
observations. However, not all data have a distribution which is readily modelled
by a standard distribution. In particular, not all data are unimodal, symmetric and
bell-shaped and able to be modelled by a Normal distribution. The histograms of
the measured intensity of contamination with drugs on bank notes of ¤ 200 from
population 1, Figure 8.6 (left), and on bank notes of ¤ 200 from population 2,
Figure 8.6 (right), illustrate this (Besson 2004). The distribution for bank notes
involved in drug trafficking is not unimodal and the distribution for bank notes in
general is positively skewed. In such a case the probability distribution may be
estimated from data taken from the population. A procedure known as the kernel
density estimation can be used (see Silverman 1986 for technical details).
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Figure 8.6 Drug intensity measured on bank notes of 200 ¤ in a population of bank notes
coming from drug trafficking (left) and in general circulation (right). The unit of measure-
ment (du) is a ‘digital unit’.
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Consider one of the histograms plotted in Figure 8.6. The procedure is described
for a generic set of observations, and is implemented successively for populations
1 and 2 in turn. Consider a histogram as constructed with rectangular blocks, each
block corresponding to one observation. The block is positioned according to the
interval in which observation lies. The method of kernel density estimation used
here replaces the rectangular block by a Normal probability density curve, known
in this context as the kernel function. The curve is positioned by centring it over
the observation to which it relates. The estimate of the probability density curve
is obtained by adding the individual curves together over all the observations in
the data set and then dividing this sum by the number of observations. Since each
component of the sum is a probability density function, each component has area
1. Thus, the sum of the functions divided by the number of observations also has
area 1 and is a probability density function.

Mathematically, the kernel density estimate of an underlying probability density
function can be constructed as follows (see Aitken and Taroni (2004)). Denote
the measurement of the mean concentration of drug in a particular bank note
from a generic population by θ . The corresponding probability density function
f (θ ) is to be estimated. A dataset D = {x1, x2, . . . , xn} is available to enable this
to be done. The variance of the drug concentration from different bank notes is
estimated by

s2 =
n∑

i=1

(xi − x̄)2 /(n − 1),

where x̄ denote the sample mean. The sample standard deviation s is then multiplied
by a parameter, known as the smoothing parameter, denoted here by λ, which
determines the smoothness of the density estimate. The kernel density function
K (θ | xi , λ) for point xi is then taken to be a Normal distribution with mean xi and
variance λ2s2,

K (θ | xi , λ) = 1

λs
√

2π
exp

{
− (θ − xi )2

2λ2s2

}
.

The estimate f̂ (θ | D , λ) of the probability density function is then given by

f̂ (θ | D , λ) = 1

n

n∑
i=1

K (θ | xi , λ). (8.16)

In the construction of a histogram a decision has to be made initially as to the
width of the intervals. If the width is wide, the histogram is rather uninformative
regarding the underlying distribution. If it is narrow, there may be too much detail
with general features of the distribution being lost. Similarly, in kernel density



Non-Normal Distributions and Cocaine on Bank Notes 311

estimation, the spread of the Normal density curves has to be determined. The
spread of the curves is represented by the smoothing parameter λ. If the variance
is chosen to be large, the resulting estimated curve is very smooth. If the variance
is chosen to be small, the resulting curve is very spiky (see Figure 8.7).
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Figure 8.7 Examples of kernel density estimates showing individual kernels. Smoothing
parameter values are (a) λ = 0.5 and (b) λ = 1. (Figure 10.3 at p. 333 in Aitken CGG and
Taroni F 2004 Statistics and the Evaluation of Evidence for Forensic Scientists 2nd edn.
John Wiley & Sons, Chichester.)

The smoothing parameter λ has to be chosen. Mathematical procedures exist
which enable an automatic choice of λ to be made (see for example Habbema
et al. (1974) where a so-called pseudo-maximum likelihood procedure is proposed).
The choice of λ has to be made while bearing in mind that the aim of the analysis
is to provide a value V for the evidence in a particular case, as represented by
the likelihood ratio. Using the kernel density estimation procedure, an expression
for V is derived, see Equation (8.17). An investigation of the variation in V as λ

varies is worthwhile (see Aitken and Taroni (2004)). If V does not vary greatly
as λ varies then a precise value for λ is not necessary. For example, it is feasible
to choose λ subjectively by comparing the density estimate curve f̂ obtained for
various values of λ with the histogram of the data. The value which provides the
best visual fit can then be chosen. A value of λ equal to 0.2 was used to produce
the curves in Figure 8.8.
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Figure 8.8 Drug intensity measured on bank notes of 200 ¤ in a population of bank notes
coming from drug trafficking (left) and in general circulation (right), and associated kernel
density estimates with smoothing parameter equal to 0.2 in both cases.

Example 8.5.1 (Contaminated bank notes - continued from Example
8.3.1). Nine bank notes are seized on a suspect and laboratory measure-
ments show drug intensities [du] equal to y = (y1 = 122, y2 = 58, y3 =
184, y4 = 135, y5 = 371, y6 = 835, y7 = 828, y8 = 335, y9 = 625). A dataset
containing measurements of concentration of drug in bank notes of 200
¤ is available for population 1 (drug dealing), D1 = {x (1)

1 , . . . , x (1)
n1 }, and

for population 2 (general population), D2 = {x (2)
1 , . . . , x (2)

n2 } (Besson 2004).
The sample mean are x̄1 = 543 and x̄2 = 248 respectively for populations
1 and 2, while the estimated variances are s2

1 = 78383 and s2
2 = 33474.

The smoothness parameter is taken equal to 0.2 for both populations,
λ1 = λ2 = 0.2. Consider two propositions of interest:

H1 : the bank notes seized on the suspect have been involved in drug dealing;
H2 : the bank notes seized on the suspect are part of general circulation.

The value of the evidence is given by:

V = f̂ (y | H1)

f̂ (y | H2)
=
∏9

j=1 f̂ (yj | D1, λ1)∏9
j=1 f̂ (yj | D2, λ2)

=

∏9
j=1

1
n1

∑n1
i=1

1
λ1s1

√
2π

exp

{
−

(
yj −x (1)

i

)2

2λ2
1s2

1

}

∏9
j=1

1
n2

∑n2
i=1

1
λ2s2

√
2π

exp

{
−

(
yj −x (2)

i

)2

2λ2
2s2

2

} = 33.79. (8.17)
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Table 8.4 Sensitivity of the likelihood ratio in
expression (8.17) in Example 8.5.1 given
different choices of the smoothness parameter λ.

Smoothness parameter λ Likelihood ratio V

λ1 = λ2 = 0.1 16455
λ1 = λ2 = 0.2 33.79
λ1 = λ2 = 0.3 5.79
λ1 = λ2 = 0.4 2.80
λ1 = λ2 = 0.5 1.84

The value 33.79 slightly supports the hypothesis H1, but it can be observed
in Table 8.4 that V is sensitive to the choice of the smoothness parameter
λ. One might argue, from a decision-theoretic point of view, that a different
choice of the smoothness parameter could lead to a different optimal decision.
Consider the ‘0–ki ’ loss function in Table 8.1. The values k1 and k2 may
be chosen, but the ratio k1/k2 is the factor of interest. This ratio is taken
to be greater than 1 since the classification of bank notes as coming from
drug trafficking, when they do not, is felt a more serious error. Recalling
Equation (8.5), one might feel that a value of the likelihood ratio equal to 5.79
(λ1 = λ2 = 0.3) is not necessarily followed by decision d1 (acceptance of H1)
as the optimal decision. In fact, for decision d1 to be optimal, it is required
that

5.79 >
k1

k2

P (p2)

P (p1)
, (8.18)

for any k1 > 0, k2 > 0, and any P(p1), P(p2). The specific context will suggest
values to the decision maker for the losses and for the prior odds. However,
a careful reading of Equation (8.18) suggests that to have d2 as the optimal
decision, k1 should be at least nearly 6 times greater than k2, if P(p1) = P (p2).
However the circumstances will often suggest a value of P(p1) greater than
P (p2), so the ratio between the losses should be even higher. Greater values
of λ produce an even smaller likelihood ratio, and more difficult situations to
judge, since Equation (8.5) could hold for some values of the losses and of
the prior probabilities, and not for some others. However, this is not felt as
problematic since it can visually be checked that such smaller values of the
likelihood ratio are obtained in association with large choices of λ which in
turn produce kernel density estimates that are smooth.
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8.6 A NOTE ON MULTIVARIATE CONTINUOUS DATA

Imagine now that multivariate continuous data become available. A piece of evi-
dence, say a handwritten or a printed character in a questioned document, or a
fragment of glass recovered at a crime scene or a drug sample, can be described by
more than one variable. A statistical model for the evaluation of evidence through
the computation of likelihood ratio for multivariate data has been proposed by
Aitken and Lucy (2004) in the context of the elemental composition of glass data,
and by Bozza et al. (2008b) in the context of handwritten questioned documents.

Consider again the populations of printers introduced in Section 8.4.3 and con-
sider the situation where several variables are measured on each printed character
(e.g. the area, the box-ratio, the diameter) (Mazzella and Marquis 2007). The back-
ground data consist of ni measurements of p variables for each printer, and are
denoted as xij = (xij 1, . . . , xijp)′, i = 1, 2, j = 1, . . . , ni .2 The procedure outlined
above for two univariate Normal populations of printers (where only the variable
‘area’ was considered) will now therefore be extended to the case of multivariate
data. Once new documents become available, the problem becomes the classi-
fication of them into two multivariate Normal populations, say Np(θ1, �) and
Np(θ2, �), where θ i = (θi1, . . . , θip)′ is the vector of means of the i -th population,
i = 1, 2, and � is the matrix of variances and covariances of each population.

Denote the recovered measurements to be classified by y = (y1, . . . , yn )′, where
yj = (yj 1, . . . , yjp)′, j = 1, . . . , n . The probability density of a multivariate Normal
variable Np(θ , �) is

f (x | θ , �) = (2π )−p/2 |�|−1/2 exp

[
−1

2
(x − θ)′ �−1 (x − θ)

]
,

(Appendix B) then, if the population distributions are known exactly (i.e. the mean
vectors and the covariance matrix are known), the value V of evidence is given
by

V = f (y | θ1, �)

f (y | θ2, �)
=
∏n

j=1 exp
[
− 1

2

(
yj − θ1

)′
�−1

(
yj − θ1

)]
∏n

j=1 exp
[
− 1

2

(
yj − θ2

)′
�−1

(
yj − θ2

)] (8.19)

= exp


−1

2


 n∑

j=1

(
yj − θ1

)′
�−1 (yj − θ1

)−
n∑

j=1

(
yj − θ2

)′
�−1 (yj − θ2

)

 .

2The superscript ′ at the end of a vector denotes the transpose, that is xij is written as

xij =




xij 1

xij 2

.

.

.

xijp


 .
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Generally, population distributions will not be completely known. A simple crite-
rion of classification consists in estimating θ1, θ2 and � from the background data
and substituting them into (8.19). The mean vector θ i can be estimated by

x̄i = 1

ni

ni∑
j=1

xij , i = 1, 2.

The covariance matrix � can be estimated by

S = 1

n1 + n2 − 2


 n1∑

j=1

(
x1j − x̄1

) (
x1j − x̄1

)′ + n2∑
j=1

(
x2j − x̄2

) (
x2j − x̄2

)′ .

(8.20)

Example 8.6.1 (Questioned document – continued). The area and the box-
ratio of n = 2 characters of type ‘a’ are measured from a questioned docu-
ment, y1 = (461044.2, 1.27), y2 = (469538.4, 1.2). The document might have
been printed by a Canon model ir400 (hypothesis H1), or by an HP model 4l
(hypothesis H2). The mean vectors x̄1 and x̄2, which are used as estimates of
θ1 and θ2, are x̄1 = (462550.6, 1.243889)′ and x̄2 = (430350.164, 1.3205)′.
The covariance matrix � is estimated by S , from (8.20), and is

S =
(

237525100 −211.4275
−211.4275 0.0009978549

)
.

Substituting x̄i , i = 1, 2, and S in (8.19) gives

V = f (y | x̄1, S )

f (y | x̄2, S )
= 6074.

A Bayesian criterion of classification would require the introduction of a prior
distribution for θ1 and θ2, and it is briefly sketched below. Consider the simplest
case where the prior distribution of the θ i is taken to be Normal, say θ i ∼ N (µi , C ),
i = 1, 2.

The marginal distribution under H1 (the questioned document has been printed
with printer 1), f (y | µ1, C , �, H1), is given by∫

θ1

f (y | θ1, �)f (θ1 | µ, C )dθ1 =
∫

θ1

n∏
j=1

|2π |−p/2|�|−1/2 ×

× exp

{
−1

2

(
yj − θ1

)′
�−1 (yj − θ1

)} |2π |−p/2|C |−1/2

× exp

{
−1

2
(θ1 − µ1)

′ C −1 (θ1 − µ1)

}
dθ1
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and can be shown to be equal to3

f (y | µ1, �, C , H1) = |2π�|−n/2|2πC |−1/2
∣∣∣2π

(
n�−1 + C −1)−1

∣∣∣1/2

exp

{
−1

2

[
tr
(
S�)−1)+ (ȳ − µ1)

′
(

1

n
� + C

)−1

(ȳ − µ1)

]}
,

where ȳ = 1
n

∑n
j=1 yj , and S = ∑n

j=1

(
yj − ȳ

) (
yj − ȳ

)′
. In the same way the

marginal distribution under H2 (the questioned document has been printed with
printer 2), is given by f (y | µ2, �, C , H2). The value of the evidence is given by

V = f (y | µ1, �, C , H1)

f (y | µ2, �, C , H2)
. (8.21)

However, the prior elicitation of a multivariate Normal distribution, in particular of
a covariance matrix, can be a difficult problem and it will not be pursued anymore.
Some suggestions are given in O’Hagan et al. (2006). Moreover, a multivariate
Normal distribution for θ may not always necessarily be a reasonable assumption.
The assumption of normality may be removed by considering a kernel-density
estimation procedure (see, for example, Aitken and Lucy 2004). Consideration of
a prior distribution for � adds another level of complexity and is beyond the scope
of this book.

8.7 R CODE

A symbol ‘∗’, ‘+’, ‘,’ and so on at the end of a line indicates that the command
continuous to the following line. The absence of such a symbol indicates the end
of a command.

Example 8.3.1

Data and prior parameters

n=100
xtilde=76
n1=462
n2=992

3The symbol tr denotes the trace of a matrix ; given an (m × m) square matrix A = [aij ], the trace
is defined as the sum of the diagonal elements:

tr (A) =
m∑

i=1

aii .
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x1=382
x2=562
p1=x1/n1
p2=x2/n2
alpha1=round(p1*(n1-1))
alpha2=round(p2*(n2-1))
beta1=round((1-p1)*(n1-1))
beta2=round((1-p2)*(n2-1))

Bayes factor

library(VGAM)
lp1=dbetabin.ab(xtilde,n,alpha1,beta1,log=TRUE)
lp2=dbetabin.ab(xtilde,n,alpha2,beta2,log=TRUE)
B=exp(lp1-lp2)
print(paste('Bayes factor =',round(B)))

Impact of different prior probabilities

pp1=seq(0.001,0.9,0.001)
pp2=1-pp1
pp1post=log(pp1)+dbetabin.ab(xtilde,n,alpha1,beta1,log=TRUE)
pp2post=log(pp2)+dbetabin.ab(xtilde,n,alpha2,beta2,log=TRUE)
post_odds=exp(pp1post-pp2post)
pp1[which(post_odds>1)][1]

Example 8.3.2

Observation to be classified

y=5

Populations’ parameters known

lambda=c(3.91,1.32)
f=dpois(y,lambda)
print(paste('Value of evidence:',round(f[1]/f[2],1)))

Populations’ parameters unknown

alpha=c(125,7)
beta=c(32,5)
pred=(1/factorial(y))*beta^alpha/gamma(alpha)*
gamma(alpha+y)/(beta+1)^(alpha+y)
print(paste('Value of evidence:',round(pred[1]/pred[2],2)))

Influence of populations’ prior probabilities

p1=seq(.01,.9,.01)
p2=1-p1
post_odds=(pred[1]/pred[2])*(p1/p2)
p1[which(post_odds>=1)][1]
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Examples 8.4.1 and 8.4.2

Observations to be classified

y=0.155
n=5
ybar=0.155

Populations’ parameters known

thetac=0.14
sigmac=0.01
thetap=0.3
sigmap=0.06
v=dnorm(y,thetac,sigmac)/dnorm(y,thetap,sigmap)
print(paste('Value of evidence:',round(v,2)))
vn=dnorm(ybar,thetac,sigmac/sqrt(n))/dnorm(ybar,thetap,
sigmap/sqrt(n))
print(paste('Value of evidence ( n =',n,'):',round(vn)))

Populations’ parameters unknown one sample

sigmac2=sigmac^2
sigmap2=sigmap^2
muc=0.14
tauc2=0.003^2
mup=0.3
taup2=0.016^2
vp=dnorm(y,muc,sqrt(sigmac2+tauc2))/
dnorm(y,mup,sqrt(sigmap2+taup2))
print(paste('Value of evidence:',round(vp,2)))

more samples

n=5
vpn=dnorm(ybar,muc,sqrt(sigmac2/n+tauc2))/
dnorm(y,mup,sqrt(sigmap2/n+taup2))
print(paste('Value of evidence ( n =',n,'):',round(vpn)))

8.4.2 A note on the robustness of the likelihood ratio

Prior parameters

thetac=0.14
sigmac=0.01
thetap=0.3
sigmap=0.06

Simulations

n=10000
valc=rnorm(n,thetac,sigmac)
valp=rnorm(n,thetap,sigmap)
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lrt=dnorm(valc,thetac,sigmac)/dnorm(valc,thetap,sigmap)
lrp=dnorm(valp,thetac,sigmac)/dnorm(valp,thetap,sigmap)

length(which(lrt<1))
length(which(lrt>=1 & lrt<10))
length(which(lrt>=10 & lrt<100))
length(which(lrt>=100 & lrt<1000))

length(which(lrp<1))
length(which(lrp>=1 & lrp<10))
length(which(lrp>=10 & lrp<100))
length(which(lrp>=100 & lrp<1000))

Examples 8.4.3 and 8.4.4

Observations to be classified

n=10
bary=454888

Two populations

sigma2=546187921
mu1=462825
mu2=430350
tau2=10000^2
v=dnorm(bary,mu1,sqrt(sigma2/n+tau2))/
dnorm(bary,mu2,sqrt(sigma2/n+tau2))

Several populations

mu3=476242
p1=1/3
p2=1/3
p3=1/3
p=c(p1,p2,p3)
post=matrix(0,nrow=1,ncol=length(p))
mu=c(mu1,mu2,mu3)
tau=c(10000^2,10000^2,10000^2)
for (i in 1:length(p)){
post[i]=p[i]*dnorm(bary,mu[i],sqrt(sigma2/n+tau[i]))/
(p1*dnorm(bary,mu1,sqrt(sigma2/n+tau[1]))+
p2*dnorm(bary,mu2,sqrt(sigma2/n+tau[2]))+
p3*dnorm(bary,mu3,sqrt(sigma2/n+tau[3])))
}
print(post)

Example 8.4.5

Observation to be classified

y=12
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Classification into female or male population

n=c(38,35)
xbar=c(10.35,14.09)
s=c(1.42,1.52)

lambda=s^2*(n+1)/n
alpha=n-1
c=(gamma((alpha+1)/2)/gamma(alpha/2))/
((lambda*alpha)^(1/2)*gamma(.5))
v=c*(1+((y-xbar)^2)/(lambda*alpha))^-(alpha+1)/2
print(paste('Value of the evidence =',round(v[1]/v[2],2)))

Example 8.5.1

Note. This routine needs an available database to be implemented.

Observations to be classified

banknotes=c(122,58,184,135,371,835,828,335,625)

Loading data (populations 1 and 2)

population=data.frame(read.csv('namedatabase.csv',header=TRUE))
attach(population)

The name of the database containing the population data should be inserted
in place of

namedatabase.csv

Note that the variables are comma separated (csv ). Rows correspond to
individual bank notes, columns to separate variables. In this example columns
4 and 5 contain the drug intensities (du) corresponding to bank notes of
200 ¤ from populations 1 and 2, respectively.

d1=population[,4]
d2=population[,5]

Estimate of the probability density function and plots.
Population 1

n1=length(d1)
m1=mean(d1)
s1=sum((d1-m1)^2)/(n1-1)
lambda1=0.3
sk1=lambda1*sqrt(s1)
x=seq(0,1000,1)
fhat1=0
for (i in 1:n1){
zi=d1[i]
k=dnorm(x,zi,sk1)
fhat1=fhat1+k
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}
dfhat1=fhat1/n1
hist(b1,freq=FALSE,xlab='Drug intensities [du]',
main='Drug trafficking')
lines(dfhat1,type='l')

Population 2

n2=length(d2)
m2=mean(d2)
s2=sum((d2-m2)^2)/(n2-1)
lambda2=lambda1
sk2=lambda2*sqrt(s1)
x=seq(0,1050,1)
fhat2=0
for (i in 1:n2){
zi=d2[i]
k=dnorm(x,zi,sk2)
fhat2=fhat2+k
}
dfhat2=fhat2/n2

Value of the evidence

prod(dfhat1[banknotes])/prod(dfhat2[banknotes])

Example 8.6.1

Note. This routine needs an available database to be implemented.

Observations to be classified

recovered=c(...,...)

Loading data (example)

name.data=data.frame(read.csv('namedatabase.csv',header=TRUE))
attach(name.data)

The name of the database containing the population data should be inserted
in place of

namedatabase.csv

Note that the variables are comma separated (csv ). Rows correspond to
individual characters, columns to separate variables. In this example columns
2, 6 and 7 contains the measurements of the variables Area and Box-ratio,
and the type of printer (Printer 1, 2).

variables=c(2,6,7)
population=as.matrix(name.data[,variables])
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Estimation of the mean vectors and the covariance matrix

x1bar=apply(population[which(population[,3]==1),],2,mean)[1:2]
x2bar=apply(population[which(population[,3]==2),],2,mean)[1:2]
n1=length(which(population[,3]==1))
n2=length(which(population[,3]==2))

p=population[which(population[,3]==1),-3]
pbar1=cbind(p[,1]-x1bar[1],p[,2]-x1bar[2])
p=population[which(population[,3]==2),-3]
pbar2=cbind(p[,1]-x2bar[1],p[,2]-x2bar[2])
S=(t(pbar1)%*%pbar1+t(pbar2)%*%pbar2)/(n1+n2-2)

Value of the evidence

library(mvtnorm)
V=exp(sum(log(dmvnorm(recovered,mean=x1bar,sigma=S)))-
sum(log(dmvnorm(recovered,mean=x2bar,sigma=S))))

In the specific example

recovered=matrix(c(461044.2,469538.4,1.27,1.2),nrow=2)
x1bar=c(462550.6,1.243889)
x2bar=c(430350.164,1.3205)
S=matrix(c(237525100,-211.4275,-211.4275,0.0009978549),nrow=2)
V=exp(sum(log(dmvnorm(recovered,mean=x1bar,sigma=S)))-
sum(log(dmvnorm(recovered,mean=x2bar,sigma=S))))
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Bayesian Forensic Data
Analysis: Conclusions and

Implications

9.1 INTRODUCTION

There is a growing community in forensic science that has spent many years apply-
ing Bayesian ideas to inference from evidence applied to legal contexts. A main
reason for this is, probably, that Bayes’ theorem is helpful in explaining the concept
of evidence and proof in science and that formal procedures are easier to explain
and justify than informal ones (Edwards 1988). But yet, if one looks at science
more generally, the interest in Bayesian methods to solve problems relating to data
analysis appears to be relatively under-utilized (D’Agostini 2004b), with forensic
science being no exception.

With regard to this, a principal motivation for writing this book was to bridge
the gap between research and operational data-analytic problems in forensic sci-
ence and the current methodological backup to approach such issues. Part I of
this book thus focused on presenting the Bayesian methodology for – summarized
in simple terms here – the consistent choice among available options (which may
be hypotheses according to the context) when the available information (i.e. evi-
dence) is incomplete. The second part of this book, in particular Chapters 4 to 8,
then focused on the study of that methodology for forensic problems in data anal-
ysis, gravitating, in one respect or another, around the question of how a scientist
may arrive at sensible conclusions. Let us notice again at this point that the term
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‘conclusion’ was not interpreted in the sense of a decision made by a judge or court
(although the application of the methodology to such issues is perfectly feasible).
Rather, attention was concentrated on the idea of ‘assessments’ or ‘judgements’ that
the scientist may face during the analytical process (e.g. estimating a proportion or
choosing a sample size).

At this juncture, the sceptical reader may ask ‘Why should I consider the for-
malisms advocated in this book?’. We feel that this is a critical question because
experience shows that many scientists, when confronted with the discipline of
statistics, tend to adopt and practise an approach much like the following of a
recipe, however uncomfortable or not that may be. This is precisely the attitude
that we wish that the reader would not take with respect to the concepts presented
in this book. Ideally, the aim is that the reader has an understanding of the rationale
behind the proposed methods and that the reader will use them because they are
convinced that the methods are sound and address the practical needs appropriately.
It thus seems useful to conclude this book with a review of the principal topics
and issues, offered in a ‘question and answer’ style. The reason for this choice is
that, even though this mode of presentation differs somewhat from the rest of this
book, it is one that forensic scientists may find more natural, principally because
their profession involves much activity where the interplay between questioning
and answering holds an essential role. For example, scientists may need to explain
and justify a particular method for data analysis, how they arrived at some specified
conclusion and why, on the whole, some chosen methodology is one that can be
trusted. Notice further that all of this also stands in close relation to the precepts
of evidential assessment set forth in Chaper 1.

There is much foundational and philosophical literature available on a broad
range of aspects of the Bayesian decision-theoretic approach. In what follows here-
after, there is no claim of an exhaustive or entirely representative account. Some
references will be given to where the interested reader may find discussion that
goes into further details than those that can be given here.

9.2 WHAT IS THE PAST AND CURRENT POSITION
OF STATISTICS IN FORENSIC SCIENCE?

Since the early 1960s, forensic science openly faced the problem of interpretation
and evaluation of data, as is critically noted by a famous quote of the pioneer
forensic scientists Kirk and Kingston:

When we claim that criminalistics is a science, we must be embarrassed, for
no science is without some mathematical background, however meagre. This
lack must be a matter of primary concern to the educator [ . . . ]. Most, if not
all, of the amateurish efforts of all of us to justify our own evidence inter-
pretations have been deficient in mathematical exactness and philosophical
understanding. (Kirk and Kingston 1964, pp. 435–436)
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However, interpretation and data evaluation are still among the most neglected
areas in the entire field of physical evidence (National Research Council 2009). In
fact, many evaluations are simply subjective. Note that this usage of the term ‘sub-
jective’, contrary to the remainder of this book, should be understood as ‘arbitrary’.
As mentioned by Kirk and Kingston (1964), it was indeed rare (and often, currently,
still is rare) that an opinion is based on a statistical or probabilistic study. This is so
even though the presentation of a general model which remedies these deficiencies
was put forward by Darboux et al. (1908) and rediscovered by Kingston (1965a,b)
through the application of the Bayesian model to forensic science.

Given that forensic science as well as science, in general, should abandon the
idea of certainty, as was argued in Chapter 1, it becomes a logical necessity to
determine the degree of belief that may be assigned to a particular event or propo-
sition1. In this context, statistics can offer the most valuable approach there is to
science. When uncertainty does exist, and a statistical approach is possible, then
this approach is the best one available since it offers to assess and measure the
uncertainty based upon a precise and logical line of reasoning.

9.3 WHY SHOULD FORENSIC SCIENTISTS CONFORM
TO A BAYESIAN FRAMEWORK FOR INFERENCE
AND DECISION MAKING?

Above all, the fundamental problem of scientific progress, and also a fundamental
problem of everyday life, is that of learning from experience. In part, knowledge
obtained in this way is merely a description of what has already been observed.
Another part, however, consists of making inferences from past experience to
predict future experience. This is the part that may be referred to and has been
presented here as induction (see Chapter 2). Stated otherwise, on the basis of what
one sees, one seeks to evaluate the uncertainty associated to an event of interest,
the kind of reasoning used to learn new things. Forensic scientists need a defensible
approach to this challenging issue.

Bayesian inference uses the likelihood function to convert a prior probability
distribution that characterizes an observer’s beliefs about a continuous population
parameter θ , for instance, into a posterior distribution that takes account of infor-
mation (data) (see, for instance, Sections 2.3 and 3.3). The principal relevance
of this resides in the fact that classical (or frequentist) inference restricts itself
to sample data and does not lead to direct probability statements for the possi-
ble values of a parameter. In contrast to Bayesian analysis, where unobserved

1It should be emphasised here again that ‘event’ and ‘proposition’ are taken as equivalent terms
with only a different emphasis on the fact and on the formulation expressing it (de Finetti 1968).
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parameters are treated as random and observed data as fixed, classical analysis
does just the opposite: it treats the data as random even after observation and
considers the parameter as a fixed unknown constant not having a probability
distribution.

The Bayesian method has a clearly stated objective, that of using data to revise
the state of knowledge about a hypothesis (e.g. a proposition of the kind ‘the
suspect is the source of the recovered bloodstain’) or, more generally, a parameter
of interest.

As such, Bayesian analysis can be regarded as a framework to capture how one
ought to make up one’s mind. This also stems from the fact that it pertains to
an interpretation of probability as a particular measure of the opinions of (ideally)
consistent people, wherein probability is a coherent opinion and inference from
data is nothing other than the revision of such opinion in the light of relevant new
information (Edwards et al. 1963; Schlaifer 1959).

A further argument in favour of Bayesian inference is its connection to decision
theory, which includes an additional feature by incorporating into the analysis
the consequence of actions or decisions. Bayes’ theorem relates naturally to a
rational decision calculus. The posterior probabilities are exactly what is needed to
find optimal decisions, based on elicited utilities (or losses). This relationship is a
major strength of the Bayesian method (Kadane 1995). As observed by de Finetti
(1970, p. 139)

All information leads to inference on a new distribution, and this gives an
adequate basis for decision. Though logically independent, inference and
decision are connected because the results of the former are the point of
departure of the latter.

Finally, in that it provides a standard, the Bayesian argument is normative. The
argument prescribes how an individual who is faced with a decision problem involv-
ing uncertainty should proceed in the choice of a course of action that is consistent
with their personal basic judgements and preferences. In the sense explained in
Section 2.1, it is mandatory to check consciously the consistency of one’s personal
inputs and to calculate their implications for action. The point is well made, even
with regards to concessions in practice, by de Finetti (1972, p. 150), according
to which

this is the behaviour that ‘ought to be’ followed by a reasonable person,
if he is to avoid incoherence, and it may further be said to tend to agree
with the actual behaviour of people, though distortions and errors, espe-
cially in intricate questions, must be expected and do occur. But how fre-
quent and serious these anomalies are is entirely irrelevant to the theory of
probability.
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9.4 WHY REGARD PROBABILITY AS A PERSONAL
DEGREE OF BELIEF?

Part of an argument in favour of viewing probability as a degree of belief stems
from the fact that other interpretations of probability encounter applicability prob-
lems. As an illustration of this point, observe again the meaning of probability
concerning the occurrence of events or phenomena. The so-called frequentist defi-
nition of probability postulates a long sequence of repetitions of a given situation
assuming identical conditions. For the purpose of illustration, consider a sequence
of n repetitions in which an event E occurs X times. X may take some value
greater than or equal to 0 and less than or equal to n . In such a setting, X/n is
the relative frequency. It could vary in different sequences of n repetitions. It is,
however, supposed that, in a sequence where the number n of repetitions grows
indefinitely under identical conditions, the relative frequency tends to a definite
limiting value. In a frequentist framework the probability of event E is defined to
be the limiting value of the relative frequency.

Consider the foregoing now from a practical point of view. In reality, it is
difficult, if not impossible, to maintain identical conditions between trials. Conse-
quently, in anything other than idealized situations, such a definition of probability
proves unworkable. As an example, consider the prediction of the rate of unsolved
crimes for the following year. It is simply inappropriate to use the frequentist
definition to determine the probability that the rate will lie for example between
20% and 25% of the total number of crimes investigated, essentially because it
is not possible to consider crime as a sequence of repetitions under identical con-
ditions. Unsolved crime rate in the following year is a unique, one-time event
(Berger 1988).

Frequentist probabilities are sometimes referred to as ‘objective’ probabilities.
They are said to be objective in the sense that there is a well-defined set of cir-
cumstances for the long-run repetition of the trials, such that the corresponding
probabilities are well defined. One’s personal or subjective views will not alter
the value of the probabilities. Each person considering these circumstances will
provide the same values for the probabilities. The frequentist model strictly refers
to a relative frequency obtained in a long sequence of trials that are assumed to
be performed in an identical manner, physically independent of each other. Such a
circumstance encounters certain difficulties. It follows from this point of view, for
instance, that no statement of probability is allowed for any situation that does not
happen to be embedded, at least conceptually, in a long sequence of events giving
equally likely outcomes (Gelman et al. 1997; Press and Tanur 2001).

In many situations, law being a prime example, one cannot assume equally likely
outcomes any more than one can count past occurrences of events to determine
relative frequencies.
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What is the chance that the defendant is guilty? Are we to imagine a sequence
of trials in which the judgements, ‘guilty’ or ‘not guilty’, are made and
the frequency of the former found? It will not work because it confuses
the judgement of guilt, but, more importantly, because it is impossible to
conceive of a suitable sequence. Do we repeat the same trial with a different
jury; or with the same jury but different lawyers; or do we take all Scottish
trials; or only Scottish trials for the same offence? The whole idea of chance
is preposterous in this context. (Lindley 1991, p. 48)

Contrast what has been noted so far in this section with the idea of subjective
probability which regards the probability of an event to happen as a measure of
personal belief in the occurrence of that event. For example, a person may have
a personal feeling that the unsolved crime rate will be between 20% and 25%,
even though no frequency probability can be assigned to the event. This should not
appear to be surprising. It is actually very common to think in terms of personal
probabilities all the time, such as when betting on the outcome of a football game
or when stating the probability of rain tomorrow.

More specifically, a subjective probability amounts to a personal degree of belief,
as actually held by someone based on his whole knowledge, experience and infor-
mation, with respect to the truth of a given statement or event, the truth or falsity
of which is, for whatever reason, unknown to that person. It follows from this that
such an assessment:

• depends on information;
• may change as the information changes;
• may vary amongst individuals because different individuals may have different

information or assessment criteria.

It may readily be seen that this view of probability closely relates to the kind of
events and parameters encountered in such diverse fields such as history, economy,
law, forensic science and many other contexts. Most importantly, in these contexts
events and parameters are usually not the result of repetitive or replicable pro-
cesses. On the contrary, they are singular and unique. It is not conceivable to play
the world over and over again to tabulate the number of occasions on which some
past event actually occurred. The way ahead for the determination of probabilities
for such situations is through subjective probabilities. Interestingly, the previously
mentioned obstacles that hinder the applicability of the frequency concept of prob-
ability are just the very field of the mise en œuvre of the personalist interpretation
of probability.

Personal probabilities are sometimes viewed cautiously, however, as a concept
that may appear abstract and nontrivial to capture. In the same context, people may
also have preconceptions about expressing probabilities numerically, suggesting
that this interpretation of probability is arbitrary and, from a practical point of
view, an inaccessible concept. Such perceptions are unnecessarily restrictive
because they disregard the fact that personal degrees of belief can actually be
elicited and investigated empirically. One possibility of effecting this is in terms
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of bets that an individual is willing to accept (see Chapter 2). For instance, the
probability maintained by an individual in the truth or otherwise of a proposition
can be compared with the probability of drawing a black ball from an urn, a setting
that can be represented in terms of two gambles involving the same prize (with no
stakes). An idealized method for measuring the probability the individual entertains
in the truth of a proposition would be to propose the choice between a gamble
which offers a certain prize if the proposition is true and a gamble which offers
the same prize if a black ball is drawn from an urn of known composition: if the
individual chooses the first game, this means that, for him, the probability of the
proposition at issue is greater than the proportion p of black balls in the urn; if the
individual chooses the second game, this means that, for him, the probability of the
proposition is smaller than the proportion of black balls. Ideally, one can vary the
proportion p up to the point when the individual declares himself to be indifferent
between the two gambles: that value p will be his probability for the proposition.

An illustration of this idea can also be found, for example, in Lindley (1985,
pp. 25–26):

A chemical engineer realized that there was a chance of the process for which
he was responsible failing but was reluctant to assess it numerically. However
he knew the monetary consequences of failure and so I asked him: suppose
I was able to offer you a device which would make the process certain, how
much would you pay me for it, a thousand dollars, ten thousand? He laughed
at the latter figure as being ridiculously high but contemplated the former
more seriously. After some bargaining we settled for 750, a figure which can
be converted into a probability.

One might expect that numbers should be familiar to scientists because, as noted
by Lindley (1985, p. 13),

our aim is to describe the concept of uncertainty numerically: for number is
the essence of the scientific method and it is by measuring things that we
know them.

However, scientists may have preconceptions about particular numerical values and
argue, as a consequence, that the concept as a whole is to be rejected. With regards
to this, it is worth recognizing that a rough qualitative appreciation of probabilities
is often sufficient for practical purposes (de Finetti 1974). Actually, one could even
take a step further and argue that probability is not really about numbers but about
the structure of reasoning. Implementation of the personalist interpretation of prob-
ability requires an individual to assign numbers to the likelihood of events. What
really matters is the fact that numbers allow one to use powerful rules of reasoning
which can be set into effect practically, such as by computer programs. The very
important issue is not whether the specified numbers are ‘precise’, whatever the
meaning of ‘precision’ may be in reference to subjective degrees of belief based
upon personal knowledge. What is really crucial is that one is enabled to use sound
rules of reasoning that allow one to check the logical consequences of propositions
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and that one is enabled to answer questions like: what are the consequences with
respect to the degree of belief in A of assuming that the degree of belief in B is
high? And how does the degree of belief in A change, if we lower the degree of
belief in B? (Taroni et al. 2006a).

More generally, it should also be reminded that science is a human activity and,
as with every human activity, it is a product of thought. Probability, as such, is an
aid in dealing with uncertainty which is pervasive in everyday life. On this point,
de Finetti, (1989, p. 170) wrote:

[. . .] no science will permit us to say: this fact will come about, it will be
thus and so because it follows from a certain law, and that law is an absolute
truth. Still less will it lead us to conclude negatively: the absolute truth does
not exist, and so this fact might or might not come about, it may go like this
or in a totally different way, I know nothing about it. What we can say is
this: I foresee that such a fact will come about, and that it will happen in
such and such a way, because past experience and its scientific elaboration
by human thought make this forecast seem reasonable to me.

Probability is precisely what makes it possible to attach uncertainty to a forecast.
Since a forecast is always made in reference to a subject, shaped by its experience
and convictions, the logical instrument that is needed is the subjective theory of
probability. It is in this context that Bruno de Finetti provocatively labelled his
probabilism as subjectivist and expressed this position with the memorable phrase
for which he is now well known: ‘Probability does not exist’2. Savage wrote in
the same line of thought, but more diplomatically, ‘probabilities are states of mind
and not states of nature’ (Savage 1981).

With regard to judicial applications of both probability theory and its subjective
interpretation, scholars in probability have often found examples involving uncer-
tain reasoning in legal contexts as particularly convincing. Consider, for example,
de Finetti (1993a, p. 293).

The forecast and assumptions we continuously make, constitute the usual
object of our thinking in all the practical circumstances of life, more than the
much rarer judgements which are logically certain. Depending on situations,
we feel likely to rely more or less on the reliability of such forecasts and
assumptions. In combining these judgements on the reliability degree of our
different forecasts and assumptions, we in fact reason in accordance with
probability theory, although without awareness and in a rather approximate
way. One of the most effective examples is that one of the judicial or
police investigations, where procedure is always on the basis of clues and
suppositions, where the work is never based on certainty, but always and
only on the probable.

As in the example of the legal investigation, it is not sensible to consider
probabilities in a frequentist format or to consider that the circumstances of the

2For a discussion on de Finetti’s subjectivism and the suspicious attitude embraced by some scientists
regarding the use of subjective probabilities, see Dawid and Galavotti (2009).
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investigation are such that the frequentist probabilities would be able to answer the
questions of interest. What is at issue is always a specific set of circumstances,
relating to the situation of a given individual. An individual can consider the set
most close to their actual needs by adopting a personalist view of probability, rather
than by a frequentist perspective which requires assumptions to be made that – as
has been seen – are known not to apply in real life situations.

A further recurrent issue in discussions on subjective probability is encountered
in relation with the assessment of prior probabilities. Within a personalist regime,
prior probabilities are assigned according to the actual beliefs held by the subject
of interest. The formation of a prior probability thus amounts to a choice which
is the result of a largely context-dependent procedure, a point concisely made by
Cornfield (1967, p. 47):

The inability to assign in a unique way prior probabilities either from
experience or from principles like that of ignorance or invariance has led
to a favourable re-examination by some of the nineteenth-century doctrine
as expressed by De Morgan (1847) that probability is a degree of belief.
De Morgan held that a probability is not an objective characteristic of the
external world, but a subjective attitude towards it, which can and does vary
from individual to individual.

[. . .]
Furthermore if one accepts such a view of probability one must reject

the idea that an outcome must lead to, in Fisher’s words, ‘a rigorous and
unequivocal’ (i.e. a unique) conclusion. I must confess that although I once
entertained obiections somewhat like this I now regard the subjective view
as inescapable.

The shift from prior to posterior probabilities thus means passing from one
subjective assessment of probability to another. What is involved here, in essence,
is a change of opinion in response to new information.

It seems that concerns about this view are the result of a confusion between
subjectivity (in the sense of arbitrary) and the rather difficult technical question
of how probabilities ought to be assigned. A popular argument states that if a
probability represents a degree of belief, then it must be subjective in the sense
of arbitrary, because the belief of one individual could be different from that of
another. Following Sivia (1996), the Bayesian view is that a probability does indeed
represent how much one believes that something is true, but that this belief should
be based on all the relevant information available. That latter requirement is impor-
tant because the information at one individual’s disposal may not be the same as
that accessible to another. This is not the same as arbitrary. It solely means that
probabilities are always conditional, and this conditioning must be stated explicitly
(Berry 1997).

The fact that Bayesian analysis requires an explicit prior distribution offers an
excellent opportunity for an actor to state publicly beliefs about a phenomenon
at hand – with the sole obvious restriction that, in the case of a scientist, the
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phenomenon of interest is one that differs from an issue that is in the exclusive
province of the court, such as a proposition of the kind ‘the suspect is the source
of the crime stain’. More generally, however, as noted by Kadane (1995), the
exhibition of prior probabilities is a highly desirable property because it can be
taken as a ‘step toward honesty in analysis’. It is also one of the desiderata of
evidential assessment – transparency – outlined in Chapter 1.

Given the preceding, one can see that it is of little help to talk about prior
distributions without placing them into the framework to which they belong. An
awareness is required of their role in Bayes’ theorem, as well of the role of the
theorem itself, in order to develop a constructive relationship with prior probabil-
ities. If this can be assured, then one may choose the priors most suitable for a
specific problem or ignore them if they are irrelevant. Alternatively, it may also
be that one decides that only the likelihood ratio can be provided. On yet other
occasions, one may even skip Bayes’ theorem altogether, or use it in a reverse
mode to discover which kind of priors might give rise to the final beliefs that one
unconsciously has (D’Agostini 1999).

9.5 WHY SHOULD SCIENTISTS BE AWARE
OF DECISION ANALYSIS?

Substantial theory and practice demonstrates that there is a lot of scope for the use
of statistical ideas in law. In part this stems from the fact that the criminal justice
system works towards reducing uncertainty, as in a court of law, by the provision
of scientific evidence, notably using the analysis of forensic data. This may be
readily illustrated by recalling, for instance, the use of measurements made on a
sample of a suspect’s blood in order to estimate (blood) alcohol concentration.

Law distinguishes two main separate functions: inference and decision making
(Lindley 2006). Forensic scientists have, however, not always recognized that they
can make a contribution also to the latter, that is explaining how data may be used
to assist a judiciary action, rather than just presenting data informatively, such as
through a likelihood ratio.

This is pointed out, for instance, through the topic discussed in Chapter 4, point
estimation, where the process of inference is represented by the assessment of
the posterior probability distribution on the parameter of interest, θ . The decision
process consists of the choice of a point estimate that best respects the scien-
tist’s personal preferences (as represented by the utility or loss function). Stated
otherwise, the inference process in which the scientist engages will help him to
answer a question of the kind ‘What should I believe?’, whereas the decision
process would answer a query of the kind ‘What should I do?’ (Royall 1997).
The two questions are closely related. In fact, as presented in Chapter 3 and
Chapter 4, inference and decision are closely linked. ‘All information leads to
inference on a new distribution, and this gives an adequate basis for decision’
(de Finetti 1970).
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In Bayesian statistics, the measurement of both uncertainty and value play
an essential role. Judicial literature is well aware of this and has proposed
formal (Bayesian) decision models to solve, for instance, litigation cases (see
Section 2.4.3).

On their side, the forensic sciences did not take account of advantages of such
models, probably because of a reluctance to approach the concept of value and lack-
ing procedures for coping with it. Notwithstanding, decision – like uncertainty – is
an omnipresent issue. Forensic scientists, as much as scientists in general, are sys-
tematically faced with problems involving decision making. They may need to
inquire on how they are to judge an estimate, how to decide among competing
hypotheses or how to judge the relative appropriateness of two (or more) competing
models.

According to the view advocated here, the optimal choice is the option for
which the expected value of the utility function is largest (or the expected value of
the loss function is the smallest). But since utility (loss) also relates to numbers,
which may be viewed cautiously, it is useful to remember – as noted by Lindley
(1992, p. 7) – that ‘[a]ll action within the Bayesian view is based on maximization
of expected utility (or minimization of expected loss) where the maximum (or the
minimum) value is irrelevant, all that matters is that it is the largest (or the smallest)
in comparison with everything else. We do something not because it is ‘good’ but
because it is ‘better’ than anything else we can think of.’ The perception is that
of an optimal strategy not in the sense of a universally ‘best’ choice, but that of a
strategy which is best for a situation at hand (Raiffa 1968).

Decision analysis represents a relevant topic of interest for forensic scientists
because it allows the quality of one’s decision to be transparent. More formally,
decision analysis is unavoidable since otherwise there remains the question of how
the quality of a decision ought to be measured in the absence of decision theory.
Decision theory provides the framework for exploring actions. Its value resides in
the fact that it forces the decision maker (who may be a scientist) to recognize
that they may err either by taking an unnecessary action or by failing to take a
necessary action. It helps to formalize and categorize thinking to make sure that
all relevant possibilities have been considered.

A concept only briefly mentioned in Chapter 4 (Section 4.2.2), but not treated
in further detail, is that of decision hierarchy through a temporal coherency. As an
example to illustrate this idea, consider once again the problem of estimating blood
alcohol concentration through the analysis of breath. One can see that, temporally
speaking, the first decision focuses on the estimate of alcohol concentration. The
scientist can use a model (as illustrated in Chapter 4) which puts forth the sci-
entist’s own worth. For sake of illustration, the scientist may prefer to penalize
the underestimation of the true alcohol concentration more than the overestima-
tion. This may be so because falsely concluding a low alcohol concentration in
an individual with increased blood alcohol is regarded as a more serious error.
Based on such a loss function and taking advantage of the posterior distribution of
the alcohol concentration given the data from the laboratory (i.e. measurements or
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data), the scientist decides on a point estimate. Later in time, the case may come
to court where a judge decides on a guilty or not guilty verdict. Here, the judge
should specify their costs for a false acquittal and for a false conviction. In other
words, decisions should be (and generally are) sequential. Decision theory places
the works of decision makers in a coherent and transparent framework.

A summary definition of decision analysis is due to Lindley (2000a, p. 75):

Life is a balance between reason and emotion. Maximisation of expected
utility reflects this in the combination of probability as the reasoning tool,
and utility as the numerical expression of emotion.

A question may however arise from this statement. Technical concepts may be
involved in the choice of utility or loss functions, associating many different fea-
tures, some tangible, such as money, but also others, like pleasure, intangible. It
may be objected that it is not sensible to reduce such a collection of disparate
aspects to a single number in the form of utility or loss. In reply to this, one can
consider that in any situation of decision analysis, it is necessary to deal with sev-
eral consequences that have to be contrasted and combined. Representation of these
consequences by numbers enables the consequences to be contrasted and combined
more easily than other concepts related to decisions, and in accordance with strict
rules which thus ensures coherence of the results. There is no claim that utility
amounts to a complete description of a consequence. It is only a summary that is
adequate for the stated purpose, that is the choice of action in a particular context.
Ultimately, it overcomes the particular difficulty, not only of combining beliefs, or
of contrasting preferences in the form of consequences, but of combining beliefs
with preferences.

9.6 HOW TO IMPLEMENT BAYESIAN INFERENCE
AND DECISION ANALYSIS?

Throughout this book, the proposed inference and decision analyses have been
illustrated by examples accompanied by code for R, a widely used, highly flexible
statistical software environment for quantitative analyses, statistics and graphics.
For MCMC methods the BUGS project is also useful, see Section 4.2.4.

As the discussion here is a more general one, the intention is to draw the reader’s
attention to methods for the implementation of different aspects of Bayesian anal-
yses for inference and decision, and, where possible, in a combined fashion. One
such method is that offered by Bayesian networks. Their use has already been illus-
trated for some examples in earlier chapters of this book (see Sections 2.2.4, 3.2.2,
4.3.3 and 7.3). The flexibility of Bayesian networks and their relevance for forensic
inference and decision problems is pointed out by two additional examples below.
The first example, Example 9.6.1, illustrates the use of continuous random vari-
ables for inference about a Normally distributed parameter (with variance assumed
known). This example contrasts examples of Bayesian networks presented earlier in
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the book where continuous variables were approximated through discretization. The
next example, Example 9.6.2, emphasizes that Bayesian networks can be extended
to Bayesian decision networks (also called influence diagrams, see Section 2.2.4
and Example 3.2.4) in order to co-ordinate inference and decision analysis within
a single model. The proposed examples focus on models that involve a limited
number of nodes, sufficient to illustrate the principle, which also applies to more
complex models. Actually, the examples represent local network fragments which
can be viewed as components within more complex graphical models, as described
for forensic applications in Taroni et al. (2006a), for example.

Example 9.6.1 (Alcohol concentration in blood – continued). Consider
again the problem of inference on a Normally distributed variable with
unknown mean θ and known variance σ 2, presented earlier in Section 4.4.1.
Assume that experimental data are available as outlined in Example
4.4.1, where a blood sample from an individual is analyzed for alcohol
concentration in a laboratory using two independent methods, denoted HS
and ID. Two measurements are performed with each of these procedures.
Denote by X1 and X2 the two readings obtained with the HS method and
by X3 and X4 the two readings obtained with the ID method. Let θ denote
the true, but unknown, level of alcohol. The distributional assumptions are
as follows:

θ ∼ N (1, τ 2 = 0.32), Xi ∼ N (θ , σ 2) (for i = 1, . . . , 4)

As in Example 4.4.1, the variance σ 2 for the HS method is set to 0.02292

whereas that of the ID method is set to 0.04632.
The dependency of the Xi on θ is translated into a Bayesian network as

shown in Figure 9.1. The double borders of the nodes indicate the continuous
natures of the nodes, as opposed to the discrete nodes with single borders used
in earlier sections of this book. Detailed accounts on the theory of continuous
Bayesian networks are available, for instance, in Cowell et al. (1999), and
Kjærulff and Madsen (2008).

θ

X1 X2 X3 X4

Figure 9.1 Bayesian network with five continuous nodes. The node θ acts as a
parental variable for the nodes Xi .
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In the model shown in Figure 9.1, the absence of directed edges between the
Xi is an expression of the assumption that their distributions are independent
of knowledge of θ . In particular, the conditional distributions of the Xi are
N (θ , σ 2). The unconditional distribution of the Xi is N (θ , σ 2 + τ 2).

This result can be traced by inspecting the compiled Bayesian network in
its initial state (without any evidence entered), shown in Figure 9.2(i). The
mean in the case here is 1 and the variance equals 0.02292 + 0.32 = 0.09524.
For economy of space, only the results for the HS method are displayed. The
dotted edge indicates that the results for the ID method may be obtained
analogously.
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Figure 9.2 Expanded representation of the Bayesian network for inference on a Nor-
mally distributed parameter θ . The figure on the left shows the Bayesian network in
its initial state whereas the figure on the right displays the posterior distribution for
θ given data entered for the observed variables X1 and X2. For economy of space,
only the results for the HS method are displayed. The dotted edge indicates that the
results for the ID method may be obtained analogously.

Next, recall from Example 4.4.1 the two measurements obtained with the
HS method: 0.6066 and 0.5778. These data can be entered at the nodes X1

and X2, as shown in Figure 9.2(ii). In this figure, the node θ now displays the
posterior distribution for the unknown parameter. The result can be found to
agree with what has earlier been found in Example 4.4.1.

Example 9.6.2 (Deciding among discrete propositions). It has been men-
tioned at several instances in this and earlier chapters that inference and
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decision are closely related, notably, that the former represents the starting
point of the latter. In particular, it is part of the principal argument put for-
ward in this book that the decision to be made, such as about a discrete
proposition, is a function of the probabilities of the various propositions as
well as the losses (or utilities) that measure the consequences given by the
combination of choices and individual propositions (that is, actual states of
nature).

This ‘philosophy of statistics’, as it is called by Lindley (2000b), can be
translated in terms of a Bayesian decision network. For the ease of argument,
consider two discrete, mutually exclusive and exhaustive hypotheses, denoted
H0 and H1, but the argument extends by analogy to multiple propositions.
Hypotheses H0 and H1 could represent the hypotheses of the defence and the
prosecution, respectively. In turn, the available decisions may thus be denoted
by D0 and D1, respectively. In a Bayesian decision network for this setting
(Figure 9.3), the set of hypotheses is represented by a discrete chance node H ,
in the form of a circle, whereas the set of available decisions is represented by
a node D, in the form of a square. The two nodes H and D share a common,
diamond shaped child node L. This node contains the loss function. Assume
that an incorrect decision for a defendant (i.e. a false conviction) is ten times
as serious as an incorrect decision for a prosecutor (i.e. a false acquittal).
Assume further that correct decisions, that is choosing D0 when H0 holds and
D1 when H1 holds, incur a zero loss. This loss function, with k representing
the loss associated with a false acquittal (i.e. choosing D0 when H1 is true), is
specified in Table 9.1. It emphasizes the importance of node L. In combination,
the three nodes D , H and L can be regarded as the decision-theoretic core of
the network.

E

H D

L

Figure 9.3 Bayesian decision network for analysing the problem of deciding between
competing discrete propositions (node H ), given evidence E . The node D represents
the available decisions (the number of states equals the number of competing propo-
sitions assumed by the node H ) whereas the node L accounts for the losses associated
for each decision D given each state of the node H .

Figure 9.3 also contains a node E, a discrete chance node which repre-
sents evidence that a decision maker judges relevant for judging the truthstate
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Table 9.1 Loss function for the Bayesian decision network shown in Figure 9.3.

H :
H0 H1

D : D0 D1 D0 D1

L: 0 10k k 0

of H . This part, H → E, of the proposed graphical model accounts for the
Bayesian inference. Based on evidence on the node E, a posterior distribution
for H is obtained, given by Bayes’ theorem:

P (H | E ) = [P (E | H )P (H )]/P(E )

The fact that the node H is part of the network that accounts for the Bayesian
inference (in terms of the fragment H → E) as well as part of the network
that covers the decision-theoretic core (i.e. H → L ← D), makes explicit that
the topics of inference and decision are related.

This connection is also apparent in the expected decision losses. In par-
ticular, the values stored for the node H enter calculations of the expected
losses of the decisions D0 and D1 which, in general, are given by:

L(D0, P (H | E )) = L(D0, H0)P (H0 | E ) + L(D0, H1)P (H1 | E )

and

L(D1, P (H | E )) = L(D1, H0)P (H0 | E ) + L(D1, H1)P (H1 | E )

Thus, for a loss function as defined by Table 9.1 one has:

L(D0, P (H | E )) = L(D0, H1)P (H1 | E ) = kP(H1 | E ) (9.1)

and

L(D1, P (H | E )) = L(D1, H0)P (H0 | E ) = 10kP(H0 | E ). (9.2)

Figure 9.4 shows the influence diagram (Figure 9.3) in a partially
expanded form, with a value of k = 1 and an illustrative current belief
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E

H1

H0

H

80.00
20.00 D1

D0

D

L

8.00
0.20

Figure 9.4 Partially expanded Bayesian decision network for analyzing the problem
of deciding between competing discrete propositions (node H ), given evidence E .
The node D displays the expected decision losses for the available options D0 and
D1, respectively. The node L contains the loss function defined in Table 9.1, assuming
the value of k = 1.

state for the node H of {0.8, 0.2}. The node D displays the expected losses
associated with the decisions D0 and D1, which agree with the values obtained
by Equations (9.1) and (9.2).

Notice, as was done for the previous example, that the proposed network is
chosen primarily for its simplicity, in order to illustrate the underlying prin-
ciple and assumptions. Detailed accounts on the computational background
of Bayesian decision networks are available, for instance, in Cowell et al.
(1999), Jensen (2001) and, more recently, in Kjærulff and Madsen (2008).

The influence diagram shown in Figure 9.3 is a generic one, capable of
representing a wide variety of situations involving a choice among discrete
propositions (many classification problems, as discussed in Chapter 8, con-
form to this set-up as well as the problem of forensic identification presented
in Sections 3.2.1 and 3.2.2). In particular, the nodes E and H serve merely
as a placeholders for evidence and target propositions in general. Actually,
E and H can be replaced by a set of nodes forming a sub-network that orga-
nizes a particular inference task. For the purpose of illustration, consider
the Bayesian decision network shown in Figure 9.5, where the target propo-
sitions focus on whether a given individual (the putative father), who is not
available for DNA testing (but a brother and a sister are), is or is not the
father of a given child c. In such complex scenarios of disputed paternity, an
influence diagrammatic analysis offers valuable assistance since decision-
and inference-aspects of the problem can be handled in a modular, transpar-
ent and coherently connected way. The part of the network covering discrete
chance nodes is described, for instance, in Dawid et al. (2002) and Taroni
et al. (2006a).
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L
tfmg

pfmg

cpg

mpg

cmg

mmg

mgt

cgt

tfpg

pfpg

gfpg gfmg gmpg gmmg

s1mgs1pgb1mgb1pg

b1gt s1gt
D H: tf  = pf?

Figure 9.5 A Bayesian decision network for assessing a case of disputed paternity
where the putative father is not available, but a brother and a sister of the putative
father are available. The network describes the way in which evidence for a single
genetic marker may be used to infer something about the major proposition (disputed
paternity). Nodes gfpg , gfmg , gmpg , gmmg denote the grandfather (gf ) and grand-
mother (gm) paternal p and maternal m genes. Nodes pfpg , pfmg , b1pg , b1mg , s1pg
and s1mg denote the putative father, pf , the brother b1 , and sister s1 paternal p and
maternal m genes. Nodes tfpg , tfmg , mpg , mmg , cpg and cmg denote the true father
tf , mother m (in first place) and child c paternal p and maternal m (in second place)
genes. Nodes b1gt , s1gt , mgt and cgt denote the brother b1 , sister s1 , mother m
and child c genotypes. Node H : tf = pf ? takes two values: H0 : tf �= pf , the true
father is not the putative father, and H1 : tf = pf , the true father is the putative father.
The node L accounts for the decision loss whereas the node D covers the available
conclusions, that is D0, the putative father is not the true father, and D1, the putative
father is the true father.
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Discrete Distributions

Bernoulli, Br(θ )

f (x | θ ) = θ x (1 − θ )1−x ; x = 0, 1 ; 0 ≤ θ ≤ 1
E (x ) = θ

Var(x ) = θ (1 − θ )

Bayesian learning process:

x = (x1, . . . , xn ); y = ∑n
i=1 xi

π (θ ) = Be(α, β)
π (θ | x ) = Be(α + y , β + n − y)
f (xn+1 | x ) = Bb(xn+1 | α + y , β + n − y , 1)

Binomial, Bin(n , θ )

f (x | n , θ ) = (n
x

)
θ x (1 − θ )n−x ; x = 0, 1, . . . , n ; 0 ≤ θ ≤ 1

E (x ) = nθ

Var(x ) = nθ (1 − θ )

Negative-binomial, Nb(r , θ )

f (x | r , θ ) = (r+x−1
x

)
θ r (1 − θ )x ; x = 0, 1, . . . ; 0 ≤ θ ≤ 1

E (x ) = r(1−θ )
θ

Var(x ) = r(1−θ )
θ2

Beta-binomial, Bb(α, β, n)

f (x | α, β, n) = (n
x

)
�(α+β)
�(α)�(β)

�(α+x ), �(β+n−x )
�(α+β+n) , x = 0, 1, . . . , n ; α, β > 0
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E (x ) = n α
α+β

Var(x ) = nαβ

(α+β)2
(α+β+n)
(α+β+1)

Poisson, Pn(λ)

f (x | λ) = λx e−λ

x ! x = 0, 1, 2, . . . ; λ > 0

E (x ) = λ

Var(x ) = λ

Bayesian learning process:

x = (x1, . . . , xn ), y = ∑n
i=1 xi

π (λ) = Ga(α, β)
π (λ | x ) = Ga(α + y , β + n)
f (xn+1 | x ) = Pg(xn+1 | α + y , β + n , 1)

Poisson-Gamma, Pg(α, β, n)

f (x | n , α, β) = βα

�(α)
�(α+x )

x !
nx

(β+n)α+x x = 0, 1, 2, ... ; α, β > 0

E (x ) = n α
β

Var(x ) = nα
β

(1 + n
β

)

Hypergeometric, Hy(N , M , n)

f (x | N , M , n) = (M
x )(N −M

n−x )

(N
n )

; N , M , n ≥ 0 ; x = 0, 1, . . . , n

E (x ) = nM
N

Var(x ) = nM
N

(N −M )(N −n)
N (N −1)

Multinomial, Mk (n , θ1, . . . , θk )

f (x1, . . . , xk | θ1, . . . , θk ) = ( n
x1···xk

)
θ

x1
1 ...θ

xk
k , xi = 0, 1, . . . ,

∑k
i=1 xi ≤ n;

0 ≤ θi ≤ 1,∑k
i=1 θi = 1

E (xi ) = nθi

Var(xi ) = nθi (1 − θi )

Bayesian learning process:

x = (x1, . . . , xk )
π (θ1, . . . , θk ) = Dk (α1, . . . , αk )
π (θ1, . . . , θk | x ) = Dk (α1 + x1, . . . , αk + xk )
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Continuous Distributions

Uniform, U (a , b)

f (x | a , b) = 1
b−a , b > a , a ≤ x ≤ b

E (x ) = a+b
2

Var(x ) = (b−a)2

12

Beta, Be(α, β)

f (x | α, β) = 1
B (α,β) xα−1(1 − x )β−1, 0 ≤ x ≤ 1, α, β > 0

E (x ) = α
α+β

Var(x ) = αβ

(α+β)2(α+β+1)

The constant in the beta probability density function can be defined in terms of
gamma functions, B (α, β) = �(α)�(β)

�(α+β) .

Exponential, Ex (θ )

f (x | θ ) = θe−θx x > 0, θ > 0

E (x ) = 1
θ

Var(x ) = 1
θ2

Bayesian learning process

x = (x1, . . . , xn ); y = ∑n
i=1 xi

Data Analysis in Forensic Science: A Bayesian Decision Perspective Franco Taroni, Silvia Bozza, Alex Biedermann,
Paolo Garbolino and Colin Aitken
 2010 John Wiley & Sons, Ltd

343



344 Continuous Distributions

π (θ ) = Ga(α, β)

π (θ | x ) = Ga(α + n , β + y)

Gamma, Ga(α, β)

f (x | α, β) = βα

�(α) x
α−1e−βx , x > 0, α, β > 0

E (x ) = α
β

Var(x ) = α

β2

The gamma function satisfies the following relationships:

�(x + 1) = �(x ),

and, for any integer x > 0,
�(x ) = (x − 1)!

Also �(1/2) = π
1
2

Inverse gamma, IG(α, β)

f (x | α, β) = βα

�(α) x
−(α+1)e−β/x , x > 0, α, β > 0

E (x ) = β

α−1 (α > 1)

Var(x ) = β2

(α−1)2(α−2)
(α > 2)

This distribution is the distribution of X −1 when X ∼ Ga(α, β).

Normal distribution, N (θ , σ 2)

f (x | θ , σ 2) = 1√
2πσ 2

exp
(
− 1

2σ 2 (x − θ )2
)

, −∞ < x < ∞, −∞ < θ < ∞, σ > 0

E (x ) = θ

Var(x ) = σ 2

Bayesian learning process (known variance):

x = (x1, ..., xn), x̄ = 1
n

∑n
i=1 xi

π (θ ) = N (µ, τ 2)

π (θ | x ) = N (µ(x ), τ 2(x )), µ(x ) = σ2
n

σ2
n +τ2

µ + τ2

σ2
n +τ2

x̄ , τ 2(x ) = σ2
n τ2

σ2
n +τ2

f (xn+1 | x ) = N (x | µ(x ), σ 2 + τ 2(x ))
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Bayesian learning process (unknown variance):

x = (x1, ..., xn), x̄ = 1
n

∑n
i=1 xi , s2 = 1

n−1

∑n
i=1(xi − x̄ )2

π (θ | σ ) = 1, π (σ ) = σ−1

π (θ | σ , x̄ , s2) = N (x̄ , σ 2/n)

π (σ 2 | x̄ , s2) = IG
( n−1

2 , n−1
2 s2

)
π (θ | x̄ , s2) = St

(
n − 1, x̄ , s2/n

)
f (xn+1 | x ) = St

(
n − 1, x̄ , s2(n+1)

n

)
π (θ , σ ) = N

(
µ, σ 2/n0

)
IG(α, β)

π (θ | σ 2, x̄ , s2) = N
(
µn , τ 2

n

)
, µn = (n + n0)−1(nx̄ + n0µ), τ 2

n = σ 2(n + n0)−1

π (σ 2 | x̄ , s2) = IG (αn , βn),
αn = α + n/2, βn = β + 1

2

[
(n − 1)s2 + (n0 + n)−1n0n(x̄ − µ)2

]
π (θ | x ) = St

(
2α + n , µn , (n + n0)−1(α + n/2)−1βn

)
f (xn+1 | x ) = St

(
2αn + n , µn , (n + n0)−1(n + n0 + 1)(α + n/2)−1βn

)
Student t distribution, St(α, µ, λ)

f (x | α, µ, λ) = �((α+1)/2)/�(α/2)
λ1/2(απ)1/2

[
1 + (x−µ)2

λα

]−(α+1)/2
, −∞ < 0 < ∞, α > 0, λ > 0

E (x ) = µ

Var(x ) = λ α
α−2

The distribution is symmetrical about x = µ. If Y = (X − µ)λ−1/2, where X ∼ St
(α, µ, λ), then Y has a standard Student t distribution St(α, 0, 1).

Chi squared, χ2(α)

f (x | α) = 2−α/2

�(α/2) xα/2−1e−x/2, 0 < x < ∞
E (x ) = α

Var(x ) = 2α

Snedecor’s F, F (α1, α2)

f (x | α1, α2) = �
(

α1+α2
2

)
�
(

α1
2

)
�
(

α2
2

)αα1/2
1 α

α2/2
2

x (α1−2)/2

(α2+α1x )(α1+α2)/2 , x > 0, α1, α2 > 0
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E (x ) = α2
α2−2 , α2 > 2

Var(x ) = 2
(

α2
α2−2

)2
α1+α2−2
α1(α2−4) , α2 > 4

X has an F (α1, α2) distribution if X has the same distribution as

W1/α1

W2/α2
,

where W1 and W2 are independent and W1 ∼ χ2(α1), W2 ∼ χ2(α2).

Fisher’s z distribution, z (α1, α2)

X has a z distribution on α1 and α2 degrees of freedom, denoted X ∼ z (α1, α2), if
Y = exp(2X ) ∼ F (α1, α2).

Unless α1 and α2 are very small, the distribution of z is approximately Normal.

Dirichlet distribution, Dk (α1, . . . , αk )

f (x1, . . . , xk | α1, . . . , αk ) = �(α1+···+αk )
�(α1)...�(αk )

∏k
j=1 x

αj −1
j , α1, . . . , αk > 0, α0 = ∑k

j=1 αj

E (xi ) = αi
α0

Var(xi ) = αi (α0−αi )
α2

0(α0+1)
, Cov (xi , xj ) = − αi αj

α2
0(α0+1)

Multivariate Normal, Nk (θ , �)

x = (x1, . . . , xk ), x ∈ Rk

f (x) = (2π )−k/2 |�|−1/2 exp
[− 1

2 (x − θ)′ �−1 (x − θ)
]

E (x) = θ

Var(x) = �
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Besson L 2004 Détection des stupéfiants par IMS. Technical report, Institut de police sci-
entifique, Université de Lausanne.
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Monari P and Cocchi D), CLUEB, Bologna, pp. 291–321.

de Finetti B 1993b Recent suggestions for the reconciliation of theories of probability (Paper
originally published in the “Proceedings of the Second Berkely Symposium on Mathe-
matical Statistics and Probability”, held from July 31 to August 12, 1950, University
of California Press, 1951, pp. 217–225) In Probabilità e induzione (ed. Monari P and
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