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Preface

The main theme of this monograph is “comparative statistical inference.” While the
topics covered have been carefully selected (they are, for example, restricted to prob-
lems of statistical estimation), my aim is to provide ideas and examples which will
assist a statistician, or a statistical practitioner, in comparing the performance one
can expect from using either Bayesian or classical (aka, frequentist) solutions in es-
timation problems. Before investing the hours it will take to read this monograph,
one might well want to know what sets it apart from other treatises on comparative
inference. The two books that are closest to the present work are the well-known
tomes by Barnett (1999) and Cox (2006). These books do indeed consider the con-
ceptual and methodological differences between Bayesian and frequentist methods.
What is largely absent from them, however, are answers to the question: “which ap-
proach should one use in a given problem?” It is this latter issue that this monograph
is intended to investigate.

There are many books on Bayesian inference, including, for example, the widely
used texts by Carlin and Louis (2008) and Gelman, Carlin, Stern and Rubin (2004).
These books differ from the present work in that they begin with the premise that a
Bayesian treatment is called for and then provide guidance on how a Bayesian anal-
ysis should be executed. Similarly, there are many books written from a classical
perspective. Prominent among these are the texts by Ferguson (1967) and Lehmann
and Casella (1998). These books do treat Bayesian methods, but not from the com-
parative perspective to be taken here. My aim is to present both approaches to esti-
mation from the perspective of a disinterested third party, someone who is open to
executing either method in a given problem but would like to give serious thought
to the questions of which might be preferable, and why. Robert’s (2001) book, The
Bayesian Choice, has similarities to the present work in that the author seeks to deter-
mine whether one should be a Bayesian or a frequentist. That book uses a decision-
theoretic framework to motivate the author’s conclusion that one should choose to
be a Bayesian. The main difference between our books is that I come to a different
conclusion! But the difference is a nuanced rather than an obvious one: my conclu-
sion might be summarized as: one should “often,” but not always, choose to be a
Bayesian. My goal is to shed some light on the nature of the dividing line separating
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Bayesian analyses which tend to be superior to frequentist alternatives and Bayesian
analyses that tend to be inferior. Throughout, the criterion for making the recom-
mended choice is performance based. In short, I will seek to describe the types of
problems in which the Bayesian tends to have the advantage in estimating an un-
known parameter. As the reader can infer from that statement, the frequentist tends
to have the advantage in complementary cases.

In this monograph, we will focus our attention on the fundamental statistical
problem of point estimation. Although multiparameter, multivariate problems will
be discussed, and certain asymmetric frameworks will be treated, we will fix the
main ideas in our comparative analysis of Bayesian and frequentist estimation by
considering, first, the problem of estimating an unknown scalar parameter θ . The

values X whose distribution is indexed by θ . We initially will take “squared error”
as the criterion for comparing two estimators. The frequentist or classical school
of Statistics has a long history of attacking this problem with some success, with
“least squares,” “minimum distance,” “method of moments,” “minimum variance un-
biased” and “maximum likelihood” estimators collectively playing a major role in the
way experimental data has been analyzed for over a century. The Bayesian school is
also deeply rooted in statistical history, dating back, at least, to the posthumous pub-
lication in 1763 of the Reverend Thomas Bayes’ influential “Essay Towards Solving
a Problem in the Doctrine of Chances.” While these two methodologies have the
same basic goal, the philosophical and practical distance between them is enormous,
perhaps even enormous squared!

This monograph begins with a review of the fundamental ideas and notation of
Statistical Decision Theory. This provides an avenue for introducing Bayesian es-
timation methods in the context of “decision making under uncertainty.” Separate
chapters follow on the basic elements of the frequentist and the Bayesian approaches
to estimation. We then embark upon the comparison of frequentist and Bayesian
estimators in a variety of statistical contexts. Chapter 4 reviews the traditional argu-
ments made in favor of one method or against the other and arrives at the position
that the overall argument is inconclusive, with both methods having certain poten-
tial advantages but also certain failings. The “threshold problem,” the problem of
identifying the boundary between the circumstances in which Bayes estimators tend
to outperform frequentist estimators and the complementary circumstances in which
the opposite is true, is then introduced. A criterion for comparing Bayes and frequen-
tist estimators is proposed and it is argued that it is natural, relevant and sensible; it
also serves to make the threshold problem well defined. One-parameter problems es-
timated under squared error loss are considered in Chapter 5, and an explicit solution
to the threshold problem, applicable to exponential families of sampling distributions
and conjugate families of prior distributions, is presented. The surprising breadth of
the class of Bayes estimators which dominate frequentist competitors is noted, and
the characteristics of prior modeling which can provide the Bayesian with an advan-
tage (as well as those which tend to be unfavorable to the Bayesian) are discussed
in detail. In Chapter 6, the notion of conjugacy is further explored, both in the light
of the concept of Bayesian self-consistency and as a tool in treating the Bayesian

estimators considered are based on a random sample drawn from a population of
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consensus problem. In Chapter 7, the treatment is extended to the estimation of a
vector-valued parameter. More specifically, a multivariate version of the threshold
problem is developed for comparing Bayesian and frequentist shrinkage. General-
izations of the threshold problem to estimation under an asymmetric loss function
are considered in Chapter 8.

Chapter 9 deals with special topics in which the Bayesian viewpoint is essen-
tial in the development of solutions. While the frequentist approach is ill-suited for
handling models with nonidentifiable parameters, Bayesian methods are applicable
and are amenable to careful study. In Chapter 9, the efficacy of Bayes estimators of
nonidentifiable parameters is examined through a concrete example in which a fully
Bayesian version of the threshold problem is treated for a nonidentifiable Binomial
model. Nonparametric estimation in the context of competing risks and the estima-
tion of the parameters of a nonidentifiable stress-strength model in reliability are also
discussed.

In Chapter 10, both Bayesian and frequentist estimation are treated in contexts
similar to the classical empirical Bayes framework in which one seeks to learn from
similar past experiments in the process of estimating an unknown parameter in a
current experiment. Prescriptions are given for improving upon a Bayes estimator
and for improving upon a frequentist estimator when data are available from one
or more past experiments satisfying the empirical Bayes sampling assumptions. It
is shown that such an improvement is always possible. In Chapter 11, we examine
estimation problems in which data are available from several related, rather than
similar, experiments. In the context studied, it is shown that the strategy of borrowing
strength from past experiments provides an avenue for improved estimation in the
“current experiment.”

The final chapter contains a summary and synthesis of the main themes of the
monograph and provides a general set of conclusions and recommendations regard-
ing the types of problems in which the Bayesian approach to estimation stands to
provide reliable and preferred solutions (distinguishing them from the types of prob-
lems in which they don’t). The chapter concludes with comments on open problems
of interest and promising directions for future research.

Who is the intended audience for this monograph? I see the target audience
as potentially quite broad. The minimal prerequisite for understanding its contents
is a one-year, calculus-based undergraduate course in probability and mathemati-
cal statistics. The first three chapters of the monograph consist of a review and
overview of decision-theoretic concepts and the basic tools and ideas of frequentist
and Bayesian estimation. An appendix contains a list of standard univariate models
with the parameterizations used in the book. Cumulatively, this material is intended
to make the monograph relatively self-contained. Naturally, readers with more ad-
vanced training and experience in statistical theory and practice will be better pre-
pared to appreciate the more subtle or technical aspects of the comparative analyses
considered. To make the monograph suitable as a text on Bayesian methods or on
comparative statistical inference, I have included a collection of exercises of varying
degrees of difficulty. These can be easily augmented by problems from related texts
or problems of interest to the instructor. The monograph, with or without augmenta-
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tion, would be appropriate as a text either for an advanced undergraduate course or
for a graduate-level course or seminar. In the latter context, it might serve as the text
for a capstone course which addresses a type of comparative analysis that would gen-
erally not be covered in standard graduate-level offerings on classical or on Bayesian
methods. A one-quarter course can be based on Chapters 1–10 and 12, with a light
discussion (say, one lecture apiece) on the highlights of Chapters 7, 8 and 12. A man-
ual with solutions to a healthy selection of the book’s exercises is available from the
publisher for instructors who adopt the monograph for a course of any size.

Beyond its potential use as a text, it is my hope that professional statisticians, be
they academics or practitioners, will find the monograph stimulating and of use as a
resource in the area of comparative statistical inference. The monograph is especially
aimed at statisticians who are open to using either frequentist or Bayesian methods
in selected problems, but would like to have a defensible basis for using one or the
other. But “steadfast” Bayesians and “steadfast” frequentists should also find ample
food for thought in these pages.

I would like to express my appreciation to Dr. Harry Chang, and more generally,
to the Army Research Office, for the moral and financial support they have offered
throughout the development of this monograph. The ARO has supported both this
project, much of the research that preceded its writing and the new research find-
ings that it contains. I also gratefully acknowledge the support I received from the
University of California, Davis, for a sabbatical leave during which much of the
monograph was composed. I am indebted to Barry Arnold, Richard A. Johnson, and
a third (anonymous) reviewer who contributed greatly to the improvement of the ini-
tial version of the monograph. I thank Michael McAssey for innumerable helpful
questions and insightful comments over the past year, and also for his assistance in
putting the manuscript into its final form. Finally, I thank the students in my course
on Bayesian inference at UC Davis in Winter Quarter, 2010, for their help in improv-
ing the penultimate version of the monograph.

Francisco J. Samaniego
Davis, California

March 2010
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1

Point Estimation from a Decision-Theoretic Viewpoint

1.1 Tennis anyone? A glimpse at Game Theory

True story: I was out for lunch with two friends recently. I didn’t care what restaurant
we went to, but my friends John and Marsha had strong preferences, one for Indian
food and the other for Chinese. When it became clear that neither one was going to
yield to the other in a reasonable amount of time, I proposed to settle the argument by
picking a random digit between 1 and 9 (using the random number generator on the
fancy-dan cell phone I always carry on my belt) and having each of them try to guess
its value. Whoever was closest to my number would get to choose the restaurant. John
made the gentlemanly but ill-advised gesture of letting Marsha guess first. Marsha
immediately guessed “5” and guaranteed herself an advantage, since no matter what
John guessed, there were at least five out of nine numbers that she would be closer
to than John. When John unexpectedly won the game, he made the gentlemanly but
ill-advised gesture of choosing Marsha’s restaurant. It was John’s misfortune to end
the day with a nontrivial case of food poisoning. Fortunately, Marsha and I managed
to dodge that bullet.

Games, including formal ones like chess, Scrabble and blackjack, informal ones
like the guessing game above and athletic contests like tennis or golf, are part of
American culture (and many others) and pop up with some frequency in our daily
lives. While these games each involve some strategizing, most of us don’t go to
the trouble to think out the best possible available strategy. Indeed, some games are
sufficiently complex that the “optimal” strategy is either unknown or quite difficult
to implement. But the general principles of Game Theory are worth knowing and
keeping in mind. Playing in general conformance with these principles will usually
keep us from getting trounced.

In this section, we will review the basic elements of the Theory of Games. De-
cision Theory can be viewed as an extension of Game Theory, and its foundations
are firmly grounded in the well-known treatises by von Neumann and Morganstern
(1944), Wald (1950) and Blackwell and Girshick (1954). The usual starting point is a
two-person, zero-sum game in which two rational opponents each seek to maximize
their gains (or, equivalently, minimize their losses). The “zero-sum” feature of such

1
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2 1 Point Estimation from a Decision-Theoretic Viewpoint

games simply stipulates that in a given trial of the game, nothing is lost to a third
party, so that the gain experienced by one player is equal in magnitude to the loss
experienced by the other. In a given game, each player may choose from a set of
available actions and each experiences the corresponding and complementary gain
or loss. It will be convenient, for future developments, to denote the action spaces
for players 1 and 2 as Θ and A, respectively. The game is well-defined as soon as a
particular real-valued loss function L : Θ×A→ R is specified. The value of L(θ ,a) is
interpreted as the amount that player 2 loses, that is, pays to player 1, when player 1
chooses action θ and player 2 chooses action a. A negative loss for a particular play
represents a gain for player 2.

As simple as the framework above may seem, a good deal of complexity may
arise in the analysis of a particular game. The subjects of primary interest are whether
the game favors a particular player and whether the game has a fixed worth or “value”
V . The existence of V means that both players have strategies which ensure that, on
average, player 2 can’t lose more than the amount V and player 1 can’t gain more
than V . There are games in which no such number exists, though the so-called Fun-
damental Theorem of Game Theory asserts that (most) finite games, that is, most
games in which Θ and A are finite sets, do have a finite value V and that both players
have strategies that guarantee that each can attain the outcome V . The basic issues
arising in games with finite action spaces are entertainingly explained by Williams
(1954), and the mathematical elements of Game Theory are nicely surveyed by Fer-
guson (1967). The 2×2 game with the loss function specified in Table 1.1 below is an
example of a game in which each player has a strategy which bounds his opponent’s
loss (or gain) at a common value V .

Table 1.1. A game with value V = 5

Player 2
a1 a2

Player θ1 3 4
1 θ2 5 6

You’ll notice that, in the game defined by the table above, player 1’s gain is at
least 3 when he chooses action θ1 and is at least 5 when he chooses action θ2. He
can maximize his minimal gain by taking action θ2; this action is thus appropriately
called his maximin strategy. Thinking along similar lines, player 2 will lose at most
5 when she takes action a1 and will lose at most 6 when she chooses action a2. She
can minimize her maximal loss by taking action a1; this action is thus appropriately
called her minimax strategy. Since it is apparent that player 1 will gain at least 5 in
this game while player 2 will lose no more than 5, the game clearly has the value
V = 5. Games with the properties exhibited here are said to have a “saddle point,” a
condition that can be summarized by the equation

max
θi

min
a j

L(θi,a j) = 5 = min
a j

max
θi

L(θi,a j) . (1.1)
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Games such as these are easy to analyze. In fact, the analysis above can be replaced
by the simple observation that, for player 1, the action θ2 is uniformly more profitable
than the action θ1, so that player 1 will clearly take action θ2. Knowing this, player 2
will surely choose action a1. The outcome is thus preordained to be a payoff of 5 to
player 1.

Most games are not quite this simple. The game of “odd or even” (drawn from
Ferguson’s (1967) text) nicely illustrates the additional complexity that typically
arises in finite games. Each of two players will simultaneously show either one or
two fingers (in the same fashion that the game “rock, paper, scissors” is played),
and the payoff varies, favoring player 1 if the sum is odd and player 2 if the sum is
even. The payoff matrix is displayed in the table below, where the subscript of each
available action represents the number of fingers shown.

Table 1.2. A payoff matrix for the game “odd or even”

Player 2
a1 a2

Player θ1 -2 3
1 θ2 3 -4

It is clear by inspection that the game of odd or even does not have a saddle point,
that is, for this game

max
θi

min
a j

L(θi,a j) 6= min
a j

max
θi

L(θi,a j) . (1.2)

The new element that the analysis of this game requires is the notion of a mixed
strategy. This type of “action” involves randomization achieved through the pro-
cess of placing a probability distribution of the set of available actions. Note that if
player 1 uses a “mixed strategy” which chooses actions θ1 and θ2 with probabili-
ties 7/12 and 5/12, respectively, player 2 will lose, on average, the amount 1/12 to
player 1, regardless of the strategy player 2 employs. This implies that V ≥ 1/12. On
the other hand, if player 2 chooses her strategy according to probability distribution
(7/12,5/12) on the actions a1 and a2, then player 2’s expected loss will be 1/12,
regardless of the action that player 1 chooses. This implies that V ≤ 1/12. These
strategies are thus the maximin and minimax strategies for the two players, and the
value of the game is V = 1/12.

Exercise 1.1. Consider the two-person, zero-sum game with the payoff matrix pic-
tured below:

Player 2
a1 a2

Player θ1 3 6
1 θ2 5 4
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Find the minimax strategy for player 2, the maximin strategy for player 1, and the
value of the game.

1.2 Experimental data, decision rules and the risk function

The extension from games to decision problems involves the inclusion of additional
information in the form of a statistical experiment. There is also an essential change
in the view taken toward the two players. In a decision-theoretic setting, the role of
player 2 is taken by “the statistician” whose aim is to minimize her losses to player 1,
while player 1 is seen as “nature” whose action space now represents the possible
states of nature that may be operational at a given point in time. Nature is not seen
as a rational opponent, but rather as an administrator who chooses an action θ in an
impartial manner (much like Mother Nature may choose to let it rain tomorrow).

The new element in a decision problem is that the statistician is able to observe
an experiment which contains some information about the choice that nature has
made. (To continue with the analogy above, the statistician might gather “weather
data” on regions west of her location and use that information to formulate a guess
as to whether or not it will rain tomorrow). Let us suppose that the datum available to
the statistician consists of a (possibly vector valued) random variable X which takes
values according to a distribution Fθ which depends on the state of nature θ that is in
effect when his decision must be made. Often, the available data can be appropriately
modeled as n independent and identically distributed (i.i.d.) observations, in which
case we will write X1,X2, . . . ,Xn

iid∼ Fθ . Unless otherwise stated, this latter assumption
is made throughout the remainder of the present chapter. We refer to the set of values
that a particular observation X may take on as the sample space, and we will denote
it by X . The vector of observations (or, in more general, non-i.i.d. settings, the data
set available to the statistician) will be denoted by X.

Assume that nature has chosen its “state.” Once X has been observed, the statis-
tician will choose an action from his action space A. The decision problem is then
resolved by referring to the specified loss function. The statistician’s process of se-
lecting an action is equivalent to the selection of a decision rule d. In the i.i.d. case
highlighted above, the vector of observations is drawn from the Cartesian prod-
uct X n. Thus, the decision rule selected by the statistician is simply a mapping
d : X n→ A which identifies a desired action for any given observation the statisti-
cian might make. In the game defined by Table 1.2 above, note that both players were
“allowed” to choose an action at random according to some probability distribution
on their respective action spaces. Randomized decision rules are “allowed” in the
same way, that is, they are available to the statistician if she cares to use them. Let
us denote by D the space of all “nonrandomized” decision rules (that is, mappings
from X n to A), and let D∗ be the set of all “randomized” decision rules (that is,
probability distributions on the space D). The latter may be viewed as the space of
all probability distributions on D. For a detailed treatment of randomized decision
rules, see Ferguson (1967).
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In Section 1.1, we alluded to the loss function L, one of the essential elements of
game theory. It was evident from the game defined by Table 1.2 that, even in resolv-
ing a game and determining its value, we may need to evaluate an “expected loss,”
that is, a loss function averaged over a probability distribution on the action space.
Decision problems involve an additional element of randomness, this being due to
the experimental data available to the statistician. We will thus need the following
extension of the framework discussed thus far. When the statistician uses the deci-
sion rule d ∈ D and observes the data X = x, she will employ the action d(x) ∈ A
and, if the true state of nature is θ , she will incur the loss L(θ ,d(x)). But what might
the statistician lose, on average, in the overall process of using experimental data to
reach a decision? The expected loss, averaged over all possible outcomes of the ex-
periment, weighted by their appropriate likelihood, is called the risk function R(θ ,d)
and is defined by

R(θ ,d) = EFθ
L(θ ,d(X)) . (1.3)

The expectation in (1.3) has the usual interpretation, being a weighted sum for dis-
crete X and an integral relative to the distribution of X for continuous X. If δ ∈ D∗

is a randomized decision rule corresponding to the probability distribution Pδ on D,
then the risk function of δ is given by

R(θ ,δ ) = EPδ
EFθ

L(θ ,d(X)) = EPδ
R(θ ,d) . (1.4)

In discussing decision problems further, we note that the space D∗ of randomized
decision rules contains all degenerate distributions on D and thus may be seen as
properly containing D. We will thus focus, for now, exclusively on the space D∗. The
risk function of a decision rule δ can be thought of as its primary measure of merit in
the decision problem of interest. Comparing the risk functions of two decision rules
may help us determine whether one is better than the other. The decision rule δ2 is
said to be inadmissible if there exists a rule δ1 ∈ D∗ such that

R(θ ,δ1)≤ R(θ ,δ2) for all θ ∈Θ , (1.5)

with strict inequality in (1.5) for at least one θ . It is clear that one would never wish
to use an inadmissible rule δ in a given decision problem. Not only might it be con-
sidered bad etiquette, it would make no sense, as there exists a decision rule whose
expected performance is always as good as δ and is, for at least some θ , actually
better than δ . If no “better rule” than δ exists (in the sense above), then δ is said
to be admissible. Admissibility is a good property for a decision rule δ to have, in
the sense that it is a whole lot better than being inadmissible. It is, nonetheless, a
very weak endorsement of δ , since all it says is that there is no decision rule that is
always as good or better. Clearly this does not preclude the possibility that an ad-
missible rule will be terrific, indeed uniquely best, for one particular value of θ or
some small set of θ values and have quite poor, or even unspeakably gruesome, per-
formance for other values of θ . There are many “admissible” rules that one wouldn’t
be caught dead using. So the concept is mostly useful in the other direction, that is,
in the exclusion from consideration of decision rules which are inadmissible.
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Let us return to the example of the game of odd or even discussed in the pre-
ceding section. Again, following Ferguson (1967), suppose that player 1 is viewed
as “Nature,” a player that selects the action θ1 or θ2 without any particular strategy
in mind. Suppose, further, that the experimental datum X , with the following prob-
ability distribution depending on the true value of θ , is available to player 2 (the
statistician):

P(X = 1 | θ = θ1) = 3/4 and P(X = 2 | θ = θ1) = 1/4 , (1.6)

while
P(X = 1 | θ = θ2) = 1/4 and P(X = 2 | θ = θ2) = 3/4 . (1.7)

It is clear that the experiment is informative, as when we observe X = 1, we would
be inclined to believe that θ = θ1, while when X = 2 is observed, we would tend
to believe, instead, that θ = θ2. Given an observation X ∈ {1,2}, the statistician has
four decision rules di ∈ D, i = 1, . . . ,4, from which to choose:

d1(1) = 1, d1(2) = 1; d2(1) = 1, d2(2) = 2;

d3(1) = 2, d3(2) = 1; and d4(1) = 2, d4(2) = 2.

The decision rules d1 and d4 ignore the outcome of the experiment altogether, and
are not expected to be very good. The risk functions (R(θ1,d), R(θ2,d)) for the four
decision rules are (−2,3), (−3/4,−9/4), (7/4,5/4) and (3,−4), respectively, for
d1, d2, d3 and d4. From this, it is clear that the rules d1, d2 and d4 are admissible.

The risk function seems like the perfect measure of “goodness” of a decision rule,
as it captures the expected performance of the rule across all values that the state of
nature θ may take on. While it clearly does serve this purpose, it is also true that risk
functions are quite imperfect as tools for comparing pairs of decision rules. Except
in the fairly rare circumstance in which the inadmissibility of a seemingly good rule
can be established, the comparison of the risk functions of two “reasonable” decision
rules of interest tends to be inconclusive, with the first rule dominating the second
for some values of θ and the second rule dominating the first of other values of θ .
The fact is that, in most situations in which one wishes to compare a pair of decision
rules, the rules turn out to be incomparable. It will often be the case that both decision
rules are admissible. What are we to do in circumstances like that? We’ll investigate
this question in the next section.

Exercise 1.2. In the decision problem above based on the game of odd or even and
supplemented by the experiment modeled in (1.6) and (1.7), show that the random-
ized decision rule d0 ∈ D∗ which selects d1 with probability 3/13 and d2 with prob-
ability 10/13 is the unique minimax rule for the statistician, achieving the smallest
possible maximum risk of −27/26. (Hint: Graph the “risk set,” that is, the smallest
convex set containing the risk points of the four nonrandomized rules. Decision rules
whose risk points are on the lower boundary of the risk set are the admissible rules
in this problem. Show that the rule d0 has risk point (−27/26,−27/26) and that the
risk point of any other rule δ ∈ D∗ has a larger maximum.)
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1.3 Point estimation as a decision problem; approaches to
optimization

While the question posed above can be pondered in the context of any decision prob-
lem of interest, it seems most reasonable to consider the question in the particular
context that will be the center of attention in the remainder of this monograph. The
problem of point estimation is quite well understood in statistical theory and prac-
tice, so that its embedding in a decision-theoretic context may seem to be, to those
well versed in estimation theory, something akin to gilding the lily. But the main
issues that interest us, that is, answers to the questions “why is the risk function
not enough?” and “what can be done about that?” surface with special clarity in the
context of point estimation. So this is the problem to which we will now turn.

Most problems of point estimation involve a continuous parameter θ (the prob-
lem of estimating the unknown size N of a finite population being an interesting
exception). In most problems arising in practice, the parameter to be estimated lies
in a specified interval of real numbers, the three intervals [0,1], (0,∞) and (−∞,∞)
being the most common, as they arise, for example, in the problems of estimating a
proportion, an expected lifetime or the expected “profit” of an investment. Viewing a
point estimation problem as a game, one would stipulate that Nature’s action space Θ

is an interval of real numbers. Further, since the aim of point estimation is to “guess”
the exact value of θ , the statistician’s action space A would be taken to be that same
interval. Indeed, it is the equality Θ = A that defines a decision problem as one of
estimation.

Let us suppose, for simplicity, that the spaces Θ and A are both the entire real line.
The problem of interest might be that of estimating the mean of a normal distribution.
The decision rules available to the statistician are literally countless, as the statistician
is free to use literally any formula based on the data X in guessing the value of the
parameter. It is customary to denote a particular decision rule in such problems as
θ̂ , suppressing its dependence on X (except when needed for clarity’s sake). For this
decision problem to be fully defined, one must specify the loss function to be used. In
estimation problems, it is natural for the loss to be a function of the distance between
the true value of the parameter θ and its estimated value a. The most widely-used
loss criterion in one-parameter estimation problems is “squared error loss,” that is,

L(θ ,a) = (θ −a)2 . (1.8)

Squared error loss is a symmetric function that penalizes overestimation and under-
estimation equally, and takes the value zero when the estimate is right on target.
Squared error of course predates decision-theoretic thinking, and has been used for
many generations, going back, at least, to Gauss and his theory of least squares. It
has an obvious connection to measures like “variance” and “mean squared error”
in standard estimation theory, and has a long history of useful application. There
are, of course, many alternatives to this choice. Among them, the absolute error loss
function L(θ ,a) = |θ −a| may be considered as a reasonable alternative, but mathe-
matical analysis based on absolute error is often substantially less tractable than that
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based on squared error. Both loss functions capture the basic idea that one is penal-
ized, in a symmetric fashion, for the distance between an estimator and its target.

There are many versions of asymmetric loss functions. A V-shaped loss function
with different slopes on either side of the minimum may be appropriate in certain
problems. One of the more widely used forms of asymmetric loss is the Linex (or,
“linear-exponential”) loss function, the most common version of which is given by

L(θ ,a) = exp{c(a−θ)}− c(a−θ)−1 , (1.9)

where expA = eA and c is a fixed and known constant. The Linex loss function,
in the form above, has the following properties: The loss function is equal to zero
when a = θ , and is otherwise positive, so it achieves its minimum value at a = θ .
Further, the Linex loss function may be written as h(∆) = exp{c∆}−c∆ −1, which
is a convex function for ∆ ≡ (a−θ) ∈ (−∞,∞), is decreasing for ∆ ∈ (−∞,0) and
increasing for ∆ ∈ (0,∞). When c is positive, h(∆) grows exponentially in positive
∆ , but behaves approximately linearly for negative values of ∆ . Thus, when c > 0,
the Linex loss function imposes a substantial penalty for overestimation. The mirror
image of this asymmetry may be achieved by setting c < 0.

If two estimators of θ are to be compared relative to a chosen loss criterion, the
obvious “first-order” comparison would be to examine their risk (or expected loss)
functions side by side. A typical comparison of this type is pictured in Figure 1.1.

θθ

R

θθ0

R((θθ,,  θθ1))
R((θθ,,  θθ2))

0

Fig. 1.1. The risk functions R(θ , θ̂1) and R(θ , θ̂2)

The comparison pictured in Figure 1.1 is by no means uncommon. Shown is a
situation in which the estimator θ̂1 is better than θ̂2 for values of θ < θ0, with the op-
posite being true if θ > θ0. Unless the value of θ is known (which of course it is not,
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by definition, in any estimation problem of interest), one cannot determine which
estimator will provide a better expected performance. The case of inadmissibility
provides the sole circumstance in which one estimator may be declared superior to
another on the basis of the comparison of their risk functions. In most problems
of practical interest, comparisons based on risk functions will be inconclusive. This
holds true even in extreme situations when we know that using a particular estima-
tor would be highly ill-advised. Consider, for example, the problem of estimating
a location parameter µ (which we may think of as the unknown population mean).
Suppose X is a vector of i.i.d. observations drawn from the distribution Fµ . One pos-
sible estimator of µ is the decision rule δ (X) = 10. This decision rule ignores the
data altogether and, in all circumstances, estimates µ to be 10. Assuming, for sim-
plicity, that the chosen loss criterion is squared error, the risk function of such a rule
is the quadratic R = (µ−10)2. This function shoots off to ∞ as the distance between
µ and 10 grows. In contrast to this estimator, estimators of a location parameter µ

with bounded risk functions can generally be found, and such estimators would be
far better choices than the estimator µ̂ = 10, except, of course, for a small interval
of values of µ near the number 10. In spite of the fact that the estimator µ̂ above is
highly risky (please excuse the pun), it is an admissible estimator of µ and cannot be
excluded from consideration purely on the basis of a risk function comparison.

The question that naturally arises at this juncture is: are there reasonable ways of
ranking available estimators, ways that would lead to a unique estimator (or group
of estimators) that could be described as optimal in a given statistical setting? The
type of problem we face here is not uncommon in mathematical work. Risk func-
tions are complex objects, and it should not be surprising that one might be unable
to rank estimators solely on the basis of these functions. Many pairs of estimators
would necessarily be judged to be incomparable on that basis. Risk functions pro-
vide a partial ordering among estimators, and while it is true that some estimators
have uniformly smaller risk functions than others, there will be, in many statistical
problems, a host of reasonable estimators, none of which can be judged as better
than any of the others on the basis of their risk functions. What is required, or at least
desired, is a total ordering among estimators. If, for example, every estimator could
be assigned a numerical score on some reasonable basis, then the estimator with the
“best” score could legitimately be referred to as optimal. In spite of the fact that this
seems like a tall order, there are several approaches to meeting this requirement. Our
discussion of optimality will be fairly brief, but the basic ideas on the formulation of
total orderings among estimators, or among certain restricted classes of estimators,
will reveal themselves in the following illustrations.

One approach to achieving a total ordering among all estimators is to utilize
the so-called minimax principle. Suppose that a given estimator θ̂ has risk function
R(θ , θ̂). Then one might consider the numerical summary

R(θ̂) = max
θ

R(θ , θ̂)

to be a sensible measure of the performance of the estimator. Estimators for which
R(θ̂) is finite might well be preferred over estimators for which R(θ̂) is infinite.
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This, for example, seems like a good reason to set an estimator like µ̂ = 10 aside in
the example discussed above. What would one judge to be best using this criterion?
An estimator θ̂mm is said to be the minimax estimator if it has the smallest possible
maximum risk, that is, if

max
θ

R(θ , θ̂mm) = min
θ̂

max
θ

R(θ , θ̂) . (1.10)

Minimax estimators need not be unique. When they are, they are the unambiguously
best estimator according to the minimax principle. If this criterion yields a set of
estimators with the same maximal risk, then they would be considered equivalent in
the minimax sense. In either case, one would have identified one or more estimators
that have this optimality property.

It should be recognized that the minimax criterion is very conservative, protecting
the statistician from the worst possible outcome. One might say that it identifies an
estimator corresponding to the best worst case. The criterion does not necessarily
lead to an excellent estimator. However, in all but quite pathological problems, it
will lead to estimators that are admissible, a conclusion which follows from the fact
that if a minimax estimator was inadmissible, the estimator that beats it would also
be minimax. If a minimax estimator is unique, it is necessarily admissible.

Another approach to obtaining a total ordering among estimators would be to
consider some specific weighted average of risk functions which yields a numerical
score. This approach is, in fact, equivalent to the derivation of Bayes estimators. We
will treat Bayesian estimation in some detail in Chapter 3, and we will thus limit the
discussion here to some basic ideas and notation.

Suppose that G is a probability distribution on the parameter space Θ and that the
parameter θ receives weight according to the distribution G. In other words, suppose
θ is treated as a random variable with distribution G. Although the risk functions R
of competing estimators (or, more generally, competing decision rules) may not be
comparable when examined over the whole parameter space, the weighting of the
parameter space according to a chosen G yields a single numerical score for every
estimator and thus leads to a total ordering among them. In Bayesian theory and
practice, the distribution G is called the prior distribution on θ , and is viewed as a
summary of the statistician’s opinion about θ prior to the execution of the planned
statistical experiment.

If we assume that θ ∼ G and we expect to observe the data X1, . . . ,Xn | θ
iid∼ Fθ ,

the Bayes risk of the decision rule δ with respect to the prior distribution G is given
by

r(G,δ ) = EGR(θ ,δ ) , (1.11)

where R is the risk function of δ given in (1.4). The Bayes rule δG with respect to G
is the decision rule that minimizes r(G,δ ), that is, the rule given by

δG = argmin
δ∈D∗

r(G,δ ) . (1.12)

From a decision-theoretic perspective, the Bayes rule δG represents the optimal de-
cision rule relative to a certain weighting (represented by G) that the statistician has
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chosen to ascribe to θ ∈Θ . As with all formulations of total orderings in statistical
problems, the ordering associated with the Bayes risk relative to a fixed G comes
with a price. In this case, the price is associated with the assumption that G is an
appropriate weighting for θ . What if G is a poor representation of the truth? The best
decision rule relative to a weighting G that has little or no relation to reality may be
quite a poor choice in the application of interest. This suggests that in using a Bayes
rule in a given problem, the prior G should be chosen with care and the effects of the
chosen G, as compared with other plausible choices of a prior distribution, should be
scrutinized.

On a more positive note, the Fundamental Theorem of Decision Theory (usually
called the Complete Class Theorem) roughly states that, under specific conditions,
the (slightly expanded) class of Bayes rules in a given decision problem contains a
decision rule that is as good or better than any decision rule outside the class. This
would seem to suggest that restricting attention to Bayes rules in such problems
should suffice, as any rule one would wish to use belongs to this class. In the context
of point estimation, the Bayes risk of the estimator θ̂ will be written as r(G, θ̂). It is
discussed in greater detail in Chapter 3, as are the various issues raised above, and
many others.

A different sort of optimality theory may be devised by starting with a (hopefully
reasonable) restriction on the estimators to be considered in a given problem. Perhaps
the best-known example of this approach is based on the concept of unbiasedness.
Given the available data X from an experiment indexed by the unknown parameter
θ , an estimator θ̂ = θ̂(X) is said to be an unbiased estimator of θ if

Eθ̂ = θ . (1.13)

Since the estimator θ̂ is a function of the random outcome of a statistical experiment,
it is itself a random variable. The probability distribution of θ̂ is generally referred
to as its sampling distribution. The unbiasedness property simply stipulates that the
target parameter θ is the mean of the sampling distribution. One can think of this
property as simply saying that the estimator is properly calibrated, that is, it is aimed
at the right place. The property is not a logically compelling one; this is because most
people would agree that being close to the target is more important than being aimed
at the target. An archer whose arrows are symmetrically distributed on the outer
ring of a round target would not be judged to be better than an archer whose arrows
are always in the inner ring, albeit not symmetrically distributed around the center.
Still, since a universally best estimator (that is, one whose risk function beats all
others) will not exist in any nontrivial statistical problem, imposing the unbiasedness
restriction would seem, at least at first view, to be a reasonable way to proceed.

Consider, now, the class of unbiased estimators. Among unbiased estimators, it
seems sensible to prefer estimators that are close to the target over estimators that are
not. Suppose we compare the risk functions of estimators that are unbiased. We are
then led to a simplified and quite appealing “new” measure of merit — the estimator’s
variance. If θ̂ is an unbiased estimator of θ , then its risk function, under squared error
loss, reduces to its variance, that is,
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R(θ , θ̂) = E(θ̂ −θ)2 = Vθ (θ̂) . (1.14)

Variance functions are still curves, of course, and as we have seen, comparing curves
will often lead to inconclusive results. In the present context, however, there is an im-
portant collection of problems in which a best unbiased estimator can be found. The
theory associated with uniformly minimum variance unbiased estimators (UMVUEs)
will be discussed in the next chapter.

There are a variety of other ways of restricting the class of estimators in a given
problem. The approaches that have been found to be useful in leading to “optimal”
estimators under particular restrictions are the ones that end up receiving some space
and discussion in standard texts in Mathematical Statistics. Prominent among the
popular methods of estimation within restricted classes are best linear unbiased esti-
mators (BLUEs), when best unbiased estimators are out of reach, and best invariant
estimators. These methods of estimation are also discussed in Chapter 2.

Exercise 1.3. LetΘ , D∗ and L be the parameter space, the space of randomized deci-
sion rules and the loss function, respectively, in a given decision problem. Prove the
following claims:

(a) The identity minδ maxθ R(θ ,δ ) = minδ maxG r(G,δ ) holds, where G represents
a proper prior on θ . (Hint: In one direction, keep in mind that r(G∗,δ ) =
R(θ ∗,δ ) for the prior G∗ that places probability 1 on θ ∗.)

(b) If a decision rule d ∈ D∗ is Bayes with respect to a proper prior G, and

R(θ ,d)≤ r(G,d) for all θ ∈Θ ,

then d is minimax.

Exercise 1.4. Let X ∼B(1, p), the Bernoulli distribution. A nonrandomized deci-
sion rule d may be represented as the pair (a,b), where a = d(1) and b = d(0). Find
values of a and b for which the rule d is minimax. Assume L(p,a) = (p−a)2. (Hint:
Write R(p,d) as a function of a and b and find values for which the risk function is
independent of p. Show that this rule is Bayes with respect to a particular Beta prior
on p. The minimaxity of d then follows from the well-known fact: If an equalizer
rule is Bayes, it is minimax.)

Exercise 1.5. Consider a decision problem based on the elements Θ , A, L and X ∼
Fθ . Let G be a prior distribution on the parameter θ , and suppose that the Bayes rule
δG with respect to G is unique (that is, uniquely minimizes r(G,δ ) among δ ∈ D∗).
Show that δG is admissible.

Exercise 1.6. Let X be a random variable with finite mean µ and variance σ2. Show
that, under squared error loss, the decision rule d(x) = ax + b is inadmissible as an
estimator of µ if the constant a exceeds 1.

Exercise 1.7. A decision rule whose risk function is constant is called an equalizer
rule. Show that if an equalizer rule δ is Bayes with respect to a prior distribution G
whose support set is the entire parameter space Θ , then δ is admissible under either
of the following conditions: (i) Θ is finite, or (ii) for any δ ∈ D∗, the risk function
R(θ ,δ ) is continuous in θ .
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Exercise 1.8. Consider a decision problem with Θ = [0,1], A = [0,1] and L(θ ,a) =
(θ−a)2. Suppose that X ∼B(1,θ), the Bernoulli distribution with parameter θ , and
that the prior distribution on θ is G = U [0,1]. A nonrandomized decision rule d in
this problem is determined by the pair (a,b), where a and b both take values in [0,1]
and represent your estimates of θ based on the observation X , with d(0) = a and
d(1) = b. Calculate the Bayes risk of the rule d as a function of a and b and derive
the Bayes rule dG with respect to the prior G.



2

An Overview of the Frequentist Approach to
Estimation

2.1 Preliminaries

The frequentist will often make the assumption that the available data is a random
sample of i.i.d. variables. DeGroot (1988) articulates the view that the i.i.d. assump-
tion is logically untenable. Are i.i.d. observations really possible? Are the conditions
under which we toss a coin several times ever truly identical? Of course the answer
is no. In general, identical trials are physically impossible. If repeated trials were
truly identical, wouldn’t we necessarily obtain the same result in each trial? These
criticisms notwithstanding, experience suggests that the i.i.d. assumption is often an
excellent approximation to reality, and, in many statistical contexts, making this as-
sumption is relatively harmless. While one might take issue with the i.i.d. assumption
in modeling the available data, this is not a central issue in the disagreements between
frequentists and Bayesians. Both schools will often make this assumption when de-
scribing the data available for study. In this section, we will make the assumption, for
the sake of simplicity and clarity, that the available experimental data satisfies an i.i.d.
assumption and may thus be represented as the random sample X1,X2, . . . ,Xn ∼ Fθ .

There is a second and more fundamental reason that Bayesians might express
concern about independent, identically distributed observations. This concern is not
so easily dismissed. As will be seen repeatedly as the present chapter unfolds (and
is, of course, quite well known), classical methods tend to be judged on the basis of
their theoretical average performance. For example, under squared error loss, the risk
function of an estimator θ̂ is simply E(θ̂ −θ)2, its mean squared error (MSE), and
frequentist estimators are often compared on the basis of their MSEs. The MSE is
interpreted as the squared error one would expect, on average, in many identical tri-
als of the experiment. The Bayesian school takes the position that such averages are
inappropriate for judging the merits of statistical procedures. One quite compelling
reason supporting this position is that identical repetitions of an experiment are im-
possible, thus rendering the frequentist criterion an unrealistic abstraction. Further,
the Bayesian paradigm includes adherence to the likelihood principle, to be discussed
in Section 3.6, which postulates that one’s statistical inferences should depend on an
experiment only through the data that are actually observed. On the issue of ap-
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propriate criteria for judging the value of a statistical procedure, the only apparent
resolution would seem to be that Bayesians and frequents must simply agree to dis-
agree. The Bayesian school will eschew the process of averaging loss functions over
the sample space of an experiment, while frequentists will defend the practice as a
theoretical analysis that represents a reasonable approximation of reality. Since our
interest here will revolve around the comparative performance of estimators, how-
ever derived, as judged by an impartial third party, we will not be forced to take sides
in this particular debate.

In the problem of estimating the parameter θ , frequentists will typically select
between two approaches for identifying viable estimators: (i) optimizing relative to
a risk-based criterion for a fixed sample size n or (ii) optimizing relative to some
asymptotic measure of performance (as n→∞). In what follows, I will present a brief
overview of the main frequentist options under each of these viewpoints. I present no
proofs here, and my presentation is not meant to be comprehensive, but I do intend
to survey the main ideas, methods and jargon of frequentist estimation in preparation
for the comparative analyses pursued in later chapters. We will touch on the standard
approaches to restricting the class of estimators considered and the most commonly
used asymptotic methods, and we will briefly discuss the issue of robustness. For a
detailed treatment of estimation theory from the classical perspective, see Bickel and
Doksum (2001), Ferguson (1967) or Lehmann and Casella (1998).

2.2 Minimum variance unbiased estimators

An unbiased estimator θ̂ of a parameter θ is defined above by the property in equa-
tion (1.13). Unbiasedness is one of a variety of intuitively appealing ad hoc condi-
tions that might be placed on an estimator. Once the restriction to unbiased estimators
has been made, the search for the best such estimator commences. The standard the-
ory associated with the behavior of unbiased estimators leads to the identification
of an optimal estimator in certain special circumstances. The statistical concepts of
sufficiency and completeness play important roles in this theory.

A statistic T = T (X) is said to be a sufficient statistic for the unknown param-
eter θ if the conditional distribution of the data X, given T = t, does not depend
on θ . Typical examples of sufficient statistics in one-parameter problems include
the sample proportion p̂ of successes based on a random sample of Bernoulli tri-
als X1,X2, . . . ,Xn with common distribution B(1, p), where p is the probability of
success in a single trial, and the sample mean X based on a random sample from a
normal population with unknown mean and known variance. The maximum obser-
vation X(n) from a random sample with an underlying uniform distribution U [0,θ ]
is also a sufficient statistic for θ . While p̂ and X are also unbiased estimators of their
respective target parameters, X(n) is a biased estimator of θ in the uniform example.
A sufficient statistic carries all the information about the unknown parameter that the
data X themselves contain, so that all inference about the parameter can and should
be based on that statistic. It is often the case that a simple transformation of a biased
sufficient statistic will be both sufficient and unbiased for the parameter of interest,
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so that, when restricting to unbiased estimators, one would typically consider the
transformed statistic for further investigation. In the uniform example, the statistic
T = n+1

n X(n) is both sufficient and unbiased for θ .
A sufficient statistic T = T (X) is said to be complete for the parameter θ if

whenever the equation Eθ g(T ) = 0 holds for a given function g, then g(T ) = 0 with
probability one. Completeness ensures that there is only one function of the sufficient
statistic T that is unbiased for θ , for if there were two, their difference would have
expected value 0, so the two estimators would, in fact, be one and the same. Some
authors use the term completeness in a different but equivalent way. One may speak
of a family of distributions F = {Fθ ,θ ∈Θ} as being a complete family. We will
take this language as conveying the fact that there exists a statistic T based on one or
more observations X ∼ Fθ such that T is a complete sufficient statistic for θ ∈Θ .

Now suppose we are searching for a “good” estimator within the class of unbi-
ased estimators. Any two unbiased estimators would have distributions with mean
θ , that is, they would both be “aimed” at the right place. In many repetitions of the
sampling process, both estimators would have an average value that would be very
close to θ . The preferred estimator, however, would be the one that tends to be closer
to the target parameter. One would naturally prefer the estimator with the smaller
variance, as its average squared distance from θ would be smaller than that of the
other estimator. In general, one would seek the estimator with the smallest possible
variance. Three theoretical results that generally come into play is this search are the
following.

Theorem 2.1 (Rao–Blackwell). Suppose that X1,X2, . . . ,Xn
iid∼ Fθ , and that T , a

function of X1, . . . ,Xn, is a sufficient statistic for θ . Let S = S(X) be an unbiased
estimator of θ , and define the estimator θ̂ = θ̂(T ) = Eθ (S|T ). Then the estimator θ̂

is unbiased for θ , and
Vθ (θ̂)≤Vθ (S) for all θ ∈Θ . (2.1)

That θ̂ is a legitimate estimator of θ follows from the sufficiency of T . The
unbiasedness of θ̂ follows from the identity E(X) = E(E(X |Y )) and the variance
inequality follows from the identity V (X) = E(V (X |Y ))+V (E(X |Y )), both valid for
arbitrary random variables X and Y under the quite mild assumptions that the expec-
tations in these equations exist and that the order of the sums or integrals implicit in
them may be interchanged. The Rao–Blackwell Theorem tells us that, in searching
for good unbiased estimators in a given problem, one needn’t go beyond those that
are functions of the sufficient statistic T , as any other unbiased estimator may be
replaced, and generally improved upon, by an unbiased estimator based on T .

Theorem 2.2 (Lehmann–Scheffe). Suppose that X1,X2, . . . ,Xn
iid∼ Fθ , and that T ,

a function of X1, . . . ,Xn, is a complete sufficient statistic for θ . Let θ̂ = h(T ) be
an unbiased estimator of θ . Then, for arbitrary θ ∈Θ , θ̂ has the smallest possible
variance among all unbiased estimators of θ , that is, θ̂ is the uniformly minimum
variance unbiased estimator (UMVUE) of θ .
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The Lehmann–Scheffe Theorem gives us an explicit recipe for finding the best
unbiased estimator: identify a sufficient statistic T , confirm that it is complete and
then find an unbiased function of T . The result will be the UMVUE. While recipes
are, in general, nice to have, this one comes with a couple of sidebars. First, it should
be mentioned that, when a sufficient statistic T is complete, there can only be one
unbiased function of it, so the final step involves finding the “best” estimator in a
class of size 1. Second, the completeness of a sufficient statistic is not something
that is pervasive in statistical estimation problems. For example, the smallest and
largest observations X(1) and X(n) in a sample of size n from the uniform distribu-
tion U [θ − 1

2 ,θ + 1
2 ] are sufficient for the parameter θ , but the pair (X(1),X(n)) is

not a complete sufficient statistic for θ . It is nevertheless useful to have a concrete
process which generally leads to the best unbiased estimator. The routine works in
a context that arises with some frequency in statistical work, that is, when sampling
from a distribution belonging to an “exponential family.” An elementary version of
this modeling concept, applicable to one-parameter models, is briefly discussed in
the following paragraphs.

A family of distributions {Fθ ,θ ∈Θ} is said to be an exponential family if each
member has a density function or probability mass function of the form

fθ (x) = c(θ)h(x)e∑
k
i=1 ri(θ)ti(x), θ ∈Θ . (2.2)

Exponential families have a number of notable properties. For example, these fami-
lies are complete. Given a random sample X1,X2, . . . ,Xn from a distribution belong-
ing to an exponential family, the statistic T = (∑n

i=1 t1(Xi), . . . ,∑n
i=1 tk(Xi)) is a com-

plete, sufficient statistic for θ . Moreover, the complete sufficient statistic T is of fixed
dimension, independent of the sample size n. Further, T itself has a distribution be-
longing to an exponential family. An important distinguishing property of exponen-
tial families is that the support set of densities within a given family, that is, the set
{x | fθ (x) > 0}, does not depend on the parameter θ . Many popular models may be
written in the form (2.2) and thus enjoy the properties above. Examples include the
binomial, negative binomial, Poisson, normal, gamma, and beta distributions. The
multivariate normal, multinomial and Dirichlet distributions are examples of models
to which the natural multivariate, multiparameter extension of (2.2) applies.

One further theoretical result is often presented in discussions of unbiased es-
timation. The Cramér–Rao inequality provides a lower bound on the variance of
unbiased estimators in a given problem. The potential utility of such a result is im-
mediately evident. If one has the lower bound in hand, and if one finds an unbiased
estimator whose variance is equal to that bound, then the estimator is, of necessity,
the best unbiased estimator. The Cramér–Rao Inequality holds under a set of condi-
tions on the model which is assumed to govern the available random sample. These
are generally referred to as regularity conditions. The reader is referred to Lehmann
and Casella (1998) for exact statements. All we shall say about them here is that they
include three particularly important requirements; first, that the support set of the
model is an open interval of real numbers which is independent of θ , second, that
the expectations to be discussed below exist, and third, that one may pass derivatives



2.2 Minimum variance unbiased estimators 19

under integral signs as needed, that is, that the equation

∂

∂θ

∫
s(x) fθ (x) dx =

∫
s(x)

∂

∂θ
fθ (x) dx (2.3)

holds for any integrable function s. Under the so-called Cramér–Rao regularity con-
ditions, the inequality below, and a variety of other results in the classical theory of
estimation, can be shown to hold. It is of special interest to note that exponential
families of probability distributions satisfy these regularity conditions.

Before presenting the Cramér–Rao inequality and giving an example of its use,
we take a brief digression to define another fundamental notion in statistical the-
ory. Consider a probability distribution Fθ with density or probability mass function
fθ (x). The Fisher Information IX (θ), reflecting the information content about θ in
the single observation X ∼ Fθ , is defined by

IX (θ) = E

{[
∂

∂θ
ln fθ (X)

]2
}

. (2.4)

Students of Statistics, upon seeing this definition for the first time, often find it quite
intimidating. Indeed, there is nothing intuitive in the formula, and few would recog-
nize it as an essential measure of how much your data tells you about the parameter
of your model. The fact that Ronald Fisher saw it as such is one of many reflections
of his genius. Under the Cramér–Rao regularity conditions, it is easily shown that
IX (θ) may be calculated by the following alternative formula:

IX (θ) =−E
{

∂ 2

∂θ 2 ln fθ (X)
}

. (2.5)

The following simple example helps to see why “information” is a good name for the
quantity in (2.4). Suppose you have a single observation from a normal population,
that is, suppose that X ∼N (θ ,σ2). One may then easily verify that

∂ 2

∂θ 2 ln fθ (X) =− 1
σ2 ,

from which it follows that IX (θ) = 1/σ2. Now consider the value of X as a piece
of information about θ . When the variance of X is small, its information content
about θ is large, as X will no doubt be quite close to θ under such circumstances.
The reverse is true when the variance of X is large. A measure which tracks when an
observation provides precise rather than imprecise information about an unknown
parameter stands to be useful in statistical work. If X = (X1,X2, . . . ,Xn), where

X1,X2, . . . ,Xn
iid∼ Fθ , it is easy to confirm that IX(θ) = nIX (θ), a fact that demon-

strates that the more data you collect, the more information you have regarding the
unknown parameter θ and the more precision you can expect in estimating it.

Theorem 2.3 (Cramér–Rao). Suppose that X1,X2, . . . ,Xn
iid∼ Fθ , a probability distri-

bution with density or probability mass function fθ (x) for all θ in some open interval
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of real numbers Θ . Suppose, further, that the model Fθ is “regular” in the sense de-
scribed above. Let θ̂ be an unbiased estimator of θ based on X1, . . . ,Xn. Then

V (θ̂)≥ 1
nIX (θ)

. (2.6)

We know that the Fisher Information of an observation X ∼N (θ ,σ2) is IX (θ) =
1/σ2. It thus follows that no unbiased estimator of θ can have a variance smaller than
σ2/n. But the sample mean X has precisely this variance, and is thus necessarily the
UMVUE. This is no surprise, of course, since T = ∑

n
i=1 Xi is a complete sufficient

statistic for θ in the normal model and X is the unique function of T that is unbiased
for θ .

Exercise 2.1. Let X1,X2, . . . ,Xn
iid∼P(λ ), a Poisson distribution with mean λ . Let

θ = e−λ . Note that θ = P(X1 = 0), so that the estimator θ̂ = 1 if X1 = 0 and θ̂ = 0
if X1 > 0 is an unbiased estimator of θ . The statistic T = ∑

n
i=1 Xi is complete and

sufficient for θ . Use the Rao–Blackwell and Lehmann–Scheffe Theorems to identify
the UMVUE of θ . (Hint: Show that, conditional on T = t, X1 has the binomial
distribution B(t,1/n). Then, evaluate E(θ̂ |T ).)

Exercise 2.2. Let X1,X2, . . . ,Xn
iid∼ Fθ , where the family {Fθ ,θ ∈ Θ} satisfies the

Cramér–Rao regularity conditions. Suppose ĥ(X) is an estimator of h(θ) with bias
b(θ) = Eĥ(X)−h(θ). Assuming that h and b are differentiable functions, show that
the variance of the estimator ĥ(X) satisfies the inequality

V (ĥ(X))≥ (∂h/∂θ +∂b/∂θ)2

nI(θ)
.

2.3 Best linear unbiased estimators

When one strays a bit from the i.i.d. framework, the UMVUE of a parameter of in-
terest may not exist or may be analytically inaccessible. When the available data are
independent but have nonidentical distributions, or when some form of dependency
is present in the data, attempts to obtain the UMVUE may be futile. Linear unbiased
estimators often provide a reasonable alternative. Linear estimators have the virtue
of utilizing all the data and have the flexibility of allowing the statistician to place
different weights on different observations, thereby taking account of their individ-
ual precision. The best linear unbiased estimator (BLUE) is, quite simply, the linear
unbiased estimator with the smallest variance. There are many examples in the statis-
tical literature of the use of BLUEs, but perhaps the best-known application is in the
framework of multiple linear regression. For the linear model Y =βββX+εεε, where βββ is
a (k +1)-dimensional vector of unknown parameters, X is a fixed design matrix and
εεε is a vector of uncorrelated errors with common variance (often modeled as i.i.d.
N (0,σ 2) variables), the standard estimation technique employed is “ordinary least
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squares,” by which is meant that the estimator of βββ is the vector (β̂0, β̂1, . . . , β̂k) mini-
mizing the sum of squares ∑

n
j=1(Yj−β0−∑

k
i=1 βiXi j)2. The Gauss–Markov Theorem

famously asserts that, under the standard linear model with uncorrelated errors hav-
ing common finite variance σ2, least squares estimators (LSEs) are the best linear
unbiased estimators of the elements of the vector βββ. A good deal more can be said
about BLUEs, but the above will suffice for our purposes. For more details, see, for
example, Rao (1973).

Exercise 2.3. Let X1,X2, . . . ,Xn be independent normally distributed random vari-
ables, where Xi ∼ N (µ ,σ2

i ), with σ2
i known for i = 1,2, . . . ,n. Obtain the best

linear unbiased estimator of µ .

Exercise 2.4. It is sometimes known a priori that a regression line goes through the
origin, that is, the y-intercept β0 in the simple linear regression model is equal to
zero. A salesperson’s monthly commission, as a function of monthly sales, would be
an example. Suppose that the appropriate model for a particular experiment is

Yi = βXi + εi, for i = 1,2, . . . ,n,

where εi are taken to be uncorrelated random errors with mean 0 and common vari-
ance σ2. Show that the least squares estimator β̂ = ∑

n
i=1 kiYi of β is BLUE, where

ki = Xi
/

∑
n
i=1 X2

i .
(Hint: Try a “variational” argument: (a) show that ∑kiXi = 1 and ∑k2

i = 1/∑X2
i ,

(b) show that β̂ is unbiased and that V (β̂ ) = σ 2/∑X2
i , (c) show that β̃ = ∑ciYi is

unbiased if and only if ∑ciXi = 1 and (d) assuming that ci = ki + di, where at least
one di 6= 0, show that ∑kidi = 0, so that V (β̃ ) = σ2(∑k2

i +∑d2
i ) > σ2

∑k2
i = V (β̂ ).)

2.4 Best invariant estimators

The invariance of an estimator under transformations of the data in a given problem
is another intuitive property that may be used to restrict the class of estimators to be
considered. The notion of invariance is quite simple, though the theoretical develop-
ment of this notion and the behavior of estimators having such a property, is embed-
ded in the theory of algebraic groups and, in its most abstract form, requires some
fairly sophisticated mathematics. Our treatment is necessarily superficial, given our
aim of providing a quick overview, but the basic definitions involved, and some of the
main results of the theory, are quite easy to understand. Let’s suppose that we have a
single observation X ∼ Fθ , which may be thought of as the sufficient statistic for θ in
the problem of interest. Consider a family of transformations G = {g : X →X } on
the sample space onto itself. Typical examples include location or scale changes, for
which g(x) = x+c or g(x) = cx, respectively. In problems to which the theory of in-
variance applies, the functions in the family G are one-to-one and have the properties
of an algebraic group, that is, G is closed under composition, its members satisfy the
associative property and G contains the identity transformation g(x) = x and the in-
verse function g−1 of every member g∈G. The distribution of the variable Y = g(X)
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will of course differ from that of X , but it will often be the case that it belongs to the
same family as that governing X , that is, there is a parameter value g̃(θ) for which
Y ∼ Fg̃(θ) when X ∼ Fθ . The group of transformations that G induces on the param-
eter space may be denoted as G̃. A loss function L(θ ,a) is said to be invariant if for
any g ∈ G, and for all a ∈ A, there exists a value a∗ ∈ A such that

L(g̃(θ),a∗) = L(θ ,a) . (2.7)

The group of transformations induced on the action space by (2.7) will be denoted by
G. When a loss function L satisfies (2.7), the two estimation problems in which one
observes either X or Y = g(X) may be considered equivalent in the sense that any
estimator of θ based on X has a natural counterpart based on Y , and the estimator
based on Y will have precisely the same statistical properties. An estimator θ̂ = θ̂(X)
is said to be invariant with respect to the group G if it satisfies the equation

θ̂(g(x)) = g(θ̂(x)) . (2.8)

This equation simply stipulates that if a statistician is prepared to estimate the param-
eter θ by θ̂(x) when X = x is observed, then she should be comfortable estimating
θ by g̃(θ̂(x)) when she observes g(x) instead of x. If you were trying to estimate
the mean µ of a normal population, and your data are centered around the number
5, then you’d probably decide to estimate µ as 5. But suppose every data point was
moved to the right by 7 units. Wouldn’t you then be inclined to estimate µ as 5 + 7
or 12? That’s all that invariance amounts to. It stipulates that any estimators you use
should be consistent relative to a group of natural transformations. If θ̂ is thought to
be a reasonable estimator of θ when you observe x, then you should estimate θ to be
g(θ) when g(x) is observed.

Invariance is an intuitively pleasing framework, and it does lead to its own op-
timality theory. When a decision problem is invariant, one can often find the best
invariant rule, that is, the estimator which has the smallest possible risk function
among all invariant estimators. The search for the best invariant rule is substantially
simplified by the following fundamental property of invariant decision rules. If θ̂

is an invariant estimator of the parameter θ , the risk function of θ̂ is “constant on
orbits of θ ,” that is, R(g̃(θ), θ̂) = R(θ , θ̂) for all g̃ ∈ G̃. In location and scale pa-
rameter problems, there is only one orbit (since there is a function g̃ that will map
any value of θ to any other value), so the risk function of an invariant estimator is
constant over the entire parameter space. (This, by the way, is why some authors who
write on this topic prefer to use the word “equivariant” rather than the word “invari-
ant” when referring to these estimators.) Estimators with constant risk are generally
called “equalizer rules,” and the best among them in a given problem tends to have
the minimax property. In problems in which the risk function of an invariant estima-
tor is constant, one has but a simple one-variable minimization problem to solve in
order to identify the best invariant estimator. Further, the standard theory of invariant
estimators identifies conditions under which the best invariant estimator is admissi-
ble or minimax or both. In the problem of estimating a location parameter based on
the i.i.d. sample X1,X2, . . . ,Xn, the Pitman estimator, given by
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θ̂(X) = X1−Eθ=0(X1 | X2−X1, . . . ,Xn−X1), (2.9)

is known to be the best invariant estimator under squared error loss. For further de-
tails on invariance, see Ferguson (1967, Chapter 4).

Exercise 2.5. Let X ∼ Γ(α,θ), where α is known. Consider estimating θ relative to
the loss function L(θ ,a) =

( a
θ
−1
)2. Let G be the group of scale transformations on

X , that is, G = {g : g(x) = cx, c > 0}, with G̃ and G being the corresponding groups
of scale changes on Θ and A. Find the best invariant estimator of θ .

2.5 Some comments on estimation within restricted classes

While restricting the class of estimators that will be entertained in a given problem
may have some intuitive appeal, there is no guarantee that the best estimator within
the restricted class is a good estimator in general. Examples in which the UMVUE
or the best invariant estimator is inadmissible are not difficult to find. Perhaps the
best-known example of an inadmissible UMVUE is the so-called sample variance,
given by

s2 =
1

n−1

n

∑
i=1

(Xi−X)2 , (2.10)

based on the random sample X1,X2, . . . ,Xn
iid∼N (µ ,σ2). Insisting that an estimator

be unbiased may run counter to other worthy goals in estimation, one of which is
precision. Under squared error loss, the risk function of an estimator, generally re-
ferred to in this case as its mean squared error (MSE), may be written as follows, in
terms of the estimator’s variability and its bias:

R(θ , θ̂) = E(θ̂ −θ)2 = Vθ (θ̂)+(Eθ θ̂ −θ)2 . (2.11)

It is often possible to find biased estimators with a substantially smaller variance than
the best unbiased estimator; the trade-off may well result in a smaller MSE. In the
case of estimating the variance σ2 of a normal distribution, the estimator

σ̂
2 =

1
n

n

∑
i=1

(Xi−X)2 (2.12)

has a uniformly smaller mean squared error than s2, so that the latter estimator is
inadmissible. Actually, the estimator in (2.12) is itself inadmissible. The best estima-
tor of σ2 having the form c∑

n
i=1(Xi−X)2 is the one corresponding to the constant

c = 1/(n+1).
The example above is just the tip of the iceberg. The list of well-known examples

of inadmissible UMVUEs includes estimators of positive parameters which, for cer-
tain realizations of the experiment they depend on, can take on negative values. There
are, in fact, examples in which the UMVUE is not only inadmissible but patent non-
sense. Ferguson (1967, p.136) gives a lovely example of the estimation of a certain
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probability based on a Poisson variable X in which the UMVUE of that probability
is (−1)X .

I’ll give one brief example of similar happenings in the world of linear unbi-
ased estimation. The following problem is treated by Samaniego and Kaiser (1978).
A collection of increasing “bids” are accepted in a progressive auction, the ob-
served sequence of bids being X1 < X2 < · · · < Xn. It is hypothesized that the
bidders are knowledgeable about the worth θ of the item at auction, but they are
also interested in obtaining it at the best price possible. The sequence is thus pre-
sumed to be bounded above by θ , and is modeled as follows: X1 ∼U [0,θ ],X2|X1 ∼
U [X1,θ ], . . . ,Xn|Xn−1∼U [Xn−1,θ ]. Unlike the order statistic model that this frame-
work resembles, the maximum observation Xn is not a sufficient statistic for θ ; in
fact, no data reduction at all is available via sufficiency (that is, the entire sample is
a “minimal” sufficient statistic for θ ). This fact is often taken as a signal that linear
unbiased estimators are worth considering. The best linear unbiased estimator of θ

is identified by Samaniego and Kaiser to be

θ̂ =
uT Σ−1X
uT Σ−1u

, (2.13)

where u is the n-dimensional vector with ith element equal to (1− 1/2i) and Σ is
the symmetric n×n matrix with elements σi j = (1/2 j−i3i−1/2i+ j) for 1≤ i≤ j ≤
n. Now, since θ is a scale parameter for the model, the possible treatment of the
estimation of θ using invariance considerations also comes to mind. Samaniego and
Kaiser obtain the best invariant estimator of θ with respect to the scale-invariant loss
function

L(θ ,a) = (a/θ −1)2 . (2.14)

The problem above is instructive on several levels. It appears that one has two vi-
able estimators based on quite different restrictions and resulting from two different
loss criteria. Interestingly, they are directly comparable by virtue of the fact that the
BLUE is itself a scale-invariant estimator. It thus has a constant risk function, under
the loss function in (2.14), which is uniformly larger than that of the best invariant
estimator. Interestingly, the best invariant estimator is superior to the BLUE under
squared error loss as well, since for the loss function in (2.14), the risk function
may be written R(θ , θ̂) = (1/θ 2)E(θ̂ −θ)2. Thus, the best invariant estimator has a
smaller mean squared error than the BLUE, so that the best invariant estimator beats
the BLUE on its own turf. In either scenario, the BLUE is inadmissible.

Best invariant estimators are, of course, not immune to this type of failing.
The most famous example of an inadmissible best invariant estimator occurs in a
multivariate setting. In a 1956 paper, Stein shocked the statistical community with
the news that the mean X of a sample X1,X2, . . . ,Xn of vectors drawn from a k-
dimensional normal distribution (with, for simplicity, covariance matrix Σ = I), with
k larger than 2, is inadmissible as an estimator of the population mean µµµ. The sam-
ple mean X is, in this context, the best invariant estimator under generalized squared
error loss and the transformation groups G, G̃ and G associated with changes in lo-
cation. Stein showed that the risk function of the estimator



2.6 Estimators motivated by their behavior in large samples 25

µ̂µµ(X1,X2, . . . ,Xn) = X
(

1− k−2
|X|2

)
(2.15)

is uniformly smaller (as a function of µµµ) than that of the estimator X, where, for
c ∈ Rk, |c| = ∑

k
i=1 c2

i . The Stein estimator is often referred to as a “shrinkage esti-
mator,” since the net effect of the adjustment of X through (2.15) is to “shrink” X
toward the origin 0. The origin is of course an arbitrary choice in this problem, as
shrinking toward any fixed k-dimensional vector C also produces an estimator that
uniformly improves upon X, with the greatest improvement occurring at values of µµµ

that are close to C. There have been many subsequent studies of shrinkage estimators
that have attempted to shed light on the makeup and behavior of the Stein estimator
and its variants. The papers of Efron and Morris (1971, 1972a, 1972b, 1973a, 1973b,
1975, 1976) are deservedly prominent within this literature. A less-cited paper, but
truly a tour de force in mathematical statistics, is the beautiful “unification” paper
by L. D. Brown (1971) which explicitly shows the connection between the inadmis-
sibility of X in dimensions k ≥ 3 and the nonrecurrence of Brownian motion for
k ≥ 3. Although our discussion of inadmissible invariant estimators has focused on
the Stein effect, there are, of course, simpler examples of best invariant rules that are
inadmissible. See, for example, Blackwell (1951).

The examples above demonstrate that point estimation problems involving a re-
striction on the class of estimators must be viewed as mixed blessings. One may be
able to find the best estimator in the restricted class, but it may turn out that all es-
timators in this class are inferior to alternative estimators outside of the class. The
lesson to be learned from this, for those who are inclined to consider estimation
within restricted classes, is that it would be worthwhile to do a little sniffing around
outside of the class to convince oneself that the restriction is not overly confining.

Exercise 2.6. In the “uniform auction” considered above, show that the estimator θ̂

given in (2.13) is the BLUE of θ .

Exercise 2.7. Let X1,X2, . . . ,Xn
iid∼ E (µ), the exponential distribution with mean µ .

Confirm that the sample mean X is the UMVUE of µ . Show that X is an inadmissible
estimator of µ under squared error loss.

2.6 Estimators motivated by their behavior in large samples

The methods of point estimation that are most widely used in practice tend to draw
their “validity” from an examination of their asymptotic properties. In examining
such methods, one must take leave of the decision-theoretic framework, as there is
no fixed decision problem to focus on. This notwithstanding, we propose to discuss
asymptotic ideas, as leaving this topic out of our discussion would leave a gaping
hole in our claimed overview of frequentist methods. Further, as we shall see, there
are interesting connections with decision-theoretic ideas when one thinks about sam-
ple sizes that are fixed but large, and there do exist asymptotic analogs to decision-
theoretic considerations (for example, asymptotic minimaxity) which the reader may
wish to explore (even though I don’t explore them further here).
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The limiting behavior of an estimator θ̂n = θ̂(X1,X2, . . . ,Xn) as the sample size
n→ ∞ is often taken as justification for its use. The estimator θ̂n is said to be a con-
sistent estimator of the parameter θ if θ̂n→ θ in some appropriate stochastic sense
(e.g., “in probability” or “almost surely”). Consistency is an optimality property of
sorts, but a very weak one, as most reasonable point estimators in a given problem
will enjoy this property. Among the different consistent estimators one might iden-
tify, one would typically examine the rate at which each converges to the target pa-
rameter, and among consistent estimators that converge to θ at the same “best” rate,
one would wish to recommend for use the estimator that has the best (asymptotic)
precision. In problems that satisfy the usual regularity conditions, one is typically
able to establish that the estimators of interest are asymptotically normal, that is, that
when suitably standardized, they converge in distribution to normal variables. One
typically writes this as

√
n(θ̂n−θ) D−→ Y ∼N (0,V ) as n→ ∞ . (2.16)

The value V in (2.16) is referred to as the asymptotic variance of θ̂n, and the estima-
tor with the smallest possible asymptotic variance is said to be best asymptotically
normal (BAN). Such an estimator is said to be an asymptotically efficient estima-
tor of θ . One may think of (2.16) as constituting an approximation result. If n is
sufficiently large, then the fraction

Z =
θ̂n−θ√

V/n
(2.17)

should behave, approximately, like a standard normal variable, and θ̂n should have,
approximately, mean θ and variance V/n. This suggests that a BAN estimator might
be thought of as being, approximately, an unbiased estimator with the best possible
variance. Given a sufficiently large sample, one would have identified a reasonable
substitute for the UMVUE in the problem under study.

In the late nineteenth century, Karl Pearson advocated the use of estimators ob-
tained by the so-called method of moments. This is one of the better known methods
in a class of estimators described by the term “analog.” The basic idea behind ana-
log estimators is that the available random sample should exhibit roughly the same
features as the population from which the sample was drawn. The general theory of
analog estimators is laid out in the monograph by Manski (1988). The method of
moments exploits the fact that sample moments and the corresponding population
moments should be reasonably close to each other (as the latter is the expected value
of the former, and averaging increases precision). Finding a method of moments esti-
mator (MME) involves deriving the solution(s) of one or more “moment equations,”
that is, equations of the form

1
n

n

∑
i=1

Xk
i = EXk (2.18)

for selected integers k. For example, for a sample of geometric random variables
{Xi} modeling the number of trials needed to obtain the first success in a sequence
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of Bernoulli trials with probability θ of success, the first moment equation is

X =
1
θ

,

an equation which identifies θ̂ = 1/X as an MME of θ .
The method of moments has a number of drawbacks. One is that the method

doesn’t lead to a unique estimator. For example, in the geometric case above, the
second moment equation leads to a different estimator. One would thus need to de-
termine which of them is better. A second inconvenient truth is that, while MMEs are
consistent and asymptotically normal (provided population moments of sufficiently
high order are finite), it is often the case that they do not have the smallest possible
asymptotic variance. Thus, MMEs are generally seen as easily-obtained preliminary
estimators which require further examination before being recommended for use.

Ronald Fisher is credited with finding a method of estimation which is generally
superior to the method of moments. Karl Pearson didn’t take the news well. Indeed,
the ensuing feud between Pearson and Fisher has become one of the most famous
in our discipline. (Actually, Fisher and Pearson weren’t particularly fond of each
other even before their debate about the quality of their estimation techniques.) The
basic idea behind Fisher’s recommendation of maximum likelihood estimation is
simple and quite intuitive. Given the outcomes x1,x2, . . . ,xn of an i.i.d. sample with
underlying distribution Fθ having density or probability mass function fθ (x), the
likelihood function L(θ) is defined as

L(θ) = L(θ | x1,x2, . . . ,xn) = fθ (x1,x2, . . . ,xn) , (2.19)

that is, as the joint density or probability mass function of X evaluated at the ob-
served x. (Actually, the likelihood is usually considered to be the portion of the RHS
of (2.19) that depends on θ ; then, L(θ) in (2.19) is the constant multiple of the like-
lihood which standardizes it so that it sums or integrates to one. For simplicity, and
since it does no harm, we will continue to refer to the function L in (2.19) as the
likelihood function. But one may also refer to any constant multiple of this function
as the likelihood.) If L(θ) is given, you might then ask “what value of the parameter
θ would give the sample you actually observed the highest chance of happening?”
When the variable X is discrete, L(θ) truly represents the probability of observing
X1 = x1, . . . ,Xn = xn. In the continuous case, the actual probability associated with the
observed values is zero, but the question may be rephrased in terms of a small open
set centered at the observed data point (x1, . . . ,xn). The natural answer is the value of
θ for which the density or mass function in (2.19) is maximized. In terms of proba-
bility, one may think of the value of θ for which small intervals (say, (xi−ε,xi +ε))
centered at the data values receive the largest possible probability. In either case, the
function of the data θ̂ = θ̂(x1,x2, . . . ,xn) that maximizes L(θ) above is referred to as
the maximum likelihood estimator (MLE). Given the data, the value of the parameter
which makes what you have seen as likely as possible would seem, intuitively, to be
a very reasonable estimator of the unknown parameter. But the important matter of
its statistical behavior remains to be discussed.



28 2 An Overview of the Frequentist Approach to Estimation

Fisher developed the asymptotic theory of maximum likelihood estimators. Un-
der suitable regularity conditions (see Lehmann and Casella (1998), Chapter 6), the
MLE θ̂ML is best asymptotically normal, with its limiting distribution given by

√
n(θ̂ML−θ) D−→ Y ∼N (0, I−1(θ)) . (2.20)

The asymptotic variance V of any estimator that converges to θ at the same rate
(usually written as O(1/

√
n)) can be no smaller than I−1(θ), except, possibly, on a

subset of Θ of measure zero.
Exponential families have a prominent place among families of distributions that

satisfy the standard regularity conditions under which θ̂ML is BAN. But the method
of maximum likelihood is quite general, and it is often the frequentist method of
choice in problems in which the model is not among the well-known collection of
exponential families. In parametric models of this sort, the asymptotic justification of
the estimator reduces to checking that the model satisfies the regularity conditions.
The ML approach has in fact been extended to nonparametric problems in which the
aim is to estimate the underlying distribution F of the sample (where F is allowed to
be any distribution on the support set of the available observations). This extension
was developed by Keifer and Wolfowitz (1956), and it has since led to many in-
teresting findings in the field of nonparametric statistics. The empirical distribution
Fn (that is, the step function which takes a jump of 1/n at each of the observations
in a random sample of size n) is the nonparametric maximum likelihood estimator
(NPMLE) of a general distribution F . The Kaplan–Meier estimator is the NPMLE
of F given failure time data subject to right-censoring.

Given that there are no guarantees outside the domain of regular models, one
might expect that MLEs can, on occasion, behave rather badly. This is, of course,
possible. There are many examples of inconsistent MLEs in the literature. Perhaps
the best-known parametric example is that of Neyman and Scott (1948). Boyles,
Marshall and Proschan (1985) showed that the NPMLE of a distribution F known
to have the “increasing failure rate average” (IFRA) property is inconsistent as an
estimator of F . Rojo and Samaniego (1991) show that NPMLE is inconsistent as
an estimator of a distribution F known to satisfy a uniform stochastic ordering con-
straint. It is often the case that parametric and nonparametric MLEs behave poorly
in problems in which the target parameter is assumed to satisfy a specific restric-
tion. But the misbehavior of MLEs in nonregular problems is by no means universal.
Consider, for example, the estimation of the parameter θ based on a random sample
from the uniform distribution U [0,θ ]. This model is of course nonregular due to its
support set’s dependence on θ . The observed maximum X(n) is the MLE of θ . As is
well known,

Y(n) =
X(n)

θ
∼ Be(n,1) ,

so that EY(n) = n/(n+1) and V (Y(n))= n/(n+1)2(n+2). It follows that V (
√

n(X(n)−
θ)) tends to zero as n→ ∞, and thus that

√
n(X(n)−θ)→ 0 as n→ ∞. In this prob-

lem, the MLE converges to the target parameter faster than it does when it is based
on a random sample from a “regular” model. It is thus clear that one cannot assume
that the MLE will misbehave in nonregular cases, even though it often does.
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A persistent question that arises when using estimators justified by their asymp-
totic behavior is how large the sample size n must be for the distribution of the
standardized MLE to be well approximated by a standard normal distribution. The
question has no general analytical answer, as there are problems in which any prede-
termined value of n will not be large enough. This is evident in the case of a random
sample of Bernoulli trials, as the normal approximation for the distribution of the
MLE, the sample proportion p̂, will be quite unlike the true distribution of p̂ unless
the product np is sufficiently large. If p happens to be very close to 0, an enormous
sample size n is required for

√
n(p̂− p) to be approximately normally distributed.

No matter how large n may be,
√

n(p̂− p) may be quite nonnormal when p is very
small. Fortunately, the latter circumstance is not typical in applied work. In many ap-
plications, samples of size 30, 50 or 100 might prove entirely satisfactory. Often, the
validity of the normal approximation to the distribution of the MLE is investigated
via simulation, and one may be able to assure oneself that the normal approximation
of this distribution is justifiable in samples of moderate size.

Exercise 2.8. Let X1, . . . ,Xn
iid∼ F . Show that the empirical distribution Fn is the non-

parametric maximum likelihood estimator of F , that is, show that the distribution Fn
assigns the largest possible probability to the observed sample values x1, . . . ,xn.

Exercise 2.9. Prove the “invariance property” of maximum likelihood estimators: If
θ̂ is the MLE of the parameter θ , and h is a continuous one-to-one function, then
h(θ̂) is the MLE of the transformed parameter h(θ).

Exercise 2.10. Suppose X1,X2, . . . ,Xn
iid∼ E (µ), the exponential distribution with

mean µ . The Xs represent the observed failure times of n identical items placed on
test, and the experiment is carried out under type I censoring at the fixed time hori-
zon T . Thus, the observed outcomes of the life-testing experiment are Y1,Y2, . . . ,Yn,
where Yi = min{Xi,T}. Suppose that every Xi exceeds T . The likelihood function is
then the probability of the observed event, that is,

L =
n

∏
i=1

e−T/µ = e−nT/µ .

Show that the maximum likelihood estimator of µ does not exist.

Exercise 2.11 (Neyman and Scott). For each fixed i = 1, . . . ,n and each j = 1, . . . ,k,
suppose that Xi j ∼N (µi,σ

2). Show that the estimator

σ̂
2 =

∑i, j(Xi j−Xi)2

kn

is the MLE of the parameter σ2, where Xi = 1
k ∑

k
j=1 Xi j, and that, for any fixed value

of k, it is inconsistent for σ2 as n→ ∞.
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2.7 Robust estimators of a population parameter

The concern that the assumed model for the available data is misspecified, or that
the data may be contaminated in some fashion (for example, by recording errors
or by occasional occurrences of data drawn under conditions that differ from the
assumed experimental conditions), has led to the study of methods of estimation that
are unaffected (or only mildly affected) by such deviations from the model. While
this is an important development in statistical work which enjoyed a notable surge
of interest in the decade of the 1970s (largely stimulated by the path-breaking study
of Andrews et al. (1972) on robust estimators of location) and continues to be of
substantial interest (witness the increased attention given to nonparametric inference
today), it has only a rather modest connection with issues raised in the sequel. Its
treatment here will therefore be quite brief.

There is a natural tension between estimating the parameters of the postulated
model for one’s data and protecting oneself from errors due to various types of vio-
lations of the model. Since win-win situations are rarely available in Statistics, it is
typical here for a compromise to be struck between good estimation under the orig-
inal modeling assumptions and protection against various forms of model misspeci-
fication. It is instructive to review how one might attack the problem of estimating a
location parameter, say the population mean µ . In many problems, and certainly in
the problem of estimating the mean of a normal distribution, one would be inclined
to use the time-honored estimator X . If the underlying distribution of the sample is
indeed N (µ ,σ2), then X has a good deal to recommend it. But what if there is an
occasional misrecording, so that the true distribution of the data is actually the mix-
ture model with distribution F(x) = εM(x)+(1−ε)Nµ,σ2(x), where M(x) describes
the behavior of the “maverick observations” (including outliers) and ε is some suit-
ably small value, perhaps 0.05. Since the estimator X is highly affected by outliers, it
immediately loses its appeal as an estimator of µ . Many alternatives have been stud-
ied for this scenario and for a variety of other versions of an alternative true model.
The median (X( n+1

2 ) when n is odd) is a robust estimator of µ . Of course it is inferior

to X when the true model is normal, but it is the estimator that is the most highly
resistant to the influence of outliers, when they are present, and it easily outperforms
X when outliers occur with some frequency. This is one of the reasons that the re-
ported “average income” of a group of interest will typically be the median rather
than the mean income. In spite of the simplicity and utility of the sample median,
there are better-performing compromises available. Trimmed means, for which a
fixed percentage of large observations and of small observations are simply ignored,
and the remaining observations are averaged, are a well-studied class of robust es-
timators. The monograph by Andrews et al. (1972) studies and compares a host of
other options, including so-called adaptive procedures which include a preestimation
procedure that is meant to detect the extent of outlier-protection that appears to be
needed in a given application.

The literature on the robust estimation of location parameters includes the study
of L-estimators, M-estimators and R-estimators. Lehmann and Casella (1998) give an
excellent account of the highlights of the theory of these three particular approaches
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to robust estimation. It might be mentioned that both the median and the trimmed
mean mentioned above are examples of L-estimators, the L standing for “linear com-
bination of order statistics.” Other topics of interest in robustness theory include the
influence function, which measures the impact of one or more outliers on a given esti-
mator, and the breakdown point, which identifies the number of outliers an estimator
can accommodate without being compromised as an estimator of the parameter of
the assumed model. For a detailed treatment of robustness topics, see Huber (1981).

Exercise 2.12. Let X1,X2, . . . ,Xn
iid∼ Fθ , where Fθ (x) = F(x−θ), F(0) = 1/2 (that is,

θ is the median of F) and F has finite variance. Suppose, further, that when θ = 0,
the density f of F is positive at x = 0. Let θ̃n be the median of the sample of size n.
The following asymptotic result is well known:

√
n(θ̃n−θ) D−→ Y ∼N

(
0,

1
4 f 2(0)

)
.

(a) Show that, when sampling from a normal population, the asymptotic efficiency
of θ̃n relative to the MLE θ̂n = X (that is, the ARE = AV (θ̂n)/AV (θ̃n)) is 0.637. (b)
Show that if Fθ is a t-distribution with three degrees of freedom and median θ (a
t-distribution with finite variance), then the ARE of θ̃n relative to X is 1.62.
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An Overview of the Bayesian Approach to Estimation

3.1 Bayes’ Theorem

In the subsections below, I will go into considerable detail on the philosophy,
methodology and characteristics of the Bayesian approach to statistical estimation.
It seems appropriate to begin the discussion by presenting the famous theorem by
Thomas Bayes which underpins the entire enterprise. Its most common form involves
a two-stage experiment. Consider an event A of interest as a possible outcome of the
first stage of the experiment and an event B, a possible outcome of the second stage.
If, for example, one is drawing marbles at random from an urn containing red and
white marbles, A might be the event of drawing a red marble on the first draw and B
might be the event of drawing a white marble on the second draw. Such experiments
are often represented by a “tree” such as that in Figure 3.1.
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Fig. 3.1. A tree for a two-stage experiment
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The well-known “multiplication rule” is used to compute the probabilities of
the possible outcomes of the experiment as a whole. For example, P(A ∩ B) =
P(A)P(B|A). There is a natural temporal progression in this experiment, with the
second stage following upon the outcome of the first stage. The question that Bayes
asked and answered was: If the outcome of the second stage is known, what would be
the probability of a particular first-stage outcome? Bayes’ Theorem simply provides
a formula for making that calculation. Specifically, we could make that computation
using the (now) standard definition of conditional probability, that is,

P(A|B) =
P(A∩B)

P(B)
, (3.1)

assuming, of course, that P(B) > 0. Bayes’ formula is often written in a more ex-
tensive but equivalent form. If the first stage has n possible outcomes A1, . . . ,An and
the second stage has m possible outcomes B1, . . . ,Bm, then for 1 ≤ i ≤ n, and for
1≤ j ≤ m, such that P(B j) > 0,

P(Ai | B j) =
P(Ai)P(B j | Ai)

∑
n
k=1 P(Ak)P(B j | Ak)

. (3.2)

The question posed by Bayes was more than a curiosity. It raises intriguing philo-
sophical questions and it calls attention, as well, to a practical tool for calculating
certain conditional probabilities of interest. On the philosophical level, consider the
following apparently conflicting views. If the two-stage experiment above has been
performed, and you happen to be informed that the event B occurred in the second
stage, is it appropriate to talk about the probability that A occurred? After all, the
experiment already happened, and the outcome of the first stage, while unknown to
you, has in fact already occurred. Perhaps it is known to someone who witnessed the
experiment, in which case, whether or not A occurred can simply be determined by
asking the question. This leads to the view that, since the occurrence or nonoccur-
rence of A is now a historical fact, it is not an event whose probability we should
be contemplating. The fact that we can indeed ask and answer questions about the
likelihood that the event A occurred identifies an interesting and new proposition:
we can discuss probabilities based on our uncertainty about the occurrence of a par-
ticular event. The number P(A|B) obtained via (3.1) is precisely such a probability.
Bayes’ Theorem essentially opens the door to the consideration of a new form of
probability, one that is personal and subjective and conditioned on what you happen
to know. The theorem is also a useful tool, as the following example shows.

Example 3.1. Suppose that it is known that 2% of the population has a certain dis-
ease, a fact that we record as P(D) = 0.02. As is often the case, there is a simple,
noninvasive diagnostic test that is pretty effective in detecting the presence of the
disease when a person actually has it. Let’s assume the probability of detecting the
disease is 0.95 in such cases, that is, that P(+|D) = 0.95. Diagnostic tests are never
perfect, and there is generally some small probability of a “false positive.” Let’s as-
sume, here, that P(+|Dc) = 0.1. If the test is administered to a random individual, say



3.2 The subjectivist view of probability 35

you, and the test result is positive, you would most certainly want to know what the
chances are that you actually have the disease. Bayes’ Theorem provides the answer:
P(D|+) = 0.019/(0.019+0.098) = 0.1624. You would no doubt be quite relieved to
learn that the chances that you have the disease are relatively low. A (probably less
comfortable) follow-up test would be used to determine more definitively whether
or not you have the disease. The surprisingly low value of P(D|+) often raises some
eyebrows. It is explained by the fact that, even though the probability of a false pos-
itive is low, the proportion of the population without the disease is very large. Thus,
nearly 85% of the positive test results come from that segment of the population.

Putting the example above in Bayesian language, the first-stage probabilities rep-
resent “prior” information about the disease. The second stage consists of the avail-
able experimental data. Given the experimental outcome “+,” one may compute the
“posterior” probability of having the disease, that is, one may “update” the prior
information on the basis of the data to obtain a revised perspective about some-
one having the disease. Bayesian analysis is, in general, about the updating of prior
information in light of available experimental data. A Bayesian formulation of an
estimation problem involves a prior distribution G(θ) for the unknown parameter θ ,
a model Fθ for the observable data and a posterior distribution G(θ |X = x) for the
parameter θ given the experimental data X.

Exercise 3.1. Lie detector tests are of course imperfect. But it is well documented
that they have proven useful in the context of criminal investigations. Suppose that it
is known that when a criminal suspect gives an answer to a relevant question, he/she
answers truthfully (T ) only 30% of the time. Suppose, further, that a lie detector
test will classify a truthful answer as a lie (L) 10% of the time, and will classify
an untruthful answer (T c) as a lie 80% of the time. On a given question that the lie
detector test classifies as a lie, what’s the probability that the suspect is telling the
truth?

3.2 The subjectivist view of probability

The foundations of Bayesian inference cannot be properly understood without a dis-
cussion of subjective probability. The foremost proponents of this perspective on
probability include Frank Ramsey (1930), Bruno De Finneti (1974), Morris DeGroot
(1970), I.J. Good (1950), Dennis Lindley (1985) and L.J. Savage (1954). The brief
treatment I give this topic cannot begin to do justice to the celebrated tomes just
cited, but I will nevertheless bravely dive in and try to summarize the main ideas.
Let’s begin with the off-the-wall question “What is the probability that a stranger
named Isaac Newton knocks on your door tomorrow?” At first view, this question
doesn’t seem to be appropriately placed in the domain of probability. But one speaks
of the chances of the occurrence of such events all the time. While the frequency
theory of probability relies, at least informally, on the idea that a probability of an
event is determined by the long-run relative frequency of the event in repeated trials,
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this view is not helpful when dealing with one-time happenings and, in general, in
dealing with situations when no related experimental data at all is available. Further,
there are many things in life about which we are uncertain, and we often use the
language of probability, if not its formal tools, in thinking and talking about them.
The subjectivist view of probability is based on the following premise: every indi-
vidual should be able to determine, through introspection or via consultation with
experts, his beliefs about the odds that an event A will occur or not, that is, his beliefs
about the ratio P(A)/(1−P(A)). A common formulation of this premise is that one
could determine one’s subjective assessment of the value of the ratio above by con-
sidering how much one is willing to wager on the occurrence of the event A. There
are various versions leading to the subjective assessment of the value of this ratio.
We will outline below the development favored by DeGroot (1970, 1988) which is
based on an individual’s basic intuition about the relative likelihood of any pair of
events. What is important here is to understand that this individual’s assessment is
indeed subjective, representing the individual’s belief system concerning the events
in question. It is thus quite possibly different from another individual’s assessment,
and this really is of no consequence in what follows. What does matter is that the
way an individual assesses probabilities in an uncertain situation reflects that indi-
vidual’s subjective beliefs and is internally logical and consistent. The probabilities
assigned to the possible events (generally, the members of a σ -field of subsets of a
universal set S) in an experiment of interest (or an occasion involving uncertainty)
are assumed to obey the standard laws of the calculus of probability, namely, that
(i) P(S) = 1, (ii) P(A) ≥ 0 for any event A and (iii) when Ai ∩A j = ∅ for all i 6= j,
P(
⋃

∞
i=1 Ai) = ∑

∞
i=1 P(Ai). These three laws are applicable to all forms of probability

assessment, subjective or otherwise, and are satisfied, for example, when probability
assignments are made on the basis of the relative frequency of occurrence of subsets
of S in a fixed number of trials of a real experiment.

How might an individual proceed with his subjective assignment of probabili-
ties to the events of interest? Unlike the frequentist paradigm in which one loosely
relies on tradition or experience, assigning probabilities to events either intuitively
or being guided by empirical evidence from repetitions of the experiment of inter-
est, the Bayesian process is based on one’s subjective assessments about the relative
likelihood of any two events. It is, however, assumed that one’s assessments con-
form to several intuitively evident requirements. For example, it is assumed that an
(admittedly idealized) individual is endowed with a relation � which determines his
subjective judgment about the relative likelihood of any pair of events. More specifi-
cally, for the events A and B, A� B is interpreted as signifying that that event B is at
least as likely to occur as event A, with A≺B meaning that B is considered to be more
likely than A. If A� B and A� B, then we write A∼ B, signifying that the events A
and B are considered to be equally likely. Five specific assumptions are made about
the relation �. The first simply asserts that any two events are comparable.

Axiom 1. For any pair of events A and B, either A� B, A∼ B or A≺ B.

The second axiom stipulates that the relation � must satisfy a certain logical
ordering restriction.
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Axiom 2. Let {Ai,Bi, i = 1,2} be events for which A1∩A2 = ∅ and B1∩B2 = ∅. If
A1 � B1 and A2 � B2, then A1∪A2 � B1∪B2. Further, if either A1 ≺ B1 or A2 ≺ B2,
then A1∪A2 ≺ B1∪B2.

It is easily shown that Axioms 1 and 2 together imply that the relation � is
transitive, that is, given events A, B and C, if A� B and B�C, then A�C. The third
axiom asserts that the empty event ∅ is the least likely among all possible events
and that the certain event (or universe) S is more likely than ∅. This axiom serves to
exclude the trivial experiment in which ∅∼ S.

Axiom 3. For any event A, ∅� A. Further, ∅≺ S.

An immediate consequence of Axiom 3 is that if A⊆ B, then A� B. The fourth
axiom resembles the continuity property of probability measures.

Axiom 4. If every event in the decreasing sequence of events A1 ⊇ A2 ⊇ ·· · ⊇ An ⊇
·· · is at least as likely as the event B, then

⋂
∞
i=1 Ai � B.

The axioms above seem both natural and quite innocuous, and most readers
would accept them as appropriate characteristics of any particular execution of the
process of assessing the relative likelihood of pairs of events in an uncertain envi-
ronment. One might wonder whether they are, by themselves, sufficient to ensure the
existence of a probability distribution P that is consistent with the relation � in the
sense that P(A) ≤ P(B) if and only if A � B. And if so, would such a probability
distribution be unique? These questions are answered in Kraft, Pratt and Seidenberg
(1959), wherein a particular finite experiment is exhibited in which the chosen rela-
tion � satisfies Axioms 1–4, and yet no probability distribution P exists that agrees
with the specified ordering. An additional axiom is needed to ensure that such a
P exists. This axiom posits the existence of a random variable X with the uniform
distribution U [0,1] which assigns every interval I ⊆ [0,1] a probability equal to its
length. Further, it asserts that any event in the experiment of interest can be compared
to any interval I. Specifically, we will adjoin the following assertion to the axioms
stated thus far.

Axiom 5. There exists a random variable X with distribution U [0,1], and for any
event A and any interval I ⊆ [0,1], either A≺ I, A∼ I or A� I.

The fifth axiom assumes that any individual judging the relative likelihood of
the events in a given experiment can also compare the likelihood of any of these
events to the likelihood of the event {X ∈ I} for an arbitrary interval I ⊆ [0,1], where
X ∼U [0,1]. This axiom essentially asserts that the individual who is assessing rel-
ative likelihoods is thinking probabilistically, and can thus assess how the likelihood
of any event A compares to any value p ∈ [0,1]. This axiom is clearly the bold-
est and most complex. Is it a reasonable assumption? For the idealized individual
about whom we are thinking, the axiom seems justifiable. This individual is able to
compare any two events and decide which is the more likely. It seems reasonable to
suppose that this individual has some numerical measure in mind when comparing
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two likelihoods. It also seems reasonable that this measure be associated with the
chances of an event’s occurrence and thus take values in the interval [0,1]. As for the
existence of the variable X in Axiom 5, one can simply imagine a well-oiled spinning
wheel as yielding such an outcome in [0,1] or think of X as the outcome of one of
the many random number generators that routinely pass the test of uniformity.

Axioms 1–5 are precisely the necessary and sufficient conditions which imply
the existence of a unique probability distribution P that is consistent with the relation
�. This is stated in the following. For a proof, see DeGroot (1970).

Theorem 3.1. Let � be a relation which serves as a total ordering, in terms of rela-
tive likelihood, for all the events in a random experiment (or other situation involving
uncertainty), and assume that Axioms 1–5 hold. Then, for every event A, there is a
unique value x ∈ [0,1] such that A∼ [0,x].

Orthodox Bayesians interpret Theorem 3.1 as follows. Under the assumptions
made (namely, the axioms), there is only one way for an individual to treat uncer-
tainty. The relation� which this individual uses to assess relative likelihood of a pair
of events may, in fact, be replaced by a probability distribution. Whether the uncer-
tainty involved pertains to the outcomes of a real, physical experiment or pertains to
the value of an unknown constant (think parameter), one must, in the end, quantify
this uncertainty using a probability measure and the associated calculus of probabil-
ity. Informally, the developments above may be thought of this way: if Axioms 1–5
seem sensible to you, then Theorem 3.1 says that you are a Bayesian. When one
adopts these axioms as self-evident truths, one is then committed to the use of prob-
ability to quantify uncertainty. Since one is always uncertain about the exact value of
a parameter one is trying to estimate, it follows that one should place a probability
distribution on that parameter. Acting in accordance with this prescription is referred
to in the Bayesian literature as coherence. Violations of this prescription are then, of
course, incoherent. (A personal aside — I have always thought that this was a very
clever choice of words. Given the options offered, who among us would want to be
thought of as “incoherent?”)

There are other notable principles in the Bayesian gospel, and we will now touch
on them briefly. The subject that deals with quantifying and comparing the gains
and losses associated with a particular decision in a statistical context is called util-
ity theory. The utility of a given decision is a measure of its value, and one would
typically seek to maximize the utility in selecting a decision. Utility Theory has its
own axiomatic development leading from a system of “preferences” among possible
payoffs associated with the available decisions to the existence of a utility function
(that’s unique up to linear transformations) consistent with one’s preferences. The
loss functions used in the standard presentation of decision theory are “negative util-
ities.” We will view the process of minimizing expected losses as equivalent to the
process of maximizing expected utility. The Bayesian bottom line is that a coherent,
rational statistician will quantify uncertainty using probability and will optimize her
decision making by maximizing the expected utility of her decision. More details on
utility theory may be found in DeGroot (1970) and Ferguson (1967).
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Exercise 3.2. Show that Axioms 1 and 2 imply that the relation � is transitive.

Exercise 3.3. Show that Axiom 3 implies that if A and B are events such that A⊆ B,
then A� B.

3.3 The Bayesian paradigm for data analysis

We now will turn our focus, as we did in Chapter 2, to the problem of point esti-
mation. We will assume that the available data are modeled as X1,X2, . . . ,Xn

iid∼ Fθ

and that our statistical goal is to estimate the unknown parameter θ with respect to
an agreed upon loss function L. Many authors have pointed out that the choice of
model Fθ is a more subjective process than generally recognized. Savage (1962), for
example, remarked that the specification of Fθ is, in practice, often tentative and that
such choices are generally treated as “rough practical ways to get on with the prob-
lem”; while noting its lack of definitiveness, he goes on to assert that the choice of
the model Fθ “tends to have a quality that might cautiously be called ‘objectivity.’”
We will take the view here that the statistician, frequentist or Bayesian, has chosen
the particular Fθ above as her working model for the observable data. As indicated
above, the first step in any Bayesian treatment of a situation involving uncertainty is
to quantify that uncertainty through the use of probability assessment and then using,
as needed, elements of the calculus of probability. In the context of the estimation
problem of interest here, the remaining “uncertainty” in the problem has to do with
the parameter θ . Of course, the data will ultimately shed some light on the possi-
ble value of θ , but when one encounters this estimation problem in its early stages,
a Bayesian will attempt to quantify his uncertainty about θ in the form of a prior
distribution G usually, but not always, assumed to have a density function g(θ).

If one is serious about doing a Bayesian analysis, and serious about the prob-
lem to which the resulting inferences are to be applied, the specification of a prior
G is not an easy matter, nor should it be done in a casual or frivolous way. Bayesian
writers often refer to the process of introspection, that is, of thinking very carefully
about one’s experience and its relevance to the unknown parameter one is trying to
model. While it is not a viewpoint that I will emphasize in this monograph, I should
mention that, in the subjectivist’s view, whatever one comes up with through intro-
spection can’t be wrong, since the object of that process is representing one’s beliefs.
While one’s beliefs may be wrong (for example, when one strongly believes that θ is
−25 when the true value of θ is 25), one’s subjective views are generally considered
to be correctly expressed by one’s chosen prior. What if one’s introspection leads
to results that are judged too tentative, vague or perhaps even questionable in their
trustworthiness? This may often be the case when dealing with a parameter θ de-
scribing some aspect of a technical experiment. In such cases, the statistician would
be wise to consult with one or more experts in the subject-matter area under study.
This process is usually referred to as probability elicitation, and has been the subject
of considerable discussion in the Bayesian literature (see, for example, O’Hagan et
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al. (2006)). A popular method of elicitation involves a series of questions regard-
ing several percentiles of the distribution of θ (like, what value “c” would you be
95% sure is larger that the true value of θ?). Another approach is to ask questions
about one’s best guess at θ and the level of confidence that one has in that guess.
While one can’t prove many theorems about the elicitation process (though I will
discuss in Section 3.9 a rather famous one due to Blackwell and Dubins), it is gener-
ally acknowledged that it plays an important role in Bayesian analysis and that those
who do it well are generally rewarded by better inferences. The elicitation process
is particularly valuable in problems drawn from fields (like engineering, the medical
sciences and experimental social sciences, to name a few) in which reliable expertise
is abundantly available. Whatever process is used for the determination of the prior
density g, I will now assume that both g(θ) and fθ (x) have been selected and will
proceed with a description of what a Bayesian does with these two models.

Let us, for simplicity, imagine that we are working with a single observation X .
In many problems of practical interest, this is not a heavy imposition, as X can be
taken to be the one-dimensional sufficient statistic in the problem, in which case Fθ

is simply the sampling distribution of that statistic. The joint density for the datum
X and the parameter θ (both modeled, for convenience, as continuous variables) is
given by

f (x,θ) = f (x|θ)g(θ) . (3.3)

Once the experiment has yielded a specific observation, that is, once we have ob-
served that X = x, we are left with the assessment of the remaining uncertainty in
the problem. It is natural to turn to the conditional distribution of θ , given X = x,
the so-called posterior distribution of θ , whose density (in continuous problems) is
given by

g(θ |x) = f (x|θ)g(θ)/ f (x) , (3.4)

where f (x) is the marginal density of X , that is,

f (x) =
∫

f (x,θ) dθ . (3.5)

From the Bayesian perspective, any and all statistical inference one might consider,
including estimation, hypothesis testing and prediction, flows solely from the poste-
rior distribution of the parameter(s) given the data. In problems of point estimation,
a Bayesian seeks to minimize the posterior expected loss given by Eθ |X=xL(θ , θ̂(x)).
The Bayes estimator θ̂(x) may thus be represented as

θ̂(x) = argmin
θ̃(x)

Eθ |X=xL(θ , θ̃(x)) . (3.6)

There are several well-known theoretical results which show us how this minimiza-
tion is done for particular choices of L. Readers to whom these results are unfamiliar
should try to prove them. The first and third proofs are straightforward. The second
proof flows ever-so-smoothly after a quick glance at the appendix of Chernoff and
Moses’ 1959 text.
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Theorem 3.2. Assume that (X ,θ) has a joint density as specified in (3.3), that is,
based on the sampling distribution Fθ and the prior distribution G. When estimating
the parameter θ under the squared error loss function L(θ ,a) = (θ −a)2, the Bayes
estimator θ̂(x) with respect to the prior G is the mean of the posterior distribution of
θ , that is,

θ̂(x) = E(θ | X = x) , (3.7)

provided that the distribution of θ | X = x has a finite second moment.

Theorem 3.3. Assume that (X ,θ) has a joint density as specified in (3.3), that is,
based on the sampling distribution Fθ and the prior distribution G. When estimating
the parameter θ under the absolute error loss function L(θ ,a) = |θ −a|, the Bayes
estimator θ̂(x) with respect to the prior G is the median of the posterior distribution
of θ , that is,

θ̂(x) = median of G(θ | X = x) , (3.8)

provided that the distribution of θ | X = x has a finite first moment.

Theorem 3.4. Assume that (X ,θ) has a joint density as specified in (3.3), that is,
based on the sampling distribution Fθ and the prior distribution G. When estimating
the parameter θ under the Linex loss function L(θ ,a) = exp{c(a−θ)}−c(a−θ)−
1, the Bayes estimator θ̂(x) with respect to the prior G is given by

θ̂(x) =−1
c

ln
{

Eθ |X=xe−cθ

}
, (3.9)

provided that the moment generating function of θ | X = x exists and is finite.

Let’s take a look at a simple example of these three results.

Example 3.2. Suppose that X |θ ∼U [0,θ ] and that θ has the gamma prior distribu-
tion G = Γ(2,1), that is, the prior distribution with density

g(θ) = θe−θ I(0,∞)(θ) ,

where IA(x) is the indicator function of the set A taking the value 1 if x ∈ A and the
value 0 if x /∈ A. The joint density of X and θ is thus

f (x,θ) = e−θ , for 0 < x < θ < ∞ .

The marginal density of X is that of the exponential (or Exp(1)≡Γ(1,1)) distribution
with mean 1; thus, the posterior density of θ is

f (θ |x) = e−(θ−x)I(x,∞)(θ) ,

the density of the “translated exponential distribution” or, alternatively, the density of
x+Y , where Y ∼ Exp(1). The mean and median of Y are 1 and ln2, respectively, and
the moment generating function of Y is mY (t) = (1− t)−1 for t < 1. It follows that,
under squared error loss, the Bayes estimate of θ with respect to (wrt) G is θ̂(x) =
x + 1, under absolute error loss, the Bayes estimate of θ wrt G is θ̂(x) = x + ln2
and under Linex loss (with c > 0, say, which penalizes overestimation), the Bayes
estimate of θ wrt G is θ̂(x) = x+[ln(1+ c)]/c. �
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Exercise 3.4. Prove Theorem 3.2.

Exercise 3.5. Prove Theorem 3.3.

Exercise 3.6. Prove Theorem 3.4.

Exercise 3.7. Let X |p∼B(n, p), the binomial distribution with parameters n and p,
and suppose p∼G = Be(α ,β ), the beta distribution with mean α/(α +β ). Assume
that one wishes to estimate p with squared error loss. (a) Show that the marginal pmf
of X is the “beta-binomial” distribution on the integers {0,1, . . . ,n}; (b) Obtain the
posterior density of p|X = x as the ratio f (x, p)/ f (x). Note that g(p|x) can also be
identified “by inspection,” as g(p|x) ∝ pα+x(1− p)β+n−x; (c) Using Theorem 3.2,
identify the Bayes estimate p̂G of p.

Exercise 3.8. Let X be a Bernoulli variable with distribution X |p ∼ B(1, p), and
take the prior distribution of p to be the discrete uniform distribution G on the set
S = {0,1/n,2/n, . . . ,1}. Obtain the posterior distribution of p, given X = x, and
derive the Bayes estimator p̂G of p relative to squared error loss.

Exercise 3.9. Let X |θ ∼N (θ ,σ 2
0 ), the normal distribution with mean θ and known

variance σ2
0 , and suppose θ ∼ G = N (µ0,τ

2
0 ), the normal distribution with known

mean µ0 and known variance τ2
0 . Assume that one wishes to estimate θ with squared

error loss. (a) Identify the marginal density of X . (b) Obtain the posterior density
of θ |X = x as the ratio f (x,θ)/ f (x). Note that g(θ |x) can also be identified “by
inspection.” (c) Using Theorem 3.2, identify the Bayes estimate θ̂G of θ .

Exercise 3.10. Ralph Lauren Inc. produces N polo shirts (a known number) on any
given weekday. Historical records show that, on average, a known proportion p of
these shirts are defective. Let X be the number of defective shirts in last Friday’s
batch. Assume that X | N, p ∼ B(N, p). Assume that the value of X is unknown.
Suppose that the Ralph Lauren store at Pavilions in Sacramento received a known
number n of polo shirts from last Friday’s batch. Let Y be the number of defective
shirts received by the Pavilions’ store. Assuming a random distribution scheme, Y has
the hypergeometric distribution, that is, Y | N,x,n ∼H G (N,x,n) with probability
mass function (pmf) given by

P(Y = y | N,x,n) =

(x
y

)(N−x
n−y

)(N
n

) for 0≤ y≤ x .

Your aim is to derive the Bayes estimator of the unknown (parameter) x with respect
to squared error loss based on the observed value Y = y.

a) Show that the marginal distribution of Y is binomial, that is, show that Y | n, p∼
B(n, p).

b) Identify p(x|y), the conditional pmf of X given Y = y. (Hint: Note that if Y = y,
the range of X is y ≤ x ≤ N− n + y. The pmf of X − y | Y = y is more easily
recognized than that of X | Y = y.)

c) Find E(X |Y = y), the Bayes estimator of X , relative to squared error loss, based
on the observation Y = y. This represents your best guess at X when p is known
in advance and Y is observed to be y.
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3.4 The Bayes risk

Given X1, . . . ,Xn | θ
iid∼ Fθ and θ ∼ G, the Bayes risk of the decision rule δ is given

by
r(G,δ ) = EGR(θ ,δ ) , (3.10)

where R is the risk function of δ given in (1.4). The Bayes risk sits squarely on the
cusp between Bayesian and frequentist thinking, as it is clearly a subjective measure
of performance depending on the statistician’s prior assessment G concerning the
value of θ , and yet it also includes the process of averaging over all possible values
that the data X could take on. The definition of r in (3.10) is written in terms of a
certain ordering in the averaging (that is, summing or integrating) process, first wrt
Fθ and then wrt G:

r(G,δ ) = Eθ EX|θ L(θ ,δ (X)) . (3.11)

Under the mild conditions which allow interchanging the order of these operations
(for continuous problems, consult Fubini’s Theorem), we may also write the Bayes
risk of the rule δ as

r(G,δ ) = EXEθ |X=xL(θ ,δ (x)) . (3.12)

The reader will recognize the inner expected value in (3.12) as the posterior expected
loss of the decision rule δ . Of course the Bayes rule with respect to the prior G is
precisely the rule δ ∗ that minimizes the posterior expected loss for each fixed x. If δ ∗

has this latter property, then averaging its posterior expected loss over the marginal
distribution of X (that is, executing the outer expectation in (3.12)) will necessarily
yield the smallest average. Thus, the Bayes rule δ ∗ with respect to G, that is, the rule
given by

δ
∗(x) = argmin

δ̃

Eθ |X=xL(θ , δ̃ (x)) , (3.13)

is the rule that minimizes r(G,δ ) as well, and vice versa. From this, one can conclude
that if the frequentist were to accept the Bayesian premise that one should deal with
an unknown parameter by placing a particular probability distribution on it, then the
frequentist would be led to the Bayes rule δ ∗ as the optimal rule in the frequentist
sense. In what follows, we will focus on problems of estimation and will therefore
write r(G, θ̂) for the Bayes risk Eθ EX|θ L(θ , θ̂(X)) of the estimator θ̂ .

Exercise 3.11. (DeGroot (1970)) Let G1 and G2 be two proper prior distributions on
the parameter space Θ . Show that for any number α ∈ (0,1),

r∗(αG1 +(1−α)G2)≥ αr∗(G1)+(1−α)r∗(G2),

where r∗(G) = infδ r(G,δ ) is the Bayes risk of the Bayes rule wrt G, and αG1 +
(1−α)G2 represents the distribution function that is equal to G1 with probability α

and is equal to G2 with probability 1−α . Such distributions are typically referred to
as “mixtures.”
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3.5 The class of Bayes and “almost Bayes” rules

It should be quite clear from the above how a Bayesian goes about his business, at
least in principle. There are, of course, practical issues that arise in the implementa-
tion of Bayesian inference, such as how the prior should be chosen and how to do the
calculus involved. The latter question has been resolved to almost everyone’s satis-
faction by the host of modern iterative methods (Markov chain Monte Carlo methods
and their many cousins) that render the process of approximating posterior distribu-
tions reliably quite feasible. The Complete Class Theorem in Decision Theory says
(roughly) that, under certain fairly weak assumptions, every “good” decision rule
is a Bayes rule with respect to some prior distribution. (For a formal statement and
proof of two versions of the theorem, see Ferguson (1967, Chapter 2); for a general
treatment, see Le Cam (1955).) In light of this theorem, one might wonder why one
would bother looking elsewhere. A closer look at the completeness of the class of
Bayes rules in statistical estimation problems gives an important clue. It turns out
that the completeness of the class of Bayes rules in standard estimation problems
(where Θ is an interval) includes a hitch — one has to include decision rules that are
“almost Bayes” in the following sense.

Definition 3.1. An estimator θ̂ is said to be an extended Bayes rule if θ̂ is ε-Bayes for
every ε > 0, that is, if for arbitrary ε > 0, there exists a prior distribution G = G(ε)
such that

r(G, θ̂)≤ inf
θ̃

r(G, θ̃)+ ε . (3.14)

General forms of the Complete Class Theorem state the class of extended Bayes
rules (which of course includes the class of all Bayes rules with respect to probability
distributions G on Θ ) is an “essentially complete class” (the latter class being defined
as a class which contains a decision rule as good or better than any decision rule
outside the class). Another common formulation of the concept of “almost Bayes”
rules is defined as follows.

Definition 3.2. Suppose that X1,X2, . . . ,Xn
iid∼ Fθ , and let τ be a σ -finite measure on

the parameter space Θ for which τ(Θ) = ∞. For a fixed loss function L(θ ,a), the
estimator θ̂ = θ̂(x) is a generalized Bayes rule with respect to τ if∫

L(θ , θ̃(x)) fθ (x1,x2, . . . ,xn) dτ(θ) (3.15)

takes its minimum when θ̃(x) = θ̂(x).

The measure τ in the definition above is typically taken to be Lebesgue measure
in the problem of estimating a location parameter and is taken as a measure for
which dτ(θ)/dθ is proportional to 1/θ when θ is a scale parameter. Since such
measures do not have probabilistic interpretations, the estimators which result from
minimizing (3.15) are not associated with a subjective Bayesian analysis. We will
refer to priors whose densities integrate to one as proper priors, and prior measures
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τ which assign infinite weight to the parameter space as improper priors. When first
considered, improper priors were seen as a way to represent “prior ignorance.” Since
Lebesgue measure on the real line gives every interval of the same length equal
weight, one can see why this term might seem apt. Over time, the nomenclature
evolved, due in part, perhaps, to the fact that no statistical practitioner would be
particularly happy to begin an analysis with the label “ignorant.” For a time, such
priors were called “noninformative” priors, but today, they tend to be referred to
as “objective” priors, both because the name has a certain appealing ring to it, and
because the term is the natural complement of existing alternatives, i.e., subjective
priors. One motivation for entertaining improper priors is the following interesting
fact.

Theorem 3.5. Consider estimating the parameter θ under squared error loss. If θ̂

is an unbiased estimator of θ , then θ̂ is not a Bayes rule with respect to any proper
prior G.

This theorem may be proven by establishing the following contradiction: the
unbiasedness of the estimator θ̂ = E(θ |X) will imply that r(G, θ̂) = 0. However, in
reality, the Bayes risk of θ̂ must be the positive number EG[V (X |θ)]. Now, suppose
we are interested in estimating the mean µ of a normal population or the proportion p
of items of a certain type when sampling with replacement from a finite population.
The standard estimators X of µ and p̂ of p are well known for their unbiasedness
and, in fact, are the UMVUEs of µ and p, respectively, under the corresponding
normal and Binomial models. Both are admissible (in the univariate problems under
discussion), and both are widely used. However, according to Theorem 3.5, neither
is a Bayes estimator with respect to any prior probability distribution under squared
error loss. But both estimators are easily shown to be extended Bayes and they are
also generalized Bayes estimators with respect to improper priors. Thus, even though
they are not estimators which can be derived through a subjective Bayesian analysis
in the contexts described above, each is included in the essentially complete class
about which the Complete Class Theorem speaks.

Exercise 3.12. Prove Theorem 3.5.

Exercise 3.13. Let X |p∼B(n, p), the binomial distribution with parameters n and p.
Assume that one wishes to estimate p with squared error loss. Show that the estimator
p̂G = X/n, the sample proportion of “successes” in the binomial experiment, is a
generalized Bayes rule wrt the improper prior measure G with dG/dp = g(p) =
1/p(1− p).

Exercise 3.14. Let X |θ ∼ Fθ and suppose that θ has the prior distribution G. Show
that if G is an improper prior, then the marginal distribution of X is also improper.
(For simplicity, assume that X |θ has a density or probability mass function fθ and
that G has derivative g.) Verify this property when X |θ ∼B(n,θ) and G is the im-
proper prior with g(θ)= θ−1(1−θ)−1. Comment on this property of improper priors
in general, and also in the special case in which the random variable X has bounded
support.



46 3 An Overview of the Bayesian Approach to Estimation

Exercise 3.15. Let X |θ ∼ N (θ ,σ2
0 ), the normal distribution with mean θ and

known variance σ2
0 . Assume that one wishes to estimate θ with squared error loss.

Show that the estimator θ̂G = X is a generalized Bayes rule wrt Lebesgue measure G
with dG/dθ = g(θ) = 1.

Exercise 3.16. In general, Bayes estimators do not enjoy an “invariance” property
that would guarantee that h(θ̂) is the Bayes estimator of h(θ) when θ̂ is the Bayes
estimator of θ . Demonstrate this fact by showing that p̂2 is not the Bayes estimator of
p2 relative to squared error loss and the uniform prior U [0,1] on p, where p̂ = X+1

n+2 ,
with X |p∼B(n, p).

3.6 The likelihood principle

It is perhaps a good time to introduce an important companion of the axioms of “co-
herent” behavior. The Likelihood Principle is a fundamental tenet of Bayesian infer-
ence, and examples of its violation in the course of executing a frequentist procedure
constitute a healthy proportion of the settings in which such procedures are judged
to be incoherent. Berger and Wolpert’s (1988) monograph is the definitive reference
on the subject. These authors point out that, while the principle is not the exclusive
province of the Bayesian school, it is most staunchly defended by that school and is
often mentioned by Bayesians as the primary reason they adopted the Bayesian view.

The likelihood function L(θ) was defined in (2.19). It is to be viewed as a func-
tion of the parameter θ alone, as the data in the formula in (2.19) are taken to be
fixed and known. The “principle” of interest here may be formally stated as follows.
It is stated in the i.i.d. case for simplicity, but its generalization to more complex data
schemes is straightforward.

The Likelihood Principle. Suppose that an experiment is performed involving a
random sample X1,X2, . . . ,Xn

iid∼ Fθ , where θ is an unknown parameter. Suppose that
the outcome of the experiment is X = x. Let L(θ) be the likelihood function given
by

L(θ) = L(θ | x1,x2, . . . ,xn) = fθ (x1,x2, . . . ,xn) . (3.16)

Then L(θ) contains all the information about θ that can be gleaned from the ex-
periment. All inferences about θ should depend on the observed data only through
L.

The implications of the likelihood principle are quite broad. Among them is the
fact that our inferences about θ should not take into account what might have been
observed (values of X that didn’t occur) but, instead, should be based solely on what
we did observe. Choosing an estimator based on properties it might have when its
performance is averaged over the whole sample space X is a strategy that violates the
likelihood principle. Using artificial randomization (for example, using a randomized
decision rule in an estimation problem or using randomization to achieve a certain
desired significance level in a hypothesis test) violates the likelihood principle. One
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is violating the likelihood principle when one makes different inferences about an
unknown parameter θ in a situation in which two different experimental designs lead
to the same likelihood. The latter issue is well illustrated by the following example.

Example 3.3. One might get the outcome 9 heads and 3 tails in 12 coin tosses in a
wide variety of different ways. One might have performed a Binomial experiment in
which n = 12 tosses were made and X = 9 heads were observed. One might obtain
9 heads and 3 tails in an inverse sampling framework in which a coin was tossed
repeatedly until 9 heads occurred (calling for the negative binomial model). One
might have been planning on tossing the coin 100 times, but stopped when dinner
was ready. One might have planned to stop tossing if and when the proportion of
heads was at least 0.75. In all of these instances, the likelihood from the observed
data is proportional to θ 9(1−θ)3, where θ represents the probability of heads. The
likelihood principle implies that we should make precisely the same inference about
θ in each of these situations. In sequential analysis, it can be explicitly proven that,
given a prior distribution G on an unknown parameter θ , the decision rule that min-
imizes the posterior expected loss plus cost (that is, the Bayes rule, as an estimator
of θ ) does not depend on the stopping rule, provided that the stopping rule itself is
noninformative about θ . �

Interestingly, frequentist methods often violate the likelihood principle. For ex-
ample, in testing the hypothesis H0 : θ = 1/2 against H1 : θ > 1/2 in the coin tossing
context of Example 3.3, the rejection region of the uniformly most powerful test will
be different at certain significance levels, depending on whether the experiment ac-
tually involved a binomial or a negative binomial setup. The notion of a confidence
interval is itself a violation of the likelihood principle, as such intervals are based on
what one might observe in some future experiment rather than solely on what was ob-
served in the experiment one actually performed. The following example illustrates
this point.

Example 3.4. Let X1,X2,X3
iid∼U [θ −1,θ +1], and let X(1) < X(2) < X(3) be the cor-

responding order statistics. Since P(Xi < θ , i = 1,2,3) = 1/8 and P(Xi > θ , i =
1,2,3) = 1/8, we have that P(X(1) < θ < X(3)) = 3/4. Thus, the interval (X(1),X(3))
is a 75% confidence interval for θ . The usual interpretation of this statement is that if
we were to repeat this experiment many times, the interval (X(1),X(3)) would capture
θ about 75% of the time. But what does that actually tell us about θ based on the ex-
periment we just performed? If one observes X(1) = 1.5 and X(3) = 3, then the interval
(x(1),x(3)) = (1.5,3) contains θ with certainty. If, instead, X(1) = 1.5 and X(3) = 1.6,
one would have very little confidence that the interval (x(1),x(3)) = (1.5,1.6) has cap-
tured θ . A Bayesian would call the whole process “incoherent,” and in this particular
example, it would be difficult to disagree with this characterization. �

Let us examine why, in light of the Bayesian premise that one should use prob-
abilistic thinking in handling uncertainty, it follows that Bayesian procedures with
respect to proper prior distributions will obey the likelihood principle. When an ex-
periment is planned, but not yet performed, there are two sources of uncertainty. The
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first concerns the possible outcome of the experiment. Let us assume that a stochas-
tic model for the experiment has been selected, and for the purposes here, ignore
the fact that there is invariably an element of subjectivity in that selection. For sim-
plicity, let’s take the modeling of the data which will be observed to be captured in
the statement: X1,X2, . . . ,Xn

iid∼ Fθ . The second source of uncertainty concerns the
unknown value of the parameter θ . When the experiment is performed, and the ob-
served values x1,x2, . . . ,xn of the random variables X1,X2, . . . ,Xn are known, the first
source of uncertainty is eliminated. What remains is the uncertainty about θ , given
the observed data. The Bayesian has a well-prescribed process for dealing with the
remaining uncertainty. It is, of course, to update his prior information, encapsulated
in his prior distribution G, and derive the posterior distribution G(θ |x) of θ , given
X = x. The posterior density of θ (in the continuous case) may be written as

g(θ |x) = L(θ | x1,x2, . . . ,xn)g(θ)/
∫

L(θ | x1, . . . ,xn)g(θ) dθ ,

and clearly depends on the experiment involved only through the likelihood func-
tion. Since all Bayesian inference is based upon the posterior distribution of θ , it
is squarely aligned with the likelihood principle. Further, it includes a prescription
for what to do with the likelihood function, as maximizing expected utility is the
required next step.

It is natural to discuss, next, whether generalized Bayes rules obey the likelihood
principle. It should be clear from (3.15) that they do. Estimators that are Bayes with
respect to improper priors do in fact depend on the experiment that is performed
only through the likelihood function. Where this approach runs afoul of the laws
of coherent Bayesian inference is in its failure to use probability assessments in the
quantification of uncertainty. The measure τ associated with the generalized Bayes
rule in Definition 3.2 has no probabilistic interpretation. It is impossible to discuss
the relative likelihood of subsets of Θ like {θ ≤ θ0} and {θ > θ0} in terms of τ , and
the axioms of Bayesian inference, and their consequences, are inapplicable. Thus,
the process of utilizing an “objective” or generalized prior τ must be classified as
incoherent in Bayesian terms.

Ronald Fisher, a frequentist with a capital F, was one of the early proponents of
the likelihood principle, though his approach to it differed from the above. Fisher
(1925, 1932) proved, for example, that the function of the data on which the random
likelihood function L(θ | X1,X2, . . . ,Xn) depends, is a minimal sufficient statistic for
θ , and thus contains all the information about θ that the experiment has to offer.
In (most) estimation problems, Fisher advocated the use of maximum likelihood
estimators of θ , i.e., estimators that maximized L(θ | x1,x2, . . . ,xn), and were thus
consonant with the likelihood principle as stated above. G. A. Barnard (1949, 1962)
was another early advocate of the likelihood principle, albeit from a frequentist per-
spective. But the principle has not become a hallmark of the classical approach to
statistical inference as it has for the Bayesian approach. It must be recognized that,
at its core, the likelihood principle is a statement based on logic and intuition. Indeed,
it has been argued that it can be deduced from unassailable first principles. (Notable
developments with the latter aim include the derivation of the Likelihood Principle
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as a consequence of the “Sufficiency Principle” and the “Conditionality Principle”;
see Robert (2001).) It nonetheless has the status similar to that of an axiom, and
there are statisticians who don’t find the axiom compelling. There are also a variety
of practical concerns that have been raised. Among them is the fact that the principle
tacitly depends on a fixed model for the data that will be available, and as discussed
above, the model, in a given practical application, is often thought of as tentative and
approximate. Berger and Wolpert (1988) propose generalizations of the likelihood
principle aimed at addressing this concern, and discuss, quite comprehensively, the
arguments for and against the adoption of the principle. We refer the reader to that
monograph for further details.

Exercise 3.17. Consider the experiment in Example 3.3, and suppose that θ repre-
sents the probability of heads. Suppose one is interested in testing the hypothesis
H0 : θ ≤ 1/2 against H1 : θ > 1/2 at significance level α = 0.05. Show that the out-
come X = 9, where X is the number of heads observed in 12 tosses of a coin, leads
to the “acceptance” of H0 if X ∼B(12,θ), a binomial experiment based on 12 trials,
but leads to the “rejection” of H0 if X ∼N B(9,θ), a negative binomial experiment
which terminates the sampling process as soon as 9 heads are obtained. Note that
the two experiments give rise to the same likelihood (proportional to θ 9(1− θ)3).
Conclude that this constitutes an example of a classical hypothesis testing procedure
that violates the likelihood principle.

3.7 Conjugate prior distributions

In the context of Bayesian inference, the term conjugacy is used to describe a partic-
ular type of relationship between the model that governs the available data and the
prior distribution of the unknown parameter. Conjugate prior families Γ = {Gλ ,λ ∈
Λ} of distributions are usually thought of in terms of a “closure” property they obey.
This property is simply the requirement that the posterior distribution be a member
of Γ whenever the prior distribution is a member of Γ. While this property can-
not uniquely identify conjugate prior families for a given model for one’s data (for
example, the class of all distributions on Θ is closed in this sense), there exists a
well-known “standard” conjugate class for many stochastic models in common use.
More specifically, given a model {Fθ , θ ∈ Θ} for a random variable X , we will
be interested in a family Γ of prior distributions having the property that Gθ |X=x ∈ Γ

whenever Gθ ∈ Γ. Additional restrictions on the family Γ will make the class unique.
A simple and frequently used example of this closure property is the relationship

between the Binomial and beta distributions. If X | θ ∼B(n,θ) and θ ∼ Be(α,β ),
then θ | X = x ∼ Be(α + x,β + n− x). Diaconis and Ylvisaker (1979) made the
following quite pertinent observation. If g(θ | α,β ) represents the beta density and h
is a bounded measurable function on the unit interval, the family {ch(θ)g(θ |α,β )},
where

c = 1
/∫

h(θ)g(θ | α,β ) dθ ,
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also has the closure property; θ | X = x having density ch(θ)g(θ | α + x,β +n− x).
It is thus clear that there are uncountably many closed parametric families that may
serve as conjugate families for the binomial model for X . When the distribution of
X belongs to an exponential family, Diaconis and Ylvisaker prove that only one
closed family enjoys the additional property of having a linear posterior mean, that
is, satisfies the equation

E{E(X | θ) | X = x}= ax+b . (3.17)

When X ∼B(n,θ), the Be(α ,β ) distribution is the unique closed family satisfying
(3.17), with a = n/(α +β +n) and b = α/(α +β +n).

In sampling situations dealing with a one-parameter exponential family, we will
refer to the closed family of prior distributions with linear posterior expectations
as “standard conjugate priors.” Table 3.1 includes the most frequently encountered
examples. In each case, it is assumed that a random sample X1,X2, . . . ,Xn is drawn
from the distribution Fθ with density fθ . Parameters subscripted by “0” are taken as
known.

Table 3.1. Conjugate priors for selected one-parameter exponential families

fθ (x) g(θ) g(θ |x)

B(n,θ) Be(α,β ) Be(α + x,β +n− x)

P(θ) Γ(α ,β ) Γ

(
α +

n

∑
i=1

xi,
β

nβ +1

)

N B(r0,θ) Be(α,β ) Be

(
α + r0n, β +

n

∑
i=1

xi−n

)

E
( 1

θ

)
Γ(α,β ) Γ

α +n,

[
(1/β )+

n

∑
i=1

xi

]−1


N (θ ,σ2
0 ) N (ν ,τ2) N

(
νσ2

0 + τ2
∑

n
i=1 xi

σ2
0 +nτ2 ,

σ2
0 τ2

σ2
0 +nτ2

)

N (µ0,1/θ) Γ(α ,β ) Γ

α +n/2,

[
(1/β )+

1
2

n

∑
i=1

(xi−µ0)2

]−1


In addition to the one-parameter exponential families featured in Table 3.1, the
following “conjugate pairs” of models are well known: the uniform distribution on
the interval [0,θ ] and a Pareto prior distribution with location parameter θ0 and shape
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parameter α , the uniform distribution on [θ1,θ2] and a bilateral Pareto prior distribu-
tion, the multivariate normal distribution with known covariance matrix and a mul-
tivariate normal prior distribution, the multinomial distribution and a Dirichlet prior
distribution, and the multivariate normal distribution with a known mean vector and
an inverse Wishart prior distribution. Among these additional examples, the latter
three are covered by regularity conditions in the Diaconis–Ylvisaker treatment, and
may thus be regarded as uniquely conjugate in the sense of their paper.

Conjugacy is, of course, a mathematical convenience, as the closed form of the
posterior density, and of some important functionals depending on it, facilitates the
analytical study of their properties. But it is worth noting that conjugacy is also a
notion of substantial practical value. Conjugate priors tend to have a good deal of
interpretive value, often allowing one to summarize the prior information that is
brought into the analysis in terms of one’s “best guess” at the unknown parame-
ter and the weight one would wish to place on that guess as compared to the weight
that the experimental data deserves. In the binomial–beta pairing, for example, one
may parametrize the beta prior in terms of the prior mean θ0 = α/(α + β ) and the
prior sample size ω = α +β . With this parametrization, the Bayes estimator of θ is
θ̂(X) = (ω/(ω +n))θ0 +(n/(ω +n))(X/n), so that the estimator is an easily inter-
pretable mixture of one’s prior guess at θ and the data-driven guess at θ , the sample
proportion X/n of “successes” in n Bernoulli trials.

What makes a class of prior distributions useful for Bayesian inference? One
sometimes hears the term “richness” used in this regard. What is meant by “rich-
ness” is that the class contains a reasonable array of different characteristics — flex-
ibility of the choice of center and the amount of dispersion, perhaps different shapes
and a wide range for, say, the model’s coefficient of variation. What such richness
provides is the ability to capture prior information or intuition without severe con-
straints. When one chooses a prior density g(θ) for a population proportion from the
family of beta distributions, one has the option of choosing a U-shaped density, a
uniform density, a monotone (either increasing or decreasing) density or a unimodal
density tied down at 0 and 1 (i.e., with f (0) = 0 = f (1)). The richness of the class
notwithstanding, it might be inadequate for handling prior information in a particular
problem. If a bimodal prior density (with f (0) = 0 = f (1)) is deemed necessary in
capturing prior opinion about a population proportion, then clearly one must look
outside the beta class for a prior model. Properly reflecting prior knowledge about
the unknown parameter is the primary consideration in choosing a prior distribution.

Exercise 3.18. Verify the posterior distributions in Table 3.1 for the negative bino-
mial and the exponential models.

Exercise 3.19. Let X1,X2, . . . ,Xn | θ
iid∼ U [0,θ ], the uniform distribution on (0,θ),

and let θ ∼ Par(α,θ0), the Pareto distribution with density g(θ) = αθ α
0 /θ α+1 for

θ > θ0. Verify that the posterior density of θ , given x1,x2, . . . ,xn, is the Pareto distri-
bution Par(α +n,θ ∗0 ), where θ ∗0 = max(θ0,x1,x2, . . . ,xn).

Exercise 3.20. Let X1,X2, . . . ,Xn be a random sample from the two-parameter Uni-
form distribution of the interval (θ1,θ2). Take the prior distribution on (θ1,θ2) to be
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the Bilateral Bivariate Pareto (BBP) distribution with parameters r1 < r2 and α > 0,
and density function

g(θ1,θ2 | r1,r2,α) =
α(α +1)(r2− r1)α

(θ2−θ1)α+2 for θ1 < r1 and θ2 > r2 .

Identify the posterior density of θ1,θ2 | x1,x2, . . . ,xn. (Be sure to keep careful track
of the constraints on the range of the θs, given the xs.)

3.8 Bayesian robustness

The term robustness is used quite differently by a Bayesian than it is by a frequen-
tist. A Bayesian’s estimate of an unknown parameter θ is of course influenced by
his choice of prior G, so that a robust Bayesian procedure would be one which is
fairly stable when the prior is moderately perturbed around G (or that gives fairly
close answers when the chosen prior is replaced by “reasonable” alternative priors).
Without formally defining the term, those who seek a robust Bayes estimator would
typically examine an appropriate neighborhood Ω of the prior G and determine the
extent to which Bayesian quantities change as the prior changes within Ω . This pro-
cess is usually referred to as “sensitivity analysis.” Analytically, sensitivity analysis
is not an easy assignment for any among a reasonable collection of choices for Ω and
for any Bayesian quantity one might study. Possible choices of Ω include distribu-
tion functions which are suitably close to a prior distribution G (e.g., all F such that
supx |F(x)−G(x)|< ε for some small ε), distributions for which certain percentiles
are suitably close to those of G, distributions for which certain moments are suitably
close to those of G or distributions in a fixed class of prior distributions for which
the prior parameters are suitably close to those of G. There are many other possibil-
ities, including that of simply examining an alternative class of prior distributions,
say translated t-distributions instead of normal distributions as priors for a normal
mean. Possible choices of Ω are discussed at some length by Berger (1985).

The second element of a “Bayesian robustness check” involves the specification
of a measure by which Bayesian output may be compared. Monitoring the effect of
perturbations of the prior on (i) the posterior distribution of θ , (ii) the Bayes esti-
mator of θ , and (iii) the Bayes estimator’s risk function are commonly considered
options in gauging the stability of a prior. When one restricts attention to a conjugate
family of priors, the comparison of the effect of perturbing the prior can generally be
done analytically. Otherwise, some form of simulation would typically be needed.
In either case, the outcome of such an investigation involves some ad hoc choices
and thus will not be definitive; it can, however, allay concerns about possible prior
“misspecification.” A sensitivity analysis is judged to be confirmatory if the chosen
measure of a prior’s influence on the analysis varies only moderately as the prior
varies within a reasonable class of alternatives to the prior distribution that is pro-
posed for use.

Savage (1962) pointed out that in many statistical problems, the sample size is
sufficiently large to make the sampling distribution Fθ of any reasonable estimator of
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θ quite concentrated, while the densities of the prior distributions considered “rea-
sonable” in the problem are quite flat in the interval to which Fθ assigns most of
its mass. If, in addition, the prior densities under consideration aren’t unduly large
outside of this interval (it suffices, for example, for them to be bounded), then the in-
fluence of the prior on the posterior will be moderate and, more importantly, will not
vary a great deal from one prior to another. Savage referred to this as the principle
of precise measurement. In such cases, the influence of the prior distribution on the
resulting Bayesian inference will be fairly modest, and the statistician will largely be
free of any worries about prior misspecification.

The logical conundrum in Bayesian robustness is the fact that it is precisely
when a prior model seems to contain weighty information (and thus differs from
other priors one could use, particularly ones which are relatively noninformative)
that Bayesian inference stands to be the most useful. Thus, noting that the prior one
has chosen has a strong influence on the posterior analysis is not sufficient reason, by
itself, to alter one’s prior specification. The utility of a sensitivity analysis thus goes
beyond the possibility of confirming that reasonable alternative priors give roughly
the same answer; it also may serve as a bellwether which informs the statistician
that a particular prior has considerable influence on the analysis. The latter insight
is useful, both for sharing with any potential consumers of the analysis and also for
the purpose of leading to a careful scrutiny of the introspection and consultation that
went into the determination of one’s prior. I would be remiss if I didn’t mention a
suggestion that appears in certain corners of the Bayesian literature on Bayesian ro-
bustness. I have seen, more than once, the suggestion that, to be sure that one’s prior
isn’t way off the mark, one should take a peek at the data and decide on one’s prior
distribution on the unknown parameter after that. Nothing could be more incoher-
ent than such a practice! It’s the moral equivalent of choosing what hypothesis to
test after taking a look at what’s “provable” from the observed data. If one is going
to rely on the data to choose one’s prior, it seems appropriate and reasonable to go
all the way and let the data do all the talking through a carefully selected frequen-
tist procedure. The practice of data peeking is in direct conflict with the Bayesian
paradigm.

We close this section with a brief examination of a quite different approach to
Bayesian robustness. Take Γ to represent a class of distributions {G}, all of which
are considered viable candidates as priors for an unknown parameter θ . One way to
deal with the difficulty of choosing a specific prior G ∈ Γ is to adopt a strategy that
protects the statistician against the entire class of priors in Γ. A decision rule that
does so is defined below.

Definition 3.3. A decision rule δ0 is said to be Γ-minimax if

sup
G∈Γ

r(G,δ0) = inf
δ

sup
G∈Γ

r(G,δ ) . (3.18)

A given estimator θ̂ may have a small Bayes risk against one prior in the class Γ but a
large Bayes risk against another. Consider the worst result possible, that is, the max-
imum Bayes risk that θ̂ experiences against all priors in Γ. A Γ-minimax estimator



54 3 An Overview of the Bayesian Approach to Estimation

has the smallest possible “maximum Bayes risk” against priors in the class, and thus
offers the best protection against the class as a whole. It should be acknowledged that
this is a frequentist approach to Bayesian robustness in that the “optimal” estimator
is chosen based on its expected behavior relative to the entire sample space. This of
course violates the likelihood principle, and thus is beyond the scope of the ortho-
dox Bayesian. Defenders of the approach might argue that the approach is Bayesian
in spirit, as it strikes a compromise resulting in an estimator that has “reasonable”
performance over a range of possible priors. A Γ-minimax estimator θ̂ might not
be Bayes with respect to any particular prior G ∈ Γ, but it has better performance
(in terms of posterior expected loss), against at least one G ∈ Γ, than any alternative
estimator. If Γ consists of a single distribution G, then θ̂ is Bayes with respect to G,
while if Γ contains all degenerate distributions, then θ̂ is a minimax estimator of θ .

An elementary example of a Γ-minimax estimator (based on X ∼ B(1,θ)) is
given in Samaniego (1975). There, the estimator θ̂ = (1 + 2X)/4 is shown to be
Γ-minimax, under squared error loss, with respect to the class of priors Γ on [0,1]
with mean = 1/2. Berger (1985) derives the Γ-minimax estimator of the mean of the
normal distribution N (θ ,1), under squared error loss, with respect to the class of
all priors with a given finite mean µ and variance σ2.

Exercise 3.21. Suppose that in a given estimation problem, θ̂1 is the unique Γ-
minimax estimator for the class of priors Γ on an unknown parameter θ . Show
that, for any alternative estimator θ̂2 of θ , there exists a prior G∗ ∈ Γ such that
r(G∗, θ̂1) < r(G∗, θ̂2).

Exercise 3.22. In a given decision problem (Θ ,D,L), suppose the decision rule δ ∗

is an equalizer rule (that is, has constant risk function). Let Γ be a class of prior
distributions on Θ . Show that if δ ∗ is a Bayes rule with respect to some prior G∗ ∈ Γ,
then δ ∗ is Γ-minimax.

3.9 Bayesian asymptotics

Bayesians are not generally concerned about the asymptotic performance of Bayes
procedures. The likelihood principle dictates that one’s attention should always be
focused on the observed data in the experiment at hand, and thus any musing about
how the procedure might behave if the sample size were allowed to grow to infinity
lies well beyond the scope of a Bayesian treatment of the problem. This notwith-
standing, mathematical statisticians have wondered how the Bayesian approach fares
in large samples, and of course, in the limit, as n→ ∞. What would one guess the
answer to be?

First, one might think about what would happen, as n grows, to two Bayesians
who started out with quite different opinions about an unknown parameter θ . One
might conjecture that if the two priors had different support sets, then the two Bayes
estimators might converge to two different values of θ . It is quite easy to confirm
that the support of the posterior distribution of θ must be a (possibly proper) subset
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of the support set of the prior distribution of θ . That being the case, one sees that
there could be unresolvable disagreements between Bayesians with priors supported
on disjoint subsets of Θ . In estimation problems, it is virtually always the case that a
“thoughtful Bayesian” will choose a prior whose support set is the entire parameter
space Θ . This is a mild restriction indeed, as one’s prior can still be almost totally
concentrated on a particular subset Θ0 of Θ while placing miniscule, though non-
zero, weight on parameter values in the complementary subset Θ −Θ0.

Suppose, now, that two Bayesians have followed the practice above, that is, have
selected prior distributions whose support set is Θ . Then it can be shown that the
two Bayes estimates will converge to the true value of θ . Writings on this problem
are sometimes referred to as part of the “merging of opinion” literature, taking this
name from the famous paper by Blackwell and Dubins (1962). Although shedding
insight into prior elicitation was not the intended focus of this paper, it is relevant
to the elicitation problem in that it alerts the Bayesian to the wisdom in selecting
priors that do not preclude the possibility that the true θ lies in any given subset of
the parameter space, and it also indicates that all such priors, even ones that might
be considered “wrong” in some objective sense, are eventually overwhelmed by the
information provided by the sample, so that any pair of such Bayes estimators give
roughly the same answer when the sample size is sufficiently large.

One can say considerably more than this under the same regularity conditions
under which the MLE is guaranteed to be the best asymptotically normal estimator
of θ . The main result in this area is generally known as the Bernstein–von Mises
Theorem (see Ferguson, 1996). Suppose that the prior distribution G has density
g(θ) > 0 for all θ ∈Θ , and let θ̂n be the MLE of θ based on a random sample of
size n from Fθ . Then the conditional expectation of

√
n(θ − θ̂ML), given the data,

converges to 0 almost surely. Indeed, the assumed conditions imply that the Bayes
estimator θ̂G of θ under squared error loss is asymptotically normal with distribution
specified by

√
n(θ̂G−θ0)

D−→ Y ∼N (0, I−1(θ0)) , (3.19)

where θ0 represents the true value of the parameter θ . This result asserts that, under
standard regularity conditions, the posterior distribution of θ has the same limiting
form as the distribution of the MLE and that θ̂G is thus a strongly consistent, efficient
estimator of θ , that is, like the MLE, it is also best asymptotically normal.

Exercise 3.23. Let X |p ∼B(n, p), the binomial distribution with parameters n and
p. Assume that one wishes to estimate p with squared error loss. Let p̂1 and p̂2
be the Bayes estimators with respect to the beta prior distributions Be(α1,β1) and
Be(α2,β2), respectively, where αi > 0 and βi > 0 for i = 1,2. Show that both of these
estimators converge in probability to the parameter p as the sample size n→ ∞.

3.10 Bayesian computation

Let us examine where the difficulty lies in the analytical derivation of a Bayes es-
timator in a particular problem. Though the difficulty we’ll discuss is significantly
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magnified in higher dimensions, its character reveals itself quite clearly in the uni-
variate setting we’ve been discussing. Assume that X |θ ∼ Fθ , a distribution with
density fθ (x), and that θ ∼ G, a prior distribution with density g. We then can ex-
press the posterior density of θ as

g(θ | x) = f (x | θ)g(θ)/ f (x) . (3.20)

Now obtaining a closed form expression for the posterior density requires that the
marginal density f (x) be obtained in closed form, a process that requires the inte-
gration of the joint density of the random pair (X ,θ) with respect to θ . This is the
simplest version of a problem that caused Bayesians massive headaches in the era
preceding the ready availability of high-speed computation. In many problems of
practical interest, the integrals needed in an exact Bayesian analysis could not be
obtained analytically, and some were even difficult to approximate numerically in a
reliable way. Not having f (x) in hand translates into not having the posterior distri-
bution of θ in hand, and thus the Bayesian solution to the problem could only be
described in theory but its derivation in that problem, given real data, could not be
implemented.

I heard the following story from Jay Kadane. It concerns a wise old owl and a
whining centipede. The centipede was complaining to the owl about foot pain. Hav-
ing so many feet, it seemed like pain was unavoidable, since at any given time, some
of his feet would be bruised and sore. The owl gave the matter some thoughtful intro-
spection and then triumphantly announced that he had a solution. What the centipede
needed to do was to walk about a half inch above the ground. The centipede imme-
diately conceded that this would solve his problem, but added that he had no idea
how to implement the solution. The owl replied “Neither do I, but what I’ve done is
solve your problem in principle. It’s up to you to find a way to put the solution into
practice!”

This fable describes a situation not unlike that in which Bayesians found them-
selves prior to the introduction of computer-intensive methods in Statistics. Efron’s
(1979) introduction of the bootstrap played a major role in this revolution in the
discipline. Since then, the practical utility of computer-driven analyses in Statistics
has become increasingly obvious and the range of their applications continues to in-
crease at an ever-accelerating pace. In Bayesian statistics, three papers that played
especially influential roles in demonstrating the utility of computer-intensive analy-
ses in Bayesian inference are those by Geman and Geman (1984), Tanner and Wong
(1987) and Gelfand and Smith (1990).

In the one-parameter setting we have focused on up to now, the exact derivation
of the posterior density g(θ |x) might pose analytical problems. There are a number
of approaches that have proven useful in the approximation of this density. Numeri-
cal integration is often feasible. Analytical approximations include the development
of large-sample normal approximations to the posterior density. An example of this
approach is given in Yee, Johnson and Samaniego (2002). A widely used alterna-
tive is known as Laplace’s method and exploits the Taylor series expansions of both
fθ (x) and g(θ) as functions of θ , resulting in efficient second-order approximation
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of the posterior mean. The latter method may be generalized to obtain an approxima-
tion of g(θ) itself. Details may be found in Tierney and Kadane (1986) and Tierney,
Kass and Kadane (1989). Monte Carlo methods (using, for instance, “rejection sam-
pling”) for obtaining the posterior distribution of θ have also been developed (see,
for example, Devroye (1986)).

Markov chain Monte Carlo (MCMC) methods are the methods of choice in mul-
tiparameter problems in which exact results are intractable. These methods are based
on iterations which utilize the (full) conditional densities (known, at least, up to
normalizing constants), of each parameter given the data and all other parameters.
They depend on sampling from these conditionals repeatedly to obtain a sequence of
parameter values which, in the limit, behave like random draws from the posterior
distribution of θ . There is an enormous literature on MCMC methods; for simplicity,
we describe the basic idea here for a particular two-parameter case.

Suppose that the model of interest has components X with density f (x | θ1,θ2)
and a parameter pair (θ1,θ2) with prior density g(θ1,θ2). In many Bayesian appli-
cations involving two or more unknown parameters, problems arise in the derivation
and/or management of the posterior distribution of the pair (θ1,θ2). In some cases,
the derivation is simply intractable, and some kind of approximation of it is required.
In other cases, g(θ1,θ2 | x) can be explicitly derived but takes a complex, unfamiliar
form which makes the derivation of related quantities (like the posterior mean, me-
dian or mode) difficult. MCMC methods will be applicable to such problems if the
full conditionals g(θ1 | x,θ2) and g(θ2 | x,θ1) can be obtained (up to a normalizing
constant). MCMC iterations begin with an initial choice of a value of one of the pa-
rameters, say θ

(1)
1 . Having initialized the iterative process, one then draws a random

θ2 from the density g(θ2 | x,θ (1)
1 ) and denotes the value obtained as θ

(1)
2 . Repeated

iterations yield θ
(i)
1 ∼ g(θ1 | x,θ (i−1)

2 ) and θ
(i)
2 ∼ g(θ2 | x,θ (i)

1 ). After an appropriate
“burn in” period, the successive iterations of the pairs (θ (t)

1 ,θ
(t)
2 ), (θ (t+1)

1 ,θ
(t+1)
2 ), . . .

behave, approximately, like a sample from the posterior density g(θ1,θ2 | x), the sta-
tionary distribution of the associated Markov chain. Thus, the posterior density, and
all posterior quantities of interest, may be approximated from the burned-in Markov
chain. An elementary proof of the convergence of the chain in an example involving
two parameters is given in Casella and George (1992). General convergence results
may be found in Tanner and Wong (1987) and a special treatment involving expo-
nential families and conjugate priors appears in Diaconis et al. (2008). For a com-
prehensive treatment of MCMC methods, see the recent book by Robert and Casella
(2004).

Example 3.5. As an illustration of the process above, let’s consider the estimation
of the mean µ of a normal distribution with unknown precision τ = 1/σ2 based on
the single observation x. Let’s suppose that their prior distributions are N (a,b) and
Γ(c,d), respectively, where a, b, c and d are known constants, with µ and τ assumed
to be independent a priori. The posterior distribution of µ and τ is easily determined
up to a scalar constant, that is,
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g(µ ,τ|x) ∝
√

τ exp
{
−τ

2
(x−µ)2

}
exp
{
− 1

2b
(µ−a)2

}
τ

c−1 exp
{
− τ

d

}
. (3.21)

But since the marginal posterior distribution of µ takes the unrecognizable form

g(µ | x) ∝
1

[(1/2)(x−µ)2 +1/d]1/2+c exp
{
− 1

2b
(µ−a)2

}
,

obtaining posterior quantities of interest (such as E(µ|X)) poses an analytical chal-
lenge. On the other hand, from (3.21), we may infer that the full conditionals may be
identified in closed form as the normal and gamma distributions given by

µ | x,τ ∼N

(
xτ +a/b
τ +1/b

,
1

τ +1/b

)
(3.22)

and

τ | x,µ ∼ Γ

(
1/2+ c,

1
(1/2)(x−µ)2 +1/d

)
. (3.23)

Using (3.22) and (3.23), MCMC iterations will lead to, among other things, a reliable
approximation of the marginal posterior of µ and of its mean. �

Another context in which MCMC methods have proven very useful is in Bayesian
analysis of data based on models with a hierarchical structure. Suppose, for example,
X |θ has density f (x | θ), where θ has prior density g(θ | η) and η has prior density
p(η), i.e., η is a hyperparameter on which the density of θ depends. It is also as-
sumed that f (x|θ ,η) = f (x|θ). Then g(θ |x,η) is proportional to f (x|θ)g(θ |η) and
g(η |x,θ) = p(η |θ). (See Carlin and Louis (2008), Section 5.4, for a concrete exam-
ple.) MCMC iterations begin with a single draw from p(η), which we denote by η(1).
We then draw a random θ from the density g(θ | x,η(1)), and denote the value ob-
tained as θ (1). Repeated iterations yield η(i) ∼ g(η |x,θ (i−1)) and θ (i) ∼ g(θ |x,η(i)).
After appropriate “burn in,” successive iterations θ (t),θ (t+1), . . . may be used to ap-
proximate the marginal posterior density g(θ |x) and related posterior quantities.

Exercise 3.24 (Casella and George). Let X and Y be Bernoulli random variables
with joint probability mass function given by P(X = i,Y = j) = pi j, for i, j ∈ {0,1},
where pi j > 0 and ∑i=0,1; j=0,1 pi j = 1. Note that the marginal distribution of X is
B(1, p10 + p11). For any given x or y ∈ {0,1}, the conditional pmfs for Y or X ,
respectively, are specified in the matrices Ay|x and Ax|y implicit in the tables below:

Y|X Y = 0 Y = 1

X = 0
p00

p00 + p01

p01

p00 + p01

X = 1
p10

p10 + p11

p11

p10 + p11
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and

X|Y X = 0 X = 1

Y = 0
p00

p00 + p10

p10

p00 + p10

Y = 1
p01

p01 + p11

p11

p01 + p11

Consider the Markov chain {Xi, i = 1,2,3, . . .} with transition matrix Axx = Ay|x ·
Ax|y. Let p0 = (p0(0), p0(1)) be the initial probability distribution of X , and let pk =
p0(Axx)k. Show that the chain’s stationary distribution is pX = (p00 + p01, p10 +
p11), the marginal distribution of X . This demonstrates that the “Gibbs sampler”
for X , with any initial nondegenerate distribution p0, converges to the appropriate
pmf (px(0), px(1)). (Hint: Show that pX Ay|x = (p00 + p10, p01 + p11) and that (p00 +
p10, p01 + p11)Ax|y = pX .)

3.11 Bayesian interval estimation

Although I will not pursue the matter further in this monograph, I will close this
chapter with some brief comments about how Bayesians do interval estimation. The
frequentist notion of a confidence interval, often summarized by statements such
as “we’re 95% sure that the interval (L,U) contains the true value of the parame-
ter,” seems to have a Bayesian flavor. However, from its initial introduction, Neyman
(1938) made clear that the interpretation of a confidence interval involved no proba-
bilistic conclusion about the unknown parameter but, rather, was to be interpreted in
terms of the relative frequency that the process by which the interval was generated
would capture the unknown parameter in repeated trials of the experiment. As seen
in Example 3.4, an interpretation such as this, which depends on unobserved data
rather than solely on the experimental data in hand, can lead to conclusions that are
untenable when applied to the experiment of interest.

For the Bayesian, the notion of interval estimation is simpler and manages to
avoid potential conflicts with the observed data. The posterior distribution of the
parameter θ comprises the basis for all Bayesian inference about θ . The Bayesian
counterpart of a confidence interval for θ is called a credibility interval for θ , and is
obtained from the posterior distribution by selecting an interval corresponding to the
probability level desired. For example, any interval (θL,θU) for which∫

θU

θL

g(θ |x) dθ = 1−α
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is a 100(1−α)% credibility interval for θ , where g(θ |x) is the posterior density of
θ . The credibility interval used most often is the central one in which the limits θL
and θU are chosen to satisfy∫

θL

−∞

g(θ |x) dθ = α/2 =
∫

∞

θU

g(θ |x) dθ .

Credibility intervals represent the statistician’s posterior judgment about intervals
that contain θ with a given probability. They are clearly in harmony with the likeli-
hood principle.

Exercise 3.25. Suppose X1,X2, . . . ,X8 | µ
iid∼ N (µ ,1), the normal distribution with

known variance 1, and suppose the prior distribution on µ is N (6,1). Suppose the
mean of the observed sample is x = 4.875. Identify the posterior distribution of µ|x
and obtain a central 95% credibility interval for µ . Compare this interval to the clas-
sical 95% confidence interval for µ .
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The Threshold Problem

4.1 Traditional approaches to comparing Bayes and frequentist
estimators

Both Bayesian and frequentist methods of inference have qualities which would seem
to recommend them for use. They both also have apparent deficiencies. Both schools
can find, without great difficulty, reasons to support the position they have chosen
as well as reasons to critique the methodologies espoused by the other school. Many
professional statisticians see themselves as being in one camp or the other but, in
practice, remain open to using either of the methodologies when a particular appli-
cation seems to call for them. A common example is a Bayesian’s use of the stan-
dard methods of linear model theory (regression analysis, for example), because the
methodology is so well developed and easily interpretable; he might do so while, at
the same time, being quite adamant about the use of the Bayesian approach to esti-
mation and testing in other settings. Similarly, one often encounters staunch frequen-
tists who are happy to use Bayesian methods on occasion (especially those labeled
as “objective”) because of the enticing computational tools available for executing
the Bayesian approach.

Since “convenience” and “feasibility” are ever-present realities in the world of
applied statistics, it seems unfair to criticize “crossovers” such as those mentioned
above. Still, it is no doubt useful to seek principles that might generally guide one’s
choices, even while acknowledging that in actual practice, one might occasionally
“sin” and sneak in an analysis that’s not entirely in line with these principles. In this
chapter, we begin with a survey of the varied traditional arguments supporting ei-
ther the Bayesian or the classical school. In doing so, we will seek to assess whether
one or the other position is stronger on a particular point. More importantly, we will
explore the question of whether, in their totality, these arguments point to a clear win-
ner. The reader may well conclude, as I have, that, on the basis of traditional means
of comparison, neither methodology decisively dominates the other. I will then intro-
duce the “threshold problem,” which frames the comparison of these methodologies
in a useful, if nontraditional, way. This leads to what we all perhaps knew from the
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beginning: the question we should be asking is not whether one approach is better
than the other, but when one is better than the other.

4.1.1 Logic

At the pinnacle of a Bayesian’s defense of his methodology (on the intellectual, if
not the practical, level) is the argument based on pure logic. As we have seen, the
Bayesian paradigm is based on a system of axioms. The nature of axioms, of course,
is that they are “self-evident” truths that one simply accepts as reasonable. There are
a variety of versions of the axioms of Bayesian inference (see Fishburn (1986)), and
while one can nit-pick about one or another, it is not as easy to summarily dismiss
these assumptions. Once an axiom system is accepted and set in place, one has no
choice but to accept its consequences. In the case of axioms such as those in Section
3.2, the primary consequence is the basic premise of all Bayesian inference — that
the only way to deal with uncertainty in a rational and coherent manner is through
the assignment of probabilities to uncertain events. This is a powerful statement, one
that merits careful thought by every practicing statistician. It is made all the more
powerful by the fact it leads to a method of inference that it is in perfect harmony
with the likelihood principle, a statement that, by itself, has drawn many people of
better-than-average intelligence into the Bayesian camp. It thus seems reasonable to
ask the question: is the logic of Bayesian inference compelling in the sense that the
argument about B vs. F is essentially over?

Before addressing this question, let’s take a look at the logical underpinnings of
frequentist inference. Surprise, there are none! One might think, at first view, that
decision theory is an attempt to bring logic to the frequentist approach. As we have
seen, however, decision theory serves (primarily) to “organize” the approach rather
than to render it “logical.” It sets up a framework for thinking about optimality, and
it does give clear guidance about procedures that should be avoided. On the other
hand, it generally fails in leading us to broadly optimal procedures. Further, a large
portion of statistical practice, including the quite heavy use of asymptotic techniques,
is simply beyond the scope of decision theory. The best one-word description of the
classical school of Statistics is “opportunistic.” As seen in Chapter 2, there are a
good many distinct frequentist approaches to point estimation (and this characteristic
extends to other forms of inference), and the approach one might choose on a given
occasion is not infrequently selected because of its analytical or numerical feasibility
rather than because of explicit knowledge about its local or global superiority. While
asymptotic considerations can suggest some form of “approximate optimality” in the
(fixed-sample-size) problem at hand, a definitive answer to the question of “what’s
best” remains unattained. Frequentist methods are generally motivated by appealing
intuitive considerations, but the choice among available methods is virtually always
ad hoc and tends to be defended on intuitive or practical grounds rather than on some
logical basis.

So, does the Bayesian win on the basis of logic? It might seem that the answer
is clearly “yes.” But there is a nagging worry in closing the deal on this basis alone.
Think of the issue this way. Bayesian coherence is really about internal consistency.
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As admirable as it might be to be perfectly consistent, we should recognize that this
offers no protection from the possibility of being consistently wrong. In the context
of point estimation, a Bayesian who is truly dismal at introspection and/or probability
elicitation may end up being perfectly coherent but also patently inferior to most
reasonable alternatives to estimating unknown parameters. Logical consistency is
not enough to guarantee good results in statistical estimation. It thus seems clear
that the argument between Bayesians and frequentists can’t be settled on the basis of
logic alone.

While the discussion above graciously assumes that the axioms of Bayesian infer-
ence are unassailable, it seems only fair to mention some potential difficulties. I will
mention just one which pertains to the specific axiomatic developments described
in Section 3.2. Let us reexamine Axiom 5. Few would find the postulated existence
of uniform random variables troublesome. However, the axiom goes beyond this in
postulating that one can compare the relative likelihoods of an event A of interest and
the event that a random variable X ∼U [0,1] will take a value in any given interval
I ⊂ [0,1]. From this assumption, together with Axioms 1–4, one can easily prove that
one may identify P(A) as a unique value p ∈ [0,1]. Interestingly, if we assume the
latter fact, one can then prove that one can compare the relative likelihoods of the
event A and any arbitrary interval I ⊂ [0,1]. This fact suggests that the conclusion
that one must assign probabilities to uncertain events is actually imbedded in the ax-
ioms of Bayesian inference, that is, it is itself an axiom rather than a derived result.
This of course changes the interpretation of Theorem 3.1. Viewed in this light, the
theorem just says that if one is a Bayesian, then one is a Bayesian, clearly diminish-
ing the clout of the result. One might still argue that Axioms 1–5 of Section 3.2 are in
fact self-evident. If one accepts this as one’s starting point, then there is no question
that one should adopt the Bayesian approach to statistical modeling and inference.
But one would also have to accept the conclusion that the adoption of the Bayesian
approach is a choice rather than a logical imperative. As pointed out by DeGroot
(1970), all axiomatic developments of the Bayesian approach require an assumption
equivalent to Axiom 5. Thus, there appears to be no way around the circularity of
the logical defense of Bayesian inference. The positive contribution made by axiom
systems such as the one considered in Chapter 3 is that they make the assumptions
behind the Bayesian choice abundantly clear.

4.1.2 Objectivity

There’s a popular saw among statistical practitioners: “One should let the data speak
for themselves.” On these grounds, the frequentists appear to have the upper hand.
Subjective Bayesians clearly bring something extra to their data analysis and are
prepared to “alter” the inferences that the data themselves might lead to by infus-
ing some subjectively determined “prior information” into the analysis. This could
well worry someone interested in the scientific interpretation of the outcome of a
planned experiment, as it seems dangerous, and perhaps even unethical, to pepper
one’s data analysis with one’s own subjective opinions. Indeed, in research studies
in the sciences, there has been a traditional (though not universal) aversion to the use
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of Bayesian methods, with a desired “objectivity” given as the primary reason. As a
counterpoint to such reservations, Breslow (1990) argued that there was a compelling
need for the development of Bayesian approaches in a variety of important statistical
problems in the health sciences. The opposing view has been voiced more frequently.
Rob Easterling, a good applied statistician of a strongly frequentist persuasion, stated
at a conference in 2000 that Bayesian methods leave the door wide open for “statis-
tical mischief.” Efron (1986) famously stated that the frequentist school had clearly
staked its claim on “the high road of statistical objectivity.” Both Easterling and Efron
are quite right — the subjective Bayesian approach has a potential failing — it allows
for the (possibly intentional, though typically unintentional) infusion of misleading
information through the use of a prior distribution. The frequentist approach does
not have this particular failing, at least not to the extent that the Bayesian does. Re-
garding objectivity, it is only fair to state that the frequentist approach does contain
subjective components, the most obvious of which is the selection of a model for
the observable data. But it must also be recognized that the subjective Bayesian will
also need to select a model for the data. It thus remains true that the Bayesian brings
“more subjectivity” to the analysis of data than does the frequentist.

What about those who do an “objective Bayesian analysis”? In the view of or-
thodox (coherent) Bayesians, such “objective” approaches are frequentist rather than
Bayesian procedures. They contain no subjective input, they are incoherent in the
Bayesian sense, and they often lead to the same procedures that would be obtained
by standard frequentist approaches. We might agree that the approach involves less
subjectivity than the approach an orthodox Bayesian would take, but this “objectiv-
ity” has been purchased at the cost of abandoning the opportunity of using subjective
input in cases in which it might be quite relevant and useful. In the end, it appears
that the classical school (as well as “objective Bayesians”) make a good point —
their approaches to point estimation enjoy a greater extent of objectivity than does
the orthodox Bayesian approach. But is this really the unassailable virtue that it might
seem to be?

In certain (some would say, in many) problems, the opportunity to utilize prior
information in a formal way represents a great boon to the statistician and is pre-
cisely the vehicle that can guarantee reliable inference. Letting the data speak for
themselves may not be the panacea it is often thought to be. A simple, oft-used ex-
ample makes this point quite unambiguously. Suppose a freshly minted coin is tossed
ten times, and we wish to estimate the probability p that represents the chances of
the coin coming up heads in any single toss. If we obtain 10 heads in 10 tosses, the
standard, universally recommended frequentist estimator of p would be p̂ = 1. We
all know, however, that p is no doubt close to 1/2, and if we were to have done
a Bayesian analysis, we would probably have used a beta prior like Be(100,100)
which is quite heavily concentrated around its mean 1/2. When we observe 10 heads
in 10 tosses of the coin, we would adjust our prior opinion, and estimate p on the
basis of the posterior distribution Be(110,100), that is, we would estimate p to be
0.5238. While we thought, initially, that the coin was fair, we are in fact affected
by the surprising result of the experiment. We no longer believe the coin is fair, but
our posterior opinion properly moderates our initial thoughts, resulting in a small
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estimated bias. As simple as this example is, it reveals an essential truth. A Bayesian
analysis here doesn’t introduce questionable subjectivity, intentional mischief or any
other form of arbitrary alteration of the data. What it does is use some pretty solid
prior knowledge to save us from the embarrassment of making a ridiculously poor
inference. The take-home lesson here seems to be that the use of prior information
can be extremely useful. The challenge in more complex estimation problems is to
determine whether or not “useful” prior information is in fact available.

Let’s discuss the notion of “useful prior information” further. When can we ex-
pect that such will be available? Curiously, it is in technical, scientific investigations
that one is likely to be able to identify useful prior information. Why? Because the
cumulative experience of researchers and practitioners in various scientific special-
ties provides substantial intuition regarding the processes that they study. In other
words, expert opinion is not a rare commodity in science and engineering, and the
elicitation of such opinions stands to put the statistician in an excellent position to
produce creditable and effective inferences based on Bayesian methods. Thus, in
the very areas in which objectivity is most revered, subjective input into a statistical
analysis stands to be the most helpful.

Those who would eschew the use of subjective Bayesian inference in a scientific
context will often readily admit that the Bayesian approach causes them much less
concern in the context of “decision making.” In the problems and issues that are en-
countered in everyday life, virtually all of us behave like Bayesians. In the practical
problems we face in a typical day, we begin by assessing what we know about the
problem, we update our prior opinion with whatever current information is available
and we reach a conclusion. (Try that model out for yourself the next time you con-
template the possibility of jaywalking.) The difference between decision making and
scientific inference is that in the former, we are making personal judgments whose
consequences are largely personal rather than public, while in the latter, we seek
to advance the general understanding of a scientific problem and therefore, at least
implicitly, are asking others to rely on our subjective opinions about the problem.
Taking the position that one should not engage in such practices is understandable,
but it also might be criticized as perhaps too rigid a position to take as a universal
principle.

A quite different “principle” that appropriately governs scientific inference is that
one’s assumptions should be clearly articulated so that the basis for the inferences
drawn is transparent and can be carefully scrutinized. The prior distribution adopted
by the Bayesian may properly be viewed as one of the assumptions of his analy-
sis. When so viewed, the questions that remain are whether or not the assumption
is reasonable and/or useful. These, of course, are challenging questions, ones which
would seem to be quite difficult to resolve. Investigating these questions, and obtain-
ing answers and insights of some practical value in problems of point estimation,
constitutes the primary aims of the next four chapters. As we will see, the term “use-
ful prior information” appears to admit to a considerably broader interpretation than
has generally been ascribed to it; we shall also see that the term has some natural
bounds. These findings lead to the conclusion that an objective (i.e., frequentist) sta-
tistical analysis may sometimes, but will not always, lead to superior inference in a
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given estimation problem, and that the availability of “useful prior information” can
give the Bayesian the advantage.

So, is there a winner in the objectivity debate? It seems not. While frequentist
estimators can legitimately be said to have captured a little more of the holy grail of
“objectivity,” one also must recognize that “objectivity” is not in fact sacred and that
the subjective elements of a statistical analysis may turn out to be hugely important
in producing good answers in some (yet to be characterized) class of problems. So
the question of whether to execute an objective or a subjective analysis in a given
problem must be considered, at least for now, as an issue requiring further thought
and discussion.

4.1.3 Asymptotics

Let’s turn our attention to another arena in which frequentists appear to have an
edge. The asymptotic theory for a wide variety of frequentist procedures has been
fully developed. In the sizable class of “regular” problems in which one wishes to
estimate an unknown parameter θ , the maximum likelihood estimator θ̂ML reigns
supreme, in an asymptotic sense, being a strongly consistent estimator of the true
value of θ , converging to the true θ at an optimal rate and being asymptotically
normal with the smallest possible asymptotic variance. These credentials are hard
(in fact, impossible) to beat! But they can be tied. In these same problems, Bayes
estimates with respect to a large class of prior distributions (that is, priors whose
support set is Θ ) are asymptotically equivalent to θ̂ML, sharing all the good properties
mentioned above. While the Bayesian school has not devoted as much attention to
asymptotic analysis as has the frequentist school (as is understandable in light of
the likelihood principle, which renders such musings irrelevant), it has nonetheless
been shown that Bayes procedures tend to have the same asymptotic behavior as
the best frequentist alternatives. Further, the concern that the Bayesian approach can
lead to strikingly different answers when the prior distributions used in two separate
analyses are substantially different is allayed, to a large degree, by the “merging of
opinion” literature which indicates that, in typical applications, the difference will
shrink to zero as the sample size grows.

As with the considerations in earlier subsections of this chapter, it appears that
one cannot declare a clear winner on the basis of asymptotic comparisons. It should
be mentioned that the asymptotic behavior of Bayesian nonparametric estimators has
been shown to be a bit more spotty, requiring greater care on the part of the Bayesian
to ensure good asymptotic performance than is the case in parametric problems. The
interested reader is referred to Diaconis and Freedman (1986) for details.

4.1.4 Ease of application

In a 1986 paper, Bradley Efron posed the question “Why isn’t everyone a Bayesian?”
and he suggested several answers, among which two stood out. The issue of objec-
tivity was one, an issue that seemed to favor the classical school of Statistics. We
have discussed this issue above, making note of the proposition that the reliability
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of an “objective” analysis can at times be questionable. A second characteristic of
frequentist procedures that Efron saw as contributing to their popularity was their
ease of application. Efron pointed out that many frequentist estimators could be de-
rived in closed form, and that a good deal was known about their behavior, either in
fixed sample sizes or asymptotically. Efron’s paper of course predated the computa-
tional revolution in the Bayesian community, as the broad implications and impact
of Geman and Geman’s 1984 paper had not yet taken hold. It is fair to say that today,
the tide has turned, with the intractable integrations of earlier Bayesian treatments
replaced by iterative methods aimed at precise approximations of posterior distri-
butions and related quantities. Interestingly, some within the frequentist community
have turned to the tools of Bayesian computation to solve problems originating from
a frequentist perspective. Efron himself, in his ASA Presidential address in 2005,
made note of the convergence of Bayesian and frequentist thinking and opined that
“objective Bayesian analysis” would play an increasingly important role in scientific
investigations in the decades ahead. So the “ease of application” issue, while hardly
being a principle on which one would want to take firm stand, is an issue that is, to-
day, by no means settled, with both frequentist and Bayesian analysis more and more
often relying on high-speed computation with ease of application that is reasonably
described as quite comparable.

4.1.5 Admissibility

Standard versions of the Complete Class Theorem in Statistical Decision Theory
indicate that, in many problems of interest, the class of Bayes and extended Bayes
rules is essentially complete. One apparent consequence of the theorem is the fact
that, in any problem to which the theorem applies, one may restrict attention to this
class since the performance of any decision rule outside the class can be matched or
beaten by some rule in the class. There is no equivalent result which applies to a well-
known class of frequentist estimators. Is, then, the proper conclusion of the Complete
Class Theorem that one might as well be a Bayesian, as the (slightly expanded) class
of Bayes rules contains all the decision rules that one would want to use?

There are a number of reasons why this conclusion is less than compelling. The
first is simply that, in any nontrivial estimation problem, the (unexpanded) class of
Bayes rules is typically not itself complete. Secondly, the collection of extended
Bayes rules is not an innocuous addition to the class of Bayes rules. For example,
they include decision rules that are incoherent, that is, are not Bayes with respect
to any proper prior distribution. Thirdly, we must keep in mind that admissibility (a
property that Bayes estimators tend to enjoy) is an extremely weak property. The
estimator θ̂(X) ≡ c is Bayes with respect to the prior G that is degenerate at the
constant c and is an admissible estimator of θ , but it would never be considered
for practical use. While it is true that one would never wish to use an inadmissible
estimator, it is also true that the admissibility of an estimator does not provide suffi-
cient justification to recommend it for use. While restricting attention to admissible
estimators does make operational sense (since we would automatically toss out an
estimator that was inadmissible), this restriction would naturally include frequentist
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(though extended and generalized Bayes) estimators like X as an estimator of a nor-
mal mean µ . Typically, the complete class of all admissible estimators in a given
problem will contain both Bayes rules and frequentist rules, and restricting attention
to one or the other subclass is unjustified. Finally, along the same lines, one should
note that there do exist decision problems in which some Bayes rules are inadmissi-
ble. In such problems, the complete class with which we started would also contain
some decision rules that one would not wish to use.

The most compelling reason for disregarding complete class theorems in a given
decision problem is the fact that the quality of the decision rule chosen has very lit-
tle to do with the class from which it was chosen. The quality of a Bayes rule, for
instance, has a good deal to do with whether the prior distribution carries “useful”
information about the true state of nature θ . There are good and bad Bayes estima-
tors (measured, say, by how close the answer will be to the true value of the target
parameter), so that simply resolving to use a Bayes rule in a particular problem is of
no help in identifying a good decision rule.

Exercise 4.1. Suppose the risk set in a particular decision problem is the unit square.
Confirm the fact that there are uncountably many Bayes rules, but that only one of
them is admissible.

4.1.6 The treatment of high-dimensional parameters

The field of Multivariate Analysis has a storied history and is a well-established
subfield within the discipline of Statistics. Until fairly recently, the great majority
of this work was frequentist in nature. The early barriers to Bayesian inference in
multi-parameter problems were in large measure due to the substantial difficulty of
executing Bayesian methods involving many parameters. The analytical difficulties
involved in the evaluation of the integrals on which the posterior distribution of the
parameters depends were, at best, imposing, and were often completely overwhelm-
ing. In fairness, it must also be recognized that the classical approach to multivariate
analysis has its limitations. The well-known methods of classical multivariate analy-
sis tend to assume that data follow a multivariate normal model. In continuous prob-
lems, rather little has been done with other parametric models, mostly because of the
paucity of tractable alternatives to the normal. For example, the most widely used ap-
plied statistical methods — regression analysis and the analysis of variance — tend
to rely on the assumption of multivariate normality (with special structure). While
the utility of such analyses has been proven repeatedly in a wide array of applications
in the experimental sciences, the appropriateness of the analyses certainly depends
on the modeling assumptions made. The multivariate Central Limit Theorem, and
techniques such as “variance stabilizing transformations,” may sometimes be used to
justify the use of traditional multivariate analysis in large samples, but when serious
concerns arise about the normality of the data, frequentists are often reduced to tenta-
tive (or descriptive rather than inferential) solutions and ad hoc approximations. The
one glowing exception to this is the area of discrete multivariate (or categorical) data
analysis where impressive analytical and practical advances have been made, largely
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through the theory and applications associated with generalized linear fixed-effects
and mixed-effects models (see McCulloch and Nelder (1989) and Jiang (2007)).

Bayesian multivariate analysis has made substantial strides over the last several
decades. On the analytical side, Bayesian treatments of linear models (see Lind-
ley and Smith (1973) and Kadane et al. (1980)) have opened the door for Bayesian
ANOVA and regression, though the prior modeling in typical applications would
clearly benefit from a broadening of options. On another front, the analytical treat-
ment of Bayesian time series and econometric models (see Geweke (2001), for ex-
ample) has rendered other problems with multidimensional parameters amenable to
a Bayesian treatment. But the best news for the Bayesian has been the arrival and
maturation of MCMC methods, since now the analytical intractability of a Bayesian
analysis in many modeling frameworks may be counterbalanced by reliable iterative
methods.

It is clear that a definitive, flexible treatment of multivariate problems continues
to be an elusive goal to both Bayesians and frequentists. For frequentists, methods
that are applicable beyond a limited array of parametric families remain a challenge,
while for the Bayesian, perhaps the greatest challenge is that of developing a mean-
ingful way to identify “useful” prior information on a vector or matrix of parameters.
It is rare that one can quantify real prior intuition in a multiparameter problem, and
thus, simplifications (like prior independence and flat priors) are commonplace. The
consequences (and the unexploited benefits of alternative prior modeling) are not
well understood at this point in time, with the efficacy of a Bayesian analysis in
such problems and its possible comparative advantage over a frequentist treatment
remaining largely unexplored. In the end, both schools can boast some real successes
in multivariate analysis, but neither appears to occupy a position of dominance in the
area.

4.1.7 Shots across the bow

In the debate between frequentists and Bayesians over the years, each school has
discovered examples in which one side looked good while the other looked silly. The
Bayesian school has no difficulty finding examples of frequentist methods that are
incoherent. Several instances are mentioned in Chapter 3. One on which little has
been said, as yet, is the question of extraneous randomization. While randomizing
among one’s options may seem innocuous, it is clear that it violates the likelihood
principle. The Bayesian would argue that it should not be necessary. Suppose that
a randomized decision rule δ minimizes the Bayes risk r(G,δ ). Then the associ-
ated probability distribution P on the space D of nonrandomized rules can only give
weight to rules d for which r(G,d) = r(G,δ ), so that such nonrandomized rules are
also Bayes, and the rule δ is not needed. Aside from the ability to set aside random-
ized rules, the Bayesian may point to occurrences of randomization in frequentist
procedures that seem misguided. It is well known in classical hypothesis testing, for
example, that randomized tests are sometimes the uniformly best tests of hypotheses
H0 vs. H1 at a given prespecified significance level α . Suppose you go to your doctor
and are tested for skin cancer. Your doctor gets the test results and finds the outcome
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of your test cannot be resolved at the desired level of significance (say 5%) (per-
haps because of the discreteness of the observable random variable). At your next
appointment with your doctor, you sheepishly ask him for the results. Your doctor
tosses a coin in the air, observes that the outcome is heads, and joyfully proclaims
“whew, you don’t have skin cancer at the 5% significance level.” You should be quite
happy to hear that, but who among us would not be just a little disturbed by the
randomization involved?

While the axiomatic development of Bayesian inference may appear to provide
a solid foundation on which to build a theory of inference, it is not without its prob-
lems. Suppose, for example, a stubborn and ill-informed Bayesian puts a prior on a
population proportion p that is clearly terrible (to all but the Bayesian himself). The
Bayesian will be acting perfectly logically (under squared error loss) by proposing
his posterior mean, based on a modest size sample, as the appropriate estimate of p.
This is no doubt the greatest worry that the frequentist (as well as the world at large)
would have about Bayesian inference — that the use of a “bad prior” will lead to
poor posterior inference. This concern is perfectly justifiable and is a fact of life with
which Bayesians must contend. Unfortunately, being “coherent” is not enough! Be-
ing “right,” or very close to right, is also necessary, and in fact, is the more important
characteristic in any real statistical application.

We have discussed other issues, such as the occasional inadmissibility of the tra-
ditional or favored frequentist method and the fact that frequentist methods don’t
have any real, compelling logical foundation. We have noted that the specification of
a prior distribution, be it through introspection or elicitation, is a difficult and impre-
cise process, especially in multiparameter problems, and in any statistical problem,
suffers from the potential of yielding poor inferences as a result of poor prior mod-
eling. All of these considerations leave unresolved the question of which school of
statistical inference is to be preferred. The “debate” between Bayesians and frequen-
tists, at least as represented by the foregoing commentary, ends up in an uncomfort-
ably inconclusive state. The reader will notice that, while both sides have been rather
carefully examined, one specific question has been left untouched. Which method
stands to give “better answers” in real problems of practical interest? This is the
question to which we now turn, and the question on which much of the remaining
content of this monograph is focused.

Exercise 4.2. State, in your own words, the advantages and disadvantages you see
in both the Bayesian and the frequentist approaches to estimation. Can you think of
any additional pros or cons that have not been mentioned above?

4.2 Modeling the true state of nature

One may take the view that comparisons between frequentist and Bayesian statisti-
cians are contests between two adversaries, each trying to optimize relative to some
performance criterion based on an agreed-upon loss function. This is the view that
permeates the discussion in Section 4.1 and as we have seen (specifically in prob-
lems of point estimation, but by natural inference, more generally), it tends to lead to
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inconclusive results when examined in ways that I have referred to as “traditional.”
The purpose of this section is to point out that there’s an elephant in the room! (Ac-
tually, and more accurately, there’s a third “player” in the room.) When this third
relevant party is identified and formally dealt with, we will see that the comparison
between Bayesian and frequentist estimators may be brought into much sharper fo-
cus. We will refer to the third party as the “Truth.” It’s certainly obvious to anyone
interested in comparing two competing estimators that, if only they knew the true
value of the target parameter, they would have some compelling evidence in favor of
one estimator or the other. At the same time, we know that the “truth” is, and almost
always remains, unknown. The luxury of knowing the truth is never really available.
Interestingly, it is possible to make some real progress in the comparison of com-
peting estimators by simply positing the existence of an unknown truth and taking
its existence into account. I will refer to this latter process as that of “modeling the
truth.”

Let us focus on an estimation problem, given data X1,X2, . . . ,Xn
iid∼ Fθ and a fixed

loss function L(θ ,a). Suppose that a frequentist statistician is prepared to estimate
the unknown parameter θ by the estimator θ̂ and that a Bayesian statistician is pre-
pared to estimate θ by the estimator θ̂G, the Bayes estimator relative to his chosen
prior distribution G. How should the “truth” be modeled? I shall, henceforth, con-
sider the true value of θ to be a random variable, and I will call its distribution G0
the “true prior.” Now in many problems of interest, θ is not random at all; it’s just an
unknown constant. One might refer to such problems as “almanac problems.” If we
had access to the right almanac, we could just look up the true value of θ . In such
problems, it is appropriate to take G0 to be a degenerate distribution which gives
probability one to θ0, the true value of θ . In other settings, as when θ is the propor-
tion of defective items in today’s production lot (a value which varies from day to
day), it may be appropriate to consider G0 to be nondegenerate. In either case, we
take G0 to be a description of “what is,” the actual (random or fixed) state of nature.
Think of it as God’s prior, unknown to us and to the two statisticians who are trying
to estimate the parameter θ . Accounting for the unknown state of nature in this way
gives no one any particular advantage, as the exact form of G0 is unknown and un-
knowable in any real estimation problem. We will nonetheless find that recognizing
the existence of G0 is useful.

Before moving on, I should acknowledge that the notion of a “true prior distribu-
tion” is not part of the Bayesian vernacular. To an orthodox (subjective) Bayesian, a
prior distribution is simply a summary of his prior opinion about the unknown state
of nature before a relevant experiment is performed. As a subjective opinion, it can’t
be wrong, provided it conforms with his intuition about θ , a fact that is, in general,
tacitly assumed. The intuition itself may be misguided, but the prior nonetheless rep-
resents the Bayesian’s sense of the truth, and must be considered correct from his
personal perspective on the problem at hand. The term “true prior,” as used above, is
a separate quantity that differs from, and is independent of, any particular Bayesian’s
prior distribution and is not associated with the inference process that any Bayesian
would actually pursue. Still, in any problem in which there is an unknown target pa-
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rameter, the term “true prior” serves the purpose of quantifying the truth about that
parameter.

Exercise 4.3. If θ is a random variable rather than a constant, the problem of “es-
timating” it is usually referred to as a “prediction” problem. Suppose that θ and X
are dependent random variables and that you wish to predict θ from an observed X .
Show that, when the loss criterion is squared error, the best predictor of θ based on
X is the predictor θ̂ = E(θ |X = x).

4.3 A criterion for comparing estimators

We now examine the possibility of using the Bayes risk of an estimator, relative to the
true prior G0, as a criterion for judging the superiority of one estimator over another.
For a fixed loss function L, the Bayes risk of an estimator θ̂ with respect to the true
prior G0 is given by r(G0, θ̂) = Eθ EX|θ L(θ , θ̂(X)), where the outer expectation is
taken with respect to G0. While this criterion can be defended for any choice of loss
function, we will, for the sake of clarity and simplicity, provide such a defense for
the particular choice of squared error loss, that is, for L(θ ,a) = (θ −a)2.

Let us consider the interpretation of the criterion r(G0, θ̂) for each of two statis-
ticians, the frequentist and the Bayesian. In the classical theory of estimation, the
choice of squared error loss is not only common but in fact quite prevalent. The
mean squared error of the estimator θ̂ is, without doubt, the criterion that is most
widely used in assessing the performance of an estimator. The Bayes risk r(G0, θ̂)
is simply the mean squared error averaged relative to the objective truth in the esti-
mation problem of interest, and is thus a highly relevant measure of the estimator’s
worth. In the most frequently encountered case in which the parameter θ is simply
an unknown constant, the Bayes risk r(G0, θ̂) is precisely the mean squared error of
the estimator θ̂ evaluated at the true value of θ . In this case, the measure reduces to
the most relevant measure of all, the actual and true mean squared error of the esti-
mator. When G0 is nondegenerate, the measure is equally relevant, as it is the global
mean squared error relative to the truth. Setting aside the fact that G0 is not known,
our interest in this measure seems quite appropriate.

If the Bayesian statistician was able to discern the actual true prior G0, then he
would undoubtedly use it in estimating the parameter θ . The estimator θ̃ which min-
imizes the Bayes risk r(G0, θ̂), and thus also minimizes the posterior expected loss
Eθ |X=xL(θ , θ̃(x)), is the Bayes estimator with respect to G0 and is thus the very best
that the Bayesian could hope for in the problem of estimating θ . Since this scenario
is a virtual impossibility, the Bayesian will select a prior G, henceforth referred to as
his “operational prior,” in order to carry out his estimation. But how should the qual-
ity of this Bayes estimator be judged? The estimator is optimal with respect to the
prior G, as it minimizes the posterior expected loss relative to G as well as the Bayes
risk r(G, θ̂). But G is not a representation of the truth; it is, rather, a representation of
the Bayesian’s best a priori guess at the truth. The Bayes risk r(G, θ̂) only measures
how well the Bayesian did relative to his prior intuition, and, of course, he did very
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well indeed, minimizing his average risk relative to his chosen prior. How well the
Bayesian did relative to the truth is measured, instead, by r(G0, θ̂). The Bayesian’s
estimation process is not driven by the true prior G0, but there can be no question that
an impartial adjudicator would be interested in r(G0, θ̂) rather than in r(G, θ̂), as it
is the former measure, rather than the latter, which pertains to how well the Bayesian
did in estimating the true value of θ .

One other consideration is worth mentioning. As discussed in Chapter 3, the
Bayes risk is a frequentist measure, involving the process of averaging losses over
the entire sample space X , which of course includes potential, but unobserved, data
values. It is important to recognize that the criterion we are examining has nothing
whatsoever to do with how the Bayesian carries out his inference. The Bayesian is
expected to obtain an estimator that is coherent in the Bayesian sense. It is only
in the evaluation of the Bayesian’s performance (taking the true state of nature into
account) that the Bayes risk wrt G0 comes into play. Consider the following allegory.

In a certain benign monarchy, the enlightened King has decided to retain a court
statistician to do all of the kingdom’s official point estimation. Two highly regarded
statisticians apply, one a frequentist, the other a Bayesian. The King proposes that
they undertake a series of estimation exercises, the goal of which, of course, is to
determine who is likely to do a better job. The King happens to know the characteris-
tics of his subjects well, a result of years of careful study by the King and his closest
advisors. Put another way, the King happens to know the exact answers to certain
questions (about common characteristics like age, gender, occupation) in advance
of any experiments. After agreeing to a model for each experiment, the statisticians
jointly design a sampling plan and collect the data from which each question will
be answered. They then provide their estimates of each of the parameters of interest.
Which of the two is likely to become the court statistician? Certainly the King would
be looking for which statistician tended to be closest to the true value of the parame-
ter. If, for example, the frequentist was closer to the target in eight of ten experiments,
the King would probably select the frequentist for the available opening. If the ex-
periments were of the same sort, then the average distance between the estimator
and the true parameter value could also be a reasonable basis for comparison. Both
of these metrics are based on an essential characteristic of the estimation process:
closeness of the estimator to the true parameter value. The Bayes risk r(G0, θ̂) is the
quintessential measure of closeness to the truth. If the two statisticians, on day one,
before seeing any data, simply submitted their estimators of choice (formulaically)
to the King, the measure r(G0, θ̂) would serve the King well in making his selection
between the two competitors.

Finally, it should be mentioned that the general Bayes risk criterion has proven
useful in certain Bayesian contexts. For example, if a Bayesian finds himself in the
position of having to choose an estimator in a somewhat automated fashion, that is,
before any experimental data is available for inspection, then the Bayes risk r(G, θ̂)
is a logical criterion for making a selection. This has been acknowledged in the
Bayesian literature. Such a process was referred to as “pre-posterior analysis” by
Lindley (1972).
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Let us now examine the question of whether the proposed criterion, the Bayes
risk r(G0, θ̂) with respect to the true prior G0, is one that is fair to both the Bayesian
and the frequentist if one were to use this criterion in comparing the performance
of their estimators. Neither statistician is privy to the actual distribution G0, so both
are equally disadvantaged by not knowing it. Performance relative to the “truth” is
certainly an important measure to both statisticians (or at least it should be), but it is
most assuredly an important measure to their clients or to anyone with any interest in
the estimation problem with which the two statisticians are engaged. If the Bayesian
happens to be good enough or lucky enough to choose a prior that is, in some sense,
close to G0, then the Bayesian is likely to achieve a level of performance that is
superior to that of the frequentist. But that is as it should be, since the selection
of a prior distribution is an extremely important part of the Bayesian’s inference
process, and Bayesians who do that selection well should rightly be rewarded for it.
On the other hand, the frequentist has nothing to fear in subjecting his inference to
the criterion r(G0, θ̂), as it simply represents a generalized form of his estimator’s
mean squared error, being the squared error of his estimator averaged over all the
randomness in the problem or, in many cases, the mean squared error of his estimator
evaluated at the true value of the target parameter.

4.4 The threshold problem

I will now define the essence of the approach to be taken in the comparison of
Bayesian and frequentist point estimators. I’ll begin with a general treatment of the
threshold problem and then turn to a special case in which we will be especially in-
terested. I will assume, as before, that the distribution of the available data X has a
known form indexed by a parameter θ (which, for now, may be thought of as either
scalar or vector-valued), and that a loss function L has been specified. In the preced-
ing section, I have argued that the Bayes risk r(G0, θ̂) of a point estimator θ̂ with
respect to the true prior distribution G0 is a reasonable and meaningful measure of
the estimator’s performance. Now consider the class G = {G} of all possible prior
distributions that a Bayesian might use in deriving a Bayes estimator θ̂G of θ . By the
“threshold problem,” we will mean the problem of determining the boundary which
divides the class G into the subclass of priors for which

r(G0, θ̂G) < r(G0, θ̂) , (4.1)

where θ̂ represents a given frequentist estimator, from the subclass of priors for
which

r(G0, θ̂G) > r(G0, θ̂) . (4.2)

As formulated above, the threshold problem may seem entirely intractable. Reasons
for this include (i) the class G is enormous and not analytically manageable, (ii) the
problem is defined in terms of a particular frequentist estimator θ̂ , and so that, for
any given estimation problem, there is not just one threshold problem to consider but
a sizable collection of them, (iii) even if particular threshold problems were solvable
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(for different estimators), it seems quite likely that the solutions would vary from one
version to another (as the frequentist estimator of choice varies), so that a “global”
solution (that is, one which characterizes priors which satisfy (4.1) for all frequentist
estimators θ̂ under consideration) might be difficult to identify or might not lend a
great deal of insight and (iv) the true prior distribution is unknown and any solution
of (4.1) will not only depend on the particular G0 considered but may not be mean-
ingful in light of our inability to specify what G0 actually is. All these are imposing
difficulties, and together, they would seem to render the general threshold problem as
both an unrealistic and unmanageable abstraction. Can any headway be made on the
problem? It is perhaps somewhat surprising that the answer is “yes.” To gain entrée
into the problem, we will need to modify it, rendering it less abstract, more manage-
able and, ultimately, solvable. Further, as we shall see, solutions to the versions of
the threshold problem to be considered in the sequel turn out to lend considerable
insight, notwithstanding the fact that the true prior G0 is unknown.

Although the following reformulation of the threshold problem is applicable to
the estimation of vector-valued parameters, I will, for simplicity, initially present the
new formulation for estimators of a scalar parameter. I will also make some addi-
tional simplifications. Let’s assume that our data consist of a random sample from
a distribution indexed by θ , that is, assume that X1,X2, . . . ,Xn

iid∼ Fθ . Further, let’s
suppose that the distribution Fθ belongs to an exponential family. Finally, let L be
squared error loss, and let G be the class of standard conjugate priors corresponding
to the distribution Fθ . These restrictions are not absolutely necessary to make the
threshold problem well defined and manageable, but they will suffice in doing so.
Now, when we consider the dual outcomes represented by (4.1) and (4.2), a number
of simplifications are possible.

Regarding the existence of a whole host of possible frequentist estimators to be
considered, we will be able to restrict attention to just one, the estimator θ̂ that I
will refer to as the “best frequentist estimator.” Our ability to restrict attention to θ̂

derives from the fact that exponential families are endowed with complete sufficient
statistics, and for the usual target parameters of interest, UMVUEs generally exist.
Not only are these the typical frequentist estimators of choice in such problems, all
the alternative reputable estimators are one and the same; that is, the same estimator
arises whether one approaches the problem by finding theUMVUE, the MME, the
MLE, the BLUE or the LSE of θ . Thus, one can consider the apparent host of thresh-
old problems defined by (4.1) and (4.2) to be equivalent to a single basic problem. In
any situations in which such equivalence fails to hold, the solutions to the threshold
problem considered in the sequel apply, specifically, to the unbiased estimator θ̂ that
is a sufficient statistic for θ .

As we have seen, the standard conjugate families to exponential families of sam-
pling distributions are families indexed by a fixed number of parameters. Thus, the
characterization of conjugate priors for which (4.1) holds reduces to a search over a
finite-dimensional space of prior parameters. Thirdly, under squared error loss (and
selected alternatives), Bayes estimators with respect to conjugate priors take par-
ticularly simple closed-form expressions, and the calculation of their Bayes risk is
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generally straightforward. What results from these assumptions are the manageable
forms of the threshold problem whose solutions are treated in detail in Chapters 5, 6,
7 and 8. In Chapter 5, we consider the estimation of a scalar parameter. In Chapter 6,
we treat a common version of the consensus problem in Bayesian estimation, that is,
the problem of estimating the scalar parameter θ of an exponential family when prior
opinions are elicited from several experts, each inclined to place a different prior dis-
tribution on θ . In that context, we obtain a solution of the threshold problem which
compares a particular subclass of “consensus estimators” to the best frequentist esti-
mator. In Chapter 7, we consider the quintessential multivariate estimation problem,
namely, the estimation of the mean of a multivariate normal distribution, and we treat
the threshold problem revolving around the comparison of frequentist and Bayesian
shrinkage in that context. In Chapter 8, we consider the threshold problem in the
more general setting in which the loss function is asymmetric.

Exercise 4.4. Let X1,X2, . . . ,Xn
iid∼ B(1, p). Derive the MLE, the MME, the BLUE

and the LSE of the parameter p.

Exercise 4.5. Let X1,X2, . . . ,Xn
iid∼N (µ,1). Derive the MLE, the MME, the BLUE

and the LSE of the parameter µ .
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Comparing Bayesian and Frequentist Estimators of a
Scalar Parameter

5.1 Introduction

As should be evident from the discussion in the three preceding chapters, both the
Bayesian and the frequentist approaches to estimation have positive attributes, and
yet both also have vulnerabilities that can lead to poor and misleading inferences. The
Bayesian paradigm appears to have the advantage in terms of pure logic, both in its
foundations and in the methodology that’s built upon them. We have noted, however,
that a logically consistent analysis might rightly be judged to be inadequate when
it leads to a conclusion that is off the mark. The Frequentist school, on the other
hand, has an apparent edge in terms of the notion of “objectivity,” as it proceeds on
the basis of a data-driven model and does not utilize “subjective” inputs concerning
unknown population parameters whose influence is often difficult to identify and
may, in some circumstances, be detrimental. But “objectivity” has been seen to be
a two-edged sword, as simple examples make it abundantly clear that subjective
inputs can, at times, save an analyst from disaster. Our examination of asymptotic
methods in Statistics leads to the conclusion that, under reasonably broad conditions,
the two theories of estimation result in solutions that may be described as equivalent
(albeit with respect to a frequentist measure of merit). Ease of application has been
discussed, and while it is hardly a criterion one would want to place undue weight
on when choosing an approach in any serious application, the issue does help us
understand why frequentist methods might be the more popular options in certain
kinds of applications. In modern computing environments, Bayesian analyses are
now feasible in a wide range of models and problems, and the “ease of application”
issue might well be considered a draw at this point in time.

Some Bayesians find comfort in versions of the Complete Class Theorem, a re-
sult that suggests that, in certain specific problem types, one never needs to consider
statistical procedures other than Bayesian (or “almost” Bayesian) ones. We have ar-
gued, however, that this motivation for Bayesian methods is not really helpful in a
given real-life statistical problem. The property under consideration is that there ex-
ists a Bayesian procedure that is as good as or better than anything else one might
want to use. But, unfortunately, existence theorems are of little assistance in finding
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a good procedure. Consider the extension of the argument to the class of all deci-
sion rules in a particular problem — the whole class D∗, as we have referred to it
in Chapter 1. Should we feel good about the selection of a particular decision rule
just because the class it was drawn from, namely, D∗, contains all decision rules we
would want to use? At this point in time, it seems fair to say that the Complete Class
Theorem remains a result that is of theoretical rather than of practical interest.

Certain statistical problems are highly complex, dealing either with huge models
or huge data sets or, quite often, both. I have argued that the frequentist school has
the edge in multiparameter estimation problems, not because of the inherent qualities
of their estimators, but because the approach often provides useable and defensible
answers. It has also been noted, however, that frequentist solutions in this area are
often developed under multivariate normality, and similar results are relatively sparse
outside of these frameworks. Add to these arguments the well-known examples of
incoherent, inadmissible and sometime plain silly “optimal” frequentist procedures
and of potentially quite misleading (prior-dominated) Bayesian solutions and one is
left with the uneasy feeling that the comparison between Bayesians and frequentists
is unresolved and, perhaps, unresolvable.

There is, of course, one form of comparison that is yet to be discussed. None of
the bases for comparison discussed above seek to determine which estimator tends to
give better answers in particular problems of interest. Let us now consider this issue.
We will do so in the context of point estimation, since the comparison of interest is
most clearly defined there. Our approach has been described, somewhat abstractly,
in Chapter 4. We will now turn our attention to a particular version of the thresh-
old problem. We will demonstrate that in the well-known and widely encountered
context of sampling distributions belonging to a one-parameter exponential family,
one can indeed distinguish, quite explicitly, the circumstances in which the Bayesian
approach to point estimation stands to outperform frequentist estimators from the
circumstances in which the opposite is true. The approach taken here was first advo-
cated by Samaniego and Reneau in a 1994 JASA paper. In this chapter, I’ll present
the main ideas of that paper, emphasizing its primary empirical and theoretical find-
ings and highlighting the insights and interpretations that are especially relevant to
statistical practice.

5.2 The word-length experiment

I’ll begin with a discussion of a real experiment. Ninety-nine students in an elemen-
tary statistics class at the University of California, Davis, were asked to participate in
an experiment involving an observed binomial variable with an unknown probability
p of “success.” The population from which data were to be drawn was the collection
of “first words” on the 758 pages of a particular edition of Somerset Maugham’s
1915 novel Of Human Bondage. Ten pages were to be sampled randomly, with re-
placement, and the number X of long words (i.e., words with six or more letters)
was to be recorded. After a brief introduction to the Bayesian approach to estimation
(with emphasis on the problem of estimating an unknown proportion), each student
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was asked to provide a Bayes estimate of the unknown proportion p of long words.
The elicitation of the students’ beta priors was accomplished by obtaining each stu-
dent’s best guess p∗ at p and the weight η he or she wished to place on the sample
proportion p̂ = X/10, with weight (1−η) placed on the prior guess p∗. The prior
specifications {(p∗,η)} obtained from the students are displayed in Figure 5.1.
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Fig. 5.1. Scatter plot of (p∗,η) values in the Word-Length Experiment

As Figure 5.1 suggests, the 99 students who participated in the word-length ex-
periment seem to have rather diverse views about the word usage of early twentieth-
century British authors, and they also appear to have quite variable confidence in
their prior opinions on the matter. The scatter plot in Figure 5.1 looks a bit like a
shotgun blast into the unit square. So it’s natural to ask: how many of these nouveau
Bayesians would tend to be closer to the true value of p than a statistician using
the sample proportion p̂ as an estimator of p? It may surprise the reader to learn
that about 90% of these Bayesians have an advantage over a frequentist who uses p̂
to estimate p. We will provide more detail about the outcomes of this word-length
experiment in Section 5.3. In the following section, a theoretical development is pre-
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sented which explains why the outcome mentioned above might have been expected
in advance.

Exercise 5.1. Find a thumbtack. Toss it in the air 10 times and determine the pro-
portion of times it landed on its flat side (i.e., with the point facing up). Call this
proportion p̂. Assume that you guess the true probability p should be about 0.45, but
that you are not too sure about your guess. Suppose that you use a Bayes estimator
of p that places weight 0.2 on your guess and 0.8 on the observed p̂ (that is, you
estimate p by p̂G = (0.2)(0.45)+(0.8)p̂). If the true value of p happens to be 1/3 (as
I was told it was, in confidence, by the manager of a thumbtack factory), which esti-
mator, p̂ or p̂G, turned out to be closer to the true value of p? (Note: When the whole
class has done this experiment, we’ll find out what fraction of the Bayes estimators
outperformed p̂.)

5.3 A theoretical framework

We will focus our attention on the following statistical setting. Assume that a ran-
dom sample X1,X2, . . . ,Xn is drawn from a distribution Fθ which belongs to a one-
parameter exponential family. We will be interested in estimating the scalar parame-
ter θ using the squared error loss function L(θ̂ ,θ) = (θ̂−θ)2. We posit the existence
of a statistic θ̂ that is sufficient for θ and is an unbiased estimator of θ . In the appli-
cations of primary interest, θ̂ can be thought of as the uniformly minimum variance
unbiased estimator (UMVUE) of θ . We will refer to θ̂ as “the best frequentist esti-
mator,” since in the contexts of primary interest, the standard alternative frequentist
estimators (namely, maximum likelihood, method of moments, best linear unbiased
and least squares estimators) will also be equal to θ̂ . Prototypical examples of such
estimators include the sample proportion p̂ as an estimator of a binomial parameter
p and the sample mean X as an estimator of the mean of a normal population.

The Bayes estimators to which the best frequentist estimator will be compared
are assumed to be Bayes rules (under squared error loss) with respect to proper prior
distributions on the parameter space. This restriction is a common one in “subjec-
tive” Bayesian analysis, where the prior model is a probability distribution repre-
senting the Bayesian’s a priori assessment of his uncertainty about the value of the
unknown parameter θ . “Coherent” Bayes theory requires that the measure placed on
the parameter space be a probability measure. It is a known fact that an unbiased
estimator cannot be a Bayes rule with respect to a proper prior and squared error
loss (see Theorem 3.5). This identifies statistics such as p̂ and X above as estimators
available to the frequentist but unavailable to the Bayesian.

Using the language introduced in Chapter 4, I will refer to the problem to which
we now direct our attention as “the threshold problem,” that is, the problem of iden-
tifying the threshold that separates Bayes estimators (or alternatively, their corre-
sponding prior distributions) whose performance is superior to the best frequentist
estimator from Bayes estimators (or priors) for which the reverse is true. We view
the comparison to be made as a contest between a Bayesian statistician, using the
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“operational prior” G, and a frequentist statistician who employs the best frequentist
estimator. The true value of θ is of course unknown to both statisticians. As discussed
in Chapter 4, we find it useful to model the unknown θ as a random variable, and
we refer to its distribution G0 as the “true prior distribution.” The prior G0 simply
represents the existing physical (though unknown) truth. In most problems of inter-
est, the parameter θ is simply an unknown constant and the distribution G0 would in
fact be degenerate at a point. But the generality employed here allows us to deal with
problems in which the parameter θ actually varies in time or space and its value at
the instant it is to be estimated can reasonably be thought of as a random realization
from some unknown probability distribution G0.

As the criterion for judging the performance of either estimator, we will take its
average squared distance from the true value of θ , a criterion which translates into
an estimator’s Bayes risk r relative to the “true prior” G0. The Bayesian statistician
will use his own prior G, obtained by introspection or consultation with appropriate
experts in the application of interest, while the frequentist statistician will use a fre-
quentist estimator that is assumed here to be sufficient and unbiased. We will seek to
compare r(G0, θ̂G), the Bayes risk of the Bayesian’s estimator θ̂G, with respect to the
true prior G0, to the corresponding Bayes risk r(G0, θ̂) of the frequentist’s estima-
tor. The Bayes risk is a frequentist measure that represents the average or expected
loss relative to all the randomness in the problem. A detailed defense of the criterion
r(G0, θ̂) was given in Chapter 4. Having put forward the case for using the Bayes
risk of an estimator, relative to the true prior distribution G0, as an appropriate and
relevant measure of its quality, I now present this chapter’s main result.

Theorem 5.1. Assume that a random sample is drawn from a distribution Fθ . Let
θ̂G be the Bayes estimator of θ under squared error loss, relative to the operational
prior G. If θ̂G has the form

θ̂G = (1−η)EGθ +ηθ̂ , (5.1)

where θ̂ is a sufficient and unbiased estimator of θ and η ∈ [0,1), then for any fixed
distribution G0 for which the expectations exist,

r(G0, θ̂G)≤ r(G0, θ̂) (5.2)

if and only if

VG0(θ)+(EGθ −EG0θ)2 ≤ 1+η

1−η
r(G0, θ̂) . (5.3)

Proof. For a fixed but arbitrary θ , the mean squared error of the Bayes estimator θ̂G
may be written as

EFθ
(θ̂G−θ)2 = EFθ

(η(θ̂ −θ)+(1−η)(EGθ −θ))2 . (5.4)

Using the assumed unbiasedness of θ̂ , we may rewrite (5.4) as

EFθ
(θ̂G−θ)2 = η

2EFθ
(θ̂ −θ)2 +(1−η)2(EGθ −θ))2 . (5.5)
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Taking the expectation of both sides of (5.5) with respect to the distribution G0, we
have

r(G0, θ̂G) = η
2r(G0, θ̂)+(1−η)2EG0(θ −EGθ)2 . (5.6)

Viewing EG0(θ −EGθ)2 as the mean squared error of the variable θ as an estimator
of EGθ , we may replace EG0(θ −EGθ)2 in (5.6) by

VG0(θ)+(EGθ −EG0θ)2 .

It then follows that the inequality in (5.2) is equivalent to

(1−η)2(VG0(θ)+(EGθ −EG0 θ)2)≤ (1−η
2)r(G0, θ̂) , (5.7)

an inequality that may equivalently be written as the conclusion in (5.3), namely,

VG0(θ)+(EGθ −EG0θ)2 ≤ 1+η

1−η
r(G0, θ̂) . �

Remark 5.1. The reader will note that the proof of Theorem 5.1 does not make ex-
plicit use of the fact that the estimator θ̂ is a sufficient statistic for θ . The theorem
would appear to apply more broadly, that is, the inequality in (5.3) will hold for any
Bayes estimator of the form (5.1) and any unbiased estimator θ̂ of θ . The sufficiency
of θ̂ enters Theorem 5.1 in a somewhat subtle way. The hypotheses of the theo-
rem are vacuous without the assumption! This follows from the well-known fact that
the Bayes estimator of θ is necessarily a function of the sufficient statistic T for θ

(whether T consists of the entire sample or offers some measure of data reduction to
a function of lower dimension) since the Bayes estimator depends on the data only
through the likelihood function L in (3.16), and the likelihood may be written as a
scalar multiple of a function of θ and T . As mentioned previously, we refer to the
estimator θ̂ of θ as the best frequentist estimator in the exponential family context,
this being the estimator which results from virtually all standard frequentist analyses.
Further, because of the Rao–Blackwell Theorem, the variance (or equivalently, the
mean squared error) of any unbiased estimator that is not sufficient can be improved,
a fact which implies that its Bayes risk with respect to any prior distribution can be
improved. It thus becomes apparent that the comparison on which Theorem 5.1 is
focused, that is, where θ̂ is assumed to be sufficient, is the only comparison with
potential applications and utility.

Theorem 5.1 has a considerable amount of interpretive value. One striking fact
that leaps out from (5.3) is that the left-hand side (LHS) of (5.3) can be made equal to
zero, while the right-hand side (RHS) of (5.3) is necessarily positive. When the LHS
of (5.3) is zero, the Bayesian will win the contest with certainty. Two other insights
that may be drawn from (5.3) are worth mentioning: (i) the variance on the LHS of
(5.3) is the variance of the true prior, not the variance of the operational prior, a fact
which suggests that in the typical estimation problem in which VG0(θ) may be con-
sidered to be zero, the Bayes estimator θ̂G looks especially promising and (ii) since
the weight η placed on θ̂ lies in the interval [0,1), the ratio (1+η)/(1−η) on the
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RHS of (5.3) takes values in the interval [1,∞), Thus, it can never be smaller than 1,
and it can be made arbitrarily large by taking η sufficiently close to 1. Our interest
in point (i) above derives from the fact that it goes beyond our natural intuition on
when Bayes estimators should be good. Our intuition tells us that, in estimating an
unknown constant θ , one would expect the Bayesian to outperform the frequentist
whenever the mean of the operational prior is close to the true value of θ and the
operational prior has a small variance. This intuition is articulated, for example, in
the following statement by Diaconis and Freedman (1986): “A statistician who has
sharp prior knowledge of these parameters (sic) should use it, according to Bayes’
Theorem. . . . On this point, there seems to be general agreement in the statistical
community (emphasis added).” But notice that the LHS of (5.3) makes no mention
of the variance of the operational prior. That variance enters the picture only through
the value of η on the RHS of (5.3). The statement quoted above is thus seen to be
unduly conservative. The inequality in (5.3) suggests, instead, that the Bayesian will
outperform the frequentist whenever the mean of the operational prior is “sufficiently
close” to the true value of θ (or more accurately, is close to the mean of G0) and the
true prior has a small variance. That’s interesting! In most problems of practical inter-
est in which the statistical framework under study occurs, the true prior has variance
zero. This brings into focus the role of an interesting feature of an operational prior
which we formally define as follows:

Definition 5.1. In the context discussed above with G and G0 being, respectively, the
“operational” and “true” priors of the random variable θ , the operational prior G
is said to be mean correct if EGθ = EG0 θ .

Corollary 5.1. Under the hypotheses of Theorem 5.1, a Bayes estimator with respect
to a mean-correct prior G has a smaller Bayes risk than the best frequentist estimator
θ̂ if and only if

VG0(θ)≤ 1+η

1−η
r(G0, θ̂) . (5.8)

Further, if the true prior distribution G0 is degenerate at a point, any Bayes estimator
with respect to a mean-correct operational prior is superior to the best frequentist
estimator.

It should thus be clear that Theorem 5.1 really does go well beyond the usual
intuition about “sharp” (that is, accurate and precise) priors. Few in the statistical
community would consider the uniform distribution on the interval [0,1] to be a
sharp prior on a population proportion p, and fewer still would consider a U-shaped
beta prior like Be(0.1,0.1) to be appropriately described as “sharp,” but in the event
that they are mean correct (i.e., the true p is equal to 1/2), the Bayes estimators
with respect to either of these priors will outperform the best frequentist estimator.
Further, it should be noted that mean correctness isn’t really necessary for Bayesian
superiority. When the true prior is degenerate, there is clearly an interval containing
the true θ (or, for nondegenerate G0, containing EG0 θ ) such that, when this interval
contains the mean EGθ of the operational prior, the Bayes estimator is necessarily
superior. In fact, even when EGθ lies well outside that interval, the Bayes estimator
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will still be superior to the best frequentist estimator θ̂ provided that the weight η

that the Bayes estimator places on θ̂ is not too small. Unless you’ve given this issue a
good deal of thought in the past, you may well find this outcome surprising. Imagine
that you are estimating a binomial proportion p, and that you use a Bayes estimator
with a mean near 0 when in fact the true value of p is close to 1. You couldn’t have
been more wrong! One might expect that the price to be paid would diminish if
the weight placed on your prior guess is suitably small. But why should a convex
combination of θ̂ and a terrible guess at θ ever be superior to the estimator θ̂ alone?
Theorem 5.1 tells us precisely when this will happen.

The inequality (5.3) suggests that the Bayes estimator will be superior to θ̂ unless
the Bayesian statistician miscalculates on two fronts simultaneously, that is, makes
a particularly poor prior guess at θ and also puts considerable weight on that guess.
Interestingly, neither of these negative characteristics alone will necessarily cause the
Bayesian to lose his advantage. If, for example, the heights of a particular (say fe-
male) human population are (reasonably) modeled as normally distributed, the Bayes
estimator relative to a normal prior distribution with mean 1000 ft. will actually out-
perform the frequentist estimator X if the weight placed on the prior mean is suffi-
ciently small. Such phenomena can be understood by examining the damping effect
of the weight (1−η) placed on the prior mean, as seen in the following expression:

MSE(θ̂G(η)) = η
2V (θ̂)+(1−η)2(θ −EGθ)2 . (5.9)

Clearly, there exists a value η∗ such that if η > η∗, then MSE(θ̂G(η)) <V (θ̂), which
in turn implies that r(G0, θ̂G(η)) < r(G0, θ̂).

I mentioned earlier that the notion of “true prior distribution” is not in the
Bayesian vernacular. It thus seems useful to state our main result without reference
to the true prior G0, that is, with the true value of the parameter θ considered simply
as an unknown constant θ0. In that case, Theorem 5.1 can be seen to imply

Corollary 5.2. Under the hypotheses of Theorem 5.1, a Bayes estimator with respect
to the prior G is closer, on average, to the true parameter value θ0 than the unbiased
and sufficient estimator θ̂ if and only if

(EGθ −θ0)2 ≤ 1+η

1−η
MSEθ0(θ̂) . (5.10)

From this version of (5.3), which uses the mean squared error of an estimator as the
measure of its merit, one may again conclude that the Bayesian who uses a mean-
correct prior distribution cannot lose, and also that, no matter how poor a Bayesian’s
prior guess might be, the Bayesian’s estimator would still be superior to the best
frequentist estimator unless the weight η that he places on θ̂ is too small. From either
of the corollaries above, the Bayesian’s winning strategy becomes quite clear: (1)
careful attention to one’s prior guess is worth the effort, since when that specification
is done well, you can’t lose, and (2) overstating one’s confidence in a prior guess can
lead to inferior performance, so conservative prior modeling is indicated; if one is to
err in specifying the weight η one places on the frequentist estimator θ̂ , it’s better to
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err on the high side, thereby understating the confidence associated with one’s prior
guess.

The reader will note that Theorem 5.1 does not make the assumption that the
family of distributions {Fθ , θ ∈Θ} is an exponential family, that G belongs to the
conjugate family of priors or that θ̂ is the UMVUE of θ . The theorem actually ap-
plies more broadly. For example, it solves a version of the threshold problem for any
Bayes estimator of the form (5.1) and any sufficient, unbiased estimator θ̂ of θ . One
situation it immediately applies to is the case in which Fθ and θ̂ are unrestricted and
the operational prior G is degenerate at a point. But the theorem is clearly intended
to apply to sampling distributions from exponential families and their standard con-
jugate prior families. Indeed, this is precisely the type of problem in which Bayes
estimators are necessarily linear and may be expressed in the form (5.1). While the
theorem can shed some light on other problems, it is tailor made to treat the case of
exponential families, and in that context, separates the class of standard conjugate
prior distributions into priors which give the Bayesian the advantage and priors that
don’t.

In the context just mentioned, that is, in the case of sampling distributions be-
longing to exponential families together with the corresponding families of standard
conjugate prior distributions, Bayes estimates of parameters of interest often take the
special form in equation (5.1). The weight η placed on θ̂ can typically be written as
the fraction

η =
n

n+ω
, (5.11)

where n is the size of the sample drawn from Fθ and ω , generally called the prior
sample size, represents the weight one attaches to one’s prior guess (that is, the num-
ber of observations that one believes one’s prior guess is worth, in contrast to the size
n of the sample one is actually able to observe).

We will now turn our attention to an “asymptotic” interpretation of Theorem 5.1
as n→ ∞. This result provides insight into the outcome of the Bayes vs. frequentist
contest as the data available to the two statisticians grows without bound.

Corollary 5.3. Let I(θ) be the Fisher Information in a single observation X from the
distribution Fθ . Suppose the hypotheses of Theorem 5.1 hold and that, in addition,

(i) for some fixed positive number ω and for any fixed n, η =
n

n+ω
,

(ii) the model Fθ satisfies the Cramér–Rao regularity conditions (see Lehmann and
Casella (1998)), and

(iii) the estimator θ̂ is an efficient estimator of θ .

Then it follows that the Bayes estimator θ̂G is superior to the estimator θ̂ as n→ ∞

if and only if

VG0(θ)+(EGθ −EG0 θ)2 ≤ 2
ω

EG0I−1(θ) . (5.12)

Proof. Note that when η =
n

n+ω
, the fraction

1+η

1−η
in (5.3) may be written as

ω +2n
ω

. Under conditions (ii) and (iii), the expression r(G0, θ̂) = 1
n EG0I−1(θ) fol-
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lows from the Cramér–Rao inequality. Substituting these two expressions in (5.3)
yields

VG0(θ)+(EGθ −EG0θ)2 ≤ 2+ω/n
ω

EG0 I−1(θ) . (5.13)

Letting n→ ∞ in (5.13), we obtain (5.12). �

Corollary 5.3 has a number of interesting implications. Note, first, that the RHS
of (5.13) is a decreasing function of n. This implies that if a Bayes estimator θ̂G
corresponding to the prior specification (EGθ ,η) satisfies the inequality in (5.12), it
will satisfy the inequality in (5.13) for all values of n. Thus, a Bayes estimator that
is asymptotically superior to the best frequentist estimator is superior to the latter
estimator for any fixed sample size. In general, there exists an extended nonnegative
integer n∗ such that the Bayes estimator θ̂G will be superior to the best frequentist
estimator for all n < n∗. If Bn represents the collection of Bayes estimators (relative
to prior specifications (EGθ ,η)) that are superior to the best frequentist estimator
when the sample size is n, then B1 ⊇ B2 ⊇ ·· ·Bn ⊇ ·· · ⊇ B∞. We will call attention to
this phenomenon when we return to our examination of the word-length experiment.

A second inference that may be drawn from Corollary 5.3 concerns the ratio of
Bayes risks of the Bayes and frequentist estimators given by

ρn =
rn(G0, θ̂G)

rn(G0, θ̂)
. (5.14)

Since n→ ∞ implies that η → 1, the fact that ρn → 1 as n→ ∞ follows from the
identity in (5.6) (since (1−η)2→ 0 at the rate (1/n)2). The new insight made avail-
able by Corollary 5.3 is that, for Bayes estimators θ̂G ∈ B∞, the ratio ρn approaches
1 from below! Such Bayes estimators are superior to θ̂ for any and all fixed sample
sizes. Thus, the size and shape of the collection B∞ (or equivalently, the set of prior
specifications (EGθ ,η) for which θ̂G ∈ B∞) will be of special interest.

A final consequence of Theorem 5.1, and perhaps the most important, is that in
the context of exponential families, conjugate prior distributions and squared error
loss, it provides an explicit solution to the threshold problem. The characterization
of Bayesian superiority in this latter context is contained in the following:

Corollary 5.4. Under the hypotheses of Theorem 5.1, the Bayes estimator θ̂G and the
frequentist estimator θ̂ have the same Bayes risk with respect to the true prior G0 for
any operational prior G corresponding to the prior parameters (∆ ,η) satisfying the
hyperbolic equation

∆η +η(r(G0, θ̂)+VG0(θ))−∆ +(r(G0, θ̂)−VG0(θ)) = 0 , (5.15)

where ∆ = (EGθ −EG0 θ)2 and η ∈ [0,1) is the constant specified in (5.1). Further,

(i) for given operational prior G with mean θ ∗ = EGθ and weight parameter
η , there exists a constant η∗ ∈ [0,1) such that the Bayes estimator θ̂G =
(1− η)θ ∗ + ηθ̂ is superior to the best frequentist estimator θ̂ if and only if
η > η∗,
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(ii) for any η ∈ [0,1), there exists a constant ∆ ∗ ∈ [0,∞) such that the Bayes estimate
(1−η)θ ∗+ηθ̂ is superior to the estimator θ̂ if and only if ∆ = (θ ∗−EG0 θ)2 <
∆ ∗ and

(iii) for each fixed η ∈ [0,1), the Bayes risk of the Bayes estimator θ̂G with respect
to G0 is minimized by the choice of prior mean θ ∗ equal to EG0 θ .

Proof. It is easy to verify that (5.15) is algebraically equivalent to

VG0(θ)+(EGθ −EG0θ)2 =
1+η

1−η
r(G0, θ̂) .

This equation characterizes the circumstances, under the assumptions of Theo-
rem 5.1, in which the Bayes risk, relative to G0, of the best frequentist estimator
θ̂ is equal to that of the Bayes estimator with respect to the operational prior G.
It therefore provides an explicit solution to the threshold problem in the context of
Theorem 5.1. The additional claims above may be argued as follows.

(i) For η ∈ [0,1), multiplying both sides of the inequality (5.3) by (1−η) yields an
inequality of the form

(1−η)A≤ (1+η)B , (5.16)

where A and B are nonnegative. Equality is achieved in (5.16) when

η(B+A)+B−A = 0 . (5.17)

If C = (A−B)/(A + B), it is clear that (5.16) holds, with a strict inequality, if
η > C. The claim in (i) follows.

(ii) Upon rewriting the inequality (5.3) as

∆ ≤ 1+η

1−η
r(G0, θ̂)−VG0(θ) , (5.18)

it is clear that that the Bayes estimator θ̂G is superior to the best frequentist
rule precisely when ∆ is sufficiently small. When VG0(θ) = 0, as it is in most
problems of interest, the RHS of (5.18) is a positive number we may designate
as ∆ ∗. If the RHS of (5.18) is negative, then claim (ii) holds with ∆ ∗ = 0.

(iii) This claim follows from the fact that, for any fixed η , the Bayes risk of θ̂G,
written as a function of the mean EGθ of the operational prior, is given by

r(G0, θ̂G) = η
2r(G0, θ̂)+(1−η)2(VG0(θ)+(EGθ −EG0 θ)2) ,

and clearly is minimized at the value EGθ = EG0 θ . �

A graph of the threshold identified in (5.15) is easily drawn for any particular
fixed values of V = VG0(θ) and r = r(G0, θ̂). For the case of common interest, that
is, when V = 0, the threshold may be written as

∆ ≡
(
EGθ −EG0 θ

)2 =
(1+η)r(G0, θ̂)

1−η
,
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Fig. 5.2. Graph of the threshold (5.15) and of the region of Bayesian superiority when
VG0(θ) = 0

the graph of which is shown in Figure 5.2. Superior Bayes estimators correspond to
(η ,∆) pairs below the threshold. More informative graphs, which identify superior
Bayes specifications (EGθ ,η) directly, are displayed in the next section.

Exercise 5.2. (a) Let h be a concave function on the real line, and let X be a random
variable for which EX < ∞. Prove that h(EX) ≥ Eh(X). (b) Assume that the hy-
potheses of Corollary 5.3 hold, and suppose that I−1(θ) is concave for θ ∈Θ . Prove
that the percentage of Bayes estimators (that is, pairs (EGθ ,ω)) that are asymptoti-
cally superior to the “best frequentist estimator” θ̂ is maximal when the true prior G0
is degenerate at a point. (Hint: Apply part (a) to the RHS of the inequality in (5.12).)

5.4 Empirical results

In Section 5.1, I described the word-length experiment in which 99 students provided
Bayes estimates, relative to their individually elicited beta priors, of the proportion
of “long words” among the first words appearing on the 758 pages of a copy of
Maugham’s novel Of Human Bondage. We posed a question about the expected per-
formance of these 99 Bayesians in comparison with that of a statistician using the



5.4 Empirical results 89

frequentist estimator p̂, with both estimators utilizing an available sample of 10 first
words, drawn with replacement, from the novel’s 758 pages. We mentioned that a
strong majority of the Bayes estimators tend to outperform p̂. We now examine this
experiment in light of the theoretical results above. The true proportion of long words
in the population was determined to be p = 228/758 = 0.3008.

Table 5.1 records each student’s prior specification (p∗,η), the prior sample size
ω = (n/η)− n (with n = 10) of the corresponding beta prior and the ratio of the
Bayes risk of each Bayes estimator to that of p̂. Bayes estimators are superior in 88
of 99 cases.

In light of the quite evident diversity of the 99 prior opinions about the target
parameter p in the word-length experiment, the strong domination of the Bayes over
the frequentist estimators apparent from Table 5.1 would, without any preceding
discussion, likely be greeted by some measure of surprise. On the other hand, the
theoretical developments in Section 5.2 give us substantial guidance regarding what
should be expected here. In the word-length experiment, the true prior distribution
G0 is the degenerate distribution at the point 0.3008. From the inequality (5.3), it
follows that the Bayes estimator based on the prior mean p∗ (and irrespective of the
prior weight parameter η) will be superior to p̂, relative to our Bayes risk criterion,
whenever

(p∗ −0.3008)2 ≤ r(G0, p̂) = 0.02103 . (5.19)

Thus, a Bayesian has a fairly generous window of opportunity for outperforming the
frequentist; the Bayes estimator will prevail if the Bayesian’s prior mean is within
0.145 of the true value 0.3008 of p. Given this circumstance, the fact that 66 of the 99
Bayes estimators dominated the best frequentist estimator on the basis of a “good”
prior guess might well be anticipated. For each of the Bayes estimators for which
|p∗ − 0.3008| > 0.145, the Bayes estimator will be superior to the best frequentist
estimator provided that

(p∗ −0.3008)2 <
1+η

1−η
(0.02103) . (5.20)

For each value of p∗ in this latter class, Bayesian superiority involves a direct rela-
tionship between the distance |p∗ −0.3008| and the prior weight η that the Bayesian
places on the sample proportion p̂. Of the 33 Bayes estimators for which the prior
means p∗ were far enough from the true mean 0.3008 so that the value of η actually
plays a role in determining the direction of superiority, 22 of them chose a value of
η that was large enough to satisfy the inequality (5.20). In the end, 88 out of 99, or
89%, of the Bayes estimators stand to outperform the sample proportion p̂.

Both the theoretical and empirical results above point to the following basic prin-
ciple. There are two characteristics that serve to diminish the effectiveness of the
Bayesian approach to estimation. The Bayesian is clearly penalized for being mis-
guided, as the Bayes risk r(G0, θ̂G) is an increasing function of the distance between
the prior mean and the true value of θ (or the value of EG0θ ). The Bayesian can
also suffer from being stubborn about his prior opinion, a situation characterized by
placing an unduly large weight on the prior mean. Fortunately for the Bayesian, nei-
ther of these characteristics need be fatal by itself. In the word-length experiment,
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Table 5.1. Performance of Bayes vs. Frequentist Estimates in the Word-Length Experiment

ID p∗ η ω rG/r ID p∗ η ω rG/r
1 0.350 0.35 18.571 0.171 42 0.350 0.70 4.286 0.500
2 0.150 0.90 1.111 0.821 43 0.250 0.65 5.385 0.438
3 0.150 0.60 6.667 0.533 44 0.500 0.99 0.101 0.980
4 0.375 0.50 10.000 0.315 45 0.300 0.25 30.000 0.063
5 0.260 0.50 10.000 0.270 46 0.110 0.30 23.333 0.938
6 0.200 0.50 10.000 0.371 47 0.720 0.65 5.385 1.446
7 0.400 0.20 40.000 0.340 48 0.600 0.30 23.333 2.176
8 0.350 0.20 40.000 0.114 49 0.450 0.35 18.571 0.570
9 0.030 0.20 40.000 2.271 50 0.100 0.60 6.667 0.667
10 0.030 0.40 15.000 1.415 51 0.250 0.70 4.286 0.501
11 0.040 0.40 15.000 1.324 52 0.180 0.40 15.000 0.410
12 0.250 0.30 23.333 0.150 53 0.280 0.70 4.286 0.492
13 0.400 0.40 15.000 0.328 54 0.150 0.60 6.667 0.533
14 0.400 0.30 23.333 0.319 55 0.500 0.80 2.500 0.715
15 0.400 0.20 40.000 0.340 56 0.290 0.50 10.000 0.251
16 0.450 0.40 15.000 0.541 57 0.130 0.60 6.667 0.582
17 0.350 0.65 5.385 0.437 58 0.200 0.30 23.333 0.327
18 0.600 0.50 10.000 1.314 59 0.360 0.30 23.333 0.172
19 0.020 0.60 6.667 0.960 60 0.420 0.35 18.571 0.408
20 0.330 0.70 4.286 0.494 61 0.250 0.80 2.500 0.645
21 0.050 0.50 10.000 0.998 62 0.280 0.35 18.571 0.131
22 0.300 0.30 23.333 0.090 63 0.340 0.90 1.111 0.811
23 0.400 0.50 10.000 0.367 64 0.310 0.90 1.111 0.810
24 0.250 0.90 1.111 0.811 65 0.130 0.40 15.000 0.659
25 0.400 0.85 1.765 0.733 66 0.300 0.50 10.000 0.250
26 0.100 0.40 15.000 0.850 67 0.400 0.60 6.667 0.435
27 0.100 0.50 10.000 0.729 68 0.375 0.60 6.667 0.402
28 0.320 0.50 10.000 0.254 69 0.730 0.80 2.500 0.990
29 0.410 0.70 4.286 0.541 70 0.100 0.70 4.286 0.663
30 0.220 0.60 6.667 0.410 71 0.330 0.80 2.500 0.642
31 0.090 0.50 10.000 0.778 72 0.300 0.50 10.000 0.250
32 0.350 0.20 40.000 0.114 73 0.210 0.55 8.182 0.382
33 0.740 0.80 2.500 1.007 74 0.010 0.50 10.000 1.255
34 0.650 0.17 48.824 4.023 75 0.300 0.40 15.000 0.160
35 0.250 0.60 6.667 0.380 76 0.125 0.40 15.000 0.689
36 0.275 0.40 15.000 0.171 77 0.180 0.35 18.571 0.416
37 0.500 0.30 23.333 1.015 78 0.400 0.20 40.000 0.340
38 0.100 0.98 0.204 0.961 79 0.230 0.55 8.182 0.351
39 0.300 0.75 3.333 0.563 80 0.400 0.40 15.000 0.328
40 0.140 0.85 1.765 0.750 81 0.375 0.30 23.333 0.218
41 0.420 0.25 30.000 0.443 82 0.400 0.50 10.000 0.367
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Table 5.1. (continued)

ID p∗ η ω rG/r ID p∗ η ω rG/r
83 0.400 0.40 15.000 0.328 92 0.350 0.90 1.111 0.811
84 0.300 0.60 6.667 0.360 93 0.200 0.50 10.000 0.371
85 0.600 0.75 3.333 0.829 94 0.070 0.30 23.333 1.331
86 0.400 0.70 4.286 0.532 95 0.400 0.50 10.000 0.367
87 0.400 0.30 23.333 0.319 96 0.330 0.40 15.000 0.175
88 0.350 0.40 15.000 0.201 97 0.260 0.50 10.000 0.270
89 0.400 0.72 3.899 0.555 98 0.200 0.40 15.000 0.334
90 0.230 0.40 15.000 0.246 99 0.170 0.50 10.000 0.453
91 0.370 0.32 21.250 0.208

it is apparent that a misguided Bayesian such as student #85, whose prior guess of
0.6 was quite far off the mark, did not exhibit stubbornness about the guess, placing
weight η = 0.75 on p̂, allowing him to outperform the frequentist. An example of a
Bayesian who is stubborn but not misguided is student #8 whose prior guess of 0.35
was sufficiently close to the true value of p that his undoubtedly inflated confidence
in that guess (placing weight 0.8 on it) caused him no difficulty. As mentioned earlier,
this latter Bayesian would outperform the frequentist even if he had been supremely
stubborn, placing weight 1 on his prior guess. In contrast to these students, a mis-
guided and stubborn Bayesian such as student #34 has little chance of success in this
experiment.

In Figure 5.3, the threshold between “superior” and “inferior” Bayes estimators
in the word-length experiment is displayed. The curve shown in Figure 5.3 is the
collection of priors G(p∗,η), where p∗ = EGθ , for which the Bayes estimator wrt G
has the same Bayes risk with respect to the true prior G0 as the sample proportion p̂,
that is, for which

(p∗ −0.3008)2 =
1+η

1−η
(0.02103) . (5.21)

The graph shows quite vividly that the collection of Bayes estimators that are su-
perior to the frequentist estimator p̂ constitutes a nonnegligible fraction of the unit
square (being all points (p∗,η) above the threshold). It is apparent from the graph in
Figure 5.3 that all Bayes estimators for which the prior mean p∗ ∈ (0.1558,0.4458)
are necessarily superior to p̂, regardless of the weight η the Bayesian places on p̂,
and that all Bayes estimates which place weight η > 0.9601 are necessarily superior
to p̂, regardless of the prior mean p∗ selected by the Bayesian. The percentage of the
unit square taken up by prior specifications (p∗,η) corresponding to Bayes estimates
that are superior to p̂ is 0.55. The proper interpretation of this percentage is that, if a
Bayesian were to pick a prior specification (p∗,η) completely at random according
to a uniform distribution on the unit square (something akin to the aforementioned
shotgun blast), the Bayes estimator would outperform p̂, the frequentist estimator,
55% of the time. For Bayesians who have “useful” prior information available about
the parameter p, one would expect even better performance, on the average. The fact



92 5 Comparing Bayesian and Frequentist Estimators of a Scalar Parameter

0 1

1

p*

ηη

Fig. 5.3. Graph of the threshold (5.21), and the region of Bayesian superiority, in the Word-
Length Experiment

that 89% of the students participating in the word-length experiment specified Bayes
estimators that outperformed p̂ suggests that most of them did have such information,
even though most of their prior distributions could hardly be referred to as “sharp.”

The flip side of the story above must also be mentioned, as it is an important
part of the overall lesson learned. We noted that, both in theory and in practice, the
frequentist estimator p̂ sometimes beats the Bayes estimator p̂G. In the particular
experiment of interest, and in similar settings in which Theorem 5.1 applies, neither
estimator will be uniformly superior. This suggests that the statistician should remain
open to using one approach or the other, depending on which promises to provide
better performance. In the concluding section of this chapter, we will elaborate on
this and related issues.

It is natural to wonder what the effect is of the chosen sample size n in the com-
parison of Bayes and frequentist estimators. In the word-length experiment in which
the size of the available sample was stipulated to be 10, one might conjecture that
even weak prior information might in fact be useful, as a sample of size 10 is not it-
self very informative about p. To examine this question, we have sought to determine
what percentage of the stipulated Bayes estimators would be superior to p̂ as the sam-
ple size n varies. In this extended comparison, we have retained the same beta prior
distribution for each student, as in stating his or her prior, each student implicitly
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specified both their best guess at p and the prior sample size they deemed appropri-
ate for that guess. In Table 5.2, we display the percentage of Bayes estimators that
would be superior to the frequentist estimator p̂ for the word-length experiment with
different sample sizes. Note that the percentage of superior Bayes estimators is at
least 80%, irrespective of the sample size n.

Table 5.2. The percentage of Bayes estimators (SBEs) that are superior to the sample propor-
tion in the word-length experiment, as a function of n

Sample size n Number of SBEs Percentage of SBEs
1 99 100%
5 93 94%
10 88 89%
50 83 84%
100 81 82%
500 80 81%

1,000 80 81%
5,000 79 80%
10,000 79 80%

∞ 79 80%

Table 5.2 demonstrates that the size of the experiment has a relatively small im-
pact of the comparisons we have made. We noted above that size of the collection
Bn of Bayes estimators (relative to prior specifications (EGθ ,η)) that are superior to
the best frequentist estimator when the sample size is n decreases as n grows. It is
apparent from the above that this shrinkage occurs rather slowly, and that the size
of the limiting set B∞ is still formidable. To get a better idea of what B∞ looks like,
we provide in Figure 5.4 a graph of the threshold separating SBEs (superior Bayes
estimators) from IBEs (inferior Bayes estimators) for the domain containing all the
Bayes estimators employed by the participants in the word-length experiment. The
reader will note that every prior sample size specification ω utilized by a student
in the word-length experiment was in the range (0,50), an outcome that might be
expected when thinking about the worth of one’s prior guess when combined with a
sample proportion based on 10 observations. The threshold for the case n = ∞, as a
function of the prior specification (p∗,ω), is given by

(p∗ −0.3008)2 = (2/ω)(0.02103) . (5.22)

Figure 5.4 admits to an interpretation similar to that of Figure 5.1. The percentage of
space [0,1]× [0,50] taken up by prior specifications (p∗,η) corresponding to Bayes
estimates that are superior to p̂ is 33%. If a Bayesian were to pick a prior specifica-
tion (p∗,η) completely at random according to a uniform distribution on that space,
the Bayes estimator would outperform the frequentist estimator 33% of the time.
For Bayesians who have “useful” prior information available about the parameter
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Fig. 5.4. Graph of the threshold in (5.22), where n = ∞ and (p∗,ω) ∈ [0,1]× [0,50], and the
region of Bayesian superiority

p, one would expect better performance, on the average. In the word-length exper-
iment, 80% of the students who participated specified Bayes estimators that would
outperform p̂, even for an arbitrarily large sample size n, again suggesting that most
of them did have information that is reasonably described as “useful.” We note that
only one student specified a prior sample size larger than 40, and only 7 specified a
prior sample size larger than 30, in the word-length experiment. Table 5.3 provides
additional relevant information about Bayesian superiority for large n.

Table 5.3. The percentage of “random” Bayes estimators (SRBEs) in the word-length exper-
iment which are superior to p̂ at n = ∞ for various upper bounds on the prior sample size
ω

Upper Bound on ω Percentage of SRBEs
50 0.327
40 0.360
30 0.407
20 0.480
10 0.621
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Exercise 5.3. To assess the extent of the domination of Bayes estimators over the
sample proportion p̂ in the word-length experiment, it is useful to examine those
cases in which the domination is substantial, in one direction or the other. Identify
the students for which | ln(rG/r)| > 1 (that is, the cases in which the Bayes risk of
one estimator is roughly three times (or more) better that the other. Among these
cases, what percentage of the Bayes estimators were superior to p̂?

Exercise 5.4. Suppose you are asked to estimate a binomial parameter p based on
X ∼B(20, p). Your performance will be judged by someone who, unlike you, actu-
ally knows that the true value of p is 0.6. The criterion for judging an estimator is the
Bayes risk, under squared error loss, of the estimator wrt the true prior G0 (which is
degenerate at 0.6). You are toying with 5 quite different stances regarding an opera-
tional prior. (You probably should have consulted an expert or two, but it’s too late
for that now.)

(a) Calculate the Bayes risks (wrt G0) of the Bayes estimator wrt the 5 opera-
tional priors: i) Be(0.5,0.5), ii) Be(10,10), iii) Be(0.6,0.4), iv) Be(100,100) and
v) Be(400,600).

(b) Calculate the Bayes risk (wrt G0) of the sample proportion p̂.
(c) Rank these 6 estimators from best to worst relative to the criterion above.

5.5 Potpourri

A variety of other issues and perspectives were considered by Samaniego and Reneau
(1994). Here, I will mention just two. The first has to do with whether or not the
frequentist actually has any wiggle room in the problems examined above. When
I presented this work in a seminar at Berkeley in 1992, Lucien LeCam raised the
following interesting issue. He conjectured that the level of Bayesian success in the
word-length experiment might actually be due to the fact that the frequentist was
using the wrong estimator. Perhaps the frequentist would have fared better if he had
used the minimax estimator p̂mm given by

p̂mm =
np̂+

√
n/2

n+
√

n
(5.23)

instead of the estimator p̂. I responded as follows. Trustworthy frequentist alterna-
tives to the sample proportion p̂ as an estimator of p are truly hard to come by. The
estimator in (5.23) isn’t actually a candidate, since it is clearly a convex combina-
tion of p̂ and the constant 1/2 and is, in fact, the Bayes estimator relative to the beta
prior Be(

√
n/2,
√

n/2). Professor LeCam was correct in guessing that it outperforms
p̂ in the word-length experiment. But this just means that it joins the ranks of the
“Superior Bayes Estimators.” One could take the view that the minimax estimator in
(5.23) is actually a frequentist rule, but it’s very composition suggests that it repre-
sents Bayesian thinking, as one is clearly hedging one’s bets between p̂ and the prior
intuition that p = 1/2 is a reasonable guess at the true value of p. In our formulation
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of the threshold problem, I have taken the position that “you are what you eat,” that
is, in any given problem, you are classified as a Bayesian or a frequentist based on
the estimator you choose to use — quite irrespective of your statistical philosophy
or outlook. Since the estimator p̂mm is a Bayes estimator of p, a statistician who
uses it in estimating an unknown proportion p is being a Bayesian on that particular
occasion. If, in problems such as the word-length experiment, there’s a frequentist
estimator that is preferable to p̂, it has not as yet surfaced in the open literature!

A second issue worth mentioning is the extent to which Theorem 5.1 generalizes
to frameworks other than those studied above. One framework that is quite distant
from the exponential family setting we have emphasized is the fully nonparametric
problem of estimating the distribution F of a random sample, where F is completely
unrestricted. Ferguson (1973) developed a methodology for Bayesian estimation of
F based on what he called the Dirichlet Process. I will use Ferguson’s notation in
presenting the nonparametric analog of Theorem 5.1. Let F and F̂ be two cumula-
tive distribution functions (cdfs) on the real line. We will consider the problem of
estimating F using the integrated squared error loss function given by

L(F, F̂) =
∫

∞

−∞

(F̂(x)−F(x))2 dW (x) , (5.24)

where W is a fixed, finite measure on (R,B), with B being the σ -field of Borel sets
on R. If G is a “cdf process,” that is, a stochastic process whose realizations are cdfs
on R with probability 1, then the Bayes risk of the estimator F̂ of F , wrt the “prior”
G, is given by

r(G, F̂) = EGEF L(F, F̂) . (5.25)

In analogy with the preceding results and discussion, we will denote the “true prior
distribution” of F by G0. The following result may be established in this context.

Theorem 5.2. For any non-null, finite measure π on (R,B), let D(π) represent the
Dirichlet process with parameter π . Let F be a realization of the cdf process G0, and
suppose that X1,X2, . . . ,Xn

iid∼ F. If F̂π is the Bayes estimator of F with respect to the
prior distribution D(π) and F̂n is the empirical cdf, then for some η ∈ (0,1),

F̂π(x) = ηF̂n(x)+(1−η)Eπ F(x) for all x ∈ R , (5.26)

and when the expectations involved exist,

r(G0, F̂π)≤ r(G0, F̂n) (5.27)

if and only if∫
∞

−∞

VG0(F(x)) dW (x)+
∫

∞

−∞

(Eπ F(x)−EG0F(x))2 dW (x)≤ 1+η

1−η
r(G0, F̂n).

(5.28)

The representation in (5.26) was, of course, established by Ferguson (1973). The-
orem 5.2 demonstrates that the threshold problem for nonparametric estimation via
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Dirichlet process priors gives rise to solutions similar to those obtained in the para-
metric contexts we have studied. For example, when the true prior is degenerate at a
particular distribution F0, a mean-correct Bayes estimator is guaranteed to be supe-
rior to Fπ . Further, the threshold separating good and bad prior distributions may be
identified explicitly through (5.28).

Exercise 5.5. Show that, relative to squared error loss, the risk function of the es-
timator p̂mm in (5.23) is a constant independent of p. Verify that p̂mm is the Bayes
estimator wrt the prior

Be(
√

n/2,
√

n/2) .

Conclude that p̂mm is minimax as an estimator of p. (Hint: First, show that if an
equalizer rule is Bayes wrt a proper prior distribution, it is minimax.)

Exercise 5.6. Prove Theorem 5.2.

5.6 Discussion

I will be brief, as the results above more or less speak for themselves. The paper in
which the ideas above were first laid out was entitled “Towards a Reconciliation of
the Bayesian and Frequentist Approaches to Point Estimation.” The word “reconcil-
iation” admits to a variety of interpretations. One of the more common connotations
of the word is that a form of agreement has been found such that two parties can both
adopt the same action or viewpoint without sacrificing their respective principles.
One might think of “objective Bayesian analysis” as constituting this type of recon-
ciliation, since the approach uses Bayesian techniques (with improper priors) yet is,
in essence, a frequentist methodology (yielding estimators like p̂ and X in problems
of the sort we have been discussing). In the paper to which I have alluded, we used
the word “reconciliation” in quite a different sense.

Many statisticians view the Bayesian and frequentist approaches to statistical
inference to be mutually exclusive. The two schools are based on different views
regarding the goals and legitimate methods of statistical analysis. Thus, the orthodox
Bayesian and the committed frequentist will not agree, in principle or in practice,
regarding the application of Statistics to a particular problem. The reconciliation
proposed here can be summarized as follows: both frequentists and Bayesians should
acknowledge that there are circumstances, in any estimation problem of the type
considered here, in which the “other approach” will give better results. If our role
as statisticians is to provide reliable conclusions from data, then we cannot set aside
either approach in treating the data we have available. Instead, we should ask the
question: is this a problem which is better treated by a Bayesian or by a frequentist
approach?

This latter attitude naturally points to the threshold problem. The threshold sep-
arating superior from inferior Bayes procedures is of course elusive. It depends on
features of the problem that are unknown to the statistician. It is nonetheless true that
certain general principles can be helpful. From the results above, it is reasonable to
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conclude that prior information is useful in the estimation process under conditions
that are really quite broad: a carefully chosen prior guess at an unknown parameter,
together with a conservative assessment of one’s confidence in that guess, appears
to be a reliable recipe for good performance. This argues for careful introspection
(or consultation) about the value of an unknown parameter and a moderately diffuse
prior with that value as its mean. This prescription stops short of actually using a
diffuse (improper) prior; we have seen that this leaps all the way to a frequentist esti-
mator that might in fact be inferior. But the leap to a frequentist estimator may indeed
be the rational choice when the available prior information is too vague or ill-defined
for one to be able to implement with confidence the recipe above for obtaining a
“superior” Bayes estimator.

The empirical and theoretical results of this chapter support the conclusion that
the Bayesian approach to estimation is surprisingly resilient, providing superior re-
sults even in cases in which the operational prior distribution used might, on the basis
of some sort of impartial analysis, be considered to be quite weak. To be perfectly
honest, this finding caught me by surprise. In the study culminating in the 1994 JASA
paper, I set out thinking that we would find a theoretical framework which more or
less substantiated the statement I’ve quoted from Diaconis and Freedman (1986).
Instead, our findings indicated that Bayes procedures work well a lot more often
than we (and most other people) suspected. The reader might wonder if that study
in fact turned me into a Bayesian. Most of my colleagues think of me as one, but
the outcomes above, together with studies such as those considered in the next three
chapters, made it clear to me that a single statistical paradigm was not sufficient to
handle all statistical situations well. What these studies did, instead, was turn me into
a “Bayesian sympathizer.” My current state of mind is that Bayesian methods are in-
tellectually satisfying and, often, very effective. Thus, I’m very open to using them,
while recognizing that frequentist alternatives can produce better results in selected
circumstances.
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Conjugacy, Self-Consistency and Bayesian Consensus

6.1 Another look at conjugacy

The notion of “conjugacy” has long been a staple of Bayesian inference, though
the use of conjugate priors is much less prominent in current forms of Bayesian
analysis than it was, say, twenty years ago. There are a number of reasons for the
devaluation of conjugacy over the last two decades. The most obvious ones concern
those associated with the major advances in Bayesian computation in the decade
of the 1990s which have made possible the approximation of posterior distributions
and related quantities for a broad array of prior models, rendering the use of priors
which facilitate straightforward, closed-form posterior analysis less necessary, if still
convenient. With the development and refinement of the Gibbs sampler and similar
Markov chain Monte Carlo algorithms, one can now execute a well-approximated
Bayesian analysis based on virtually any prior model.

Another reason for the decline in the use of conjugate priors is the growth in
popularity of the “objective” Bayesian approach. Conjugate priors are tools that fa-
cilitate subjective Bayesian analysis, where the prior is taken to be a reflection of
prior knowledge or expert opinion regarding an unknown quantity (generally a pa-
rameter of the model governing the observable quantities in a given problem). Since
objective or noninformative priors are “improper” in most standard applications, they
lie beyond the realm of conjugacy (except perhaps as limits) and, indeed, lie outside
the domain of subjective Bayesian inference. Instead of seeking to capture what one
knows or believes about an unknown parameter in a given application, an objective
Bayesian analysis attempts to minimize or eliminate the influence of “prior infor-
mation” while retaining the formalism of the use of “Bayesian updating” when cal-
culating the posterior distribution of the parameter(s) of interest given the available
experimental outcomes.

These two developments have led to a reduced reliance on conjugate priors in
executing Bayesian analyses. Indeed, some Bayesian practitioners consider conju-
gate priors as anachronistic “crutches” which may now (largely) be set aside. In this
monograph, I have taken a more generous view of conjugate priors. In the present
chapter, I will add to the motivation for doing so by a further exploration of their
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properties as well as by noting a special role they are able to play in the traditionally
thorny “consensus problem” — the problem of utilizing input from several experts
with varying prior opinions in the formulation of a Bayesian procedure. However,
criticizing “modern” Bayesian tools and approaches is far from my purpose here. I
will thus mention only briefly some issues that might serve as food for thought before
or while utilizing them.

With regard to recent developments in Bayesian computation, I should acknowl-
edge that it seems foolish to see them as anything but a blessing, as they open up
the possibility of carrying out a Bayesian analysis with great flexibility in one’s prior
modeling and without dealing with the often imposing analytical difficulties involved
in getting exact solutions. But are these tools represented correctly as the missing link
that finally rendered Bayesian inference complete? This is where the introduction of
some caveats seems appropriate. The fact that certain prior specifications have led
to improper and therefore uninterpretable posteriors via MCMC has been pointed
out by Hobert and Casella (1996). A more fundamental source of potential difficulty,
I think, is the implicit suggestion in much modern Bayesian work that the compu-
tational feasibility of an analysis somehow justifies the procedure followed and the
answers obtained therefrom. Many practitioners seem quite satisfied when diagnos-
tic measures appear to confirm the convergence of an MCMC process, in spite of
the fact that such convergence says nothing whatsoever about the quality of the cor-
responding statistical inference (in the sense of the threshold problem as discussed
in Chapters 4 and 5). However, using a highly complex prior, just because one now
can, may in fact make little sense in a given application, and may also lead to infe-
rior statistical performance (for the same reasons that overfitting can have negative
effects in regression analysis). The principle of parsimony suggests that a simpler
prior, perhaps a conjugate one, may actually yield better results.

In fairness, it should be noted that many users of MCMC methods have not sim-
ply abandoned the use of conjugate priors in favor of increased flexibility. It has been
observed, for example, that in a variety of applications, both the mixing properties
and the rate of convergence of the Gibbs sampler are positively affected when con-
jugate priors are employed. In this general context, the recent study by Diaconis,
Khari and Saloff-Coste (2008) merits special mention. The aim of Diaconis et al.
was to identify modeling scenarios in which sharp rates of convergence of the Gibbs
sampler can be established. Their main results demonstrate that this aim is most def-
initely realized in the context of standard exponential families with their conjugate
prior families. Since my brief comments on the paper will only scratch its surface,
I should add that this comprehensive, insightful and authoritative work should be
carefully read by anyone interested in understanding how, why and when the Gibbs
sampler works.

While Diaconis et al. do treat some general models, special emphasis is given to
the six exponential families with quadratic variance structure. They also restrict their
attention to bivariate problems based on a joint density f (x,θ), but their results are
highly suggestive and provide helpful guidance regarding what might be expected
in problems of higher dimension. In the problems they consider, they obtain striking
results such as the following: in the binomial–beta model based on n Bernoulli tri-
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als, the number of steps required for convergence of the Gibbs sampler is of order n
(typically some small integer multiple of n), while in the Poisson-gamma model, the
number of steps required for convergence of the Gibbs sampler is of order logn+ c.
The primary tool used in obtaining such results is the singular value decomposition
of an operator T associated with the “x-chain.” It is shown that T takes orthogonal
polynomials for the mean function m(x), leading to exact computations which ulti-
mately reveal the rate of convergence of the chain. Two important lessons that may
be gleaned from this work are that the analytical treatment of MCMC properties is
actually feasible for exponential families with conjugate prior distributions and that,
for these models, the convergence of the Gibbs sampler tends to be (surprisingly)
rapid. It is true, of course, that restricting to traditional conjugate priors may some-
times be overly constraining and that some applications demand more complex prior
modeling.

The use of “objective” or “noninformative” priors is by no means a new phe-
nomenon in statistical analysis. The concept can in fact be traced to Bayes and
Laplace themselves in the earliest writings on the approach we now call Bayesian.
But the early attempts to use priors that assume little or nothing about the unknown
parameter used proper probability distributions to represent prior “ignorance.” Later
developments used general measures as priors in spite of the fact that they had no
probabilistic interpretation. One of the motivations of the latter approach was the
obvious dilemma which arises when using proper priors and attempting to preserve
prior ignorance under transformations of the parameter of interest. Clearly, if one is
ignorant about the parameter θ , then one must also be ignorant about θ 2, yet when
one specifies that θ has a uniform distribution, this implies that θ 2 does not. This un-
satisfactory situation was largely resolved by Jeffreys (1961) who, in short, proposed
and defended the principle that there was a unique form of the unknown parameter —
essentially the one that most closely resembles a location parameter — that should
be modeled by a uniform or “flat” prior. Jeffreys’ rule is still widely used today, its
broad utility having been ably demonstrated by Box and Tiao (1973), among oth-
ers. Bernardo (1979) advocated a different but related approach to noninformative
prior modeling. His “reference priors” are now also in widespread use. See Berger,
Bernardo and Sun (2009) for a rigorous and comprehensive treatment of the latter
topic.

The inclination to use a noninformative (albeit improper) prior is perhaps quite
understandable. The usual defense is simply that subjective Bayesian inference in-
volves the interjection of prior beliefs or intuition into a statistical analysis. The fact
that doing so may give one a good answer — possibly a better answer than other
approaches one might take — often fails to relieve the anxiety one might have about
introducing personal biases or misconceptions into the analysis. The old maxim “let
the data speak for itself” seems to argue against introducing subjective elements into
the statistical treatment of experimental data. This is true with special force in the
context of scientific inference, a context in which the prior opinions of the analyst
are traditionally excluded. The elimination of all sources of potential bias is a natu-
ral first step in developing an analysis that is deemed to be credible and worthy of
consideration. This seems to be prominent among the reasons that leaders in the field
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such as Berger (2006) and Efron (2005) argue that objective rather than subjective
Bayesian analysis is the appropriate mode of Bayesian inference in the statistical
analysis of scientific data.

Whatever the merits of an objective Bayesian analysis might be, one should rec-
ognize that the approach is patently non-Bayesian. The usual axiom system (see, e.g.,
Section 3.2) that drives Bayesian inference leads to the necessary conclusion that the
unique way to quantify uncertainty is through the assignment of probabilities to un-
certain events. The use of improper priors violates these axioms and is therefore
among the variety of procedures a statistician might use that “orthodox” Bayesians
would describe as incoherent. One might not be opposed, in principle, to the use of
“objective Bayesian analysis” (after all, a variety of widely respected estimators re-
sult from such an analysis), but the classification of the procedure as Bayesian is, in
the view of orthodox Bayesians, inappropriate. It is, instead, a frequentist procedure
properly belonging to the classical school of statistics. While it is true that something
resembling Bayes’ Theorem is used in such analyses to update the improper prior,
this process is a mathematical formality rather than a probabilistic calculation, since
Bayes’ Theorem, as a result lodged within the calculus of probability, only applies to
prior and posterior probabilities. Since an “objective prior” brings essentially noth-
ing to the table, save the possibility of some analytical or computational feasibility,
it might be thought of simply as another data analytic tool, in the same class, say, as
bootstrapping and uses of the EM algorithm — both important and effective proce-
dures that are, similarly, non-Bayesian. In the grand scheme of things, it cannot be
deemed unreasonable to take the view that “objective Bayesian procedures” are legit-
imate potential analyses that one might (perhaps even should) consider using. Their
merits should be judged, however, by their real or expected performance in particu-
lar applications as compared to other procedures one might carry out, including real
(proper) Bayesian analyses.

It seems worthwhile spending a moment reflecting upon what one sacrifices in
restricting attention to “objective” Bayes methods. An important practical concern
one might have about “objective Bayesian procedures” is simply the fact that, by
restricting oneself to this approach, one is ignoring the potentially substantial advan-
tages available in exploiting what one knows (or what one or more experts know)
about a particular experimental situation. In the simple yet compelling example of
estimating the bias of a freshly minted coin, it is quite difficult to justify ignoring
the fact that we all know a priori that the probability of heads is most certainly quite
close to 1/2. The classical (and the objective Bayesian) estimate of the probability of
heads would be quite unacceptable if one happened to observe the unlikely but still
possible string of ten consecutive heads in ten tosses of that coin.

Further, one can legitimately ask what one is really doing when one postulates
an improper prior for an unknown parameter. Does doing so have a natural inter-
pretation? It might be argued that the desired and actual interpretation of improper
priors is “prior ignorance,” that is, the state in which no given value of the unknown
parameter receives more “weight” than any other. But does an “objective” prior
achieve that goal? When Lebesgue measure is used as a prior measure for a loca-
tion parameter, one places infinitely more weight on the complement of the interval
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(−3,000,000,000,+3,000,000,000) than one places on the interval itself — clearly
a peculiar quantification of “prior ignorance.”

The foregoing discussion is not meant to be definitive with regard to the pros and
cons of modern implementations of Bayesian analysis. Instead, it is meant to moti-
vate the thesis that subjective Bayesian analysis and, in particular, the use of conju-
gate priors in subjective Bayesian inference, deserves a reexamination. In the section
that follows, I will argue that the apparently unexplored property of “Bayesian self-
consistency” is a characteristic that one might reasonably take as a requirement of a
Bayesian estimation procedure. Doing so certainly elevates the status of traditional
families of conjugate priors, as they are a broad and useful class of priors possessing
this property. Our study of possible “solutions” to the consensus problem provides
further evidence of the utility of conjugate prior models. In the latter problem, I will
examine how the estimators I will propose for use in the consensus problem compare
to frequentist estimators in the familiar context of sampling distributions belonging
to exponential families.

Exercise 6.1. Jeffreys (1961) proposed the use of a prior distribution whose “den-
sity” g is given by g(θ) ∝ [I(θ)]1/2, where I(θ) is the Fisher information corre-
sponding to a single observation X from Fθ . Jeffreys’ prior is typically improper;
when it isn’t, g is standardized so as to integrate to one. Show that Jeffreys’ prior
is invariant under smooth 1-1 transformations on θ , that is, show that if λ = h(θ),
where h is 1-1 and differentiable, then

[I(λ )]1/2 = [I(h−1(λ ))]1/2
∣∣∣∣dθ

dλ

∣∣∣∣ .

Exercise 6.2. Show that the Jeffreys’ prior on a location parameter θ is constant.

Exercise 6.3. If X |θ ∼ N (θ ,σ2), show that Jeffreys’ prior for θ is g(θ) ∝ 1 for
−∞ < θ < ∞ and that the Jeffreys’ prior for σ is g(σ) ∝ 1/σ for σ > 0.

Exercise 6.4. Let X |θ ∼B(n,θ). Show that Jeffreys’ prior for θ is Be(1/2,1/2).
(Note: In problems in which the posterior distribution of θ is asymptotically normal,
Bernardo’s “reference prior” reduces to the Jeffreys’ prior.)

Exercise 6.5. Consider a simple one-way random effects model with

Yi j = β +ui + εi j, i = 1, . . . ,k and j = 1, . . . ,J ,

where u1, . . . ,uk
iid∼N (0,σ2) and {εi j}

iid∼N (0,σ2
ε ), and the us and εs are assumed

to be independent. A Bayesian treatment of this model would place prior distribu-
tions on the model parameters β , σ2 and σ2

ε . Denote the associated priors’ “densi-
ties” as g(β ), g(σ2) and g(σ2

ε ), respectively. The posterior “density” may then be
represented as

g(σ2,σ2
ε ,u,β | y) ∝ f (y | β ,u,σ 2

ε ) f (u|σ2)g(β )g(σ2)g(σ2
ε ) .
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Tiao and Tan (Biometrika, 1965) propose the following improper priors for the model
parameters:

g(β ) ∝ 1, g(σ2) ∝ 1/σ
2 and g(σ2

ε ) ∝ 1/σ
2
ε .

Show that, for this choice of prior model, the posterior above is improper. (Note: If
you need guidance on how this may be shown, see Hill (JASA, 1965).)

6.2 Bayesian self-consistency

We begin by describing the basic inferential framework within which our discussion
and results will be lodged. It will be assumed that a random (i.i.d.) sample of size n is
available from an exponential family of distributions indexed by a scalar parameter
θ . We will be interested in the problem of estimating θ relative to a squared error
loss criterion. Assume that θ̂ is sufficient for θ and that it is an unbiased estimator of
θ .

In the parametrization to be used here, prior distributions will be indexed by two
particular parameters, the first being

θ
∗ = Eπ θ , (6.1)

the prior mean, with the second parameter ω representing what is generally referred
to as “the prior sample size.” These parameters are often represented as specific func-
tions of the parameters of the prior in its most common form (for example, for the
Be(α,β ) prior, θ ∗ = α/(α + β ) and ω = α + β ), though they may also be written
as specific functions of the mean µ and the variance σ 2 of the prior model. When the
beta prior Be(α ,β ) on the proportion θ has its standard parametrization, the mean of
θ is µ = θ ∗ = α/(α +β ) and the variance is σ2 = αβ/(α +β )2(α +β +1). In this
instance, one may write θ ∗ = µ and ω = {µ(1−µ)−σ2}/σ2; the beta model may
be parametrized in terms of θ ∗ and ω by replacing α and β by ωθ ∗ and ω(1−θ ∗)
in the standard parametrization. Unless otherwise stated, conjugate priors referred
to below are assumed to be parametrized in terms of θ ∗ and ω . Let π(θ ∗,ω) be a
“standard” conjugate prior model for θ . We will denote the family of priors of a
parametric form of interest by Π . Typical examples of such families are displayed in
Table 3.1.

When a conjugate prior is used for a specific sampling distribution in an expo-
nential family with parameter θ , the posterior mean is often a convex combination
of the prior mean θ ∗ and the UMVUE θ̂ and the weights on each are, respectively,
proportional to ω and the sample size n. Specifically,

E(θ |θ̂) =
ω

n+ω
θ
∗+

n
n+ω

θ̂ . (6.2)

Even though the term “prior sample size” would seem to require that the parameter
ω be a positive integer, we will use the term, as is customary, for any real ω > 0. It is
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clear from (6.2) where ω gets its name. As in the preceding chapter, the weight this
estimator places on θ̂ will be denoted by η ∈ (0,1) and is given by

η =
n

n+ω
. (6.3)

The best known and most useful property of a family of conjugate priors is its
closure under Bayesian updating, that is, the property that the posterior distribution
of the parameter belongs to the same family Π as the prior distribution. Indeed, this
property is often used as the definition of conjugacy, as in, for example, Gelman et al.
(2004). These authors also acknowledge, however, that this definition leaves some-
thing to be desired, as the family of all distributions on θ is also conjugate in this
sense. Diaconis and Ylvisaker (1979) showed that, under mild regularity conditions,
the properties of closure and a linear posterior mean characterize the “standard” con-
jugate prior families.

The notion of self-consistency of inferential procedures has arisen in a num-
ber of statistical contexts. In a survival-analysis setting, Efron (1967) defined self-
consistency in terms of a natural recursive relationship that nonparametric estimators
of a survival function might satisfy. Efron then showed that the Kaplan–Meier esti-
mator is the unique self-consistent estimator of the survival function on the interval
containing all deaths and censoring times. Tsai and Crowley (1985) identified self-
consistent estimators as the unique fixed points of nonparametric EM algorithms. In
this paper, we will look at self-consistency from a Bayesian perspective.

Definition 6.1. Given a fixed sufficient and unbiased estimator θ̂ of the scalar pa-
rameter θ and a prior distribution G with mean θ ∗, the Bayes estimator of θ with
respect to G, relative to squared error loss, is said to be self-consistent if

E(θ | θ̂ = θ
∗) = θ

∗ . (6.4)

Remark 6.1. Self-consistency is equivalent to the requirement that the prior mean
θ ∗ be a fixed point of the posterior mean function. Equation (6.4) says: if your ex-
perimental outcome agrees with your prior opinion about θ , then the experiment
shouldn’t change your opinion.

Remark 6.2. The definition above clearly depends on the estimator θ̂ of θ that one
chooses to use as a summary of the available data. It would thus seem that one should
speak of self-consistency relative to this estimator rather than in general. While this is
technically true, the reference to θ̂ will be subsumed in the sequel, since for sampling
distributions belonging to exponential families (which is our focus here), there can
only be one unbiased sufficient statistic, and special reference to the estimator θ̂ is
unnecessary.

Remark 6.3. Given that the self-consistency property is a reasonable expectation to
have in one’s prior modeling, it is natural to ask how broad the self-consistency prop-
erty is. We are not able to provide a definitive answer to this question at present, but
three specific claims can be substantiated. First, in the context of sampling distribu-
tions belonging to exponential families, the traditional conjugate families {π(θ ∗,ω)}
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are self-consistent. This is apparent from the fact that the posterior mean in such sit-
uations enjoys the convexity property in equation (6.2). Second, the property goes
beyond conjugate families, though such extensions appear to be rather limited. An
example of a self-consistent nonconjugate prior is mentioned at the end of the next
section in a problem involving a sampling distribution that is not a member of an
exponential family. Finally, it is clear that no improper prior can be self-consistent,
as the notion of prior mean is then vacuous.

There are a variety of circumstances in which estimators which are approxi-
mately Bayes in some sense (relative to G) are advocated for use. Further, since the
definition in (6.4) deals only with Bayes rules relative to squared error loss, some ap-
propriate extension of the definition would seem to be in order. One natural extension
of the notion of self-consistency that applies to such possibilities is the following:

Definition 6.2. Let G be a prior distribution for a scalar parameter θ , and denote
the mean of G by θ ∗. Let θ̂ be a sufficient, unbiased estimator for θ and let TG(θ̂) be
an estimator of θ that approximates (in some sense ) the Bayes estimator θ̂G relative
to a fixed loss criterion L(θ , θ̂). The estimator TG(θ̂) is said to be generalized self-
consistent relative to the prior G if it satisfies the equation

TG(θ ∗) = θ
∗ . (6.5)

Definition 6.2 mimics Definition 6.1 in requiring that the prior mean be a fixed
point of the estimating function. They both quantify the notion that one’s prior and
posterior opinion about the parameter θ should be the same when the data and your
prior opinion of θ agree.

Remark 6.4. It may not be immediately apparent from equations (6.4) or (6.5), but
both versions of self-consistency depend on the precise circumstances under which it
will be applied. More specifically, since the posterior mean of θ , given θ̂ , depends on
the size n of the available sample, a given prior distribution may be self-consistent
for a fixed sample size n1 and yet not satisfy the self-consistency equation for an
alternative sample size n2. This might very well seem to the reader to be a disturbing
characteristic of self-consistency. Yet the dependence of the prior model on the size
of one’s experiment is clearly anathema to the subjectivist Bayesian. One answer
to this apparent dilemma is that the designation of a prior distribution is a process
that takes place in the context of a given experiment, with the sample size fixed
and known. Thus, concerns about Bayesian inference in an alternative experiment
one doesn’t actually have in hand should be set aside. A seemingly more satisfactory
approach one could take would be to restrict attention to priors that are self-consistent
for all sample sizes in the experimental setting under study. It should be noted that
standard conjugate priors satisfy such a restriction.

Remark 6.5. When the estimator θ̂ is a discrete random variable, equation (6.4) is
well defined only if the mean θ ∗ of the prior under consideration lies within the sup-
port set S(θ̂) of θ̂ . When θ̂ is discrete, we will consider a prior to be self-consistent
if equation (6.4) is not violated. Thus, for example, the beta prior with parameters
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α = 1 and β =
√

2 is self-consistent when estimating θ based on the binomial obser-
vation X ∼B(n,θ) since the mean θ ∗ of this prior is irrational and thus θ ∗ /∈ S(θ̂)
for any given fixed value of n. The point of self-consistency is that one’s prior and
posterior opinions about θ should not be contradictory when the data confirms your
prior opinion. When θ̂ is continuous, self-consistency is fully characterized by equa-
tion (6.4). Similar remarks apply to the notion of generalized self-consistency.

A question that arises quite naturally concerns the breadth of the notion of
Bayesian self-consistency. We mentioned above that in the context of sampling distri-
butions belonging to exponential families and under squared error loss, standard con-
jugate prior distributions are self-consistent. Is it possible that the self-consistency
equation (6.4) actually characterizes standard prior distributions in the setting just
outlined? The following example provides a negative answer to this question.

Example 6.1. Consider a binomial experiment yielding the outcome X ∼B(10,θ),
and let π(a) represent the prior distribution that is the mixture of two specific Beta
distributions, namely, the prior aBe(3,2) + (1− a)Be(2,3), where a ∈ [0,1]. The
mean of this prior is θ ∗ = 2/5 + a/5. Given the distributions of X |θ and of θ as
specified above, the posterior distribution of θ | X = x has a density function given
by

f (θ |x) =
[
aθ

2+x(1−θ)11−x +(1−a)θ 1+x(1−θ)12−x] / A(x)

where

A(x) = a
Γ(3+ x)Γ(12− x)

Γ(15)
+(1−a)

Γ(2+ x)Γ(13− x)
Γ(15)

.

It follows that the posterior mean of θ , given X = x, is

E(θ | X = x) =
1
15

a(3+ x)(2+ x)+(1−a)(2+ x)(12− x)
a(2+ x)+(1−a)(12− x)

.

The self-consistency equation in (6.4) may be written here as

E
(

θ | p̂ =
2
5

+
a
5

)
=

2
5

+
a
5

, (6.6)

where p̂ = X/10. We would like to identify all values of a, that is, all mixtures
of the form π(a) for which (6.6) holds. Making the substitution y = 2/5 + a/5 or
equivalently, setting a = 5y−2, equation (6.6) becomes

1
15

(5y−2)(3+10y)(2+10y)+(3−5y)(2+10y)(12−10y)
(5y−2)(2+10y)+(3−5y)(12−10y)

= y . (6.7)

It is clear that (6.7) is equivalent to a cubic equation in y with three potential roots.
The fact that the distributions Be(3,2) and Be(2,3) are standard conjugate priors im-
plies that two of those roots are y = 2/5 and y = 3/5 (corresponding to the values
a = 0 and a = 1). It is a simple matter to confirm that the third root also resides
in the unit interval. Indeed, (6.7) is satisfied when y = 1/2, showing that the prior
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(1/2)Be(3,2) + (1/2)Be(2,3) also satisfies equation (6.4) in this problem. Thus,
while the class of priors satisfying the self-consistency equation is certainly quite
limited, it is apparent that the self-consistency equation does not apply exclusively
to the standard conjugate priors. �

An interesting question that remains open is whether or not, when sampling dis-
tributions are exponential families and the loss criterion is squared error, the self-
consistency property characterizes the standard prior distributions among prior dis-
tributions belonging to an exponential family. The example above does not shed light
on this question.

We now turn our attention to an investigation of the “consensus problem.” As
we shall see, the notions of conjugacy and of self-consistency arise naturally in the
approach we take to this problem. The “consensus estimator” to be recommended
for use in Section 6.3 will be seen to be generalized self-consistent relative to the
consensus prior distribution considered there.

Exercise 6.6. Consider a normal experiment yielding the outcome X ∼ N (µ ,1),
and let π(a) represent the prior distribution aN (1,1) + (1− a)N (−1,1), where
a ∈ [0,1]. For what values of the mixing constant a does the prior π(a) satisfy the
self-consistency equation (6.4)?

6.3 An approach to the consensus problem

The elicitation of prior opinion is an important element of the practice of subjec-
tive Bayesian analysis. While a statistician can always arrive at a prior distribution
through some form of introspection (or may decide on a given prior because of its
convenience), the major advantages that can be gained from a Bayesian analysis of-
ten come from consultation with experts in the subject matter pertaining to a given
application. Here, we will consider the problem that arises when several (say k) ex-
perts are consulted, and they have different, perhaps conflicting, prior opinions about
the parameter of interest. We will again assume that the sampling distribution in-
volved belongs to an exponential family. Because of the simplicity of using con-
jugate prior distributions in elicitation (by asking the expert for a best guess at the
parameter and the weight he/she would wish to place on it), we will assume that
each of the k experts has responded with a conjugate prior, resulting in the collection
{π(θ ∗i ,ωi), i = 1, . . . ,k}.

The question we now consider is how the statistician should deal with this prior
information. One approach would be to engage the experts in conversations that
might lead to convergence toward agreement about a single prior distribution for
use in the problem. This approach is laden with practical difficulties, including the
possibility that achieving such agreement proves to be impossible. The approach we
take here places the burden of finding a consensus prior opinion on the statistician’s
shoulders. It is perhaps natural to consider mixtures of the prior opinions, and in fact
that will be our starting point. Let us digress briefly to establish some notation.
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In the problem considered here, I will restrict attention to finite mixtures. Let
us consider the k distinct conjugate priors in the problem of estimating the scalar
parameter θ of an exponential family based on a random sample of size n. Let θ̂ be a
sufficient, unbiased estimator of θ , and let a = (a1,a2, . . . ,ak) be a vector satisfying
the conditions

ai ≥ 0 for i = 1, . . . ,k (6.8)

and
k

∑
i=1

ai = 1 . (6.9)

Let πa be the k-fold mixture of the priors π(θ ∗i ,ωi) according to the mixing distribu-
tion a, that is, let

πa =
k

∑
i=1

aiπ(θ ∗i ,ωi) . (6.10)

Use of the prior family of k-fold mixtures of conjugate priors offers some immediate
advantages. A number are listed here. (a) The mean of the prior πa is θ ∗a = ∑

k
i=1 aiθ

∗
i ,

the corresponding mixture of the means of the component conjugate priors. Its closed
form and natural interpretability are a boon to prior modeling. (b) The posterior dis-
tribution is again a k-fold mixture of conjugate priors, giving the prior model a form
of conjugacy. It should be noted, however, that the mixing distribution of the pos-
terior model will typically be data dependent. (c) These models are appropriately
fashioned to play a natural role in representing the consensus prior when several ex-
perts are consulted in the process of eliciting prior opinions; the mixing distribution
a affords the statistician the flexibility of assigning each expert the weight or influ-
ence that seems due. While the mixture in (6.10) has appeal as a prior model, the
posterior distribution is a complex mixture of the component conjugate posteriors,
and the Bayes estimator of θ relative to πa can be quite complex. In addition, it loses
the intuitive appeal and convenience of linearity and generally fails to satisfy the
self-consistency condition in (6.4).

A natural alternative to the Bayes estimator in the consensus problem, relative
to the prior in (6.10), is the class of convex combinations of the individual Bayes
estimators with respect to the component conjugate priors. Let us consider for further
study the class of estimators of the form

θ̃π =
k

∑
i=1

aiθ̂i , (6.11)

where θ̂i = (1−ηi)θ ∗i +ηiθ̂ , the Bayes estimator with respect to π(θ ∗i ,ωi), with ηi =
n/(n + ωi). The estimator in (6.11) has a number of practical advantages. First, the
estimator is a linear function of the sufficient unbiased estimator θ̂ . Linear estimators
have been found useful in Bayesian inference, and have been espoused in selected
circumstances (see, e.g., Hartigan (1969) and Ericson (1969, 1970)) for both their
tractability and their interpretability. Second, this estimator is ideally constructed
as a consensus estimator. The statistician, having elicited opinions from k experts,
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can use the mixture in (6.11) to assign the weight to each expert’s opinion that he
feels the input merits. Finally, under specific conditions given in the results below,
we will see that consensus estimators enjoy both generalized self-consistency and a
desirable convexity property, and, in fact, will be the Bayes estimator relative to a
conjugate prior with the same mean as the mixture of conjugate priors in (6.10). Let
us proceed to the theoretical results that establish these facts. The following result
provides conditions under which the linear estimator in (6.11) has the generalized
self-consistency property.

Theorem 6.1. Let θ̂ = θ̂(X1, . . . ,Xn) be a sufficient, unbiased estimator of θ , the
parameter of an exponential family, and let θ̃π be the linear estimator in (6.11). If
θ ∗a ∈ S(θ̂), then the estimator θ̃π is generalized self-consistent (GSC) if and only if

k

∑
i=1

aiηi(θ ∗a −θ
∗
i ) = 0 . (6.12)

If θ ∗a /∈ S(θ̂), then θ̃π is generalized self-consistent in the sense of Remark 6.5.

Proof. The GSC equation in (6.5), with T (θ̂) = θ̃π , may be written as

k

∑
i=1

ai[(1−ηi)θ ∗i +ηiθ
∗
a ] = θ

∗
a . (6.13)

Since θ ∗a = ∑
k
i=1 aiθ

∗
i , equation (6.13) may be rewritten as

k

∑
i=1

aiθ
∗
i −

k

∑
i=1

aiηiθ
∗
i +

k

∑
i=1

aiηiθ
∗
a =

k

∑
i=1

aiθ
∗
i . (6.14)

Upon the cancellation of the common term ∑
k
i=1 aiθ

∗
i on both sides of (6.14), we

have
k

∑
i=1

aiηi(θ ∗a −θ
∗
i ) = 0 . � (6.15)

The necessary and sufficient conditions for the generalized self-consistency of
θ̃π given in Theorem 6.1 (namely, either (a) θ ∗a /∈ S(θ̂) or (b) θ ∗a ∈ S(θ̂) and (6.12)
holds) allow for a broad range of possible generalized self-consistent estimators.
It is of particular interest to identify circumstances in which a given prior is self-
consistent for any experiment in the class under consideration, that is, for any value
of the sample size n. If θ ∗a ∈ S(θ̂) for all n, either of the conditions (i) θ ∗i = θ ∗a for
i = 1, . . . ,k or (ii) ηi = η for i = 1, . . . ,k is sufficient for ensuring the generalized
self-consistency of θ̃π for all n. Condition (ii) has some practical value in that it can
be implemented by the statistician by eliciting only the prior mean from each expert
and then assigning each a fixed, common prior sample size ω . This prior sample
size might, for example, represent the weight the statistician wishes to place on the
combined prior input. This interpretation is borne out in equation (6.17) below.

The following example illustrates the dependence of generalized self-consistency
on condition (6.12).
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Example 6.2. Suppose that X ∼B(10,θ) and θ̂ = X/10. Let k = 2 and a = (0.64,
0.36), and take πa = 0.64 Beta(3,1) + 0.36 Beta(1,2). We thus have that θ ∗1 = 3/4
and θ ∗2 = 1/3 and that θ ∗a = 6/10, while η1 = 10/14 and η2 = 10/13. We note that
condition (6.12) fails to hold under these circumstances. The estimator θ̃π of θ is
given by

θ̃π = 0.64[3/14+(10/14)θ̂ ]+0.36[1/13+(10/13)θ̂ ] = 15/91+(334/455)θ̂ .

If θ̂ = θ ∗a = 0.6, then θ̃π = 0.1648 + 0.7341(0.6) = 0.6052. Thus, when equa-
tion (6.12) fails, the otherwise natural estimator θ̃π can take on a numerical value
that differs from the common value suggested by one’s prior distribution and by the
data themselves. �

What conditions on the parameters {ai,θ
∗
i and ηi, i = 1, . . . ,k} of the prior model

will guarantee that the estimator θ̃π is a convex combination of the prior mean θ ∗a
and the estimator θ̂? Because of its interpretability, this convexity property is one
of the most appealing features of standard conjugate priors. It allows one to pursue
prior elicitation through the two most natural questions one might ask: “what is one’s
best guess at the value of the unknown parameter?” and “how much weight would
one put on that guess relative to the weight one would put on the estimator θ̂?” The
answer to the question concerning convexity is provided in the result below.

Theorem 6.2. . Let θ̂ = θ̂(X1, . . . ,Xn) be a sufficient, unbiased estimator of θ , the
parameter of an exponential family, and let θ̃π be the linear estimator of θ in (6.11).
The estimator θ̃π may be written as

θ̃π = (1− c)θ ∗a + cθ̂ (6.16)

for some c ∈ (0,1) if and only if the generalized self-consistency equation (6.12)
holds.

Proof. The estimator θ̃π will have the form in (6.16) if and only if c = ∑
k
i=1 aiηi. It

follows that (6.16) holds if and only if

k

∑
i=1

ai(1−ηi)θ ∗i =

(
1−

k

∑
i=1

aiηi

)
θ
∗
a ,

an equation which reduces to (6.12). �

The two theorems above demonstrate the somewhat surprising fact that condition
(6.12) simultaneously guarantees two important properties of the associated consen-
sus estimator θ̃π , namely, that the estimator will be self-consistent in the generalized
sense and that it can be written as a convex combination of the “prior guess” θ ∗a and
the sufficient, unbiased estimator θ̂ of θ . The latter fact has, by itself, a further inter-
esting implication: we may infer from it that a consensus estimator θ̃π which satisfies
condition (6.12) is in fact a Bayes estimator! Indeed, it is the Bayes estimator of θ
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with respect to the conjugate prior π(θ ∗a ,ω) and squared error loss, where the prior
sample size ω is given by

ω = n

(
1−

k

∑
i=1

aiηi

)/
k

∑
i=1

aiηi . (6.17)

It is thus apparent that, when estimating the parameter θ of an exponential family
with squared error loss, an estimator θ̃π of θ satisfying condition (6.12) will also
satisfy the assumptions of Theorem 5.1. It follows that, for the class of consensus
estimators under study, that is, for any θ̃π having the form in (6.11) and satisfy-
ing the condition (6.12), it is possible to directly compare the expected performance
of the Bayes estimator θ̃π and the best frequentist estimator θ̂ . The availability of
such comparisons provides strong motivation for the use of the proposed consensus
estimators, as the assessment of the comparative performance of alternative Bayes
estimators (including Bayes rules wrt mixtures of standard conjugate priors) in the
consensus problem is generally intractable, while the performance characteristics of
consensus estimators defined by (6.11) and (6.12) relative to that of the best frequen-
tist estimator can be described quite precisely, leading to rather explicit guidance
regarding the potential efficacy of the estimator θ̃π . Applying Theorem 5.1, one may
characterize the conditions under which the proposed consensus estimators are su-
perior to their frequentist counterparts. For any fixed distribution G0 for which the
expectations exist,

r(G0, θ̃π)≤ r(G0, θ̂) (6.18)

if and only if

VG0(θ)+

(
k

∑
i=1

aiθ
∗
i −EG0θ

)2

≤ 1+∑
k
i=1 aiηi

1−∑
k
i=1 aiηi

r(G0, θ̂) . (6.19)

It follows that, in the context of exponential families and squared error loss, when
using a consensus estimator θ̃π satisfying equation (6.12), the Bayesian will have an
advantage over the frequentist in estimating θ unless the Bayesian is both misguided
and stubborn, that is, unless he utilizes a prior mean θ ∗a that is substantially distant
from the true (though unknown) value of θ and he places a considerable amount of
weight on that prior mean.

The statistical framework studied here has been restricted to estimation problems
involving squared error loss and sampling distributions belonging to one-parameter
exponential families. Do the types of results obtained here have wider applicability?
In Chapters 7 and 8, we will investigate the “threshold problem” in broader contexts
— estimation of a vector-valued parameter and estimation with asymmetric loss.
Regarding the breadth of applicability of the notion of Bayesian self-consistency,
it is easy to verify that, under squared error loss, the Bayes estimator of θ when
X |θ ∼U [0,θ ] and θ has prior distribution Γ(2,1) is self-consistent, demonstrating
that the concept extends beyond sampling distributions from exponential families
coupled with standard conjugate priors or selected mixtures thereof.
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Exercise 6.7. Two metallurgists are consulted about the mean tensile strength of a
newly developed alloy when subjected to a random stress. The strength, measured as
the strain at peak load (a standard proxy for the strength of a material), is modeled
as an exponential variable with mean θ . If a sample of size 25 yields a mean X = 4
and the two experts have provided prior guesses θ ∗1 = 5 and θ ∗2 = 6 (with η1 = η2

set equal to 1/2), identify the class of consensus estimators θ̃π that are superior to the
frequentist estimator X (in the sense of (6.19)) if the true value of θ happens to be
4.25.

Exercise 6.8. Prove the claim in this chapter’s last sentence.



7

Bayesian vs. Frequentist Shrinkage in Multivariate
Normal Problems

7.1 Preliminaries

This chapter is dedicated to the comparison of Bayes and frequentist estimators of
the mean θθθ of a multivariate normal distribution in high dimensions. For dimension
k ≥ 3, the James–Stein estimator specified in (2.15) (and its more general form to
be specified below) is usually the frequentist estimator of choice. The estimator is
known to improve uniformly upon the sample mean vector X as an estimator of θθθ

when k ≥ 3, and while it is also known that it is not itself admissible, extant al-
ternative estimators with smaller risk functions are known to offer only very slight
improvement. For this and other reasons, the James–Stein estimator is widely used
among estimators which exploit the notion of shrinkage. In the results described in
this chapter, I will use the form of the James–Stein estimator which shrinks X to-
ward a (possibly nonzero) distinguished point. This serves the purpose of placing the
James–Stein estimator and the Bayes estimator of θθθ with respect to a standard con-
jugate prior distribution in comparable frameworks, since the latter also shrinks X
toward a distinguished point. It is interesting to note that the James–Stein estimator
has a certain Bayesian flavor that goes beyond the empirical Bayes character high-
lighted in the writings of Efron and Morris (1973, etc.) in that the act of shrinking
toward a particular parameter vector suggests that the statistician using this estima-
tor is exercising some form of introspection in determining a good “prior guess” at
θθθ. The Bayesian of course goes further, specifying, a priori, the weight he wishes
to place on the prior guess. What results in the latter case is an alternative form
of shrinkage, one that leads to a linear combination of X and the prior guess, with
weights influenced by the prior distribution rather than by the observed data. Since X
is a sufficient statistic for the mean of a multivariate normal distribution with known
variance-covariance matrix ΣΣΣ, I will henceforth, without loss of generality, take the
sample size n to be 1.

A general treatment of a comparison between Bayesian and frequentist shrinkage
in estimating the mean vector of the distribution N (θθθ,ΣΣΣ) remains, as of the present
exposition, intractable. I will begin by defining the threshold problem in the general
case. I will then turn to the special case from which considerable insight and intuition
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can be gleaned and on which the work presented in this chapter is focused. The
core of this chapter is based on two papers in which the solution of the version of
the threshold problem treated here is given. The reader is referred to Vestrup and
Samaniego (2004a, 2004b) for detailed proofs and further discussion.

As in Chapters 4 and 5, we will posit the existence of a “true prior distribution”
G0 representing the true state of nature in a given estimation problem. As before, the
special case in which G0 is degenerate at a point θθθ0 — the true but unknown value
of the target parameter θθθ — will play a prominent role in the analysis pursued here,
as this assumption is appropriate in most applications of interest, where θθθ is simply
an unknown k-dimensional vector. In a general treatment of the threshold problem,
one would typically make the following assumptions regarding the true prior G0, the
operational prior G, the sampling distribution of X and the loss function L:

G0 : θθθ∼Nk (θθθ0,ΣΣΣ0) (7.1)
G : θθθ∼Nk (θθθG,ΣΣΣG) (7.2)
FX|θθθ : X|θθθ∼Nk (θθθ,ΣΣΣ) (7.3)

where ΣΣΣ is a known positive definite matrix, and

L(θθθ,a) = (θθθ−a)′ΣΣΣ−1(θθθ−a) . (7.4)

The Bayes risk EG0EX|θθθL(θθθ,θ̂θθG), relative to the true prior G0, of the Bayes estimator
θ̂θθG wrt the operational prior G is shown in Vestrup and Samaniego (2003) to be

r(G0,θ̂θθG)= tr
(

ΣΣΣ
−1/2AΣΣΣA′ΣΣΣ−1/2

)
+tr
(

ΣΣΣ
−1/2BΣΣΣ0B′ΣΣΣ−1/2

)
+
∥∥∥ΣΣΣ−1/2B(θθθG−θθθ0)

∥∥∥2
,

(7.5)
where A = ΣΣΣG(ΣΣΣG +ΣΣΣ)−1 and B = I−A. The James–Stein estimator which shrinks
X toward the constant vector θθθ∗ will be denoted by θ̂θθJS,θθθ∗ . The Bayes risk of the
θ̂θθJS,θθθ∗ (in its general form, i.e., applicable to estimating the mean θθθ in the model
(7.3)) relative to the conjugate prior G0 in (7.1) is also derived in Vestrup and Sam-
aniego (2004b), and is shown to be given by an infinite series involving expectations
of rather complex functions of an infinite collection of Poisson random variables. In-
spection of these two expressions for Bayes risk makes clear that the determination
of the class of operational priors G for which the Bayes estimator θ̂θθG is superior to
the James–Stein estimator θ̂θθJS,θθθ∗ which shrinks X toward the vector θθθG, that is, for
which

r
(

G0,θ̂θθG

)
≤ r
(

G0,θ̂θθJS,θθθ∗

)
(7.6)

is not a tractable exercise. (I have nonetheless listed this version of the threshold
problem as Exercise 7.1, and I invite the highly motivated, long-suffering reader to
mail me his or her solution!)

The following simplifications do lead to a definitive solution which yields sub-
stantial insight. Consider the following special case of the framework in (7.1)–(7.4):
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G0 : θθθ = θθθ0 with probability 1 (7.7)
G : θθθ∼Nk

(
θθθG,σ2

GI
)

(7.8)

FX|θθθ : X|θθθ∼Nk
(
θθθ,σ2I

)
(7.9)

where σ2 is a known constant, and

L(θθθ,a) =
1

σ2

k

∑
i=1

(θi−ai)2 . (7.10)

The framework in (7.8)–(7.10) corresponds to Robbins’ (1951) original formulation
of the estimation problem of interest as a compound decision problem and is the con-
text in which Stein (1956) first demonstrated the inadmissibility of the sample mean
in dimension k ≥ 3. The specification of the true prior in (7.7) is the most common
description of the “truth” in applications involving the estimation of a multivariate
normal mean. In this simpler context, the Bayes estimator of θθθ with respect to the
operational prior G is

θ̂θθG =
σ2

G

σ2 +σ2
G

X+
σ2

σ2 +σ2
G

θθθG , (7.11)

while the James–Stein estimator which shrinks X toward θθθG is given by

θ̂θθJS,θθθG = (X−θθθG)
(

1− σ2(k−2)
‖X−θθθG‖2

)
+θθθG . (7.12)

In the framework of (7.7)–(7.10), the Bayes risks of the two estimators, relative to
the degenerate prior G0, reduce to

r(G0,θ̂θθG) =
kσ4

G +σ2‖θθθG−θθθ0‖2

(σ2 +σ2
G)2 (7.13)

and

r
(

G0,θ̂θθJS,θθθG

)
= k− (k−2)E

(
1

k−2+2T

)
, (7.14)

where T ∼ P(‖θθθG−θθθ0‖2/2σ2). The latter expression matches that derived by James
and Stein (1961). In the developments that follow, it will be convenient to denote the
Euclidean distance between the prior mean and the true value of θθθ (or mean of G0)
by

∆ = ‖θθθG−θθθ0‖2 . (7.15)

Taking T ∼ P(∆/2σ2), the inequality r(G0,θ̂θθG)≤ r(G0,θ̂θθJS,θθθG) may then be written
as

kσ4
G +σ2∆

(σ2 +σ2
G)2 ≤ k− (k−2)E

(
1

k−2+2T

)
. (7.16)

Exercise 7.1. Characterize the solutions {G} such that r(G0,θ̂θθG)≤ r(G0,θ̂θθJS,θθθG) un-
der the assumptions (7.1)–(7.4). Mail your result to the author. ,
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Exercise 7.2. Under the sampling assumption in (7.9) and the loss function in (7.10),
verify that the estimator θ̂θθ = X∼ FX|θθθ has a constant risk function.

Exercise 7.3. Suppose the true prior G0 is degenerate at the point θθθ0 and that the
operational prior G in (7.8) is mean correct. Taking n = 1 and θ̂ = X in the framework
of (7.7)–(7.10), show that r(G0,θ̂θθG) ≤ r(G0,θ̂θθ) uniformly in the prior variance σ2

G.
(Note: This result implies that any Bayes estimator with respect to a mean-correct
prior will uniformly outperform the sample mean X based on an MVN sample of
arbitrary size n.)

7.2 A solution to the threshold problem

Characterizing the prior specifications (θθθG,σ2
G) for which the inequality in (7.16)

holds (that is, characterizing the Bayes estimators which outperform the James–Stein
estimator under the modeling assumptions (7.7)–(7.10)) will involve a detailed study
of a collection of functions of the elements k, ∆ and σ2. The first of these functions
is represented by an expression that does not admit to a closed form but can be
evaluated via simulation with arbitrarily high precision. Let

A(k,∆ ,σ2) = E
(

1
k−2+2T

)
, (7.17)

where T ∼ P(∆/2σ2). Using this notation, we may rewrite (7.16) as B(σ2
G) ≤ 0,

where B(σ2
G) is the quadratic function of the prior variance σ2

G given by

B(σ2
G) = (σ2

G)2[(k−2)2A(k,∆ ,σ2)]+σ
2
G[2σ

2((k−2)2A(k,∆ ,σ2)− k)]
+σ

2[∆ −σ
2(k− (k−2)2A(k,∆ ,σ2))] . (7.18)

The coefficient of (σ2
G)2 in (7.18) being positive, we may describe, for any fixed

values of k, ∆ and σ2
G, the values of σ2

G for which (7.16) holds to be precisely the
collection of positive numbers between the two roots of the equation B(σ2

G) = 0.
Further progress toward a solution requires that we check that the discriminant as-
sociated with this equation is positive. Vestrup (2001) showed that this discriminant
reduces to

C(k,∆ ,σ2) = 4σ
4[k2− (k−2)2(k +∆/σ

2)A(k,∆ ,σ2)] . (7.19)

A proof of the following result may be found in Vestrup and Samaniego (2004b).

Theorem 7.1. For any k ≥ 3 and any fixed value of σ2, the function C(k,∆ ,σ2) in
(7.19) is a positive function which increases from 8kσ2 when ∆ = 0 to 16(k−1)σ4

as ∆ → ∞.

A deeper investigation into the class of “superior Bayes estimators” in this prob-
lem requires some additional ideas and notation. My intention is to provide the main
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results obtained by Vestrup and Samaniego (2004a, 2004b), along with the motiva-
tion, intuition and interpretation of these results, but I will state them without proofs,
as the details of these proofs are excruciatingly tedious (and only possible, really,
when one of the authors desperately wants to finish his doctoral dissertation). Hav-
ing obtained in Theorem 7.1 the fact that the quadratic function B(σ2

G) has two real
roots, we will wish to ascertain that the interval bounded above and below by these
roots contains an interval of positive values. The results below confirm this fact and
provide, in addition, a number of other useful facts about this latter interval. Col-
lectively, the theoretical results discussed here show that (i) for any fixed dimension
k and choice of prior mean θθθG, there is an interval in the positive real line such
that Bayesian shrinkage outperforms the James–Stein estimator if and only if the
prior variance σ2

G lies in that interval, (ii) when the operational prior G is mean-
correct, that is, when EGθθθ = EG0θθθ, this interval can be specifically identified as(

0, 2+
√

2k
k−2 σ2

)
, (iii) for any fixed value of k and σ2, both the lower bound L and the

upper bound U on σ 2
G which define the interval of Bayesian superiority tend to ∞ as

∆ → ∞, (iv) for any fixed value of k and σ2, the length of the interval which guaran-
tees Bayesian superiority also tends to ∞ as ∆ → ∞ and (v) the ratio R = (U−L)/U
decreases as ∆ → ∞. We will return to the interpretation and discussion of these
outcomes. First, we will define the additional notation that allows us to make these
claims precise.

Let us now introduce the following additional functions of the triplet (k,∆ ,σ2).
For k ≥ 3, ∆ ≥ 0 and σ2 ≥ 0, define

U(k,∆ ,σ2) = the larger root of the equation B(σ2
G) = 0,

H(k,∆ ,σ2) = the smaller root of the equation B(σ2
G) = 0,

L(k,∆ ,σ2) = max(0, H(k,∆ ,σ2)),
I(k,∆ ,σ2) = U(k,∆ ,σ2)−L(k,∆ ,σ2), and
R(k,∆ ,σ2) = I(k,∆ ,σ2)/U(k,∆ ,σ2).

The following results concerning these functions were proven by Vestrup and Sam-
aniego (2004a). The first result shows that the interval of values of σ2

G for which θ̂θθG

dominates θ̂θθJS,θθθG is a nonempty interval of positive real numbers.

Theorem 7.2. For every k≥ 3 and σ2 ≥ 0, the function U(k,∆ ,σ2) is increasing for
∆ ∈ [0,∞), with

U(k,0,σ2) =
2+
√

2k
k−2

σ
2 and lim

∆→∞
U(k,∆ ,σ2) = +∞ . (7.20)

Theorem 7.3. For every k ≥ 3, ∆ ≥ 0 and σ 2 ≥ 0, the inequality

r
(

G0,θ̂θθG

)
≤ r
(

G0,θ̂θθJS,θθθG

)
(7.21)

is equivalent to the inequality

L(k,∆ ,σ2)≤ σ
2
G ≤U(k,∆ ,σ2) , (7.22)

where 0≤ L < U ≤ ∞.
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Theorem 7.4. For every k≥ 3 and σ2 ≥ 0, the function L(k,∆ ,σ2) is nondecreasing
for ∆ ∈ [0,∞) from 0 at ∆ = 0 to ∞ as ∆ → ∞. Also, there exists a ∆∗ = ∆ ∗(k,σ2) ∈
[0,∞) such that L(k,∆ ,σ2) = 0 if and only if ∆ ∈ [0,∆ ∗].

Theorem 7.5. For every k ≥ 3 and σ2 ≥ 0, the function I(k,∆ ,σ2) is increasing for
∆ ∈ [0,∞), with

I(k,0,σ2) =
2+
√

2k
k−2

σ
2 and lim

∆→∞
I(k,∆ ,σ2) = +∞ . (7.23)

Theorem 7.6. For every k≥ 3 and σ2 ≥ 0, the function R(k,∆ ,σ2) is decreasing for
∆ ∈ [0,∞), with

R(k,0,σ2) = 1 and lim
∆→∞

R(k,∆ ,σ2) =
4
√

k−1
k +2

√
k−1

. (7.24)

Exercise 7.4. Verify the lower bound 2+
√

2k
k−2 σ2 for U in Theorem 7.2 and the upper

bound 1 for R in Theorem 7.6.

7.3 Discussion

The goal of this chapter is to compare Bayesian and frequentist shrinkage in the
context of estimating a multivariate normal mean. While general formulations of this
problem pose seemingly intractable analytical challenges, quite interesting answers
and insights can be obtained in the special framework we have considered. For the
sake of executing a concrete analysis, we have restricted attention to a formulation in
which the true prior distribution G0 is degenerate at a point θθθ0, the normal sampling
distribution is assumed to have the diagonal covariance matrix ΣΣΣ = σ2I (with σ2

assumed known), and the operational prior G is assumed to be the standard conjugate
prior, again with a diagonal covariance matrix ΣΣΣG = σ2

GI.
The problem studied here is admittedly constrained, but as has been mentioned,

it is nonetheless of some interest in its own right. First, the restriction to a degenerate
true prior is in line with the standard view of the target parameter in an estimation
problem as simply a fixed unknown vector. While a more general G0 might be called
for in selected (though perhaps somewhat rare) circumstances, the restriction made
here is an innocuous one in most real applications. Regarding the assumption of
independence and a common variance for the components of the sampling distribu-
tion, we simply note that these are common assumptions in the multivariate context
studied, patterned after the assumptions made in the foundational work by Robbins
(1951) and by Stein (1956). The framework studied has ample historical precedents
as well as many counterparts that are widely used in modern-day statistical analyses
(such as the assumption of independent errors with common variance made in the
theory and applications of the general linear model). But perhaps the most important
reason that we should not be unduly concerned about the restrictions under which the
analysis we have discussed was undertaken is the interesting conclusion to which this
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work leads. As I will explain in more detail below, even in the restricted comparison
described above, one finds that while there is, as expected, a threshold separating
good and bad Bayesian procedures, the picture for the Bayesian is not nearly as rosy
as it is in the one-parameter case examined in Chapter 5. In high-dimensional prob-
lems, the Bayesian has a strikingly narrower window for selecting an estimator that
outperforms the James–Stein estimator. If that is the case in the framework encap-
sulated in (7.7)–(7.10), then the performance of Bayesian shrinkage in the general
framework in (7.2)–(7.4) might well be expected, in most applications, to be inferior
to that of the James–Stein estimator, that is, one can reasonably expect that Bayesian
shrinkage will prevail over the frequentist alternative only if the prior distribution
belongs to a relatively limited subspace of the space of available priors.

Let us consider some numerical examples that support the claim made in the last
sentence of the preceding paragraph. When, for example, k = 7, one can ascertain
that the bounds L and U for which σ2

G ∈ (L,U) ensure the superiority of Bayesian
shrinkage over frequentist (i.e., James–Stein) shrinkage obey, for large ∆ , the ap-
proximate relationship

L(7,∆ ,σ2)≈ (0.177)U(7,∆ ,σ2) . (7.25)

On the other hand, when k = 101, this relationship is

L(7,∆ ,σ2)≈ (0.75)U(7,∆ ,σ2) . (7.26)

Clearly, the conditions for Bayesian superiority are strikingly reduced in high di-
mensions. In the latter instance, Bayesian shrinkage will be inferior to frequentist
shrinkage if either σ2

G ∈ (0,(0.75)U) or σ2
G ∈ (U,∞). These are not very attractive

odds for the Bayesian! Further, let’s consider the situation in which the Bayesian’s
operational prior is mean-correct (i.e., ∆ = 0), a case in which the Bayesian would
expect to do quite well. Here, Theorems 7.2 and 7.3 imply that Bayesian shrinkage
outperforms the James–Stein estimator (which is also assumed to shrink X toward
θθθ0, the true value of θθθ) if and only if

0≤ σ
2
G ≤

2+
√

2k
k−2

σ
2 . (7.27)

When k = 8, for example, Bayesian shrinkage outperforms James–Stein shrinkage if
and only if

σ
2
G ≤ σ

2 . (7.28)

To prevail over the James–Stein estimator in this situation, the Bayesian must be
mean correct (no mean feat, if I may be permitted another pun), and must also ex-
plicitly exhibit a high level of confidence in the quality of his prior guess. Conserva-
tive prior modeling will not serve his interests well under these circumstances. This
outcome lies in stark contrast to the comparison of Bayes and frequentist estimators
in the one-parameter problems treated in Chapter 5 where the Bayes estimator with
respect to a mean-correct operational prior will uniformly dominate the best frequen-
tist estimator. It is perhaps worth noting that a mean-correct prior ensures uniform
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Bayesian superiority over the sample mean X in estimating the mean of a multivari-
ate normal distribution (see Vestrup (2001)). In a simplified version of the problem,
this latter result is stated in Exercise 7.3.

Lest the reader conclude from the above that one should not attempt Bayesian
shrinkage in estimating a multivariate normal mean, let me comment on some of the
positives of a Bayesian analysis in such problems. First, note that the inequality in
(7.27) indicates that “sharp” prior information about the true value of θθθ is clearly
of value and can cede the advantage to the Bayesian over the frequentist. Further,
Theorem 7.5 indicates that, even when the distance ∆ between one’s prior guess
and the true value of the parameter is large, there is a fairly generous window of
possible specifications of the prior variance σ 2

G which ensure Bayesian superiority.
Indeed, this latter theorem indicates that the length U −L of the interval associated
with Bayesian domination actually tends to ∞ as ∆ → ∞. Clearly, the misguided
Bayesian whose prior guess is quite distant from the truth still has the opportunity to
outperform the frequentist, provided his prior variance is properly chosen. However, I
would not wish to leave the impression that the latter choice is an easy one. Bayesian
shrinkage will outperform James–Stein shrinkage in such situations only when the
prior variance σ 2

G is neither too small nor too large, making the specification of σ2
G a

rather delicate matter.
What are the take-home lessons of this chapter? In a general and somewhat ab-

stract sense, this chapter underscores the fact that Bayesian estimation of a high-
dimensional parameter is a difficult enterprise — a fact that is not particularly sur-
prising, given that the specification of a prior model which leads to inferences that
are superior to notable frequentist alternatives is quite challenging. It is clear that
even in the simplified comparison described here, where the prior model involves
only (k + 1) parameters, the opportunity of inferior Bayesian inference is far from
negligible. In the general framework specified in (7.2)–(7.4), that opportunity is no
doubt larger. The situation becomes all the more imposing once we transition to
the real problem one would typically face in practice, the problem of estimating the
mean of a normal distribution with an unknown covariance matrix ΣΣΣ. What undoubt-
edly remains true in all versions of this problem is the fact that there is a threshold
separating good priors from bad priors. From the investigation above, it appears that
the relative size of the collection of good priors among the space of available priors
grows smaller as the dimension of the estimation problem grows, and the identifica-
tion of a prior distribution which will lead to better inferences than a good frequentist
estimator becomes increasingly difficult. This suggests that Bayesian estimators of
vector-valued parameters must be used with considerable care, as the importance
of “good prior modeling” becomes substantially magnified as the dimension of the
problem of interest grows.
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Comparing Bayesian and Frequentist Estimators
under Asymmetric Loss

8.1 Introduction

While many estimation problems involving one or more parameters are treated using
a symmetric loss function which gives equal weight to estimation errors that are the
same “distance” from the true parameter value, there are clearly problems in which
estimation errors in a particular direction are considered more serious than errors in
another direction. In univariate problems, it may well be the case that overestima-
tion has potential repercussions that underestimation does not (or, of course, vice
versa). For example, Varian (1975) motivated the use of asymmetric loss functions
in estimation problems arising in real estate assessment, where the overestimation
of a property’s value might cause it to remain on the market unsold for an extended
period, ultimately costing the seller inordinate and unnecessary expenses. The esti-
mation of peak water flow in the construction of dams or levies clearly has asymmet-
ric consequences; overestimation might lead to increased construction costs while
underestimation might lead to the much more serious consequence of subsequent
overflows which can seriously threaten lives and property in adjacent communities.
Further examples of contexts requiring the asymmetric treatment of estimation er-
rors are given in papers by Shao and Chow (1991), who treat estimation problems
regarding release dates of certain pharmaceutical products, by Thompson and Basu
(1996), who treat asymmetric problems arising in reliability and by Zellner and Palm
(1974), who considers a variety of problems in the area of econometrics.

In this chapter, I will consider extensions to the comparison of Bayes and fre-
quentist estimators to the case of asymmetric loss. While there are a variety of pos-
sible loss functions one could consider in such a study, I will restrict attention to the
Linex loss function introduced in Section 1.3. This is the formulation of asymmetry
that appears to be the most widely used, and it represents, as well, a loss function
under which the associated estimation problems are manageable analytically. The
reader will recall the form of the Linex loss function from our earlier discussion:

L(θ , θ̂) = ec(θ̂−θ)− c(θ̂ −θ)−1 , (8.1)
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where a is a fixed and known constant. As noted earlier, the Linex loss func-
tion achieves its minimum 0 when θ̂ = θ and is a convex function of the differ-
ence ∆ = (θ̂ − θ) ∈ (−∞,∞), being decreasing for ∆ ∈ (−∞,0) and increasing for
∆ ∈ (0,∞). When a is positive, Linex loss grows exponentially in positive ∆ , but
behaves approximately linearly for negative values of ∆ . Thus, when c > 0, Linex
loss imposes a substantial penalty for overestimation, with the opposite being true
when c < 0. Under Linex loss, the form of the Bayes estimator of a scalar parameter
θ with respect to the prior G is given in Theorem 3.4.

The framework to be studied in succeeding sections resembles that found in
Chapters 5 and 7. Specifically, my aim will be to identify, in two quite different
settings, the circumstances in which the Bayes estimator of a parameter of interest,
with respect to a fixed “operational” prior G, outperforms the classical (frequentist)
estimator of that parameter, with the Bayes risk of each estimator relative to the “true
prior distribution” G0 being the basis for comparison. This of course defines a thresh-
old problem in the scenarios to be investigated. In the problems to be examined here,
the classical estimator on which we will focus is the maximum likelihood estimator
of the unknown parameter.

Section 8.2 is dedicated to the comparison of Bayes estimators and the MLE of
the mean of a k-variate normal distribution (for any fixed k ≥ 1) under Linex loss.
Our main goal is to determine the extent to which the main conclusions of Chapters 5
and 7 regarding the characteristics of “good” Bayes procedures under squared error
loss hold true when the loss function is asymmetric. For k ≥ 2, a multicomponent
version of Linex loss, namely,

L(θθθ,θ̂θθ) =
k

∑
i=1

L(θi, θ̂i) , (8.2)

is employed. In Section 8.3, we investigate similar questions in a linear regression
setting in which the target parameter is a predetermined linear combination of re-
gression coefficients. The final section of the chapter summarizes the main find-
ings in these investigations, elaborates on the need for further research regarding the
comparison of Bayes estimators with alternative frequentist estimators in the two
problems treated here and discusses the potential for generalizations of these re-
sults to other parametric paradigms. The results presented in this chapter are largely
drawn from Bhattacharya, Samaniego and Vestrup (2002), referred to hereafter as
BSV (2002). The reader is referred to that paper for the various technical details that
are omitted from the overview of that work presented here.

8.2 Estimating the mean of a normal distribution under Linex
loss

While, under squared error loss, the sample mean X of a random sample from a
multivariate normal distribution Nk(θθθ,ΣΣΣ) is inadmissible as an estimator of the pop-
ulation mean in dimension k ≥ 3, the situation is considerably less clear when its
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performance is examined under other loss functions. For most asymmetric loss func-
tions, the admissibility of the sample mean in an arbitrary dimension k is an open
question. Thus, based on its asymptotic optimality, its interpretive value and its sim-
ple closed form, the maximum likelihood estimator X of the population mean tends
to be the frequentist estimator of choice in such problems. In this section, the compar-
ison made will focus on the performance of Bayes estimators with respect to standard
conjugate priors relative to the performance of the MLE. Performance is measured,
as in earlier chapters, by the Bayes risk of a given estimator with respect to a hy-
pothesized true prior G0. Since, under asymmetric loss functions, there are in fact
alternative frequentist estimators which can be identified as legitimate contenders to
the MLE in estimating a normal mean, we will address the issue of threshold prob-
lems relative to other frequentist estimators in the chapter’s concluding section. In
Sections 8.2 and 8.3, we restrict attention to the MLE while recognizing that the as-
sociated threshold problem is just one of several such problems that one might wish
to consider.

As in earlier chapters, we will be interested here in three particular scenarios in
which this comparison is of special significance. In the most general scenario, where
the mean θθθG of the operational prior and the mean θθθG0 of the true prior are arbitrary
and may be quite different, we will be interested in whether Bayes estimators will
be superior to the MLE when the operational prior is sufficiently diffuse. Second,
we will be interested in the circumstances in which a mean-correct operational prior
will provide performance for the Bayes estimator that is superior to that of the MLE.
Third, we will wish to determine what can be said about the comparative perfor-
mance of a Bayes estimator and the MLE in the case of primary practical interest in
which the true prior G0 is degenerate at a point θθθG0 . The results developed in this
section provide definitive answers to these three questions.

The modeling assumptions under which we will proceed resemble those of Chap-
ter 7, although we will permit slightly more generality than in conditions (7.6)–(7.8).
Specifically, we make the following explicit assumptions:

G0 : θθθ∼Nk
(
θθθG0 , σ

2
G0

I
)

(8.3)

G : θθθ∼Nk
(
θθθG, σ

2
GI
)

(8.4)

FX|θθθ : X|θθθ∼Nk
(
θθθ, σ

2I
)

(8.5)

where σ2 is a known constant, and the loss function to be utilized is the natural
multivariate extension of Varian’s Linex loss, that is,

L(θθθ,θ̂θθ) =
k

∑
i=1

[
eci(θ̂i−θi)− ci(θ̂i−θi)−1

]
. (8.6)

In this section, the Bayes estimator with respect to the operational prior G will be

denoted by θ̂θθ
G

=
(

θ̂ G
1 , θ̂ G

2 , . . . , θ̂ G
k

)
. It may be inferred from Theorem 3.4 that

θ̂
G
i =− 1

ci
logEθθθ|X=x{e−ciθi} for i = 1, . . . ,k . (8.7)
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It is easy to verify that, under assumptions (8.4) and (8.5), the posterior distribution
of θθθ is given by

θθθ|X = x∼Nk

(
σ2

G

σ2
G +σ2 x+

σ2

σ2
G +σ2 θθθG,

σ2
Gσ2

σ2
G +σ2 I

)
. (8.8)

Thus, for i = 1,2, . . . ,k, we have that

θi|X = x∼Nk

(
σ2

G

σ2
G +σ2 xi +

σ2

σ2
G +σ2 θ

G
i ,

σ2
Gσ2

σ2
G +σ2

)
. (8.9)

From (8.9), one may easily calculate

Eθi|X=x{e−ciθi}= exp
{
−ci

[
σ2

G

σ2
G +σ2 xi +

σ2

σ2
G +σ2 θ

G
i

]
+

a2
i σ2

Gσ2

2(σ2
G +σ2)

}
. (8.10)

It follows that, under the generalized Linex loss function in (8.6), the Bayes estimator
with respect to the operational prior G is

θ̂θθ
G

=
σ2

G

σ2
G +σ2 x+

σ2

σ2
G +σ2 θθθ

G−
σ2

Gσ2

2(σ2
G +σ2)

c . (8.11)

The risk function of the Bayes estimator in (8.11) is calculated in a practically useful
form by BSV (2002), and its Bayes risk with respect to the true prior G0 is shown to
be

r
(

G0,θ̂θθ
G)

=
k

∑
i=1

[
exp
{

ti∆i + 1
2 t2

i (σ2
G0
−σ2

G)
}
− ti∆i + 1

2 citiσ2
G−1

]
, (8.12)

where exp(A) = eA and, for i = 1,2, . . . ,k,

∆i = θ
G
i −θ

G0
i and ti =

ciσ
2

σ2
G +σ2 . (8.13)

We wish to compare the expression in (8.12) to the Bayes risk of the MLE of θθθ. Since
the risk function of the MLE is constant, its Bayes risk is easily found to be

r(G0,X) =
k

∑
i=1

[
e

1
2 c2

i σ2
−1
]

. (8.14)

We are now in the position to prove

Theorem 8.1. For arbitrary values of the true and operational prior means θθθG0 and

θθθG, the Bayes estimator θ̂θθ
G

is superior to the MLE X if the operational prior is
sufficiently diffuse.
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Proof. Note that, from (8.13), we have, as σ2
G → ∞, that ti → 0, tiσ2

G → ciσ
2 and

t2
i σ2

G→ 0. Using these facts and the inequality x < ex−1, which holds for all real x,
it follows that

lim
σ2

G→∞

r
(

G0,θ̂θθ
G)

=
k

∑
i=1

c2
i σ2

2
<

k

∑
i=1

[
e

1
2 c2

i σ2
−1
]

= r(G0,X) , (8.15)

an inequality which confirms that θ̂θθ
G

is superior to X if σ2
G is sufficiently large. �

The implications of the mean-correctness of the operational prior G are as fol-
lows:

Theorem 8.2. If the prior G is mean correct, that is, if θθθG =θθθG0 , the Bayes estimator

θ̂θθ
G

is superior to the MLE X whenever σ2
G > σ2

G0
.

Proof. Under the assumptions θθθG = θθθG0 and σ2
G > σ2

G0
, we may write

r
(

G0,θ̂θθ
G)

=
k

∑
i=1

[
e

1
2 t2

i (σ2
G0
−σ2

G) + 1
2 citiσ2

G−1
]

<
k

∑
i=1

[
1+ 1

2 citiσ2
G−1

]
=

k

∑
i=1

[ 1
2 citiσ2

G

]
<

k

∑
i=1

[ 1
2 c2

i σ2
]

(by (8.13))

<
k

∑
i=1

[
e

1
2 c2

i σ2
−1
]

= r
(
G0,X

)
. � (8.16)

Corollary 8.1. If the conditions of Theorem 8.2 hold, and if the true prior distribu-
tion is degenerate at the point θθθG0 , that is, σ2

G0
= 0, then for all values of σ2

G > 0,

r
(

G0,θ̂θθ
G)

< r
(
G0,X

)
. (8.17)

This section constitutes a complementary treatment, under an asymmetric loss
function, of the estimation problem considered in Chapter 7. Because the dimension
k of the problem is permitted to be an arbitrary positive number, the results provide
comparisons, as well, to the univariate problem of estimating a normal mean in a
context complementary to that treated in Chapter 5. Without benefit of the study in
this section, one may have conjectured that the solutions to the threshold problem,
as treated in earlier chapters, are somehow driven by the assumed symmetry (per-
haps even by the precise formulation of these problems as estimation under squared
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error loss), and that similar phenomena might not occur when such assumptions are
relaxed. The results above serve to demonstrate that the “threshold” phenomena en-
countered under a symmetric loss structure surface in very similar ways in asym-
metric settings. Further, the general characteristics of the Bayes estimators which
stand to be superior to the maximum likelihood estimator are essentially the same
under the symmetric and asymmetric loss functions we have considered. In both cir-
cumstances, the Bayesian approach involving careful prior elicitation, with a focus
on approximate mean correctness, together with conservative prior modeling, in the
form of operational priors that are “reasonably diffuse,” appear to result in a reliable
recipe for good performance relative to that of the MLE. In Section 8.4, alternative
versions of the threshold problem are discussed.

Exercise 8.1. Derive the Bayes estimator whose general form is given in equa-
tion (8.7).

Exercise 8.2. Verify that, under assumptions (8.4) and (8.5), the posterior distribu-
tion of θθθ is given by the expression in (8.8).

Exercise 8.3. Derive the Bayes risk expression in (8.12).

Exercise 8.4. Show that, under condition (8.5), the risk function R of the MLE of a
multivariate normal mean is the constant on the RHS of equation (8.14).

8.3 Estimating a linear combination of regression parameters

In this section, we will treat an estimation problem that has received some attention
in the econometrics literature. The problem is typically treated under the standard
assumptions of the general linear model. We will be interested in both the Bayesian
and classical treatment of the problem, and we thus specify below the models that
we have heretofore referred to as the operational and the true prior distribution of the
unknown parameters. The relevant models are given by

G0 : βββ∼Np
(
βββG0 , ΣΣΣG0

)
, (8.18)

G : βββ∼Np (βββG, ΣΣΣG) , (8.19)

FY|βββ : Y|βββ∼Nk
(
Xβββ, σ

2I
)

, (8.20)

where k > p,σ2 is, for convenience, assumed to be a known constant and X is the
fixed and known k× p “design matrix” of full rank p. The problem of interest is
the estimation of a linear function of the elements of the vector βββ, that is, θ = w′βββ,
where w is a known p×1 vector. We note that the problem posed above subsumes the
problem of estimating individual regression parameters {βi, i = 1, . . . , p}, for which
the vector w is taken to be a unit vector (with one element equal to one), as well as
the common problem of estimating differences between two such parameters. Here,
the vector w can be chosen arbitrarily, so the problem to be treated is substantially
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more general than these particular examples. Since the problem entails the estimation
of a scalar parameter θ , we will use the univariate form of the Linex loss function
specified in (8.1).

As indicated above, it is our intention to compare the performance of the Bayes
estimator θ̂ G of θ wrt the operational prior G with that of the maximum likelihood
estimator θ̂ of θ . We begin by identifying the Bayes estimator which, from earlier
discussions, is easily shown to be

θ̂
G =−1

c
logEw′βββ|Y=y{e−cw′βββ} . (8.21)

Using well-known normal theory and appropriate matrix algebra, the posterior dis-
tribution of w′βββ|Y = y may be identified as a univariate normal distribution with
mean

µ = w′ΣΣΣGX′(XΣΣΣGX′+σ
2Ik)−1y+w′σ2(X′X)−1X′(XΣΣΣGX′+σ

2Ik)−1XβββG (8.22)

and variance

σ
2 = w′ΣΣΣGw−w′ΣΣΣGX′(XΣΣΣGX′+σ

2Ik)−1XΣΣΣGw . (8.23)

From the posterior distribution identified above, we can obtain the Bayes estimator
θ̂ G in (8.21) in the following closed form:

θ̂
G = λλλ1y+λλλ2βββG−

c
2

λ3 , (8.24)

where λλλ1, λλλ2 and λ3 are, respectively, the 1×k matrix, the 1× p matrix and the scalar
given by

λλλ1 = w′ΣΣΣGX′(XΣΣΣGX′+σ
2Ik)−1 , (8.25)

λλλ2 = σ
2(X′X)−1X′(XΣΣΣGX′+σ

2Ik)−1X (8.26)

and
λ3 = w′ΣΣΣGw−w′ΣΣΣGX′(XΣΣΣGX′+σ

2Ik)−1XΣΣΣGw . (8.27)

The development of an expression for the Bayes risk r(G0, θ̂
G) in the precise form

that proves useful in the comparisons of interest here is an arduous endeavor, one
that requires a substantial amount of matrix manipulation and fairly subtle analytical
work. For the details of this development, the reader is referred to BSV (2002). A
key element of the argument is the alternative expression for a matrix that occurs
prominently in analytical work involving the λ s in (8.25)–(8.27):

X′(XΣΣΣGX′+σ
2Ik)−1X = (σ2(X′X)−1 +ΣΣΣG)−1 . (8.28)

This identity is proven as “Matrix Lemma 3” in BSV (2002, p.251). Using (8.28) and
additional algebraic argumentation, the following expression for the desired Bayes
risk of θ̂ G is obtained:

r
(

G0, θ̂
G
)

= ecγ1 ec2γ2/2− cγ1 +
c2

2
w′γγγ3w−1 , (8.29)
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where γ1 and γ2 are the scalars, and γγγ3 is the p× p matrix, given below:

γ1 = w′σ2(X′X)−1(σ2(X′X)−1 +ΣΣΣG)−1(βββG−βββ0) , (8.30)
γ2 = λλλ2ΣΣΣG0λλλ

′
2 +σ

2
λλλ1λλλ

′
1−λ3 (8.31)

and γγγ3 = ΣΣΣG−ΣΣΣG(σ2(X′X)−1 +ΣΣΣG)−1
ΣΣΣG . (8.32)

We now turn to similar developments for the maximum likelihood estimator of θ .
The MLE of θ is θ̂ = w′β̂ββ, where β̂ββ = (X′X)−1X′Y is the least squares estimator of
βββ. It is easy to verify that the risk function of θ̂ is a constant which does not depend
on βββ. This leads to the Bayes risk expression

r
(

G0, θ̂
)

= e
c2σ2

2 w′(X′X)−1w−1 . (8.33)

We are now in a position to examine the proposition that the Bayes estimator of
θ will outperform the MLE if the operational prior is sufficiently diffuse. To treat
this question, we need to be able to quantify the growth in diffusion of a covariance
matrix. In the univariate case, it suffices to postulate that σ2

G→∞. If we were consid-
ering only diagonal covariance matrices ΣΣΣG, the univariate case would be properly
generalized if the variance of every component of the random vector βββ tended to in-
finity. In the general case, we will say that a sequence of positive definite matrices
are growing more diffuse if the three conditions given in the following definition are
satisfied.

Definition 8.1. Let A(n) =
[
a(n)

i j

]
, n = 1,2, . . ., be a sequence of p× p positive definite

matrices. If the elements of {A(n)} increase in magnitude in such a way that, as
n→ ∞,

(a) mini a(n)
ii → ∞ for all i ,

(b) maxi 6= j a(n)
i j = o

(
mini a(n)

ii

)
, and

(c) all diagonal elements a(n)
ii tend to ∞ at the same rate (in n) ,

then the sequence {A(n)} is said to be growing more diffuse. If the sequence {A(n)}
is growing more diffuse, we will write A(n)→ ∞.

Given the definition above, the following result is established by BSV (2002). It
confirms that in the problem of estimating a linear combination of regression param-
eters, the Bayes estimator with respect to a sufficiently diffuse operational prior will
outperform the MLE of that target parameter.

Theorem 8.3. Regardless of the size of ‖βββG−βββG0‖2, the Bayes risks of the Bayes
estimator θ̂ G and the MLE θ̂ of θ = w′βββ under Linex loss will satisfy the inequality

lim
ΣΣΣ

(n)
G →∞

r
(

G0, θ̂
G
)

< r(G0, θ̂) , (8.34)

where
{

ΣΣΣ
(n)
G

}
are variance-covariance matrices satisfying conditions (a)–(c) of Def-

inition 8.1.
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Partial Proof: The proof of (8.34) is based on the facts, established in BSV (2002),
that limΣΣΣG→∞ γi = 0 for i = 1,2 and limΣΣΣG→∞ γ3 = σ2(X′X)−1. Applying these facts
to the Bayes risk expression in (8.29) leads to the identity

lim
ΣΣΣG→∞

r
(

G0, θ̂
G
)

=
c2σ2

2
w′(X′X)−1w , (8.35)

which, by virtue of the fact that x < ex−1 for all x > 0, is smaller than

exp
{

c2σ2

2
w′(X′X)−1w

}
−1 = r

(
G0, θ̂

)
. � (8.36)

The impact of mean correctness and the degeneracy of the true prior distribution are
summarized in the following.

Theorem 8.4. If the operational prior G is mean-correct (that is, βββG = βββG0) and
the true prior G0 is degenerate (that is, ΣΣΣG0 = 0), then the Bayes estimator θ̂ G is
uniformly superior to the MLE θ̂ as an estimator of θ = w′βββ under Linex loss, that
is, for any operational covariance matrix ΣΣΣG,

r
(

G0, θ̂
G
)

< r
(

G0, θ̂
)

. (8.37)

Exercise 8.5. Verify that the posterior distribution of w′βββ, given Y = y, is the uni-
variate normal distribution with mean µ and variance σ2 given in (8.22) and (8.23).

Exercise 8.6. Show that the MLE θ̂ of θ = w′βββ is an equalizer rule with constant
risk given by

R
(

βββ, θ̂
)

= exp
{

c2σ2

2
w′(X′X)−1w

}
−1 .

Exercise 8.7. Construct a sequence of 2×2 positive definite matrices {An} that are
growing more diffuse in the sense of Definition 8.1.

8.4 Discussion

The goal of this chapter is to investigate the extent to which the characteristics of
Bayes estimators found to be “superior” to the frequentist estimator of choice in
symmetric estimation problems (in which squared error loss was used) carry over
into problems in which it is deemed more appropriate to use an asymmetric loss
function. We have demonstrated that, in the specific problems examined here, the
threshold problem is well-defined and its treatment is analytically tractable. More
importantly, the solutions obtained here are remarkably similar to those obtained
earlier, giving strong support to the proposition that the class of threshold problems
to which solutions of this sort obtain is quite broad. In this section, we will briefly
review our findings in our treatment of estimation under the Linex loss function, and
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also provide some indication of the potential range of possible applications beyond
those we have treated above.

In Section 8.2, we presented evidence that under asymmetric loss (specifically,
under the Linex loss function and its multivariate generalizations), the Bayesian will
have the advantage over the frequentist using the maximum likelihood estimator of
the mean µµµ of a k-dimensional normal distribution whenever his operational prior
is sufficiently diffuse, regardless of the distance between his prior guess θθθG and the
mean θθθG0 of the true prior. This advantage is accentuated under the assumption that
the operational prior is mean-correct, and, in this latter case, it is universal (relative
to the Bayesian’s choice of the variance σ2

G of his operational prior) in the impor-
tant scenario in which the true prior is degenerate at the point θθθG0 . In the univariate
case, that is, when k = 1, these results constitute direct analogs to the results ob-
tained in Chapter 5. In higher dimensions, a mean-correct prior does not guarantee
Bayesian superiority, but the domain of Bayesian superiority is large (namely, when-
ever σ2

G > σ2
G0

). In the end, we see that the threshold problem is well-defined and
analytically tractable for an important class of models and asymmetric loss functions.
The full extent of the generality of our conclusions is at present unknown. Clearly,
there will be some versions of the threshold problem that can only be attacked using
numerical methods or simulation. But the results above, coupled with those in ear-
lier chapters, provide strong evidence that the general conclusions drawn from the
threshold problems we have examined are quite robust. It appears that, in an inter-
esting variety of settings, there is a reasonably large subclass of prior distributions
which provide the Bayesian the advantage in problems of point estimation.

Section 8.3 treats an estimation problem with a considerable amount of structure.
In the context of the multiple linear regression model where Y = Xβββ +εεε with i.i.d.
normally distributed errors, the problem of estimating a fixed linear combination
θ = w′βββ of regression parameters is addressed. Our findings are similar to those
above. Regardless of the extent of prior misspecification of the true value of βββ, the
Bayes estimator θ̂ G of θ will outperform the MLE θ̂ of θ under Linex loss, provided
that the operational prior G is sufficiently diffuse. The notion of “growing diffusion”
in a sequence of matrices was made explicit in Definition 8.1. It was also shown that,
under Linex loss, the Bayes estimator θ̂ G is uniformly superior to the MLE θ̂ as
an estimator of θ = w′βββ when the operational prior G is mean correct and the true
prior G0 is degenerate. We thus find, again, that priors that are approximately mean-
correct and reasonably diffuse, that is, priors which are well-calibrated but reflect
conservative prior modeling, generally provide the Bayesian with an advantage in
this estimation problem over a frequentist using the maximum likelihood estimator.

The reader will surely have noticed that, while the assumption of symmetry of
the loss function was relaxed in this chapter, the estimation problems considered in
the chapter all assume that the data follows a normal model. Aha! Maybe that’s the
trick! The problem was broadened in one direction but narrowed in another. So how
general can we really expect the types of solutions seen here to be?

I offer the following example, drawn from BSV (2002), as evidence that there
appears to be a general pattern underlying the problems considered above, and that
one can expect to see solutions of the threshold problem with the same flavor in other
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estimation problems with asymmetric loss. Suppose that we have a random sample
from a Poisson distribution with mean θ , that is, X1,X2, . . . ,Xn

iid∼P(θ). The con-
jugate prior for θ is the gamma distribution Γ(α ,β ). It is useful, in comparing the
Bayes risks of the Bayes estimator θ̂ G of θ to that of the MLE θ̂ , to parametrize the
operational and true priors of θ in terms of the means θG and θG0 of these distribu-
tions. We thus specify these models as

G0 : θ ∼ Γ(θG0/βG0 , βG0) (8.38)

and
G : θ ∼ Γ(θG/βG, βG) . (8.39)

It is then possible to represent a true prior distribution that is degenerate at the value
θG0 as equivalent to the true prior that results from allowing the parameter βG0 to tend
to 0. Similarly, we may represent an operational prior with mean θG which becomes
increasingly diffuse by the process of allowing the parameter βG to grow to ∞. With
such a parametrization, it is established by BSV (2002) that

lim
σG0→0,σG→∞

r
(

G0, θ̂
G
)

< lim
σG0→0

r
(

G0, θ̂
)

. (8.40)

The inequality in (8.40) indicates that, if the true prior distribution G0 is degenerate
at θG0 , then, under the Linex loss function, the Bayes estimator with respect to the
operational prior with mean θG will outperform the MLE θ̂ as an estimator of θ ,
irrespective of the distance between the mean of the operational prior and the true
value of the parameter θ , provided that the operational prior G is sufficiently diffuse.

As mentioned in Section 8.2, the status of the MLE X as the frequentist estimator
of choice when the loss function is asymmetric is open to question. Zellner (1986)
treated this matter in considerable detail. Among his findings was the interesting
result that, under the Linex loss function given in (8.2), the mean X of a univariate
sample from a normal population with known variance σ2 was inadmissible as an
estimator of the population mean µ . The frequentist estimator

θ̃1 = X− cσ2

2n
, (8.41)

an estimator which may be derived as the generalized Bayes estimator with respect
to Lebesgue measure, has a uniformly smaller risk function than X . The superior-
ity of the latter estimator, or something similar to it, might have been predicted in a
problem in which the overestimation of µ is severely penalized. It is clear that the
threshold problem comparing the performance of θ̃1 to that of Bayes estimators with
respect to proper priors would be of interest in the one-dimensional case. Further,
to my knowledge, the admissibility of θ̃1 is still an open question, suggesting that
other frequentist estimators might well be considered when k = 1. These questions
are worthy of investigation. The results in Section 8.2, as they apply to the univari-
ate problem, show that a certain subclass of Bayes estimators competes well with
the MLE. The domain of Bayesian superiority will, of course, shrink somewhat in
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threshold problems involving better frequentist alternatives. It seems reasonable to
conjecture that the “shape” of the domain will resemble that identified in Section 8.2,
though the boundaries will surely change. In higher dimensions (i.e., for k > 1), the
situation is considerably fuzzier, though it seems likely that other versions of the
threshold problem than that considered in Section 8.2 will also be of interest. In this
regard, the James–Stein estimator which shrinks X toward zero would seem to be
a promising alternative to X in problems in which overestimation is severely penal-
ized. It seems reasonable to conjecture that the relative performance of θ̂ G and θ̂ JS

in such problems will bear a greater resemblance to that encountered in Chapter 7,
where Bayesian estimation in high dimensions was found to be a dicey proposition.

The problem considered in Section 8.3 admits to a similar type of discussion.
Zellner (1986) shows that, in the regression problem under consideration, the MLE
θ̂ = w′(X′X)−1X′Y of θ = w′βββ is inadmissible, its risk function being uniformly
larger than that of the frequentist estimator

θ̃2 = w′(X′X)−1X′Y− (cw′(X′X)−1wσ
2)/2 , (8.42)

an estimator which is also the generalized Bayes estimator with respect to a diffuse
prior on βββ. It is therefore clear that solving the threshold problem which compares
the performance of θ̃2 to that of Bayes estimators with respect to proper priors would
also be of interest. It is, at present, an open problem.

Exercise 8.8. Consider the scenario above involving the estimation of a Poisson pa-
rameter.

(a) Derive the Bayes estimator θ̂ G of the parameter θ with respect to the prior G in
(8.39).

(b) Obtain an expression for the Bayes risk r(G0, θ̂
G).

(c) Obtain an expression for the Bayes risk r(G0, θ̂) of the MLE θ̂ = X of θ .
(d) Verify the inequality in (8.40).
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The Treatment of Nonidentifiable Models

9.1 The classical viewpoint.

The identifiability of a statistical model, or of the parameters that serve as an index
for the model, is one of the pillars on which the classical approach to statistical
estimation is based. For parametric classes of distributions represented as {Fθ ,θ ∈
Θ}, the parameter θ is said to be identifiable if different values of the parameter, say
θ1 and θ2, give rise to different distributions Fθ1 and Fθ2 of the observable variable
X drawn from a distribution in the class. Without identifiability, a classical estimator
θ̂ of the unknown parameter θ would necessarily be ambiguous, and thus of little
use. The data can only help “identify” an equivalence class in which the parameter
appears to reside, but they cannot provide a specific numerical value that would play
the role of one’s best guess of the true value of the target parameter. In classical
statistical estimation theory, the estimation of a nonidentifiable parameter is viewed,
quite simply, as an ill-posed problem.

Interestingly, the occurrence of nonidentifiability in statistical problems of some
importance is by no means uncommon. While classical methods are inapplicable in
treating such problems directly, there are several available options. These options
amount to treating a different but related problem to which classical methods do
apply. Among these options are (a) placing additional restrictions on the original
model, rendering the parameters of the restricted model identifiable, (b) focusing on
the estimation of a function of the original parameters that is in fact identifiable and
(c) expanding the model to include additional data which, together with the original
data, makes the original parameters identifiable. I give examples of each of these
strategies below.

Consider, first, the simple problem of estimating the parameter vector (µ1,µ2)
from a univariate random sample X1,X2, . . . ,Xn assumed to be normally distributed
with distribution N (µ1 + µ2,σ

2). The sample mean X serves as a perfectly reason-
able estimator of the sum µ1 + µ2, but it provides no useful information about the
individual parameters µ1 and µ2. The parameter vector (µ1,µ2) is nonidentifiable in
this problem since all such vectors with the same sum give rise to the same distri-
bution for the available data. A version of this problem to which classical methods
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apply is the same estimation problem under the assumption that the value of, say,
µ1 is known. In that case, one could consider the pair (µ1,X−µ1) as an “estimator”
of (µ1,µ2). This example of strategy (a) above solves the problem, in a sense, but
has some obvious drawbacks. It is clearly not a solution to the original problem; also
some justification is required for the assumption that µ1 is known. These failings are
typical of the approach taken; the assumption which renders the model identifiable
cannot be investigated or tested using the data available in the original problem. If
the assumption happens to be seriously wrong, the resulting “estimator” will be quite
unsatisfactory.

As an example of strategy (b) above, consider the following problem. Suppose k
Bernoulli variables are taken to represent the success or failure of the k independent
components of an engineered system of interest. Further, assume that each of these
variables is governed by its own parameter pi. Given Xi ∼B(1, pi), for i = 1, . . . ,k,
system data is available in the form of a set of n independent observations of the
variable Y = ∑

k
i=1 Xi. The distribution of Y is the k-fold convolution of the Bernoulli

distributions above. Samaniego and Jones (1981) noted that, while the parameter
vector p = (p1, . . . , pk) is nonidentifiable, the vector of ordered ps, that is, p∗ =
(p(1), . . . , p(k)), where p(1)≤ p(2)≤ ·· · ≤ p(k), is an identifiable function of p and can
thus be estimated by standard methods. They then derived the maximum likelihood
estimator of p∗ based on the observed Y s and described its asymptotic properties.
Again, while the problem of estimating the parameter p could not be treated by
classical methods, a related problem of some practical interest is both well-defined
and tractable.

In a similar vein, Tsiatis (1975) famously demonstrated that the problem of es-
timating the multiple decrement function P(X1 > x1,X2 > x2, . . . ,Xk > xk) nonpara-
metrically in the biostatistical context of competing risks (where the observable data
consist of pairs (min{Xi},δ ), with Xi representing the time of failure due to “cause i”
when that cause is acting alone and δ being an indicator function for the index of the
observed X) suffers from nonidentifiability. Various researchers attempted to “fix”
this deficiency by placing additional restrictions on the model, though most workers
in the area acknowledged that the best that one could do in the original problem,
within the classical framework, was to provide estimates of different parameters (for
example, the cause-specific hazard functions) which are identifiable in the competing
risks framework.

As an example of strategy (c) above, consider the problem of estimating the pa-
rameter pair (p,F) of the imperfect repair model of Brown and Proschan (1983). The
model postulates that for any one of several identical systems that are put on test, the
system is replaced, upon failure, by a new system (that is, it is repaired “perfectly”)
with probability p. With probability (1− p), the system is minimally repaired, that
is, it is restored to its condition just prior to failure. The lifetime distribution of a new
system is modeled nonparametrically as F , while a system which fails at time t0 and
is minimally repaired has the survival function F(t|t0) = F(t + t0)/F(t0). The avail-
able data consists of the interfailure times for each of the systems on test. Whitaker
and Samaniego (1989) noted that the parameter pair (p,F) of the Brown–Proschan
model was not an identifiable parameter for the observed interfailure times from
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fielded systems. They then showed that the parameter pair could be rendered identi-
fiable if interfailure times were augmented by data on the mode of repair following
each failure. Utilizing the augmented data, a consistent estimator for (p,F) was ob-
tained. As with the other strategies mentioned above, the solution derived in this
problem solves a problem that is related to, but different from, the original problem.
In all the examples above, the original estimation problem posed remained unsolved.

Exercise 9.1. Given the independent observations X1,X2, . . . ,Xk, with Xi ∼B(1, pi),
show that the ordered parameter (p(1), p(2), . . . , p(k)) is an identifiable parameter of
the distribution of Y = ∑

k
i=1 Xi.

9.2 The Bayesian treatment of nonidentifiability

In contrast with the frequentist approach to estimation in the presence of non-
identifiability, the Bayesian paradigm has no difficulty in treating nonidentifiable
parameters. The idea here is very simple. A Bayesian will begin the treatment of an
estimation problem by stipulating a prior distribution on the parameters of the model
of interest. Now, in a model with nonidentifiable parameters, the data available to
the statistician are “defective” in the sense that they do not provide unambiguous
information about the model’s parameters. It is nonetheless the case that the data ob-
served in such problems are still informative about these parameters. The updating of
the prior distribution on the basis of the observed data is thus both feasible and mean-
ingful, resulting in a posterior distribution on which inference can be based. While
this circumstance has been recognized in the Bayesian literature for some time, it has
not been widely exploited.

Nonidentifiability is an issue that occurs with some frequency in econometric
modeling. An early example of the Bayesian treatment of such problems is the pa-
per by Lindley and El-Sayyad (1968), where the Bayesian solution is derived to
the problem of estimating parameters subject to a linear functional constraint. Other
developments in this general domain include papers by Dreze (1975), Clayton and
Kaldor (1987) and Besag, York and Mollie (1991). But the fact that Bayesian analy-
sis is possible in such problems, while the frequentist can offer no solution, is not, by
itself, reason to proceed with or trust the Bayesian solution. Bayesian estimation of a
nonidentifiable parameter involves some potential dangers. For example, unlike the
case of estimating an identifiable parameter, a Bayes estimator of a nonidentifiable
parameter is, of necessity, highly dependent on the prior model. In addition, Bayes
estimators in the latter circumstance will not, in general, be consistent estimators of
the true value of the parameter θ . Under mild assumptions, they can be guaranteed
to converge to a parameter value within an equivalence class containing the true pa-
rameter. But even as the sample size n tends to infinity, a Bayes estimator may not
converge to a value that is “acceptably close” to the true value of θ .

The question of whether Bayesian inference is “efficacious” remains to be ex-
amined. Now the choices available are limited, but there are clearly two possible
estimators of θ that should be compared. Under squared error loss, the mean of the
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posterior distribution of θ is the option of primary interest. What might that estima-
tor be compared to? If θ were identifiable, the prior mean would not be considered a
potential estimator, as it’s simply a guess at θ that makes no use of the experimental
data. In standard Bayesian inference, the prior distribution is just a “seed” that gets
the Bayesian process going. But the prior mean is more than that when θ is noniden-
tifiable. In the latter case, the prior mean can actually be closer to the true value of
θ than the posterior mean, even when the information available through sampling
is unlimited. In such cases, one would prefer the prior guess to the posterior guess.
In essence, the available data would have served, in that instance, to mislead the
statistician into an inference that was inferior to her starting point.

This circumstance leads naturally to a new form of the threshold problem, one
that is focused on the comparison of two different Bayes estimators — the no-data
estimator θG based solely on the prior distribution G and the Bayes estimate θ̂G
based on the posterior distribution of θ given the available data. Such a comparison
seeks to assess the efficacy of Bayesian updating, and its ultimate goal would be to
characterize a class of prior distributions for which Bayesian updating provides an
improvement over an estimator based solely on the prior distribution. In Section 9.3,
the “efficacy” problem will be studied in the context of a simple nonidentifiable (bi-
nomial) model — a toy problem, if you will — but the goal of the developments
in that section is to shed light on the general character of solutions to the threshold
problem in this new context. In Sections 9.3 and 9.4, we treat an estimation prob-
lem based on a nonidentifiable binomial model. The treatment here is drawn from
Neath and Samaniego (1997). The discussion on the efficacy of Bayes estimators
in the nonparametric competing risks problem (Section 9.5) is based on Neath and
Samaniego (1996a, 1996b). In Section 9.6, I discuss a nonidentifiable version of an
estimation problem based on stress–strength testing in Reliability. For that, I will
draw upon the developments in Samaniego (2007).

9.3 Estimation for a nonidentifiable binomial model

Suppose that the observed data in an experiment of interest is a binomial random
variable with distribution

X ∼B(n, p1 + p2) , (9.1)

where p1 ≥ 0, p2 ≥ 0 and 0≤ p1 + p2 ≤ 1. The model would be appropriate in situa-
tions in which there are two mutually exclusive causes of “success” in a sequence of
n Bernoulli trials, and these causes are indistinguishable without costly or infeasible
follow-up. The target of the estimation problem of interest is the pair (p1, p2), a pa-
rameter pair which is, of course, nonidentifiable on the basis of the available data. A
Bayesian analysis of this estimation problem would typically begin with the specifi-
cation of a Dirichlet prior. Specifically, let us take, as a prior model G, the Dirichlet
distribution of (p1, p2, p3), where p3 = 1− p1− p2. This distribution will be denoted
by D(α1,α2,α3), with αi > 0 for i = 1,2,3, and has the bivariate density function
given by



9.3 Estimation for a nonidentifiable binomial model 139

g(p1, p2) =
Γ(α1 +α2 +α3)

Γ(α1)Γ(α2)Γ(α3)
pα1−1

1 pα2−1
2 (1− p1− p2)α3−1 , (9.2)

where p1 > 0, p2 > 0, with 0 < p1 + p2 < 1. The mean of this distribution is the pair

(pG
1 , pG

2 ) =
(

α1

α1 +α2 +α3
,

α2

α1 +α2 +α3

)
. (9.3)

The pair (pG
1 , pG

2 ) represents the Bayesian statistician’s prior guess at the parameter
pair (p1, p2). It is easy to verify (you guessed it, it’s an exercise for your amusement
and edification) that the posterior distribution of (p1, p2), given X = x, is the mixture
of Dirichlet distributions given by

f (p1, p2|x) =
x

∑
k=0

akD(α1 + k,α2 + x− k,α3 +n− x) , (9.4)

where

ak =

(x
k

)
Γ(α1 + k)Γ(α2 + x− k)

∑
x
j=0
(x

j

)
Γ(α1 + j)Γ(α2 + x− j)

. (9.5)

From (9.4), one may identify the Bayes estimator of (p1, p2), given X = x, as

(p̂G
1 , p̂G

2 ) =

(
x

∑
k=0

ak
α1 + k
A+n

,
x

∑
k=0

αk
α2 + x− k

A+n

)
, (9.6)

where A = α1 +α2 +α3. One might compare the prior Bayes estimator in (9.3) with
the posterior Bayes estimator in (9.6) for any size experiment, that is, for any value
of n. But the most telling comparison is the limiting case. As n→ ∞, the Bayesian
will obtain as much information about the parameter (p1, p2) as the experiment can
offer. It is thus of special interest to ask whether, when taking maximal advantage of
the experimental input, the process of Bayesian updating can provide improvement
over the prior guess (pG

1 , pG
2 ). With that goal in mind, we turn to the development of

the asymptotic form of the Bayes estimator (p̂G
1 , p̂G

2 ) as n→∞. This is accomplished
in the following theorem. The comparisons to be made in the sequel can be placed
in the context of earlier developments by specifying a true prior distribution G0 on
the pair (p1, p2). I will henceforth consider the true prior G0 to be degenerate at the
point (p∗1, p∗2). I will refer to this point repeatedly, but make no further mention of
G0.

Theorem 9.1. Let Xn ∼ B(n, p1 + p2), and let (p∗1, p∗2) be the true but unknown
value of the parameter pair (p1, p2). Suppose the operational prior distribution G
of (p1, p2) is the Dirichlet distribution D(α1,α2,α3). As n→∞, the posterior distri-
bution of p1, given Xn = x, is a rescaled beta distribution, that is,

p1|Xn = x D−→ cW , (9.7)

where W ∼ Be(α1,α2) and c = p∗1 + p∗2, and the posterior distribution of p2, given
Xn = x, is the complementary rescaled beta distribution, that is,
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p2|Xn = x D−→ cV , (9.8)

where V ∼ Be(α2,α1) and c = p∗1 + p∗2.

Proof. Note that the Dirichlet prior on (p1, p2) can be transformed into a prior distri-
bution on the parameter pair (θ1,θ2), where θ1 = p1/(p1 + p2) and θ2 = p1 + p2. The
variables θ1 and θ2 are independent, with θ1 ∼Be(α1,α2) and θ2 ∼Be(α1 +α2,α3).
Given Xn = x, it is easy to confirm that the posterior distributions of θ1 and θ2 are

θ1|Xn = x∼ Be(α1,α2) and θ2|Xn = x∼ Be(α1 +α2 + x,α3 +n− x) . (9.9)

As n→ ∞, the limiting posterior distribution of θ1 is Be(α1,α2) while the limiting
posterior distribution of θ2 is the distribution that is degenerate at the constant c =
p∗1 + p∗2. It follows that the limiting posterior distribution of the parameter p1 = θ1 ·θ2
is the rescaled beta distribution in (9.7). The symmetric roles played by p1 and p2 in
the model above imply that (9.8) must also hold. �

Theorem 9.1 implies that the limiting form of the Bayes estimator (p̂G
1 , p̂G

2 ) of
(p1, p2), with respect to the operational prior G = D(α1,α2,α3) and loss equal to
the sum of squared errors, is

(p̂G
1 , p̂G

2 ) =
(

cα1

α1 +α2
,

cα2

α1 +α2

)
, (9.10)

where c = p∗1 + p∗2. From (9.10), it is clear that the Bayes estimator (p̂G
1 , p̂G

2 ) is a
consistent estimator of (p1, p2) if and only if

α1

α1 +α2
=

p∗1
p∗1 + p∗2

, (9.11)

a restriction on the prior distribution that will virtually never be satisfied in practice.
The effect of Bayesian updating on the operational prior distribution D(α1,α2,α3)
with mean (a,b) = (α1/(α1 +α2 +α3), α2/(α1 +α2 +α3)) is shown in Figure 9.1.
While the consistency of a Bayes estimator is obviously an unachievable goal in this
problem (and in any problem involving nonidentifiability), the efficacy of Bayesian
updating is still amenable to study. In the next section, a complete characterization
is presented of the subclass of Dirichlet priors G whose corresponding estimators(

p̂G
1 , p̂G

2

)
are uniformly superior, asymptotically, to the prior estimate (pG

1 , pG
2 ). A

related simulation study shows that, for randomly chosen values of the prior mean
and of (p∗1, p∗2), the percentage of limiting Bayes estimators that are superior to the
prior estimator of the parameter pairs (p1, p2) satisfying the constraint p1 + p2 = c,
can range from a low of 51.55% of the class of Dirichlet priors in the worst case
(when c, the true value of the sum p1 + p2, is close to 1) to percentages arbitrarily
close to 100% in the best case (when c is close to 0). Sharp upper and lower bounds
are established for the ratio of Euclidean distances between each of the estimators
(pG

1 , pG
2 ) and (p̂G

1 , p̂G
2 ) and the true value of the pair (p1, p2).

Exercise 9.2. Confirm that the density in (9.4) is the posterior density of (p1, p2),
given the observation X = x, where X ∼B(n, p1 + p2) and the prior on (p1, p2) is
D(α1,α2,α3).
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Fig. 9.1. Prior and limiting posterior means in the (p1, p2) plane

9.4 On the efficacy of Bayesian updating in the binomial model

In this section, we will index the class of Dirichlet distributions on (p1, p2) by their
means {(a,b) ∈ (0,1)2}. This simplification sacrifices no generality since the lim-
iting form of the corresponding Bayes estimators, and their distances from the true
value of (p1, p2), depend on the prior only through its mean. As we have seen in
Section 9.2, the limiting Bayes estimate of the parameter (p1, p2) maps the prior
mean (a,b) onto the posterior mean (γa,γb), where γ = c/(a+b), with the constant
c being the true value p∗1 + p∗2 of the sum p1 + p2. The point (γa,γb) lies on the line
p1 + p2 = c.

I will now proceed with a detailed examination of the issue of the relative close-
ness of the points (a,b) and (γa,γb) to the true value of the pair (p1, p2). The Eu-
clidean distance between the two points (u,v) and (x,y) in the plane will be denoted
by

D[(u,v),(x,y)] =
√

(u− x)2 +(v− y)2 . (9.12)

Now, consider an operational Dirichlet prior distribution on (p1, p2) with mean (a,b)
and the associated limiting posterior mean (γa,γb). These points represent the prior
estimator and the posterior estimator of (p1, p2) given this particular operational
prior. It is clear that the posterior estimator will necessarily be closer to the true
value (p∗1, p∗2) of (p1, p2) than the prior estimator, regardless of what value (p∗1, p∗2)
takes on the line p1 + p2 = c, if and only if
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D[(γa,γb),(c,0)] < D[(a,b),(c,0)] (9.13)

and
D[(γa,γb),(0,c)] < D[(a,b),(0,c)] . (9.14)

0 c 1

c

1

x = y

Fig. 9.2. Prior means (a,b) with a > b for which the limiting posterior mean (γa,γb) is closer
to the point (c,0)

To identify the prior distributions for which (9.13) and (9.14) hold, we will con-
sider the following two cases separately.

Case 1: Characterizing prior means (a,b) ∈ (0,1)2 that are farther from the point
(c,0) than the limiting posterior means (γa,γb), where c ∈ (0,1) is a fixed con-
stant.

(i) The subcase in which the prior mean (a,b) is such that a > b and a+b < c is
particularly simple, since the angle formed by the line segments joining the
points (a,b), (γa,γb) and (c,0) exceeds 90◦, so that (γa,γb) is necessarily
closer than (a,b) to (c,0).

(ii) Now, let us attempt to identify the points (a,b), with 1 > a > b > 0 and
a+b > c, for which

D[(γa,γb),(c,0)] = D[(a,b),(c,0)] . (9.15)

Consider the class of concentric circles centered at the point (c,0) and with
radius r satisfying 0≤ r≤ c/

√
2. Each of these circles will intersect the line

segment joining the points (c,0) and (c/2,c/2). For any point (x,y) such
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that x > y and x + y > c, there is a unique point at which the circle with
radius

r = D
[(

cx
x+ y

,
cy

x+ y

)
, (c,0)

]
will intersect the line segment through the points (0,0) and (x,y). This point
of intersection represents a prior mean (a,b) which is the same distance
from (c,0) as the limiting posterior mean (γa,γb). Such a point (a,b) is the
unique solution of the equation

(s− c)2(s+ t)2 + t2(s+ t)2−2c2t2 = 0 (9.16)

among points (s, t) on the line passing through (0,0) with slope y/x, where
(x,y) is a fixed point satisfying the inequalities x > y and x + y > c. There
are uncountably many such solutions as (x,y) varies among pairs satisfying
the constraints above; the set of all such solutions constitutes a curve in the
simplex {(u,v) | u≥ 0,v≥ 0,u+v≤ 1}. It is easy to confirm that the points
(c/2,c/2) and (c,0) satisfy equation (9.16) when this line has slope 1 or 0,
respectively, a fact that implies that the set of solutions to (9.16) intersects
the line x + y = c at these two points. The region between the collection of
solutions of (9.16) and the line x + y = c corresponds to prior means (a,b)
which are closer to the point (c,0) than are the posterior means (γa,γb). The
prior means which improve through Bayesian updating for cases (i) and (ii)
are pictured in Figure 9.2.

0 c 1

c

1

x = y

Fig. 9.3. Prior means (a,b) for which the limiting posterior mean (γa,γb) is closer to the point
(c,0)
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(iii) When a < b, prior means (a,b) satisfying a + b > c are obviously farther
from the point (c,0) than the limiting posterior mean (γa,γb), since the
angle formed by the line segments joining the points (a,b), (γa,γb) and
(c,0) exceeds 90◦.

0 c 1

c

1

x = y

Fig. 9.4. Prior means (a,b) for which the limiting posterior mean (γa,γb) is closer to the point
(0,c)

(iv) Consider, finally, prior means for which a < b and a+b < c. To identify the
boundary separating prior means for which Bayesian updating is effective
from the remaining prior means (a,b) satisfying these constraints, consider
the class of concentric circles centered at the point (c,0) and with radius r
satisfying c/

√
2≤ r≤ c. Each of these circles will intersect the line segment

joining the points (c/2,c/2) and (0,c). For any point (x,y) such that x < y
and x+ y < c, there is a unique point (a,b) at which the circle with radius

r = D
[(

cx
x+ y

,
cy

x+ y

)
,(c,0)

]
will intersect the line segment through the points (0,0) and (x,y). The points
(a,b) and (γa,γb) are equidistant from (c,0). The point (a,b) is the unique
solution of the equation (9.16) among points (s, t) on the line in the unit
square passing through (0,0) with slope y/x, where (x,y) is a fixed point
satisfying the inequalities x < y and x + y < c. It is easy to confirm that
the points (c/2,c/2) and (0,0) satisfy equation (9.16) when this line has
slope 1 or passes through the point (1− c/

√
2,c/
√

2), respectively, a fact
that implies that the collection of solutions of (9.16) intersects with the line
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x = y at these two points. The region between the solution set to (9.16) and
the line x = y correspond to prior means (a,b), with a < b and a + b < c,
which are farther from the point (c,0) than the posterior means (γa,γb).

When the prior means (a,b), with a < b, which are farther from the point
(c,0) than the limiting posterior mean (γa,γb) are added to the prior means
pictured in Figure 9.2, one obtains the complete collection of prior means
(a,b) in the unit square which are farther from the point (c,0) than is the
limiting posterior mean (γa,γb). This collection is pictured in Figure 9.3.

Case 2: Characterizing prior means (a,b) that are farther from the point (0,c) than
the limiting posterior means (γa,γb).

The problem of characterizing the collection of prior means (a,b) which are
farther from the point (0,c) than the limiting posterior mean (γa,γb) is the mir-
ror image of the problem considered as Case 1. The symmetric nature of these
complementary problems leads to the conclusion that the reflection, across the
diagonal line of the unit square, of the solution pictured in Figure 9.3 consti-
tutes the solution to the problem in Case 2. These prior means are displayed in
Figure 9.4.

Now, consider the set of prior means (a,b) ∈ (0,1)2 which are farther from both
(c,0) and (0,c) than the limiting posterior mean (γa,γb). This set is simply the inter-
section of the prior means obtained as solutions in each of the two cases considered
above. The collection of prior means for which Bayesian updating guarantees uni-
versal improvement is pictured in Figure 9.5.

When the true value of the sum p1 + p2 is small, it is clear from Figure 9.5
that the collection of prior means for which Bayesian updating ensures universal
improvement, in the limit, is quite large relative to the size of the parameter space.
In such problems, even if the prior mean was determined by randomly selecting a
point from the unit square, the chances of improving one’s prior estimate through
Bayesian updating would be quite high. Such is not the case when the true value of
the sum p1 + p2 is close to 1. Figure 9.6 illustrates this fact for the value c = 1.

Besides investigating the question of when the limiting Bayes estimator (γa,γb)
is closer to the true value of (p1, p2) than the prior mean (a,b), regardless of the
location of the true value (p∗1, p∗2) in the equivalence class {(p1, p2) | p1 + p2 = c}, it
is reasonable to ask how often one might expect Bayesian updating to be efficacious
in the limit. For any prior mean (a,b), there are at least some potential true values of
the parameter (p1, p2) for which Bayesian updating will be asymptotically superior.
Neath and Samaniego (1997) examined this problem via simulation based upon ran-
dom sampling in which the prior mean (a,b) is chosen at random from the simplex
{(u,v) | u≥ 0,v≥ 0,u+ v≤ 1} and the “true value” of (p1, p2) is chosen at random
from the set {(p1, p2) | p1 + p2 = c} for a variety of fixed values of c ranging from 0
to 1. Table 9.1 sheds light on the behavior of the probability

Πc = P(D1 > D2 | p∗1 + p∗2 = c) , (9.17)
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0 c 1
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x = y

Fig. 9.5. Prior means (a,b) for which the limiting posterior mean (γa,γb) is closer to all the
points on the line x+ y = c

0 1

1

x = y

Fig. 9.6. Prior means (a,b) for which the limiting posterior mean (γa,γb) is closer to any
parameter value on the line p1 + p2 = 1

where
D1 = D[(a,b),(p∗1, p∗2)] and D2 = D[(γa,γb),(p∗1, p∗2)] . (9.18)

Table 9.1 indicates that Bayesian updating will, in the limit, almost always be effica-
cious when the true value of the sum p1 + p2 is small, and that, even in the worst case
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scenario, where p1 + p2 is close to 1, Bayesian updating improves upon the prior es-
timate of (p1, p2), in the limit, over 50% of the time. These claims apply when the
prior mean is chosen at random within the unit square. When the prior distribution
is chosen with care, based on useful prior information that may be available in the
application of interest, the efficacy of Bayesian updating can be expected to be rea-
sonably large. One additional insight that may be gleaned from Figures 9.5 and 9.6
is that a prior model whose mean (a,b) is sufficiently close to the diagonal line, that
is, for which a≈ b, will always lead to efficacious Bayesian updating in the limit.

Table 9.1. The simulated probability Πc of asymptotic superiority of Bayesian updating

c Πc c Πc c Πc
0.00 1.000 0.35 0.937 0.70 0.729
0.05 0.999 0.40 0.915 0.75 0.690
0.10 0.996 0.45 0.892 0.80 0.647
0.15 0.989 0.50 0.866 0.85 0.608
0.20 0.981 0.55 0.834 0.90 0.576
0.25 0.970 0.60 0.799 0.95 0.545
0.30 0.952 0.65 0.767 1.00 0.516

One final issue that we will examine in this problem regards the extent to which
either the prior mean (a,b) or the limiting posterior mean (γa,γb) dominates the
other for an arbitrary choice of (a,b). The following result shows that the potential
for improving upon the prior mean is essentially unlimited, while when the prior
mean turns out to be superior to the limiting posterior mean, it is only slightly so.

Theorem 9.2. Let D1 and D2 be the Euclidean distances defined in (9.18). Then
√

2
2
≤ D1

D2
≤ ∞ , (9.19)

and these bounds are sharp.

Proof. Let (p∗1, p∗2) be the true value of (p1, p2) and let D1 = D[(a,b),(p∗1, p∗2)] and
D2 = D[(γa,γb),(p∗1, p∗2)]. It is clear that, if the prior mean (a,b) happens to be
chosen so that a/b = p∗1/p∗2, then the limiting posterior mean (γa,γb) is (p∗1, p∗2),
and the distance D2 = 0. This establishes the RHS of the inequality in (9.19), and
it shows that the upper bound is sharp. To establish the lower bound in (9.19), one
needs to consider separately the subcases (i)–(iv) defined within “Case 1” above. We
give a formal proof of the lower bound for subcase (iv), as the subcase is typical and
the other subcases may be treated by similar arguments.

Let us suppose that a < b and that a+b < c. If the point (p∗1, p∗2) lies above and
to the left of (γa,γb), it is clear that D1/D2 > 1. Consider the remaining possibility,
that is, the case in which p∗1 > γa and p∗2 < γb. The latter situation is pictured in
Figure 9.7, where the interior angles of the triangle joining the points (a,b), (γa,γb)
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(γa, γb)

(p1*, p2*)

D1
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Fig. 9.7. Triangle connecting the points (a,b), (γa,γb) and (p∗1, p∗2) in subcase (iv): a < b and
a+b < c

and (p∗1, p∗2) are denoted by α , β and θ . Since in this case we have 45◦ < α < 90◦,
it follows from the law of sines that

D1

D2
=

sinα

sinβ
≥ sinα ≥ sin45◦ =

√
2

2
. (9.20)

This establishes the lower bound in (9.19). That the lower bound is sharp follows
from the fact that it is the exact value of D1/D2 for the prior mean (0,b). This com-
pletes the proof of the theorem for subcase (iv). Subcase (iii) may be proven by a
similar argument, and subcases (i) and (ii) follow by symmetry. �

Exercise 9.3. To disabuse the reader of the impression that the discussion above is
merely of theoretical interest, consider the following application to a problem involv-
ing medical screening tests. The results of a collection of Canadian HIV screening
tests, as reported by Nusbacher et al. (1986), were as follows: in 94,496 blood sam-
ples, there were 405 positive tests. In subsequent testing of these 405 individuals, 14
were determined to be true positives. Suppose this information is used as the basis for
prior modeling of HIV screening data elsewhere. A large-scale HIV screening test
executed in the UK resulted in 373 positive tests in 3,122,556 trials (see Johnson and
Gastwirth (1991)). Using (a,b) = (0.000148,0.004138) as the mean of our Dirichlet
prior, treating the sample size n in the UK test as effectively infinite and using the
realized proportion of positive tests in the UK as the true value c = 0.000119 of the
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sum p1 + p2, obtain the limiting posterior Bayes estimate of (p1, p2). Verify that this
estimate is closer to the true value (p∗1, p∗2) of (p1, p2) than the prior mean, regard-
less of the exact value of (p∗1, p∗2). When the subjects who tested positive in the UK
were retested, it was found that the number of true positives was 64. Thus, the true
value of (p1, p2) was determined to be (0.000020,0.000099). Evaluate the extent of
improvement afforded by Bayesian updating by calculating the ratio D1/D2.

9.5 On the efficacy of Bayesian updating in the nonparametric
competing risks problem

In the general competing risks problem, it is assumed that a given subject is ex-
posed to k possible causes of failure. Let X1,X2, . . . ,Xk be positive random variables,
where Xi represents the theoretical survival time of a subject until failure due to the
ith risk when that risk is assumed to be acting alone. In reality, a subject will sur-
vive up to the time Z = min{X1,X2, . . . ,Xk}, his or her “actual survival time.” In
a life testing experiment, the available data consists of pairs (Z,δ ), where δ = j
when Z = Xj. The “crude survival probability” P(Z > z,δ = j) may be estimated
by the empirical relative frequency of the event {Z > z,δ = j} in the sample. The
more interesting problem, and one whose solution would have greater importance
and broader interpretability, is that of estimating the “multiple decrement function”
(MDF) S(x1,x2, . . . ,xk) = P(X1 > x1,X2 > x2, . . . ,Xk > xk) based on the sample of
“identified minima” {(Z1,δ1),(Z2,δ2), . . . ,(Zn,δn)}. Even in early treatments of this
problem, it was clear that the question of the identifiability of S needed to be resolved.

Berman (1963) proved the identifiability of S as the overarching survival function
governing the behavior of identified minima under the assumption that the Xs were
mutually independent. However, since the assumption of independence cannot be
tested from a sample of identified minima, the estimation of S under that assumption
remained a somewhat chancy strategy. In an important and highly influential paper,
Tsiatis (1975) demonstrated that, without the independence assumption, the nonpara-
metric multiple decrement function S was not identifiable from observed identified
minima. It thus became clear that S could not be estimated by classical methods.
However, the possibility of the development of Bayes estimators of S remained open.
Phadia and Susarla (1983) derived the Bayes estimator of S with respect to a Dirich-
let process (DP) prior (see Ferguson (1973) for a formal definition and basic prop-
erties), though they did not determine the posterior distribution. Arnold et al. (1984)
identified the posterior distribution as a mixture of Dirichlet processes (MDP) (see
Antoniak (1974) for details on MDPs) and demonstrated the general inconsistency
of the corresponding Bayes estimators of S, a failing attributable to the nonidentifia-
bility of the model. Neath and Samaniego (1996a, 1996b) considered the issue of the
efficacy of Bayesian estimation in the competing risks context described above.

As in the binomial problem treated in Section 9.4, it is possible that the Bayes
estimator of S might in fact be poorer than the prior estimator, the mean of the prior
distribution, even when the statistician has unlimited data in the form of identified
minima. In order to make the comparison of interest, that is, the comparison between
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SG, the prior estimate of S and ŜG
∞, the limiting posterior estimate of S, as the sample

size n grows to ∞, one needs to identify the limiting posterior distribution of S, given
the infinite sequence of independent observations (Z1,δ1),(Z2,δ2), . . . ,(Zn,δn), . . ..
For simplicity, Neath and Samaniego (1996a) restrict attention to the bivariate case
in which there are two competing risks with corresponding survival times X and Y .
Their Theorem 3.2 obtains the posterior distribution of S, based on a finite sample of
identified minima, given a Dirichlet process prior D(α), with α a continuous, finite
measure over (R2,B), where R2 is the Euclidean plane and B is the σ -field of Borel
sets. I record this result as

Theorem 9.3. Without loss of generality, take x > y. If S∼ D(α), then the posterior
distribution of S(x,y), given (Z1,δ1),(Z2,δ2), . . . ,(Zn,δn), with δ j = IXi(Z j), is a mix-
ture of beta distributions which can be represented as the following beta distribution
with a random parameter:

S(x,y) | (Z1,δ1),(Z2,δ2), . . . ,(Zn,δn)
∼ Be(A(x,y)+m1 +Un,A−A(x,y)+m2 +n−Un) , (9.21)

where

A(x,y) = α((x,∞),(y,∞)),

m1 =
n

∑
i=1

I(x,∞)(Zi),

m2 =
n

∑
i=1

I(0,y)(Zi)+
n

∑
i=1

I(y,x)(Zi)I{1}(δi),

n =
n

∑
i=1

I(y,x)(Zi)I{0}(δi)

and {Un} is a stochastic process defined by: W1,W2, . . . ,Wn are i.i.d. random vari-
ables drawn from the distribution of Y | y < Y < x, Y < X; U0 = 0 wp1, and for
k = 1,2, . . . ,n, Uk −Uk−1 | Uk−1,W1, . . . ,Wn ∼ B(1,P(X > x | X > Wk,Y = Wk)),
where the probability P is computed with respect to the operational prior distribu-
tion on S.

The representation in Theorem 9.3 facilitates the derivation of the limiting pos-
terior distribution of S. In Theorem 4.1 of Neath and Samaniego (1996a), this distri-
bution is shown to be degenerate at a point, that is, at a distinct multiple decrement
function. For arbitrary 0 < y < x, the limiting posterior estimator ŜG

∞(x,y) was shown
to be

ŜG
∞(x,y) = P∗(X > x,Y > y)+P∗(y < Y < x,X > Y )

∫
P(w) dH(w) , (9.22)

where H is the distribution of the i.i.d. W s in Theorem 9.3 and P∗ is the “true proba-
bility measure” associated with the random variables X and Y . The expression for the
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limiting posterior estimator of S(x,y) for the case 0 < x < y is completely analogous
to (9.22).

The point estimator in (9.22) is seen to be an intuitively reasonable way of com-
bining prior information and the available experimental data. Identified minima pro-
vide reliable information about two key aspects of the multiple decrement function
S, leading, in effect, to estimates of the probability of survival beyond a fixed time
x and also of the joint probability that y < Y < x and X < Y . On the other hand,
the limiting Bayes estimator ŜG

∞ must rely on the prior distribution for estimating the
conditional survival probability of X when y < Y < x is observed and X > Y . The
correctness of the latter information is at the crux of the potential consistency of the
sequence of Bayes estimators. A necessary and sufficient condition for consistency
of the sequence of Bayes estimators of S, as n→ ∞, is the property∫

P(w) dH(w) =
∫

P∗(w) dH(w) , (9.23)

where P represents the operational prior model associated with S(x,y), P∗ represents
the true model and H is defined as in (9.22).

It is of interest to find prior distributions D(α) for which the limiting posterior
estimator of S(x,y) in the competing risks problem is closer to the true value S∗(x,y)
of the multiple decrement function than the prior estimate. Now when α(R2) < ∞,
the mean of the prior D(α) on a survival function S is the survival function G(x,y) =
α((x,∞),(y,∞)/α(R2). We will now turn our attention to a discussion regarding
a particular circumstance in which a productive investigation of possible Bayesian
superiority can be made. For simplicity, we will again restrict our investigation to the
bivariate case. However, the main result below generalizes easily to the multivariate
version of this problem.

The target parameter of our investigation is the MDF S(x,y) = P(X > x,Y > y),
where X and Y are nonnegative variables representing theoretical survival times
under two potential risks, were these risks operating alone. Tsiatis showed that
the function S is nonidentifiable on the basis of a sample of identified minima
{(Zi,δi), i = 1, . . . ,n}, where δ j = IXj(Z j). Tsiatis pointed out, for example, that the
marginal survival functions S(x) = P(X > x) and S(y) = P(Y > y) are not identifiable
functions of the multiple decrement function and thus cannot be estimated by clas-
sical methods on the basis of a sample of identified minima. Tsiatis demonstrated,
through an example with

S(x) = e−λx, x > 0 (9.24)

and
S(y) = e−λy−ηy2

, y > 0 , (9.25)

where λ > 0 and η > 0, that different bivariate models can give rise to the same
distribution of identified minima. The developments described below will be focused
on Bayesian estimation of the nonidentifiable parameter S(x). Similar developments
are possible for estimating S(y) and for estimating S(x,y).

We will model the true prior G∗ as degenerate at the bivariate exponential (BVE)
survival function
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S∗(x,y) = e−λ ∗1 x−λ ∗2 y−λ ∗3 max(x,y), x > 0, y > 0 . (9.26)

The operational prior distribution on S(x,y) is a Dirichlet process whose prior mea-
sure α is a scalar multiple of the BVE survival function given by

G(x,y) = e−λ1x−λ2y−λ3 max(x,y), x > 0, y > 0 , (9.27)

with the parameters in {λ ∗} and {λ} all nonnegative. Neath and Samaniego (1996b)
demonstrate that the limiting posterior estimator ŜG

∞(x) of S(x) is superior to the prior
estimate G(x) uniformly in x∈ (0,∞) and uniformly in the vectors λλλ∗ and λλλ∈ (0,∞)3.
Their result to this effect is stated below.

Theorem 9.4. Let {(Zi,δi)} be an infinite sequence of i.i.d. identified minima drawn
from the bivariate multiple decrement function S∗ given in (9.26), where λ ∗i ≥ 0
for i = 1,2,3 and λ ∗ = ∑

3
i=1 λ ∗i . Suppose that the operational prior distribution on

S is the Dirichlet process prior with parameter measure proportional to the BVE
distribution with multiple decrement function G given in (9.27), with λi ≥ 0 for i =
1,2,3. For x > 0, denote the corresponding marginal survival functions for X as
S∗(x) and G(x), where

S∗(x) = e−(λ ∗1 +λ ∗2 )x and G(x) = e−(λ1+λ2)x . (9.28)

The limiting posterior estimate of S(x) is given by

Ŝ∞(x) = e−λ ∗x +
λ ∗2

λ ∗ − (λ1 +λ3)

[
e−(λ1+λ3)x− e−λ ∗x

]
if λ
∗ 6= λ1 +λ3 , (9.29)

and
Ŝ∞(x) = e−λ ∗x +λ

∗
2 xe−(λ1+λ3)x if λ

∗ = λ1 +λ3 . (9.30)

Moreover, ∣∣∣S∗(x)− Ŝ∞(x)
∣∣∣≤ ∣∣S∗(x)−G(x)

∣∣
for all x ∈ (0,∞), λ ∗ ∈ (0,∞) and λλλ ∈ (0,∞)3. Thus, Bayesian updating provides
universal improvement over the prior estimator of S(x) for all values of x, λ ∗ and λλλ.

The result above establishes the uniform superiority of the limiting posterior
Bayes estimator of the nonidentifiable parameter S(x) over the prior estimate of that
parameter in the special case in which the true multiple decrement function is a
BVE distribution and the prior distribution D(α) is centered on a distribution in the
BVE class. While there are many questions left to investigate, and there has been, to
date, no success in obtaining a general solution to the asymptotic threshold problem
comparing prior and limiting posterior Bayes estimators in a competing risks frame-
work, the result above both highlights the distinguished role played by multivariate
exponential distributions in that general problem and demonstrates the efficacy of
Bayesian updating in this important special case.

It should, of course, be noted that a real threshold does indeed exist in the general
problem. Suppose, for example, one wishes to estimate the bivariate multiple decre-
ment function S∗(x,y) when S∗(x,y) has the BVE(λ ∗1 ,λ ∗2 ,λ ∗3 ) distribution and the
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Dirichlet prior measure is proportional to BVE(λ1,λ2,λ3). If, for x > y, the vectors
λλλ∗ and λλλ satisfy the conditions

(λ1 +λ3)x+λ2y = (λ ∗1 +λ
∗
3 )x+λ

∗
2 y and λ1 +λ3 6= λ

∗
1 +λ

∗
3 , (9.31)

then the prior estimate G(x,y) will be equal to the true multiple decrement function
S∗(x,y) while the limiting posterior Bayes estimate Ŝ∞(x,y) will generally differ from
S∗(x,y), being dependent on the exact specification of the conditional distribution of
X given Y ∈ (y,x) and X > Y .

Exercise 9.4. Show that the function in (9.27) is a valid survival function, evaluate
the probability that X = Y , and obtain the marginal density functions of X and of Y .

9.6 Bayesian estimation of a nonidentifiable parameter in a
reliability context

The classical theory of stress–strength testing in reliability theory is generally for-
mulated as follows. The (breaking) strength of a given material, such as a welded
steel bar (or “rebar”) used in the construction of buildings, bridges and the like, is
modeled as a positive random variable Y . The random stress to which the material
is subjected is modeled as a positive random variable X , independent of Y . The re-
liability of the material is then captured by R = P(X < Y ), the probability that the
material survives the stress that is placed on it. If X ∼ F and Y ∼ G, then R may be
calculated as

R =
∫

∞

0
F(y) dG(y) . (9.32)

Given independent samples of stresses and strengths, that is, given X1,X2, . . . ,Xm
iid∼ F

and Y1,Y2, . . . ,Yn
iid∼ G, the statistic U/mn is an unbiased nonparametric estimator of

the reliability R, where U is the Mann–Whitney statistic given by

U =
m

∑
i=1

n

∑
j=1

I{Xi ≤ Yj} . (9.33)

Birnbaum (1956) appears to have been the first to study the estimation of R care-
fully, providing a lower confidence bound for R; in Birnbaum and McCarty (1958),
formulae were given for calculating the required sample size associated with a certain
desired precision in one’s estimate. Subsequently, a good deal of work has appeared
treating other versions of the stress–strength problem, including a variety of paramet-
ric formulations and including both classical and Bayesian approaches to it. Johnson
(1988) and Kotz et al. (2003) provide excellent overviews of this work.

The version of this problem that I will discuss here is one which is “plagued”
with model nonidentifiability. Identifiability problems in the model (F,G) arise when
either the stresses (X) or the strengths (Y ), or possibly both, cannot be directly ob-
served. Such a circumstance might occur when a structure fails when it is subjected
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to various stresses. A bridge collapse following an earthquake would be a “concrete”
example (People are always asking for concrete examples!). The issue to be inves-
tigated here is the extent to which the stress and/or strength distributions can be
meaningfully estimated on the basis of autopsy data, that is, on the basis of data ob-
tained from the examination of stressed material following a structure’s failure. Let
us first consider an alternative formulation of the stress–strength problem in which
the observable quantity available for analysis consists of random pair (Z,Y ), where,
as before, Y measures an item’s breaking strength and Z is a binary variable which
records whether or not an item survived the stress to which it was subjected. The
connection between the models for (X ,Y ) and for (Z,Y ) will now be examined.

Let Y be a continuous variable with distribution G, and let Z, given Y = y, be
a Bernoulli random variable, that is, Z|Y = y ∼B(1, p(y)). The parameter p(y) is
interpreted as the conditional probability of surviving a random stress to which an
item having known strength Y = y is subjected. The joint probability function of the
pair (Z,Y ) is

f (z,y) = g(y)[p(y)]z[1− p(y)]1−z , (9.34)

where g is the density function of Y and p(y) = P(Z = 1 | Y = y). The model in
(9.34) has no necessary connection to the original model (F,G), but if one is trying
to model the same problem, then we must acknowledge that P(Z = 1 | Y = y) =
P(X < Y | Y = y) = F(y). We thus may reformulate the autopsy model as

Y ∼ G and Z ∼B(1,F(y)) , (9.35)

where F is the distribution of the latent variable X representing a random stress. The
observation (Z,Y ) carries less information than the observation (X ,Y ), as given X
and Y , the variable Z is degenerate, taking the value 1 if X < Y and the value 0 if
X ≥ Y .

We now turn to the estimation problem of interest. The main issues to be exam-
ined here relate to identifiability, and the rather simple models we will consider will
serve us well in illustrating this particular feature and in outlining the Bayesian so-
lution to the estimation of the model’s nonidentifiable parameters. We will take both
F and G above to be exponential distributions, that is, we shall assume that

F(x) = 1− e−x/ν , x > 0 (9.36)

and
G(y) = 1− e−y/µ , y > 0 . (9.37)

Now suppose that Y1,Y2, . . . ,Yn
iid∼ G and that Z1,Z2, . . . ,Zn are Bernoulli random

variables whose conditional distributions are given by

Zi|Yi = yi ∼B(1,F(yi)) for i = 1, . . . ,n . (9.38)

We will treat the problem of estimating the unknown parameters of the model
above based on the autopsy data {Zi} alone, as in the context we have mentioned
earlier, where data is collected on the material (say, rebar) in a collapsed structure
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such as a bridge, an elevated highway or a building. Assume that neither the Xs
nor the Y s are available for observation. We therefore must work with the marginal
distribution of the Zs. It is a well-known fact that the Zs are marginally independent
and have the common distribution B(1,R), where

R = P(X < Y )

=
∫

∞

0
P(Y ≥ x) f (x) dx

=
∫

∞

0

1
ν

exp
{
− (µ +ν)x

µν

}
dx

=
µ

µ +ν
. (9.39)

It is clear that the parameter pair (µ,ν) is not an identifiable parameter of the distri-
bution of the observed Zs. Indeed, it is not possible to distinguish among parameter
pairs in the equivalence class {(µ ,ν) | µ = Mν}, where M is a fixed, known constant.
Thus, a Bayesian treatment of this estimation problem is the only available option.
We will take as the operational prior a particular version of the bivariate Pareto dis-
tribution having density

f (u,w) =
α(α +1)

(u+w+1)α+2 , u > 0, w > 0 . (9.40)

In many applications of the stress–strength model, there is an assumed lower
bound on the monitored stress to which the material under study would be subjected.
The stress levels of interest are generally quite a bit higher than the stress applied
on a daily basis. An example of these two ideas is the stress to which a bridge is
subjected due to daily traffic in contrast with the stress due to an earthquake or other
“act of God.” We will employ a version of the model above which allows the mean
strain µ to be unconstrained in the interval (0,∞) but we will assume the mean stress
ν has a known lower bound (taken here, without loss of generality, to be 1). The
prior model for the pair (µ ,ν) can be obtained from the Pareto model in (9.40) by
the transformation µ = u and ν = w+1. The resulting joint density of (µ ,ν) is then

f (µ,ν) =
α(α +1)

(µ +ν)α+2 , µ > 0, ν > 1 . (9.41)

Given the autopsy data Z1,Z2, . . . ,Zn, one may restrict one’s attention to the sufficient
statistic S = ∑

n
i=1 Zi for the parameter R. The joint density of (S,µ ,ν) is thus given

by

f (s,µ ,ν) =
(

n
s

)
α(α +1)µsνn−s

(µ +ν)α+n+2 , for s = 0,1, . . . ,n, µ > 0, ν > 1 . (9.42)

From (9.42), we may identify the Bayes estimator of (µ,ν), with respect to squared
error loss, as
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E(µ|s) =
I(s+1,n− s,α +1)

I(s,n− s,α +2)
(9.43)

and

E(ν|s) =
I(s,n− s+1,α +1)

I(s,n− s,α +2)
(9.44)

where

I(a,b,c) =
∫

∞

0

∫
∞

1

µaνb

(µ +ν)a+b+c dνdµ , (9.45)

with a,b,c ≥ 0. To evaluate the latter integral, we use the transformation t =
µ/(µ +ν) and z = ν , for which the absolute value of the Jacobian is |J| = z/t2,
to obtain

I(a,b,c) =
∫ 1

0

∫
∞

1

tb+c−2(1− t)a

zc−1 dz dt =
1

c−2
Γ(b+ c−1)Γ(a+1)

Γ(a+b+ c)
. (9.46)

The Bayes estimators of µ and ν are then easily identified as

µ̂ =
α

α−1
× s+1

α +n− s
(9.47)

and
ν̂ =

α

α−1
, (9.48)

formulae that are applicable provided that α > 1. We thus see that the Bayesian
approach yields estimators of the parameters µ and ν , and also yields, informally,
an estimator M̂ of the scalar multiple M that defines the equivalence class containing
the true value of (µ,ν):

M̂ =
ν̂

µ̂
=

α +n− s
s+1

. (9.49)

Since M is an identifiable parameter of the exponential stress–strength model based
on the data {Zi}, the estimator M̂ may be compared to the MLE (n− s)/s of M.

The fact that the prior model plays a major role in this estimation problem is
clear from (9.47) and (9.48), as the estimator of ν is independent of the data and
depends only on the prior in (9.41). A different choice of operational prior can make
both estimates data dependent, but the strong influence of the prior will still manifest
itself, albeit in a different way. The prior utilized above would be recommended for
use only when the experimenter has substantial confidence in his prior information
about ν and thus is primarily interested in estimating the unknown mean strength µ .

The reader will note that we have not included here a comparison of the prior and
posterior estimates of the pair (µ ,ν). This threshold problem is quite tractable and
is left as an exercise.

Exercise 9.5. Consider the exponential model for stress–strength testing in Sec-
tion 9.5. Compare the performance of the Bayes estimator of (µ ,ν) in (9.47) and
(9.48) to the prior estimator (µ0,ν0), the mean of the Pareto prior given in (9.41).
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Improving on Standard Bayesian and Frequentist
Estimators

10.1 The empirical Bayes framework

Suppose that an experiment of interest will yield the outcome X , where X has been
modeled as having the probability distribution Fθ depending on the scalar parameter
θ . The statistician is prepared to estimate θ by the estimator θ̂ = θ̂(X), where θ̂

might be either a Bayesian or a frequentist estimator, depending on the statistician’s
inclination. Suppose that before this estimation process is completed, the statistician
becomes aware of the outcome Y of a “similar” experiment. The question then nat-
urally arises: can the information obtained in the other experiment be exploited to
provide a better estimator of θ than θ̂? If it can, then the opportunity afforded to
the statistician to improve upon his initial strategy should not be squandered! The
situation I have outlined here is both intriguing and seductive, but it is also vague,
involving the as-yet-undefined term “similar” as well as dependent on suppositions
that might, in many circumstances, be found to be unrealistic. In this chapter, we
will examine a scenario in which opportunities of the sort above tend to arise. The
empirical Bayes framework, the quintessential statistical setting in which one may
reliably learn from similar experiments, was introduced by Robbins at the Berkeley
Symposium on Probability and Statistics in 1955, and was developed further in Rob-
bins (1964). This section is aimed at presenting the empirical Bayes “model” and
discussing its statistical implications.

Let us posit the existence of a sequence of (k+1) independent experiments, with
k ≥ 1, in which the distributions of the observable quantities X1, . . . ,Xk,Xk+1 may
vary. We will think of the first k experiments as having occurred in the past, and we
will refer to the (k+1)st experiment as “the current experiment.” These experiments
will also be postulated to be “similar” in the following sense. We will assume that
the data are distributed as

Xi ∼ Fθi , i = 1, . . . ,k,k +1 (10.1)

where the parameters {θi, i = 1, . . . ,k+1} are viewed as independent random draws
from a true but unknown “prior” distribution G0, that is, we will assume that
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θ1, . . . ,θk,θk+1
iid∼ G0 . (10.2)

The independence of the (k + 1) experiments alluded to above is interpreted simply
as the independence of the random pairs {(Xi,θi), i = 1, . . . ,k+1}. The similarity of
the experiments is now clear. The parameters {θi, i = 1, . . . ,k+1} are “similar” in the
sense that they are “generated” from a single fixed random process (e.g., they have
the same median, along with other shared characteristics), and if we were to venture
a guess at the value of θ in any of these experiments, we would consider the index
of the experiment quite irrelevant. Typically, the distributions {Fθi} are assumed to
be members of the same parametric family (though this is just a convenient and gen-
erally realistic assumption, not an essential one). Together, the assumptions in (10.1)
and (10.2) provide the reasonable expectation that the (k + 1) experiments above
are similar enough for one to be able to utilize the information in the observations
{X1, . . . ,Xk} to improve upon an estimator of θk+1 based on the datum Xk+1 alone.
Doing so is often referred to as “borrowing strength” from similar experiments.

Let us now consider the goal of estimating the parameter θk+1 of the current ex-
periment based on all the available information. We will denote such an estimator by
dk(X), where dk is a decision rule based on {X1, . . . ,Xk+1} in the problem of esti-
mating the unknown parameter θk+1. Following Robbins, we take our loss function
to be squared error and the criterion for assessing the quality of an estimator d as its
Bayes risk r(G0,d) with respect to the unknown true prior G0, where it is assumed
that the distributions G0 and {Fθi , i = 1, . . . ,k,k + 1} have finite second moments.
Robbins (1956) made a simple observation with quite profound statistical implica-
tions. He noted that, while the Bayes estimator dG0(Xk+1) with respect to G0, the best
one could hope to do in estimating θk+1 based on the current data, was impossible
to identify, one could approximate this estimator and its statistical performance with
arbitrary accuracy, as k→ ∞, by an estimator dk(X) depending on all the data. In
Robbins’ leading example, where Fθ was taken as the Poisson model with mean θ ,
the Bayes estimator dG0 of θ may be written as

dG0(x) =
(x+1)pG0(x+1)

pG0(x)
, (10.3)

where pG0(·) is the marginal probability mass function (pmf) of X . Robbins noted
that one could mimic the form of this estimator by its “empirical Bayes” counterpart

dk(xk+1) =
(xk+1 +1)pk(xk+1 +1)

pk(xk+1)
, (10.4)

where pk(·) is the empirical pmf based on the observations X1, . . . ,Xk. It is clear from
equations (10.3) and (10.4) that for all integers x≥ 0, dk(x)→ dG0(x) as k→∞. Johns
(1957) showed that dk was indeed asymptotically optimal in the Bayes sense, that is,
that

r(G0,dk)→ r(G0,dG0) as k→ ∞ . (10.5)

It is worth noting that the estimator in (10.4) was never intended to be used when k is
small, as the estimator would clearly be undefined whenever the (k+1)st observation
happens to differ from any previous observation. This problem vanishes in the limit.
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Examples such as that above, and similar developments for broader modeling
scenarios, serve to establish the fact that empirical Bayes (EB) estimators will be-
have well (that is, perform as well as the Bayes estimator with respect to the unknown
true prior G0 based on the current experiment alone) when the number of past exper-
iments is sufficiently large. Note, however, that this assertion differs from the type of
asymptotic claim one would generally make about an estimator of interest. It should
be noted explicitly that the EB framework permits, and generally includes, multiple
observations within each experiment. Thus, a more complete representation of the
EB setup would be that given below. The sample available from the ith experiment is

Xi1, . . . ,Xini
iid∼ Fθi for i = 1, . . . ,k,k +1 . (10.6)

Now a result of the sort given in (10.5), with appropriate adjustments made for the
precise form of dk, will generally hold as k→ ∞. Interestingly, for a fixed k, such
results say nothing about the behavior of the empirical Bayes estimator dk as the
samples sizes {ni} grow. Indeed, for fixed k, even if ni → ∞ for i = 1, . . . ,k + 1,
the convergence in (10.5) will not generally occur. Still, the potential for exploit-
ing past information in the estimation of the current parameter was made stunningly
clear by Robbins, and much productive work associated with the framework he intro-
duced has followed. We will routinely assume, in the remainder of this chapter, that
the “similarity” assumptions encapsulated in (10.2) and (10.6) hold. Applications
in which these assumptions are relaxed from “similar” to “related” experiments are
discussed in Chapter 11. In this section of the present chapter, we will be interested
in the characteristics and performance of EB procedures. In subsequent sections, we
address the question about when and how past experiments may be used, under EB
assumptions, to improve upon a standard estimator (Bayesian or frequentist) under
consideration in the current experiment. Before turning to performance questions,
we take a brief digression to discuss some philosophical and theoretical issues.

The term “empirical Bayes” suggests that the methodology is a close cousin to
Bayesian methods. This is not actually the case. Inference based on the EB frame-
work is firmly rooted within the classical school of statistics. There is, for instance,
no subjective (nor even objective) prior input about unknown parameters. An explicit
example of the connection between Bayes and empirical Bayes analyses, and one that
was especially insightful regarding the interpretation of the Stein effect, appeared in
Efron and Morris’s papers (1973a,b). There, it is shown that the James–Stein estima-
tor is in fact an empirical Bayes estimator of a multivariate normal (MVN) mean in
which the parameters of the conjugate MVN prior are replaced by a known mean and
a particular data-based estimate of the shrinkage parameter. A characteristic of EB
analysis is that the consideration of the model parameters being random serves the
purpose of quantifying the notion of “similarity,” but their common distribution G0
remains unknown and unknowable throughout the analysis. The potential for defin-
ing “similarity” in this fashion becomes clear when one recognizes that the case in
which this “true prior” is degenerate represents the case in which the same experi-
ment is replicated (k + 1) times. Certainly if G0 is not too diverse, the experiments
involved in (10.6) are indeed similar. But even if G0 has substantial dispersion, one
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might still reasonably consider the (k + 1) experiments to be sufficiently similar to
be of use; of course, the rate of convergence in (10.5) can be expected to be slower
in the latter scenario.

A fully Bayesian version of Robbins’ EB framework would place prior distribu-
tions on all unknown parameters of the sampling distribution. Assuming (10.2) as in
Robbins (1956), with G0 taken as unknown, a Bayes empirical Bayes (BEB) proce-
dure would put a prior distribution on G0. Early and notable examples of BEB treat-
ments of statistical problems are Berry and Christensen’s (1979) use of a Dirichlet
process prior on G0 in the problem of estimating a binomial parameter and the work
of Deely and Lindley (1981) which introduces hierarchical models in the general EB
framework, essentially looking at the distribution G0 as governed by a random pa-
rameter. The latter paper had a strong influence in the evolution of a wide-ranging
literature on the use of hierarchical modeling in Bayesian inference.

The first issue that comes to mind in the practical application of EB methods
in statistical problems is the actual comparative performance of an EB estimator
relative to other options (for example, relative to the MLE or the UMVUE based on
the (k + 1)st sample alone). What is generally known is that EB estimators tend to
outperform the standard frequentist estimators when k is sufficiently large. A related
issue of interest is that of identifying the value k∗ defined as

k∗ = min
k

r(G0,dk)≤ r(G0,d∗) , (10.7)

where d∗ represents the frequentist estimator of choice. The body of theoretical re-
sults on this latter question is rather sparse. Insights into this matter have largely been
derived from simulation studies. Maritz and Lwin (1989, pp. 84–89), for example,
compared the performance of seven different EB estimators to that of the MLE and
of the Bayes estimator under the modeling assumptions that Fθ is the Poisson distri-
bution with mean θ and the true prior G0 is a gamma distribution with two unknown
parameters. The problem studied set k = 50 and ni = 1 for all i. Not surprisingly,
the performance of the Robbins estimator d50 in (10.4) was poorer than the MLE
d∗(x51) = x51. However, certain alternative EB estimators, especially those involv-
ing some “smoothing,” outperformed the MLE. From Maritz and Lwin’s study, it ap-
pears that, for the right EB estimator, the value of k∗ in (10.7) is substantially smaller
than 50. In other comparative simulation studies, Canovos (1973) and Bennett (1977)
showed that, for certain classes of prior distributions, smooth EB estimators tended
to outperform maximum likelihood estimators of the failure rates of exponential and
Weibull models, even when the number k of past experiments was quite small. In
the next two sections, we will turn to the theoretical study of these types of compar-
isons. The presentation here is based on the papers by Samaniego and Neath (1996)
and Samaniego and Vestrup (1998).

I will conclude this section with a brief overview of the problems which will
be investigated in the two sections that follow. I will focus on the modeling sce-
nario treated in Chapter 5 in which a sufficient, unbiased statistic exists for the scalar
parameter θ of a distribution belonging to an exponential family and θ is to be esti-
mated under squared error loss. In Section 10.2, we will compare, under an assumed
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EB framework, the performance of a Bayes estimator with respect to an operational
prior G to the performance of a Bayes estimator with respect to a new prior which is
a revised form of the operational prior G which takes the information from past ex-
periments into account. The latter estimator is in the class of BEB estimators which
utilize both subjective prior information, through the operational prior G, and data
from past experiments, in the development of an estimator of θ . In Section 10.3, we
compare the performance of a standard frequentist estimator θ̂ of θ , based on the
random sample drawn in the current experiment, to the performance of alternative
estimators that utilize data from past experiments. I will denote the EB alternative to
the Bayes estimator dG as dGk and the EB alternative to the frequentist estimator θ̂

as θ̂ (k). The Bayes risks of the four estimators above relative to the true but unknown
prior G0 are graphed in Figure 10.1 as functions of the number k of past experiments.

k∗∗ k∗∗∗∗ k

r     G0,,  dG0



r     G0,,  θθ


r     G0,,  dG



r     G 0,,  dGk



r     G0,,  θθ((k))


r

Fig. 10.1. Bayes risks, relative to the true prior G0, for the Bayes estimator dG0 , for the stan-
dard and EB frequentist estimators θ̂ and θ̂ (k) and for the Bayes and BEB estimators dG and
dGk based on the operational prior G

The Bayes risks of these four estimators are pictured in Figure 10.1 against the
baseline r(G0, dG0), the Bayes risk of the optimal estimator wrt the true prior G0

known. For concreteness, we have assumed in this figure that r(G0,dG) < r(G0, θ̂),
although we know from Chapter 5 that this inequality might be reversed for some
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choices of the operational prior G. The ordering of these two risks will, however,
play no role in the problems to be investigated in the sequel. Of special interest in
Figure 10.1 are the values of the integers k∗ and k∗∗ along the x-axis. The integer k∗

represents the smallest integer for which the EB alternative θ̂ (k) has a smaller Bayes
risk relative to the true prior G0 than that of the frequentist estimator of choice θ̂ .
The integer k∗∗ represents the smallest integer for which the BEB estimator dGk has
a smaller Bayes risk wrt G0 than that of the Bayes estimator dG wrt the operational
prior G. It will be shown in the next two sections that for particular choices of EB
and BEB estimators in the problem above, both k∗ and k∗∗ are equal to one! Thus,
even with just a single past experiment that is similar to the current experiment in
Robbins’ sense, the statistician who properly exploits past data has the opportunity
to improve upon standard estimators in the current experiment. In addition to the
explicit assumptions made in the theorems that follow, I will tacitly take as given
that interchanges in the order of integration, typically justified via Fubini’s Theorem,
are valid in the context under study.

Exercise 10.1. Let (X1,λ1), . . . ,(Xk,λk),(Xk+1,λk+1) be a collection of independent

random pairs, where λ1, . . . ,λk,λk+1
iid∼ G0, the true but unknown distribution of the

λ s, and, given λi, Xi has a geometric distribution with pmf parametrized as

p(x|λ ) = (1−λ )λ x for x = 0,1,2, . . . and 0 < λ < 1 .

Show that, under squared error loss, the Bayes estimator of λ with respect to G0,
based on a single geometric observation X = x, may be written as

λ̂G0 =
pG0(x+1)

pG0(x)
,

where

pG0(x) =
∫ 1

0
(1−λ )λ x dG0(λ ) .

Obtain an empirical Bayes estimator of λk+1 based on the empirical marginal pmf of
the observations in the first k experiments.

10.2 How to be a better Bayesian

Let us suppose that data is available from two similar experiments, one “past” and
the other “current,” each depending on a scalar parameter θ . We will be interested in
estimating the current parameter value using the standard Bayesian approach. Adapt-
ing the notation above to the present situation, it is assumed that

θ1,θ2
iid∼ G0 (10.8)

and that, given θi,
Xi1, . . . ,Xini

iid∼ Fθi for i = 1,2 . (10.9)
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It is also assumed that the pairs (θ1,X1) and (θ2,X2) are independent. The setting in
which the estimation of θ2 will be studied is the familiar one featured in Chapter 5,
that is, the case in which the distribution Fθ is a member of a one-parameter expo-
nential family and the parameter θ2 is to be estimated relative to squared error loss.
Further, we will assume that the operational prior G is chosen from the standard fam-
ily of distributions that is conjugate to the class {Fθ}. Although the theorem below is
stated without these formal assumptions, it is clear from the theorem’s assumptions
that this distributional scenario is the primary domain of the result’s intended appli-
cations. We proceed to the section’s main result, which is a modest generalization of
Theorem 1 from Samaniego and Neath (1996).

Theorem 10.1. Let (θ1,X1) and (θ2,X2) be independent random vectors governed
by the distributional assumptions in (10.8) and (10.9), where {Fθi , i = 1,2} and G0
are assumed to have finite second moments. Suppose that G0 is the true but unknown
prior distribution of θ . Let G represent the “operational” prior distribution on θ2
parametrized by its mean EGθ and a weighting parameter α which is characterized
by the fact that the Bayes estimator of θ2 wrt G under squared error loss is given by

θ̂G = θ̂G(X2) = ηθ̂2 +(1−η)EGθ , (10.10)

where η ∈ [0,1) and θ̂2 is a sufficient and unbiased estimator of θ2 based on the
observation X2. For c ∈ (0,1), let G(1) be the “adjusted” operational prior with
mean (cθ̂1 +(1−c)EGθ) and weighting parameter η , i.e., G(1) is the prior on θ2 for
which the Bayes estimator of θ2 wrt G(1) under squared error loss is given by

θ̂G(1) = θ̂G(1) (X1,X2,c) = ηθ̂2 +(1−η)(cθ̂1 +(1− c)EGθ) , (10.11)

where θ̂1 is a sufficient and unbiased estimator of θ1 based on the observation X1.
Then

r
(

G0, θ̂G(1)

)
< r
(

G0, θ̂G

)
(10.12)

for any value of the constant c satisfying

0 < c <
2(EG0θ −EGθ)2

(EG0 θ −EGθ)2 +V (θ̂1)
,

and r
(

G0, θ̂G(1)

)
is minimized, as a function of c, by

c∗ =
(EG0 θ −EGθ)2

(EG0 θ −EGθ)2 +V (θ̂1)
. (10.13)

Proof. Simple algebra shows that r
(

G0, θ̂G(1)

)
may be expressed as a function of c

as follows, where the expectation with respect to the distribution of (Xi,θi) is written
as Ei:
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r(c) = E1E2

(
θ̂G(1) (X2)−θ2

)2

= η
2E1E2(θ̂2−θ2)2 +(1−η)2E1E2[(cθ̂1 +(1− c)EGθ)−θ2]2 , (10.14)

an expression which follows from the fact that the cross product term in the quadratic
expansion of r(c) vanishes due to the assumed unbiasedness of θ̂2 as an estimator of
θ2. The first term in (10.14) may be identified as η2Eθ2V (θ̂2|θ2) and is independent
of the constant c. To show that r(c) is decreasing in c for c in an interval of the form
(0,C), it suffices to study the behavior of the second term on the RHS of (10.14). To
that end, we rewrite that term as

(1−η)2E1E2[cθ̂1 +(1− c)EGθ −θ2]2

= (1−η)2E1E2[c(θ̂1−EGθ)+(EGθ −θ2)]2

= (1−η)2[c2E2E1(θ̂1−EGθ)2 +2cE1(θ̂1−EGθ)E2(EGθ −θ2)
+E1E2(θ2−EGθ)2]

= (1−η)2{c2[(EG0θ −EGθ)2 +V (θ̂1)]−2c(EG0θ −EGθ)2 +VG0(θ)

+(EG0 θ −EGθ)2} (10.15)

From (10.15), we obtain

r′(c) =
∂

∂c
r(c) = (1−η)2{2c[(EG0θ −EGθ)2 +V (θ̂1)]−2(EG0 θ −EGθ)2} .

(10.16)
If the operational prior is mean correct, that is, if EGθ = EG0θ , then r′(c) > 0 for
c > 0. It follows that the Bayes risk is uniquely minimized, among c ≥ 0, at c = 0,
implying that the Bayes estimator θ̂G wrt the original operational prior G outper-
forms the BEB estimator wrt to the adjusted operational prior G(1), regardless of the
choice of c > 0. (We note, in passing, that the virtual impossibility of exact mean
correctness in any practical application will imply that improvement over the orig-
inal estimator θ̂G is virtually always possible.) If, on the other hand, EGθ 6= EG0θ ,
then we may conclude from (10.16) that r(c) is decreasing at c = 0, that it achieves
its unique minimum value at

c∗ =
(EG0 θ −EGθ)2

(EG0 θ −EGθ)2 +V (θ̂1)
, (10.17)

and that the BEB estimator θ̂G(1) in (10.11) is superior to the Bayes estimator θ̂G for
any value of the constant c ∈ (0,2c∗). This completes the proof. �

For completeness, I will interject here a brief discussion of the fact that the dis-
tribution G(1) may legitimately be viewed as a “prior distribution” in the problem of
estimating the parameter θ2. It is not uncommon, in the practice of Bayesian infer-
ence, to select one’s prior distribution on the basis of the total amount of intuition,
experience and expert opinion available before one examines the experimental data
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one is given to analyze. In the EB framework, the available experimental data is pre-
cisely the data X21, . . . ,X2n2 from the current experiment. Thus, the data from past
experiments, here X11, . . . ,X1n1 , is simply an additional (perhaps newly found) com-
ponent of our “experience” which is to be combined with other prior information,
represented by G, to form an adjusted prior G(1) aimed at improving our inference.
Its legitimacy within the context of Bayesian inference comes from the fact that the
consideration of past data chronologically and operationally precedes our treatment
of the data associated with the current experiment.

Theorem 10.1 asserts that, when Robbins’ EB assumptions hold in the famil-
iar setting of exponential families of sampling distributions, squared error loss and
standard conjugate priors, one can essentially always improve upon a given Bayes es-
timator of the parameter of the current experiment through a process which borrows
strength from past experiments by adjusting the prior to incorporate past information
(the only possible exception occurring when the original operational prior is mean
correct). The alternative prior G(1) in Theorem 10.1 is not necessarily the best one
can do, but it does serve to demonstrate that improvement is virtually always pos-
sible. It can thus rightly be claimed that, under EB assumptions, a statistician who
would use a Bayes estimator to estimate the current parameter based on current data
alone has the opportunity to be a “better Bayesian” by exploiting the information
available from past experiments.

Theorem 10.1 makes clear that, except in the (virtually impossible) event that
the operational prior G is mean correct, there exists a collection of empirical Bayes
estimators that will improve upon the Bayes estimator θ̂G relative to the Bayes risk
criterion in (10.12). While undoubtedly not unique in this regard, the specific EB
estimators that are shown in this theorem to afford the Bayesian a measure of im-
provement are an immediately attractive class from an intuitive standpoint, as these
estimators simply change the prior mean slightly, shrinking it a bit toward the esti-
mator obtained in a similar experiment. The “similarity” gives one confidence that
the data utilized from the first experiment carries some useful information about the
second. Thus, using it to recalibrate the central tendency of the original prior seems
eminently reasonable. But improvement over this approach may well be possible,
and is worthy of further investigation.

Another issue that should be stated regarding the interpretation of Theorem 10.1
is that it is most definitely an “existence theorem” rather than a practical prescription
for identifying improved estimators. While some practical guidance can be gleaned
from the theorem, it must be acknowledged that the constant c∗ which gives the
greatest improvement and the interval (0,2c∗) over which θ̂G(1) improves upon θ̂G
depends on unknown aspects of the experiment. While it may be possible to estimate
V (θ̂1) reliably, the distance |EG0θ −EGθ | between the means of the true and oper-
ational priors is simply unknown. These impediments do not preclude placing some
reliance on Theorem 10.1 in devising a BEB estimator which is quite likely to im-
prove upon the Bayes estimator θ̂G. For example, with a moderate sample size in the
first experiment, V (θ̂1) is likely to be small relative to (EG0 θ −EGθ)2. When this is
the case, a value of c close to 1 for θ̂G(1) in (10.11) can be expected to produce a BEB
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estimator that improves upon θ̂G. Even in the extreme case in which the size of the
term for c∗ in (10.17) is difficult to assess, it is worth noting that, under EB assump-
tions, the BEB estimator θ̂G(1) outperforms the EB estimator θ̂G provided that the
constant c in (10.11) is sufficiently close to 0. Thus, using a sufficiently conservative
guess at the value of c∗ will always produce improvement over θ̂G.

Finally, let us consider the general case in which the EB framework involves k
past experiments. It is already clear that BEB estimators can provide improvement
over EB estimators, as Theorem 10.1 indicates that we can toss out all but one of
these past experiments and still improve upon θ̂G. But, clearly, one should be able to
do better. In the result below, we indicate how data from each of k past experiments
can be utilized in improving upon the Bayes estimator based solely on data from the
current experiment. Let us, then, assume that, for i = 1, . . . ,k,k+1, the data available
from the ith experiment is given by

Xi1, . . . ,Xini
iid∼ Fθi , (10.18)

where, for each i, the parameters governing these experiments satisfy

θ1, . . . ,θk,θk+1
iid∼ G0 . (10.19)

It is also assumed that the random vectors {(θi,Xi), i = 1, . . . ,k,k +1} are mutually
independent. I now state, without proof, an extension of Theorem 10.1 to the case of
k past experiments.

Theorem 10.2. Let {(θi,Xi), i = 1, . . . ,k,k + 1} be mutually independent random
vectors satisfying the assumptions in (10.18) and (10.19), where {Fθi} and G0 are
assumed to have finite second moments. Let G represent a prior distribution on θk+1
parametrized by its mean EGθ and a weighting parameter α which is characterized
by the fact that the Bayes estimator of θk+1 under squared error loss is given by

θ̂G = θ̂G(Xk+1) = ηθ̂k+1 +(1−η)EGθ , (10.20)

where η ∈ [0,1) and θ̂k+1 a sufficient and unbiased estimator of θk+1 based on the
observation Xk+1. For c ∈ (0,1), let G(k) be the “adjusted” operational prior with
mean (cθ̂ ∗+(1− c)EGθ) and weighting parameter η , that is, let G(k) be the prior
on θk+1 for which the Bayes estimator of θk+1 under squared error loss is given by

θ̂G(k) = θ̂G(k) (X1, . . . ,Xk+1,c) = ηθ̂k+1 +(1−η)(cθ̂
∗+(1− c)EGθ) (10.21)

with

θ̂
∗ = ∑

k
i=1 niθ̂i

∑
k
i=1 ni

, (10.22)

where, for i = 1, . . . ,k, θ̂i is a sufficient and unbiased estimator of θi based on the
observation Xi. Then, under squared error loss,

r
(

G0, θ̂G(k)

)
< r(G0, θ̂G) (10.23)
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for any value of the constant c satisfying

0 < c <
2(EG0θ −EGθ)2

(EG0 θ −EGθ)2 +V (θ̂ ∗)
, (10.24)

and r
(

G0, θ̂G(k)

)
is minimized, as a function of c, by

c∗ =
(EG0 θ −EGθ)2

(EG0θ −EGθ)2 +V (θ̂ ∗)
.

Exercise 10.2. Prove Theorem 10.2.

10.3 How to be a finer frequentist

As in the preceding section, we shall assume that data is available from two sim-
ilar experiments, one “past” and the other “current,” each depending on a scalar
parameter θ . Here, we will treat a problem that is complementary to the problem
studied above, that is, we will assume that the statistician is interested in estimating
the current parameter value using frequentist methods. We will retain the basic EB
assumptions in (10.8) and (10.9) regarding the parameters θ1 and θ2 and regarding
the available data X1 and X2. It is also assumed that the experiments associated with
the random pairs (θ1,X1) and (θ2,X2) are independent. The setting in which the
estimation of θ2 will be studied is the familiar one in which the distribution Fθ is
a member of a one-parameter exponential family and the parameter θ2 is to be es-
timated relative to squared error loss. As in previous results involving comparisons
between estimators, these assumptions are not stated explicitly in the results below,
but the intended application of these results is to situations satisfying these modeling
assumptions. The theorems below differ from the preceding comparative results in
that the two estimators we will be interested in are frequentist in nature, with the es-
timators differing on the basis of whether or not they make use of information from
past experiments. The two-experiment EB problem is treated in the following result.
Extensions of this theorem to general EB problems follow, with several results stated
without proof. The interested reader is referred to Samaniego and Vestrup (1998) for
a complete treatment of the latter case. I will now state and prove the main result.

Theorem 10.3. Let (θ1,X1) and (θ2,X2) be independent random vectors governed
by the distributional assumptions in (10.8) and (10.9), where the distributions
{Fθi , i = 1,2} and G0 have finite second moments. Suppose that θ̂1 and θ̂2 are suf-
ficient, unbiased estimators of θ1 and θ2, respectively. Consider the estimation of θ2
under squared error loss. Then the linear empirical Bayes estimator θ̂c of θ2 given
by

θ̂c(X2) = cθ̂1 +(1− c)θ̂2 , (10.25)

for c ∈ (0,1), is superior to the standard frequentist estimator θ̂2, that is,



168 10 Improving on Standard Bayesian and Frequentist Estimators

r(G0, θ̂c) < r(G0, θ̂G) (10.26)

provided that the constant c satisfies

0 < c <
2EV (θ̂2|θ2)

EV (θ̂1|θ1)+EV (θ̂2|θ2)+2V (θ)
, (10.27)

where θ is a generic random variable having distribution G0. The optimal value of
the constant c is given by

c∗ =
EV (θ̂2|θ2)

EV (θ̂1|θ1)+EV (θ̂2|θ2)+2V (θ)
. (10.28)

Proof. We may write

r(c) = r(G0,cθ̂1 +(1− c)θ̂2)

= Eθθθ,X

(
cθ̂1 +(1− c)θ̂2−θ2

)2

= Eθθθ,X

[
c(θ̂1−θ2)+(1− c)(θ̂2−θ2)

]2

= c2Eθθθ,X(θ̂1−θ2)2 +(1− c)2Eθθθ,X(θ̂2−θ2)2 . (10.29)

The last equality follows from the fact that the cross-product term missing from
(10.29) equals zero due to the unbiasedness of θ̂2. Elementary calculus shows that
the Bayes risk in (10.29) is uniquely minimized by the constant c∗ ∈ (0,1) given by

c∗ =
Eθθθ,X(X2−θ2)2

Eθθθ,X(X1−θ2)2 +Eθθθ,X(X2−θ2)2 . (10.30)

Indeed, r(c) < r(0) for all c∈ (0,2c∗). The proof will be completed by demonstrating
that 2c∗ is equal to the expression on the RHS of (10.27). Note, first, that by the
independence of (θ1,X1) and (θ2,X2) and the unbiasedness of θ̂2, we have

Eθθθ,X(θ̂2−θ2)2 = Eθ2 EX2|θ2(θ̂2−θ2)2

= Eθ2VX2|θ2(θ̂2|θ2) . (10.31)

On the other hand, by the unbiasedness of θ̂1, we have

Eθθθ,X(θ̂1−θ2)2 = Eθθθ,X(θ̂1−θ1)2 +Eθθθ,X(θ1−θ2)2

= Eθ1VX1|θ1(θ̂1|θ1)2 +VG0(θ1−θ2)

= Eθ1VX1|θ1(θ̂1|θ1)2 +2VG0(θ) . (10.32)

Substituting (10.31) and (10.32) into (10.30) and subsuming subscripts, we have
(10.28). �
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The optimal constant c∗ in Theorem 10.3 reveals that the EB estimator θ̂c should
place a substantial amount of weight on the estimator θ̂1 based on the past experiment
when either the variability in θ is small or the estimator θ̂2 is much more variable
than θ̂1. The case in which the distribution G0 is degenerate at a point is again of
special interest. By virtue of the identity V (X) = EV (X |Y )+V [E(X |Y )], we may, in
general, identify the constant c∗ above as

c∗ =
V (θ̂2)−VG0(θ)

V (θ̂1)+V (θ̂2)
. (10.33)

When the true prior G0 is degenerate, the optimal weight c∗ depends entirely on
the relative variability of the estimators θ̂1 and θ̂2. In the common case in which
V (θ̂1) and V (θ̂2) take the form σ2/n1 and σ2/n2, respectively, c∗ = n1/(n1 + n2),
and when the sample sizes are equal, c∗ = 1/2. This would of course be as expected,
since when G0 is degenerate, the data from both experiments are independent and
identically distributed with common distribution Fθ .

Example 10.1. Consider a parametric EB treatment of Robbins’ Poisson problem.
For i = 1,2, let Xi|θi ∼ P(θi), and assume that G0 = Γ(α,1), a one-parameter gamma
distribution, where α is unknown and is both the mean and the variance of the distri-
bution. The posterior distribution of θ2, given the datum X2 = x2, is Γ(α +x2,1/2). If
α were taken as known, the (useable) Bayes estimate of θ2 based on X2 = x2 would
be

θ̂
G0
2 =

α + x2

2
. (10.34)

The EB framework of course assumes that G0 (or in this case α) is unknown. The
“parametric EB” approach to estimating θ2 involves the estimation of unknown prior
parameters using all available data, past and current. In the present example, the
mean of the marginal distribution of X is α , so that

α̂ =
x1 + x2

2
(10.35)

is a natural estimate of α . The corresponding EB estimator of θ2 results from substi-
tuting α̂ above into (10.34), yielding

θ̂
Ĝ0
2 =

x1 +3x2

4
. (10.36)

It’s natural to ask whether the EB estimator in (10.36) outperforms the standard esti-
mator X2 of θ2. Since the former is a convex combination of x1 and x2, Theorem 10.3
provides the answer. In fact, the optimal constant in Theorem 10.3 is c∗ = 1/4, so
that the EB estimator above not only outperforms X2 but is the best possible estimator
of θ2 among convex combinations of X1 and X2.

We now turn our attention to EB problems in which the number of similar past
experiments exceeds 1. The result above guarantees the existence of EB estimators
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that will outperform the standard frequentist estimator, as it is always possible to
utilize a single past experiment to do so. The following results shed light on how the
entire ensemble of past experiments can be used productively in improving upon the
estimator θ̂k+1. The following results are slight generalizations of those developed
in Samaniego and Vestrup (1998), but the proofs of both versions are essentially
the same. I will thus state these results without proof. The first simply provides an
explicit expression for the Bayes risk of the convex combinations of estimators that
will be of interest in the sequel.

Theorem 10.4. Let (X1,θ1), . . . ,(Xk+1,θk+1) be mutually independent, real-valued
random vectors satisfying the following assumptions:

(i) θ1, . . . ,θk,θk+1
iid∼ G0, where G0 has a finite second moment,

(ii) For i = 1, . . . ,k,k +1, Xi1, . . . ,Xini
iid∼ Fθi , where Fθi has a finite second moment,

(iii) For i = 1, . . . ,k,k +1, θ̂i = θ̂i(Xi) is an unbiased estimator of θi.

Then, under squared error loss, the Bayes risk of the empirical Bayes estimator θ̂c
of θk+1 defined as

θ̂c =
k+1

∑
i=1

ciθ̂i , (10.37)

with ∑
k+1
i=1 ci = 1, is

r(G0, θ̂c) =
k

∑
i=1

c2
i [EV (θ̂i|θi)+V (θ)]+ c2

k+1EV (θ̂k+1|θk+1)+(1− ck+1)2V (θ) ,

(10.38)
where θ is a generic variable with distribution G0.

Given the explicit expression for r(G0, θ̂c) in Theorem 10.4, it is now possible,
using, for example, the method of Lagrange multipliers, to identify the convex com-
bination of the estimators {θ̂i, i = 1, . . . ,k,k + 1} that minimizes the Bayes risk wrt
to G0.

Theorem 10.5. Assume that conditions (i)–(iii) of Theorem 10.4 hold. Denote the
simplex

{
c ∈ [0,1]k+1

∣∣ ∑
k+1
i=1 ci = 1

}
by Sk+1. Let ai = EV (θ̂i|θi) +V (θ) for i =

1, . . . ,k, ak+1 = EV (θ̂k+1|θk+1) and V = V (θ). The vector c ∈ Sk+1 that minimizes
r(G0, θ̂c) is given by

c∗i =
ak+1

ai

[
1+(ak+1 +V )∑

k
j=1

1
a j

] , i = 1, . . . ,k (10.39)

and

c∗k+1 =
1+V ∑

k
j=1

1
a j

1+(ak+1 +V )∑
k
j=1

1
a j

. (10.40)
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Theorem 10.5 is an existence theorem. It guarantees that, relative to the Bayes
risk criterion r(G0, ·), there is always an EB estimator of θk+1 (in the form of a
convex combination of the (k + 1) estimators {θ̂i, i = 1, . . . ,k,k + 1}) that will out-
perform the standard frequentist estimator θ̂k+1 that is based solely on the current
experiment. However, since the optimizing vector c∗ above depends on unknown pa-
rameters, the result can, at best, only provide some useful guidance in the use of the
“linear combination strategy” in estimating θk+1. The following result shows that
the standard frequentist estimator θ̂k+1 is dominated by all estimators of the form θ̂c
which place sufficient weight on θ̂k+1.

Theorem 10.6. Assume that conditions (i)–(iii) of Theorem 10.4 hold and let V and
the constants {ai, i = 1, . . . ,k,k +1} be defined as in Theorem 10.5. If

ck+1 ∈
(

a∗+V −ak+1

a∗+V +ak+1
, 1
)

, (10.41)

where a∗ = max{a1, . . . ,ak}, then

r(G0, θ̂c) < r(G0, θ̂k+1) . (10.42)

Exercise 10.3. Consider an EB problem in which X1∼B(n1, p1) and X2∼B(n2, p2).
Suppose the true prior G0 is modeled as a one-parameter Beta distribution with mean
µ , that is, G0 = Be(µK,(1− µ)K), where µ is unknown and K is taken as a fixed
known constant. The standard frequentist estimator of p2 is p̂2 = X2/n2. Show that
the EB estimator of the form

p̂Ĝ0
2 (X) = c(X1/n1)+(1− c)(X2/n2)

has a smaller Bayes risk wrt G0 than p̂2 for any value of c satisfying

0 < c <
2n1K

(n1 +n2)K +2n1n2
.

Exercise 10.4. Consider the following version of the problem of estimating a nor-
mal mean µk+1 given data from k similar past experiments. Specifically, let X ∼
Nk+1(µµµ,I), and take the unknown true prior distribution G0 to be the univariate nor-
mal distribution N (µ0,1). Use Theorem 10.5 to show that the EB estimator

µ̂k+1 =
k

2k +2
Xk +

k +2
2k +2

Xk+1 ,

where Xk = ∑
k
i=1 Xi/k is the best convex EB estimator of µk+1, that is, show that, in

this problem, the optimal vector c ∈ Sk+1 in Theorem 10.5 is

c∗ =
(

1
2k +2

, . . . ,
1

2k +2
,

k +2
2k +2

)
.
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Combining Data from “Related” Experiments

11.1 Introduction

It is not uncommon that the experimental data that is available in a particular statisti-
cal investigation is accompanied by collateral information drawn from other sources.
The possibility of exploiting auxiliary information, be it empirical or subjective,
in order to improve one’s inferences is a challenge that has intrigued statisticians
for decades. Indeed, the fields of Bayesian statistics, empirical Bayes inference and
meta-analysis each focus on particular prescriptions for appropriately combining in-
formation from disparate sources, and each can be thought of as a way of exploiting
information auxiliary to the experiment of current interest. Excellent overviews of
these varied approaches to combining information include Gaver et al. (1992), a
treatise which covers general approaches, and the monographs by Hedges and Olkin
(1985) on meta-analytic techniques and by Maritz and Lwin (1989) on empirical
Bayes methods. Notable contributors to this literature include Fisher (1932), Cochran
(1937), Savage (1954), Robbins (1956), Glass (1978) and Deely and Lindley (1981).

The problem to be treated in this chapter bears a strong resemblance to problems
that are often treated by EB methods. As in the EB setting, we will assume here that
one has data from k past experiments and that the statistician is primarily interested
in estimating the parameter associated with the (k + 1)st (or “current”) experiment.
However, as we will see, there is an important difference between the two problem
types. The following example, which arises in the context of the military acquisitions
process (and often, in industrial settings as well), serves as a good illustration of
estimation problems involving ‘related’ rather than ‘similar’ experiments.

The processes of Developmental Testing (DT) and Operational Testing (OT) in
military acquisitions programs are central to the development and adoption of an
engineered system which either addresses an application of interest ab initio or is
thought of as a potential improvement over an existing system. In either case, there
are two phases of testing aimed at, first, the development of a new system and, sec-
ond, the assessment of that system’s performance under anticipated field conditions
and, ultimately, of the determination of the system’s suitability for deployment in the
field. In the DT phase, it is common to test and fix (possibly successive) prototypes
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and to make engineering changes, as needed, with the aim of improved performance.
The testing done during DT is often refereed to as “bench testing.” One may think of
it as the type of testing done under laboratory conditions where only modest efforts
(if any at all) are made to simulate the field conditions in which the system would be
used, if adopted. During the latter part of the DT phase, it is typically the case that
a single “best” prototype has been developed, and that some form of “final” testing
is done on that prototype to confirm that it is ready for independent testing under
field conditions. If the system passes these final checks, a predetermined number of
copies are made and provided for use in the OT phase of the acquisitions process.
The OT phase resembles standard statistical practice resulting in test data produced
under “normal use” conditions which might involve road conditions, speeds, temper-
atures, altitudes, etc. that are not feasible to incorporate in the DT phase. The aim of
operational testing is to determine whether the performance of the new prototype un-
der normal use (or field) conditions is “effective” and “suitable,” terms that generally
mean that the prototype will adequately fulfill its intended mission. When there is a
system in the field that the new system was developed to replace, OT is also aimed
at confirming that the new system will improve upon the performance of the existing
system.

In the scenario described above, there are clearly two sources of data concern-
ing the system under discussion. The most relevant data are those produced in the
final stages of DT and the data produced during the OT phase. It seems reasonable
to seek to draw inferences about the performance of this system using both of these
data sources. How to do so, however, presents some new challenges. Individuals
who have experience with the military acquisitions process will tell you that the two
experiments are not similar in the usual (EB) statistical sense. Indeed, it is almost
always the case that systems perform more poorly in OT than they do in DT. This
is no doubt due to the harsher conditions under which the OT phase is carried out.
While the DT and OT results are not expected to be similar, they are certainly related
in some (possibly quantifiable) way, and if the two sources of data on system perfor-
mance are to be used for any inferential purpose, the relationship between the two
experiments would have to be concretely specified.

In the general environment of “related” experiments, it is often the case that the
relationships among the experiments are difficult to specify with any confidence. In
such circumstances, inferences about the current experiment might well be based
solely on the data associated with the current experiment. A frequentist analysis, for
example, will often rely upon the MLE or UMVUE of the current parameter based
on the current data alone, thus ignoring past data altogether. In the comparisons made
later in this chapter, we will examine the efficacy of that strategy as compared to the
possibility of using estimators that employ data from past related experiments in a
Bayesian fashion. We begin our formal discussion of such questions by describing
the basic scenario in which the treatment of related experiments will be developed.

Suppose that the data X1, . . . ,Xk,Xk+1 are drawn from (k + 1) experiments, the
last of which is viewed as the “current” experiment, with the others being “past” ex-
periments. These data are taken to be univariate, though in typical applications, they
would represent sufficient statistics for the parameters which conditionally define
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their distributions. We will define these (k + 1) experiments to be related if the fol-
lowing conditions are satisfied. In this chapter, we will use the notation G(0) rather
than G0 for the true prior distribution of the parameter vector, with subscripts re-
served to denote marginal distributions.

(C1) The random pairs {(Xi,θi), i = 1, . . . ,k + 1} associated with (k + 1) “related”
experiments are independent.

(C2) The independent parameters {θi, i = 1, . . . ,k+1} have potentially nonidentical
“true prior distributions,” with θi ∼ G(0)

i .
(C3) For i = 1, . . . ,k +1, V

G(0)
i

(θi) = (σ (0)
i )2 < ∞ and E

G(0)
i

θi = µ
(0)
i .

(C4) For each i, the conditional distribution of Xi is represented as Xi|θi ∼ Fθi , and
Xi is assumed to be a sufficient statistic for θi.

(C5) For i = 1, . . . ,k +1, V (Xi|θi) < ∞ and E(Xi|θi) = θi.
(C6) V (0)

i = E
G(0)

i
(V (Xi|θi)) < ∞ ∀ i.

(C7) The (k + 1) experiments are linked through a functional relationship of the
form h j(µµµ) = 0 for j = 1, . . . ,m, where m is a fixed positive integer in the set
{1, . . . ,k}.

There are several notable differences between the conditions above and those that
define the EB framework considered in Chapter 10. Although the parameters {θi}
are modeled as independent random variables, the potential difference in their indi-
vidual distributions is acknowledged in conditions (C2) and (C3). More importantly,
a formal relationship among the (k + 1) experiments is acknowledged through con-
dition (C7).

While related experiments for arbitrary k will be studied in the next section, the
application of primary interest in this chapter involves the DT/OT scenario discussed
above. Section 11.3 is focused entirely on the case in which k = 1, that is, on the
estimation of the parameter θ2 based on data from the current experiment and, possi-
bly, on data available from a single related past experiment. To aid in our discussion,
it will be useful to have a data set to think about and analyze. In Table 11.1, sim-
ulated data are shown that were drawn from two distinct exponential distributions
(with a specific relationship that will be revealed later). Table 11.2 provides a basic
summary of the data in Table 11.1. These data resemble typical outcomes from the
OT/DT process in two particular ways. First, they capture the fact that lifetime of a
prototype system tends to be larger under DT than under OT. Second, the available
OT data is sparser, a common occurrence given the expense involved in OT. Because
of this sparseness, effective methods of combining information from DT and OT in
estimating OT parameters may be of special importance.

I will return to the analysis of the data below in Section 11.3. I will be especially
interested in the comparative performance of two particular estimators of θ2: the lin-
ear Bayes estimator of θ2 with respect to a given operational prior G, that is, the
estimator of the form θ̂c = c0 + c1X1 + c2X2 that minimizes r(G, θ̂c), and the stan-
dard frequentist estimator θ̂2 = X2 of θ2 based on the OT data alone. Before dealing
with that comparison formally, the basic tools for this comparative analysis will be
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Table 11.1. Simulated exponential life testing data

DT Data OT Data
28.7335 18.0050 13.4764
21.7593 1.5495 18.6327

6.0077 35.5350 4.5435
46.6829 22.0601 23.5081

7.5756 2.5790 5.3412
11.2651 20.8876 8.3927
16.0805 7.1455 39.9724

8.0645 10.1876 7.7885
9.9661 67.0262 33.1363

41.6649 7.7921 6.1353

Table 11.2. Summary of simulated life testing data

DT Data OT Data
Model: Γ(1,θ1) Model: Γ(1,θ2)

n1 = 20 n2 = 10
X1 = 19.63 X2 = 16.09

developed. In Section 11.2, a general expression (where the number k of past exper-
iments is fixed but arbitrary) is derived for the Bayes risk r(G(0), θ̂c) for arbitrary
linear estimators of θ2. In the main result of Section 11.2, an explicit relationship be-
tween the Bayes risks (relative to G) of the best linear Bayes estimator of θ2 and the
standard frequentist estimator of θ2 is derived. The ratio of these two Bayes risks is
a constant which can be explicitly identified. This fact proves useful in assessing the
potential for improvement over the frequentist estimator by the use of linear Bayes
estimators as tools for combining information in the estimation of the parameter of
the current experiment. In Section 11.3, I will explore in detail the estimation of the
parameter of the current experiment in the DT/OT problem in which the number k of
past experiments is equal to 1. In the final section of this chapter, I summarize the ba-
sic findings in Sections 11.1–11.3 and discuss some possible alternative approaches
to the estimation problem considered, including the approximation of unrestricted
Bayes estimates with respect to Bayes hierarchical priors.

The work to be described, while heretofore unpublished, was part of the long-
term collaborative investigations I carried out with my former student Hien Tran and
with Dr. Duane Steffey during his frequent visits to UC Davis. I wish to acknowl-
edge their many contributions, often in the form of useful feedback and constructive
criticism, to the development of the ideas and results to be presented. Another former
student, Eric Vestrup, participated in a more formal way in the specific material cov-
ered below. On one of his several summer visits to Davis while he was on the faculty
at De Paul University, he worked on generalizing results I had obtained under certain
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simplifying assumptions. His essential contributions to the results of Section 11.2
are gratefully acknowledged.

11.2 A linear Bayesian approach to treating related experiments.

I will take conditions (C1)–(C7) above as the defining characteristics of related sta-
tistical experiments. Condition (C7), when made concrete, may be utilized in draw-
ing inferences based on data from specific related experiments. An example of this
process is treated in the next section. Here, I will concentrate on the implications of
the structure embedded in conditions (C1)–(C6). Our first order of business is the
development of an explicit expression for the Bayes risk of linear estimators of the
form

θ̂c = c0 +
k+1

∑
i=1

ciXi (11.1)

with respect to a given operational prior distribution. In all results in Sections 11.2
and 11.3 in which Bayes risks are computed or discussed, I make the tacit assump-
tion that the underlying criterion for gauging estimation error is squared error loss.
Regarding notation, we make note of the fact that whenever the summation ∑i 6= j is
utilized in the sequel, it is assumed that the sum is taken over all unequal values of i
and j in the set {1, . . . ,k +1}.

Theorem 11.1. Suppose that the random pairs (X1,θ1), . . . ,(Xk+1,θk+1) obey the
conditions in Section 11.1 defining (k + 1) related experiments, with G(0) replaced
by the operational prior G in (C3) and (C6). Under conditions (C1)–(C6), the Bayes
risk of the linear estimator in (11.1) wrt a prior G on θθθ for which EGθ 2

i < ∞ ∀ i is
given by

r(G, θ̂c) = c2
0 +

k+1

∑
i=1

c2
i Vi +

k+1

∑
i=1

c2
i (σ

2
i + µ

2
i )+ ∑

i 6= j
cic jµiµ j +σ

2
k+1 + µ

2
k+1

+2c0

k+1

∑
i=1

ciµi−2c0µk+1−2ck+1σ
2
k+1−2

k+1

∑
i=1

ciµiµk+1 , (11.2)

where the parameters {µi,σi, i = 1, . . . ,k + 1} and the values {Vi, i = 1, . . . ,k + 1}
are defined as in (C3) and (C6), but relative to G rather than to G(0).

Proof. By definition,

r(G, θ̂c) = EθθθEX|θθθ

{
c0 +

k+1

∑
i=1

ciXi−θk+1

}2

. (11.3)

We may evaluate the inner expectation (or risk function R(θθθ, θ̂c)) in (11.3) as
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R(θθθ, θ̂c) = c2
0 +

k+1

∑
i=1

c2
i EX|θθθ(X

2
i )+ ∑

i 6= j
cic jEX|θθθ(XiXj)+θ

2
k+1

+2c0

k+1

∑
i=1

ciθi−2c0θk+1−2θk+1

k+1

∑
i=1

ciθi . (11.4)

Since
EX|θθθ(X

2
i ) = VX|θθθ(Xi)+θ

2
i

and, by assumptions (C1) and (C5),

EX|θθθ(XiXj) = θiθ j ,

the expression in (11.4) may be rewritten as

R(θθθ, θ̂c) = c2
0 +

k+1

∑
i=1

c2
i VX|θθθ(Xi)+

k+1

∑
i=1

c2
i θ

2
i + ∑

i 6= j
cic jθiθ j +θ

2
k+1

+2c0

k+1

∑
i=1

ciθi−2c0θk+1−2θk+1

k+1

∑
i=1

ciθi . (11.5)

In applying the expectation wrt the distribution G to the risk function in (11.5), we
note that, using condition (C1) and the notation of (C3) and (C6),

EθθθVX|θθθ(Xi) = Vi, Eθθθθ
2
i = σ

2
i + µ

2
i and Eθθθ(θiθ j) = µiµ j for i 6= j . (11.6)

The desired result then follows by applying the expectation Eθθθ to the expression in
(11.5), making appropriate substitutions:

r(G, θ̂c) = EθθθR(θθθ, θ̂c)

= c2
0 +

k+1

∑
i=1

c2
i Vi +

k+1

∑
i=1

c2
i (σ

2
i + µ

2
i )+ ∑

i 6= j
cic jµiµ j +σ

2
k+1 + µ

2
k+1

+2c0

k+1

∑
i=1

ciµi−2c0µk+1−2ck+1σ
2
k+1−2

k+1

∑
i=1

ciµiµk+1 . �

The main result of this section provides a simple connection between the Bayes
risk wrt G of the linear Bayes estimator of θk+1 and the Bayes risk of the standard
frequentist estimator Xk+1 of θk+1.

Theorem 11.2. Suppose that the conditions in Theorem 11.1 hold. Let θ̂c∗ be the
linear Bayes estimator of θk+1 wrt the prior G, that is, the estimator of the form θ̂c
in (11.1) that minimizes r(G, θ̂c). Then

r(G, θ̂c∗) = c∗k+1r(G,Xk+1) . (11.7)
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Proof. Straightforward calculus and algebra show that the values of c0,c1, . . . ,ck+1

that minimize r(G, θ̂c∗) are the unique solutions c∗0,c
∗
1, . . . ,c

∗
k+1 of the following (k+

2) equations:

c∗0 = µk+1−
k+1

∑
i=1

c∗i µi (11.8)

c∗i = (Vi +σ
2
i + µ

2
i )−1

µiµk+1− c∗0µi− ∑
j 6=i

j=1,...,k+1

c∗j µiµ j

 for i = 1, . . . ,k (11.9)

and

c∗k+1 = (Vk+1 +σ
2
k+1 +µ

2
k+1)

−1

{
σ

2
k+1 + µ

2
k+1− c∗0µk+1−

k

∑
j=1

c∗j µk+1µ j

}
. (11.10)

From (11.2), we may write the Bayes risk of the linear Bayes estimator θ̂c∗ as

r(G, θ̂c∗) = c∗20 +
k+1

∑
i=1

c∗2i Vi +
k+1

∑
i=1

c∗2i (σ2
i + µ

2
i )+ ∑

i 6= j
c∗i c∗j µiµ j +σ

2
k+1 + µ

2
k+1

+2c∗0
k+1

∑
i=1

c∗i µi−2c∗0µk+1−2c∗k+1σ
2
k+1−2

k+1

∑
i=1

c∗i µiµk+1 , (11.11)

where {c∗i , i = 1, . . . ,k +1} are the coefficients of θ̂c∗ . In simplifying the expression
in (11.11), we will utilize the following easily verified identities:

c∗20 =

(
µk+1−

k+1

∑
i=1

c∗i µi

)2

, (11.12)

k+1

∑
i=1

c∗2i (Vi +σ
2
i + µ

2
i ) =

k

∑
i=1

c∗i

µiµk+1− c∗0µi− ∑
j 6=i

j=1,...,k+1

c∗j µiµ j


+ c∗k+1

{
σ

2
k+1 + µ

2
k+1− c∗0µk+1−

k

∑
j=1

c∗j µk+1µ j

}
(11.13)

and

c∗0

(
k+1

∑
i=1

c∗i µi−µk+1

)
=−c∗20 . (11.14)

In addition to these identities, we recall the definition of Vi as it pertains to the current
experiment, that is,

Vk+1 = Eθk+1VXk+1|θk+1
(Xk+1|θk+1) = Eθk+1 EXk+1|θk+1

(Xk+1−θk+1)2 = r(G, Xk+1) .
(11.15)
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From (11.14), we see that 2c∗0 ∑
k+1
i=1 c∗i µi− 2c∗0µk+1 in (11.11) may be replaced by

−2c∗20 , yielding the slightly simplified expression

r(G, θ̂c∗) = −c∗20 +
k+1

∑
i=1

c∗2i (Vi +σ
2
i + µ

2
i )+ ∑

i 6= j
c∗i c∗j µiµ j

+σ
2
k+1 + µ

2
k+1−2c∗k+1σ

2
k+1−2

k+1

∑
i=1

c∗i µiµk+1 . (11.16)

Upon applying (11.13), we are led to the equivalent expression

r(G, θ̂c∗) = −c∗20 +
k

∑
i=1

c∗i

µiµk+1− c∗0µi− ∑
j 6=i

j=1,...,k+1

c∗j µiµ j


+ c∗k+1

{
σ

2
k+1 + µ

2
k+1− c∗0µk+1−

k

∑
j=1

c∗j µk+1µ j)

}
+ ∑

i 6= j
c∗i c∗j µiµ j

+σ
2
k+1 + µ

2
k+1−2c∗k+1σ

2
k+1−2

k+1

∑
i=1

c∗i µiµk+1 . (11.17)

It is useful to expand (11.17) into the following expression in ten terms:

r(G, θ̂c∗) = −c∗20 +
k

∑
i=1

c∗i µiµk+1− c∗0
k

∑
i=1

c∗i µi−
k

∑
i=1

c∗i ∑
j 6=i

j=1,...,k+1

c∗j µiµ j

+ c∗k+1(σ
2
k+1 + µ

2
k+1)− c∗0c∗k+1µk+1− c∗k+1

k

∑
j=1

c∗j µk+1µ j

+ ∑
i 6= j

c∗i c∗j µiµ j +(1−2c∗k+1)(σ
2
k+1 + µ

2
k+1)−2

k

∑
i=1

c∗i µiµk+1 . (11.18)

Combining the second term in (11.18)) with the fifth and the third term with the
sixth, and noting that the fourth, seventh and eighth terms sum to zero, we obtain the
somewhat more manageable Bayes risk expression below:

r(G, θ̂c∗) = −c∗20 + c∗k+1σ
2
k+1 +

k+1

∑
i=1

c∗i µiµk+1− c∗0
k+1

∑
i=1

c∗i µi

+(1−2c∗k+1)(σ
2
k+1 + µ

2
k+1)−2

k

∑
i=1

c∗i µiµk+1 . (11.19)

The latter expression can be further simplified via the following algebraic steps:
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r(G, θ̂c∗) = −c∗20 + c∗k+1(σ
2
k+1 + µ

2
k+1)−

k

∑
i=1

c∗i µiµk+1

− c∗0
k+1

∑
i=1

c∗i µi +(1−2c∗k+1)(σ
2
k+1 + µ

2
k+1) (11.20)

= −c∗20 +σ
2
k+1 + µ

2
k+1−

k

∑
i=1

c∗i µiµk+1− c∗0
k+1

∑
i=1

c∗i µi

− c∗k+1(σ
2
k+1 + µ

2
k+1) (11.21)

which, upon adding and subtracting c∗0µk+1, yields

r(G, θ̂c∗) = −c∗20 +σ
2
k+1 + µ

2
k+1− c∗0µk+1−

k

∑
i=1

c∗i µiµk+1

+ c∗0µk+1− c∗0
k+1

∑
i=1

c∗i µi− c∗k+1(σ
2
k+1 + µ

2
k+1) (11.22)

= −c∗20 + c∗k+1(Vk+1 +σ
2
k+1 + µ

2
k+1)+ c∗20 − c∗k+1(σ

2
k+1 + µ

2
k+1) , (11.23)

the latter equality obtained via the use of equation (11.10) which defines c∗k+1 and
equation (11.14). Cancellations in (11.23) yield r(G, θ̂c∗) = c∗k+1Vk+1, or equiva-
lently, by (11.15),

r(G, θ̂c∗) = c∗k+1r(G,Xk+1) . �

The identity established in Theorem 11.2 merits some comment. Although I am
unable to cite a reference for the result, it would not surprise me to learn that the
result is known and has merely been rediscovered here. The result seems to be too
basic to have needed to wait until 2010 to appear in print. The result is reminiscent
of the fact that, in the simplified setting of (k +1) i.i.d. observations from a common
distribution Fµ , the variance of the BLUE X of µ is equal to (1/(k + 1))V (Xk+1).
Theorem 11.2 might thus be regarded as a Bayesian counterpart to this fact. Since
the estimator Xk+1 is a member of the class of linear estimators {θ̂c}, the value of
the coefficient c∗k+1 will necessarily be no greater than 1, but its exact value will
depend on the specifics of the application of interest and, in particular, on the first
two moments of the operational prior distributions {Gi}. We make special note of the
fact that the comparison in Theorem 11.2 says nothing about the relative performance
of the two estimators wrt the true prior G(0), though one might reasonably expect that
the inequality would hold, approximately, with G(0) in place of G, if the operational
prior G suitably approximates G(0). The main result of the next section provides
some support for this conjecture.

One further comment about Theorem 11.2 seems warranted. We have noted that
the relationship among the (k + 1) experiments stipulated in condition (C7) is not
utilized in the theorem or its proof. This suggests that the coefficient c∗k+1, while
necessarily in the interval [0,1], may in fact be quite large when the experiments
are related but markedly different. Knowing the true relationships among the (k +1)
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experiments would afford the statistician the opportunity to reduce the Bayes risk of
the linear Bayes estimator of θk+1, thus improving its performance relative to G over
that of the standard frequentist estimator Xk+1.

I close this section with a brief discussion of a similar but slightly simpler class
of restricted Bayes estimators that can be quite useful in selected applications. They
are closely related to the linear Bayes estimators treated above, and they have sim-
ilar properties. Let us consider linear combinations of the available data, that is,
linear estimators without the constant c0 which appears in the estimator θ̂c. To dis-
tinguish these estimators from those treated above, we will index them by the (k+1)-
dimensional vector d. The estimators we now study are specified as

θ̂d =
k+1

∑
i=1

diXi . (11.24)

We will be interested in the estimator of the form in (11.24) which minimizes the
Bayes risk r(G, θ̂d) under conditions (C1)–(C6), with G in place of G(0) in (C3) and
(C6). This estimator will play a central role in our treatment of the DT/OT problem
based on the simulated data in Table 11.1, the problem to which Section 11.3 is
dedicated. In that application, the Bayes risk will take a somewhat simpler form
(obtained by setting the constant c0 equal to zero). For the case k = 1, where there is
but one past experiment, the coefficients which minimize the Bayes risk r(G, θ̂d) of
the estimator d1X1 +d2X2 are given by

d∗1 =
V2µ1µ2

(V1 +σ2
1 + µ2

1 )(V2 +σ2
2 + µ2

2 )−µ2
1 µ2

2
(11.25)

and

d∗2 = 1− V2(V1 +σ2
1 + µ2

1 )
(V1 +σ2

1 + µ2
1 )(V2 +σ2

2 + µ2
2 )−µ2

1 µ2
2

. (11.26)

These coefficients clearly depend on parameters of the operational prior G. Concrete
estimators of the form θ̂d may be obtained when either these parameters are taken as
known or when an appropriate hierarchical Bayes model is specified.

Under the framework stipulated in Section 11.1, the following result may be
established. Its proof, which follows the same lines of argument as in the proof of
Theorem 11.2, is left as an exercise.

Theorem 11.3. Suppose that the conditions in Theorem 11.1 hold. Let θ̂d∗ be the
restricted linear Bayes estimator of θk+1 wrt the prior G, that is, the estimator of the
form θ̂d in (11.24) that minimizes r(G, θ̂d). Then

r(G, θ̂d∗) = d∗k+1r(G, Xk+1) . (11.27)

Exercise 11.1. For the case k = 1, verify that the Bayes risk in (11.28) is minimized
by θ̂d∗ , where d∗1 and d∗2 are given in (11.25) and (11.26).
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Exercise 11.2. Prove Theorem 11.3. (Hint: Begin by confirming the following ex-
pression for the Bayes risk of θ̂d wrt the prior G:

r(G, θ̂d) =
k+1

∑
i=1

d2
i (Vi +σ

2
i + µ

2
i )+2 ∑

1≤i< j≤k+1
did jµiµ j−2

k

∑
i=1

diµiµk+1

+(1−2dk+1)(σ2
k+1 + µ

2
k+1) .) (11.28)

11.3 Modeling and linear Bayesian inference for data from
related life testing experiments.

Let us consider the simulated life testing data in Table 11.1, data that represents what
one might expect to observe from independent developmental and operational tests
in the context of a military acquisitions program. Let us assume that we have mod-
eled these data as independent samples from exponential distributions with means
θ1 and θ2, respectively. Letting Ti = ∑

ni
j=1 Xi j be the total time on test from the ith

experiment, we have that

Ti ∼ Γ(ni,θi) for i = 1,2 . (11.29)

As usual, we stipulate that the parameters θ1 and θ2 are governed by an unknown,
possibly degenerate, true prior distribution G(0). In the context of the related exper-
iments of interest, it has also been assumed (in (C1)–(C3)) that the true parameters,
while possibly random, are independent and that each has a finite second moment.
The form of the relationship in (C7) between the two experiments may be stipulated,
without loss of generality, as µ

(0)
2 = κ0µ

(0)
1 , as this relationship must in fact be true

for some value of the constant κ0. To specify the true prior distribution fully, we will
assume that the parameters µ

(0)
1 and κ0 are independent random variables with finite

second moments. In the special case in which the true prior distribution is taken to
be degenerate, we simply take G(0) to be the distribution that is degenerate at the
constant (µ

(0)
1 ,κ0µ

(0)
1 ) in the Euclidean plane.

The operational prior on (θ1,θ2) will be specified as a hierarchical model with
two first-stage parameters and four second-stage parameters. Specifically, in stage 1,
we take the operational prior on the (independent) parameters θ1 and θ2 to be given
by

θi ∼ Γ

(
Si,

µi

Si

)
for i = 1,2 , (11.30)

where µi is the (unknown) mean of θi and Si is the shape parameter, assumed to be
fixed and known. Thus, the operational prior distribution models the variability in θi
by a one-parameter gamma distribution with unknown mean µi and with a known
parameter Si governing the dispersion in the model. Large Si corresponds to quite
precise priors for θi and smaller Si corresponds to more diffuse priors for θi. We
acknowledge the linkage between the two experiments to be correctly represented
by the equation

Modeling and linear Bayesian inference for data from related life testing experiments. 183
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µ2 = κµ1 (11.31)

for some fixed constant κ .
The model above is a reasonable facsimile of models actually used in develop-

mental and operational testing. Experienced military personnel who work with DT
and OT data on a regular basis often refer to the “kappa factor,” a proportionality
constant that reflects the amount of deterioration in performance one will see in a
system as it moves from the DT phase to the OT phase of the testing process. In fact,
it is often claimed that the value of κ is known (approximately, but with substantial
confidence) in certain DT/OT settings which occur with some regularity.

In our treatment of the simulated data in Table 11.1, we will, for simplicity, utilize
estimators of the OT parameter θ2 of the form (11.24), that is, we will seek to identify
the estimator θ̂ ∗d = d∗1X1 +d∗2X2 of θ2 which minimizes the Bayes risk with respect
to the operational prior G (treated as a gamma distribution with an unknown mean).
We will explore circumstances in which θ̂d∗ tends to outperform X2. In our first pass
at analyzing these data, we will suppose that we know the true value of κ which, in
the simulation, was set at the value 0.75. In our second pass at the problem, we shall
see that this simplification is by no means essential. Because of (11.31), we may
write

θ1 ∼ Γ

(
S1,

µ

S1

)
and θ2 ∼ Γ

(
S2,

κµ

S2

)
. (11.32)

In the full hierarchical model, the operational prior will specify, in stage 2, that
both κ and µ are random variables with finite first and second moments (K1,K2) and
(M1,M2), respectively. As mentioned above, we will first treat the case in which the
true value of κ is known (and thus, set K2 equal to K2

1 in stage 2 of our hierarchical
model). Taking κ as known and µ as fixed but unknown, it is easy to confirm that

σ
2
1 =

µ2

S1
and σ

2
2 =

κ2µ2

S2
(11.33)

and

V1 =
(

S1 +1
S1

)
µ2

n1
and V2 =

(
S2 +1

S2

)
κ2µ2

n2
. (11.34)

Letting

ri =
(

Si +1
Si

)
for i = 1,2 , (11.35)

the coefficients of the restricted linear Bayes estimator θ̂d∗ , relative to the models in
(11.32), are given by

d∗1 =
n1r2κ

r1r2(n1 +1)(n2 +1)−n1n2
(11.36)

and

d∗2 = 1− r1r2(n1 +1)
r1r2(n1 +1)(n2 +1)−n1n2

. (11.37)
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We make special note of the fact that the restricted linear Bayes estimator θ̂d∗ above
depends on the operational prior only through the parameter κ . Since we have taken
κ to be known, θ̂d∗ can be computed from the data. If the parameter θ2 was estimated
by the mean X2 of the OT data, one would obtain

θ̂2 = 16.09 . (11.38)

As an example of an alternative Bayesian analysis, with the parameter κ = 0.75
assumed to be known, suppose that our prior model specified the constants Si as

S1 = 50 and S2 = 100 . (11.39)

These latter assumptions correspond to the standard errors for θ in the range
(1.5, 3.0). With these choices, the coefficients of the optimal estimator θ̂d∗ =
d∗1X1 +d∗2X2 are given by

d∗1 = 0.3989 and d∗2 = 0.4303 ,

and the restricted linear Bayes estimator of θ2 is thus

θ̂
∗
2 = 14.7539 . (11.40)

We now reveal that the true parameter values of the θs used in the simulated data in
Table 11.1 are

θ1 = 20 and θ2 = 15 . (11.41)

The example above suggests that a rather striking reduction in the error of estima-
tion is possible when the data from DT and OT are combined. This example is no
accident; from Theorem 11.3, we have that under the assumptions made above,

r
(

G, θ̂d∗
)

= d∗k+1r(G, Xk+1) , (11.42)

suggesting that, in the hierarchical scenario considered above, one might realize, on
the average, as much as a 60% improvement in the precision of θ̂d∗ over the standard
frequentist estimator X2 based on the current experiment alone, as measured by the
Bayes risk criterion wrt G. If G approximates the true prior G(0) “reasonably well,”
one might expect a similar level of improvement relative to the truth.

While having some knowledge concerning the value of the kappa factor in a
DT/OT setting may often be a reasonable expectation, the assumption that κ is
known may, in other circumstances, be considered as inappropriate. We thus develop
below an alternative analysis without that assumption. Under the modeling assump-
tions made in (11.29)–(11.31), and the additional stipulation that the parameters µ

and κ are independent a priori, each having distributions with finite first and second
moments (K1, K2, M1 and M2, respectively), it follows from (11.28), with k = 1, that
the Bayes risk of the restricted linear estimator θ̂d is given by

r
(

G, θ̂d

)
=
[

d2
1

r1(n1 +1)
n1

+d2
2

r2(n2 +1)
n2

K2

+2d1d2K1−2d1K1 +(1−2d2)r2K2

]
·M2 , (11.43)

Modeling and linear Bayesian inference for data from related life testing experiments.
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where G represents the joint operational prior on the parameters θ1, θ2, µ and κ , with
the operational prior in (11.30) governing the behavior of θ1 and θ2 and independent
operational priors governing the behavior of µ and κ . It is clear from (11.43) that
the restricted linear Bayes estimator θ̂d∗ of θ2 does not depend on the distribution
of µ , and it depends on the distribution of κ only through its first two moments.
By minimizing the Bayes risk in (11.43) with respect to d1 and d2, we find that the
optimal restricted linear Bayes estimator θ̂d∗ of θ2 is the estimator whose coefficients
are given by

d∗1 =
n1r2K1K2

r1r2(n1 +1)(n2 +1)K2−n1n2K2
1

(11.44)

and

d∗2 = 1− r1(n1 +1)
n1K1

d∗1 . (11.45)

The derivations above demonstrate that obtaining Bayes estimators of the form θ̂d
is perfectly feasible under the modeling assumptions in (11.29)–(11.31) without as-
suming that the kappa factor is known. The alternative analysis assumes, instead,
a fully hierarchical model which specifies that κ is a random variable with known
first and second moment. The latter relaxation of the assumption that κ is known
allows the investigator to model his uncertainty about κ rather than assigning κ a
fixed value.

There is, of course, a related threshold problem: for what specifications of
(K1,K2) and (M1,M2) will the restricted Bayes estimator θ̂d∗ of θ2 outperform the
estimator θ̂2 = X2? We treat this problem below in the special case in which the
true prior distribution G(0) of (θ1, θ2) is degenerate at a point and the operational
prior distributions of κ and µ are mean correct (a case which has received special
attention in all preceding comparative analyses). In the modeling scenario adopted
in (11.29)–(11.31), these latter assumptions imply that the true prior G(0) on (θ1, θ2)
is degenerate at the point (µ0, κ0µ0), that the operational prior on µ has first mo-
ment M1 = µ

(0)
1 and that the operational prior on κ has first moment K1 = κ0.

For simplicity, we will henceforth use an abbreviated notation for the true value
(µ

(0)
1 ,κ0µ

(0)
1 ) of (θ1,θ2), denoting (µ

(0)
1 ,κ0µ

(0)
1 ) by (µ0,κ0µ0). We will thus be in-

terested in comparing the mean squared errors of the estimators θ̂d and X2 at the true
value (θ1, θ2) = (µ0, κ0µ0); these MSEs are, of course, the Bayes risks of these two
estimators with respect to the degenerate true prior G(0). We have

r(G(0), X2) = E(X2−κ0µ0)2 = V (X2) =
κ2

0 µ2
0

n2
, (11.46)

while, under the assumption that the operational priors on µ and κ are mean correct,

r
(

G(0), θ̂d∗
)

= E(d∗1X1 +d∗2X2−κ0µ0)2

= V (d∗1X1 +d∗2X2)+(d∗1 µ0 +d∗2κ0µ0−κ0µ0)2

=
(

d∗21
n1

+
d∗22 κ2

0
n2

+(d∗1 +d∗2κ0−κ0)2
)

µ
2
0 . (11.47)
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We are thus led to consider the inequality

d∗21
n1

+
d∗22 κ2

0
n2

+(d∗1 +d∗2κ0−κ0)2 ≤
κ2

0
n2

. (11.48)

Now, as is apparent from (11.44) and (11.45), the coefficients of the restricted linear
Bayes estimator of θ2 depend on a number of constants: r1 and r2, which are taken
to be known parameters of the operational prior on θ , the sample sizes n1 and n2,
and the first two moments K1 and K2 of the operational prior on κ . We now explore
the question: assuming that the true prior G(0) is degenerate at a point, when does the
mean correctness of the operational priors on µ and κ provide the Bayesian using
the estimator θ̂d∗ an advantage over the frequentist estimator X2 based on the current
experiment alone? The following result provides a definitive answer: always, regard-
less of the specific values of the constants r1, r2, n1, n2 and of the second moments
M2 and K2 of the operational priors on µ and κ! Interestingly, this domination is
shown to persist even without the assumption of mean correctness of the operational
prior on µ .

Theorem 11.4. Assume that data is available from two related experiments satisfy-
ing conditions (C1)–(C7) of Section 11.1, and assume that these experiments obey
the models specified in (11.29) and the relationship specified in (11.31). If the true
prior distribution G(0) of (θ1, θ2) is degenerate at a point (µ0, κ0µ0) and the op-
erational prior distributions of µ and κ are mean correct, that is, M1 = EGµ = µ0
and K1 = EGκ = κ0, then for fixed but arbitrary values of the sample sizes n1 and
n2, of the constants r1 and r2 and of the second moments M2 and K2 governing the
operational priors of µ and κ , the restricted linear Bayes estimator θ̂d∗ satisfies

r
(

G(0), θ̂d∗
)

< r(G(0), X2) . (11.49)

Further, (11.49) holds even without the assumption of the mean correctness of the
operational prior on µ .

Proof. Substituting (11.44) and (11.45) into (11.48) and setting K1 = κ0 yields the
inequality

1
n1

[
n1r2K2

D

]2

+
1
n2

[
1− r1r2(n1 +1)K2

D

]2

+
[

n1r2K2

D
+

D− r1r2(n1 +1)K2

D
−1
]2

<
1
n2

, (11.50)

where D = r1r2(n1 + 1)(n2 + 1)K2− n1n2κ2
0 . Multiplying both sides of (11.50) by

n2D2 and simplifying, we obtain the equivalent inequality

n1n2r2K2
2 −2r2

1r2(n1 +1)2(n2 +1)K2
2 +2r1(n1 +1)n1n2κ

2
0 K2

+ r2
1r2(n1 +1)2K2

2 +n2r2K2
2 [(n1 +1)r1−n1]2 < 0 . (11.51)

Modeling and linear Bayesian inference for data from related life testing experiments.
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It is apparent that the LHS of the inequality in (11.51) is quadratic in K2. Further,
we note that the constant term of this quadratic is equal to zero, so that one of its
roots is equal to zero. If we write (11.51) in the form

aK2
2 +bK2 < 0 , (11.52)

then the conditions
a < 0 and − b

a
< κ

2
0 (11.53)

will imply that the inequality (11.52) holds, as the first of these conditions implies
that the quadratic in (11.52) is concave while the second indicates that the second
root of that quadratic is smaller than κ2

0 . The latter implication ensures that for any
possible value of K2 (which must, by definition, be greater than or equal to κ2

0 ), the
quadratic on the LHS of (11.52) must be negative. After some simplification, the
coefficients a and b in (11.52) can be written as

a =−r2
2(n1 +1){r2

1(n1 +n2 +1)+n1n2[(r1 +1)2−2]} (11.54)

and
b = 2r1r2(n1 +1)n1n2κ

2
0 . (11.55)

Since r1 > 1, the coefficient a in (11.54) is clearly negative. Further, the inequality
−(b/a) < κ2

0 is equivalent to

r2
1r2(n1 +n2 +1)+n1n2[r2(r2

1−1)+2r1(r2−1)] > 0 . (11.56)

The latter inequality clearly holds for all values of r1, r2, n1 and n2 in their natural
domains, that is, for positive integers n1 and n2 and real numbers r1 > 1 and r2 > 1.
The fact that (11.51) holds for all values of K2 > κ2

0 shows that the domination of
Bayes risks in (11.49) holds for all mean-correct operational priors on κ . Further,
the argument above is unaffected by the mean correctness of the operational prior
on µ or by the value of its second moment M2. We thus conclude that, under the
assumption of mean correctness of the operational prior on κ , the domination of the
restricted linear Bayes estimator θ̂d∗ over the frequentist estimator X2 is universal,
irrespective of the exact values of the constants r1, r2, n1, n2, K2, M1 and M2. �

Because the difference of the Bayes risks in (11.49) is a continuous function of
the first and second moments of the operational priors on µ and κ , there is an open
interval containing the value κ0 such that the domination in (11.49) holds, universally
in the values of r1, r2, n1, n2, K2, M1 and M2, when the mean K1 of the operational
priors of κ lies within that interval. Thus, mean correctness of the operational prior
of κ is a sufficient, but not a necessary, condition for Bayesian superiority in the
problem studied above. While Theorem 11.4 is narrow in its scope, applying only to
restricted linear Bayes estimators of θ2, it does serve the purpose of demonstrating
that a Bayesian approach to the combination of data from related experiments can be
efficacious.

Since the class of general linear estimators {θ̂c : θ̂c = c0 + c1X1 + c2X2} con-
tains the class of restricted linear estimators {θ̂d : θ̂d = d1X1 +d2X2}, it follows that
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the Bayes risks of the respective Bayes estimators wrt the operational prior G are
ordered, that is, r(G, θ̂c∗) ≤ r(G, θ̂d∗). This of course does not by itself imply that
r(G(0), θ̂c∗) ≤ r(G(0), θ̂d∗), an inequality that would ensure that, under the assump-
tions of Theorem 11.4, the linear Bayes estimator θ̂c∗ satisfies

r
(

G(0), θ̂c∗
)

< r
(

G(0),X2

)
. (11.57)

It is clear from the proof of Theorem 11.4 that establishing the validity of the in-
equality in (11.57) under similar assumptions is an imposing algebraic challenge.
Exercising great discipline and internal fortitude, I have resisted the temptation to
include an investigation into this inequality as an exercise. Instead, I will simply
state the following as a reasonable conjecture motivated by the preceding theorem:
Under the assumptions of Theorem 11.4, the inequality in (11.57) holds for fixed
but arbitrary values of the sample sizes n1 and n2, of the constants r1 and r2 and of
the second moments M2 and K2 of the mean-correct operational priors utilized for
modeling µ and κ .

Exercise 11.3. Under conditions (C1)–(C7) of Section 11.1 and under the model in
(11.29), show that the linear estimator θ̂d∗ of θ2 whose coefficients are given in
(11.36) and (11.37) minimizes the Bayes risk with respect to the operational pri-
ors specified by (11.30) and (11.31) among all linear combinations of the observed
means X1 and X2.

Exercise 11.4. Confirm that the inequality in (11.51) is equivalent to the inequality
in (11.50).

Exercise 11.5. Confirm that the values of the coefficients a and b in (11.52) are those
displayed in equations (11.54) and (11.55).

11.4 Discussion

The primary aim of this chapter is to introduce a formulation of the notion of related
experiments and to put forth a framework within which one can think statistically
about the combination of data from such experiments. Although other statistical ob-
jectives are possible, I have focused exclusively on the possibility of using data from
one or more related past experiments, in combination with the data available in the
current experiment, to estimate the parameter governing the latter experiment. This
setup is, of course, patterned after Robbins’ original formulation of the empirical
Bayes approach to statistics. The estimation problem posed is a challenging one,
with perhaps the greatest challenge being the reliable modeling of the relationship
among current and past experiments. It should be obvious that this must be done
with considerable care, and that, even when care is taken, one must acknowledge the
risk of misspecification of that relationship, just as one would be concerned about
misspecifying the stochastic models one assumes for the available data or the prior
distributions one might use in a Bayesian analysis of that data. The risk that is added
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when modeling the relationship among experiments might reasonably lead a statis-
tician, in some instances, to rely exclusively on the current experiment for drawing
inferences about the current parameter. The framework, results and examples of this
chapter are meant to draw attention to the fact that there is real potential for improv-
ing the quality of one’s inferences by exploiting the information provided by past
related experiments. It is not my intent, however, to leave the impression that the use
of data related in some way to the experiment of current interest can be carried out
in a broad array of applications. Situations in which the approach we have examined
may be usefully applied will most certainly occur in practice, but they cannot be
expected to be common.

Let me briefly summarize this chapter’s contents. The notion that two or more
experiments may be “related” rather than “similar” (the latter term used in the EB
sense) was motivated by the problem of dealing with data from developmental and
operational tests in the context of the military acquisitions process. As a way of think-
ing about such data, a set of conditions defining related statistical experiments is laid
out in Section 11.1. In Section 11.2, the general characteristics of linear functions
of the data from a current experiment and k past experiments are explored. For two
specific classes of such functions, explicit expressions are given for their Bayes risks
wrt a given operational prior distribution G and squared error loss. Results are also
obtained which provide a direct comparison between the performance of linear func-
tions of the data which minimize the Bayes risk wrt G and the standard frequentist
estimator based on the current experiment alone. The fact that the ratio of their Bayes
risks wrt G is an explicitly displayed constant is a useful tool in making the compar-
isons of interest. In Section 11.3, I turn to the analysis of the case in which k = 1,
focusing on problems resembling the DT/OT framework. Under particular modeling
assumptions (which include a degenerate true prior G(0), a mean correct prior dis-
tribution of the parameter κ and a specific class of operational priors), the universal
superiority of restricted linear Bayes estimators of the form θ̂d = d1X1 + d2X2 over
the standard frequentist estimator based solely on current data is demonstrated.

Although I have focused, as mentioned above, on comparisons of Bayesian
modes of data combination and the option of using the standard frequentist esti-
mator based on the current data alone, it should be acknowledged that the frequentist
has other available options. One may gain some useful insights on this fact through
a reexamination of the problem treated in Section 11.3. Let us return to the simu-
lated data in Table 11.1 and ask what else a frequentist might wish to do with the
two data sets. Let us assume that two particular modeling assumptions are consid-
ered reasonable, namely, the modeling of the data in (11.29) and the modeling of
the relationship between the two experiments given in (11.31). The Bayesian analy-
sis carried out in Section 11.3 treats two quite different scenarios, the first with the
parameter κ assumed known and the second with it taken as random with an unspec-
ified distribution with known first and second moments. The frequentist may also
consider two cases, where κ is taken as either known or unknown. In the first case,
one has two independent, unbiased estimators of the parameter µ (the mean of the
past data), T1/n1 = X1 and T2/κn2 = X2/κ , with differing variances. The parameter
θ2, the theoretical mean in the current experiment, may thus be estimated as κµ̂ ,
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where µ̂ is the BLUE of µ . Obtaining this estimator for the data in Table 11.1 is left
as an exercise. It will be apparent from this exercise that, when the statistician actu-
ally knows the precise nature of the relationship between the DT and OT experiments
(that is, knows (11.31)) and, moreover, actually knows the kappa factor, the BLUE
stands to perform very well, and is clearly an effective approach to frequentist data
combination.

Let us consider the setting above again, but now without the assumption that κ

is known. The framework of two independent experiments with means µ and κµ ,
where both µ and κ are unknown, is simply a reparametrization of the same two
experiments with unknown means θ1 and θ2. The likelihood function of the pair
(θ1, θ2), given T1 = t1 and T2 = t2, is

L(θ1,θ2 | t1, t2) =
1

Γ(n1)θ
n1
1 Γ(n2)θ

n2
2

tn1−1
1 tn2−1

2 e−
t1
θ1
− t2

θ2 . (11.58)

It follows that θ̂2 = X2 is the maximum likelihood estimator of θ2 (as well as the
UMVUE of θ2, of course). Thus, in contrast with the Bayesian approach, the fre-
quentist solution to this estimation problem when the kappa factor is unknown is to
ignore the DT data and employ an estimator that depends on the current experiment
alone. It is in this circumstance that the Bayesian has the opportunity, using care-
fully chosen priors on the hyperparameters µ and κ , to provide an estimator that is
superior to θ̂2. When the value of (θ1,θ2) is an unknown constant, Theorem 11.4
provides assurance that there is a collection of operational priors for which Bayesian
superiority will occur.

Finally, let us examine the Bayesian approach to the DT/OT problem a bit fur-
ther. The estimators considered in Section 11.3 are linear functions of the two sample
means and are not Bayes estimators in general, but are rather Bayes estimators sub-
ject to linearity constraints. Each has the advantage of being available in closed form
and of providing potential improvement over the frequentist estimator X2 of θ2. Sup-
pose we wished to obtain the Bayes estimator of θ2 with respect to a fully specified
hierarchical model. Suppose we have two experiments satisfying conditions (C1)–
(C7) of Section 11.1. Let us assume that the operational prior on the parameters θ1
and θ2 depend on hyperparameters µ and κ , and given µ and κ , the parameters θ1
and θ2 are independent with densities f (θ1|µ) and f (θ2|µ ,κ), respectively. If, in
addition, the joint prior density f (µ ,κ) has been specified, then inference about the
parameter is based on the marginal posterior density given by

f (θ2 | x1,x2) =
x

f (θ2 | x2,µ,κ) f (µ ,κ | x1,x2) dµdκ ,

and the (Hierarchical) Bayes estimator of θ2 under squared error loss is the posterior
mean

θ̂
HB
2 = E(θ2 | x1,x2) .

Since closed form expressions for θ̂ HB
2 are typically unavailable, its evaluation re-

quires the use of approximation or iterative methods. For details on the fully hierar-
chical Bayes approach to this problem, see Steffey, Samaniego and Tran (2000).
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Exercise 11.6. Let T1 and T2 be the total time on test statistics from the two inde-
pendent samples displayed in Table 11.1. Assume that (11.29) holds and that the two
population means θ1 and θ2 may be expressed as θ1 = µ and θ2 = κµ , where κ is
known to be equal to 0.75. Find the general form of the BLUE of µ based on T1 and
T2, and using it, compute the BLUE of θ2.
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Fatherly Advice

12.1 Where do I get off?

Fatherly advice is pretty heavy stuff. Am I being presumptuous in offering advice
under such a pretence? Perhaps I should state my credentials. This, of course, would
be an unusual tactic, since the traditional approach at this point would be to mush on
with one’s conclusions and leave it to the book’s reviewers to judge the strength of the
case for people reading what you have to say and for taking it seriously. I believe the
book largely makes its own case. So I won’t bore you with a list of accomplishments
or awards that might appear to give me an air of authority. Instead, I’d say that my
main qualification for offering fatherly advice is that I am old. Older people tend to
accumulate information and insights that younger people might not yet have gotten
to. My own journey in the field of Statistics includes an evolving appreciation for
Bayesian methods, in spite of an ever-present skepticism about the appropriateness
of their universal applicability. But for quite a long time, the question of “when”
one should be a Bayesian seemed to me to be quite elusive. The formulation of
the comparative performance of Bayesian and frequentist procedures as a “threshold
problem,” with performance measured relative to the “true state of nature,” provided
(for me, at least) some interesting inroads into the answer to this vexing question.
Having explored various versions of this and closely related problems over the last
twenty years, I believe that I really do have some fatherly advice to share.

I have to admit that I myself have not always taken the advice of “the elders” I
have known. I have always, however, tried to give them my thoughtful attention. I
am assuming that you, the reader, having reached this final chapter, have afforded
me the same courtesy. That is not to say that I assume that I’ve converted you to the
point of view I have put forward. And I want to assure you that this final chapter is
not intended to coax you into taking that final step. It is, instead, intended to encour-
age you to keep thinking about the problems and issues that I have raised. I cannot
claim to have come upon the final and definitive answers to the questions investi-
gated here. But to the extent that I have succeeded in stimulating you to continue the
investigation of these questions, I will consider this effort to have been worthwhile.
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Jerzy Neyman, who is of course best known for his seminal contributions to
mathematical statistics (including, for example, his introduction of the notions of op-
timality in hypothesis testing, the concept of interval estimation and his prescription
for optimal sample size allocation in stratified sampling), was also well known for
his administrative talents, his serious interest in statistical applications and his quirky
sense of humor. In the latter regard, the following advice on writing a research paper
(advice equally applicable, in my view, to monographs such as this) is attributed to
Neyman. “First, tell them what you are going to tell them; then tell them; then tell
them what you’ve told them.” I feel that I have satisfied the first two of Neyman’s
three prescriptions. Now for the third. In the next section, I will offer a brief but
fairly comprehensive overview of the material covered in this monograph. This is
followed by a section which presents my views regarding the general conclusions
and practical recommendations to which this material leads me. In the final section
of this chapter, I will discuss some loose ends, some open problems that seem to me
to be interesting and important and some conjectures. It is my earnest hope that the
ambitious reader will wish to pursue some of these latter issues further.

12.2 An overview

I don’t think I am alone in subscribing to the conviction that the subject of Decision
Theory was a huge advance in the theoretical development of mathematical statistics.
Decision Theory is not really in vogue in today’s graduate curriculum in Statistics,
nor is it a subject in which there is vigorous ongoing research. But the formulation
of statistical work in terms of the quality of the procedures considered for use, as
compared to other things one could do, has a continuing and important impact on
modern statistical thinking. It must be recognized, of course, that the complexity of
the models used, and of the data collected, in many applications of current inter-
est tend to overtax the analytical reach of decision-theoretic treatments. The formal
use of methods of optimization has largely been replaced by less formal approaches
based on simulation, performance comparisons on collections of “test data sets,” nu-
merical methods and iterative techniques. But our goal remains the same: to find the
best thing to do or to determine which of several options promises to have the best
general performance. This is Decision Theory’s legacy! It appears that further ad-
vances in Decision Theory must, for the most part, await the development of more
powerful mathematical tools. Fortunately, the development of increasingly power-
ful computational tools and methods has served us well, both in the execution of
complex statistical procedures and in the evaluation of their performance.

This monograph begins with a brief discussion of decision-theoretic ideas, in part
because these ideas surface with some regularity in the sequel and in part because
of the need to introduce the decision-theoretic notation that is used throughout the
monograph. This discussion is followed by a careful examination of the primary fre-
quentist methods of estimation. The material in the second chapter will be familiar
to many readers, but I have always felt that “redundancy” is a highly useful prop-
erty, as undervalued as it might be. Our review of frequentist methods, while by no
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means exhaustive, covers many of the ideas and methods that a frequentist will tend
to utilize in problems of point estimation. Since this monograph is primarily focused
on “comparative analyses” and, in particular, on the comparison of the Bayesian
and frequentist approaches to point estimation, this review is intended to provide the
essential features of frequentist methods that constitute the frequentist’s “toolbox”
for attacking such problems. Chapter 3 is meant to do the same for the Bayesian
approach to point estimation. Since Bayesian methods are accompanied by philo-
sophical stances as well as logical and technical developments, this chapter treats all
three of these aspects of the approach.

Chapter 4 reviews the standard arguments regarding the potential superiority of
one approach over the other. In the end, these arguments appear to be helpful, to some
extent, in clarifying the differences between the two approaches, but can reasonably
be judged to be inconclusive when applied to the problem of seeking a generally
favored approach. It seems clear that alternative criteria are needed to discuss the
superiority of one method over the other in a meaningful way. The general “thresh-
old problem” is introduced in Chapter 4. Its most distinctive feature is what I have
referred to as “modeling the truth.” While the true value of the parameter of interest
is unknown, one may nonetheless consider that parameter as having a “true prior”
distribution. This distribution has been allowed to be general, though it has been
recognized that in most point estimation problems of interest, the true prior distri-
bution is degenerate at a single point — the true value of the unknown parameter.
This monograph could have been written under the assumption that the so-called
true prior is always degenerate, though the more general framework under which I
have proceeded causes no harm, does have some potential applications and actually
helps to shed light on when a Bayesian or a frequentist procedure might be preferred.

Our initial consideration of the criterion for comparing Bayesian and frequentist
estimators takes an estimator’s average squared distance from the truth as the ulti-
mate measure of its quality. One may view this criterion as a generalized version of
an estimator’s mean squared error, with the evaluation made after averaging over the
(possibly degenerate) true prior distribution. The criterion, in general, is simply the
Bayes risk of an estimator, frequentist or Bayesian, with respect to the true prior dis-
tribution. When the true prior is in fact degenerate, the criterion function reduces to
the mean squared error of an estimator evaluated at the true value of the target param-
eter — no doubt one of the most relevant measures one might consider in judging an
estimator’s worth. In later chapters, the threshold problem is examined under other
loss criteria, including a widely used class of asymmetric loss functions. The fact
that the true prior is unknown will seem, early on, as a substantial obstacle to reach-
ing useful conclusions. Later developments show that this obstacle is by no means
impenetrable, and that useful practical insights into the comparisons of interest can
in fact be realized.

In Chapters 5, 6, 7 and 8, solutions to different versions of the threshold problem
are obtained. The most concrete solution is derived in a framework of one-parameter
exponential families, conjugate prior distributions and squared error loss. In Chap-
ter 5, under these particular assumptions, it is shown that there is a sizable subclass
of operational priors available which provide a Bayesian statistician with an estima-
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tor which outperforms the “best frequentist estimator.” From these developments, the
following practical principle emerges: a Bayesian will tend to do well, as compared
to a frequentist, in the estimation problems considered here unless the Bayesian is
both misguided and stubborn, that is, he makes a “prior guess” at the unknown pa-
rameter which is quite distant from its true value and he places a good deal of weight
on it (thereby expressing considerable confidence in the quality of his poor guess). It
is later confirmed that this principle applies in a variety of other modeling scenarios.

Chapter 6 introduces the new concept of Bayesian self-consistency (SC). While
the concept is interesting in its own right, it is introduced largely for the purpose of
assisting in the examination of a particular proposed solution to the Bayesian con-
sensus problem. The SC concept is an intuitively appealing property that is easily put
into words: if your experiment confirms your prior opinion (that is, your prior guess)
about the value of an unknown target parameter, then your posterior opinion should
remain the same, that is, your prior and posterior guesses at the target parameter
should match. It is noted that conjugate prior distributions associated with exponen-
tial families of sampling distributions are self-consistent, but that the occurrence of
self-consistency outside of this framework is rather rare. There are interesting open
questions regarding the notion of Bayesian self-consistency, some of which will be
discussed in the sequel. For now, I will focus on the relevance of the concept in the
context of a rather famous scenario known as the Bayesian consensus problem.

The consensus problem is a real dilemma in Bayesian inference. We know that, in
general, the consultation with experts in a particular field of application tends to play
an important role in the determination of the Bayesian strategy that should be used
in addressing a statistical problem in that field. When several experts are consulted,
and they have different prior opinions about an unknown parameter, the statistician is
confronted with the challenging issue of whom to trust or, perhaps, the equally chal-
lenging issue of how to use all of this prior input in the inferential problem he is try-
ing to solve. There is, of course, a sizable literature on how one should proceed. The
strategy that is advocated in Chapter 6 involves the mixing of all the prior guesses
one has collected and the determination of precisely how much confidence should be
placed on that mixture. Under the same exponential family framework introduced in
the preceding chapter, a class of pseudo-Bayesian “consensus estimators” are pro-
posed, and their properties are investigated. Conditions are identified under which
the proposed estimator will enjoy a generalized form of self-consistency. Further,
it is shown that the exact same conditions ensure that the proposed estimators may
be expressed as convex mixtures of certain linear combinations of the expert’s prior
guesses and the standard frequentist estimator in the problem of interest. This latter
property implies that the proposed estimators are actually the Bayes estimators with
respect to particular conjugate priors. This naturally leads to the application of the
solution of the threshold problem considered in Chapter 5, resulting in a theorem
which provides a direct comparison of the performance of the proposed consensus
estimators to that of the standard frequentist estimator, using the Bayes risk of an es-
timator with respect to the true prior distribution as the criterion for comparison. To
my knowledge, this result is unique in the literature on the Bayesian consensus prob-
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lem, as such performance comparisons tend to be intractable when other Bayesian
approaches are used.

Chapter 7 deals with a version of the threshold problem which is somewhat more
resistant to solution than the class of the problems treated in Chapter 5. In Chap-
ter 7, the problem of interest is the estimation of a multivariate normal mean. Most
modern-day approaches to this problem involve some form of shrinkage. The James–
Stein estimator is chosen as the standard-bearer for the frequentist school. As is well
known, this estimator shrinks the sample mean X in the direction of a distinguished
point, with the extent of the shrinkage being driven by the observed data. The Bayes
estimator of a normal mean relative to the conjugate normal prior distribution is also
a “shrinkage estimator,” but differs from the James–Stein estimator in that the dis-
tinguished point is the prior mean, the resulting estimator is a convex combination
of the sample mean and this distinguished point and, finally, the extent of shrinkage
of X toward the distinguished point is a function of the prior distribution and is not
data-dependent. We treat a rather stylized version of the problem, stipulating that the
variance-covariance matrices of the operational prior and of the sampling distribution
are both scalar multiples of the identity matrix. It is also assumed that the true prior
is degenerate at a point. One of the primary results of the chapter is that the threshold
separating good and bad operational priors exists and that its general characteristics
can be explicitly described. Thus, just as in the one-parameter case, there is indeed a
collection of operational prior distributions which will enable the Bayesian to outper-
form the frequentist who uses the James–Stein estimator. But an additional insight,
one substantially different from those drawn from our examination of one-parameter
problems, is that the Bayesian’s “window of opportunity” for achieving superiority
is relatively modest. An example is given in which the Bayesian will prevail only if
the common variance σ2

G of the priors on the elements of the mean vector is suffi-
ciently small, so that conservative prior modeling does not serve the Bayesian well.
Another example shows the domain of Bayesian superiority to consist of σ2

G in an
interval of strictly positive numbers, so that neither priors that are too precise nor pri-
ors that are too diffuse lead to Bayesian superiority. The unavoidable conclusion is
that Bayesian point estimation of high-dimensional parameters is a very challenging
enterprise. Unless the prior distribution is selected with a great deal of care (and per-
haps even some luck), Bayesian point estimation may be expected to provide a level
of performance that is inferior to that available using selected frequentist alternatives.

Chapter 8 treats the threshold problem in two specific problems, the estimation of
a multivariate normal mean, and the estimation of a linear function of regression pa-
rameters, under asymmetric loss. In both cases, the loss is taken to be the well-known
Linex loss which places a penalty that is essentially linear in the estimation error for
underestimating the parameter and a penalty that is essentially exponential in the
estimation error for overestimating the parameter (or vice versa, if desired). The per-
formance of the Bayes estimator with respect to a fixed operational prior is compared
to that of the maximum likelihood estimator of the target parameter. In estimating a
normal mean, results obtained include the fact that the Bayes estimator will always
be superior if the prior is sufficiently diffuse and that a Bayes estimator uniformly
outperforms the MLE when the operational prior is mean correct. Similar results are
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obtained in the problem of estimating a linear function of regression parameters in
the general linear model. These results confirm the existence of a threshold sepa-
rating good and bad priors in these problems. It is noted, however, that in both of
the problems above, the maximum likelihood estimators of the target parameters are
known (or suspected) to be inadmissible, often being dominated by frequentist esti-
mators that are generalized Bayes with respect to particular improper priors. Other
threshold problems in which Bayes estimators are compared to alternative frequentist
estimators are open problems requiring further investigation.

The results of Chapters 7 and 8 make it clear that the formulation and solution of
the threshold problem treated in Chapters 4 and 5, that is, concerning the estimation
of scalar parameters under squared error loss, is not a phenomenon that applies solely
in this restricted setting. The extension of our treatment to the threshold problem in
higher dimensions in Chapter 7 and to asymmetric loss functions in Chapter 8 shows
that the framework is quite general and that solutions are tractable for selected exten-
sions in both of these directions. The full extent of the generality of these “threshold
problems” and their associated solutions remains to be characterized.

The “curse” of nonidentifiability has posed difficulties in the classical theory of
Statistics since its inception. This term refers to a certain innate ambiguity in the
model used to describe the observable data. When a model is not identifiable, the
distribution of the data drawn therefrom is not well explained by a single parameter
value, but instead, only by a collection of possible parameter values. From the classi-
cal viewpoint, this renders the standard problem of point estimation as fundamentally
unsolvable. In Chapter 9, I discuss the various “end-runs” that a frequentist might
take in dealing with such problems. None of these “alternative solutions” addresses
the original problem, though each may, in particular settings, shed useful light on
the problem. The main focus of Chapter 9 is, however, a discussion of Bayesian ap-
proaches to nonidentifiability. Unlike the classical approach, the Bayesian treatment
of nonidentifiability is fully interpretable and, generally, quite straightforward. One
begins with a prior distribution on the model’s parameters. One then updates the
prior on the basis of the available data. While the data is admittedly “imperfect,” it is
nonetheless the case that it contains information about the unknown parameters that
may well add something useful to one’s prior opinions about them. The posterior
distribution is, as usual, the basis for inferences about the parameters.

The behavior of Bayes estimates of nonidentifiable parameters differs from their
general behavior in the case of standard, identifiable models. For example, they need
not converge to the true values of the unknown parameters. However, the potential
(indeed, typical) lack of consistency of the Bayes estimators of a nonidentifiable
parameter need not be considered to be a fatal flaw, especially in view of the fact
that there really are no available (frequentist) competitors to these estimators. But
one should certainly investigate the “efficacy” of Bayes estimators in such circum-
stances. Even though the development of a Bayesian solution is feasible, one needs
to have some way of checking that the process is worth carrying out. At first view,
this may seem like an imposing challenge, as there appears to be no natural com-
petitors to a standard Bayesian analysis. But, interestingly, there is in fact a way to
measure the utility of that analysis. In Chapter 9, we investigate the question of when
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a traditional Bayesian analysis will improve upon the prior (no-data) estimator of the
unknown parameters — the mean of the prior distribution. It is a curious but quite
real possibility that a full Bayesian analysis may fail to improve upon one’s prior
guess at the parameters of a nonidentifiable model, that is, that the available data
may serve to mislead the statistician and result in inferences that are inferior to the
guess based on one’s prior opinion. A characterization of the circumstances in which
this may happen will thus shed useful light on whether or not a full Bayesian analysis
is worth pursuing.

The problem studied in Section 9.2 is meant as a prototype of this sort of compar-
ison. Data is assumed to be drawn from the Binomial model B(1, p1 + p2), a model
in which the parameter pair (p1, p2) is not identifiable. Using Dirichlet distributions
as the operational priors on the pair (p1, p2), a full characterization is obtained of the
class of priors (indexed by their mean vectors (a,b)) for which the limiting Bayes
estimator (as the sample size n→ ∞) of the parameter pair (p1, p2) is closer to the
true value (p∗1, p∗2) than is the prior mean (a,b). Our treatment may be viewed as a
version of the threshold problem in which two competing Bayes estimators are com-
pared. This comparison is extended to an investigation of how much improvement
is possible when one of these estimators dominates the other. If D1 and D2 are, re-
spectively, the Euclidean distances between the prior guess (a,b) and the true value
(p∗1, p∗2) of (p1, p2), and between the limiting Bayes estimator (γa,γb) and (p∗1, p∗2),
it is shown that the ratio D1/D2 lies between strict upper and lower bounds, that
is,
√

2/2 ≤ D1/D2 ≤ ∞. The bottom line in this study may be roughly summarized
as follows: the limiting Bayes estimator of (p1, p2) will be closer to the true value
(p∗1, p∗2) of the pair for most choices of the prior mean (a,b), with the percentage
associated with this domination being close to 100% when the true value of p1 + p2
is small and being a value slightly larger than 50% when p∗1 + p∗2 = 1. Further, when
the limiting Bayes estimator of (p1, p2) is farther from the true value (p∗1, p∗2) than
the prior mean (a,b), the distance D1 will be no less than 70% of D2, while when
the limiting Bayes rule provides improvement over (a,b), the percentage associated
with the improvement can be large and is, in general, unbounded. Also studied in
Chapter 9 is the efficacy of Bayesian estimation in the nonparametric competing
risks problem, where the multiple decrement function is known to be nonidentifi-
able, and the efficacy of Bayes estimators in a nonidentifiable version of the model
for stress–strength testing in the context of engineering reliability.

Although Herbert Robbins contributed to the development of Mathematical
Statistics in many different ways and through many inspired ideas, his introduction
of the empirical Bayes approach to Statistics in 1955 was perhaps his most influ-
ential creation. The idea that one could learn from, and productively utilize, data
that was only “loosely related” to the data of interest in a current experiment was a
breakthrough in the field that has had many useful applications. (More precisely, in
Robbins’ EB framework, data from a past experiment is modeled as conditionally
independent from the current data and is governed by a different parameter value.)
In Chapter 10, two particular threshold problems are treated, one which compares
the performance of two Bayes estimators and one which compares the performance
of two frequentist estimators. In the first scenario, it is shown that there is (essen-
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tially) always an opportunity to improve upon one’s inferences based on data from
the current experiment alone when one incorporates the information drawn from past
similar experiments. In the second scenario, a similar result is obtained regarding the
use of a frequentist estimator based on current data as compared to alternative fre-
quentist estimators which utilize data from past similar experiments. The bottom line
is that Bayesians and frequentists who restrict their attention to the data from the cur-
rent experiment have the opportunity to be “better Bayesians” or “finer frequentists”
by exploiting the information provided by past similar experiments. This conclusion
presumes, of course, that the modeling assumptions of the empirical Bayes frame-
work are applicable to the problem of interest.

There is no comprehensive theory available at this time for the treatment of “re-
lated experiments.” While a sequence of such experiments may bear some resem-
blance to experiments that are properly modeled within the empirical Bayes frame-
work, they differ in several respects. The most important of these differences is that
there is some form of functional relationship among the parameters of the various
experiments that precludes the possibility of describing them as “similar” in the EB
sense. Chapter 11 represents an initial attempt to treat such problems within the
Bayesian paradigm. While various frequentist approaches are also possible, and are
mentioned in the discussion section of this chapter, the primary focus of the chapter is
the development of a Bayesian estimator of the parameter of the current experiment
based on both current and past data and the comparison of its performance to that of
the standard frequentist estimator based solely on current data. Although the frame-
work described is applicable to an arbitrary number of past experiments, my main
goal is to treat data that might be considered typical in the motivating two-sample
problem in which the two experiments of interest are drawn from the processes of de-
velopmental and operational testing that generally arise in certain military and indus-
trial applications. For a simple but fairly realistic model for the typical DT/OT data
one might observe in the military acquisitions process, results are obtained which
provide a direct comparison between the performance of linear functions of the data
which minimize the Bayes risk with respect to a fixed operational prior distribution
and the standard frequentist estimator based on the current experiment alone. Un-
der the modeling assumptions made (which include a degenerate true prior and a
certain “mean-correctness” assumption), the universal superiority of restricted linear
Bayes estimators over the standard frequentist estimator based solely on current data
is established.

I now turn my attention to some general reflections about the findings described
above and the implications they may have on general statistical practice.

12.3 Implications

Perhaps I should begin by acknowledging the fact that debates in the scientific com-
munity about competing approaches to various classes of problems will never be
completely resolved. Among the reasons for this is that those with opposing views
will sometimes dig in their heals and insist that, at least for them, the preferred ap-
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proach is abundantly and immutably clear, and that further discussion of alternative
approaches is unnecessary and, perhaps, quite irrelevant. In the context of the present
developments, this translates into the fact that there are some in the Bayesian camp,
and also some in the frequentist camp, who find no need for, or justification of, possi-
ble crossovers into the alternative methodology. The main theme of this monograph
is that neither the Bayesian nor the frequentist approach to the problem of statistical
point estimation is universally superior and that the context of the statistical problem
at hand should therefore guide one’s decision about the approach that promises to
give better performance. I believe that the main results of the monograph amply sup-
port this latter view. In my discussion of these results in preceding sections, I have
highlighted certain situations in which Bayesian methods are particularly promising,
certain situations in which frequentist methods are particularly promising, certain sit-
uations in which the Bayesian approach is uniquely applicable and certain situations
in which, even when one is staunchly committed to one or the other approach, one
has the opportunity to improve the performance of one’s estimator using Bayesian
or pseudo-Bayesian ideas. I now boldly proceed to a statement of my position on
the question of how all statisticians should approach their work. While my “fatherly
advice” officially pertains solely to estimation problems, I nonetheless believe that
roughly comparable advice is relevant to statistical work in general, though this latter
belief should properly be viewed as a hunch rather than a well-defended position.

Whether or not they work well in a given application or in general, Bayesian
methods will always be vulnerable to the criticism that some form of subjective in-
formation has been injected into the analysis of data, thereby risking the potential
introduction of errors or biases that would not be there otherwise. A relevant re-
sponse, when confronted with this criticism, is the question: is the risk worth taking?
After all, we are faced with risks all the time, and we are constantly forced to deter-
mine for ourselves whether or not we should take a particular risk or pass on it. Just
as in real life, the appropriate answer to the statistical question posed will vary with
the particular circumstances in which the risk is presented. A key premise shared
by those who would confidently espouse a (proper) Bayesian analysis in a given
problem is that there is useful prior information available in the problem and that
utilizing that information stands to improve the quality of one’s inferences. Studying
that premise carefully for the last couple of decades has led me to new understand-
ings about its meaning. I’ve come to the conclusion that a proper interpretation of
the word “useful” is essential in making, in Robert’s (1998) language, the Bayesian
choice or, alternatively, in making the frequentist choice.

In the above survey of the main findings that have been described in this mono-
graph, I repeatedly referred to the existence of a threshold separating good and bad
priors. This is, of course, simply alternative language about separating problems in
which useful prior information exists from those in which it doesn’t. In problems in
which the collection of “good priors” is relatively small, the risk involved in using
a Bayesian procedure might be considered too large and thus not worth taking. But
even in such circumstances, there may be solid justification (for example, confidence
that one’s own prior information is really good) for proceeding with a Bayesian anal-
ysis. One of the take-home lessons of this monograph is that, in using a Bayes estima-
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tor in a given problem, one should give careful thought to the question of whether or
not one’s prior information is of sufficient quality to justify that risk one encounters
when employing it.

Let’s discuss the word “useful.” It is helpful to recall the word-length experiment.
That empirical demonstration, together with the theoretical results that help us un-
derstand the general outcome encountered there, point to an insight about Bayesian
treatments of that and similar problems which many statisticians, and students of
Statistics, might consider surprising. In one-parameter problems such as those con-
sidered in Chapter 5, the word “useful” has a substantially broader interpretation
than might have been ascribed to it in advance. In the experiment itself, one finds
that Bayesians using prior information that appears to be quite off the mark may
nonetheless produce estimators of an unknown proportion p that tend to outperform
the time-honored frequentist estimator, the sample proportion p̂. Further, this phe-
nomenon is only mildly affected by the size of the sample upon which the sample
proportion is based. The reader will recall that certain participants in the word-length
experiment had quite miserable prior guesses at p and yet, by putting a rather modest
amount of weight on their prior guesses, managed to outperform the imaginary fre-
quentist. That this should happen is counterintuitive. We might imagine that placing
small weight on a very poor guess would reduce the impact of a poorly aimed prior,
but the fact that, using a convex combination of that poor guess and the estimator that
the frequentist will use, the Bayesian actually can still win, in spite of his embarrass-
ing faux pas, demonstrates a rather amazing resiliency in the Bayesian approach. It
appears that Bayesian methods are much more forgiving than they are generally per-
ceived to be. Recall the take-home lesson from Chapter 5: A Bayesian will generally
outperform a frequentist in the type of problems considered there unless he is both
misguided (having a poor prior guess) and stubborn (placing a substantial amount
of weight on his guess). Interestingly, neither of these clearly negative features need
be fatal by itself. It is clear that it is quite possible for an imperfect Bayesian to
outperform a frequentist, provided that his imperfections are “univariate” rather than
“bivariate” in nature. In the end, careful attention to the calibration of one’s prior (that
is, approximate mean-correctness) and conservative prior modeling are generally the
keys to the Bayesian’s success, at least in the one-parameter problems discussed early
on. The careless Bayesian, who chooses a prior distribution without much introspec-
tion or consultation, perhaps choosing it with “convenience” as his main objective,
cannot be expected to estimate unknown parameters well. In my view, this type of
Bayesian gives the Bayesian community a bad name.

The treatment of high-dimensional parameters presents a picture that is quite dif-
ferent than the picture painted in the one-parameter case. If one thoughtfully reflects
upon general multiparameter estimation problems, one might well anticipate the out-
comes we have seen. First, it must be recognized that the modeling of prior informa-
tion in multiparameter problems represents an imposing challenge. Not only are the
prior models which might be used more limited, our understanding of them tends to
be more shallow, and the ways we might capture expert opinion through their use is
often quite unclear. Second, there is much more room for “prior misspecification”
in multiparameter problems. Third, since one gross error among many individual es-
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timates can be quite costly, the consequences of poor prior modeling, even in only
one or two directions, may be substantial. The findings discussed in Chapter 7 gen-
erally argue against the use of Bayesian methods in estimating a high-dimensional
normal mean vector. We have noted that a threshold separating good and bad prior
distributions does exist in such problems, but the relative abundance of bad priors,
compared to the “size” of the collection of good priors, must surely give one pause.
As I mentioned earlier, careful prior modeling, and a dose of good luck, might lead
to Bayesian superiority, but the odds are increasingly stacked against Bayesian esti-
mation as the dimension of the problem increases. I would go so far as to assert that I
would personally be quite hesitant to use a Bayes estimator of a high-dimensional pa-
rameter, though I must admit that I would be tempted to do so in a problem in which
I had access to special prior information in which I had “well-justified” confidence.

The linchpin that holds the results in the monograph together and upon which my
conclusions and “advice” are based is the somewhat unusual performance criterion
that I have employed throughout. The idea of modeling the truth is not entirely novel,
though it is not an idea that statisticians generally give much thought to. Regarding
its natural predecessors, it is fair to say that the unknown prior in Robbins’ empirical
Bayes framework is the same object that I have called the true prior distribution.
Although Robbins used that prior in a different way and had quite different statistical
goals in mind, the Bayes risk with respect to the true prior is clearly the underlying
measure by which he chose to judge the performance of EB estimators. Since I use
this criterion with somewhat different goals in mind, and because Robbins was not
particularly vocal about defending the criterion as a general performance measure
in an arbitrary point estimation problem, I will address this issue here, repeating,
for emphasis, some of the arguments I put forward in Chapter 4. (You will perhaps
recall that I’m something of a fan of “redundancy.”) But since so much depends on
this choice, I would be remiss if I did not include a comprehensive defense of the
choice in my summation.

First, let us recognize that, in any given statistical estimation problem, there is
something we can legitimately call “the truth.” If we didn’t believe this, we would
probably not engage in the estimation process, or, alternatively, we would have to
admit that doing so was a not a well-defined exercise. Even in the case of a noniden-
tifiable model, we tend to believe in the existence of “the truth,” while acknowledging
that the data at our disposal provides ambiguous information about it. In most prob-
lems of practical interest, the truth may be thought of as the true numerical value θ0
of the unknown parameter θ we are attempting to estimate. In this monograph, we
have allowed the truth to be represented by a “true prior distribution” G0 on the pa-
rameter space, though in many instances, we have focused our attention on the case
of special practical interest, that is, the case in which G0 is degenerate at a point. The
potential randomness of the true value of θ doesn’t really need a defense since, if it
bothers you, you can simply concentrate on the degenerate case. I have nonetheless
mentioned that, just as in Robbins’ EB framework, one might reasonably consider
the true value of the parameter as random in situations in which a particular exper-
iment is replicated with some frequency and one wishes to recognize the variability
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of the parameter value that perhaps is due to the moderately varying conditions under
which these experiments are carried out.

This brings us to the core of the matter, the particular criterion r(G0, θ̂) that I
have routinely used as the ultimate measure of the quality of a particular estimator’s
performance. There are three specific aspects of the choice, as our criterion, of the
Bayes risk wrt the true prior that require some careful reflection. The first is the fact
that the worth of an estimator is based on its closeness to “the truth,” the interpreta-
tion of “closeness” of course depending on the loss function employed. The second
is the fact that the criterion is a quantity that is unknown at the time of the experi-
ment and, in many instances, will never be known. The third is that the measure is
an average, or more accurately, an expected value which measures a chosen estima-
tor’s expected loss over both a random outcome of the experiment and the possibly
random true value of the target parameter. These three issues are discussed in turn in
the following paragraphs.

It was noted early on that the risk function R(θ , θ̂) attempts to measure the
quality of estimation as the parameter varies over the entire parameter space. It is
a clumsy and coarse measure of quality, since in most real problems, there are a host
of estimators that are good for some values of θ and bad for others. It is often the case
that two particular estimators will be incomparable on the basis of their risk func-
tions alone. On the other hand, the Bayes risk of an estimator with respect to a given
“operational prior” G resolves one problem while creating another. While it renders
all estimators comparable, and it leads to an identification of a “best” estimator (rel-
ative to G), the real quality and reliability of that estimator is unknown, as its quality
is highly dependent on the choice of G, a distribution that may have little connection
or resemblance to the truth. The closeness of an estimator to someone’s choice of
“weight function” on the parameter space cannot serve as our ultimate measure of
quality simply because it can vary within any given problem and does not have any
inherent validity relative to the truth.

We are thus led to the measure we have chosen, the Bayes risk with respect to
the truth. Set aside for now the fact that the truth is unknown. If it was the case that
the truth would eventually be known, then there can be no doubt that we would go
back and judge the quality of an estimator by its closeness to the truth. When we are
operating in the here and now, we must average over uncertain quantities, looking for
what is expected to provide good performance relative to the truth and with respect
to what one might observe in the type of experiment with which one is dealing. The
Bayes risk r(G0, θ̂) does exactly this. The use of this criterion for comparing esti-
mators does not interfere with a Bayesian’s adherence to the likelihood principle or
other tenets of the Bayesian approach, as the Bayesian is allowed, indeed expected,
to abide by these tenets in formulating his estimator. Nor does the criterion interfere
with the choices a frequentist might make. But once the Bayesian or the frequen-
tist has decided on an estimator, it is only reasonable to ask whether the answer
they’ve proposed has objective merit in the problem that is being addressed. This
latter question can only be answered be assessing their performance relative to the
truth. For either statistician, our criterion amounts to the process of an impartial third
party gauging how close the statistician would tend to come to the “right answer.”
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In the important special case of estimating an unknown constant relative to squared
error loss, the Bayes risk r(G0, θ̂) reduces to the mean squared error of the estimator
evaluated at the true value of the parameter. Without declaring this measure to be
the only or the best way to judge the quality of an estimator, it seems easy to make
the case that the measure is highly relevant to such judgments and certainly ranks
highly among the measures one would wish to examine in comparing the estimation
strategies that one might use in the problem under study.

Consider, now, the fact that “the truth,” represented here by the true prior distribu-
tion G0, is unknown. This fact clearly precludes the possibility of identifying the best
possible estimator in a given problem. However, as we have seen, we can discern a
good deal by studying the problem in the abstract. In the various forms of the thresh-
old problem considered in this monograph, we have typically been able to identify
the general characteristics of Bayes estimators which stand to give the Bayesian the
advantage over the frequentist. When the collection of “good” Bayes priors is large
relative to the size of the class of priors considered for use, one might justifiably have
substantial confidence that the use of a Bayes estimator will produce results that are
superior to those obtainable by the use of a frequentist alternative. In the comple-
mentary case, the justification for using a Bayes estimator is more tenuous, as its use
might well lead to results that are inferior to those a frequentist estimator will attain.
With G0 unknown, it is impossible to make the right choice with certainty, but the
guidance provided by the solution to the related threshold problem can be quite help-
ful in making a rational choice in a given problem. The determination of which side
of the threshold one’s prior lies in will always be a challenging part of one’s analy-
sis, but giving careful thought to this issue stands to be of some help in avoiding the
potentially substantial risk of making a poor choice. It should increase the likelihood
of taking the best approach to particular point estimation problems and of achieving
a higher level of performance than strict adherence to a single statistical paradigm
stands to provide.

In general, the findings laid out in this monograph suggest that, in problems of
point estimation, Bayes procedures will often give answers that are superior to what a
frequentist procedure can be expected to provide. We have noted that, in certain con-
texts, the collection of Bayes estimators which outperform frequentist alternatives
is substantially large, suggesting a certain natural robustness of Bayesian inference
relative to the choice of one’s prior distribution. When the dimension of the parame-
ter space is low, even imperfect Bayesians can do well, and the careful and studious
Bayesian is quite likely to do well most of the time. But there are also problems
in which the prospects of the Bayesian are not so rosy. The estimation of a high-
dimensional parameter is one, and problems in which there is a paucity of useful or
certifiably reliable prior information is another. As stated earlier, I am unabashedly a
“Bayesian sympathizer,” ready to execute a Bayesian procedure whenever I and my
collaborators in a given problem have solid justification for our prior beliefs about
model parameters. At the same time, I am quick to question the utility of the prior
information I might have, and I am prepared to utilize a standard frequentist anal-
ysis when I have nagging doubts that the chosen prior is appropriate. When I am
prepared to use a Bayes estimator in a given problem, I try to keep my eyes on the
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prize, keeping in mind the potential benefits of mean correctness and of choosing
to err on the conservative side when deciding on how much confidence I have in
my prior estimate. I regard both philosophical and the technical underpinnings of
the Bayesian approach with respect, while recognizing the need to consider classical
methods when indicated by a problem’s particulars. Being open to both the Bayesian
and frequentist approaches to estimation cannot guarantee success, but it is, I believe,
an important ingredient in securing successful outcomes on a regular basis.

12.4 Desiderata

Kai Lai Chung once remarked to a colleague that it was “academic suicide” to prove
the last theorem in a particular field of study. While obtaining the definitive result in
a given problem area has its obvious positives, not the least of which is the pride and
satisfaction one would feel from having done it, the fact that there is nothing left to
do means that the area is essentially closed and will thus not attract other researchers.
The negative repercussions of this circumstance include, in Chung’s words, the fact
that “no one will cite your work.” While Chung’s advice was given with tongue in
cheek, there is some (perhaps a bit perverse) validity to Chung’s assessment. But, of
course, I have nothing to fear regarding the state to which he referred. There are tons
of things left to be done.

In this monograph, our treatment of the threshold problem has been dedicated,
almost exclusively, to estimation problems involving sampling distributions that be-
long to univariate or multivariate exponential families. I have made occasional refer-
ence to results that may be obtained in fully nonparametric settings, and have treated
a few parametric models that lie outside the exponential family framework, but this
work only scratches the surface of the alternative modeling that could and should be
investigated. I conjecture that, while the “look” of the solutions will vary, the basic
premise of the monograph that a threshold separating good and bad priors will virtu-
ally always exist, and may be usefully described, can and will be confirmed in more
general settings. I expect that, while analytical solutions may prove harder to obtain,
investigations through numerical means or via simulation will show that the thresh-
old problem which compares the performance of Bayes and frequentist estimators
relative to “truth” can be tackled in more general settings and will provide useful
guidance on when a Bayesian or a frequentist estimator is to be preferred.

I have argued that the Bayes risk of an estimator with respect to the “true prior
distribution” is a highly appropriate criterion for judging performance of an estima-
tor and for comparing their expected performance in a given estimation problem.
It would be difficult to argue that the true state of nature is irrelevant to our judg-
ments about performance. Some readers may feel that the idea of using a criterion
that involves averaging over the sample space is somewhat disturbing. On this score,
perhaps it is useful to state that an “impartial third party” who is commissioned to
compare the performance of Bayes and frequentist estimators should not be commit-
ted to either paradigm, and thus should not be held to either paradigm’s traditions
nor be criticized for not adhering to them. This “judge’s” only concern is the ques-



12.4 Desiderata 207

tion: which approach tends to give better answers in a given problem or for a class of
estimation problems of interest? In that context, the average distance from the truth,
however that “distance” is defined, is certainly a measure that would seem to address
that question fairly and directly.

Much of the work presented here uses squared error loss (or its natural general-
izations) as the distance criterion for measuring closeness to the truth. Were it not for
Chapter 8, one might justifiably remain skeptical about the threshold phenomenon in
settings using alternative loss criteria. Chapter 8 shows that the phenomenon surfaces
in quite a similar form under loss criteria that are dramatically asymmetric. Arguing
about loss functions is, however, somewhat reminiscent of some of the conjectures
that followed Stein’s demonstration of the inadmissibility of the sample mean in
high dimensions: was this really a “squared error loss” related phenomenon? That
it is not has been confirmed in a variety of studies. As mentioned earlier, Zellner
(1986) showed that, even in the univariate case, the sample mean was inadmissible,
under Linex loss, as an estimator of a normal mean. This seems intuitively plau-
sible, even in the absence of a technical demonstration, since when overestimation
is heavily penalized, shrinking X toward zero seems like a highly sensible strategy.
All the above notwithstanding, I believe there is both room for, and value to be de-
rived from, examining the threshold problem under a broad cross section of loss
criteria. How would the boundary between good and bad Bayes estimators change if
squared error was replaced by absolute error? Perhaps the general class of loss func-
tions {Lr(θ ,a) = (θ −a)r, r > 0}merits investigation. Finally, it is legitimate to ask
“What is the effect on the threshold problem of other forms of asymmetric loss?”

The highly perceptive reader might have picked up the fact that I am sort of par-
tial to conjugate prior distributions in problems dealing with exponential families.
OK, OK, all of you have picked that up. But my reasons have little to do with “con-
venience,” which was a popular reason for their use in the days that preceded the
computational revolution in Bayesian inference. There is an unrivaled interpretabil-
ity of Bayes estimators with respect to conjugate priors which is most definitely
useful in prior elicitation and is equally useful for the transparency it brings to the
estimators themselves, due in large part to the convexity property that they typically
enjoy.

Add to this the intriguing property of Bayesian self-consistency. Ask yourself if
you are comfortable using priors without that property. Finally, consider the prin-
ciple of parsimony. Typically, a couple of pieces of information suffice to identify
the conjugate prior one would wish to use in a given application. Suppose you have
the opportunity to gather ten pieces of information from an expert in a certain ap-
plication area. One has to wonder whether the prior that is fit to this information
will actually lead to better performance than the conjugate prior that was identified
from the first two questions asked. This is a difficult question to answer analytically,
though a careful formulation and analytical solution of that problem would be most
interesting. But the problem does lend itself to empirical study, either through real
experiments or simulations. My guess is that, when work of this type has begun to
accumulate, it will be found that there is definitely a point of diminishing returns
in prior elicitation. I predict that conjugate priors will be shown, in most problems
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of interest, to provide Bayes estimators that tend to outperform Bayes estimators
with respect to complex priors, with results possibly extending to the domination of
conjugacy over prior modeling that is only moderately more complex. In case it es-
caped the reader’s notice, let me mention that this is a whole new type of “threshold
problem!”

The idea of self-consistency has been introduced and utilized in this monograph,
but the full extent of its utility is not yet known. On the theoretical side, it is of
interest to characterize the class of priors that enjoy this property. A somewhat eas-
ier problem, but still of some interest, is the question of whether, when sampling
distributions belong to exponential families and the loss criterion is squared error,
the self-consistency property characterizes the standard conjugate prior distributions
among prior distributions belonging to an exponential family. Further, one might ask
whether self-consistency is a property that can be derived from the basic principles
on which Bayes theory is based. And certainly more can be said about the practical
implications of self-consistency. Perhaps ignoring the property is justifiable in cer-
tain applications. But a statistical consultant might ask the question: how would I
explain the absence of self-consistency in an estimator to a client who asked for a
Bayesian analysis?

The Bayesian treatment of nonidentifiable models is a somewhat controversial
subject. The content of Chapter 9 might be viewed as a template for further studies
regarding the potential payoffs and risks involved in using Bayes estimates of non-
identifiable parameters. In the particular problem we studied in some detail, it ap-
pears that the Bayesian approach can be said to be, more often than not, efficacious.
While a Bayesian might be inclined to bask in this sunshine for a few moments, he
should keep in mind that all that has been established is that Bayesian inference tends
to be better than “just guessing” in this particular problem. This is far from a ringing
endorsement. Still, when confronted with an estimation problem in which an answer
is urgently needed, and the parameter of interest happens to be nonidentifiable, a full
Bayesian treatment may well be the only available alternative to just guessing. In
that sense, its efficacy will be of practical importance. What’s left to do in this area?
The most obvious “to do’s” are the examination of the literature on Bayes estimates
of nonidentifiable parameters and the consideration of the question of “efficacy” in
each of these problems. Another area of investigation that would be of some practi-
cal importance is the examination of frequentist solutions of estimation problems in
which the model employed is “made” identifiable through the addition of nonverifi-
able side conditions on the parameters. Econometric models often fit this description.
A Bayesian treatment of such problems, with the side conditions set aside, may well
be a more defensible and justifiable analysis. Efficacy questions will, of course, ac-
company these alternative analyses. Finally, the performance of Bayes estimators of
high-dimensional nonidentifiable parameters is a problem that is largely uninvesti-
gated and certainly merits further study.

In the one-parameter models treated in Chapter 5, we used the phrase “best fre-
quentist estimator” with wild abandon. I made the claim that this was justified by the
observation that when that sampling distribution belongs to a one-parameter expo-
nential family, virtually all frequentists would utilize the same estimator, one that sat-
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isfied all the usual frequentist goals, being simultaneously the UMVUE and the MLE
of the target parameter, among other things. A frequentist would be hard pressed, for
example, to recommend an alternative to the sample proportion p̂ as an estimator of
a population proportion p. However, we have seen in subsequent developments that
there may be more than one frequentist estimator worthy of consideration in par-
ticular problems of interest. The frequentist estimators on which we concentrate in
Chapters 7 and 8 are notable examples. These estimators are widely used, but they
are also known to be inadmissible. Thus, the frequentist, who may not have a “best”
estimator to put forward, may nonetheless wish to consider some frequentist alterna-
tives. For each such alternative, there is an associated threshold problem, and these
problems have not been addressed in this monograph. This suggests that there is a
collection of open problems that remains to be investigated. In each such problem, it
is of interest to characterize the threshold that would separate good priors from bad
priors in comparisons to the frequentist estimator of choice.

I should add, as a general remark, that most of the comparisons in this monograph
involve Bayes estimators of a given known form and frequentist estimators that are
unbiased estimators of the target parameter. The threshold problem will often be of
interest in other settings. The treatment of threshold problems in which the Bayes es-
timator of the parameter of interest is unavailable in closed form, and in which there
are several different frequentist estimators that merit consideration, will be especially
challenging. Solutions to problems of this type might only be accessible through ap-
proximations involving numerical or iterative techniques. Such problems certainly
occupy a prominent place within the agenda for future investigations.

Chapter 10 is dedicated to the theory and applications of empirical Bayes meth-
ods for using both “past” and “current” data in estimating the parameter of the cur-
rent experiment. While the original framework for empirical Bayes analysis leads
to frequentist procedures, later developments by Deely and Lindley (1981) and oth-
ers introduced Bayesian counterparts which added the use of subjective inputs to
Robbins’ original formulation. In Chapter 10, we focus on the potential of empirical
Bayes ideas for improving standard estimators (be they Bayesian or frequentist) of
the current parameter. The chapter’s main contributions are proofs of the existence of
improved procedures. Left for future investigations is the determination of the vari-
ous ways in which this improvement can be achieved in a broad class of problems of
practical interest. When tractable, the characterization of the extent of improvement
possible would also be of use. There is clearly a good deal left to be done in this area.

Chapter 11, on the treatment of related experiments, constitutes the most ten-
tative discussion in the monograph. While a formulation of related experiments is
proposed, I cannot claim that it is a unique or even best way of modeling such prob-
lems. Further, general results in this chapter are rather sparse, as its main focus is
the treatment of the particular two-sample problem that motivated the chapter. Gen-
eralizations that would be of interest include the exploration of more general forms
of the potential relationships among experiments than the simple scalar-multiple re-
lationship I consider, the fully Bayesian treatment of the estimation of the current
parameter relative to appropriate hierarchical operational priors on model param-
eters, the treatment of other versions of the threshold problem, including those in
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which the true prior distribution is allowed to be nondegenerate and, finally, alterna-
tive formulations of the notion of related experiments which may be better suited to
other statistical applications.

Even though I’ve already outlined a well-packed agenda for future research in the
paragraphs above, I feel that I must formally recognize the large collection of com-
plementary problems which the present treatment has completely ignored. I have
focused exclusively on point estimation, giving other modes of inference (for ex-
ample, interval estimation, hypothesis testing, prediction, sequential analysis) virtu-
ally no attention. I have done this largely because this has allowed me to present a
fairly comprehensive examination of one important problem area, the existing the-
ory in other problem areas being notably less developed. But this suggests that there
are a myriad of problems and applications in which a properly adapted version of
the threshold problem remains to be investigated. This is clearly a mission well be-
yond my own levels of energy and ambition. But consider this a call to arms! As
Johnny Appleseed’s guardian angel said to him in the first scene of the Disney car-
toon, “there’s a lot of work out there to do.” So . . . go forth and multiply! Divide
and conquer! Add your imprint to this work! You are cordially and enthusiastically
invited to the party.



Appendix: Standard Univariate Probability Models

I. Discrete Models

Distribution Notation Probability Mass Function Mean

Bernoulli B(1,θ) p(x) = θ x(1−θ)1−x, x ∈ 0,1; θ

θ ∈ [0,1]

Binomial B(n,θ) p(x) =
(

n
x

)
θ

x(1−θ)n−x, nθ

x ∈ 0,1, . . . ,n; θ ∈ [0,1]

Geometric G(θ) p(x) = θ(1−θ)x−1, x = 1,2, . . .; 1/θ

θ ∈ [0,1]

Negative N B(r,θ) p(x) =
(r+x−1

x

)
θ r(1−θ)x−1, r/θ

Binomial x = 1,2, . . .; θ ∈ [0,1]

Poisson P p(x) = θ xe−θ /x!, x = 0,1,2, . . .; θ

θ > 0
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II. Continuous Models

Distribution Notation Density Function Mean

Uniform U (θ1,θ2) f (x) =
1

(θ2−θ1)
, (θ1 +θ2)/2

−∞ < θ1 < x < θ2 < ∞

Beta Be(α ,β ) f (x) =
Γ(α +β )
Γ(α)Γ(β )

xα−1(1− x)β−1, α/(α +β )

0 < x < 1; min(α,β ) > 0

Exponential E (θ) f (x) = 1
θ

e−x/θ , x > 0; θ > 0 θ

Gamma Γ(α,β ) f (x) =
1

Γ(α)β α
xα−1e−x/β , αβ

x > 0; min(α ,β ) > 0

Normal N (µ ,σ2) f (x) =
1√

2πσ
e−(x−µ)2/2σ2

, µ

−∞ < x < ∞; µ ∈ (−∞,∞), σ2 > 0

Pareto Par(α ,θ0) f (x) =
αθ α

0
xα+1 , αθ0/(α−1)

α < x < ∞; min(α,θ0) > 0

Appendix: Standard Univariate Probability Models
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