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seeing data 

first you see your data for what they seem to be 
then you ask them if it's so 

are you what you seem to be? 

you see with broad expanse, you ask with narrow power 
you see and ask and see 

and ask and see ... and ask ... 

with brush you paint the possibilities 
with pen you scribe the probabilities 

for in pictures we find insight 
while in numbers we find strength 

forrest young 

Forrest W. Young died a few months before this book was published. He was 65. An 
untiring worker, his passion for visual statistics filled him with enthusiasm and joy in 
the face of chronic illness. Admired, respected, and loved by his family, friends, and 
coworkers, with him expired a restless mind, a notable thinker, and, above all, a good 
man. 
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Preface 

I his book is based on a 15-year research project focused on improving our ability to 
understand data by using dynamic interactive graphics. The result of our research is a 
statistical analysis system that is radically different from the usual system, a system 
that presents the user with a visual environment for statistical analysis that supports 
instantaneous interaction and uses dynamic graphics to communicate information 
about the data: in short, a system which makes statistical analysis fun rather than 
drudgery. 

Our presentation emphasizes a paradigm for understanding data that is visual, intui-
tive, geometric, and active, rather than one that relies on convoluted logic, heavy 
mathematics, systems of algebraic equations, and passive acceptance of results. Not 
that we reject the underlying logic and mathematics. Rather, we build our visualiza-
tions on a firm foundation of mathematical statistics, designing the visuals so that 
they lead the user to "do the right thing" on the basis of visual intuition. 

The usual approach to statistical data analysis can provide deep insight and under-
standing of our data, but is difficult to learn and complicated to practice. In contrast, 
visual statistics can simplify, ease and improve the data analysis process We are 
keenly aware of the benefits and difficulties involved in getting Humans, Statistics 
and Computers to work smoothly together, that being the goal of our work 

While we aim to teach the reader the art and practice of visual statistics, this is not a 
user's guide to any particular software. We do, however, urge the user to use ViSta, 
the Visual Statistics system, developed by the first two authors, to obtain a better 
understanding of the issues discussed in the text. ViSta is available free by download-
ing it from www.visualstats.org. 

Rather than striving to create a commercially viable statistical analysis system, our 
project has emphasized the ongoing development of a testbed for our ideas about the 
use of dynamic, highly interactive graphics to improve data analysis. Nevertheless, 
our testbed has become a viable analysis system, although we continue to adhere to 
the free (semiopen) software model rather than dealing with all the additional issues 
involved in turning it into a commercially viable system. 
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About the Authors 
Each author has focused his academic career on topics involving people using com-
puters to do statistics. Each author received his degrees in psychometrics, a field of 
endeavor that emphasizes people, statistics and computers. Psychometrics is focused 
on the development and application of statistical methods within the field of psychol-
ogy in order to improve our ability to measure aspects of people, the aspects including 
knowledge, ability, attitude and personality. 

The authors have extensive experience with the development of statistical software, 
there being numerous examples of software methods in the major statistical systems 
developed by, or based on work by one or another of the authors. In addition, one of 
the authors (Young) has considerable post-graduate training in computer graphics, 
and another (Valero-Mora) has considerable professional experience in the field of 
human factors. Thus, our graduate and post-graduate training experiences, and our 
professional careers have emphasized the interaction between humans, statistics and 
computers, an emphasis that uniquely qualifies us to be working in an area at the 
intersection of knowledge in these three seemingly disparate areas. 

Forrest W. Young. Forrest W. Young is Professor Emeritus of Quantitative Psychol-
ogy at the University of North Carolina at Chapel Hill, located in Chapel Hill, North 
Carolina. Forrest is the creator and designer of ViSta, both in terms of its look and 
feel, and in terms of its internal software architecture. He has also implemented the 
design and has written much of the documentation. He has worked on the ViSta 
project since 1990, receiving considerable help from his students and colleagues. 

Prof. Young received his Ph.D. in psychometrics from the University of Southern 
California in 1967. He has been on the faculty of UNC-CH ever since. His teaching 
interests focus on "seeing what your data seem to say." This visually intuitive 
approach to statistics helps to clarify the meaning of data. His courses, ranging from 
introductory undergraduate course on psychological statistics, to his advanced gradu-
ate courses on data analysis, visualization and exploration, reflect this focus. 

Prof. Young's early research interests focused on multidimensional scaling and 
nonlinear multivariate data analysis (for which he was elected president of the Psy-
chometric Society and received the American Market Research Association's O'Dell 
award, both in 1981). Through these research interests, Prof. Young became involved 
in software development early in his career. Prof. Young has served as a professional 
consultant on statistical system interface design with SAS Institute, Statistical Sci-
ences (the S-Plus system), and BMDP Inc. He has written or designed data analysis 
modules for the SAS, SPSS, and IMSL systems. He is a member of the American Sta-
tistical Association's sections on computational and graphical statistics. 

Pedro M. Valero-Mora. Pedro M. Valero-Mora is Professor Titular at the University 
de Valencia (Spain). He received his Ph.D. in psychology from this same university 
in 1996. He has worked in the Department of Methodology of the Behavioural Sci-
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ences of the University of Valencia, Spain, since 1990, teaching introductory and 
multivariate Statistics, data processing and computational statistics. 

Pedro M. Valero-Mora's research interests have combined graphics, statistical visu-
alization, and human computer interaction, being concerned with the design of com-
puter interfaces for statistical graphics systems to make them more useful, friendly 
and, rewarding to use. This research has lead to his work on the development of inno-
vative computer interfaces for statistical analysis and visualization. This work has 
been guided by the principles of direct manipulation, instant output, and graphic visu-
alization, making the assumption that statistical systems will be easier to use if the 
user can directly manipulate visual representations of statistical techniques that 
respond immediately to the user's actions. This should help the user more easily 
understand the consequences of the choices at hand, with the user feeling more confi-
dent to experiment with the system, thereby obtaining a deeper understanding of the 
statistical concepts underlying the software. 

The development of this type of software has been made possible by the Lisp-Stat 
language and the ViSta system. Using these tools, Prof. Valero has developed meth-
ods for missing data imputation, visually controlled transformations, and visually ori-
ented log-linear analysis, as well as, with Prof. Ruben Ledesma from the University 
of Mar del Plata, in Argentina, an adaptation of a homogeneity analysis module by 
Prof. Jan de Leeuw of UCLA. 

Michael Friendly. Michael Friendly received his Ph.D. in psychometrics and cogni-
tive psychology from Princeton University, where he held a Psychometric Fellowship 
awarded by the Educational Testing Service. He is Professor of Psychology at York 
University, Canada, and has been associate coordinator and director of the Statistical 
Consulting Service since 1985. He is the author of The SAS System for Statistical 
Graphics and Visualizing Categorical Data published by SAS Institute, an Associate 
Editor of the Journal of Computational and Graphical Statistics, and author of 
numerous research papers. Current research includes graphical methods for data anal-
ysis, analysis of categorical data, and the history of data visualization. He teaches 
graduate and undergraduates in multivariate data analysis, and intermediate and 
advanced statistics, and has taught many short courses on a wide variety of statistical 
topics. 
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1 
A Introduction 

\Jata are the lifeblood of science, for it is through data that we obtain scientific 
understanding of the world around us. Data are also the lifeblood of many other 
aspects of the modern world. To the financial system, money is data. To the political 
system, votes are data. To teachers, test scores are data. To marketers, purchases are 
data. To jet passenger planes, the entire airplane is data. And we could go on and on. 

Data are a set of facts suited to the rules of arithmetic that are organized for process-
ing and analysis. Data are often, though not always, numeric. 

Methods for processing and analyzing data have evolved, over the past 200 years, to 
become the bedrock of the mathematical discipline called statistics. These methods, 
collectively called statistical data analysis, can provide deep insight and understand-
ing about the processes and phenomena underlying data, can increase the value and 
usefulness of data, and can suggest how to proceed in the future to obtain additional 
data that could be even more useful. 

However, statistical data analysis is an immensely complicated enterprise that most 
of us find difficult to learn and to practice. Therefore, recent years have seen a con-
certed effort by many statisticians to develop new techniques that simplify, ease, and 
improve the analysis process. Visual statistics is one such effort. 

Visual statistics transforms algebraic obscurity into geometric clarity by translating 
mathematical statistics into dynamic interactive graphics. This can simplify, ease and 
improve data analysis. When the graphics are mathematically, computationally, per-
ceptually, and cognitively appropriate, they can induce intuitive visual understanding 
that is simple, instantaneous and accurate. 

Dynamic interactive graphics are graphics that can move smoothly and change in 
response to the data analysts's actions, the changes being computed and presented in 
real time. The same technology creates the video game's highly dynamic, instantly 
interactive visual experience, an experience that is fun and exciting. 

Seeing data refers to the process—and to the result—of our visual search for mean-
ing in our data. When we interact with a statistical graphic to better understand our 
data, we are seeing data. And when we suddenly see structure that just a moment ago 
lay hidden within—when we are "hit between the eyes"—we are seeing data. 
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1.1 Visual Statistics 

Visual statistics has evolved from the seminal work by John Tukey on exploratory 
data analysis (Tukey, 1977). Showing that graphics could be used to generate hypoth-
eses about data, he stated, on page v of the preface: 

Exploratory data analysis is about looking at data to see what it seems to 
say—It regards whatever appearances we have recognized as partial 
descriptions, and tries to look beneath them for new insights. 

In this quote Tukey reminds us that the data analyst's job is to understand data but 
that we must always remember that we are only seeing "what the data seems to say," 
not "what the data say." We should also pay close attention to the wisdom in the 
words of Mosteller et al., (1983) who observed that. 

Although we often hear that data speak for themselves, their voices can be 
soft and sly. 

The data have a story to tell, but it may not be easy to hear it. We must attend to 
nuances. There is much art and craft in seeing what the data seem to say. Altho we 
have long understood that graphics can strengthen our ability to generate hypotheses, 
only recently have we begun to understand that graphics can also strengthen our abil-
ity to evaluate hypotheses. We are coming to learn that graphics whose geometry 
faithfully renders the hypothesis-testing algebra of mathematical statistics can aug-
ment our hypothesis-testing abilities, leading us toward a methodology for visually 
intuitive significance testing that is mathematically appropriate. 

Thus, increasingly, visual statistics is becoming influenced by mathematical statis-
tics, a branch of statistics that uses the formal machinery of theorems and proofs to 
provide mathematically based answers to scientifically posed questions. In fact, a 
requirement of the dynamic interactive graphics of visual statistics is that their geom-
etry be a translation of the relevant algebraic results of mathematical statistics: The 
"subjective" visual insights of the data analyst who is "seeing data" are firmly, though 
unknowingly, based on the "objective" rigors of mathematical statistics. 

Visual statistics also blends influences from computer science, cognitive science, 
and human-computer interaction studies. These influences inform the way that visual 
statistics proposes to ease and improve data analysis, leading to an emphasis on the 
effect of the data analysis environment on the analyst's search for understanding. 

See what your data seem to say—that's the bottom line: You learn about your 
data by interacting with their images. As you interact with images of your data, and as 
they respond in kind, the interaction helps you get to know your data better. That's 
what this book's about: how to learn about your data by playing with their pictures, 
how to use your hands to move the pictures, how to use your eyes to watch them 
move, and how to use your brain to learn from what your hands are doing and what 
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your eyes are seeing. That's all there is, there's nothing more: no formulas to solve, 
no convoluted logic. It's just your hands and eyes and brain. 

The graphics at the heart of visual statistics are like those used in video games: They 
move smoothly and rapidly, responding to your actions instantaneously. Such graph-
ics, when well designed, can increase your visual insight and augment your abilities 
to understand what you see. 

Statistical data analysis provides the most powerful tools for understanding data, 
but the systems currently available for statistical analysis are based on a 40-year-old 
computing model, and have become much too complex. What we need is a simpler 
way of using these powerful analysis tools. 

Visual statistics is a simpler way. Its dynamic interactive graphics are in fact an 
interface to these time-proven statistical analysis tools, an interface that presents the 
results of the hidden tools in a way that helps ensure that our intuitive visual under-
standing is commensurate with the mathematical statistics under the surface. Thus, 
visual statistics eases and strengthens the way we understand data and, therefore, 
eases and strengthens our scientific understanding of the world around us. 

1.2 Dynamic Interactive Graphics 

We argue that we learn more from properly constructed graphics than from equally 
well constructed tables of numbers, and that we learn most when the graphics and the 
user can interact instantaneously, smoothly and continuously. More precisely, a statis-
tical graphic that is either dynamic—capable of smooth motion—or interactive— 
capable of instantaneous reaction to the user's action—provides an easier and more 
effective way to understand data than is provided by an ordinary static, noninteractive 
statistical graphic. Better yet is a statistical graphic that is both dynamic and interac-
tive. 

1.2.1 An Analogy 

Dynamic interactive graphics are a bit like movies: Both use a series of static pictures 
to construct and display, in real time, a smoothly moving picture, and sometimes 
there are a few frames worth the price of admission because of their visual, emotional 
or cognitive impact. But there is a crucial difference: Visualizations are interactive, 
waiting for the analyst to act, reacting instantly when the analyst acts. Movies, on the 
other hand, move whether or not you want them to (indeed, even if you fall asleep or 
walk out). Movies are watched by a passive viewer, whereas visualizations need an 
active viewer to interact with. Actually, dynamic interactive graphics are more like 
video games. In fact, the technology underlying the interactivity and dynamism of 
statistical visualization is precisely the same as that used by video games. For both it 
is this technology that makes the graphics change smoothly, continuously, and rapidly 
in real time, responding instantly to the user's actions. 

Note that statistical visualizations are like video games in another way: Statistical 
visualizations often display multiple views of the data simultaneously, thereby pro-
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viding even greater information about your data. It may be that multiple views of the 
data which are highly interactive, extensively interlinked, and immediately respon-
sive—and which are intimately linked with the actions of the user—provide the best 
chance for accurate insight. This highly dynamic interactivity can change the data 
analyst's view of the data by providing new information effortlessly. 

But there's a crucial difference between video games and dynamic graphics: In 
video games, the gamer can never stop and reflect—the computer is in control and the 
user has to keep up—whereas in statistical visualization the data analyst is in full con-
trol. When the analyst stops to reflect, the computer stops, too, then waits patiently for 
the analyst's next action. When the analyst does take action, the computer has to keep 
up. With statistical visualization you direct your search for meaning, and the compu-
ter shows you what there is to see as you pursue that meaning. 

1.2.2 Why Use Dynamic Graphics? 

Although we know of no firm empirical basis for our beliefs that dynamic interactive 
statistical graphics are superior to other kinds of statistical graphics, there are several 
reasons why we believe that to be so. One reason is that we learn by doing. We 
believe that a data analyst who is actively engaged in the search for understanding is 
more likely to gain that understanding than the data analyst who is a passive viewer of 
a dynamic graphic, let alone of a static graphic. If you manipulate your data to get a 
good view of it, you will be more aware of details than if you watch a movie of some-
one else doing the same thing. We also believe that dynamic interactive graphics are 
more fun to use than other kinds of graphics—when one is using dynamic graphics it 
feels as though one is "playing" with the data, whereas a static graphic lacks that 
playfulness. And we assume that when you are having fun playing with your data, 
you are likely to gain greater insight into the data. 

Note that most of the plots that we discuss in this book were proposed as static plots 
long before the advent of computers made it possible to introduce interactivity. Thus, 
we cover many plots whose static features are very well known and which have been 
reviewed in numerous other places, but what we do is try to show these plots at their 
interactive best. We focus chiefly on the interactive aspects of such plots, showing 
how these aspects strengthen the abilities of the original static plots to reveal data 
structure. 

Of course, there are also plots that are fundamentally dynamic, although not many. 
The best known example is probably the spinning three-dimensional scatterplot. It 
may be surprising to learn that these plots can be noninteractive, just spinning on their 
own, accepting no user interaction. However, we focus on their interactive as well as 
their dynamic features. 

1.2.3 The Four Respects 

For a dynamic interactive graphic to be a truly useful discovery tool, it needs to do 
more than simply provide a "fun" way of doing statistics. It must do this in a way that 
helps the user be receptive to visual insight, and it must do this in a way that ensures 
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that the insights, when they occur, are valid. For the visual insights to be valid, a 
dynamic interactive statistical graphic must always be aware of the "Four Respects": 

Respect people. A dynamic interactive statistical graphic must respect the user's 
perceptual and cognitive capabilities, ensuring that the view of the data shown to the 
analyst will be understood accurately in a visually intuitive manner. Such a system 
must also ensure that the dynamic and interactive aspects can be dealt with by the 
user's physiology, and that they are within the perceptual and cognitive capabilities of 
the ordinary user. 

Respect data. A dynamic interactive statistical graphic must respect the nature of 
the data. As we will soon see, there are different types of data. For example, a major 
distinction is made between categorical data (example: the gender of a person) and 
numerical data (example: the height of a person). Respecting data means that each 
datatype must have an appropriate visualization. 

Respect mathematics. A dynamic interactive statistical graphic must respect the 
mathematics of the statistical situation. The pictures must be faithful to the basic 
nature of the data (or to the analysis of the data) and to the algebraic framework of the 
data (or analysis) built by statisticians. Generally, this means translating the algebra 
of mathematical statistics into the geometry of statistical visualization. 

Respect Computers. A dynamic interactive statistical graphics system must also 
respect the computer's capabilities, so that the dynamic and interactive aspects remain 
immediate and smooth for the largest possible datasets. We are transferring the tedi-
ous work to the computer, leaving the creative work to the analyst. We can augment 
the analyst's ability to understand the data, but only if we don't overtax the compu-
ter. 

1.3 Three Examples 

We begin with three very brief examples of dynamic interactive graphics, the first 
emphasizing dynamic aspects of such graphics, the other two focusing on interactive 
aspects. These examples are presented in more detail in Chapters 2 and 7. 

1.3.1 Nonrandom Numbers 

We begin by showing how a dynamic statistical graphic can reveal structure that 
you'd be hard-pressed to find with a static plot. The dynamic graphic is a plot of spin-
ning points. The example uses numbers generated by Randu, a random number gener-
ator widely used during the 1960s and 1970s. Marsaglia (1968) showed that Randu, 
and others in its family of random number generators, yield numbers that are nonran-
dom. It turns out that dynamic graphics is particularly suited to reveal the nonrandom 
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structure lurking within Randu's supposedly random numbers. We present this exam-
ple in more detail in Chapter 2. Randu is supposed to generate uniformly distributed 
random numbers between 0 and 1. These numbers should be generated so that all 
equal-width subintervals within the [0,1] interval are equally likely (uniform), so that 
the next number to be generated is unpredictable from the numbers already generated 
(random). 

Briefly, we used Randu to generate 3000 random numbers that should be distributed 
uniformly. We use these 3000 supposedly uniform random numbers as coordinates of 
1000 points in three dimensions, forming a cube of points in three-dimensional space. 
We then spin the cube around its center and watch the spinning cube for "structure." 

In Figure 1.1 we show four views of the spinning cube of points. These are four 
views that show the rotation of the space leading up to the moment at which structure 
is revealed (the order of the views is left to right and top to bottom—the first view is 
upper left, the last is lower right). Each view differs from the preceding view by a 
rotation of only 3°. You can get an idea of how small a rotation this is by looking at 
the orientation of the cube. In the upper-left image in Figure 1.1 we see that the space 
looks like the featureless space it should be if the data are truly random. Then, as we 

Figure 1.1 Four rotations of the same 3000 uniform random numbers. The 
3000 numbers are now displayed as 1000 points in three dimensions. 
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move to the upper-right image, we begin to see an emerging structure, even though 
there has been only a 3° rotation. The structure, which shows that the points are lined 
up in parallel planes, emerges completely after two more 3° rotations. 

Note well: If Randu worked right, we wouldn't see any structure, since there should 
be no structure in random numbers. However, we do see structure, so something is 
wrong with the numbers generated by Randu. Also understand that we cannot see this 
in a one- or two-dimensional plot, since the planes are not lined up with the dimen-
sions of the space. So the question is: How can we find this particular view? The 
answer is: by using a dynamic graphic which spins the space before our eyes. 

Thumb power. To see what this means, take a look at the images shown in the 
upper-right corner of the right-hand pages of this chapter. These images can be 
thought of as being frames of a movie that show a cloud of points spinning right in 
front of you, "before your very eyes," as it were (this point cloud was generated in the 
same way as the one shown in Figure 1.1). Each figure shows the cloud of points 
rotated 2° from the position of the point cloud in the preceding figure. You "run" the 
movie by thumb power—simply thumb through these pages and watch for the struc-
ture to appear. Go ahead, thumb through these figures and watch for the structure. 
What you see when you do this is a very rough approximation to what you would see 
if you were sitting at a computer watching the cloud of points rotate slowly before 
your eyes. Thus, if you watch the cloud of points slowly rotate or (better, yet) if you 
use a rotation tool to actively rotate the cloud of points, you would see the nonrandom 
structure appear for a brief moment and then disappear. 

A dynamic graphic, in this case a three-dimensional spinning space, reveals the 
structure. Although a spinning space was not involved in discovering this structure (it 
was years before such software was available), having a dynamic graphic that spins 
the space reveals the structure, and having a dynamic interactive graphic, one that lets 
you rotate the image by rubbing your cursor on the screen, makes it even easier to 
find the structure. 

1.3.2 Automobile Efficiency 

It is very common in statistical data analysis to take actions that involve assuming that 
the data are multivariate normal: that each variable in the data is normally distributed. 
Because this is such a common situation, we have developed a visualization that uses 
dynamic interactive graphics to help the data analyst transform data so that they are 
more nearly multivariate normal. Our approach is based on the fact that when data are 
multivariate normal, every variable is linearly related to every other variable, a prop-
erty called bivariate linearity. So data that are multivariate normal are also bivariate 
linear. Thus, if we could transform our variables to be bivariate linear, we could feel 
comfortable about the question of multivariate normality. 

In Chapter 7 we develop a dynamic interactive visualization for transforming varia-
bles to improve their bivariate linearity. This visualization is shown in Figure 1.2 as it 
appears for automobile fuel efficiency data. The data are the values of five variables 
for 38 automobiles, the variables being the automobile's Weight, MPG (miles per gal-
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Ion), Horsepower, Displacement (size of engine), and DriveRatio. The figure shows 
the visualization as it appears before any of the variables have been transformed 
(don't worry about the "fine print" in the figure—it is not important— what is impor-
tant is the shapes of the distributions, which we wish to linearize). 

The left portion of the visualization contains a matrixlike arrangement of plots. This 
plotmatrix, as it is called, has a row and a column of plots for each variable in the 
data. The right-hand portion of the visualization contains two large scatterplots (there 
is also a window containing a list of all of the automobiles, but it is not shown). 

The diagonal of the plotmatrix, which goes from lowerleft to upperright, shows the 
transformation for each variable. The off-diagonal plotcells show the bivariate rela-
tionships, each with lines (defined in Chapter 7) emphasizing the linearity, or lack 
thereof, of the relationship. Since the figure shows the initial view, the transforma-
tions shown in the diagonal plots are linear. 

Imagine that you are the data analyst and that you want to linearize these variables 
with respect to each other. You interact with the plot in two ways: 

• Click on a plotcell. This defines the focal plot (the one you clicked on) and the 
focal variable (the Y-axis variable of the clicked-on plot). 

• Move the slider. This transforms the focal variable using the Box-Cox transfor-
mation (described in Chapter 7). 

When you click on a plot of the plot-matrix the two large plots change. The top one 
becomes a large version of the plot you clicked on, and the bottom one becomes a 

Figure 1.2 Visualization for using the Box-Cox transformation 
to improve bivariate linearity. 
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Table 1.1 Transformations That Linearize the Bivariate 
Relationships Among Four of the Five Automobile Variables 

Variable .. , Transformation 
Value 

Weight 
MPG 
Horsepower 

Displacement 
Driveratio 

0.5 
-1.0 

1.0 
0.0 

— 

Square root 
Reciprocal 
Linear 

Log 
(not linearizable) 

normal-probability plot of the focal variable (which is linear when the focal variable 
is normal). 

When you move the slider you see that the plot you clicked on changes, as do the 
two large plots. You also see that all of the plots in the focal-plot's row and column 
also change. They change because they show the bivariate relationships between the 
focal variable and each of the nonfocal variables. Since several plots change simulta-
neously, some may get worse. So you should select a position for the slider that shows 
the best overall change in the plot-matrix, not just the best linearization in the focal 
plot. When you have done this, you will probably want to focus on another variable to 
improve the linearity of its bivariate relationships. Gradually, as you focus first on 
one variable, then on another, the relationships between all pairs of variables may 
become more linear. At the conclusion of the process you can judge whether the vari-
ables are sufficiently bivariate linear to justify the assumption that they are multivari-
ate normal. 

In Figure 1.3 we show the plotmatrix we settled on as having the best overall set of 
linear bivariate relationships. We have "exploded" a 4 x 4 submatrix from the Drive-
Ratio row and column to emphasize the fact that we have been, in our judgment, only 
partially successful in our attempt to linearize all of the bivariate relationships. It is 
clear that the exploded 4 x 4 section is mutually bivariate linear. Thus, we judge that 
these four variables are sufficiently bivariate linear to justify the assumption that they 
are multivariate normal. We cannot, however, include DriveRatio in this decision. 
This should warn us that, when we continue our investigations of these data, DriveR-
atio needs extra care and attention as the analyses proceed. 

As we discuss in Chapter 7, the slider controls an argument of the Box-Cox trans-
formation family, with different transformations resulting from different slider val-
ues. We moved the slider to find the value of the argument that produced the most 
linear transformation. Five of these values are special values that correspond to well 
known transformations. If the best value was close to a special value, we substituted 
the special value. The slider values that we choose are shown in Table 1.1. All except 
the value for DriveRatio correspond to special values. DriveRatio was not lineariza-
ble. It is interesting to note that the transformation of MPG not only linearizes with 
respect to three of the other variables, but also linearizes with respect to the measure 
used in most of the world, which is L/100 km. 
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Figure 1.3 Off-diagonal plots show the bivariate relationships after 
transformation. Diagonal plots show the transformations. 

1.3.3 Fidelity and Marriage 

This third example shows how being able to interact with a statistical graphic can ease 
and simplify the interpretation of data. The example is based on a cross-classified 
table of frequencies calculated from four variables concerning the relationship of 
divorce to the occurrence of premarital and extramarital sex in men and women. We 
examine the link between the Marital Status (M) and Gender (G) of the respondents, 
and whether they engaged in Premarital Sex (P) and/or Extramarital Sex (E) in the 
past (this example is presented in greater detail in Chapter 2). A visualization method 
for frequency data that has recently gained popularity is the mosaic display. This dis-
play represents the observed frequencies as well as the residuals from fit of a model of 
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the frequencies (the residuals are the differences 
between the frequencies and estimates of the fre-
quencies made by the model). 

A mosaic plot uses area to represent frequency. 
Each mosaic plot uses a square to represent the 
total frequency. The square is subdivided into 
interlocking rectangles so that a rectangular area 
corresponds to the cell frequencies in the data 
table. 

Consider the four mosaic plots shown in Figure 
1.4. In each of these, the square that forms the 
perimeter of the plot represents the total fre-
quency. In the top plot the total frequency has been 
broken down according to the frequencies of the 
premarital variable. The square is divided verti-
cally into two rectangles called tiles. The ratio of 
the areas of the tiles correspond to the ratio of the 
frequencies of the table cells. This one-way 
mosaic tells us that about three times as many peo-
ple did not have premarital sex as did. We refer to 
this as the P mosaic, since only the premarital (P) 
variable is used. 

The second display in Figure 1.4 is a two-way 
mosaic plot of the frequency cross-tabulation of 
two of the variables in the study, the PreMarital 
and ExtraMarital variables. We refer to this as the 
PE mosaic. Notice that each tile in the upper dis-
play has been divided horizontally into two tiles, 
the division being in proportion to the conditional 
probability of the second variable given the first. 
Hence, the area of each tile is proportional to the 
observed cell frequency: We can tell at a glance 
that many more people abstained from both pre-
marital and extramarital sex than engaged in either 
one or both of these behaviors. We can also see, 
with a second glance, that a larger proportion of 
those who had premarital sex also had extramarital 
sex than those who did not have premarital sex. 

The third display is a three-way mosaic, where a 
third variable, in this case Marital Status, is used 
to subdivide each of four tiles of the two-way 
mosaic. This is the PEM mosaic. 
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Finally, the fourth mosaic is a four-way mosaic, where the fourth variable, namely 
Gender, is used to subdivide the tiles of the three-way mosaic, giving the PEMG 
mosaic. 

The mosaic plot always represents the total frequency by a square. For an «-way 
table, the square is first divided into two vertical tiles, their areas being proportional 
to the cell frequencies of the first of the n ways. Then each tile is subdivided horizon-
tally in proportion to the conditional frequencies of the second variable given the first. 
This continues, each tile being subdivided at right angles to the previous direction, the 
widths of the divisions being proportional to the frequencies conditioned on the varia-
bles used to form the tile. At each level of construction each tile's area is proportional 
to its observed cell frequency and probability. 

By introducing just one more concept, that of shaded tiles, we get the full-fledged 
mosaic display shown in Figure 1.5. Except for shading, the display is identical to the 
bottom plot shown in Figure 1.4. Usually, the tiles in the display are shaded in gray or 
in color to indicate the value and direction of the residuals. Here we use black and 
white to indicate whether the actual cell frequencies are above or below, respectively, 
the cell frequencies expected under a given model. Although various models can be 
used to determine expected cell frequencies, here we use the loglinear equivalent of a 
logit model. This is done by setting Marital Status as the dependent variable. 

The mosaic display can help us see patterns in the residuals that help us in our 
search for good models. Mosaic displays are appealing because they extend naturally 
to multidimensional tables, a feature uncommon in methods for frequency data. This 
allows us to visualize several variables using only one figure that summarizes the 
most important aspects of the data. 

"* D-N M-N D-Y M-Y 

M. Status-Premarital 

Figure 1.5 Mosaic Display with color of tiles showing residuals from a null 
logit model (setting Marital Status as dependent variable). 
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Notice that the order in which variables are entered into the mosaic display affects 
our view and understanding of the data, since the display shows conditional, not 
unconditional frequency and probability. That is, a four-way mosaic based on enter-
ing our four variables in the order MGPE gives us a different view than when the var-
iables are entered in the order used in Figure 1.4 and Figure 1.5, which is PEMG. 
Since the view, and therefore our understanding, of the data are different, it is impor-
tant to explore different variable orders. Furthermore, the different orders should be 
easily accessible by direct interactive manipulation of the display. 

The modelling session, which involves using interactive graphics tools that allow us 
easily to try various models, begins by default with a model that includes no associa-
tions of the dependent variable (marital status) with the independent variables. This 
model, which is called the base or null logit model, is surely inadequate, but it is the 
logical starting point for an interactive modelling session. 

The mosaic display in Figure 1.5 shows the variables in the order PEMG. Manipu-
lating the order of the variables (as described in Section 2.3), we found that the order 
MEPG put together cells that have the same residual signs, making a more coherent 
display. The first split, by marital status, separates those still married from those who 
are divorced. Whereas the residuals were positive (higher observed than expected fre-
quencies) for married people, those for divorced people were negative, and vice versa. 
This means that we could simplify the interpretation by focusing on either the 
divorced people or those who are married, seeing the same patterns although with 
opposite signs. Arbitrarily, we focused on those who were divorced, showing the sim-
plified mosaic in Figure 1.6. This mosaic can be interpreted in a single, simple sen-
tence: People with sexual encounters outside marriage, whether premarital or 
extramarital, are more likely to divorce than are those without such encounters. 

Figure 1.6 Mosaic Display after manipulating the order of the variables 
and simplification by focusing on Marital Status=Divorced. 
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1.4 History of Statistical Graphics 

Most modern readers may think of statistical graphics as the new kid on the block, 
whose immediate family is described in this book. In fact, visual statistics has an 
extended pedigree, with ancestors reaching back to the earliest visual portraits of 
information—early maps, navigation charts and tables, geometric and mechanical 
drawing; the rise of visual thinking, and so on. Much of this history is collected by 
Friendly and Denis (2004) and described by Friendly (2004). What we see from this 
history is that data graphics were primarily invented to provide visual solutions to 
problems (where to build a new railroad, what is the source of a cholera outbreak) by 
making data "speak to the eyes." As well, important historical graphs were almost 
invariably created to help tell a story about some significant substance, beyond what 
mere words and numbers could convey. We illustrate this history with a few short sto-
ries from selected periods. 

1.4.1 1600-1699: Measurement and Theory 

Among the most important problems of the seventh century were those concerned 
with physical measurement—of time, distance, and space—for astronomy, surveying, 
map making, navigation, and territorial expansion. This century also saw great new 
growth in theory and the dawn of practice—the rise of analytic geometry, theories of 
errors of measurement and estimation, the birth of probability theory, and the begin-
nings of demographic statistics and "political arithmetic". 

Figure 1.7 (source: Tufte, 1997, p. 15) shows what is believed to be the first visual 
representation of statistical information, a 1644 graphic by Michael Florent van Lan-
gren, a Flemish astronomer to the court of Spain, prepared as an executive summary 
of a small number of determinations of the distance, in longitude, from Toledo to 
Rome. At that time, lack of a reliable means to determine longitude at sea hindered 
navigation and exploration. For navigation, latitudes could be fixed from star inclina-
tions, but longitudes required accurate measurement of time at sea, a problem 
unsolved until 1765. 

The one-dimensional line graph reproduced in Figure 1.7 shows all 12 known esti-
mates of the difference in longitude between Toledo and Rome, and the name of the 
astronomer (Mercator, Tycho Brahe, Ptolemy, etc.) who provided each observation. 
What is notable is that van Langren could have presented this information in various 
tables—ordered by author to show provenance, by date to show priority, or by dis-

Figure 1.7 Langren's 1644 graph of distance from Toledo to Rome 
(From Tufte, 1997, p. 15) 

18 



1.4 History of Statistical Graphics 

tance. However, only a graph shows the wide variation in the estimates; note that the 
range of values covers nearly half the length of the scale. Van Langren took as his 
overall summary the center of the range, where there happened to be a large enough 
gap for him to inscribe "ROMA." Unfortunately, all of the estimates were biased 
upward; the true distance (16°30') is shown by the arrow. Van Langren's graph is also 
the earliest-known exemplar of the principle of effect ordering for data display 
(Friendly and Kwan, 2003). 

1.4.2 1700-1799: New Graphic Forms and Data 

Early in the eighteenth century, map-makers began to try to show more than just geo-
graphical position on a map. As a result, new graphic forms (isolines and contours) 
were invented, and thematic mapping of physical quantities took root, and would later 
lead to three-dimensional visualization. Toward the end of this century, we see the 
first attempts at the thematic mapping of geologic, economic, and medical data. 

Abstract graphs and graphs of mathematical functions were introduced, along with 
the beginnings of statistical theory (measurement error) and systematic collection of 
empirical data. As other (economic and political) data began to be collected, novel 
visual forms were invented so that the data could "speak to the eyes." 

William Playfair (1759-1823) is widely considered the inventor of most of the 
graphical forms used widely today—first the line graph and bar chart (Playfair, 1786), 
later the pie chart and circle graph (Playfair, 1801). Figure 1.8 shows a creative com-
bination of different visual forms: circles, pies, and lines (Playfair, 1801). 

The use of two separate vertical scales for different quantities (population and 
taxes) is today considered a sin in statistical graphics (you can easily jiggle either 
scale to show different things). But Playfair used this device to good effect here to try 
to show taxes per capita in various nations and too argue that the British were over-

Figure 1.8 Playfair's 1801 pie-circle-line chart. 
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taxed, compared with others. But alas, showing simple numbers by a graph was diffi-
cult enough for Playfair (1786), who devoted 21 pages of text describing how to read 
and understand a line graph. The idea of calculating and graphing rates and other indi-
rect measurements was still to come. 

In Figure 1.8 the left axis and line on each circle-pie graph show population, and 
the right axis and line show taxes. Playfair intended that the slope of the line connect-
ing the two would depict the rate of taxation directly to the eye. Playfair's graphic sin 
can perhaps be forgiven here, because the graph clearly shows the slope of the line for 
Britain to be in the opposite direction of those for the other nations. 

1.4.3 1800-1899: Modern Graphics and the Golden Age 

By the early part of the nineteenth century all of the modern forms of data display 
were invented: bar and pie charts, histograms, line graphs and time-series plots, con-
tour plots, scatterplots, and so on. At least as important, the systematic collection of 
national data on demographic and economic topics (population distributions, imports/ 
exports, transportation over land and water) became sufficiently widespread in 
Europe to need a general word to describe it —Statistik, meaning "numbers of the 
state.". But there were social issues as well—crime, literacy, poverty (called "pauper-
ism," as if to connote a disease, or conscious individual choice), suicide, and so on, 
and how these could be understood to affect state policy. Can we better reduce crime 
by increasing education or by making incarceration more severe? Can we better 
reduce pauperism by providing some form of social assistance or by building more 
debtors' prisons? These questions led to the rise of moral statistics (Guerry, 1833), 
now seen as the foundation of modern social science. 

By midcentury, official state statistical offices were established throughout Europe, 
in recognition of the growing importance of numerical information for social plan-
ning, industrialization, commerce, and transportation. Together, the successes of a 
wide variety of graphical methods to convey quantitative information directly to the 
eyes, along with substantial bodies of data and state interest in outcomes led to an 
explosive growth in the use of graphical methods, many of unparalleled beauty, and 
many innovations in graphics and thematic cartography. 

To illustrate this period, we choose an 1844 tableau-figuratif (Figure 1.9) by 
Charles Joseph Minard, an early progenitor of the modern mosaic plot (Friendly, 
1994). The graphic shows the transportation of commercial goods along the Canal du 
Centre (Chalon-Dijon). Intermediate stops are spaced by distance, and each bar is 
divided by type of goods, so the area of each tile represents the cost of transport. 
Arrows show the direction of transport. 

On the surface, mosaic plots descend from bar charts, but Minard introduced two 
simultaneous innovations: the use of divided and proportional-width bars, so that area 
had a concrete visual interpretation. The graph shows the transportation of commer-
cial goods along one canal route in France by variable-width, divided bars (Minard, 
1844). In this display the width of each vertical bar shows distance along this route; 
the divided bar segments have height—amount of goods of various types (shown by 
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Figure 1.9 Minard's Tableau Figuratif. 

shading), so the area of each rectangular segment is proportional to the cost of trans-
port. Minard, a true visual engineer (Friendly, 2000a), developed such diagrams to 
argue visually for setting differential price rates for partial vs. complete runs. Playfair 
had tried to make data "speak to the eyes," but Minard wished to make them calculer 
par l'oeil as well. 

1.4.4 1900-1950: The Dark Ages of Statistical Graphics— 
The Golden Age of Mathematical Statistics 

If the late nineteenth century was the "golden age" of statistical graphics and thematic 
cartography, the early twentieth century could be called the "modern dark ages" of 
visualization (Friendly and Denis, 2001). There were few graphical innovations, and 
by the mid-1930s, the enthusiasm for visualization that characterized the late nine-
teenth century had been supplanted by the rise of quantification and formal, often sta-
tistical models in the social sciences. Numbers, parameter estimates, and especially, 
standard errors were precise. Pictures were—well, just pictures: pretty or evocative, 
perhaps, but incapable of stating a "fact" to three or more decimals. Or so it seemed 
to statisticians of the time. But it is equally fair to view this as a time of necessary 
dormancy, application, and popularization rather than one of innovation. In this 
period, statistical graphics became mainstream. It entered textbooks, the curriculum, 
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and standard use in government, commerce, and science. In particular, perhaps for the 
first time, graphical methods proved crucial in a number of scientific discoveries 
(e.g., the discovery of atomic number by Henry Mosely; lawful clusterings of stars 
based on brightness and color in Hertzprung-Russell diagrams; the Phillips curve in 
macroeconomics, relating wage inflation and unemployment) (see Friendly and 
Denis, 2004, for more details). 

But the work that became the hallmark of the first half of the twentieth century has 
come to be known as confirmatory statistics, with the main activity being that of 
hypothesis testing. A statistical hypothesis is a statement that specifies a set of possi-
ble distributions of the data variable x. In hypothesis testing, the goal is to see if there 
is sufficient statistical evidence to reject a presumed null hypothesis in favor of a con-
jectured alternative hypothesis. Confirmatory statistics used the formalisms of mathe-
matical proofs, theorems, derivations, and so on, to provide a firm mathematical 
foundation for hypothesis testing. 

These new mathematically rigorous methods of confirmatory statistics proved to be 
very useful for research topics that were well enough understood to permit the 
researcher to construct hypotheses about phenomena of interest. Such a researcher 
now had a clear-cut way to choose between competing hypotheses: State hypotheses, 
gather data, and apply hypothesis tests. Thus, confirmatory statistics proved to be 
very useful and has remained a core topic and fundamental activity within statistics. 

But what about those who were working in research areas that had not yet pro-
gressed to the point of being able to generate clearly stated hypotheses? For these dis-
ciplines, confirmatory statistics was not relevant, and until the groundbreaking work 
of Tukey (1977), there were no feasible alternatives. Thus, Tukey's work on explora-
tory data analysis, which provided researchers with a framework for generating 
hypotheses, was of immense importance. 

1.4.5 1950-1975: Rebirth of Statistical Graphics 

Still under the influence of the formal and numerical Zeitgeist from the mid-1930s on, 
statistical graphics began to rise from dormancy in the mid-1960s, spurred largely by 
three significant developments: 

1. In the United States, Tukey began the invention of a wide variety of new, sim-
ple, and effective graphic displays, under the rubric of exploratory data analy-
sis. Tukey's stature as a mathematical statistician, together with his novel 
graphic methods and pithy philosophy of data analysis ("the greatest value of 
a picture is when it forces us to notice what we were not prepared to see") 
made visual data analysis respectable again. 

2. In France, Jacques Bertin published the monumental Sémiologie Graphique 
(Bertin, 1967, Bertin, 1983). To some, this appeared to do for graphics what 
Mendeleev had done for the organization of the chemical elements, that is, to 
organize the visual and perceptual elements of graphics according to features 
and relations in data. 
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3. Finally, widespread computer processing of data had begun, and offered the 
possibility to construct old and new graphic forms using computer programs. 
True high-resolution graphics were developed but would take a while to enter 
common use. 

But it was Tukey's work (1962) that had the biggest impact on statistical graphics, 
influepcing how, and why, graphics would be used in statistics. Tukey argued that we 
should examine the data not only for what they say about a pre-defined hypothesis, 
but also for what they say about other possibly expected (or completely unexpected) 
results. One of Tukey's main contributions is the view that carrying out data analysis 
cannot be reduced to a single set of isolated calculations. In Tukey's view, data analy-
sis is a process where steps are taken that suggest new steps that are based on the 
knowledge gained from the previous steps. Software that would support this type of 
freedom in data analysis did not exist at the time of Tukey's book. But today's statis-
tical visualization systems are designed with this philosophy in mind. 

By the end of this period, significant intersections and collaborations would begin: 
computer science research (software tools, C language, UNIX, etc.) at Bell Laborato-
ries (Becker, 1994) and elsewhere would combine forces with developments in data 
analysis (EDA, psychometrics, etc.) and display and input technology (pen plotters, 
graphic terminals, digitizer tablets, the mouse, etc.). These developments would pro-
vide new paradigms, languages, and software packages for expressing statistical ideas 
and implementing data graphics. In turn, they would lead to an explosive growth in 
new visualization methods and techniques, and to statistical visualization, the area of 
research and development that is the topic of this book. 

1.4.6 1975-2000: Statistical Graphics Comes of Age 

During the last quarter of the twentieth century, statistical graphics blossomed into a 
vibrant research discipline. Perhaps the clearest evidence of the maturation of statisti-
cal graphics is the development of theoretical frameworks for statistical graphics. 
Two very important examples are the viewing pipeline for data analysis developed by 
Buja et al., (1988) and the grammar of graphics developed by Wilkinson (1999). The 
viewing pipeline shows how to construct the highly interactive, very dynamic graph-
ics which are the subject of this book. The grammar of graphics presents a theoretical 
framework for statistical graphics, showing how data flow from their original state to 
their graphical representation. Surprisingly, Wilkinson's grammar does not include 
dynamic graphics, although it must have been clear how that could have been done. 

The theoretical framework presented in this book, which also shows how data flow 
from their original state to their graphical representation, is, in fact, very similar to 
Wilkinson's grammar. However, our framework, being in part based on Buja's view-
ing pipeline, allows for dynamic graphics. Interestingly, our framework was devel-
oped without awareness of Wilkinson's. Such convergence of independent lines of 
research and development can be taken as further evidence of the maturation of statis-
tical graphics. 
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The maturation of statistical visualization has also been influenced by work in allied 
fields outside statistics such as cognitive science, computer science, and human-com-
puter interaction studies. These influences inform the way in which statistical visuali-
zation proposes to ease and improve data analysis, leading to an emphasis on the 
effect of the data analysis environment on an analyst's search for understanding. 

Of central importance in this maturation was the concomitant maturation of compu-
tational capabilities and the increasing reliance of these capabilities on the use of 
graphical hardware and software, as emphasized by the National Research Council in 
their publication on the future of statistical software (Eddy et al., 1991). 

It is interesting to note that Tukey, nearly 30 years earlier, was asked upon the occa-
sion of the 125th anniversary of the American Statistical Association to deliver an 
address on the past, present, and future of technical tools of statistics (Tukey, 1965). 
His presentation was amazingly prescient: At a time when computers as large as 
buildings contained less computing power than is available in today's digital wrist-
watch, Tukey predicted "an increasing swing toward a greater emphasis on graphical-
ly and informality of inference" and "a greater and greater role for graphical 
techniques as aids to exploration and incisivenes." Indeed, one of the most important 
challenges for implementing Tukey's ideas came from graphics. 

Statistics has long included graphics as an important tool for revealing, seeing, and 
showing information in data. Statistical graphics have helped scientists explore their 
data for structure, to confirm the presence of such structure, and to communicate the 
results of their studies. Tukey himself is famous for introducing graphics that have 
become very popular, graphics such as the box and whiskers plot and the stem and 
leaf plot. However, to take full advantage of plots in exploratory data analysis, it was 
necessary to incorporate ways of interacting with statistical software, ways that were 
not available until the advent of the microcomputer. 

1.5 About Software 

At the time this is being written, there are six statistical visualization systems that 
seem to us to be the most important: JMP, DataDesk (Velleman and Velleman, 1985), 
Arc (Cook and Weisberg, 1994), ViSta (Young, 1994; Young and Smith, 1991), 
GGobi (Swayne et al., 1998, 2003) and Manet (Hofman, 2003; Unwin et al., 1996). 
Each of these systems uses dynamic interactive graphics to simplify data analysis and 
to display data structure. Of these, two are commercial systems and four are noncom-
mercial. The six statistical visualization systems have evolved from research and 
development in dynamic interactive statistical graphics that began around 1960, with 
the first commercial systems becoming available in the late 1980s. Some of the major 
milestones of progress in visual statistics are: 

• A direct manipulation system for controlling a power transformation in real 
time (Fowlkes, 1971), where we first come across the idea that one could con-
nect a parameter and a statistical method manually with an on-screen control-
ler. 
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• Prim-9, the first system with 3D data rotations (Fisherkeller et al., 1975), dem-
onstrating dynamic interactive graphics for the first time. Other early systems 
with these capabilities are ORION (McDonald, 1988) and MacSpin (Donoho 
et al., 1988). 

• The dynamic interactive technique known as brushing was developed around 
1980. This technique allowed the analyst to select regions or points and to see 
them linked simultaneously in other plots (McDonald, 1982; Newton, 1978). 

• The Grand Tour for visualizing multivariate data sets by creating an animation 
of data projections by moving a two-dimensional projection plane through n-
space (Asimov, 1985). The novel idea here was to help the analyst seek 
informative views of high-dimensional data by defining various criteria of 
"interestingness." 

• A systematic implementation of interactive statistical graphics, including 
brushing, linking, and other forms of interaction (Becker and Cleveland, 
1988). 

1.5.1 XLisp-Stat 

XLisp-Stat (Tierney, 1988, 1990), has had considerable impact on the development of 
statistical visualization systems. XLisp-Stat is not, per se, a statistical system, but is a 
statistically and graphically oriented programming environment designed to facilitate 
the creation of statistical systems. It is based on a freely available implementation of 
the Lisp language called XLisp (Betz, 1985). Tierney (1988, p.4) gave three primary 
motivations for developing this language: (1) provide a vehicle for experimenting 
with dynamic graphics and for using dynamic graphics in instruction; (2) explore the 
use of object-oriented programming ideas for building and analyzing statistical mod-
els; and 3) experiment with an environment supporting functional data. 

XLisp-Stat provided statisticians with the opportunity to implement ideas related to 
dynamic graphics in much the way that statistical language S had already provided a 
general statistical programming language (Becker, 1994; Becker and Chambers, 
1981; Becker et al., 1988a; Ihaka and Gentleman, 1996). In fact, some of the features 
of XLisp-Stat were inspired by similar features or functions in S. One of the strong 
points of XLisp-Stat, Tierney and others argued, was the fact that it was based on 
Lisp, a general-purpose high (and low)-level programming language that was (and is) 
well known and mature. This guaranteed a solid foundation of technical aspects and a 
strong set of basic programming tools. 

When XLisp-Stat is started by the user, all that is shown to the user is an empty 
screen with a prompt for typing commands. Using lisp syntax, commands for opening 
data files and obtaining statistical summaries and plots can be obtained. Also, new 
functions can easily be written and saved in files, so repeating sessions of analysis or 
expanding the system could be accomplished. 
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XLisp-Stat also provides tools for incorporating user interface elements in programs 
developed by users. In this way, Lisp programs could be turned into direct manipula-
tion systems (Hutchins et al., 1986), the kind of user interaction system popularized 
by the Macintosh and by Microsoft Windows. These capabilities paved the way to 
some projects written entirely in XLisp-Stat that provided a user interface for manip-
ulating data, computing results and showing visualizations. These projects are 
described by their authors in Stine and Fox (1996). 

Note that there is some concern that XLisp-Stat is not a healthy, growing statistical 
system. Indeed, there is a fairly widespread opinion held by many computation statis-
ticians that it has died, an opinion not shared by the current authors. We have recently 
published articles about the problems that currently exist (Valero-Mora and Udina, 
2005; Molina et al., 2005), as have others intimately involved in the development, 
popularization, and then demise of the system (de Leeuw, 2005; Tierney, 2005). Per-
haps the most important point is made by Weisberg (2005) who states that "solutions 
to applied statistical problems are framed by the limitations imposed by statistical 
computing packages and languages." Weisberg goes on to point out that the kinds of 
solutions supported by XLisp-Stat are very different from those supported by other 
languages, and that a variety of statistical languages can only benefit, not hurt, the 
field of statistics. 

1.5.2 Commercial Systems 

The two commercial systems are DataDesk and JMP, which now have a long history 
that has made them very solid and complete products that can be used for many eve-
ryday computing needs of data analysts as well as for visual statistics. 

DataDesk. The DataDesk system (Velleman and Velleman, 1985) included from 
the very beginning, rotating plots, linking and brushing, and dynamic transforma-
tions, among other features. It also provided a visual metaphor for managing datasets, 
variables, analyses, and so on, and for representing the analysis process. 

JMP. JMP (JMP, 2002), which is pronounced "jump," first became available in 
1989, providing many of the dynamic interactive features introduced previously in 
the literature. It did not provide as extensive an environment for data analysis as that 
provided by DataDesk, and there was no vivid metaphor for the data analysis process 
itself. Yet JMP provided a system in which every analysis was accompanied automat-
ically by graphs, without having to beg them to show themselves. 

1.5.3 Noncommercial Systems 

Of the four noncommercial projects, ViSta and Arc were developed using XLisp-Stat. 
They share the potential of being extended to incorporate new methods or techniques. 
Also, since XLisp-Stat is available behind the scenes, even though each system is 
based on a direct manipulation interface, command typing is also available. 
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Arc. Arc (originally named R-code, but was renamed to avoid confusions with the 
R software system) (Cook and Weisberg, 1994, 1999) is a regression analysis system 
that emphasizes regression graphics, many of which are dynamic. Arc is one of the 
reference programs for regression analysis. 

ViSta. Vista, the Visual Statistics System (Young and Smith, 1991; Young, 
1994), was also developed using the tools provided by XLisp-Stat. Since we use 
ViSta throughout this book, we describe it more extensively in the next section. 

Manet. Manet is one of several statistical visualization programs developed by 
the computer-oriented statistics and data analysis group of the University of Augs-
burg (Unwin et al., 1996). Manet originally focused on visual estimation of missing 
values. It now incorporates many other visualization techniques and is particularly 
outstanding for visualizing categorical data (Hofman, 2003). 

XGobi and GGobi. XGobi, and its recent sibling GGobi, are data visualization 
systems for exploring high-dimensional data that have graphical views that can be 
brushed and linked (Swayne et al., 1998). These views include dynamic interactive 
scatterplots, parallel coordinate plots, and scatterplot matrices. 

Finally, as the basic ideas of dynamic statistical visualization have become more 
mainstream, many commercial statistical systems have tried to incorporate them, 
with, in our opinion, limited success. Programs such as SAS, SPSS, S-Plus, Systat, 
Statistica, and Mini tab have incorporated dynamic interactive graphics techniques, 
although the complexities involved in integrating these techniques into their parent 
systems are often problematic and limiting. Also, there have been some attempts to 
include dynamic plots in R, the free implementation of S. 

1.5.4 ViSta 

This book uses ViSta (Young, 1994) as the primary system to demonstrate the con-
cepts being described. Originally a research project concerning the use of dynamic 
interactive graphics, ViSta has become one of the three most widely used statistical 
visualization systems, along with JMP and DataDesk, with a new version recently 
released. Whereas JMP and DataDesk are both commercial systems with a closed 
software distribution model, ViSta is a noncommercial, freely available system using 
a moderated, partially open software distribution model. ViSta contains the full range 
of dynamic interactive graphics tools available in other statistical visualization sys-
tems. It also includes a visual metaphor for structuring data analysis sessions, a graph-
ical tool for providing the data analyst with expert guidance, and an approach to 
organizing and coordinating multiple dynamic graphics. 

The reason that we have chosen to focus on ViSta is very simple: The first author of 
this book is the designer and original developer of ViSta, and the second author has 
made major contributions to the system. As such, we are very familiar with ViSta. We 
have been using it for visual statistical analysis, for the development of new visualiza-
tion methods, and for the development of the software architectures underlying such 
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methods. Together, the authors of this book have about 25 years of first hand knowl-
edge in the theoretical basis of highly interactive, very dynamic statistical graphics, as 
well as literally decades of 20-hour days spent in the trenches doing the immensely 
difficult and painstakingly demanding software development underlying ViSta's very 
dynamic, highly interactive graphics. 

Although many of the techniques described in this book are well-known methods 
for data visualization, we have provided new solutions to some of the problems of 
data visualization that we believe are of fundamental importance. Our implementa-
tions of many of the dynamic statistical graphics tools (described later in the book) 
would have been difficult at best, and more often impossible, had we used only soft-
ware provided by others. 

ViSta focuses on a single thing—visual statistics—and attempts to do that thing as 
well as possible. As such, we know that ViSta does not include all the statistical visu-
alization techniques, and it is not difficult to find implementations of certain methods 
that are better than ours. However, we believe that ViSta provides the user with an 
excellent structured environment for statistical visualization, which simplifies and 
clarifies statistical visualization. In our view, the most important aspects of ViSta are 
its graphical interface, its dynamic interactive graphics, and its multiview graphics. 

ViSta is operated by a direct manipulation interface that includes menus, dialog 
boxes, and icons. This type of interface is appropriate for first-time and occasional 
users because they can use point and click strategies to control the program. A draw-
back of direct manipulation is that very often there is no method to record the history 
of actions of the users. ViSta offers the workmap as a way to solve this problem. 

ViSta supports a wide range of dynamic and interactive graphics, including nearly 
all those mentioned in this book. Essentially all plots support brushing, labeling, and 
linking. The other basic techniques mentioned in Chapter 4 can be added to many 
plots. Also, many plots are customized for specific analytical situations. 

One of the difficulties of having a large number of plots is organizing the windows 
on the screen so that they can be contemplated without impediments. ViSta provides 
spreadplots, discussed above. There is a reasonably simple interface that helps the 
moderately sophisticated developer write new spreadplots. 

ViSta includes a basic set of tools for data management and processing. These allow 
importing and exporting data to text files, merging files, transforming variables, and 
more. All together, this set of functions guarantee that many data analysis sessions 
can proceed in ViSta completely without needing help from other programs. 

ViSta supports the advanced user who wishes to enhance or extend its capabilities. 
This can be done by writing plug-ins, applets, or special-purpose programs. Plug-ins 
are programs that implement major data analysis and visualization techniques and 
which are interfaced with ViSta so that they become part of its standard capabilities. 
Applets are small bits of code that are served over the Internet to ViSta, which acts as 
the client in the standard client-server software distribution model. Special-purpose 
programs may be written on the fly to be used immediately or saved for later use. No 
restrictions areimposed. 

28 



1.6 About Data 

ViSta can be downloaded from www.visualstats.org/. The developer who wishes to 
extend ViSta's data analysis and visualization capabilities can do so as described 
above. Those who wish to modify the system have access to portions of the code, with 
restrictions imposed on critical sections. Even these restrictions may be loosened fol-
lowing procedures defined on the web site. This provides the flexibility of an open 
system with the reliability of a closed system. 

As-of the date that this is being written, ViSta 6.4 is the standard version of the soft-
ware, and the next release, 7.N, is feature-complete. The material in this book is based 
on version 7.6 which has many capabilities not in 6.4. While essentially all of the fig-
ures were prepared using ViSta, some represent specialized programming by the 
authors and cannot be produced with the point-and-click interface. 

But this is not a book about ViSta; it is a book about visual statistics. We focus on 
the ideas and concepts of visual statistics in and of themselves, not specifically as 
implemented in ViSta. 

1.6 About Data 

As used by the ancients, the word datum referred to "something given," and its plural, 
data, referred to "a set of given things." Our verbal definition is as follows: 

Data are a set of facts suited to the rules of arithmetic that are organized for 
processing and analysis. Data are often, although not necessarily, numeric. 

Commonly, data do not make a clear and unambiguous statement about our world, 
often requiring tools and methods to provide such clarity. These methods, called sta-
tistical data analysis, involve collecting, manipulating, analyzing, interpreting, and 
presenting data in a form that can be used, understood, and communicated to others. 

In an unstructured statistical analysis system, the tree of decisions that needs to be 
considered before selecting an appropriate visualization or statistical model can be 
large and unwieldy. Negotiating the maze of choices can be confusing and wearing. 
Many software systems present long lists of options spread across many different dia-
log boxes or menus, even though many of the choices may be irrelevant for the spe-
cific dataset being analyzed. As a consequence, it is not surprising that many data 
analysts claim that typed commands are the best way to interact with a statistical anal-
ysis system. After all, they would argue, when you type commands, you just write 
what you want to do and you do not need to consider all of the irrelevant choices. 

Although we agree that typing commands can be a more efficient technique on 
many occasions, especially for expert users, we would also argue that interacting with 
dynamic graphics is usually best accomplished via a well-designed graphical user 
interface, one that creates a structured data analysis environment. 

We suggest that for data analysis, knowing something about the basic nature of the 
data being analyzed provides an unobtrusive means for structuring the data analysis 
environment, which simplifies and clarifies the user's data analysis tasks. We call the 
"basic nature of the data" the datatype of the data. By using the data's datatype to 
structure the data analysis environment, the statistical system and the user, working 
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together, can make educated guesses about what should be done with the data, provid-
ing an unobtrusive way of guiding the analyst by limiting the analyst's choices. Thus, 
using datatype can improve the overall analysis and visualization experience since it 
limits the number of choices that the user must confront. 

As an example, consider the data in Table 1.2, shows all the data for the 104 stu-
dents who were in the first author's introductory psychological statistics course over a 
four-year period. The variables are GPA, the student's grade-point average (on a 4-
point scale, 4 being straight A's); the student's mathematical and verbal SAT scores (a 
standardized university entrance examination, 800 maximum); whether the student 
was taking the course as part of a major in science (BS) or Arts (BA) (which differ in 
that the "science" major requires calculus, whereas the "arts" major does not), and the 
Gender of the student (the names are fictitious). 

Consider representing graphically a variable such as "Degree", a variable that indi-
cates whether the students were taking the course within the "School of Arts" for a 
B.A. degree or within the "School of Sciences" for a B.S. degree. Knowing some-
thing about the data, such as the fact that we have categories of observation that are 
BA and BS rather than numbers such as 0 and 1 means that we can simplify the 
choices provided to the data analyst. For example, categorical variables are usually 
represented by graphics of the frequencies of the categories in the variable. Bar charts 
and mosaic plots are both suitable choices for such data, but scatterplots and histo-
grams are not. Therefore, the menu listing the available options can be greatly simpli-
fied. 

The example just presented uses only one of the five variables in the student dataset. 
A more realistic example would include all of the variables, especially since some are 
categorical and some are declared to be numerical. Knowing the dataset's datatype, 
which is determined by the mix of variable types, helps to determine the most appro-
priate techniques for the data, thereby reducing unnecessary cognitive effort (why not 
"let the machine do it" if it can). For these data the datatype is "grouped," as shown in 
the upper left of the datasheet under the data's name. But that's getting ahead of our-
selves. First, we need to discuss the essential aspects of data. 

1.6.1 Essential Characteristics 

It can be said that data have no innate characteristics that exist independent of human 
observation, and that data are data only because we organize them in a particular way 
(de Leeuw, 2004). However, data have essential characteristics that are important to 
us and that are presented in Table 1.3. 

There do not seem to be clearly definable rules that lead to determining which type 
of organization or which metric is appropriate for a particular set of data. Indeed, we 
know (Gifi, 1990) that the various ways of organizing data are interchangeable, and 
that convenience, convention, and common practice are the main reasons for choos-
ing one over another. Nor are there clearly defined empirical aspects that unambigu-
ously determine the data's metric. It is also an annoying fact of a data analyst's life 
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Student 
Label 

Bennett 
Laura 
Chris 
Joyce 
Nathan 
Jean 
Toni 
Lyle 
Jake 
Cindy 
Laurie 
Mary 
Maurie 
Jane 
Gary 
Edward 
Judy 
Jeff 
Gina 
Debra 
Jake 
Bepi 
Rick 
ALice 
David 
Sheila 
Maggie 
Dave 
Martina 
Pedro 
Sandy 
Thomas 
Sue 
Sharon 
Lynette 
Sharon 
Melissa 
ALbert 
Ellen 
Sandy 
Patty 
Steve 
Tony 
Harriet 
Cindy 
Mary 
Sue 
Lee 
Charles 
Susan 
Margaret 
Mary 

GPA 
Num 
""ä3~ 

3.5 
2.3 
4.0 
3.7 
3.5 
3.5 
3.0 
3.7 
3.4 
3.2 
2.3 
2.9 
2.9 
3.0 
3.0 
2.5 
3.5 
3.8 
3.8 
3.3 
2.8 
3.7 
3.2 
3.4 
3.0 
3.8 
3.9 
3.7 
3.3 
2.5 
3.8 
2.8 
2.6 
3.0 
2.9 
3.2 
3.1 
3.9 
3.1 
3.6 
3.3 
2.9 
3.4 
3.8 
3.6 
3.3 
3.1 
3.0 
3.2 
2.5 
2.7 

S ATM 
Num 

8ÖÖ~ 
780 
770 
760 
750 
730 
720 
720 
720 
720 
710 
710 
710 
710 
700 
700 
700 
700 
690 
690 
690 
690 
690 
690 
680 
680 
680 
680 
680 
680 
670 
670 
670 
660 
650 
650 
650 
650 
650 
650 
650 
650 
640 
640 
640 
640 
640 
630 
630 
620 
620 
610 

SATV 
Num 
770 
590 
690 
670 
610 
570 
590 
650 
640 
650 
600 
560 
700 
600 
610 
660 
500 
540 
710 
570 
770 
570 
700 
710 
610 
620 
680 
660 
520 
580 
610 
500 
420 
540 
690 
550 
450 
600 
630 
600 
640 
570 
620 
580 
600 
590 
620 
620 
670 
590 
480 
610 

Degr 
Cat 
~BS~ 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BS 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BS 
BS 
BS 
BA 
BA 
BA 
BS 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BS 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BS 
BA 
BS 
BA 
BA 

Gern 
Cat 
M 
F 
M 
F 
M 
F 
F 
M 
M 
F 
F 
F 
F 
F 
M 
M 
F 
M 
F 
F 
M 
F 
M 
F 
M 
F 
F 
M 
F 
M 
F 
M 
F 
F 
F 
F 
F 
M 
F 
F 
F 
M 
M 
F 
F 
F 
F 
M 
M 
F 
F 
F 

Studen 
Label 

Peg 
Laura 
Trudy 
Judith 
Abby 
Olga 
Carol 
Lyris 
Jean 
Maria 
Anne 
Susanne 
Mary 
Chris 
Suma 
May 
Jonathai 
Lena 
Maggie 
Judith 
Lyris 
Alice 
Florence 
Judy 
Jane 
Rosalie 
Amy 
Frederic 
Cindy 
Ariette 
Amy 
Becky 
Arlene 
John 
Marilyn 
Martha 
Maria 
Ann 
Ian 
Janet 
Tammy 
Marilyn 
Dorothy 
Donald 
Valerie 
Valerie 
Ian 
Ralph 
Marie 
Kim 
Rose 
Lisa 

GPA 
Num 
— 2 7 " 

3.0 
3.6 
3.0 
2.8 
3.3 
2.6 
3.7 
2.8 
2.8 
3.5 
3.8 
3.6 
3.9 
2.9 
3.5 
3.1 
3.5 
3.0 
2.5 
2.9 
3.4 
3.1 
2.7 
3.2 
3.5 
3.0 
3.6 
2.8 
3.0 
2.5 
2.8 
2.5 
2.5 
3.0 
3.0 
2.8 
3.0 
3.2 
2.5 
2.6 
2.6 
2.6 
2.9 
3.2 
2.3 
2.9 
3.1 
2.3 
2.2 
3.1 
2.8 

S ATM 
Num 
610 
610 
610 
610 
610 
600 
600 
600 
600 
600 
600 
600 
590 
590 
590 
590 
575 
560 
560 
560 
560 
560 
560 
560 
550 
550 
550 
550 
540 
540 
530 
530 
530 
530 
520 
520 
520 
510 
500 
500 
500 
500 
490 
490 
480 
450 
440 
440 
430 
400 
390 
340 

SATV 
Num 
590 
550 
590 
500 
610 
540 
650 
600 
600 
450 
660 
630 
570 
690 
540 
610 
575 
600 
690 
560 
440 
600 
540 
550 
610 
570 
650 
560 
480 
700 
580 
540 
480 
530 
700 
690 
500 
510 
700 
500 
500 
560 
550 
590 
530 
480 
550 
550 
560 
580 
610 
440 

Degr 
Cat 
~ES~ 
BS 
BA 
BA 
BA 
BS 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BS 
BS 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BS 
BS 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 
BA 

Gent 
Cat 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
M 
F 
F 
F 
F 
F 
F 
F 
F 
F 
F 
M 
F 
F 
F 
F 
F 
M 
F 
F 
F 
F 
M 
F 
F 
F 
F 
M 
F 
F 
M 
M 
F 
F 
F 
F 
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Table 1.2 The Students data: GPA, SAT Scores, Degree program, and Gender of 
102 Students Taking Introductory Psychological Statistics (False Names) 

1.6 About Data 
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Table 1.3 Essential Characteristics of Data 

Dataset Characteristics Data Element Characteristics 

Organization: Missingness: 
We organize data into subsets that cor- Each dataelement has a binary indicator 
respond to one of the following: variable that indicates the datum's miss-

• Variables ingness state: 
• Tables • Observed 
• Matrices • Missing 

Metric: Activation: 
We define the rules of arithmetic so Each dataelement has a binary indicator 
that the data are one of the following: variable that indicates the datum's acti-

• Categories vation state: 
• Ordered categories • Activated 
• Magnitudes • Nonactivated 
• Frequencies 

that any given set of data may have missing elements—elements that should have 
been observed but for whatever reason, were not. 

Finally, the activation state of a datum indicates whether the datum is included or 
excluded from the ongoing analysis. You may wonder why we need a mechanism to 
exclude portions of the data from analysis, as it seems that all of the data should 
always be used. In fact, the flexibility provided by being able to exclude portions of 
the data temporarily is very important: It lets us obtain a more detailed understanding 
by focusing on specific portions of the data. With this capability we can shift our 
attention between various parts of the data as we wish. 

1.6.2 Datatypes 

As we mentioned above, and as summarized in Table 1.4, the datatype of a dataset is 
determined by the way it is organized and by the metric of each of its partitions. 
Although we identified three organizational principles (variable-based, matrix-based, 
and table-based) and three metrics (category, numerical, and frequency), we cannot 
simply take all combinations of organization and metric to obtain nine datatypes. 
There are other considerations. One of these other considerations simplifies the prob-
lem of determining datatype. This occurs when we realize that the datatype of (1) var-
iable-based data with one or more frequency variables are always of frequency 
datatype; (2) table-based data are always of frequency datatype; and (3) matrix-based 
data are always of association datatype. 

Unfortunately, there are also considerations that complicate the problem of deter-
mining datatype from the dataset's organization and metric. In particular, variable-
based data nearly always have several variables, and the variables can have different 
metrics. Furthermore, the activation state of the variables can change, meaning that 
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Table 1.4 The Organization and Metric of Various Datatypes 

Datatype 
Frequency 

' Table 

Category 

Magnitude 

Univariate 

Bivariate 

Multivariate 

Grouped 

Missing 

Association 

Association 

Organization 
Type 

n-way Table 

Variable 

Variable 

Variable 

Variable 

Variable 

Variable 

Matrix 

Number 

n=l 

n 

n=\ 

n=2 

n>2 

n+c 

n 

n 

Metric 

Frequency & Category 

Category 

Magnitude 

Magnitude 

Magnitude 

Grouped and Magnitude 

Magnitude 

Associations 

the mix of metrics can change. And, since the mix of metrics determines the datatype, 
the datatype can change when the activation states of the variables changes. Thus, we 
cannot really view datatype as a property of a dataset. Rather, datatype is a property 
of the active portion of a dataset. 

Regardless, the concept of datatype usefully organizes and distinguishes the various 
kinds of analyses and visualizations that are possible for a given set of data, and the 
fact that the datatype can vary as a function of the nature of the active variables in a 
dataset only serves to increase the importance of the concept. 

These considerations lead us, then, to emphasize datatype as a centrally important 
concept, having great relevance to the task of seeing data. We use the concept to 
organize the material in this book, just as we used it to organize the functioning of our 
software. The specific datatypes that we use, and their specific organization and met-
ric characteristics, are given in Table 1.4. The organization number column specifies 
the number of variables, tables or matrices. 

These datatypes classify all datasets that we will encounter. Note, however, that var-
iable-based datasets with a mix of both numerical and frequency variables have a gen-
eral datatype, and are not analyzable until an active subset of variables is defined 
which does not have both numerical and frequency variables. 

As noted above, the plotting methods discussed in this book reflect the distinctions 
between the kinds of data just defined. Furthermore, the concept of datatype is one of 
the concepts used to organize this book, as we discuss in Section 1.7.2. 
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1.6.3 Datatype Examples 

We illustrate datatypes in Figure 1.10 using the students dataset shown in Table 1.2. 
There are six different panels in the figure. Each panel shows a datasheet. Five of 
these panels correspond with one of the datatypes in Table 1.4, including the two vari-
eties of frequency data. The remaining panel (c) is a special reformatting of panel e 
that can only be used for one or two-way tabulations. 

Note that three of the panels (a, b, and d) show only an incomplete portion of the 
entire datasheet, which for all three panels is 104 rows (observations) tall. In these 
panels the lower edge of the datasheet is missing. The other three panels (c, e, and f) 
show the entire datasheet, as is evidenced by the fact that you can see the lower edge 
of the datasheet. Note also that there are three varieties of frequency data. The varie-
ties can be converted into each other and are equivalent except for the fact that stu-
dents are identified in category variable-based raw frequency data (panel e), but the 
identity is lost in the other two aggregated codings. 

Finally, note that the association data (panel g) comprises correlations computed 
among the three numerical variables. These could also be other types of derived asso-
ciation measures, such as covariances or distances. Association data can also be 
measures of distance or association observed directly. 

1.7 About This Book 

A few words about what this book is (and isn't), how it is organized, who our audi-
ence is, and two novel graphic presentation methods (comics and thumb-power). 

1.7.1 What This Book Is—and Isn't 

This book is about statistical visualization, the goal being to present the concepts of 
statistical visualization techniques and methods in a way that is independent of spe-
cific implementations of such techniques and methods. This book is not a how-to 
guide. It is not a user's guide for how to do statistical visualization witha specific soft-
ware system. Admittedly, we walk a fine line, as the book is illustrated by just one 
software system—ViSta —throughout. But our aim is to use ViSta (Young and Rhe-
ingans, 1991) to illustrate points being made about statistical visualization rather than 
to teach you how to do statistical visualization with the ViSta software system. We 
do, however, recommend that you access the ViSta website at www.visualstats.org to 
obtain the system and follow the guidelines presented to generate the figures shown in 
the book. 

1.7.2 Organization 

Visual statistics include two related but distinct applications of dynamic interactive 
graphics. We call them statistical environment visualization and statistical analysis 
visualization. These two visualization situations are related to each other in that they 
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Students 
Grouped 

Olga 
Maggie 
Laura 
Benett 
Jake 

GPA SATM SATV Degr Gend 
Num Num Num Cat Cat 

3.2 600 540 BS F 
3.0 560 690 BS F 
3.0 610 550 BS F 
3.3 800 770 BS M 
3.3 690 770 BS M 

(a) Grouped Magnitude Data (variable-based) 

Students 
Magnitude 

Olga 
Maggie 
Laura 
Benett 
Jake 

GPA SATM SATV 
Num Num Num 

3.2 600 540 
3.0 560 690 
3.0 610 550 
3.3 800 770 
3.3 690 770 

(b) Magnitude Data (variable-based) 

Students 
Frequency 

SCIENCE 
ARTS 

MALE FEMALE 
Frequency Frequency 

4 12 
22 66 

(c) Aggregated Frequency Table 
Data 

This type is not used elsewhere in the 
book and can only be used for one-

or two-way tabulations. 

Students 
Grouped 

Olga 
Maggie 
Laura 
Benett 
Jake 

Degr Gend 
Cat Cat 
BS F 
BS F 
BS F 
BS M 
BS M 

(d) Raw Frequency Data (category 
variables) 

Students 
Frequency 

BS*M 
BS*F 
BA*M 
BA*F 

Frequency Degr Gend 
Frequency Cat Cat 

4 BS F 
12 BS F 
22 BS F 
66 BS M 

(e) Aggregated Frequency Data («-way table) 

Students 
Grouped 

GPA 
SATM 
SATV 

GPA SATM SATV 
Num Num Num 
1.00 0.39 0.35 
0.39 1.00 0.36 
0.35 0.36 1.00 

(f) Association Data (matrix-based) 

Figure 1.10 Datatype Examples 
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Table 1.5 Book Organization 

Part Chapter 

I 

II 

III 

IV 

Introduction 

1 

2 

Introduction 

Examples 

See Data—The Process 

3 

4 

Seeing Data—Objects 

5 

6 
7 

8 

www.visualstats.org 
www.visualstats.org 

9 

Interfaces, Environments and Sessions 

Tools and Techniques 

Seeing Frequency Data 

Seeing Univariate Data 

Seeing Bivariate Data 

Seeing Multivariate Data 

Seeing Grouped Data 

Seeing Association Data 

Seeing Missing Data 

Datatype 

Frequency 

Magnitude 

Magnitude 

Magnitude 

Grouped 

Association 

Missing 

Theoretical Foundations 

www.visualstats.org Advanced Topics 

each visualize the same set of statistical objects. However, the statistical environment 
visualization of an object is very different from its statistical analysis visualization. 

Statistical environment visualization. A statistical environment visualization is a 
visual representation of the data analysis session, including the steps that are taken 
during the session and the environment in which those steps take place. The represen-
tation consists of images representing the objects of the analysis and the actions of the 
analyst. A statistical environment visualization emphasizes the relationships between 
the various objects and actions, rather than the nature of the objects themselves. 

Statistical analysis visualization. A statistical analysis visualization is a visual 
representation of a specific statistical object, the representation consisting of images 
representing detailed aspects of the object. The visualization emphasizes the object's 
nature and internal structure, not its relationship to other objects. 

Datatype. There is a much larger amount of material about statistical analysis vis-
ualization than about statistical environment visualization. After all, research focused 
on statistical environment visualization began only 15 or 20 years ago. We say "only" 
since research focused on statistical analysis visualization dates back more than 200 
years, as we have seen above. Thus, we adopt a second organizing principle to bring 
order to the large amount of material concerning statistical visualization. That organ-
izing principle is datatype, discussed in Section 1.6.2. The resulting chapter structure 
is shown in Table 1.5. 
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Organization of statistical analysis visualization chapters. The chapters on sta-
tistical analysis visualization are all example driven, and most of them have the same 
organization. Following an introduction to the chapter's topic is a section presenting 
the data that are used throughout the chapter and a section presenting the graphical 
tools covered in the chapter. These sections are followed by sections covering visual 
methods for exploring, transforming, and fitting the type of data covered in the chap-
ter. Each of these sections is illustrated by applying the tools to the data. Some of 
these sections are not included in the book, but are available online at www.visual-
stats, org. 

1.7.3 Who Our Audience Is—and Isn't 

It is our aim to communicate the intrigue of statistical detective work and the satisfac-
tion and excitement of statistical discovery, by emphasizing visual intuition without 
resorting to mathematical callesthenics. Visual statistics follows its own path. Seldom 
is there mention of populations, samples, hypothesis tests, and probability levels. We 
use the "interoccular impact test" because you'll know when it "hits you between the 
eyes." As we write, we have in mind readers who are: 

Novices. This book is written for readers without a strong mathematical or statistical 
background, those who are afraid of mathematics or who judge their mathematical 
skills to be inadequate; those who have had negative experiences with statistics or 
mathematics, and those who have not recently exercised their math or stats skills. 
Parts I, II, and III are for you. 

Practitioners. This book is written for readers who are actively using statistical or 
data analytic methods and who wish to find a new and complementary path 
toward information discovery and confirmation. These readers include teachers, 
data analysts, statistical consultants, and scientific researchers. The entire book is 
for you, although some topics in Parts III and IV may not be relevant to your 
needs. 

Developers. This book is written for readers who wish to develop new visual statis-
tics methods, including computational and graphical statisticians and their stu-
dents and co-workers. These readers will be interested in understanding how those 
working on one visual statistics research and development project solved software 
design and implementation problems that are similar to those they may be facing 
in their own project. The entire book is for you. 

But this book is not for you if you wish to put it under your pillow and learn statis-
tics by osmosis. As one of the reviewers of our book pointed out, it's not unlike learn-
ing to play the piano: The process will take much effort. At times it will be frustrating. 
Much of the time it may be just plain boring. But in the end it should be gratifying. 
And we do believe that ultimately, statistics will be fun for you. 
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1.1 A Comics 

Writing about dynamic graphics is a frustrating and difficult enterprise, as was first, 
and most eloquently, pointed out by Wainer (1988) in his comments on one of the 
first complete presentations of these techniques (Becker et al., 1988b). Writing is a 
static, noninteractive, linear process, whereas dynamic interactive graphics is 
dynamic,' interactive, and nonlinear. This problem can be regarded as an instance of 
the problem of representing motion via static images (Cutting, 2002). We will do our 
best to communicate the excitement of cutting-edge dynamic interactive graphics 
through this ancient medium, but at times we despair. And always, we urge you to 
abandon the book, at least temporarily, for your computer. Try out what we are writ-
ing about, and see if it makes more sense when you see it happening rather than when 
you just read about it. Then, return to the book for whatever additional light this 
slower-paced, more reflective medium can shed. 

One way to deal with the limitations of the written word is to use videos to demon-
strate the techniques. However, after seeing quite a few of these videos over the years, 
we find that they are too often quite disappointing. Although it is true that videos are 
an improvement over textual descriptions, they have the drawback that readers cannot 
work at their own pace. Also, they use a medium different from what is generally 
used in scientific communication. Furthermore, it takes considerable effort to produce 
a suitably professional video. 

Interactive analysis is generally made up of different steps, which themselves 
involve several substeps or actions of the user. Traditional, text-only descriptions are 
difficult to follow because they force the reader to create mental representations of the 
visualizations and of the effect of actions carried out on the visualizations, without 
providing the support of actual images. 

Of course, books can include figures to illustrate the descriptions, but alas, the fig-
ures can be quite complex. The figures also require detailed descriptions. Whereas 
traditional expositions of statistical results aim for a simple graphic or table that sum-
marizes the results, interactive analysis requires that the reader be shown the actions 
undertaken at each stage of the analysis. Since we are basically trying to describe nar-
ratives of data analysis, one or two figures rarely suffice: We need a chain of figures 
to effectively illustrate the analysis process. But then we take too many pages. So we 
must find new ways of transmitting interactive analysis of data. 

A medium that is very effective at telling stories via a series of static pictures is 
comics. As defined by Scott McCloud (1994) comics are "spatially juxtaposed picto-
rial and other images in deliberate sequence." In comics, each frame captures a visual 
snapshot of the flow of the events such that the several interconnected frames tell the 
entire story. The frames are accompanied by text, which points directly to the place 
that is most meaningful. Using these resources, comics communicate narratives that 
extend over one or several periods of time, resulting in a powerful instrument that 
mixes, and in some aspects improves, painting and writing. 

Compared with video, comics are a powerful instrument for effective communica-
tion of information. For example, Tufte (1997, p. 144) describes two ways of report-
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ing about the dangers of a river: a comic like diagram that mixes text and drawings 
with a television account of a piece of news. He concludes that the fixed one-dimen-
sional ordering of a film like television narration would be much less eloquent and 
engaging for conveying the message than the comic like description as portrayed in 
the diagram. The diagram is superior because the readers can work at their own pace 
and can pay attention to a number of details that otherwise would pass unnoticed in 
television. Hence, in this, and possibly in many other similar examples, comics are a 
better alternative than recorded films or videos for transmitting complex information. 

The way that comics mix text and graphics in the same panel is also an advantage 
with regard to the traditional use of figures in scientific books. As noted by McCloud 
(1994), there has been a trend in modern times to avoid using text and graphics 
together, automatically considering a message conveyed in such a way as too simplis-
tic and only appropriate for children. He says (p. 140) "words and pictures together 
are considered at best a diversion for the masses, at worst a product of crass comer-
cialism." Indeed, applied to our problem of describing statistical graphics, we found 
this attitude especially regrettable, as mixing words and pictures in the same panel 
makes the explanations exciting and enjoyable. 

Thus, in this book, the reader will find figures that make use of "balloons" pointing 
to relevant pieces of information (as seen, for example, in Figure 1.6), either giving 
interpretations or adding more meaning to the graphics. Hence, the reader does not 
have to look for explanations of the figures in the main part of the text or in the figure 
captions, but can concentrate on examining the figures themselves to extract their 
meaning. Also, we have used sequences of pictures to illustrate processes of data 
analysis that can not be summarized in only one figure (see, for example, Figure 2.7). 

We have the impression that we have merely scratched the potential of comics 
applied to the communication of scientific information. Comics have a rich language 
that is usually associated with frivolous topics. However, we believe that this associa-
tion is unfair, and that, to the contrary, comics might strength vigorously our capabil-
ities to convey formal knowledge effectively. We hope that this book provides 
enough examples to convince you of such potentiality. 

1.7.5 Thumb-Powered Dynamic Graphics 

A final feature of this book, which is, to the authors' knowledge, an original method 
of communicating dynamic graphics in print, is the use of what we affectionately call 
"fhumbers"—the small images in the upper-right corner of some of the right-hand 
pages. These dynamic (though not really interactive) graphics do a moderately good 
job of communicating the dynamic aspects of a dynamic interactive graphic. And 
they are very easy to use. They are, however, very timeconsuming to create and for-
mat properly, which explains why we don't use them in every chapter. 
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1.8 Visual Statistics and the Graphical User Interface 

Visual statistics posits that a dynamic interactive graphical environment that is math-
ematically, cognitively, and perceptually appropriate will be fun and relaxing, will 
encourage visual intuition and playfulness, and will improve and ease the data analy-
sis process. Visual statistics should also make the statistical work of every user, no 
matter how naive or sophisticated, simpler, faster and more accurate. At their best, 
statistical visualizations let the data analyst play with the data, forgetting completely 
about the computer, and freeing up all of the analyst's abilities to focus on under-
standing the data while the computer slaves over the boring details. For these reasons, 
visual statistics should widen the audience of users, making statistical data analysis 
accessible to those who, for example, have no formal training in statistics, are afraid 
of mathematics, or have had negative prior experiences with statistics. 

Of special relevance is the point made by those working in cognitive science that 
the user's perceptual and cognitive capabilities are of primary importance when 
sculpting the human-computer interface: The visualizations must pay attention to the 
visual aesthetics of the moving graphics, making sure that they are constructed and 
displayed in a perceptually and cognitively accessible way. If these concerns are 
respected, the resulting system will be one that can ease and improve the data ana-
lyst's ability to generate and test hypotheses about information in the data. 

Visual statistics has also been heavily influenced by the results of research into the 
computer science concept of intelligence augmentation (IA), a concept introduced by 
Brooks (1975, 1995). IA is an approach to software engineering that emphasizes the 
user, the goal being to help the user be smarter. This emphasis is the reverse of that 
proposed by the better known artificial intelligence (AI) approach to software engi-
neering, which emphasizes making the machine smarter. 

1.9 Visual Statistics and the Scientific Method 

As we stated in the opening section, seeing data refers to the computer-augmented 
process that enlists dynamic interactive graphics to help us understand data. Seeing 
data also refers to the result of that process—to the seeing of data. Thus, when a data 
analyst interacts with a dynamic interactive statistical visualization system in order to 
gain a better understanding of the data, the data analyst is seeing data. Note that indi-
vidual steps in the seeing data process may involve graphics that are static, passive, or 
noninteractive, as well as graphics that are dynamic or interactive, although we sus-
pect that graphics that are dynamic and/or interactive are more effective at helping us 
see our data. Seeing data also refers to a scientific paradigm by which we gain under-
standing of our data. It is a rather different paradigm than that used in other areas of 
the discipline of statistics. And as you proceed throughout the book, and compare it 
with other statistics books, you will see that we do not take the usual position on how 
one goes about the scientific enterprise, nor do we have the common view of how sta-
tistical data analysis is used to help in that pursuit. We do not often talk of populations 
and samples, nor of significance tests and probability levels. These topics, which are 
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standard in other statistics books, are not often mentioned here not because we reject 
their validity and helpfulness. Rather, we do not mention them often because we see 
them as being familiar and well understood, and because we wish to emphasize the 
importance of the subjective experience of the expert user as that user brings to the 
fore all the substantive knowledge that he or she has to understand the data at hand. 

We wish to move the statistician's role farther from center stage of the scientific 
theater, relegating it to a supporting role on stage left or right, making room for the 
person with expert substantive knowledge to occupy center stage without feeling 
either upstaged or crowded, thereby enabling the expert to make use of his or her 
expert knowledge in a way that everyone, statisticians and experts alike, sees as being 
a statistically acceptable way, using the perhaps radical approach of the visual statisti-
cian to augment the expert's substantive knowledge with the traditional statistician's 
classical approach based on mathematical statistics. 

After all, we do agree that statistical data analysis is concerned with generating and 
evaluating hypotheses about data. For us, generating hypotheses means that we are 
searching for patterns in the data—trying to "see what the data seem to say." And 
evaluating hypotheses means that we are seeking an explanation or at least a simple 
description of what we find—trying to verify what we believe we see. 

We believe that one should always strive for the clarity provided by the nontradi-
tional and totally subjective IOI "measure" discussed below. We also believe that the 
visual data analysis process described below can lead to models with greater useful-
ness than those derived in the traditional manner. It is our position that the traditional 
definitions of fit, significance, parsimony, and effect size should be considered, but 
only in their roles as supporting actors, with the leading role being given to the visual 
impact as perceived by the expert data analyst. Naturally, the data analyst must judge 
his or her own degree of expertise and weight the visual impact accordingly. 

Visual statistical data analysis supports the scientific enterprise by repeated applica-
tion of the steps outlined below. Taken together, these steps form a visual statistics 
paradigm for scientific understanding and decision making. Note that the search for 
understanding can involve many cycles of exploration and revelation, and that the 
transformation step may need to be repeated many times. 

1.9.1 A Paradigm for Seeing Data 

Visual exploration. Exploring data generates hypotheses about patterns in our data. 
The visualizations and tools of dynamic interactive graphics ease and improve the 
exploration, helping us to "see what our data seem to say." 

Visual transformation. Transforming data to measurements of a different kind can 
clarify and simplify hypotheses that have already been generated and can reveal 
patterns that would otherwise be hidden. Note, however, that transformation is not 
made without implications for the revision step described below. 

Visual fitting. Fitting data with a model shows us a model-based view of our data 
that can be simple and clear. Visual fitting uses visualizations that support envi-
sioning and revisioning, where fitting and evaluation are both classical and visual. 
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• Envisioning involves fitting a model to the data using traditional least squares, 
maximum likelihood, or chi-square techniques. This process yields estimates 
of the model's parameters. The traditional techniques are visually augmented 
by visualizations that show the model-based view of the data. 

• Revisioning involves modifying the estimates of the model's parameters 
using visual techniques. We realize that once we envision the data, we may 
wish to fine tune the envisioned model: Perhaps we have obtained more infor-
mation or have otherwise improved our understanding. Or perhaps tweaking 
the parameter estimates will improve interpretability. Revision methods 
involve visually based direct manipulation techniques, such as sliders or point-
moving mouse modes, that enable us to change parameter estimates: Revision 
may lead to models with greater usefulness, even though they may not fit as 
well or be as parsimonious as models more traditionally derived. 

Visual impact. At all steps of the analysis, whether we are exploring, transforming, 
or fitting, we evaluate the visual impact of the step using the "interocular impact"1 

—the IOI—to supplement traditional measures of fit (R , chi-aquare), parsimony 
(degrees of freedom), and fit/parsimony trade-off (adjusted R , AIC, etc.). If the 
interoccular impact is such that it really "hits you between the eyes," it is certainly 
worth further study. It may well be the gem we have been looking for. Although 
the IOI remains unquantified, the data analyst knows when what the data seem to 
say has hit between the eyes. 

1.9.2 About Statistical Data Analysis: Visual or Otherwise 

Visual statistics is a part of a more general activity known as data analysis, the part 
that uses dynamic interactive graphics to understand data, as the title of the book 
states. As stated by Tukey in the quote we presented earlier, we are looking into 
"what the data seem to say," the views we get being "about appearances, not actuali-
ties," as Tukey went on to say. The latter phrase cautions us that whatever we see, it is 
really only what we "seem to see." This precaution should be applied, more often than 
it is, to all types of data analysis. When we have completed a data analysis, visual or 
not, we really can't be sure whether our conclusions are right. There are three reasons 
why we can never be sure: 

1. We must use our perceptual and cognitive processes to understand the data, so 
the process is always subjective—to a degree. 

2. The tools we have to understand our data are less than perfect, so the process 
is always unreliable—to a degree. 

3. What we have is just a sample, and it's the population that we wish to see, so 
the process is always inadequate—to a degree. 

1 .We do not know the origin of "interocular impact", nor who coined it, but the first author first heard 
it as a graduate student from his mentor, Prof. Norman Cliff. Nowadays, this term is atributted to Sav-
age (2002). 
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There is nothing that can be done to remove these strictures, so we must always pro-
ceed with caution, realizing that what we are doing is necessarily subjective, incom-
plete, and inadequate—to a degree. However, it may be that the degree of 
subjectiveness, incompleteness, and inadequacy is so small that we can confidently 
report that the data do in fact say what they seem to say—but we never really know. 

Our main solace is convergence: If, over many years and many researchers, the data 
continue to "seem to say" the same thing, we can be more sure that the data "really do 
say what they seem to say." 

Of course, having this particular problem does not make visual statistics unique. Far 
from it. This problem is faced by classical statistics and its reliance on significance 
testing to understand data. And the solution—convergence—is the also the same. 

Ultimately, in every approach to understanding data, one makes a subjective judge-
ment about the meaning of the result. It is just more obvious that this is the case with 
the visual approach. 
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2 
Jm Examples 

In this chapter we present three examples of visual statistics where dynamic interac-
tive graphics are central in the discovery of structure in data. The first example shows 
how a spinning cloud of points can reveal structure in data that is very difficult to see 
using static views of the same point cloud. The second example uses data concerning 
skin disease to illustrate how one uses dynamic interactive graphics to develop a clas-
sification scheme. The third example uses data about sexual behavior and its effects 
on marriage and divorce. 

2.1 Random Numbers 

This example shows how a specific dynamic graphic—a plot showing a spinning 
cloud of points—can reveal structure in data that is very difficult to see using static 
views of the same point cloud. The example uses numbers generated by Randu, a ran-
dom number generator widely used during the 1960s and 1970s. Marsaglia (1968) 
showed that Randu, and other members of the linear congruential family of random 
number generators, yield numbers that are nonrandom in a special way which can be 
revealed by dynamic graphics. 

Randu is supposed to generate uniformly distributed random numbers between 0 
and 1 (inclusive). These numbers should be generated so that all equal-width sub-
intervals within the [0,1] interval are equally likely (uniform), and so that the next 
number to be generated is unpredictable from the numbers already generated (ran-
dom). 

We use one-, two, and three-dimensional graphics to look for structure or pattern in 
the numbers. Since the numbers are random, there should be no structure, so seeing 
structure implies nonrandomness. We will use graphical techniques that are presuma-
bly unfamiliar—sequence plots, lag plots, jittered dot plots, spinplots, and so on. We 
begin by showing how these plots look with normally distributed data, since we 
assume that such data are more familiar than uniform data. 
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Normal distribution. A visualization of 3000 univariate normal random numbers 
is shown in Figure 2.1. The visualization involves four graphics (all are discussed 
more extensively in Chapter 6). The upper-left graphic is a dot plot. The dots are 
located vertically according to their generated value, and horizontally according to 
their frequency within a narrow range of generated values. Since the number of dots 
within a narrow range of generated values reflects density, the shape of the distribu-
tion, as represented by the number of dots, should reflect the population distribution, 
which is normal. We see that it does. 

The upper-right graphic is a shadowgram. It is based on averaging many histograms 
together in a way that determines the density of the distribution for each pixel in the 
graph. The graph is then rendered so that density is shown by the darkness of the 
shade of gray—the higher the density the darker the shade. Again, the plot should 
look like the parent population (i.e., be normal in shape), which it does. 

The lower-left graphic is a lag plot. This plot shows each datum plotted against the 
datum that was generated previously (a lag of 1). This gives us a two-dimensional 

Figure 2.1 Four graphs of 3000 normally distributed random numbers. 
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plot where the first dimension is the values generated at time t-\ and the second 
dimension is for the values generated at time t. For normally distributed values, each 
dimension should be normal and the two dimensions should be uncorrelated. Also, 
each dimension should have the same mean and variance (0 and 1 for standard normal 
values). When plotted against each other, the plot should be bivariate normal, which 
will look circular in shape, with the density highest in the middle and tapering off nor-
mally in all directions. The figure looks as it should. 

Since the values are random, they should be unrelated to the order in which they 
were generated. The sequence plot of values versus generation order should show no 
structure. This plot is shown in the lower right of Figure 2.1. It has no discernible 
structure. 

Uniform Distribution. We turn now to the data generated by the faulty RANDU 
random number generator. In Figure 2.2 we see the way that 3000 supposedly random 

Figure 2.2 Four graphs of a uniformly distributed random variable. 

49 



2 Examples 

numbers generated by RANDU look with the same graphics as those used for the nor-
mally distributed numbers in Figure 2.1. The upper-left graphic in Figure 2.2 is the 
dot plot for the values generated by RANDU. Since the distribution should be every-
where equally dense, the width of the plot should be the same for all values generated. 
This appears to be the case. 

The upper-right graphic shows an estimate, from our sample, of our sample's popu-
lation distribution. If our sample is good, the estimate based on it ought to be flat, 
which it seems to be (the right side drop-off is an artifact of the estimation method). 
The autocorrelation (correlation of values generated with themselves with a specified 
lag) should be zero, as it is in the lower-left figure for a lag of 1 (this holds up when 
we cycle through various lags). Finally, the sequence plot (lower right of Figure 2.2) 
should show no pattern, which seems to be the case. 

So far, so good! The one-dimensional views of the random numbers look as they 
should if the values generated by the random number generator are indeed random 
uniform numbers. (Find out more about these and other one-dimensional views of 
data in Chapter 6.) In addition to the one-dimensional views, we can look at two-
dimensional, three-dimensional, and even higher-dimensional views. We do that now. 

For a two-dimensional view, we use the 3000 supposedly random uniform numbers 
to represent 1500 observations of two variables. The main method for assessing the 
relationship between two variables is the well-known scatterplot, which is shown for 
our data in Figure 2.3. If the axes of the scatterplot are two random uniform variables, 
we should obtain a scatterplot with points scattered with equal density everywhere 
inside a square defined by the interval [0,1] on each axis. There should be no discern-
ible pattern. Looking at Figure 2.3, our numbers, once again, look random. 

u i i i i i i 

0.0 0.2 0.4 0.6 0.8 1.0 

Uniform Random 
Figure 2.3 The 3000 uniform numbers shown as 1500 2D points. 
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We can do essentially the same thing in three dimensions that we just did in two 
dimensions: Arrange our 3000 supposedly uniform random numbers to represent the 
coordinates of 1000 points in three dimensions. We can then form a spinning three-
dimensional scatterplot and look at it for structure. We have done this in Figure 2.4 
for two very slightly different rotations of the space. 

On the left we see that the space looks like the featureless space it should be if the 
data are truly random. However, if we watch the cloud of points slowly rotate, or (bet-
ter yet) if we use the rotation tool to actively rotate the cloud of points, we will even-
tually see a view of the space that reveals the nonrandom structure lurking within our 
points. We see the structure in the right space in Figure 2.4. What we see is that the 
points are arranged in a set of parallel planes within the point cloud. We cannot see 
this in any univariate or bivariate plot, since the planes are not lined up with the 
dimensions of the space. 

As pointed out by Wainer & Velleman (2001), the effect is like what you see as you 
drive past a field of corn. Most of the time you just see an apparently random arrange-
ment of cornstalks, but occasionally the cornstalks line up and reveal their nonrandom 
structure. 

Furthermore, if we did not have a dynamic graphic to look at the trivariate space, we 
wouldn't see the structure either. It took a dynamic graphic, in this case a three 
dimensional spinnable space, to reveal the structure, and although it wasn't necessary, 
having the ability to interact with the space made it easier to find the structure. 

Finally, note that the parallel plane structure is very well hidden in the space—a 
very small rotation can obscure the structure completely. For example, the two views 
in Figure 2.4 differ by only 3°. If you compare the positions of the boxes, you can see 
how small a difference this is. 

If all you see is the left-hand view, you have no idea that there is hidden structure to 
be revealed with just a 3° rotation. Then, when you see the right-hand figure, the 

Figure 2.4 Two views of the same 3000 uniform random numbers, 
now seen as 1000 points in three dimensions. 
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structure is revealed, and the IOI test is satisfied. Of course, having now seen the 
right-hand figure, where the structure has clearly emerged, you can see it beginning to 
appear in the left-hand view, but you wouldn't see it if you didn't know what to look 
for. 

This is, by the way, a nice example of the IOI test at work. When we see the space 
rotating, there is a bit of a "glitch" in the rotation; it has already "hit us between the 
eyes," if only for a moment. Then, if we stop the rotation and back it up somewhat, 
we see the structure and are amazed. 

2.2 Medical Diagnosis 

In this section we show dynamic interactive graphics being used to lay the ground-
work needed to develop a medical diagnostic tool. We present a more complete ver-
sion of this example in Chapter 8 where we use dynamic interactive graphics to 
develop the tool, and where we show how the tool would be used by the diagnostician 
to assist in making a diagnosis. We use exactly the same clinical and laboratory infor-
mation that the doctor currently uses to make a diagnosis. 

We use a particular set of data to show how a medical diagnostic tool can be devel-
oped using the techniques of visual statistics. The data, which are described in detail 
below, were obtained from patients examined by a dermatologist about problems with 
their skin. The data include information obtained during an office visit and the results 
of a laboratory analysis of a biopsy taken from a patient. 

When a doctor diagnoses a patient, he or she is assigning a disease category to the 
patient, using information obtained in the office and from the lab. If a group of possi-
ble diagnoses are all quite distinctly different in their symptomology, the diagnosis 
will be straightforward and will probably be correct. However, if a group of diseases 
share a number of similar features, the doctor's decision will be more difficult, may 
require knowledge about a wider array of information, and will be more likely to be 
incorrect. Of course, if the patient is diagnosed incorrectly , actually having a differ-
ent condition than the condition diagnosed, the doctor's prescription may be inappro-
priate. Such misdiagnoses occur because the doctor must weigh very many sources of 
information and must decide on how much weight each source of information should 
get. 

Frequently, doctors must choose between a diagnosis based on their personal clini-
cal experience and a diagnosis based on laboratory tests. Of course, it is true that the 
doctor's subjective impressions and experiences are not totally reliable, but then nei-
ther are the laboratory tests. Although lab tests can be more accurate, they are not 
infallible, are often expensive, and can provide diagnoses whose validity is not self-
evident. And it would be better if the doctor were able to weigh all of the evidence 
simultaneously, using both clinical and laboratory results together. But the amount of 
information that can be relevant can easily exceed even the smartest doctor's abilities, 
and the problem of how to weigh each of a large number of sources of information is 
beyond all of us. 
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Table 2.1 Variables in the Dermatology Dataset 

Erythema 
Scaling 
Definite borders 

Itching 

Koebner phenomenon 
Polygonal papules 

Melanin incontinence 
Eosinophils in the infiltrate 
PNL infiltrate 
Fibrosis of the papillary dermis 
Exocytosis 
Acanthosis 
Hyperkeratosis 
Parakeratosis 
Clubbing of the rete ridges 
Elongation of the rete ridges 
Thinning of Suprapapillary epidermis 

Clinical Variables 

Follicular papules 

Oral mucosa involvement 

Knee and elbow involvement 

Scalp involvement 

Family history 

Age 

Histopathological Variables 

Pongiform pustule 
Munro microabcess 
Focal hypergranulosis 
Disappearance of the granular layer 
Vacuolization and damage basal layer 

Spongiosis 
Saw-tooth appearance ofretes 
Follicular horn plug 
Perifollicular parakeratosis 
Inflammatory mononuclear infiltrate 
Bandlike infiltrate 

As seen by statisticians, medical diagnosis is one of many situations in which we 
classify our new, unclassified data by comparing it with benchmark datasets for 
which classifications exist, selecting the most similar benchmark and using its classi-
fication as the classification for our newly acquired data. Note that the benchmarks 
may be actual sets of empirical data that have somehow already been classified, or the 
benchmarks may be theoretical, prototypical datasets that are the idealized exemplars 
of the classification. It doesn't matter. 

Data. The data are observations of 34 variables obtained from 366 dermatology 
patients. The variables are listed in Table 2.1. Twelve of the variables were measured 
during the office visit, 22 were measured in laboratory tests performed on a skin 
biopsy obtained during the office visit. Of the 34 variables, 32 were measured on a 
scale running from 0 to 3, with 0 indicating absence of the feature and 3 the largest 
amount of it. Of the remaining two variables, Family history is binary and Age is an 
integer specifying the age in years. Eight of the patients failed to provide their age. 
These patients have been removed from the analysis. The data were collected by Nil-
sel liter of the University of Ankara, Turkey (Guvenir et al., 1998). 

Two difficulties must be dealt with before we can visualize these data: (1) The data 
are discrete—All of the variables except Age have four or fewer observation catego-
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ries; and (2) There are too many variables—humans can not understand 34 variables 
simultaneously. 

If we picture the data directly, we soon see the problems. For example, a matrix of 
scatterplots of the first three variables is shown in Figure 2.5. A scatterplot matrix has 
variable names on the diagonal and scatterplots off-diagonal. The scatterplots are 
formed from the variables named on the diagonal of a plot's row and column. The 
upper-left triangle of the matrix is a mirror image of the lower right. Scatterplot matri-
ces are discussed in more detail in Chapter 7. 

The discrete nature of the variables means that we have only a few points showing 
for each scatterplot, and that they are arranged in a lattice pattern that cannot be inter-
preted. For each plot, each visible point actually represents many observations, since 
the discrete data make the points overlap each other. In essence, the resolution of the 
data, which is four values per variable, is too low. The fact that there are 34 variables 
means that the complete version of Figure 2.5 would be a 34 x 34 matrix of scatter-
plots, clearly an impossibly large number of plots for people to visualize. Here, the 
problem is that the dimensionality of the data, which is 34, is way too high. Thus, the 
data cannot be visualized as they are, because their resolution is too low and their 
dimensionality is too high. 

Principal components. All is not lost! These two problems can be solved by 
using principal components analysis (PCA). PCA reduces the dimensionality of data 
that have a large number of interrelated variables, while retaining as much of the 
data's original information as is possible. This is achieved by transforming to a new 
set of variables, the principal components, which are uncorrelated linear combina-
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Figure 2.5 Scatterplot matrix for three variables. 
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tions of the variables. There is no other set of r orthogonal linear combinations that 
fits more variation than is fit by the first r principal components (Jollife, 2002). 

Principal components have two important advantages for us. First, since only a few 
components account for most of the information in the original data, we only need to 
interpret displays based on a few components. Second, the components are continu-
ous, even when the variables are discrete, so overlapping points are no longer a prob-
lem. 

Figure 2.6 shows a scatterplot matrix of the five largest principal components. 
These components account for 63% of the variance in the original 34 variables. The 
general appearance of Figure 2.6 suggests that the observations can be grouped in a 
number of clusters. However, the total number of clusters as well as their interrela-
tionships are not easily discerned in this figure because of the limited capabilities of 

Figure 2.6 Scatterplot matrix for the first five principal components. 
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scatterplot matrices and because of the small plot sizes. There are ways around both 
of these limitations, as we discuss in Chapter 8. 

Linking. Linking is a powerful dynamic interactive graphics technique that can 
help us better understand high-dimensional data. This technique works in the follow-
ing way: When several plots are linked, selecting an observation's point in a plot will 
do more than highlight the observation in the plot we are interacting with—it will also 
highlight points in other plots with which it is linked, giving us a more complete idea 
of its value across all the variables. Selecting is done interactively with a pointing 
device. The point selected, and corresponding points in the other linked plots, are 
highlighted simultaneously. Thus, we can select a cluster of points in one plot and see 
if it corresponds to a cluster in any other plot, enabling us to investigate the high-
dimensional shape and density of the cluster of points, and permitting us to investi-
gate the structure of the disease space. 

Interpretation. Figure 2.7 displays a "comic book"-style account of the process 
of selecting the groups of skin diseases that were visible in Figure 2.6. Frames of Fig-
ure 2.7 are the scatterplots of PCI versus PC2 to PC5. The frames are to be examined 
sequentially from left to right and from top to bottom. The last frame is a repetition of 
the first frame and is intended to show the final result of the different actions carried 
out on the plots. An explanation of the frames follows. 

1. PCI vs. PC2: This scatterplot shows quite clearly three groups of points, 
labeled A, B, and C. Two groups are selected, but the third one remains unse-
lected. 

2. PCI vs. PC3: Three actions are displayed in this frame. The groups selected in 
the preceding frame have been marked with symbols: A has received a dia-
mond (0), and B a cross (+). Also, we can see that dimension PC3 separates 
group C into two parts: one compact, the other long. We have selected the 
observations in the long part and called them cluster Cj. At this point we have 
four clusters: A, B, Cj, and unnamed. 

3. PCI vs. PC4: This plot has the points selected in the preceding frame repre-
sented by a square symbol (□). Unassigned observations above and below of 
squares make two groups. We selected the group with positive values in PC4 
and called it C2, giving us five clusters: A, B, Cj, C2, and unnamed. 

4. PCI vs. PC5: We assigned the symbol (x) to the group C2 and selected the top 
values of PC5. Notice that this selection involved the reclassification of some 
points that had previously been assigned to the group C2 The points selected 
will define group C3. Notice that there are still some points that keep the orig-
inal symbol of the points in the plot [a disk (o)]. We call it group C4. We now 
have six clusters: A, B, Cj, C2, C3 and C4. 

5. PCI vs PC2 again: This frame is the same as the first frame in the sequence 
except that it shows the plot after steps 1 to 4. Note that we ran out of easily 
seen symbols for marking C3, so we used gray to identify points. This frame 

56 



2.2 Medical Diagnosis 

0 

+ 
D 

X 

0 « 
o 

A 
B 
Ci 
C2 
C3 
C4 

-.20 0.00 

PC1 
0.20 

Figure 2.7 Steps in selecting and changing symbols and colors in PCs. 
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displays very clearly the three big clusters identified at the beginning and also 
suggests something of the finer structure inside cluster C. 

A downside of the plots in Figure 2.7 is that the four clusters identified as Cj to C4 
are not visualized very clearly. This problem suggests using focusing, a technique 
described in Chapter 4, to remove from the plot the points in the two largest clusters. 
As the remaining four subclusters are defined basically using PC3 to PC5, it makes 
sense to use a 3D plot to visualize them. Figure 2.8 displays such a plot after rotating 
it manually to find a projection clearly displaying the four clusters. This view sug-
gests that some points actually seem to belong to clusters other than those to which 
they had previously been assigned. Thus, we reassign them, as explained in the bal-
loons. 

Validity. We did not mention it earlier, but the data include a diagnosis made by 
the doctor of each patient. It is interesting to compare our visual classification with 
the diagnostic classification. Table 2.2 presents a confusion matrix, which is a table 
that shows the frequency with which members of each of our classes were assigned to 
each of the diagnostic classes. If our visual classification agrees exactly with the diag-
nostic classification, the confusion matrix will be diagonal, there being zeros in all 
off-diagonal cells. To the extent that our visual classification is "confused," there will 
be nonzero frequencies off the diagonal. 

In general, we see that our visual classes correspond closely to the diagnostic 
classes. All of the patients diagnosed with psoriasis and lichen planus were classified 
visually into groups A and B. The observations in the cluster labelled C are very well 
separated with respect to clusters A and B, with only one observation out of place. 
However, some of the subclusters in C, especially C2 and C3 have considerable inter-
changes between them, suggestion that additional efforts for improving the discrimi-

Principal Components 
Figure 2.8 Spinplot showing observations in clusters Cj to C4 
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Table 2.2 Confusion Matrix for the Medical Diagnosis Data 

Psoriasis 
Lichen planus 
Pityriasis rubra pilaris 
Pityriasis rosae 
Seborrheic dermatitis 
Chronic dermatitis 

A B d C2 C3 C4 S 
111 111 

71 71 
19 1 20 

39 8 1 48 
1 10 48 1 60 

48 48 
112 71 19 49 57 50 358 

nation between them are necessary. This problem can result from the difficulties we 
had to correctly pinpoint the points in frame 4 of Figure 2.7. Of course, there could 
also be misdiagnoses by the doctor—we can't tell. Nevertheless, 93.8% of the cases 
are classified correctly which is only 2.4% lower than the classification made origi-
nally using a special algorithm called VFI (Guvenir et al., 1998). 

2.3 Fidelity and Marriage 

Fitting statistical models involves finding explanations or simple descriptions for pat-
terns in data. Typically, there is an outcome or response variable, and one or more 
predictors or explanatory variables that can be used individually or jointly (as in an 
interaction) for this purpose. The goal usually is to find the simplest adequate descrip-
tion—the smallest, least complex model—which nonetheless provides a reasonably 
complete summary of the data. Any statistical model can be cast as a breakdown of 
the data into two parts: what we have summarized, described, or explained (called the 
model) and the rest, which we do not understand (the residual). That is, 

data = model + residual 
You can always make the model fit perfectly (by including as many parameters as 
you have data values), or make the model incredibly simple (just choose an empty 
model), but the payoff comes when you can find a balance between fit and parsimony. 

Traditional statistical methods use various numerical measures of goodness of fit 
[R ,X and parsimony (degrees of freedom)], and often combine these to determine 
optimal points along a trade-off relation (adjusted R , AIC, etc.). We prefer to com-
bine various sources of model information into coherent displays, fitting models visu-
ally by direct manipulation. We call this paradigm visual fitting. 

We illustrate this approach with an example of fitting loglinear models to data about 
divorce and the occurrence of premarital or extramarital sex. The data, a cross-classi-
fied table of frequencies, are shown in Table 2.3. Thornes and Collard (1979) 
obtained two samples of roughly 500 people, one of married people, the other of those 
seeking divorce. Each person was asked (a) whether they had sex before marriage, 
and (b) whether they had extramarital sex during marriage. When these are broken 
down by gender, we get the 2 x 2 x 2 x 2 frequency table. A log-linear model 
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Table 2.3 Cross-tabulation of Marital Status Versus Premarital Sex, 
Extramarital Sex, and Gender 

Premarital 

Yes 

No 

Extramarital 

Yes 

No 

Yes 

No 

Gender 

Male 
Female 
Male 
Female 
Male 
Female 
Male 
Female 

Marital Status 
Married 

11 
4 

42 
25 

4 
4 

130 
322 

Divorced 
28 
17 
60 
54 
17 
36 
68 

214 

attempts to explain the pattern of frequencies in this table, so-named because it uses a 
linear model of the logarithm of the frequency. 

The question we wish to ask of these data is: How is Marital Status related to (how 
does it depend on) Gender, Premarital Sex and Extramarital Sexl Before we go any 
further, ask yourself these questions. What factors influence the likelihood of 
divorce? Do any have combined (interactive) effects? 

We can translate this question into a form that can be used for modeling by a log-
linear statistical model as follows. In terms of understanding Marital Status, the 
explanatory variables—Gender, Premarital Sex, and Extramarital Sex—can be asso-
ciated in any arbitrary ways; they just describe the sample. Probably, men are more 
likely to have had premarital sex than women—a (GP) association—and maybe also 
more likely to have had extramarital sex (GE). We don't really care, and lump all 
associations among G, P, and E into one term, (GPE). 

Empty model. The basic, empty model is symbolized as (GPE)(M), and asserts that 
Marital Status has no association with Gender, or with Pre- or Extramarital Sex. 

Saturated Model. At the opposite end of the parsimony spectrum is the saturated 
model, (GPEM). This model allows marital status to be associated with all of the fac-
tors and their combinations, in unknown ways. However, it always fits perfectly, so it 
cannot possibly tell us anything. 

Model-Fitting strategies. What we must do is find a model somewhere in 
between these two extremes, a model that is parsimonious, yet explanatory. That 
means that we must search through a variety of models, trying to decide which is best. 
There are two basic strategies for doing this search: 

• Forward search, start with the empty model (which will fit poorly), and add 
terms allowing associations of M with G, P, and E and their combinations, 
until the model fits well enough. 
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• Backward Search. Start with the saturated model and remove associations of 
M with the others, as long as the model does not fit too poorly. 

We use the former method here to illustrate visual fitting. The spreadplot (a kind of 
multiplot visualization that is introduced in chapter 4) for the initial model, (GPE)(M) 
is shown in Figure 2.9 (on the following two pages). This model fits very poorly, of 
course (G = 107, df = 7, p < 0.001). The G measure is a badness-of-fit measure. Low 
values are good, high values are bad. The empty model, reported here, has a very 
large value of G , meaning the fit is very poor, which, of course, it must be, since it 
has no terms. The hypothesis test, when rejected, as is the case here, indicates the 
model does not fit the data. 

However, the spreadplot is not limited to displaying goodness-of-fit statistics. It 
also reports in a graphical way other aspects of importance in the model fitting situa-
tion. These other elements are indicated in the spreadplot by means of text inside bal-
loons. 

The way that the model differs from the data gives us clues about how we can 
improve our model. We can use mosaic displays to find the specific ways in which 
the model is different from the data, since mosaics show the residuals (or differences) 
of the cells with respect to the model. Looking at these differences, we can observe 
patterns in the deviation that will help us in our search. 

Unfortunately, mosaic displays are best viewed in color, and we are forced to use 
black and white. (We do the best we can, but to be honest, the black-and-white ver-
sions shown in Figure 2.9 do not do justice to the mosaic displays. If you can view 
this online, please do; it will help). So while the color versions of mosaic displays use 
two different colors for representing positive or negative residuals (and the hue of the 
color indicates their absolute values), the black-and-white version puts everything in 
gray. Therefore, we have made special versions of the mosaic displays to use for this 
book. 

Figure 2.10 displays black-and-white mosaic displays for the initial model 
(GPE)(M). The displays represent positive residuals in black and negative residuals in 
white. Although this way of coding has the disadvantage of ignoring the actual value 
of the residuals, we believe that this disadvantage is not very consequential, as, in 
practice, the analyst pays attention to the patterns of signs of the residuals, such as 
shown in these black-and-white versions of mosaic displays. Of course, problems can 
arise with small residuals because they need to be assigned to one color or another. As 
a solution, we specify cutoff values that we find appropriate for each situation. Values 
above the absolute values of the cutoff will be displayed in black or white (depending 
on their sign), and the rest in gray. We used 3 as the cutoff value in Figure 2.10 and as 
the model fits quite poorly, all the values were above it in absolute values. Thus there 
is no gray. 

There are three mosaic displays in Figure 2.10. Figure 2.10a is the initial display 
produced by the software. The order of the variables in this display is PEMG and was 
defined simply by the original order of the variables in the datafile. Even though this 
display looks quite simple and we could possibly interpret it, exploration of the spe-
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cific values of the residuals suggested that we change the order of the variables in the 
display to make it more interprétable. 
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Let's look at the residuals table below Figure 2.10a. The first column of this table is 
the negative of the second, and similarly for the third and fourth. This is a conse-
quence of the marginal constraints for this model, which make some residuals redun-
dant (Agresti, 1990). Comparing the first and second columns or the third and fourth, 

Figure 2.9 
Spreadplot 
for the initial 
model—the 
empty model 
(GPE)(M)-
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is therefore uninformative. More interesting conclusions may be extracted by compar-
ing the first and third columns in Figure 2.10a (or the second and the fourth). 

-5.2 

-4.2 

5.5 
3.1 

3.8 

2.4 

3.1 
3.1 

5.2 

4.2 

-5.5 

-3.1 

-3.8 

-2.4 

-3.1 
-3.1 

-5.2 

-4.2 

5.5 

3.1 

5.2 

4.2 

-5.5 

-3.1 

3.8 

2.4 

3.1 

3.1 

-3.8 

-2.4 

-3.1 

-3.1 

Figure 2.10 Residual patterns for the model (GPE)(M): (a) Mosaic display 
with the default order of the variables in the software PEMG; (b) using order 

MEPG; (c) focused view of rectangular section of (b) (Marital Status = 
Divorced). 
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Manipulating the mosaic display in Figure 2.10a we transformed it to the mosaic 
display in Figure 2.10b. Notice that the first and third columns in Figure 2.10a are 
now the first and the second, and that second and fourth are the third and fourth. This 
was attained by exchanging the order of the variables PreMarital and Marital Status 
so that the order of the variables in the display is MEPG. Now we can see that the two 
initial columns mirror the other two columns (i.e., the divorced part of the display is a 
mirror of the married part). Hence, we can focus (focusing is a technique discussed in 
Chapter 4) on these two columns without missing any information, as the other part is 
loaded with exactly the same information. The part we have selected is marked with a 
rectangle in Figure 2.10b and is displayed separately in Figure 2.10c with balloons 
that describe the results. As can be seen in this figure, the information can be summa-
rized in only a sentence: people with sexual encounters (Pre- or Extra-) out of mar-
riage are more likely to divorce than those without them. This statement suggests the 
model (GPE)(PM)(EM), which asserts a relationship between Marital Status and Pre-
and Extramarital Sex, to be tested next. 

Figure 2.11a shows the two first columns of the mosaic display for the model 
(GPE)(PM)(EM) with the variables in the same order as in Figure 2.10c. This model 
still does not fit ( G = 18.15, df = 5, p « 0.002 ) but improves the basic model consid-
erably. In this mosaic display, residuals in absolute value larger than 1 were filled in 
black or white (depending on the sign of the residual) and the rest were filled in gray. 
Notice that there are only two black (positive) residuals in the display as well as only 
two white (negative) residuals. Again, there is evidence of some regularity in the dis-
play but as we did previously, we chose to manipulate the mosaic to make it easier to 
interpret: Thus, we exchanged the order of Extramarital Sex and Gender variables in 

Figure 2.11 Mosaic displays for model (GPE)(ME)(MP) focused on Marital 
Status = Divorced, (a) Mosaic display using order MEPG; (b) using order 

MGPE. 
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the plot. The result is shown in Figure 2.1 lb. The visual effect of this manipulation is 
that the two positive residuals are located in the upper part of the plot, and the nega-
tive residuals are in lower part of the plot. Looking at the labels, we can see that the 
positive residuals are related with females, and negative residuals are related with 
males (i.e. females are more prone to divorce than males). This points to a relation 
between the variables Gender and Marital Status and suggests the model 
<GPE)(PM)(PE)(GM) as the next one to be tested. 

The improvement of model (GPE)(PM)(PE)(GM) with respect to the model without 
the (GM) term was modest (G — 13.62, df=4, p « 0.008 ). This suggests that we com-
pare models to see if the difference is important. We can do this comparison using the 
Chi-Square plot shown in the spreadplot of Figure 2.9 by selecting the points corre-
sponding to the two models that we want to compare. The result (fiG — 4.53 , df=l, 
p « 0.03) suggests that the difference is larger than zero, but not by much. Actually, 

we used our software to put the mosaic displays for both models side by side as well. 
These are shown as Figure 2.12a and b. In these displays, residuals larger than 1 are 
shown in black, and residuals smaller than 1 in white (the rest are in gray). A third 
display, Figure 2.12c, shows the differences between the absolute value of residuals 
of the other two models and can be used to explore which cells of the second model 
have actually improved the fit out of the first model. So cells in black in this display 
are those that have larger residuals in the second model than in the first, and cells in 

(a) (b) (c) 

Marital Status = Divorced Marital Status=D\wrceô Marital Sfafus=Divorced 

S 
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Premarital Premarital Premarital 

Figure 2.12 Mosaic displays before and after adding the term (GM) to the 
model (GPE)(ME)(MP) focused on Marital Status = Divorced, (a) Mosaic 

display for model (GPE)(ME)(MP); (b) mosaic display for model 
(GPE)(PM)(PE)(GM; (c) mosaic display of differences between (a) and (b). 
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white are those that have smaller residuals (in both cases, the difference must be 
larger than 1 to use this coding). Cells in gray are for differences not larger than 1. 

The visual impression of mosaic displays in Figure 2.12 is that adding the (GM) 
term does not improve the fit at all. On the contrary, the fit of the model seems to 
worsen, as seven out of eight cells have residuals larger than 1. Looking at the mosaic 
display of differences in Figure 2.12c we can see that actually only two cells have 
changed its fit more than 1: males without Pre- or Extramarital encounters (which 
have reduced the residual) and females (which have increased the residual). In con-
clusion, the apparent interaction between Gender and Marital Status that we observed 
in Figure 2.11 seems irrelevant at this stage of the analysis of our data. 

We will look at Figure 2.12a again to find hints for new terms in the model. The 
current layout of this plot hinted that females had more divorces than males, but it is 
possible that a change in the aspect of this display will bring about other suggestions. 
Figure 2.12a suggests some type of regularities that we can not easily see at this point. 
Manipulating the order of the variables we arrived at Figure 2.13a, which has the right 
layout to see a new pattern in the residuals. In this figure, the variables Pre- and 
Extramarital are set together on one axis of the plot, and the variables Marital State 
and Gender are on the other. In this layout, the two negative residuals (white cells) are 
in the sides of the plot, and the two positive residuals (black cells) are in the center. If 
we combine the residuals by Gender, as shown by the dashed rectangle in Figure 

Figure 2.13 Mosaic displays for model (GPE)(PM)(PE)(GM). (a) Using order 
PMEG focused on Marital Status= Divorced; (b) Schema of display a when 

the residuals are combined by Gender. 
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2.13a with those with no Pre- and no Extramarital, for the four combinations we can 
visualize the scheme in Figure 2.13b. This pattern suggests a three-way interaction 
among Pre- and Extramarital and Marital Status (PEM). 

The model (GPE)(PEM), whic includes the interaction mentioned previously, fits 
the data well (G = 5.24, df = 4, p « 0.26) and would be accepted as a good model 
when considering the usual goodness of fit criteria. Yet we can observe in the mosaic 
display for this model (Figure 2.14) a pattern that suggests that we can improve this 
model still more. Using a cut-off value of 0.8, the display shows that the females have 
higher likelihood of divorce than males given this model (constraints on this model 
make males and females have the same residuals in absolute value). We saw this 
trend previously, but we rejected it as unimportant because the effect of including this 
interaction in the model seemed too little. However, this display suggests testing the 
interaction in combination with the model currently defined. 

The model (GPE)(PEM)(GM) fits very well (G2=0.69, df = 3, p « 0.87 ) and even 
though this model is not very different from the model without the (GM) term 
(AG =4.53, df = 1, p » 0.03), we regard this model as the most appropriate for our 
data. 

The actions described in the previous paragraphs are very typical of the actions 
taken during a real data analysis. Normally, the nitty-gritty detail would be left out, 
but we think it is important to put them in so you can really learn about how to do this 
type of analysis. The typical cycle of analysis is this: The analyst evaluates the evi-
dence to select the term that best explains the dependent variable. Then the analyst 
tests that term. If the result is an improvement, the variable or term is left in the equa-
tion, but if is not, the analyst may drop it and look at the displays for a new hint. 

Thus, interactive dynamic graphics allows you to search for a good model using a 
process that is not strictly forward or backward, but involves both. The normal nonin-
teractive stepwise approach is an automatic procedure that uses a statistical rule of 
thumb to add or delete predictors from the model. Often, automated stepwise proce-

Marital Status = Divorced 

c 

CD 

N-N Y-N N-Y Y-Y 
Extramarital-Premarital 

Figure 2.14 Mosaic displays for model (GPE)(PEM) focused on Marital Status= 
Divorced. The order of the variables is PMEG. 
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dures produce poor results because they are limited to simple rules and do not con-
sider all the elements that an analyst would use. Consequently, many statisticians 
usually prefer to perform the modeling process by hand instead of using the automatic 
method. Visual fitting has the advantage of providing a concrete, perceptual goal: A 
good-fitting model will have small residuals and the mosaic will be mostly unshaded. 
Think of the search for an adequate model as "cleaning the mosaic." 

However, the manual process also has a big disadvantage: It makes it difficult to 
record and describe the actual steps performed by the analyst. Indeed, it often happens 
that scientific papers or books only report the end model, without discussing the 
choices preceding the conclusion that such a model was the best. Software does not 
often help with this endeavor either, as it usually does not provide a way to overlook 
the models considered and rejected along the process. Fortunately, as we have already 
discussed in the spreadplot shown in Figure 2.9, we have a display in our software 
that addresses this problem. 

Figure 2.15 shows a display of the fit of the models evaluated in this section. The 
display shows the X /df value of each of the models considered. The horizontal line 
in the display stands for the rule of thumb that X /df values below 1 can be consid-
ered models that fit well. The display has labels for each of the models we considered. 
As you can see, this display is an effective way to record and recall the entire set of 
models that we explored during a modeling session, such as the one we described in 
this section. And perhaps best of all, dynamic interactive graphics means that all we 
need to do to return to an earlier model is to click on its representation in the diagram. 
Then we are back to that model and can proceed from there as we wish. 

m 

T3 

Models 
Figure 2.15 Fit of models evaluated during the modeling session. 
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Interfaces and Environments 

D 
Uefore the advent of computers, data were analyzed by hand. The analyst would 
write the data down on a large sheet of paper ruled to represent the rows and columns 
of a matrix. Then calculations were performed with slide rules, mechanical calcula-
tors, and brain power, the sums, products, square roots, and so on, being written down 
in special cells of the table. This process would continue, sometimes for months (in 
fact, the first author spent three months rotating a space when he was a graduate stu-
dent 40 years ago!). Now, of course, things have changed: Obedient machines per-
form operations in microseconds that once took obedient graduate students months. 

Despite the changes, we share much today with the way we analyzed data 40 years 
ago: Now, as then, data analysis consists of a series of steps, with many of the steps 
having been worked out long before 40 years ago. For example, now, and long ago, 
the first step is to prepare the data so that they can be analyzed. Then we get simple 
summary statistics and basic plots of the data. What comes next depends on the nature 
of the data, but for any given kind of data the steps now are probably the same as they 
were back then. For example, if we transform the data and fit a model, it could well be 
that we use the same transformation and model now as we did back then. 

What has changed is the way in which we carry out the steps, even when the content 
of the steps has not changed. For example, consider the first step, the step where we 
prepare the data for analysis: Today, we type them into a spreadsheet, whereas yester-
day we wrote them down on a piece of paper. When we abstract the prototypical 
nature of the step, we see that it is the same (recording data in a two-way tabular 
arrangement) even though the technology (paper and pencil vs. computerized spread-
sheet) is markedly different. 

Taking a look back at what data analysis was like 40 years ago and comparing that 
with what it is like now points out that some aspects of data analysis have changed a 
great deal, and others have not. Looking back we see that the form of data analysis 
has changed more than the content—the medium has changed more than the message. 

What is most important about this retrospective is that it helps us realize that data 
analysis is form as well as content—medium as well as message. This is a fairly radi-
cal idea. Statistics is usually seen as content, not form. But we see, just by looking 
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back, that data analysis takes place in an environment, not in a vacuum. Furthermore, 
it seems to us that the environment in which data are analyzed has a strong influence 
on the analyses and visualizations that are performed, on the questions that are asked, 
and on the answers that are obtained. 

Thus, in our view, the environment in which data analysis occurs is of great impor-
tance, having a potentially great influence on the conclusions that may be drawn 
about any given set of data. 

At this point, it is very important to remind ourselves of the overall purpose of vis-
ual statistics. As we stated on page 1: 

Visual statistics replaces algebraic obscurity with geometric clarity by trans-
lating mathematical statistics into dynamic interactive graphics. This can 
simplify, ease, and improve data analysis. When the graphics are mathemati-
cally, computationally, perceptually, and cognitively appropriate, they can 
induce intuitive visual understanding that is simple, instantaneous, and accu-
rate. 

We should apply the very same philosophy and technology to the environment in 
which data analysis takes place, not just to individual visualizations of data and anal-
yses, especially if the environment can have a potentially great influence on the 
understanding we obtain of our data. 

But just what is an environment! In common, everyday usage, an environment is the 
totality of the surrounding objects and conditions. Applying this definition to the dig-
ital realm, and realizing that what we see in that digital realm is interfaces to software 
objects, we can define a computer environment as the set of interfaces that are acti-
vated at a particular moment in time, each interface enabling interaction between the 
human and the computational system's software objects, where a software object is a 
collection of information and methods for processing that information. 

When the computation system is a statistical analysis system, as is the case here, the 
environment is a collection of interfaces that enable interaction between humans and 
the system's statistical and statistical-graphics objects, where the objects represent 
our data and whatever graphics, transformations, analyses, models, and so on, that we 
have created as part of our effort to understand our data. 

Thus, to apply our philosophy and technology to the data analysis environment, we 
must not only develop a set of statistical objects that enable statistical analysis, but we 
must also develop an environment with interfaces to these objects. We focus on such 
interfaces and the environment in this chapter; in the remaining chapters we focus on 
the statistical objects themselves. 

Chapter preview. We present a statistical visualization environment that is 
firmly connected with the principles and practices of statistics, is built using object-
oriented architectures developed within computer science, and that keeps empirical 
results of cognitive psychology and human-computer interface design in mind. The 
environment includes statistical objects such as data, transformations, analysis meth-
ods and models; a wide variety of dynamic and static graphical objects; and data anal-
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ysis and visualization tools such as datasheets, workmaps, spreadplots, and the like. 
Taken together, the interfaces to these objects are a rich visual statistical environment. 
Notice that this chapter is more closely related with the statistical system developed 
by us, ViSta, than other chapters. This happens because we have a more intimate 
knowledge of the internals of this system than we can have of other systems, so 
although we presume that they work in a similar way, we could only judge it from the 
externals and could easily be wrong. 

3.1 Objects 

In this section we very briefly introduce the computer science concept of a software 
object, the basic building block of a software system. We describe, also very briefly, 
the major objects involved in our statistical system. 

A software object has two aspects: 
• Slots: places that can contain information. 
• Methods: algorithms that can process information. 

Objects are organized into hierarchical families: Every object (except the root 
object) is the child of another object. Every object has a method for creating a new 
object that is a child of the original object. A child object inherits the information 
structures and methods from its parent object. Furthermore, the child can have addi-
tional information structures and methods that the parent does not have, and the child 
can have information structures and methods that redefine the parent's structures and 
methods. Thus, a child can have characteristics and behaviors that are the same as 
those of the parent, others that differ from those of the parent, and yet others that are 
unique to the child. 

Statistical objects are software objects that implement computationally based statis-
tical analysis methods. In a statistical visualization system these objects fall into three 
broad categories: analysis objects, graphics objects, and interface objects. The hierar-
chy of objects is shown in Figure 3.1. 

Statistical Objects 

Statistical Analysis 
Objects 

[ Data Object ] 

Statistical Graphics 
Objects 

Coordinate-Based 

Statistical Interface 
Objects 

] Character-Based ] 
Transformation Objects | | Schematic-Based | | Graphics-Based | 

| Analysis Objects | 

Figure 3.1 Statistical object hierarchy. 
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In our system, at the root of the statistical object hierarchy is a general statistical 
object. This is the fundamental object of the hierarchy. It contains all of the informa-
tion and methods that are meaningful to all the objects in the entire hierarchy, includ-
ing analysis objects, graphics objects, and interface objects. For example, all objects 
need to know how to define new objects, delete old ones, copy or rename themselves, 
and so on. 

Inheriting from the root statistical object are each of the three major families of sta-
tistical objects: the statistical analysis object, the statistical graphics object, and the 
statistical interface object. Each of these objects contains all of the methods and slots 
that are needed by all the objects in its family but are not needed by all the families. 
For example, the statistical analysis object contains slots for the data array; the name 
of the data; the datatype; whether there are missing values and, if so, where they are; 
the activation state of the data; its partitions and elements, and so on. 

We do not go into more detail about analysis or graphics objects at this point. We 
do, however, discuss interface objects in this chapter. 

3.2 User Interfaces for Seeing Data 

In common, everyday usage, an interface "is a device or a system that unrelated enti-
ties use to interact." According to this definition, a remote control is an interface 
between you and a television set, the English language is an interface between two 
people, and the protocol of behavior enforced in the military is the interface between 
people of different ranks" (this nice quote is taken from Sun Microsystem's Java 
Tutorial). The computer scientist's view of an user interface is that it is an aspect of a 
software system that creates and maintains a mean by which a software system and a 
user can interact with each other. 

Fundamentally, an interface is a set of methods, but interfaces have become of such 
great importance that software now often has many objects whose sole purpose is to 
create and operate user interfaces. Such objects are called user interface objects, and 
although an interface is truly a set of methods of such an object, we will think of such 
objects as if they were objects and name them as such. 

There are two types of user interfaces, character-based and graphics-based. With a 
character-based interface, the user interacts with the software system by typing char-
acters on a keyboard, and the system responds with characters displayed on the 
screen. With a graphics-based interface, the user uses a pointer and a keyboard to 
manipulate windows, icons, and menus that are displayed as pictures by the computer 
on its monitor. 

With a character-based interface the user interacts with an object by using the key-
board. The typed characters are displayed on the screen. The interface may or may not 
be interactive—if it is, the object's response is displayed on the screen immediately, 
right after the information typed by the user. Interactivity is useful when you need to 
know the result of what you just typed before you can proceed. Otherwise, interactiv-
ity can be a hindrance. A character-based interface is the best type of interface for 
entering commands, for solving equations, and for programming. 
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A character-based interface can be concise and unambiguous, but it is often difficult 
for a novice to learn and remember, mainly because it is essential to know the correct 
syntax. Once a character-based interface is learned, it can be very flexible and power-
ful for advanced users. However, error rates can be high, training is needed, retention 
may be poor, and error messages may be obscure (Preece et al., 1994). 

Graphical user interfaces are based on windows, icons, menus, and pointers—the 
so-called wimp interface. This type of interface has become the standard interface and 
has become tightly integrated with the operating system. This means that when a user 
runs a program for the first time, it looks familiar, there being a great deal of transfer 
from other programs. The familiarity helps reduce the mental effort needed to interact 
with the program. 

The wimp interface provides the developer of a statistical software system with the 
opportunity to construct specific visual representations of the data, transformations, 
models, and so on, that form the content of the data analysis. These representations 
can be tailored to emphasize a particular aspect of the data. We discuss them in 
Section 3.4. 

The phrase "look and feel" has become a very popular phrase in the software design 
literature during recent years, referring to a very large body of work concerning the 
visual style ("look") and interactivity style ("feel") supported by the software—in 
short, the plot's appearance and behavior. In this chapter we consider the look and 
feel, especially of the dynamic interactive graphical interfaces we use in ViSta for 
seeing data: the plots and spreadplots. We will see that the look and feel of these 
dynamic statistical graphics interfaces determine, at least in part, the specific statisti-
cal activity most suitable for a given visualization. 

3.3 Character-Based Statistical Interface Objects 

In this section we discuss interfaces to objects that are either uniquely statistical or are 
of great importance to the statistical enterprise. Just as is true for interfaces in general, 
statistical interfaces can be grouped into those that are character-based and those that 
are graphical. In ViSta, the common uses of a character-based interface to an object 
are as a command line for interactive processing of commands; as an equation proces-
sor for mathematical manipulation of the object's information; as a program editor to 
create, compile and execute programs that manipulate an object's information; and as 
a report generator that generates reports about an object's information. 

3.3.1 Command Line 

The command-line interface in ViSta is shown in Figure 3.2. The interface consists of 
a character-only command line and a menu system. Note that the first line in the Fig-
ure 3.2 begins with a >. This is a command-line prompt. It indicates that the system is 
waiting for a command. The user then types a "data" command. This command, 
which is spread out over the next three lines, creates a new set of data. These data are 
named "normal" (Figure 3.3). They consist of two variables, "Varl" and "Var2". The 
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variable values are created by the random number generator function "normal-rand" 
which is being asked to generate 300 normally distributed numbers. Since there are 
two variables, the 300 normal random numbers will be used to form 150 observations. 
The system's response, in part, is to print a line in the character-based interface iden-
tifying the data that have been generated. They are "Normal.Biv#l." 

Command-line programs offer a simple way to record the steps taken during a data 
analysis Session. Typing a command produces a piece of output just below it. The 
expert user can check it and type a new command that results in more output. Pro-
grams that do not produce too much output per command are to be preferred because 
they are easier to understand and may make it simpler to identify which specific piece 
of information the data analyst was interested in. 

Figure 3.2 Character-based interface: the command line. 

3.3.2 Calculator 

An interactive character-based interface can be an effective interface for a calculator 
(Figure 3.3) especially if the syntax of the calculator's language is the syntax for alge-
bra that we all learned when we were children. Although many statistical systems also 
provide a graphical user interface for the calculator, these do not seem to us to be as 
useful as the straightforward character-based interface provided in ViSta. 

i mpg 
(16.9 15.5 19.2 18.5 30 27.5 27.2 30.9 20.3 17 21.6 16.2 20.6 20.8 18.6 18.1 
17 17.6 16.5 18.2 26.5 21.9 34.1 35.1 27.4 31.5 29.5 28.4 28.8 26.8 33.5 34.2 
31.8 37.3 30.5 22 21.5 31.9) 
? mean(mpg) 
24.760526315789473 
? variance(mpg) 
42.86731863442389 
? normedmpg = (mpg - mean(mpg)) / variance(mpg) 
(-0.18 -0.22 -0.13 -0.15 0.12 0.06 0.06 0.14 -0.1 -0.18 -0.07 -0.2 -0.1 -0.09 
-0.14 -0.16 -0.18 -0.17 -0.19 -0.15 0.04 -0.07 0.22 0.24 0.06 0.16 0.11 0.08 
0.09 0.05 0.2 0.22 0.16 0.29 0.13 -0.06 -0.08 0.17) 

Figure 3.3 Interactive character-based calculator. 

3.3.3 Program Editor 

A combination of interactive and noninteractive character-based interfaces can be a 
very effective interface for writing and editing programs. The immediate feedback of 
an interactive interface (i.e., the command line) is a very useful way to ensure that 
you have the correct syntax when writing a program. The interactivity can also be 
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used to support "productivity enhancements" such as command completion and a his-
tory mechanism. But once you get the form of the statement right, it is most useful to 
have a noninteractive interface available (i.e., a text editor) to construct and save the 
program for later compilation and execution. 

3.3.4 Report Generator 

A report is a character-based noninteractive interface that displays information about 
an object in the form of text (Figure 3.4). Reports may include tables, which can be 
entirely character-based, and pictures, which are graphical, of course. Although such 
reports are not strictly character-based, they still share most characteristics. 

ViSta - The Visual Statistics 
SATISTICS SUMMARIZING: 
Data: Cars.gen#l 

System 

File: D:\CVS\vista7\data\general\ 

VARIABLES (Numeric) MEAN 
Weight 2.86 
Mpg 24.76 
Driveratio 3.09 
Horsepower 101.74 
Displacement 177.29 

cars.vdf 

StDv 
0.71 
6.55 
0.52 
26.44 
88.88 

VARIANCE 
0.50 

42.87 
0.27 

699.33 
7899.08 

SKEWNESS 
0.44 
0.20 
-0.03 
0.25 
0.92 

KURT05I5 
-0.99 
-1.37 
-1.34 
-1.07 
-0.49 

38 
38 
38 
38 
38 

N 
0 
0 
0 
0 
0 

Figure 3.4 Character-based report. 

3.4 Graphics-Based Statistical Interfaces 
There are numerous graphical user interface objects that have been designed specifi-
cally for statistical data analysis software. We discuss the most important statistical 
interface objects in this section, including datasheets, variable windows, selectors, 
desktops, workmaps, plots, and spreadplots. 

3.4.1 Datasheets 

Certainly the most common interface to a data object is the datasheet, a spreadsheet-
like interface similar to the one shown in Figure 3.5. A datasheet is similar to a 
spreadsheet, having cells organized in a rectangular array of rows and columns. Data 
can be entered into the cells, and standard editing tasks can be performed. However, 
unlike a spreadsheet, the datasheet does not permit equations in the cells. 

In many statistical systems the spreadsheet is the most evolved representation. In 
nearly all statistical systems, many of the abstract things used in data analysis are only 
realized with the simplest character-based representations: A regression model is usu-
ally represented by a few numbers in a table, the numbers being the coefficients of the 
regression, whereas with sufficient effort, a rich graphical representation can be made 
that seems to convey much more to the analyst than is conveyed by the numbers alone 
(Cook and Weisberg, 1999). 
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Figure 3.5 A Graphical user interface: the datasheet. 

3.4.2 Variable Window 

A very simple, yet potentially powerful wimp interface for variables is shown in Fig-
ure 3.6. This interface consists of a window containing variable icons, the icons 
emphasizing characteristics that determine what types of data analysis can be done 
with the variables. It also supports subsetting, and variable editing, transformation, 
and visualization functions via the menu items. Having a variety of specialized wimp 
interfaces like this greatly enriches the overall data analysis environment. 

Figure 3.6 Variable window 

3.4.3 Desktop 

Some statistical analysis systems, particularly DataDesk (Velleman and Velleman, 
1985) and ViSta (Young and Smith, 1991; Young, 1994), have developed a graphical 
user interface based on a modified desktop metaphor, featuring icons representing the 
statistical objects that a data analyst uses. 

The statistical desktop interface is based on the idea of a physical location where 
data are analyzed, a location where physical and logical tools, datasets, and results 
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would be nearby. ViSta's desktop is shown in Figure 3.7. It combines into a single 
window four different interfaces. One of these is the character-based command line 
that we discussed above. The other three are graphical user interfaces that we discuss 
below. For now, let the short definitions suffice: 

• Workbar. The workbar consists of the menubar at the top of the window and 
the buttonbar directly below it. Every statistical data analysis action that the 
user can take is accessible through the workbar. 

• Workmap. The workmap is shown directly below the workbar. It consists of 
connected icons, the icons representing various statistical objects and the con-
necting lines the flow of work during the session. 

• Selector . The selector consists of the two lists of names on the right-hand side 
of the desktop. These lists enable the user to select the specific subset of data 
to be analyzed. 

In Figure 3.7 there is an icon named "Students," which represents the data, and just 
above it is a toolbar with buttons for help, summary statistics, and visualizations, 
along with buttons for some commonly used analysis tools. On the right are two lists, 
one of observations, the other of variables, that provide a simple way of selecting 
(activating) subsets of the entire dataset. Finally, along the top of the window is a 
menubar that gives the user access to the full capabilities of the software. 

The idea is to display electronic counterparts of the physical and logical objects one 
would have when doing a data analysis. These objects would include pages the data 
are recorded on, folders containing those pages, cabinets holding the files, pictures of 
the data, tables of results, a trash can for discarded results, and so on. 

The desktop metaphor involves the concepts of "direct manipulation," "what you 
see is what you get," and "command consistency." Direct manipulation refers to a 
style of interaction with the desktop objects that mimics the way you would interact 
with their real-world counterparts. You can "grab" the objects with your pointer and 
make them do things; you feel as though you are in control. What you see is what you 
get refers to constructing visual objects for the electronic counterparts in a manner 
such that the visualizations correspond with the user's conceptualization of these 
objects. For example, a datasheet is visualized to look like a sheet of paper with rows 
and columns. A plot is visualized to look like a sheet of paper with legends, axes, and 
so forth. Consistency means that wherever you are in the software, a specific action 
should always have the same effect. For example, a right-click should always produce 
a pop-up menu, no matter what you right-click on, but the menu should be sensitive to 
the context defined by what was clicked on. 

3.4.4 Workmap 

A workmap is a structured desktop that portrays the flow of work during a statistical 
analysis session. It is a visual dataflow language, creating a diagram that records the 
flow of steps taken during our search for understanding. This flow of statistical analy-
sis can become quite circuitous and confusing, but it is often necessary if we wish to 
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understand our data thoroughly. We should test different ways that might help us 
understand the data, look at them from different angles, and chain together explora-
tory steps until a satisfactory understanding is reached. Some modern computer pro-
grams for statistical analysis facilitate this process so that users can more easily 
analyze their data in many different ways. 

A consequence of this approach to data analysis is that the conclusion of an analysis 
cannot always be summarized by reporting only the result of a single test or proce-
dure. An overview of the process by which one arrived at the concluding test or pro-
cedure is often quite useful. It would also be helpful to have an overview that could be 
used, at each step, to explain the rationale and results of the actions taken at each step, 
along with alternating actions that were taken or new actions that could be taken. At 
the very least, we to record the steps taken during the data analysis steps. 

Command-line programs make it easy to repeat an analysis step by step. But they 
are not that good at providing a general overview of the paths examined, including the 
dead ends that were encountered and the areas that have not beenexplored deeply. 

Direct manipulation statistical systems often do not present such a simple way of 
recording the flow of analysis. Users just point and click and obtain their results, but 
no trace is left of what steps were taken to obtain the results 

The workmap (Young and Lubinsky, 1995; Young and Smith, 1991) represents a 
method for solving this problem. At first, before starting to analyze data, the work-
map is empty, but it grows with each step of the analysis. When a data analysis step is 
executed, one or more icons representing the statistical objects created during that 
step are added to the workmap. The icons are connected to previous icons by lines 
that show the flow of data from one step to the next. 

Figure 3.7 Desktop with workmap for regression analysis of student data. 
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The first few steps of a visual regression analysis of the student data are shown in 
Figure 3.7 The workmap summarizes these steps: 

1. The data analyst opens the file containing the students data object. The upper-
most icon, the one named "Students", appears on the desktop. 

2. The data analyst runs the datasheet editor to fix any problems there might be 
with the data. In addition to the datasheet window appearing, the datasheet-
like icon named "Ed/Students" is added to the map, attached to the data icon 
with an arrow in order to show the sequence of steps. If changes must be made 
in the data, a new data icon would be attached to the growing workmap. 

3. The data analyst shows a plot of the data. A plotlike icon named "See/Stu-
dents" is added to the workmap. 

4. The data analyst uses regression analysis to fit a regression model to the data. 
Two icons are added to the map. The small horizontal one named "Regres" 
represents the regression analysis object, and the larger one named "Reg/Stu-
dents" represents the model object created by the analysis. 

5. The data analyst shows a spreadplot of the model. A spreadplot-like icon 
named "See/Reg/Students" is added to the workmap. 

6. The data analyst outputs a dataset named "Out/Students.mit." 

Workmaps are dataflow diagrams, a widely cited and used diagram dating back to 
at least Stevens et al., (1974) although commonly attributed to Gane and Sarson 
(1979). Dataflow diagrams portray the flow of the original data through various meth-
ods, each of which takes in the data as they exist at that moment, processes the data in 
some fashion, and then produces a new version of the data as the result of the process-
ing. This new version of the data can then become the input to another method, which 
performs more processing and in turn creates additional new data. As one follows the 
flow of the data as they move down the hierarchy, we encounter icons that alternate 
between representing the data and representing a method that processes the data, the 
hallmark of a dataflow diagram. 

The workmap is a dynamic graphic! It is more than just an aid for remembering 
what has been done. It supports dynamic interaction. The data analyst can interact 
with the map to revisit previous steps in the analysis, using the workmap as the 
launching pad for new analyses or new transformations. Subsets of data using differ-
ent variables or observations can be defined. In short, the full panoply of exploratory 
data analysis can be accessed dynamically and interactively. 

In addition to keeping track of the steps in an ongoing analysis session, and to pro-
vide a means for beginning a new analysis path, workmaps can be used to remind 
oneself or to tell others what the steps of the analysis were that led to the results being 
considered, and they can also be used to explain the rationale of an analysis to an 
audience. 
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Note in the figure that the icons are not all the same. They differ in shape, "decora-
tions," and color (although color is difficult to see in the figure!), characteristics that 
are used to communicate the role that the icon's action has in the analysis. 

Data icons. We show several data icons in Figure 3.8 (they are the larger icons). 
They are all the same except for the central large portion of the icon. Data icons have 
six parts, plus the icon's title. The main portion of the icon, which contains the icon 
header and body, is surrounded by four icon buttons and the title. Double-(left)-click-
ing a specific icon-button produces a default action that is related visually to the 
appearance of the clicked part of the icon. Right-clicking the same icon button pro-
duces a menu of actions that are refinements or generalizations of the default action of 
the icon button. 

Thus, a left-click on the data icon's graphic icon button produces the default spread-
plot for the type of data represented by the data icon, and a right-click on the same 
icon button produces a menu of visualization choices appropriate to the datatype. 
Structuring the icon in this fashion allows us to provide the user access to more than 
80 actions without creating confusion. In essence, the icon functions as six small 
icons with related but structurally distinct functionality. 

The icon header is a red horizontal bar. Double-clicking the header reveals a win-
dow with a brief description of the data. Right-clicking the header produces a menu of 
actions providing information about the data. 

The icon body is the largest part of the icon, in the middle. It contains a small sche-
matic representing the datatype of the data. Double-clicking the body of the icon 
shows an editable datasheet of the data. Right-clicking the body yields a menu for 
creating, deleting, editing, saving, printing, and exporting the data. 

There are four icon buttons surrounding the main portion of the icon, two on the left 
and two on the right. Each button contains a small schematic representing the action 
of the button. 

The upper-left button contains a summation sign, representing the fact that the but-
ton produces summary statistics of the data. Left-clicking the button shows these sta-
tistics, and right-clicking produces a menu of statistics available. 

Figure 3.8 Various data icons portraying various datatypes. 
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The upper-right button contains a schematic of a plot. Left-clicking the button pro-
duces the main visualization of the data, and right-clicking the button produces a 
menu of additional plots and spreadplots. 

The lower-left button contains a t to indicate that this is the transformation button. 
Left- or right-clicking this button reveals a menu of transformations appropriate for 
the data. 

The lower-right button contains the ~ ("approximately equal") symbol, indicating 
that the button provides access to the analysis menu, a menu of analysis items which 
make models that are "approximately equal" to the data. 

Data Processing icons. The small icons in Figures 3.7 and 3.8 are statistical data 
processing icons. They represent a mathematical process that receives data from the 
icon with the incoming arrow, processes the data, and then sends the processed data 
out to a newly created icon at the end of the outgoing arrow. 

Thus, the workmap is a dataflow diagram with the arrows connecting icons showing 
the flow of data: The data "flow into" a method, the method performs some sort of 
mathematical operations that are applied to the data, which then flows out of the 
method into a new kind of statistical data processing object. 

The processing object can be either a transformation or an analysis. If the process-
ing object is a transformation, the new object will be a data object. If the processing 
object is an analysis, the new object will be a model object. Note that model object 
icons contain a little drawing of variables as well as mathematical symbols, represent-
ing the fact that a model is a mathematical abstraction of data. 

Model icons. The model icons have four parts that are similar to those in the data 
icons, but there are no little icon buttons for transforming or fitting data, since those 
operations can be performed by returning to the data and taking the desired action. 

Another program that uses icons to represent aspects of the statistical session is Dat-
aDesk (Velleman and Velleman, 1985). In DataDesk, there are icons at the variable 
level as well as at the data level, and there are icons for models and graphics. The 
user's interaction with DataDesk creates these icons sequentially but they are not con-
nected, and thus do not show the "dataflow". 

In our experience, the drawback of both programs is that after a time the desktop 
becomes messy and difficult to use. It is possible, of course, to delete icons (and icon 
trees in ViSta), but it would also be desirable to be able to create folders on the work-
map which themselves contain workmaps. (There are always more things that would 
be nice to do, but they all take time!) 

3.4.5 Selector 

The selector, shown in Figure 3.9, is a graphical user interface that enables the user to 
select subsets of the data by specifying which observations and which variables are 
used to define the subset. The selector controls the activation of observations and var-
iables (see Section 1.6.1), allowing the user to indicate which observations and varia-
bles are to be included in the calculations and visualizations being contemplated. 
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Figure 3.9 The selector. 

The selector interface can take many forms, as is true for any interface, of course. A 
very common form is to make it part of the datasheet, providing a mechanism 
whereby the user can indicate whether or not each row and column of the datasheet is 
active. 

Another realization of a selector is shown in Figure 3.9. Here we have a window 
with two panes, the left one showing observation labels and the right one variable 
names and types (the complete data are presented in Table 1.2 of the introductory 
chapter). In this figure two of the observations (Lena and Gina) have been removed 
from the active subset. 

Although the incorporation of the selector's capabilities into the datasheet is a very 
natural and comfortable addition to the datasheet's capabilities, we tend to prefer the 
type of selector shown in Figure 3.9 since it is much more economical of screen 
space, and since we essentially always need to have the selector available but seldom 
need to see the entire datasheet. 

3.5 Plots 

A plot consists, in part, of the statistical information the plot is communicating to the 
user, and in part, of the interface that provides access and interaction between the user 
and the information. Consider, for example, Figure 3.10. All of the plots shown in the 
figure are statistically identical scatterplots, but there is more to each of these plots 
than just the scatterplot. These plots also consist, in part, of interface elements that are 
designed to help the user better understand the data. These interface elements give the 
plot a particular "look," and the use of the elements gives the plot a particular "feel," 
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Thus, any given plot can have a variety of looks (user interface styles) or feels (user 
interaction styles). 

Let's be clear that these four plots not only present the same statistical information 
in the same way (i.e., each plot is a scatterplot of the same data) but also provide the 
user with identical capabilities, options, and features, even though their interfaces 
look so different. As long as each plot provides the user access to the same menu of 
capabilities, options and features (such as the one shown), the several plots all present 
the same information in the same way and provide the same capabilities. 

3.5.1 Look of Plots 

It is an important point, so we repeat it: Even though the plots in Figure 3.10 all look 
different, they are statistically identical: They are each a scatterplot of the same pair 
of variables. But, of course, the plots are not the same. They all look different, and, 

Figure 3.10 Four user interface styles for a statistical graphic. 
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although we can't see it in the figure, they all feel different when you use them. They 
all have their own unique look and feel. 

Each of the plots shown in Figure 3.10 differs because each has a different visual 
interface. These interfaces differ in certain fundamental ways: We can look at each of 
the plots and we can ask: Does the interface involve menus? If so, is there a menubar? 
Are there hot spots? Are there pop-ups? Does the interface use buttons? If so, is there 
a button bar? Do we see the plot's background features? If so, which ones? Indeed, 
these are essential questions about the fundamental components of interface style. 

Button-based. The interface can display buttons with tables indicating what the 
button does (as in the upper-left window) or it can present no such buttons (as in the 
lower two windows). Although the buttons will nearly always duplicate the action of 
a menu item (as can be seen by comparing the menu with the buttons in Figure 3.10), 
the feel of the interaction for the two methods is rather different, as we discuss in the 
next section. 

Dialog-based. The interface can incorporate dialog boxes. Dialogs can more effi-
ciently present complex information than any other interface type. It is possible to put 
many controls in a dialog box, and the controls can vary from buttons to sliders. Con-
trol panels, which are essentially complex dialog boxes, are the most advanced exam-
ple. And dialog boxes do not take up plot space, since they are in their own separate 
dialog window. 

Menu-Based. Although menus are always a part of the interface, their method of 
presentation varies in terms of its visibility. The interface can visually cue the fact 
that menus are available by which the user can interact with the graphic. The most 
common visual cue is a menubar with menus (as in the upper-left window in Figure 
3.10). Another possibility is to show menu hot-spot buttons on a menubar (as in the 
upper-left window). A third is to show the menu hot spots on the surface of the plot, 
as is done in the upper-right window of Figure 3.10. On the other hand, there may be 
no visual cues, as is the case for the bottom two windows. 

Plot-based. As can be seen in the four windows in Figure 3.10, the lower right 
window contrasts with the others in that it does not show what is called the plot's 
"background" information and features. The information and features include the 
axes, variable names, legends, tic marks, and so on, of the graphic, which are shown 
in all but the bottom-right window. A variety of combinations of these plot back-
ground information and feature cues can be presented, or not presented, thereby mod-
ifying the plot's "look." The "minimalist" view seen in this window dispenses with 
all of the nonstatistical information and shows only the plot's statistical content 
(which, of course, is always shown). 

We have, then, the possibility of generating a fairly large number of possible looks 
for any of the dynamic graphics we present in this book. These looks can vary in 
terms of the way they present (or do not present) menus, the way they use (or don't 
use) buttons, and the presence (or absence) of various aspects of the plot's back-
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ground information. The four looks shown in Figure 3.10 are four that we commonly 
use, as will become evident in later portions of the book. These looks are: 

• Full control. This look, shown in the upper-left plot, has the most complex 
interface with the most controls. These controls appear on the menubar and 
buttonbar (menus, buttons, hot spots and optional pallets). 

• Button-based. This look, shown in the upper-right plot, shows buttons and 
hot spots, but hides the menubar and buttonbar. 

• Control-free. This look, shown in the lower-left plot, shows no controls. 
• Content only. This look, shown in the lower-right plot, shows only the plot's 

statistical content. 

Other types of looks are possible, given the scheme above, but the ones mentioned 
here are the ones we have found useful. We do not provide a menu-based look 
because there is only a single menu and it seems to be a waste of screen space and an 
addition to screen clutter to have a menubar with only a single menu. Of course, it is 
possible to pop-up the menu that would be on the menubar, so no functionality is lost 
and both space and appearance are improved. 

The "look" of an interface is not independent from the "feel" of that interface. An 
interface whose look involves many visible controls suggests an interaction style that 
involves using the controls, whereas an interface that shows no controls suggests a 
different interaction style. 

3.5.2 Feel of Plots 

Just as there are several looks (user interface styles) that are useful for the dynamic 
interactive graphics used in visual statistics, there are also several feels (user interac-
tion styles) that can be useful. However, whereas it is easy to show the different 
looks, it is not so easy to show the different feels. Nonetheless, any plot can have sev-
eral different feels. 

Our goal, of course, is to have our plots feel very dynamic and very interactive. To 
achieve this goal we need to identify the characteristics of interaction style, and we 
need to learn how variations in graphical interfaces relate to variations in the feel of 
their dynamism and interactivity. 

Plots—indeed, windows in general—have only a limited number of ways of inter-
acting with a user. All of the plots that we discuss in this book have the capability of 
sensing the motion of the cursor. Of course, the plots can have menus and buttons as 
well. The menus can be on menubars or can be activated at hot-spots or as pop-up 
menus, and the buttons can be on button bars or located on the plot itself. 

Characteristics of high interaction. Each way of interacting with a plot, by the 
cursor, by menus, by dialogs, or by buttons, has its own basic nature that at least in 
part determines the style of interaction and how the interaction feels. These ways can 
be distinguished from each other on at least the following four aspects: 
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• Immediacy. When we interact with a plot we want our actions to take effect 
immediately, rather than having to wait for the effect to take place or having to 
continue with a sequence of actions before the plot responds. 

• Succinctness. To make our interactions with a plot as highly interactive as 
possible we want to be able to do the interaction with the least number of key-
strokes or mouse-button clicks. Zero is optimal. 

• Repeatability. It is highly desirable that the action taken by the user can eas-
ily be repeated. This way, the dynamic action will feel even more interactive. 

• Interruptiveness. The user's action should not interrupt the ongoing behav-
ior of the graphic, and it should not create a discontinuity in the plots' behav-
ior. 

• Flexibility. When we interact with a plot, we wish to be able, easily and 
quickly, to change the behavior of the plot that is affected by our actions. 

We turn now to a discussion of each of these several ways of interacting with a plot. 
The discussion is in terms of the characteristics of high-interaction graphics just out-
lined. 

Motion-based (cursor). Motion-based interaction has the highest level of inter-
activey of the various ways of interacting with a plot. It is immediate, takes only one 
user action, can be repeated easily and rapidly and is nondisruptive. When you move 
the cursor, the reaction of the plot is instantaneous, representing a smoothly continu-
ing movement that in no way disrupts ongoing actions of the graphic. When the user 
moves the cursor, the graphic responds. The action repeats as long as the cursor 
moves. 

A plot that responds to the motion of the cursor as it moves across the plot feels very 
much more dynamic and interactive than one that does not. When a plot reacts this 
way, the feel of the plot is very different than when nothing happens when the mouse 
is swept back and forth (i.e., when the mouse is "selecting"). Thus, plots for which the 
motion of the cursor causes changes in the plot feel much more interactive and 
dynamic than any of the other user interaction styles. 

The main negative aspect of cursor-based motion-sensitive interaction is its lack of 
flexibility. To change the behavior of the plot that is influenced by our actions, we 
must resort to another mode of interaction, such as buttons or menus. 

Click-based (button or dialog). Click-based interaction, whether using buttons 
or dialogs, is nearly as highly interactive as motion-based interaction, but feels rather 
less interactive. It is immediate, can be initiated with two keystrokes (dialogs may 
take more), can be repeated with one keystroke, and is totally nondisruptive. It is also 
flexible since multiple buttons can be placed on the plot or dialog. 

When you click a button, nothing more need be done, as the click produces an 
instantaneous reaction on the part of the plot. Clicking does not interrupt the ongoing 
behavior of the graphic. Whereas the button or dialog click is a one-shot action, the 
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button or dialog is usually programmed so that the action can be repeated simply by 
holding the mouse button down while the cursor is on the button. Thus, if anything, 
click-based repetition is even simpler than motion-based repetition. Finally, button-
based interaction is very flexible. 

Although a bit of extra effort is needed to initialize a dialog box (i.e., to show it the 
first time), dialog boxes (including control panels and sliders) have the same level of 
interactivity as buttons and are a very good way of controlling the dynamic aspects of 
a plot. While they require steps on the part of the analyst to display them, once visi-
ble, the dialog box provides an interface which is not only highly interactive, but is 
capable of supporting much more complex kinds of interactions than can be sup-
ported by a button, since multiple coordinated controls are reasonably easily imple-
mented. 

Menu-Based. Menus are considerably less interactive than button-based, dialog-
based, or cursor-based interaction. As we will see, menu-based interaction takes sev-
eral keystrokes to perform, implying that it is not as immediate nor as repeatable as 
the other types of interaction. Furthermore, the appearance of a menu on the screen 
completely halts all ongoing behavior, with nothing happening as long as the menus 
being shown. 

The main problem with using menus to control dynamic behavior is that several 
steps must be taken to accomplish the task: (1) You must either move the cursor to the 
menu on the menubar or to a hot-spot (this step is skipped for pop-up menus). (2) You 
must click the menu or hot-spot to make the menu appear. (3) You must move the 
cursor down the list of menu items to select the item desired. (4) The item selected 
must be clicked (or unclicked) to cause the action. 

So menus are not a good way of controlling dynamic interactive graphics: It takes 
too many steps to create an action and any ongoing action is stopped completely 
while the menu is being displayed. 

3.5.3 Impact of Plot Look and Feel 

Button-based, dialog-based, and especially mouse-motion-based interactions are at 
the heart of dynamic interactive graphics. They are the most effective at providing an 
emersive experience that truly gets you into your data. These ways of interacting with 
the data produce a software "feel" that is remarkably emersive. The potential to pro-
vide them as a standard feature of the interface between the user and the data is the 
defining characteristic of dynamic interactive statistical graphics. 

It should also be clear at this point that the look of a dynamic interactive statistical 
graphic is not totally independent of its feel. The most highly interactive and most 
dynamic methods of interacting with a graphic require certain types of controls whose 
presence causes the graphic to have certain types of appearance. That is, buttons, 
which have perhaps the optimal combination of dynamism, interactivity, and flexibil-
ity, are quite likely to be used with a dynamic interactive graphic, creating not only a 
specific, button-based feel, but also a specific button-based look. 
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We have spent considerable effort over the course of our research in software 
design on the question of the look and feel of statistical visualization software and 
have concluded that different types of statistical visualization tasks demand different 
types of user interfaces: that is, that one type of look and feel is right for exploring 
data, another for transforming data, a third for modeling data, and a fourth for com-
municating results. As we will see in Section 3.6, multiplot visualizations that have 
the highest degree of interactivity are the most appropriate for exploring data, since 
the immediacy of the changes in the plots helps us discover structure. On the other 
hand, visualizations that are less interactive are appropriate for the more contempla-
tive activities, which may require more precision, such as transforming data or fitting 
models. More will be said on this in Section 3.6. 

3.6 Spreadplots 
One of the main problems with the visual approach to statistical data analysis is that it 
is too easy to generate too many plots: We can easily become totally overwhelmed by 
the shear number and variety of graphics that we can generate. In a sense, we have 
been too successful in our goal of making it easy for the user: Many, many plots can 
be generated, so many that it becomes impossible to understand our data. 

When we generate too many plots, and if we are restricted to having only one plot 
per window, we not only have the problem of understanding multiple plots, but we 
also have the problem of managing multiple windows. In this situation it becomes the 
case that too much time is spent managing windows, with too little time left for learn-
ing about our data. 

Several solutions come to mind to improve our task. One solution is to put all of the 
plots in one big scrollable window, making sure that they don't overlap. Although this 
may be better than putting every plot in its own window, it still isn't a very good solu-
tion: The user now spends too much time scrolling up and down or back and forth try-
ing to locate the right plot. Even simple tasks such as comparing groups can be very 
time consuming. Another solution is to make sure that the plots all fit on the screen, 
adjusting size as more are generated. Of course, the plots rapidly become too small to 
be useful, and just closing them can become a problem. 

The spreadplot (Young, et.al., 2003) is our solution to these problems. A spreadplot 
is a multiview window containing a group of dynamic interactive plots, each of which 
shows a unique view of the same statistical object. The plots not only interact with the 
viewer, but also with each other. Since they all provide different views of the same 
statistical object, they are linked so that changes made in one view are reflected 
appropriately in the views provided by each of the other plots 

Spreadplots can be applied to a wide variety of statistical situations. They can be 
used to explore data, transform variables, fit models, communicate results, and teach 
students. Each view in a spreadplot can be any of the dynamic interactive graphics 
discussed in this book, and can have any of the looks and feels discussed above. 
When the several views all have the same look and feel, the spreadplot takes on the 
characteristics of its plots, becoming a multiview dynamic interactive graphic with 
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the look and feel of its plots. However, since there is only one window, the problems 
associated with managing multiple windows do not exist. Furthermore, a spreadplot 
can be constructed from a group of plots, which can include any of the dynamic, high-
interaction, direct manipulation graphics that we discuss in this book, as well as from 
more mundane objects such as static graphics, report windows, dialog boxes, or 
datasheets. As long as it is a graphical object, it can be used. 

One of the important features of a spreadplot is that the views can be linked with 
each other in an extremely general way. The linkage is such that when the user makes 
changes in one of the plots, the implication of those changes can be shown instantane-
ously in the other plots. The linkage can be according to features of the data, such as 
observations, variables, or categories, or the linkage can be according to statistical or 
mathematical aspects, such as algebraic equations that relate the values displayed in 
one plot with those displayed in another. 

Spreadplots are also very flexible in terms of the style of interaction between the 
user and the graphic. The interaction can be as simple as just rubbing the cursor 
around the screen, or as complex as allowing the user to use multiple menus, many 
buttons, and several dialog boxes simultaneously. Associated with the style of inter-
action is the visual style of the spreadplot. It can be very simple and elegant, with very 
few controls evident, or it can be very complex, with literally hundreds of buttons and 
menu items. 

Because of the wide variety of plots we have to choose from, and because of the 
flexibility of the linkage between plots, the style of interaction with the user, and the 
visual style of the spreadplot itself, we can design spreadplots to address a very wide 
variety of specific statistical issues. Thus, some of the spreadplots that we have cre-
ated are specifically designed for exploring data, others are designed for transforming 
data, and yet others are designed for modeling data. Of those spreadplots that are 
designed for exploring data, some are specialized for frequency data, others for rela-
tional data, others for certain kinds of magnitude data, and so on. 

Finally, there are specialized spreadplots that correspond with graphics that have 
been proposed previously. The best known example is the scatterplot matrix, a 
graphic dating back to the 1980s that shows the data analyst an TV x TV matrix of 

2 2 

TV scatterplots, where the TV scatterplots are formed by pairing all pairs of numerical 
variables in a dataset. It is very easy to construct such a graphic using the spreadplot 
notion; and then it is very easy to generalize the plot matrix notion to create plot 
matrices whose individual plots can be essentially whatever you like: mosaic plot 
matrices, quantile plot matrice,and plot matrices where the individual plots are not all 
the same but are, say, all of the relevant plots when the variables have a mix of 
datatypes. 

Unlike other types of spreadplots, which consist of a wide variety of possible 
arrangement of rectangular plot cells, a plot matrix has a very proscribed arrangement 
of square plot cells: If there are TV variables, then a plot matrix has TV plots. The plots 
are arranged into a square TV x TV matrix, each plot itself being square. The rows and 
columns of the plot-matrix correspond to variables in the data. We almost always also 
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append additional tall but thin namelists to the left or right side of the matrix of plots. 
These namelists help identify individual observations in the dataset. 

Spreadplots are created by people with expertise in a specific research topic, exper-
tise in statistical data analysis, and expertise in spreadplot construction. Thus, a 
spreadplot incorporates the expert knowledge and experience of the designers, who 
must decide which of the many relevant plots are most likely to be useful, how these 
relevant plots will be presented to the user, and how they will interact with the user 
and with each other. Spreadplots simplify the data analyst's task when many different 
plots are relevant to the task at hand, because the expert who designed the spreadplot 
has made many decisions that the data analyst would otherwise have to make. Spread-
plots also simplify the task at hand because window management problems are eased, 
and because they structure the types of tasks required of the data analyst. 

3.6.1 Layout 

One problem for visualizing multiple views is that of laying out the plots 
(Murrell, 1999). Indeed, there are some plots, such as scatterplot matrixes and trellis 
displays, that are formed just by arranging simpler plots according to certain rules. 
Scatterplot matrices, for example, arrange scatterplots side by side so that each varia-
ble in a dataset is graphed against the other variables, with the graphs being displayed 
as a row or a column of the matrix. This lets the user rapidly inspect all of the bivari-
ate relationships among the variables, permitting the detection of outliers, nonlineari-
ties, and other features of the data. 

The DataDesk program (Velleman, 1997) includes a feature called corkboards that 
helps the user design customized layouts. A corkboard is a window that permits other 
windows to be pasted into itself. These other windows could provide views of data or 
models or can all concern some statistical problem that the analyst may find interest-
ing. The plots are empty of data, but methods are provided so that users can carry out 
their own analyses. This allows the user to develop customized statistical procedures 
or specialized applications. 

JMP also provides a tool called journal or layout (depending of the version of the 
software) that can be used for arranging the output of analysis. The user can add 
pieces of output to journals and layouts, but as they are just images, no longer being 
live plots with which one can interact, they only serve the purpose of summarizing 
and tidying up results. 

ViSta uses a command in Lisp-Stat that automatically lays out a set of objects 
(plots, text windows, or dialog boxes) in a two-dimensional matrix of cells with any 
number of rows or columns. The upper-left schematic in Figure 3.11 shows a two-row 
by three-column layout matrix. 

The number of plots and the number of cells in the layout does not have to be the 
same. The simplest case is when there is one plot per matrix cell, and the plots are laid 
out adjacent to each other, one per cell. If there are more plots than cells, then in some 
cells the plots must be laid out on top of each other, with the last one being shown ini-
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tially and there being a provision to switch which plot is on top. User interactions 
with the views can make the hidden plots pop up when required. 

If there are fewer plots than layout cells, a cell can be assigned a null value, so that 
the null cell has no plot in it. A plot next to the empty cell can then be expanded to 
span to cells. A plot may be expanded to the right, as has been done in the upper-right 
image in Figure 3.11. Similarly, a plot may be expanded downward, as in the upper-
left plot of the lower right image. This behavior is controlled by a a matrix of numbers 
whose elements specify whether a plot occupies more than a single plotcell within a 
row or column. Each entry must be a nonnegative integer indicating how many cells 
are spanned, counting from the current plotcell. Plotcells that have no plot of their 
own have a span value of zero. There must be two span matrices, one for spanning 
right, the other for spanning down. 

Cells all have the same width and height unless a relative width or height is speci-
fied. If a list of relative widths for the columns is provided, the column widths will be 
made proportional to them. The lower-left image in Figure 3.11 has columns that are 
approximately proportional to 0.5, 1.5, and 1. Finally, a layout that we have often 
found useful is the one in Figure 3.11 lower right. Notice that this is a matrix with two 
rows and four columns, with two lists surrounding four central plots. The lists expand 
to the height of the spreadplot but are half-wide. 

Figure 3.11 Layout of spreadplots. 
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3.6.2 Coordination 
The second problem one encounters when dealing with multiple interacting plots is 
coordinating their changes. In fact, coordination of multiple views for information 
visualization is a topic that has received considerable attention from researchers on 
human-computer interaction. The reason for this interest stems from the observation 
that developers of software often need to include different sources of data in the inter-
face to help the user make the right decisions. 

North and Shneiderman (1997) propose a taxonomy of possible window coordina-
tions based on two concepts: 

1. Windows have two components: a view and a collection of information items. 
Items can be selectable, while views provide support for navigation. Naviga-
tion actions are scrolling, slicing, rotating, and so on. 

2. The collections of information items in two coordinated windows can be the 
same (e.g., a bar chart and a tabular list of the same set of data points) or dif-
ferent (the collections are not identical but are interrelated). 

Linking corresponds to the situation where two windows have the same underlying 
collection of information items and the user selects some of the items in a view to see 
the items in the other view. A situation that is different from what is usually found in 
statistical applications is when the process of navigating a view makes another win-
dow to navigate in synchrony. Yet another situation is when selecting an information 
item causes other windows to navigate. ViSta, for example, uses the panels of scatter-
plot matrices as control panels that select variables in other plots, such as boxplots, 
normal probability plots, and so on, causing the other views to change. 

Perhaps the main problem with coordinated views, including the types of linking 
that are used in dynamical statistical graphics, is that they are very complex to 
develop—it takes such an extensive amount of high level of programming that most 
users cannot create them easily by themselves. 

There are two types of multiple-plot coordinations that can be implemented by most 
users. One is the simple point-linking coordination, where the correspondence 
between points in different plots is the basis for their coordination (Tierney, 1990). 
The other is observation linking, where the correspondence between observations in 
different plots is the basis for their coordination (Stuetzle, 1987). However, other 
types of coordinations are in general not available to be created by data analysts but 
must be implemented by developers. An associated drawback is that complex coordi-
nation schemes implemented by professional programmers are not amenable to fur-
ther modification. 

Note that generic-view coordination architectures are exemplified by Snap (North 
and Shneiderman, 2000) and by In Vision (Pattison and Phillips, 2001), but although 
they show promise, they have only been used in prototype systems at this time. 
Another architecture for coordination of multiple views is the Gossip architecture 
(Young et al., 2003). This architecture is oriented toward coordinating communica-
tion between the plots in a spreadplot, so that changes in one plot are reflected in 
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some or all of the other plots. Take, as an example, the spreadplot in Figure 3.12. The 
different plots and lists that constitute the six views of this spreadplot are coordinated 
in several ways. For example, the model component list on the left is in charge of 
computing a log-linear model when the user selects elements of the list. The model 
based on the selection generates predicted values, residuals, and fit measures that are 
displayed in the other views. Another type of coordination between the several views 
is provided by the history view, which is the second plot in the bottom row. It is a line 
plot that shows the value of the fit measure for each model that the user tried during 
an analysis session. Selecting a point in this view makes the rest of the plots change 
so that they show what they were showing when that model was originally fitted to 
the data. 

Spreadplots treat each view as an object that can receive and send messages that 
control its behavior. Messages can be created by a user by typing commands or indi-
rectly as a consequence of interactions with the user interface (i.e., pointing and click-
ing, where the clicks causes messages to be sent). A spreadplot manager is in charge 
of controlling the message traffic. When a plot in a spreadplot experiences some 
change (e.g., when the user selects a variable in a window that is displaying a list of 
variables), it sends a message to its spreadplot message manager about the details of 
the change. The spreadplot message manager then forwards the message to the appro-
priate objects (or to all objects if it is the first time the message has been sent). Each 

Figure 3.12 Example of a spreadplot 
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object, having been programmed by the spreadplot developer, then knows how to 
behave appropriately in response to the message. We say that the spreadplot manager 
gossips to the other plots about what the plots are doing. 

Sometimes, it may be that the message sent by a plot needs to be processed by a sta-
tistical object before it is received by the group of objects. That is, the message needs 
to be processed so that the processed message can be distributed to the group of 
objects. From the developer's viewpoint, this case is no different than the case where 
the message itself is distributed to the plots. If processing by a statistical object is 
needed, the developer must write a method for the statistical object, just as for graph-
ical objects. Then, once the message is processed by the statistical object, the results 
of the processing will be sent by the statistical object to the manager for distribution 
to the group of objects. 

3.6.3 SpreadPlots 

Message Flow. Note the coordination between the plots. Both the slider and the 
scatterplot matrix react to the user's actions. Specifically, when the user clicks a cell 
of the scatterplot matrix, a message is sent telling the two large plots to change them-
selves to show the new focus. Also, when the slider is moved, a message is sent tell-
ing the plots to change themselves in light of the change in the transformation's 
parameter value. 

The way in which a spreadplot manages the message flow is shown in Figure 
3.13. A view, at the bottom of the figure, is, in our example, either a plot or a dialog, 
but it could be any object with a graphical representation, including datasheets, 
reports, and so on. Note that a view does not send a message to another view directly. 
Rather, it sends messages to the spreadplot manager, which then broadcasts the mes-
sage to all of the objects in the set of objects that form the spreadplot (the cluster of 
small arrows below the manager icon represents broadcasting). Those objects that 
need to respond to the message do, and those that do not don't. 

These messages cause changes to take place according to clearly defined rules. 
The scatterplot, for example, evaluates whether the cell in the scatterplot matrix that 
has been clicked is on the diagonal. If so, a message is sent to the manager that the 
transformation plot should be shown. If not, a message is sent that a scatterplot should 
be shown. Also, when the slider is moved, the plots are modified according to the rule 
instantiated in the equation given above. Additionally, the points in the plots are 
linked so that the modification of their properties (color, symbol, selection, and so on) 
propagates to the other plots. See Young, et al. (2003) for more information on 
spreadplots. 

Data flow: Of more interest to us here, for reasons that will become apparent in 
the last section of this chapter, is the dataflow architecture, a topic not discussed by 
Young, et al. (2003), but which is depicted in Figure 3.13. The figure has the same 
general appearance as a workmap, but keep in mind that this is a schematic view of 
how the various objects involved in creating a spreadplot receive their data. 
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In Figure 3.13 we see what the actual workmap looks like when a spreadplot is 
created: It shows a workmap icon attached to a model object. But, what is going on 
behind the scenes is shown in Figure 3.13. When a spreadplot is created, it extracts an 
object called a data space from the active statistical object. This step isolates the 
changes that a user may make to the data via the spreadplot from the statistical object, 
ensuring that the statistical object does not get changed with some sort of inadvertent 
disastrous side-effects. The data spaces is an object that contains the data to be visual-
ized in some type of canonical form that is designed to optimize the efficiency of the 
visualization process. Currently, it appears that this canonical form is simply a matrix 
with rows for observations and columns for dimensions. 

Next, the spreadplot manager is instantiated, with it taking in the data space infor-
mation. It then invisibly instantiates each of the view objects using the extracted data 
space as the information from which each plot's initial display is constructed. The 
spreadplot manager then forms the desired layout and displays those plots which it 

Figure 3.13 Left: spreadplot message flow. Right: spreadplot data flow. 
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has been instructed to display. The manager then creates the desired message passing 
structure. Finally, unless told not to, the spreadplot manager shows the spreadplot. 

3.6.4 Look of Spreadplots 

We have seen in Section 3.5.1 that two plots can present precisely the same statistical 
information, using identical statistical graphics, and provide identical functionality 
but look completely different. We also saw in Section 3.5.2 that a pair of plots can 
differ from each other in terms of their user interaction style even though they present 
identical information using the same statistical graphics with the same capabilities: It 
is possible to have two such statistically identical plots, where one plot requires the 
user to do nothing other than rub the cursor across the screen and watch what hap-
pens, whereas the other requires the user to click a button, choose a menu item, move 
sliders, or manipulate elements of a dialog box or control panel. These different user 
interaction styles vary in terms of the immediacy of their interactivity. 

The same can be said for spreadplots, since, after all, they consist of plots, and espe-
cially when all of the plots have the same look and feel, the spreadplot takes on the 
look and feel of its plots. Thus, when a spreadplot is being designed, the designer 
must decide for every plot in the spreadplot, what the appropriate look and feel should 
be. Generally, all the plots will look and feel the same—will support the same kind of 
user interaction. The spreadplot designer has an additional consideration when creat-
ing the look of a spreadplot, and that is how the windowing features of each plot will 
look when the plots are put together to form the spreadplot. More will be said on that 
in a moment. 

The look of a spreadplot is determined partly by its plots and partly by its container 
window—the window containing the plots. The container window determines the 
appearance of each plot's "window decorations"—the title bar, menubar, and borders. 
The look of everything except the window decorations is determined by the plots and 
is exactly as it would have been had the plot been an individual plot rather than part of 
a spreadplot. Nothing new here. 

What is new is the part of the spreadplot look that is determined by the container 
window. The container window determines the appearance of the plotwindow's "dec-
orations," including its title bar, menubar, and borders. The title bar and menubar of 
each plotwindow can be shown or hidden. If the title bar is shown, it can optionally 
show or hide its various control icons. The window borders can also be shown or hid-
den, and if they are shown, can take on a variety of appearances, from a simple line to 
a full-fledged, depth-cued window border. 

In Figure 3.14 we show four spreadplots that are identical except for the window 
decorations of their plots. The different looks of the four spreadplots result from the 
use of different container .window options at the time the spreadplots were created. 
These differences are emphasized by making all of the plots "content only." By com-
paring the four spreadplots, we see that we have a lot of control over their look. 

The degree of control means, at one extreme, that the plotwindows can be drawn 
with no decorations at all. This results in a spreadplot like the upper-left example in 
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Figure 3.14, and the one shown in Figure 3.15. With this look, we see the background 
and content of each plot (if the plot is "contentonly," as is the case for Figure 3.14, but 
not for Figure 3.15, where we see only the content) but nothing to indicate that each 
plot is in its own separate window. This look is the least cluttered and has the cleanest 
appearance. We often use this when the entire background and content of the plot 
windows are being shown, letting the plots themselves act as their own visual frames. 

We also commonly use a look that simply draws a line as the window edge, with no 
title bar, and no window-edge depth cues. This type of look, which is demonstrated in 
the upper-right section of Figure 3.14 and is used in Figures 3.12, 3.16, and 3.17 
clearly demarcates the plots, but does not confuse the user by revealing the unneces-
sary information that each plot is in a separate window and then all of the windows 

Figure 3.14 Four container-controlled looks for a spreadplot. 
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are placed inside another window. This look works very well in plotmatrices and aug-
mented plotmatrices such as Figure 3.16. 

We occasionally use the look shown in the lower-left panel of Figure 3.14. It is 
especially handy for students and others learners as well as for making presentations 
at meetings. 

Finally, we can make each plot window look just like a window with depth-cued 
borders, a title bar with a title, and a full set of controls for minimizing, iconizing, 
maximizing, and closing the plot window (lower-right example in Figure 3.14). We 
never do this, because we want all of the individual plot-windows to act together and 
do not want the user to be able to control each one separately. Note that we also never 
show each plot's menubar, since each plot has only one menu. Having a menubar 
with one menu wastes screen space and adds visual clutter. Rather, we provide the 
pop-up version of the menu instead. 

A final point is that we always present the container window's menubar. If you look 
at any of the figures showing a spreadplot, you will see a menubar with HELP and 
WINDOW menus. The help window provides help items for both the spreadplot as a 
whole and for the individual plots. The window menu provides items for the individ-
ual plots and for other aspects of the system. It would also be possible to include each 
plotwindow's menu on this menubar, which sounds like an excellent idea that we 
overlooked implementing! 

3.6.5 Feel of Spreadplots 

The feel of a spreadplot is determined by the feel of its plots. Generally, we require 
that all plots have the same feel, so that the user has a consistent experience no matter 
which part of a spreadplot is being used. Thus, we have the same types of spreadplot 
feel as we do types of plot feel: 

• Motion-based (cursor). Spreadplots whose plots provide motion-based 
interactivity feel much more highly interactive than any of the other styles. 

• Button click-based. Spreadplots whose plots provide button-based interac-
tivity feel quite dynamic, although less than motion-based. 

• Dialog click-based. Spreadplots whose plots provide dialog-based interactiv-
ity have the same level of interactivity as those that are cursor based but 
require extra keystrokes to make them visible. Click-based interactivity is 
more flexible than motion-based interactivity. 

• Menu-based. We do not provide spreadplots with menu-based interaction by 
itself, although pop-up menus are available in all plots as a means of gaining 
access to the full capabilities of the plot. 

3.6.6 Look and Feel of Statistical Data Analysis 

The extensive experience the authors have had with dynamic graphics leads us to 
speculate that different looks and feels are appropriate for different types of statistical 
analysis activities. When we explore data, the visualizations that have the highest 
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degree of interactivity seem to be the most appropriate: The immediacy of the 
changes in the plots seems to helps us discover structure. What is important in this sit-
uation is the overall structure of the data, with the importance of the fine detail reced-
ing into the background. So, for exploratory data analysis, visual impact should be 
stressed and precision relegated to a back seat. 

On the other hand, when we are testing hypotheses, fitting models or transforming 
variables, then visualizations that are less interactive may be more appropriate. Such 
visualizations promote inspection and contemplation, encourage reflection and atten-
tion to detail, and emphasize concern for precision and careful fine tuning. In the next 
several subsections we explore the relationship between the feel of the interface and 
the statistical activity to which we are interfacing. 

Look and feel for exploring data. The control-free, motion-based look and feel 
seems to provide the best interface for exploring data. The control-free look, shown in 
Figure 3.15, removes all buttons, buttonbars, menus, and menubars, as well as all 
window decorations, thereby creating a clean, uncluttered appearance. However, the 
plot backgrounds, which provide needed reference information to help us understand 
the data during our exploration, are still part of the look. Note that we also don't need 
the added flexibility of the buttons and menus, since motion-based interaction is gen-
erally all that is needed for exploration. Of course, if we do need to access additional 
features, we can do so via pop-up menus. 

The spreadplot shown in Figure 3.15 is the bivariate numerical spreadplot discussed 
in Chapter 7, a spreadplot designed to explore bivariate magnitude data through the 
use of very high interaction techniques. The cursor, located in the upper-left plot, 
indicates that the spreadplot is in brushing mode since it consists of a brush with an 
attached dashed rectangle. Being in brushing mode means (discussed below) means 
that when the user moves the cursor back-and-forth across the spreadplot, the points 
inside the rectangle are highlighted, and if labeling is on, the labels associated with 
the highlighted points are displayed, as we see in Figure 3.15. 

Thus, the scatterplot has the feel of a very-highly interactive dynamic graphic. 
Indeed, as the user moves the cursor across the various plots in the spreadplot, the 
specific subset of graphical elements that are highlighted and labeled changes, always 
corresponding to the specific set of elements of a plot that fall within the brush's rec-
tangle. The change happens immediately, drawing our attention to the structure of the 
data. 

But keep in mind that if the various plots in the scatterplot are linked, it isn't only 
the plot elements within the brush's rectangle that are highlighted and labeled. The 
"linked-to" elements in the other plots of the spreadplot are also highlighted and 
labeled, although labels are off for all five small plots because label overlap in these 
small plots is so bad that the plot is less useful with labels than without. 

Of course, the nature of the highlighting depends on the characteristics of the plot, 
especially on the nature of its graphical elements. We see this in the figure: The plots 
of this spreadplot have several different types of graphical elements. Therefore, they 
have several different types of highlighting: 

105 



3 Interfaces and Environments 

1. For the parallel-axes plot (the tall and narrow plot second from the right), 
highlighting means that its graphical elements, which are line segments, are 
drawn when highlighted but are not drawn (shown as unconnected points) 
when not highlighted. The highlighted line segments can be labeled. 

2. For the namelist (the tall narrow list of labels at the right), its graphical ele-
ments (the names) are shown in reverse video when highlighted, in regular 
video when not highlighted. 

3. For the histogram (bottom row, second from left) its graphical elements (tiles 
of the bars) are drawn, when highlighted, as solid rectangles, whereas they are 
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drawn as empty borderless rectangles normally. 

4. For the comparative plot (top of the column of three small plots) and probabil-
ity plots (the other two in the column), the graphical elements are points, and 
they are highlighted by being drawn as solid dots rather than as empty dots. 

You have to use your imagination to envision what the user sees as the cursor is 
rubbed around the screen. Since the spreadplot is in brushing mode, the elements of 
the plot being brushed, as well as linked elements in other plots, will be flashing on 
and off as the brush moves about, leading the eye to structure that may be present. 
Brushing is a very-high interaction activity, and is conducive to discovering structure. 
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Figure 3.15 
The look of a spreadplot for 
exploring data. This look has a 
associated feel that emphasizes 
motion-based interaction. 
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Look and feel for transforming data. Now consider the spreadplot shown in 
Figure 3.16, a spreadplot designed to support transformation of variables to bilinear-
ity. In this spreadplot, what we wish to do is to make all of the bivariate plots shown 
in the scatterplot matrix look as linear as possible, for it can be shown that variables 
that are independent, normally distributed have bivariate relationships that are linear. 
The content-only click-based look and feel seem to be most appropriate for trans-
forming data. All we are really interested in is the shape of the bivariate relationships, 
not really even needing the reference material provided by the plot backgrounds. 

As discussed in Chapter 7, this task requires study of the individual bivariate plots 
and manipulation of a slider to transform the variables shown in a plot so that their 
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relationship looks linear. Other than variable names, we do not need any of the refer-
ence material provided on the plot backgrounds. We really need to focus on the shape 
of the bivariate relationships, Thus, the content-only look is most appropriate. 

The goal of this data transformation situation is to linearize the relationship between 
all pairs of variables. Thus, the spreadplot's scatterplot matrix has a special plot 
selecting mode: When we click on a scatterplot matrix that is in this mode, the small 
plot we click on is selected. This is different than anything that we have seen up to 
this point far. Our click does not select points in the small plot. Rather, it selects the 
entire plot. 

Figure 3.16 
The look of a 
spreadplot for 
transforming data. 
The spreadplot 
emphasizes menu 
and dialog-based 
interaction. 
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The scatterplot matrix has been programmed so that we can focus in on any one of 
its small plot cells to make the bivariate relationship shown in the plot cell more lin-
ear. We do that by clicking on the desired plot cell, usually the one that looks least lin-
ear. The click on the plot cell causes a large version of the scatterplot to be shown at 
the lower right and causes the corresponding comparison plot (QQplot) to be shown 
above it. Thus, the mouse is not in the high-interaction motion-based state used for 
brushing. It is in the lower-interaction click-based state that is more appropriate for 
plot selecting. 

However, the slider is highly interactive, lending a high-interaction feel to the 
spreadplot: When the slider is moved, it uses the equations proposed by Box and Cox 
(1964) to transform the data. The equations are applied dynamically as the slider is 
moved, making the bivariate relationship selected either more or less linear. As the 
user moves the slider back and forth, the transformation is modified with the result 
displayed, changing dynamically and smoothly in real time, enabling the user to find 
the position for the slider that produces the most linearity. 

Notice that as the slider is moved back and forth by the analyst, the large scatterplot 
is not the only plot being affected. The large comparison plot is also affected. Further-
more, since the transformation changes the linearity of the relationship between the 
two variables by changing the two variables themselves, all of the small scatterplots 
in the y-variable's row and the x-variable's column of the scatterplot-matrix are 
affected. Thus, when the data analyst moves the slider, both large plots change, and 
an entire row of small plots, plus an entire column of small plots, also change, all 
smoothly and in real time. 

Look and feel for fitting models. The button-controlled, click-based look and 
feel appears to be the for fitting models. Our main interest is in details of the fit and in 
interpreting the model. There are usually a fairly wide variety of actions that we 
might want to take to evaluate the fit and model, and having them "just one click 
away" makes for the richest experience. Thus, having click-based access to tools for 
interpreting the model provides the needed flexibility. Of course, we still want to be 
able to identify points in the usual point-brushing, high-interaction way. As an exam-
ple, in Figure 3.17 we present the visualization spreadplot for multiple regression. 
Notice that its' look is that of a full-control spreadplot, with a control panel for high-
interaction changes. Let's examine how the regression spreadplot works. 

First, brushing works in the usual way, and it is combined with linking and labeling 
in the usual way as well. Thus, we can simply move the cursor across the various 
plots, and whenever an activatable plot element is within the confines of our brush 
rectangle, the element is activated, highlighted and labeled. 

Note also that there are actually a minimal number of buttons on the plots, each one 
having a Help, a Mouse, a Pop and a Zoom button. Clearly, the Help button provides 
help about the plot. The Mouse button switches between the two standard mouse 
modes of brushing and selecting. The Pop button pops the plot out of the spreadplot 
so that it can be dealt with individually, and the Zoom button makes the plot larger. 
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The control panel, which is where most of the data analyst's actions will take place, 
is divided into three parts: Variables, Options, and Demonstrations. The Variables 
section controls which variables are shown in the plot cells. As shown, the Mpg varia-
ble, which is the response variable, is being shown. If we were to click on another 
variable in the control panel, all four plots in the spreadplot would change to provide 
information about the newly chosen variable. In the Options section we see that 
Regression Line and Residual Lines are both selected. When these were clicked on, 
they caused the regression and residual lines that you see in the regression and fit plot 
to appear. If they were clicked on again, these sets of lines would disappear. In the 
Demonstrations section we have access to two regression demonstrations, one for 
Influence Points and the other for Restricted Range. 

3.7 Environments for Seeing Data 

Now that we have defined what we mean by objects and interfaces, we can define 
what we mean by an environment: An environment is defined as the union of all of 
the object interfaces that are active at any given moment. An environment is also 
defined, albeit indirectly, by the objects that are active at any given moment, since the 
interfaces that define the environment directly, must be interfaces to objects. The 
environment changes over time as the selection of active interfaces changes. Thus: 

Environment. An environment is the entire collection of interfaces and objects 
active at a given moment in time. 

Let us consider the changes that can occur in the environment as the data analyst 
proceeds though a data analysis. Many of the actions that can be taken by a data ana-
lyst either activate or deactivate an interface object, thereby changing the environ-
ment. These actions modify the environment by creating new interface objects (the 
analyst opens a new datasheet or displays an additional spreadplot) or by activating or 
deactivating an existing interface object (the analyst closes a plot, or reopens a closed 
but not deleted selector window). 

While not all of the actions that a data analyst takes change the environment, it is 
important to understand that as a data analyst searches through the data for under-
standing, the environment adapts itself to the nature of the ongoing analysis. When 
the steps are a focused progression toward that understanding, the environment con-
verges on a structure that reveals that understanding. 

Wilkinson (1999) uses the term Analytics to refer to the interactions that occur 
between the data analyst and the analysis system during this search for understanding. 
Analytics involve the use of methods that produce new statistical objects when they 
are applied to existing statistical objects. In our terms, we call this a step in the data 
analysis. Each step of a data analysis involves using the methods of a statistical object 
to process the information on a statistical object, where the processing creates a new 
statistical object. 
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When one looks at the diagram that results from such methods, one sees that it is 
hierarchical. For example, when we reconsider the workmap of the visualized regres-
sion analysis shown in Figure 3.7 from this point of view, we notice that it is hierar-
chical. It begins with the acquisition of data by the system, which is visualized on the 
workmap by the topmost icon in the hierarchy (named "Student"). Then the analyst 
takes the series of steps outlined in the discussion of Figure 3.7). As we follow these 
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steps and as we watch the workmap grow, we see the hierarchical nature of the dia-
gram emerge. This is also true for the workmap shown in Figure 3.8, which reveals 
the structure of the steps taken to read in the data and then to calculate the correlations 
and frequency datasets that we used to demonstrate datatypes (the datasets are shown 
in Table 1.2). In all cases, we can represent the steps taken during a data analysis ses-
sion by a tree diagram, such as the workmaps shown in this chapter. 
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3.8 Sessions and Projects 

As we have seen, a data analysis environment is the entire collection of interfaces and 
objects that are active at any given moment. The environment changes and evolves 
over time as the user steps through the data analysis process. Every time that the ana-
lyst takes another step in the analysis, the environment changes. 

Session. A session is a time sequence of environments. Since an environment is a 
collection of interfaces and objects, a session is also an evolving time sequence of 
changing interfaces and objects. 

A session is created by the data analyst as the analyst pursues better understanding 
of the data, one step at a time. Thus, a session is a time sequence of environments, and 
since an environment is a collection of interfaces and objects, we can see that a ses-
sion is an evolving sequence of interfaces and objects, each step in the sequence dif-
fering from the preceding one by a change in an interface. A session begins when the 
analyst opens a new and initially empty data analysis environment, and it ends when 
the environment is closed. 

Naturally, the steps of a session vary in complexity, some of them being very sim-
ple, some very complex. Although these steps are portrayed on the workmap, their 
sequential order is not. Despite this limitation, the workmap is entirely sufficient for 
recording and reproducing the data analyses it portrays, although the original order of 
the steps is lost. 

Project. A data analysis project consists of a sequence of data analysis sessions 
that follow a unifying investigational thread. 

Each of the project's sessions occupies a chunk of time: A project is a sequence of 
sequences. 

3.9 The Next Reality 

Since, as we saw above, an interface makes interaction possible between the software 
and the user, and since the environment is defined by the interface methods that are 
active at the moment, it follows that the environment determines the richness and the 
capability of the relationship that the user has with the software. 

When one thinks of an environment, one probably thinks of a three-dimensional 
space containing visible objects that appear to be solid and space-filling. Almost cer-
tainly, one is probably not thinking of a 3D computerized environment, but of the nat-
ural environment. 

3.9.1 The Fantasy 

When one turns one's attention to a computer-created 3D environment, one notes that 
the 3D analog of the 2D desktop is the 3D workspace, a concept that has no impact 
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outside the research laboratory (and, to be honest, not much inside the research labo-
ratory either). One reason for this has been the expense of the equipment necessary to 
create a 3D workspace, although this reason no longer applies. Another reason is the 
complexity of controlling such a workspace, both in terms of the pointing device and 
of the cognitive and perceptual processes needed. 

One possible way to deal with these problems is to create a virtual reality represen-
tation of the workspace, since with a virtual reality interface the user employs naviga-
tion and orientation skills that are familiar and natural. The goal of virtual reality is to 
give the user the illusion of immersion in the environment. Not only are the abstract 
statistical objects that the data analyst needs to use represented in the workspace by 
electronic analogs, so is the data analyst himself or herself. 

As we stated in Chapter 1, we anticipate the development of a virtual environment 
for data analysis. This environment would contain visual representations of the data 
and of the mathematical, statistical, and graphical procedures relevant to the data. It 
would also contain representations of an expert consultant's suggestions of what to 
look for in the data and how to look for it; representations of the actual steps taken by 
the data analyst while exploring; and representations of the actions taken by the data 
analyst to confirm or disconfirm the hypotheses. 

If we did have a virtual data visualization environment, it would have to contain 
objects representing not only the data but also the tools we use to understand the data, 
as well as transformations, models, reports, graphs, datasheets, and so on, that are part 
of the analysis. Such an object system is a parallel universe, if you will, to the virtual 
universe—a parallel universe that exists inside our software structures and methods. 
If we were to go about constructing such a virtual data analysis environment, the 
environment, the objects it contains, and the way they are represented in the environ-
ment would result from interface methods to their underlying program objects. For 
such a virtual environment, for every program object that the data analyst might wish 
to use, there must be an interface method to that program object which constructs an 
appropriate virtual object. This virtual environment would contain virtual objects rep-
resenting the "things" used by the data analyst: the variables, datasets, datasheets, 
graphs, reports, transformation methods, analysis methods, statistical models, and so 
on. 

And, lest we forget, the data analyst interacts with the data and other statistical and 
graphical objects in various ways. Usually, the interaction involves some type of tool 
that creates something new about the data. The tool could be a data editor, which 
would create a revised version of the data; or, the tool could be a report generator, 
which would create a new report about the data; or the tool might be a graphical 
method, which creates a plot of the data or an entire collection of interacting plots. It 
is of vital importance that any virtual data analysis environment that we create let 
these actions occur in a "natural" way. 
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3.9.2 The Reality 

Advances in dynamic interactive 3D graphics have made it possible to implement, at 
least on an experimental basis, virtual reality environments for data analysis—VR 
data environments, if you will. These experimental environments are capable of creat-
ing an illusion of 3D reality that is much more compelling than has heretofore been 
possible. As a consequence, it is now possible for data analysts to interact with repre-
sentations of their data, and of their graphics, tables, and other data analysis objects, 
that appear to be solid and space-filling. 

A specific kind of image, called an anaglyph image, makes the 3D illusion possible. 
An anaglyph image is produced using two views of an image taken from slightly dif-
ferent viewpoints. These viewpoints correspond to the position of the two eyes. The 
two images are rendered in two contrasting colors (red and blue, for example). Then, 
using glasses with color filters, the right eye sees only the image intended for the right 
eye, and the left eye sees only the left image, thereby simulating normal vision. The 
result is 3D imagery that vividly portrays the illusion of depth. Anaglyphs are the 
most commonly employed technology for simulating stereoscopy. 

Visuals-Pxpl. The first known attempt to achieve a VR-data visualization envi-
ronment was that of Young and Rheingans (1991), whose work was reported with an 
accompanying video supplement. They developed Visuals-Pxpl, an implementation 
of Young's six-dimensional Visuals graphics system on a special-purpose, massively 
parallel, one-of-a-kind graphics computer called Pixel-Planes developed at the Uni-
versity of North Carolina by Fuchs and his co-workers (Fuchs et al., 1989). 

The article published about Visuals-Pxpl focused on the construction of a six-
dimensional data space, on its real-time projection onto the user's 3D virtual space, 
and on the real-time control and modification of the 6D to 3D projection. As 
described, the system was not immersive, but presented a full-color 2D image of the 
virtual space on the screen of a relatively small display. 

An immersive display system was created in the mid-1990s, although the develop-
ments were never reported. This system was a reimplementation of Visuals-Pxpl that 
displayed the virtual space on a head-mounted stereoscopic display system developed 
by the University of North Carolina's computer science department. The display fea-
tured two small screens, one mounted in front of each eye, with the system being pro-
grammed to calculate two stereoscopic views. The system then presented the left-eye 
view on the left-eye screen and the right-eye view on the right-eye screen. The head-
mount also featured a triaxial LED system that was tracked by sensors in the room so 
that the location, position, and viewdirection of the user was known at all times. 
Given this information, the system could, in real time, update the displays to show the 
user the appropriate images of the data space in which he or she was wandering. 

VRGobi. The CAVE system developed by Carolina Cruz-Neira and colleagues 
(1992) was applied to data visualization (Symanzik et al., 1997). The CAVE is a pro-
jection-based system that uses 3D computer graphics, position tracking, and auditory 
feedback to immerse users in a 3D environment. The CAVE consists of stereographic 
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images rear-projected onto three sidewalls and front-projected onto the floor (there-
fore it is a four-projections system versus the PlatoCAVE and the MiniCAVE dis-
cussed later, which were based in one projection only). The illusion of 3D is created 
using special glasses. The position of the user is tracked via a magnetic-based tracker, 
a cyberglove, and a handheld wand. This tracking allows the system to receive input 
from the user in order to create the appropriate 3D images and to be manipulated via 
gestures. 

The software program XGobi was adapted to run on the C2 system (a second, larger 
CAVE-like environment), and christened VRGobi. The main difference between the 
two systems is that "with XGobi the user interface is rather like a desktop with pages 
of paper whilst the C2 environment is more like having the whole room at our dis-
posal for the data analysis" (Symanzik et al., 1997 p. 44). This change meant that a 
number of user interface elements had to be modified to adapt to the new conditions. 
The authors concluded that the CAVE is "remarkably different from the display 
devices that are commonly available for data analysis" having "huge potential for 
data analysis" (Symanzik et al., 1996, p. 7). 

PlatoCAVE. The PlatoCAVE system (Wegman and Symanzik, 2002) was an 
immersive display system installed in a room approximately 20 feet on each side. The 
system consisted of a Stereographies CRT projection system driven by a Silicon 
Graphics workstation. The images that were projected on a wall of the PlatoCAVE 
were approximately 15 feet (3 meters) in diagonal measurement. The effect was 
described as quite stunning, as the images would be seen as standing out of the wall, 
with the system being capable of producing a three-dimensional full-color image. 
However, its high price limited its use to the research laboratory. 

MiniCAVE. A second system, the MiniCAVE, replicated the features of the Pla-
toCAVE using less costly hardware. Thus, using personal computers instead of work-
stations and changing the type of projector (LCD instead of CRT), they were able to 
build a virtual reality system for a tenth of the cost of the previous system. Although 
the new system was, in essence, a downgraded version of the first system, it incorpo-
rated speech recognition as an input mechanism (Wegman et al., 1999). Speech rec-
ognition was included because the desktop metaphor, with its human-computer 
interface based on windows, menus, icons, and pointing devices (i.e., the WIMP 
interface) did not seem to be well suited for the 3D workplace. Furthermore, physical 
control devices such as gloves or wands were awkward, to use while speech seemed, 
at least in principle, a more natural way to interact with the visualization. 

3DVDM. 3DVDM is a 3D visualization system that is focused especially on the 
visualization of large databases. This system also uses the CAVE environment and 
can manage thousands of observations smoothly (Nagel and Granum, 2004). 

But—we must return to reality. 
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3.9.3 Reality Check 

Once the novelty of these systems has worn off, it seems natural to question if their 
added cost is associated with improved data analysis. This question was addressed in 
a paper that compared the performance of a group of 15 statisticians using VRGobi 
and using XGobi (Nelson et al., 1999). The results were encouraging, suggesting that 
VRGobi was better for visualization tasks that required subjects to identify clusters. 
However, the users found it more difficult to interact with VRGobi than with XGobi, 
a result that is confounded with the fact that the subjects were also more familiar with 
desktop-based interfaces than with virtual reality interfaces. 

Although we believe that there is great potential in these systems, it always seems to 
be the case that virtual reality never quite lives up to its potential. So although there 
certainly are some very good demonstration systems, the number of successful sys-
tems for VR-data analysis seems to remain at zero. The jump from the laboratory to 
the real world is certainly not trivial. 

Reality is a hard act to follow. 

118 



4 Tools and Techniques 

119 



This page intentionally left blank



4 
^W Tools and Techniques 
Q 
Wtatistical visualization involves many activities, most of which are familiar from 
other computation situations. However, some of the activities will be unfamiliar 
because they are unique to the dynamic interactive graphics involved in statistical vis-
ualization. We must do ordinary data management activities, such as reading in the 
data and selecting the right variables or observations. But we must also do activities 
that are unique to statistical visualization: activities such as generating and using 
dynamic plots to explore our data, coordinating the plethora of plots that we obtain 
when we have been exploring our data for awhile, and keeping track of the overall 
process of data exploration in a way that lets us both retrace our steps and go back to 
an earlier stage of exploration to branch off in a new direction. 

The techniques for carrying out the familiar activities are well known and do not 
need to be discussed here. However, the techniques for the activities that are unique to 
statistical visualization are not well known, and we do need to discuss them. It is these 
techniques that are the focus of this chapter. 

Dynamic interactive statistical graphics provide the potential user with a wide vari-
ety of controls and windows, some of which will be familiar from other types of com-
puter programs, and some of which will be novel, since they are unique to statistical 
graphics. In this chapter we focus on those controls and windows that are unique to 
statistical graphics, although to some extent we must also review the familiar tech-
niques in order to explain those that are novel. 

The material is organized into three sections. The first is on the controls used in sta-
tistical graphics windows, the second is on windows that present a single dynamic 
plot of data, and the third focuses on windows that present, organize, and coordinate 
multiple dynamic plots of data. 

On the asthetics of dynamic plots. At first glance, the graphics constructed by a 
dynamic interactive graphics software system may well look flat and colorless, like 
nothing so much as a bunch of dots or lines, sometimes colored rectangles, all looking 
like graphics where aesthetic issues are secondary. 
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New users in particular may get the wrong impression, thinking that the technical 
quality of these plots is inferior to the presentation graphics that our proverbial new 
user is accustomed to seeing. However, as has been pointed out by many (e.g., Tufte, 
1983), superfluous ornamentation is not needed by the truly beautiful! 

In fact, the aesthetic in dynamic interactive graphics concentrates on creating graph-
ics that move smoothly and rapidly, even for large data, rather than ones that use 
fancy renderings that may improve the appearance of a graphic, but add little sub-
stance and cannot happen in real time. We go light on the window decorations so that 
the dynamism can be fast. We reduce the lines and characters that have to be drawn 
for each observation, so that we can increase the number of observations that can be 
dynamically graphed. 

There is a parallelism between static graphics, presentation graphics, and dynamic 
graphics, on the one hand, and certain kinds of automobiles, on the other. As imple-
mented in the large well known statistical systems, static graphics, are like huge, 
powerful, but lumbering trucks ("juggernaut lorries," as the English would say, or 
"18-wheelers" to Americans); they can muscle their way through any set of data and 
prepare a picture of it, no matter how big the data. Dynamic graphics, on the other 
hand, are like a small nimble sports car. They don't have the power of static graphics 
to process millions of records of data, but they have the nimbleness needed for nego-
tiating the tricky curves of exploratory data analysis. Dynamic graphics is also unlike 
presentation graphics software, which allows you to add all the tail fins and hood 
ornaments that you please to make you results as eye-catching as possible, even if it is 
just superficiality that one sees. Each type of graphic has its place and usefulness, and 
of course, its own special ways in which it can be misused. 

Of course, a dynamic interactive graphic is much more powerful than a static 
graphic. In fact, the initial view provided by a dynamic graphic is often the very same 
view that the corresponding static graphic would provide. Then, the power of the 
dynamic graphic comes into play: It uses this initial view as a place from which 
exploration of the data can be launched. 

Static graphics are only able to show a specific view of the data. Dynamic interac-
tive graphics are prepared to respond to actions from the user to show (or hide) infor-
mation that can help to reveal things that otherwise would remain unseen. 

This dramatic increase in the power of dynamic interactive graphics over static 
graphics does not come without a cost: Dynamic interactive graphics are much more 
complicated to use. You don't just look at the picture, you interact with it. So there 
must be a well-designed user interface which has controls that enable the instantane-
ous interaction that is required to really dig your data. 

Chapter outline. We discuss the types of controls that have been implemented to 
control graphics, especially dynamic interactive graphics, and the techniques used to 
carry out the control functions of these tools. We then turn to the look and feel of 
plots and how this relates to the tools and techniques. We then delve into the specifics 
of how these tools and techniques are used in statistical graphics, and how the look 
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and feel affects this use. We focus the discussion on the three basic statistical graph-
ics: datasheets, plots, and spreadplots (multiplot windows). 

4.1 Types of Controls 

The interface of our dynamic, highly interactive statistical graphics system is based 
on the now common model of a user who interacts with the system via a mouse or 
other functionally similar point-and-click device. With this device the user finds a 
particular spot on the screen and clicks on it. We assume that the user has a two-but-
ton mouse and that the meaning of a click with either button can be modified by hold-
ing down a particular key, such as the shift key or control key, often referred to as the 
meta key. Thus, in essence, the user can select a spot and click on it in four ways: nor-
mal click, right click, metaclick and metaright click. 

The interface, then, must have elements to click on, and the elements must be as 
unobtrusive as possible, without being so hidden as to prevent the user from finding 
them and using them. Some of the elements that are used by various statistical visual-
ization systems are discussed below. The discussion is coordinated with Figure 4.1, 
which shows a ViSta window and menu for a spinnable point cloud. The user inter-
face for the spinnable point cloud is one of ViSta's most complex. It includes several 
"standard" controls (including the Help, Mouse, X, and Y buttons, which are used by 
a wide variety of graphics). There are also "specialized" controls that are unique to 
the spinplot. These are grouped on the left and at the bottom of the plot. The figure 
also shows a menu, and, of course, the point-cloud itself. The elements on this graphic 
are discussed later. 

4.1.1 Buttons 

Small buttons can be added to plots, but too many of them make for a messy appear-
ance. Since they are activated by just a single click, they are convenient for actions 
that occur immediately. Also, since buttons can be made to change their state (change 
color, for example) they are particularly appropriate as on/off toggles, such as stand-
ardizing/unstandardizing data, or turning a feature such as labeling on or off. 

There are various ways in which buttons can be used, and the spin plot window 
exemplifies all of them. These are as follows: 

• Simple buttons. In Figure 4.1 the Help button is a simple button which, when 
clicked on, produces a help window for the spinnable plot. The Mouse, X, Y, 
and Z buttons are also simple buttons that either change a system state or pro-
duce a specialized menu or dialog box. (If there are more than four variables, a 
dialog box is shown to select a variable for the axis. If there are four variables, 
the axis is switched to the undisplayed one without dialog a box being shown. 
A pop-up menu would be more convenient than a dialog box.) 

• Toggle buttons. In Figure 4.1 we see that the Box button is in the "on" state (it 
is gray rather than white), and we see the "box," which is the wire-frame cube 
drawn around the point cloud. By clicking repeatedly we turn the button on 
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and off, and the box around the point-cloud appears and disappears. The Spin 
button works the same way, toggling spinning of the point cloud, its axes, axis 
labels (which are showing), point labels (which are not showing), and the sur-
rounding box, on and off. 

• Incrementer button pairs. In Figure 4.1 there are five pairs of buttons that 
increment/decrement an argument value that controls some aspect of the dis-
play. These are the zoom button pair, which zooms the point cloud in and out, 
and the Up/Dn, C/CC, and L/R buttons, which control rotation vertically (up/ 
down), circularly (clockwise/counter clockwise) and horizontally (left/right). 
All of these button pairs are affected by the speed button pair, which controls 
how fast the other buttons work. By using the right button and the meta key, 
these button pairs have interestingly modified effects. 

• Menu hot-spot buttons. These are buttons on the screen that are demarcated 
by a special symbol indicating that what the button does is cause a menu to 
pop-up at the button's location. In the ViSta interface the symbol is a red trian-
gle on the button. Thus, in Figure 4.1 the hot spot (which is mostly covered by 
the menu and cursor) has a down-pointing triangle, indicating that a menu can 
be pulled down (popped-up) by clicking on the hotspot. The menu is shown. 
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In addition to buttons, which are good for immediate-interaction events, which 
don't take up too much screen space, but which can make the screen look cluttered if 
there are too many, there are a number of other controls. 

4.1.2 Palettes 

Palettes are essentially groups of tiny buttons that are used for selecting a value for a 
characteristic of the plot that has multiple alternative values, where the effect of the 
choice is immediately visible when a selection is made. In Figure 4.1 we see two pal-
ettes, one for point color (represented in the book by grays, but on the screen by 
colors), the other for point symbol. If a set of points in the point cloud is selected and 
one of the color palette buttons is clicked, the color of the points selected changes to 
the clicked-on color. The same is also true for point symbol. Note that a palette takes 
up a fairly large amount of screen space. For this reason each palette can be toggled 
on and off by an item of the menu. 

4.1.3 Menus and Menu Items 

As you know, menus consist of menu items, where each item is an option that is avail-
able to the user for modifying the actions that take place in the window. Because it 
takes more clicking and movement of the mouse to produce a menu and choose an 
item than it takes to click on a button, the items should control options whose effect is 
not necessarily immediately visible. 

Menus and buttons both have strengths and weaknesses. On the one hand, menus, 
unlike buttons, do not fill up space on the screen and do not cause visual clutter. On 
the other hand, menus are hidden most of the time, so it is quite likely that some 
options or capabilities will remain unused just because the users do not see their menu 
items. 

As you can see in Figure 4.1, some of the buttons are also represented by menu 
items (the X button is the same as the New X-Axis menu item, for example). This 
may not be the best, but it seems like common practice to provide many redundant 
ways to access the same features, apparently to avoid the risk of the feature being 
overlooked. 

4.1.4 Dialog Boxes 

Dialog boxes pop up generally after a menu item is selected or a button is pressed. 
Dialog boxes are one of the most complex controls, being a resource that is used 
when many options are available for a given situation. They can include forms, sev-
eral types of buttons, and so on. Modal dialogs force the user to use and dismiss the 
dialog before continuing with his or her interaction with the plot. They are not recom-
mended because they prevent exploration of different values or options. Modeless 
dialogs (see Figure 4.2) can remain on the screen while the plot is used to explore the 
data dynamically, and they can be clicked on to change their options, many of which 
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will have an immediately visible effect on the point cloud. The downside is that they 
take up a lot of screen space, and they are sometimes very difficult to program so that 
they work in all situations. The dialog in Figure 4.2 lets the user set the parameters of 
the histogram so that they can search for a histogram with a desired appearance. The 
dialog has immediate effects on the histogram. 

4.1.5 Sliders 

Sliders enable the user to input an argument value that falls in a specified range and to 
increment or decrement the argument value dynamically. The argument's value is 
used by the software system in some way specific to the particular situation, with the 
resulting effect being shown as a change in the graphical display. Thus, operating the 
slider enables the user to see how the values of the slider determine the nature of the 
graphics being displayed, with, if desired, the graphics changing smoothly and con-
tinuously as the argument's value is scrolled throughout its range. A control panel 
with two sliders is shown in Figure 4.3. 

Sliders are related to scroll bars, a standard user interface element in all current 
computer interfaces. Scroll bars are described in the human-computer interface 
guidelines of many operating systems and are familiar to all of us. Data visualization 
sliders are sometimes simply scroll bars with an associated display of the current 
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value of the argument as it is being changed by the movement of the slider. Eick 
(1994) has proposed several improvements of the slider in relation with data analysis. 

4.1.6 Control Panels 

Control panels, which are the most complex user control device, are modeless dialog 
boxes designed to control a dynamic graphics process. An example of a scatterplot's 
guidelines control panel is shown in Figure 4.3. This panel can add several guidelines 
to the scatterplot. Each guideline results from an analysis of the two variables of the 
scatterplot, with the analysis producing the guideline. The analyses include principal 
component analysis (for display of the principal axis guideline and residuals); linear, 
polynomial, or monotonie regression (for showing regression guidelines); and 
smoother fitting (for displaying the smooth guidelines). 

4.1.7 The Plot Itself 

A current trend that is popular in some programs is to make the plot itself the control 
interface. When this is done, clicking with the mouse on parts of the plot pops-up dia-
log boxes or menus that can be used to modify the clicked-on part of the plot. This 
technique is interesting but is limited in that some options cannot be related to spe-
cific parts of the plot, and it is not always clear to the user which parts of the plot will 
have actions represented by dialogs or menus, and which parts will not. 

4.1.8 Hyperlinking 

Hyperlinking has been used in statistical visualization programs to connect plots or 
analysis output to other, presumably related plots or output, or to other information 

Figure 4.3 Control panel with two sliders. 
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altogether. This technique can be used to avoid excessive amounts of information 
being displayed on the screen. At first only a part of the output is shown, with the user 
being able to request more information by clicking on hyperlinks. This is an excellent 
way of dealing with the information overload problems we have about above. 

4.2 Datasheets 

Datasheets are the basic tools for representing and manipulating tables of data. The 
datasheet columns represent variables and the rows represent observations (Figure 
4.4). The first column of the table commonly takes the role of showing the label of 
each observation, and the first row often shows variable names, with the next rows 
showing variable information such as measurement type and role in the study. 

Datasheets are essentially simple spreadsheets, the main difference being that the 
cells of a datasheet always contain data, never the formulas that are such a powerful 
feature of spreadsheets. Although datasheets can be seen as being weak or watered-
down versions of spreadsheets, datasheets are usually one small component of a sta-
tistical system that has far superior calculation abilities. As such, datasheets do not 
need to have equations in their cells because the statistical environment can instanti-
ate the formulas and perform the computations defined by such equations. 

There are many implementations of datasheets, particular when one realizes they 
are simple spreadsheets. Of the vast number of spreadsheets, some are commercial 
and some noncommercial, and many are huge programs loaded with features that are 
irrelevant to data analysis. Statistical analysis systems usually have simpler datash-
eets that are more focused to our needs. 

Of all the customary features, we find that the following list includes those most 
useful in data analysis: 

Editing. Quick editing of values in spreadsheets is a convenient capability. It is 
not unusual that real data have values that are obviously incorrect and that 
need to be corrected on the spot. Easy editing of data is a very convenient 
facility in these cases. 

Searching. Searching for a value or label using the spreadsheet is important when 
the dataset is relatively large. 

Permuting. Often the data are arranged in some relatively arbitrary fashion: They 

Figure 4.4 Datasheet. 
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may be arranged according to their observation order or according to their 
alphabetical position. It may be useful to rearrange the order in some other 
fashion to support, for example, comparisons between observations or varia-
bles. Many datasheets let you select a row or column and drag it to a new posi-
tion. 

Sorting. Datasheets also often allow you to sort the rows or columns into an order 
that corresponds to the values in one of the rows or columns. This can be quite 
powerful. For example, when the data for the Challenger spacecraft were reor-
dered according to temperature rather than observation order, it was immedi-
ately obvious that temperature was the problem. 

Subsetting. Also, many datasheets permit the selection of variables or observa-
tions so that the actions taken by the analyst use only the rows and columns of 
the datasheet that are selected. Since this can be done in an immediate feed-
back way, it increases the power of the overall statistical system. 

Retyping. It has been proposed that good data analysis does not assume types of 
data, but instead, infers it from the analyses that have been done (Velleman 
and Wilkinson, 1993). Our preference is to determine datatype by changing 
variable types to see if there is any effect on the visualizations and analyses 
that have been performed. If not, the weaker measurement assumptions suf-
fice. 

Linking. The observations and variables can be linked with the various graphs 
that are produced, providing a way of labeling points and dimensions of plots. 
The techniques that can be used with graphs, such as selecting and setting 
colors or symbols, can be used here as well. 

4.3 Plots 

Before getting into how one interacts with the plots to activate their dynamic features, 
we present a way of conceptualizing the basic nature of the wide variety of plots that 
are available to the data analyst. This conceptual scheme organizes the plots accord-
ing to the nature of the object used to represent the data, a characteristic that has some 
effect on the methods we can use to interact with the plot. 

The various graphics that have been proposed all have a specific type of object that 
is used to visually represent the feature of the data that are being graphed. For exam-
ple, the scatterplot uses point symbols to represent the data's observations. 

We refer to the basic "plot thing" that is used by the plot to represent your data, the 
plot's glyph (a symbol that imparts information nonverbally), a word that has been 
used elsewhere with essentially the same meaning. We note that glyphs can be organ-
ized according to their dimensionality. Note that we are referring here to the dimen-
sionality of the glyph, not the dimensionality of the plot. This leads us to the 
following way of thinking about plots: 

Points. Many plots use points as the plot's glyph. This is a zero-dimensional 
glyph which, of course, cannot be seen. So we use tiny point-symbols as the 
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glyph representing the point. An example of a plot of this type is the very 
familiar scatterplot, where each observation is represented conceptually by a 
point and is represented physically by a tiny point symbol. 

Lines. Some plots use lines as the plot's glyph. Lines are one-dimensional objects 
that are drawn as such on the screen. Examples that we discuss in this book 
include the parallel-coordinates plot, the run-sequence plot, and the lag plot. 

Areas. Still other plots use two-dimensional geometric figures such as rectangles 
or wedges as the plot's glyph, where the area represents the observed data— 
pie charts, bar graphs, and mosaic plots are familiar examples of such graph-
ics. 

Schematics. A final type of plot are those that use schematics to represent data. 
Well-known examples include boxplots and frequency polygons, to mention 
just two. (Although it may be stretching the definition, we could call these 
plots nondimensional, since the dimensionality of the schematic is irrelevant.) 

The chapter is written as though all plots are point-based. This is, of course, not 
true. But since the chapter focuses on point-based plots, we should keep in mind the 
other families of plots as we proceed through the chapter, asking ourselves whether 
the particular way of interacting with a dynamic graphic depends on the glyph type of 
plot under consideration. 

When we ask ourselves that question, it seems to us that for the most part, you can 
substitute line for point throughout the chapter; however, there are very few line-
based plots, and many point-based plots. If dynamic interactive time-series graphics 
were developed further, line-based plots would be more common. The best example 
of a line-based plot is the parallel-coordinates plot (also known as a profile plot). In 
this plot the line is the fundamental glyph, and there is no consideration of points. On 
the other hand, the run-sequence plot and the lag plot use lines as the plot's glyph, but 
unlike parallel-coordinate plots, they are connected-point plots, where the glyph is a 
line that is point-based and therefore acts totally like a point-based plot. 

It also seems to us that quite often you cannot substitute area for point in this chap-
ter. The difficulty is that in an area-based plot, such as a mosaic plot, the area, which 
is the building block of the plot, represents several observations, whereas for a scat-
terplot, for example, the point, which is the plot's glyph, represents a single observa-
tion. 

We discuss a wide variety of different ways of interacting with dynamic plots. 
These ways include 

• Activating plot objects: selecting and brushing, the two major ways in which 
the window's objects can be activated 

• Manipulating plot objects: labeling, linking, focusing, and morphing, the 
major actions that can be taken on the objects in essentially all plots 

• Manipulating plot dimensions: permuting, changing scale, and changing 
aspect ratio, all of which have to do with the dimensions of the plot. 

We take these up in turn in the coming sections. 
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4.3.1 Activating Plot Objects 

The objects in the plot—usually the points—can be either activated or not activated. 
Activation is usually denoted by using a visual effect, such as changing color, bright-
ness, or shape. The objects activated can then become the focus of whatever future 
actions the analyst decides to take. 

Activation is often a prerequisite for taking other actions, but it can also be an oper-
ation of interest in its own right. The important aspect of activation is that the acti-
vated objects are made to stand out from the rest of the objects in some way. Then the 
activated objects can be used for identifying interesting features of the data. 

For example, Figure 4.5 shows a group of activated points in a scatterplot. The vis-
ual effect of activation is obtained by changing the color or symbol of the activated 
points with the color of the points. Other techniques for emphasizing activated points 
are changing color, size, brightness, or reversing the color and white parts of symbols. 

Mouse modes. Activation is usually done by using the mouse for either selecting 
or brushing, as described below. In ViSta the mouse has two default modes: selecting 
and brushing. When the mouse is placed in selecting mode, it will do the selecting 
method described below. When it is in brushing mode, it will do the "brushing" 
method described below. ViSta also allows the user to type commands that activate 
plot objects and supports programmable mouse modes, which effect the actions taken 
by the mouse. Thus, in ViSta's regression module, a mouse click can cause the sys-
tem to limit the regression to those values of the X-axis variable that are larger, say, 
than the value of X at the point that was clicked, to see what the effect of limitation of 
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Figure 4.5 Selected points in a scatterplot. 
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range would have on the regression. Of course, there must be a way to de-select 
objects. Generally, activating nothing (i.e., clicking on an area not containing an 
object) produces this effect. 

There are two ways of activating an object, by selecting it or by brushing it. We dis-
cuss these next. 

Selecting. Selecting is a method of interacting with dynamic graphics which 
causes objects in the graphic to become active. Selection is usually accomplished 
using the mouse. The standard mouse selection techniques are: 

• Individual selection: accomplished by single-clicking an object on the screen. 
• Multiple selection: sually, holding down the meta key (shift or control) while 

objects are single-clicked. 
• Area election: dragging the mouse to create an area of the screen for which 

contained objects are selected. The area can be rectangular or free-form (using 
a lasso-like tool). 

• Multiple area selection: using the meta key and dragging the mouse to select 
objects contained within several areas. 

Brushing. Brushing is a direct manipulation tool that is similar to selecting. In 
this technique, an active area with the shape of a rectangle is defined. Moving the 
mouse causes the active area to be moved, with objects contained within the active 
area being activated. Activation is denoted using the same type of visual effects used 
for selections (i.e., changing color, brightness, shape, etc.). Brushing is usually dis-
cussed in connection with linking and can be used, for example, to explore a bivariate 
plot conditioned by a third variable. Brushing is discussed in several sources (Becker 
and Cleveland, 1987; Becker et al., 1988; Cleveland, 1994b). 

While selecting and brushing are quite similar generally in the effect they produce 
on the elements on the screen, brushing imposes a bigger workload on the computer. 
For example, in a scatterplot, in order to get a really smooth effect, it is necessary to 
refresh the plot each time that a new point enters or goes off the rectangle area. 
Selecting is a discrete process in which refreshing is necessary only after the user 
releases the button of the mouse. Consequently, slow computer environments will be 
able to implement selecting much more easily than brushing. 

4.3.2 Manipulating Plot Objects 

Labeling. Placing labels on a plot is a complicated problem for static plots. 
Numerous heuristic (Noma, 1987) and computational (Christensen et al., 1992, 1995) 
strategies have been used to produce labels that do not overlap. This is a critical issue 
for static and printed plots when they need to display all the labels (e.g., in maps). 

This problem is solved in dynamic graphics by not showing the labels unless the 
user carries out actions to reveal them. If the user chooses only one label at a time, 
overlapping cannot happen. However, when the user wants to view simultaneously 
labels that correspond to objects that are close in a space, it is possible that some of 
them will be covered by others. Figure 4.6 shows a scatterplot where three points 
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have been selected. The Buick Estate Wagon can be read even though it goes out of 
the frame of the plot. However, the other two are very difficult to read. In this case, 
the user can reposition the mouse very slightly to try to obtain a different selection, 
but this can be difficult or impossible in many situations. 

Some of the dynamic solutions that have been used for this problem are: 
• Small menus or pop-up windows that turn up for overlapping or close points. 
• Sequential listing of labels (e.g., each click shows a new label). 
• Linking to an external list of labels that shows the observations selected. 

The problem remains that if the points are not exactly overlapping and if learning 
the exact values is of importance, it is still difficult to distinguish one from another. 
The techniques described in the section on focusing and excluding can be used to 
enlarge the area of interest and to explore it with less possibility of overlapping labels. 

Linking. It is usually the case that a single display cannot show you everything 
that is interesting about a set of data. Even for the simplest data, we will often see dif-
ferent features of interest in different displays, if only because most graphics are 
designed to help us explore one (or at most a few) features. Thus, it is usually neces-
sary to examine several different graphics in order to get the full picture of the prob-
lem at hand. (In Chapter 6 we give an extended example of this, looking into a single 
variable and finding interesting views in several different graphics.) 

The problem is that very quickly there are too many plots to remember, let alone to 
understand. Linking is one of the important steps in solving this problem. When a plot 
is linked with other plots, a change in one plot can be made to cause changes in the 
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Figure 4.6 Displaying labels in a scatterplot. 
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other plots. The linkage is through the data shared by the plots, with the data's obser-
vations being the usual basis for the linkage. 

Generally, the units of information that are linked are the observations in the data-
set. When observations are linked, then actions carried out on the representation of a 
observation in one plot are propagated to the representation of the observation in 
whatever other views are currently displayed. 

So, for example, changing the state of a point, its color, symbol, or other aspect in a 
plot is mirrored in other plots, data listings, or other views. Figure 4.7 shows two scat-
terplots of four variables for the same observations. When the plots are linked, then if 
the observation Buick Estate Wagon is selected in the left plot, the same observation 
is selected automatically in the right plot. 

Note that the representations of the observations do not have to be the same in each 
of the plots. Note also that more than two plots can be linked. Thus, if we linked a his-
togram (which uses tiles to represent the observations) to the scatterplots in Figure 
4.7, then when an observation is selected in any one of the three plots, a tile of the his-
togram and a point in each scatterplot is highlighted. 

Note that linking is a very general concept. Not only can we have multiple plots 
linked simultaneously, and not only can we have different representations involved in 
the linkages, but we are also not restricted to a one-to-one relationship. Linkages can 
be a one-to-many relationship between many plots using many representations. 
Finally, the linked objects do not have to be observations. They may be variables, or 
matrices, or whatever is represented by the plot as an object with changeable features. 

The main aspect of linked plots is that when a change is made to some aspect of the 
data as they are represented in one plot, the change can be portrayed in some fashion 
in additional plots. In a high-interaction, highly dynamic system the changes happen 
instantaneously in real time. In such a system, the combination of linking and brush-
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Figure 4.7 Two linked scatterplots. 
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ing is particularly powerful. With this combination, when one of a set of linked plots 
is brushed, the appropriate objects are highlighted in the other plots. Linking was first 
described by Stuetzle (1987) and is implemented in Lisp-Stat (Tierney, 1990), ViSta, 
DataDesk (Velleman, 1997), Manet (Unwin et al., 1996), and other programs. 

Linking is an example of the general problem of coordinating multiple views in a 
computer system, as discussed by North and Shneiderman (1997), who present a tax-
onomy of all possible multiple-view coordination techniques. Focusing and excluding 

Figure 4.8 shows an example of focusing on a part of a plot. The cloud of points in 
the scatterplot on the left looks like it could be split into two separate parts. To look 
into this, the points with lower MPG are selected and a regression line is calculated 
and shown. The line has a very different slope than the regression line for all of the 
points, which is also shown in the figure. Focusing on just the points selected pro-
duces the plot on the right, where we can study this part of the plot in more detail. 

Focusing refers to the capability to look at just a subset of the data, focusing on a 
group of points or other elements of interest to get a better understanding of their 
structure. Excluding is just the opposite: removing a group of points or other elements 
which for some reason seem to distract from seeing the structure that may exist in the 
rest. 

There are two versions of focusing. In one, the scale of the plot is not adjusted auto-
matically after focusing. This lets the user easily compare the focus-on with the 
focus-off view, but the focus-on view may be very small or located at the edge of the 
plot. In the other, the scale of the plot changes when the focus is changed so that the 
plot is scaled and located to take up the entire viewing area. This makes focus-on/ 
focus-off comparison difficult, but permits full inspection of the structure in either 
case. 
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Figure 4.8 Focusing on a part of a plot. 
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Notice that focusing in statistical graphics does not work like zooming in other 
computer programs. Zooming enlarges the points in the selected area, whereas focus-
ing leaves the points the same size but moves them farther apart. 

Changing colors. Using the capability to change the color of points is a way to 
emphasize any structure that you think you may see in your data. It is also a way to 
search through the data to see if the structure is really there. 

For most plots, when you first see the plot, all of the points are the same color. 
Then, while you are exploring your plot, if you see something interesting (a cluster of 
points or an outlier, for example), you can emphasize it by changing colors of relevant 
points. This gives you a picture of the data that makes the structure easier to see. 

If the plot in which you changed colors is linked to other plots, the colors of the 
points in the linked plots will also change, allowing you to see if the structure is also 
revealed in the other plots. This is the way to gather more evidence about the structure 
that you think may be in the data. 

Furthermore, when the points represent the observations in the data (as they almost 
always do), the color information can be saved as a new categorical variable, using 
color names as the categories of the variable. These variables can be used subse-
quently for other analysis (e.g. cross-tabulations, discriminant analysis) to help clarify 
their meaning. 

Color palettes are a very effective way of using color to search for structure, since 
they make color easy to access and since they have immediate consequences. If a pro-
gram does not have color palettes, then menus providing access to color should be 
used. Dialog boxes should be avoided for changing color because they usually 
obscure the points that are being colored. 

Perhaps the main awkwardness with symbols and colors arises when a region of a 
space is too densely packed with points, making it difficult to identify individual 
points. Interactive capabilities can be very helpful in dealing with this problem, as 
shown in Figure 4.9. In this figure there are two plots. In the upper plot the points 
have been identified with six different symbols. However, only three groups can be 
clearly perceived. By focusing on this part of the plot we get the view shown in the 
lower part of Figure 4.9, where it is quite a bit easier to see the various symbols. 

Changing point symbols. Note that you can also change the symbols used to 
represent points, and that everything that was stated above about point color also 
applies to point-symbols. However, whereas point color is very effective at communi-
cating structure, point symbols are not, because the symbols may superpose and form 
uninterpretable blobs, making them not very effective at communicating information 
to the viewer. A possible solution is to use what Cleveland calls texture symbols, sym-
bols specially designed to do well in case of overlapping (Cleveland, 1994a). 

Changing point labels. Finally, point labels can be a very effective way to iden-
tify structure in your data, but in some programs (including ViSta) it is so awkward 
and clumsy to change the labels that what would otherwise be an effective way of 
communicating structure becomes ineffective. 
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Figure 4.9 Focusing on part of a plot to see overlapping points. 
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4.3.3 Manipulating Plot Dimensions 

In this section we discuss techniques for manipulating the dimensions of the plot, 
such as re-ordering the variables or dimensions or some other feature; changing the 
absolute or relative size of the axes, etc. 

Reordering. There are several examples in the data visualization literature which 
point out that reordering the elements in a plot can determine what we see in a plot. 
For example, Tufte (1997) explains that the ordering of the information in the plots 
that were used to decide whether to launch the space shuttle Challenger was the cause 
of not seeing that problems lay ahead: The tables and charts concerning the possibility 
of failure in cold weather that were prepared by NASA's engineers were sorted by 
time instead of temperature. When they were resorted by temperature, it was clear 
that temperature was of great importance. 

There are guidelines which suggest how to order information in several situations. 
For example, it is recommended that bar charts show the bars ordered by the fre-
quency of the categories (Cleveland, 1994a). 

Recently, Friendly and Kwan (2003) introduced a principle that is intended to 
rationally order the presentation of information in complex and high-dimensional 
plots. They suggest that visual communication can be facilitated by ordering accord-
ing to principal effects, as they call it, with the definition of principal effects depend-
ing on the type of data. In essence, the principal effect is, mathematically, the most 
important information contained in the data. More precisely, they propose defining 
principal effects as being the appropriate one of the following four definitions: It is 
the main-effects of «-way quantitative data, the associations among factors for «-way 
frequency data, the correlations for multivariate data, or the group mean differences 
for MANOVA data. In all of these cases, the order of presentation can be optimized 
by using the values of the singular values to define the order. 

Having a well-defined mathematical basis for determining how to order the presen-
tation of information in displays of data is clearly an important first step toward pro-
duce compelling visualizations. We can look on such a definition as providing us a 
rational and (at least mathematically) optimal ordering to start with. The displays, of 
course, should enable and encourage the analyst to seek new orderings that can be 
more revealing than those produced by default. 

Examples of dynamic reordering include the implementation of mosaic plots in 
Manet (Hofman, 2003). In these plots, categories of a variable can be ordered by 
dragging their representations in the plot. This technique would be useful to accom-
plish the goal mentioned in the preceding paragraph: helping the analysis improve the 
order shown by default. 

Changing scale. The scale of a plot determines the size of the plot. Scatterplots 
usually choose their initial scale so that all its points will fit in the space available. 
This is an appropriate default, but it will be inadequate on some occasions, such as, 
for example, when there is one outlier observation that is very far from the rest of the 
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points, leaving little space for the other points. In this case, focusing can be used to 
remove the isolated point from the view by modifying the scale of the plot. 

Control of the scale is necessary to allow for comparisons between plots. As an 
example, Figure 4.10 shows four histograms. The histograms in the top row show the 
information about a variable (miles per gallon) for two groups of cars (U.S. and non-
U.S. cars). If we wish to compare these two histograms, we need to note that the 
scales on the two plots are not the same, a fact that makes the comparison difficult. 
Notice, for example, that the scale of the frequencies for U.S. cars is higher than for 
non-US cars, so the height of the bars cannot be compared directly. On the other 
hand, the lower row of histograms in Figure 4.10 has the same scale on both axes, 
making comparison easier. 

The trellis display (Becker et al., 1996) puts several plots side by side and sets a 
common scale for them, thereby making these comparisons easier to carry out. How-
ever, while the trellis display requires contrasts that are specified in advance, it is 
often the case that comparisons occur to the data analyst while exploring the data. 
Thus, we need to be able to set common scales in a simple way. Dialog boxes are used 
in many programs, but they can be very inconvenient, as they require the user to do 
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Figure 4.10 Adjusting the scale of histograms. 
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DriveRalio Horsepower Displacement DriveRatio Horsepower Displacement 

Figure 4.11 Multiple parallel boxplots: Unstandardized and standardized. 

too many things (looking up the values of the scales, opening the dialog boxes, setting 
the values, etc.). DataDesk has a very elegant way of setting common scales. Drag-
ging a window and dropping it on another puts the same scale in both plots, but dis-
covering this feature may be unlikely. 

Another problematic situation related to scales is when a plot displays several varia-
bles simultaneously. The multiple parallel boxplot, discussed later in the book, is an 
example. ViSta includes a button in these plots that standardizes the variables in order 
to facilitate comparisons among them. Using this button, the user can switch between 
the unstandardized version and the standardized version of the boxplot, as shown in 
Figure 4.11. If two plots are scaled in the same way but one of them changes, the cor-
respondence may be lost. Graphical linking as defined by Wilhelm (1999) refers to 
the capability of linking graphical features of plots, including scales, to avoid losing 
this correspondence. 

Changing the aspect ratio. The aspect ratio a = h/w refers to the height-to-
width ratio of a plot. Plots with an aspect ratio of 1 have the same width and height. 
Values higher than 1 are plots that are taller than wider and values lower than 1 are 
plots that are wider than taller. Cook and Weisberg (1994) point out that many statis-
tical programs always use an aspect ratio of 1, which is not always the best. They 
show an example very similar to the one in Figure 4.12 and Figure 4.13. The two fig-
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Figure 4.12 Aspect ratio of 1/4. 
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Figure 4.13 Aspect ratio of 1 

ures present the same data but use different aspect ratios. While Figure 4.13 reveals 
nothing, the shape of the relation is quite evident in Figure 4.12. 

Even though some rules have been proposed for determining proper aspect ratios 
(Cleveland, 1994b), interactive modification of them is an important feature of 
dynamic plots. When the plots are part of stand-alone windows, this property is auto-
matically a result of the properties of the windows—you stretch or shrink the window 
and the aspect ratio changes. However, these capabilities do not result in sufficiently 
accurate control of the aspect ratio, and a way of maintaining an exact ratio of 1 is 
required. Lisp-Stat has commands that can fix the aspect ratio to 1, so that changing 
the window size only changes the size of the plot, not its aspect ratio. 

4.3.4 Adding Graphical Elements 

Another way of adding information to a plot is by using graphical elements such as 
lines or circles, much as in drawing programs. After all, statistical graphics are a type 
of graphics, and consequently, it seems natural to draw on them for incorporating 
remarks, pinpointing elements, and providing explanations. These nonstatistical 
annotations can be very useful, but we do not describe them here because they have 
been widely described. However, there are similar features that are specifically statis-
tical and are described later in the book, which we preview here. 

One statistical use of adding lines is simply to connect the points of a point plot in a 
specific order, such as in the order they appear in the dataset. This turns a scatterplot 
into a time-series plot, for example. Many statistical software programs provide such 
a capability. 
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Figure 4.14 Statistical uses for adding drawings. 

Two somewhat more advanced examples are shown in Figure 4.14. On the left we 
have fit a line to points in a point cloud. We are seeing not only the best-fitting line 
but the residual lines as well. In the second example (on the right) we have two varia-
bles that are very strongly, although not perfectly related by an apparently polynomial 
function. We have fit a straight line to them, and we have also fit a lowess function to 
them. Note that the lowess function is not a connect-the-dots function, although it 
looks like that in much of the plot. But be sure you notice the bottom of the function 
where there is some scatter around the curve. 

Other type of drawing figures can be added. Circles, for example, can be drawn pro-
portionally to a third variable and added to an scatterplot, producing a bubble plot. 
Bubble plots show the relative magnitude of one variable in relation to two other var-
iables. 

Some programs offer drawing tools to add ovals, lines, polygons, and so on. These 
tools are useful for customizing displays to emphasize features found while exploring 
the data. For example, ovals can be used to surround a cluster of points, text can be 
added to provide an explanation for an outlier, or arrows can be used to illustrate the 
relation of one part of the part with another. The goal of this practice can be to make 
presentations to an audience but it can also be a way of recording information about 
the analysis for the analyst to use later. JMP is the program that is best in these capa-
bilities. 
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Seeing Frequency Data 

L^ata are a set of facts suited to the rules of arithmetic and organized for processing 
and analysis. Although the facts must be suited to the rules of arithmetic, they do not 
necessarily have to be numerical. The apparent contradiction is resolved when you 
realize that even nonnumerical facts can be categorized and counted. For example, if 
we have a group of people, we can count how many are males and how many are 
females, how many are Christians or Jews or Moslems, or how many are employed or 
unemployed, and so on. As counting involves the rules of arithmetic, these facts are 
suited to the rules of arithmetic. 

However, facts such as a person's gender, religion, or employment status are not 
data. They are just facts. To be data they must be organized. We emphasize this 
because there are two ways in which facts like these can be organized: as categorical 
variables or as a frequency table. When organized as variables, the fundamental unit 
of observation is a category, whereas when organized as a table, the basic observation 
is a count. We use the term frequency data for tabulations of counts, reserving the 
name categorical data for datasets made up exclusively of categorical variables. Fre-
quency data have been tabulated, existing in an aggregated form. Categorical data, on 
the other hand, have not been aggregated or tabulated, existing as unaggregated raw 
data. 

Statistical methods for numerical data (correlation, regression, tests for mean differ-
ences, etc.) were developed early in the twentieth century. Advances in techniques for 
analysis of categorical variables, more common in the social and biomédical sciences, 
had to wait several decades before being developed to the same degree of generality. 
If techniques for analysis of categorical data were slow to develop, the invention of 
methods for visualization of categorical data had to wait even longer. Thus, while fre-
quency data analysis techniques came to a mature state only recently, the methods for 
its visualization are even younger, as it was not uncommon that books on frequency 
data analysis (except for correspondence analysis and related techniques) did not por-
tray graphical representations. Instead, activities such as exploring frequency data 
were carried out simply by examining the data in contingency tables. Graphical dis-
plays for categorical data were rarely utilized. 
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Yet, progress in visualization of categorical data continued, and the number of visu-
alization techniques applicable to categorical data eventually increased sufficiently to 
justify a book. This book, by Friendly (2000), described a wide range of graphical 
methods for fitting and graphing discrete distributions, two-way and «-way contin-
gency tables, correspondence analysis data, logistic regression, and log-linear and 
logit models; it also provided computational procedures and macros to perform these 
analysis. As a result, the book made a large variety of methods for visually exploring 
categorical data both available and accessible. 

However, Friendly's book focused exclusively on static displays; no mention, apart 
from a note in the introduction, was made of dynamic displays. This absence has an 
easy explanation: If visualization of categorical data was a relatively new subject, 
applications of dynamic concepts to this field have been even scarcer. This chapter, 
intended to complement Friendly's book, is limited to dynamic extensions of these 
techniques. 

As well, for reasons of space, we restrict our attention to dynamic techniques appli-
cable to frequency data. We also exclude methods that can be seen as simple exten-
sions of those discussed in other parts of this book, such as correspondence analysis 
(which can be displayed with linked scatterplots or biplots) and logistic regression 
(which can use dynamic plots similar to those discussed for regression analysis). 

The plan of this chapter is the following. First, we introduce the examples used to 
illustrate the techniques described in this chapter. Second, we explain techniques for 
interactive manipulation of frequency data arranged in tables. Third, we introduce 
interactive capabilities for multivariate frequency data graphics. Finally, we deal with 
log-linear models and how to specify them using an interactive graphical interface. 

5.1 Data 

In this chapter we will two datasets to exemplify the concepts we introduce. These 
datasets are introduced in the next two subsections. 

5.1.1 Automobile Efficiency: 

Table presents data about the country of origin (six categories) and the number of 
cylinders (four categories) of 38 automobiles sold in the United States in 1978-1979. 
The data are organized as variables. Notice that the metric of the variable Cylinders 
can be considered to be either numerical, ordinal, or categorical. We will take advan-
tage of its special status in our analysis. The country of origin variable is clearly cate-
gorical. Table 5.2 presents the same data, but this time organized as a cross-tabulation 
of the Country and Cylinders variables. 

5.1.2 Berkeley Admissions Data 

Table 5.3 shows data on applicants to graduate school at the University of California 
at Berkeley for the six largest departments in 1973 classified by Admission and Gen-

US 



Table 5.1 Automobile Data Organized as 
a Categorical Dataset 

Cars Cylinders Country 
Buick Estate Wagon 
Ford Country Squire Wagon 
Chevy Malibu Wagon 
Chrysler LeBaron Wagon 
Chevette 
Toyota Corona 
Datsun510 
Dodge Omni 
Audi 5000 
Volvo 240 GL 
Saab 99 GLE 
Peugeot 694 SL 
Buick Century Special 
Mercury Zephyr 
Dodge Aspen 
AMC Concord D/L 
Chevy Caprice Classic 
Ford LTD 
Mercury Grand Marquis 
Dodge St Regis 
Ford Mustang 4 
Ford Mustang Ghia 
Mazda GLC 
Dodge Colt 
AMC Spirit 
VW Scirocco 
Honda Accord LX 
Buick Skylark 
Chevy Citation 
Olds Omega 
Pontiac Phoenix 
Plymouth Horizon 
Datsun 210 
Fiat Strada 
VW Dasher 
Datsun 810 

8 
8 
8 
8 
4 
4 
4 
4 
5 
6 
4 
6 
6 
6 
6 
6 
8 
8 
8 
8 
4 
6 
4 
4 
4 
4 
4 
4 
6 
6 
4 
4 
4 
4 
4 
6 

U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
Japan 
Japan 
U.S. 
Germany 
Sweden 
Sweden 
France 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
Japan 
Japan 
U.S. 
Germany 
Japan 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
Japan 
Italy 
Germany 
Japan 

Table 5.2 Automobile Data Organized as a 
Frequency Table 

Country 

Sweden 

France 

U.S. 

Italy 

Japan 

Germany 

5 
0 

0 

0 

0 

0 

1 

Number of 

8 
0 

0 

8 

0 

0 

0 

Cylinders 

6 4 
1 1 

1 0 

7 7 

0 1 

1 6 

0 4 
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der (Bickel et al., 1975). This dataset has been used as an example of the application 
of log-linear models in several places (Agresti, 1990; Friendly, 2000; Rindskopf, 
1990; Valero-Mora et al., 2004). This dataset has three variables: Gender of appli-
cants (male/female), Department (A to F), and Admission (yes/no). For such data we 
might wish to study whether there is an association between Admission and Gender. 
Are male (or female) applicants more likely to be admitted? The presence of an asso-
ciation might be considered as evidence of gender bias in admission practices. 

Table 5.3 Berkeley Admissions Dataset 

Gender 

Male Female 

Admission 

A 

K B 

1 C 
a, i-> 

Q E 

F 

Yes 

512 
353 
120 

138 
53 
22 

No 

313 
207 
205 

279 
138 
351 

Yes 

89 
17 

202 
131 
94 

24 

No 

19 
8 

391 
244 

299 
317 

5.1.3 Tables of Frequency data 

An important advantage of frequency data over numerical data is that the former can 
often be completely displayed in a table so that readers can reach their own conclu-
sions or perform their own analysis. The compactness of frequency data also allows 
us to explore the data in a way that is very difficult to carry out with numerical data: 
by looking at the data directly, without resorting to computing any type of statistical, 
graphical, or numerica, summary. This is possible because tables of frequency data 
for two or three variables often contain only a handful of figures, which can be exam-
ined directly without much effort. 

Unfortunately, as explained in many introductory statistics books, absolute values 
of frequency data can be deceiving without consideration of the marginals of the vari-
ables (sum of rows or columns in cross-tabulations of two variables). Not taking this 
element into account would lead naively to considering a value to be too high or too 
low in a contingency table, when in fact it is the contrary. Absolute frequencies have 
to be adjusted in many cases to be interpreted correctly. 

A simple solution, which is often also discussed in introductory statistics books, is 
transforming the absolute values to percentages or proportions. These relative quanti-
ties are more amenable to correct interpretations, and in fact, many nonsophisticated 
users are convinced that tables of percentages and counts are the only frequency data 
analysis techniques they need. 

150 



5.1 Data 

As a result, large statistical packages have traditionally attempted to provide mod-
ules specialized on computing tables of frequency data. For example, SPSS and SAS 
both have components focused on displaying counts and percentages of categorical 
variables that can lay out the data in several ways (nesting, stacking, multiple 
responses) and formats (setting borders, titles, alignments, etc.). Indeed, many users 
of these packages feel that the capabilities featured by these modules fulfill their 
needs completely with respect to analysis of categorical data. 

Interactive manipulation of tables has emerged recently as a feasible approach to the 
exploration of frequency data for those users only interested in results such as propor-
tions or percentages. The classic statistical packages worked using commands, but 
recent updates have promoted interactive versions that can be manipulated using 
direct manipulation techniques. Also, some spreadsheets incorporate characteristics 
that are very similar to those portrayed by statistical software and that can be utilized 
for obtaining similar results. In this section we review methods and techniques that 
allow ua to carry out simple manipulation of frequency data interactively. 

The section is organized in two subsections: techniques for working with categories, 
and techniques for working with variables, in the former we examine reordering, join-
ing, and excluding the categories, and in the latter we discuss including/excluding, 
relabeling, computing percentages, setting the positions, and partitioning the varia-
bles. 

When regarded as appropriate, as in other parts of this book, we mention the statisti-
cal systems/packages that implement the features discussed here, but we also discuss 
features not yet implemented in any system. 

5.1.4 Working at the Categories Level 

We use the cross-tabulation of the number of Cylinders and Countries in Table 5.2 as 
the example for this subsection. A cursory examination reveals several problems with 
this table. First, the categories in the variable Cylinders are not sorted. Second, this 
table presents many "holes" (values equal to zero) that are caused, on the one hand, 
by countries that manufacture few models of cars (such as France and Italy), and on 
the other hand, by countries that have a bias regarding the number of cylinders they 
use (Germany and Japan focus almost exclusively on four-cylinder cars and eight-cyl-
inder cars are built only in United States). Third, the category of five-cylinders cars 
has only one representative (from Germany), creating a column almost completely 
empty. 

In this section we show interactive actions useful for manipulating the categories of 
variables to solve problems such as those displayed in Table 5.2. The actions are illus-
trated in Figure 5.1, which portrays a number of steps culminating in a table more apt 
for analysis and interpretation than the Table 5.2. The steps are explained one by one 
in the following paragraphs. 

Reordering. This operation can simplify and enhance, sometimes dramatically, 
the perception of associations in tables of frequency data. For example, it is very 
apparent that categories of the variable Cylinders in Table 5.2 might be sorted accord-
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Figure 5.1 Manipulating interactively the data in Table 5.2. 
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ing to their value. This action is performed interactively in panel B of Figure 5.1. 
Another reason for reordering the categories is to put together rows or columns that 
need to be compared (say, cars from United States with cars from Germany). Of 
course, tables could also be sorted according to numerical criteria such as the value of 
the frequencies or the principal effects. 

Joining categories. When the table has cells with values equal to zero, a possible 
solution is to combine some of the categories. These combinations should, however, 
take into account substantive reasons that justify the new categories. Let us see how 
we could do this in our case. As can be observed in Table 5.2, there are countries that 
manufacture only one or two vehicles. Since these cars are all european, we could cre-
ate a new category combining all of them together (panel C of Figure 5,1). 

Excluding categories. If combining a category with others is not feasible, we 
may prefer to exclude the category from the analysis. The only car with five cylinders 
in Table 5.2 is an example of this situation. Since putting this car's category in 
another category does not seem appropriate, we choose to exclude it from the table. 
After doing this, the marginal sums and totals must be updated (panel D). 

Interactively reordering categories is an operation usually available in spreadsheets 
but not in statistical packages. Joining categories, in turn, can not be performed as 
represented in Figure 5.1 by any program that we know, but the operations of selec-
tion and replacing in DataDesk can be a decent alternative for such tasks. Manet and 
Mondrian can perform this operation directly on the plots (see Section 5.2.2). Finally, 
excluding categories can be also carried out in DataDesk by using the selection oper-
ation. 

5.1.5 Working at the Variables Level 

Manipulations of tables at the variables level involves including or excluding varia-
bles in the table, combining variables (also called relabeling), computation of relative 
quantities such as percentages or proportions, and partitioning the table. 

Including/excluding variables. The Berkeley data provide an example where 
considering the cross-tabulation of only two variables, Gender and Admission, dem-
onstrates the difficulties that are associated with getting meaningful answers to the 
question of whether there is gender bias in the admission process. As shown in Table 
5.4, looking at this cross-tabulation suggests that Females are rejected more often 
than Males. However, this table ignores the information we have concerning the vari-
ous departments. As is shown in the last panel of the Figure 5.2, when the variable 
Department is included in the table we can see that females have higher admission 
probabilities in several departments. Indeed, had we ignored the division by Depart-
ment and focused on only two variables, we would have been grossly misled by Table 
5.4. 

On the other hand, sometimes we may wish to exclude a variable from tables if we 
find that it is independent of the other variable(s) being considered,. In this case, 
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Table 5.4 Percentage of Admissions by Gender in the Berkeley Dataset 

Gender 
Male 

Female 

Admission 
Yes No 

69.65 30.35 
55.48 44.52 

excluding a variable simplifies the presentation without biasing it, since the variable 
excluded is independent of the others. 

Including/excluding variables interactively in tables is available in some spread-
sheets. Dragging the variable in or out of the table will recalculate and show a new 
table. ViSta can add new variables to a table, but it cannot exclude them, so, to create 
a subtable, it is necessary to re-create the entire table. DataDesk does not allow 
including or excluding variables, but you can replace one for another. 

Relabeling. This technique consists of combining two, or possibly more, varia-
bles in a new one (Bishop et al., 1988). The new variable has a number of categories 
equal to the product of the number of categories in the combined variables. Bishop et 
al. (1988) present as an example a study of survival in breast cancer patients. This 
example had five variables: Degree of chronic inflammatory reaction (minimal or 
moderate-severe), Nuclear grade (malignant appearance, benign appearance), Sur-
vival (yes, no), Age (Under 50, 50-69, 70 or older), and Centre of diagnosis (Tokyo, 
Boston, Glamorgan). The goal of the study was to evaluate the effect of Centre of 
Diagnosis and Age on Survival. As the other two variables, Nuclear grade and 
Degree of chronic inflammatory reaction, were regarded as a description of the dis-
ease state and were interrelated, they were always to be present together in any model 
or analysis. Hence, the authors relabeled these both to a new one called Histology, 
with the four categories: malignant appearance-minimal inflammation, malignant 
appearance-greater inflammation, benign appearance-minimal inflammation, and 
benign appearance-greater inflammation. 

This manipulation is not implemented directly in any software package, but 
DataDesk and ViSta implement a transformation that combines two categorical varia-
bles straightforwardly. The variables created in this manner can be used for making 
tables with the variables relabeled. 

Computing percentages. Comparison of rows and/or columns of tables are facil-
itated if they show relative quantities such as percentages or proportions instead of 
absolute values. Row percentages, for example, allow us to compare the profiles of 
the rows of the tables and see whether they are similar across columns. Absolute val-
ues would make these comparisons much more difficult because of the differences in 
magnitude of the marginals of the tables. 

However, using percentages does not remove all the possible questions. First, we 
have the choice of computing different—row, column, or total—percentages for each 
cell of the table, and all of them give a valid but somewhat different picture of the 
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data (see the last part of Figure 5.1 for possible percentages for the car data). Hence, 
exploring the data becomes more effortful than when we consider only one figure for 
each cell. Second, ignoring absolute frequencies when interpreting the percentages is, 
as a rule, meaningless. For example, if the absolute frequencies are small for some 
rows or columns, high variations in percentages matter less than when the frequencies 
are large. In summary, percentages can be misleading if viewed out of context. 

The solution to the problem above employed by some statistical packages is to dis-
play several values in each cell of the table. Thus, each cell might include the absolute 
frequency and one or several percentages. This solution, however, overloads the 
tables and makes them difficult to read, so interactive programs let you hide or exhibit 
the figures using a menu or a control button (DataDesk or JMP, for example, use this 
approach). In this way, questions arising at any moment can be investigated by dis-
playing figures in the cells that had been kept hidden until then. Once they have been 
evaluated by the user, these figures can be hidden. Hence, interactive control over 
what is or is not shown in a table helps users evaluate tables of frequencies more eas-
ily. 

Arranging the variables in the table. Figure 5.2 gives an example of changing 
the layout for the data about admissions in Berkeley. Table 5.3 has been repeated in 
the upper part of Figure 5.2 to help the explanation. The main question to answer with 
these data is if there were different rates of admission for males and females in six 
departments. Admission is, therefore, the dependent variable, and Gender and Depart-
ment are the independent variables. Using the rule of putting the dependent variables 
in the columns and the independents in the rows, Table 5.3 should be modified so that 
the variable Gender is in the rows. Percentages of admission for males and females in 
each department could be used to explore such question. There are two possible ver-
sions of the table. Putting Gender first and Department second is not satisfactory 
because it makes difficult to carry out the comparisons of interest. The other layout, 
with Department first and Gender second, puts together the values for males and 
females in the departments, so it is easy to see that the differences in percentage of 
admission by department are quite similar except in department A, where females 
have an advantage over males of about 20%. 

Figure 5.2 suggests a way to change the position of the variables in the table interac-
tively. The method uses drag and drop of the names of the variables in the table into 
their new positions. This method of manipulating tables of frequencies is available, 
for example, in a very famous commercial spreadsheet. By using this method, the 
user can easily explore different configurations of the tables, facilitating the process 
of searching a layout that responds better to the problem at hand. 

Partitioning the table. Complex tables can be simplified by choosing a category 
of a variable and showing the frequencies of the rest of variables conditioned to this 
category. In the context of maximum likelihood estimation, Bishop et al. (1988) sug-
gest that this strategy is particularly useful when the variable used for partitioning is a 
dichotomy variable. SPSS calls this feature layers, and it provides the capability of 
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5 Seeing Frequency Data 
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Figure 5.2 Arranging the variables in the table. 
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combining several variables in each layer. This strategy allows us to reduce the com-
plexity of large tables by focusing sequentially on one category at a time. 

5.2 Frequency Plots 

We mentioned earlier that until recently the graphics for categorical data were not as 
well developed as their counterparts for numerical data. Also, the coverage of statisti-
cal software of the graphical methods for categorical data were not as systematic as 
for quantitative data. Finally, even in the case that methods for visualizing categorical 
data were available and had been implemented in statistical packages, it still hap-
pened that users of statistics lack the habit of using them on an everyday basis as often 
as they might. 

However, recent advances in graphical methods for categorical data have paved the 
way for changing the situation above, as new visualization displays have been devel-
oped with the aim of being comparable in scope to those available for quantitative 
data (Friendly, 2000b). Of these, mosaic displays (Friendly, 1994, 1995; Hartigan and 
Kleiner, 1981, 1984) have probably created more interest, as they possess a property 
not easily found in other displays: they extend naturally to multidimensional tables. 
This contrasts with previous methods, which were limited to one- or two-way views 
of categorical data. 

An example of the power of mosaic displays was given by Hartigan and Kleiner 
(1984), who presented a mosaic display of a 3 x 6 x 7 x 1 2 table (1512 cells!). 
Indeed, this display required some study to be understood, but much less than would 
be necessary to see any pattern directly in the table of frequency data. 

In this section we focus exclusively on dynamic interactive versions of mosaic dis-
plays. Readers interested in a complete account of static displays for categorical data 
can refer to (Friendly, 2000b) for a discussion of several techniques specific to differ-
ent situations. We do not examine other graphics for frequency data, though, as the 
main focus in this book is on the dynamic interactive extensions to the graphics, not 
the displays themselves. Hence, we restrict ourselves to a display of more interest 
with the hope that lessons taught here can be applied to other situations if needed. 

This section is divided in two parts. First, we describe the basic features of mosaic 
displays, to indicate what they show and how to read them. Then we describe the par-
ticular interactive features that are useful for dynamic graphics. We use as an example 
the Berkeley data, introduced in Section 5.1.2. 

5.2.1 Mosaic Displays 

Mosaic displays are graphical methods for visualizing n-way contingency tables and 
for visualizing models of associations among its variables (Friendly, 1999). The fre-
quencies in a contingency table are portrayed as a collection of reticular tiles whose 
areas are proportional to the cell frequencies. Additionally, the areas of the rectangles 
can be shaded or colored to portray quantities of interest, such as residuals from a log-
linear model (discussed in Section 5.3). 
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A mosaic plot can be understood easily as an application of conditional probabili-
ties. For a two-way table, with cell frequencies «; and cell probabilities /?,•• = n;,-/n++, 
a unit square is first divided into rectangles whose width is proportional to the mar-
ginal frequencies ni+, and hence to the marginal probabilities pt: = ni+/n++. Each 
such rectangle is then subdivided horizontally in proportion to the conditional proba-
bilities of the second variable given the first, p-, ■= nt,■/«,■+ . Hence, the area of each 
tile is proportional to the cell frequency and probability, 

ni+ na 
1 ' "++ ni+ 

The steps above are exemplified for the three variables of Berkeley data in Figure 
5.3. There are three mosaic plots in this figure. The first step splits the entire rectangle 
into two areas proportional to the categories of Gender, so we can see that there are 
more males than females in the data. The second step divides the previous tiles (male/ 
female) according to the number of applicants in each department. These new tiles 
would align vertically in the two columns if the proportion of males and females was 
the same in all departments. However, the plot reveals that there are more male than 
female applicants in departments A and B, while departments C to F have relatively 
fewer male than female applicants. Finally, the third mosaic plot displays Admission 
given the other two variables, Gender and Department. There is much information in 
this last display. As an example, the two tiles for the males in department A (marked 
with a thicker border) show that about two-thirds of males were admitted and one-
third rejected at this particular department. This contrasts with the results for females 
at this department (upper-right corner), which have larger proportions of admission 
(80%). 

Spacing of the tiles of the mosaic provide an important aid for interpretation when 
there are more than two variables in an axis. This can be observed in Figure 5.3, 
where the separation between the categories of Gender is larger than for the catego-
ries of Admission, making it easier to see the building blocks of the mosaic display. 
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Figure 5.3 Building a mosaic plot for the Berkeley data. 
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A guide for interpreting mosaic displays is how the tiles align at the various splits. 
Nonaligned tiles mean that there is interaction between the variables, and aligned 
tiles, that the variables are independent. For example, we know that there is an inter-
action between Gender and Department in the second display in Figure 5.3 because 
the horizontal lines do not align. The lack of alignment of vertical lines in the third 
display of Figure 5.3 reveals the interaction between Admission and Department 
given the categories of Gender. Finally, we can compare the profile of these vertical 
lines for both genders to see if there is interaction between Gender and Admission. 
The lines have similar profiles across Gender except for department A, suggesting 
that there is no interaction for the rest of the departments. In other words, fitting a 
three-way interaction model to the data of all the departments apart from department 
A would be unnecessary in this case. 

Static implementations of mosaic displays are available in some commercial pro-
grams (JMP, SAS, SPlus). As well, now there is noncommercial software that sur-
passes in many respects the commercial software. For example, MOSAICS (Friendly, 
1992), which is available as a web page on the Internet, computes mosaic displays, 
log-linear models, and has interactive capabilities such as querying the mosaic bars to 
see the frequency or the residual values of the cells. The free R implementation of the 
S language provides the vcd package containing mosaic plots. Also, two programs 
developed at the University of Augsburgh, Manet (Hofman, 2003; Unwin et al., 
1996) and Mondrian (Theus, 2003), are available as free downloads. Finally, the pro-
gram ViSta (Valero-Mora et al., 2003, 2004) has interactive mosaic plots and a mod-
ule for log-linear analysis. 

Notably, the free software features a large number of dynamic interactive character-
istics. These characteristics are reviewed in the next subsection. 

5.2.2 Dynamic Mosaic Displays 

In the following part of this section we discuss dynamic features that are, or could be, 
implemented in software for mosaic displays. Notice that none of the programs men-
tioned in Section 5.2.1 has all the characteristics discussed below, and also, that the 
specific details of how a user interacts with the program in each case may vary impor-
tantly. Hence, this section should not be considered as a review of existing software 
but as a summary of the features that all the programs offer at the moment. 

Some of the dynamic manipulations of mosaic displays discussed here are very sim-
ilar to those that can be performed on tables of frequency data (Section 5.1.3). There-
fore, in some cases, we use the same headings that we used in that section. 

Including/excluding variables. Exploration of data often starts with a number of 
variables to be displayed that can be reduced or increased depending on the questions 
asked. This action could be carried out by dragging the variables in and out of the dis-
play's window, using the same method already described for frequency tables in 
Section 5.1.5. 
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ViSta is the only program that provides the choice of drawing the mosaic displays 
interactively, by adding to the display sequentially variables selected from a list. 
However, the operation of excluding variables interactively is not supported. 

Arranging the variables in the display. As shown in Figure 5.4, mosaic displays 
have a different look depending on the position of the variables. So, for the variables 
in the Berkeley data, we can draw six different displays. As different positions 
emphasize different aspects of the data, it seems important to provide ways of chang-
ing them. 

Manet and Mondrian both have a vertical list of the variables that can be altered by 
dragging up or down one variable at a time. The list so modified indicates a new order 
of the variables in the display that replaces the one used as default by the software. As 
an application of this technique, let's focus on the mosaic displays [2,1] and [1,2] in 
Figure 5.4. Both displays have Admission as the last variable, but one can be obtained 
from the other simply by exchanging the other two variables. Although both displays 
allow us to learn the lesson of bias in department A, we find [1,2] easier to interpret, 
but this can be a subjective opinion. 

Reading the labels and the values. The mosaic display is very successful incon-
veying global impressions of the data, but sometimes we wish to see the exact labels 
and values. However, as displays with too many details may look ugly, interactive 
versions of the mosaic can hide them until the user interrogates the plot. 

Figure 5.4 Mosaic displays for the Berkeley data. 
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Labels of the categories may be placed at the axis of the mosaic, but in the opinion 
of some people, they ruin the aesthetics of the display. Thus, they argue that mosaic 
displays can be deciphered without resorting to putting labels of the categories, sim-
ply using interactive interrogation of the display. This approach is used in Manet and 
in Mondrian. ViSta and MOSAICS both include labels for the categories in a display, 
but it is also possible to interact with the plot to visualize the labels if, for reasons of 
space, they do not fit. 

The area of the bars of a mosaic display portray the relative value of the cells of the 
frequency table. However, if relative values are not enough and it becomes relevant to 
check the absolute value of a cell, all the programs discussed here can show the exact 
value of the cells by interacting with the bars of the mosaic display. Additionally, as 
the bars can use colors to represent other values, such as residuals of log-linear mod-
els, interrogating the bars displays the exact value of a cell's residual. 

Connecting columns or rows. In the presence of interaction, columns and rows 
of mosaic displays are not aligned. This creates a problem when reading a mosaic, as 
it can be difficult to match the rectangles that correspond to the same categories. 
ViSta addresses this problem via a feature called Connect, an example of which is 
shown in the third plot of the first row of Figure 5.4. The arrow denotes that the user 
has selected a rectangle in the display with the Connect columns option activated. The 
result of activating this option is that the other rectangle corresponding to the same 
column as the one selected has also been selected. 

Relabeling. Standard mosaic plots are built, as described above, by splitting the 
square alternately in the horizontal and vertical directions. An example of a standard 
mosaic plot is Figure 5.5 left. This display has Department and Gender on the hori-
zontal axis and Admission on the vertical axis. This plot is the same as the one shown 

Figure 5.5 Changing the direction of the split 
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at [2,6] in Figure 5.4. At this case, the critical comparison of Admission for Males and 
Females within Department A is carried out looking at the difference of widths 
between the bars marked with a thicker border in Figure 5.5 left. The bars on the left 
are for Males, and the bars on the right are for Females. As the empty spaces between 
the two bars for Admission=Yes and the two bars for Admission=No are not aligned, 
the bars indicate interaction of Gender and Admission within Department A. Interpre-
tation of this interaction is effectuated by examining the difference of width of the 
bars for Males or Females. As an example, it can be appreciated that the bar for 
Females admitted is wider than the bar for Females non admitted, while the reverse is 
true for Males. This points to the aforementioned advantage of Females over Males in 
Department A. 

Figure 5.5 right portrays the same variables and in the same order as Figure 5.5 left, 
but after combining the variables Department and Gender in a variable, and then 
using the resulting variable for making the display. We saw this operation applied to 
frequency tables on Page 154 with the name of Relabeling. The advantage of this ver-
sion of the mosaic display is that the critical comparisons of Males and Females is 
now done along the vertical direction. 

As an example, the comparison of the levels of Admission=No for Males and 
Females turns out to be the difference of height between the two bars with a thicker 
border in Figure 5.5 right. This comparison portrays the differences already men-
tioned very clearly. 

Reordering categories. Categorical variables are usually unordered, but we are 
free to arrange the categories in ways that best reflect the nature of the data. Friendly 
(Friendly, 1994) uses the information about residuals from a model to reorder the cat-
egories, so that the positive residuals fall in one corner of the mosaic, and the negative 
residuals in the other. This reordering makes more apparent the over-representation 
and the under-representation of some cells with respect to the model analyzed com-
pared to the unordered version. 

We saw examples of reordering tables of frequency data in Section : Reordering. 
MANET and Mondrian feature manual reordering of the categories of mosaic plots 

via a linked bar chart. Dragging a bar in the bar chart using the mouse causes the auto-
matic change of the linked mosaic display. 

Joining/excluding categories. We discuss this feature applied to frequency tables 
in the sections named Joining categories and Excluding categories on Page 153. 
Mosaic plots seem a natural place for including features of this type, but, unfortu-
nately, any of the programs considered here support this characteristic. 

Activating elements. Activation of elements is normally a step that is performed 
before a subsequent action performed on the element selected. However, if the ele-
ment selected is emphasized using any type of effect (color, thickness, etc.), the acti-
vation can be used for analysis too. 

Activation in mosaic plots is implemented in MANET and Mondrian. Clicking on 
each of the rectangles activates the whole rectangle, which shows up in a different 
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color than the one used by default. Activation is of special importance if used in com-
bination with linked views. 

Linking views. We saw linking in Section 4.3.1 and mentioned that it was a gen-
eral concept that included several aspects. One aspect of linking applied to mosaic 
displays was mentioned when we discussed that reordering the categories in a bar 
chart automatically reorders the category in a linked mosaic display. 

Another aspect of linking relevant to mosaic displays, or graphics of categorical 
data in general, is of linked activation. This feature refers to selecting elements in a 
graph so that the same entities (observations or groups) in other (linked) graphs are 
also activated. The archetypical example of linked views is linked scatterplots, but the 
concept can be applied to categorical displays. 

Linked activation in mosaic displays differs from the scatterplot situation because 
its source is aggregated data. Therefore, activating a region in a mosaic display acti-
vates the entire class of values to which this region refers, such as when selecting a 
rectangle in a mosaic display activates the corresponding elements in other plots that 
this rectangle summarizes. This is not a problem if we are working with frequency 
(i.e., aggregated) data, but if we have a dataset with mixed variables, we are moving 
from one-to-one relationships to one-to-many relationships. The existence of one-to-

Figure 5.6 Linking frequency data. 
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many relationships is the point where categorical displays differ from the standard sit-
uation. 

Figure 5.6 is a representation of the various scenarios for linked activation when 
frequency data are involved. The figure has three different plots of a hypothetical 
dataset composed of five variables: two numerical (displayed in an scatterplot) and 
three categorical (the first one displayed in a bar chart and the other two in a mosaic 
display). The scatterplot shows regression lines both for all the points and for the 
points selected . Let's suppose that the user interacts with the first plot in each row. 
The situations and a short account of the results follow: 

1. The user selects a bar in a bar chart. This is equivalent to selecting all the 
observations in a given category. This results in selecting a group of points in 
the scatterplots and parts of the mosaic display. 

2. The user selects a cell in the mosaic display. The effect is to select a group of 
points in the scatterplot and (partially) several bars in the bar chart. 

3. The user selects a group of points in the scatterplot. This produces the partial 
selection of bars in the bar chart and in the mosaic plot. 

Manet and Mondrian are the only programs that implement linked activation in 
mosaic plots currently. 

5.3 Visual Fitting of Log-Linear Models 

In the previous sections we have shown how to use tables and graphics to describe 
frequency datasets and to get a first impression of important features of the data such 
as individual values, patterns, or associations among the variables. As an example, the 
percentages in the last table of Figure 5.2 could be used to describe the possible bias 
in the Berkeley data and how one of the departments differed notably from the rest. 
As it is usually good practice to spend some time looking at the data with these basic 
tools in the initial phases of data exploration, we believe that the dynamic interactive 
extensions introduced above have a considerable interest for those performing statisti-
cal analysis with frequency data. However, if we want to test whether our descriptions 
actually fit the data, we need to go an step further and specify models that can be 
compared to our data. 

Although there are several alternatives available with this same purpose, log-linear 
models provide the most comprehensive scheme to describe and understand the asso-
ciation among two or more categorical variables. For this reason, log-linear models 
have gained wide acceptance in recent decades, and every major statistical package 
now includes capabilities for computing them. Also, there are several excellent text-
books that address this subject (Agresti, 1990; Andersen, 1996; Ato and Lopez, 1996; 
; Christensen, 1990), all at intermediate or advanced levels. Indeed, log-linear models 
for testing hypotheses for frequency data have a status similar to that of classical tech-
niques such as regression or ANOVA for testing hypotheses for numerical data. 
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Unfortunately, despite the recognition currently enjoyed by log-linear models, 
dynamic interactive software for computing them is not as advanced as for numerical 
data. Thus, many of the features that have been implemented successfully for numeri-
cal data, discussed in the first part of this book, are absent from the programs for com-
puting log-linear models. 

However, the freeware programs mentioned in the introduction to Mosaic displays 
(Manet/Mondrian, MOSAICS, and ViSta), feature dynamic interaction applied to log-
linear models. Thus, all these programs incorporate interactive tools for specifying, 
computing, and then displaying diagnostics of log-linear models. Furthermore, as 
these diagnostics may suggest modifications to the model, the programs also make it 
easy to modify the model and see the consequences in the diagnostics, using what can 
be called interactive stepwise procedures. In summary, these programs illustrate ways 
that dynamic interactive features can also be applied to the modeling of frequency 
data. 

In the rest of this section, we review the features of the log-linear model module in 
ViSta. This module, named LoginViSta, works as a plug-in (i.e, it can be modified 
externally without modifying the internals of ViSta. The main advantage of Login-
ViSta over programs mentioned previously lies in its flexibility for specifying all 
types of log-linear models. Another unique feature of LoginViSta is a spreadplot that 
integrates a number of graphic and numerical diagnostics for models, some of which 
are very innovative. The section is organized according to the elements in the Login-
ViSta spreadplot and the way they work together to supply an interactive dynamic 
environment for log-linear models. 

5.3.1 Log-Linear Spreadplot 

A log-linear model can be understood as a linear model (regression or ANOVA) for 
the logarithm of the frequencies or counts of the frequency data table: 

log m = Xß 
where m is a column vector of fitted frequencies, X is the model matrix (sometimes 
called a design matrix) and ß is a column vector that contains the parameters. As the 
predictors are all categorical, they have to be coded according to one of the habitual 
methods. For example, for a 2 x 2 table, the saturated model (which includes all the 
main effects and interactions for a dataset) with dummy coding (the one used 
throughout this section) can be represented as 
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The formulation of log-linear models in the form of linear model puts them into the 
framework of generalized linear models (GLM's) (McCullagh and Neider, 1989), a 
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framework that also includes models such as the logistic regression, Poisson regres-
sion, and the standard model with normally distributed errors. This formulation has 
the advantages that any log-linear model may be expressed in a compact form and 
that it is easy to express variations with respect to basic models. 

The design matrix can be used to set a large variety of models. Of these the most 
important type are those called hierarchical models, which are specified such that 
when a term is included in the model, all the lower-order effects are also included. 
Nonhierarchical models do not follow the rule of including all the lower-order effects 
of the terms included in the model. Nonhierarchical models are more flexible than 
hierarchical models, but those, in turn, are easier to interpret, as in many applications, 
to include a higher-order interaction without including the lower interactions, is not 
meaningful (Agresti, 1990; Vermunt, 1997). However, there are occasions where 
nonhierarchical models can be interpreted in a reasonable manner, often providing 
alternative explanations to those provided by hierarchical models (Rindskopf, 1990). 

Finally, if one of the variables in the study can be considered as dependent and the 
rest as independents, the model can be formulated as a logit model. Logit models are 
traditionally regarded as different from log-linear models, but it can be proved that 
there is an equivalent log-linear model for each logit model. Logit models are simpler 
to analyze than log-linear models because they assume that the main effects and the 
interactions of the independent variables are already included in the model. This has 
the advantage that specifying, testing, plotting, and interpreting the results of logit 
models is considerably easier than doing the same for equivalent log-linear models. 
All these different models can be specified via the design matrix. 

Log-linear models are specified in ViSta using the spreadplot shown in Figure 5.7. 
We discuss the panels of the spreadplot in the following sections, from left to right, up 
to down, as follows: 

• Model builder window. Specification of log-linear models, hierarchical and 
not hierarchical, is carried out using this window. This panel is discussed in 
Section 5.3.2. 

• Predicted and observed mosaic plots. Mosaic plots are explained in 
Section 5.2 and this panes is discussed in Section 5.3.3. 

• Past models window. This window gives an overview of the process of mode-
ling. This window can be used to rewind the analysis to any prior model. This 
pane is discussed in Section 5.3.4. 

• Parameters plot. Parameters are an important, if cumbersome, element to con-
sider for interpreting a model. This plot provides a visual help for such task. 
This panel is discussed in Section 5.3.5. 

5.3.2 Specifying Log-Linear Models and the Model Builder Win-
dow 

One of the key points of software programs for fitting log-linear models is how easily 
they let the user specify the model. Although some programs allow writing the model 
matrix manually, the process is too time consuming and error-prone to be practical, 
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especially when there are more than two variables to consider and several models to 
test. Hence, command-oriented software programs for log-linear analysis define spe-
cial notations that alleviate the task considerably, as they write the model matrix from 
succinct high-level descriptions of the model. So the saturated model for a dataset 
with three variables, with names A, B, and C can be indicated simply as [ABC]. 
These command-oriented programs give control over several elements of the model 
matrix, empowering the user to test many possible variations from the basic models. 
Examples of programs with this capabilities are GLIM, LEM (Vermunt, 1997), and 
the procedure CATMOD in the SAS system. The LOGLINEAR procedure in SPSS 
can also be used to construct contrasts for testing nonstandard models. Of course, S, 
R, and S-Plus also have superb capabilities for log-linear modelling. 

At this time, however, the programs that use graphical user interfaces do not pro-
vide all the capabilities of those based on commands. The number and type of models 
that can be fitted taking advantage of interactive techniques is typically very low 
compared with the large number of possible log-linear models discussed in the litera-
ture. In particular, hierarchical models are sometimes well covered, but nonhierarchi-
cal are usually no covered. The problem seems to stem from the complexity of 
designing an interactive dynamic visual matrix language for specifying the model. 

In the rest of this subsection we show how to specify log-linear models using Login-
ViSta, using as examples some models that could be considered for the Berkeley 
dataset introduced in Section 5.1.2. 

Models for the Berkeley dataset. The Berkeley dataset has three variables— 
Admission (A), Gender (G), and Department (D)—with a total of 2 x 2 x 6 cells. The 
saturated model for this example, denoted [AGD], is 

A G D AG AD GD ADG 

\ogmijk = p. + X. + Xj + Xk + Xtj + Xik + Xjk + Xijk (5.2) 
This model fits perfectly but is the least parsimonious because the number of parame-
ters equals the number of cells in the table. A more interesting model would be the 
one excluding the Gender x Admission interaction. This model, in case of fit, would 
dismiss the gender-bias admission hypothesis. The model is 

A G D AD GD 

logmijk = n + X{ + Xj + Xk + Xik + Xjk (5.3) 
This model is still a hierarchical model, as all the lower interactions of the terms in 
the model are included. This model is denoted as [AD][GD]. The parameters of this 
model can be interpreted in the following way: 

• XA, XG;, and Xf are related to the differences in one-way probabilities. Thus, 
the parameter for Gender is related to the differences in the number of male 
and female applicants. 

• Xik describes the association between Admission and Department. These 
parameters reflect the degree to which departments differ in their admission 
rates. 

• XUD refers to the different rates of males and females applicants across the 
departments. 
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Figure 5.7 
Spreadplot for visual 
fitting of the log-linear 
model to frequency data. 
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If model (5.3) does not fit, a model that includes the Gender x Admission interac-
AG 

tion should be tested. This model would simply add the À, term to the previous 
model. However, this model could be found excessive, as it states that gender bias 
occurs in a generalized way in all departments. Another option is to consider the non-
standard model in which the interaction Gender x Admission occurs only in some 
departments. This can be tested expanding the three-way interaction term and select-
ing the departments of interest. For example, the following model would address 
whether department A presents some bias: 

, „A ,G .D „AD GD .ADG ,CA. 

logmijk = \i + Xi +Xj + Xk + Xik + Xjk +dK=Aliß (5.4) 
where 8 = 1 if k = A or 0 otherwise. This model asserts that Gender and Admis-
sion are independent except in department A. 

Model builder window. Figure 5.8 shows the operations that are possible with 
the model builder window. This figure represent each operation by using two pic-
tures; the first one displays the menu before the user acts, and the second, after. We 
use the pictures to illustrate the functioning of the model builder window in 
LoginViSta. 

The model builder window lists all the main effects and interactions of the variables 
in the model. The first illustration shows how the window works hierarchically (i.e., 
clicking on an item selects all the items in the hierarchy included in that item). Thus, 
clicking on the last item, the highest in the hierarchy, selects all the items. The second 
illustration provides another example; clicking on the Gender x Department term also 
selects the main effects Gender and Department. The window also has a non-hierar-
chical mode that allows selecting individual items in the list (and consequently, spec-
ifying nonhierarchical models). The third illustration illustrates deselecting of model 
terms. Again this function works hierarchically, which hinders deselecting an item if 
other items higher in the hierarchy are still selected. 

Notice that as the process of building log-linear usually starts with the saturated 
model, deselecting terms is often the most used action. It is usual that the analysis sets 
off in the saturated model and proceeds by removing terms from the model. The proc-
ess stops when a parsimonious model with satisfactory fit is reached. 

The fourth illustration shows how to add a specific vector to the design matrix. 
Clicking with the right button on a nonselected item pops up a menu with a list of the 
parameters for the term. The specific example in Figure 5.8 displays the parameters 
for the three-way interaction Admission x Gender x Department. Selecting the param-
eter for department A adds it to the list of terms and interactions. This makes it possi-
ble to fit the nonstandard model shown in equation (5.4). 

5.3.3 Evaluating the Global Fit of Models and Their History 

For each log-linear model that we may fit a dataset, there are overall or global meas-
ures of goodness of fit, described below. In practice, we usually want to explore sev-
eral alternative models and choose the simplest model that achieves a reasonable 
goodness of fit. In an interactive setting, we introduce the idea of a history plot, show-
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Figure 5.8 Model builder window of Login ViSta. 
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ing a comparative measure of fit for all models contemplated. The interactive features 
of this history plot also allow you to return to a previous model (by selecting its point) 
or to make model comparisons. 

Tests of global fit. The most commonly used measures of how well the model 
reproduces the observed frequencies are the familiar X Pearson statistic, 

x2=y(" , - -w,- ) 2 

« i 

and the likelihood ratio or deviance statistic, 

G2=2£nilog(nt/m) 

where the ni are the frequencies observed and the mi are the expected frequencies 
given the model considered. Both of these statistics have a X distribution when all 
expected frequencies are large. The (residual) degrees of freedom is the number of 
cells minus the number of parameters estimated. In the saturated model the deviance 
(or Pearson X ) is zero and the degrees of freedom are also zero. More parsimonious 
models will have positive values of deviance but also more degrees of freedom. As a 
rule of thumb, nonsaturated models fit the data if their deviance is approximately 
equal to their degrees of freedom (or the ratio x /df is not too large). 

The deviance is unique in that it can be used to compare nested models. Two mod-
els are nested if one of them is a special case of the other. Comparison of models pro-
vides a way of focusing on the additional effects of the terms included in the larger 
model. 

Plot of the history of models. Figure 5.9 is a plot of the history of the values of 
fit obtained along a session of modeling. The points in the plot represents the values 
of X /df for five models for the Berkeley data (we could have used the deviance in 
this plot, too). Values close to 1 mean that the model fits well. Labels of the points 
identify the models considered. This plot allows us to see the process of model fitting 
at a glance. 

The example in Figure 5.9 portrays the following sequence of analysis: 

1. The plot starts with the saturated model [AGD], which fits perfectly. 

2. It continues with the model with all the two-way interactions, which does not 
fit well. 

3. The model that evaluates the hypothesis of no gender-bias effect is tested (no 
[AG] term), but its fit is still not satisfactory. 

4. As preparation for testing model 5, the category of reference for the variable 
Department, set at this moment to A, was changed to F. This produces model 
4, which has the same fit and terms as model 3. 
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5. Finally, the model testing the interaction of Gender and Admission was tested 
only for department A . This model has a good fit as shown in Figure 5.9. 

The history plot in LoginViSta is not only a way of representing the successive val-
ues of fit of the models considered but a control panel for managing the process. The 
actions that can be performed from this panel are the following: 

• Selecting a point in the plot changes all the plots in the spreadplot of Figure 
5.7 to display the values of the model symbolized by such a point. This action 
allows you to review models fitted in the past. 

• Selecting two points (two models) produces a model comparison test. Login-
ViSta checks if the models are nested before the actual test is accomplished. If 
the comparison is appropriate, a test of significance of the difference in devi-
ance is displayed in a separate window. 

Other actions that could be added to this plot are the capability of removing points, re-
arranging them, and supporting different threads (using lines of different colors) and 
of other goodness-of-fit indexes. In summary, to find an adequate parsimonious 
model, the plot in Figure 5.9 could be extended to manage completely the process 
usually followed. 
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Figure 5.9 History of models applied to Berkeley data. 
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5.3.4 Visualizing Fitted and Residual Values with Mosaic Displays 

For a log-linear model, residuals provide important information regarding the ade-
quacy of the model. Outlier cells (with large absolute residuals) may indicate particu-
lar levels of some factor that are not well explained by the current model, as we saw 
in the Berkeley data. More generally, the pattern of signs and magnitudes of residuals 
may suggest a better model. Mosaic plots are an excellent way to display residuals 
from a fitted model in the context of a picture of the data. 

Another use of mosaic plots is related to understanding the constraints imposed by 
models. Mosaic plots of fitted values (instead of observed) show the assumed rela-
tionship between variables in a graphical way, illustrating the consequences of intro-
ducing or removing terms in the model. Also, comparisons of fitted and observed 
mosaic plots provide a visual check of fit of the model. 

In this section, we review the formulas for residuals, including an example of the 
problems that arise using point plots. Then we show how using predicted and 
observed mosaic displays can be a good alternative for visualizing these residuals. 

Residuals for log-linear models. For a log-linear model, raw residuals are the 
difference between the values predicted and observed in the cells. However, raw 
residuals are of little use, as cells with larger expected values will necessarily have 
larger raw residuals. The Pearson residuals 

n; — rhj 
g. = ' ' 

jm~ 

are properly scaled and approximately normally distributed, but they depend on the 
leverages of the matrix of the predictors. Therefore, one may define adjusted residu-
als (Agresti, 1990; Friendly, 2000b; Haberman, 1973): 

n; -m 
r. = 

yjihjil-hii) 

(where hu is the leverage or hat value computed as in any generalized linear model), 
which are standardized to have unit asymptotic variance. 

To check for cells that deviate from normality, the adjusted residuals can be plotted 
using a normal probability plot. However, the constraints imposed by the model have 
consequences that make this type of plot less useful than it might be. We will provide 
an example using the Berkeley data introduced in Section 5.1.2. Table 5.5 contains 
the residuals of the model [AD][GD] [see equation (5.3)], which asserted that there 
is an interaction for Admission and Department, and for Department and Gender, but 
not for Gender and Admission (i.e., there is no gender bias). As signaled by Agresti 
(1990), this model imposes the constraint that the sum of interactions predicted 
between the categories of Department and those of Gender be the same. A bit of 
manipulation shows that the residuals for each department are the same in absolute 
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Table 5.5 Residuals for Model [AD] [GD] 

Ik 

A 

B 

C 

D 

E 

F 

S 
O 

Female 

Male 

Female 

Male 

Female 

Male 

Female 

Male 

Female 

Male 

Female 

Male 

Admission 

Yes 

4.15 

-4.15 

0.50 

-0.50 

-0.87 

0.87 

0.55 

-0.55 

-1.00 

1.00 

0.62 

-0.62 

No 

4.15 

4.15 

-0.50 

0.50 

0.87 

-0.87 

-0.55 

0.55 

1.00 

-1.00 

-0.62 

0.62 

values, but with changed signs. Now, notice that a normal probability plot would be 
less than ideal in this situation because it would not reflect such a structure in the data. 
Mosaic displays, discussed in Section 5.2, are a good alternative to Table 5.5 because 
they can be laid out to reflect such structure. 

The Predicted and observed mosaic plots. Figure 5.10 shows two mosaic dis-
plays for the model [AD][GD] for Berkeley data. These plots use transformation 
[see or discussion on relabeling in Section 5.2.2; in fact, Figure 5.10 right is the same 
as Figure 5.5 right except for the coloring]. 

Figure 5.10 Mosaic plots for model [AD][GD] for Berkeley data. 
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The mosaic display on the left of Figure 5.10 has tiles proportional to the values 
predicted for the model, while the mosaic display on the right has tiles proportional to 
the values observed. Notice that as the model specified excludes interaction between 
Gender and Admission, the horizontal lines within each department are parallel in the 
mosaic plot for values predicted . Comparison of these lines with the lines in the dis-
play for the values observed reveals that the predictions are generally correct except 
for Department A (and perhaps B). This points to the aforementioned lack of gender 
bias except for department A (and perhaps B). 

The previous impression can be reinforced by looking at the residuals of the model. 
Residuals are typically represented in mosaic displays using two colors (usually red 
for negative residuals and blue for positive residuals), the greatest intensity of the 
color representing the extreme of the values. Thus, pure blue would stand for very 
extreme positive residuals and pure red for very extreme negative residuals. Finally, 
cells with null residuals are displayed in white. 

Nevertheless, as the previous scheme does not transfer well to black-and-white pub-
lications, we have chosen to employ one that uses pure black and pure white to repre-
sent the maximum and minimum residual values (those for department A), and a 
middle gray residual equal to zero. This scheme is not as effective as one based on 
colors but can work well if the patterns of residuals, as is our case, are simple. 

Examination of Figure 5.10 portrays the residuals of the model [AD][GD]. 
Department A has the most extreme residuals under the model specified, being posi-
tive for admission of females and rejection of males, and negative, vice versa. The 
remaining departments are colored with similar, close to intermediate, levels of gray. 
In summary, the model [AD][GD] copes well with departments B to F, but not with 
department A. 

5.3.5 Interpreting the Parameters of the Model 

Parameters of log-linear models are an important tool for interpretation of results 
based on log-linear analysis. We mentioned in Section 2.3 that log-linear models 
could be understood as linear models of the logarithm of the frequencies. Therefore, 
in much the same way that parameters provide an essential tool for understanding 
regression models, they are also fundamental for log-linear analysis. 

However, parameters for log-linear have a reputation for being difficult to interpret, 
as "attested by the frequency of articles on the topic" and that "they devote considera-
ble space to correcting the errors of their predecessors" (Alba, 1987). Therefore, it is 
not unusual that researchers do not take full advantage of their potentiality and that 
parameters remain underused. 

Software for log-linear analysis has not helped to ease this situation. Many of the 
programs do not print the coefficients of the parameters for the models very clearly, 
so that to understand this part of the output, researchers need considerable diligence. 
The common flaws are excessively long outputs, without proper labels and with no 
indication of aspects of computation necessary for correct interpretation (e.g., the 
coding used). 
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The display included in LoginViSta is, on one hand, an attempt to organize this part 
of the output of log-linear analysis, but on the other hand, is also a way of supporting 
the task of interpreting the parameters of log-linear analysis. This last goal is reached 
by providing a set of interactive tools that interrogate the plot to obtain automatic 
interpretations of the meanings of the parameters. These explanations decrease the 
cognitive burden of interpreting the parameters. 

Our plan in this section is to review the theory necessary for the interpretation of 
parameters of log-linear models and then proceed to a description of the plot of 
parameters. 

Interpretation of parameters. The meaning of the parameters in log-linear mod-
els depends critically on the type of coding used. Two types of coding, effect coding 
and dummy coding are the most commonly used (see, e.g., Rindskopf, 1990). The fit-
ted values are the same under both methods of coding, but the interpretation of 
parameters depends on the coding used. It is often claimed that dummy coding makes 
interpretation of parameters easier than effects coding because the parameters are 
interpreted as comparisons between the categories they represent and the reference 
category. For such this, we will restrict this exposition to dummy coding. 

In dummy coding, one generates a number of vectors such that in any given vector 
membership in a given category is assigned 1, and nonmembership in the category is 
assigned 0. To avoid collinearity of the categories, the vector for one of the categories 
is removed from the design matrix. The category removed is called the reference cat-
egory or baseline category. Therefore, the number of vectors for each of the main 
effects in the model is k - 1, where k is the number of categories of the variable. 
Vectors for interaction effects are built by multiplying vectors for main effects. 

The parameters created as described above have a simple interpretation as a func-
tion of the values predicted for the cells. Using the Berkeley dataset introduced in 
Section 5.1.2 and setting Admission = No («), Department = F if), and 
Gender = Male (m) as reference categories for the saturated log-linear model in equa-
tion (5.2), the value of the intercept in this model is 

, ADG 

H = logmnfm 

(i.e., the logarithm of the value expected for the cell, corresponding to the reference 
categories for the variables in the model). 

The coefficient for the main effect of Admission is 
mADG 

\A = l 0 g ^ « L . 
y b

mADG 
mnfm 

which is the odds of Admission (holding the other variables constant at their reference 
category). 

The coefficient for the interaction between Admission and Gender for 
Department = F is 
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which is the logarithm of the ratio of odds ratio of admission of males relative to 
females in department F. 

The interaction of Admission with Department produces five coefficients, which are 
the product of the (k - 1 )(/' - 1 ) categories of these two variables. As an example, the 
coefficient for department B turns out to be 

mADG /mADG 
-lAD - ]c,~ ybm "bm 

yl> h
mADG/mADG 

myfm /mnfm 

which is again an odds ratio. Finally, there are five coefficients for the three-way 
interaction term. As a sample, the coefficient for department B is 

mADG/mADG mADG/mADG 
XADG = \oz

mybf /mnbf / "Vf /mnff 
y B

mADG/mADG mADG/mADG 
mybm ' mnbm myfm ' mnfm 

which is an odds ratio of odds ratios. The same structure can be applied to define 
higher-order parameters. 

As can be seen from the description above, the difficulties of interpreting parame-
ters of log-linear models are not conceptual, as the rules for composing the parame-
ters for hierarchical models are rather simple, but practical, as it is necessary to keep 
in mind a number of details, such as the reference categories used and the general 
structure of the model. Also, the number of parameters in a log-linear model is often 
large, so they can be difficult to visualize readily. As we will see in the next section, 
dynamic interactive graphics techniques can diminish enormously the burden of inter-
preting the parameters. 

Parameters plot. The parameters plot in LoginViSta is an interactive extension 
of a plot proposed by Tukey (1977) in the context of ANOVA. Figure 5.11 is a plot of 
parameters applied to the Berkeley data. In particular, the model displayed is the satu-
rated or complete model of equation (5.2). This model includes all the main effects 
and interactions of the variables and can be a useful starting point in a session of mod-
eling. The interactive tools described below enhance the plot to make it still more 
helpful for working with log-linear models. 

Figure 5.11 displays the parameters grouped by terms. The value of each parameter 
can be read on the left side of the plot in the log scale, and on the right side in the orig-
inal scale (odds, or odds ratios). Notice that the parameters excluded to avoid redun-
dancy are set to 0 (1 in the original scale), so they can be visualized as standing on the 
dashed line. 

Selecting a point in the plot reveals a 95% interval of confidence for the parameter. 
Two points are selected in this manner in Figure 5.11. First, we have selected the only 
parameter for interaction between Gender and Admission that happens not to be dif-
ferent from zero. This suggests removing this parameter from the model (but that 
would make the model nonstandard). The second parameter selected is the one for 
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Figure 5.11 Plot of parameters for Berkeley's data-saturated model. 

three-way interaction involving department A. The confidence interval for this 
parameter does not cross the zero line (i.e., it is different from zero). 

The plot also shows the interpretation in terms of the odds ratios of the parameters 
selected. Focusing on the parameter selected in the three-way interaction term, we can 
see that this parameter basically tests the admission of females over males in depart-
ment A versus department F. As mentioned above, this parameter is different (larger) 
from zero. Therefore, as the rest of parameters for this term are not different from 
zero (tests not shown), we can infer that the only department with bias gender is 
department A. 

5.4 Conclusions 

In this chapter we have presented techniques for interacting with visualizations of fre-
quency data and with models of the same type of data. We have reviewed three top-
ics: the manipulation of tables, dynamic mosaic plots, and the visualization of log-
linear models. The methods considered are not an exhaustive inventory of the topics 
regarding the interactive dynamic exploration of frequency data, but we believe that 
they can be extended to many situations involving frequency data. For example, 
although the specifics of the history of models plot presented in Section 5.3.3 concern 
log-linear models, the general concept is of relevance to any other generalized linear 
model. Interactive manipulation of mosaic plots would be another example of con-

179 



5 Seeing Frequency Data 

cepts that could be applied to other plots, such as bar plots or pie plots. In summary, 
the ideas discussed in this chapter can be generalized to other types of data and other 
types of models.. 
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VF Seeing Univariate Data 

IVIagnitude data are far and away the most common type of statistical data. This 
should not be surprising, since magnitude information provides a basis for scientific 
inference which is superior to that provided by other data. Thus, it should also not be 
surprising that there are more data analysis tools, including more visual tools, for 
understanding magnitude data than for any other type. Correspondingly, the largest 
topic in this book is the topic of visualization methods for magnitude data. 

Visualization methods for magnitude data topics are covered in the next four chap-
ters. The first three of these chapters cover, successively, graphical methods that visu-
alize one numerical variable, thereby yielding unidimensional views of the data (this 
chapter), graphical methods that visualize two numerical variables, thereby yielding 
bivariate views of the data (Chapter 7), and graphical methods that visualize three or 
more variables, thereby yielding multivariate views of the data (Chapter 8). Note that 
we may, and usually should, use unidimensional or bidimensional methods even 
when the data have many more than one or two variables, since these methods give us 
detailed information about the individual variables or about pairs of variables that are 
not provided by the multivariate views. The fourth chapter (Chapter 9) on visualiza-
tion methods for magnitude data deals with what to do when the data have missing 
values, a very common situation. 

6.1 Introduction 

Unidimensional methods for visualizing magnitude data are graphical methods that 
allow us to look at one numerical variable in detail. These methods can be used with 
data that have more than one variable, but only one variable at a time. We discuss 
these methods: 

Dotplot. The simplest and most common way to represent the empirical distribu-
tion of a numerical variable is by showing the individual values as dots 
arranged along a line. The main difficulty with this plot concerns how to treat 
tied values. We usually don't want to represent them by the same point, since 
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that means that the two values look like one. What we can do is "jitter" the 
points a bit (i.e., move them back and forth at right angles to the plot axis) so 
that all points are visible 

Boxplot and diamond plot. A boxplot is a dotplot enhanced with a schematic 
that provides information about the center and spread of the data, including the 
median, quartiles, and so on. This is a very useful way of summarizing a vari-
able's distribution. The dotplot can also be enhanced with a diamond-shaped 
schematic portraying the mean and standard deviation (or the standard error of 
the mean). 

Histogram and frequency polygon. Histograms and frequency polygons display 
a schematic of a numeric variable's frequency distribution. These plots can 
show us the center and spread of a distribution, can be used to judge the skew-
ness, kurtosis, and modicity of a distribution, can be used to search for out-
liers, and can help us make decisions about the symmetry and normality of a 
distribution. Although very popular, these techniques have severe problems. In 
this chapter we discuss dynamic interactive methods that can contribute to 
alleviating such problems. 

Cumulative distribution plot. The cumulative distribution plot is a family of 
plots that show us whether the data were generated by a generating function 
commensurate with a specified generating function. The family includes nor-
mal distribution plots, for example, which test the assumption of normality. 

Lag plot: A lag plot displays the values of the variable versus themselves but with 
a "lag" of a specified number of observations. A lag of 1 means that each 
value is plotted against the value directly following it in the observation order. 
A lag of 2 means that each value is plotted again the value two places behind it 
in the observation order. This kind of plot helps us check on whether a varia-
ble's values represent a random sample from a population. If it is such a sam-
ple, the plot should reveal no patterning (NIST/SEMATECH, 2004). 

Sequence plot. Sequence plots are simply plots of a variable's values versus an 
index specifying the sequence order in the values were observed. This plot is 
proposed as a simple graphical summary of a variable's values (NIST/ 
SEMATECH, 2004). It is commonly assumed that these values represent a 
random sample from a population. This implies that there should be no shift in 
location or scale from one sample to the next, or, in other words, that the val-
ues should all have the same location and scale. Sequence plots show such 
shifts, making them quite evident. They are also good for detecting outliers. 

Note that these unidimensional methods are commonly used for data that have more 
than one variable, since they provide detailed information about the nature of each 
variable in the data. They do not, of course, provide any information about how any 
of the variables are related to any of the other variables, but when used with such 
methods (which are discussed in Chapters 6 and 7) can provide invaluable informa-
tion on many aspects of a dataset. 
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6.2 Data: Automobile Efficiency 

We illustrate our discussion with data about the fuel efficiency of 38 automobiles 
manufactured in 1978-1979 (Henderson and Velleman, 1981). Fuel efficiency is 
measured in miles per gallon of gasoline (MPG), a measure of fuel consumption indi-
cating how many miles a car can move on a single gallon of gasoline. The metric 
equivalent is the number of kilometers each car can travel on 1 liter of gasoline (Km/ 
L). The conversion is 1 MPG equals 0.425 km/L. Note that km/L is the reciprocal of 
the L/km (liters per kilometer) measure used in most of the world (1 MPG = 2.35 L/ 
km). The complete dataset, which has measurements for each automobile on six vari-
ables, is presented in Chapter 7. For this chapter we consider only the fuel efficiency 
variable (Table 6.1.) Automobile names are used as labels. 

Table 6.1 Miles per Gallon for 38 Automobiles Manufactured in 1978-79 

Car 
Buick Estate Wagon 
Ford Country Squire 
Chevy Malibu Wagon 
Chrysler LeBaron 
Chevette 
Toyota Corona 
Datsun510 
Dodge Omni 
Audi 6000 
Volvo 240 GL 
Saab 99 GLE 
Peugeot 694 SL 
Buick Century 
Mercury Zephyr 
Dodge Aspen 
AMC Concord D/L 
Chevy Caprice Classic 
Ford LTD 
Mercury Grand Marquis 
Dodge St. Regis 
Ford Mustang 4 
Ford Mustang Ghia 
Mazda GLC 
Dodge Colt 
AMC Spirit 
VW Scirocco 
Honda Accord LX 
Buick Skylark 
Chevy Citation 
Olds Omega 
Pontiac Phoenix 
Plymouth Horizon 
Datsun210 
Fiat Strada 
VW Dasher 
Datsun810 
BMW 320i 
VW Rabbit 

MPG 
16.9 
15.5 
19.2 
18.5 
30.0 
27.5 
27.2 
30.9 
20.3 
17.0 
21.6 
16.2 
20.6 
20.8 
18.6 
18.1 
17.0 
17.6 
16.5 
18.2 
26.5 
21.9 
34.1 
35.1 
27.4 
31.5 
29.5 
28.4 
28.8 
26.8 
33.5 
34.2 
31.8 
37.3 
30.5 
22.0 
21.5 
31.9 
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6.2.1 Looking at the Numbers 

Spend a moment thinking about what would be involved to substitute computers suc-
cessfully for humans when the task is analyzing data. It has been claimed that subject-
matter knowledge, or contextual knowledge, is the most difficult problem faced by 
attempts to develop expert systems for data analysis (St. Amant, 1997). Computers 
cannot reproduce the subtlities of the human brain when dealing with this type of 
knowledge. However, without appropriate ways of promoting that knowledge, 
humans can also fail to use and apply it correctly. 

A way to increase that knowledge is to look at the numbers themselves. When you 
do, it is possible to see all sorts of small details that can be of great help to guide fur-
ther analysis and interpretation. This type of exploration will hardly produce insights 
or summaries of much generality, but it can generate informal knowledge that will 
enrich the data analysis process. And it can reveal problems in the data as well. 

Datasheets or spreadsheets are the basic tools for representing and manipulating 
tables of data. Columns of the datasheets represent variables and rows represent 
observations. Sometimes, the first column of the table takes the role of showing the 
label of each observation. Also, the first row will usually be variable names, and the 
next row or several rows may contain variable information, such as measurement 
type, role in the study, and so on. 

We described some interactive techniques for spreadsheets in Section 4.2. Those 
techniques, especially when used with a dynamic, interactive datasheet, constitute a 
preliminary, albeit simple data analysis that can provide useful insights in their own 
right. ViSta has a datasheet that supports many of the important features just 
described (Figure 4.4). The File menu's Open Data item displays a dialog box for 
loading a data object. Opening the data object shows a datasheet that supports editing 
individual values and changing the type of variable. The Transform menu has a list of 
transformations that are useful for managing data. Sort-Permute, the first item in the 
menu, can sort the datasheet according to the values of one or more of the variables. 

The datasheet in ViSta is not as functional as those in commercial packages. How-
ever, the Data menu's Create Excel Spreadsheet item gives you Excel's spreadsheet, 
and the File menu's Export Data item exports a text file that can be read with Excel or 
any other spreadsheet. The result can be imported using the File menu's Import Data 
item. 

6.2.2 What Can Unidimensional Methods Reveal? 

The fundamental fact about several observations of a single variable is that they vary. 
Even if we observe the response of the same individual repeatedly on the same varia-
ble in the same situation, the values will vary, perhaps because of measurement error, 
perhaps due to changes in the variable we are measuring, or commonly, due to both. 
Thus, what we should be looking for in a variable, numerical or not, is information 
about the way the values vary. 

Since the values observed vary, the collection of values observed will have a distri-
bution. The "shape" of the distribution of a variable's values has a large impact on 
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what statistical methods can legitimately be applied to the variable. We need to deter-
mine particularly whether the shape is symmetric or asymmetric, and whether it is 
normal or nonnormal. In addition, we need to determine whether there are outliers — 
whether some of the values just don't seem to fit into the overall shape of the distribu-
tion of the rest of the values. 

Visualization procedures are very useful at this point, because they can tell us a lot 
about the shape of the distribution and about the presence of outliers. In fact, before 
we do anything else, we must look for and deal with outliers. Then, once outliers have 
been dealt with, we can turn to shape of the distribution, first asking whether there is 
more than one mode, then asking whether it is symmetric, and when the data seem to 
be symmetric and unimodal, whether they are normally distributed. So we begin with 
a discussion of outliers and number of modes, then we to specific characteristics of 
shape, and finally, cover the overall general nature of shape. 

Outliers. An outlier is an observation that does not appear to belong to the distri-
bution of other observations falling outside their distribution. Outliers can have dras-
tic effects on any analysis performed on the data. For this reason it is necessary to 
check data for outliers. See Barnett and Lewis (1995) for a complete reference on out-
liers. 

Sometimes, it is completely obvious that an outlier is an erroneous value that can be 
corrected by finding and introducing the correct value. On other occasions, however, 
an outlier is an exceptional value that has been produced by a legitimate cause. In this 
situation the outlier deserves some type of special treatment whose nature you must 
determine from the situation. Here, rather than being a nuisance, the outlier should be 
considered to be very valuable, as it is, in some way, carrying more information than 
the other ordinary observations are carrying. 

Basically, there are no guidelines here other than that you should always, as the first 
step in any data analysis, look for outliers, and when found, deal with them as seems 
best to you, before you proceed to analyze the data. 

Modes. The modicity of a variable refers to the number of modes of the varia-
ble's empirical distribution. The mode of a variable's empirical distribution is the 
portion of the distribution which is, at least locally, the most frequent or most densely 
concentrated part of the distribution. Modicity does not have a strict mathematical 
definition, which makes it a troublesome and difficult characteristic to deal with. 
Regardless, it is quite important that a variable's empirical distribution be unimodal: 
have just one mode, as few multimodal variables are subject to appropriate analysis 
by statistical methods. 

A distribution with more than one mode can be an indication that data come from a 
mixture of distributions. If there are two modes, perhaps the data come from two pop-
ulations with different means and/or standard deviations. There are methods for esti-
mating the means and standard deviations of the several distributions in this case, 
although we do not pursue them here. 

TV 
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Shape. When trying to determine shape, we obtain the most accurate understand-
ing by making two separate types of considerations. First, our understanding is 
improved by considering several specific characteristics, such as the location, spread, 
and skewness of the distribution. But also, our understanding is helped by asking 
whether the overall general shape appears to be unimodal or multimodal, symmetric 
or asymmetric, normal or nonnormal. Thus, we turn to these two aspects of under-
standing shape: investigating the specific characteristics of shape, and looking at the 
overall nature of the shape. 

When trying to understand the nature of the shape of a variable's distribution of val-
ues observed—of its empirical distribution—there are several specific characteristics 
we can consider. These include: 

Location and spread. A variable's values tend to vary around a particular value on 
the real number continuum. The location is the value around which they tend to vary, 
and the spread is the amount of variation around that location. Both concepts can be 
quantified by numerical measures (mean and variance, for example). 

Skewness. A variable can have values that are skewed: The values tend to pile up 
toward one end of the scale and taper offer gradually at the other end. 

Kurtosis. This concept refers to whether a variable's values have a distribution 
which is very flat or very peaked (low or high kurtosis), or is somewhere in between. 

These specific aspects of an empirical distribution have certain implications about 
the variable's shape. These implications are discussed in the next section. 

Shape: is it symmetric? A variable's values can be distributed symmetrically or 
asymmetrically. A symmetric distribution is one such that the mirror image of one 
side of the distribution is identical to the other side, or at least nearly so. In Figure 6.1, 
the distribution on the left is symmetric, whereas the distribution on the right is not. A 
skewed distribution with the tail on the right-hand side (as in the right-hand part of 
Figure 6.1) is called positively skewed because the tail points toward the positive end 
of the X-axis. If the tail points toward the left, the distribution is negatively skewed. 
All symmetric distributions are unskewed. Not all symmetric distributions are unimo-
dal, but the most useful ones are. 

Symmetric distributions cannot be skewed, but they can have any type of kurtosis. 
But skew and high or low kurtosis are usually thought of as being not good, since 
many data analysis procedures assume that the data are not skewed nor very kurtotic. 
However, data visualization procedures do not require any particular skewness or kur-
tosis and can be used to check on the degree of each for any particular variable. 

It is desirable to have a symmetric distribution, better to have a unimodal symmetric 
distribution, better yet if the unimodal symmetric distribution has no kurtosis, and 
best of all if the symmetric, unimodal, nonkurtotic distribution is also a normal distri-
bution. So the next section is about normal distributions. 

A symmetrically distributed variable that has only one mode can also be normally 
distributed (i.e., have a shape that well approximates the equation of the normal 
curve). 
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There are several reasons why symmetry is important for data analysis (Chambers 
etal., 1983): 

• The center of a symmetric distribution is unambiguous since different ways of 
estimating it (mean, median) coincide. 

• Symmetric distributions are easier to understand (the upper part is like the 
lower part) 

• Whereas classical statistical procedures assume normality, a number of mod-
ern robust statistical methods only assume symmetry and can be used legiti-
mally with nonnormal but symmetric data. 

Shape: is it normal? Since statistical visualization procedures do not require 
normality, and since some statistical visualization procedures can be used to show 
normality (or lack thereof), and since many statistical analysis procedures do require 
normality, one important (perhaps the most important) usage of unidimensional sta-
tistical visualization to investigate whether it is reasonable to assume normality. 

A normal distribution is shown on the left-hand side of Figure 6.1. The normal dis-
tribution is the most important distribution model. It has the following characteristics: 
A normal distribution is symmetric. A normally distributed variable has a sample 
mean and standard deviation, which are the best possible indicators of the popula-
tion's center and spread. Normally distributed variables are not skewed and do not 
have extreme kurtosis. A normal distribution has one mode and no outliers. 

Normal distributions are important because many aspects of nature are distributed 
normally. Examples include the height and weight of individuals, and the SAT scores 
of high-school students. Since the normal distribution is so pervasive, and since it has 
convenient mathematical properties, many of the statistical tests known as signifi-
cance tests are based on an assumption of normality, with the significance level being 
incorrect if the distribution is nonnormal. For these reasons it is important to look at a 
distribution to assess its normality. 

Normally distributed variables satisfy the assumptions of many inferential statistical 
procedures. However, real life does not usually offer data that behave exactly like the 
normal model. So it is an important data analysis task to investigate how adequately 
the normal distribution serves as a model for your data. 

Figure 6.1 Left: symmetric, normal, right: asymmetric. 
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6.3 Univariate Plots 

The most straightforward way to represent a variable's distribution is to show the 
individual values as dots arranged along a line according to the values of the variable. 
This simple plot, called a dotplot, allows us to investigate many of the issues men-
tioned Section 6.2. On the other hand, most of the unidimensional tools we have for 
visualizing magnitude data construct a schematic of the variable's distribution, the 
schematic designed with a purpose that varies from one tool to the next. 

In our discussion we emphasize the dynamic features of the unidimensional tools 
for magnitude data, in addition to covering the traditional static versions of these plots 
whose descriptions are found in many places. In particular, we discuss dynamic fea-
tures which are specifically designed to overcome limitations resulting from the 
nature of the static version of the plot. The plots we review are: 

• Dotplots, boxplots, and diamond plots, the latter two being dotplots plus a 
schematic portraying features of the population distribution. Dotplots help us 
see modality, outliers, and symmetry and help us identify where specific 
observations or groups of observations fall in a distribution. Dynamic versions 
of these plots help us identify points more easily and provide more complete 
information about the characteristics of the data. 

• Probability plots, which plot the values of the sample versus the quantiles of a 
probability distribution (such as the normal distribution) which could have 
generated the sample. These plots help us judge whether it is reasonable to 
assume that the data were generated by the specified theoretical distribution, 
such as the normal distribution model. Dynamic probability plots help identify 
the optimal values for parameters of the theoretical distribution. 

• Histograms and the related plots, frequency polygons, employ schematics 
designed to visualize the density of the distribution at different points. Being 
able to visualize the density is another way to attempt to identify the popula-
tion model and its parameters. Dynamic histograms help us better understand 
the data and its potential generating distribution. 

6.3.1 Dotplots 

The simplest and most common way to represent the empirical distribution of a 
numeric variable is by showing the individual values as dots arranged along a line. 
The line is oriented vertically as in Figure 6.2 to facilitate the display of point labels. 

Dynamic versions of the dotplot are useful to identify individual points by brushing 
them. In the upper left plot in Figure 6.2 we see that the car with the maximum value 
for MPG variable (the most efficient car) is the Fiat Strada and the minimum MPG 
value (the least efficient) is the Ford Country Squire. This makes good sense, since if 
you know these automobiles, you will realize that the Fiat Strada is a very small, 
lightweight vehicle, whereas the Country Squire is very large and heavy. 

A problem with dotplots is that when several observations have equal or close val-
ues, they obscure each other, as demonstrated in the upper-right plot in Figure 6.2. 
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This is a potentially very important problem for dynamic/interactive versions of the 
dotplot, where selecting observations is a critical task. The task becomes impossible 
when points are obscured. For example, when the user clicks on overlapping points 
and labels for the points are to be shown, they can become illegible, as can be seen in 
the figure, or some labels can obscured by others. This leaves the user with the diffi-
cult task of selecting points one at a time in order to read the labels. 

A dynamic solution to this problem with static dotplots is called jittering, with 
examples of several different kinds being shown in the bottom row of plots in Figure 
6.2 and in the plots in Figure 6.3. As we define it, jittering involves displacing a point 
in a dotplot by a random or systematic amount along the axis that is not the axis dis-
playing the variable values. In our figures, the vertical axis displays the data and the 
horizontal axis is used for jittering. You will note that while the upper two figures in 
Figure 6.2 show the points falling along a straight line (they are unjittered), the points 
in the lower two plots do not fall along a straight line (they are jittered). 

Dynamic jittering can further address the problem of hidden dots. The dynamism 
can take place in several different ways. One way enables the plot to generate a new 
round of jittering on the user's request, the user being expected to continue doing this 
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Figure 6.2 Four dotplots for MPG, the bottom two are jittered. 
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until getting a more satisfactory result. Another way is to rejitter automatically when 
the axis is stretched or shrunk, since this changes which points might be overlapping. 

Jittering can be systematic as well as random. Either type of jittering can be applied 
selectively only to those that are involved in overlapping, rather than to all points. 
ViSta, for example, has an algorithm that displaces only those points that need to be 
displaced, and does the displacement in a systematic fashion that guarantees that 
every point is visible. The plots in Figure 6.3 use this systematic jittering method. 
Those in Figure 6.2 are randomly jittered. 

In addition to permitting you to identify individual points, dotplots allow you to 
look into some of the distributional properties of a variable. For example, dotplots can 
be good for judging whether there are outliers. For the MPG data shown in Figure 6.2 
there do not seem to be any: however for the Age variable shown in the left plot of 
Figure 6.3, two students seem to be rather older than the rest. 

Dotplots can also be good for looking for modality. Figure 6.2 shows that there is a 
concentration of values at the ends of the scales, with a gap in the middle. So we can 
see that the data are bimodal and thus that the data are not normal. Other types of non-
normality, such as asymmetry, can be difficult to judge from the dotplot, although the 
middle plot in Figure 6.3, showing the distribution of self-reported SATMath scores, 
seems to be negatively skewed. The right-hand plot in Figure 6.3 shows the same data 
as the middle plot, but with jittering done differently. 

Note that the left plot in Figure 6.3 is a systematically jittered plot of a variable that 
has many identical observations: This is the Age variable, and many of the students 
are 19 or 20 years old. With the appropriate jittering algorithm we can generate plots 
that show a dot for every observation, with the dots being lined up in a way that 
makes the overall plot somewhat like a barplot without the bars. 
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Figure 6.3 Three systematically jittered dotplots. 

l.Data gathered by the first author from students in his course for introductory psychological statistics. 
The data were gathered on the first day of the course over several years. The variables concerned the 
attitudes of the students toward statistics, their experience with mathematics and computers, and their 
grade average and scores on the SAT (a nationally standardized test used widely in the United States 
as part of the university admissions procedure), along with their age, gender, and so on. Data availa-
ble with ViSta. 
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6.3.2 Boxplots 

Dotplots can be enhanced with the capability of adding or removing schematics, 
where the schematics provide a context in which we can evaluate the individual 
observations more completely. These schematics provide information about the 
center and spread of the data, such as the mean or median, the quartiles, the standard 
deviation, and so on. 

We discuss two schematics that are commonly used to enhance dotplots: boxplots 
and diamond plots. Figure 6.4 shows two boxplots on the left and a diamond plot in 
the third position. The boxplot and diamond plot are shown superimposed on the 
right-hand side. We review boxplots in this section and diamond plots in the next. 

The boxplot is the most useful plot that results from adding a schematic to a dotplot. 
The schematic of the boxplot is based on the median and other quantile measures, as 
is described below. Boxplots were first described by Tukey (1977), who added some 
important variations shortly thereafter (McGill et al., 1978). Figure 6.4 shows the dot-
plot in Figure 6.2 with a boxplot drawn on top of it. The elements of the boxplot are 
the following: 

• Box: The horizontal line in the center is located at the median: thus, half the 
data are above this line, half below. The bottom and top edges of the box are 
located at the first and third quartiles, which, with the median, divides the data 
into quarters: thus, half the data are inside the box, half outside; one-quarter 
below the box, one-quarter above; and each half of the box contains one-quar-
ter of the data. Notched boxplots add intervals of confidence around the 
median as shown in the first plot of Figure 6.4. 

• The whiskers of the boxplot, which are the bottom and top horizontal lines, are 
located in the following way. The upper whisker is drawn at the largest obser-
vation, which is less than q3 + 1.5 x (q3 - qx) , where qx and q3 are the first 
and third quartiles, respectively. The lower whisker is located at the smallest 
observation that is larger than qx-\.5 x (q3 -qt). Points larger or smaller 
than whiskers are considered outside values. If the data were from a normal 

Figure 6.4 Notched boxplot, boxplot, diamond plot, and box + diamond plot. 
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distribution, such values would occur less than once in 100 times. Tukey also 
defined points that would fall farther away than 3 x (q3 -qA) as far-out val-
ues but no indication of them is given in Figure 6.4. 

As defined by Tukey (1977) boxplots only plot individually the outside or far-out val-
ues. We prefer, however, to show all the points because the dynamic-interactive capa-
bilities of the plot would suffer if some of the points could not be selected or 
identified. Also, the information portrayed by the schematic can be better judged with 
the help of the individual points, as we will soon see. 

The boxplot in Figure 6.4 shows that the MPG data are approximately symmetric, 
even though it is apparent that the upper whisker is somewhat longer than the lower 
whisker. We do not consider this difference large enough to declare that MPG is 
asymmetric. It is common, of course, to see variations in the boxplots, and in our 
experience it is normal to see small deviations like this for data that are normal. This 
point is demonstrated in Figure 6.5, which shows boxplots for 10 random normal var-
iables set side by side with the boxplot for MPG (on the right). 

Another aspect that can be addressed using the boxplot in Figure 6.4 is the presence 
of outliers. For MPG no outliers are apparent since no point extends beyond the 
whiskers. Therefore, if we limit our interpretation to the shape of the boxplot, we can 
conclude that we have a symmetric variable with no outliers. However, there are still 
other elements that can be explored in Figure 6.4. 

We have pointed out before that the dotplot of MPG in Figure 6.2 shows a gap 
around the center of the distribution. The boxplot schematic shows that the median of 
the distribution is located exactly at this gap. This is a rather strange conclusion since 
it means that there do not seem to be any cars that have an average (as measured using 
the median) fuel use. Again, this suggests two modes in the data and, probably, two 
subgroups of cars that should be analyzed separately. 

Figure 6.5 Boxplots for 10 normal distributions and for MPG. 
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Grouped boxplots: Grouped boxplots 
are another aspect of boxplots that is dis-
cussed later. We will give you a teaser at this 
point, however, and show you a grouped box-
plot for MPG. The plots that we have seen so 
far suggest that there are two subgroups of 
observations in our sample. We can separate 
the data into two groups, one with only the 
observations in the upper group, and the other 
with only the lower group's observations. We 
can then plot these two groups in a single 
window, showing two "grouped" boxplots, 
each including its own dotplot. The result is 
shown in Figure 6.6. Both boxplots still look 
rather symmetric when displayed by them-
selves and neither seems to have outliers. 
They certainly have different locations, and 
perhaps the upper group has a bit higher 
spread. 

DIG: dynamic interactive boxplots. Dynamic interactive boxplots are most 
useful when we have more than one variable, as we will see in a later chapter. When 
we have but one variable, we can interactively identify the points with techniques dis-
cussed in Chapter 2 and compare the points to the information in the boxplot sche-
matic. For example, using the same techniques as we used with dotplots, whose 
results are shown in Figure 6.2, we can see that the Fiat Strada is the car with the best 
MPG value. What we couldn't decide from the dotplot, but can from the boxplot, is 
that neither of these two observations can be considered to be outliers since neither 
one is shown by a point that is beyond the upper whisker. 

Diamond plot. A diamond plot represents a variable's distribution by a sche-
matic showing the data's mean and standard deviation, whereas the boxplot, as we 
have seen, uses the data's median and quartiles. The diamond plot for MPG is shown 
in the middle of Figure 6.4. 

The diamond and box plots are quite similar. Both plots use measures of location 
and spread of a numeric variable to construct a schematic representation of the varia-
ble. Further, both plots use the location and spread in the same way to construct the 
schematic: In each plot, the measure of location is shown by a centrally located hori-
zontal line, and the measure of spread is represented by the height of the schematic. 

Diamond plots are necessarily symmetric by construction, but they can be used to 
judge symmetry when combined with a boxplot, as in the right-hand plot in Figure 
6.4. For a normal symmetric distribution, the mean and median coincide. If data are 
positively skewed, the line for the mean is displaced to the upper part of the plot, with 
the reverse happening for negatively skewed data. Adding a diamond plot to a box-
plot then becomes an interesting tool for exploring asymmetry in data. In Figure 6.4 
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Figure 6.6 grouped 
hoxnlots of MPG data. 
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we see that the line for the mean is somewhat above the line for the median, indicat-
ing positively skewed data. However, the difference is very small and we do consider 
it to be of much importance. 

Notice that a dotplot with a boxplot and diamond plot simultaneously looks some-
what crowded. To be able to remove the schematics is a very welcome feature in 
these plots. In fact, clicking each one on and off is an effective way to use the interac-
tive features of dynamic graphics to compare the locations of the mean and median. 

6.3.3 Cumulative Distribution Plots 

Cumulative distribution plots are a family of graphical techniques designed to help us 
determine the nature of the probability function that generated the data. These plots 
are commonly called quantile plots (Q-plots) or probability plots (P-plots). We can 
use a cumulative distribution plot to see if the data were generated by a normal proc-
ess, by a chi Square process, and so on. The cumulative distribution plot shows the 
data plotted against a theoretical distribution in a way that will reveal a linear swarm 
of points if the data were generated by the theoretical distribution specified. 

Normal probability plot. A normal probability plot (also called an NPplot) is 
the best known cumulative distribution plot, since it helps us assess whether a 
numeric variable is normally distributed. It does this by plotting the values of the 
numeric variable versus the score that would be obtained if the datum were generated 
by a normal process. If the resulting plot forms a relatively straight line, the values are 
normally distributed. If the line is not straight, the values are not normal. 

The basic normal probability plot for MPG is shown in the left-hand graphic in Fig-
ure 6.7, which plots MPG on the vertical axis versus the values expected from a nor-
mally distributed process on the horizontal axis. The jagged line connecting the dots 
represents the variable's empirical distribution, while the straight line represents a 
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Figure 6.7 Normal probability plots for MPG. 
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normal distribution. Since it looks like the jagged line shows systematic departures 
from the straight line, we conclude that MPG is not generated by a normally distrib-
uted process. (We describe the right-hand figure momentarily.) 

Of course, there can be various kinds of systematic departures from a straight line. 
Certain departures indicate certain kinds of nonnormality: For example, if the depar-
ture is fairly smooth with an observed line that is smoothly curved and is below the 
normal line, then the data are positively skewed (if it is above, the data are negatively 
skewed). If the data observed fit the line well except for a few observations, the data 
contain outliers. If the jagged line has horizontal segments, plateaus or gaps, the data 
may be discrete rather than continuous. If the jagged line seems to have several pieces 
that are linear, perhaps the data in the several pieces were generated by several differ-
ent normal processes. 

Quantile probability plot. The simplest probability plot is the quantile probabil-
ity plot (usually called the quantile plot or Q-plot). A quantile plot for the variable 
MPG is shown in Figure 6.8. This plot represents a variable's distribution by plotting 
the value of a specific datum versus the fraction of the entire set of data values that is 
smaller than the specific datum. The resulting jagged line represents the variable's 
distribution. 

The quantile probability plot is used to investigate the symmetry of a variable's dis-
tribution. For a symmetric distribution the points in the upper half of the Q-plot will 
stretch out toward the upper right in the same way that points in the bottom half 
stretch out toward the lower left. Again, the big gap in the center of the distribution is 
clearly visible. However, the two halves of the distribution seem to suggest that the 
distribution is symmetric. 
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Figure 6.8 Quantile Pplot for MPG. 
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Generalized probability plot. Probability plots can be created for any given 
generating function, such as normal, chi Square, Weibull, and so on. In all cases, the 
plot shows the generating function's fitted values on the horizontal axis and the data 
on the vertical axis. Of course, for any probability plot the correlation can be com-
puted between the generating function and the data observed to give us an indication 
of the fit of the generating function to the data. Probability plots for several alterna-
tive generating functions can be generated and a plot made of the resulting correlation 
coefficients. This helps us decide which generating function is most appropriate. 

We can also make plots for the correlation coefficients of probability plots created 
for generating functions with shape parameters, showing the fit of the generating 
function model to the data as a function of the shape parameter's value. For example, 
with the chi-square generating function, we could make a plot of fit to the data as a 
function of the degrees of freedom of the chi-square distribution. This would help us 
decide on the optimal value of the shape parameter, in this case the degrees of free-
dom. Furthermore, estimates of the location and scale parameters of the generating 
distribution are provided by the intercept and slope of the fitted linear function. 

DIG: subsetting observations. We can pursue several possible explanations 
using interactive dynamic graphics with the MPG variable. One possible explanation 
that is suggested by the swarm of points in the NPplot is that the data may consist of 
several linear pieces. With DIG, when we use our mouse to select a subset of data, 
information is added instantaneously to the graphic portraying the linearity of the sub-
set selected: Depending on the specific software, we see a regression line, perhaps 
with residuals shown, and certainly with the measure of fit, in this case the correlation 
index. We can demarcate a specific subset of points, perhaps by coloring it or specify-
ing a certain symbol for the points in the subset, all the while keeping the regression 
information for the subset. We can do this for multiple subsets of points, enabling us 
to see the linearity of the several subsets simultaneously, with all of the appropriate 
information being updated continuously as the cursor is moved over changing subsets 
of points. Thus, we can watch the information change dynamically, in real time, as we 
interact with the data. 

The end result of such a process is shown on the right-hand side of Figure 6.7, 
where we see that two subsets have been identified, each with its own regression line. 
The result suggests that the data are fit remarkably well within each subset, suggest-
ing that the data might have been generated by two separate normal processes. Per-
haps, if we knew more about these data, we would discover something which would 
clarify what these processes might be. For the moment, we simply take this as a sug-
gestion. 

DIG: probability model selection. As mentioned above, probability plots can be 
created for any given generating function, of which the most appropriate are the dis-
tributions used for modeling, such as the normal, Cauchy, exponential, lognormal, 
Weibull, gamma, and Poisson functions. For any probability plot the correlation can 
be computed between the generating function and the data observed , giving us an 
indication of the fit of the generating function to the data. Probability plots for several 
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alternative generating functions can be generated and the correlation coefficient can 
be calculated for each plot. Some of these functions are actually function families, 
with one or more parameters that control the specific details of the generating func-
tion. Since these details affect the shape of the generating function, the parameters are 
often called shape parameters. 

To decide which generating function is most appropriate, we can make plots of the 
correlations obtained from each function versus the parameter values, comparing the 
fits for the various generating functions to see how the fit varies as the shape parame-
ters vary. Some generating functions have two shape parameters, so for these we 
would have a surface plot showing the fit surface over the two-dimensional parameter 
space. 

We can obtain a suggestion of how well other generating functions perform in com-
parison to the normal function as models of the generating process underlying our 
data. DIG methods can be used to search for the distribution that is the best generating 
function for any set of data, and can either show the data analyst the process of 
searching for the best function, as that process unfolds, or can provide the analyst 
with tools for doing the search himself or herself. 

ViSta supports such interactive dynamic graphics, although we do not show them 
here. Two approaches are provided. With one of them, the data analyst can click a 
button to have ViSta generate a series of plots, watching a dynamic but not interactive 
"movie." With the other approach, the data analyst can "grab" the slider and interac-
tive with the dynamic graphics directly, playing the "video game" version of the 
probability plot. 

It is very important to mention, however, that the power of dynamic interactive 
graphics can easily be misused at this point. We should not mindlessly search for the 
best-fitting generating distribution. Rather, we need to have a theory that leads us to 
predict that a specific generating distribution is the one to consider. If that distribution 
is actually a family of distributions, we are justified in searching for the best possible 
member of the family. Thus, the probability plot can be used to determine if a given 
distribution provides a good fit to the data, to determine which distribution best fits 
the data, and to determine estimates of the location and scale parameters of the gener-
ating distribution chosen. 

6.3.4 Histograms and Frequency Polygons 

The histogram and frequency polygons are two closely related schematic representa-
tions of the distribution of a numeric variable. They can show us the center and spread 
of a distribution, can be used to judge the skewness, kurtosis, and modicity of a distri-
bution, can be used to search for outliers, and can help us make decisions about the 
symmetry and normality of a distribution. Having all of these capabilities, it is no 
wonder that histograms and frequency polygons have a long history of use and devel-
opment in statistics, always seeming to be the focus of much interest, among graphics 
developers and users alike. 

<Y\ 
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Both histograms and frequency polygons represent the relative density of the sam-
ple distribution by counting the numbers of observations that fall into intervals of 
equal width. The intervals, which are called bins, are constructed by partitioning the 
range of the data. The number of observations in each bin is represented by histo-
grams as bars with height proportional to frequency, whereas frequency polygons rep-
resent the same information by a polyline of connected dots. ViSta's default initial 
histogram and frequency polygon are shown in Figure 6.9. 

Unfortunately, neither histograms nor frequency polygons provide a very accurate 
schematic of the data. In fact, they can present a seriously misleading picture of the 
distribution of a variable's values. However, when compared to other techniques, the 
histogram and frequency polygon are easy to understand and are easy to explain and 
communicate. They are particularly useful for understanding the concepts of a varia-
ble and a distribution. As a consequence, experts with advanced and thorough under-
standing of statistics use histograms when they address audiences without experience 
in statistics, even though the advanced statistician undoubtedly knows that histograms 
are not the best way of portraying the distribution of a variable's values. The prob-
lems with histograms derive from two of the decisions required for its construction: 
the bin width and the bin origin. 

Bin width problem. The bin width problem is illustrated in Figure 6.10 for the 
data about MPG. In this figure we show six histograms, each with a different bin 
width. We can see that the main feature of the MPG variable, the gap in the center of 
the distribution, is visible in some of the histograms but not in all. 

Bin width has an enormous effect on the shape of a histogram (Wand, 1996). Bins 
that are too wide produce an appearance of solid blocks. There will be no evidence of 
the gap that we have seen so clearly in the MPG data. Bins that are too narrow pro-
duce a jagged histogram with too many blocks. There will be almost no information 
about points that have a higher density of observations. 

10 20 30 40 14.6 21.4 28.2 35.0 

BinWidth= 6.80 Nbins=4 MPG 

Figure 6.9 ViSta's initial histogram (left) and frequency polygon (right). 
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It is also the case that to produce nice tick marks, changing the width also changes 
the origin of the bins, producing an additional source of differences among the plots. 
Furthermore, scales on both axes must be modified to accommodate the bars in the 
space available. 

In short, poor selection of bin width results in oversmoothing or undersmoothing of 
the histogram. This problem has been dealt with in the statistical literature, and a 
number of rules have been proposed that provide appropriate bin widths. We discuss 
some of these rules and we show that having the capability of interactively modifying 
the histogram can be useful to find values that are subjectively good. 

Scott provides a historical account of the bin width selection problem (Scott, 1992). 
The earliest published rule for selecting bin width seems the be that of Sturges (1926) 
and amounts to choosing the bin width h as 

n = range 
1 + log 2n 

This rule is used as the default rule for many statistical packages even though it is 
known that it leads to an oversmoothed histogram, especially for large samples 
(Wand, 1996). 

Scott ( 1992)) suggested the following rule 

h = 3.49an'1/3 

This rule is known as the normal rule because it is tuned up to the normal distribution 
with a standard deviation of a. This histogram is shown in Figure 6.10 in the fifth 
position, with four bins of width 6.80. Scott (1992) provided modifications of this 

BinWidth= 3.31 NBins= 8 BinWidth=4.18NBins=6 
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14.6 21.4 28.2 35.0 
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BinWidth=5.05NBins= 5 

17.2 27.3 37.4 

BinWidth= 7.67 NBins= 3 

13.3 20.9 28.6 

Figure 6.10 Series of histograms for MPG. 
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rule for distributions with varying skewness and kurtosis. Notice that this formula 
only gives the right answer to the bin width problem given an optimality criterion not 
discussed here. Other criteria could also be considered, and the data may not follow 
the normal distribution. Hence, exploring different versions of the histogram may be 
important to get a more thorough understanding of the data at hand. 

Bin origin problem. In addition to the bin width problem, histograms suffer 
from what is known as the bin origin problem. The bin origin is the value at which the 
lowermost bin's lower boundary is located. Figure 6.11 displays four histograms with 
the same bin width but with slightly different origins. Notice that in this figure, just as 
in the preceding one, the main feature of the MPG variable, the gap in the center of 
the distribution, is visible in some of the histograms but not in all. 

While the dependence of histograms on different bin widths is easy to comprehend, 
the dependence of the histogram on the origin of the bins is quite disturbing. Moreo-
ver, there does not seem to be any strategy available to cope with this problem. Our 
recommendation is to use kernel density estimation, an improvement over classical 
histograms that does not suffer from the bin origin problem. It is also a good idea to 
use dynamic interactive graphics to test different origins for the histogram as well as 
different bin widths. This gives one an understanding of the robustness of the features 

Bin Origin=15.48 BinOrigin=15.98 
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~l 
15.5 22.1 28.7 35.3 

Bin Origin=16.48 

16.0 22.6 29.2 35.8 

BinOrigin=16.98 
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I 
16.5 23.1 29.7 36.3 17.0 23.6 30.2 36.8 

MPG 

Figure 6.11 Effect of bin origins on the histogram. Bin origins are 
shown above each panel. All have seven bins with bin widths of 3.31. 

202 



6.3 Univariate Plots 

of interest. We also recommend using the shaded histogram notion to see if it reveals 
anything of interest. 

DIG: coping with histogram problems. ViSta provides a histogram that uses as 
a starting point the bin width given by the preceding formula. Using interactive tools, 
however, it is possible to explore other bin widths easily. Such an exploration of bin 
widths may give a more complete picture of the trade-offs required for the various 
choices. A slider is a particularly effective way to control the bin width of the histo-
gram. Figure 6.10 was created through a selection of the histograms that an analyst 
could easily review using the slider (actually, only one of four plots is shown in Fig-
ure 6.10). Looking at these plots, it is easy to see why the histogram is not, nowadays, 
considered a very accurate tool for statistical analysis. The different histograms seem 
to tell different stories, not all of them coincident. Given that we know that there 
seems to be a gap in the middle of the data and that perhaps there are two separate dis-
tributions, we would choose the first plot left above. However, not knowing what we 
know, there does not seem any good reason to prefer one histogram over the others. 

Fitting curves to the histogram. Curves for various functions can be fit to the 
histogram. These curves include the normal curve, shown on the left side of Figure 
6.12, and the kernal density curve, shown on the right side. 

Density traces. Density in data can be seen as the relative concentration of obser-
vations along the sections of the measurement scale (Chambers et al., 1983). Histo-
grams can be considered a representation of density if they are modified slightly. The 
modification is to divide the frequencies by the number of cases so that the bars repre-
sent proportions or relative frequencies. Since the histograms would be redrawn on 
the new scale, this change does not alter their shape. 

However, histograms are limited in that they inform about the density only in the 
middle of the interval and produce only one value for the entire interval. A more 
interesting approach would be to provide values that inform of the density at smaller 

BinWidth= 6.80 Nbins= 4 

15.7 23.8 33.8 

MPG 

Figure 6.12 Histogram with normal (left) and kernal (right) curves. 
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intervals, while permitting the intervals to overlap. This is being done, conceptually, 
by the shaded histogram, but what we describe here is a mathematical way to attain 
the same goal. In this way, when we draw a line connecting the midpoint of each 
interval we will not see drastic changes like those we see with ordinary histograms. 

The general formula for kernel density estimation is 

i 

where ft,(x) is the density estimated at point x given a size bin h , n is the number of 
cases in the data, K(u) is a function denominated kernel function, and Xi are the 
sample data. An example of a kernal density curve is shown on the right side of Fig-
ure 6.12. The degree of smoothing in this formula depends on two factors: 

• The bandwidth h, where shorter intervals will produce more local estimations 
and a rugged impression in the estimated curve, and longer intervals will pro-
duce smoother estimations. 
The kernel function K(u), which is regarded as being a factor of less impor-
tance than the width h. These functions basically result in smaller values of 
fh(x) for observations farther away from x and larger values for observations 
closer to x. The permissible functions vary in their weightings of the observa-
tions. As an example, a function commonly used is the Gaussian: 

1
 c-q/2)"2 

Selecting an adequate bandwidth is generally seen as being more important than 
selecting an appropriate kernel. Selecting the best bandwidth can be performed using 
a slider connected to a display of the density. This permits the user to rely on intui-
tion, interpretability, and aesthetics. In fact, the process of selecting bandwidth is 
probably as important as the final value chosen, since it serves to familiarize the user 
with the data. 

Even though interaction techniques are well suited to the task of exploring for 
appropriate bandwidth values, we start with values that satisfy a given optimality cri-
terion. An estimator that is commonly used is the rule of thumb, which in its robust 
version has the following formula (Silverman, 1986; Turlach, 1993): 

f 
hm =1.06 min 

V 

A- R „ 1 / 5 

cr, n 
1.34 

Determining a reasonable interval of values to explore is also a critical decision. 
Udina (1999) mentions the range [/, / gt 4 / /, 1 as being desirable. 

Figure 6.12 shows a histogram that incorporates a curve indicating the density at the 
various points in the data. Notice that densities and frequencies of the histogram have 
normally very different scales, so displaying both in the same plot is usually meaning-
less. Scaling the densities to the frequency data is therefore necessary to visualize 
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both simultaneously. This figure shows the optimal values for both histograms and 
kernel density traces computed according to the respective rules for optimal bin 
width. The kernel density trace uses the Gaussian as the kernel function. 

The density trace in Figure 6.12 shows the two modes in the data with the big gap 
that we discussed previously. However, given the degree of smoothing chosen, these 
two modes are themselves composed by a succession of smaller bumps. Also, we see 
clearly that the histogram is oversmoothed compared with the density trace. 

Figure 6.13 displays a selection of kernel density traces computed by varying the 
bandwidth. From left to right and up to down, the bandwidth is larger, with the conse-
quence of producing smoother density traces. This results in smaller bumps going 
away and only two modes remaining visible. The final curve agrees with the previous 
interpretations carried out using other plots, but the smaller bumps are also of interest. 
For example, the first plot in the series shows a smaller gap set in the middle of two 
peaks for cars with a lower MPG. This gap distinguishes between the lower-low cars 
and the upper-low cars and can also be seen, for example, in the dotplot of Figure 6.2 
and the boxplot of Figure 6.4. 

Figure 6.14 shows a series of plots that keep the kernel density trace fixed but 
changes the histogram. As histograms are often the way used to present information 
of this type, it is of interest to find one that agrees with the impressions obtained using 
the kernel density. The final plot in the series represents quite well the two data 
modes that we have considered most appropriate for our data, and it could be used for 
nonexperts in statistics who know only about histograms. Notice that histograms do 
not have the property of kernel density traces that changes in interval width result in 
smooth variations of the display. Whereas kernel density traces always seem to pro-
duce the same answer but with different degrees of smoothing, histograms result in 
different answers at each step. 

Shaded histogram. ViSta has the option to compute a shaded histogram, a com-
putationally intensive method that may give a good picture of the sample's population 
distribution. The shaded histogram for MPG is shown in Figure 6.15 where we very 
clearly see the two separate distributions that we have inferred from previous investi-
gations. 

The idea for the shaded histogram came while watching the various histograms 
being displayed by the dynamic interactive graphical method described above. As 
you watch the series of histograms, you realize that some parts of the plot area are 
more likely than other parts to be "inside" the histogram. We took this idea and 
devised an algorithm to determine the probability that a pixel is "in" a histogram. 
These probabilities are rendered as gray values, darker grays for larger probabilities. 
The algorithm is as follows. 

1. Set the F-axis to show proportions rather than frequencies. 

2. Determine the smallest range for the X-axis that contains all bins for all histo-
grams. 

3. For a specifically sized plot, determine n and m, the number of row and col-

V\ 
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14.6 21.4 28.2 35.0 

Figure 6.13 Modifying the bandwidth of the kernel density trace. 
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Figure 6.14 Histogram with kernel density trace. 
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Figure 6.15 Shaded Histogram. 

umn pixels of the rectangle formed by the two ranges. 

4. Generate an n x m matrix of frequencies F where each element fe is the 
number of histograms covering the pixel. 

5. Convert the frequencies to proportions ptj. Render the shaded histogram by 
using the proportions for gray-scale values (e.g., the red, green, and blue val-
ues are Rtj = Gtj = Btj = (l-piß). 

6.3.5 Ordered Series Plots 

Ordered series plots are plots of the values of the variable versus other information 
that is related to the order in which the data are arranged in the dataset. We briefly 
mention two plots, lag plots and sequence plots. As described here, these plots are 
simple versions of time-series plots, a type of plot not, unfortunately, otherwise cov-
ered in this book. 

As pointed out in the NIST handbook (NIST/SEMATECH, 2004), these plots are 
useful for determining whether the values observed represent random samples from a 
population and whether the random sampling meets the standard conditions that are 
normally posited. For these types of data the plots should show no specific patterning. 
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If they do, it is the case that the assumption of random sampling, which underlies 
nearly all statistical testing, can be called into question. 

Lag plots. A lag plot displays the values of the variable versus themselves, but 
with a lag of a specified number of observations. A lag of 1 means that each value is 
plotted against the value following it directly in the observation order. A lag of 2 
means that each value is plotted against the value two places behind it in the observa-
tion order. This type of plot helps us check on whether a variable's values represent a 
random sample from a population. If it is such a sample, the plot should reveal no pat-
terning. 

Sequence plots. Sequence plots are simply a plot of a variable's values versus an 
index specifying the sequence order in which the values were observed. This plot has 
been proposed as a simple graphical summary of a variable's values. It is commonly 
assumed that these values represent a random sample from a population. This implies 
that there should be no shift in location or scale from one sample to the next, or, in 
other words, that the values should all have the same location and scale. Run 
sequence plots show such shifts, making them quite evident. They are also good for 
detecting outliers. We have shown examples of these plots in the visualization at the 
beginning of this chapter. 

6.3.6 Namelists 

A namelist is a "graphic" consisting of a list of names that can be linked with other 
graphics. For example, the namelist could be a list of observation labels. When it is 
linked with a plot with points corresponding to observations, such as a dotplot or box-
plot, the namelist provides a way to identify individual points. 

6.4 Visualization for Exploring Univariate Data 

A univariate visualization of MPG is shown in Figure 6.16. The visualization consists 
of six graphs and a namelist. The graphs include examples of each of the univariate 
plots mentioned at the beginning of this chapter, including two ordered series plots 
(the sequence plot and lag plot in the upper row), a boxplot and the closely related 
dotplot, a cumulative distribution plot, and a histogram (which can be changed into a 
frequency polygon). 

This visualization is constructed using the spreadplot technology developed by 
Young et al. (2003), which allows us to see several different graphs of the data simul-
taneously. The individual graphs each support dynamic interactive graphics and can 
be linked with each other via their observations. This means that when the user 
brushes or selects points or tiles or names in one plot, the corresponding points or tiles 
or names in the other plots are highlighted. Thus, for example, if we wish to see 
which observation is best in terms of MPG (i.e., has the highest MPG value), we can 
select it, say, in the dotplot, and see its label highlighted in the namelist and its label 
displayed in the other plots. This is what is happening in Figure 6.16, where we see 
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that the brush cursor's rectangle is encompassing a point and that the point's label 
(Fiat Strada) is shown. Note that each of the other graphs also has a highlighted ele-
ment labelled Fiat Strada. Of course, we can do the reverse: If we are interested in 
MPG for Fiat Strada, we can select it in the namelist and see where it falls in the other 
plots. Brushing the boxplot lets us see that the car that goes the farthest on a gallon of 
gasoline is the Fiat Strada, and the car that goes the shortest distance on that gallon is 
the Ford' Country Squire Wagon. 

The visualization shown in Figure 6.16 is a generalization of the four-plot concept 
presented in the NIST handbook (NIST/SEMATECH, 2004). The four-plot is a set of 
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four plots that allow us to investigate the four fundamental assumptions underlying 
essentially all measurement processes. Although the four-plot is most appropriate for 
time series data, its usefulness extends to essentially any kind of numeric data. A 
four-plot consists of a run-sequence plot, a lag plot, a histogram, and a normal proba-
bility plot, plots that allow us to investigate the assumption that each value of a varia-
ble is generated by a process that behaves like (1) a random sample, (2) from a fixed 
distribution, (3) with a fixed location, and (4) a fixed variation. 

If the four assumptions above hold, the variable will support probabilistic predicta-
bility. That is, the variable will permit legitimate probability statements about the 

Figure 6.16 
Univariate 
visualization of 
the MPG variable 
of the automobile 
dataset. 
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future as well as about the past. Since the validity of any conclusions we draw from a 
variable depends on the efficacy of the variable with regards to these four assump-
tions, it allows us to test these four assumptions. Since the graphics make no assump-
tions of their own, they provide an ideal test mechanism. And since the four-plot 
addresses the four underlying assumptions directly, it is the ideal way to do this. 

The visualization shown in Figure 6.16 is an augmented four-plot. As originally 
proposed, the four-Plot is formed by the four square plots that constitute the left-hand 
two-thirds of Figure 6.16. The boxplot, dotplot and namelist taking up the right-hand 
one-third of Figure 6.16 are the augmentation. The additional boxplot and namelist 
enhance the basic four-plot by adding basic DIG capabilities of selecting, labeling, 
coloring, and so on. We interpret the four-plot as follows for our MPG data. 

1. Random sample. If the assumption that MPG contains values that constitute 
random samplings, the lag plot should show no structure. This is decidedly not 
the case, as there is a gap in the middle of the distribution. 

2. Fixed distribution. If the assumption that MPG contains values that constitute 
samples from the same fixed distribution were to be met, we would not expect 
to find a normal probability plot with a gap and with what looks like two lin-
ear sections. 

3. Fixed location. If the assumption of fixed location holds, the run-sequence 
plot (upper left) will be flat, showing no drift, and the regression line it con-
tains will be horizontal, with a correlation of zero. This is clearly not the case. 

4. Fixed variation. If the assumption of fixed variation (scale) holds, the 
sequence plot will have the same vertical spread everywhere. This is clearly 
not the case. 

Thus, our MPG variable does not seem to be a random sample from a fixed distribu-
tion with a fixed location and a fixed variation. Of course, given the nature of this var-
iable, we should not worry about this. However, if we found that this variable is 
related in some way with a sequence, we should proceed to analyze this structure with 
more detail. 

6.5 What Do We See in MPG? 

Exploration of MPG reveals that the normal distribution is not a good model of this 
variable's distribution. Moreover, several of the plots, especially the histogram's ker-
nal density function and the shaded histogram, show that there are two peaks in this 
variable's distribution. The first peak corresponds to a concentration of cars that have 
the poorest performance, whereas the second peak is for cars with better performance. 
Also, it looks like there may be a normal distribution around each peak. 

Considering all of the evidence, it seems plausible that the cars come from different 
groups or populations. We could explore this possibility by selecting the groups in the 
boxplot and saving this information in a new datafile. The groups could be compared 
with the rest of the variables to see if the differences are present among all of them. 
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But before that, in Chapter 7 we examine one of the most obvious explanations of 
what we see here, which is the relationship of the variable MPG to the weight of the 
cars. 
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A 
I l s we noted at the beginning of the Chapter 6 magnitude data are clearly the most 
common type of statistical data, the reason being that they provide the strongest basis 
for scientific investigation. It follows that there are more data analysis tools, including 
more visualization tools, for magnitude data than for other types of data. Due to the 
large number of such tools, we have divided our coverage of them into several chap-
ters. In chapter 6 we covered univariate visualization methods—methods that produce 
plots of a single variable of magnitude data. This chapter covers bivariate methods — 
including methods that involve multiple bivariate plots—of bivariate magnitude data. 
The Chapter 8 covers multivariate methods. 

7.1 Introduction 

The fundamental fact about several observations of two variables is that the values of 
the two variables may have some sort of relationship. The material in this chapter 
helps us understand this relationship. 

7.1.1 Plots About Relationships 

Scatterplot. A scatterplot reveals the strength and shape of the relationship 
between a pair of variables. A scatterplot represents the two variables by axes drawn 
at right angles to each other, showing the observations as a cloud of points, each point 
located according to its values on the two variables. Various lines can be added to the 
plot to help guide our search for understanding. 

The scatterplot is the most important of the three plots we consider in this chapter: It 
can reveal distribution shape, show strength of relationship, reveal trends, show clus-
ters, uncover outliers or isolates, and reveal patterns. The scatterplot is well comple-
mented by the comparison plot, since it can help us decide if the two variables 
represent samples from distributions with similar or different shapes. The parallel-
coordinates plot can sometimes reveal additional information that cannot be gleaned 
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from the other two plots, although it is seldom the source of insight, in our experi-
ence. 

Consider panel A of Figure 7.1, which shows a small example dataset on the left, 
with a schematic of its scatterplot next to it. The scatterplot uses the standard Carte-
sian coordinate representation of a data matrix: The columns of the matrix are repre-
sented as dimensions of the scatterplot, and the rows as points in the scatterplot. Thus, 
the data elements are the coordinates of points in a plane. For example, the first row 
of data, which is [—1.8, -3.1 ] is represented by point a in panel A. If you project the 
point vertically onto the X-axis, the projection arrives at the value -1.8 , as is shown 
by the vertical arrow. Similarly, point a projects horizontally onto the K-axis at -3.1 , 
as shown by the horizontal arrow. 

Distribution comparison plot. The distribution comparison plot shows whether 
two variables come from distributions which are similarly or differently shaped. Like 
the scatterplot, the distribution-comparison plot represents the two variables by axes 
drawn at right angles, but the values on each variable are sorted into order and plotted 
as a line of connected dots. A straight line is added to guide our interpretation. 

Scrutiny of the comparison plot schematic in panel B of Figure 7.1 reveals that the 
location of its X values are in fact the X values of the scatterplot after having been 
sorted into order. Inspection of the figure reveals that the same is true for the F values. 
Then, if one takes the two sorted values to be the coordinates of points in a plane, one 
obtains the configuration of dots that is shown in the "comparison" figure. You can 
also reach the same conclusion if you compare the X column of the data matrix and 
the X column of the sorted data matrix, and also to compare the Y columns of the two 
matrices. You will see that the comparison plot involves replotting the coordinates of 
the scatterplot after they have been sorted into order on each axis, giving the new con-
figuration of dots shown in the comparison plot schematic. 

Note that the new "dots" are not associated with a specific observation; rather, their 
horizontal position is associated with one particular observation, and their vertical 
position is associated with (what is usually) a different observation. So the lower-left 
point has two identifying labels; a and b, since its horizontal coordinate came from 
point a and its horizontal coordinate from point b. The a is written vertically to 
emphasize that it is the label of the observation contributing the vertical (Y) coordi-
nate. Because of this loss of correspondence with the original data-points, the com-
parison plot is often just shown as a line, with no points. However, we choose to show 
the plot as connected points to take advantage of our dynamic graphics capability of 
linking the plot with other plots via the points. You may be familiar with the compar-
ison plot but know it by a different name, since the name we use, although more 
descriptive, is not the standard name. The comparison plot described here is a special 
case of the slightly more general quantile-quantile (QQ) plot. 

Parallel-coordinates plot. The parallel-coordinates plot (originated by Inselberg, 
1985) shown in panel C of Figure 7.1 represents the two variables by axes that are 
parallel rather than by axes that are perpendicular, as is done by the other two plots. 
Each observation is represented by a line segment instead of a point. The value of an 
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Figure 7.1 Schematics of three bivariate plots. 
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observation on each variable is used to locate the endpoints of the observation's line 
segment. Panel C of Figure 7.1 shows how our little dataset is represented by the par-
allel-coordinates plot. Careful consideration of the schematic reveals that the right 
end of each line segment is located at the same position on the F-axis as is the point 
in the scatterplot schematic shown in panel A of Figure 7.1. Similarly, the left end of 
each line segment is located at a position that corresponds to the X position of the 
point in the scatterplot. 

Let's consider the general similarities and differences between the three plots. All 
three plots represent the data by a two-dimensional arrangement of plotting elements, 
with dimensions corresponding to variables and the plotting elements corresponding 
to observations. For both the scatterplot and the distribution comparison plot, the 
dimensions are drawn at right angles, whereas for the parallel dimensions plot the 
dimensions are drawn in parallel, as the name suggests. Both the scatterplot and the 
parallel-coordinates plot portray the observed values of the X and Y variables by 
locating the plot symbols on the dimensions according to the observation values: For 
the scatterplot the symbol is a point, whereas for the parallel-coordinates plot the 
symbol is a line. In contrast, the comparison plot portrays the values of the X and Y 
variables by positioning the ends of a line segment according to the order of their 
sorted values. 

We do not spend much time here with the parallel-coordinates plot, because it is sel-
dom useful with bivariate data and contributes little to this chapter. You can imagine, 
however, that it is very easy to extend the definition to the multivariate situation, sim-
ply by adding additional axes, all drawn in parallel, to the figure. We will see in 
Chapter 8 that the high-dimensional parallel-coordinates plot can be very useful. 

Guidelines. While the information revealed by these plots can be clear, it is often 
the case that we are left in some doubt as to just what we can see. There are, therefore, 
various tools that have been developed to help us to see more clearly the more subtle 
effects. These tools, which we call guidelines, are functions that add reference lines to 
the scatterplot that show what a particular type of effect would look like if it were 
present. These functions often have parameters that can be manipulated by dynamic 
graphical techniques, permitting us to see how well the function describes the data. 
There are often alternative functions that may be tried, giving us several different pos-
sible explanations. It is also often possible to plot the residuals of the fit of the func-
tion to the data, which may provide additional insight. 

7.1.2 Chapter Preview 

We begin the chapter by introducing the data we use throughout. Then we review the 
bivariate plots that are useful for bivariate visualization. Our discussion emphasizes 
the scatterplot and the guideline tools available to help us interpret the scatterplot, 
since the scatterplot and its guidelines can tell us a lot about the relationship between 
two variables. We then turn to bivariate visualization spreadplot methods, including 
spreadplots for bivariate visualization and for simple regression analysis. Then we 
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discuss plot matrices and other closely related multibivariate visualization tools, con-
cluding with a presentation of dynamic visualizations for Box-Cox transformations. 

7.2 Data: Automobile Efficiency 

We continue to use the automobile data described in Chapter 6. You will recall that 
these data are about 38 automobiles sold in the United States during 1978-79. In 
Sections 7.3 and 7.5 we look at two variables: MPG, the measure of fuel efficiency 
we focused on in Chapter 6, and Weight, a measure of the weight of the automobile. 
We choose these two variables because we anticipate a reasonably clear but nonlinear 
relationship between them: The more the automobile weighs, the less efficient (fewer 
miles per gallon) it should be. Since all variables are used in Section 7.4, the entire 
dataset is shown in Table 7.1. The variables are described as follows: 

MPG. As we pointed out in Chapter 6 the fuel efficiency of automobiles is meas-
ured using miles per gallon (MPG), the standard measure used in North Amer-
ica. MPG indicates the distance, measured in miles, that the automobile can 
travel on a single gallon of gasoline. The metric equivalent would be the 
number of kilometers a car can travel on 1 liter of gasoline (km/L). The con-
version is 1 MPG corresponds to 0.425 km/L. Notice that km/L is the recipro-
cal of the L/km (litres per kilometer) measure commonly used in most of the 
world. Thus, 1 MPG corresponds to 2.35 L/km. 

Weight. The weight variable is defined in terms of the standard unit of weight 
used in North America, which is the pound (1 pound = 2.2 kg). The variable is 
actually defined in units corresponding to 1000 pounds (a kilo-pound or klb). 
Thus, the first automobile in the data (the Buick Estate Wagon) weighs 4360 
lbs (4.36 klb). 

The additional variables shown in Table 7.1 are: 

Drive ratio. The drive ratio of an automobile is the number of times the wheels 
revolve per revolution of the engine in high gear (without overdrive). The 
larger the drive ratio, the less efficient the engine. 

Horsepower. The horsepower of the engine, a measure of power of an engine, 
may be measured or estimated at several points in the transmission of the 
power from its generation to its application, giving somewhat different meas-
urements, but in all cases, higher horsepower means lower fuel efficiency; 

Displacement. The displacement of the engine is defined as the total volume of 
air/fuel mixture an engine can draw in during one complete engine cycle; it is 
normally stated in cubic inches, cubic centimeters, or liters. Our measure is in 
cubic inches, which if multiplied by 16.38 provides cubic centimeters, and if 
then divided by 1000 yields displacement in liters. All other factors being 
equal, a larger-displacement engine is more powerful and less efficient than a 
smaller engine. 

Number of cylinders. The meaning of number of cylinders should be obvious. We 
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Table 7.1 Complete Datasheet for the Automobile Data 

Weight MPG DrRatio HrsPwr Dsplcmnt Cylinders Country 

Buick Estate Wagon 
Ford Country Squire Wagon 
Chevy Malibu Wagon 
Chrysler LeBaron Wagon 
Chevette 
Toyota Corona 
Datsun 510 
Dodge Omni 
Audi 5000 
Volvo 240 GL 
Saab 99 GLE 
Peugeot 694 SL 
Buick Century Special 
Mercury Zephyr 
Dodge Aspen 
AMC Concord D/L 
Chevy Caprice Classic 
Ford LTD 
Mercury Grand Marquis 
Dodge St Regis 
Ford Mustang 4 
Ford Mustang Ghia 
Mazda GLC 
Dodge Colt 
AMC Spirit 
VW Scirocco 
Honda Accord LX 
Buick Skylark 
Chevy Citation 
Olds Omega 
Pontiac Phoenix 
Plymouth Horizon 
Datsun 210 
Fiat Strada 
VW Dasher 
Datsun 810 
BMW 320i 
VW Rabbit 

4.36 
4.05 
3.61 
3.94 
2.16 
2.56 
2.30 
2.23 
2.83 
3.14 
2.80 
3.41 
3.38 
3.07 
3.62 
3.41 
3.84 
3.73 
3.96 
3.83 
2.59 
2.91 
1.98 
1.92 
2.67 
1.99 
2.14 
2.67 
2.60 
2.70 
2.56 
2.20 
2.02 
2.13 
2.19 
2.82 
2.60 
1.93 

16.9 
15.5 
19.2 
18.5 
30.0 
27.5 
27.2 
30.9 
20.3 
17.0 
21.6 
16.2 
20.6 
20.8 
18.6 
18.1 
17.0 
17.6 
16.5 
18.2 
26.5 
21.9 
34.1 
35.1 
27.4 
31.5 
29.5 
28.4 
28.8 
26.8 
33.5 
34.2 
31.8 
37.3 
30.5 
22.0 
21.5 
31.9 

2.73 
2.26 
2.56 
2.45 
3.70 
3.05 
3.54 
3.37 
3.90 
3.50 
3.77 
3.58 
2.73 
3.08 
2.71 
2.73 
2.41 
2.26 
2.26 
2.45 
3.08 
3.08 
3.73 
2.97 
3.08 
3.78 
3.05 
2.53 
2.69 
2.84 
2.69 
3.37 
3.70 
3.10 
3.70 
3.70 
3.64 
3.78 

155 
142 
125 
150 
68 
95 
97 
75 

103 
125 
115 
133 
105 
85 

110 
120 
130 
129 
138 
135 
88 

109 
65 
80 
80 
71 
68 
90 

115 
115 
90 
70 
65 
69 
78 
97 

110 
71 

350 
351 
267 
360 

98 
134 
119 
105 
131 
163 
121 
163 
231 
200 
225 
258 
305 
302 
351 
318 
140 
171 
86 
98 

121 
89 
98 

151 
173 
173 
151 
105 
85 
91 
97 

146 
121 
89 

8 
8 
8 
8 
4 
4 
4 
4 
5 
6 
4 
6 
6 
6 
6 
6 
8 
8 
8 
8 
4 
6 
4 
4 
4 
4 
4 
4 
6 
6 
4 
4 
4 
4 
4 
6 
4 
4 

U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
Japan 
Japan 
U.S. 
Germany 
Sweden 
Sweden 
France 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
Japan 
Japan 
U.S. 
Germany 
Japan 
U.S. 
U.S. 
U.S. 
U.S. 
U.S. 
Japan 
Italy 
Germany 
Japan 
Germany 
Germany 

do not include this variable in our analyses here. Note that it can be treated as 
numerical or categorical. 

7.2.1 What the Data Seem to Say 

So what will we see in these data? Let's take a quick look, even though we are getting 
ahead of ourselves. Of course, we haven't yet explained what these graphics are 
about. But you can rely on your visual intuition to see what there is to be seen. And 
rest assured that in the rest of this chapter we will be showing you the details of how 
to use these graphics. 

One of the most important graphics in this chapter is shown in Figure 7.8. We repro-
duce it here as Figure 7.2, so that we can show you what we conclude from it. The 
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graphic is a scatterplot of Weight versus MPG, with several guidelines added to aid 
our understanding. We explain the details in the next section. 

Our first impression is that there is a strong negative relationship between weight 
and efficiency: The heavier cars are less efficient, just as we would expect. But let's 
look at the relationship in more detail. When we do, we notice that there is a gap in 
the MPG variable: There just are no middle-efficiency automobiles. There are autos 
above 26 MPG and autos below 22, but none in between. So, let's say that we have 
heavy cars and light cars. Of course, the heavy ones are less efficient than the light 
ones. 

When we study the relationship between weight and efficiency for the heavy cars, 
we see that it is different from the relationship for light cars. In the plot this is shown 
by two different regression lines (the straight lines that are partially solid, partially 
dashed), the one for the lightweight cars being steeper than the one for the heavy cars. 
So for lightweight cars, changing their weight has greater impact on efficiency that 

Figure 7.2 MPG and Weight of 38 automobiles made in 1978-79. 
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for heavy cars. This may seem counterintuitive, but it's telling us that if we build a 
lightweight car and can shave off another 100 kg or lb of weight, we will improve the 
efficiency of the automobile by a greater amount than if we did the same thing for a 
heavy car. We note that rather than modeling this effect with two separate linear 
regressions, we can model it with one quadratic regression, represented by the curved 
line shown in the figure. We can't be sure which is right, and would need to look fur-
ther, or develop theory to draw a conclusion. 

Finally, we have selected and labeled the cars that were manufactured in the United 
States, and we notice that they are consistently more efficient than we would expect. 
They are above the quadratic regression line, meaning that the quadratic regression 
underpredicts their efficiency as a function of weight. They are more efficient than we 
expect. Another way of seeing this is shown by the two essentially parallel gray lines. 
One of these lines (the lower one) is the overall regression between Weight and MPG, 
whereas the upper one is the regression for Weight and MPG for the American cars 
only. We see that they are a bit more efficient, for their weight, than cars in general: 
An American car of a specific weight, which was built in 1976, could go about 1 mile 
further on a gallon of gasoline than cars in general of the same weight. This also is an 
unexpected result. 

7.3 Bivariate Plots 
As mentioned at the beginning of this chapter, the two main bivariate visualization 
methods are the scatterplot and the distribution comparison plot. The parallel-coordi-
nates plot and parallel boxplot can also be used. We discuss all four plots next. 

7.3.1 Scatterplots 

The scatterplot shows the strength and shape of the relationship between two varia-
bles. Two scatterplots are shown in Figure 7.3. Each scatterplot shows the MPG and 
Weight variables. In each plot the variables are represented by the X-axis (drawn hor-
izontally) and the K-axis (drawn vertically), and the observations are represented by 
the points in the scatterplot, each point being located according to the observation's 
values on each of the two variables. These values can be approximately determined 
from the plot by seeing what value of the X-axis is below the point and what value of 
the Y-axis is to the left of the point. 

Sometimes, we think of two variables as though one is caused (at least partially) by 
the other, sometimes we do not, depending on the details of the empirical situation. 
When we do think there is a causal relationship, we commonly call the caused varia-
ble "dependent," "response," or "effect," and we call the causing variable "independ-
ent," "predictor," or "factor." Of course, when we believe causality, our goal is to 
study how the response depends on the predictor. In this case, it is conventional to put 
the response variable on the F-axis and the predictor variable on the X-axis. In those 
cases when neither variable is thought of as being effect or response, the goal is to 
understand how they are related, and either variable can be on either axis. 
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For our example of Weight and MPG, we would consider the Weight variable to be 
the predictor and the MPG (efficiency) variable to be the response, since it is well 
known that the distance that a car can travel on a given quantity of fuel is at least par-
tially determined by the weight of the car, with heavier cars needing more fuel than 
lighter cars to travel the same distance. That is, it is reasonable to think of increased 
weight causing decreased efficiency, and not the other way around. Thus, Weight 
should appear on the X-axis and MPG on the F-axis, which is the orientation shown in 
the right image of Figure 7.3. 

7.3.1.1 What we can see with scatterplots. It is important to pay attention to the 
first impression one gets from a scatterplot. For the plot showing the relationship 
between MPG and Weight, shown as the right image of Figure 7.3, the first impres-
sion is that the weight of the cars is inversely related to their efficiency and that the 
relationship is very strong. It appears that the relationship is nearly, but not quite lin-
ear, there being a slight curve in the trend. 

The scatterplot can show us information about the shape, strength, direction, and 
density of the relationship between the two variables. It can also tell us about skedas-
ticity and about outliers and isolates. Many of these are illustrated in Figure 7.4, 
where we have plotted artificially generated data to illustrate various features. 

Shape. The shape of the relationship between two variables refers to the overall pat-
tern of that relationship. Some of the more common shapes of the many that we may 
encounter are shown in Figure 7.4. All but the last of these scatterplots are based on 
simulated data where the y-values are related to the x-values by an equation. The 
actual y-values represent error-containing samples from a distribution whose values 
are calculated the x-values by an equation that is (a) linear, (b) quadratic, (c) cubic, 
(d) exponential, or (e) sinusoidal. Each graph has a title indicating which equation 
defines the relationship between X and Y. The equation itself is shown as the label of 
the F-axis. The line in each figure is the actual equation; the points represent the 
error-containing samples from the indicated relationship. Plot (f) is an empirical scat-
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Figure 7.3 Scatterplots for the Weight and MPG variables. 
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Figure 7.4 Six scatterplots showing various types of relationships. 
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terplot, based on real data. Here, the line that is drawn is a Lowess smoother, a type of 
running local average. We would describe its shape as irregular and clump. The shape 
of the relationship between Weight and MPG (Figure 7.3) is linear, with a hint of cur-
vilinearity. Note that many statistical tests require linearity. 

Strength. The strength of the relationship concerns how close the points in the fig-
ure are to their presumed underlying error-free functional relationship. The strength 
may be described by words such as none, weak, moderate, strong, or very strong, or it 
can be summarized quantitatively by computing the correlation (or a nonlinear meas-
ure of association such as T|2 ) between the two variables. The top two plots show a 
fairly strong relationship, the cubic relationship is very strong, whereas the next two 
are reasonably strong. The strength of the relationship between MPG and Weight is 
very strong. 

Of course, we can use the coefficient of correlation to summarize the strength of 
relationship between our two variables. This value, which is shown in the lower-left 
corner of each plot, tells us the strength of linear relationship between the values 
observed X and Y. The most straightforward interpretation of r is to interpret R , 
which tells us the proportion of variation in the response that is predicted by the pre-
dictor, assuming a linear relationship between the two measures. 

We can see in Figure 7.3 that vehicle weight predicts 81% (= 0.90 ) of the variation 
in fuel efficiency, assuming that their relationship is linear. But when we look at 
Figure 7.4 we can see that the assumption of linearity underlying the calculation of 
the correlation coefficient can make its value very misleading. The quadratic relation-
ship, which we know to be strong, has a linear correlation coefficient of zero. 

Direction. This concept applies unambiguously only to monotonie (strictly increas-
ing or decreasing) relationships, which, of course, include linear relationships. A rela-
tionship is positive (or increasing) if as X increases, so does Y. It is negative (or 
decreasing) if as X increases, Y decreases. The top-left plot displays a positive direc-
tion. We can also apply the concept without much difficulty to the cubic and expo-
nential (center) figures, both of which have a positive direction. We cannot, however, 
apply it to the bottom two figures. The relationship between Weight and MPG in 
Figure 7.3 is negative or decreasing. 

Density. The mathematical concept of density (which we refer to here, and which is 
not the same as the statistical concept of density) concerns the relative proximity of 
the points in the point cloud. If it is the case that the relative proximity remains the 
same throughout the point cloud, the density is said to be "everywhere equally 
dense." Alternatively, it is often the case that the density gradually tapers off as we 
proceed from the center to the edge of the cloud, creating what is known as a tapered 
density. Finally, it is not uncommon to see scatterplots where the density is very 
clumpy. In Figure 7.3 the five simulated distributions are equally dense; the empirical 
one is clumpy. 

Many commonly assumed distributions (normal, for example) are smoothly taper-
ing or equally dense, not clumpy, so dumpiness is a warning that standard assump-
tions may not apply and that multiple generating functions may be at work. We may 
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wish to form groups of points that seem to form a clump and keep our eye on it as we 
progress through the analysis. 

Outliers/isolates. We should always look for outliers, as they may represent inter-
esting or erroneous data, as discussed in Chapter 5. Note that it is possible to have 
points that do not appear to be outlying on either of the two variables when they are 
looked at individually, but will be clearly seen as being outliers when the two variable 
are looked at together. The points at the top of the cubic and exponential distributions 
may be outliers. Outlying points can drastically affect the results of analyses, and 
should be carefully attended to before further analyses are performed. 

Skedasticity. Skedasticity refers to whether the distributional relationship between 
two variables has the same variability for all values of X. A distribution which does 
have this characteristic is called homoskedastic, one that does not is called heteroske-
dastic. Some statistical tests require homoskedasticity. The linearly based relationship 
looks homoskedastic, whereas the others do not. 

7.3.1.2 Guidelines. The task of detecting trends in scatterplots can be enhanced 
by adding lines of various kinds, These lines, which we call guidelines, since they 
help guide our interpretation of the plots, include the principal axis line, two different 
kinds of regression lines (one linear and the other monotonie), and two families of 
smooth lines (Lowess smoothers and kernal density smoothers). 

Principal axis. The principal axis line (left panel of Figure 7.5) shows us the linear 
trend between the X and Y variables. It is the "longest" direction in the plane: It is the 
(straight) line such that when the points are projected onto it orthogonally, their pro-
jected values have the maximum possible variance. There is no other direction in the 
space which when the points are projected orthogonally onto the line for that direc-
tion, would have a greater variance. The principal axis line is also the line that has the 
shortest possible set of residual lines (these are the short lines drawn at right angles — 
orthogonal to—the principal axis). There is no other direction through the space that 

Figure 7.5 Left: principal axis line. Right: regression line. 
Each line is shown with its residual lines (the short lines). 
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has a smaller sum of squared lengths of the residual lines (i.e., it is the best fitting 
line). It is the line that is the best linear summary of the XY plane. 

Regression Lines: Regression lines provide information about how the Y variable 
responds to the X variable. These lines only make sense when we believe that the val-
ues on the y-axis variable are a response that depends, at least in part, on the values of 
the X-axis variable. 

Linear regression. The linear regression line (right panel of Figure 7.5) shows us 
the least squares linear prediction of the Y variable from the X variable. This is not the 
same line as the principal axis, except in unusual circumstances. The regression line 
maximizes fit to the dependent variable only, whereas the principal axis maximizes fit 
to both variables simultaneously. Whereas the principal axis measures fit orthogo-
nally to the line (and thus uses information about lack of fit to both X and Y), the 
regression line measures fit vertically, only using information about lack of fit to Y. 
This difference is shown in the figure by the differently oriented residual lines: 
orthogonal to the principal axis in the one case, and vertical in the other case. 

Quadratic regression. The quadratic regression line (lower-left panel of Figure 7.6) 
shows us the least squares quadratic prediction of the Y variable from the X variable. 
This regression is done by constructing a variable which is the squares of the X values 
and then fitting Y with a linear combination of X and X2. 

Cubic regression. The cubic regression line (lower-right panel of Figure 7.6) shows 
us the least squares cubic prediction of the Y variable from the X variable. This regres-
sion is done by constructing two variables, one of which is the squares of X and the 
other the cubes, and then fitting Y with a linear combination of X, X2 and X3. 

Monotone regression. The monotonie regression line (upper-left panel of 
Figure 7.7). is the line that shows the order-preserving transformation of the X varia-
ble that has the maximum least squares fit to the Y variable. Monotone regression may 
degenerate into a step function, resembling a staircase. In such a case the function 
may be artifactual or may represent overfitting of the X-variable to the F-variable. 

Figure 7.6 Left: quadratic regression line. 
Right: cubic regression line. 

229 



7 Seeing Bivariate Data 

Figure 7.7 Five glimpses of what may be two different linear trends, 
plus one glimpse suggesting a single nonlinear trend. 
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Subset regression: Subset regression produces separate regression lines for subsets 
of the data. The subsets can be based on category variables or on any other groupings 
the user wishes to make. These groupings can be indicated by point color, point label, 
or by the name or shape of the object used to represent the point. 

Smoothers. Smoothers, including Lowess smoothers and kernel density smoothers, 
provide us with an approximate idea about where the vertical center of the points is 
for each part of the scatterplot as we move horizontally from left to right along the X-
axis. They are, loosely stated, a kind of running weighted regression, where a value of 
Y is computed for each value of Xby using a weighted regression where nearby obser-
vations are most heavily weighted. 

There are two commonly used smoothers: Lowess smoothers and kernel density 
smoothers. Each has a parameter that must be manipulated to search for the specific 
member of the family that seems to be the best. Dynamic graphical techniques can be 
used for this search. 

Lowess is an acronym for LOcally Weighted regression Scatterplot Smoothing, a 
method designed for adding smooth traces to scatterplots that works basically by 
selecting a strip of neighbors to each F, value and then using them to predict Yj. The 
process is iterative, so several passes are necessary to compute the values of the Low-
ess fit. There is a parameter for Lowess that you can control. It is the proportion of 
cases included in the strip. Narrow strips means that the smooth follow minor wiggles 
in the data. Wider strips provide a smooth trace that changes only gradually. The 
weight versus residuals plot used a strip of 0.75. In general, what we try with smooth-
ers is to balance smoothness versus goodness of fit. A smoother that follows every 
spike in the data is not what is normally desired. 

A kernel density smoother is also a locally weighted regression method which 
employs a kernel function to generate weights for a series of weighted regression 
analyses, one performed for each observed value of X, each generating an estimate of 
F for that value of X. The kernel function is usually a symmetric probability function 
such as a normal density function. Although other functions can be used, they gener-
ally produce similar results. As with Lowess, kernel density smoothers have a param-
eter that controls the smoothness of the resulting function. In this case, the parameter 
controls the width of the kernel function. 

Black threads: In their introductory statistics book, Mosteller et al. (1983) argued 
in favor of fitting lines by eye, their black thread method. As they noted, when several 
points fall on a straight line, the line clearly fits them. Nevertheless, when the points 
do not fall along a straight line, we may wish to summarize their positions by a 
straight line. The problem is how to choose the line. Of course, we can use the meth-
ods described above, but we should also be able to draw lines by eye. As they note 
"drawing a straight line 'by eye' can often be as helpful as the formal methods." Their 
name for the method comes from the fact that they recommended stretching black 
threads across the plot to locate the best line until it passed the IOI (Interoccular 
Impact) test. This was, after all, before the advent of computers. 

We recommend the availability of a "piecewise" black thread method, one that 
allows the user to locate connected pieces of black thread, each piece fitting the local 
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points as well as possible, according to the eye. Such a line is shown in the lower-left 
corner of Figure 7.7. 

7.3.1.3 Using the Guidelines. The principal axis line, shown in the left panel of 
Figure 7.5, fits our automobile data very well. We should expect this, of course, from 
the general appearance of the plot, it being a compact distribution of points varying in 
essentially just one direction, a direction that is not oriented along just one of the 
dimensions of the scatterplot, but which involves both. The principal axis accounts 
for 95% of the variation of the two dimensions of the scatterplot. Although the princi-
pal axis accounts for nearly all of the variation, there are several hints that the princi-
pal axis does not tell the entire story: These are summarized graphically in Figure 7.8. 

• One hint, first encountered in Chapter 6, is that there is a gap in the values of 
MPG—there are no automobiles with middle values on MPG. 

• A second hint is that the relationship between MPG and Weight appears to be 
different above the gap than below the gap. We can see this in several ways: 

• The monotonie line, shown in the top-left panel of Figure 7.7, seems to 

Figure 7.8 Composite showing several guidelines. 
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bend at the gap and be relatively straight on both sides. 
• The Lowess smoother, shown in the top-right panel of Figure 7.7 for a 

parameter of 1.0, also seems to change slope at the gap. 
• In the middle-left panel of Figure 7.7 we show a regression line for the 

subset of points that are above the gap (the points in the subset are shown 
as solid black points, those not in the subset as hollow circles). In the 
middle-right panel of Figure 7.7 we have also done this for the points 
below the gap. The regressions for these two subsets look quite different. 

• The piecewise black thread easily passes the IOI test, as is seen in the 
lower-left panel of Figure 7.7. 

• A third hint that the relationship between the two variables is not linear is 
shown by fitting a quadratic function to the relationship between the two vari-
ables, as is shown in the lower-right panel of Figure 7.7. 

• A fourth hint that the principal axis does not tell the entire story of the relation-
ship between Weight and MPG is seen by looking at the departures from fit to 
the axis. We have already discussed the two ways of looking at this informa-
tion that are shown in Figure 7.5. You will recall that on the left is the princi-
pal axis along with the orthogonal projection of each observation onto the 
principal axis (the dashed lines), thus showing us the residuals from fit for 
each observation (each dashed line). Studying this plot shows that the residu-
als at the upper and lower portions of the range are on one side of the axis, 
whereas those in the middle are on the other side. Thus, we see that there are 
systematic departures from linear fit. 

The several guidelines just discussed are combined to produce Figure 7.8. Included 
are two subset regression lines (with dashed portions), a monotonie regression line 
(its jagged), a black thread, and a least squares quadratic regression line. 

The bottom line (so to say) is this: When we try several different ways of looking at 
our data, and with each way we see roughly the same thing, we have what is called 
convergent validity, and we can be more confident about what the data seem to say. 
But we must always remember that the convergence is on what the data "seem to 
say." not necessarily on what the data actually "do say," which we will never know. 

7.3.2 Distribution Comparison Plots 

The distribution comparison plot shows whether two variables come from distribu-
tions that are similarly or differently shaped. Like the scatterplot, the distribution-
comparison plot represents the two variables by axes drawn at right angles to each 
other. However, unlike the scatterplot, the distribution-comparison plot sorts each 
variable into order and then plots the sorted values, whereas the scatterplot plots the 
unsorted values. Because each variable has been sorted into order, the plot is not a 
cloud of points but an ordered series of points. For emphasis, the points are connected 
together, creating a plot that shows a jagged monotonie line of connected points. This 
line represents the relationship between the two distributions. 
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In Figure 7.9 we present several distribution comparison plots. By way of preview, 
we conclude that the upper-left plot is of two variables which are similarly distrib-
uted: This means that they have distributions that are of the same shape. On the con-
trary, the other five plots all represent two variables which have distributions that are 
not similarly shaped and thus should be used cautiously for statistical significance 
testing. The conclusions are based on the apparent linearity of the jagged monotonie 
line of connected points: If the line is straight, the distributions are similar; otherwise 
they are not. 

We interpret each of these plots as follows: In each of these plots there are three 
lines: The jagged monotonie line of connected points is the actual plot of the data 
sorted, while the two straight lines, one solid and the other dashed, are added to the 
plot as guidelines. The jagged line tells us whether the two variables have distribu-
tions that have the same shape. If the line is roughly straight, the two variables have 
roughly the same shape. Such variables are said to be similar, or to be similarly dis-
tributed. If the line is not so straight, the two variables are not similarly distributed. 

It is important to know whether two variables are similarly distributed since many 
significance tests make such an assumption. Note that "similarly" distributed means 
that the two variables have the same shape but not necessarily the same means and 
variances. When two variables are both normally distributed, for example, they have 
the same shape and are said to be similarly distributed. If, in addition, they both have 
the same means and variances (as is the case, for example, when each is from a stand-
ard normal distribution), then they are said to be identically distributed. 

The solid straight line is a guideline that represents two similarly shaped variables 
which have measures of center and spread that are the same as those of the observed 
variables. The dashed straight line is a guideline that represents two identically 
shaped variables, variables that have not only the same shape but also the same means 
and same variances. Some statistical significance tests require identically distributed 
variables, a stricter requirement than that of similarly distributed variables. 

The six plots in Figure 7.9 correspond to the six scatterplots presented in Figure 7.4. 
The first five (i.e., all but the lower-right plot) are for simulated data, with the name of 
the function used to generate the data appearing as the title of the plot, and the equa-
tion that relates the K-axis to the X-axis being used as the label of the 7-axis. The sixth 
plot, in the lower-right corner, is an empirical distribution. 

Note that, because these data are simulated, we know which of the first five plots 
have variables that come from similarly shaped distributions: only the first one. And 
it is the only one with a straight-appearing jagged line of connected points. 

The distribution comparison plot is, as just described, a special case of the well-
known quantile-quantile (QQ) plot. In a QQplot, the quantiles of two variables are 
plotted against each other, forming the jagged line. Since, for these data, the two vari-
ables have the same number of observations, the jagged line is simply a plot of one 
sorted variable against the other sorted variable. 

Distribution comparison plots have other uses apart from comparing two variables. 
For example, we can generate simulated data following a number of probability dis-
tributions and use the simulated variable, plus a real variable in a distribution compar-
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Figure 7.9 Six distribution comparison plots corresponding to the 
six scatterplots shown in Figure 7.4. 
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ison plot to decide if the variable observed has the same distribution as the variable 
simulated. Also, distribution comparison plots can be used for comparing the values 
of a variable across different groups. 

7.3.3 Parallel-Coordinates Plots and Parallel Boxplots 

We mentioned above that the parallel-coordinates plot, and its cousin the parallel 
boxplot, can be used as bivariate plots but that they are not often useful. They are 
quite useful, however, for high-dimensional applications, so we will skip them here 
and discuss them in Chapter 8. 

7.4 Multiple Bivariate Plots 

A plot matrix is a matrix of plot cells with a row and column for each variable being 
plotted. Each plot cell of the matrix contains a plot of the relationship of the cell's row 
and column variables. Thus, a plot matrix contains plots showing the relationship 
between all possible pairs of a set of variables. As such, it is a multiple bivariate plot, 
being neither truly bivariate nor truly multivariate. In addition, the plots can be multi-
variate as well. In this chaper we cover plot matrices with cells that are univariate or 
bivariate. In the next we cover those with multivariate plots. 

The first plot matrix that was proposed was the scatterplot plot matrix, a plot matrix 
whose cells are all scatterplots. An early discussion of the scatterplot plot matrix can 
be found in Chambers et al. (1983), although they do not claim discovery, saying that 
they don't know who invented it. It seemed to be in the Zeitgeist of the times. 

The concept of a scatterplot plot matrix is (and was) easily generalized to that of a 
plot matrix where the individual plots are formed from pairs of variables, but the plots 
do not have to be scatterplots. Since the information being plotted is bivariate (except 
on the diagonal), the plots that can be used are generally one of the bivariate plots 
types discussed above. Univariate plots are often used on the diagonal of plot matri-
ces, since the diagonal represents the relationship of a variable with itself. 

If there are n variables, a plot matrix has n2 plots arranged into a square 
n x n matrix. The i'th row contains plots Py of variable i versus each of the variables j , 
including itself. Usually, each plot is square. Often, a plot matrix has one or more 
additional tall but thin namelists appended to the left or right side of the matrix of 
plots. They help identify individual observations in the dataset. 

The plot in cell ij does not have to be the same as the plot in cell ji, even though the 
information being plotted (variables i and/') is the same. The plot in cell ji could, for 
example, be the same type of plot as the plot in cell ij (e.g., both could be scatter-
plots), but with the axes switched. Or the plot in cell ji could be a totally different plot 
(e.g., a comparison plot) than the plot in cell ij (which might be a parallel-coordinates 
plot). Of course, the plots in the two cells can also be identical. The plots on the diag-
onal can be either bivariate or univariate. When the plot is bivariate, it is showing the 
relationship of a variable with itself, which may or may not be informative, depending 
on which specific plot is being used (the scatterplot of a variable versus itself can be 
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informative, but the comparison and parallel-coordinates plots for a variable paired 
with itself is seldom useful). 

There is no mathematical or statistical reason why all of the plots from which the 
plot matrix is constructed must be the same. Although it can be very difficult to inter-
pret a plot matrix that has an unsystematic selection of plots in the plot cells, we do 
discuss plot matrices for which all of the plots above the diagonal are the same type of 
plot, and all of those below the diagonal are also the same type of plot, but those 
above are a different type than those below. 

A plot matrix can be viewed as a specialized type of trellis plot that visualizes the 
relationship between all possible pairs of a set of variables and has the very pro-
scribed arrangement of square plot cells described above. For more information see 
Cleveland (1994a and b) and Cleveland and McGill (1988). 

7.4.1 Scatterplot Plot Matrix 

In Figure 7.10 we show a scatterplot plot matrix for the automobile data. Note that in 
the version we show, even the diagonal is formed from a scatterplot of a variable with 

Figure 7.10 Scatterplot plot matrix with namelist. 
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itself, usually a plot that you would not be interested in seeing, but, in the context of 
dynamic interactive graphics, a plot that can be informative. Note also that the off-
diagonal plots are not identical to their counterparts on the other side of the diagonal. 
That is, the plot in cell ji is not the same as that in cell ij. In fact, what we have is an 
example of how the plot in cell ji plots the same variables, but with their assignments 
to the axes switched. 

7.4.2 Quantile Plot Matrix 

In Figure 7.11 we show a plot matrix constructed from comparison plots (off-diago-
nal) and normal probability plots (on diagonal). Since these plots are also commonly 
called quantile-quantile plots, and quantile plots we call it the quantile plot matrix. 

7.4.3 Numerical Plot-matrix 

In Figure 7.12 we show a plot matrix constructed from scatterplots (below the diago-
nal), comparison plots (above the diagonal), and probability plots (on the diagonal). It 
can be argued that these are the three plots that form the most useful and informative 

Figure 7.11 Quantile plot matrix, with namelist. 
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Figure 7.12 Numerical plot matrix. 

set of bivariate and univariate numerical plots. Thus, we call it the numerical plot 
matrix. 

7.4.4 BoxPlot Plot Matrix 

The final plot matrix we present, shown in Figure 7.13, is a boxplot plot matrix. It is 
actually somewhat more than a plot matrix, since it is augmented with an extra row 
and two extra columns (as well as the namelist column that appears in all the other 
plot matrices). The extra row, at the bottom, is a parallel boxplot of all variables in the 
dataset. Each extra column contains grouped boxplots, where the grouping is accord-
ing to the categorical variables in the dataset. 

What we can see with plot matrices. A plot matrix can be very useful for inves-
tigating the linearity of the relationship between pairs of variables, an important point 
to pursue since bivariate linearity is implied by multivariate normality. That is, if we 
wish to perform some sort of statistical test, which assumes that the variables are each 
normally distributed (i.e., that the entire set of variables is multivariate normally dis-
tributed), an implication of such an assumption is that every pair of variables has a 
linear relationship. 
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The human eye is very good at seeing nonlinearity in the relationships shown in plot 
matrices. Indeed, a quick glance at the automobile data shown in these plot matrices is 
all it takes to see the nonlinearities. We already noticed that Weight and MPG are 
non-linear. We now see, particularly in the numerical, quantile, and scatterplot plot 
matrices, that displacement is related nonlinearly to the other variables 

Figure 7.13 Boxplot plot matrix with parallel and grouped boxplots 
(parallel in bottom row, grouped in two right-hand columns). 
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7.5 Bivariate Visualization Methods 

Up to this point, we have discussed in the chapter bivariate and multiple bivariate 
plots. These plots, which include scatterplots, comparison plots, and a variety of plot 
matrices, all help us understand the relationship between two variables. (Boxplots and 

parallel-coordinates plots were 
mentioned but discussion was 
deferred until the chapter 8). 

We used the Weight and MPG 
variables of the automobile data 
to demonstrate the use of scatter-
plots and comparison plots, con-
cluding that weight is a strong 
predictor of fuel inefficiency, and 
that the relationship is not linear. 

We used all five of the numeri-
cal variables in the automobile 
data to demonstrate the use of 
plot matrices, concluding that 
there are strong non-linear rela-
tionships among several of the 
variables, not just Weight and 
MPG. 

Although the individual plots 
presented in this and Chapter 8 
are useful in themselves, they are 
even more useful when used in 
bivariate visualizations. 

In the next three sections we 
introduce bivariate visualizations 
for exploring, transforming, and 
modeling bivariate data. Since 
exploration of the automobile 
data continues to raise concern 
about nonlinearities, we trans-
form the data visually to improve 
its linearity. We then use regres-
sion to model the transformed 
and untransformed data, conclud-
ing that the square root of the 
weight of an automobile predicts 
the number of gallons of gasoline 
consumed for each 100 miles 
traveled (reciprocal of MPG). 
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7.6 Visual Exploration 

In this section we present two data visualizations. One is the default bivariate data 
visualization, consisting only of bivariate graphics and namelists. The other is an 
optional data visualization that also has several univariate graphics. This visualiza-
tion, while potentially much more useful, is certainly more complete than the bivari-
ate-only visualization, but it requires a larger screen for all of its plots to be large 
enough to be useful. 
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can also be a namelist window for each of them. In Figure 7.14 there is a namelist for 
Country (the Cylinders variable is not included in the visualization). 

The bare minimum for a bivariate data visualization consists of the three core bivar-
iate plots and the namelist of observation labels. The example shown in Figure 7.14 is 
a bit more than this, but not much. Ideally, we would also like the visualization to 
include univariate plots, since then we could see the distributions of the two variables 
as well as their relationship. Accordingly, unless the screen on which the visualization 
is being presented is too small, there is another visualization which includes the plots 
used by the default spreadplot, plus a histogram and probability plot for each variable. 
This visualization is shown in Figure 7.15. Of course, a separate univariate numerical 
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7.6.1 Two Bivariate Data Visualizations 

A bivariate visualization for exploring magnitude data is shown in Figure 7.14 for the 
MPG and Weight variables. This visualization involves the bivariate graphs intro-
duced above (scatterplot, comparison plot, and parallel boxplot). They are the essen-
tial tools for bivariate visualization of magnitude data, helping us understand the 
relationship between two of the variables. Of these three plots, the scatterplot is cer-
tainly the most useful, so it is shown larger than the other plots. The visualization also 
includes a namelist of the observation labels. If there are categorical variables, there 

Figure 7.14 
Spreadplot 
for seeing 
bivariate 
magnitude 
data. 
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visualization can be used in coordination with the bivariate-only visualization, but 
awkwardly, since two spreadplots have to be managed. 

7.6.2 Using These Visualizations 

Using these or any other visualizations involves, in part, using menus and dialog 
boxes to se tup desired conditions for the visualization, and in part, using the cursor to 
activate or deactivate plotting elements such as points and labels. Thus, the first step 
is to use the pop up menus, one of which is shown in Figure 7.14 (normally, it would 
no longer be showing, but we present it in the figure for pedagogical reasons). Note 
that the Show Labels item is checked and we see that labels are showing in the scat-

Figure 7.15 
Spreadplot for 
exploring 
bivariate 
magnitude data 
on a large screen. 
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terplot. The other two plots do not show labels because, apparently, their Show 
Labels menu item was not selected. We also note that the Link Plots menu item is 
checked, meaning that when the scatterplot's plotting elements (points) are selected, 
they are highlighted in the other plots (i.e., drawn as solid circles in the partially cov-
ered comparison plot, and as lines in the parallel-coordinates plot). Finally, the 
Curves menu item is being choosen, displaying the dialog box shown in the figure. 
This dialog gives access to the guidelines described above. 

The next step is to see what the guidelines tell us about the cloud of points in the 
scatterplot. We have already gone through this process in Section 7.3.1.3 for the clus-
ter of heavy-inefficient cars compared to the light-efficient ones, with the results 
summarized in Figure 7.8. The conclusion there was that there seems to be a different 
linear relationship for the two groups, or perhaps, there is one overall nonlinear rela-
tionship. 

Using the data visualization spreadplot and its enhanced ability to identify points 
reveals a second interesting aspect of the data, which is shown in Figure 7.16. To see 
this new aspect, we need to point out that the dialog in the figure shows that linear 
regression, with residuals and selection regression options, is activated for the scatter-
plot. When you actually are interacting with the plot, it would be obvious to you that 
the lower of the two apparently parallel lines is the overall regression line for Weight 
predicting MPG, since that line goes on and off as you check and un-check the Linear 
Regression dialog option. On the other hand, the upper of the two apparently parallel 
lines is for the Selection Regression (i.e., it is for whatever subset of points is 
selected). 

In the visualization we have selected the American-manufactured cars; thus, their 
points are highlighted in each plot. More important, since Selection Regression is 
activated in the scatterplot, there is a regression line for the subset. We see, then, that 

Figure 7.16 Two subset regressions, showing two patterns in the data. 
Left: separate regression lines for light vs. heavy cars. 

Right: separate regression lines for U.S. cars vs. all cars. 
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American automobiles, represented by the line with dashed ends (the upper line), are 
more efficient, for a given weight, than the entire group of automobiles. They can 
travel about 1 mile farther on a gallon of gasoline than the typical automobile of the 
same weight—a very interesting and counter-folkloric finding. 

We found this result by using the spreadplot's data exploration capability, which is 
very straightforward to use: You just "rub" your cursor back and forth over the 
screen. As you do this you see that the cursor, which is a brush with a rectangle 
attached to it, highlights a feature of the graph whenever the brush's rectangle covers 
an example of that feature. For most of the graphs the feature is the set of points 
shown in the graph, and the highlighting consists of drawing the point with greater 
emphasis, and if the labels option is active, showing the point's label. However, for 
two of the graphs the highlightable feature is something other than a point: 

1. For the histogram the highlightable feature is a narrow horizontal slice of a bar 
of the graph, and the highlighting consists of filling the slice with color. 

2. For the namelist the feature is the name itself, and the highlighting is to dis-
play the name in reverse video [i.e., the name appears as white letters on a 
black (or colored) background]. 

When you rub your cursor brush back and forth across the visualization you also 
notice immediately that features of graphs other than the one under your brush are 
being highlighted. This is because the graphs are linked via their observations, so that 
a point, slice, or name of one graph corresponds to a point, slice, or name of another. 
As your brush highlights a feature of one graph, the corresponding feature of each of 
the other graphs that are linked to the one being brushed is also highlighted. 

7.7 Visual Transformation: Box-Cox 

Because of the wide variety of plots and methods we can choose from, we can design 
spreadplots to address a wide variety of specific statistical issues. Consider the nor-
mal distribution: When we have multiple variables it is very common to assume that 
they are multivariate normal, meaning that each of the variables is normally distrib-
uted. When a set of data are, in fact, multivariate normal, it is the case that every vari-
able in the data is linearly related to every other variable. This property is called 
bivariate linearity. Thus, if we could assess whether all pairs of variables in a set of 
data were linearly related, we would be indirectly assessing whether the data were 
multivariate normal: Data that are not bivariate linear are not multivariate normal. 

In this section we show a visualization method that we can use to transform varia-
bles to be more nearly bivariate linear, the motivation being that the data are also 
being transformed to be more nearly multivariate normal. This visualization method 
uses a scatterplot plot matrix to show us all bivariate relationships of the variables in a 
set of data, adding guidelines to each scatterplot to emphasize the plot's linearity or 
lack thereof. The visualization has tools that are used by the data analyst to transform 
the variables to be related to each other more linearly. These tools are highly interac-
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tive and very dynamic. With these tools the user focuses on one of the variables, 
transforming it to be more linear with the other variables. The user then focuses on 
another variable to improve the linearity of its bivariate relationships. Gradually, as 
the user focuses first on one variable and then on another, the relationships between 
all pairs of variables should become more linear. At the conclusion of the process we 
can judge whether the variables are sufficiently bivariate linear to justify the assump-
tion that they are multivariate normal. 
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7.7.1 The Transformation Visualization 

The spreadplot that implements the visual transformation method that we have just 
described is shown in Figure 7.17. It is shown as it looks when it first appears. The 
left-hand portion of the spreadplot is a scatterplot plot matrix that has been modified 
so that the diagonal shows the transformation for each variable. At first, these trans-
formations are all linear, as shown in the figure. Each off-diagonal plot shows the 
relationship between a pair of transformed variables. Since the transformations are all 
initially linear, the initial scatterplot plot matrix is the equivalent of a scatterplot plot 
matrix of the untransformed variables (compare Figure 7.17 with Figure 7.10). In 
Figure 7.17 the MPG x Weight relationship is the focal relationship, as you can tell by 

Figure 7.17 
Initial Box-Cox 
data 
transformation 
visualization of 
the automobile 
data. The focus is 
on the MPG 
variable and its 
relationship with 
Weight. 
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looking at the large scatterplot to see which pair of variables is being shown. The 
MPG variable is the focal variable, since it is on the y-axis of the focal plot. 

Each scatterplot in the scatterplot plot matrix contains a linear, a quadratic, and a 
monotonie regression guide line (in some plots the linear and quadratic regression 
lines coincide, making it look as though there are fewer than three lines). When we 
transform the data, the transformation has linearized the regression as much as possi-
ble when the quadratic regression line is identical to the linear regression. Thus, the 
goal is to make each plot, and each guideline in each plot, as linear as possible. 
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7.7.2 Using Transformation Visualization 

The scatterplot plot matrix does more than just show transformations and bivariate 
relationships:. When you click on a plot in the scatterplot plot matrix, the plot 
becomes the focal plot (the one to be linearized), and its y variable becomes the focal 
variable (i.e., the variable to be transformed to make the focal plot linear). The click 
causçs the focal plot to be shown in the top plot to the right of the plot matrix, and 
causes a normal probability plot of the focal variable to be shown in the lower plot. 
We see in Figure 7.18 that the focal plot has changed from Weight x MPG in Figure 
7.17 to MPG x Displacement in Figure 7.18. This means that the focal variable has 
changed from MPG to Displacement. 

Figure 7.18 
Box-Cox data 
transformation 
visualization 
showing the 
automobile data 
with the final 
transformations. 
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You transform the focal variable by using the slider shown at the bottom right of the 
spreadplot. Moving the slider changes the transformation of the focal variable, a new 
transformation being computed every time the slider is moved. Each time a new 
transformation is computed, the two large plots and all of the plots that are in the focal 
plot's row and column change. Note that the transformation shown for Displacement 
in the upper-right plot cell is now nonlinear and that the plots in the Displacement row 
and column have changed from the first figure to the second. 

The way the visualization has changed from Figure 7.17 to Figure 7.18 shows that 
the data analyst is searching for transformations that maximize bivariate linearity. If 
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we were the analyst sitting at the computer actively transforming variables rather than 
reading about it, we would see the transformed variable change dynamically. Because 
this dynamic feature is the heart of this visualization, we present a thumb-powered 
version of it in the upper-right corner of the right-hand pages of this chapter. Due to 
lack of space, we show only the two large plots, which we have arranged horizontally 
to fit the space on the page. Thumbing through these plots provides a reasonable sim-
ulation of what appears on the screen. 

In Figure 7.19 we show the transformation visualization as it appears at the end of 
our search for transformations that create bivariate linearity, at the time that we 
decided that we had made the bivariate relationships as linear as possible. In fact, we 
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could not make all of the relationships linear. In particular, the DriveRatio variable 
could not be transformed to have a strongly linear relationship with the other varia-
bles. However, the four remaining variables were transformed to be mutually bivari-
ate linear. We show the transformation plot matrix for just these four variables in 
Figure 7.20, which makes it clear that these four variables are mutually bivariate lin-
ear. Thus, it seems that MPG, Weight, Horsepower, and Displacement can be trans-
formed to be jointly multivariate normal, whereas DriveRatio could not be so 
transformed. We should keep this in mind when we analyze these data further. 

As we explain next, the slider controls a function that computes the transformation. 
There is a different transformation for each slider value, four of which correspond to 
well-known transformations (see Table 7.2). We used this information, as well as lin-
earity, to select specific transformations. The final transformations are (see Figure 
7.20): 

Figure 7.20 Linearized bivariate relationships for four of the five automobile 
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{-1.0 }MPG The reciprocal of MPG 
{+0.5}weight The square root of Weight 
{0.0} Di splacement The log of Displacement 
{+1.0} Horsepower Horsepower untransformed 

Interestingly, the transformation of MPG also linearizes with respect to the L/100km 
(liters per 100 kilometers) measure used in most of the rest of the world. 

Table 7.2 Special Members of the Box-Cox Transformation Family 

_T , Transformation Name Equation 
Value 

-1.0 

0.0 

0.5 

1.0 

2.0 

Reciprocal 

Natural Log 

Square Root 

Identity (no transformation) 

Square 

-\/y 
log 00 

S 
y 
2 

y 

7.7.3 The Box-Cox Power Transformation 

Here is what is going on behind the scenes when we use the slider to search for trans-
formations that maximize bivariate linearity. The slider controls the value of an argu-
ment of a function that is used to transform the focal variable. As the user moves the 
slider, the argument's value is modified, and the function is reapplied to the focal 
variable using the argument's new value. This results in a revised transformation of 
the focal variable which is then used to construct revised plots, both large and small. 
What the analyst sees, if this happens fast enough, is a smoothly and continuously 
changing transformation that is instantly responsive to the user's actions. 

The. mechanism for transforming variables to remove nonlinearities is based on the 
family of scaled power transformations that is commonly known as the Box-Cox 
transformation (Box and Cox, 1964; Cook and Weisberg, 1999; Tierney, 1990). The 
transformation family is defined as 

/{y)=hyp-i)/pf°rp*o 
\\og(y) forp = 0 

The slider controls the value of the parameter p in this equation. Certain values of the 
parameter have special meanings, as shown in Table 7.2. Thus, the data analyst 
changes the value of this parameter dynamically by moving the slider of the dialog 
box in the figure. When the data analyst moves the slider back and forth, the parame-
ter value changes. All this happens smoothly and instantly, and for datasets that are 
not too large, can happen many times per second, providing an excellent example of 
dynamic interactive graphics. 
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7 Seeing Bivariate Data 

7.8 Visual Fitting: Simple Regression 

In this section we demonstrate visual fitting with simple regression, the process of fit-
ting the simple regression model to magnitude data. Simple regression analysis is a 
technique for predicting the observed values of a response variable from the observed 
values of a predictor variable. Simple regression is a special case of multiple regres-
sion, which has multiple predictors, and of multivariate multiple regression, which 
also has multiple response variables. We fit the regression model using ordinary least 
squares, finding the strongest linear relationship between predictor and response. 

The spreadplot for fitting the data with a simple regression model is shown in Fig-
ure 7.21 for the raw (untransformed) automobile data. This spreadplot has a large 
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scatterplot, two smaller plots, a namelist, and a dialog box. The large scatterplot is of 
most interest, since it plots the regression. 

We can see that the control panel has been used to display the linear, quadratic, 
monotone, and residual guidelines in the regression plot. The spreadplot's two 
smaller plots are a residuals plot and an influence plot. These are specialized scatter-
plots that help you check on the validity of the OLS assumptions and help you see 
outliers. 

OLS regression assumes that errors are normally distributed and independent, and 
that the predictor is measured without error. OLS regression is the best method when 
the assumptions are satisfied. However, when the data fail to meet the assumptions or 
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when there are problems such as outliers, the OLS coefficients may be inaccurate 
estimates of the population parameters. If the data fail to meet the assumptions of 
OLS regression, you can try transforming variables (as we did) or you can try chang-
ing fitting techniques, using robust rather than OLS methods. 

Residuals plot. The residuals plot is shown as the most-upper of the two smaller 
plots. It is a plot of the residuals versus the values predicted for the response variable. 
The residuals plot is a regression diagnostic plot that helps diagnose the suitability of 
the assumptions underlying regression analysis for the data being analyzed. Residual 
plots may be used to detect nonnormal error distributions, nonconstant error variance 
(heteroscedasticity), nonlinearity, and outliers. 
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7.8 Visual Fitting: Simple Regression 

The residuals should show no pattern. To help diagnose whether transformation is 
needed, we fit a linear and a quadratic guideline to the residuals. Since the linear line 
is always horizontal and located at zero, it tells us nothing about the nature of the 
residuals. However, it serves as a reference line for the quadratic guideline: If the 
quadratic guideline appears to depart from the linear guideline, as it clearly does for 
the residuals from fitting the model to the raw data shown in Figure 7.21, transforma-
tion is called for. Accordingly, we use the data from the visual Box-Cox transforma-
tion in Figure 7.7.3 in a second regression analysis. The resulting spreadplot is shown 
in Figure 7.22, where we see that the regression is much more linear, and that the 
residuals plot shows much less departure from linearity. 
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7 Seeing Bivariate Data 

These two figures also show a vertical line for each residual in the residual plot. 
These vertical lines represent a confidence interval for the residuals. The plot shows 
internally studentized residuals with Bayesian error bars. References to the definition 
of these residuals are given in Tierney (1990, p. 57). The Bayesian error bars repre-
sent the mean plus or minus 2 times a Bayesian standard error, defined by Tierney 
(1990, p. 57) so that they cover a range of values within which we would roughly 
expect to find the residual 95% of the time. 

Influence Plot. An influence plot is a regression diagnostic plot that helps diagnose 
the stability of the regression analysis. The plot may be used to determine the influ-
ence of a particular observation on the regression parameter estimates. 

An influence plot shows the effect on the values of the predicted response variable, 
of removing an individual observation. The plot uses the Cook's distance measure, a 
measure that determines the influence of removing an observation by estimating the 
difference between the regression coefficients calculated when the observation is 
included in the analysis and when it is omitted from the analysis. 

A large Cook's distance suggests that the observation has a large influence on the 
calculation of the parameter estimates; small changes in the observation will have rel-
atively large effects on the parameter estimates. If such an observation is not reliable, 
the model is also not reliable and we do not have stable estimates of the parameters. 

7.9 Conclusions 

In this chapter we have presented bivariate and multiple bivariate plots. We have used 
them, along with the univariate plots discussed in Chapter 6, as building blocks to 
build two bivariate visualizations for exploring data, a multiple bivariate visualization 
for transforming data, and a bivariate visualization for fitting data with a simple 
regression model. We illustrated these methods with data about automobiles. 

Visual exploration revealed: 
• That there is a different linear function relating efficiency and weight of auto-

mobiles for light cars than for heavier cars, although we could also conclude 
that there is one nonlinear function. 

• That when you remove differences in weight, American automobiles built in 
the 1970s were slightly more fuel efficient than all cars of the same weight, a 
clearly counter-folkloric finding. 

• That the variables are not linearly related, and thus not multivariate normal. 

Visual Transformation revealed 
• That four of the five variables can be transformed to be mutually linear: the 

fifth variable cannot. We should keep our eye on that variable in future analy-
ses to see whether it should be dropped from further analysis. 

• That the transformation of MPG is the reciprocal transformation, yielding a 
measure, such as gallons per 100 miles), which is linearly related to the Liters 
per 100 kilometers used in much of the world. 
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7.9 Conclusions 

Visual fitting of a simple regression model revealed: 
• That simple regression analysis using OLS methods on both the original raw 

data and the transformed data showed that the transformed data are more 
appropriate for simple regression analysis since they appear to more nearly 
satisfy the underlying assumptions. 
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O Seeing Multivariate Data 

In this chapter we continue the discussion of methods for seeing magnitude data that 
we began in Chapter 6 and continued in Chapter 7. In Chapter 6 we discussed univar-
iate methods designed to help us see the distributional characteristics of a single mag-
nitude variable. In Chapter 7 we turned to methods designed to help us understand the 
relationship between two variables. These plotting methods, collectively known as 
bivariate plots, enable us to look simultaneously at the relationship between two mag-
nitude variables. In Chapter 7 we also reviewed multiple bivariate plots (plot matri-
ces), methods that show us the bivariate relationship of every pair of variables in a 
dataset. Here, we discuss graphical methods that help us understand three or more 
variables simultaneously. 

The task faced by the graphical methods presented in the preceding two chapters 
was quite simple compared to the task facing methods presented in this chapter. After 
all, up to now, the graphics only had to cope with one or two variables presented in 
one or two dimensions. Now, however, the task involves visualizing data that have 
many variables. So we can't construct, say, a 13-dimensional picture of 13 variables 
and expect a happy viewer! Rather, we need to provide a way of viewing multivariate 
data that will help us understand their high-dimensional structure even though our 
vision is limited to three dimensions. 

In fact, we identify three distinct ways of viewing multivariate data. Each calls on 
our cognition to help out our vision, because in our mind we can manipulate five or 
six, or even eight or nine things simultaneously. This cognitive ability, which is 
known in cognitive science as the "seven plus or minus two" rule, was originally pro-
posed by Miller (Miller, 1956) and has been well substantiated ever since. 

All of the ways that have been proposed for viewing multivariate data begin with 
the concepts of a point cloud and a data space: Data are represented by a cloud of 
points that includes a point for every multivariate observation in the data. The cloud 
of points resides in a high-dimensional space that is analogous to our familiar three-
dimensional Euclidean space, but which has many dimensions, one for each variable 
in the data. The space is called the data space. 
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The three distinct ways of viewing multivariate data are distinguished from each 
other in how they suggest we look at the high-dimensional point cloud. One way sug-
gests that we look at the point cloud through a two- or three-dimensional window to 
see how the view changes as we maneuver the window in the data space containing 
the point cloud. Another way suggests that we draw a picture of the point cloud that 
represents the dimensions of the data space (the variables) by axes that are parallel 
rather than perpendicular. The third way suggests showing us many two- or three 
dimensional views of the point cloud simultaneously, each view taken from a differ-
ent vantage point in the data space. In each case the user's cognitive abilities are 
enlisted to circumvent visual limitations in an effort to make the right inferences 
about the structure of the multivariate data. 

Before focusing on these three families of multivariate visualization methods, we 
introduce the multivariate data that will be used throughout the chapter. Since the data 
that we use are not directly amenable to meaningful visualization, we present a trans-
formation method that uses principal components analysis to improve the visualiza-
bility data. 

We then address the main topic of this chapter, a detailed explanation of graphics 
that help us understand multivariate data. We begin by briefly outlining the three fam-
ilies of multivariate plots. Then we present several examples of each plot family, dis-
cussing each plot in detail. We then show how these plots can be used to construct 
visualizations of the data. 

8.1 Data: Medical Diagnosis 

In Chapter 2 we presented several examples, including one about medical diagnosis. 
The data for this example were obtained from patients examined by a dermatologist 
about problems with their skin. The data include information obtained during the 
office visit and the results of a laboratory analysis of a biopsy taken from the patient. 
The analysis showed dynamic interactive graphics being used with these data to 
develop a tool to help the physicians diagnosis their patients. In this chapter we delve 
into these data more deeply, using them to illustrate the visual analysis of multivariate 
data. 

The data. We introduced these data in Chapter 2, so we only summarize their 
nature here, recommending that you reread the Section 2.2 for a more complete 
description. The data, whose variables are listed in Table 2.1, are observations of 34 
variables obtained from 366 dermatology patients. Twelve of the variables were 
measured during the office visit, and 22 were measured in laboratory tests performed 
on a skin biopsy obtained during the office visit. Of the 34 variables, 32 were meas-
ured on a scale running from 0 to 3, with 0 indicating absence of the feature and 3 the 
largest amount of it. Of the remaining two variables, Family History is binary and Age 
is an integer specifying age in years. The data for eight patients who did not state their 
age were removed. The data are from Nilsel liter, the University of Ankara, Turkey 
(Guvenir et al., 1998). 
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8.1 Data: Medical Diagnosis 

As we pointed out in Chapter 2, these data are not suitable for visualization, the 
problem being that the variables provide discrete rather than continuous measure-
ments of magnitude: Of the 34 variables, one is binary and 32 have only four catego-
ries of observation. Thus, only one of the 34 variables—the Age variable—provides 
us with a continuous measurement of magnitude. 

The problem that arises when we attempt to visualize these data is revealed by the 
scatterplot matrix shown in Figure 8.1, where we display only three of the 32 varia-
bles, just a small portion of the entire data. We see that each plot in the scatterplot 
matrix has a lattice-like structure. Generally, we are happy to see structure in data, but 
this lattice-like structure is an uninterpretable artifact of the discrete nature of the var-
iables. Scatterplots of discrete variables always have a lattice structure. Each point in 
the lattice actually represents many observations, since the discrete data make the 
points overlap each other. 

In essence, the resolution of the data, which is four values per variable, is too low. It 
is as though we took a picture of our data with a 16-pixel camera that shows only four 
pieces of information along each of the axes, rather than with a megapixel camera that 
delivers the fine detail that we need. 

Data transformation. Although these data cannot be visualized, they can be 
transformed into variables that can be visualized, the new set of variables being the 
continuously measured magnitude variables that are required by the techniques 
described in this chapter. 

Although it may seem a bit strange to use data that are not appropriate for the meth-
ods being illustrated, we selected these data specifically because they are indeed a 
real set of data that present a real set of difficulties in their analysis. We could have 
selected data that were especially concocted to illustrate our visualization methods, 
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Figure 8.1 Scatterplot matrix of the first three variables 
of the medical diagnosis data. 
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but we know that a real set of data collected for their own purposes will, in the long 
run, be much better at illustrating the power of statistical visualization. 

The new set of variables are the principal components of the original set of varia-
bles. We use principal components because they are continuous, and because they can 
be used to reduce the number of variables from the 34 variables of the raw data to a 
much smaller number of variables that (1) contains the essence of the information in 
the original data, and (2) are easier to understand because there are fewer variables. 

Geometry of the transformation. We illustrate the geometry of the principal 
components transformation in Figure 8.2. In the top-left figure we see a two-dimen-
sional cloud of points in an arbitrary orientation. The variables whose values form the 
coordinates of the points in the space are named Var Y and Var X. We have drawn a 
line through the point cloud representing the first principal component and have 
labeled it PC 1. We have also drawn short "projection" lines that show the points 
being projected orthogonally onto the principal component line. We presented all of 
this in section Section 7.3.1.2, referring to the principal component guideline and 
calling the short lines residual lines. 

These short projection lines have two aspects that are important to understand. One 
is the location at which the projection line arrives on the component line: This loca-
tion is the score of the observation on the principal component, the component score. 
The principal component is oriented so that the scores have the largest possible vari-
ance, making the principal component the longest direction through the point cloud. 
The second aspect is their length: The principal component line is oriented so that 
when the points are projected onto the component orthogonally, the residual lines are, 

Figure 8.2 Geometry of principal component transformation. 
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on average, as short as possible. In other words, the line "fits" the cloud better than 
any other line can, in the sense of minimizing the sum of squared residuals. 

In the upper-right pane we have drawn the same space, but with the second princi-
pal component line added. Note that it is perpendicular (orthogonal) to the first com-
ponent line. Note also that it is shorter because there is less variation in its direction. 
We added the X and Y lines to emphasize what happens during rotation. 

In the lower-left pane we have drawn the same space, but now rotated into its prin-
cipal component orientation, the orientation in which the horizontal axis of the 
graphic becomes the first principal component and the vertical axis becomes the sec-
ond component. Note that the first component is longer than Var X and Var Y. 

Finally, in the lower-right pane we show the one-dimensional approximation of the 
first component to the original data. Note that we have gained in parsimony (one var-
iable rather than two) but lost in accuracy, although not very much (the first compo-
nent accounts for 94.22% of the variation in X and Y ). 

To summarize, the space formed by the scores on the first r principal components is 
the r-dimensional space that best fits the original high-dimensional data space. This 
characteristic is very useful for exploring multivariate data: The first several principal 
components provide the most succinct possible visual representation of the data. 

Decisions. There are two decisions that the user must make when using principal 
components: 1) Whether to base the analysis on correlations or covariances, and 2) 
how many principal components we should use. 

The first decision is fairly straightforward: Use correlations unless the variables are 
all measured in the same units, in which case you should consider whether or not to 
use covariances. The reasoning is as follows: Computing correlations involves stand-
ardizing the variables to have mean equal to zero and variance equal to 1. Normally, 
this is the most sensible option because otherwise, variables with large variances will 
contribute more to the analysis. However, if the variables are all measured in the same 
units, you cannot adjust the units of each variable separately. Since changing a varia-
ble's variance involves changing its unit, this can be done only when variables are in 
different units. 

Making the second decision is more difficult. There are several rules of thumb that 
suggest to us how many principal components are needed to adequately reproduce, 
and therefore replace, the original data, rules that we discuss at the end of the chapter. 
These rules suggest from five to seven components. However, with dynamic interac-
tive graphics, it is possible to interact with the graphics to determine exactly which 
components are needed to understand the data. So it is our approach to use interpreta-
bility to determine the number of components that are needed. Note that if a compo-
nent contributes to our understanding of the data, we not only use that component but 
must also use all the components before it. That is, all the components that account 
for more variance must be used. For example, if components 1, 2, 4, and 5 contribute 
to understanding the data but 3 does not, we must still use number 3, using all of the 
first five to replace our data (as is the case for our data). 
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8.2 Three Families of Multivariate Plots 

Each of the graphical methods for seeing multivariate data that we discuss in this 
chapter belongs to one of three families of multivariate graphics. We call these fami-
lies the orthogonal-axes family, the parallel-axes family, and the paired-axes family. 
The families are represented by the schematics shown in Figure 8.3, each schematic 
being labeled to identify the plot family. Each of the three schematics represents a 
four-dimensional example of the family, the dimensions being W, X, Y and Z. 

Orthogonal-axes plot family. The family of orthogonal-axes plots includes the 
spinplot, orbitplot, and multivariate distribution comparison plot. We discuss these 
plots in this chapter. 

The members of the orthogonal-axes family have the strong advantage of being 
easy to interpret correctly, since we are so familiar with three-dimensional space. 
However, the members of this family have the strong disadvantage of showing only 
three variables, even when there are many more. 

You will note that the orthogonal-axes schematic, shown in Figure 8.3, is drawn as 
a 3D cube with three lines meeting in the center of the cube. The lines are labeled X, Y 
and Z. The cube represents a 3D space, and the three lines represent the three dimen-
sions of the space, which are X, Y and Z. The lines are drawn meeting in the center, 
which represents the fact that the space can be rotated around its center. The lines are 
also drawn meeting at right angles to represent the orthogonality of the axes. 

Note that the center is labeled W, the fourth variable/dimension name, and that there 
is no line representing the fourth dimension. This is the way the schematic portrays 
the fact that the dimensions beyond the three that are showing are all orthogonal to the 
3D space you see, and therefore are invisible. They do, however, intersect with the 
three visible dimensions at the center of the space—thus, the W in the center. 

Parallel-axes plot family. The family of parallel-axes plots includes the parallel 
coordinates plot, the parallel comparisons plot, and parallel versions of one-dimen-
sional plots that were discussed in Chapter 6, including parallel dotplots, jittered dot-
plots, boxplots, and diamond plots. 

You will note that the parallel-axes schematic in Figure 8.3 displays four vertical 
lines, labeled W, X, Y and Z. These lines represent the four axes as they are depicted 

Figure 8.3 Schematics of the three families of multivariate plots. 
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by a parallel-axes plot. In addition to the four axes, the schematic has several jagged 
lines that run horizontally. These lines, called trace lines, represent the observations, 
there being one trace line for each observation. The value of the trace as it crosses an 
axis corresponds to the observation's value on the variable represented by the axis. 

All members of the family of parallel-axes plots have the unique and remarkable 
characteristic of being able simultaneously to display all of the variables of a multi-
variate dataset, providing the only way to glimpse all of the dimensions simultane-
ously. Although they can display all of the dimensions simultaneously, there are two 
major concerns of which the user should be aware. 

The first concern is that even though we see all of the dimensions, we do not see the 
entire space. If, for example, we look at the parallel-axes schematic in Figure 8.3, we 
see trace lines between axes W and X, X and Y, Y and Z, but we do not see tracelines 
between W and Y, W and Z or X and Z. If we reordered the axes, we would have a dif-
ferent view of the structure. Thus, although we see all of the dimensions, we do not 
see all of the space. 

The second problem is that the basic nature of the display is unfamiliar, especially 
when compared to our extensive familiarity with the orthogonal-axes space. Parallel-
axes plots, however, are certainly worth becoming familiar with, given that they can 
display all of the dimensions simultaneously. 

Paired-axes plot family. The family of paired-axes plots includes the plot matri-
ces that we discussed in Section 7.4, including scatterplot plot matrices, quantile plot 
matrices, numerical plot matrices, and boxplot plot matrices. As we discussed in 
Chapter 7, a plot matrix is a matrix of plots with a row and column for each of the var-
iables in a multivariate dataset. Each cell of the matrix contains a plot of the relation-
ship of the cell's row and column variables. As such, it is a multiple bivariate plot, 
being neither truly bivariate nor truly multivariate. Given the choice of where to dis-
cuss plot matrices, we decided to include the discussion in the chapter on bivariate 
methods rather than in this chapter on multivariate methods. 

However, the family of paired-axes plots includes additional plot matrices that are 
truly multivariate, plot matrices where the plots in the cells of the matrix are them-
selves multivariate. That is, we could have a plot matrix with cells that are orthogo-
nal-axes plots or parallel-axes plots—or, for that matter, paired-axes plots. This kind 
of plot matrix is a multiple multivariate plot, and discussion of it clearly belongs in 
this chapter. Thus, our discussion of paired-axes plots is split between two chapters: 
Multiple bivariate plots were discussed in Section 7.4 and multiple multivariate plots 
are discussed in this chapter. 

The advantages and disadvantages of paired-axes plots really come down to the 
amount of information presented by the plot and the amount of space it takes to 
present the information. The user is, in essence, being asked to integrate the informa-
tion obtained from each of the plots in the plot matrix into a coherent whole. Since the 
number of plots increases as the square of the number of rows or columns of the plot 
matrix, the task rapidly becomes impossibly difficult. Also, keep in mind that the 
physical space occupied by the plot matrix either becomes very large and difficult to 
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manage, or it remains constant and the individual plots become impossibly small. 
Either way, the number of rows and columns of a paired-axes plot must be rather 
small, say not more than four, five, or six, for the user to benefit from the presenta-
tion. 

8.3 Parallel-Axes Plots 

In this section we discuss two plots for multivariate data, the parallel-coordinates plot 
and the parallel-comparisons plot. These two plots are based on a non-Cartesian mul-
tidimensional coordinate system that opts to represent the dimensions by axes that are 
mutually parallel. Thus, we identify these plots as members of the family of parallel-
axes plots. The material presented in this section owes its existence to the fundamen-
tal work on the parallel-coordinates representation of multivariate information by 
Inselberg (Inselberg, 1985; Wegman, 1990). 

8.3.1 Parallel-Coordinates Plot 

While the traditional Cartesian coordinate system represents all axes as mutually per-
pendicular, the parallel-coordinates system represents all axes as mutually parallel. 
As an example, consider the data on the left of Figure 8.4. We refer to these data as a 
data gauge, a specially constructed artificial dataset that helps us gauge, or demon-
strate, a specific plot, in this case the parallel coordinates plot shown in the upper-
right panel of the figure. 

The parallel coordinates representation involves parallel, equally spaced axes, one 
axis for each variable. For the data gauge in the left panel of Figure 8.4, there are six 
variables, so the representation of these data that is shown in the right panel of Figure 
8.4 has six parallel, equally spaced axes, labeled XI through X6. Each observation in 
the data gauge is represented in the parallel coordinates system by a line called the 
trace line, a jagged line of connected dots, one dot on each axis. A dot is located on an 
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Figure 8.4 Data gauge (left) and its representation by parallel coordinates. 
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axis according to the value that the observation has on the variable plotted on the axis. 
Furthermore, the n observations of a dataset are represented by n trace lines, one for 
each observation, each line connecting r dots, one for each of the r observed values, 
for the r variables. For the data gauge in Figure 8.4, there are nine observations, so 
there are nine lines in its representation in the right panel of the figure. 

The parallel-coordinates plot is a plot of the data using the parallel-coordinates sys-
tem of representation. The parallel-coordinates plot displays all of the variables in a 
simple two-dimensional graphic that portrays the dimensions by axes drawn next to 
each other. This plot has the distinct advantage that it shows all of the dimensions 
simultaneously, but it has the disadvantage that parallel-axes plots are not as familiar 
and comfortable as are orthogonal-axes plots. 

If you haven't noticed it yet, a bit more study of the data gauge should reveal that it 
has structure, and that the observation label tells us about the structure. The first 
observation row is named A and the next two observation rows are named A+l and 
A+2. We then see that the data gauge has values in the A+l row that equal the values 
in the A row plus 1, and that the values in the A+2 row are equal to those in the A row 
plus 2. Note that the observation labels indicate there is an observation B, with two 
additional observations calculated from it, and that there is a third observation, C, 
which has two additional observations calculated from it. Thus, the data in our data 
gauge have three clusters of three points, each cluster consisting of a point with two 
more points located just one or two units up on each axis. 

When a parallel-coordinates plot is brushed, the trace lines flash on and off, with the 
trace lines of the selected portions of the data being "on" and the trace lines for the 
unselected portions being "off." When a parallel-coordinates plot is brushed, only the 
trace lines for the observations selected are shown. 

Figure 8.5 shows two different selections of data in the data gauge. The panels in 
the figure shows a selected subset of data, the members of the subsets being selected 
by brushing the data. Thus, when we select three observations, as we have done in 
both of the panels of Figure 8.5, we see three trace lines, since the trace lines for unse-

Figure 8.5 Two selections of data gauge clusters. 
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lected observations are left undrawn. Because we know the structure of our data 
gauge, we know what to expect when we brush the parallel-coordinates plot. These 
two panels of Figure 8.5 show two of the three clusters that we built into the data 
gauge. The left panel reveals cluster C and the right panel reveals cluster B. 

Medical diagnosis data. Of course, we do not usually know the structure ahead 
of time,- and the structure is not usually as clear as that which we built into the data 
gauge. Thus, we return to the medical diagnosis data for a realistic example. 

The parallel-coordinates plot of the principal components of the medical diagnosis 
data is shown in Figure 8.6. Note that principal components (as will be described 
shortly) create new variables by obtaining variance-maximizing linear combinations 
of the original data. Thus, in Figure 8.6 we see that the variance of each variable 
decreases as we move from the left portion of the figure to the right portion. 

Actually, Figure 8.6 demonstrates one of the main problems with the parallel-coor-
dinates plot: Even with a fairly small number of observations, the lines overlap so 
much as to turn the plot into a jumble in which it is difficult to see any structure. This 
problem can be addressed by repeated application of the following three-step process: 

Brush the plot. Brush the parallel-coordinates plot in search of subsets of 
observations that show similar trace-line profiles. 

Change color. Once a coherent subset of observations is found, change the 
color of its members. This emphasizes the subset's structure. 

Hide the subset. Hiding the subset reduces the clutter of lines so that you can 
more easily see any remaining structure. 

We keep cycling through these three steps until no more progress can be made. If 
we feel that we have hit on a good structure, we can save it; otherwise, we can start 
over. 

We begin by paying particular attention to prominent trace-line features, such as the 
set of trace lines that are very positive on the first component and those that are very 
negative on the third component. Brushing each of these prominent features revealed 
that each feature was part of a pattern shared with numerous other observations, so we 

Figure 8.6 Parallel-coordinates plot of the medical diagnosis data. 
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Figure 8.7 Parallel-coordinates plot showing six subsets of observations. 
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formed two subsets, one for each. Each of these can be seen in the top row of Figure 
8.7. Once we had identified a subset, we changed the color of its trace lines and hid 
the subset. This process was repeated several times until we felt that it was complete, 
either because a good structure was found or because the process had reached a dead 
end. 

We identified six clusters in five cycles of brushing, coloring, and hiding. These 
clusters are shown in each of the panels of Figure 8.7, which are arranged and alpha-
betized according to the order in which there were identified: Subset A was identified, 
colored, and hidden first; subset B was second; and so forth. It certainly would not 
have been possible to identify subsets E and F without having identified and hidden 
the first four. The first five principal components were used to identify the six clusters 
of data. 

8.3.2 Parallel-Comparisons Plot 

The parallel-comparison plot is a comparison plot of three or more variables that 
extends the idea of the bivariate distribution comparison plot discussed in Chapter 7 
to any number of variables. This plot provides a simple but powerful way of compar-
ing the distribution shapes of the several variables in your data. 

The parallel-comparisons plot takes the fundamental idea of the simple comparison 
plot (the quantile-quantile plot, or QQplot as it is usually called) and constructs a par-
allel-coordinates representation of it. The fundamental idea is that of sorting the val-
ues of each variable into order, from, say, smallest to largest (or the reverse, it doesn't 
matter as long as they are all sorted the same way), and then using these sorted values 
for plotting. This gives us a way of comparing the distribution-generating functions of 
the variables: If the sorted values are all linearly related, this implies that the distribu-
tion-generating functions are all similarly shaped. When this is shown in parallel 
rather than in orthogonal coordinates, the resulting plot will consist of approximately 

Figure 8.8 Parallel-comparisons plots for two data gauges. 
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Figure 8.9 Parallel-comparisons plot of the medical diagnosis data. 
straight lines. If the observation trace-lines are more or less straight and parallel, the 
distribution-generating functions for the variables all have similar shapes. 

Consider Figure 8.8. The left panels presents a parallel-comparisons plot for nine 
variables with values sampled from a normal distribution. Our interpretation of this 
plot is that the trace lines are, at least roughly, straight and parallel, indicating that the 
generating distributions are all similar. In fact, they are all identical, being the stand-
ard normal distribution. The right panel shows a parallel-comparisons plot of seven 
variables with generating functions that are a mix of different functions, just for refer-
ence as an example where the trace lines are not considered to be straight or parallel. 
A parallel-comparisons plot of the medical diagnosis data is presented in Figure 8.9. 
We note that the distribution of principal component scores on the first several com-
ponents is not random and does have structure, but that after the first five or six com-
ponents the variables all seem to be fairly featureless, although decreasing in 
variance. This is as we would expect from previous views we have gotten of these 
data. 

8.3.3 Parallel Univariate Plots 

Parallel versions of several of the univariate plots presented in Chapter 6 can be quite 
useful for multivariate data. A parallel version of a univariate plot can be made from 
any univariate plot that uses only one axis to communicate what it has to say. These 
include the boxplot, diamond plot, and dot plot. All of the other plots, though unidi-
mensional, have two axes. In fact, the boxplots and diamond plots that we reviewed in 
Chapter 6, when used with individual observations represented by unjittered dots, are 
precisely the same as a parallel-coordinates plot ,with a boxplot or diamond plot dia-
gram added for each variable. 

To create a parallel version of a univariate plot, you first make several instances of 
the univariate plot, one for each variable in the multivariate data. Then shape each 
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Figure 8.10 Parallel boxplot: principal components of the medical data. 

plot so that it is tall and narrow. Finally, arrange these instances next to each other to 
form a horizontal array of the instances. Now you have a parallel version of the plot. 
Examples of a parallel boxplot and a parallel diamond plot are shown in Figures 8.10 
and 8.11, where the plots are being used to display the principal components of the 
medical diagnosis data. Applications of parallel univariate plots come to mind, one of 
which is shown in Section 8.6.2. 

As we indicated in Chapter 6, we distinguish between what we call side-by-side 
univariate plots and parallel univariate plots: Both consist of multiple exemplars of a 
specific univariate plot drawn in parallel and side by side, so the terminology is a bit 
arbitrary, but the difference is important. A side-by-side plot (boxplot, dotplot, dia-
mondplot, etc.) consists of two or more plots that represent two or more groups of 
observations on one variable. On the other hand, parallel plots consist of two or more 
plots of two or more variables. 

Figure 8.11 Parallel diamond plot: principal components of the medical data. 
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8.4 Orthogonal-Axes Plots 

We begin this section on orthogonal-axes plots for multivariate data with a scatterplot 
of the medical diagnosis data (see Figure 8.12) even though the scatterplot is a bivari-
ate plot, not a multivariate plot. We begin this way because a scatterplot is an orthog-
onal-axes plot, and because we believe that starting with the bivariate version of such 
a plot will make it easier to understand the multivariate versions. 

Orthogonality. The scatterplot, of course, is two-dimensional, with the dimen-
sions being drawn at right angles, the X-axis corresponding to one of the two varia-
bles, and the F-axis to the other. The two axes are drawn at right angles because this is 
the geometric rendition of the algebraic notion of orthogonality. Two axes that are 
algebraically orthogonal are geometrically at right angles. They are also said to be 
mutually perpendicular. All three phrases—right angles, perpendicular, orthogonal 
—are equivalent, all of them referring to the rendering method of the plot. We say 
that a scatterplot is rendered with two axes that are at right angles. 

Basis. The basis of an r-dimensional space is a set of r linearly independent vec-
tors of r elements. One set of r such vectors, called the canonical basis, are the vec-
tors whose elements are all zeros except for a 1 in the r-th position. The 2-
dimensional space associated with a scatterplot has a basis consisting of two vectors, 
one that defines each axis, each axis being drawn through the origin and the point 
with coordinates specified by the basis vector. Thus, the origin [0,0] and the canonical 
basis vector [1,0] defines the jc-axis, and origin [0,0] and the canonical basis vector 

Figure 8.12 First two principal components of the skin disease data. 
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[0, 1] defines the F-axis. The axes of the space are drawn through the origin and the 
basis points. 

A space can have more than one basis, but it has only one canonical basis. Other 
bases can all be viewed as rigid orthogonal rotations of the canonical basis (and of 
each other). No basis is "better" than another, although the canonical basis is simpler 
to use mathematically, since its basis vectors form an identity matrix. 

Correlation and orthogonality. Even though a pair of axes are orthogonal, they 
can represent variables that are correlated, even perfectly (negatively as well as posi-
tively) correlated. Orthogonality has nothing to do with the correlation, as these 
words are generally used for plots. We have just seen how orthogonality is defined: It 
is a characteristic of the basis of the space. Correlation, on the other hand, is a charac-
teristic of the coordinates of the axes (which are the same as the values observed on 
the two variables that are being plotted). Thus, in the context of an orthogonal axes 
graphic, orthogonality and correlation are separate ,unrelated concepts. 

8.4.1 Spinplot 

A spinplot is a three-variable scatterplot that can be spun by the user or can spin on its 
own. The spinplot represents the three variables as dimensions of a three-dimensional 
space that contains points representing the observations. The points are located in the 
space according to their values on the three variables. 

Like a scatterplot, a spinplot can reveal patterns in the relationship between its vari-
ables, including the strength and shape of their relationship, and whether there are 

Figure 8.13 Spinplot in its initial unrotated orientation. 
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clusters of observations. Of course, it can do that for three variables, whereas the scat-
terplot can do that only for two. Also, like a scatterplot, guidelines can be added to 
help guide and interpret our exploration. In addition, guide planes and guide surfaces 
(if you will) can be added. 

Figure 8.13 shows an unrotated spinplot, displaying the same view as the view 
afforded by the scatterplot. Both display the structure as seen in the plane formed by 
the first two variables being plotted. The two plots differ, however, in that the spin-
plot has a third dimension, whereas the scatterplot does not. The name of the variable 
represented by the third dimension of the spinplot is located at the center of the plot 
shown in Figure 8.13, the name being PC3. The dimension is at right angles to the 
page, so we do not see it. 

The most important feature of a spinplot is that it is spinnable. Rotation is a very 
powerful tool for understanding relationships among three variables. We typically 
rotate plots in search of one or more interesting views that cannot be seen in a scatter-
plot because the interesting view does not align with the plot's axes. 

For example, when the spinplot of the medical diagnosis data is spun from the unro-
tated orientation in Figure 8.13, it only has to rotate a few degrees for it to become 
obvious that there is a fourth cluster, as we see in Figure 8.14. What looks like a sin-
gle cluster at the top of both Figures 8.13 and 8.14 is actually two clusters. In Figure 
8.14 the space has been spun in a way that reveals the fourth cluster, a long and sin-
ewy distribution of points in the upper-left part of the space. 

The rotation can proceed in a noninteractive fashion requiring no input from the 
user, or it can be tied explicitly to the user's actions. For example, when a spinplot is 
first shown, it can be shown rotating on its own, or it can be shown without any ongo-
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Figure 8.14 Spinplot rotated to reveal a fourth cluster. 
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ing rotation, waiting for the user to spin the space. Usually, when the plot first 
appears, it is shown rotating, because the rotation shows us different views of the data 
and the rotation produces a 3D effect while moving, helping us see depth. 

The 3D effect is important, as it makes it easier to see the data. In addition to creat-
ing the 3D effect by spinning the space, some implementations use point size and/or 
grayness to enhance the depth effect. Also, "rocking" the space back and forth gives a 
better feel for depth, and rocking the cloud of points has the same effect as rocking 
your head back and forth, a movement that one uses to better "pinpoint" just how far 
away something is. On the other hand, geometries with vanishing points, which are 
often used in art and architecture to create depth, are not used in statistical visualiza-
tion because they make judgments of linearity difficult. Also, stereoscopic projections 
are not used because they require special viewing equipment. 

Most implementations provide two ways to control spinning. One way is by click-
ing buttons on the screen, the other is to use mouse motion. Buttons provide straight-
forward controls, usually implementing the ability to rotate the space relative to the 
window's canonical directions—the window's X (horizontal), Y (vertical), and Z (at 
right angles to the computer screen) axes. There are usually additional buttons to 
zoom the space in and out and to control the speed of rotation/zooming. See Chapter 4 
for details on using buttons to control dynamic graphics such as spinning. 

Using the cursor to control movement adds flexibility to the movements that can be 
created with buttons. The cursor can reorient the point cloud relative to the window, 
so that spinning the plot along the window's canonical directions provides new views. 
Also, the direction in which the cursor is moved can be used to create rotation in any 
arbitrary direction, not just along the window's canonical directions. 

Spinplots and high-dimensional space. When a spinplot is used with datasets 
containing more than three variables the user must determine which three are shown 
since the spinplot can only show three at a time. Because of this limitation, the plot 
has the advantage of being easy to interpret correctly, since we are so familiar with 
three-dimensional space, but it has the disadvantage of showing only three variables, 
even when there are many more. 

Several methods are available to deal with this limitation. One way is to make it 
easy to switch which of the variables in the dataset are the three that are being shown. 
Thus, the typical implementation of a spinplot includes easy access to menus with 
variable names that, when selected, change an axis to display the new variable. A sec-
ond way is to construct a plot matrix of spinplots, an alternative which we discuss fur-
ther in the Section 8.5.1. A third way is to extend the concept of a spinplot, which 
spins in three dimensions, to the concept of an orbitplot, which spins in more than 
three dimensions. We take this topic up in the next section. Finally, a fourth way is to 
modify plots (be they scatterplots, spinplots, or orbit plots) to become biplots, an 
enhancement of an orthogonal axes plot that gives it two (or more) sets of basis 
dimensions, one of which can be variables and the other, say, principal components. 
We can then look at the principal components and see all (or many) of the variables 
simultaneously. We discuss biplots in Section 8.4.3. 
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8.4.2 Orbitplot 

An orbitplot is a spinplot that can spin in more than three dimensions simultaneously. 
Just as a spinplot is designed to help the user visualize structure in three-dimensional 
data, an orbitplot is designed to help the user visualize structure in high-dimensional 
data. Figure 8.15 shows the medical data oriented to show five clusters of points, as 
demarcated by the point symbols. The orientation of the space is indicated by the axes 
drawn on the plot. The interpretation of the four dimensions is explained in 
Section 8.4.3. 

Like a scatterplot and a spinplot, an orbitplot can reveal patterns in the relationship 
between its variables, including the strength and shape of their relationship and 
whether there are clusters of observations. Also, like a spinplot, an orbitplot repre-
sents its multiple variables by multiple axes that are algebraically orthogonal, show-
ing the observations as low-dimensional projections of the high-dimensional cloud of 
data. 

Orbitplots were called tour plots by those of us who developed them (Asimov, 
1985; Buja and Asimov, 1986; Young, 1989; Young et al., 1993). Here we call them 
orbitplots because when one views points that are spinning in more than three dimen-
sions, one sees the points as orbiting rather than spinning. Of course, points that are 
spinning are also orbiting, so what's the distinction? 

The distinction is as follows: When rotation is in 3D, every point appears to be 
orbiting in unison with every other point, a kind of movement that we perceive as 
spinning. On the other hand, when we watch a projection of points that are spinning in 
more than three dimensions, the points in the cloud appear to be orbiting idiosyncrati-
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Figure 8.15 Orbit-trails. Orbitplot rotated in four dimensions to reveal five 
clusters. 
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cally, each following its own path. What we perceive is that each point has its own 
orbit. 

The orbitplot is particularly good at revealing high-dimensional cluster structure. To 
find such structure, one watches the orbiting points to see if there me. flocks of points: 
groups of points that are always close together as they orbit in the space. The reason 
we look for flocks is as follows: Points that are truly close together in high-dimen-
sional space will always appear close together in any projection of the high-dimen-
sional space onto a lower-dimensional space. Thus, if we are watching a dynamic 
projection of the type we are talking about here, and we see a group of points that are 
moving along similar paths and always staying close together, then it may be the case 
that they are close together in the high-dimensional space as well. We must say "may 
be" not "is" because we have not seen, nor will we ever see, all of the projections. But 
the longer we watch and see no evidence to the contrary, the more confident we can 
become in our judgment. 

Orbit Trails. Because of the importance of orbits, we have developed a way to 
emphasize them by adding lines to the dynamic graphic that represent the actual 
orbits. These lines, which we call orbit trails, can be used to help identify flocks of 
points and to explain the static rendition of the plot that one must show in print. 

Figure 8.16 shows orbit trails being used with the medical diagnosis data to identify 
a flock of points. The points selected (the ones with trails) were all in one locale when 
they were selected. Specifically, the orientation of the space at the time the points 
were selected was that shown in Figure 8.14, which is the figure showing the spinplot 
rotated to reveal a fourth cluster. The points in what appears to be a cluster in that fig-

Figure 8.16 Orbit trails. Cluster A in Figure 8.14 looks like three clusters here. 
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ure, the points labeled A, were all selected. Then, orbiting was started, with orbit trails 
turned on. Now, at the time the snapshot in Figure 8.16 was taken, we see that what 
appeared to be one cluster in Figure 8.14 now seems to be three clusters. When added 
to the three other clusters shown in Figure 8.14 we are up to a total of six clusters. 

In Figure 8.17 we present the orbit plot, with tracing on for all points, as it appears 
when tracing starts from the original principal components orientation shown in Fig-
ure 8.13 and proceeds for some relatively short interval (too long an interval creates 
too much clutter). We clearly see six clusters of trace lines: A and B are the lower two 
groups of points in Figure 8.13. They continue to look like unitary clusters. C through 
F started out looking like the one group of points at the top of Figure 8.13, which we 
see splits into four subgroups. 

Finally, notice that Figure 8.17 also has a question mark (located below cluster B). 
The question mark is at the head of a single orbit line that seems to be headed in a 
direction that is shared with no other points. Studying this point for awhile reveals 
that it seems to be an outlier, moving through space in a way that no other point 
moves. 

Orbitplot algorithms. Orbitplots fall into two major classifications, those that are 
interactive and those that are not. Interactive orbitplots, which are called guided tours 
by others, spin as directed by the user, the user creating a guided tour of the data. 
Non-interactive orbitplots {grand tours) spin as they wish, taking the viewer on a 
grand tour of the data. 

What you see when you are watching an orbitplot is called the visible space. The 
visible space is a 2D dynamic rendering on the computer screen that is the end result 

Figure 8.17 Orbit Trails show 6 clusters and an outlier. 
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of a series of dynamically changing projections of the multivariate (i.e., high-dimen-
sional) data. The details of these projections, which are not presented here, have been 
discussed by the two groups of researchers working on this technique: namely Buja 
and Asimov (1988) and their colleagues, and Young (1989) and his colleagues 
(Young and Rheingans, 1991; Young et al, 1993). 

The main problem in designing an orbitplot is how to create the sequence of projec-
tions, arid how to enable the user to control the sequence in a way that helps under-
stand the structure of the data. This is done by creating a series of "target" spaces, 
along with the tools needed for smoothly interpolating between the target spaces. 

The various methods all begin by defining two target spaces and setting the visible 
space to the first target. An interpolation is then created to generate a sequence of 
interpolates, with the visible space always being equal to the interpolate. The interpo-
lation is a trigonometric interpolation, so that every interpolation rotates a bit around 
the two targets. The interpolations are arranged such that there is a 90° rotation from 
target 1 to target 2, followed by a 270° rotation back to the original target. Each step 
of the interpolation is small enough, and the calculations are quick enough so that the 
resulting display shows smooth and continuous real-time change 

Some aspects of the process described in the preceding paragraph can be placed 
under the user's control so that the interpolation process becomes a dynamic graphic 
that is interactive. For example, the user can control the speed and angle of the rota-
tion process. This can be done, depending on the implementation, for the axes of the 
screen or for the dimensions of the space. 

The final aspect of the orbitplot algorithm is called residualization (Young, 1989) 
This is a feature that allows the user to redefine the targets, providing a way for the 
user to see a new path of interpolations through the data's high-dimensional space 
One way of doing this is to provide the user with a button which, when clicked, cre-
ates a new first target that is equal to the visible space (i.e., the space displayed on the 
screen at the time the button was clicked), and a new second target that is the largest 
invisible space (i.e., the first three principal components of the residuals that remain 
after fitting the visible space to the data). The user can residualize repeatedly, provid-
ing a way of traversing many paths throughout the data space. 

8.4.3 BiPlot 

A biplot (Gabriel, 1971; Gower and Hand, 1996) is an enhanced scatterplot of the 
first two principal components of a set of multivariate data. The points of the plot rep-
resent the scores that the observations have on these two components. The plot is 
enhanced by the addition of vectors representing the variables of the original data. 
Hence the name biplot, as two aspects of the data are shown on the plot, the observa-
tions (as points) and the variables (as lines). The biplot for the medical diagnosis data 
is presented in Figure 8.18. 

One may legitimately wonder if this is a multivariate plot —isn't it just a scatterplot 
with a few bells and whistles? Isn't it a bivariate plot? Well, when looked at from the 
point of view of how many axes are being plotted, yes, it is a bivariate plot. But there 
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is a more fundamental characteristic of the biplot that makes it truly multivariate—the 
information being plotted. Since the axes of the plot are the first two principal compo-
nents, the plot itself is showing us the structure of our data as it appears in the princi-
pal plane—the plane formed by the first two principal components, and the plane that 
shows more variation than any other plane in the entire data space. Thus, the biplot 
presents the data as seen from a viewpoint that maximizes the variation of the data, 
and in that sense is certainly multivariate. 

Interpreting Points. The points of a biplot are interpreted in the same way as the 
points of a scatterplot: Points that are close together correspond to observations that 
have similar scores on the components displayed in the plot. When these components 
fit the data well, the points also correspond to observations that have similar values on 
the variables. 

Interpreting Vectors. The vectors are drawn from the origin of the plot in a way 
that makes their direction and length interprétable. Specifically, the vector is drawn so 
that it is aligned with the direction that is most strongly related to the vector's varia-
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Figure 8.18 Biplot of the skin diagnosis data. 
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ble, with the length of the vector portraying the strength of that relationship. Thus, as 
one moves from one side of the plot to the other in the direction given by the vector, 
one moves from a side of the plot that is typified by little of whatever the vector rep-
resents, to the opposite side where there is a lot of whatever the vector represents. 
This interpretation of the direction holds no matter how long the vector is, but is more 
accurate for long vectors than for short ones. It follows that vectors pointing in the 
same direction correspond to variables that have similar response profiles, and, there-
fore, similar meaning in the context set by the data. Vectors pointing in opposite 
directions correspond to variables with similar but reversed response profiles, imply-
ing there is a negative relationship between the two variables. Long vectors are more 
strongly related to the components being displayed than are short vectors. Long vec-
tors are more important in interpreting the meaning of the components. 

We note that there are several long vectors for which labels are showing in the plot. 
in Figure 8.18. These variable-vectors have labels such as Exocytosis, Spongiosis, 
Definite borders, Band like infiltrate, etc. Since these vectors are long, their associ-
ated variables contribute strongly to the first principal component plane. 

Note that some of the long vectors tend to point right through the main body of a 
cluster of observations. These variable-vectors are particularly important for that spe-
cific cluster of observation-points, since they all have a lot of whatever the vectors' 
variables are measuring. Thus, for the cluster of patients at the lower left side of the 
space their lab work revealed a lot of Clubbing of the Rete Ridges, and quite a lot of 
Parakeratosis. Patients who are not in that cluster have little of these. 

The opposite is true for variables that are long but point away from a cluster of 
points (such as Spongiosis and Exocytosis). For them, the patients represented by the 
lower-left cluster of points are patients that show an absence of Spongiosis and Exo-
cytosis. Regardless, for those variables that are represented by long vectors that are 
aligned with a particular cluster of patients or are pointing away from a cluster of 
points, these are the variables that are the best at differentiating the patients in the 
cluster from those that are not in the cluster. 

Orthogonal projection of points onto vectors. There is an additional aspect of 
interpretation that involves the orthogonal projection of points onto vectors, which 
shows how much of the vector's variable the point's observation is expected to have. 
The schematic shown in Figure 8.19 presents details about this aspect of the interpre-
tation of biplots. The schematic displays five points, labeled with the capitol letters A 
through E, and one vector, labeled Xi. The points are represented by the dots beside 
the labels. The schematic also shows each point's projection onto the vector. The pro-
jection is portrayed by the dashed line, and the projected point is shown by the arrow-
tip at the end of the projection path. 

If a point projects onto the vector near the head of the vector, then the observation is 
likely to have a lot of whatever the vector's variable is measuring. Point B in the sche-
matic is such a point. On the other hand, if the point projects near the tail of the vec-
tor, then the opposite is true. Point D is a point like this. 
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Finally, you will note that along the vector are some tic-marks located beside lower-
case letters a through e. These lower case letters represent five values observed of 
variable Xi. Note that the projection of point A falls near a on the vector, as is true for 
each of the other observations as well. The distance along the vector between the 
arrow-tip of the projected A and the observed a is the residual difference between the 
observed a and the fitted A that is minimized by principal components analysis. 

We can interpret the locations where the arrow-tips of the projections fall along the 
vector for variable Z(-. The locations specify the best estimate, for each observation, 
of the amount of whatever variable^- is measuring that is associated with each obser-
vation. Thus, as we move along the vector from the tail towards the head we come 
across projected observations (the arrow-tips) that are estimated to have increasingly 
greater amounts of the information measured by variable X{. 

Finally, we discuss the so-called iso-value bars identified in the schematic. These 
bars emphasize that several observations that are located in very different parts of the 
principal plane can be estimated to have the same or very similar amounts of a varia-
ble, despite the fact that they are not closely located in the principal plane. In fact, all 
of the observation points that are located along a given iso-value bar are estimated to 
have the same amount of the variable. 

Non PCA based biplots. Note that biplots can be constructed by using a wide 
variety of linear combinations other than those determined by principal components 

Figure 8.19 Interpreting biplots with point projection. 
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analysis, the major restriction being that the two sets of linear combinations that are 
used to construct the horizontal and vertical axes of the plot must be orthogonal to 
each other. That is, their basis vectors must be orthogonal. Developments have been 
reported that construct biplots on the basis of canonical discriminant analysis (Young 
and Sarle, 1982), redundancy analysis (Müller, 1981; Young & Sarle, 1982), Corre-
spondence Analysis (Gifi, 1991; Greenacre, 1993). Any source can be used is the new 
basis is a set of orthogonal coefficients applied to the variables. 

When we say that any way of generating orthogonal linear combinations is accepta-
ble, we do in fact mean just that. In particular, we have no problem with the data ana-
lyst simply constructing linear combinations on the basis of experience or theory, 
without using an analysis method to determine the specific linear combinations. Since 
the linear combinations must be orthogonal, it behooves the software designer to pro-
vide access to routines that orthogonalize a set of coefficients. Alternatively, the coef-
ficients created by a researcher on the basis of knowledge or theory can be treated as 
data for a principal components analysis, which will not only orthogonalize them but 
also rotate them into maximum variance orientation. An example appears in the very 
last step of the Section 8.6.5. 

Triplots, and so on. One way of looking at biplots is in terms of the basis of a 
space. In Section 8.4 we introduced the concept of an orthogonal basis of a space, 
mentioning that a given set of data always has a canonical basis—the identity matrix 
that underlies the basic representation of the variables of multivariate data by the axes 
of the space. 

We also mentioned that any given set of data can have other bases in addition to the 
fundamental canonical basis. In fact, we can look at a biplot as a plot that incorporates 
two bases: One of the bases is the canonical basis for which the axes are the variables. 
The second is the principal component basis for which the axes are the principal com-
ponents. Being able to switch the viewing reference frame is sometimes a powerful 
tool for looking at structure. 

There is nothing to stop us from defining additional bases of the space, bases that 
provide other kinds of glimpses of the data: Such additional bases could be, say, a 
basis defined by discriminant analysis, which would allow us to look at the data from 
a viewpoint that emphasizes the cluster structure of the data, a viewpoint that pro-
vides a quite different view than is afforded by the principal components-based basis 
commonly used with biplots. Having multiple bases allows us to define TriPlots or 
what might be called QuadraPlots, QuintaPlots, and so on. 

Spinning and Orbiting BiPlots, TriPlots, and so on. There is also nothing to 
prevent us from defining spinning and orbiting versions of biplots (or, for that matter, 
of triplots, quadraplots, and so on.). An example of such is presented in Figure 8.20. 
Note that each group of points has it's own group of variables, but that many fewer 
variables need to be observed. 
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Figure 8.20 Spinning biplot. 

8.4.4 Wiggle-Worm (Multivariable Comparison) Plot 

The multivariable comparison plot, which every viewer inevitably wishes to rename 
the wiggle-worm plot, is a multi-variable generalization of the two-variable distribu-
tion comparison plot discussed in Chapter 7. An example is shown in Figure 8.21. 
This plot, which is a dynamic high-dimensional generalization of the well-known 
quantile-quantile plot, can suggest whether the several variables come from similarly 
shaped distributions. 

We call this plot the wiggle-worm plot because it consists of a jagged line that spins 
and changes shape, looking like a wiggle worm, if you will. In its simplest form, the 
plot is noninteractive. The data analyst simply looks at the plot to see if the wiggle-
worm line is usually more or less straight. If so, the several variables all tend to have 
similar distribution shapes. If it is not straight, but kinks or bends, as is the case here, 
some of the variables do not have the same distribution shape as some of the other 
variables. The argument that leads to this interpretation is the same as that presented 
for the bivariate version of this plot (see Section 7.3.2). 

These plots have three or more dimensions, one for each of the three or more varia-
bles that are being plotted. The dimensions can be shown, but they add little to the 
display, it being more effective to have just the wiggle worm showing. All of the plot 
controls associated with the spinplot and orbitplot can be added to create an interac-
tive version of the dynamic graphic, but there seems to be little to recommend doing 
this, since the noninteractive version is effective enough. 

As with the two-variable comparison plot (the QQplot), the wiggle-worm plot is 
constructed from the values of the variables after they have been sorted into order: 
Each variable is sorted separately from smallest to largest (or largest to smallest, it 
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Figure 8.21 Six-dimensional wiggle-worm plot. 
doesn't matter as long as they are all sorted in the same direction). Thus, the first 
observation becomes the one that has the smallest value observed on each variable, 
the second becomes the one that has the next smallest value, and so on. 

A connected-point spinplot or orbitplot is constructed from the sorted values, and 
the space is spun in however many dimensions it has. If the several variables are all 
from similarly shaped distributions, the line connecting the points will tend to be a 
straight line; otherwise, it will not be straight. 

8.5 Paired-Axes Plots 

A paired-axes plot is an [r x r] plot matrix of multivariate plots, each showing the 
same r-dimensional subspace of the multivariate data, but each with its own unique 
permutation of the dimensions formed from all combinations of r dimensions taken 
two at a time. Thus, each cell of the plot matrix presents a unique view of the r-
dimensional space, and taken together they present all possible two-dimensional 
views of the r dimensional space. This arrangement of dimensions provides the 
viewer access to all possible two-dimensional views simultaneously, thereby improv-
ing the chances of finding interesting structure. Note that the correspondence between 
the plot's first two dimensions and the plot matrix row and column numbering is 
straightforward: Plot-matrix cell [i,j] contains the plot whose first two dimensions 
are i and j . We have already discussed plot matrices in Chapter 7. The plots we dis-
cussed there were multiple bivariate plots, since the plots in the matrix were bivariate. 
Here the plots in the plot matrix are multivariate, so the overall plot is multiple multi-
variate. 

One of the primary difficulties with plot matrices is that the images in the cells get 
very tiny when the number of variables being plotted goes up. Thus, while the plot 
can show us many different views of the same data, these views get uselessly small 
when the number of variables being plotted exceeds 7 or 8. One solution to this prob-
lem is to treat the plot matrix as though it is a control-panel, so that a click on a cell 
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produces a larger version of the cells' plot. One then has many views of the data with-
out being restricted to tiny views. 

We do not present an interpretation of the medical diagnosis data with a paired-axes 
plot because the process is essentially identical to the interpretation using the scatter-
plot matrix, a process that was shown in sufficient detail in the Chapter 2. 

8.5.1 Spinplot Plot Matrix 

The spinplot plot matrix for the first four principal components of the medical diagno-
sis data appears in Figure 8.22. Since we have already discussed spinplots and plot 
matrices, we do not go into detail here. Note that when all of its plots are in their ini-
tial canonical orientation, the spinplot matrix provides the same view of the data as is 
provided by the scatterplotmatrix, an example of which is presented for these data in 
Figure 2.6 (allowing for differences in the number of variables being plotted and in 
the orientation of the diagonal). 

Figure 8.22 Spinplot plot matrix. 
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Of course, the matrix of spinplots is more flexible than a scatterplot matrix, permit-
ting many views of the data that are not possible with a scatterplot matrix. Note, how-
ever, that although we see many of the possible three-dimensional subspaces, we do 
not see all of them, and while the three-dimensional plots can be spun, they still do 
not have the potential of showing us all of the three-dimensional subspaces that exist 
within the data space. The rotations that we can create are all functions of three varia-
bles, and there is no way to perform rotations involving more than three variables. 
Naturally, we could solve this problem partially by creating an orbitplot-plot-matrix, 
and while we have the potential of seeing all six-dimensional subspaces, the complex-
ity of the task is too great. It is difficult enough to manipulate one orbitplot, let alone 
an entire collection. 

8.5.2 Parallel-Coordinates Plot Matrix 

The parallel-coordinates plot-matrix for the principal components of the medical 
diagnosis data appears in Figure 8.23. The cells of this plot all contain an r-dimen-

Figure 8.23 The Parallel Coordinates Plot-Matrix - A Paired Axes Plot 
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sional parallel-coordinates plot, but each cell presents a unique permutation of the 
dimensions. As you can see by looking at the plot, the permutation has a marked 
effect on the patterns that you see, suggesting that this plot can augment our ability to 
see structure in the data. This is likely to be particularly true when the information 
being plotting is the principal components of a dataset, since there are likely to be just 
a few components to understand, and seeing many permutations of them will improve 
our ability to understand our data. 

8.6 Multivariate Visualization 

We have now finished presenting the individual multivariate graphical methods, hav-
ing discussed all of the plots in the paired axes, parallel axes and orthogonal axes 
families. Consequently, since these plots are the constituent parts of the multivariate 
visualization, we are now ready to visualize the data. 

But, of course, you will recall that we have actually been looking at the principal 
components of the data, because the data themselves cannot be visualized, due to their 
discrete nature. Consequently, we will be using the visualization of the principal com-
ponents analysis of the data rather than of the data themselves. 

Interestingly enough, the principal component visualization itself consists of two 
separate spreadplots, a fit visualization and the multivariate data visualization. So, 
rather than losing out on being able to use the multivariate visualization, we gain, 
since we can use it plus another. This will provide us with a more complete under-
standing of our data than we would have gotten had we simply proceeded forward 
with the multivariate visualization of the raw data, since the data are discrete. 

But note: Even for continuous data we recommend using principal components 
analysis to visualize and explore the data. The visualization not only provides 
dynamic interactive graphics to help clarify your data, it also provides visualizations 
about the nature of the data and about the fit of the data by the PCA model, and often, 
it seems, visualizing the first several components of one's data is much more inform-
ative than visualizing the data themselves. 

8.6.1 Variable Visualization 

We begin with the variable visualization (see Figure 8.24), a visualization that helps 
us see if the variance of the variables is homogeneous. This in turn helps us decide 
whether the principal components analysis that we will be performing should be 
based on the correlations or on the covariances of the variables. The visualization pro-
vides information about the variances, medians, quartiles, and other quantiles of the 
variables. It also provides information about the similarity of the shape of the variable 
distributions across variables. 

The variance of each variable is portrayed in the top panel of the spreadplot. This 
helps the user of principal components analysis to decide whether the analysis should 
be performed on correlations or covariances. If the variables all have the same vari-
ance, it makes no difference which choice is made. However, if there is a large differ-
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ence from one variable to the next, the decision may make a big difference. In the 
upper panel of the three plots in Figure 8.24 we see that the variation in the age varia-
ble (the last one on the right) is very much greater than that of the other variables, 
indicating that the variation is sufficiently different between it and the other variables 
that correlations should be used rather than covariances. 

The medians, quartiles, and other quantiles of the variables are shown by the paral-
lel boxplot that appears in the middle of Figure 8.24, which gives us an impression of 
the shape of each variable's distribution. This plot is created from standardized varia-
bles, so that variation in scale is removed, providing us a view of each variable's dis-
tributional shape. Looking at the boxplots for the raw skin disease data, we see that 
most of the variables are somewhat positively skewed—tail pointing upward. Some 
are extremely skewed. Although this is not a problem for PCA, it could be a problem 
if other analyses are contemplated. 

The parallel comparisons plot shown at the bottom of the visualization addresses 
whether the variables have similarly shaped distributions, a requirement for some 
analyses but not for principal components analysis. If the lines in the plot were more-
or-less horizontal, the variables would have similarly shaped sample distributions. 
They do not, however; thus, once again we stand warned, although principal compo-
nents is quite immune to these problems. 

8.6.2 Principal Components Analysis 

It is not crucial that you understand the mathematics in this short section, and for 
those who wish to do so, skip past it to the next section. However, for those who have 
had linear algebra or matrix algebra, this section gives a succinct algebraic statement 
of the principal components model. For more information, see Jollife (2002). 

The Model. The fundamental equation for principal components is 

X = SC (8-1) 

Figure 8.24 Multivariate data variable spreadplot. 
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where X is the data matrix, an [n x h] matrix of data from n observations of h varia-
bles; S is the [n x h] matrix of the scores of the n observations on the h principal 
components, and C is an [Ax h] transformation matrix that describes how the original 
variables are transformed into the principal component variables, and whose trans-
pose describes linear combinations of the principal components that reconstitute the 
original data. The principal components model imposes orthogonality restrictions: 

" _ U (8.2) 
C'C = CC = I 

where D2 is a diagonal matrix, and I is an identity matrix (except for some zeros). 
Finally, the maximum variance criterion of the principal components model is 

achieved by obtaining the set of solutions to the eigenequations 

( n - l ) LX'X C = CDZ (8.3) 

where n is the number of observations. The eigensolution defines the diagonal of D 
as the eigenvalues and the columns of C as the eigenvectors. We can then solve for S 
by substitution and algebraic manipulation: The eigenvalues (diagonal of D ) equal 
the variance of their corresponding principal components and are often used as a 
measure of the "summary power" of the component, or of the "importance" of the 
contribution of the component in summarizing the data. 

The entire set of principal components are (1) mutually orthogonal and (2) variance 
optimal. Because of these two properties, the first several principal components pro-
vide the most parsimonious and most accurate representation of your data. There is no 
set of r linear combinations of the variables that can account for more variance in the 
variables than is accounted for by the first r principal components. That is, the first 
principal component is the linear combination of the original variables that retains the 
greatest amount of information; the second principal component retains the most 
information possible from what is left after the first, and so on. 

Eigenvalues. Each eigenvalue specifies the amount of variation in the data that is 
fit by its principal component. Thus, if we divide a given principal component's 
eigenvalue by the sum of all of the eigenvalues (which equals the total variation in the 
data), we know what proportion of the total variation in the data is accounted for by 
the specific principal component. That is, 

d2 

Pi = — ^ - (8.4) 

ẑ  
specifies the proportion of variance fit by each component. We can then take these 
proportions and for each component obtain the cumulative sum (the sum of all the 
proportions for the components up to and including the current component). That is, 
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fi = £ P / . 0 < i < n (8-5) 

/ = 1 

is the proportion of variance fit by the /-dimensional principal component space. 

Scores. The space formed by the scores S on the first r principal components is 
the r-dimensional space that best fits the original high-dimensional data space. This 
characteristic is very useful for exploring multivariate data because the first several 
principal components provide the most succinct visual representation of the data. 

Another way of looking at the principal component scores S is that they are the 
orthogonal rotation of the original data to the biggest part of the original data space; 
the first principal component is the longest direction through the original space. The 
second principal component is the longest direction through the space that is orthogo-
nal to the first component; and so on. The matrix C is the coefficients matrix that 
orthogonally rotates X to S. It is also the basis of the space that expresses X as S. 

Assumptions. The only assumption underlying principal components analysis is 
that the data are magnitude data. The analysis does not involve hypothesis testing, so 
we do not need to assume that the data are sampled from a normally distributed popu-
lation or any other theoretical probability distribution. However, if you analyze data 
with variables that are asymmetrically distributed, have heteroskedastic variances or 
show nonlinear relationships among themselves, the results may be distorted by the 
influence of a few observations, and therefore their interpretation will be uncertain. 

Decisions. As was mentioned earlier, the data analyst must make two decisions 
when using principal components analysis: (1) whether to base the analysis on corre-
lations or covariances, and (2) how many components are enough to fit and describe 
our data well but still be parsimonious. The variable visualization, presented just 
above, helps with the first decision. It is obvious that the analysis must be performed 
on correlations, because the age variable is so very clearly on a different scale than all 
the other variables. The fit visualization, discussed next, helps with making the sec-
ond decision. 

8.6.3 Fit Visualization 

The fit visualization, presented in Figure 8.25, provides two plots that show informa-
tion about the fit of the model to the data. The plots are a scree plot and a slope ratio 
plot. This visualization is used after the analysis has been done, but before the model 
visualization is shown. It is designed to help you decide how many principal compo-
nents should be retained for further investigation. The decision rests in large part on 
the nature of the eigenvalues, since they tell us about how much of the variance in the 
original data is accounted for by each principal component. Therefore, a plot of the 
eigenvalues is often recommended as an aid to making the decision. The plot—called 
a Scree Plot after the shape of the rubble at the bottom of a cliff—shows the relative 
fit of each principal component. It does this by plotting the proportion of the variance 
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of the data that is fit by each component versus the number of components. The plot 
shows the relative importance of each component in fitting the data. The components 
will always be sorted according to their relative importance, so initial components 
will always explain more variance than will those placed in subsequent positions. 

Two rules of thumb. There are two rules of thumb that one uses with a scree plot 
when deciding how many principal components may be interprétable. One is to keep 
those whose eigenvalues are greater than 1.0, and the other is to look for an elbow in 
the plot, leaving those which are at or larger than the value at the elbow. 

The eigenvalues greater than 1 rule is suggested because when correlations have 
been computed the average variance of a variable is 1.0 (indeed, the variance of every 
variable is 1), so those principal components with eigenvalues greater than 1 account 
for more than average variance, and those with less than 1 for less than average vari-
ance. (Clearly, this is modified from 1.0 to the average variance, whatever it is, when 
covariances are used as the basis of the components analysis.) For our data, as one can 
see in Figure 8.25, this rule of thumb tells us that as many as seven components may 
be meaningful. Experience suggests that this may be taken as a rough "upper limit" 
on the number that will prove to be useful. 

The second rule of thumb says that we should look for an "elbow" in the plot—in 
other words, for a place where the plot bends more tightly, with the decision as to the 
number of components that may be useful corresponding to the number at the location 
of the elbow. For our data the elbow seems to suggest that we interpret five compo-
nents. Although experience suggests that this is often a good guess as to the number 
that will prove to be useful, experience also suggests that it is usually pretty difficult 
to decide where the elbow is. Since what one is doing when one is looking for the elu-
sive elbow is making a judgment about the slope of the curve of the scree before the 
point in question as compared to the slope afterward, a curve that specifies exactly 
that is shown in the bottom panel of Figure 8.25. This curve, which is a function of 
the ratio of the slope of the curve before and after the point, clearly shows that the 
maximum change in slope is at five components. As we now know, that number 
proved to be a good estimate. 

Figure 8.25 Criteria for Selecting the Number of Components 
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8.6.4 Principal Components Visualization 

The PCA model visualization spreadplot, which is shown in Figure 8.26, is con-
structed from six graphics (plus three namelists that are not shown). The graphics are 
a scatterplot matrix in the upper left, with a parallel-coordinates plot next to it, and an 

♦» «W: 
0.204 

¥ar4 

f 
0.249 

Varl 

*£«-

0.14 

Var2 

--3* * 

»ar3 I £3*HB 

0.131 

Var5 

•5.» z\ 

0.336 

VarO 
«***!. 

PC2 » PCp 

•»*. 

' ! * 

^ » ^5 -»o ».' 

gS l l l l l lM ' * 

300 



8.6 Multivariate Visualization 

orbit plot completing the top row. Below the scatterplot matrix are two spinplots, the 
left-hand one showing dimensions 1 to 3 and the right-hand one showing dimensions 
4 to 6. In the bottom row is a parallel jittered dotplot. 

Figure 8.26 Principal components visualization 
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This spreadplot is specialized to communicate structure whose dimensionality is 
known approximately. Thus, with these data, the graphics are constructed to provide 
information that is six-dimensional. Each plot in the figure is showing the first six 
variables (which are the first six principal component score variables of the medical 
data). The namelists that are not shown include a list of all the observations (for iden-
tifying the points), a list of all of the variables, and a list of all of the principal compo-
nents. By selecting six variables the user can change the variables that are assigned to 
each plot in the spreadplot, the order of selection being retained in the presentation. 
Thus, any permutation of any combination of six variables can be inspected. Also, 
clicking on the scatterplots in the scatterplot matrix changes the order of the dimen-
sions in all of the other windows—the two variables of the scatterplot that was clicked 
on becoming the first and second variables of the other plots (counting the two 3D 
spinplots as one plot). We do not have much to say about the visualization, because 
we have already said what needs to be said while we were using these data with the 
graphics we were introducing. 

8.6.5 One More Step - Discriminant Analysis 

When the data include grouping information, such as the clusters that we have formed 
during the course of our analysis, we can use that information as part of the visualiza-
tion process. Specifically, if we are really interested in seeing the cluster structure, we 
should no longer use principal components analysis to look at the data. Afterall, it is 
showing us the data as they look from a viewpoint that shows the maximum variation 
in the data, not one that shows the cluster structure as well as possible. What we want 
to do is to take a look at the data from a viewpoint that best shows the group structure. 
We would be particularly happy with a view that maximizes the variation between 
groups relative to the variation within groups. Such a view would separate the groups 
as much as possible, while at the same time it would make the groups as compact as 
possible. The analysis that does this is called discriminant analysis. We turn to a dis-
cussion of it next. 

When we perform discriminant analysis we obtain orthogonal linear combinations 
of the magnitude variables such that the fitted values that result from the linear com-
binations fit the grouping information as well as possible (in the specific sense of 
maximizing the ratio of the between-group variance to the within-group variance). 

Geometrically, discriminant analysis rotates the data space into an orientation such 
that the resulting "first" dimension (the first linear combination) is the one that gives 
us the view of the data that makes the groups look as compact as possible and at the 
same time look as well separated as possible. The second dimension does the same 
thing, given that it must be orthogonal to the first dimension. 

We carried such analysis in the following way. For each variable in the raw data, we 
calculated the mean of the values of the variable for each of the groups that we had 
formed. We then formed a matrix of means. This matrix had the same number of var-
iables and observations as the raw data, but every raw observation of a variable was 
replaced by the mean of the variable for the group it was in. 
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We then did a principal components analysis of this matrix—the matrix with the 
individual values observed replaced with their group means—providing us with a 
space such that the first dimension is the one which has the greatest variance in the 
means—equivalent to the most widely separated group means, weighted by the 
number of patients receiving the diagnosis. 

We then used the first few principal components of the means—we used six—as a 
target to which we rotated the raw data, the thought being that if we could orient the 
raw data so that they were as much like the principal components of their group 
means, that when we looked at the resulting plane or 3d space it would show us the 
best view of the raw data's group structure. 

The conclusion of these analyses is shown in Figure 8.27, where we clearly see the 
six group structure, although two of the groups, while clearly separated, do show 
some overlap. The figure is drawn with each member of a group connected by a line 
to the group's mean, to emphasize the group structure. So, for the first time, we can 
see the six groups without the need for movement related features. That is, for the first 
time we have a picture that not only convinces us that we can see six groups in the 
data, but is also capable of convincing readers of a printed article as well. 

Figure 8.27 Plane showing six diagnostic groups. 
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8.7 Summary 

8.7.1 What Did We See? Clusters! 

Let's pause for a moment and summarize what we have done with the medical diag-
nosis data—and what we have found out about the data. 

8.7.2 How Did We See It? 

We have looked at the data extensively, using a wide variety of graphical methods 
designed to help us find structure in multivariate magnitude data. We have, in fact, 
used at least one example of each family of methods. Using one trick or another, each 
graphing method attempts to show us structure that has more dimensions than we can 
comprehend—parallel-axes plots show us many axes at the same time, albeit in an 
unfamiliar parallel orientation—orthogonal-axes plots show us 6 or 8 dimensions at 
the same time, attempting to communicate that elusive high-dimensional structure via 
motion—paired-axes plots more or less take the easy way out, by showing us all com-
binations of two or three dimensional plots, leaving us with the problem of trying to 
comprehend them all together. 

Orthogonal-axes plots. The orthogonal-axes plots clearly show the clustery 
nature of these data. The scatterplot of the first two principal components (Figure 
8.12) clearly shows there are at least three clusters, easily passing the IOI (interocular 
impact) test. The spinplot of the first three components, when rotated (Figure 8.14), 
shows that one of the three clusters we saw in the scatterplot splits into two, giving 
four clusters, also breezing through the IOI test. The orbitplot of the first six compo-
nents also quite easily shows that there are five clusters, once again satisfying the IOI 
test. Although it was easy to see this with a dynamic graphic, it was a struggle to find 
a view that revealed the five groups when displayed as a static graphic on the page, 
although such a view was found (Figure 8.16). Finally, adding orbit-trails to the orbit-
plot revealed the sixth group of points, with the orbits quite clearly showing the addi-
tional structure in the dynamic plot. They also aided in preparing a static printed 
image (Figure 8.17) showing all six groups. 

Parallel-axes plots. The parallel-axes plot did not clearly display the cluster 
structure, and it was difficult to uncover the structure. The main problem with the plot 
is that the lines obscured whatever structure there might be to see. To cope with this 
problem, one has to identify and hide whatever clusters can be seen, a process that 
makes the process of discovering structure much more problematic, since the prior 
history of steps that you have taken is shaped by the decisions that are available for 
you to make at any given time. 

There is also the problem that, as argued above, although you see all dimensions, 
you don't see the entire space. What you see is a series of planes through the space, 
the first one being formed by axes 1 and 2, the next by axes 2 and 3, the next by 3 and 
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4, and so on. So if the interesting structure is in planes 3 and 5, you won't see it unless 
you change the order of the axes. 

There is one aspect of the parallel-coordinates plot that at least partially compen-
sates for the problems just identified, and that is that we can see structure in more 
dimensions simultaneously than can be seen with other methods. Perhaps this means 
that the best use of a parallel-axes plot is in conjunction with a linked orthogonal-axes 
plot, where the main decisions are based on the orthogonal-axes plots, with the rea-
sonableness of all decisions being double-checked using parallel plots. 

Paired-axes plots. In Chapter 2 we used a scatterplot matrix in association with 
enlarged versions of the scatterplot to investigate these same data, coming to remark-
ably similar conclusions. Note, however, that we followed the usual way of carrying 
out this task, which is to use the paired-axes plot as a control panel. The small plot 
cell scatterplots are just too small to see, so when one is clicked on a plotcell, a large 
version of the plot in the plotcell is created for the user to use. 

This is, in a way, an admission that paired-axes plots (i.e., plot matrices) are not as 
effective a tool for seeing data as are orthogonal-axes plots and parallel-axes plots, 
the problem being that the plotcells are simply too small to discern fine structure. 
They are very good at communicating large structure (see, e.g., the frontish piece of 
Chapter 2), and very good as a control panel to manage access to more powerful 
graphics. 

Since clicking on a cell of the paired-axes plot produces a large orthogonal-axes 
plot, most of the work reported in Chapter 2 is based on orthogonal-axes plots, not on 
paired-axes plots. However, since the paired-axes plot provides simultaneous access 
to many views of the data, we are justified in identifying the methods as being differ-
ent from the usual single-view orthogonal plot. 

Principal components visualization. While we didn't dwell very long on the 
principal components visualization, it was in fact the vehicle by which we were 
shown the various plots that we discussed in earlier sections of the chapter. Thus, it 
was of major importance. 

Discriminant analysis. Once we discovered that we had a clustery structure in 
our data, we were ready to use some form of discriminant analysis to look more care-
fully at the cluster structure. It was the only approach that clearly revealed the six 
clusters in a static plane, a very useful view for scientific communication. 

8.7.3 How Do We Interpret It? With Diagnostic Groups! 

You may recall that at the end of the presentation of these data in the Chapter 2 we 
mentioned that the data also included the doctor's diagnosis of each patient. It is inter-
esting to compare our visual classifications, each of which was done without using 
the knowledge of the diagnoses, with the diagnostic classification. This comparison 
results in what is called a confusion matrix, a table that shows the frequency with 
which members of each of our visual classes had already, without our knowledge, 
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been assigned to each of the diagnostic classes. If our visual classification agrees 
exactly with the diagnostic classification, the confusion matrix will have the same 
number of classes as diagnoses, and the frequencies will fall along the diagonal, there 
being zeros in all off-diagonal cells. To the extent that our visual classification is 
"confused," there will be nonzero frequencies off the diagonal. 

The confusion matrices all appear in Figure 8.28. We see that our visual classes cor-
respond' very closely to the diagnostic classes: All of the patients diagnosed with 
either psoriasis, lichen Planus, or pityriasis rubra pilaris were visually classified cor-
rectly by each of the three plot families, as was also the case with chronic dermatitis 
for two of the three plot families. Of the 250 patients diagnosed with one of these four 
diseases, only 2 of the 750 visual classifications disagreed with the diagnostic classi-
fications. The only misclassification problems of concern occurred between sebor-
rheic dermatitis and pityriasis rosae, where 16 or 18 of the 108 patients with one of 
these two diagnoses were misclassified visually. Of course, there could also be misdi-
agnoses by the doctor—we can't tell. 

Overall, the plots allowed us to classify the data quite well visually: With paired-
axes plots we agreed with the doctor's diagnosis 336 out of 358 times (93.85%); with 
parallel-axes plots we agreed 338 of 358 times (94.41%); and for orthogonal-axes 
plots we were in agreement with the doctors 342 of the 358 times (95.53%). Our vis-
ual accuracy also compares favorably with that of a special algorithm named VFI 
(Guvenir et al., 1998) which was in agreement with the doctors 345 of the 358 times. 

8.8 Conclusion 

In this chapter we presented multivariate plots, noting that they fall into three fami-
lies, according to the way the variables are represented by the axes: orthogonally, in 
parallel, or in pairs. 

We have used them with a set of data concerning medical diagnosis of skin disease 
data to demonstrate how these plots are used. We discovered that they are considera-
bly more difficult to use than the univariate and bivariate plots presented in the Chap-
ters 6 and 7, but then the problem of trying to uncover structure that may be more than 
three-dimensional, in high-dimensional discrete data is a much more difficult problem 
than we were pursuing in the earlier chapters. We also performed a principal compo-
nents analysis and discussed the relationship between its visualizations and the visual-
ization for multivariate data. We also compared it with a discriminant analysis that 
clearly showed the data structure. Remarkably stable views of the data structure were 
obtained with several different graphing techniques, suggesting that the data are 
strongly structured and that when one has strongly structured data the graphical tech-
niques are capable of helping you discover it. 
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Paired-Axes Plots 
Visual Clusters 

Diagnosed Disease A B C1 C2 C3 C4 Sum Errors 
Psoriasis 
Lichen planus 
Pityriasis rubra pilaris 
Pityriasis rosae 
Seborrheic dermatitis 
Chronic dermatitis 

Sum 

111 
71 

1 

112 71 

19 1 
39 8 
10 48 

19 49 57 

1 
1 

48 
50 

111 
71 
20 
48 
60 
48 

358 

1 
9 

12 

22 

Key: The letters A, B, etc., refer to the letters in Figure 2.7. 

Parallel-Axes Plots 
Visual Clusters 

Diagnosed Disease C A B F E D Sum Errors 
Psoriasis 
Lichen planus 
Pityriasis rubra pilaris 
Pityriasis rosae 
Seborrheic dermatitis 
Chronic dermatitis 

Sum 

111 
71 

112 71 

20 
46 2 
16 44 

2 46 
20 62 48 46 

111 
71 
20 
48 
60 
48 

358 

2 
16 

2 
20 

Key: The column captions C, A, etc., refer to the letters in Figure 8.7. 

Orthogonal-Axes Plots 
Visual Clusters 

Diagnosed Disease A B F C E D Sum Errors 
Psoriasis 
Lichen planus 
Pityriasis rubra pilaris 
Pityriasis rosae 
Seborrheic rermatitis 
Chronic dermatitis 

Sum 

111 
71 

111 71 

20 
45 3 
13 47 

20 58 50 
48 
48 

111 
71 
20 
48 
60 
48 

358 

3 
13 

16 
Key: The column captions refer to the symbols in Figure 8.17. 

Figure 8.28 Confusion tables for three visual clusterings vs. diagnosis. 
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^J Seeing Missing Values 

IVIissing values are values that the researcher had planned to collect, but for some 
reason beyond the control of the researcher, did not collect. Data that have missing 
values have "holes" in the dataset like those schematized in Figure 9.1. Data with 
missing values are very common. In fact, in any given empirical situation, it is proba-
bly more likely than not that there will be missing data. 

There are many reasons why there can be missing data. Here are some real-world 
examples: 

• People usually do not like to provide information about their income, so some 
people may refuse to answer some questions. 

Variables 
1 ... 

o o o 
o o 
o o o 
o o o 
o o o 
o o o 
o o o 
o o o 
o o o 
o o o 
o o o 
o o o 
o o 
o o o 
o o o 

o 
o 
o 
o 

o 
o 

o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

o 
o 
o 
o 
o 

o 
o 
o 
o 
o 
o 
o 
o 
o 

p 

o o 
o o o 
o o o 
o o o 
o o o 
o o o 
o o o 
o o o 

o o 
o o o 
o o o 

o o 
o o o 
o o o 
o o o 

Figure 9.1 Schematic of a dataset with missing values 
(o = observed, blank = missing). 
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Seeing Missing Values 

• Manufacturers may fail to give details about their products for various reasons 
(trade secrets, concern about competition). 

• Students do not attend all of their exams, and we wonder if the missing values 
on test exams would have been very low. 

• Some samples can be destroyed due to mistakes in the manipulation process, 
and we ask ourselves if this is truly random. 

• Öata are unexpectedly not available, due to ethical, organizational, or practical 
issues, and there is just nothing that we can do. 

• The data are impossible, so the research records them as missing, as when sup-
posedly male rats become pregnant, even in the most controlled situation. 

• The very nature of the subject makes it difficult or dangerous to get the data. It 
may be dangerous to find out how much time some mammals sleep (the exam-
ple we use throughout this chapter). 

9.1 Introduction 

Although missing data are very common, discussion of how to analyze data with 
missing values has been often, well, missing! It is especially noticeable that most, if 
not all, introductory and middle-level textbooks on statistics ignore the possibility of 
missing data. In these books, the examples are overly immaculate, with all the rows of 
the data tables complete. However, close examination of these examples often reveals 
that they have been manipulated to produce such spotless tables of data. Furthermore, 
when methods are discussed for coping with missing data, the procedure known as 
casewise deletion is often recommended, despite the fact that it can produce biased 
results based on severely reduced sample sizes. 

So why is it that a problem of such importance is not taught routinely in basic 
material on statistics? Perhaps the fundamental reason that most books on statistics 
ignore the problem of missing values is the complexities that result when we do not 
ignore the problem. 

Consider what happens when we wish to compute the mean of each of the vari-
ables in a dataset. When there are missing values, we can no longer divide the sum of 
the values of a variable by the number of cases in the sample because we must recog-
nize the fact that the number of cases varies for each variable. Two alternative ways 
of computing the mean when there are missing values come to mind: One way is to 
use all of the nonmissing values for a given variable, summing them all and then 
dividing by the number of non-missing values for the variable. This approach has the 
desirable feature of using all of the available cases for each variable, but it has the 
undesirable characteristic that each mean is based on a different subsample of the 
data. The second way that comes to mind is to delete all the observations that have 
one or more missing values and then to compute the means of each variable. This has 
the nice characteristic that each mean is based on the same cases, but it suffers from 
the fact that we have to throw away a number of non missing observations. The prob-
lem is still worse for covariances, since each pair of variables may have a different 
combination of observed and missing values. 
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9.1 Introduction 

We begin to appreciate the extent of the difficulties associated with missing val-
ues when we realize that many of the standard data analysis techniques (i.e., regres-
sion analysis, principal components analysis, analysis of variance, etc.) start by 
computing means and covariances. If some of the values in the data matrix are miss-
ing, computing the means and the covariances becomes more difficult. This problem 
has been handled traditionally by simple such as casewise deletion of data or formu-
lae that use only the cases available. Better alternatives have been developed in recent 
years. In particular, the estimation-maximization (EM) algorithm (Little and Rubin, 
1987; Schäfer, 1997) provides maximum likelihood estimates for the means and the 
covariances that are preferred to the means and covariances provided by traditional 
approaches. 

Although missing values complicate the computational methods, there is a much 
more fundamental difficulty: The pattern of missing values can be much more of a 
problem than the number of missing values. Of course, the greater the number of 
incomplete data, the greater the loss of information, and hence the lower the statistical 
precision. However, if the missing values are scattered randomly throughout the data 
matrix, most methods for dealing with missing values will produce similar results, 
whereas when the probability of obtaining a missing value depends on other variables 
in the analysis (or, even worse, on unknown or unmeasured variables), the statistical 
results can be biased. 

Missing values are also a problem for statistical visualization. The usual way of 
coping with missing values is simply to delete the observations that are incomplete 
and then to visualize the remaining observations. Of course, this is unsatisfactory for 
the same reasons that this approach is unsatisfactory when it is used with any other 
statistical method. But there are additional reasons why this approach is unsatisfctory 
for dynamic interactive graphics. In particular, when there are several linked plots, 
the linking methods no longer work correctly when each plot drops those observa-
tions that are incomplete for the variables that the plot is using at the time. 

On the other hand, missing data should not be regarded as a nuisance that can be 
ignored. On the contrary, with the right tools, missing data can be a valuable source of 
insight for data analysis. So, although visualization of missing data is, in a sense, a 
contradiction, as you can not see what you do not have, this chapter will show that, 
there are information in the missing values that can come to the surface using the 
appropriate tools. Thus, there may be outliers that would otherwise remain hidden, 
imputed values that fall in interesting locations, and patterns of missing values may 
tell something about the propensity of certain subgroups of observations to generate 
them. 

Chapter outline. In this chapter we focus our attention on the visual exploration 
of missing data. We do not consider issues related to modeling and inference for data 
with missing values. See Schäfer (1997) or Little and Rubin (1987) for more on this 
topic. Given that our primary interest is in visual exploration of data with missing val-
ues, we pay particular attention to: 
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1. What the obstacles are when we wish to explore data with missing values, and 
how to avoid these obstacles as much as possible. 

2. How to visualize the data after plausible values have been imputed from infor-
mation in the observed parts of the data matrix. 

3. How to display patterns in the grouping of cases that have missing values in 
the same variables. Patterns that stand out from the rest of the patterns may 
constitute subgroups of observations deserving special attention. 

This chapter starts by introducing a dataset about the sleeping behavior of various 
mammals. These data have missing values as a consequence of the problems of deter-
mining the sleep behavior of certain animals. We then explore this dataset, paying 
attention to the limitations of ordinary visualization tools and suggesting modifica-
tions that make explicit the missing values in the data. These modifications are 
designed so that the researcher will always have a graphical impression of the exist-
ence of the missing values and of their relation to the observed values. 

We then turn to a discussion of the different imputation techniques that can be used 
to partially recover the missing information, and to the methods for displaying these 
imputed values in plots that include values both observed and imputed. We point out 
that the process of imputing missing values can generate useful substitutes for unob-
served values, emphasizing that when the imputed values are used to replace the 
missing values, the visualizations will work as they normally do. We point out that 
the imputed values should always be marked in some way so that it is obvious which 
elements of a plot are imputed and which are not. 

Finally, we discuss several plots designed to visualize patterns of missing values. 
These plots display those variables that have missing values, showing them as well as 
their summary statistics (means, variances, and covariances). Visualization of these 
patterns are a good companion to standard inferential techniques designed to test the 
mechanisms of missing data, as they can provide insight about the significance or 
lack of significance of the results attained with them. In addition, patterns help us 
check assumptions related to the mechanisms that may have generated the missing 
values. These assumptions can be assessed using inferential techniques, but to pro-
vide a new example of the old remark "numerical summaries are not enough" (Cham-
bers et al., 1983), plots that display the elements that are combined to produce these 
summaries help us see important features that otherwise would remain unseen. 

9.2 Data: Sleep in Mammals 
The function of REM (rapid eye movement) sleep is one of the great mysteries in the 
field of sleep and wakefulness. It seems that REM sleep must have an important func-
tion because almost all mammals have it. One piece of evidence that has been used to 
investigate its function is the correlation of characteristics of animals with the amount 
of their REM sleep. Variables that have been found to be correlated with REM sleep 
in mammals are: measures of the amount of non-REM sleep, safe sleep conditions, 

314 



9.3 Missing Data Visualization Tools 

Table 9.1 Variables in the Sleep in Mammals Data" 

Number of 
Variables Description Missing 

Values 

NonDreaming 
Dreaming 
TotalSleep 
BodyWeight 
BrainWeight 

LifeSpan 
Gestation 
Danger 

Amount of non-REM sleep (hours/day) 
Amount of REM sleep 
Total of sleep (dreaming + nondreaming) 

Logarithm of body weight (g) 
Logarithm of brain weight (g) 
Logarithm of maximun life span (years) 
Logarithm of the gestation time (days) 
0 - least danger; 1 = most danger (from other 

13 
11 

3 
0 
0 
4 
4 

0 
animals) 

a Note that TotalSleep = Dreaming+NonDreaming. Thus, it is always possible to compute the 
value of an observation for any of these three variables if the value of the other two is known. 

and inmaturity at birth (Siegel, 1995). We will use a dataset collected by Allison and 
Cicchetti (1976) that has variables related to these measures. There are 61 cases in 
this dataset. The variables are described in Table 9.1. 

This dataset has been used to illustrate the technique of multiple regression analy-
sis, where any of the three first variables is taken as the response variable and all or a 
subset of the other five are used as predictor variables. These data have missing val-
ues in some of the variables, but the published analysis usually excludes missing 
cases. This will result in a loss of cases ranging from 19 (models that use NonDream-
ing as dependent variable and include LifeSpan and Gestation) to only three (models 
that use TotalSleep as the dependent variable and BodyWeight and BrainWeight). 

9.3 Missing Data Visualization Tools 

We have mentioned previously that conventional graphical techniques often simply 
ignore missing values. This is unfortunate, as the analyst is left without the opportu-
nity of checking a part of the data that may be informative. In the special case of inter-
active plots, the consequences of this approach are even more important, as many of 
the basic techniques may not work properly. 

Consider linking. When several linked plots display different variables, each vari-
able having its own unique pattern of missing values, an observation selected in one 
of the plots will not necessarily link to the same observation in another plot. The 
problem stems from the lack of response in some of the plots, which have a missing 
value in some of the variables displayed, but not in others. Also, other interactive 
actions, such as selecting the missing values in a given variable and seeing their val-
ues observed in other variables, are simply not possible. 
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One solution to these problems is used by the Manet (Missings Are Now Equally 
Treated) program (Unwin etal., 1996). This program incorporates modifications to 
basic plots and introduces new plots that can use missing values, thereby ensuring 
that missing values will always be represented. The specific way that each plot repre-
sents the values depends on the characteristics of that type of plot. 

9.3.1 Missing Values Bar Charts 

Manet introduces this plot as a way of displaying the proportion of missing values in 
a variable. This plot is a rectangle split in two, with black and white parts represent-
ing, respectively, the proportion of values observed and missing in the data. 

9.3.2 Histograms and Bar Charts 

Manet incorporates missings in histograms by adding a bar of a different color that 
counts the number of missing values in the variable displayed. This bar is active, so 
that it can be used to select cases. The cases in the bar can be linked to other plots. As 
the bar for missing values could be confused with the bars for values observed, a 
small gap separates it from the rest of the bars. Also, plots specialized to categorical 
data, such as mosaic and barcharts plots, include the missing values as an additional 
category automatically. 

9.3.3 Boxplots 

Boxplots are not easily modified to show missing values. Manet solves this problem 
by showing automatically in the boxplot window a missing values chart. 

9.3.4 Scatterplots 

Scatterplots show the observations with missing values in one of the represented vari-
ables as points on the axis of the plot. The scatterplots also have boxes representing 
the proportion of missing x values, the proportion of missing y values, and the propor-
tion of missing x and y values. 

Figure 9.2 shows a scatterplot inspired by Manet's proposals. Two variables from 
the mammals data are displayed in this figure: LifeSpan and NonDreaming. values 
observed are represented by circles. Missing values are represented by filled circles. 
Cases that are missing in both variables simultaneously are displayed in the plot by a 
separate white rectangle that indicates the proportion of cases with regard to the total. 
This plot helps us see that missing values for the variable NonDreaming happen more 
often for large values of the variable LifeSpan. On the other hand, missing values for 
the variable LifeSpan are located at about the center of the distribution for the variable 
NonDreaming. Finally, we also see that the proportion of missing values occurring 
simultaneously in both variables is very low because the missing bar chart placed in 
the lower part of the plot is predominantly white. Manet does not include other plots 
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Figure 9.2 Scatterplot with missing values displayed on each axis as filled 
points and in a separate bar. 

for numerical data such as 3D plots or scatterplot matrices, but it seems possible to 
extend the same ideas to these other displays quite easily. 

Compared with the traditional way of treating missing values in many statistical 
systems, Manet's approach is unquestionably sensible. However, using imputation 
techniques, as we discuss in the following section, we can further improve the plots. 
Imputation provides us with reasonable values that are computed taking advantage of 
the observed part of the data. This way, the missing values can be displayed almost as 
if they were values observed. 

9.4 Visualizing Imputed Values 

Ad hoc methods for imputation of missing data have been around for many years. 
However, over the last decade theoretically sound statistical methods for imputing 
missing values have become available. Furthermore, these methods offer promising 
approaches for adapting visualization methods to the realities of missing data. 

There are a number of issues involved in using imputation methods for statistical 
visualization: 

• Imputed data must be marked uniquely to differentiate them from observed 
data, and the resulting visualizations must include this marking in order to 
reflect the special status of the values (Swayne and Buja, 1998). 

• Although there are several imputation methods, not all of them can be recom-
mended. In particular, it is well known that the "quick and dirty methods" can-
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not be recommended because they are simplistic methods that distort the data. 
These methods include replacing missing values with unconditional means or 
removing cases with missing values. These difficulties apply whether the data 
are imputed for inference or for visualization. Figure 9.3 and the discussion 
associated with it is an example of the danger of using inappropriate imputa-
tion metods. 

• Even though good imputations will be less harmful than bad imputations, there 
is still the issue that the values obtained do not include any indication of the 
uncertainty of their estimates. Multiple imputation (Rubin, 1987; Schäfer, 
1997) is a technique that improves over single imputation because it provides 
information about the variability of imputations. Plots that include this infor-
mation are of interest because the analysts can obtain insight about the varia-
bility associated with the imputed observations. 

We discuss these issues in the remainder of this chapter. We use the sleep in mam-
mals data as an example. 

9.4.1 Marking the Imputed Values 

Before we start discussing methods for imputing reasonable values, we will introduce 
the way of marking the values in the plots so we do not forget that they are not 
observed values. 

Imputed values can be considered to be reasonable approximations of the unvalues 
observed. However, it is important not to confuse them with observed values. There-
fore, we include in the plot reminders that they are not actually observed and that they 
should be interpreted with care. The way to remind us of this fact usually consists of 
marking the imputed values differently from the rest of the values in the plots. This 
way, the analyst can, on the one hand, obtain general overviews of all the data, 
imputed and not imputed, and, on the other hand, appreciate the areas where the 
imputed values tend to behave in an interesting way. Thus, in this section we discuss 
some ways in that the imputed values can be marked in plots. 

The strategies for marking the imputed values in plots generally will differ depend-
ing on the types of plots considered. In this section we focus on the plots that use ele-
ments for representing each individual observation, such as dotplots, scatterplots, and 
so on. Other types of plots may require different strategies than used for these plots, 
but they are not considered here for reasons of space. 

Plots based on points can be modified in three ways to indicate that some of them do 
not represent values observed but that they have been imputed. The modifications 
consist in using different symbols, colors, and/or sizes. Assuming that we have started 
with a multivariate data matrix where some of the variables had missing values that 
have been imputed, these modifications will apply to different plots in the following 
way: 

1. Dotplots/boxplots/parallel plots. In this case the imputed values can be 
marked with a different feature, such as a different color/symbol/size. The 
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same feature can be used in several plots. Histograms that have individual 
bricks for each observation can use different colors for displaying imputed 
values. 

2. Scatterplots. In bivariate data, missing values can occur in any of the variables 
separately and also in both simultaneously. Figure 9.3 shows a scatterplot of 
the variables LifeSpan and time NonDreaming. The method used to impute 
values is the unconditional means method discussed in section Section 9.4.2. 
Observed points are displayed as hollow circles. Missing values in the variable 
LifeSpan are displayed with an x, and missing values in the variable Non-
Dreaming use a +. Finally, observations with missing values in both variables 
are displayed using a 0. This plot is in many aspects very similar to the plot in 
Figure 9.2 but with the difference that it does need any special addendum for 
missing values in both variables. 

3. Spinplots. The same strategy as that used for scatterplots can be applied to 
spinplots of three variables. However, if all combinations are to be displayed 
in the plot, eight (rather than four) symbols or colors are needed to represent 
all types of missing values. In practice, the number of patterns of missing val-
ues is probably not going to be so large, so the number of symbols/colors 
would be lower. 
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Figure 9.3 Scatterplot with imputation of unconditional means. Imputed values 
for variables are marked with the symbols: LifeSpan (x), NonDreaming (+), 

and both (0). 
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4. Scatterplot matrices. Using different symbols in scatterplot matrices for each 
pattern of missing values generates too many symbols. A more convenient 
approach consists of treating each scatterplot individually as described before. 
For example, we would know that a point marked with an x in one of the scat-
terplots would correspond to an observation that has a missing value in the 
variable displayed on the row of the scatterplot matrix in which this scatterplot 
is located. Notice that this observation would also be marked on the scatter-
plots along that row with an x, except if the variable on the vertical axis is also 
missing, in which case it would be marked with a 0 (see Figure 9.5). This 
marking allows identifying the other variables in which an observation would 
be missing simultaneously. Interactively, this would be accomplished by 
selecting an observation and looking along the corresponding row or column 
of the scatterplot matrix. 

Marking the values in the plots is important to avoid the pitfall of interpreting an 
imputed value as an observed value, as we shall see in the next section. 

Even though it is convenient to emphasize that imputed values are not real values, 
we expect them to be credible values, so that we will be able to use them for obtaining 
insight about our data. However, not all the imputation methods are equally appropri-
ate for producing reasonable values. In the following two sections we review methods 
appropriate for this endeavor. 

9.4.2 Single Imputation 

In this section, we introduce single imputation methods and discuss its application to 
the sleep in mammals example. The first method of imputation that we explain, single 
imputation (Schäfer, 1999), estimates a single value for each missing value. Single 
mputation is in contrast with multiple imputation, a method whereby, using simula-
tion, each missing value receives several imputed values. Multiple imputation has the 
advantage over single imputation that uncertainty about the missing values can be 
introduced in the statistical model such that intervals of confidence around the estima-
tions can be computed. On the other hand, single imputation requires less effort and 
can be also acceptable when the number of missing values is small. Also, as multiple 
imputation methods can be understood as extensions of single imputation methods, it 
is useful to review them before discussing the others. The methods are: 

1. Unconditional means. This method consists of substituting the mean of the 
variable for the missing values. This method is available in some statistical 
packages even though it presents considerable disadvantages and should, in 
general, be avoided. The reason is that this method inflates the number of val-
ues in the center of the distribution and understimates the variance of the vari-
able (see Little and Rubin, 1987, p. 44). The covariances among the variables 
are also underestimated. From the point of view of statistical visualization, this 
method has the disadvantage that the imputed values are laid out in lines paral-
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lei to the axis as shown in the Figure 9.3 on page 319 for the variables 
LifeSpan and Dreaming. 

2. Conditional means. With conditional means, the values used for the imputa-
tion are obtained by conditioning on the observed part of the incomplete cases. 
The method was proposed by Buck (1960, cited in Little and Rubin, 1987) and 
it consists basically of predicting each missing value using the values observed 
in a particular pattern of missing values. This method underestimates the vari-
ance of the completed data (but less than the unconditional means) and inflates 
the covariance of the variables. More serious problem is that the imputed data 
are predicted values without any component of error and give an overoptimis-
tic sense of precision. This suggests inmediately the strategy of adding a suita-
ble random component to the data that is function of the residual variance. 
Multiple imputation methods (discussed in the next section) can be considered 
as extending this strategy and combining it with the method in the following 
paragraph. 

3. Estimation-maximization (EM) algorithm. EM can be understood as an exten-
sion of the conditional means method. In EM, after the missing values have 
been substituted by a first round of imputed values, the parameters of the data 
are recomputed, and a new imputation is carried out. The same process is 
repeated until convergence. The advantage of the method is that the imputed 
values are not only a function of parameters of the observed part of the data, 
but also use the information contained in the nonobserved part given the 
observed part of the data. The EM algorithm is a general strategy apropriate 
for different types of data (Little and Rubin, 1987) but the one that has been 
implemented most often corresponds to incomplete multivariate normal sam-
ples. Notice that the estimation-maximization algorithm has as its main pur-
pose the computation of maximum likelihood estimates for the parameters of 
the data (e.g., means, variances, covariances), and not of imputations of val-
ues. However, the parameters so computed can be used to compute estima-
tions of missing values similar to the conditional means method, but the 
imputed values still lack a component of error. 

We will show an example of single imputation using the EM algorithm applied to 
the mammals data. As mentioned in the preceding paragraph, the most common 
implemented versions of the EM method assume that the data follow approximately 
the normal multivariate distribution. A way to check that assumption approximately 
is the scatterplot matrix shown in Figure 9.4. Scatterplot matrices are limited to the 
univariate and bivariate distributions and do not allow direct inspection of more than 
two dimensions. However, as discussed in Section Section 7.4, this can be a reason-
able approach to the problem in many cases. 

Figure 9.4 shows that all the bivariate plots look well except for the dummy-coded 
categorical variable Danger. This would be a problem if this variable had missing 
values, because some of the imputed values would probably fall out of the 0 to 1 
range. However, Danger does not have any missing values, and consequently, this 
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problem does not arise here. Note that as indicated in Table 9.1, some of the variables 
have been transformed using logarithms in order to improve the symmetry and linear-
ity of the data. Also, it is important to mention that we assume that the mechanism of 
missing data is ignorable. (See Section 9.5.2 to learn more about assumptions with 
missing data.) 

The scatterplot matrix in Figure 9.4 suggests that it is reasonable to use the EM 
algorithm to compute the maximum likelihood parameters for the data. Using these 
parameters, imputed values for the missing data use most of the information in the 
data observed. Also, once the data have been imputed, it is possible to visualize them 
using the marking strategies discussed in Section 9.4.1. In our case we examined sev-
eral scatterplots for pairs of variables until we found one that seemed to us to be of 
special interest. This scatterplot is shown in Figure 9.5 and corresponds to the van-
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Figure 9.4 Scatterplot matrix for the sleep in mammals data. 
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ables LifeSpan and NonDreaming. Note that the imputed values in Figure 9.5 do not 
lie at the means of the variables as they did in Figure 9.3, which used the uncondi-
tional means method. So, although the imputed values actually fall on fitted hyper-
planes, they do not portray evidence of regularity when they are displayed in lower 
dimensionality views. 

The special feature we saw in Figure 9.5 is the group of imputed points located at 
the lowest right side of the plot. These points are marked with a +, denoting that they 
were observed in the variable LifeSpan but not on NonDreaming. Selecting and label-
ing the points in this area provided some additional insight on these observations. So 
the labels of observations with missing values are the African Elephant (placed very 
close to the observed Asian Elephant), the Roedder, the Donkey, the Giraffe, and the 
Okapi. Also, there are five animals selected in Figure 9.5 that have no missing values 
for the variable NonDreaming (Asian Elephant, Goat, Sheep, Horse, and Cow). Inter-
estingly, these mammals are all ruminants, a group of animals that generally have low 
TotalSleep; they are also in the Danger species and presumably share other features. 
So the parallel-boxplots plot in Figure 9.6 displays the profiles of the mammals 
selected previously along all the variables in the dataset. These profiles reveal that the 
mammals selected feature low sleep time (low values at Dreaming, NonDreaming, 
and TotalSleep), large BodyWeight and BrainWeight, and long LifeSpan and Gesta-
tion time. They also are species in Danger (except the African Elephant). 

The plot in Figure 9.6 can be used for exploring the missingness of the observations 
selected because they are marked according to the strategies for boxplots outlined in 
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9.4 Visualizing Imputed Values 

Section 9.4.1. However, this black-and-white printed, static figure suffers from over-
lapping, a problem that would be solved in the interactive version by selecting each of 
the observations individually. Also, colors on the computer screen stand out more 
clearly than do black-and-white symbols. Hence, to improve the effect of this plot, we 
have enlarged the size of the symbols (the Okapi has a symbol larger than the others). 

Note that missing values in the first three variables (Dreaming, NonDreaming and 
TotalSleep) must happen in at least two of them at the same time. This is a conse-
quence of the variable TotalSleep, being the sum of the variables Dreaming and Non-
Dreaming. In Figure 9.6 we have selected observations that have missing values in 
any of these three variables. So the most common pattern of missing values among 
the selected observations is one in which the variable TotalSleep is known, but not its 
split into time Dreaming and NonDreaming. Two typical examples of observations in 
this pattern are the African Elephant and the Donkey. For these animals, it may be dif-
ficult to differentiate time Dreaming from time NonDreaming. 

Two of observations selected in Figure 9.6 keep a pattern different from the typical 
pattern described in the preceding paragraph. The pattern consists of knowing the 
time Dreaming but not the TotalSleep or their time NonDreaming. Two mammals are 
in this situation: the Giraffe and the Okapi. This pattern is striking because it seems to 
us easier to record the variable TotalSleep than the variables Dreaming or Non-
Dreaming separately. However, this does not seem to be true for Giraffes and Okapis. 
An explanation of this pattern is that Giraffes spend most of the night standing up, so 
it is difficult to know if they are sleeping, except in the short periods of time that they 
place their heads on the ground. This time seems to consist of REM sleep and so can 
be observed more easily than the total sleep and nondreaming times. Okapis the clos-
est relative of giraffes, are also difficult to observe. 

In summary, the plots in Figures 9.5 and 9.6 are useful because they offer a more 
complete picture of the dataset analyzed than do equivalent plots that exclude the 
missing values. The advantage stems from two sources: 

1. Cases with missing values are not completely removed from plots. 

2. Although the imputed values are only a reasonable approximation to the "true" 
values, and their interpretation must be done very cautiously, they can be of 
enormous help in understanding the missingness and its causes. 

Single imputation is an interesting strategy for exploration of data with missing val-
ues. However, there is not information about the confidence that can be placed in the 
imputed values. The following section, which describes multiple imputation, offers a 
way to go beyond this limitation. 

9.4.3 Multiple Imputation 

As indicated in the Section 9.4.2, single imputation does not provide any measure of 
the uncertainty of the quantities estimated. Rubin (1987) suggested multiple imputa-
tion as a way of overcome this problem. The idea of multiple imputation is to com-
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pute several simulated versions of the missing values that incorporate a random 
component. The random component reflects uncertainty about the missing values in 
such a way that the various draws would cover the space of the possible results. These 
results can later be combined to produce estimates of the parameters and, more 
important, confidence intervals of the estimates. Imputations can be computed using 
different methods but one that has been implemented in several packages can be 
regarded simply as a stochastic version of the EM algorithm (Schäfer, 1997). 

If several imputations are computed for a missing value, and assuming a normal dis-
tribution of the imputations, we can estimate the standard error of the mean of the 
imputations for the value using the formula 

' m-\ 
where ei is the error estimated and a,- is the standard deviation of the m imputed val-
ues for the missing observation /. 

The error associated with each imputation can be used for adding intervals of confi-
dence to the plots as shown in Figure 9.7. The scatterplots in these figures use hori-
zontal lines for displaying 95% intervals of confidence around values that are missing 
in the variable in the abscissa and vertical lines for the variable in the ordinate. When 
the value is missing in both axes, the symbol turns into a diamond that displays the 
intervals for both variables simultaneously. The interactive version of this plot only 
shows the symbols for the intervals of confidence when the points are selected, so the 
graphical impact of the lines can be controlled by the user. 
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The imputed values for the ruminants in Figure 9.7, which have low NonDreaming 
and high LifeSpan, have in general short intervals of uncertainty. Therefore, we can 
trust that the real values for those animals will not differ much from the estimations. 

Note that the intervals for some observations are larger than for others. Focusing on 
the labeled observations, the Roedeer, Donkey and African Elephant have small inter-
vals and those around the Okapi and the Giraffe are somewhat larger. Of course, the 
differences in size depend on having good predictors for the missing values. Thus, in 
the sleep in mammals example, the three variables related to sleep are highly related 
among themselves —e.g. the correlation of the variable TotalSleep with NonDream-
ing has a value of 0.97—and consequently, observations with NonDreaming missing 
and TotalSleep observed will be predicted very accurately. This is what happens with 
the Roedeer, Donkey and African Elephant. On the other hand, the Okapi and Giraffe 
have only the value for the variable Dreaming. As the correlation of this variable with 
NonDreaming is of 0.53, the confidence intervals are larger for these two observa-
tions. 

9.4.4 Summary of Imputation 

In this section we have shown that imputation can be a powerful tool for exploring 
data with missing values. The data imputed allow us to build visualizations that are 
similar to those for complete datasets but that include all the cases in our sample. Of 
course, the imputed data must not be interpreted as if they were values observed. 
However, by marking them, the analyst can always see if a given value is imputed or 
observed and in this way carry out interpretations of individual values as appropriate. 
Also, using multiple imputation, it is possible to add intervals of confidence to the 
imputed values, such that the analyst can have a visual impression of the trust that he/ 
she can put on them. 

Notice that this section has focused on the exploration of the individual imputations. 
This is an unusual approach to the topic of missing data, which generally is more con-
cerned with the problems of inference of parameters under the presence of missing 
data. For a more complete treatment of these issues, the reader can consult, for exam-
ple, Schäfer (1997). 

A theme that has been lurking behind the previous discussion is of patterns of miss-
ing data. Patterns of missing data are defined by the variables that have or do not have 
missing values for a group of observations. If the pattern has as observed variables 
those that are good predictors of the variables with missing values, their estimations 
are more accurate. This is an example of the conclusions that can be derived from pat-
terns of missing values. Hence, in the next section we show methods and possible der-
ivations that can be obtained from the exploration of patterns of missing data. 

9.5 Missing Data Patterns 

A pattern of missing data indicates the variables in a group of observations that have 
missing or values observed. We have seen in Section 9.4 that patterns of missing data 
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can be a source of valuable information about data. Thus, for example, two observa-
tions in Section 9.7 had values observed in a variable—Dreaming—that seemed more 
difficult to record than the variables that had not actually been observed (TotalSleep 
and NonDr-earning). This strange pattern was eventually explained by the fact that 
two mammals, Giraffes and Okapis, are able to sleep while they stand up, but they lay 
down when in REM sleep. Hence, there are more evident cues associated with the 
state of Dreaming than for TotalSleep, as it can be difficult to know whether or not an 
animal is actually sleeping when it stands up. 

Exploration of the patterns of missing values in our data may inform about: 
• The patterns themselves and the number of cases in each of them. 
• The mechanisms that may have produced the missing data. 
• The summaries of the values observed given the missing data patterns. 

Notice that the number of different patterns of missing data can be large for multi-
variate datasets and that it is convenient to visualize the observed and imputed part of 
the data simultaneously. Therefore, to obtain a complete account of the missing data 
patterns, the analyst can make good use of special tools tuned to this problem. In the 
following subsections we review some visualizations that have been designed specifi-
cally for the exploration of missing data patterns. 

9.5.1 Patterns and Number of Cases 

The first thing to do with missing data patterns is to list them. Also, the count of cases 

in each of them is important. A bar chart or a table can be used for this purpose. 

Table 9.2 shows the patterns for the mammals data. The table has been sorted accord-

Table 9.2 Patterns of missing data in the Mammals Data" 
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ing to the number of cases in the patterns. Thus, it is posible to see that the pattern for 
Complete Data (no missing values) is the largest in our data, followed by the pattern 
with missing values in the variables NonDreaming and Dreaming. Other patterns 
with fewer cases are listed below. 
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As patterns with a high number of missing values are probably affecting more the 
estimations of parametters than those with fewer, it is important to check if the means, 
variances, and so on, of the observations in those patterns differ much from the obser-
vations in other patterns (especially from the Complete Data pattern). Therefore, an 
important use of Table 9.2 is to identify patterns with many cases. 

However, the possibilities of Table 9.2 for data analysis are not limited to show pat-
terns.that are large. Thus, we can see in it that there is a mammal so mysterious that 
researchers have not been able to determine its LifeSpan or its Gestation time (Desert 
Hedgehog) and also that there is a mammal whose sleep behaviour is completely 
unknown (Kangaroo). Therefore, Table 9.2 is a source of valuable insight for data 
analysis, especially if linked to plots and labels of the observations in the missing data 
patterns. 

Table 9.2 can be re-sorted in other ways, so it is possible to put together patterns 
with similar variables. Interactive capabilities such as displacing rows manually, or 
sorting according to one or several variables, make possible explorations of this type. 

The mammals data have only eight different patterns of missing data, so their study 
is easy using a table. However, datasets with many variables may have many more 
patterns of missing data. Also, to know the count of cases in each pattern is normally 
only the first step to be undertaken in the exploration of this aspect of the data. Thus, 
statistics such as means, variances, and covariances displayed by pattern are usually 
required also. We will see in the following sections visualizations especially tuned to 
this problem, but first we discuss some preliminary theory that will be of help in that 
endeavor. 

9.5.2 The Mechanisms Leading to Missing Data 

One of the main uses of the analysis of the patterns of missing data is to shed light on 
the mechanisms producing the missingness. Knowledge of those mechanisms is of 
considerable interest because it may guide the strategy to follow in the analysis of 
data. In this section we first describe a widely accepted classification of the mecha-
nisms of missing data, and thereafter, a statistical test that has been proposed for 
checking the mechanisms that underlie the data at hand. As patterns of missing values 
play a central role in this test, it is interesting to provide visualizations that provide 
insight about the various factors that take part in the computation of such single sum-
mary value. These visualizations are the goal of the Section 9.5.3. 

The mechanisms that may have produced the missing data may be classified as 
(Dempster et al., 1977; Little and Rubin, 1987): 

• Missing completely at random (MCAR). This mechanism implies that the 
missing values are a random subsample of the data. This case happens when 
the probability of response is independent of the values of the variables. 
Therefore, summary statistics like means or variances should be the same for 
the data observed and for the non-observed. Likewise, the matrix of variances-
covariances for the whole data-matrix should be equal for the complete and for 
the incomplete data. 
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• Missing at Random (MAR). This MAR mechanism is less restrictive that 
MCAR. It assumes that the probability of response on a variable Y with miss-
ing values may be related to other variables X, but not with itself. Despite its 
name, MAR does not mean that missing values are a simple random subsam-
ple of all values. MAR is less restrictive than MCAR because it requires only 
that the missing values behave like a random sample of all values within sub-
classess defined by data observed (Schäfer, 1997). In this case, incomplete 
data have different summary statistics than those of complete data but it is 
assumed that the data observed possess enough information to recover the lost 
information, helping to estimate the correct summary statistics. MAR and 
MCAR are said to be ignorable missing data mechanisms. 

• Non Missing at Random (NMAR). Sometimes, researchers will have addi-
tional information on the data that lead them to be suspicious of data being 
MAR or MCAR. In this case, it is supposed that there is a nonmeasured varia-
ble that could be related to the missing values. This is called a nonignorable 
missing data mechanism. This situation is particularly problematic because 
there is no test that that can be used to evaluate whether or not the missing data 
mechanism is random. 

Most of the literature concerning missing data is based on the ignorable mecha-
nisms of MAR or MCAR. However, it is important to mention that ignorability can 
be regarded as relative. Although a missing data mechanism may not be known by the 
researcher in full, there can be variables that can explain the missingness to a lesser or 
greater extent. Including a number of the variables in the analysis that explain the 
missingness will make the assumption of MAR much more plausible (Graham et al., 
1996; Schafer, 1997). Although there are no tests for NMAR, it is possible to check if 
data are MCAR versus the less restrictive situation of MAR. 

One of the most intuitive analyses for MCAR is computing the differences in vari-
ables between observed and missing values for the rest of variables. Tests for the dif-
ferences of means are also sometimes reported. Significant differences for the tests 
can be taken as evidence that data are not MCAR. However, even though this proce-
dure can be considered informative, it produces a large number of f-tests that are diffi-
cult to summarize, because they are correlated with a complex structure, depending 
on the patterns of missing data and the correlation matrix (Little, 1988). 

The previous strategy could also be applied to visualizations of data. Plots could be 
constructed for all the variables for the missing and nonmissing parts of each variable. 
However, due to the presence of missing values in the variable displayed, the size of 
the groups would not always be homogeneous. Also, exploring bivariate relationships 
among variables for missing and nonmissing values of other variables would be more 
complex, as the plots for different variables might vary widely in the observations 
displayed. 

A test that evaluates if the mechanism of missing values in a dataset is MCAR or 
MAR was suggested by Little (1988). Little's test evaluates the differences between 
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the means observed for patterns of missing data and the maximum likelihood estima-
tions obtained using the EM algorithm and has the following formula: 

j j 

d2=HdJ=H Mj (JabsJ - VobsJ )^obs J (Fobs,; " Mobsj ) T (9- ! ) 
7=1 7=1 

where there are/? variables, J patterns of missing values, /n- observations in pattern j , 
\i and E are the maximum likelihood estimates of the vector of means and the matrix 
of covariances obtained using the EM algorithm, and obs, j are the subsets of the 
parameters corresponding to nonmissing observations for pattern j . Finally, yobsj is 
the /j-dimensional vector for the sample average of data observed in pattern j . 

This test has a X2 distribution with degrees of freedom equal to 

j 

7=1 

wherep- is the number of variables observed in pattern j . Notice that the test above 
can be regarded as a sum of normalized Mahalanobis distances of each pattern with 
respect to the maximum likelihood means. Examination of individual contributions to 
the test can be used to find out which patterns contributed most to the test. However, 
straightforward comparisons of the sizes of the terms can be misleading, and correc-
tions are necessary to explore these contributions (Hesterberg, 1999). 

The test assumes that the matrix of covariances is the same for all patterns. Little 
(1988) and Kim and Bender (2002) provide tests for homogeneous means and covari-
ances. However, this test is quite limited, due to patterns with few cases and is not 
reported os often as the test for means. 

Although Little's test offers a convenient summary of the deviations of the parame-
ters from the maximum likelihood estimators, it is always interesting to check the pat-
terns individually. For example, in the mammals data, Little's test for means returns 
39.80 with 42 degrees of freedom (p = 0.57) so we woud not reject the MCAR 
hypothesis. However, looking at Table 9.2, we can see that the variable LifeSpan is 
involved in several patterns with few cases each. But as examination of equation (9.1) 
makes clear, patterns with few cases can not contribute much to increasing the value 
of the test, and also,the existence of more patterns increases the degrees of freedom of 
the test. Therefore, if the variable LifeSpan is excluded from the test, we may expect 
that the MCAR hypothesis will be rejected more easily. Indeed, the output of Little's 
test after excluding mis variable is 30.54 with 20 degrees of freedom (p = 0.06), 
which is marginally significant. This result alerts us to the dangers of accepting the 
results of the test without examining the contributions of the individual patterns. 

9.5.3 Visualizing Dynamically the Patterns of Missing Data 

We saw in section Section 9.5.2 that the MCAR mechanism involves homogeneity of 
means and covariances and that a statistical test exists for checking this assumption. 
However, visualizations of the components of these formula may provide insight into 
the characteristics of each pattern that would otherwise remain hidden. 
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In this section we discuss visualizations that address, on the one hand, means and 
variances, and on the other hand, covariances and correlations of the data. DIG tech-
niques are useful for these visualizations because they allow the user to explore step 
by step the information in the patterns and focus on those that present more interest-
ing features. The first visualization to be described uses raw data and does not involve 
imputation. The other two are focused on summaries of the data computed by pat-
terns, such that the summaries can be compared easily among themselves and with 
the maximum likelihood estimates of the statistics. These two plots are the most 
closely related to Little's test and hence can be a useful companion to it. 

Parallel diamond plots for observations in missing data patterns. Figure 9.8 a 
shows diamond plots for the observations in two of the missing data patterns of the 
mammals data. The plots are made in the following way: First, the mean and the stan-
dard deviation of each of the variables is computed using the available observations. 
Second, the variables are standardized using these means and standard deviations to 

NonDreaming Dreaming TotalSleep BodyWeight BrainWeight LifeSpan Gestation Danger 

AFRICANELEPHANT 
DONKE' 

TotalSleep BodyWeight BrainWeight LifeSpan Gestation Danger 

Figure 9.8 Diamonds for observations in the Complete Data (top) and 
Dreaming/Non Dreaming (bottom) missing data patterns. 
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have mean 0 and standard deviation 1. Third, observations in each of the pattern are 
selected and plotted separately. Fourth, diamond plots for the means and standard 
deviations of the observations in the pattern are superimposed over the observations 
in the pattern. 

Figure 9.8a shows the observations in the Complete Data pattern (no missing values 
in any of the variables). Figure 9.8b shows the observations in the pattern with vari-
ables Dreaming and NonDreaming missing. The plots can be interpreted as showing 
if the observations for each variable in a pattern are different from the remainder of 
the observations. If the observations for a variable in a given pattern are not different, 
the points will have mean zero and unit standard deviation, and consequently, the dia-
mond for these observations will be centered in the zero line and will have a height of 
2. On the contrary, if the observations are different, the diamonds will be uncentered 
in the zero line or will not have a height of 2. This plot is meant to be used interac-
tively, by selecting one pattern after the other from a list to see the changes in the plot. 

Figure 9.8 top shows that the means and the standard deviations for the variables in 
the Complete Data pattern are similar to those for all the available cases. On the other 
hand, Figure 9.8 bottom, reveals that the same statistics for the pattern of missing val-
ues NonDreaming!'Dreaming differ from those for the available cases. The differ-
ences are that the mean of the observations for this pattern is lower for the variables 
TotalSleep and Danger and higher for the rest of variables than the means for the 
available data. 

The plots discussed here have the appeal of being based on raw data, without resort-
ing to any special procedure or computation. Furthermore, using selection and link-
ing, they can be implemented using the techniques described in Chapter 4. 

In the next section we review plots that follow a different strategy. Using imputa-
tion to fill the gaps, all the variables and all the patterns are displayed in the plot. This 
results in a very complete representation of the data that is amenable to more sophisti-
cated exploratory data analysis. 

Diamond plots for missing data patterns. The display discussed in the preced-
ing subsection has the disadvantage that it requires a different plot for each missing 
data pattern and comparisons among patterns are complex because the variables rep-
resented at each plot are different. One way of reducing the number of displays con-
sists of using imputation of the missing values in order to obtain completed 
representations, similar to those discussed in Section 9.6 but modified to take into 
account patterns of missing values. 

Figure 9.9 is an adaptation of diamond plots designed to represent the summary 
information in a dataset after it has been filled using imputed data. This plot is meant 
to be used interactively to view the distribution of values for a given pattern. The dif-
ferent parts of the plot refer to the following: 

• Points stand for the means of observations in a missing data pattern for a vari-
able. The symbol 0 stands for cases observed. If the symbol for the point is an 
x , the cases used to compute the value of the point have been imputed. 

• Horizontal lines placed over each point indicate the relative size (the number 
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of cases) of each pattern. Larger lines correspond to patterns with more cases. 
• Large diamonds drawn using gray lines are located at the maximum likelihood 

means for the variables. The height of the diamonds corresponds to their 
standard deviations (in standard scores). Note that these means and standard 
deviations can differ from 0 and 1. The reason is that the algorithm for com-
puting the maximum likelihood estimates starts by standardizing the available 
data to mean 0 and standard deviation 1, but, the final estimates can vary from 
these initial values. 

• Selecting a point in this plot shows a diamond that informs about the standard 
deviations of the observations in the pattern for each variable. 

Note that Figure 9.9 top is similar to Figure 9.6 but that instead of showing individ-
ual observations, it shows the schematics for the summaries of the observations by 
pattern. 

We will now make some comments about Figure 9.9 with regard to our specific 
example on sleep in mammals. A pattern of special relevance is the Complete Data 
pattern because it refers to observations without missing values. This pattern is the 
one selected in Figure 9.9 top. The diamonds for this pattern are centered in the plot, 
but we see that they do not coincide completely with the maximum likelihood means. 
For example, the mean time of the mammals in this pattern spent NonDreaming is 
higher than the one computed using the EM algorithm. Also, these mammals seem to 
have means of BodyWeight and BrainWeight lower than the ones computed using 
EM. Therefore, it looks like observations without missing values correspond to rela-
tively small animals that spend a short time NonDreaming. 

The schematics in Figure 9.9 can be linked with a plot of the individual values of 
equation (9.1). These individual values represent contributions of each of the patterns 
to Little's MCAR test and can be used to evaluate the distance of the patterns to the 
mean. 

The patterns with the highest values of Little's test are: 
• NonDreaming, Dreaming, and TotalSleep (ND-D-TS). This pattern has only 

one observation (Kangaroo) and is displayed using the smallest diamond in 
Figure 9.9 bottom. 

• NonDreaming and Dreaming (ND-D). This pattern is the second largest after 
the Complete Data pattern. It has the largest diamonds in Figure 9.9 bottom. 
The means for the observations in this pattern for the variables Body and Brain 
Weight, the LifeSpan, and the time of Gestation are larger than for the Com-
plete Data pattern and the EM means. This pattern seems characteristic of big 
mammals, where, for some reason, it is difficult to know how TotalSleep time 
is split into time Dreaming and NonDreaming. 

• NonDreaming and TotalSleep (ND-TS): This pattern was discussed in 
Section 9.4. It corresponds to only two observations, Giraffes and Okapis. 

As we have seen, interactive tools make the plot in Figure 9.9 more useful. In our 
case, clicking on a point selects all the points in the pattern. Ctrl-click selects addi-
tional patterns. A common situation with this plot is when there are small patterns 
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(few cases) that are very extreme and the analysis wants to remove them to focus on 
the larger patterns. This action is carried out with a menu item that also rescales the 
plot. Other actions of interest are the combination of very similar patterns in order to 
reduce the complexity of the plot or linking it to plots for the components of Little's 
MCAR test. 

Scatterplot matrices for data with missing values. In Section 9.5.2 we dis-
cussed visualizations intended to explore the homogeneity of means and variances by 
patterns of missing data. In this section we explore visualizations of covariances (or 
relationships) among variables. 

Little (1988) expressed several concerns about the power of the version of the 
MCAR test if used for checking the homogeneity of both means and covariances 
among patterns of missing data. In particular, he pointed out that patterns with fewer 
cases than observed variables cannot be used for this purpose, and that the test is 
probably too sensitive to departures from the normality assumption to be of practical 
use. As a consequence, this test is probably not used as often as the test for homoge-
neity of means. Nevertheless, it seems interesting, from an exploratory point of view, 
to have the capability of checking the relationships among variables of the observa-
tions falling into patterns of missing data. 

Figure 9.10 shows a scatterplot of the variables Gestation and LifeSpan for the 
mammals data. This scatterplot includes the imputations obtained from the EM algo-

Figure 9.10 Scatterplot of LifeSpan and Gestation. Imputed values have the 
following symbols: LifeSpan (x), Gestation (+) and both (0). Points shown with 

a filled circle are in the missing data pattern NonDreaming-Drearning and 
have been used to compute the regression line with dashed parts. The other 

regression line has been computed using the parameters estimated using EM. 
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rithm using the symbols described in Section 9.4.1. This scatterplot could be seen as 
being part of a scatterplot matrix for all the variables in the dataset. 

The scatterplot in Figure 9.10 differs from the scatterplot in Figure 9.5 in that it dis-
plays a regression line indicating the relationship among the observations by patterns 
of missing values. The solid lines in the plot refer to the regression lines estimated 
using the covariances computed with the EM algorithm; the dashed lines represents 
the regression line computed using only the subset of values in the pattern of missing 
values currently selected (in this case, the pattern is NonDreaming and Dreaming). 
An examination of Figure 9.10 shows that, in general, the line for the pattern selected 
does not differ too much from the maximum likelihood line. Using a scatterplot 
matrix of all the pairs of variables would allow us to observe whether the MCAR 
assumption for covariances holds in general for this pattern. 

9.6 Conclusions 

The main theme of this chapter is the use of imputation as a way of recovering the 
missing data and, more important, to illustrate interactive displays that include both 
imputed and values observed. This strategy requires marking the values imputed dif-
ferently from the values observed. The visualizations so created can be very useful for 
the exploration of data. Thus, for the mammals data, a number of features have been 
revealed that otherwise would have remained unobserved. These features have lead us 
to understand the singularities of our data in relation with the missing values. This 
happened, for example, with the two observations with missing values in the variable 
TotalSleep but values observed in the variable Dreaming. It may seem that knowing 
simply whether or not an animal is sleeping should be easier than detecting whether it 
is dreaming. However, for mammals that do not necessarily lie down when sleeping 
but do when dreaming, this seems to be true. 
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example of 247 
for Box-Cox transformations 252 
for fitting models 110 
for log-linear analysis 99, 165-166 
for simple regression 256 
for transforming data 108 
for transforming variables 11 
for univariate data 186 
look of 102 
messages in 99 
of box plots 239 

Spreadsheets, see Datasheets 
SPSS 27, 151, 155 

LOGLINEAR procedure 167 
Standard normal distribution 234 
Statistica 27 
Statistical data analysis 5, 42 
Statistical visualizations 36 

as videogames 7 
Statistics 5 
Stereoscopy 116 
Symmetry 188 
Systat 27 

Tables of frequency data 150-157 
arranging variables 155 
category level 151-153 
computing percentages 154 
drag and drop for arranging variables 

155 
excluding categories 153 
including/excluding variables 153 
interactive manipulation 151 
joining categories 153 
layers 155 
partitioning the table 155 
relabeling variables 153 
reordering categories 151 
statistical packages 151 
variables level 153-157 

Tour plots see Orbitplot 

Transforming data 108 
Trellis display 96, 139 

U 

Uniform distribution 49 
User interface 123 

buttons 123 
control panels 127 
controls 123-128 
dialog boxes 125 
drag and drop for setting scales 140 
hyperlinks 127 
menus 125 
modal dialogs 125 
modeless dialogs 125 
palettes 125, 136 
Plot as interface 127 
sliders 126 

V 

vcdl59 
Virtual reality 114-118 

comparisons with traditional meth-
ods 118 

data visualization environment 115 
effectiveness 118 
for data analysis 114 

Virtual reality systems 
see 3DVDM 
see C2 
see CAVE 
see MiniCAVE 
see PlatoCAVE 
see Visuals-Pxpl 116 
see VRGobi 

ViSta 24, 27-29, 34, 96, 98, 135, 136, 
154, 159, 161, 165, 186, 192, 
199, 203 

advantages 28 
downloading 29 
reasons for using it 27 
workmap of 87 
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Visual statistics 5, 29, 76 
early system with brushing 25 
first 3D system with data rotations 25 
first system for power transformation 

24 
intelligence augmentation 40 
main software 24 
milestones 24 
principles 40 
see also ORION I 
see also Prim-9 

Visuals-Pxpl 116 
VRGobi 116, 118 

W 

Wiggle worm plot 291-292 
Workmap 83 

X 

XGobi27, 117, 118 
XLisp 25 
XLisp-Stat 25-26, 27, 96, 135, 141 

comparison with S 25 
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many topics of current research interest in both pure and applied statistics and probability 
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AGRESTI • Categorical Data Analysis, Second Edition 
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BERNARDO and SMITH ■ Bayesian Theory 
BH AT and MILLER • Elements of Applied Stochastic Processes, Third Edition 
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t BIEMER, GROVES, LYBERG, MATHIOWETZ, and SUDMAN • Measurement Errors 
in Surveys 
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BUCKLEW • Large Deviation Techniques in Decision, Simulation, and Estimation 
CAIROLI and DALANG • Sequential Stochastic Optimization 
CASTILLO, HADI, BALAKRISHNAN, and SARABIA ■ Extreme Value and Related 
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CHAN • Time Series: Applications to Finance 
CHARALAMBIDES • Combinatorial Methods in Discrete Distributions 
CHATTERJEE and HADI ■ Regression Analysis by Example, Fourth Edition 
CHATTERJEE and HADI • Sensitivity Analysis in Linear Regression 
CHERNICK ■ Bootstrap Methods: A Practitioner's Guide 
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CHILES and DELFINER • Geostatistics: Modeling Spatial Uncertainty 
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Second Edition 
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CONGDON • Applied Bayesian Modelling 

*Now available in a lower priced paperback edition in the Wiley Classics Library. 
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CONGDON • Bayesian Statistical Modelling 
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Data Analysis 
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MARCHETTE • Random Graphs for Statistical Pattern Recognition 
MARDIA and JUPP • Directional Statistics 
MASON, GUNST, and HESS • Statistical Design and Analysis of Experiments with 

Applications to Engineering and Science, Second Edition 
McCULLOCH and SEARLE • Generalized, Linear, and Mixed Models 
McFADDEN • Management of Data in Clinical Trials 

* McLACHLAN • Discriminant Analysis and Statistical Pattern Recognition 
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Applications of Voronoi Diagrams, Second Edition 
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! PUTERMAN • Markov Decision Processes: Discrete Stochastic Dynamic Programming 
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