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PREFACE

This book gives an introduction into mathematical statistics. It was written for
bachelor students in (business) mathematics, econometrics, or any other subject
with a solid mathematical component. We assume that the student already has solid
knowledge of probability theory to the extent of a semester course at the same level.

In Chapter 1, we give the definition and several examples of a statistical model,
the foundation of every statistical procedure. Some techniques from descriptive
statistics that can assist in setting up and validating statistical models are discussed
in Chapter 2. The following chapters discuss the three main topics in mathematical
statistics: estimating, testing, and constructing confidence regions. These subjects are
discussed in Chapters 3, 4, and 5, respectively. Next, Chapter 6 provides deeper
theoretical insight, in particular into the question under what circumstances and in
what sense certain statistical models are mathematically optimal. In Chapter 7, we
describe several regression models that are commonly used in practice. The theory
from the previous chapters is applied to estimate and test unknown model parameters
and give confidence regions for them. Finally, in Chapter 8, we discuss model
selection. In that chapter, various criteria are presented that can be used to find the
best-fitting model from a collection of (regression) models. Sections and examples
marked with a * are more difficult and do not belong to the basic subject matter of
mathematical statistics. Every chapter concludes with a summary.

In Appendix A, we recall elements from probability theory that are relevant
for understanding the subject matter of this book. In Appendix B, we discuss
properties of the multivariate normal distribution, which is used in several sections.
Appendix C contains tables with values of distribution and quantile functions of
several distributions to which we refer in the text. These are meant to be used at home
or during problem sessions. In “real life,” these tables are no longer used: the computer
is faster, more accurate, and easier to use. The statistical package R, for example,
contains standard functions for the distribution function, the density function, and the
quantile function of all standard distributions.

The mathematical style of this book is more informal than that of many
mathematics books. Theorems and lemmas are not always proved or may be
formulated in an informal manner. The reason is that a pure mathematical treatment is
only possible using measure theory, of which we do not assume any knowledge. On
the other hand, the relevance and motivation of the theorems are also clear without
going into all the details.

Each chapter concludes with a case study. It often contains a statistical problem
that is answered as well as possible based on the collected data, using the statistical
techniques and methods available at that point in the book. The R-code and data of
these applications, as well as the data of several case studies described in the book, are
available and can be downloaded from the book’s webpage at http://www.aup.nl.

Though this book includes examples, practice is indispensable to gain insight into
the subject matter. The exercises at the end of each chapter include both theoretical
and more practically oriented problems. Appendix D contains short answers to most



exercises. Solutions that consist of a proof are not included.

The book has taken form over a period of 20 years. It was originally written
in Dutch and used yearly for the course “Algemene Statistiek” (General Statistics)
for (business) mathematics and econometrics students given by the mathematics
department of VU University Amsterdam. The various lecturers of the course
contributed to the book to a greater or lesser extent. One of them is Bas Kleijn. We
want to thank him for his contribution to the appendix on probability theory. More than
2000 students have studied the book. Their questions on the subject and advice on the
presentation have helped give the book its present form. They have our thanks. The
starting point of the book was the syllabus “Algemene Statistiek” (General Statistics)
of J. Oosterhoff, professor of mathematical statistics at VU University Amsterdam
until the mid-"90s. We dedicate this book to him.

In 2013, the first edition of this book was published in Dutch, and three
years later, in 2016, the second Dutch edition came out. This second edition has
been translated into English, with some minor changes. We thank Reinie Erné for
translation.

Amsterdam and Leiden, March 2017
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FURTHER READING

Reference [1] is an introduction to many aspects of statistics, somewhat comparable
to An Introduction to Mathematical Statistics. References [3] and [4] are standard
books that focus more on mathematical theory, and estimation and tests, respec-
tively. Reference [6] describes the use of asymptotic methods in statistics, on a
higher mathematical level, and gives several proofs left out in An Introduction to
Mathematical Statistics. Reference [5] is a good starting point for whoever wants to
delve further into the Bayesian thought process, and reference [7] provides the same
for nonparametric methods, which are mentioned in An Introduction to Mathematical
Statistics but perhaps less prominently than in current practice. Reference [2]
elaborates on the relevance of modeling using regression models, for example to draw
causal conclusions in economic or social sciences.
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Press.
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Statistics is the art of modeling (describing mathematically) situations in which
probability plays a role and drawing conclusions based on data observed in such
situations.

Here are some typical research questions that can be answered using statistics:

(1) What is the probability that the river the Meuse will overflow its banks this year?
(i) Is the new medical treatment significantly better than the old one?
(iii)) What is the margin of uncertainty in the prediction of the number of representa-

tives for political party A?

Answering such questions is not easy. The three questions above correspond to the
three basic concepts in mathematical statistics: estimation, testing, and confidence
regions, which we will deal with extensively in this book. Mathematical statistics
develops and studies methods for analyzing observations based on probability models,
with the aim to answer research questions as above. We discuss a few more
examples of research questions, observed data, and corresponding statistical models
in Section 1.2.

In contrast to mathematical statistics, descriptive statistics is concerned with
summarizing data in an insightful manner by averaging, tabulating, making graphical
representations, and processing them in other ways. Descriptive methods are only
discussed briefly in this book, as are methods for collecting data and the modeling
of data.



1: Introduction

In a sense, the direction of statistics is precisely the opposite of that of probability
theory. In probability theory, we use a given probability distribution to compute the
probabilities of certain events. In contrast, in statistics, we observe the results of
an experiment, but the underlying probability distribution is (partly) unknown and
must be derived from the results. Of course, the experimental situation is not entirely
unknown. All known information is used to construct the best possible statistical
model. A formal definition of a “statistical model” is as follows.

Definition 1.1 Statistical model

A statistical model is a collection of probability distribution on a given sample space.

The interpretation of a statistical model is: the collection of all possible
probability distributions of the observation X . Usually, this observation is made up
of “subobservations,” and X = (X7, ..., X,,) is a random vector. When the variables
Xi,...,X, correspond to independent replicates of the same experiment, we speak
of a sample. The variables X1, ..., X,, are then independent, identically distributed,
and their joint distribution is entirely determined by the marginal distribution, which
is the same for all X;. In that case, the statistical model for X = (X, ..., X,,) can be
described by a collection of (marginal) probability densities for the subobservations
Xi,..., X5

The concept of “statistical model” only truly becomes clear through examples. As
simply as the mathematical notion of “statistical model” is expressed in the definition
above, so complicated is the process of the statistical modeling of a given practical
situation. The result of a statistical study depends on the construction of a good model.

Example 1.2 Sample

In a large population consisting of N persons, a proportion p has a certain
characteristic A; we want to “estimate” this proportion p. It is too much work to
examine everyone in the population for characteristic A. Instead, we randomly choose
n persons from the population, with replacement. We observe (a realization of) the
random variables X1, ..., X,,, where

Y 0 if the ith person does not have A,
! 1 if the 4th person has A.

Because of the set-up of the experiment (sampling with replacement), we know
beforehand that X;,..., X, are independent and Bernoulli-distributed. The latter
means that
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for s = 1,...,n. There is no prior knowledge concerning the parameter p, other then
0 < p < 1. The observation is the vector X = (X1,...,X,,). The statistical model
for X consists of all possible (joint) probability distributions of X whose coordinates
Xi,...,X, are independent and have a Bernoulli distribution. For every possible
value of p, the statistical model contains exactly one probability distribution for X.

It seems natural to “estimate” the unknown p by the proportion of the persons
with property A, that is, by n’lz?zlxi, where z; is equal to 1 or 0 according to
whether the person has property A or not. In Chapter 3, we give a more precise
definition of “estimating.” In Chapter 5, we use the model we just described to
quantify the difference between this estimator and p, using a “confidence region.” The
population and sample proportions will almost never be exactly equal. A confidence
region gives a precise meaning to the “margin of errors” that is often mentioned with
the results of an opinion poll. We will also determine how large that margin is when
we, for example, study 1000 persons from a population, a common number in polls
under the Dutch population. ——

Example 1.3 Measurement errors

If a physicist uses an experiment to determine the value of a constant x repeatedly, he
will not always find the same value. See, for example, Figure 1.1, which shows the
23 determinations of the speed of light by Michelson in 1882. The question is how
to “estimate” the unknown constant p from the observations, a sequence of numbers
x1,...,Ty. For the observations in Figure 1.1, this estimate will lie in the range 700—
900, but we do not know where. A statistical model provides support for answering
this question. Probability models were first applied in this context at the end of the
18th century, and the normal distribution was “discovered” by Gauss around 1810 for
the exact purpose of obtaining insight into the situation described here.

® oo 0000 O @ ooO® O o o

T T T T T
600 700 800 900 1000

Figure 1.1. The results of the 23 measurements of the speed of light by Michelson in 1882.The
scale along the horizontal axis gives the measured speed of light (in km/s) minus 299000 km/s.
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If the measurements are all carried out under the same circumstances, indepen-
dently of the past, then it is reasonable to include in the model that these numbers
are realizations of independent, identically distributed random variables X1, ..., X,,.
The measurement errors e; = X; — p are then also random variables. A common
assumption is that the expected measurement error is equal to 0, in other words, Ee; =
0, in which case EX; = E(e; + u) = p. Since we have assumed that X5, ..., X,
are independent random variables and all have the same probability distribution, the
model for X = (Xi,...,X,) is fixed by the choice of a statistical model for X;.
For X;, we propose the following model: all probability distributions with finite
expectation p. The statistical model for X is then: all possible probability distributions
of X = (Xy,...,X,) such that the coordinates X1,...,X,, are independent and
identically distributed with expectation .

Physicists often believe that they have more prior information and make more
assumptions on the model. For example, they assume that the measurement errors
are normally distributed with expectation 0 and variance o2, in other words, that the
observations X1, . .., X,, are normally distributed with expectation y and variance 2.
The statistical model is then: all probability distributions of X = (X7,..., X,,) such
that the coordinates are independent and N (p, 02)-distributed.

The final goal is to say something about w. In the second model, we know more,
so we should be able to say something about p with more “certainty.” On the other
hand, there is a higher “probability” that the second model is incorrect, in which case
the gain in certainty is an illusory one. In practice, measurement errors are often, but
not always, approximately normally distributed. Such normality can be justified using
the central limit theorem (see Theorem A.28) if a measurement error can be viewed
as the sum of a large number of small independent measurement errors (with finite
variances), but cannot be proved theoretically. In Chapter 2, we discuss methods to
study normality on the data itself.

The importance of a precisely described model is, among other things, that
it allows us to determine what is a meaningful way to “estimate” p from the
observations. An obvious choice is to take the average of z1,...,x,. In Chapter 6,
we will see that this is the best choice (according to a particular criterion) if the
measurement errors indeed have a normal distribution with expectation 0. If, on the
other hand, the measurement errors are Cauchy-distributed, then taking the average
is disastrous. This can be seen in Figure 1.2. It shows the average n’lz?ﬂxi, for
n = 1,2,...,1000, of the first n realizations x1,...,Z1000 of a sample from a
standard Cauchy distribution. The behavior of the averages is very chaotic, and they
do not converge to 0. This can be explained by the remarkable theoretic result that the
average nilzg;lXi of independent standard Cauchy-distributed random variables
Xi,...,X,, also has a standard Cauchy distribution. So taking the averages changes
nothing! ——

Example 1.4 Poisson stocks

A certain product is sold in numbers that vary for different retailers and fluctuate over
time. To estimate the total number of items needed, the central distribution center
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Figure 1.2. Cumulative averages (vertical axis) of n =1, 2,...,1000 (horizontal axis) realizations

from the standard Cauchy distribution.

registers the total number of items sold per week and retailer for several weeks. They
observe xr = (xm, T1,24 -, xr,7), where x;, j is the number of items sold by retailer ¢
in week j. The observation is therefore a vector of length the product IJ of the number
of retailers and the number of weeks, with integral coordinates. The observations can
be seen as realizations of the random vector X = (XM,XLQ, - 7XLJ). Many
different statistical models for X are possible and meaningful in given situations. A
common (because often reasonably fitting) model states:

- Bvery X;_ ; is Poisson-distributed with unknown parameter f; ;.

- The X1 1,..., X1, are independent.
This fixes the probability distribution of X up to the expectations p; ; = EX; ;. It
is these expectations that the distribution center is interested in. The total expected
demand in week j, for example, is ) _, p; j. Using the Poisson-character of the demand
>-; Xi j. the distribution center can choose a stock size that gives a certain (high)
probability that there is sufficient stock.

The goal of the statistical analysis is to deduce 1; ; from the data. Up to now, we
have left the p; ; completely “free.” This makes it difficult to estimate them from the
data, because only one observation, x; ;, is available for each y; ;. It seems reasonable
to reduce the statistical model by including prior assumptions on y; ;. We could, for
example, postulate that p; ; = p; does not depend on j. The expected number of
items sold then depends on the retailer but is constant over time. We are then left
with I unknowns, which can be “estimated” reasonable well from the data provided
that the number of weeks .J is sufficiently large. More flexible, alternative models are
fij = i+ and p; 5 = ps+ B g, with, respectively, 21 and 1 +1 parameters. Both
models correspond to a linear dependence of the expected demand on time. C————1

Example 1.5 Regression

Tall parents in general have tall children, and short parents, short children. The heights
of the parents have a high predictive value for the final (adult) length of their children,
their heights once they stop growing. More factors influence it. The gender of the

5



1: Introduction

child, of course, plays an important role. Environmental factors such as healthy eating
habits and hygiene are also important. Through improved nutrition and increased
hygiene in the past 150 years, factors that hinder growth like infectious diseases and
malnutrition have decreased in most Western countries. Consequently, the average
height has increased, and each generation of children is taller.

The target height of a child is the height that can be expected based on the heights
of the parents, the gender of the child, and the increase of height over generations. The
question is how the target height depends on these factors.

Let Y be the height a child will reach, let x; and x5 be the heights of the
biological father and mother, respectively, and let x5 be an indicator for the gender
(x3 = —1 for a girl and z3 = 1 for a boy). The target height EY is modeled using a
so-called linear regression model

EY = Bo + Bix1 + Poxa + B3x3,

where [y is the increase in average height per generation, 3; and (3 are the extent to
which the heights of the parents influence the target height of their offspring, and (3
is the deviation of the target height from the average final height that is caused by the
gender of the child. Since men are, on average, taller than women, 33 will be positive.

The model described above does not say anything about individual heights, only
about the heights of the offspring of parents of a certain height. Two brothers have the
same target height, since they have the same biological parents, the same gender, and
belong to the same generation. The actual final height Y can be described as

Y = 3o + 1z + Paxa + B33 + e,

where e = Y — EY is the deviation of the actual final height Y from the target height
EY . The observation Y is also called the dependent variable, and the variables =1, z2,
and z3 the independent or predictor variables. The deviation e is commonly assumed
to have a normal distribution with expectation 0 and unknown variance 0. The final
height Y then has a normal distribution with expectation By + S1x1 + S2x2 + B33
and variance o2.

In the Netherlands, the increase in the height of youth is periodically recorded.
In 1997, the Fourth National Growth Study took place. Part of the study was to
determine the correlation between the final height of the children and the heights
of their parents. To determine this correlation, data were collected on adolescents
and their parents. This resulted in the following observations: (y1, %11, %12, %1.3),
ooy (Yn, Tn,1,Tn,2, Tn,3), where y; is the height of the ith adolescent, ;1 and ;o
are the heights of the biological parents, and x; 3 is an indicator for the gender of
the ¢th adolescent. Suppose that the observations are independent replicates of linear
regression model given above; in other words, given z; 1, x; 2, and x; 3, the variable
Y; has expectation By + B1%;1 + B22:2 + Bsxi 3 and variance 0. The parameters
(Bo, B1, B2, P3) are unknown and can be estimated from the observations. For a simple
interpretation of the model, we choose 81 = f2 = 1/2, so that the target height is
equal to the average height of the parents corrected for the gender of the child and the
influence of time. The parameters 3y and S5 are equal to the increase in height in the

6



1.2: Statistical Models

previous generation and half the average height difference between men and women.
These parameters are estimated using the least-squares method (see Example 3.44).
The parameter 3y is estimated to be 4.5 centimeters, and (33 is estimated to be 6.5
centimeters.! The estimated regression model is then equal to

1
(1.1) Y:4.5—|—§(x1 +x2) + 6.523 + e.

Figure 1.3 shows the heights of 44 young men (on the left) and 67 young women
(on the right) set out against the average heights of their parents.* The line is the
estimated regression line found in the Fourth National Growth Study.

175 180 185 190 195 200
165 170 175 180 185

160

170

165 170 175 180 185 165 170 175 180 185

Figure 1.3. Heights (in cm) of sons (left) and daughters (right) set out against the average height
of their parents. The line is the regression line found in the Fourth National Growth Study.

We can use the estimated regression model found in the Fourth National Growth
Study to predict the final heights of children born now. We must then assume that the
height increase in the next generation is again 4.5 centimeters and that the average
height difference between men and women remains 13 centimeters. Based on the
model presented above, the target heights of sons and daughters of a man of height 180
cm (= 71in or 5°9”) and a woman of height 172 cm are 4.5 + (1804 172)/2 4 6.5 =
187 cm and 4.5 + (180 4+ 172)/2 — 6.5 = 174 cm, respectively.

Other European countries use other models. In Switzerland, for example, the

target height is

EY =51.1+0.718 # + 6.523.

t An inch is approximately 2.54 c¢m, so 4.5 cm corresponds to 4.5/2.54 ~ 1.8 in and 6.5 cm
~ 2.6 in.

¥ Source: The data were gathered by the department of Biological Psychology of VU University
Amsterdam during a study on health, lifestyle, and personality. The data can be found on the book’s
webpage at http://www.aup.nl under heightdata.
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The target heights of sons and daughters of parents of the same heights as above are
now 184 and 171 centimeters, respectively.

In the example above, there is a linear correlation between the response Y and the
unknown parameters S, . . ., 3. In that case, we speak of a linear regression model.
The simplest linear regression model is that where there is only one predictor variable:

Y =80+ Bz +e;

this is called a simple linear regression model (in contrast to the multiple linear
regression model when there are more predictor variables).

In general, we speak of a regression model when there is a specific correlation
between the response Y and the observations 1, . . ., Tp:

Y = fo(z1,...,2p) +e,

where fp describes the correlation between the observations xi,...,x, and the
response Y, and the random variable e is an unobservable measurement error with
expectation 0 and variance 2. If the function fj is known up to the finite-dimensional
parameter 0, we speak of a parameterized model. The linear regression model
is an example of this; in this model, we have § = (By,...,3,) € RPH! and
fo(za,...,zp) = Bo + Piz1 + ... + Bpxp. The regression model is then fixed if
we know the values of 6 and o2. The function fo can, however, also be known up to
the finite-dimensional parameter # and an infinite-dimensional parameter. We then
speak of a semiparametric model. An example of a semiparametric model is the
Cox regression model. This model is described at the end of this chapter, after the
exercises. In Chapter 7, we discuss several regression models in detail, including the
linear regression model and the Cox regression model. —

Example 1.6 Water levels

In the 20th century (between 1910 and 2000), extreme water levels were measured
70 times in the river the Meuse near the town of Borgharen (Netherlands). Here,
“extreme” is defined by Rijkswaterstaat (the Dutch government agency responsible
for the management of waterways) as “more than 1250 m?3/s.” The maximal water
flows during those 70 periods are shown in chronological order in Figure 1.4.” The
problem is predicting the future. Rijkswaterstaat is particularly interested in how high
the dikes must be to experience flooding at most once every 10 000 years. We can use
a hydraulic model to compute the height of the water from the water flow.

® The data can be found on the book’s webpage at http://www.aup.nl under maxflows and
flows1965.
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Since the maximal water flows x1, ..., 279 were measured in (mostly) different
years, and the water level of the Meuse depends mainly on the weather in the Ardennes
and further upstream, it is not unreasonable to view these numbers as realizations
of independent random variables X7, . .., X7o. The assumption that these parameters
are also identically distributed is somewhat questionable because the course of the
Meuse (and also the climate) has gradually changed during of the last century, but this

assumption is usually made anyway. We can then view X1, ..., X7o as independent
copies of one variable X and use the measured values x1,..., 279 to answer the
question.

Let E be the event that flooding takes place in an (arbitrary) year. The probability
of event E' is approximately equal to the expected number EN of extreme periods
in a year, times the probability that there is a flood in an extreme period, that is,
P(E) ~ EN P(X > h) for X a maximal water flow in a period of extreme water
flow, h the maximal water flow so that there is no flood, and /N the number of times we
have extremely high water levels in an arbitrary year. For this computation, we use that
the probability of flooding in an extreme period P(X > h) is small. The probability
distribution of IV is unknown, but it is reasonable to assume that the expectation of
N is approximately equal to the average number of periods of extreme water flow per
year in the past 90 years, so EN = 70/90. The question is now: for which number A
do we have P(X > h) = 1/10000-90/70 = 0.00013?

3000
|
1

2000
1

500 1000

0
L

Figure 1.4. Maximal water flows in m3/s (vertical axis) in the Meuse near Borgharen in the 20th
century in chronological order (horizontal axis).

This question cannot easily be answered. If the observed maxima for a period of
100 000 years (or more) were available, then we could determine h with a reasonable
accuracy, for example as the value of the 10%th highest measured water level (10% =
10000/100 000). Unfortunately, we dispose over only 70 observations, and must
therefore extrapolate far into the future to a (probably) much more extreme situation
than ever measured. If we can determine a good model for the distribution of X, then
this is not a problem. If we, for example, knew that X has the standard exponential
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1: Introduction

distribution, then we could determine h from the equation 0.00013 = P(X > h) =
e~ ™. This is not, however, a realistic assumption.

An alternative is given by fitting an extreme value distribution to the data.
These are probability distributions that are commonly used for modeling variables
X that can be viewed as a maximum X = max(Y7,...,Y,,) of a large number of
independent variables Y7, ..., Y,,. Given the interpretation of X as a maximal water
flow in a period, such distributions seem reasonable. Of the three types of extreme
value distributions, one type proves to fit the data reasonably well. This is the Fréchet
family, where the distribution function is given by

Fz) = {e—“w—a)/b“ ifz>a,
0 if x < a.

The Fréchet family has three parameters: ¢ € R, b > 0, and o > 0. If we are
convinced of the usefulness of the resulting model, we can estimate these parameters
from the 70 data points and then answer the question through a simple computation.
In Chapter 3, we discuss suitable estimation methods and in the application after
Chapter 6, we further work out the data of the water flows. —

Example 1.7 Survival analysis

In survival analysis, we study the probability distribution of time spans. You can think
of the life span of a light bulb, but also of the time before the next bug occurs in a
computer program (“reliability analysis”) and, in particular, of the remaining time
until death or until the occurrence of a disease in medical statistics. Below is an
example.

In persons with a leaking heart valve, the heart valve is often replaced by
a biological or mechanical heart valve. A disadvantage of the biological over the
mechanical heart valve is the relatively short life span (10 to 15 years). To study
the distribution function F' of the life span of a biological heart valve, n persons
with such a valve are followed from the operation up to the moment that the valve
must be replaced. At the end of the study, we have measured the life spans ¢4, ..., t,
of all of the n heart valves. We view these numbers as realizations of independent
random variables T4, . . ., T,, with distribution function F'. The probability F'(¢) that
a biological heart valve must be replaced within ¢ years can be estimated by the
proportion of heart valves in the sample that is replaced within ¢ years.

A special aspect of survival analysis is that, often, not all life spans are observed.
At the moment that we want to draw conclusions from the data, for example, not all
heart valves have needed replacement or a patient may have died with a heart valve
that was still good. In those cases, too, we only observe a lower bound for the life
spans, the time until the end of the study or until the death of the patient. We know
that the heart valve still worked when the study was ended or the patient died. We then
speak of censored data.

10



1.2: Statistical Models

Long life spans are more frequently censored than short ones because the
probability that the patient dies is greater during a long period of time than during
a short one (and the same holds for the study ending). It would therefore be wrong to
ignore censored data and estimate the distribution function F' based on the uncensored
data. This would lead to an overestimate of the distribution function of the life span
and an underestimate of the expected life span because relatively longer life spans
would be ignored. A correct approach is to use a statistical model for all observations,
both censored and uncensored.

The statistical model becomes even more complex if we suspect that there are
factors that could influence the life span of the heart valve, for example the age,
weight, or gender of the patient. In such a case, the life span can be modeled using, for
example, the Cox regression model. This model is studied at the end of this chapter
(after the exercises) and in Chapter 7. ——

Example 1.8 Selection bias

To correctly answer a research question, it is important that this question, the collected
data, and the statistical model are correctly aligned. This is illustrated below.

The Dutch Railways (Nederlandse Spoorwegen or NS for short) regularly receive
complaints about crowding in the trains during rush hour. A study is set up to
investigate whether these complaints are justified. There are two research questions.
The first is what percentage of the passengers does not have a seat during rush
hour. The second is what percentage of rush hour trains is too crowded. Note that
these are two fundamentally different questions. The first question concerns people,
a percentage of passengers, while the second question concerns trains. A passenger
is probably only interested in the first research question, while the NS also attach
importance to the answer of the second. They have to identify on which trains there
are problems, and where measures must be taken.

To answer the first research question, a sample of size 50 is taken from train
passengers that have just got off. Each person is asked whether they could sit. We
observe the sequence 1, ..., x50, where x; equals 1 if the ith person did not have
a seat and zx; is equal to O if the ith person did have a seat. Then xy,...,z59
are realizations of independent random variables Xj,..., X590 with a Bernoulli
distribution with parameter p, where p = P(X; = 1) is the proportion of passengers
that could not be seated. As in Example 1.2, we can estimate the proportion p using
the sample mean 50! Zfﬁl x;. This is a correct way to answer the research question.

Answering the second research question is more difficult, because it concerns
trains and not persons. To carry out this study, during rush hour, 50 head conductors
are randomly chosen and asked whether the train they were just on was overcrowded.
We observe the sequence y1, . . . , Y50, Where y; is equal to 1 if the ¢th head conductor
indicates that the train was overcrowded and y; is equal to O if this was not the case.
We can again view yi, . .., yso as realizations of Y7, ..., Y50, which are independent
Bernoulli variables with probability ¢ = P(Y; = 1). If we assume that there is only
one head conductor on each train, the probability g equals the proportion of rush hour
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1: Introduction

trains that were overcrowded. We can see Y7, . .., Y50 as a sample from the trains that
just pulled in. The proportion ¢ can be estimated using the sample mean 50! Z?il Yi-

It is simpler to also ask the sample of travelers we gathered to answer the first
research question whether the train they were in was overcrowded. In that case, we
observe a sequence of realization of the independent Bernoulli variables Z1, ..., Zs
with r = P(Z; = 1). Here, Z; is defined analogously to Y;. Since a train carries more
than one passenger, not every train passenger will correspond to a unique train. Since
there are more persons in crowded trains than in quiet ones, the percentage “people
from crowded trains” in the population of train passengers will be much higher than
the percentage of “crowded trains” in the population of trains. In other words, r will
be greater than q. It is difficult to give a correlation between r and ¢ without making
additional assumptions. That is why the second research question could not easily be
answered based on a sample from the passengers, while the first research question
could. ———

In most of the examples given above, the statistical model is parameterized by
a parameter, for example p, (i, 0?), (Bo, 51,52, 43), or (a,b, ). Many statistical
models are known up to a parameter. In this book, we often denote that parameter
by 6 (“theta”). The statistical model can then be denoted by {FPy:0 € O}, where
Py is the probability distribution of the observation X and O is the set of possible
parameters. There is a tacit assumption that exactly one of the parameter values (or
exactly one element of the model) gives the “true” distribution of X. The purpose of
statistics is to find that value. What makes statistics difficult, is that we never fully
succeed and that statements about the true parameter value always contain a certain
element of uncertainty (by definition).

1. Suppose that n persons are chosen randomly from a population and asked their political
affiliation. Denote by X the number of persons from the sample whose affiliation is with
political party A. The proportion of individuals in the population affiliated with party A is
the unknown probability p. Describe a corresponding statistical model. Give an intuitively
reasonable “estimate” of p.

2. Suppose that m + n patients with high blood pressure are chosen randomly and divided
arbitrarily into two groups of sizes m and n. The first group, the “treatment group,” is
given a particular blood-pressure-lowering drug; the second group, the “control group,” is
given a placebo. The blood pressure of each patient is measured before and one week after
administering the drug or placebo, and the difference in blood pressure is determined. This
gives observations xi, ..., X,; and yy, ..., V.

(i) Formulate a suitable statistical model.
(ii) Give an intuitively reasonable “estimate” of the effect of the drug on the height of the
blood pressure, based on the observations (several answers are possible!).

12
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. We want to estimate the number of fish, say NV, in a pond. We proceed as follows. We catch r

fish and mark them. We then set them free. After some time, we catch n fish (without putting
them back). Of these, X are marked. Consider r and n as constants we choose ourselves, and
let X be the observation.
(i) Formulate a suitable statistical model.
(i) Give an intuitively reasonable “estimate” of N based on the observation.
(iii) Answer the previous questions if, the second time we catch fish, they are put back
directly after catching them (sampling with replacement).

. When assessing a batch of goods, we continue until 3 items are rejected.

(i) Formulate a suitable statistical model.
(i) The third rejected item is the 50th we assess. Give an estimate of the percentage of
defect items in the batch. Justify your choice.

. The number of customers in the post office seems to depend on the day of the week (weekday

or Saturday) and half-day (morning or afternoon). On workdays, the post office is open in the

morning and in the afternoon, and on Saturday, is it open only in the morning. To determine

how many employees are required to provide prompt service, the number of customers is
registered over a period of ten weeks. Every day, the number of customers in the post office
in the morning (on weekdays and Saturdays) and in the afternoon (on weekdays only) is
noted.

(i) Formulate a suitable statistical model.

(i1) Give an intuitively reasonable “estimate” of the number of clients on a Monday
afternoon. Justify your choice.

(iii) The biggest difference in numbers of customers is between the half-days during
the workweek (Monday through Friday, mornings and afternoons) and the Saturday
morning. It was therefore decided to only take into account this difference in the staff
planning. Reformulate the statistical model and give a new estimate.

. The yearly demand for water in the African city of Masvingo is greater than the amount

that can be recovered from the precipitation in one year. Therefore, water is supplied from a
nearby lake according to the need. The amount of water that needs to be supplied per year
depends on the precipitation in that year and on the size of the population of Masvingo.
Moreover, rich people use more water than poor people. Describe a linear regression
model with “amount of water to be supplied” as dependent variable and “population
size,” “precipitation,” and “average income” as predictor variables. Indicate for each of the
parameters whether you expect them to be positive or negative.

A linear correlation is suspected between the income of a person and their age and level of
education (low, middle, high).

(i) Describe a linear regression model with “income” as dependent variable and “age” and
“education” as predictor variables. Think carefully about how to include the variable
“education” in the model.

(i) We want to study whether the gender of a person has an influence on the income. Adapt
the linear regression model so that this can be studied.

We want to estimate the average length of wool fibers in a large bin. The bin is first shaken
well, after which we take a predefined number of fibers from the bin, one by one and with
closed eyes. We estimate the average length of the wool fibers in the bin to be the average
length of the wool fibers in the sample. Is the estimated length systematically too long,
systematically too short, or just right?
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9. At a call center, we want to estimate how long a customer must wait before being helped.
For one day, we register how long each customer must wait. If the customer looses patience
and hangs up, their waiting time up to that moment is noted. Afterward, we calculate the
average waiting time by taking the average of the noted times. This average is used as an
estimate of the waiting time of a new customer. What do you think of this method?



COX REGRESSION

In survival analysis, we are interested in the distribution function of the time span
before the occurrence of a particular event, for example, the time before dying after
a serious operation, the time before a certain device breaks down, or the time before
an ex-convict commits a new crime. Several factors can influence this distribution
function. For example, a young woman will presumably have a lower probability of
dying after a serious operation than an older woman, and, hopefully, more time will
pass before an ex-convict commits a new crime if he receives financial support than
if he does not. It is important to gain insight in how and how much these factors
influence the “life span,” so that we can determine a more person-specific risk and
take measures to reduce risks. If, for example, ex-convicts are more likely to commit
a new crime if they are in financial difficulty after returning to society, then financial
support or help in finding a job may help these people stay on the right track. In this
application, we will use a sample to delve more deeply into survival analysis.

Ex-convicts often fall back into their old habits and come back into contact with
police and justice. Suppose that we want to study the distribution function of the time
span between release and recidivism and whether financial support after release has
a positive effect on the time before an ex-convict comes back into contact with police.
To begin with, we assume that there are no other factors.

Suppose that 100 ex-convicts are followed during one year. We know of each of
them whether they commit a new crime within a year and if so, how many weeks after
their release. We want to use these data to research which percentage of ex-convicts
commit a new crime within t weeks (with t € [0, 52]). We first set up a statistical model
for these data. Define Y;! fori = 1,...,100 as the indicator that tells us whether the
ith ex-convict has committed a new crime within t weeks; y! = 0 if they have not,
and y! = 1 if they have. Then Y, ... Y\, are Bernoulli-distributed with unknown
parameter p, = P(Y;! = 1), the probability of recidivism within t weeks. Under the
assumption that the variables Yf, o 7Y1t00 are, moreover, independent, the statistical
model is fixed. We could “estimate” the probability p, using the fraction Zjﬁ‘i y!/100.
If the number of ex-convicts we follow, in our case 100, is large, then the proportion
we find in the sample will lie close to the actual proportion p, this follows from the
law of large numbers.

Often, studies are set up in a different way. Instead of following all ex-convicts
for a year, we choose to restrict the length of the study to one year. We follow the
convicts released during that year until they commit a new crime (if they do) or until
the study ends. We have followed a total of 432 convicts in such a study. Figure 1.5
shows the observed time spans of b ex-convicts. Along the x-axis, the image on the
left has the time from the beginning of the study (the vertical line at time 0) until
the end of the study (the vertical line at week 52). The numbers along the y-axis are
the personal numbers of the ex-convicts. The first person was released 10 weeks after
the study began and arrested 31 weeks after the beginning. This person was free for
31 — 10 = 21 weeks. The second individual was released 27 weeks after the study
began and had not committed a new crime before the end of the study. We do not know
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1: Introduction

whether this second person committed a new crime after the end of the study. The first
52 — 27 = 25 weeks, he did not. For the first person, the measurements are complete,
while for the second we only have a lower bound for the time span until a new arrest.
We call this data right-censored.

o {|— [ —————

L T T T
0 10 20 30 40 50 0 10 20 30 40 50
time span (weeks) time span (weeks)

Figure 1.5. Left: The time between release and new arrest (“time span”) of 5 ex-convicts. The
x-axis indicates the time from the beginning of the study. Right: The same data, where the x-axis
indicates the times from release to new arrest or censoring (end of the study or death). A circle
indicates that the data for that person is right-censored.

The image on the right in Figure 1.5 shows the same information, a different way.
The x-axis now shows the time from release to a new arrest. For individuals who were
not arrested again during the study, we only know a lower bound for the time span;
this is indicated by a small circle.

Suppose that, based on the observed data, we want to estimate the percentage
of ex-convicts who are arrested again within 26 weeks (a half year). For person 2
in Figure 1.5, for example, we know that he was still free after 25 weeks, but we do
not know anything about the period between 25 and 26 weeks; this person is right-
censored. A natural solution is to remove all right-censored persons from the data set
and use the same estimation method as described before. This proves to be a terrible
choice. The longer an ex-convict is free, the higher the probability that he will be right-
censored and therefore removed from the data set. An ex-convict who is rearrested 51
weeks after his release will only be included in the data set if he was released in
the first week of the study. If he is released in the second week, then his data will be
censored by the end of the study. By ignoring right-censored individuals, relatively
many long “life spans” will be removed, and the proportion of ex-convicts who are
rearrested within t weeks in the stripped set will be (much) too high. For example, ps1
now has probability close to 1. How should we estimate p,? To do this correctly, we
first describe a statistical model for the observed data.

For an arbitrary ex-convict, we define T as the time span between release and
recidivism. We view T as a random variable with distribution function t — F(t) =
P(T < t) and density function f. The survival function S is defined as t — S(t) =
1—F(t) = P(T > t) and describes the probability of not having been arrested again
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1: Cox Regression

after t weeks. We could assume that the distribution function or the survival function
has a particular form (for example, that the distribution function corresponds to the
exponential or normal distribution), but if there is no prior knowledge of the form of
the distribution, it is better not to make any assumptions. An incorrect assumption can
lead to incorrect conclusions.

For some ex-convicts, the time span T' is not observed during the study, at the
end of the study, they had not been rearrested (or the person had died). We therefore
also define, for each individual, the censoring time C' as the time span between release
and the end of the study or death. If T < C, then we will observe that the individual
in questions commits a new crime, and if T > C, then we will observe not T but C.
We therefore define T = min{T, C}, so that T is observed for every individual in the
study. We, moreover, define A as the indicator function A = 1yr<cy; thatis, A = 1
if T < C or, equivalently, T =T, and A = 0 if T > C or; equivalently, T = C. We
observe the pair (T A) for every ex-convict in the data set. The data set consists of
the values (t“ 0; )for 1 =1,...,432 for the 432 ex-convicts, where t; and 8; are the
observed values of T; and A

Suppose that we want to estimate the probability of an arbitrary ex-convict not
having committed a new crime within 26 weeks (half a year), in other words, we want
to estimate S(26). To explain how to do this, we assume, for now, that we only have
data on 5 persons, shown in Figure 1.5. We have th < to < 26 < t3 < ty < t5 (see
Figure 1.5). Individual 1 is the only one whose rearrest within half a year has been
observed. We do not know anything about individual 2; he was censored within half a
year. To estimate S(26), we rewrite S(26) = P(T > 26) as

P(T > 26) = P(T > 26|T > i,)P(T > #;)
= P(T > 26|T > &3, T > 1)) P(T > 1o|T > 1,)P(T > 1))
= P(T > 26|T > i3)P(T > to|T > ) P(T > t,).

Instead of estimating S(26) directly, we estimate the three factors on the last line
separately. We begin at the end, with the probability P(T > t1). Individual 1
committed a crime in week 21. Of the five individuals, there are four for whom T > 1.

We therefore estimate the probability P(T > 11) to be 4/5. To estimate the second
factor, P(T > tg\T > 11), we use only the data on the individuals who satisfy the
condition T > t1; these are individuals 2 through 5. Individual 2 was censored at
time to (end of the study), so of the four ex-convicts that are left, there are only three
for whom T > t,. We estimate the probability P(T > #|T > 1)) to be 3/4. We
estimate the last probability, P(T > 26|T > t5) analogously. Of the three individuals
with T > ta, all have a T-value greater than 26, we therefore estimate this probability
to be 3/3 = 1. Multiplying the three estimates gives 0.6.

# The data come from a study described in P.H. Rossi, R.A. Berk, and K.J. Lenihan, Money,
Work and Crime: Some Experimental Results (1980), Academic Press, New York. In our example, we have
modified the data (censored times randomly) to illustrate the concept of censoring. The modified
data can be found on the book’s webpage at http://www.aup.nl under convicts.
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We can estimate S at another time than 26 or based on another data set
analogously. When we estimate the function S this way in values between 0 and 52
weeks, we find a step function that only jumps (down) in points t; where 6; = 1. Figure
1.6 shows the estimated survival curve S based on the full data set. If the number of
observations increases, the intervals where the curve is constant will become shorter,
as will the sizes of the jumps. We can prove that the estimate of S at a time t converges
(in probability) to the true value S(t) if the number of observations goes to infinity. If
we had assumed that F' is a known continuous function, for example the distribution
function corresponding to the exponential distribution, then we would estimate F
not with the method described above but with the (parametric) maximum likelihood
method described in Chapter 3. The survival curve would then be estimated by a
continuous decreasing curve. If, however, the assumption about the form of the curve
was wrong, then the estimate of S in an arbitrary point t would not converge (in
probability) to S(t).

Figure 1.6 also shows the estimated curve that would have been found if all
censored data was removed; for estimating S(t), all individuals censored before time
t are removed. The difference between the two curves increases with t. This is because
the more t increases, the more values are removed, and the greater the error that is
made. This approach leads to an underestimate of the survival curve.

1.0

0.6
I

04

0.2

0.0
I

weeks

Figure 1.6. Estimated survival curve based on all data (solid) and based on the data set from
which the censored observations have been removed (dashed).

Another way to represent the distribution of T' is by using a so-called risk or
hazard function. The hazard function associated with a probability density f and
distribution function F' is defined as

RSV (OO

C1=F@)  S@)
If we view f(t) dt as the probability that T lies in the interval [t,t + dt), then \(t) dt
has the interpretation
P(t<T <t+dt)

t)dt = =Pt <T <t+dt|]T >1t).
Alt) P> 1) (t<T <t+dt]T'>1)
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1: Cox Regression

The value \(t) can therefore be viewed as the conditional probability of committing a
new crime right after time t given that at time t, the ex-convict had not been rearrested.
It is because of this interpretation as an “instantaneous probability” that the hazard
function is often used for modeling survival data. The hazard function is the derivative
of t = —log(1 — F(t)) with respect to t, and given the hazard function )\, we can
recover the distribution function F using the formula F(t) = 1 — e~ "), where
A is the cumulative hazard function, that is, A(t) = fot A(s)ds if F(0) = 0. The
density f is then equal to f(t) = )\(t)e_A(t). As for the survival curve, we could
now assume that the hazard function takes on a particular form. For example, if we
assume that the hazard function is constant, A(t) = v, then the corresponding density
is f(t) = Mt)e 2 = ve="!; in other words, T has an exponential distribution.
We can also make no assumption at all on the form. To obtain an estimate of the
distribution function of T, we can also turn to the hazard function and the formulas
given above.

If factors such as age, gender, and education possibly influence the time span,
then it is wise to include these in the model. Often, a so-called Cox model is chosen. In
this model, the hazard function for the ith ex-convict with observed variables X; = x;
is of the form

)\(t‘Xl — xz) — Pz tPezizt. . ~+/BK$iK>\O(t)7
where x;i is the value of the kth variable for the ith individual and K is the number
of variables in the model. The function t — Ao(t) is called the baseline hazard
Sfunction and is equal to the hazard function when all predictor variables are equal to
0. According to the Cox model, the hazard functions of two ex-convicts with predictor
variables x; and x; are proportional; this means that

M — eﬁT(fﬁrj)
At X = ;) ’
does not depend on t.

This gives a simple interpretation for the parameter (3: it determines the size
of the relative risks attached to certain predictor variables. For example, suppose
that two ex-convicts score the same for all predictor variables, with the exception of
financial support. Person i receives financial support (z;; = 1), while person j does
not (xj1 = 0). The ratio of the hazard functions then reduces to

A X = i) = P@ia—zi) — b1

At X5 = xj)
If By takes on the value —0.400, then the risk of being arrested again is e
0.670 times as great for the ith ex-convict as it is for the jth. The relative risk is
therefore independent of the time since the release of the ex-convicts.

In our example, the Cox model includes the following predictor variables:
financial support or not, age, race, marital status, number of prior convictions.
Based on the data of the 432 ex-convicts, we can estimate the regression parameter
B = (B1,...,05) and the unknown baseline hazard function \g. A suitable method
is elaborated in Chapter 7. Here, we will only give the results. Table 1 shows the
estimates of the regression parameters 31, . .., Bs.

—0.400 _

19



1: Introduction

B B2 Bs Ba Bs
estimate —0.400 —0.0425 0.282 —0.590 0.0977
exp(estimate) 0.670 0.958 1.326 0.554 1.103
Table 1.1. Estimates of 1, ..., 85; the parameters correspond to, respectively, financial support

or not (0: no support, 1: support), age, race (0: other; 1: black), marital status (0: not married, 1:
married), and number of prior convictions.

The estimate of the regression parameter (31 is negative, financial support after
release therefore has a positive effect. However, it seems that being married has a
stronger positive effect than receiving financial help. If this effect is causal (see the
application after Chapter 7), then it would be wiser to help an ex-convict find a partner
than to help him find a job.

In the above, we have made several assumptions for our model. For example, we
have assumed that the hazard functions of two ex-convicts are proportional and that
the predictor variables are additive. These assumptions must, of course, be verified.
We can do so, for example, by plotting suitable graphs. We refer to the literature for
more information.
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A statistical model is an expression of our prior knowledge of the probability
experiment that led to the observed data. The model postulates that the observation
X is generated from one of the probability distributions in the model. How do we find
a good model? In some cases, the model is clear from the way the experiment was set
up. For example, if in a poll, the sample has been taken randomly and with replacement
from a well-defined population, then the binomial distribution is inevitable. If the
observations concern numbers of emitted radioactive particles, then the Poisson
distribution is the right choice because of the physical theory of radioactivity. It is also
possible that the experiment strongly resembles past experiments, and that a particular
model is suggested by experience. The choice of a statistical model is certainly not
always uncontroversial. At the very least, the chosen model must be validated. In
some cases, this is done before estimating the model parameters, and in other cases
after. These methods are not only applied to the data itself but often also to “residuals,”
after the estimation of, for example, a regression model. In this chapter, we discuss
some of these methods.
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2: Descriptive Statistics

Suppose that the numbers z1,...,x, are the outcomes of a repeated experiment.
From the manner in which the n experiments are carried out (with the same initial
situation, without any “memory” of the previous experiments), we deduce that it is
reasonable to view the n numbers as realization of a univariate sample X, ..., X,;
the random variables are independent and identically distributed. This already fixes
the statistical model for a large part. The remaining question is: which collection of
(marginal) distributions do we use? In this section, we discuss a number of numerical
and graphical methods that can help.

Two important numerical properties of a distribution are location and dispersion.
The expectation and median are often used for the location of a distribution; they are
equal to each other when the distribution is symmetric. When the distribution has a tail
to the right (respectively, to the left), the expectation is greater (respectively, less) than
the median. To obtain an idea of the location of the underlying distribution based on
observations zy, ..., x,, we can use the sample mean or sample median. The sample
median is the middle value in a sequence of sorted observations.

Definition 2.1 Sample mean

The sample mean of a sample X1, ..., X, is the random variable

— 1
X:ﬁ;Xi.

The dispersion of a distribution can be represented by the variance (or standard
deviation) and the interquartile range. The interquartile range is the distance between
the upper and lower quartiles of the distribution. Using the observations z, ..., Z,,
we can compute the sample interquartile range and the sample variance to obtain an
idea of the dispersion. The sample interquartile range is the distance between the upper
and lower quartiles of the data.

Definition 2.2 Sample variance

The sample variance of a sample X1, . .., X,, is the random variable

1 & —
5% = n_1Z(Xi_X)2'
i=1

In practice, the observed sample mean and observed sample standard deviation
are often given when the distribution appears to be symmetric. For asymmetric
distributions, the observed sample median and observed sample interquartile range are
preferred. The best way to determine whether a distribution is symmetric is to use a
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2.2: Univariate Samples

graphical method. In the next section, we present three graphical methods: histograms,
boxplots, and QQ-plots.

A simple technique to obtain an idea of the probability density giving the data
T1,...,T, is the histogram. For a partition a9 < a; < --- < a,, that covers the
range of the data zy,...,x,, this is the function that, on each interval (aj_haj],
takes on the value equal to the number of sample points x; in that interval divided by
the length of the interval. If the intervals (a;_1, a;] all have the same length, then the
histogram is sometimes also defined without dividing by the interval length. In that
case, the heights of the bars of the histogram are equal to the numbers of observations
in the various intervals.

To obtain an idea of the probability density giving certain data, it is useful to
represent the histogram and possible densities in a single diagram. This can be done
by scaling the histogram by 1/n, where n is the total number of data points. The
area under the histogram is then equal to 1, as it is for a probability density. In z €
(aj—1,a;], the scaled histogram is given by

#(1 <i<niz; € (aj-1,a;] 1 -
hn(l') = 4 / ) = Zlaj,1<wi§ajv

n(a; —aj—1) n(a; —aj—1)

i=1

where the indicator function 14, _, <z;<q; is equal to 1 for a;—1 < z; < a; and 0
elsewhere. Another way to write this indicator function is 1(q,_, 4,1(2:).

A scaled histogram provides a good impression of the density giving the data
Z1,...,Tn, provided that the partition ag < a; < - -+ < a,, has been chosen well and
that the number of sample points 7 is not too small. To see this, we view z1, ..., 2, as
realizations of random variables with density f and compute the expected value of the
scaled histogram h,, in terms of X1, ..., X,, in an arbitrary point z where f(z) > 0.
Suppose that for some 1 < j < m, we have a;_1 < 2 < a;; then this expected value
is equal to

1 n 1
Bho(@) =B 30, cxiew =~ Bl., cx<a,
(:L') n(aj _ ajfl); ji—1<X;<aj aj —aj_1 j—1<X1<aj
1 a2 f(s)ds
= —Plagj1 < X1 <q5) = .
aj — aj—1 a; — a1

If f does not vary too much over the interval (a;_1, a;], then the last expression is
approximately equal to the value of f on this interval. The computation shows that the
expected value of h,,(z) is approximately equal to f(x). By the law of large numbers
(Theorem A.26), we moreover know that the value h,,(x) converges in probability to
this expected value.
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2: Descriptive Statistics

A histogram therefore provides an impression of the distribution giving a sample.
Unfortunately, we only obtain a good impression if the sample is sufficiently large (for
example, n = 100 or even better n = 500) and the intervals have been chosen well.
The choice of the intervals is a question of taste. If the chosen intervals are too short,
then, in general, the histogram is too spiky to notice properties of the true density. If
the intervals are too long, then all detail is lost, and little can be said about the true
density based on the histogram. Hence, we may not expect more than a first impression
from the histogram. Other, more complicated, techniques can give better results.

Example 2.3 Height

Figure 2.1 shows histograms for the heights (in cm) of 44 men (on the left) and 67
women (on the right).! The histograms have been scaled in such a way that the areas
under the histograms are equal to 1. Both figures also show the density of a normal
distribution. The expectation and variance of these normal distributions are equal,
respectively, to the sample mean and sample variance of the corresponding data. Based
on the forms of the histograms, there is some doubt whether the data can come from a
normal distribution. The deviation from symmetry in the histogram on the left may be
due to the small number of observations. Further research is certainly recommended.
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Figure 2.1. Histograms of the heights (in cm) of 44 men (on the left) and 67 women (on the right),
together with the densities of the normal distributions with expectations equal to the sample means
and variations equal to the sample variations of the data.

T Source: The data were gathered by the department of Biological Psychology of VU University
Amsterdam during a study on health, lifestyle, and personality. The data can be found on the book’s
webpage at http://www.aup.nl under heightdata.
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2.2: Univariate Samples

Example 2.4 Normal distribution

Figure 2.2 shows the density of the standard normal distribution, together with four
realizations of the histogram, based on 30, 30, 100, and 100 observations, where the
partitions were chosen by the statistical software package R. The figures at the top left
and at the bottom right show a clear deviation from symmetry. Because the data come

from the normal distribution, this is merely due to chance variations. —
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Figure 2.2. Histograms of samples with 30 (top row) and 100 (bottom row) observations from the
standard normal density, shown together with the true density.

A boxplot is a graphical representation of the data that gives an idea of the location and
dispersion of the data, of possible outliers in the observations, and of the symmetry
of the distribution giving the observations. In the boxplot, the observations are set
out along the vertical axis. The bottom of the “box™ is drawn at the level of the
lower quartile, and the top at the level of the upper quartile of the data. The lower
(respectively, upper) quartile of the data is the value = for which one fourth of the
data points are less (respectively, greater) than x. The width of the box is arbitrary.
The box has a horizontal line at the level of the median of the data. The median is
the middle value in a sorted row of data. At the top and bottom of the box, whiskers
are drawn. The whisker at the top links the box to the greatest observation that lies
within 1.5 times the interquartile range of the upper quartile. The interquartile range
is the distance between the lower and upper quartiles, that is, the height of the box. The
whisker at the bottom is drawn analogously. Observations that lie beyond the whiskers
are indicated separately, for example by a star, a small circle, or a dash.
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2: Descriptive Statistics

Example 2.5 Some common distributions

Figure 2.3 shows boxplots of samples from the exponential distribution with parameter
1, the standard normal distribution, and the standard Cauchy distribution. The samples
from the exponential and Cauchy distributions have outliers, shown by the small
circles beyond the whiskers. The boxplot in the middle shows that the data from the
standard normal distribution are quite symmetric with respect to the median and do
not contain any outliers. ——

1 e}

e}

T T T
exp(1) N(0,1) Cauchy

Figure 2.3. Boxplots of samples of size 20 from the standard exponential distribution (left), the
standard normal distribution (middle), and the standard Cauchy distribution (right).

A third graphical method that is commonly used to find a suitable class of distributions
(a so-called location-scale family) given a sample z, .. ., z,, is drawing QQ-plots. In
this section, we first discuss location-scale families and then QQ-plots.

Definition 2.6 Location-scale family

If the random variable X has a distribution function F', then Y = a + bX has the
distribution function F, ; given by

Fa,b(y)ZP(a—FbXSy):F(y;a), b> 0.

The family of distributions {F, ;: a € R,b > 0} is called the location-scale family
associated with F' (or “for X 7).
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2.2: Univariate Samples

If F" has probability density f, then Fy, j has probability density f, ; given by

Fan(y) = %F(y;a) _ %f(y;a).

If EX = 0 and var X = 1, then a and b? are, respectively, the expected value and
variance of Y, hence those corresponding to the distribution Fy, 3.

To every (standard) distribution (normal, Cauchy, exponential, etc.) corresponds
a location-scale family. We note that members of one location-scale family do not
always all have the same name: the members of the location-scale family associated
with the standard Cauchy distribution are not all Cauchy distributions. Conversely,
distributions with the same name are not always members of the same location-scale
family: for example, y2-distributions with different numbers of degrees of freedom
are not in the same location-scale family.

Example 2.7 Normal distribution

Let X be a N(0, 1)-distributed random variable. From probability theory, we know
that Y = a + bX with b > 0 has the N(a,b?)-distribution. Hence, all members
of the location-scale family associated with the N (0, 1)-distribution are normally
distributed. Conversely, if Y has the NV (a,bQ)—distribution, then Y has the same
distribution as a + bX, where X has the standard normal distribution, and therefore
the N (a, b?)-distribution is a member of the location-scale family associated with the
standard normal distribution. In other words, all members of the location-scale family
associated with the N (0, 1)-distribution are normal distributions, and conversely, all
normal distributions are in the location-scale family associated with the N (0, 1)-
distribution. ——

“QQ-plots” are a graphical tool for finding a suitable location-scale family for a
given sample x1, ..., x,. They are based on quantile functions. If, for a given o €
(0, 1), there exists exactly one number z, € R such that F(x,) = a, then z, is
called the a-quantile of F', denoted by F~!(a). As suggested by the notation, the
function o — F'~1(«) is the quantile function, the inverse of F', provided that this is
well defined. If F' is strictly increasing and continuous, then F/(F~!(a)) = « for all
a € (0,1)and F~Y(F(z)) = z forall z € R.

Example 2.8 Exponential distribution

Let X be a random variable with an exponential distribution with parameter A. The
distribution function F' of X is given by F(x) = 1 — e~ for 2 > 0, and the quantile
function F~1 is given by F~1(a) = —log(1 — a)/\ fora € (0, 1). ——

Because a distribution function can exhibit both jumps and constant sections,
in general the equation F'(z) = « for a given « can have no solutions, exactly one
solution, or infinitely many solutions (see Figure 2.4). To also be able to speak of an
a-quantile in the first and last case, we define the quantile function of F' as follows.
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2: Descriptive Statistics

Definition 2.9 «-Quantile

The a-quantile (or a-point) of F' is equal to

F~Y(a) = inf{x: F(z) > a}, a € (0,1).

In words, F~1(«) is the smallest value x with F(z) > a.

1.0

0.8

0.6

04

0.2

F-(b) F-1(a)

<
=]

Figure 2.4. A distribution function and two quantiles.

There is a linear relationship between quantile functions of distributions within a
given location-scale family:

F;l}(a) =a+bF ()

(see Exercise 2.2). In other words, the points {(F~*(a), F, }(a)): @ € (0,1)} are on
the straight line y = a+bx. Figure 2.5 illustrates the fact that two normal distributions
belong to the same location-scale family.

10

quantiles N(2,16)

-5

quantiles N(0,1)

Figure 2.5. The quantiles of the N (2, 42)-distribution (y-axis) plotted against those of the N (0, 1)-
distribution (x-axis).
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2.2: Univariate Samples

Notation 2.10 Order statistics

The order statistics of a sample X1, ..., X, are given by the sequence X(y),. . .,
X(n), where the quantities have been placed in increasing order, X(l) < X(g) <
o< X (n)- In particular, the first and last order statistics are equal to

X1y = min X; and X(n) = max Xj.

1<i<n 1<i<n

For the ith order statistic X ;) of a given sample X7, ..., X, from a distribution
F, we have EF (X (;)) = i/(n + 1) (See Exercise 2.8). We may therefore expect the
points { (i/(n+ 1), F(z(;))) :i =1,...,n} in the zy-plane to lie approximately on
the line y = z. The same must then hold for the points

(GIEEARE]

More generally, if the sample 21, . . ., x,, comes from an element I, ;, of the location-
scale family associated with F', then we expect the points mentioned above to lie on the
line y = a+bx; after all, we then have z(;) ~ Fa_l} (i/(n+1)) = a+bF~1(i/(n+1)).

Definition 2.11 QQ-plot
A QQ-plot of the data set x1, . ..,x, for a distribution function F' is a plot of the

points
(e i
{(F (n+1)7x(i)>.2—17...7n}.

A QQ-plot provides a graphical method to verify whether a sample can come
from the location-scale family associated with F'. The Q stands for “quantile.”

Example 2.12 Normal distribution

Figure 2.6 shows QQ-plots of six samples simulated from the N (2, 4?)-distribution
using a random number generator, plotted against the N (0, 1)-distribution. Because
two normal distributions are in the same location-scale family, we can expect the
points to lie more or less on a straight line. The top and bottom figures represent data
sets of 10 and 50 observations, respectively. The points in the QQ-plots are not exactly
on a straight line, but rather vary slightly around a straight line. In small samples, this
variation is much greater than in larger samples.
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Figure 2.6. Six QQ-plots of 10 (top row) or 50 (bottom row) data points from the N(2,42)—
distribution plotted against the N (0, 1)-distribution.

If a QQ-plot of a sample x1, ..., x, against the quantiles of I’ shows approxi-
mately the straight line y = z, then this is an indication that the data come from the
distribution F'. Deviations from the line y = x give an indication of the deviation of
the true distribution of the data from F'. The simplest case is that the plot does show
a straight line, but not the line y = z. This implies that the data come from another
member of the location-scale family associated with F', as in Example 2.12. The values
of a and b can then be approximated roughly by fitting the line y = a + bz to the QQ-
plot. In Chapter 3, we will see other methods to estimate the parameters. Curved lines
are more difficult to evaluate. These mainly give an indication of the relative weight
of the tails of the distribution of the data with respect to F'. To illustrate the different
types of deviations from linearity, Figure 2.7 shows some QQ-plots of “true” quantile
functions. These are plots of the points {(F~!(a), G~ !(a)):« € (0,1)} for various
distribution functions F' and G.

Example 2.13 Height

Based on the form of the histograms in Figure 2.1, there is some doubt whether the
heights can come from a normal distribution. To study this further, QQ-plots have
been drawn in Figure 2.8 that show the heights of men (on the left) and women (on
the right) plotted against the standard normal distribution. To study whether the points
lie on a straight line, a suitable line y = a + bz has been drawn in both figures.
For the men, this is the line y = 183.5 + 7.5z, and for the women, it is the line
y = 171.3 + 6.2z. These lines have been determined by estimating @ and b? using the
maximum likelihood estimators for the expected value and variance (see Example 2.7
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Figure 2.7. Plots of pairs of quantile functions: uniform-normal, logistic-normal, lognormal-
normal, cxponcntial—xﬁ.

and Chapter 3). As the data follow these lines fairly well, we can conclude that the
location-scale family associated with the standard normal distribution is a good fit for
these two data sets. Since this family contains only normal distributions, this supports
the assumption that the data come from normal distributions. —
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Figure 2.8. QQ-plots of the heights of 44 men (on the left) and 67 women (on the right) plotted
against the quantiles of a standard normal distribution.
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In many cases, the observations x; are not numbers but vectors z; = (z;1,. .., i q).
We are then often interested in the correlation between the different coordinates. In this
section, we will restrict ourselves to vectors with two coordinates and denote these by
(l‘i, yz) (instead of (xiyl, xm)).

Definition 2.14 Scatter plot

A scatter plot of a sample of 2-dimensional data points (x1,y1), ..., (Tn,yn) Is a
graph of these points in the xy-plane.

When there is a strong correlation between the x- and y-coordinates of the data
in a scatter plot, this is clearly visible. For example, the variables in the image on the
right in Figure 2.9 show a clear linear correlation, while no correlation is apparent in
the image on the left.

The linear correlation in the image on the right in Figure 2.9 is unmistakable,
but not perfect. The points do not lie exactly on a straight line but vary around an
(imaginary) line.
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Figure 2.9. Scatter plots of two samples of 50 points: on the left with independent coordinates
(rz,y = —0.05) and on the right with coordinates with linear correlation (r4 , = 0.87).

Definition 2.15 Sample correlation coefficient

The sample correlation coefficient of a sample consisting of pairs (X1,Y1),
oy (X, V) ds B B
2 (Xi - X)(Y; —Y)

T TSR
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The sample correlation coefficient 7., of the observed pairs (z1,y1),...,
(Zn,yn) is a numerical measure for the strength of the linear correlation and lies
between —1 and 1. The value can be interpreted as follows:

(i) If v, = 1, then the n points in the scatter plot lie exactly on the line y =

U+ (sy/sz) (x — T) (total positive correlation).

(ii) If r,, = —1, then the n points in the scatter plot lie exactly on the line y =
Y — (Sy/sz) (x — T) (total negative correlation).
(i) If Xq,...,X,, and Y7,...,Y,, are independent samples, then the resulting 7, ,

will take on values close to 0.
The first two statements and the inequality |r; ,| < 1 follow from the Cauchy—
Schwarz inequality from linear algebra.* The third statement follows from the fact
that independent random variables are uncorrelated, combined with the intuitively
plausible fact that the sample correlation coefficient will approach the population
correlation coefficient

_ cov(X,Y)  E(X-EX)(Y —EY)
P= VarXvvarY  E(X - EX)2./E(Y _EY)?

when n is large. Since cov(X,Y) = E(X —EX)(Y —EY) = E(XY) —EXEY, this
coefficient p is equal to 0 for independent random variables X and Y: independent
random variables are uncorrelated. We give a further interpretation of the sample
correlation coefficient when we discuss linear regression in Chapter 7.
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Figure 2.10. Scatter plots of two samples of 50 data points, with sample correlation coefficients
0.98 and -0.05, respectively. The image on the right gives the points (z;, ylz) for the points (z;, yi)
in the image on the left.

¥ The inner product of vectors a and b in R™ satisfies |(a,b)| < |la||||b||, where || - || is the
Euclidean norm.
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We may not invert statement (iii) to claim that a correlation close to 0 implies
that the two coordinates are independent. This is illustrated in Figure 2.10. The image
on the left shows a clear linear correlation, corresponding to a correlation coefficient
of 0.98. The image on the right is a scatter plot of the points (z;,y?) for the points
(24,y;) in the image on the left. The quadratic correlation is clear. The “strength of the
correlation” between the two coordinates in the image on the right is no less than the
strength of the correlation in the image on the left. However, the sample correlation
coefficient for the points in the image on the right is equal to —0.05. Apparently, this
numerical quantity is blind for the quadratic relationship that is present.

Example 2.16 Twin data

Height is largely hereditary. We already saw this in Example 1.5, which models the
correlation between the heights of parents and those of their children. This is also
apparent in studies of twins. Because identical twins are genetically identical and
fraternal twins in general share 50% of their genetic material, the correlation between
the heights of identical twins will be greater than that for fraternal twins (of the same
gender). In Figure 2.11, the heights of identical twins (men on the left, women on
the right) have been plotted against each other.” Both scatter plots show a strong
correlation. The sample correlation of the 46 male identical twins is equal to 0.87. For
the 70 female identical twins, it is an impressive 0.96. We can do the same for fraternal
twins of the same gender; see the scatter plots in Figure 2.12 (men on the left, women
on the right). The figure clearly shows that the correlation is less for fraternal twins.
The sample correlation between the heights of the 29 male fraternal twins is equal to
0.55, while that for the 56 female fraternal twins is 0.50. In the application given after
the exercises in Chapter 3, we will come back in detail to genetic research based on
data on twins. —

Scatter plots can also be used to verify the common assumption that a sample
Z1,...,Ty is a realization of independent variables. For example, we can plot the
points (zg;_1,xe;) fori = 1,..., |n/2] or the points (x;, x; 1) fori =1,...,n— 1.
If the assumption is correct, then these scatter plots should not show much structure.

The sample autocorrelation coefficient of order h € N of an observed sample
Z1,...,Ty is defined by

S0 @i — 7) (2 — )
(n—h)s?

x

reo(h) =

® Source: The data used in this example were gathered by the department of Biological
Psychology of VU University Amsterdam during a study on health, lifestyle, and personality. The
data can be found on the book’s webpage at http://www.aup.nl under twindata.
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Figure 2.11. Scatter plots of the heights of 46 male (on the left) and 70 female (on the right)
identical twins.
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Figure 2.12. Scatter plots of the heights of 29 male (on the left) and 56 female (on the right)
fraternal twins.

The sample correlation coefficient corresponding to the points (z;,x;41) for i =
1,...,n — 1 is (in essence) the sample autocorrelation coefficient of order 1. These
coeflicients are especially interesting when the index 7 of the data point x; corresponds
to a time parameter and the data are thought to exhibit a time dependence. We then
measure the correlation between the variables X; and X,;_j; from A points of time
earlier.

Example 2.17 Share prices

The top image of Figure 4.14 shows the value of a share of Hewlett Packard at the New
York stock exchange plotted against the time, in the period 1984—-1991. The values
a; of the share at closing time on consecutive exchange days (: = 1,2, ...,2000) are
plotted; in the graph, these values have been interpolated linearly. Because share prices
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generally form an exponentially increasing (or decreasing) sequence, it is common to
analyze the “log returns,” defined as
a;

z; = log ,
aj—1

instead of the share prices themselves. These values are plotted in the bottom image
of Figure 4.14.% Since the index i of z; corresponds to the ith exchange day, it
would not be surprising if z1, . .., £2000 could not be modeled well as realizations of
independent variables X, ..., Xo000. After all, a significant change on day ¢ would
greatly influence the change on day 7 4+ 1. Regardless, the converse assumption of
independence, the “random walk hypothesis,” has long been accepted in econometrics.

A first step to verify this hypothesis is computing the sample autocorrelations
of the sequence x1, ..., T2000. These are shown graphically in the image on the left
in Figure 2.13, where the values h = 0,1,2,...,30 have been set out along the
horizontal axis, and the heights of the line segments give the corresponding sample
autocorrelation coefficients of order h (the sample autocorrelation of order O is, of
course, equal to 1). Almost all sample autocorrelation coefficients are small, which
justifies the conclusion that the log returns show little linear correlation.

The image on the right gives the sample autocorrelation coefficients of the
squares z7, ..., T30y, of the log returns. Although these coefficients are small, the
conclusion that the quadratic log returns show little correlation is debatable: too
many coefficients differ too much from 0. If the squares are not independent, then
the log returns themselves are of course also not independent. It is therefore not a
good assumption that zj,...,Z2000 can be modeled as realizations of independent
variables: the time effect should be taken into account. Share prices do not form a
random walk.
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Figure 2.13. Sample autocorrelation function of the log returns of HP shares in the period 1984—
1991 (on the left) and of the squares of the log returns (on the right). The dashed lines are at
heights +1.96/+/2000 (see Example 4.40).

! The data can be found on the book’s webpage at http://www.aup.nl under hpprices (share
prices) and hplogreturns (log returns).
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2.3: Correlation

In the above, we wrote that the coefficients in the image on the left in Figure 2.13
are “small,” while they “differ from 0” in the image on the right. We can support
these claims objectively using statistical tests such as those discussed in Chapter 4.
The dashed horizontal lines in the two figures give critical values for the sample
autocorrelations as sample variables for the null hypothesis that x1, ..., 22000 can
be interpreted as a sample of independent variables (with a margin of error of 5%).
Coeflicients that do not land between the lines lead to rejecting the null hypothesis.
We must take into account that when we assume the null hypothesis, about 1 in 20
coeflicients will land outside the lines because of “random variations,” because of the
5% margin of error (see Chapter 4). In the image on the right, too many values land
outside the lines. ———
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2: Descriptive Statistics

Quantitative measures for a univariate sample X1, ..., X,, from an unknown distribu-
tion:

o The sample mean gives an idea of the location of the underlying distribution:

o
=1

e The sample variance gives an idea of the dispersion of the underlying distribution:

Z(Xi - X)2

Y:

S|

1
n—1

s2 =

The sample standard deviation is Sx, the square root of S%.
e Other commonly used measures are the sample median and the sample interquartile
range.

Graphical methods for a univariate sample X7, . . ., X, from an unknown distribution:

o A histogram gives an idea of the form of the underlying distribution.

e A boxplot shows the median, the interquartile interval, and the outliers of the
sample. It gives an idea of the location and scale of the underlying distribution,
as well as the symmetry and thickness of the tails.

e A QQ-plot shows the sample quantiles plotted against the quantiles of a chosen
distribution. If the chosen distribution and the underlying distribution are in the
same location-scale family, then the points will lie near a straight line.

Graphical method and quantitative measure for a bivariate sample (Xi,Y7),...,
(X,,,Y,,) from an unknown distribution:

e A scatter plot gives a graphical representation of the correlation between the
coordinates.

e The sample correlation coefficient is a quantitative measure for the linear correla-
tion between the coordinates:

YL = X)(Y-Y)

T DVERVAT

Quantitative measure for a sequence of (possibly dependent) observations X7, ..., X,
from an unknown distribution:

e The sample autocorrelation coefficient of order h is used to find a possible (time)
dependence among the observations:

S (Xiwn = X)X = X)

rx(h) = (n— h)S%
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2: Exercises

1. Let h, be the scaled histogram of a sample X, ..., X, from a distribution with density f.
The partition of the histogram is given by ap < a; <...<a,. Prove that fora;_, < x < aj,
we have h,(x) — (a; - aj_l)‘l faJ ) f(s)ds with probability 1 as n — co.

aj,

2. Let X be a random variable with distribution function F and quantile function Q. Define x,
as the a-quantile of F and y, as the a-quantile of the distribution of ¥ = a + bX.
(1) Suppose that F' is strictly increasing and continuous, so that the inverse of F' exists
and is equal to Q. Show that there is a linear correlation between x, = F~'(@) and
Ya = F, (@) by using the inversibility of F.
(ii) Show that the same linear correlation exists between x, and y, for a general distribution
function F. Use the general definition of the @-quantile.

3. The standard exponential distribution has distribution function x = 1 — e~ on [0, o).
(1) Does the exponential distribution with parameter A belong to the location-scale family
associated with the standard exponential distribution?
(ii) Express the parameters a and b in the location-scale family F,;, associated with the
standard exponential distribution in terms of the expected value and variance of a
random variable with distribution F, .

4. Let X be a random variable with a uniform distribution on [-3, 2].
(i) Determine the distribution function F of X.
(ii) Determine the quantile function F~! of X.

5. Let X be a random variable with probability density
2
Sl = @Xl[o,e](x),
where 6 > 0 is a constant.

(i) Determine the distribution function F of X.
(ii) Determine the quantile function F~' of X.

6. Which line is plotted in Figure 2.5?

7. Let Xi,...,X, be a sample from a continuous distribution with distribution function F and
density f. Show that the probability density of the kth order statistic X, is equal to

fw(x) = TFO) (1= F)™ f(x)

k=1D!(n-k)
by first determining the distribution function of X(,. (Hint: We have X, < x if and only if
at least k observations X; are less than or equal to x. The number of X; that are less than or
equal to x is binomially distributed with parameters n and P(X; < x).)

8. Let Xi,...,X, be a sample from a continuous distribution with distribution function F. In
this exercise, we want to show that EF(X)) = k/(n+ 1). Define U; = F(X;) fori=1,...,n.
(i) Show that the random variables Uj,...,U, form a sample from the uniform

distribution on [0, 1].
(ii) Show that the distribution function F, of Uy, is given by

F(k)(x) = Z (j) x/(l - x)"—j.

J=k

39



10.

11.

12.

40

: Descriptive Statistics

(iii) Show that the density fi) of Uy, is given by

_ n! 11 _ ok
T = G =t Y

(iv) Show that EUy, = k/(n + 1).

. Draw a graph of the quantiles of the N(2, 2?)-distribution plotted against the quantiles of the

N(0, 3%)-distribution. What line is this?

Let X be a standard normal random variable. Compute the correlation coefficient between
the random variables X and Y = X2

Explain why it is plausible that the sample correlation ryy is approximately equal to the
correlation coefficient p for large values of 7.

Assume that X and Y are independent and that both have the standard normal distribution.
Compute the correlation coefficient between X and Z = X + Y.



BENFORD’S LAW

In 1938, the physicist Benford published an academic paper in which he claims that in
a data set, the frequency of the leading digit of the numbers is greater the smaller the
digit. In other words, in a data set, more numbers begin with a I than with a 2, more
numbers begin with a 2 than with a 3, and so on. This pattern does not correspond
to the general feeling that all leading digits, from 1 to 9, occur with about the same
frequency. In his paper, Benford even states that the probability of an arbitrary number
Sfrom a data set starting with the digit d is equal to log10(1 + 1/d) ford € {1,...,9}
(where logig is the base 10 logarithm). So according to Benford, the probability that
an arbitrary number begins with a 1 is about 0.30, and the probability that it begins
with a 9 has dropped to less than 0.05. Figure 2.14 shows the probabilities. The claim
stated above is known as “Benford’s law.”

0.5

0.3
|

0.2

0.1

Figure 2.14. The probabilities of the different leading digits according to Benford’s law.

Benford was not the first to discover the regularity mentioned above. More than
fifty years earlier, in 1881, the American astronomer Newcomb published an academic
paper with the same findings. Newcomb noted that the first pages of books with
logarithmic tables were dirtier and showed more wear than the later pages. Since
the books started with the numbers with low leading digits and ended with those with
high leading digits, Newcomb concluded that logarithms of numbers with low leading
digits were consulted more often than those of numbers with high leading digits.

Let us try it out. We compose a data set with the numbers of inhabitants of all
countries in the world' using the CIA World Factbook (February 2006). Figure 2.15
shows a histogram (of area 1) with the leading digits of the numbers of inhabitants,
together with the Benford frequencies. The frequencies of the leading digits seem to
follow “Benford’s law” fairly well.

* The data come from http://www.worldatlas.com/aatlas/populations/ctypopls.htm and can be
found on the book’s webpage at http://www.aup.nl under populationsize.
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Figure 2.15. Histogram of the leading digits from 1 to 9 in the data set of the population sizes of
all countries in the world. The step function in the figure gives the expected frequencies based on
Benford’s law.

Many data sets have been studied for the validity of Benford’s law, from physical
quantities measured in a laboratory to geographical information (like the lengths of
rivers and population sizes of capitals), and from business accounting to currency
conversion factors. In almost all cases, the law holds by approximation. Of course,
not every data set is suitable. Purely random numbers (for example the outcomes of
repeatedly casting a die) or numbers that are subject to restrictions, such as the ages
of the inhabitants of the Netherlands or the phone numbers in a telephone directory,
do not satisfy Benford’s law.

Numbers that occur in financial statements, for example the accounts of rather
large companies, often approximately satisfy Benford’s law. This law can therefore
be used to verify accounts and to investigate fraud and inconsistencies. An employee
who commits fraud and tries to mask this will often fabricate or manipulate numbers
in such a way that the leading digits occur in the same measure. If the employee
manipulates or fabricates numbers regularly, then his actions will change the
distribution of the leading digits, which will then deviate from the one predicted by
Benford’s law. If, for example, 9% of the numbers in the accounts begin with a 9, then
the accounts will almost certainly be investigated because, by Benford’s law, only
4.6% of the numbers should begin with a 9. However; a deviation from Benford’s law
does not automatically mean that there is fraud. In some cases, people prefer numbers
that begin with a 9; for example, a product sells better if the price is 99 euros rather
than 100.

Only structural fraud can be detected using Benford’s law. If there is a single
transfer of a large amount to a private account, this will not be noticed if one only
looks at deviations from Benford’s law. Figure 2.16 shows a histogram (of area 1) of
the leading digits of 1.5 million numbers in the accounts of a large company, together
with the frequencies one would expect based on Benford’s law. The numbers in the
accounts seem to follow Benford’s law fairly well.

Despite much research into Benford’s law, it is still not completely clear why one
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Figure 2.16. Histogram of the leading digits from 1 to 9 of figures in the bookkeeping. The
staircase function in the histogram gives the expected frequencies based on Benford’s law.

data set satisfies it, while another does not. An example where it is satisfied, is the
case of exponential growth. Let us study this case more closely. Since we are only
interested in the leading digit of a number, we write a number z as z = x X 10" with
1 < x < 10 and n € 7Z. This notation is possible for all positive numbers. We will
call x the normed observation corresponding to z = x x 10™. The leading digit of z
is equal to the leading digit of x. Let D be the random variable that gives the leading
digit of an arbitrary (random) number Z = X x 10" in a data set. Suppose that X
is distributed according to a b¥ with a,b > 0, and that Y is uniformly distributed on
the interval [0, 1/ log;, b]. Then

P(D=k) =P(k<X <k+1)
=Pk<ab” <k+1)
= P(logyo(k/a) < Ylog;ob <logo((k+1)/a))
= logyo(k + 1) —logyga — (logyo k —logyg a)
= logyo(1 + 1/k),

where the fourth equality follows from the distribution of Y log,yb, the uniform
distribution on the interval [0, 1]. The probability that the leading digit D is equal
to k is therefore exactly the probability according to Benford’s law. If b = 10, then
log,y b = 1 and the assumption is that Y is uniformly distributed on [0, 1].

Figure 2.17 shows a QQ-plot of the order statistics of log,, of the normed
population sizes from Figure 2.15 plotted against the quantiles of the uniform
distribution on [0, 1). For this data set, the assumption apparently holds.

The assumption that X is distributed according to a b¥, where a,b > 0 and Y is
uniformly distributed on the interval [0, 1/ log,, b] is not very insightful, and therefore
seems unrealistic. The following example, however, shows that this impression is
misleading. Suppose that a company has a market value of d million euros, which
grows by x% each year. After t years, the market value of the company has increased
to d(1 + x/100)" million euros. After t = 1/log,,(1 + 2/100) years, we have
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Figure 2.17. QQ-plot of log,, of the normed population sizes plotted against the quantiles of the
uniform distribution on [0, 1]. The line in the figure is the line y = x.

(1 + 2/100)* = 10 and the initial value has increased tenfold. The leading digit
is then equal to the leading digit at time t = 0. Since this time span does not
depend on the initial amount d, the time 0 can be chosen arbitrarily, and we are
only interested in the leading digit, it suffices to consider values of t in the interval
[0,1/1logy(1 4+ 2/100)). Let T be a random variable that is uniformly distributed on
the interval [0,1/1og, (1 + 2/100)]. For an arbitrary company with market value d,
the value at time T is then equal to Z = d(1+2/100)T = (d/10™)(1+2/100)T10™,
with n € N such that (d/10™)(1 + z/100)T € [1,10) with probability 1. We are
now back in the situation of the previous example, withY = T, b = 1 4 2/100, and
a = d/10™. The probability that a company with market value d at time 0 has a market
value beginning with a k at time T is equal to the Benford probability log,,(1 +1/k).

Another argument that leads to the same answer is based on the assumption that
the probability that an arbitrary company has a market value that begins with the digit
k is directly proportional to the time span that the company has a market value that
begins with the digit k. Let t, be the time span (in years) during which the market
value increases from k to k + 1 (million) euros; then k(1 + w)tk =k+1, thatis, t;, =
logyg(141/k)/logyo(1+2/100). The time span necessary to go from leading digit k
(k million euros) to leading digit k + 1 (k + 1 million euros) is therefore proportional
tolog,(1+1/k), the probability of having leading digit k according to Benford’s law.
This is, of course, independent of the chosen unit “millions of euros.” We can again
conclude that under our assumption, a fraction of approximately log,,(1+1/k) of all
companies have a market value with leading digit k, exactly as predicted by Benford’s
law.
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A statistical model consists of all probability distributions that, a priori, seem
possible for the given data. Given a correctly set-up model, we assume that the
data were generated from one of the distributions in the model. After setting up a
suitable statistical model, the next step is determining which distribution within the
model fits the data points best. If the model is described by a parameter, this is
equivalent to determining the best-fitting value of the parameter, often called the “true”
parameter. In statistics, this process is called “estimating.” Other names are “fitting”
and “learning.”

Suppose that the distribution of X depends on an unknown parameter 6, so that
the statistical model is of the form {Py: 0 € ©}, for Py the distribution of X if 0 is
the “true” parameter. Based on an observation x, we want to estimate the true value
of 0, or perhaps the value of a function g(6) of 6. Here, “estimating” means making
a statement about 6 or g(6) of the form “I think that g(#) is approximately equal to
T (x),” for some value T'(x) that depends on the observed value x.

Definition 3.1 Estimator

An estimator or statistic is a random vector T(X) that depends only on the
observation X . The corresponding estimate for an observation x is T'(x).
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By this definition, many objects are estimators. What matters is that 7'(X) is a
function of X that does not depend on the parameter §: we must be able to compute
T(x) from the data x. Given the observed value z, the statistic 7' is realized as
t = T(x), which is used as an estimate of 6 (or g(6)). We often shorten T'(X) to
T'. Mathematically, the word “statistic” has exactly the same definition as “estimator,”
but it is used in a different context.

Both estimators and estimates of 6 are often indicated by 6. The hat indicates that
0 is a function of the observation, but this notation does not differentiate between the
random vector and its observed value: § can mean both 6(X) and 0(z).

There are many estimation methods. In this chapter, we discuss several general
principles, such as the maximum likelihood method, the method of moments, and the
Bayes method. We begin, however, by setting up the framework necessary to compare
the performance of the different estimators.

Although every function of the observation is an estimator, not every estimator is a
good one. A good estimator of ¢g(#) is a function T of the observed data such that T
is “close” to the estimand g(6). The distance HT —g(0) H is an unsatisfactory measure
for two reasons:

- This measure depends on the unknown value 6.

- This measure is stochastic and cannot be computed before carrying out the

experiment.

To avoid the second difficulty, we consider the distribution of the distance || T — g(6)|
under the assumption that 6 is the true value. The best situation is that where this
distribution is degenerate at O, that is, if 6 is the true value, then HT — g(@)“ has
probability 1 to be equal to 0. This would mean that we do not make any estimation
errors; the estimate 7'(x) would be equal to the estimand with absolute certainty.
Unfortunately, this is impossible in practice, and we must settle for the smallest
possible (average) error. We are looking for an estimator whose distribution for the
true value 6 is concentrated as much as possible around ¢ () or, equivalently, for which
the distribution of HT —g(0) || is concentrated as much as possible in a neighborhood
of 0.

Example 3.2 Uniform distribution

Let X4,...,X,, be independent U[0, §]-distributed random variables. The observa-
tion is the vector X = (X1,...,X,,), and we want to estimate the unknown 6. Since
Eo X; = %6‘, it is reasonable to estimate %6‘ using the sample mean X and  using 2.X;
after all, by the law of large numbers (Theorem A.26), the sample mean converges (in
probability) to Eg X; = %9. Suppose that n = 10 and that the data have the following
values: 3.03, 2.70, 7.00, 1.59, 5.04, 5.92, 9.82, 1.11, 4.26, 6.96, so that 27 = 9.49.
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3.2: Mean Square Error

This estimate is certainly too small. Indeed, one of the observations is 9.82, so that we
must have § > 9.82.

Can we think of a better estimator? We can avoid the problem we just mentioned
by taking the maximum X ,,) of the observations. However, the maximum is certainly
also less than the true value, for all observations z; lie in the interval [0, §]. An obvious
solution is to add a small correction. We could, for example, take (n+2)/(n+1) X,
as estimator.

So there are several candidates. Which estimator is the best? To gain insight into
this question, we carried out the following simulation. We chose n = 50 and simulated
1000 independent samples of size 50 from the uniform distribution on [0, 1]. For each
sample, we computed the estimators 2X and (n + 2)/(n + 1) X(,,). Figure 3.1 shows
histograms of two sets with 1000 estimates each for the parameter §. The image on
the left uses the estimator (n + 2)/(n + 1)X(,,, and the one on the right uses 2.X.

These histograms can be viewed as approximations of the densities of the
estimators. The density on the left is more concentrated around the true value 6 = 1
than the density on the right. We therefore prefer the estimator (n + 2)/(n 4 1) X(,,):
“on average,” it is closer to the true value. (The difference in the forms of the
histograms is remarkable: the one on the left resembles an (inverse) exponential
density, while the one on the right resembles a normal density. We can easily explain
this theoretically. How?)
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Figure 3.1. Histograms of 1000 realizations of the estimators (n +2)/(n + 1) X () and 2X for the
parameter 1 of a uniform distribution, each based on n = 50 observations.

Note that it is not true that the estimator (n + 2)/(n + 1)X(,) gives the best
estimate on each of the 1000 samples. This can be seen in Figure 3.2, where the
difference |(n 4 2)/(n + 1)x(,) — 1] — [2T — 1| is set out along the vertical axis.
In general, this difference is negative, but sometimes it is positive, in which case the
estimator 2X gives a value that is closer to the true value § = 1. Because in practice
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3: Estimators

we do not know the true value, it is not possible to choose the “best of both worlds.”
We must use the estimator that is the best on average.
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Figure 3.2. Differences |(n 4 2)/(n + 1)z(,) — 1| — |2 — 1| of the absolute distances from the
estimates (n + 2)/(n + 1)z(,) and 27 to the estimand 1 in Figure 3.1.

Our simulation experiment only shows that (n + 2)/(n + 1) X, is the better
estimator if the true value of # is equal to 1. To determine which estimator is better
when 6 has a different value, we would have to repeat the simulation experiment
with simulated samples from the uniform distribution on [0, 6], for every 6. This
is not something we want to do, of course, and that is one of the reasons to study
estimation problems mathematically. Another reason is that instead of ordering pairs
of estimators, we would like to find the overall best estimator. ———

Since a probability distribution is a complicated object, comparing the “concen-
tration” is not well defined. It is therefore useful to express the concentration as a
number, so that we only need to compare numbers. There are many ways to do this.
One measure of concentration that is relatively simple to deal with mathematically is
the mean square error or mean square deviation.

Definition 3.3 Mean square error

The mean square error or MSE of an estimator T for the value g(0) is

MSE(6; T) = Eo||T — g(6)|.

The subscript § in Eg in the definition is essential: the MSE is the expected
square deviation of T" from g(6) under the assumption that 6 is the true value of the
parameter (this sentence has the same 6 twice). We view the mean square error as the
function 6 — MSE(#; T') for a given statistic 7. A more complete notation would be
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3.2: Mean Square Error

MSE(8; T, g), but since g is fixed in the context of the problem, we leave g out of the
notation.

The first difficulty—that the measure of quality depends on 6—has not been
solved yet; the mean square error is a function of . In principle, it suffices if
MSE(¢; T) is as small as possible in the “true value” of 6. As we do not know that
value, we try to keep the mean square error (relatively) small for all values of 6 at
once.

Convention 3.4

We prefer an estimator with small mean square error (MSE) for all values of the
parameter 6 at once.

If for two estimators 73 and 75, we have
Eq|| Ty — g(0)||* < Eo|[To — g(0)||>  foralld € O,

with a strict inequality for at least one value of 6, then we prefer 7. The estimator 7%
is then called inadmissible. However, the strict inequality may hold for some 6, while
for other 6, the strict inverse inequality may hold. It is then not directly clear which
estimator we should prefer. Because the true value of 6, say 6, is unknown, we do not
know which of MSE(6y; T1) and MSE(6y; T%) is the smallest.

In Section 6.3, we discuss optimality criteria for estimators and how to find
optimal estimators. In this chapter, we discuss several methods to find estimators of
which it is intuitively clear that they are reasonable and compare mean square errors.

The mean square error of a real-valued estimator 7" can be decomposed in two

terms:
2

MSE(0; T) = varg T + (EoT — g(0))
(verify). Both terms in this decomposition are nonnegative. Hence, the mean square
error can only be small if both terms are small. If the second term is 0, the estimator
is called unbiased.

Definition 3.5 Unbiased estimator

An estimator T is called unbiased for the estimation of g(0) if EgT = g(0) for all
6 € O. The bias is defined as EgT — g(0).

The second term in the decomposition of MSE(6; T') is therefore the square of the
bias. For an unbiased estimator, this term is identically 0. This seems very desirable,
but is not always so. Namely, the condition that an estimator be unbiased can lead to
the variance being very large, so that we amply loose in the first term what we would
have gained in the second one. In general, a small variance leads to a large bias, and
a small bias to a large variance. We must therefore balance the two terms against each
other.
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3: Estimators

The standard deviation oy(T) = +/vargT of an estimator is also called
the standard error. This should not be confused with the standard deviation of
the observations. In principle, the standard error oy(7T) depends on the unknown
parameter 6 and is therefore itself an unknown. Because the bias of reasonable
estimators is often small, the standard error often gives an idea of the quality of the
estimator. An estimate of the standard error is often given along with the estimate
itself. We will come back to this when we discuss confidence regions in Chapter 5.

We are thus looking for estimators with a small standard error and a small bias.

Example 3.6 Uniform distribution

Let Xy,..., X, be independent, UJ0, 6]-distributed random variables. The estimator
2X is unbiased because for all 6 > 0,

- 2 2 -0
Ey(2X) = EZEgXi = ﬁzi = 0.
=1 1=1

The mean square error of this estimator is

_ _ 4 92
MSE(6;2X) = 4varg X = ﬁ;varg Xi= o
The estimator X (n) is biased because for all 6 > 0,
0
1 n
Eo Xy = =l =—9
60X (n) /o nT o T i

(see Exercise A.10 for the distribution of X ;). Nevertheless, (for n not too small)
we prefer X, to 2X, because this estimator has a smaller mean square error:

MSE(6; X)) = varg X(n) + (EeX(n) — )

n n 2 262
:02(n+2)(n+1)2 +92(n+1 71) T n+2)(n+1)

We can cancel out the bias of X,,) by multiplying by a constant: the estimator (n +
1)/n X (5, is unbiased for 6. However, the biased estimator (n + 2)/(n + 1) X, is
better than all estimators we have mentioned up to now, because

2
MSE (6; L”X(m) S

n+1 (n+1)2
Figure 3.3 shows the mean square error of this last estimator, together with the mean
square errors of X, and 2X as functions of 6 for n = 50. For values of 6 close to 0,
the differences between the mean square errors of 2X and of the other two estimators
are small, but they increase rapidly when 6 increases.
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On closer inspection, it turns out that for values of n that are not too small, the
difference between the mean square errors of (n +2)/(n + 1) X(,,) and Xy, is small.
The greater precision of (n + 2)/(n + 1)X(,,) compared to 2X, however, rapidly
becomes apparent when n increases, because the mean square error of the first is
smaller by a factor of n.

We have already noted (see Figure 3.2) that the estimator (n + 2)/(n + 1) Xy,
does not give a better result than the estimator 2X on every sample. The fact that
MSE(1; (n + 2)/(n + 1) X(»)) < MSE(1;2X) certainly does not exclude this,
because the mean square error is an expected value and can be viewed as the average
over a large number of realizations. An average can be negative without all terms being
negative. On average, (n + 2)/(n + 1) X(;) is (much) better. ——
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Figure 3.3. The mean square errors as functions of 6 for the estimators 2X (solid line), X (n)
(dotted line), and (n + 2)/(n + 1) X(,) (dashed line) for the parameter in UJ0, ], for n = 50.

Example 3.7 Sample mean and sample variance

Let Xy,..., X, be independent, identically distributed random variables, with an
unknown marginal distribution. We want to estimate the expected value 1 and variance
o2 of the observations. Formally, we can take 6 equal to an unknown distribution, the
so-called “nonparametric model,” which does not specify the underlying distribution.
The “parameters” 1 and o2 are functions of this underlying distribution.

The sample mean X and the sample variance S% are equal to (see Definitions
2.1 and 2.2)

n

_ 1& 1 _
X:E;Xﬂ 52 = > (X - X)%

n— 14
=1

The sample mean is an unbiased estimator for y since

o1&
EoX = - EpX,;, = .
o n;e 7
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The mean square error of this estimator is given by

0.2

_ _ 1 &
MSE(#; X) = varg X = EZV&I‘Q X; = -

i=1

The mean square error of X is therefore smaller by a factor of n than the mean square
error of the estimator X; based on a single observation, MSE(6, X;) = vary X; = o2,
Since the mean square error is an estimated square distance, we conclude that the
quality of the estimator X increases by a factor of \/n. So for an estimator that is
twice as good, you need four times as many observations.

The sample variance is an unbiased estimator for 2 because

n

EoS% = By — 12((Xi — )+ (p = X))?
= B0 S [0 + (= TP + 200 = F) (X - )
= R R =

where the last equality follows from Eg(X; —u)? = varg X; = 02 and Eg(X —p)? =
varg X = 0% /n. With a bit of work, the mean square error of S% can be expressed in
the fourth sample moment of the observations, but we will not discuss this.

Suppose that we are looking for an unbiased estimator for ;2. Since X is an
unbiased estimator for i, in first instance we take X2 as estimator for 2. However,
this estimator is biased:

2
Eo(X)? = varg X + (EgX)? = % + 2

It immediately follows that Eq(X? — 02/n) = 2, but since o2 is an unknown
parameter, X2 — o2 /n is not an estimator. If we replace o2 by its unbiased estimator

5%, then we see that X2 — 5% /n is an unbiased estimator for 2. —

Example 3.8 Sample theory

Suppose that a proportion p of a population has a certain characteristic A. We will
compare three methods to estimate p, based on a sample with replacement, a sample
without replacement, and a stratified sample.

In the first method, we take a sample of size m from a population, with
replacement, and estimate p using the fraction X /n, where X is the number of persons
with characteristic A in the sample. Then X is bin(n, p)-distributed and has expected
value np and variance np(1 — p). Since E,(X/n) = p for all p, the estimator X /n is
unbiased. The mean square error is

MSE(p; %) = Varp(g) = M

n n
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It follows, among other things, that the estimator is better when p ~ 0 or p ~ 1, and
the worst when p = % The mean square error does not depend on the size of the
population. By choosing n sufficiently large, for example n > 1000, we can obtain an
estimator with a mean square error of at most (1/4)/1000 = 1/4000, regardless of
whether the population consists of 800 or a trillion persons.

In the second method, we take a sample of size n from a population, without
replacement, and estimate p using the faction Y/n, where Y is the number of persons
with characteristic A in the sample. Then Y is hyp(N, pN, n)-distributed and has
expected value np and variance np(1 — p)(N —n)/(N — 1). So the estimator Y/n is
again unbiased; the mean square error is

(o) () - HA=8 N

This is smaller than MSE(p; X/n), although the difference is negligible for n < N.
This is not surprising: it is not useful to study persons that have already been studied
again, but if n < N, the probability of this happening is negligible.

In the third method, we first divide the population into a number of subpopu-
lations, called strata. This can be a classification by region, gender, age, income,
profession, or some other background variable. Suppose that the entire population
has size N, while the subpopulations have sizes Ny, ..., N,,. We now draw, for
convenience without replacement, (N,;/N)n persons from the jth population, a
stratified sample, and estimate p using Z/n, where Z is the total number of persons
with property A in our sample. So Z = Z; + --- 4+ Z,,, where Z; is the number of
persons with characteristic A drawn from the jth population. Now, Zy, ..., Z,, are
independent, bin((N;/N)n, p;)-distributed variables, where p; is the proportion of
persons with characteristic A in the jth population. Then

Z 1 & 1 <aN; 1
Ep(g) = E;Eij = EZWnpj = N;ijj =p,

Jj=1

Z z “ 1 <~ N;n
MSE(p; E) = Varp(—) = —Zvarp Z; = FZ#pj(l —Dj)
j=1

The estimator Z/n is therefore also unbiased, and its mean square error is less than
or equal to the mean square error of X /n. The difference is mostly worth considering
when the p; differ greatly. Stratified sampling is therefore the preferred method in
general, even though in practice, it can mean more work.

Similar results also hold for sampling without replacement, provided that the
sizes of the strata and samples satisfy certain conditions. It is, however, not true that
in this case stratification always leads to greater precision. ——

53



3: Estimators

The “maximum likelihood estimation method” is the most common method to find
estimators for an unknown parameter. Before presenting the method in general, we
deduce the maximum likelihood estimator for the (simple) case of the binomial
distribution.

Example 3.9 Binomial distribution

Suppose that we toss a biased coin 10 times. For this coin, the probability p of getting
“head” is not necessarily 1/2. Let X be the number of times we get “head” in the 10
tosses. The random variable X then has a binomial distribution with parameters 10
and the unknown p € [0, 1]. Suppose that we get “head” 3 times. The probability of
this outcome is equal to

By(X =3) = <130>p3(1 -p)".

The probability p is unknown and must be estimated. What value for p is the most
probable? Figure 3.4 shows the probability P,(X = 3) as a function of p. We see
that there is exactly one value of p that maximizes this probability, namely 0.3. This
value for p assigns the greatest possible value to the observation “3 times head.” In
this situation, the estimate p = 0.3 turns out to be the maximum likelihood estimate.

——

0.10 0.15 0.20 0.25
1 1 1 1

0.05
1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.4. The probability P,(X = 3) as a function of p, where the random variable X is
binomially distributed with parameters 10 and p.

The maximum likelihood method requires a likelihood function, which is
deduced from the density of the observation. By a probability density pg of a random
variable X, we mean the function 2 — Py(X = z) if X is discrete and the function
pg such that Po(X € B) = [, po(x) dz if X is continuous.
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Definition 3.10 Likelihood function

Let X be a random vector with probability density py that depends on a parameter
6 € ©. For x fixed, the function

0 — L(0;2): = pg(x),

seen as a function of € © (where © is the parameter space), is called the likelihood
function.

Often, X = (Xy,...,X,,) is a vector with independent, identically distributed
coordinates X;. The density of X in (z1,...,2,) is then equal to the product
[T peo(x;) of the marginal probability densities of X1, ..., X, and the likelihood
function is equal to

0 L(O;21,...,20) = Hpe(l”i%
i=1

where py is now the (marginal) density of one X;. However, the general definition of
the likelihood function also holds for an observation vector whose elements are not
independent or identically distributed. We therefore prefer to write the observation as
x, rather than (x4, . .., ,), and to write the likelihood function as L(0; z) = pg(x) .

Definition 3.11 Maximum likelihood estimate and estimator

The maximum likelihood estimate of 0 is the value of T'(z) € © that maximizes
the likelihood function 0 +— L(60;x). The maximum likelihood estimator is the
corresponding estimator T'(X).

In the case of a discrete probability distribution, the maximum likelihood estimate
can be described as the value of the parameter that assigns the greatest probability
to the observed value z. Indeed, in that case, we maximize the probability density
po(x) = Pp(X = x) with respect to 0 for fixed = (see Example 3.9). Intuitively, this
is a reasonable principle for taking estimates. It also explains the name. This principle
should, however, be seen only as a way to obtain estimates: maximum likelihood
estimators are not necessarily the best estimators, regardless of their nice name. By a
“best” estimator, we mean an estimator with the smallest possible mean square error.

For a given model, computing the maximum likelihood estimators is a matter
of applying calculus. Often, we differentiate the likelihood function and set the
derivatives equal to 0. A trick that limits the necessary calculations (especially with
independent observations) is to first take the logarithm of the likelihood. Because the
logarithm is a monotone function, the value 6 maximizes the function 6 — L(6;x)
if and only if this value maximizes the function 6 — log L(0, z). (Note that we are
speaking only of the value where the maximum is reached, not of the value of the
maximum!) For fixed x, the log-likelihood function is given by

0 — log L(6; x) = log pe(z).
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If L is differentiable in § € © C R* and takes on its maximum in an interior
point of ©, then

0

89 logL(Haz)we_() j=1,... k.

This system is called the system of likelihood equations and cannot always be solved
explicitly. If necessary, an iterative method is used to obtain an approximation of the
solution.

Not only maxima, but also minima and inflection points are solutions of the
likelihood equations. To verify whether a solution is indeed a maximum, we must
consider the form of the (log-)likelihood function. One way to do this, is to determine
the second derivative (or the Hessian matrix if the parameter has dimension greater
than 1) of the log-likelihood function in the solution. If the function has a maximum
in the solution, the second derivative in that point will be negative. For higher-
dimensional parameters, all eigenvalues of the Hessian matrix must be negative.

If the observation X = (Xi,...,X,) consists of independent, identically
distributed subobservations X, then the likelihood L(0;x) of the observation x is
a product L(0;xz) = ][, pe(x;), where py is the (marginal) density of one X;. The
log-likelihood is then

0 — log L(0; 21, ..., 2n) = log [ [pe(i) = D logpe(w:).
The derivative of log L, the score function, is the sum of the score functions of the

individual observations; see Definition 5.8. The likelihood equations are then of the
form

"9
| D=0 =1, ...k
;6% ogpe(wi) =0 J

Example 3.12 Exponential distribution

Let X = (X1,...,X,,) be a sample from the exponential distribution with unknown
parameter A > 0. Then the log-likelihood function of a realization x4, . . ., z,, is equal
to

A= log L(A\; 1, ..., x,) = log H/\e_)‘”“ =nlog A — /\Zmi.

The parameter space for A is (0,00). Setting the derivative of the log-likelihood
function with respect to A equal to 0 gives

d
alogL()\zl,..., \>\>\_7 Zml— ,
with solution A = 1 /T. The second derivative of the log-likelihood function with
respect to A is
2 n

log L(A;21,. .. 2p) = —

e A
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itis negative for all A > 0, so the likelihood function indeed has a maximum in \. The
maximum likelihood estimator for A is equal to A = 1/X. ——3

Example 3.13 Binomial distribution, continued from Example 3.9

The variable X is defined as the number of heads when a coin is tossed 10 times. It
is binomially distributed with parameter 10 and unknown probability p. The observed
value is z = 3. The log-likelihood function is equal to the function

10
prlog L(p;z = 3) = log(< 3 >p3(1 —p)7)
10
= log <3) + 3logp + 7Tlog(1l — p).

The maximum likelihood estimate of p is the value in [0,1] that maximizes this
function with respect to p. This again gives the solution p = 0.3.

In the general case of a binomially distributed quantity X with parameters n and
p, the log-likelihood function is equal to

p > log L(p; x) = log (Z) + xlogp+ (n — x)log(l — p).

If0 < 2 < n, then log L(p;x) — —occ asp J 0 orp 1 1, so that the log-likelihood
function takes on its maximum in the interval (0,1). It follows that the likelihood
function L(p; ) also takes on its maximum in the interval (0, 1). Setting the derivative
with respect to p equal to 0 gives one solution, p = x/n. This solution is therefore the
maximum likelihood estimate, p = 2/n. Instead of looking at the form, we can also
determine the second derivative of the (log-)likelihood function in p = z/n. If z is
equal to 0 or n, then L(p;x) has a local maximum in 0 or 1. In these cases, too, the
maximum likelihood estimate can be written as p = x/n. The maximum likelihood
estimator is equal to p = X /n. —

Example 3.14 Normal distribution

The log-likelihood function for a sample X = (X7,...,X,,) from the N(u,o?)-
distribution is given by

1
V2mo?

1
6_5(“_“)2/02

(1,0%) = log [
i=1

1
= —1inlog2m — %n10g02 - FZ(:@ — )2
i=1
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We take the natural parameter space for the parameter § = (u,0?), namely © =
R x (0, 00). The partial derivatives of the log-likelihood with respect to x and o2 are

) ) 1 &
8—ulogL(,u,o;x17..., :U—g

0 2
@loglj(u,a Ty, Tp) = — 202 2042

Setting the first equation equal to 0 gives one solution: i = Z. In this value for
u, the log-likelihood indeed has a global maximum for every o > 0, because the
value of the log-likelihood goes to —oo as © — £oo. Next, we substitute 1 = [
in the second partial derivative, set the latter equal to 0, and solve the likelihood
equation for . This again gives one solution: 62 = n~'>"" | (z; — 7)?. For the
same reason as before, the log-likelihood function has a maximum in this value. (Note
that maximizing the log-likelihood function in o instead of o gives the square root
of 62 as maximum likelihood estimator for ¢.) To verify whether the (differentiable)
log-likelihood function has a maximum in the solution of the likelihood equation that
we found, we can also determine the Hessian matrix of the log-likelihood function in
the point (j1, 52), which in this case is equal to

i —no? 0
G\ 0 -—n2)

Both eigenvalues of this matrix are negative; consequently, the log-likelihood has a
maximum in the point (1, 52).
The resulting maximum likelihood estimator for (11, o2) is equal to

(¥ 0 %) = (%200
i=1

with

n

1 _
5% = 1Z(Xi - X)2.

n—1~
i=1

The sample mean is unbiased for y, but the maximum likelihood estimator 62 has a
slight bias (see Example 3.7). Because of the small bias, the sample variance S% =
(n/(n — 1))6? is often preferred. However, the mean square error of S% is greater
than that of 62, and both are subordinate to ((n — 1)/(n + 1)) S% in terms of the
mean square error.” Because the difference is small for large numbers of observations,
it does not matter much which of these estimators is used.

We obtain another model if we assume p known. The parameter is then 6 = o2,
and the parameter space is (0, c0). We then find that the maximum likelihood estimator
for o2 is equal ton™*>""_ | (X; — p)?. Note that this is only an estimator if ;¢ may be
assumed known! —

¥ It takes some calculations to support this statement. Theorem 4.29 can be used to simplify
them. See Exercise 4.27 in Chapter 4.
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If the maximum of the (log-)likelihood function is not taken in the interior of the
parameter space, then the maximum likelihood estimate 6 is usually not a stationary
point of the derivative of the likelihood function, but rather a local maximum, and the
likelihood equations do not hold. In yet other examples, the likelihood function is not
everywhere differentiable (or even continuous), and the maximum likelihood estimate
also does not satisfy the likelihood equations. Example 3.15 illustrates this situation.
Moreover, it is possible that the likelihood function has several (local) maxima
and minima. The likelihood equations can then have more than one solution. The
maximum likelihood estimate is by definition the global maximum of the likelihood
function.

Example 3.15 Uniform distribution

Let © = (21,...,2,) be an observed sample from the uniform distribution on the
interval [0, 0], where 6 > 0 is unknown. We want to estimate the parameter 6 using the
maximum likelihood estimator. Since the observations 1, ..., z, liec in the interval
[0, 0], we must have § > x; fori = 1,...,n. It immediately follows that 6 > x(,,
where ;) is the largest observed order statistic.

The likelihood function of the observations z1,...,x, is equal to the joint
density of Xy,...,X,, inzy,...,z,, viewed as a function of §. Because X1,..., X,
are independent and identically distributed, the joint density is equal to the product of
the marginal densities, which is equal to 1/6 on the interval [0, §] and 0 elsewhere.
The likelihood function is therefore equal to

Tl 1\"
0~ L(O;21,...,2,) = [ | g lo<ai<o = (5) Loy >o0la,, <o-
1=1

This function of 6 is equal to 0 for § < Z(n) because the indicator function 1, (<0
is then equal to 0. In = x(,), the function jumps to 1/6". In 6 = x(,), the
likelihood, and therefore also the log-likelihood, is not differentiable with respect to 6.
A maximum can be found by plotting the likelihood function as a function of . For
0 > (), the likelihood function is equal to the decreasing function 6 — 1/6™.
Figure 3.5 illustrates the course of the likelihood function (as a function of 0). In z(,,),
the likelihood function is upper semi-continuous and also maximal; the maximum
likelihood estimate of ¢ is therefore equal to x(,) and the corresponding maximum
likelihood estimator is X ;). ——

Example 3.16 Normal distribution with restriction

Suppose that the observations X1, ..., X,, are independent and normally distributed
with expected value p and variance 1, where we know p > 0. For a realization
ry,...,x, of Xq,...,X,, on R the likelihood function takes on an absolute
maximum in Z. Now, T can be negative, and p > 0, hence T is not the maximum
likelihood estimate. If T < 0, then on the parameter space [0, 00), the likelihood
function takes on a local maximum in 0. The maximum likelihood estimate is 7 if it
is nonnegative and 0 otherwise. The corresponding maximum likelihood estimator is
max(0, X).
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2e-06 3e-06 4e-06
1 1

1e-06

0e+00
1

Figure 3.5. Realization of the likelihood function of a sample of size 8 from the uniform
distribution on [0, 5]. The maximum likelihood estimate (,) (the location of the spike) is 4.73.

The statistical model and the maximum likelihood estimator are determined by
both the form of the density of the observation and the definition of the parameter
space! —

If :© — Hisal— 1 (bijective) function with a set H as codomain, we can
also parameterize the model using the parameter ) = ¢g(f) € H instead of 6 € O. It
immediately follows from the definition that g( é) is the maximum likelihood estimator
for n if 6 is the maximum likelihood estimator for 6. Accordingly, for an arbitrary
function g, we define the maximum likelihood estimator for g(6) simply as g(6). (This
estimator maximizes the profile likelihood function L,(7; z) = supgpee.q(9)=r Po(2);
see Definition 5.24.)

In Definition 3.11, the maximum likelihood estimator is based on the maximum
likelihood estimate. In practice, the (log-)likelihood function is often written directly
in terms of the random variable X instead of the realization z, and the estimator
is deduced directly by maximizing this function with respect to 6. This shortened
notation is used in the following examples of applications of the maximum likelihood
method. Examples in which the method is applied to regression models can be found
in Chapter 7.

Example 3.17 Exponential distribution, continued from Example 3.12

Let X = (X1,...,X,) be a sample from the exponential distribution with unknown
parameter A > 0. In Example 3.12, we showed that the maximum likelihood estimator
for A is equal to A = 1/X. From this, we can easily deduce the maximum likelihood

estimator for Eg X; = 1/), namely E;)\(i = 1/;\ =X. ———
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Example 3.18 Gamma distribution

Let X = (X1,...,X,) be a sample from a gamma distribution with probability
density
xa—l 2\ e—/\x

I(e)
Here oo > 0 and A > 0 are the unknown shape and inverse scale parameters, and I is
the gamma function

pa,)\(l') =

INa) = / s* e ds.
0
The log-likelihood function for X7, ..., X,, is then equal to

1)\0467)\)(1

(Oé, )\) — log HZ:FT
i=1

= (a— 1)Zlog X; + nalog A — )‘ZXi —nlogT(a).

i=1 i=1

As parameter space for § = (a, \), we take © = [0, 00) X [0, 00). To determine the
maximum likelihood estimators for « and A\, we determine the partial derivatives of
the log-likelihood function with respect to A and «

0 na -
—log L(a, \; Xq,...,X,) = — — Xi,
8)\ 0og (Oé, 3y A1 5 ) B\ ;

Jo 5% og s e*ds

oo
fo s~ le—3s(ds

a n

™ log Lo, \; X1, ..., Xp) = leogXi +nlog\ —n
(In the derivative with respect to «, we have differentiated the gamma function
a +— T'(«) under the integral sign and used that (0/0a)s® = s*logs.) The partial
derivatives are equal to 0 in the maximum likelihood estimators (¢, A); this gives two
likelihood equations. It immediately follows from the first equation that A = &/X.
We substitute this into the second likelihood equation. This gives

J 59 Hog s e ds

log X; + nlog& —nlogX —n = =0
; 8 & s Jo s lemsds

This equation does not have an explicit solution for &, but can be solved numerically,
using an iterative method, when a realization of X7, ..., X,, has been observed. For
most numeric algorithms, we need initial values as starting point for the search for
a solution of the equation. The method of moments estimates can be used as initial
values (see Section 3.4).
We substitute the resulting value & in the equation A= &/X to determine A
To verify whether the log-likelihood function takes on a maximum in the solution,
we must compute the eigenvalues of the Hessian matrix in (&, 5\) If both eigenvalues
are negative in (&, A), then (&, \) is the maximum likelihood estimator for (cv, ).
——
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Example 3.19 Application: counting bacteria

Bacteria in contaminated water are impossible to count either by the naked eye or
using a microscope. To obtain an idea of the degree of contamination, we estimate
the number of colony-forming units of bacteria in a centiliter of water. We proceed as
follows. We assume that the number of colony-forming units of bacteria in a centiliter
of contaminated water is Poisson-distributed with parameter 1. To obtain an indication
of the number of colony-forming units of bacteria in the water, we want to estimate fi.
We pour the contaminated water in a bucket with 100 liters of pure water, mix well,
and divide the water over 100 Petri dishes with each a volume of 1 liter. We then check
each dish to see whether a colony forms. If this is the case, then there was at least one
colony-forming unit of bacteria in the centiliter; if it is not the case, then this centiliter
was free of bacteria. Let X be the total number of colony-forming units of bacteria in
the centiliter of contaminated water; then we can write X as X = Zjﬁﬂ X;, where X;
is the number of colony-forming units of bacteria in the ¢th Petri dish. The variables
X1, ..., Xj00 are independent and Poisson-distributed with parameter £/100.

However, we cannot observe X, ..., X199. Rather, we observe Yi,..., Y100,
where Y is defined by

Y. — { 0 if no colony forms in the ¢th dish
! 1 otherwise.

The observations Y; are independent and have a Bernoulli distribution with
PY;=0)=P(X;=0)=e# and  PY;=1)=1—e #10

Define p:= P(Y; = 1) = 1 — ¢ #/190_ The maximum likelihood estimator for the
parameter p of the Bernoulli distribution can be deduced simply by drawing up the
likelihood equations and solving them for p. Based on the sample Y7, ..., Yigo, this
estimator is equal to p = 125 ¥;/100. Since p = 1 — e~#/190 the parameter 1 is
equal to —1001og(1 — p), and the maximum likelihood estimator for 1 is given by
fi = —1001og(1 — 321 ¥;/100). ——

Example 3.20 Application: Poisson stocks

In Example 1.4, a statistical model is described for the total number of specimens of a
certain item sold per week and per retailer. We observe X = (X1 1, X12,...,X71.7),
where X ; is the number of specimens sold by retailer 7 in week j. Suppose that
Xi1,...,X7,yareindependent and that X; ; has a Poisson distribution with unknown
parameter ;. The parameter 1; depends only on the retailer and not on the week. We
estimate the parameters fi1, . . ., iy using the maximum likelihood method.

The log-likelihood function for X, 1,..., X7, s is equal to

(W1s-- ey pir) szlog( _Muzy_.)

11_]1

S NED 9 LTS p R

=1 j=1 =1 j=1
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We take the natural parameter space (0, 00)! for (y1, ..., ur). Solving the likelihood
equations gives ji, = J ! Z}']:1 Xk, ;, provided Z}']:1 Xk,; > 0.1t is easy to check
that the Hessian matrix in an arbitrary point (u1, ..., gr) is a diagonal matrix with
only negative eigenvalues when Z}']:1 Xk,; > 0forall k. If Z}']:1 Xk.; = 0 (which
has a positive probability of happening), there in fact does not exist a maximum
likelihood estimator for p, because in that case, the likelihood function is strictly
decreasing and therefore does not reach a maximum on (0, 00). If we define the
Poisson distribution with parameter O as the probability distribution that is degenerate
in the point 0 and extend the parameter space for py to [0,00) for every k, then
Jt 23-121 X},; is the maximum likelihood estimator for fi.

If the number of items sold changes linearly over the weeks, we may assume
wi; = i(1+ B7). We assume that the change 3 is the same for all retailers. In that
case, the log-likelihood function for X1 1, ..., X7 s is equal to

I
(11, pir, B) = Z Z(—M(l + B7) + Xi,jlog(pi(1 + Bj)) — IOg(Xi,j!))-
i=1 j=1

The likelihood equations for 1y, and /3 are equal to

J

A X 5
Z(—(Hf)’j)ﬂ‘#) =0 fork=1,...,I
— fuk
Jj=1
I .

X
>3 (i + ) =0
i=1 j=1 L+ Bj

There are no explicit solutions for these equations, but the zeros of the derivatives can
be found using an iterative algorithm. —

Example 3.21 Autoregression

The maximum likelihood method is not restricted to independent observations. We
illustrate this with a model that is often used to analyze a variable that changes over
time, the autoregressive model:

Xi=pXi1+e.

Here S is an unknown parameter, and the variables eq,...,e, are unobservable
random fluctuations, also called “noise” or “innovations” in this context. This model
greatly resembles the linear regression model without intercept, except that the
observation X; is “explained” by regression on the observation X;_;. If we view
the index ¢ € {1,...,n} as indicating successive moments in time, then regression
takes place from X; to the past X;_; of the sequence itself, thus explaining the term
“autoregression.” Here, we consider the autoregression model of order 1; the extension
to regression on more than one variable in the past is obvious.
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The order of the data points is now of great importance, and it is useful to
depict the data as a function of time. Figure 3.6 gives three possible realizations
(xo,x1,...,2,) of the vector (Xo, X1,...,X,) as a plot of the index ¢ along the
horizontal axis against the value z; along the vertical axis. All three realizations begin
with g = 1, but after that, they are generated according to the model X; = 5X;_1+¢;
with independent innovations e; but the same value of 5. The statistical problem is to
estimate the value of 3 based on the observed realization (zg,x1, ..., z,). We will
solve this using the maximum likelihood method.

Figure 3.6. Three realizations of the vector (Xo,Xi,...,Xs0) distributed according to the
autoregressive model with standard normal innovations, g = 1 and 8 = 0.7. Each of the three
graphs is a linear interpolation of the points {(¢,z;):4=20,...,50}.

We complete the description of the model by assuming that X is distributed
according to the probability density p~*° and that the innovations e, ...,e, are
independent, normally N (0, 0?)-distributed quantities that are independent of Xj.
The likelihood function is the joint probability density of the observation vector
X = (Xo,...,Xy,). Because the observations Xy, X1, ..., X,, are stochastically
dependent, the joint density is not the product of the marginal densities. However,
we can use the general decomposition for a joint density:

XU,...,Xn( XU( X1]X )pXQ\X07X1(

°(x1|zo Ta| o, 1) X

Xn‘Xo,. .. ,anl(

To)p
q-.xp

P To,...,Tn) =D

Tn| TOy vy Tpe1)-

This formula gives a factorization of the joint density as the product of conditional
densities and generalizes the product formula for the case of independent observa-
tions. The formula can be proved by repeatedly applying the formula fX (x,y) =
FX(2) fYX (y| z). In the autoregressive model, the conditional density of X; given
Xo =x9,...,X;—1 = x;—1 is equal to the density of Sx;_1 + e;, that is, the density
of the normal distribution with expectation Sx;_1 and variance vare; = o2. The
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3.3: Maximum Likelihood Estimators

likelihood function is therefore of the form

) X Tl X = BXi
(8,0) = L(B,05 X0, ..., X)) = p (XO)EU¢( ),
We have not yet specified the density of X. Because this density influences only one
of the n + 1 factors and n is usually large, the factor in question, pXO (Xo), is left out
of the likelihood function, and the analysis is carried out “conditionally on the value
of Xo.”

With this definition of the likelihood function, the (conditional) maximum
likelihood estimator for the parameter (5,0) can be determined using the same
calculation as that used for the linear regression model (see Section 7.2.1). The
maximum likelihood estimator 3 minimizes the sum of squares 8 — > (X; —
BX;_1)? and is equal to
S XX

SN

The maximum likelihood estimator for o is

B =

o LI A
0'2 = E;(Xl — IBXifl)z.

Depending on the modeling of the initial observation X, the maximum likelihood
estimators based on the unconditional likelihood function take on slightly different
forms. ——

Example 3.22 Application: compound Poisson process

A health insurance company refunds the incurred medical expenses to its clients and
health care providers. At the beginning of the month, the company would like to have
an estimate for how much money it needs to reserve for that month in order to be able
to pay all approved claims. For this, a data set is drawn up containing all payments
made in the past 120 months.

The number of approved claims varies from month to month and depends on
the number of clients the health insurance company has in said month. We define NV,
to be the number of approved claims in month ¢ and assume that Ny, ..., Njo are
independent random quantities with

N; ~ Poisson(uM;), 1=1,...,120,

where ;¢ > 0 is an unknown parameter and M, is the number of clients the company
has at the beginning of month i. The numbers M; are assumed known and not random.
We denote the size of the jth claim in month ¢ by C; ;. The payout in month ¢ is

then equal to Z;V:ll C; ;. We assume that the sizes of the paid claims are independent
random variables with

C’i,jwexp(ﬁ), 221,7120,]:1,7]\[1,
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where 6 > 0 is an unknown parameter. We moreover assume that the sizes of the
claims C; ; are independent of the number of claims V;.

Under the assumptions on the model made above, it is possible to determine the
expected payout for next month. If it were known that the number of claims for next
month is n, then the expected payout would equal

EyY C)= %
Jj=1

where C1, ..., C), are the sizes of the claims approved next month. The total number
of claims is, however, unknown, and has a Poisson(uM )-distribution with M the
number of clients next month. The expected payout then becomes

Buo(265) (S 0)) () - 5"

In this expression, we first compute the expectation of 2?:1 C; for a given N, which
gives N/, and then take the expectation of N/f. When 6 and p are known, the
expected payout next month is therefore equal to M /6.

The parameters 1+ > 0 and § > 0 are unknown and must be estimated using
the entries in the data set. We use the maximum likelihood method. To deduce the
likelihood function, we first determine the joint density of (C1,...,Cn,N), the
observations for one month. We denote this density by fy .,

foulcr,...,en, N =n)= foulci,...,cn] N =n)P,(N =n)
_ (ﬁ ee—GCj)e—uM (IU’M)n
‘1 n!
j=

We assume that the observations of different months and years are independent. The
log-likelihood function for all observations in the data set of the past 10 years is then
equal to the logarithm of the product of the joint probability densities of the different
months:

120 N;

(1, 0) Hlog(H(H fe="? )e i %)
=1 j=1
120

= Zlog(H e 0% J) + Zlog( _“MZ%%!)M)

The first term does not depend on the parameter p, and the second term does not
contain the parameter 6. To determine the maximum likelihood estimators of 6 and 1,
it therefore suffices to maximize the first term with respect to 6 and the second term
with respect to p. This gives

2120 N

b= ==L and =
Y2 Gy

2120 M
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3.3: Maximum Likelihood Estimators

The maximum likelihood estimator for the payout is equal to

ﬂ 2120 Z] C
i Z120 M,

In this example, we assume that the parameters ;. and 6 are the same every month
and every year. These assumptions are contestable. Indeed, on average the payout will
increase because of inflation, and the number of claims will be greater during the
winter than in the summer months. It is worth considering making the parameters
dependent on the year and month. Instead of one parameter i, we could take twelve
parameters (i1, . .., p12 for the different months. However, increasing the number of
unknown parameters in the model decreases the precision of the estimates. ]

Even though the previous examples of applying the maximum likelihood method
might give another impression, it is often not possible to give an explicit formula
in the data for the maximum likelihood estimator (see Example 3.18). In such a case,
we need to apply a numerical approximation method. For a given observation z, the
likelihood function 6 — L(6; x) is a “normal” function of the parameter 6, and we are
looking for the value of § where this function is maximal. We can use, for example,
the Newton—Raphson method or the variation of this method known in statistics as
Fisher’s scoring. This section contains a short description of these numerical methods.

In most cases, the desired value 6 is a stationary point of the derivative of the
log-likelihood function with respect to 6. We therefore discuss finding a zero 6 of the
function 6 — A(H; x), where A is the vector of partial derivatives of the log-likelihood
function 6 — A(0;x) = log L(0; x). The idea behind the Newton—Raphson method
is to start out with a reasonable “first estimate” 6, for § and replace the function A by
the linear approximation

A(0; ) ~ A(Bo; ) + A(Bo; )(0 — o).

Here, A(G; x) is the matrix of the second derivatives of the log-likelihood function
with respect to the parameter. Instead of looking for the value of § where the equation
A(8; ) equals 0, we now turn to solving the equation A (fg; )+ A(fo; 2)(6— ) = 0.
The zero of this second equation is equal to

(31) 91 :90 —A(éo;l‘)_l]\(éo;iﬂ).

Since the linear approximation is not exact, the value 6, will in general not be the
desired zero 6. However, we do expect the value 6, to be a better approximation for 6
than the initial value 90 ‘We then take 91 as initial value and compute a third value, etc.
This gives a sequence of approximations 0o, 01,0, ... that, under certain conditions,
converges to a zero 6. The ‘convergence is assured if the initial value 0, lies sufficiently
close to the target value 6 and the function A is sufficiently smooth, but in practice
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we, of course, do not have this guarantee. Different modifications of the algorithm
can make the convergence more reliable. However, if the log-likelihood function has
several local maxima and/or minima, then a word of caution is necessary, because the
convergence can also take place toward another zero of A (corresponding to a local
maximum of minimum), in addition to the possibility that the sequence 90, 51, 9~2, .
diverge.

In Section 6.3, we will see that the second derivative A(é, x) of the log-likelihood
function evaluated in the maximum likelihood estimator has a special significance.
This second derivative is called the observed information, and is approximately equal
to the Fisher information (see Lemma 5.10). Instead of the second derivative, another
matrix is sometimes used in the Newton—Raphson algorithm (3.1). If the Fisher
information is used, the algorithm is known as Fisher’s scoring. This is especially
interesting when the Fisher information can be computed analytically.

Like Fisher’s scoring algorithm, the expectation-maximization algorithm, or EM
algorithm, is also a frequently used general algorithm to determine maximum
likelihood estimators. The algorithm is meant to be used when the target data is only
partially observed. In many practical applications, such a missing data model appears
naturally, but the algorithm can also be applied by viewing the observations as part of
an imaginary “complete observation” (see Example 3.24).

As usual, we denote the observation by X, but we assume that we observe “only”
X instead of the “complete data” (X, Y"), which could, theoretically, also be available.
If (z,y) — Py(z,y) is a probability density of the vector (X,Y"), then we obtain the
density of X through marginalization:

po(x) = / Po(,y) dy.

(In the case of discretely distributed observations, we take a sum instead of an
integral.) The maximum likelihood estimator for ¢ based on the observation X
maximizes the likelihood function 6 + pg(X). If the integral in the displayed
equation can be evaluated explicitly, then computing the maximum likelihood
estimator is a standard problem, which can be solved, for example, analytically or
using an iterative algorithm. If the integral cannot be evaluated analytically, then
computing the likelihood requires a numerical approximation of the integral in every
value 6, and finding the maximum likelihood estimator may require many such
approximations. The EM algorithm tries to circumvent these approximations.

If we had the “complete data” (X, Y") at our disposal, we would have determined
the maximum likelihood estimator using (X, Y"). This estimator, which will in general
be better than the maximum likelihood estimator based on only X, is the point giving
the maximum of the log-likelihood function 6 +— logp,(X,Y), which is probably
easy to evaluate. A natural procedure when Y is not available, is to replace this log-
likelihood function with its conditional expectation

(3.2) 0 > Eg, (log Py(X,Y)| X).
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This is the conditional expectation of the log-likelihood for the complete data given
the observation X. The idea is to replace the usual log-likelihood with the function
(3.2) and determine the point giving the maximum of the latter.

Unfortunately, the expected value in (3.2) will usually depend on the true
parameter 6y, which is why we have included it as a subscript of the expectation
operator Eg,. Since the true value of # is unknown, the function in the displayed
equation cannot be used as the basis for an estimation method. The EM algorithm
solves this problem by using iteration. Given a suitably chosen first guess 0, for the
true value of #, we determine an estimator 0; by maximizing the criterion function in
(3.2). We then replace éo in Eéo by 51, maximize the new criterion, etc.

Initialize 50. _

E-step: given 6;, determine the function
0 — E;. (logﬁg(X, V)X = x) .

M-step: define 0~i+1 as the point where this function
takes on its maximum.

The EM algorithm gives a sequence of values 0o, 61, ..., and we hope that for
increasing %, the value 0; is an increasingly good approximation of the unknown
maximum likelihood estimator.

This description gives the impression that the result of the EM algorithm is a new
type of estimator. This is not true, because if the sequence éo, 0~1, ... generated by the
EM algorithm converges to a limit, then this limit is exactly the maximum likelihood
estimator based on the observation X . Indeed, under certain regularity conditions, we
have, for every i,

(3.3) g, (X) = pg,(X)

(see Lemma 3.23). Thus, the iterates of the EM algorithm give a constantly increasing
value for the likelihood function of the observation X. If the algorithm works
“as desired,” the values pj. (X)) will end up increasing up to the maximum of the

likelihood, and 6; will converge to the maximum likelihood estimator. Unfortunately,
there is, in general, no guarantee for such a convergence, and it needs to be studied case
by case. The sequence 0; can, for example, converge to a local maximum. Moreover,
carrying out the two steps of the algorithm is not necessarily easy.

Lemma 3.23

The sequence 0o, 01,0, . .. generated by the EM algorithm gives an increasing
sequence of likelihood values pg (X),pg, (X), pg,(X), .. ..

Proof. The density py of (X,Y") can be factored as

Y|X(

Po(z,y) =pg ~ (y|2)po(x).
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The logarithm changes this product into a sum, and so we have
_ Y|X
By, (logPs(X,Y)| X) = B, (logpy ™ (V| X)| X) + log po(X).
As the value 91+1 maximizes this function with respect to 6, this expression is greater
inf = 91+1 thanin 6 = 01,
Eéi (logﬁéiJrl (X, Y)| X) > Eéi (logﬁéi (X, Y)| X)

If we can show that Ej. (logpz/IX(Y| X)| X) is smaller in § = 0;11 than in 6 = 6;,
then the converse must hold for log pg(X) (and the difference must be compensated
by this second term), from which follows that (3.3) holds. It therefore suffices to show

that
Eg, (logpy ™ (V] X)| X) < 5 (log pj ™ (Y] X)| X).

This inequality is of the form [ log(g/p) dP < 0 for p and ¢ the conditional densities

of Y given X for the parameters 0; and 9~i+1, respectively, and P the probability
measure corresponding to the density p. Since logx < z — 1 for every z > 0, every
pair of probability densities p and ¢ satisfies

/log(q/p)dP</(q/p—1 )dP = /WO z)dr —1<0.

This implies the previous displayed equation, completing the proof. M

Example 3.24 Mixture distribution

Suppose that a number of objects or individuals can, in principle, be grouped in
more or less uniform clusters. Unfortunately, we cannot observe the cluster labels,
but instead of that, we measure a vector x; for each object. We want to determine the
clustering of the objects based on the observations x1, . .., Z,.

We could assume that each observation x; is the realization of a random vector
X, with probability density f; if the object belongs to the jth cluster. We can view
the qualification of “more or less uniform” in the previous paragraph to mean that the
probability densities f1, ..., fx for the different clusters show little overlap. We will
assume that the number k of clusters is known, even though we could also determine
this from the data.

One way to determine the clusters is to maximize the likelihood

ITII #x)

j=liel,

over all partitions ([,...,1I;) of {1,...,n} in k subsets and over all unknown
parameters in the densities f;. The partition then gives the clustering. For example,
taking the normal density with expectation vector p; for f; leads to k-means
clustering: the best classification is given by the partition that minimizes

k
min_ 573X — )%

e Rk
(ks k)€ J=1iel;
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Computationally, this is not a simple problem, but the clusters can be approximated
using an iterative algorithm.

Another way is to assume that every object has been assigned to a cluster
randomly (by “nature”). We can then speak of a random vector (C1,...,C,) that
gives the clusters labels (C; = j if the ith object belongs to the cluster j), and view
the density f; as the conditional probability density of X; given C; = j. The class
vector (C4,...,CYy,) is not observed. If we assume that (Cy, X1),...,(Cp, X,,) are
independent, identically distributed vectors with P(C; = j) = p; forj = 1,...,k
for all 4, then we can determine the maximum likelihood estimator for the parameters
p = (p1,...,pr) and the unknown parameters in f = (f1,..., fi) using the EM
algorithm.

The complete data consist of (C1, X1), ..., (Cp, Xy,). The corresponding likeli-
hood function can be written as

}_> Hzpjfj l{Cl = HH pjfj {Ci:j}'

=1 j=1 1=17=1

The E-step of the EM algorithm is therefore the computation of

n k
E; 7 (log H H (pjfj(Xi))l{ci:j} | X1,..., Xn)

i=1j=1

n k
- ZZEﬁ,f((long +log f;(X:))1(C; = j}| XZ-).

i=1j=1

Using Bayes’s rule, we find the conditional probability density of C; given X; to be
P(C; = j| X5 = x) = p; fi(x)/ >, pefe(z). The last displayed equation is therefore
equal to

S Bifi(X Bif5(X:)
logpj =~ + J(X) =
;; R cfc< ) lel SRR AT

In the M-step of the EM algorithm, we maximize this expression with respect to p
and f. For the maximization with respect to p, only the first term matters. Arguments
using calculus show that the maximum is reached for

b, — Ly _Pifi(X0)
;= — .
n i=1 Zc pcfc(Xi)
(Compare this with the calculation in Exercise 3.15.) For the maximization over f,
only the second term matters. Moreover, we maximize each of the j terms individually

with respect to f; if the parameters f1, ..., fi vary independently from one another:
in that case, f; maximizes

7 Y log f;(X; M
f H; 0g f;( )Zcﬁcfc(Xi)
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If, for example, we choose the normal density with expectation vector p; for f;, so
that log f;(x) is equal to —3 ||z — 11;||? up to a constant, and maximize with respect
to uj;, we find

i Xi  pifi(X)
Hi = n T Q5 = - = .
D i1 i > e Pefe(Xi)

This is a weighted average of the observations X;, where the weights are equal to the
conditional probabilities c;; = P (C; = j|X;) that the ith object belongs to the

jth cluster, for 1 < ¢ < n, computed using the current approximation (p, f) of the
parameters. We now repeatedly iterate these updating formulas until the result hardly
changes.

From the maximum likelihood estimates of the parameters, we also deduce a
maximum likelihood estimate of the probability P, ;(C; = j| X;) that the ith object
belongs to the cluster j. We could assign the object to the cluster where this probability
is the greatest. —

The method of moments is an alternative to the maximum likelihood method.
Because the method of moments often does not use all the available information
from the statistical model, method of moments estimators are often less efficient than
maximum likelihood estimators. On the other hand, the method is sometimes easier to
implement. Moreover, the method only requires the theoretical form of the moments
and not the complete probability distribution of the observations. Since these moments
are often easier to model realistically than the full probability distribution, this can be
a great advantage. Using a wrong model to construct estimators can thus be avoided.

Definition 3.25 Moment and sample moment

The jth moment of a random variable X with a distribution that depends on the
unknown parameter 0, is Eq(X7), provided that this expectation exists. The jth
sample moment of a sample of independent and identically distributed variables
Xy, Xpis X9 =710 X7,

The jth moment can be estimated using the jth sample moment of a sample with
the same distribution. It follows from the law of large numbers (Theorem A.26) that
this is a good estimator for Eq(X7).
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Definition 3.26 Method of moments estimator

Let Xy,...,X,, be a sample from a distribution with unknown parameter 6. The
method of moments estimator for 6 is the value  where the jth moment corresponds
to the jth sample moment:

E;(X7) = X4,

The method of moments estimator for g(0) with g: © — H a function with codomain

Hisg(6).

In practice, we prefer the method of moments estimator given by taking j as small
as possible. For a 1-dimensional parameter 6, it suffices to take j = 1, provided that
the expected value of the marginal distribution depends on #. When the first moment
does not depend on 6, we choose j = 2, etc. If § has dimension greater than 1, we need
more than one equation to obtain a unique solution for 6. In that case, the method of
moments estimator 0 is solved from the equations for j = 1,..., k with k the smallest
integer for which the system of equations has a unique solution.

Example 3.27 Exponential distribution

Let X1,..., X, be asample from an exponential distribution with unknown parameter
A. Then Ej X; = 1/\. The method of moments estimator for A can now be found by
solving the equation X = 1/ A for . This gives A=1 /X as a method of moments
estimator for A. This estimator is also the maximum likelihood estimator for A\ (see
Example 3.12). ——

Example 3.28 Uniform distribution

Let X1,..., X, be a sample from the U|0, §]-distribution with unknown parameter 6.
Then EpX; = 6/2 and the method of moments estimator for 6 is equal to 6 = 2X.
The maximum likelihood estimator for 6 is equal to X ,,) (see Example 3.15). We saw
in Example 3.6 that the mean square error of X ,,) is less than that of 2.X. In this case,
we therefore prefer to use the maximum likelihood estimator. ——

Example 3.29 Normal distribution

Let X1,..., X, be a sample from the N(0,02)-distribution with unknown parameter
02 > 0. Then E,2 X; = 0, and therefore the first moment cannot be used to determine
the method of moments estimator for o2. The second moment of X; is equal to
E,>X? = o2. The method of moments estimator for o is then equal to 6> = X2, If
the expectation of X; were unknown or nonzero, then we would have found a different
method of moments estimator for 02 (see Example 3.31). —
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Example 3.30 Gamma distribution

Let X,...,X, be random variables with a gamma distribution with unknown
shape and inverse scale parameters o and A, respectively. Then E, )\ X; = /A
and var, A X; = af A2, and therefore the second moment is equal to E,, AXE =
varg x Xi + (EaxX;)? = a(1l + «)/N%. The method of moments estimators for «
and A can be found by solving the equations

B, Xi=a/\ =
B, X7 =a(l+a)/N =X?
for & and . This gives
0 ) _
X7 - (X - (X

Since no explicit expressions for the maximum likelihood estimators are known,
the mean square error cannot be determined. In order to choose between the two
estimators anyway based on their performance (bias and variance), we can carry out a
simulation as described in Section 3.2. —

Example 3.31 Expectation and variance

Let X1,..., X, be a sample with expectation y and variance 2. Solving for /i and
&2 in the equations

E 50X =p=X,
Epee X} =p*+6°=X2

s

gives the method of moments estimators for /i and 62

_ . 1 _
=X 2 =X2 - (X)?=-) (X;—-X)~%
p=X, ¢ () = L =)
If the underlying distribution is the N(u,o?)-distribution, then these method of
moments estimators are equal to the maximum likelihood estimators for x and o
(see Example 3.14). —
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“ 34.1 Generalized Method Of Moments Estimators
The method of moments can be generalized in several ways. For example, instead
of using the sample moments n~'>""" | X/, we can use averages of the type
n~ 1" g(X;) for suitably chosen functions g. Furthermore, the observation X need
not be a sample, and we can also use more general functions of X instead of averages.
The essence is solving a system of equations of the type g(X) = e(#) for suitably
chosen functions and e(0) = Egg(X).

If the parameter is k-dimensional, then it seems natural to use k equations for the
definition of the method of moments estimator. The question is then: which functions?
In fact, the method of moments first reduces the observations to the values of k
functions of those observations, and the method of moments estimator is based on
this reduced data. If the original data cannot be reconstructed from the k values,
this reduction leads to a loss of information. The choice of which functions to use
is therefore important for the efficiency of the resulting estimators.

A possible way to avoid this loss of information is to use more moments than
there are unknown parameters. Because this leads to more equations than unknowns,
in this case, it will in general not be possible to find a parameter value for which
the sample moments are exactly equal to the theoretical moments. Instead of this,
we could minimize a measure of distance between these two types of moments, for
example an expression of the form

l

Z(igw(&-) - Eegj(Xl))Q.

j=1

The functions g1, . . ., g; are known, fixed functions. The estimator 0 is the value of 6
that minimizes this expression. This method is known (especially in econometrics) as
the generalized method of moments.

Bayes’s method is the oldest method for constructing estimators; it was suggested by
Thomas Bayes at the end of the 18th century. This method is guided by a philosophy
on the way to express uncertainty. The starting point of this philosophy (in its strictest
form) is that the statistical model does not contain a unique parameter value that
corresponds to the “true” state of reality. However, every parameter value has a
probability, which can, if necessary, be determined in a subjective, personal way. This
subjective element of the method has lead to much criticism. Bayesian methods in a
more objective sense, however, have been widely accepted, and have known a great
popularity since the 1990s, because initial problems with the computations can now
be solved using computer simulation (see Section 3.5.1).

75



3: Estimators

A Bayesian approach begins with the specification of a so-called prior probability
distribution on the parameter space O, in addition to the specification of a statistical
model (or likelihood function). The prior distribution is chosen either using ad hoc
arguments or as an expression of the a priori, possibly subjective, estimate of the
probability of the different parameter values. For example, given a binomial variable
X with success parameter 6 € [0, 1], we could choose the uniform distribution as prior
distribution for 6.

This prior distribution is then adjusted to the available data by applying
Bayes’s rule from probability theory. This adjusted distribution is called the posterior
probability distribution. We will first describe Bayes’s method as a method for
constructing estimators, and will describe this adjustment of the probability distri-
bution in more detail in Section 3.5.1.

For simplicity, we take the prior distribution to be continuous with density 7, an
arbitrary probability density on ©. The Bayes risk of an estimator T’ for a real-valued
parameter g(6) is defined as the weighted average of the MSE(#; T'), with weight ,

R(m:T) = / Eq(T — 9(60))° (0) db.

This is a measure for the quality of the estimator 7', which awards a higher weight to
those values 6 that are deemed, a priori, more probable. The Bayes estimator is defined
as the best estimator for this quality criterion. The aim is still to find an estimator for
which the MSE(6; T') are small for all §; we make the criterion more concrete by
giving weights to the different values of 6.

Definition 3.32 Bayes estimator

The Bayes estimator with respect to the prior density 7 is the estimator T' that
minimizes R(m; T') over all estimators T .

In the following theorem, the Bayes estimator is specified as a quotient of two
integrals. Let « — py(z) be the probability density of the random vector X.

Theorem 3.33

The Bayes estimate for g(#) with respect to the prior density w is given by

[ 9(0)pe(x) w(0) do
T(x) = fpﬁ(x)ﬂ'(ﬂ) Fr

The Bayes estimate therefore depends on both the likelihood function 6 — pg(x)
and the prior density 7. Whereas the maximum likelihood estimator is defined as the
point where the likelihood function takes on its maximum, the Bayes estimator is some
kind of weighted average of this function.
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Example 3.34 Exponential distribution

Let X = (X1,...,X,) be a sample from the exponential distribution with unknown
parameter 6. As prior distribution for 6, we also take the exponential distribution, but
this time with known parameter A\. The Bayes estimate T (x) for 0 based on = =
(21, ...,2,) and with respect to the given prior distribution is

i DY R el D VRS BHEEOR )
fO ( i= 1 ) 0
fO ( i=1 ve ﬁri)AeiAﬂdﬁ fooo ?9”)\6_19(/\+ij1$ )d?g

Computing the integrals in the numerator and denominator of this fraction explicitly
is not the best way to determine T (x). We will see that this becomes easier if we first
determine the posterior density; see Example 3.37. In that example, we deduce that
Ti(z) = (n+1)/(A+ X1, ;) is the Bayes estimate. The Bayes estimator for 6 is
therefore equal to 75 (X) = (n+1)/(A+ >, X;). For large values of n, the Bayes
estimator 7’ (X) and the maximum likelihood estimator =1 / X are approximately
equal. ——

The proof of Theorem 3.33 is an exercise in the manipulation of conditional dis-
tributions. The following “Bayesian” notation and notions are useful for this, and of
great importance in their own right. They describe the Bayesian method in a more
comprehensive framework, where the so-called posterior distribution forms the end
point of the analysis.

Normally, we view the parameter 6 as being deterministic, and there is a single
“true” parameter value that determines the density « — py(x) of the observation X.
In this section, we deviate from this and view py as the conditional density p ) of

a variable X given that a (hypothetical) random variable O takes on the value 6. We
give this quantity © the (marginal) probability density 7. The joint density of (X, ©)
is then equal to

Px,5(®,0) = Px5_¢(*)P5(0) = po(z)7(0).

The marginal density of X in this Bayesian setting is obtained by integrating the joint
density with respect to 6 and is therefore equal to

px(l') /pX @(:17 0) do —/ (LL')?T(Q) de.

Hence, the conditional density of © given X = z is equal to

_pxa@0)  py(x)m(6)
Pejx—(0) = = px@  Tpe(@n(@)dd’

(This formula is exactly Bayes’s rule from probability theory; see Section A.6.)
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Definition 3.35 Posterior density

The posterior density of © is

__ po(@)n(9)
rou= = oy (aymto) di

The term in the denominator of the posterior density is just a normalization
constant such that

[ res—n@rao =1

Before the observation was known, we awarded the prior density 7 to ©. Once we
know the observation, the posterior density gives the adjusted probability distribution.
This way, the observation leads us to adjust our assumptions concerning the parameter.

These computations show that the expression 7'(x) in Theorem 3.33 is exactly

the expectation of ¢(©) for the posterior probability distribution, the conditional

expectation of g(©) given X = z. We can therefore reformulate the theorem as
follows.

Theorem 3.36

Using the Bayesian notation, the Bayes estimate for g(#) with respect to the prior
density m is given by

T(z) = E(g(@)| X = x) = /g(@)p@X:m(ﬁ) do.

Proof. First, we write the Bayes risk in the Bayesian notation. The term Eg (T -

g(G)) ? in the usual notation is the conditional expectation
J— 2 JE—
E[(T(X) - 9(8))*| 6 — ¢
in the Bayesian notation. From this, we deduce that
2 J—
R(m;T) = /E((T(X) —9(0))°|® = 9) (0) do
2

=E(T(X) - g(0))

N2
= /E((T(x) -9(0)7 X = x) px(x) dx.
We have used the decomposition rule for expectations EZ = [[E(Z|Y =vy) fy (y) dy
with Z = (T(X) — g(@))2 twice: in the second equality with Y = © and in the third
equality with Y = X.
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To minimize R(m;T) with respect to 7', we can minimize the integrand with
respect to every x, because the integrand is everywhere nonnegative. Therefore, for
every x, we are looking for the number ¢ = T'(x) such that

E((t-9(0)°|X =) px(@

is minimal. Because for given z, the term px () is a nonnegative constant, minimizing
the integrand with respect to ¢ is equivalent to minimizing

B((t-9©)7 X =)

with respect to ¢. Consequently, for every z, we can find the number ¢ = T'(x) that
minimizes the last expression. Minimizing E(t — Y')? with respect to ¢ gives the value
t = EY, the minimum of the parabola t — E(t —Y)? = t? — 2t EY + EY?. Here, we
must apply this principle with a random variable Y that has the conditional distribution
of g(©) given X = x. We find t = E(g(6)| X = z); that is, the Bayes estimate is
given by T'(x) = E(g(@)\ X = x) [ |

Example 3.37 Exponential distribution, continued from Example 3.34

Let X = (X1,...,X,) be a sample from the exponential distribution with unknown
parameter 6. Assume that the prior density for  is the exponential distribution with
known parameter \. Example 3.34 gives an expression for the Bayes estimate for 6. By
first determining the posterior distribution, we can more easily determine the Bayes
estimate explicitly.

The posterior distribution is given by

(I, 0ot e
(ITiy Ye=?7i) e~ dv)

0 — p@X:x(ﬁ) = foo
0

9n>\6_9()\+2?:117i) 9n6—9()\+2?:19:i)
Jgmae PO L gy Cla ),
where C'(x, A) is a normalization constant depending on z = (x1,...,z,) and A

such that P X =z is a density. We see that this posterior distribution is the gamma
distribution with shape parameter n + 1 and inverse scale parameter equal to A +
> ;. In general, the expected value corresponding to the gamma distribution with
shape parameter «v and inverse scale parameter A is equal to a;/ A (see Example A.13).
The Bayes estimate for 6 is the expected value of the posterior distribution, and is
therefore equal to T) (z) = (n+1)/(A+>_/_,x;). The corresponding Bayes estimator
isTh(X)=(+1)/(A+ >, X;).

We determine the Bayes estimator for #? similarly. By Theorem 3.36, it is equal
to the second moment of the posterior distribution, in this case the gamma distribution
with shape parameter n + 1 and inverse scale parameter A + » ., z;. The second
moment of a gamma(a,\)-distributed random variable is equal to /A% + (a/\)? =
(o + 1)a/A2. The Bayes estimator for 6 is therefore equal to (n + 2)(n + 1)/(\ +
S Xa)2 ——
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Example 3.38 Binomial distribution

Let X be a random variable with a binomial distribution with parameters n and 6,
where n is known and 0 < 6 < 1 is unknown. A useful class of prior densities on
[0, 1] is the class of beta densities, parameterized by « and 3 (see Example A.14):

B 00471(1 _ G)ﬁfl

") =" B )

10,17(0).

When we take the beta distribution with parameters « and /3 as prior distribution for
O, the posterior density is given by

_ (era—erre) eteria—g)nets
(M9 (1 — 9)r—wa(d) do C(z, o, B)

)

with C(x, «, ) a normalization constant such that PE|X =2 is a density. In other words,

the posterior distribution of © is the beta distribution with parameters = + o, n — + 3
and with C(z, «, ) = B(xz + «,n — x + 3) for the beta function B. Figure 3.7 shows
two times three realizations of the posterior density. In all cases, the true parameter
value is equal to 6 = % and the prior density (dashed in the figure) is the beta density
with parameters « = 25 and 8 = 5. In the top figure n = 20, while in the bottom
figure n = 100. The prior density gives a relatively large probability to values of ©
near 1, and is therefore not suitable for estimating the true parameter value 6 = %
The figure shows that this incorrect prior density is corrected well if sufficient data is
available, but influences the posterior density if this is not the case.

The Bayes estimate for ¢ is now given by the expected value corresponding to the
beta distribution with parameters  + « and n — x + (3. In general, the expected value
corresponding to the beta distribution with parameters o and 3 is equal to o/ (v + 3),
so that the Bayes estimator for 6 is equal to

X+«

TopX) = v

We find a different estimator for each combination of parameters («, 5) with o > 0
and B > 0. The natural estimator X /n is not in the class of Bayes estimators; rather,
it is the limit case («, 5) — (0,0).

Which estimator should we use? If we feel strongly about a prior distribution,
we can use the corresponding Bayes estimator. A problem is that another researcher
may have other “feelings,” leading to another prior distribution and therefore another
estimator. No Bayes estimator is “wrong.” After all, any Bayes estimator is best if we
decide to use the corresponding Bayes risk as quality criterion. Still, it would be wise
to compare the estimators further, for example by computing the mean square errors.
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0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.7. Three realizations of the posterior density in the cases n = 20 (top) and n = 100
(bottom). In both cases, the prior density (dashed) is equal to the beta density with a = 25 and
B = 5. The realizations (solid) are based on samples from the binomial distribution with parameters
n and .

2

These are equal to

X+a 2
MSE(6; T 5) = Ee(m 79)
_ varg X (E9X+a _9>2
(n+a+p)? n+a+p
B 0*((a+ B8)* —n) +0(n — 2a(a + B)) + o?
N (n+a+ B)?2 '

Figure 3.8 shows the mean square error of several estimators as a function of 6. Every
estimator is better than another at some point, and there is no absolutely best estimator.
Interesting special cases are @ = [ = %\/ﬁ (constant mean square error) and
a = f = 0 (estimator X /n). The choice « = 3 = 1 corresponds to the uniform prior
distribution, which a priori gives all 6 € [0, 1] the same probability. The latter seems
reasonable, but this estimator is nevertheless seldom used. Fortunately, the differences
are small when n is large, and even disappear as n — oo. Note that in the bottom
graph (corresponding to n = 100) in Figure 3.7 the three realizations of the posterior
distribution lie closer to the true value 1/2, but are also more concentrated. The

posterior densities seem surprisingly normal. We will come back to this in Section 5.7,
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where we will see that Bayes and maximum likelihood estimators often differ little

when the number of observations is large. —
\ \ \ \ \ \
0.0 02 0.4 06 0.8 10
Figure 3.8. Mean square error of the Bayes estimators T, g with n = 20 and a = 8 = %\/ﬁ
(constant), o = B = 0 (curved, solid), & = /n, 8 = 0 (linear, dashed), and o = 8 = 1 (small
dashes) as functions of 6.
Example 3.39 Geometric distribution
Let X = (X1,...,X,) be asample from the geometric distribution with parameter 6,

Py(X; =xz)=(1-6)""0, r=12,...,

where 0 < 6 < 1 is unknown. As prior distribution for 6, we choose the beta
distribution with parameters & = [ = 2 with probability density

w(0) =6(1—0)0, 6 €(0,1).
Then, the posterior distribution is given by

[T Po(X = )n() _ 671(1 — )@ D+

- fol [T, Po(X; = ai)m(9) dv Clxr,...,xn)

p@p{:w (9)

This posterior distribution of 6 is the beta distribution with parameters n + 2 and
n(T — 1) + 2. As in the previous example, we determine the Bayes estimator for ¢
using the expectation of the beta distribution T(X) = (n 4+ 2)/(nX +4). ——
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“351 MCMCMethods
The principle behind Bayes’s method is simple: from a model and a prior distribution,
we compute the posterior distribution using Bayes’s rule. However, the computation
in the last step is not always simple. Traditionally, the prior distribution is chosen in
such a way that it simplifies the computation for the given model. The combination
of the binomial distribution with the beta prior distribution is an example. A more
recent approach is to replace the analytic computation by numerical approximations,
or Markov Chain Monte Carlo (or MCMC) methods. In principle, such methods allow
us to combine an arbitrary prior distribution with a given random model. In this
section, we give a short introduction to these methods.

Given an observation X with realization x with probability density pg and a prior
density , the posterior density is proportional to the function

0 = po(x)m(6).

In most cases, this expression is easy to compute, because this function is directly
related to the specification of the random model and the prior distribution. In general,
however, it is not easy to compute the posterior density or the Bayes estimate: for
this, we need to evaluate the integral of pg(z)m(6) or Opg(x)7(6), respectively, with
respect to 6 for given x. The fact that this can be difficult has decreased the popularity
of Bayes estimators. It is not very attractive to have to choose a certain prior density
for the sake of simpler computations.

If the dimension of the parameter 6 is low, for example if 6 is real, implementing
the computations numerically is reasonable straightforward, for example by approx-
imating the integrals by sums. For higher-dimensional parameters, for example of
dimension greater than or equal to 4, the problems are more important. Simulation
methods have been used to reduce these problems since the 1990s. MCMC methods
are a general process used to simulate a Markov chain Y7, Y5, ... whose marginal
distributions are approximately equal to the posterior distribution. Before we describe
the MCMC algorithms, we discuss a number of essential notions from the theory of
Markov chains.

A Markov chain is a sequence Y7, Ys,... of random variables such that the
conditional distribution of Y;, 1 given the previous variables Y7, ..., Y, depends only
on Y,. An equivalent formulation is that given the “present” variable Y,,, the “future”
variable Y,, ;1 is independent of the “past” Y7, ..., Y,,_1. We can then see the variable
Y, as the state at “time” n, and to simulate the next state Y,, 4, it suffices to know
the current state Y,,; knowledge of the prior states is irrelevant. We will consider
only Markov chains that are “time-homogeneous.” This means that the conditional
distribution of Y,, 1 given Y,, does not depend on n, so that the transition from one
state to the next always follows the same mechanism. The behavior of the chain is
then completely determined by the transition kernel () given by

Qy, B) = P(Ynt1 € B|Yn = y).
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For a fixed y, the map B — Q(y, B) gives the probability distribution at the next time
given the current state y. Often, @) is described using the corresponding transition
density q. This is the conditional density of Y,, 41 given Y,,; it satisfies Q(y, B) =
/ 5 4y, z) dz, where in the discrete case, the integral must be replaced by a sum.

A probability distribution Y is called a stationary distribution for the transition
kernel @ if, for every event B,

/QWBMNMZTB)

This equation says precisely that the stationary distribution is preserved under the
transition from Y, to Y, ;1. If Y7 has a stationary distribution, then Y5 also has a
stationary distribution, etc. If ) has transition density ¢ and Y has density v (which is
then called a stationary density), then

/q(y, z)v(y)dy = v(z)

is an equivalent equation. This gives a simple way to characterize stationary
distributions. (The stationary distribution and density of a Markov chain are custom-
arily called II and m, respectively. However, in the context of Bayesian estimates, this
notation may lead to confusion, which is why we use the symbols given above.) When
a density v satisfies the detailed balance relation

v(y)a(y, z) = v(2)q(z,y),

v is a stationary density. This can be seen by integrating both sides of the relation with
respect to y and using the fact that [ ¢(z,y) dy = 1 for every z. The detailed balance
relation requires that a transition from y to z be as probable as a transition from z to y
when in both cases, the first point is chosen from the density v. A Markov chain with
this property is called reversible.

The introduction to Markov chains we just gave suffices to understand the
principle of MCMC algorithms. In MCMC algorithms, Markov chains are generated
with a transition kernel whose stationary density is equal to the desired posterior
density. In the application to MCMGC, the stationary density y +— v(y) in the general
discussion of Markov chains is replaced by a posterior density that is proportional
to 0 +— pg(x)m(f) for observed data x. Fortunately, in simulation schemes, the
proportionality constant is unimportant, so that the fact that the integrals are difficult
to evaluate is not relevant. Consequently, MCMC algorithms can, in principle, be used
for any prior distribution.

Because it is usually not easy to generate the first value Y] of the chain from the
stationary density (in the MCMC context, this is the posterior density), an MCMC
chain is usually not stationary. The chain does converge to a stationary one as
n — oo. In practice, the chain is simulated over a great number (V) of steps, and
the first simulated data Y7,...,Y}, are thrown out; this is called the “burn-in.” The
remaining variables Y;41,Yp49,..., YNy can be viewed as a realization of a Markov
chain with the posterior distribution as stationary distribution. Using, for example,
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a histogram of Yp41,..., YN, we obtain a good idea of the posterior distribution,
and the average of Y11, ..., Yy is a good approximation of the Bayes estimator, the
posterior expectation. The motivation for using this “empirical approach” is the same
as in Section 2.2.1, except that the variables Y7, Ys, ... now form a Markov chain
and are therefore not independent. However, many Markov chains also follow a law
of large numbers, which guarantees that now, too, averages behave asymptotically as
expectations. The convergence rate does turn out to depend strongly on the transition
kernel, so that in practice, it can still be quite difficult to set up an MCMC algorithm
that leads to a good approximation within a reasonable (CPU) time.

There now exist many types of MCMC algorithms. The two most important ones,
which are often used together, are the Metropolis—Hastings algorithm and the Gibbs
sampler.

Example 3.40 Metropolis—Hastings algorithm

The Metropolis—Hastings algorithm generates a Markov chain using a so-called
proposal transition density g (with associated transition kernel ). This transition
density is chosen in such a way that it is easy to simulate using the probability density
z + q(y, z), for every given y. At the end of this example, we will come back to the
choice of the proposal density. Next, define

with v the posterior density we want to approximate and a A b = min(a,b). Note
that to determine «/(y, 2), it suffices to know the form of v and ¢; the proportionality
constant disappears. In the Metropolis—Hastings algorithm, for every transition from
Y, to Y, 4+ in the Markov chain, a state Z, 1 is generated following the proposal
transition kernel (), which acts as a candidate value (whence the name proposal). This
state is accepted (that is, Y,, 11 = Z,,+1) with probability «(Y;,, Z,,+1) and rejected
with probability 1 — «(Y,,, Z,,+1), in which case the current state is kept (that is,
Y,+1 = Y,). The simulation algorithm is then as follows:

Take a fixed initial value Y and then continue recursively as follows:
given Y,,, generate 7,1 from Q(Y,,")

generate U,;; from the uniform distribution on |0, 1]
if Un+1 < Oé(Yn, Zn—i—l) , let Yn+12 = Zn+1

else let Y,+1:=Y,.
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The transition kernel P of the resulting Markov chain Y7, Ys, . . . consists of two
pieces, corresponding to the “if-else” split. The kernel is given by

P(va) :P(Yn-l-l € Blyn :y)
= P(Zn+1 € B,Upt1 < Q(Yﬂa Zn+1)| Y, = y)
+ P(Y, € B,Upt1 > a(Yn, Zni1)| Yo =)

= / a(y, 2)q(y, z) dz
B
+ (1= P(Uns1 < (Yo, Zni1)| Yo =y)) 1yen

= [ alv2)atw2)dx + (1= Bloaly. Zyn) Yo = ) yes

:/Ba(yw)q(w) dz + (1—/04(1/,2)(1(1/,2) dZ)lyer

where the last integral is taken over the entire state space. The moves of the chain
corresponding to the first term in the last expression are governed by the transition
density r(y,z) = a(y, 2)q(y, z). The function « is chosen in such a way that the
codomain contains the interval [0, 1] and that the detailed balance relation

(3.4) v(y)r(y, 2) = v(2)r(z,y)

is satisfied. This part of the Markov chain is therefore reversible. In the second part of
the chain, given Y,, = y, we stay in y with probability

1-— /a(y,z)q(y,z) dz.

This movement from y to y is trivially symmetric. It easily follows from these
statements that v is a stationary density for the Markov chain Y7, Y, . . ..

A popular choice for the proposal density g is the random walk kernel q(y, z) =
f(z—y) for a given density f.If we choose f symmetric about 0, then «(y, z) reduces
to v(2)/v(y). Choosing a good kernel is not easy. The general principle is to choose
a transition kernel () that represents “movements” toward variables Z,, ;1 in the full
domain of v in the first step of the algorithm, and at the same time, does not lead
too often to the step “else”, because this would negatively influence the efficiency of
the algorithm. In MCMC jargon, we say that we are looking for a proposal transition
kernel @) that “is sufficiently mixing,” “searches the space sufficiently well,” and “does
not linger too much.”

To illustrate this, we apply the algorithm given above to the situation of
Example 3.39, where the posterior density can easily be derived analytically. For this,
we generate a sample of size n = 25 from the geometric distribution with parameter
6 = 0.2 and find T = 5.88. For the prior density, we take 7(f) = 66(1 — 6), the
beta(2, 2)-density.
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Figure 3.9. Histogram of the values Y201,...,Y1000 in the Markov chain generated by the
Metropolis—Hastings algorithm based on a geometric sample of size n = 25 with 6 = 0.2 and
T = 5.88. The posterior beta(27, 124)-density (solid line) and the prior beta(2, 2)-density (dashed
line) are also shown.

Figure 3.9 shows the histogram of Y21, . .., Y1000 for the chain generated using
the Metropolis—Hastings algorithm with a normal random walk kernel. The dashed
line in the figure depicts the prior density. The computations in Example 3.39 imply
that the posterior density for this case is equal to the density of the beta(27, 124)-
distribution, which is also drawn in Figure 3.9 (solid line). We see that the histogram
of the values of Y gives a good representation of the posterior density, as expected.
Moreover, the average (0.18) of the values of Y is equal to the Bayes estimate:
27/(27+124)=0.18. ——

Example 3.41 Gibbs sampler

The Gibbs sampler reduces the problem of approximating a high-dimensional
posterior density to repeatedly approximating lower-dimensional distributions. The
algorithm is often used in combination with the Metropolis—Hastings sampler if
no suitable proposal transition density q is available for the Metropolis—Hastings
algorithm.

Let v be a density for the m-dimensional variable Y from which we want to
generate a sample. Suppose that we have at our disposal a procedure to generate
variables from each of the conditional densities

v )
ViYil Y1y Yim 1, Yir 1y - Ym) = 7 ) i=1,...,m,

v(y) dy; ’

where y = (y1,...,Ym). The following algorithm yields a chain Y7,...,Y,, with

stationary density v:

Choose an initial value Yy = (Y 1, ..., Yo, ), then continue recursively as follows:
Given Y, = (Yo 1,.... Yo m),
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generate Y, 11 using vi(-|Yn2,..., Y0 m)
generate Y, ;12 using va(-|Yni11,Yn 3. .., Yo m)

generate Y41, using vn, (| Yot+1,1,-- - Yat1,m—1)-

One by one, the coordinates are replaced by a new value, each time conditionally on
the latest available value of the other coordinates. We can check that the density v
is stationary for each of the steps of the algorithm individually (see Exercise 3.42).
The resulting chain Y7, ..., Y, has stationary density v. The Gibbs sampler can be
used, for example, when there is a high-dimensional proposal transition density in the
Metropolis—Hastings algorithm. ——

Example 3.42 Missing data

Suppose that instead of the “complete data” (X,Y"), we can only observe the data X .
If (z,y) — pe(x,y) is a probability density of (X,Y") that depends on the parameter
0, then = f po(x,y) dy is a probability density of the observation X . Given a prior
density 6§ — 7(6), the posterior density based on the observed value z is therefore
proportional to

9»—)77(9)/179(33;@ dy.

We can apply the MCMC algorithms described earlier to this posterior density.
However, if the marginal density of X (the integral in the display above) cannot be
computed analytically, then implementing the MCMC algorithms is difficult.

An alternative to computing the marginal distribution is to also approximate
the unobserved values Y. In the Bayesian notation, the posterior distribution is the
conditional distribution of an imaginary variable © given the observation X. This
is the marginal distribution of the conditional distribution of the pair (6©,Y) given
X. If we could generate a sequence of variables (O1,Y1),...,(0,,Y,) using the
last conditional distribution, then the first coordinates ©1, ..., 0,, of this sequence
would be samples from the desired posterior distribution. Marginalizing an empiric
distribution is the same as “forgetting” variables, and that is very easy to do
computationally.

Thus, we can apply an MCMC algorithm to simulate variables (©;, Y;) from the
probability density that is proportional to the map (6, y) — po(z, y)w (), with = equal
to the observed value of X . Next, we throw out the Y'-values and view the remaining
©-values as a sample from the posterior distribution of the parameter. —
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P36 MeBstmatos
Let M (6; X) be an arbitrary function of the parameter and the observation. An M-
estimator for a parameter 0 is the value of # that maximizes (or minimizes) the
criterion function 6 — M (6; X). Another term is maximum (or minimum) contrast
estimator.

If we take M equal to the likelihood function, we find the maximum likelihood

estimator for 6. There are many other possibilities. The most common criterion
functions for independent observations X = (X7, ..., X,,) have a sum structure:

M(0;X) = mg(X;)
i=1

for suitably chosen functions my.

Maximizing a function is often the same as solving the system of equations
obtained by setting the derivative equal to 0. The term “M-estimator” is therefore
also used for estimators that solve an equation ¥(6; X) = 0. Such equations are
called estimating equations. Because not every vector-valued function is a gradient of
a function, estimating equations are more general than contrast functions. The most
common criterion functions for independent observations X = (Xy, ..., X,,) have a
sum structure:

V(0;X) =) vo(Xi)
i=1

for suitably chosen vector-valued functions . The equation ¥(6; X) = 0 is
understood as a system of equations. The number of equations is equal to the
dimension of the range of 1)y, and would typically be chosen equal to the number
of parameters to be estimated.

Example 3.43 Median

The average X of random variables X7i,..., X, minimizes the function 6
S (X; — 0)%. The average is an estimate for the “center” of the probability
distribution of the observations. An alternative estimator with roughly the same
interpretation is obtained by minimizing the function 6 — > " |X; — 6|. We can
show that this leads to the sample median

X((nt1)/2) if n is odd,
d{X4,..., X, } = i
med{ X } { %(X(n/2) + X(n42)/2)) ifniseven.

This is the “middle observation.”
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Replacing the square by the absolute value has the effect of reducing the influence
of very large or very small observations. Indeed, the sample median does not change
if the big and small observations are made even bigger or smaller. This property
is referred as the robustness of the median or, more precisely, robustness against
outliers. By making different choices of contrast function, we may define other robust
estimators. For instance, the Huber estimator is given by mg () = (z—0)?1|,_g|<.+
cle — 0|1 |z—6|>c and is a compromise between mean and median. The parameter c is
typically estimated, to reflect the scale of the data. ——

Figure 3.10. The function 6 — X7, |xz; — 0| for a sample x1,...,z, of size 4 from the standard
normal distribution.

Example 3.44 Least-squares estimator

In Example 1.5, we briefly described the simple linear regression model (see also
Section 7.2). For dependent variables Y7, ...,Y,, and predictor variables z1, ..., Zy,
we have Y; = a + fx; + e;. The measurement errors eq, . . ., e, are often assumed
to be independent and have a normal distribution with expectation 0 and variance 2.
The unknown parameters « and J can be estimated using the least-squares estimators
(LS-estimators); these are the values that minimize
n

Z(Yi —a— fr;)’

i=1
with respect to « and f3. If the measurement errors are normally distributed, the least-
squares estimators correspond to the maximum likelihood estimators for « and /3 (see
Section 7.2). The LS-estimators can also be used without the normality assumption.
They are then not maximum likelihood estimators, but general M -estimators.

More generally, we can use the least-squares method in a nonlinear regression
model Y; = go(x;) + e;, where gy is a nonlinear function of 6, the terms e, ..., e,
are unobservable measurement errors, and 2 — gg(x) is a function that is known up
to the parameter 6. The LS-estimator for  minimizes the criterion

n
0— Z(Yl — gg(:vi))2.

i=1
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If the measurement errors are normally distributed, this again leads to the maximum
likelihood estimator for 6. For a nonlinear function gy, we often need a numerical
algorithm to compute the least-squares estimate.

An example of nonlinear regression is fitting a time curve when we have
observations v, . . ., Yn, including measurement errors, of the curve at certain times
Z1,...,%Tn. If a parameterized curve is of the form ¢ — go(t), for example go(t) =
0 + 01t + 03¢~ with 4-dimensional parameter & = (g, 61, 62, 63), then we can
estimate the parameter 6 using the observations (z;,y;) fori =1,...,n. C—3

Example 3.45 Generalized estimating equations

Suppose that we measure each of n experimental units or individuals repeatedly,
obtaining the observations Y; = (Y; 1, ..., Y;1,)T, fori = 1,2...,n, which we wish
to model by a linear regression model of the type as described in Example 1.5 (see
also Section 7.2). We use a common set of parameters 3 = (f1,...,[3,)" for all
observations and hence obtain the model, fori =1,...,nandt =1,...,T;,

T
Yiie =28+ eit,

where the vectors z; ; € R are known explanatory variables. Since the observations
Y; . for the same value of ¢ refer to the same experimental unit, it is often not
reasonable to model the errors e; ; as independent random variables, as in the ordinary
regression model. On the other hand, if the units themselves are a sample of possible
units, then it is reasonable to model the n error vectors e;: = (e; 1, ..., e,»mi)T as
independent. A standard model is then to assume that every e; follows a multivariate
normal distribution N7,(0,02A;), where 0 > 0 and A; is a positive-definite
(T; x T;)-matrix. The logarithm of the likelihood for observing the independent vectors

Y1,..., Y, is then, up to an additive constant,
I¢ 2 1 ¢ Tp—1
—§;1c>gdet<a A) = W;Yi = XiB) AT (Yi - Xi).
Here X; is the (7; x p)-matrix with rows the vectors 7, for t = 1,...,T;. The

expression in the display may be maximized with respect to the unknown parameters
to obtain the maximum likelihood estimators.

The main interest is usually in the vector 3 of regression parameters. Within
the maximum likelihood setup, the estimation of this vector is confounded by the
presence of the additional parameters o2 and A;. The matrices A; may contribute
many unknowns, even in the simplest case that we choose to restrain them to be equal
for different ¢ (and 7; = T is large). The method of estimating equations is helpful to
overcome this problem.

We start by noting that the maximum likelihood estimator for /3 solves the
stationary equation obtained by setting the partial derivative of the log likelihood with
respect to J equal to 0. This takes on the form

n

(3.5) S XTATHY: - XiB) = 0.

i=1
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3: Estimators

This still contains the matrices A;, but only as weight factors. The reason that solving
the equation gives a good estimator for 3 is that the expectations of the terms
of the sum vanish, as E(Y; — X;8) = 0, by the fact that the errors e;+ in the
model have expectation 0. One says that the preceding display gives an unbiased
estimating equation for . This fact does not depend on the matrix A;, but remains
true if this matrix is replaced by a different one. Further analysis will reveal that
the weight matrices A; are optimal in the sense of leading to the smallest possible
(asymptotic) mean square error for the estimator for 5. However, if we do not know
these matrices, then we could only use them in the equation after estimating them from
the data, and this might introduce considerable additional variance, particularly when
the dimensions of the matrices are large relative to n and p. The method of generalized
estimating equations, or GEE, is to replace the matrices by either fixed matrices or
matrices of a particular form, given by a low-dimensional parametric model. For
instance, popular choices are the autoregressive and exchangeable matrices, which
in the case that T; = 4 take on the forms

1 p p P L ppp
p 1 p p? p 1 p p
P> p 1 p|’ pp 1 p
PP op 1 pp op 1

The parameter p € (—1,1) in these matrices determines the dependence between
the multiple observations on a given experimental unit. The value 0 corresponds to
independence and a value close to the ends of the interval (—1, 1) gives strong negative
or positive dependence. It works best to choose p such that the corresponding matrix is
close to the true matrix A;. In practice, we may estimate an appropriate value from the
data. We next substitute the estimated matrix for the matrix A; in the equation (3.5),
and finally solve for S3. —
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3.7: Summary

Let X = (Xi,...,X,) be an observation with distribution P, that depends on the
unknown parameter 6. An estimator T = T(X) for g(6) is a random variable that
depends only on the observation X (and therefore not on the unknown parameter 6!).
(If g(8) = 0, then T is an estimator for 6.) The corresponding estimate is denoted by
T'(x), where z is the vector of the observed values.

Measures for the quality of estimators:

e The bias of an estimator T for g(0) is EgT — g(0).

o The mean square error (MSE) is a measure for the accuracy of an estimator. The
MSE is defined as the expected square difference between 7" and g(6):

MSE(0; T) = Eq||T — g(0)||.

We prefer an estimator with a small MSE for all values of 6. If g(f) € R, then
MSE(0; T) = varg T + (EoT — g(0))?; that is, the MSE is the sum of the variance
and the square bias.

Different types of estimators:

e The maximum likelihood estimate for @ is the value 6 that maximizes the likelihood
function. The likelihood function is the (joint) probability density py of X viewed
as a function of 0, for a given observation z: 0 +— L(0,z) = pg(x). If
X = (Xy,...,X,) is a sample from a distribution with marginal probability
density fy, then the likelihood function is equal to L(0;z = (x1,...,2,)) =
[T, fo(z;). The maximum likelihood estimate is often found as a solution of the
likelihood equations, but can also be a value of 6 where the likelihood function is
discontinuous. The maximum likelihood estimate for g(6) is defined as g(f). The
maximum likelihood estimator is the corresponding random variable.

e A method of moments estimator for 6 based on a sample X = (Xq,...,X,,)isa
random variable 6 for which the first & theoretical moments are equal to the first
k sample moments: E; X/ = X7 for j = 1,...,k, with k the least possible. The

method of moments estimator for g(6) is defined as g(6).

e The Bayes estimator for () with respect to a prior density 7 is the estimator that
minimizes the Bayes risk [ Eg(T" — g(6))*m(0) df over all estimators T'. This
Bayes risk is the probability-weighted average of MSE(6; T') for the probability
density 7. For a given observation x, the posterior density of the parameter random

variable © is
po(z)m(0)

Pe|x—a(0) = Too(@)n(9)dd’

The Bayes estimate for g(¢) is equal to the expected value of g(©) with respect
to the posterior distribution: E(g(6)| X = z). In general, the Bayes estimate for

¢(0) is not equal to the transformation g(f) of the Bayes estimate 0 for 6.
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3: Estimators

1. Give a theoretical explanation for the forms of the (exponential and normal) histograms in
Figure 3.1.

2. Let Xy, ..., X, be independent and U[O0, 8]-distributed, with > 0 unknown. Determine the
mean square errors of the estimators cX, for 6, for every value of ¢ > 0. Which value for ¢
gives the best estimator?

3. Let X be binomially distributed with parameters n and p, with n known and p € [0, 1]
unknown. Let 7. = ¢X/n be an estimator for p, where ¢ > 0 is yet to be determined.
(i) For which value of ¢ is T, unbiased?
(i1) Determine the mean square error of 7.
(iii) For which value of c is this estimator optimal? Is this optimal estimator usable in
practice? Explain.
(iv) Determine the limit of the optimal value for ¢ as n — co. Which estimator 7. do you
obtain?

4. Let X,,. o X, be a sample from the Poisson(6)-distribution. We want to estimate 6.
(i) Is (X)? an unbiased estimator for 6*?
(ii) Determine an unbiased estimator for 6°.

5. Let X,...,X, and Yi,...,Y, be independent samples from the Bernoulli distribution with
unknown parameter p € [0, 1].
(i) Prove that (X +Y)/2and (3, X; + Ej: . Y;)/(m + n) are unbiased estimators for p.
(i) Which of these two estimators is preferable (if m # n)?

6. In a study on discrimination in Amsterdam, the subjects are asked whether they have
experienced discrimination (based on race, skin color, gender, or religion). A stratified
sample is taken: 50 men and 50 women are chosen randomly from the adult population
of Amsterdam. Let X be the number of men and Y the number of women in the sample that
have experienced discrimination. Define:

pu = proportion of male Amsterdammers having experienced discrimination
pv = proportion of female Amsterdammers having experienced discrimination
p = proportion of Amsterdammers having experienced discrimination

Assume py = 2py, and that there are as many men as women living in Amsterdam.
(i) Compute the mean square error of the estimator (X + Y)/100 for p.
Now, define Z as the number of persons having experienced discrimination in a normal
(nonstratified = simple) sample of 100 adult Amsterdammers.
(i) Compute the mean square error of the estimator Z/100 for p.
(iii) Compare the two mean square errors. What do you conclude?

7. We want to study how many Dutch households have a tablet. Let I1 be the total population of
all Dutch households. Let k be the number of towns in the Netherlands, and let 1000m; be the
number of households in the ith town, for i = 1,2, ..., k. For convenience, we assume m; €
N. Soin I, there are M = Zi m; thousands of households. We then take a sample as follows.
First, randomly choose 100 thousands from all these thousands, without replacement. Let Y;
be the number of chosen thousands in the ith town. Next, randomly choose 10Y; households
in the ith town, without replacement. Let p; be the proportion of households with a tablet
in the ith town, and p the proportion of the total population. Approximate p with X/1000,
where X is the total number of chosen households with a tablet. Is X/1000 an unbiased
estimator for p?
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11.

12.

13.

14.

15.

16.

3: Exercises

. Compute the maximum likelihood estimator for 6 based on a sample X, ..., X, from the

Poisson(6)-distribution.

. Let Xi,..., X, be a sample from a Weibull distribution, whose probability density is given

by
a—-1 —6x

Po(x) = Oax"""e for x >0

and O otherwise. Here a is a known number, and 6 > 0 is an unknown parameter.
(i) Determine the maximum likelihood estimator for 6.
(ii) Determine the maximum likelihood estimator for 1/6.

Let Xy, ..., X, be a sample from a distribution with probability density
po(x) = 6x"1 for x € (0,1)

and O otherwise. Here 6 > 0 is an unknown parameter.
(1) Compute u = g(0) = EgX;.
(i) Determine the maximum likelihood estimator for .

An urn contains white and black balls in the ratio p:1 — p. We draw balls one by
one with replacement, continuing until we draw a white ball. Let ¥; be the number of
draws necessary. We repeat this process n times, giving numbers Y1, ..., Y,. Determine the
maximum likelihood estimator for p.

Let Xy, ..., X, be a sample from a distribution with probability density
po(x) =6x*  forx>6

and O for x < 6, with > 0 unknown.
(i) Determine the maximum likelihood estimator for 6.
(>ii) Is this estimator unbiased?

(iii) Determine the mean square error of this estimator.

Let Xi, ..., X, be a sample from a distribution with probability density
po(x¥) =61 +x)""*?  forx >0

and 0 elsewhere, with 6 > 0 unknown. Determine the maximum likelihood estimator for 6.

Let Xi,...,X,, and Yi,...,Y, be two independent samples from the normal distributions
with parameters (u;,0?) and (us,0?), respectively. Determine the maximum likelihood
estimator for 6 = (u;, tz, o).

Suppose that the vector X = (Xi, ..., X,,) has a multinomial distribution with parameters n
and (py, ..., pm), Where p;+.. .+p,, = 1. We assume that n is known and that the probabilities
D1s---» P are unknown. Show that the maximum likelihood estimator for (py,..., py) is

equal to (X, /n, ..., X,/n).
Let Xi,..., X, be a sample from the shifted exponential distribution with intensity parameter

1 and unknown shift parameter 6 € (—oo, c0). The corresponding density is given by py(x) =
e’ for x > 6 and py(x) = 0 for x < 6. Determine the maximum likelihood estimator for 4.
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We want to estimate the number N of fish in a pond. We proceed as follows. We catch r
fish and mark them. We then set them free. After some time, we catch n fish (without putting
them back). Let X; be equal to O if the ith fish we catch is marked and 1 ifitisnot (i = 1, ..,n).
(i) Determine the probability distribution of » X; expressed in r, n, and N.
(ii) Determine the maximum likelihood estimator for N based on ZL X

Let Xy, ..., X, be a sample from a distribution with an unknown distribution function F. We
denote the empirical distribution function of the sample by F.
(i) Which distribution does nF(x) have?
(ii) Is F(x) an unbiased estimator for F(x)?
(iii) Determine the variance of F(x).
(iv) Show that cov(F(u), F(v)) = n™'(F(m) — F(u)F(v)) with m = min{u, v}. It follows that
F(u) and F(v) have a positive correlation.

(k-means clustering.) Let Xj,..., X, be independent random variables such that for an
unknown partition {1,...,n} = U’;.:ll ;» the variables (X;; i € I;) are normally distributed with
expectation u; and variance 1. Show that the maximum likelihood estimator for the partition
and parameter vector (yy, ..., 4) minimizes the sum of squares le.:l Ziaj X; - ,uj)2- Give
an interpretation of this procedure in words.

Let Xi,..., X, be a sample from the exponential distribution with parameter A, where 4 > 0
is an unknown parameter.

(i) Determine the maximum likelihood estimator for 1/12.

(ii) Determine a method of moments estimator for 1/12.
(iii) Determine an unbiased estimator for 1/42.

Let X, ..., X, be a sample from the binomial distribution with parameters n and p, where
p € [0,1] is unknown. Determine the maximum likelihood estimator and the method of
moments estimator for p.

Let Xi,...,X, be a sample from the Bernoulli distribution with unknown parameter p €
[0, 1].

(i) Determine the method of moments estimator 7" for p.

(ii) Show that the estimator T2 is biased for p?, and then determine an unbiased estimator
for p2.

Let Xi,...,X, be a sample from the geometric distribution with unknown parameter p €
(0, 1]. Determine the method of moments estimator for p.
Let Xy, ..., X, be a sample from a probability distribution with density

po(x) = 0(1 + x)™ 1 for x>0
and O elsewhere, with § > 1 unknown. Determine the method of moments estimator for 6.
Let Xy, ..., X, be a sample from a probability distribution with density

2x
Po(x) = ? Lio<a<e)»

where 6 > 0 is an unknown parameter.
(i) Determine the method of moments estimator 7 for 6.
(i1) Show that T is unbiased for 6.

(iii) Give the method of moments estimator for 6.
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3: Exercises

(iv) Show that the method of moments estimator for 6 is biased for 62, and then determine
an unbiased estimator for 6.

Let Xi,...,X, be a sample from a probability distribution given by Py(X = x) = 1/6 for
x€{l,2,...,0}, where 0 € N is unknown.

(i) Determine the method of moments estimator for 6.

(ii) Determine the maximum likelihood estimator for 6.

Let Xy, ..., X, be sample from the U[o, 7]-distribution with o~ < T unknown.
(i) Determine the maximum likelihood estimator for the vector (o, 7).
(ii) Determine the method of moments estimator for the vector (o, 7).

Let Xy, ..., X, be a sample from the uniform distribution on [-6, 8], with § > 0 unknown.
(i) Determine the maximum likelihood estimator for 6.
(ii) Determine the method of moments estimator for 6.

Let X be a random variable with finite second moment. Show that the function b — E(X —b)?
is minimal at b = EX.

Let X be a continuously distributed random variable with finite first moment. Show that the
function b — E|X — b| is minimal at a point b such that P(X < b) = P(X > b) = 1/2; we call
b the population median.

Let Xi,...,X, be a sample from the Laplace distribution (or double exponential distribu-
tion), which has probability density

1
po(x) = Ee")‘"" for 6 € R.

(1) Determine the population median (see previous exercise).
(i) Determine the maximum likelihood estimator for 6.
(>iii) Determine the method of moments estimator for 6.

The method of moments estimator and maximum likelihood estimator for the parameter of
a Laplace distribution are very different. Use a simulation to determine which estimator is
preferable. The R-program in Table 3.1 can be used for this.

Explanation: in the first line, we declare two vectors (arrays) of length 1000, which
we fill with 1000 realizations of the two estimators. In the last two lines, we compute the
mean square deviation of these two vectors from the true value of the parameter (equal to 0
in this case). These are not the true mean square errors, but they are good approximations
thereof. In the first line of the for-loop, a sample of size n (n = 100) is taken from the
standard Laplace distribution. Next, both estimates are computed based on this sample. This
is repeated 1000 times.

Let Xi, ..., X, be a sample from a probability distribution with density
po(x) =6x1 for0<x<1

and 0 elsewhere, with 8 > 0 unknown.
(i) Determine the method of moments estimator for 6.
(ii) Determine the maximum likelihood-estimator for 6.
(iii) Determine the Bayes estimator for 6 with respect to the prior density & given by 71(6) =
e~ for 8 > 0 and 0 elsewhere.
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3: Estimators

moments = mls = numeric(1000)

n = 100

for (i in 1:1000) {
x = rexp(n)*(2*rbinom(n,1,0.5)-1)
moments[i] = mean(x)
mls[i] = median(x) }

msemoments = mean(moments”2)

msemls = mean(mls”2)

34.
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Table 3.1. R-code for comparing the moment and maximum likelihood estimators.

Let Xi,..., X, be a sample from the distribution with probability density p, given by
1
po(x) = 30 for x € (~00, ),

where 6 > 0 is an unknown parameter. To determine a Bayes estimator for the parameter,
we use a gamma distribution with fixed parameters r, 4 > 0 as prior distribution.
(1) Suppose that we have very little prior knowledge of 6. Explain how you would choose
the parameters A and r in this case.
(ii) Determine the Bayes estimator for 6 based on this sample, for general A and r .

Determine the posterior distribution and the Bayes estimator for 6 based on an observation X
with negative binomial distribution with parameters r (known) and 6, with respect to a beta
prior distribution.

Compute the Bayes estimator for 6 based on a sample Xi,...,X, from the UJ[O0,0]-
distribution with respect to a U[0, M] prior distribution.

Compute the Bayes estimator for 6 based on an observation X from the Poisson distribution
with parameter 6 with respect to a gamma distribution with parameters @ and 4,

(i) fora =1,

(ii) for general @ > 0.

Compute the posterior distribution and Bayes estimator for 6 based on a sample X, ..., X,
from the distribution with probability density

0x2

Po(x) = 20xe” for x > 0

and O elsewhere, with respect to the gamma distribution with parameters a and A.

Compute the posterior distribution and Bayes estimator for 6 based on a sample Xi,..., X,
from the N(6, 1)-distribution with respect to an N(0,7?) prior distribution. Which estimator
do we find as 7 — o0? How can we characterize the prior distribution for 7 ~ co?

Let X, ..., X, be a sample from a Bernoulli distribution with unknown parameter p € [0, 1].
We want to give a Bayesian estimate for the variance var,(X;) = p(1 — p) with respect to a
beta(a, B) prior distribution with parameter p.

(i) Determine the posterior density for p.

(ii) Determine the Bayes estimators for p and var,(X;).
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Suppose that instead of the mean square error, we use the mean absolute deviation (MAD)
to define a Bayes estimator: in Section 3.5, we replace R(r; T') with f Ey|T — 6| n(6) dO and
define a Bayes estimator to be an estimator 7" that minimizes this expression. Show that in
this case, the median of the posterior distribution is a Bayes estimator.

Let Y = f(X) be a function of a random vector X with distribution Y, and let Q(y, B) =
P(X € B|Y = y) be the conditional distribution of X given Y = y. If we generate X from
T, compute ¥ = f(X), and then generate Z from the probability density Q(Y,-), then Z has
distribution .
(i) Prove this.
(i1) Apply this with f(x) = (x, ..., Xi_1, Xi+1, - . . » Xny) to prove that the Gibbs sampler has
stationary density v.
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TWIN STUDIES

Parents with blue eyes have children with blue eyes. On the other hand, parents with
obesity do not necessarily have children with obesity. Some characteristics, like eye
color, are determined fully genetically and are fixed at birth. Other characteristics, like
having obesity, are only partially genetically determined and are also influenced by
environmental factors like diet and lifestyle. Studies involving identical and fraternal
twins can provide insight into degree to which characteristics in people are determined
by genetic or environmental factors, or an interaction between the two.

Identical (monozygotic) twins occur when during the first cell division of a
fertilized egg, two separate groups of cells form that each grow into an embryo.
Identical twins are identical genetically and therefore always have the same gender.
Fraternal (dizygotic) twins occur when the mother has a double ovulation and
both eggs are fertilized. On average, fraternal twins have 50% of their genetic
material in common; genetically, they are simply siblings. Twins usually grow up
in the same family, go to the same school, and have the same lifestyle; they are
exposed to more or less the same environmental factors. If for some characteristic,
the correlation is higher in pairs of identical twins than it is in pairs of fraternal
twins, then this difference can be attributed to the degree to which the genetic
material corresponds; indeed, the environmental factors are virtually identical. The
characteristic is therefore partially genetic. If, on the other hand, the correlations are
more or less the same (and nonzero), then the characteristic is determined mostly by
environmental factors.

The Netherlands Twin Register (see www.tweelingenregister.orglen) contains
data on twins and their family members for the sake of scientific research in the fields
of health, lifestyle, and personality. The register contains, among other things, the
heights of the twins. Based on this data, we want to obtain an indication of the degree
in which individual differences in adult height are determined genetically.

On average, men are taller than women. In doing research into the hereditary
component in height, we must therefore take the gender into account. To simplify the
notation, we restrict ourselves to male identical and fraternal twins; extending this to
female or mixed-gender twins is simple as far as the method is concerned, but greatly
complicates the notation. We denote the heights of a pair of adolescent male twins by
(X1, X2) and suppose that the heights X and X5 can be written as sums

X1:,U/+G1+C+E1
X2:M+G2+C+E2

of an average height |1 and three random components that represent the deviation
from the average height of the male population by genetic influences (G1 and G3),
by environmental factors that the twins have in common (C'), and by factors specific
to the individuals, both genetic and environmental (E1 and Es). We often assume
that the variables for the genetic, environmental, and individually specific factors
are independent from one another: (G1, G2), C, and (E1, E3) are independent. This

100



3: Twin Studies

means that we assume that there is no interaction between the environmental and
genetic factors (it is doubtful that this is true for the height).

We assume that G, and Gy are equally distributed with expectation 0 and
unknown variance 03. These variables describe the genetic factors influencing the
variation of the height. In twins, the genetic material is partially or fully equal; G,
and G4 are therefore correlated. Identical twins are genetically identical; for them,
G1 = G4 (with probability 1), and the correlation between G1 and G is equal to
cor(G1,G2) = 1. Fraternal twins only share part of their genes, so that G1 and
G2 are not equal to each other, but are correlated. On average, fraternal twins have
50% of their genetic material in common. Under the assumption of the additive model
given above (and a few other assumptions), we can show that in fraternal twins, the
correlation between G1 and G is equal to cor(G1,G2) = 1/2. The individually
specific factors Iy and Ey are assumed to be independent and equally distributed,
with expectation 0 and unknown variance 2. The expectation and variance of C' are
0 and o2, respectively. Under the assumptions made above, X1 and Xo are equally
distributed with expectation EX; = p and variance var X; equal to

o?:=var(p+ G; + C + E;)
=var G; +varC + var E;

2 2 2 .
=0, +o. +og, 1=1,2,

where the second equality holds because of the independence of the various
components.

The term h?: = var G;/var X; = o /o is also called the “heritability.” The
heritability describes to what degree the variation in, in this case, the height of
individuals, is due to genetic differences. Heritability is at least O and at most 1,
because 0 < 03 < o2. If the heritability of the height is equal to 1, then 03 = o2 and
02 and 0% must both equal 0. Because the expected values of C, Ey, and Ey are also
equal to 0, we see that C, E1, and E are equal to 0 with probability 1. The variation in
the height of individuals is then completely due to genetics. If the heritability is equal
to 0, then 03 = 0 and G and G2 are equal to 0 with probability 1; the variation in
the body length of individuals is then not due to genetics at all.

The aim is to estimate h? based on a sample of heights of identical and fraternal
twins. To do this, we first write h? in terms of the correlations between the heights
within pairs of identical and fraternal twins, and estimate these parameters using
the sample correlations. The correlations between the heights within both pairs of
identical and fraternal twins are equal to

cov(X1,X2)  cov(p+G1+CH Er,p+ Go+C + Ey)

vvar X var Xo N v var X var Xo

cov(G1,Ga)  cov(C,C)  cov(Gy,Ga) o2
= 2 + 2 - 2 =
o o o o

where the second equality follows from the independence assumptions made earlier.
The covariance of the genetic components G1 and Ga within pairs of identical twins
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is equal to cov(G1,Go) = var Gy = 03 because Gy = Go with probability 1. Within
pairs of fraternal twins, this covariance is equal to

cov(G1, Ga) = cor(G1, Ga)/var Gy var Gy = %V&I‘ G = %03.

It follows from these calculations that the correlations py and py between identical
and fraternal twins, respectively, are equal to

o2 o2 o2 o2
pL=—3+ =5, p2 = 5%+ =%.
o2 o2 202 o2

It immediately follows that p1 > pa, with equality ifag = 0. In other words, the
correlation between the heights within pairs of identical twins is greater than or equal
to the correlation between the heights within pairs of fraternal twins. Equality occurs
only if there is no genetic influence on the variation in the heights, and the difference

is maximal if the variation in the heights is fully due to genetics, that is, if 02 = 0.
It follows from the expressions for the correlations p, and ps that the heritability

is equal to
o2
h? = ;‘; =2(p1 — p2).
To estimate h?, we can estimate py and p» using their sample correlations,
Yo (X1 — X1)(Xa — Xo)

TX1,Xy =
(n—1)1/S%,\/ 5%,

based on only identical and fraternal twins, respectively. In this formula, X, ; and
Xo ; denote the first and second individual of the ith pair of identical or fraternal
twins, respectively, X 1 and X o are the respective sample means of the first and second
individuals within the pairs of identical or fraternal twins, and Sg(l and S%Q are the
corresponding sample variances. Since the marginal distribution for the height of all
individuals in the data set is equal, it makes sense to replace X, and Xo by the
average height of all individuals, both identical and fraternal twins, and both the
first and the second individual in a pair. The same can be considered for the sample
variations in the denominator of rx, x,. This method for estimating the heritability
has many similarities with the method of moments, namely, the unknown parameters
are found by setting a theoretical quantity, in this case the correlation, equal to the
sample value of this same quantity.

Figures 2.11 and 2.12 show the heights of identical (Figure 2.11) and fraternal
(Figure 2.12) twins set out against each other. It is clear that the correlation between
the heights within pairs of identical twins is greater than that within pairs of fraternal
twins. The sample correlations for identical twins are equal to 0.87 and 0.96 for male
and female twins, respectively, and those for fraternal twins are equal to 0.55 and
0.50 for male and female twins, respectively. The heritability is estimated to be 0.64
for men and 0.92 for women.”

® The data can be found on the book’s webpage at http://www.aup.nl under twindata.
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3: Twin Studies

Another method for estimating the heritability is the maximum likelihood
method. Assume that the heights (X1, X2) of male adult twins have a 2-dimensional
normal distribution (for information on the multi-dimensional normal distribution, see
Appendix B) with expectation vector v = (i, 1)T and covariance matrices Y1 and o
for identical and fraternal twins, respectively, where

Y. o2 U§—|—og v — o? %Ug—‘—af
1=\ 52 4 42 o2 2= 152 4 52 ‘02
g c 2%g c

with 02 = og + 02 + 02, The diagonal elements of the covariance matrices are equal
to the variances of X1 and Xs, the other two terms are equal to the covariance of X1
and Xo. The probability density of the height of a pair of twins is equal to

1 67%(m7U)T271(m7u)7

T ———
2mv/det 22

where © = (11, 22)" and X equals 1 or Yo depending on the type of twin, while
v = (p, )T is the vector described earlier. Moreover, det Y denotes the determinant
of 3. We assume that the heights of different pairs of twins are independent, so that
the likelihood is equal to a product of 2-dimensional densities and the log-likelihood
is equal to

Lo 02,02 (X1s ooy Xy Yiy o, Yoy) =

102,02,

— (n1 + n2)log 2w — % log(det 1) — % log(det 2)

1 1 &
— o 2 (X =) (X ) = D (Y)Y - ),
i=1 i=1

with X1, ..., Xy, the heights of the pairs of identical twins and Y1, . .., Yy, those of
the pairs of fraternal twins. So we have X; = (X, 1, Xio)l and Y; = (Y;1,Yi2)7
with X; 1 and X; o the heights of the first and second individuals in the ith pair of
identical twins, and likewise for Y;. Maximizing the log-likelihood for (y, og, %, 02)
over the parameter space [0,00)* gives the maximum likelihood estimates. The
heritability 03 /o? is estimated by substituting the estimates of 0’3 and o2 in the
definition of h2: h% = 52/6% = 0.61.

We can carry out the same computations for female pairs of identical and
[fraternal twins. This gives an estimated heritability of 0.93. When a joint likelihood is
set up for the data on men and women, the assumption is often made that the expected
height of women is different from that of men, but that the covariance matrices, and
therefore the heritability, are equal. Maximizing the likelihood for the height for men
and women gives an estimate of 0.79 for the heritability.
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3: Estimators

Heritability is a measure for the variation of a characteristic within a population,
in our case height. That the heritability is large does not mean that the height is
determined completely genetically, it does mean that the variation of the height within
the population giving our data, is predominantly determined by differences in genetic
material. Environmental factors certainly influence height (see Example 1.5), but they
are probably so uniform over the population from which the data was drawn, that only
genetic differences are observable in the variation of the height.

104



In scientific research, in the industry, and in daily life, we often want to check whether
certain questions have an affirmative answer or not. Does a particular type of therapy
help? Does the age or gender of the patient play a role? Is one type of car safer than
another? Does a batch contain an excessive number of defective items? Does one type
of lamp have a longer life span than another? Does the DNA profile of the suspect
correspond to the DNA profile found at the crime scene? Are the log returns of stock
market values on different days independent? Etcetera.

Answers to such questions are based on the results of experiments or studies. In
many cases, however, the results of those experiments do not lead to an unequivocal
answer. If a new form of therapy is tested on 100 patients and gives good results in
64 of them, while this only holds for 50% of the patients with the old therapy, is the
new therapy truly better than the old one, or were we just “lucky”? If 75 of the 100
patients improve, then we can no longer talk of luck, or can we? Is a sample correlation
coeflicient of 0.17 “significantly” different from 0?

The theory of testing is aimed at formalizing this type of decision-making process
where we must choose between two conflicting hypotheses.
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4: Hypothesis Testing

The decision between conflicting hypotheses is based on a suitable statistical model
for the observation X. The hypotheses are coded in parameter values that index the
probability distributions in the statistical model. Here, we will restrict ourselves to
two hypotheses. The parameter 6 belongs either to a set Oy corresponding to the one
hypothesis or to the complement ©; = O \ Oy, where © = Oy U O is a disjoint
partition of the full parameter space ©. We call the hypothesis Hy: 0 € Og the null
hypothesis and the hypothesis H;: 6 € O, the alternative hypothesis.

In the standard approach to testing (followed by most users of statistics), the
null and alternative hypotheses are not treated symmetrically. We, in particular,
want to know whether the alternative hypothesis is correct. If the data do not give
sufficient indication to support this, this does not necessarily imply that the alternative
hypothesis is incorrect (and the null hypothesis correct); it is also possible that there is
not sufficient proof for either of the hypotheses. The statistical analysis can thus lead
to two conclusions:

- Reject Hy (and accept H; as being correct).

- Do not reject Hy (but do not accept Hy as being correct).
The first is a strong conclusion, the second is not truly a conclusion. The second should
be seen as the statement that more information is needed to reach a conclusion.

By basing our statements concerning the hypotheses on our observations, we can
make two types of mistakes, corresponding to mistakenly coming to one of the two
possible conclusions:

- A type I error consists of rejecting Hy when it is correct.

- A type Il error consists of not rejecting Hy when it is incorrect.
A type I error corresponds to falsely choosing the strong conclusion. This is very
undesirable. A type II error corresponds to falsely choosing the weak conclusion. This
is also undesirable, but since the weak conclusion is not truly a conclusion, it is not as
bad. Because of the asymmetric handling of the hypotheses H( and H; when choosing
a test, we should not attach too much value to not rejecting H. It is therefore of great
importance to choose the null hypothesis and the alternative hypothesis wisely. In
principle, we choose the statement we want to show as the alternative hypothesis. We
then argue for Hy: we only reject H) if there is strong evidence against it.

Example 4.1 Binomial test

Suppose that we wish to compare a new therapy against depression to an existing
therapy. This existing therapy is successful in only half of the cases. Let p be the
probability of success for the new therapy when applied to an arbitrary patient. Since
we are only interested in the new therapy when it is better than the old one, we
compare the unknown probability of success p of the new therapy to 0.5, the (known)
probability of success of the existing therapy. We want to “prove” that the new therapy
is better than the old one. We therefore take the statement “p > 0.5 as the alternative
hypothesis. The null and alternative hypotheses are then Hy: p < 0.5 and Hy:p > 0.5.
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4.3: Sample Size and Critical Region

When we can reject Hy, we assume that the new therapy is better than the existing one.
———

Example 4.2 Multinomial distribution

When rolling dice that are not fair, the probabilities p1,...,pg for throwing the
different face values are not all exactly equal to 1/6. The face value thrown at
each roll X is in general multinomially distributed with parameters (1,6), with
0 = (p1,...,pe). In the statistical model, we can take the parameter space for ¢
equal to © = {(p1,p2,ps,pa, ps.pe) € [0,1]%: 30 pi = 1}.

Suppose that we do not trust our opponent’s dice in a game of backgammon.
We suspect that he has tampered with the probabilities of the different outcomes.
The null hypothesis to formally test whether a die is crooked, is then Hy:p; = 1/6
for ¢ = 1,...,6, and the alternative hypothesis is Hy:p; # 1/6 for at least one
i € {1,...,6}. The null hypothesis space O is then a subset of © consisting of
one point: ©¢ = {(1/6,1/6,1/6,1/6,1/6,1/6)}. When we are only interested in the
outcome consisting of the value 6, we can test the null hypothesis Hy:pg = 1/6
against Hi:pg # 1/6. In that case, the null hypothesis space is equal to Oy =

{(plap2ap3ap4ap5a1/6) € [O’ 1]6:2?:11)7; = 5/6} e

Example 4.3 Two samples

Figure 4.1 shows boxplots for the level of expression of a gene in different types
of tumors. The samples consist of 26 and 15 tumors, respectively. The question is
whether the expression of the gene is greater in one type of tumor than in the other.

The boxplot does not directly answer this question. Although the box of the
second sample is higher than that of the first, there is a clear overlap and the spread of
the second sample clearly lies within the spread of the first sample. The latter may be
significant, but may also be due to the different sizes of the samples.

A formal test can help answer the question. A reasonable statistical model is that
the two samples X, ..., Xog and Y7, ..., Y5 are independent samples from normal
distributions with respective parameters (1, 2) and (v, 72). We want to test the null
hypothesis Hy: 1 = v against the alternative hypothesis H;: pu # v. We can take the
parameter equal to 6 = (p, v, 02, 72), with parameter space © = R? x (0, 00)2. The
null hypothesis space is the subset ¢ = { (11, i1): 1 € R} x (0,00)2. —

Based on the observation X, we must decide whether there is sufficient evidence
against the null hypothesis Hy, so that we want to reject Hy and view the statement of
the alternative hypothesis as the correct one. The values of X for which the evidence
is strong enough form the critical region K. For these values of X, we have sufficient
confidence in the alternative hypothesis to reject Hy.
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4: Hypothesis Testing
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Figure 4.1. Boxplots of the measure of expression of a gene measured in two groups of 26 (on the
left) and 15 (on the right) tumors.

Definition 4.4 Statistical test

Given a null hypothesis Hy, a statistical test consists of a set K of possible values
for the observation X, the critical region. Suppose that we have an observation x. If]
x € K, wereject Hy; if v ¢ K, we do not reject Hy.

When X = (X1,...,X,,) is a vector of observations, in particular, it is often
difficult to decide based on X whether the statement of the alternative hypothesis can
be true. We therefore often summarize the data in a test statistic. A test statistic is
a real-valued quantity 7 = T'(X) based on the data that gives information on the
correctness of the null and alternative hypotheses; so the test statistic does not depend
on the unknown parameter.

Example 4.5 Binomial test, continued from Example 4.1

Example 4.1 describes a test situation. We want to test whether the probability of
success p of a new therapy is higher than 0.5, the probability of success of the existing
therapy. In all, 100 patients received the new therapy. Let X be the number of patients
for whom the new therapy is successful, and assume that X has the bin(100, p)-
distribution.

It makes sense to take 7'(X) = X as test statistic and to choose the critical
domain of the form

K ={c,e+1,...,100},

where we still need to determine the value c. Namely, a large value of X gives an
indication that Hy may be incorrect. The value c should therefore be chosen such that
we do not have sufficient confidence in the correctness of the statement of the null
hypothesis if x > c. —
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4.3: Sample Size and Critical Region

The critical region K is often of the form {z:T(z) € Kr}, or {T € Kr} for
short, for a test statistic 7" and a set K7 in the codomain of 7'. In practice, the set K
is often also called the critical region. How to determine the critical region K or K1
is discussed in the next section.

Example 4.6 Gauss test

Let Xi,..., X, be a sample from the normal distribution with unknown expectation
1 and known variance 2. We want to test the null hypothesis Ho: 1 < po against
the alternative hypothesis Hy: 1 > o, for p a fixed number, for example o = 0.
This problem comes up, for example, with the quality control of products in a factory.
Since the manufacturer finds it too expensive to control all products, the quality is
measured for a sample. Earlier research has shown that the measure of quality is
normally distributed. The manufacturer wants to verify that the average quality of the
total production is greater than zio. (Assuming o2 known is unrealistic, but simplifies
the example. In practice, o2 is assumed unknown, and the ¢-test from Example 4.30 is
almost always used.) The average X is the maximum likelihood estimator for ;. and
can therefore be used to give an idea of the correctness of the null and alternative
hypotheses. If the observed average T is greater than pyg, this indicates that the
alternative hypothesis may be true, and the greater z, the stronger this indication. We
can therefore use the average X as test statistic, and we reject H for large values of
this test statistic. The critical region is then of the form

K={(x1,...,2,):T > c}

for some c. But, how large must we take c¢ to have sufficient confidence in the
correctness of the alternative hypothesis if © > ¢ and have a sufficiently small
probability of making a type I error? ——

Suppose that a statistical test has critical region K = {2:T'(z) € Kr}, where T
is a test statistic and K7 is a subset of the codomain of 7. The set K1 depends on the
choice of the test statistic 7. In general, another test statistic 7” leads to a different set
Kr/. However, the critical region K can be the same in both cases; the same critical
region K can correspond to two different test statistics (see Exercise 4.10).

When, in testing Hy: 0 € ©g against Hy: 0 € ©, the true value of 6 belongs to O,
the null hypothesis is true. If in that case x € K, then we falsely reject Iy and make
a type I error. For a good test, the probability Py(X € K) for § € Oy must therefore
be small. On the other hand, when the null hypothesis is false (# € ©1), we want
Py(X € K) to be large. The quality of a test can therefore be measured using the
function 6 — Pyp(X € K).
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4: Hypothesis Testing

Definition 4.7 Power function

The power function of a test with critical region K is

0— 7(0; K) =Py(X € K).

We are looking for a critical region for which the power function takes on “small
values” (close to 0) when # € O, and “large values” (close to 1) when 6 € ©O7.
Figure 4.2 shows the power functions of two tests (as functions of € along the
horizontal axis), an “ideal test” with probability of both types of errors equal to 0
and a real test.

0.6

< |
o

Figure 4.2. Power function of an ideal test (solid) and of a real test (dotted). The parameter
spaces under the null and alternative hypotheses (©g and ©1) are the sections of the horizontal
axis where the power function of the ideal test is equal to 0 and 1, respectively.

Definition 4.8 Size

The size of a test with critical region K with power function 7(-; K') is the number

a = sup 7(6; K).
[ASISH)

A test has significance level or level oy if o < .

The asymmetry between the two hypotheses is now made formal by an
assumption that ensures that the probability of a type I error is at most «.

Convention 4.9

In every practical situation, we first choose a fixed number o, the level. We then
only use tests of level o. In other words, we only allow tests whose power function
7(-; K) under the null hypothesis is at most o:

sup 7(0; K) < ap.
[ASISH)
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4.3: Sample Size and Critical Region

It seems appealing to choose the level ajy extremely small, so that making a type I
error is rare. We can only achieve this by making K very small. In that case, however,
the power function for § € ©; also becomes small. The probability of a type II error,

Pg(XQéK):l—ﬂ'(a;K), 0 €0,

therefore becomes very large, which is also inadvisable. The requirements for making
both the type I and type II errors small work against each other. We do not treat the
two types of errors symmetrically; for example, we do not try to minimize the sum of
the maximum probabilities of errors of types I and II.

In practice, o is often chosen equal to the magical number 0.05. With this
choice, it should not surprise us that if we carry out many tests, 1 out of 20 times,
we will falsely reject the null hypothesis (making a type I error). We should, in fact,
choose oy depending on the possible consequences of a type I error. If these are
disproportionately serious, ap = 0.05 may be much too large.

As far are type I errors are concerned, we see Convention 4.9 as giving sufficient
guarantee that the probability of these is small. Many tests (possibly with different test
statistics) will satisfy this condition. Of these tests, we prefer the test with the smallest
probability of making a type II error. How small this probability is depends on the
situation, among other things on the number of observations and the chosen level «y.
If the probability of making a type II error is too large, the test is, of course, not very
meaningful, because we then almost never reject Hy and instead choose the second,
weak (non-)conclusion.

Convention 4.10

Given the level oy, we prefer a test of level oy with the greatest possible power
function 71(0; K) for6 € O5.

Under this assumption, for a given level ay, we prefer a test with critical region
K to a test with critical region K if both have level g and the first has a greater
power function than the second for all § € ©;:

sup m(0; K;) < ap, t=1,2 and =w(0;K,)>7(6;K2), V0e€ 0O,

[ASCH)
with strict inequality for at least one # € ©;. We call the test with critical region K
more powerful than the test with critical region K5 in some 6 € O if 7(6; K1) >
7(0; K2). We call the test with critical region K uniformly more powerful if the
inequality holds for all # € ©;. In principle, we are now looking for the uniformly
most powerful test of level ayp; this is a test whose power function (at a given level)
is maximal for all § € ©;. We are comparing two functions, and it is possible that
one test is more powerful for certain § € O1, and the other test is more powerful for
other § € ©1. It is then not immediately clear which test we should choose. We do
not discuss this question in this book. In exceptional cases, a uniformly most powerful
test exists for all tests of level ag. There is then an absolutely best test. We will see
examples of this in Chapter 6.
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4: Hypothesis Testing

Example 4.11 Binomial test, continued from Example 4.5

In Example 4.5, we showed that for a test statistic 7' (X ) = X, it makes sense to take
the critical region of the form

K ={cay,Cap +1,...,100}.

The value ¢, must be chosen such that the size of a test is at most cvg. The size of the
test is given by
a= sup P,(X > cqo,) = Pos(X > cay)-
p<0.5

The supremum is taken in p = 0.5, because as a function of p, the probability
P,(X > cq,) is monotonically increasing. We can prove the latter analytically with
some difficulty, but it is also clear intuitively. The function p — P,(X > c¢,,) has
been drawn in Figure 4.3 for ¢, = 59.
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Figure 4.3. The function p — P, (X > 59) for X with a bin(100, p)-distribution.

Suppose that we choose ag = 0.05. If we take cp o5 = 59, then the size
a = Pos(X > 59) = 0.044 is less than oy = 0.05, while for ¢p 5 = 58, the
size satisfies Py 5(X > 58) = 0.067 > 0.05. For ¢p.05 < 58, the test therefore
does not have level 0.05 and is therefore not admissible at this value of the level.
We must therefore choose ¢y g5 > 59. As an example, Figure 4.4 shows the function
x +— Po5(X > z). According to Convention 4.10, we must choose the critical region
such that the power function is the greatest possible. This corresponds to choosing the
critical region as large as possible such that under H1, the probability of (correctly)
rejecting the null hypothesis, P,(X € K), is the greatest possible. We therefore
choose K = {59,60,...,100}. Under all tests of the given form, this is the test
of level 0.05 with the greatest power function. The function p — P,(X > 59) in
Figure 4.3 is exactly the power function of this test.

If we find 64 successes using the new therapy, then Hj is therefore rejected
at level 0.05, and the conclusion is that the new therapy has a higher probability
of success than the existing one. With 58 successes, we could not have drawn this
conclusion: Hy would then not have been rejected. —
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Figure 4.4. The function z — Pg.5(X > z) for X binomially distributed with parameters 100
(and 0.5). This function is left continuous in points where x takes on a value in N. The dashed
horizontal line is at height 0.05.

In the case of a one-dimensional parameter ¢, we speak of a one-sided null
hypothesis when the null hypothesis is of the form Hy: 0 < 6y or Hy: 6 > 6y, where
0y is a fixed number. The alternative hypothesis is then of the form Hi:0 > 6y or
H;:0 < 6, respectively. We call the first hypothesis right one-sided and the second
hypothesis left one-sided. When the null and alternative hypotheses are of the form
Hy: 0 = 0y and Hy: 0 # 0y, respectively, we speak of a two-sided null hypothesis.

For a test statistic 7', the critical region often takes on one of the following forms:

KT = {T Z CO‘O}7
KT = {T < Cozo}7
Ky ={T < oy} U{T > do, },

for numbers co, and do, With ¢, < dq, in the last critical region. Which form
the critical region takes on depends on the chosen hypotheses and the choice of test
statistic. The first two forms of K are called one-sided, the last two-sided. The
numbers cqo, and d,, are called the critical values. If the value of the test statistic
surpasses the critical value, then the null hypothesis is rejected. Note that “to surpass”
can mean both “to be greater than” and “to be less than,” depending on the context
and the test statistic. The Gauss test in Example 4.12 is an example of a test where
a one-sided null hypothesis leads to a one-sided critical region K1 and a two-sided
null hypothesis leads to a two-sided critical region K. This is, however, not true in
general; the form of the critical region depends on the hypotheses and the choice of
test statistic. In Section 4.7 (likelihood ratio tests) we see, for example, a two-sided
null hypothesis with a one-sided critical region K.

Example 4.12 Gauss test, continued from Example 4.6

Let Xi,..., X, be a sample from the N (u,o?)-distribution, where ¢ is a known

constant. Consider the problem of testing Ho: 1 < po against Hy: po > g, where pig
is a fixed number (for example pg = 0).
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4: Hypothesis Testing

We saw in Example 4.6 that the average X might be a suitable test statistic.
However, it turns out to be better to normalize this quantity to

X -
T=n>—H Ho

so that under the assumption p = g, the quantlty T has the N (0, 1)-distribution. Both
1o and o2 are known, so that T is indeed a test statistic. The test statistic 7/ = X leads
to another region K7, but to the same critical region K (see Exercise 4.10).

Large values of X (greater than o) and therefore of 7" are more probable under
H, than under Hy. After all, X is normally distributed with expectation z and variance
o2 /n, and this distribution shifts to the right when y increases. We therefore choose
a critical region, based on the test statistic 7', of the form K = {(mh ez T >
Cag } In the next two paragraphs, we argue that the correct choice for ¢, is the (1 —
a)-quantile £ _,,, of the standard normal distribution. (We denote by &, the number
for which ®(£,,) = «, where ® is the standard normal distribution function.)

According to Convention 4.9, we are looking for a test of size at most «, that is,
(4.1) sup P, ((X1,...,Xp) € K) = sup Pu(T > cqp) < .

1<po H<Ho

Since \/n(X — u)/o, when p is the true value of the parameter, has the standard
normal distribution, we see that the probability P, (T > c,, ) is equal to

X- X- _
Pu(Vat 0 2 e, ) = Pu (VRS 2 ey + v

=1-9 (cao fﬂo )

This probability is an increasing function of p (which is also evident intuitively from
the fact that the normal distribution with expectation p shifts to the right when p
increases), so that the supremum sup,, ., P.(T" > ca,) is taken on at the greatest
possible value of p, that is, i = pg. Condition (4.1) that the size is at most oy reduces
to

P#U(T 2 Can) < .
Since T' has the standard normal distribution under the assumption that ;1 = pp, it
follows that ¢, > £1-q,-

Every critical region Kt = [ca,,00) With ¢4y > &1-q, gives a size of at
most ag. Among these tests, we are now looking for the most powerful one; see
Convention 4.10. This is, of course, the test with the largest critical region, that is,
with the smallest possible critical value c,,,. In combination with the inequality of the
previous paragraph, we take co, = £1_4,. Note that the size is now exactly equal to
the level ap.

In summary, the test rejects the null hypothesis Hy: pp < o for values of
(X1,...,X,) such that T = /n(X — po)/o > &1_a,. This is the usual test for
this problem, the Gauss test (named after the mathematician who was one of the first
to work with the normal distribution). The corresponding critical region is equal to

K= {(xl,...,;vn):T S KT} = {(1‘17...,1'”)2@?_#0 Z gl—ag}-

ag
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4.3: Sample Size and Critical Region

The set K is therefore equal to [{1_4,,00). Note that the resulting critical value
Cay = &1_a, does not depend on the values of yio and o2, The same critical region
K7 = [£1-a,,0) is found for all values of o and o2. This is the advantage of taking
the normalized T over X as test statistic. It is therefore common to use the normalized
test statistic for the Gauss test. The set K = [§1_4,,00) is often called the critical
region of a right-sided Gauss test.

We can test the null hypothesis Hg: 1 > po against the alternative hypothesis
Hi:p < pp analogously. We use the same test statistic 7. The null hypothesis Hj is
rejected at level ag if T = /n(X — p10)/0 < oy = —E1—ao-

The critical region for testing the null hypothesis Hy: 1 = o against the two-
sided alternative Hy:p # po at level ap can be found by combining the critical
regions of the two one-sided tests of size «/2 each. This leads to rejecting the null
hypothesis if /(X — 110)/0 < €ag /2 08 V(X — p10) /0 > &1_ 4,2 OF, equivalently,
if v/n|X — pol/0 = §1a,/2-
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Figure 4.5. Power functions as functions of p for the two one-sided Gauss tests (dashed) and the
two-sided Gauss test (solid) for po = 0 at avg = 0.05 and n = 5.

Naturally, the value of the power function of the two-sided test is smaller than
that of the left one-sided test for 4 < p¢ and smaller than that of the right one-sided
test for ;1 > po; see Figure 4.5. If we are only interested in one of these types of
alternatives, then a suitable one-sided test is preferable to a two-sided test. This can be
the case, for example, if we consider using a new production method or buying a new
machine. In such a case, we are not so much interested in whether this innovation leads
to a setback as whether we can expect an improvement. The choice between one-sided
and two-sided tests therefore depends on the practical problem. If we want to take the
idea behind “size” seriously, then we should not be influenced by the outcome of the
experiments! In particular, it would be wrong to choose a right one-sided test after it
has been established that X > .
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4: Hypothesis Testing

Above, we introduced the Gauss test using an ad hoc argument. In addition to
being intuitively reasonable, these tests are also the best possible. Indeed, we can prove
that the one-sided Gauss tests are uniformly most powerful; that is, for these tests
the power function is maximal in all possible values under the alternative hypothesis
(see Section 6.4). The two-sided Gauss test is uniformly most powerful among the
unbiased tests. Unbiased test are tests with m(6y) < o < m(6;) for all y € Og and
#1 € ©1, where qy is the level. —

Example 4.13 Binomial test, continued from Example 4.11

Example 4.11 concerns a special case of the following binomial test. Suppose that for
a fixed number py € (0, 1), we want to test the null hypothesis Hy: p < po against
Hy:p > po based on a bin(n, p)-distributed observation X. We choose X itself as
test statistic and reject Hy for large values of X. The critical region is therefore of
the form {x € {0,1,...,n}:x > cag} = {Cags - - -, n}. We choose the critical value
Cag € {0,...,n} such that the size of the test is less than or equal to vy and, under this
secondary condition, the power function is maximal (compare with Example 4.11).
The size of this test is equal to

a = sup Pp(X > cag) = Ppo (X > cap),
P<Po
as the probability P,,(X > =z) is increasing in p for fixed x. To make the power
function as large as possible under the alternative hypothesis, we take the critical
region as large as possible, that is, take the critical value as small as possible:

Cap = min{t €{0,...,n}:P, (X >1¢) < ao}.

Naturally, we then have a@ < «. Because of the jumps in the binomial distribution
function, this inequality will be strict for most values of «.

For sufficiently large values of n, we can approximate the probability P, (X >
t) using the normal distribution, in which case the jumps in the distribution function
of X are negligible. For the size of the binomial test, this gives

ag > Py, (X > can) =P, (X > Cop — %)
X —npo Cap —MPO — 3 Cao —MPO— 3 »
(e e e ) a( ey
Vnpo(1—po) — /npo(1 — po) npo(1 — po)
where the sign ~ is necessary because of the approximation of the binomial
distribution function by the normal distribution function and the term 1/2 in the

numerator is the continuity correction (see Appendix A). For given «y, the value of
Cay, 1s the smallest integer for which

1
Cag — NPo — 2

Vrpo(1 = po)

It is evident how this one-sided test can be adapted to the case of a different one-sided
problem, Hy: p < pg, or to the two-sided problem Hy:p # po. —

(42) §17a0 S
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4.3: Sample Size and Critical Region

Example 4.14 Shifted exponential distribution

Let Xi,...,X,, be a sample from the shifted exponential distribution with intensity
parameter | and unknown shift parameter § € (—o0, o). The corresponding marginal
density is given by py(z) = ¢~ forz > # and py(z) = 0 for z < . Suppose that we
wish to test the null hypothesis Hy: § < 0 against the alternative hypothesis H1:6 > 0
at level a. The maximum likelihood estimator for 6 is given by the first order statistic
Xy = min{Xy,..., X, } (see Exercise 3.16). It makes sense to use X(q as test
statistic 7" and to reject the null hypothesis for large values of 7'; indeed, when 7' is
positive, this is an indication that the alternative hypothesis may be true. The critical
region is therefore of the form K = {(z1,...,2,):2(1) > cqa,}. The next step is to
determine the critical value c,,, for which the size of the test is at most oy and the
power function is maximal. The size of the test is given by

supPy((X1,...,X,) € K) = supPg(X(l) > Cay)-
0<0 6<0

For 6 < ca,, the probability Pg(X (1) > ca,) = (Pg(X1 > cao))n = en(0—cag) ig
increasing in 6. The supremum in the expression for the size of the test is taken in
0 = 0. The critical value c,, must now satisty the inequality e~ "0 < q, that is,
Cap > —n~t log avg. To maximize the power function, we must maximize the critical
region. It follows that ¢, = —n ! log . The critical region is therefore equal to

1
K= {(mh...,xn):x(l) > ——logozg}7
n

and the size of the test is exactly equal to «g. The test rejects the null hypothesis when
X1y > —n~'logag. Note that —n~'log ag > 0 for ag € (0,1). Using the theory
from Chapter 6, we can prove that the test above is uniformly most powerful. This
means that for testing the null hypothesis Hy: § < 0 against the alternative hypothesis
Hy:0 > 0, for every value of § > 0, the test above is the most powerful among all
tests of level ay.

We could, of course, have chosen another test statistic, for example the method
of moments estimator for 6, which is X — 1, which leads to a different critical region.
This test turns out to have a smaller power function for § > 0, which is why we do not
prefer it. —

The power function of a test, in general, depends strongly on the amount of available
data. Obviously, with more data, we have a greater power function. Generally, with
“infinitely much data,” we can obtain the ideal power function from Figure 4.2.
The null and alternative hypotheses can then be distinguished without any errors. In
practical situations, we cannot avoid type I and type II errors, but we can positively
influence the slope of the power function as in Figure 4.2 by basing the test procedure
on more data.
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In practice, this leads to the question of the so-called minimal sample size. This is
the minimal size of the sample such that the corresponding test in a certain alternative
0 € ©; has a greater power function than a given lower bound. It is clear from this
description that the minimal sample size is only well defined if both the particular
alternative 6 and the desired probability of a type II error are fixed, in addition, of
course, to the desired test size «. In most cases, this means that an honest statistician
will not be able to give a simple answer to the question of what a minimal sample size
is.

We illustrate this using several examples in which the computations are more or
less explicit.

Example 4.15 Gauss test, continued from Example 4.12

The Gauss test rejects the null hypothesis Ho: 1 < po for values of the test statistic

T = /n(X — po)/o greater than or equal to & _,,; the critical region for T' is
K7 = [£1-a,,00). The power function of the Gauss test is the function

— Mo

o= (s K) :Pu(\/ﬁX

_ PM(\/ﬁ

> 610 )

Using the fact that  — ®(x) is a monotonically increasing function, and &;_,, is
therefore decreasing in o, we deduce the following properties:
e the greater n, the greater the power function in 1 > po (more information is
available)
e the greater p, the greater the power function in p (0 lies further from the null
hypothesis)
e the greater o, the smaller the power function in it > o (the greater spread in the
observations makes it harder to say something about their expectation)
e the greater oy, the greater the power function in & > 0, but also the greater the
probability of a type I error
Now, suppose that for a given level ag and a given alternative > 1o, we want a
power function of at least 1 — /3, that is, we want the probability of a type II error in
1 to be less than f3. It follows from the formula for the power function that this is the
case provided

@ (€10 — Vi) <5,
that is, provided

H— Ho
\/ET > glfao - 55

with 5 = ®(£3). The minimal value of \/n satisfying this condition is equal to
(&1—ay —&p)0 /(1 — 110). Note that all natural choices for «vg and 3 satisfy 1 —ag > 3,
so that §1_q, — &g is positive. ——
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4.3: Sample Size and Critical Region

Example 4.16 Binomial test, continued from Example 4.13

The standard test for the null hypothesis Hy:p < pg based on a variable X with the
binomial distribution with parameters n and p rejects H for values of X in the critical
region K = {cq,,-..,n}, where c,, can be approximated from the equation (4.2),

The power function of the test is equal to the function
Cay = 1P — %)

np(1 —p)
This function is sketched in Figure 4.6 for n = 10 and n = 25,with ag = 0.05 and
po = % It is clear that for p > 0.5, the power function for n = 25 is much greater than
that for n = 10: when we have more observations, we can better determine whether
H, is true and reject H with a greater probability when H; is true. (Note that the size

of the test for n = 25 is also slightly bigger. In both cases, we have chosen a value c,,,
satisfying our two conditions.)

pHPp(XZCao)zl—q)(

<

0.8
|

0.6
|

0.4

0.2
|

0.0
|

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.6. Power function of the test for Ho:p < % at level g = 0.05 based on an observation
from the binomial distribution for n = 10 (solid curve) and n = 25 (dotted curve).

The normal approximation is well suited to determine the minimal sample size
for obtaining the prescribed power function. Suppose, for example, that we wish to
test Hp:p < % against H:p > % at level avg = 0.05, in such a way that the power
function in p = 0.6 is at least 0.8. This leads to the system of equations

1
005 M08 75 o164,

n0.5(1 — 0.5)
c —n0.6— 1
065 . _oss.
n0.6(1 — 0.6)
The equality gives cp.05 ~ n/2 + 1.64y/n/2 + 1/2, and substituting this value for
¢o.05 in the inequality gives y/n > 12.32 and therefore n > 152. ——
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Example 4.17 Shifted exponential distribution, continued from Example 4.14

Let X1,...,X,, be a sample from a shifted exponential distribution with intensity
parameter 1 and unknown shift parameter # € R. In Example 4.14, we deduced that
the null hypothesis Hp: 0 < 0 is rejected when Xy > —n~tlog o, with ag the
size of the test. We can determine the minimal sample size for a power function of at
least 0.8 in & = 0.1. By expressing the distribution function of X,y in the marginal
distribution function (of X7), we can determine the power function for every 6,

1 1 n
w0, K) = P(;(X(l) > —Elogao) = (P.g(Xl > —Elogao)) = ape™.

The requirement that 7(0.1, K) > 0.8 for ap = 0.05 leads to the inequality
0.05e"0-1 > (.80. It immediately follows that n > 27.7. ——

Example 4.18 Application: contaminated pool water

The guidelines for the number of Legionella bacteria in pool water in the Netherlands
is: at most 100 colony-forming units of Legionella bacteria per liter. Because the
number of colony-forming units of bacteria cannot be determined exactly, in this
example we use as norm that the probability of more than 100 colony-forming
units of bacteria per liter should be at most 5%. In Example 3.19, we presented a
procedure that can be used to estimate the number of colony-forming units of bacteria
in (contaminated) water. Let X be the number of colony-forming units of Legionella
bacteria in a 1 liter sample of pool water. We assume that X has a Poisson distribution
with unknown parameter p. For p, = P,,(X > 100), the norm can be tested formally
using the hypotheses

Hy:p, <0.05  and  Hy:p, > 0.05.

The probability p,, = P,(X > 100) is monotonically increasing in ;. We have
P, (X > 100) < 0.05 for p < 85.05, while P,,(X > 100) > 0.05 for ¢z > 85.05.
Consequently, testing these hypotheses is equivalent to testing the hypotheses

H{:p < 85.05 against Hy:p > 85.05.

We partition the sample mixed with 100 liters of pure water over 100 Petri dishes of 1
liter each. As in Example 3.19, we define X; as the number of colony-forming units
of bacteria in the ¢th liter and Y; as the variable that indicates whether a colony forms
in the ¢th Petri dish. We assume that the variables X7, ..., Xjo are independent and
Poisson-distributed with parameter p/100. The variables Y7, . .., Y19o are assumed to
be identical and have the Bernoulli distribution with parameter ¢, = P, (Y; = 1) =
1 — e #/190 Since g, is monotonically increasing in ¢ and 1 — e~ 8%:05/100 — (5728,
the hypotheses H{ and H{ are equivalent to

Hl:q, <05728  and  H{:q, > 0.5728.

! Source: Decree “Besluit Hygiéne en Veiligheid Badinrichtingen en Zwemgelegenheden,”
January 27, 2011. In practice, things do not go exactly as described in this example; instead,
several samples are taken at different places in the pool.
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4.4: Testing with p-Values

This null hypothesis H{ can be tested using the test statistic 7 = 19 Y;, which is
binomially distributed with parameters 100 and g,,. The null hypothesis can therefore
be tested with the one-sided binomial test, as described in Example 4.13. The normal
approximation is justified because 100 x 0.5728 x (1 — 0.5728) = 24.47 > 5 (see
Appendix A). We can solve the critical value from equation (4.2). It follows that at
level oig = 0.05, the null hypothesis H/ is rejected when 23201 Y; > 66. When we
find a colony in at least 66 Petri dishes, we assume g, > 0.5728, that is, u > 85.05
(we then also reject H, and accept H;), and therefore in that case reject our initial
null hypothesis Hy and assume p, = P, (X > 100) > 0.05. We conclude that the
pool water does not meet the norm when a colony forms in at least 66 Petri dishes.

——

In the previous section, we described tests using test statistics and critical regions.
We can also describe tests using so-called p-values. The relation between the critical
region and p-values is as follows.

Suppose that the critical region is of the form K = {x: T'(x) > d,, }, where the
constant d,, is the smallest number for which a test with a critical region of this form
has level «g. In other words,

(4.3) doy = min{t: sup Po(T > t) < ag}.
[ASCH)

Often, minimizing d,, corresponds to maximizing the power function in ©;. The
formula is therefore a consequence of Convention 4.10. The equality (4.3) implies
that for every ¢t € R,

sup Po(T > t) < ap — t > da,-
€O

Definition 4.19 p-Value

For a test that rejects the null hypothesis for large values of a test statistic T and
observed value t for T', the p-value is equal to

sup Py(T > ¢t).
[ASICH)
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-2 0 2 4

Figure 4.7. p-Value ¢ — sup, <,  Pu(T > t) = P, (T > t) (solid curve) for the Gauss test for
Ho:p < po with pg = 0. A dashed line was drawn at the level ag = 0.05. The thick solid line
shows the corresponding critical region.

We can therefore also carry out the test as follows: when the p-value is less than
or equal to g, we reject Hy; otherwise, we do not reject Hy. This rule gives exactly
the test with critical region K = {z: T'(z) > d., }, because the p-value is less than
or equal to «p if and only if ¢ > d,,. The above is illustrated in Figure 4.7 using
the Gauss test. It is clear in the figure that for values ¢ in the critical region, we have
SUP, <o Pro (T > t) < ap, and vice versa.

In words, the p-value is the maximum, under the null hypothesis, over all possible
values of the probability that an identical experiment gives a more extreme value for
the test statistic than the value ¢ found in the experiment that has been carried out.
Having to take the supremum, under the null hypothesis, over all possibilities makes
determining the p-value somewhat complicated. In many cases, taking the supremum
is unnecessary because one of the parameters 6y € © (often a boundary point of ©¢)
always has the maximum probability. In that case, the p-value equals Py, (T > t).

The p-value as we just defined it is specific for critical regions of the form
{z:T(x) > da,}- It is evident how to extend it to critical regions of the form
{z: T(z) < cq, }» where the assumption is now that

Cop = max{t: sup Po(T <t) < ao}.
0€0g

Definition 4.20 p-Value

For a test that rejects the null hypothesis for small values of a test statistic T' and
observed value t for T', the p-value is equal to

sup Py(T < ¢).
[ASICH)
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Two-sided critical regions of the form {z:T'(z) < ¢} U {a:T(x) > d} often
consist of combinations of one-sided regions in the sense that ¢ = c¢,,/2 and d =
oy /2 for co, and dy, as defined earlier. The level ay is then divided into two equal

parts of /2 each in the left and right tail. In this case, the p-value is defined as
follows.

Definition 4.21 p-Value

For a test that rejects the null hypothesis for small and large values of a test statistic
T and observed value t for T, the p-value is equal to

2min( sup Po(T < t), sup Py(T > t)>
0€00 0€0y

Again, when the p-value is less than or equal to «vg, we reject Hy; otherwise we
do not reject Hy. This corresponds to checking whether one of the two “one-sided p-
values” is less than or equal to o /2, since 2 min(a, b) < «q if and only if a < ag/2
orb < ag/2.

Testing using p-values is often preferable to testing using a critical region because
the resulting statements gives more information. Namely, when stating the p-value, it
is also possible to still test (in a very simple way) the hypothesis against any desired
level o, whereas when stating the critical region and the value of the test statistic for a
fixed av, this is not possible. Moreover, for example, a very small p-value immediately
tells us that Hy must clearly be rejected.

p-Values can also be defined for tests with a critical region of a general form. To
emphasize this, we give the general definition, of which Definitions 4.19, 4.20, and
4.21 are examples.

Definition 4.22 p-Value

For a collection of tests that contains a test of level « for every o € (0,1), the
observed significance level or p-value is the smallest value of « for which the
corresponding test rejects H.

Example 4.23 Binomial test, continued from Example 4.11

In Example 4.11, we concluded that in the case of 64 successes, the null hypothesis is
rejected at ag = 0.05, while it is not rejected in the case of 58 successes. The p-values
for 64 and 58 successes are, respectively,

sup P,(X > 64) = Pg5(X > 64) = 0.0033
p<0.5

sup Pp(X > 58) = Po5(X > 58) = 0.0666.
p<0.5
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The first probability is very small and is indeed less than 0.05, and the second is greater
than 0.05. We moreover see that with 64 successes, the null hypothesis is rejected at all
levels ag > 0.0033. So the p-value gives more information than only the fact that the
null hypothesis is rejected at aqg = 0.05, which was the conclusion of Example 4.11.

——

Example 4.24 Binomial test, continued from Example 4.23

The p-value of the binomial test for the null hypothesis Hy: p < pg, for an observed
value z, is equal to

sup P,(X > ) =P, (X > x).

P<po
We reject Hyp: p < po when this probability is less than or equal to a.

For known pg, ag, n, and x, we can either look up the p-value in a table or

compute it using a statistical computer package. For large n, we can also apply the
normal approximation,

_ _1
P, (X >2)~ 1_4)(%).
npo(1 = po)

For the null hypothesis Ho:p > po, the p-value P, (X < x) can also be computed
using the normal approximation, this time with the continuity correction in the other
direction. —

Example 4.25 Gauss test, continued from Example 4.12

The Gauss test rejects the null hypothesis Ho: 1 < i for large values of T' = /n(X —
o) /o. The critical value &4, of the test satisfies (4.3). For an observed value T, the
p-value of the test is therefore equal to

1< o

When this probability is less than or equal to oy, the null hypothesis H is rejected at
level ay.

The p-value for testing the other one-sided null hypothesis Hy: 1 > o against
the alternative hypothesis Hi: 1 < pig is given by the probability P, (T" < /n(z —
o)/ o). We reject the null hypothesis when this probability is less than or equal to .

The two-sided Gauss test is nothing more than the combination of the two one-
sided tests, each with level ap /2. We can therefore carry out this test by computing the
p-value of both the left-sided and the right-sided tests. The p-value of the two-sided
test is then equal to twice the minimum of the two one-sided p-values. If one of the
two p-values is less than or equal to o /2, then the p-value of the two-sided test is less
than or equal to oy and we reject the null hypothesis Hy: pt = pio. —
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Example 4.26 Application: Poisson-distributed stocks

Suppose that a distribution center stocks a certain perishable product weekly to supply
different retailers (see Example 1.4). Since the product has a limited shelf life, they do
not want to stock too much; products that are not sold are thrown out at the end of the
week. On the other hand, when too little is stocked and consumer demand is not met,
this gives dissatisfaction and a loss of clientele. The center has therefore decided to
stock a fixed number of items such that the probability of having a shortage is at most
10%. However, lately, the stock has regularly been insufficient to meet the demands
of the retailers. Apparently, the weekly demand has increased. We want to check this
using a statistical test.

We assume that the total weekly demand Z has a Poisson distribution with
parameter 6. If C' is the number of items stocked weekly, we can determine
the maximal parameter value 6, for which the 10% norm is satisfied: 6y, =
max{0:Pg(Z > C) < 0.10}. To test whether the current weekly demand has
surpassed the number the purchasing policy is based on, we want to test the null
hypothesis Hy: 6 < 6, against the alternative hypothesis Hy: 0 > 6. To do this, we
register the weekly demand for n weeks. This gives observations 71, . .., Z,. Assume
that 71, . .., Z, are independent and have a Poisson distribution with parameter 6. To
test the null hypothesis, we take as test statistic 7 = »_." | Z;, which has a Poisson
distribution with parameter n6.

We carry out the test by determining the p-value. For the observed value T' = ¢,
the p-value is supy g, Po(T > t) = Py, (T > t). If this p-value is less than or equal
to the chosen level oy, then the null hypothesis is rejected, and we can conclude that
the current demand is too high to meet the 10% norm with the current purchasing
policy. We can determine the p-value exactly using a statistical computer package, but
we can also approximate it. When nf is large, the test statistic 7" is approximately
normally distributed with expectation and variance both equal to n; see Section A.7.
The p-value can then be approximated as follows:

T—ﬂeo t—nGO t—n@o
Po (T >t)=P > ~1—-o .
(T 2 0) 90( vnbo — V/nby ) ( Vnby )

This test problem can also be approached from another direction. Suppose that
instead of registering the weekly demand, we only note whether the stock is sufficient

to meet it. We observe a sequence Xj,...,X,,, where X; = 1z,-¢ is equal to 1
when the demand is higher than the number of supplied products C' and equal to 0 if
the supply suffices. The variables X1, ..., X,, are independent and have the Bernoulli

distribution with parameter p, where p is the probability that there is shortage during
an arbitrary week. Since we want to study whether the probability is greater than
10%, we test the null hypothesis Hy: p < 0.10 against Hy:p > 0.10. As test statistic,
we take X = Z?:lXi, which is binomially distributed with parameters n and p.
Example 4.24 describes how to determine the p-value of this test.

Which of the tests above is better? We can judge this using the power function.
The power function of the first test, based on the Poisson(#)-distributed quantities
Z1,...,Zn,1s a function of . For the second test, based on the Bernoulli-distributed
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Figure 4.8. Power function as a function of 6 based on the Poisson-distributed observations
Z1,y...,Zy (solid curve) and the Bernoulli-distributed observations Xi,...,X, for n = 26,
C =100, ap = 0.05, and 6y = max{6: Py(Z > 100) < 0.10} = 88.35.

variables Xi,...,X, with distribution parameter p, the power function is, in
principle, a function of p. However, for given 6, the probability p can be computed
as follows:

00 - 9k
p=Po(X;i=1)=Po(Z; > C) = Z e HH'
k=C+1

We can also use this to compute the power function of the second test as a function
of 6.

Figure 4.8 shows the power functions of both tests as a function of 6 for the
choice C' = 100, n = 26, and oy = 0.05. We can see that the power function of
the first test is greater than that of the second test for values of 6 under the alternative
hypothesis, that is, for > 6. Based on this image, our preference would go out to the
test based on the Poisson-distributed random variables Z1, . . ., Z,. However, if there
is any doubt to the assumption that the weekly demand has a Poisson distribution, then
the binomial test is more powerful because this does not make any assumptions on the
distribution of the weekly demand. An incorrect assumption in the statistical model
may lead to a test of size greater than the desired «y. —
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The general set-up of the theory of testing as described above is both rather
complicated and astonishingly simple because there are only two possible decisions.
In many practical situations, the simplicity is misleading. An effect is called
statistically significant if the relevant null hypothesis is rejected at the given level.
This should be interpreted as follows: the effect we observed in the data is probably
not due to random variation; if we were to repeat the entire experiment, we would
probably observe the same effect. This in no way means that the “effect” is practically
significant. It is therefore conceivable that the test procedure has correctly shown
that the new therapy is better, but that the improvement is negligible. If the existing
therapy has probability of success p = 0.5 and the new one has probability of success
p = 0.500001, then we will observe this effect and reject Hy provided that we have
sufficiently many observations, but, practically speaking, it will make little difference
which therapy we follow.

Because of this, it is desirable to always supplement a test procedure that leads
to rejecting Hy with an estimation procedure that gives an indication of the size of a
possible effect. The context then determines whether this effect is of practical interest.

Another possibility to bridge the discrepancy between statistical and practical
significance would be to formulate the null hypothesis differently. We could, for
example, test the null hypothesis that the difference p2 — p; in probabilities of success
for the new and old therapies is at least 0.2, instead of the hypothesis that po —p; > 0.
The value 0.2 could then express the practical significance. In practice, however, we
are usually satisfied with determining a qualitative difference and test the hypothesis
Hyi:pz —p1 > 0.

In this section, we discuss several tests that are frequently used, other than the Gauss
test and binomial test. Most of these tests can be understood intuitively.

For a given test problem, the general idea is to find a test statistic that is
“reasonable” (often based on a good estimator for the parameter) and for which we can
easily compute a critical value or p-value. For the latter, the probability distribution
of the test statistic under the (“boundary” of the) null hypothesis must be either given
in a table or computable. Often, however, the probability distribution under the null
hypothesis does not belong to the usual list of computed distributions in probability
theory. We can then introduce a new standard probability distribution and produce
tables. An alternative is to approximate the probability distribution “on-the-fly” using
stochastic simulation. Let us discuss examples of both approaches.
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We begin this section with a discussion of the two most important random
probability distributions, the chi-square and ¢-distributions. These families of prob-
ability distributions are both related to the normal distribution and occur both
when testing the parameters of the normal distribution and when carrying out
approximations in large samples.

The chi-square and t-distributions are continuous probability distributions whose
densities are given by relatively simple expressions. For our purpose, however, the
following structural definitions of these probability distributions are more appealing.

Definition 4.27 Chi-square distribution

A random variable W has a chi-square distribution with n degrees of freedom,
denoted by x?2, if W has the same distribution as >, Z? for Z, ..., Z,, a sample
from the N (0, 1)-distribution.

0.20
1

0.00
|

T T T T T
0 5 10 15 20

Figure 4.9. Densities of the x?-distributions with 4 (solid) and 10 (dashed) degrees of freedom.

Definition 4.28 Student’s ¢-distribution

A random variable T' has a t-distribution or Student’s t-distribution with n degrees
of freedom, denoted by t,,, if T has the same distribution as

Z
W/n

for Z and W two independent random variables with the N(0,1)- and x2-
distributions, respectively.

128



4.6: Some Standard Tests
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Figure 4.10. Densities of the t-distributions with 1 (dashed), 5 (dotted), and oo (solid) degrees
of freedom.

Using standard techniques from probability theory, we can derive formulas
for the densities of chi-square and ¢-distributions. These expressions were used in
“classical” times to produce tables of the distribution functions. More recently, they
are the basis for the standard algorithms in statistical software. We will consider
the tables and software as given, and not discuss the exact form of the densities.
Figures 4.9 and 4.10 give a qualitative idea of the densities.

The following theorem shows why the chi-square and ¢-distributions are
important.

Theorem 4.29

If X1, ..., X, is a sample from the N (11, o2)-distribution, then
(i) X is N(u,0?/n)-distributed;

(i) (n —1)S% /o2 is x2_, -distributed;

(iii) X and S% are independent;

(iv) v/n(X — p1)/Sx has the t,,_ 1 -distribution.

Proof. Statement (i) is known from probability theory: the sum of independent
normally distributed random variables is again normally distributed. For the proofs
of statements (ii) and (iii), we may, without loss of generality, assume p = 0 and
o? =1.

The joint density of the random vector X = (X1,..., X,,)7 is then equal to

1 _1n- 1
27

(I17~-~,$n)'—>H e = -
Ve (2m)"/2

1 2
=5zl
e 2 s

where ||z||? = Y@ 27 is the square of the Euclidean length of x. Define the

vector f1 = (1/+/n,...,1/y/n) € R™ with ||f1||> = 1 and extend f; arbitrarily
to an orthonormal basis { f1,..., f,} of R™. Let O be the (n X n)-matrix with rows
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fis- -, fn. It immediately follows from the definition that OOT = I (with I the
identity matrix), so that O = O~! and O is an orthogonal matrix, OO” = OT0O =
I, and consequently ||Oz||? = 27OTOx = ||z||? for all z. Define the random vector
Y = OX.Then

Yl = le = \/ﬁyv
DV =Y =Y = | X[P - nX? =) (X - X)%
=2 =1
Statements (ii) and (iii) consequently follow if we can prove that Y7,...,Y,, are

independent and N (0, 1)-distributed.
The distribution function of Y is given by

1 _Ly 2
P(ng):/.../o< (27r)"/2e 21l gy - da,
z:0x<y

_ Lol gy
= oo uiu<y W@ ul... un7

where we use the substitution Ox = u. Then ||z|| = ||Oz|| = ||u||, and the Jacobian of
the transformation Oz = w is equal to det O = 1. It immediately follows from the last
expression that Y has the same joint density as X; thatis, Y7, ..., Y, are independent
and normally distributed with expectation 0 and variance 1.

For the proof of statement (iv), we write

s S Re S g
Sx (n—1)S% /o>
(n—-1)

By statement (iii), the numerator and denominator are independent of each other,
and by statements (i) and (ii) they have, respectively, an N (0, 1)-distribution and the
square root of a Y2 _,-distribution divided by n — 1. By Definition 4.28, the quotient
then has the ¢,,_-distribution. =

The statements of Theorem 4.29 are interesting. In particular, the independence
of the sample mean and sample variance for the same data is surprising. Figure 4.11
illustrates that this property depends on the distribution of the observations: the
normal distribution has this property, while the exponential distribution does not! For
applications, the implication of statement (iv) that the distribution of \/n(X — u1)/Sx
does not depend on the parameter o2 is most important for, among other things, setting
up a test. It is nice to know that this distribution is a ¢-distribution, so that we can refer
to standard functions or tables of this distribution. This is, however, less essential,
because we can also approximate the distribution using stochastic simulation.

Because the form of the density of Student’s ¢-distribution is known explicitly
(determined by W. Gosset, who published his results under the pseudonym “Student”),
simulation is unnecessary. Every statistical package contains functions to compute the
distribution function and quantiles of chi-square and ¢-distributions numerically.
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Figure 4.11. Scatter plot of the sample mean (z-axis) against the sample variance (y-axis) for 1000
samples of size 5 from the standard normal distribution (on the left) and 1000 samples of size 10
from the exponential distribution (on the right). On the left, the two coordinates are independent;
on the right, there is a positive correlation.

Given a sample X1, ..., X,,, we often want to test whether the location of the marginal
distribution of the sample is to the left or to the right of a certain value. For the
“location,” we can take, for example, the “expectation” or “median.” If we also assume
that the sample comes from a normal distribution, then the well-known ¢-test is the
correct test for the problem when the variance is unknown. If the variance were known,
we would use the Gauss test (see Example 4.12).

Example 4.30 t-Test

Let X1, ..., X, be a sample from the N (u1, 02)-distribution with z and o unknown.
We want to test Hy: pt < po against Hy:p > pg, where pg is a fixed number (for
example po = 0). Formally, the parameter in this case is given by the pair 0 = (1, 0%),
and the null hypothesis is equal to ©g = {(p, 02): pu < po, 0 > 0}.

Since the test statistic and the critical region K of the Gauss test from
Example 4.12 depend on o, and this parameter is now unknown, we cannot use that
test here. A logical extension of the Gauss test is to replace o in the definition of the
test statistic by an estimator. We use the sample standard deviation Sx . This gives the
test statistic

T:\/EXS;XMO'

We reject the null hypothesis for large values of this variable. Since the substitution
of Sx for o also changes the distribution of this variable, it is no longer normally
distributed when g = pg. It is therefore not immediately clear which critical values
we should take. In the next section, we explain, using Theorem 4.29, that this must be
the (1 — ap)-quantile of the ¢-distribution with n — 1 degrees of freedom, which we
denote by t,,_1,1—q,-
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By Convention 4.9, the critical value c,, for finding a test of significance level
o must satisfy

X —po
sup P,u,a’2 (\/ET Z Ca(J) S g,
pu<po,02>0 X

for a the level of the test. Note that the supremum must be taken over both 1 < g
and all possible values of o2, that is, over the entire parameter space under the null
hypothesis. However, the supremum over p (for every o) is taken in the boundary
point © = 9, which is clear intuitively (but not trivial to prove), so that the inequality
reduces to

X —
sup Puu,a2 (ﬁTHO > can) < ag.
02>0 X

Now, by Theorem 4.29(iv), the distribution of \/n(X — 10)/Sx under (p10,0%) does
not depend on (g, %) and is equal to the ¢,,_1-distribution. It now follows from the
inequality above that co, > t,,—1,1—q,. TO obtain the largest possible power function,
in accordance with Convention 4.10, we choose the critical region as large as possible
and take c,, = tn—1,1—a,- The size « of the test is then exactly equal to the level:
a = Q.

The resulting test, called the t-test or Student’s t-test, states: “Reject Hy if
V(X — 110)/Sx > th-11-ay- The corresponding p-value for observed values =
and s, is equal to

Py (T2 \/ﬁf_“o) = P(Toor 2 \/ﬁf_’m),

Sz Sz

where T,,_1 is a random variable with the ¢,,_1-distribution.

Adjusting the t-test for the test problems Ho:p > po and Ho:p = po i
analogous to adjusting the Gauss test. It is important for this to know that the ¢-
distribution is symmetric around 0, like the normal distribution, so that ¢, , =
_tn,l—a-

For small values of n (n < 10), the ¢,,-distribution differs greatly from the normal
distribution. Using normal quantiles instead of ¢,,_;-quantiles (that is, the Gauss test
with o taken equal to Sx) then leads to a test with a size that is much greater than
the desired size. This violates Convention 4.9. For increasing values of n, the %,-
distribution increasingly resembles the standard normal distribution, with convergence
to the normal distribution as n — oo. For n > 20, the similarity is already good
enough that the ¢-test and Gauss test give practically identical results.

We have introduced the ¢-test using ad hoc arguments. We can, however, show
that the test is uniformly most powerful within the class of all unbiased tests (see
Section 6.4.3). —
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The t-test is the correct test for testing the location when the observations
X1,...,X, form a sample from the normal distribution. If the last assumption does
not hold, then it may be possible and desirable to transform the observations (for
example using the logarithmic function) to observations for which the normality
assumption is reasonable. An alternative is to use a test that does not require normality.
There are many examples of such tests, of which we will discuss only one.

Example 4.31 Sign test

The sign test can be applied under minimal assumptions and is therefore well suited
when the observations do not come from the normal distribution. It is a test for the
median and not for the expectation, as is the case for the Gauss test and ¢-test. Suppose
that we want to test whether the median g of the distribution giving the independent
observations X7, ..., X,, is greater than a given value g, that is, test Ho: u < po
against Hy: > po. The test statistic is T = #(1 < i < n: X; > pp); we count how
many observations are greater than p or, equivalently, how many differences X; — 1o
are positive. We, in fact, apply the binomial test to the signs (positive or negative)
of the differences X1 — po,..., X, — po. The test statistic is binomially distributed
with parameters n and p,, = P, (X; > po). If the median of the distribution of the
observations is equal to 1, then the parameters are n and % If, on the other hand, the
distribution of the observations has median u with ¢4 < po, then the probability p,, is
less than or equal to 1/2. The null hypothesis Hy: 1 < pg can therefore be tested by
testing the equivalent null hypothesis Hy: p,, < 1/2 using T'. We reject Hy for large
values of 1", where the critical value is determined as in Example 4.13. i

Example 4.32 Tests for o2

Let X1, ..., X, be a sample from the N (y, 0?)-distribution with z and o unknown
parameters. Consider the problem of testing Hy: 0% < o2 against H;: 0% > 03, where
o is a fixed number. Formally, the parameter is given by the pair § = (u, 0?), and the
parameter space under the null hypothesis is equal to ©¢ = {(,u, o?):p € Ro? <
ot}. A reasonable estimator for o2 is the sample variance S%. Large values of S%
indicate that the alternative hypothesis might be correct. We therefore reject the null
hypothesis for large values of S%.

The probability distribution of (n — 1)5% /o? under (11, %) does not depend on
the parameter (11, 02), and is exactly the chi-square distribution with n — 1 degrees of
freedom (see Theorem 4.29). If we denote the a-quantile of the chi-square distribution
with n —1 degrees of freedom by X?L—l,a’ then the obvious choice for a test is: “Reject
Ho when (n —1)5% /08 > X211 4, (With ag the level of the test). We can show
that the size of this test is «, in the same way as in previous examples.
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The tests for the other one-sided test problem Hy: o2 > 08 and the two-sided test
problem Hy: o2 = 08 are obvious. Note, however, that the chi-square distribution is
not symmetric and puts all probability mass on (0, co). There is consequently no direct
relation between the quantiles X?z—l,a and X%—1,1—m and we cannot use the absolute
value of the test statistic to describe the two-sided test. The two-sided test states:
“Reject Hy when (n — 1)S% /o2 < X721—17a0/2 or (n —1)S%/o¢ > X?L—l,l—ao/?,’

We can also carry out these tests with p-values. —
In the two-sample problem, we have two samples X, ..., X,, and Y;,...,Y,, from

possibly different probability distributions, and we are interested in comparing these
distributions, for example their locations. Depending on the assumptions, there exist
different types of two-sample tests.

We can make an important distinction between tests for paired and independent
observations. In the first case, the two samples come from a sample (X1,Y7),...,
(X,,Y,,) of pairs of observations, where the X- and Y -variables in each pair may
be related, but the pairs themselves are assumed to be independent. For example,
when studying the effectivity of treatment, the X might give the state of a patient
before treatment, while the Y gives the state after treatment. Since X; and Y; are
measurements on the same patient, it is logical that they are stochastically dependent.
Indeed, a low value in the first observation indicates that the patient is in poor health,
which makes it more probable that the second observation will also be low (with
respect to the rest of the population, though possibly higher than the first observation
if the treatment is successful).

In the case of repeated measures on the same object or person, the dependence
of the measurements is unavoidable. In other applications, the X - and Y -components
may be intentionally chosen dependent by the set-up of the experiment. For example,
a group of subjects may be paired up using background variables such as age, gender,
prior treatment, or case history, so that the two persons in each pair are comparable
with respect to these variables. Then, one (arbitrarily chosen) person in each pair
receives the drug while the other receives a placebo. A difference in the state of the
patient after this treatment gives an indication of the efficacy of the drug. The purpose
of pairing the subjects in this approach is to emphasize the effect of the treatment.
Indeed, an observed difference within the pair cannot be explained by fluctuations in
the background variables but must be due to the treatment (or to an as yet unknown
background variable). If we do not pair the observations, then the additional random
fluctuation caused by the background variables can mask the effect of the treatment.

Example 4.33 t-Test for paired observations

It seems natural to base a test for comparing the locations of two paired samples
(X1,Y1),..., (X, Ys) on the differences Z; = X; — Y;. The t-test for pairs is the
usual ¢-test applied to the differences 71, ..., Z,.
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To apply the t-test, we assume that the differences Z1, ..., Z,, are independent
and N (A, o2 )-distributed, where the parameter A is equal to the difference EX; —EY;
of the expectations. Suppose that we want to test the null hypothesis Hy: A = 0
that the treatment does not have any effect, or one of the hypotheses Hyp: A > 0 or
Ho: A S 0.

If all X; and Y; are independent and have the N (u,0%)- and N(p — A, 03)-
distributions, respectively, then the differences Z; = X; — Y; have the normal
distribution with expectation A and variance 0> = o} + 03, and we can apply the
test mentioned above. In many applications, however, the X; and Y; will not be
independent, because they concern measurements on the same object. Fortunately,
even without that assumption, the normality and independence of the differences are
reasonable assumptions.

The power function of the t-test depends strongly on the variance o2. If the
variance is large, then the difference in expectations is difficult to detect, and the power
function of the ¢-test is small. A small variance is favorable and ensures a large power
function. This finding makes it clear that it can be wise to intentionally make the
samples in the two-sample problem dependent. Indeed, by the rule for the variance of
a difference, we have var Z; = varY; + var X; — 2 cov(X,,Y;), which is less than
var Y; + var X; if X; and Y; have a positive correlation. An intuitive explanation is
that taking differences eliminates random fluctuations that are present in both the X -
and Y -components and do not interest us. After eliminating this variation, it is easier
to discover a possible difference caused by the treatment.

A correct application of the ¢-test does require that the differences 71, ..., 2,
may be viewed as a sample from a normal distribution. ——

Example 4.34 Two-sample ¢-test

Let Xy,...,X,, and Y7,...,Y,, be independent samples from, respectively, the
N(u,0?)- and the N (v, 0?)-distributions. We want to carry out a one-sided test for
w—v > 0,thatis, Hy: p — v < 0 against Hy: p — v > 0. An obvious estimator for
1 — v is the difference X — Y of the sample means. Large values of this difference are
an indication that H; is correct. The distribution of X — Y is normal with expectation
1 — v and variance

2 g2 1 1

— = — — O
var(X —Y)=var X +varY = — + — = 02(— + 7)
m n m n
because of the independence of the two samples. Because this distribution depends
on the unknown parameter o2, we choose not X — Y as test statistic, but rather the
quantity

X-Y
. S
Sxyy/4+2
where
1 m o n
52 ( X, - X)? Y—YQ)
S r—— ;( ) +;( j )
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is an unbiased estimator for o2 (the maximum likelihood estimator for o2 is equal to

(m+n—2)/(m-+n)S% y; verify). If i = v, then T has a t-distribution with m +n—2

degrees of freedom (see the next paragraph for a deduction). As with the ¢-test for one

sample in Example 4.30, it suffices to consider the distribution of 7" in the boundary

point 2 = v, which must then be independent of 2. We therefore choose the critical

value equal to ., ,—2,1—a,» and the test states: “Reject Ho whenT" > t,,,4n—2.1—ay-
To see that I" has a t-distribution, we write it as

X-V)a+%
(m+n—2)5’§(yy/o’2 '
m+n—2

When p = v, the numerator of this expression has the N (0, 1)-distribution. To
determine the distribution of the denominator, we note that the sum of two independent
chi-square distributed random variables again has a chi-square distribution, with the
number of degrees of freedom equal to the sum of the numbers of degrees of freedom
of the two terms. Using Theorem 4.29, we see that (m+n—2)S% y /o* hasa x2,,,_o-

distribution and is independent of X — Y. The numerator and denominator of the test
statistic are therefore independent. That 7" has distribution ¢,, 4,2 when y = v now

follows from the definition of the ¢-distribution.
Tests for other one-sided and two-sided problems, and the corresponding p-
values, can be deduced in a way similar to that used for the one-sample problem.
——

We call the test in Example 4.34 the t-test (or Student’s t-test) for two
samples. This test differs essentially from the one-sample test for differences from
Example 4.33 because in that case, pairs (X, Y;) were defined in a natural way, which
is not the case here. If the coordinates X; and Y; in a pair (X, Y;) are dependent, we
may not use the two-sample ¢-test, or at least not with critical value ¢,,+n—2,1—ag»
because in that case, there is no guarantee that the size is less than or equal to «y. If,
however, the pairs (X1,Y7),..., (X,,Y;) and the coordinates X; and Y; in each pair
are independent and normally distributed, then both the ¢-test for pairs (Example 4.33)
and the two-sample ¢-test (Example 4.34) have size o and are admissible. The two-
sample t-test is then preferable because of its larger power function. The intuitive
reason is that in the ¢-test for pairs, the unknown parameter o2 is estimated using n
independent observations (the differences Z; = X; — Y}, of which n — 1 are “free,”
that is, with n — 1 degrees of freedom), while S§(7Y is based on 2n independent
observations (with 2n — 2 degrees of freedom). The latter is obviously better.

In Example 4.34, we assumed that the variance o2 is the same for both samples,
but in many practical problems, this is uncertain or not true. A more general problem
is obtained by assuming that the two samples come from the N (u, 0%)- and N (v, 72)-
distributions. We want to test the same null hypothesis Hyp: ¢ < v, but now with
unknown o2 and 72. This is the well-known Behrens—Fisher problem. Unlike in the
case 02 = 712, where the test we just discussed is the uniformly most powerful
test among the unbiased tests, there is no absolutely best test in the situation of the
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Behrens—Fisher problem (whence the word “problem”). There are several reasonable
tests (for which we refer to other textbooks).

If we ignore the possible inequality of o and 72 and apply the two-sample ¢-test
from Example 4.34, then the true size of the test may differ greatly from the desired
size (called the nominal size in this context). Table 4.1 provides an impression of this.
The effect of different variances is relatively small when m and n are approximately
equal and not too small. (We can prove that the size converges to aig as m = n — 00
for every o2 /72!) This leads to the advice to choose samples of equal size whenever
possible. This is also wise when 02 = 72, because the power function of the two-
sample ¢-test is maximal when m = n (for fixed m + n).

o2 )72 0.2 0.5 1 2 3
m n
5 3 0.100  0.072  0.050  0.038  0.031
15 5 0.180  0.098  0.050  0.025  0.008
7 7 0.063  0.058  0.050  0.058  0.063

Table 4.1. True size of the two-sided two-sample t-test for different variances and nominal level
0.05.

Example 4.35 Asymptotic t-test

A correct application of the two-sample ?-test from Example 4.34 requires that the
two samples be normally distributed with equal variances. If the two samples are both
sufficiently large, then neither the normality nor the assumption that the variances are
equal is essential, provided that the test be adjusted as follows. As test statistic, we
choose

X-Y
2 2
VE T
This variable differs from the test statistic in Example 4.34 by the use of a different
estimator for the standard deviation in the denominator.

Using the central limit theorem, Theorem A.28, we can show that under the
hypothesis u = v of equal expectations for the two samples, the variable T" = T, ,,
converges in distribution to a standard normal distribution as m,n — oo, provided
that the variances of the two samples exist and are finite. For large values of m and n,
we can therefore test the null hypothesis Hy: ;1 < v using the test that states: “Reject
H() when T' > gl—ao it

The size of this test converges to the level oy as m,n — oo, for every pair

of underlying distributions with finite variances. For distributions that are not too
asymmetric, we can already use this result for m = n = 20. ——

T =
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It is not always reasonable to assume that the data come from normal distribu-
tions. If there are good reasons to assume a different parametric model, for example
exponential distributions, then this will in general lead to a different test, because in
that case the t-test does not have the right level and may have an unnecessarily small
power function. The general methods for constructing a test, like the likelihood ratio
test from Section 4.7, suggest which test is reasonable.

It is also possible to find correct tests that require hardly any assumptions
on the distribution. So-called distribution-free tests work for very broad classes of
distributions. The sign test from Example 4.31 belongs to this group. Below, we
discuss an example of a distribution-free two-sample test.

Example 4.36 Wilcoxon signed-rank test

Given samples X1, ..., X, Y1,...,Y,, we define the ranks Ry, ..., R, of the first
sample in the total sample as the positions (or ranks) of X;,..., X,, after the data
Xi,..., Xm, Y1,...,Y, have been sorted by size. (For example, if X is the fourth
smallest observation, then we set R; = 4; if X5 is the largest, then Ry = m + n,
etc.) The test statistic of the Wilcoxon test (also called the Mann—Whitney U test)
is W = > | R;. Large values of W indicate that X1,..., X, are relatively large
with respect to Y7, ..., Y. This leads to rejecting the null hypothesis H that the two
samples are identically distributed for the alternative hypothesis that the first sample
comes from a “stochastically larger distribution” for large values of W. Of course, we
can also do a one-sided test in the other direction and do two-sided tests.

Under the null hypothesis, X1, ..., X,,,Y1,...,Y, can be viewed as a sample
of size m +n from a fixed (unknown) distribution. The ranks R, ..., R,, can then be
viewed as an arbitrary selection of m numbers out of the numbers {1,2,...,m +n}.
(For simplicity, we assume that the observations are continuously distributed, so that
the ranks are well defined.) The distribution of the Wilcoxon variable under the null
hypothesis is therefore independent of this distribution, and can be determined using
combinatorial arguments. This distribution has been tabulated and is available through
statistical computer packages. ——

Tests to check whether the distribution of an observation belongs to a certain family
are called goodness-of-fit tests.

In Chapter 2, we saw how the distribution of a sample could also be evaluated
graphically, for example using a QQ-plot. It is not our intention to replace these
graphical methods by formal tests; rather, we view the tests as a supplement. The
formal set-up of testing is an advantage because of the clarity, but has the disadvantage
of only giving a yes/no answer, without giving insight into the deviation from
normality when the answer is “no.” On the other hand, the method of testing is well
adapted to confirming or refuting an alleged deviation in a QQ-plot objectively.
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Example 4.37 Application: Black—Scholes model

The Black—Scholes model for log returns on the value of shares (see Example 2.17)
says that these log returns can be viewed as independent samples from a normal
distribution. The distribution of the log returns is important both for “risk manage-
ment” and for the prices of derivatives (such as options). If we assume normality, but
in reality, the log returns have a distribution with thicker tails (many extreme values),
then someone who owns these shares runs a higher risk than was factored in, and the
option price will not be realistic. This explains the interest in testing the normality
assumption. Can we view the log returns as samples from a normal distribution, or
not?

In addition to the marginal distribution of a sample, we can also study other
aspects with the help of a test. In the case of log returns, for example, it could be
interesting to study the time dependence. ——

This category of tests does not fit well in the general philosophy of testing
because with goodness-of-fit tests we generally prefer not to reject the null hypothesis.
The null hypothesis says, for example, that the data can be viewed as a sample from
a normal distribution, and confirming this null hypothesis would provide the most
information. However, the general set-up of testing does not give us this possibility:
the only possible strong conclusion is that the null hypothesis is incorrect; in the other
case, we do not obtain a strong statement. One could think that interchanging the
null and alternative hypotheses would solve the problem, for when we then reject
the null hypothesis, we would have the strong conclusion that the data comes from a
normal distribution. However, in practice, this null hypothesis will never be rejected.
In that case, the null hypothesis contains all nonnormal distributions. Every normal
distribution in the alternative hypothesis can be approximated arbitrarily closely by
a nonnormal distribution under the null hypothesis. It is consequently impossible to
make a clear distinction between the null and alternative hypotheses and draw the
strong conclusion. We therefore choose for the first-mentioned null hypothesis that
the distribution from which the observations come is a normal distribution.

Following this course of action, it is wise to interpret the results of goodness-
of-fit tests pragmatically. If, for example, the null hypothesis of normality is not
rejected, then we view this as an indication that using the normal distribution is not
unreasonable, without interpreting it as sufficient proof that we have normality. It is
simply impossible to show that a given distribution is correct.

Example 4.38 Kolmogorov—Smirnov test

Let Xy, ..., X, be asample from an unknown distribution F'. We want to test the null
hypothesis Hy: F' = Fjp that this distribution is equal to a given reference distribution
Fy against the alternative Hy: F' # Fj that this is not the case. The distribution Fj
could, for example, be the standard normal distribution.
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The Kolmogorov—Smirnov test is based on the empirical distribution function IF,,
of Xq,...,X,, which is defined as

1 1
=1

(see Figure 4.12). The value F,(x) is equal to the number of observations that
are less than or equal to z, divided by n. By the law of large numbers, we have
Fn(z) & El{x<y) = F(x) as n — oo. For sufficiently large values of n, the function
IF,, must therefore be close to the true distribution, so close to Fy if Hy is true. The
Kolmogorov—Smirnov statistic is the maximal distance between F,, and Fp,

T = sup|Fn(z) — Fo(z)|.
z€R

We reject Hy: F' = Fj for large values of T'. We can deduce the critical value for
the test from the probability distribution of 7" under Hy. This does not have a special
name, but it has been tabulated and is available in statistical computer programs. It
is good to know that the distribution is the same for every continuous distribution
function Fjp, so that one table suffices. For large values of n, we can also use the limit
result

o0

lim Pr, (sup|]Fn(:c) ~ Fy(a)| > z/\/ﬁ) =23 (—1)itei%,
n—oo zER -
j=1

The sequence on the right can easily be computed numerically for given z.
Consequently, this equality is, in particular, useful for determining p-values.
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|
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0.0
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Figure 4.12. The empirical distribution function of a sample of size 25 from the N(0,1)-
distribution and the actual distribution function.
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In many practical cases, the problem we just discussed is too simple. We often do
not want to test a simple null hypothesis Hy: F' = Fp, but rather a hypothesis of the
form Hy: F € {Fy:0 € ©} for a given statistical model {Fy: 6 € ©}. For example,
tests whether the observations are “normally distributed” correspond to the choices
6 = (n,0%) € R x (0,00) and F), ,2 = N (p,0?). An extension of the Kolmogorov—
Smirnov test statistic is

)

T = sup’]Fn(x) — Fy(x)
z€R

for an estimator 6 of #. We again reject for large values of 7*. Because of the
substitution of é, however, the distribution of 7 is not equal to that of 7. In general,
this distribution depends on the model we are testing, on the estimator 6 that is
used, and even on the true parameter 6. The distribution has been tabulated for some
special cases. In other cases, we use approximations or determine critical values using
computer simulations.

Consider, for example, the application to testing normality. It seems natural to
estimate the unknown parameter § = (u,o?) using the sample mean and the sample
variance. We reject the null hypothesis of normality for large values of the statistic

(4.4) T* = sup|Fa(z) - q)(x;XY> ‘

To determine the critical value for the test, or a p-value, we need to know the
distribution of this statistic under the assumption that the null hypothesis is correct.
Although the null hypothesis is composite, we can show that the distribution of 7
is the same under each element of the null hypothesis (Exercise 4.46). It is not easy
to derive an analytic expression for this distribution, but we can easily approximate
it using a simulation. We simulate a sample from the normal distribution of the same
size as the data a great number of times, for example 1000 times, and compute the
value of the Kolmogorov—Smirnov statistic 7* for each of the 1000 samples. As an
approximation for the p-value, we then take the proportion of the 1000 values that is
greater than the value of the statistic on the actual data. —

Example 4.39 Chi-square test

Let X1,..., X, be a sample from an unknown distribution F'. An alternative for the
Kolmogorov—Smirnov test for a simple null hypothesis, Hy: F' = Iy against Hy: F' #
Fp, is the chi-square test for independence. We partition the codomain of X; into
a number of contiguous intervals [y, Is, ..., I;. The number of observations in the
sample in each interval, denoted by IV; for j = 1,. .., k, is the random variable

Nj :#(1 <i<n:x; EI]').
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4: Hypothesis Testing

Under the null hypothesis, the probability p;: = Py, (X1 € I;) that an observation
X; lies in the interval I; follows from the distribution Fy for j = 1,...,k, and the
expectation of the number of observations in the interval I; is equal to np;. The test
statistic for the chi-square tests gives a normalized measure of the difference between
the realized number of observations and the expected number of observations in the

intervals:
k

2~ (N —npj)?
X —ZT.

Under the null hypothesis, for fixed k, X2 has approximately a chi-square distribution
with £ — 1 degrees of freedom. This approximation is reliable for sufficiently large
values of n. As a rule of thumb, we use that the expected number of observations in

each interval under the null hypothesis, np; for j = 1,...,k, should be at least 5.
Chi-square tests are also used in other situations. In Example 4.48, we discuss another
application of a chi-square test. —

Example 4.40 Autocorrelations

In Section 2.3.1, we define the sample autocorrelation coefficient of order h € N for a
given sample Xq,..., X, as

S M Xipn — X)) (X — X0) .

Pxm(h) = (n — h)S%

Here, we write px (), X ., and Sg{,n instead of px (h), X, and S% to emphasize the
dependence of these random variables on n. The sample autocorrelation coefficient of
order h is a measure for the linear correlation between a variable X; and a variable
Xy, measured h “points of time” later. If the sample autocorrelation coefficient takes
on values close to 0, this is an indication for (linear) time dependence.

Suppose that we want to test the null hypothesis that X, . .., X,, are independent
and identically distributed; then we could choose the sample autocorrelation coeffi-
cients px , (h) as test statistics and reject the null hypothesis when these coefficients
are too far from 0. To specify “too far from 0,” we need to know the distribution of the
sample autocorrelation coefficients under the assumption of independence, so that we
can define a critical region and determine p-values.

Since the sample autocorrelation coefficients are a complicated function of
the variables X7, ..., X, and their distribution moreover depends on the marginal
distributions of the Xj, it is not easy to determine the null distribution. For large
values of n, however, we can carry out an approximation, based on the following
limit theorem. If X;,...,X,, is a sample from a distribution with finite fourth
moment, then for every h, the sequence /npx n(h) converges in distribution
to a standard normal distribution as n — oo. Moreover, the sequences for
different values of h are asymptotically independent. In practice, we consider this
mathematical theorem justification for viewing the sample autocorrelation coefficients
Vrpxn(1),v/npxn(2),... as a sequence of independent standard normal variables
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4.7: Likelihood Ratio Tests

for large values of n and under Hy. If this were true, then the test “Reject Hy when
Vnlpxn(h)| > & —q,/2” would have size ap. Since this approximation only holds
for large values of n, in reality, this test has size approximately «.

We can carry out the test for every i > 0 (where the normal approximation is
only satisfactory when h is relatively small with respect to n). If we carry out the test
for k values of h, each time with size oy, then the size of all tests taken together is
approximately equal to 1 —(1—ay)¥. (Use the rule P(Up Ap) = 1—P (N, AS) with A,
the event that the hth test falsely rejects the null hypothesis of independence. Because
of the (asymptotic) independence of the tests, we then have P(N, Af) = [] h(l —
P(A})).) For small ay, the size is then 1 — (1 — a)* & kay, so k times as large as
the size of each of the tests individually. If we want to achieve an overall size «g, then
we need to carry out the individual tests with size «/ k. In practice, we are less formal,
and make a plot of, for example, the first 20 sample autocorrelation coefficients with
horizontal lines at heights +1.96/+/n (compare with Figure 2.13). If the observations
are independent, then we expect that one of the 20 sample autocorrelation coefficients,
and not significantly more, will fall outside the horizontal strip.

If we restrict the null hypothesis to the hypothesis that Xi,...,X,, are
independent and normally distributed, then it is possible to determine the distribution
of the sample autocorrelation coefficients more precisely. —

Tests are often set up based on heuristic arguments. A few examples were discussed in
the previous section. In this section and the next, we discuss several general methods
for finding a test, beginning with the most important one, the likelihood ratio test. In
the next section, we discuss score and Wald tests.

Definition 4.41 Likelihood ratio statistic

If pg is the probability density of a random vector X , then the likelihood ratio statistic
for testing Hy: 6 € © against Hy:0 € © \ Oy is defined as

)\(X — SuP€6®p9(X) .
SUPg,co, Pbo (X )

(Define a/b as o0 ifa > 0 =b.)
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4: Hypothesis Testing

To compute A(X), we maximize the likelihood twice, once with the parameter
0 restricted to O, and once over the full parameter space ©. Since Oy is a subset of
O, the likelihood ratio statistic will always be greater than or equal to 1. If we denote
the usual maximum likelihood estimator by 6 and the maximum likelihood estimator
under the assumption that the null hypothesis Hy is correct by 6o, then we can also
write the likelihood ratio statistic as

_ p(X)

AX) P4, (X)

If0 e Og, then éo = 6 and the likelihood ratio statistic is equal to 1. If the
numerator ps(X) of A(X) is greater than the denominator, this is an indication that
the space © \ © contains “more likely” parameters than the null hypothesis space
©y. Large values of A\(X) therefore give an indication that H; is correct. We therefore
take a critical region of the form {)\(x) > Cay } The critical value c,,, and/or p-values
can be determined from the distributions of A\(X') under every 6y € Oy.

Example 4.42 Normal distribution

The likelihood ratio statistic for testing Hy: 1 = po against Hq: pu # po based on a
sample X = (X1, ..., X,,) from the N (u, 0?)-distribution for a known o2 is

T, (27’1’0’2)_1/26—%(){%._[02/02

)\n(X17 e 7X77,) = H?:l(27_‘_0_2)—1/26*%()(«;*#0)2/0’2
1 & 1 &
= — = (Xi— )7+ == ) (Xi—po)?),
exp (— 5 i:1( i+ 5 ;:1( 110)?)

where /i is the maximum likelihood estimator for s, that is, 1 = X. It can be useful to
consider the distribution of 2 log \,, instead of that of \,, because twice the logarithm
of the likelihood ratio statistic is equal to

1 o - 1 o
21OgAn(X17,Xn):—§E (XZ—X)Q‘F;E (XZ—M0)2
i=1 i=1
()
=Nn|— .
g

Under H,, the variable \/n(X — j10)/o has the N (0, 1)-distribution, so that 2 log \,,
has a y3-distribution (see Definition 4.27). The null hypothesis is therefore rejected
when n(X — 110)? /0% > X3 1 _4,- Since (§1-a,/2)* = X3.1_a,» the likelihood ratio
test above is identical to the Gauss test, where Hy is rejected when |\/n(X — o) /o] >
§1—ae/2 (see Example 4.12). ——
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Generally, determining the distribution of the likelihood ratio statistic for every
fo € Oy is complicated, and approximations are used. A large sample approximation
is often possible when the observation is a vector X = (X;,...,X,,) consisting of
a sample X, ..., X,, from a distribution with (marginal) probability density py. The
likelihood ratio statistic then has the following form:

" (X
aa(x) = Lz 26l
[Tz pg, (Xi)

Denote by /n(© — ) the set of vectors /n(6 — 6p) as 6 runs through O, that is,

Vn(© —0y) = {/n(6 —6y): 0 € ©}. We assume that O is a subset of the Euclidean
space.

Theorem 4.43

Suppose that the map ¥ — log py(x) is continuous and differentiable for all z:, with
gradient /() such that ||(y(x)|| < L(x) for every ¥ in a neighborhood of a given
0y € O, where L is a function with EQOLQ(Xl) < o0. Suppose, furthermore, that
for the same 6y, the sets \/n(© — 0y) and \/n(Oy — Oy) converge to, respectively,
k-dimensional and ko-dimensional linear subspaces as n — oo. Finally, suppose
that the maximum likelihood estimators 8y and 6 under 6, converge in probability
to 6y and that the Fisher information matrix iy is invertible for all ¥ and depends
continuously on Y. Then, under the given 6, we have

QIOgAn(Xl,...,Xn)wxi_ko n — oo.

A “regularity condition” consisting of the differentiability of the log probability
density with respect to the parameter is essential for the result, as it was in Theorem 5.9
on the asymptotic normality of the maximum likelihood estimator. This theorem (or
Lemma 5.14) also gives sufficient conditions for the consistency éo Py and 0 RN
asn — oo. The notation £, means “convergence in probability”; see Definition A.24.

In addition to this, Theorem 4.43 assumes that the sequences of sets \/n(© — )
and /n(©¢ — Oy) converge to linear subspaces. This condition is usually satisfied if
the true parameter 6 is not a boundary point of the parameter spaces © and ©. If this
condition is not satisfied, then the chi-square approach fails. The convergence should
be understood in the following sense: a sequence of sets H,, converges to a set H if

(i) every element h € H is the limit A = lim,,_, h, of a sequence h,, with h,, €

H,, for every n;

(i) if A = lim; o hy, for given positive integers n; < ng < --- and elements

hyn, € Hy, forevery i,then h € H.

In most cases, the limit set H is exactly the set of limits A = lim h,, of convergent
sequences with h,, € H, for every n. Below, we give two general examples, and a
concrete example to clarify the convergence.
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For a proof of the theorem and an extension to boundary points 6y, we refer to
the book “Asymptotic statistics” written by Van der Vaart (Chapter 16, 1998).

We can extend the theorem to nonidentically distributed or dependent obser-
vations. Moreover, the assumption that the parameter space is a subspace of the
Euclidean space is unnecessary. The statement of the theorem depends only on the
“codimension” of the null hypothesis space Oy within © (the number k£ — k¢ in the
theorem). The theorem can also be extended to testing finite-dimensional parameters
in semi-parametric models such as the Cox model in Section 7.6.

The “theorem” proposes to reject the null hypothesis at level ay if

210g>\n(X15 e 7Xn) Z XZ*ko,lfag'

This critical region is always one-sided, regardless of whether the null hypothesis is
one- or two-sided.

Example 4.44 Simple null hypothesis

Let 0 be a one-dimensional parameter, and suppose that we want to test the simple null
hypothesis Hy: 0 = 0y for a given value 6. If 6, is an interior point of the parameter
space O, then the convergence in the theorem holds with £ = 1 and kyp = 0. Under
certain regularity conditions, twice the logarithm of the likelihood ratio statistic is
therefore asymptotically chi-square distributed with one degree of freedom.

It is immediately clear that kg = 0, because ©¢ = {6y}, so that /n(©¢ — 6y) =
{0} for every n. Obviously, the sequence of sets {0}, {0}, {0}, ... converges to the
zero-dimensional space {0}.

The assumption that 6 is an interior point of © means that © — 6y contains
a (possibly very small) open ball around 0. Then for large n, the set /n(© — 6y)
contains a very large ball around 0, and we can verify that this implies that the limit
of this sequence of sets is the full space R. —

Example 4.45 One-dimensional restriction

Let & = (6',...,0™) be an m-dimensional vector, and suppose that we want to
test the null hypothesis Hy: 6! = c that the first coordinate has a certain value. The
remaining m — 1 coordinates can be chosen freely in the null hypothesis. Once again,
assume that a given vector 0y = (c,02,...,0") € O is an interior point of the
parameter space ©. Arguments similar to those used in the previous example make
it seem plausible that in this case, the convergence in the theorem holds with given
k =m and kg = m — 1 for the given . The limit distribution of twice the logarithm
of the likelihood ratio statistic for testing the null hypothesis over the one-dimensional
parameter is therefore 7 (under certain conditions).
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4.7: Likelihood Ratio Tests

The more general form of a one-dimensional null hypothesis is Ho: 760 = c,
with b € R™, ¢ € R, and b”'§ the inner product of b and 6. (In the previous paragraph,
b= (1,0,...,0).) In that case, there exists an orthonormal coordinate transformation
Uon®, 0 — U =:0, such that ' = b'0/||b||. Using this, the null hypothesis
Ho: b7 = ¢ becomes equivalent to Hy: §' = ¢, with & = ¢/||b||. Moreover, the value
of the likelihood ratio statistic remains unchanged because, using the substitution 8 +—

U~16, we can write the likelihood as a function of 6 and the maximum likelihood
estimator for 6 is equal to U 6. It follows that the limit distribution of 2log A, for a
general one-dimensional restriction is the x?-distribution (under certain conditions).

—

The likelihood ratio test is not uniformly most powerful (Definition 6.37). This
is not a deficiency of this test, but a consequence of the fact that for many problems,
there does not exist a uniformly most powerful test. For different alternative values,
a different test is most powerful each time. The likelihood ratio test is “average” for
various alternative values, but often not absolutely optimal for any single alternative
value.

Example 4.46 Normal distribution, continue from Example 4.42

Let Xi,..., X, be a sample from the N (u,o?)-distribution with known o2. In

Example 4.42, we deduce that under the null hypothesis Hp: p = pgp, twice the
logarithm of the likelihood ratio statistic is exactly y?-distributed.

The likelihood ratio statistic for testing Ho: 1 < o is more complicated, and
we no longer have the convergence of the sets /n(©¢ — 6p) in the “theorem” for
all §y € ©y. Moreover, the asymptotic null distribution is not y?! To see the first
statement, we take ©¢ = (—oo, pig]. Then /n(©¢ — po) = (—o0, 0] for every n, and
this set does not converge to a linear space. ——

Example 4.47 Comparing two binomial probabilities

Let X and Y be independent with, respectively, the bin(m,p;i)- and bin(n, ps)-

distributions. We want to test the hypothesis Hy:p; = po against the alternative
Hy:p1 # po. The maximum likelihood estimator for (p1,p2) without restrictions
s (p1,p2) = (X/m,Y/n), the vector consisting of the two maximum likelihood

estimators when we observe only X or Y. Under the null hypothesis that p = p; = po,
the likelihood function is

P (;)px(l —p)" (;)py(l -p)" .

This is maximized by po = (X +Y")/(m+n). The maximum likelihood estimator for
(p1, p2) under the null hypothesis is therefore (po, po). The likelihood ratio statistic
can now be computed as

(X/m)¥(1 = X/m)" " X (V/n)" (1 - Y/n)"""
ﬁg(+y(1 _ﬁo)m-i-n—X—Y

AX,Y) =
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The “theorem” can be applied and gives a chi-square approximation with 2 — 1 =1
degree of freedom, because it is a one-dimensional restriction. We reject Hy when
2
2 log )\ Z Xl,l—ag'
Alternatives for this test are Fisher’s exact test and the chi-square test; see other
textbooks for more information. —

Example 4.48 Multinomial distribution

LetY = (Y3,...,Y,,) be multinomially distributed with parameters (n, p1,. .., Pm).
We assume that n is known and want to test a hypothesis on the probability vector
p = (p1,...,pm)- The likelihood function is given by

n Y) Y,
'_> . 771.
p (Yl Y >p1 pm

The maximum likelihood estimator for pq,---,p, with respect to the natural
parameter space {p € R™:p;, > 0,> " p; = 1} (the “unit simplex”) is equal to
p; = Y;/nfori=1,--- m. The log-likelihood ratio statistic for testing Hp:p € Pp
for a given subset Py of the unit simplex is therefore

" m (Y /n)Ye m Y,
log \(Y) = log (i )L /m) v = inf ZYi log —-.
SUPpep, ( Ym)H —1P; " PEPo npi

Even for the simple null hypothesis Py = {po}, this statistic has a complicated
distribution. Since Y can be viewed as the sum of n independent multinomially
distributed variables with parameters 1 and p, and the probability density of Y and
the joint density of this sample are proportional, the “theorem” stated previously may
be applied. The dimension of the parameter space (the k in the theorem) is equal to
m — 1 (provided that the true parameter p is an interior point of the unit simplex)
because (p1,. .., pm) varies over an (m — 1)-dimensional set.

For a simple null hypothesis, the likelihood ratio test is asymptotically equivalent
to the chi-square test of Example 4.39. To see this, we rewrite the log-likelihood ratio
statistic log A(Y"). The Taylor approximation of f(y) = ylog(y/yo) with f'(y) =
log(y/yo) + 1 and f”(y) = 1/y in the neighborhood of yq give, for large n, the
approximation f(y) ~ (y — yo) + %(y — 90)?/9o. This approximation applied to
every term in the sum of log A(Y") with y = Y; and yo = np; gives

log A(Y Cpy) 4 15 i mpi)”
: R
_1 - —npi)*
-y o
i=1
The last equality follows from >\ . np; =nand > ", Y; = n. ——
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« Example 4.49 Application: compound Poisson process

In Example 3.22, the maximum likelihood estimator is determined for the two-
dimensional parameter (¢, 1) in the distribution for the monthly payment made by
a health insurance company. The assumption was made that the expected number of
claims and claim sizes are equal all months of the year. However, it has been theorized
that there is a difference between the expected size of the claims in the summer and in
the winter. We will test this hypothesis using the likelihood ratio test, based on the data
of n winter months and m summer months. We assume that the data from different
months are independent.

As a model, we assume that the sizes of the claims in the summer and in
the winter have exponential distributions with unknown parameters 65 and 6,
respectively. The parameter ;. from the distribution of the number of claims is taken
the same in the summer and in the winter. The parameter is now three-dimensional,
(14,05, 0,,). The null hypothesis reads Hy: 05 = 6,,, and the alternative hypothesis is
Hy: 05 # 0,. The maximum likelihood estimator for the parameter can be determined
as described in Example 3.22. Under the null hypothesis, the parameter is equal to
(11,00, 6p). As in Example 3.22, the log-likelihood function can be written as a sum of
terms that each depend on one of the parameters. The maximum likelihood estimator
for p follows by maximizing the term that depends only on p. Since this term appears
in both the log-likelihood of the full model and the log-likelihood under the null
hypothesis, this term cancels out in the log-likelihood ratio statistic. We therefore
from now on disregard the term and the estimator for x. Under the null hypothesis, 6
is estimated by

0 Z?:Jrlm Ni
0 = + Ni K
Z?:lm Zj:l Ci,j

where the data of all n + m months has been taken together. Without the restrictions
of the null hypothesis, the maximum likelihood estimators for 6, and 6,, are given by

. n NS . moNw
93 = —nZl:lN§ v and ew - mZZ:1N"w’L 9
doic1 221 CF Dic1 21 CF

where the superscript s and w indicate data for the summer and winter months,
respectively. The log-likelihood ratio statistic is given by

n N? é o m I\ é o
log A\ = Zlog(H A—zef(efef’)cfd) + Zlog( A—we*(ew*%)cﬂ).
i=1 j=1 0o i=1 =1 bo

By the previous “theorem,” for large values of n and m, we know that under the null
hypothesis, the statistic 2log A, ,,, has approximately a chi-square distribution with
1 degree of freedom, because we are dealing with a one-dimensional restriction (see
Example 4.45). ——
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*_

Carrying out the likelihood ratio test requires determining the maximum likelihood
estimator for the parameter, both under the null hypothesis and for the full model.
This can be demanding. The score fest is an alternative that requires less computation
and has about the same quality when we have many observations.

The score function of a statistical model given by the marginal probability density
po is defined as the gradient /g (x) = Vglogpg(x) of the logarithm of the marginal
probability density; see Definition 5.8. Lemma 5.10 in Chapter 5 states that, under
certain conditions, Eglg(X) = 0 for every parameter 6. If the value /g, (x) differs
considerably from 0, this is an indication that 6 is not the true value of the parameter.
This gives the principle of the score test: the null hypothesis Hy: 0 = 6 is rejected
when the score function égo (x) differs considerably from O.

The question is how to quantify “considerably.” We will answer this question
only in the case where X = (X1,...,X,,) is a sample of independent, identically
distributed variables. The probability density of X is then of the form (x1,...,x,) —
H?:I po(x;), for py the (marginal) density of one observation. The score statistic for
Hy: 0 = 0y is then of the form

Zﬁeo (Xi),
i=1

where (4 is now the score function for a single observation. The score statistic is a
sum of independent, identically distributed random vectors. Under the null hypothesis,
Egoégo (X) = 0, and when n is large, the sum above has approximately a normal
distribution by the central limit theorem (Theorem A.28). This theorem implies that
under 6,

1 <. ) ) . .
ﬁzg% (XZ) ~ N(vao)v Loy = Eeogeo (XZ)EZZ) (XZ)
1=1

as n — oo. The number 74, or the matrix 79, when the parameter has dimension
(which we assume to be finite) greater than one, is exactly the Fisher information,
which we will also encounter in Chapter 5. When 6 is a one-dimensional real-valued
parameter, we can choose the following as test statistic:

n

‘%”2%2@90(&)
i=1

We reject the null hypothesis Hy: 6 = 6y when this test statistic is greater than the
(1 — ap/2)-quantile of the standard normal distribution.

When we have a k-dimensional parameter, the displayed expression is a vector.
We then choose the square of its norm as test statistic and reject the null hypothesis
Hy: 0 = 0y when this quantity is greater than the (1 — «g)-quantile of the chi-square
distribution with k degrees of freedom. If n is sufficiently large, the size of the test is
approximately equal to av.
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This gives a complete description of the score test for a simple null hypothesis.
To test a composite null hypothesis Hy: § € O for a given subset ©¢ C ©, we cannot
use the test in this form, because if the null hypothesis is true, we do not know the true
0o € ©g. The score test can be extended to this case by substituting the maximum
likelihood estimator 6 for the unknown 6 under the null hypothesis for §. We then
use the test statistic

(4.5) H 9_01/2\/—2 0o

Under the same type of regularity conditions as those for the likelihood ratio test
(compare with Theorem 4.43), for large n, under the null hypothesis, this statistic has
approximately the chi-square distribution with k — kg degrees of freedom, with the
same k and kg as in Theorem 4.43. We therefore reject Hy: 6 € Oy if the statistic in
(4.5) is greater than the (1 — «)-quantile of the chi-square distribution with k& — kg
degrees of freedom.

We see that applying the score test for a composite null hypothesis requires
determining the maximum likelihood estimator under the null hypothesis. If the
parameter 6 is partitioned as 6 = (#1,63) and the null hypothesis space is of the
form ©g = {(01,62):61 € R¥ 6y = 0}, then this corresponds to determining
the maximum likelihood estimator in a lower-dimensional submodel. If we set
ég = (ég 1,@9 2), where ég i is the vector of partial derivatives of the logarithm
of the probability density with respect to the coordinates of ;, then By will satisfy
0y = (90 1,0) for 90,1 determined by the likelihood equation

Zééml(x )=
i=1

This is a system with number of equations equal to the dimension of 1 in & = (61, 62).
The vector Y\ /4 (X;) is now of the form (0,377 /4 ,(X;)), and the score test
statistic (4.5) reduces to

(4.6) %(iééo,z(Xi))T(iéol)z,z (iééog(){i))

Here, (igl)g o is the relevant submatrix of the matrix z !, (Note that the submatrix
0

(A_l)g 5 of an inverse matrix A~! is not the inverse of the submatrix As2.) We
can interpret this quantity as a measure for the success of the maximum likelihood
estimator fy = (00 1,0) in reducing the score equation y ;" 149( ;) for the full model
to 0. Since >, £3(X;) = 0 for the maximum likelihood estimator 0 for the full
model, we can also view the score test statistic as a measure for the difference between
the maximum likelihood estimators under the null hypothesis and of the full model.
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For a null hypothesis of the form Hy: g(6) = 0 for a given, general function
g: R* — R™, we can sometimes determine the maximum likelihood estimator éo
under H by using the Lagrange method. This is a general method from mathematical
analysis for determining an extremum of a function under an additional constraint.
The idea is to determine the stationary points (éo, 5\) of the function

(0,A) — Zlogpe(Xi) +ATg(6).
i=1

This function is the likelihood function plus a vector parameter A € R™, the
“Lagrange multiplier,” times the additional constraint (g(6) — 0 = g¢(6) in our
situation). By the Lagrange theorem, under certain conditions, the first coordinate 6
of such a stationary point is the desired maximum likelihood estimator under Hy.
Differentiating with respect to 6 gives the stationary equation

Zééo (Xi) + g(00)" XA =0,

i=1
where g € R™*k is the gradient of g. This shows that the Lagrange multiplier

n N

A is “proportional” to Zi:lfég (X;), which is essentially the score test statistic. In
particular, when 6 = (6, 63) and g() = 65, the functional matrix is equal to (0, )7
and we have \ = Z?:1ééo,z(Xi)» which is essentially the test statistic (4.6). This is
probably why in econometrics, the score test is known as the Lagrange multiplier test.

As noted before, the score test can be viewed as a comparison of the maximum
likelihood estimator éo under the null hypothesis and the maximum likelihood
estimator 6 for the full model. The Wald test carries out a direct comparison and can
be viewed as a third variant of the likelihood ratio test. In the case of a partitioned
parameter § = (61, 602) and a null hypothesis of the form Oy = {6 = (01,6,): 02 =
0}, the Wald test is based on the second component 92 of the maximum likelihood
estimator § = (él, ég) for the full model. If ég differs too much from the maximum
likelihood estimator under the null hypothesis, which is 0, the null hypothesis is
rejected. “Too much” can be specified by referring to the limit distribution of the
maximum likelihood estimator.

More generally, the Wald test is based on the difference 6 — 6. If the quadratic
form o o

7’L(9 — 90)Tié0 (9 — 90)
is too great, the null hypothesis is rejected. Under the conditions of Theorem 4.43, we
can show that as n — oo, this sequence of Wald statistics converges to a chi-square
distribution with k — kg degrees of freedom, so that the correct critical value can be
chosen from the y2-table.

We can show that, under certain conditions, the likelihood ratio test, the score
test, and the Wald test all have approximately the same power function if the number
of observations is large. We again restrict ourselves to the case where the observation
isavector X = (Xq, ..., X,) of identically distributed random variables with density
Pe-
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4.9: Multiple Testing

Theorem 4.50

Suppose that the conditions of Theorem 4.4§ are satisfied ancj that, moreover, the
map ¥ — log py(x) has a second derivative £y(x) such that ||£y(z)|| < L(z) for a
function L with E90L2(X1) < 00. Then, under 6y, as n — oo, we have

% (iééo (Xi)>Ti9701 (iééo (Xz)> —n(f - éo)TiéO (0 — By) ~ 0,

210g An (X1, ..., Xpn) — (0 — 00) "5, (0 — 0o) ~ 0,

where the symbol “~~” means convergence in distribution. Moreover, the sequence
n(f — Ho)TiéD(H — 0p) converges in distribution to a chi-square distribution with
k — ko degrees of freedom.

- e
Daily, all over the world, many statistical tests are carried out, generally of size
5%. Some 1 out of 20 true hypotheses are then falsely rejected. This means that in
many statistically supported papers in medical journals, in which a 5% statistically
significant result is standard, the claim may be unfounded (we mean 5% of the claims
in situations where there is no effect; this is not the same as 5% of the papers). No one
seems worried about this.

The situation is different when one researcher carries out a large number of tests
simultaneously. If he chooses a level of 5% for every test, then when carrying out, for
example, 1000 tests, he should expect at least 50 “significant” results, even when in
reality there is nothing significant to be found. Such a situation occurs, for example,
in medical image analysis if every pixel is tested to see whether the value of the image
deviates from what is normal, and in the analysis of genetic data if a large number of
genes are being studied for their influence. In all these situations, the multiple testing
is seen as a problem.

If we carry out N tests simultaneously, each of size «, then the probability that
one or more of the null hypotheses is falsely rejected is less than or equal to Na. A
simple way to obtain an overall size of « is therefore to carry out each individual test
with size a/N. This is known as the Bonferroni correction.

The disadvantage of this simple correction is that the actual size is often much
smaller than the desired a. (The correction is very conservative.) To gain more insight,
we formalize the test problem. Suppose that we want to test the N null hypotheses
H}:0 € ©) forj=1,...,N, where ©},..., ©F are given subsets of the parameter
set that describe the probability distribution of the observation X. To test H| _—
have a test with critical region K7, and, in a multiple test procedure, we decide to
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4: Hypothesis Testing

reject the null hypotheses Hg for which X € K. If the true parameter 6y belongs
to @6 and X € K7, then we make a type I error with respect to the jth hypothesis.
In reality, every combination of correct and false null hypotheses is possible. If the
hypotheses H{ for every j in a given set J C {1,..., N'} are correct, and the other
null hypotheses are incorrect, then a meaningful definition of the overall size is

sup Pg(X € Ujg(]Kj).
Heﬂje.l@{]

This is the maximal probability that we reject at least one of the correct hypotheses.
This expression is less than

sup ZP(;(X IS Kj) < Z sup Pg(X IS Kj).
0€M;cs0) jer jeJ €0}

The suprema in the sum on the right-hand side are exactly the sizes of the individual
tests with critical regions K/ for the null hypotheses H}. If all these tests have size
less than or equal to «, then the overall size is less than or equal to #J a < Na, as
we concluded earlier.

The computation shows why the Bonferroni correction is conservative. First,
the upper bound N« corresponds with the situation that all null hypotheses are
correct, while in reality possibly only #.J hypotheses are correct. Second, and
more importantly, the upper bound is based on the inequality Pg(X € U;jKJ) <
>iPe(X € K 7), which in many cases is too pessimistic: if the critical regions
overlap, then the probability of their union may be much smaller than the sum of
their probabilities. “Overlap” often arises because of “stochastic dependence” between
the tests. In image analysis, for example, data concerning different pixels are often
dependent. Unfortunately, there is no general method for taking such dependence into
account when combining tests. The best solution is often to not combine the individual
tests, but define a new overall test.

In some cases, the stochastic independence of the tests is a reasonable assump-
tion. If the critical regions are stochastically independent, then

Py(X € U;K7) =1—Py(X € n;(K7)) =1 [[(1 - Po(X € K7)).

If all tests have size less than o, then for § € N; 96, this expression is bounded by
1—-(1- a)N , which is (of course) less than N «. For small values of «, however, the
difference is very small. If we want an overall size of ay, the Bonferroni correction
suggests to take size «o/N for each test, while for independent hypotheses the
somewhat larger value 1 — (1 — ag)'/™ can be taken. As N — oo, the quotient
(1 = (1 — ao)N)/(co/N) of these choices increases to —log(1 — ) /cv. For
ag = 0.05, the limit is approximately 1.025866, and the Bonferroni correction is only
2.6% greater.
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4.9: Multiple Testing

If we carry out many tests simultaneously (for example, N ~ 1000 or greater),
then controlling the size may not be very meaningful. Because the overall size is
defined as the probability of at Ieast one type I error, it is connected to preventing
all type I errors. This extreme aim will usually lead to a very small power function,
with possibly the result that no hypothesis can be rejected. Another approach is to
accept that a small number of null hypotheses will be falsely rejected if in that case at
least a reasonable number of null hypotheses are correctly rejected.

Definition 4.51 False discovery rate

The false discovery rate (FDR) is the expected proportion of falsely rejected null
hypothesis among the rejected hypotheses,

#{j:X € K7,0 € ©)}

FDR(6) = Ey X KR

An F'DR of at most 5% can be a reasonable criterion. The following procedure,
derived by Benjamini and Hochberg, is often applied to control the FDR. The
procedure is formulated in terms of the p-values P; of the IV tests.

(i) Order the p-values according to size: P(1) < Py < --- < P(y), and let Hé be

the hypothesis that corresponds with the jth order statistic F;).

(i1) Reject all null hypotheses Hg with NP;) < ja.
(iii) Also reject all null hypotheses with p-value less than that of one of the null

hypotheses rejected in step (ii).

It is clear that in general, this procedure will reject more null hypotheses than the
Bonferroni method. In terms of p-values, the Bonferroni method corresponds to
rejecting the hypotheses H{ with NP; < «, whereas the Benjamini-Hochberg
method uses an extra factor j in the equation N P;) < ja in step (ii). Under certain
circumstances, however, this does not negatively influence the FDR. In particular, we
can prove that

- #Hi0 €6y}
- N

where the factor 1 4 log N may be left out when the test statistics of the different tests
are independent or have a certain form of positive dependence (see Theorem 4.52).
Without the logarithmic term, the right-hand side is certainly less than «; with the
logarithmic term, this is not always the case, but the Benjamini—Hochberg procedure
applied with the slightly smaller value o/ (1 4 log N) certainly gives an F'DR(6) that
is less than a. _

The factor #{j: 0 € ©}} /N is the proportion of correct null hypotheses among
the IV hypotheses. In many applications, this proportion is close to 1. If this is not
the case, then the Benjamini—-Hochberg is conservative, like the Bonferroni method. If
we knew this proportion beforehand, it would be possible to obtain an F'D R close to
the nominal value «, by using the previous strategy with an adjusted value of «. This

(4.7) FDR(0) (1+log N),
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Figure 4.13. Illustration of the Benjamini—-Hochberg procedure for multiple tests. The points are
ordered p-values p(1) < p2) < -+ < P(1oo) (vertical axis) set out against the numbers 1, 2,...,100
(horizontal axis). The dashed curve is the line z +— 0.20/100z. The hypotheses corresponding
to the p-values left of the intersection point are rejected at aw = 0.20. (When there are multiple
intersection points, the last upcrossing of the p-values can be taken.)

is, however, hardly a realistic situation. There do exist refinements to use the data to
determine an estimate for this proportion and correct the value « using this estimate.
In the case of independent test statistics, we can, for example, replace o by

(1- AN
CHGP >+

A€ (0,1).

The additional factor can be seen as an estimator for the inverse of the factor
#{j:6 € ©}} /N, for every fixed \, for example A = a/(1 + «). Unfortunately, this
“adaptive” extension of the Benjamini—Hochberg procedure seems to function less
well when the tests are not independent.

For the next theorem, we assume that Py, P, ..., Py are random variables with
values in [0, 1] such that the distribution of P; under a parameter § € ©} (for which
Hg is correct) is stochastically greater than or equal to the uniform distribution; that
is, Pg(P; < z) < z for every x € [0, 1]. This last assumption implies that P; is a
p-value for the null hypothesis H3: 6 € ©), as the test with critical region {P; < a}
has size Py(P; < «) and for a valid p-value, this is less than or equal to the nominal
value «, for every a.
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4.9: Multiple Testing

Theorem 4.52 Benjamini—-Hochberg

If the distribution of Pj; is stochastically greater than or equal to the uniform
distribution under every 6 € @%, then (4.7) holds. If, moreover, Pi,..., Py are
independent or the functionx — Py (K(P17 ... Pn) >yl P = x) is nonincreasing

forevery § € ©), y € N, and coordinate-wise decreasing function K: [0, 1}N — N,
then

(4.8) zmm@<ﬂﬂ%9ﬁw

Proof. Let P = (Py,...,Py) be the vector of the p-values and K(P) =
max{j: NPy < ja}. It follows from the definition of the Benjamini-Hochberg

procedure that Hg is rejected if and only if j < K(P). An equivalent statement is
that H} is rejected if and only if

NP; < K(P)a.

The FDR can therefore be written as

g, 7P S K(P)a/N,0 € 64} S E (1{Pj < K(P)a/N})

K(P) oyt K(P)

The sum is less than or equal to the number of terms times the largest term. To
prove the different statements, it therefore suffices to bound the expectation by
(a/N)(14log N) for (4.7) and by o/ N for (4.8). Since the expectation is taken under
the assumption § € O}, the quantity P; is stochastically greater than a uniformly
distributed variable.

The inequality necessary for (4.7) therefore immediately follows from the first
assertion of Lemma 4.53. Moreover, by the definition, K is a coordinate-wise
decreasing function of P,..., Py. If P;,..., Py are independent, then it follows
that  — Py(K(P) > y| P; = z) is decreasing in z. When Pi,..., Py are not
independent, the assumption that the latter is decreasing in x is added to the theorem.
Consequently, the inequality necessary for (4.8) also follows from Lemma 4.53. W

Lemma 4.53

Let (P, K) be arandom vector with values in [0, 1] x {1, 2, ..., N'}. If the distribution

of P is stochastically greater than the uniform distribution, then for every ¢ € (0, 1),
HP<cK
E(%) < c(1+1log(c™' AN)).

If the function x — P(K > y|P = x) is nonincreasing for every y, then this
inequality also holds without the factor 1 + log(c™* A N).
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Proof. Since [, (1/s%)ds = 1/K for every K > 0, we can write the left-hand side
of the lemma in the form

E/ %dsl{chK}
K S

:/ El{Kgs,chK}d—j
0 S

< / E1{P < ¢|s] /\cN}g < / (cls] AeN A1) g
0 0
Here, || is the greatest integer smaller than s, and in the first inequality we use that
K takes on its values in N. The last expression can be computed as ¢(1/2 + 1/3 +
-+++1/D) + 1/D, for D the smallest integer greater than or equal to ¢c~* A N. This
expression is bounded by c(l +log(c ! AN )) This proves the first assertion.

For the second assertion, we denote by u — Q(u|z) the quantile function of
the conditional distribution of K given P = z. By assumption, this conditional
distribution decreases stochastically as = increases, which implies that the correspon-
ding quantile function also decreases: Q(u|z) > Q(ula’) if x < 2/, for every
u € [0,1].

Consider a fixed value u € (0, 1). The function x — ¢Q(u|z) — x takes on the
value cQ(u|0) > ¢l > 0in z = 0 and is strictly decreasing on [0, 1]. Let «* be the
unique point where the function meets the horizontal axis or let z* = 1 if the function
is always positive. In both cases, we have cQ(u| P) > cQ(u]z*—) > 2* if P < x*,
where Q(u|z*—) = limgqg+ Q(u| ). So the event { P < c¢Q(u| P)} is contained in
the event { P < z*}. Consequently,

(M0 SE2UPL) pUnS sl (N2 o,

If U is uniformly distributed on [0,1], then the variable Q(U|z) is distributed
following the conditional distribution of K given P = z. This implies that the vector
(P,Q(U| P)), for U independent of P, follows the distribution of (P, K). If we
replace u by U on the left-hand side in the display, we therefore obtain exactly the
left-hand side of the lemma. M
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4.10: Summary

Let X be an observation with distribution P that depends on an unknown parameter
0 € O. A test for the null hypothesis Hy: 6 € O against the alternative hypothesis
Hy:0 € ©1 = O\ 0Oy is defined by a crifical region K: if X € K, then H is rejected;
if X ¢ K, then Hy is not rejected.

The following concepts are important for tests:

e The critical region K is often described using a low-dimensional fest statistic T =
T(X) for which K = {x:T(z) € Kr}. The region Ky is often also called the
critical region (for simplicity).

o The (statistical) power function of a test with critical region K is the function
0— m(0; K)=Py(X € K)=Py(T(X) € Kr).

e The size of a test with critical region K is a = supycg, 7(0; K). A test of level ag
has o < .

o A Type I error is a false positive: H is true but is rejected.

o A Type Il error is a false negative: Hy is false but is not rejected.

e An ideal test has power O for § € O and 1 for € O;. This test does not make
any errors, but is not realistic. The probability of a type I error is limited by the size
of the test. The probability of a type II error decreases as the sample size increases.

p-Values offer an alternative for a critical region that provides more information:
e Foratest K = {z:T(x) < cq, }, the p-value is
p=sup Py(T <t).
€O
If p < «, then Hy is rejected at size a. For a test with K = {z: T(x) > dq, },
the p-value is defined using Py(T > t). In the case of a two-sided critical region,
the p-value is

2min ( sup Py(T < t), sup Po(T > t)).
[ASSHY 0€Oq

In addition to Gauss tests, t-tests, and the binomial test, which assume a specific
distribution, there also exist the following tests, which can be applied more broadly:
e The likelihood ratio test is based on the likelihood ratio statistic

SUPgco Po (X)
SUPg, e, P, (X)

Under certain conditions, under Hy:0 = 0y, the statistic 2log A\, (X71...,X,,)
based on X = (Xi,...,X,,) asymptotically has a x7_ x,~distribution. For large
n, the test that rejects Hy: 6 = 6y when 2log A, (X1,..., X,) > X%*ko,lfoéo has
approximately size ay.

e Nonparametric tests such as the sign test and the Wilcoxon test require few
assumptions and can therefore be applied to a broad class of distributions.

AX) =
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b

McRonald advertises quarter pound hamburgers. The Consumers Association wants to
research whether these are effectively quarter pounders. They weigh 100 products presented
as quarter pound hamburgers. Give a statistical model and describe the test problem.

. A coffee shop has few clients before 10 A.M. To draw more clients, the owners consider

reducing the price of a cup of coffee by 50 cents before 10 A.M. Describe an experiment to
evaluate whether such a measure has effect. Give the statistical model and describe the test
problem.

. For each of the following situations, give a statistical model and describe the test problem

(null hypothesis, alternative hypothesis).

(1) A sociologist asks a large group of high school students which academic study they
will choose. They expect that a smaller percentage of girls than boys will choose
mathematics.

(ii) A political scientist assumes that there is a correlation between age and voting or not
at elections, in particular a negative correlation. He sets 10 age categories and for each
category asks 100 persons whether they will vote or not.

(iii) To measure the effect of a problem session, a group of students is divided randomly
into two groups. One group only goes to the lectures, while the other goes to both the
lectures and the problem sessions. The observations consist of the exam results of both
groups.

Traditionally, we assume that there is a linear correlation y = @ + x; + yx, between the
yield y of an industrial process, the temperature x;, and the amount of added catalyst x,.
A researcher, however, believes that (within certain boundaries) the temperature does not
influence the yield. His colleague does not believe him and wants to use a statistical test to
prove that the temperature does play a role. Describe how this question fits into statistical
testing (give, among other things, the statistical model and hypotheses).

. A random number generator is supposed to produce a sequence of numbers u;, uy, . .. that

can be viewed as realizations of independent random variables with the uniform distribution
on the interval [0, 1]. It is impossible to prove that a given generator has this property, but we
can try to show, using statistical tests, that the generator does not work properly. Describe
the statistical model and the test problem. Also suggest several possible test statistics.

. The number of clients in a shoe store on Thursdays is approximately normally distributed

with expectation 200 and standard deviation 50. By advertising in the local paper that is
published on Wednesdays, the store owner hopes to increase the number of clients.
(i) What conclusion can the store owner draw if the average number of clients on four
Thursdays (after the ads appear) is (a) 239 (b) 264? Which assumptions were made?
(ii) The store owners knows that to cover the costs of the ads, he needs 20 additional
clients. Answer the same questions as above with this new aim in mind.

. According to the packaging, a jar of face cream contains 50 grams of cream. To see whether

the manufacturer puts enough cream in each jar, the contents of 100 jars are weighed. The
average content turns out to be 49.82 grams. The variance when the jars were filled is
supposed to be 1. Give a statistical model and describe the test problem. Use a suitable
test to check whether the manufacturer complies with the requirement. Take @y = 0.05.
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11.

12.

13.

4: Exercises

. Let Xj, ..., Xp5 be a sample from the N(u, 4)-distribution. We want to test the null hypothesis

Hy:p < 0 against Hy: u > 0 at level @y = 0.05. The observed sample mean is 0.63.
(i) Determine the critical region of a suitable test.
(i) Should H, be rejected?
(iii) Determine the power function of the testin y = 1/2.
(iv) Determine the p-value of this test.

. Let X1, ..., X0 be independent, N(u, 25)-distributed random variables. We want to test the

the null hypothesis Hy: u = 0 against H;: u # 0 at level o = 0.05. We find x = —1.67.
(1) Use a suitable test to determine whether H, should be rejected.
(ii) Determine the p-value.

Let Xi,...,X, be a sample from the N(u,o?)-distribution with u unknown and o > 0
known. Consider the test problem Hy: u < o against Hy: > o, where g is a fixed number.
Suppose that, in contrast to Example 4.12, we take X as test statistic.
(1) Show that the critical region K = {(x1,...,X,): X > fl,,mo-/\/ﬁ+ﬂo} gives a test of size
Q.
(i1) Show that the critical region K from the previous part is equal to the critical region
based on the test statistic v(X — u)/o" given in Example 4.12.

Someone pretends to have telepathic gifts in the sense that if you randomly draw one card
from a set with as many red as black cards, he has probability 0.6 of naming the correct
color instead of probability 0.5. To test this, we proceed as follows: we let him guess 25
consecutive times, where the drawn card is put back every time. If he guesses correctly at
least 17 times, we believe him; otherwise, we do not.

(1) Reword this problem in terms of null hypothesis, test statistic, alternative hypothesis,

critical region.

(ii) Determine the size of this test.
(iii) Determine the power function in p = 0.6.

(iv) He guesses correctly 16 times. What is the p-value?

(v) Do we reject Hy at level oy = 0.05? And at level ap = 0.10?

The random variables X, ..., X5 are independent and have the Bernoulli distribution with
parameter p. We want to test the null hypothesis Hy: p < 0.6 against H;: p > 0.6 at level
ap = 0.05. As test statistic, we take X = Y X;.

(i) Determine the critical region of the (right one-sided) test.

(ii) Compute the power function by approximation in p = 0.6, 0.7, 0.8, 0.9, and sketch the
graph of the power function. (The rule of thumb for the approximation is not satisfied
for p = 0.8 and p = 0.9, but in this exercise and for sketching the graph, we can still
use the approximation.)

(iii) Compute the size of the test.

Suppose that in Example 4.11, we choose a test with a critical region of the form K =
{e,e+1,...,98}.
(i) Determine e such that @ < 0.05.
(ii)) Compare the power function of this test with that of the test with critical region
{59, 60, ..., 100}.
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14.

15.

16.

17.

18.

19.

20.

According to the polls, during an election, political party A should receive 3.5% of all votes.
We think that this is an overestimate. To study this, we ask 250 randomly chosen voters
which party they will vote for. We denote by X the number of followers of party A. In our
sample, x = 5 persons are followers of party A.
(i) Give a statistical model for this situation.
(ii) Determine a suitable null hypothesis.
(iii) Give (an approximation for) the critical region for X at level oy = 0.05. Test the null
hypothesis from the previous part and give your conclusion.
(iv) Give (an approximation for) the power function in 0.025 corresponding with your
answer to part (iii).
(v) How could we increase the power function in part (iv)?

To test the hypothesis Hy: p < 0.5 that a Bernoulli experiment is unbiased, we carry out a
series of n of these experiments, independently from one another, and use the standard test
at level 5%. How large must we at least take n for the power function in p = 0.6 to be at
least 0.97

Let Xy, ..., X, be a sample from the N(u, 4)-distribution. We want to test the null hypothesis
Hy:p > 1 against Hy:u < 1 at level @ = 0.05. Since in this case, it is very important to
actually reject Hy if 4 = 0, we want to choose n such that in the Gauss test, the probability
of a type Il error in = 0 is at most 0.1. How large must n at least be?

To study whether the majority of the inhabitants of the Netherlands go abroad for the summer
holidays, we ask n randomly chosen inhabitants where they are going on vacation next
summer. We denote by X the number of persons in our sample who are going on vacation
abroad. Based on this data, we want to test the null hypothesis Hy: p < 0.5 against the
alternative hypothesis H;: p > 0.5. How large must n at least be chosen to obtain a power
function in p = 0.6 of at least 95% at level @y = 0.05.

We want to know what percentage of the pieces in bags of candy are red, that is, the
probability that a randomly chosen piece of candy from a randomly chosen bag is red. We
take a sample of 30 bags of candy, each with 60 pieces. Let Y; be the number of red pieces in
the ithbag (i = 1,...,30). Assume that Y1, ..., Y30 are independent and that Y; is binomially
distributed with parameters 60 and p, with p the proportion of red pieces of candy in the
bag.

(i) Determine the maximum likelihood estimator for p.

(ii) Of the total 1800 pieces of candy, 342 are red. Test the hypothesis Hy: p = 0.2 against

Hy:p#0.2.

Let X be a variable with the bin(25, p)-distribution. We want to test Hy: p > 0.4 against
H;:p < 0.4. If we want a power function of at least 0.6 in p = 0.3, how large must we at
least choose the size of the test? Is this satisfactory?

A new vaccine for a virus for which there was no vaccine must be tested. Because the illness
is in general not very serious, 1000 volunteers are given the virus. The vaccine is deemed
successful if it protects in 90% of the cases.
(1) Give a statistical model and the corresponding test problem.
(ii) If the experiment gives a p-value of 0.25, what does that mean?
(iii) The researchers do not find a p-value of 0.25 sufficiently convincing to recommend the
vaccine for regular use; do you agree or disagree with this conclusion?
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21. A manufacturer studies the life span of two types of fluorescent tubes, type A and type B. In

22.

23.

24,

an office building, a large number of fluorescent tubes are placed in pair. Each pair consists
of a tube of type A and a tube of type B. The tubes in each pair are switched on and off at the
same time. The manufacturer wants to study which type of fluorescent tube has the longest
life span. The observations are (Xi, Y1), ..., (X,, Y,), where for the ith pair, X; is the life span
of the fluorescent tube of type A and Y; is that of the tube of type B. Two statisticians analyze
the observed values using a statistical test.
(1) The first statistician defines W; as equal to 1 if X; > Y; and O otherwise. Then
Wi, ..., W, are independent and Bernoulli-distributed with parameter p = P,(X; >
Y;) = P,(X; — Y; > 0). He tests the null hypothesis Hy: p = 1/2 against H,: p # 1/2.

Describe a suitable test based on Wy, ..., W,; give a test statistic and an (approximate)
critical region. Explain how you have arrived at the critical region. Take o, as the size
of the test.

(i) The second statistician looks at the differences Z; = X;—Y;,i = 1,2,...,n and assumes
that Z,,...,Z, are independent and normally distributed with unknown expectation u
and unknown variance o. He tests the null hypothesis Hy: u = 0 against H;:u # 0.
Describe a suitable test for the given problem based on the observed differences; give
a test statistic and an (approximate) critical region (a different test than the one for the
first statistician). Explain how you have arrived at the critical region. Take a( as the
size of the test.

(iii) Assume that the differences Z,. .., Z, are normally distributed with expectation u and
variance o>. Show that the assumptions of the two statisticians are equivalent under
the assumption of normality.

(iv) Both statisticians have carried out their tests. The first statistician does not reject the
null hypothesis; the second does. Is this possible, or has one of the two made a mistake?
Explain.

Let Xi,..., X, be a sample from the distribution with probability density ps(x) = ™1 ,54.
We want to test the null hypothesis Hy: 6 > 0 against H,: 0 < 0 at level ¢y = 0.1. We choose
X1 as test statistic. Construct the critical region for the suitable (one-sided) test.

Let X be a random variable with a Poisson distribution with unknown parameter 6. Based
on X, we want to test the null hypothesis Hy: 0 # 5 against H,: 8 = 5. Show that the power
function of each testin 6 = 5 is not greater than the size. Can a meaningful test be set up for
this problem?

Let T be a test statistic with a continuous distribution function F, under Hy. Then 1 — F(¢)
is the p-value of a test that rejects Hy for large values of 7.

(1) Show that under Hy, the p-value 1 — Fo(T') is uniformly distributed on [0, 1].

(i1) Is the distribution of this variable for a good test under the alternative hypothesis
stochastically “greater” of “smaller” than the uniform distribution? (Stochastically
greater means that realizations are, in general, greater; more precisely: the distribution
function is smaller.)

25.
(i) Show that the X3-distribution is equal to the exponential distribution with parameter
1/2.
(ii) What is therefore the relation between the X3, -distribution and a gamma distribution?
26. Show that the expectation and variance of the X2-distribution are equal to n and 2,

respectively.

163



27.

28.
29.

30.

31.

32.

33.
34.

35.

36.

: Hypothesis Testing

Consider the estimators 7, = ¢S% for the variance of a sample Xj, ..., X, from the N(u, o%)-
distribution. Use Theorem 4.29 and the previous exercise to compute the expected square
error of T.. For what ¢ is this minimal?

Determine the distribution of the sum of two independent chi-square-distributed quantities.

(F-test.) A random variable T has the F-distribution with m and n degrees of freedom,
denoted by F,,,, if T has the same distribution as (U/m)/(V/n) for independent random
variables U and V with, respectively, the x2- and y2-distributions. Use the critical values
from the F-distribution to construct a test for the problem Hy: 0%/7% < 1 against H,: 0> /7% >
1 based on two independent samples Xi,...,X, and Yi,...,Y, from, respectively, the
N(u, 0?)- and N(v, 7%)-distributions (for unknown g and v).

Based on two independent samples Xi,...,X»s and Yi,...,Y)s from the N(u,0?)- and
N(v, 7%)-distributions, respectively, we want to test Hy: 0> > 272 against H,: 0> < 27> with
unknown y and v, and @y = 0.01.

(i) What is the conclusion if we find the sums of squares s> = 46.7 and s}z, =45.1?

(ii) Determine the corresponding p-value.

2 > 0 are

Let Xi,...,X, be a sample from the N(u, o)-distribution, where u € R and o
unknown.
(i) Prove that the test “Reject Hy: 0> < o when (n — 1)S%/0 = xa_y,_,” (described in
Example 4.32) has size a.
(i) The power function of this test is a function of (i, o). Express this function in the
distribution function of the chi-square distribution.

(iii) Sketch the graph of this function.

Let Xi,...,X, be a sample from the N(u, o?)-distribution, where u is known. How could
you use the known value of u to construct a test for Hy: 0> = o3 against Hy: 0> # 03? Do
you expect this test to have a greater power function than the test from Example 4.32?

Show that a 7-distribution is symmetric around the origin.

A chemical process should produce at least 800 metric tons of chemicals a day. The daily
production of a certain week is 785, 805, 790, 793, and 802 metric tons. Do these data give a
reason to conclude that there is something wrong with the process? Take @y = 0.05. Which
assumptions were made?

The average birth weight of boys in the Netherlands is 3605 grams. A number of midwives
want to study whether the expected birth weight of boys in their practice deviates from this.
The average birth weight of the 20 most recently born boys in the practice is 3585 grams,
and the sample standard deviation is 253 grams.

(i) Setup a test for the problem described above. Give the null and alternative hypotheses.
Give the test statistic, the distribution of the test statistic under the null hypothesis, and
the critical region. Take level ¢y = 0.05. What is your conclusion?

(ii) Test the null hypothesis from part (i) again, now based on an (approximate) p-value.

In an experiment, the blood pressure of 32 patients with hypertension is measured after they
have taken a blood-pressure-lowering drug A. In a second experiment, the blood pressure of
20 patients with hypertension is measured after they have taken B, another blood-pressure-
lowering drug. Denote the blood pressure values in the two experiments by Xj,.. ., X3, and
Y1,..., Ya. The measured outcomes are x = 163,y = 158, sy = 7.8, and sy = 9.0.
(i) Use a suitable test to determine which of the two drugs works best. Take a level of 5%.
(ii) Determine the (approximate) p-value.
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4: Exercises

37. Ten sweaters are cut in half. One side is washed with product A, the other half with product
B. After washing, the sweaters are measured. We find the following lengths:

sweater 1 2 3 4 5 6 7 8 9 10
product A 61,2 58,3 56,7 59,1 62,7 61,3 57,8 55,7 61,8 60,7
product B 61,5 58,2 59,0 58,6 62,4 61,2 55,0 55,0 61,4 61,0

Do the sweaters shrink less with product A or with product B? Construct a suitable test and
state your conclusion. Take @y = 0.05. Which assumptions were made?

38. Mister Young has a cab company with 12 cabs. He plans to buy 6 new tires of brand A and
6 new tires of brand B for the back wheels of the cabs. After every 500 km, he will check
the wear on the tires. He can either

(1) put a single new back tire on each of the 12 cabs, or
(2) put a new back tire of each brand on 6 cabs.
Which of the two methods is preferable statistically? Why?

39. Mister Young from the previous exercise records the following numbers of driven kilometers
when the 12 tires are worn:

km with brand A 51000 50500 61500 59000 64000 59000
km with brand B 55000 49500 62500 61500 65500 60000.

(1) If the results are obtained using method (1), can he see the difference between the

brands A and B? Take a( = 0.10.

(ii) Same question if the results are obtained using method (2) (where the vertical columns
show the 6 cabs).

(iii) Is it obvious that the two methods should give approximately the same numbers (as we
have assumed in this exercise for the sake of convenience)?

(iv) Is it reasonable to assume that the number of kilometers is exactly normally
distributed? And approximately?

40. The content of a sunscreen manufacturer’s tubes is checked. The tubes say that the content
is equal to 150 grams. The inspector suspects that the manufacturer does not put enough
sunscreen in the tubes. On inspection, the following content (in grams) is measured: 150.10,
149.55, 150.00, 149.65, 149.35, 150.15, 149.75, 150.00, 149.65, 150.20, 149.20, 149.95.

(1) Check with a suitable test whether the inspector’s suspicion is correct. Take level o =

0.0s.

The manufacturer receives a warning from the inspector and claims to have adjusted the
filling machines. At the next inspection, the following content (in grams) is measured:
149.85, 150.15, 150.05, 149.90, 150.30, 150.05, 149.95, 149.75, 149.95, 150.10.

(ii) Set up suitable null and alternative hypotheses to check the manufacturer’s claim that
the expected weight at the second inspection is higher than that at the first. Carry out the test
at level ap = 0.05.

41. A chemical process should produce 10 metric tons of waste material an hour. Inspectors
think that the amount of waste material is too high. The production process is therefore
followed during 16 hours, and the amount of waste material produced each hour is recorded.
Suppose that the amounts of waste material in these 16 hours, denoted by Xi, ..., Xj¢, are
independent and normally distributed with unknown expectation u and known variance 1.
The sample mean is x = 10.5.
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42.

43.

(i) Give suitable null and alternative hypotheses for the situation describe above. Test the
null hypothesis at level @y = 0.05. Give the test statistic, the critical region, and a
conclusion in words.

(i) How many hours should one measure to have at least a 0.80 probability of discovering
a deviation if the true value y is equal to 10.4 metric tons?

Determining the isolating properties of oil can be done by filling a glass tube containing two
poles and applying voltage to the two poles, letting it increase until a spark breaks through
the isolation. We can repeat this determination of the breakthrough voltage as often as we
want. In an experiment described by Youden and Cameron, two determinations are carried
out each time (“duplo determinations”). If we denote the breakthrough voltage in the first
determination by X and that in the second by Y, then it is reasonable to assume that X and Y
have the same distribution (although it is, in general, different for different types of oil). This
is, however, in no way certain, since a spark traveling through oil can leave behind ions,
which can influence the outcome of the second determination. We want to check whether
such an influence is present. In the experiment, we used 10 oil samples (each of a different
type of oil); the tube was filled twice from each sample, and two determinations were carried
out for each filling of the tube. The outcomes are given below:

oil sample 1st filling 2nd filling
1 16 12 17 14
2 11 10 12 10
3 14 14 15 14
4 19 17 18 19
5 23 20 21 19
6 13 15 14 14
7 16 15 16 14
8 20 19 19 20
9 15 11 16 13
10 14 12 13 15

Test the null hypothesis that there is no systematic difference between the duplo determi-
nations against the alternative hypothesis that there is one, at level @y = 0.01, under the
assumption that all breakthrough voltages are independent and normally distributed with the
same (unknown) variance. Indicate the approximate size of the p-value.

To study whether toxic material has been released during a large fire, soil samples have
been taken at different locations near the site of the fire. The presence of heavy metals is
measured in these samples. For comparison, a number of samples are taken at a safe distance
from the fire where the soil has the same type of composition. We want to test whether the
concentration in the soil near the fire is higher than the concentration at a safe distance. At
both places, 10 samples were taken. The concentrations in the 10 samples near the fire are

denoted by Xi, ..., Xjo, the concentrations at a safe distance are denoted by Y1, ..., Y. The
resulting sample means are ¥ = 101.5,5 = 99.2, and the sample variances are s> = 5.1 and
s2=52.

Y

(i) Give a statistical model and reformulate the problem outlined above as a test problem.
Describe the standard test. Give the test statistic and the critical region. Use level 5%.
Carry out the test. What is your conclusion?

Another researcher argues as follows. Since the ground near the site of the fire is clay, heavy
metals will not quickly descend to lower soil layers. He therefore wants to study whether
the concentration in the top layer is higher than that in the bottom layer; a rise in the top
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45.

46.

47.

48.

49.

50.

51.

4: Exercises

layer may be caused by the fire. For each sample taken near the fire, he determines the
concentration in the top and bottom layers.
(ii) Write the problem outlined as a test problem. Give the test statistic and explain how
we can determine the p-value.
(iii) Suppose that the p-value is equal to 0.042. What is the conclusion if we take the size
ap equal to 0.05?
(iv) Which of the two research methods is preferable?

Show that a probability density for the 7,-distribution is given by

rn+1/2) 1 2\ ~(n+D/2
o= "0 1 7y
I'(n/2) nx n
Suppose that we have observations x; = 0.5, x, = 0.75, and x3 = 1/3. Determine the

value of the Kolmogorov—Smirnov statistic for testing whether x;, x,, x3 are realizations of
independent UJ[0, 1]-variables.

Make the dependence of the Kolmogorov—Smirnov statistic (4.4) on the observations
Xi,...,X, visible by writing the statistic in the form 7*(X, ..., X,). Define Z; = (X; — w)/o.
Show that T*(Xy, ..., X,) = T*(Z,...,Z,). Deduce that the distribution of the Kolmogorov—
Smirnov statistic is the same for every element of the null hypothesis that the observations
are normally distributed.

Let Xi,..., X, be a sample from the distribution with probability density ps(x) = e™"1 5.
(i) Determine the likelihood ratio statistic A, for testing Hy: 6 < 0 against H,: 6 > 0.
(i1) Determine the limit distribution of 2 log A,,.

Let Xy, ..., X, be a sample from the uniform distribution on [0, 6].

(1) Determine the likelihood ratio statistic A, for testing Hy: 6 < 6, against H;: 0 > 6.
(ii) Determine the likelihood ratio statistic 4, for testing Hy: 0 = 6, against H;: 0 # 6.

Let Xy, ..., X, be a sample from the Poisson distribution with unknown parameter 6.
(i) Determine the likelihood ratio statistic A, for testing Hy: 0 = 6, against H;: 0 # 6.
(ii) What limit distribution does 2 log 4, have as n — co?

Let Xj,...,X, be a sample from the distribution with probability density pg(x) =
20xe~ 1(0,00)(x), where 6 > 0 is an unknown parameter.

(1) Determine the likelihood ratio statistic A, for testing Hy: 6 = 6, against H;: 0 # 6.

(i1) Give the critical region for the likelihood ratio test at level .

Let X, ..., X, be asample from the N(u, o?)-distribution. We want to test the null hypothesis
Hy: 0% = o3 against Hy: 0 # o3 at level @ (both u and ¢ are unknown). Show that the
likelihood ratio test rejects Hy when (n — 1)S% /03 ¢ [c1, c2], where ¢; and c; satisfy

(i) P(x2, €l ea]) = 1-ao.

(ii) ¢; — ¢ = nlog(ci/c2).
Note that this test differs somewhat from the test in Example 4.32, but not much for large n.
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4: Hypothesis Testing

52. (Score test.) Let X,. .., X, be a sample from a distribution with the probability density py

indexed by a parameter 6 € ® C R. To test the null hypothesis Hy: § = 6y, we consider the
test statistic 7,, = 1 /ng::.q= 1390 (X;), for £, the score function for py.
(i) Determine T, for testing Hy: 6 = 1 based on a sample from the N(0, 6%)-distribution.

(i1) Determine a critical region for a test that rejects Hy for large values of |T),| and that has
approximately size « for large n.

(iii) Show that the power function of the test converges to 1 as n — oo for every 8 # 6, such
that nggo (X]) 79 0.

(iv) Verify that Egi’go (Xy) # 0 for every 0 fp.
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SHARES ACCORDING TO BLACK-SCHOLES

In the 1970s, Black and Scholes introduced an economic theory for the pricing of
options on shares or other tradable “assets.” After Black’s death, Scholes received
the Nobel prize for this work, together with Merton. Even today, the model is the basis
for pricing so-called “financial derivatives,” financial products that are derived from
underlying products such as shares. Below, we will study certain characteristics of
this model statistically.

The top image of Figure 4.14 shows the value of a share of Hewlett Packard at the
New York stock exchange plotted against the time, in the period 1984—1991. The values
Ay of the share at closing time on consecutive exchange days (1 = 1,2, ...,2000) are
plotted; in the graph, these values have been interpolated linearly.! According to the
Black—Scholes model, the share price follows a “geometric Brownian motion.” This
corresponds to the log returns, defined by

Ay

Xt = log A )
t—1

forming a sequence X1, Xo, ... of independent, N (u,0?)-distributed random vari-
ables. In other words, the logarithms of the relative changes in the share price form
an unpredictable noise with a normal distribution. The log returns are shown in the
lower image in Figure 4.14; they have also been interpolated linearly. We will study
this assumption of the Black—Scholes model in several ways.

1984 1985 1986 1987 1988 1989 1990 1991

1984 1985 1986 1987 1988 1989 1990 1991

Figure 4.14. Price and log return of a share of Hewlett Packard at the New York stock exchange;
initial value set equal to 1.

T The data can be found on the book’s webpage at http://www.aup.nl under hpprices (share
prices) and hplogreturns (log returns).
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4: Hypothesis Testing

If the Black—Scholes model holds, then the sample mean X and the sample
variance S% are good estimators for the parameters y and o* of the normal
distribution of the log returns. The corresponding estimates, computed both over the
full period and over four quarters, are

period  ’84-91 '84-'85  '86-'87 '88-'89  '90-"91
i 0.000463 0.000164 0.001111 -0.000132 0.000710
0.022673 0.020514 0.026304 0.019102 0.024100

Q>

The estimate i1 =~ 0.00046 over the full period means that on average, the
value has increased between 1984 and 1991. If, for a moment, we ignore the
stochastic fluctuations (not a good idea, see below!), then A, ~ A,_,e%000463 ~
A;_11.000463. The average increase per day is then almost 0.05%. Yearly (250
stock market days), we have A; = A;_1e0-000463 ~ (£0-000463)250
Ay—2501.12, which gives an average yearly increase of 12%. However, this increase is
not uniformly distributed over the full period. In the third quarter ’88—’89, the average
of the log returns is negative (i1 = —0.000132).

Using a statistical test, we can study whether such a decrease is compatible with
the Black—Scholes model. In the Black—Scholes model, the observations in the four
periods form four independent samples from the same normal distribution. We can, for

.~ Ai_aso

example, test whether the log returns in the second quarter have the same expectation
as the log returns in the third quarter, under the assumption that the log returns in
the two quarters are samples from the normal distribution with expectation u and v,
respectively, and variance o2. (We chose to study precisely these two quarters after
computing the expected values of ji. This means that we in fact use the data twice—to
decide what to test and to carry out the test—which makes the interpretation of p-
values and sizes suspicious. It would have been better to compare all four periods, but
this requires a more complicated test or a comparison of all pairs.) We use the t-test for
independent samples. The estimated variance is 6% = %(0.0263042 +0.0191022) ~

0.00528, and the t-statistic has value /250(0.001111 — (—0.000132))/+/0.00528 ~
0.27. For a t-distribution with 998 degrees of freedom, this corresponds to a right p-
value of approximately 39%. Despite the practically significant difference in sign in
the estimates of |1 in the second period, this test therefore does not lead us to doubt the
Black—Scholes model. The observed difference in the estimates can be amply explained
by the fluctuations of the share prices over time.

In the Black—Scholes model, these fluctuations are measured through the value
of the parameter o2, which in this context is called the volatility of the share prices.
It is unwise to not involve these fluctuations in the computations. According to the
Black—Scholes model, in one year (250 stock exchange days), we cannot count on a
deterministic growth of approximately 12% ((e%-000463)250 ~ 1.12), but rather on a
growth that can be determined using the random variable

Agsg Aggge’es0

X +Xos5
A2 Se 249 250 o j :250 Xt
410 ‘10 ‘10

t=1
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4: Shares According to Black—Scholes

In the Black—Scholes model, the variable Zt X is normally distributed with
expectation 250 and variance 25002; in other words, it is the random variable
250 + /2500 Z, where Z has the standard normal distribution. The distribution of
exp(}°, Xi) is called log normal. The expected growth is

/: / 2
E6250[L+ 250072 — 6250;1,Ee 250072 ~ 1.1262500 /2 ~ 1.19’

where we have substituted the estimates i = 0.000463 and 6 = 0.022673 for
and o. The expected yearly growth in the Black—Scholes model is therefore 19%. It
is somewhat surprising that this value is considerably larger than the value 12% we
found earlier by ignoring the randomness of the share prices. The form of the Black—
Scholes model, where the price is an exponential function of the (normally distributed)
log returns, is responsible for this. The expected daily growth is exp(u + %02)
and not exp(p), in accordance with the inequality Eexp(X) > exp(EX), which
is strict when X is nondegenerate. (To cancel out the apparent contradiction, the

reparametrization (i, 0%) — (u — a2, 02) is often applied, so that the distribution

of the log returns is N (u — %02, 022), and the expected daily growth is exp(u).) The
estimate of 1+ %02 in the third quarter of the full period is positive, though just barely,
so that on closer inspection, the investment does have a positive yield.

The volatility o also plays a decisive role in the Black—Scholes formula for the
price of an option on the HP share. In the dealing rooms and back offices of banks,
this price is even expressed with the volatility as unit. The Black—Scholes model is
then often deviated from in the sense that the parameter o is not taken as fixed, but
may depend on time. In the four quarter periods, we for example find fluctuations of
o of size 13%. As for the parameter u, we can test whether these fluctuations are
significant. To compare the volatility in the second and third quarters, we compute the
F-statistic (see Exercise 4.29) 0.0191022/0.0263042. This leads to a left p-value of
approximately T x 10712 with respect to the F-distribution with 499 and 499 degrees
of freedom. This is a strong indication that the volatility is effectively not constant over
time.

Up to now, we have not truly tested the basic assumption of the Black—Scholes
model that the log returns can be viewed as a sample from a normal distribution. We
can, however, argue about both the normality assumption and the assumption that
the log returns are independent variables. In fact, almost no one truly believes in the
model, although it is applied by default.

We first study the normality of the log returns, under the assumption that the
independence holds. In that case, we can test whether the log returns X1, . .., X2000
can be viewed as a sample from a normal distribution. Since we have already
seen that the volatility o is not constant over time, we will test the less stringent
assumption that the log returns in the third quarter can be seen as a sample
from the normal distribution. Figure 4.15 gives a first graphical impression of the
distribution of this sample, through a histogram and a QQ-plot. These two graphs
lead us to doubt the normality assumption, although the deviation from normality
is not very strong. We can study the assumption formally by applying a statistical
test such as the Kolmogorov—Smirnov test (see Example 4.38). Figure 4.16 shows
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Figure 4.15. Histogram and QQ-plot against the normal distribution of the log returns in the
period ’88-'89 on the HP-shares. The curve in the histogram is the normal density with parameters
equal to the sample mean and sample variance of the log returns.

-0.05 0.0 0.05

Figure 4.16. Empirical distribution function of the log returns in 88’89 and distribution function
of the normal distribution with parameters equal to the sample mean and sample variance of the
log returns.

the empirical distribution function of X1001, - - - , X1500 and the distribution function
of the normal distribution with expectation and variance equal to, respectively, the
sample mean and the sample variance of this sample. The Kolmogorov—Smirnov
statistic is the maximal vertical distance between these two distribution functions and
can be shown to equal 0.052. The corresponding critical value can be determined
by computing the Kolmogorov—Smirnov statistic for a large number of samples
simulated from the normal distribution. From 10000 simulated samples, the value
of the Kolmogorov—-Smirnov statistic was greater than 0.052 in 6% of the cases. This
means an (approximate) p-value of 6%, so that the null hypothesis of normality is not
rejected at size 5%, but only barely.

Finally, we consider the stochastic time-independence of the log returns assumed
by Black and Scholes. As first control quantity, we compute the sample autocorrelation
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4: Shares According to Black—Scholes

coefficients of the log returns. These are shown on the left in Figure 2.13 and do not
seem to contradict the independence. The sample autocorrelation coefficients of the
squares of the log returns, on the right in Figure 2.13, however, are clearly different
from 0. Carrying out the test from Example 4.40 therefore leads us to rejecting the
null hypothesis that the log returns are independent, identically distributed random
variables.

We can argue about the choice of this method. After all, we had already
established that the volatility is not constant over time, so that the null hypothesis that
the log returns are identically distributed and independent is not the most relevant
hypothesis. We can repeat the analysis for each of the four periods individually. This
leads to the same result.

The interesting question is now which dependence between the log returns exists
on different days. This is not a simple question, because “dependence” includes
many possibilities: all possible denials of “independence,” which, by contrast, is
uniquely determined. From the different models, the GARCH(1,1) model is seen as
the benchmark. This model postulates

Xt = O'tZt.

The first equation concerns the propagation of the volatility o,. This is not observed
directly, but seen as a primary driving process under the log returns. The volatility
on day t is a function of the square of the return and volatility on day t — 1, and
increases as these increase (¢,0 > 0). Given the volatility o, the log return at time t
is equal to o times a variable Z;, which is often assumed to be normally distributed
and independent of the past (X;—1,0¢-1, X¢—2,...).
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In Chapter 3, we saw how a parameter  could be estimated by the value ¢t = T'(x) of
an estimator 7'. In the context of this chapter, we will also refer to such estimates as
point estimates. As a rule, an estimate ¢ differs from the parameter 6 to be estimated.
Using the confidence regions described in this chapter, we can quantify the possible
difference between the estimator 7" and . In many cases, this leads to an interval
estimate [L(x), R(x)], with the interpretation that 6 has a high probability of lying in
this interval.

The definition of a confidence region is as follows.

Definition 5.1 Confidence region

Let X be a random variable with a probability distribution that depends on a
parameter 0 € ©. A map X — Gx whose codomain is the set of subsets of ©
is a confidence region for 0 of confidence level 1 — « if

Pyp(Gx 20) >1-« forall§ € O©.




5.2: Interpretation of a Confidence Region

In other words, a confidence region is a “stochastic subset” Gx of © that has
a “high probability” of containing the true parameter 6. Because we do not know
beforehand which value of 6 is the true value, the condition in the definition holds
for all values of #: under the assumption that € is the true value, this true value must
have probability at least 1 — « of being in Gx. After X = z has been observed, the
stochastic set Gx changes into a normal, nonstochastic subset G, of ©. Generally,
« is taken small, for example o = 0.05, so that the probability that 6 lies in the
confidence region is high. As we decrease «, the confidence region will of course
grow and therefore give less information on 6, which, however, will then be “more
certain.” We again have a trade-off between two goals, as we already encountered
with tests.

We often say that the probability that the realization GG, contains the true value 6
is at least 1 — «. This probability statement can easily be interpreted incorrectly. In our
interpretation, the true value of 6 is fixed; the realized confidence region G is also
not a random variable. Consequently, the true 6 either lies in the confidence region
G or does not. (Unfortunately, we do not know which of the two cases occurs.) The
probability statement can be interpreted in the sense that if we, for example, carry
out the experiment that gives X independently 100 times and compute the confidence
region G, 100 times, then we may expect that (at least) approximately 100(1 — «) of
the regions will contain the true . This is illustrated in Figure 5.1, which shows 100
independent realizations of a 90% confidence interval for the expectation parameter
of the normal distribution. The true value of the parameter is 0 and is contained in 89
of the intervals. In practical situations, we, of course, cannot repeat experiments and
can only determine one confidence region. This can be one of the 100« regions that
do not contain the true parameter, without our being able to know this!

Because (7 x is stochastic and 6 deterministic, we have written Gx > 6 instead
of § € Gx. In our notation for probabilities, the random variable is always on
the left. For the same reason, some people disapprove of a statement such as “6
has a high probability of lying in Gx.” We do not follow this last convention, but
again emphasize that confidence regions have a subtle interpretation. In the Bayesian
terminology of Section 3.5, on the other hand, the parameter is a random variable.
This allows us to see, in that context, the probability statement on the event § € Gx
as a statement concerning the random variable 6. The probability of this event can
be determined with respect to the posterior distribution. We discuss this approach in
Section 5.7.

When 6 is a numerical parameter (that is, © C R), we typically use confidence
intervals. These are confidence regions of the form Gx = [L(X ), R(X )] for two
functions L and R of X. We then also speak of the confidence interval [L, R] for the
parameter 6. Sometimes the center of the confidence interval is exactly the used point
estimate 7' = T'(X) for §. We then also write the interval in the form § = T + 7,
with n = 2 (R(X) — L(X)) half the length of the interval. In other cases, the interval
is intentionally chosen asymmetric around the used point estimate, which can be an
expression of a “higher precision” upward or downward.
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Figure 5.1. 100 realizations of the confidence interval of the expectation of the normal distribution
(as computed in Example 5.4) based on 100 independent samples of size 5.

Example 5.2 Normal distribution

Let X = (Xi,...,X,) be a sample from the normal N (y,o?)-distribution with
unknown g € R and known variance o2. Then

— o = C

Gx = |X——F& a2, X+ =& _q
X [ \/ﬁ& /2, A+ \/ﬁ& /2]

is a confidence interval for 1 of confidence level 1 — . We can see this as follows.
The sample mean X, the natural estimator for 11, has the N (11, 0? /n)-distribution, and
therefore /n(X — 1) /o has the standard normal distribution. We then have

X—p

P, (5a/2 <vn < 51704/2) =1l-a

where &, is the a-quantile of the standard normal distribution. We can rewrite this in
the form o

— - 0o
P, (X - \/551704/2 <p< X+ ﬁfkaﬂ) =1-0q

where we have used that £, /o = —&; _q/2. It follows that P,(Gx > p) = 1 — a for

the G'x mentioned above. This interval is symmetric around the estimator X and is

often written as o

\/ﬁ 51 —a/2-
A realization of this interval contains p with probability 1 — a.

The smaller o and the larger n, the shorter (and therefore more informative) the
interval. Note that to cut the interval in half, we need four times as many observations.
For larger «, the interval is also shorter, but this goes at the expense of the confidence
level. —

p=X=+
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5.3: Pivots and Near-Pivots

Many confidence regions are constructed using a pivot.

Definition 5.3 Pivot

A pivot is a function T (X, 0) of the observation and parameter whose probability
distribution does not depend on 6 or any other unknown parameters if the probability
distribution of X is given by the “true” parameter 6.

A pivot is therefore not a statistic, because the pivot may depend on both the
observation X and the parameter 6. For a pivot T'(X, ), the probability Py (T'(X, ) €
B) is in principle known for every set B. Here, “known” means “independent of 6”;
the two occurrences 6 in the expression Py (T (X,0) B) must therefore cancel each
other out. In Example 5.2, we in fact already saw an example of a pivot: \/n(X —pu) /o,
which has the standard normal distribution.

For every set B such that Py (T'(X,6) € B) > 1 — a, the set

{e €O:T(X,0) ¢ B}

is a confidence region for € of confidence level 1 — . In general, many sets B exist
with this property, and we want to choose a “suitable” candidate from these. Although
it seems natural to look for sets for which the volume of the confidence region is small,
the choice is not unique. We illustrate this with the following examples.

Example 5.4 Normal distribution

Let X = (X1,...,X,) be a sample from the N (u, 0?)-distribution with ;1 € R and
o2 > 0 unknown. By Theorem 4.29,

X —p

V=g

has a t,,_1-distribution, which does not depend on the parameter (y1, o). This variable
is therefore a pivot, and we have

X—p
P <tn_ a2 < V/n
u 1,02 Vn Sx

It immediately follows from computations analogous to those in Example 5.2 that

< tn—l,l—a/Q) =l-a

SX ~ SX
(X - %tnfl,lfa/% X + %tnq,kaﬂ]
is a confidence interval for p of confidence level 1 — c. Since the interval is symmetric
around X, it can also be written as
—  Sx
p=X=+ ﬁtn—l,l—a/}
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5: Confidence Regions

This interval greatly resembles the interval from the previous example, with o replaced
by Sx and &, replaced by ¢,,_; . Since the ¢-distribution has thicker tails than the
standard normal distribution, the ¢-quantiles lie further from O than the quantiles of the
standard normal distribution, and the interval we found here is in general somewhat
longer than in the case where o is known (although that also depends on the value
of Sx). This is the price we have to pay for o being unknown. As n — oo, the
t,-distribution increasingly resembles the normal distribution, and Sx converges in
probability to o. Hence the difference between the two intervals disappears as n — oco.

By the choice of the quantiles, the interval above is symmetric around the
maximum likelihood estimator for . Nonsymmetric intervals of confidence level 1 —«
can be constructed by choosing other quantiles of the ¢-distribution:

X —

P,u (tnfl,,ﬁ < \/ﬁ =
Sx

for 5 + « = a. The confidence interval for i based on these quantiles is equal to

S = S
W - T);tn—l,l—'yu X — T)’;tn—l,ﬂ} .

< tnfl,lf'y) =1l-«

The shortest confidence interval of confidence level 1 — « is obtained by taking 3 =
~ = «/2; this results in the interval given earlier. ——

Example 5.5 Uniform distribution

If X = (Xi,...,X,) is a sample from the UJ0, §]-distribution, then the vector
X1/9.. .., X, /01is a sample from the U[0, 1]-distribution. Every function of X1 /6, . . .,
X, /0 is therefore a pivot.

The most interesting pivot is X, /6, since this pivot is based on the maximum
likelihood estimator and sufficient quantity X,y for 6 (see Section 6.2 for the
definition of a sufficient quantity). We have

Py 0 <z)=2a", 0<z<1.

This leads to several confidence intervals for 0. If ¢, d with 0 < ¢ < d < 1 are numbers
such that d"* — ¢ = 1 — «, then

Xn Xn Xn
1—a:d"—c":Pg(c§ é)gd)ng( é)geg ()).
C

The interval [X(,,)/d, X(,)/c] is therefore a confidence interval for ¢ of confidence
level 1 — a.

The choices ¢ = 0 and d = (1 — )'/™ lead to the right-open interval [X,,) (1 —
)71/ 00). The choices ¢ = a/™ and d = 1 give the interval [X(,,), X(,ya~/"].
Because we are certain that § > X, this interval puts all uncertainty in the upper
bound. A reasonable strategy is to choose ¢ and d such that |1/d — 1/¢| is minimal and
the interval [X .,y /d, X(,,/c| is the shortest possible (see Exercise 5.21). However, all
intervals are allowed and have the same interpretation. —
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5.3: Pivots and Near-Pivots

Determining confidence regions exactly from pivots is only possible incidentally,
simply because there is not always a pivot. For example, it is impossible for the
parameter p in the binomial distribution or for the parameter p in the Poisson
distribution. In such a case, we often settle on an approximate confidence region,
which can be deduced from a near-pivot. When we are dealing with large samples,
such near-pivots are usually amply available.

Example 5.6 Binomial distribution

If X is binomially distributed with parameters n and p, then for large n,

X —np
np(1 —p)

is approximately N (0, 1)-distributed, by the central limit theorem; see Section A.7.
By approximation, this function of X and p is therefore a pivot. The set

—np

<&,
np(l—p)_g1 /2}

{p: Saj2 <

is consequently approximately a confidence region for p of confidence level 1 — . This
set is an interval that can be found by solving the quadratic equation (X — np)? <
§f_a/2np(1 — p). Figure 5.2 shows this interval for certain values of «, n, and p.

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.2. Confidence interval for the parameter p of a binomial distribution. The graph shows
the functions p — |z — np| and p — 1.964/np(1 — p) for the case 0 < z < n (namely, x = 13 and
n = 20). The confidence interval is the interval on the horizontal axis between the two intersection
points.

As long as we are taking approximations, we can also go a step further. By the
law of large numbers (Theorem A.26), X /n converges in probability to p as n goes to
infinity. Hence the random variable

X —np

Vn(X/n)(1 - X/n)
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5: Confidence Regions

is approximately N (0, 1)-distributed. (This follows using Slutsky’s lemma; see
Lemma 5.15.) The approximate confidence interval based on this near-pivot is of the
simple form

:—i— ——51 a/2-

This interval is often used as an indication of the size when estimating the proportion
of elements from a population with a certain characteristic, for example during a poll.
It is remarkable that the size of the population does not pay a role in the length of
the interval. Only the sample size counts, and to a lesser degree the true proportion. If
p = 1/2 and n = 1500, then the 95% confidence interval is approximately (X/n) +
2%. This 2% is probably the value that is meant in newspapers when a deviation of
at most 2% is promised in the results of a given poll. The correct interpretation of
this margin is that in 95% of the polls, the deviation of the sample proportion to the
true proportion is not greater than 2%. Unfortunately, the press often translates this
complicated statement into a firm error margin.

Asp — Oorp — 1, the function p — +/p(1 — p) converges to 0. The confidence
interval is therefore shorter for extreme values of p. The length of the confidence
interval is the least favorable for p = 1/2. ———

Example 5.7 Application: counting bacteria

In Example 3.19, we assumed that the number of colony-forming units of bacteria
in a centiliter of contaminated water is Poisson-distributed with parameter p. To
estimate (, the contaminated water was mixed with 100 liters of pure water and
divided over 100 Petri dishes. We only observe Y7, ..., Y109, with Y; equal to 1
when a colony of bacteria forms in the ith dish and equal to 0 otherwise. It follows
that Y; has the Bernoulli distribution with probability p = 1 — e #/100 for j =
1,...,100. In Example 3.19, p is estimated using the maximum likelihood estimator
Y. Since Zjﬁﬂ Y; is binomially distributed with parameters 100 and p, it follows from
Example 5.6 that

Ny = ~ o S-ap2 [ -
(V-3 Y1-Y)<p<Y+ Y(1-Y))~1-a.
vioo VYUY =p vioo VY= Y)
This confidence interval for p can be used to deduce a confidence interval for y by
substituting p = 1 — e~ #/190_If we write 6% = Y (1 — ) then

[ 10010g(1—Y+§\1/%02\/_) —10010g(1—7—§11f0(‘)/02\/§)}

is a confidence interval for u of confidence level 1 — «, provided 1 — Y —

§1—a/2y/02/100 > 0.If 1 =Y — & _4/21/62/100 < 0, the upper bound is replaced

by infinity. —
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5.3: Pivots and Near-Pivots

The near-pivot in Example 5.6 comes from an asymptotic approximation of
the distribution of the estimator. Many estimators 7;, for a parameter g(6) are
asymptotically normally distributed in the sense that for certain numbers o, ¢ (often
the standard deviation of 7T},), under the assumption that 6 is the true parameter, we
have

On,o

~ N(0,1)

as n — oo. The arrow ~» is the notation for “convergence in distribution”; see
Definition A.25. More precisely, the statement means that

lim PQ(LQ(Q) < x) —®(x) forallz.

n—oo Unﬁ

An informal interpretation is that for large n, the variable (T}, — g(6)) /0y is
approximately N (0, 1)-distributed if 6 is the true parameter. Consequently,

Tn - 9(9)

On,0

is a near-pivot. This is also called the large sample method. This leads to an
approximate confidence region for g(6) equal to

{9(0): T, — Un,9€1—a/2 < g(e) <T,+ Un,9£1—a/2}7

of confidence level 1 — «. For convenience, the expression o, ¢ is often replaced by
the estimator &,,, which gives the symmetric interval

9(9) =T, =+ &ngl—a/Q'

The expression &, is usually an estimate for the standard deviation of 7},, the standard
error or s.e. of the estimator (or estimate). In many scientific reports, only the estimate
and corresponding standard error are mentioned. Provided that the used estimator is
approximately normally distributed, we can roughly interpret this information in the
sense of a 95% confidence interval of the form ¢g(0) = T}, &0 975 s.e. = T,,+=1.96 s.e.

Good statistical software gives both a parameter estimate and the standard error
of the estimator. For an estimate of a vector-valued parameter, it gives a standard
error for every coordinate, and additionally, the estimated covariances between the
estimators, in the form of a matrix with the estimated variances of the estimators (the
squares of the standard errors) on the diagonal (see Section B.2 for the definition of
the covariance matrix).
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5: Confidence Regions

An important special case of the near-pivots discussed in the previous section is
that where T, is the maximum likelihood estimator. Under certain conditions, the
maximum likelihood estimator is asymptotically normally distributed. We discuss
the simplest case, that of a sample of independent random variables and first restrict
ourselves to parameters § € © C R.

Definition 5.8 Score function and Fisher information

Let pg be the probability density of the observation X1, and suppose that the function
0 — Lo(x): = log pg(x) is (partially) differentiable for all . The gradient

fo(x) = 55 Tog po(2)
is then called the score function of the model. The Fisher information for 6 in X1 is
defined as the number

19 = varg ég(Xl).

Now, suppose that we have a sample X;,...,X,, from the distribution with
(marginal) probability density pg. The log-likelihood function of the model is then
equal to 6 — Y7 £o(X;) and has derivative 6 — >7"_ £5(X;), the sum of the score
functions over the observations. The maximum likelihood estimator én for 0 is the
point where the log-likelihood takes on its maximum and is therefore a solution of the
likelihood equation Z?Zlég (X;) = 0, unless the maximum of the likelihood is taken
on on the boundary of the parameter space.

We call the parameter 6 € © identifiable if no other parameter gives the same
probability distribution or, more technically, if the densities py and pg differ with
positive probability: Py (py(X1) # pe(X1)) > 0 for every ¥ # 6. This natural
property will normally be satisfied by a suitable parameterization of the model and is
necessary to estimate 6 from the observations in a meaningful way. In the following
theorem, we assume that the parameter set © is compact. Extension to noncompact
sets is possible, in general, for example by showing that the maximum likelihood
estimator belongs to a compact set with probability converging to 1.
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5.4: Maximum Likelihood Estimators as Near-Pivots

Theorem 5.9

Suppose that © is compact and convex and that 0 is identifiable, and let 6,, be the
maximum likelihood estimator based on a sample of size n from the distribution
with (marginal) probability density pg. Suppose, furthermore, that the map ¥ —
log pg(z) is continuously differentiable for all x, with derivative {y(x) such that
[09(x)| < L(x) forevery 9 € ©, where L is a function with EgL?(X) < oc. If§ is
an interior point of © and the function ¥ — iy is continuous and positive, then under
0, the sequence \/ﬁ(én — 0) converges in distribution to a normal distribution with
expectation 0 and variance i, L Therefore, under 6, as n — oo, we have

VB, —0) ~ N(0,iy").

A (partial) proof of the theorem is given in Section 5.4.1. If the statement of the
theorem is applicable, then for large n, under €, the random variable

Vnig(6 — 0)

is approximately standard normally distributed and therefore a near-pivot. For
convenience, we can replace iy by an estimator ¢g, and we find for 6 the approximated

confidence interval 1
=0+ = 517(1/2

Nnig

of confidence level 1 — «. This interval is called the Wald interval. The statement
of the theorem is often read to mean that 1/(nig) is an approximation for the
variance of 6, and its square root is an approximation for the standard error. For
a = 0.05, the Wald interval is therefore, in fact, an interval of the general form
=0+ £o.9758.. =~ 0+ 2s.e. (Note that the theorem does not say anything about the
convergence of the variance of the maximum likelihood estimators, but the previous
interpretation is usually defendable.)

Common estimators for the Fisher information ¢ are the plug-in estimator and
the observed information. The plug-in estimator is ig = i; that is, the parameter ¢ in
the expression for ¢¢ is replaced by the maximum likelihood estimator 6. The observed
information is defined as

P Py L 0?
- _gzeé(Xi)’ with  £y(z) = 55 1og po ().
=1

The plug-in estimator requires the (analytic) computation of the Fisher information
i, while the observed information follows more easily from the data. The observed
information is —1/n times the second-order derivative of the log-likelihood function
6 — > 1 lo(X;) evaluated in § = 0. If necessary, we can use a numerical derivative
(difference quotient) instead of an analytic derivative. Graphically, the observed
information gives the curvature of the log-likelihood function in the point § = 6
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5: Confidence Regions

where the log-likelihood is maximal. If the likelihood function has a flat top, then the
observed information is small, and the confidence interval for 6 is long: the maximum
likelihood estimator is then not very precise. (This does not reflect a weakness of this
estimation method; it is due to a parameter that is intrinsically difficult to estimate.)
The meaningfulness of the observed information as estimator for ¢ is not immediately
clear, but follows (for large n) from the following lemma and the law of large number,
according to which n’lz?:lég (X;) — Eg¢lg(X;) as n — oo with probability 1 if 6
is the true parameter.

Lemma 5.10

Suppose that 0 + lg(x) = logpe(x) is differentiable twice for all x. Then, under
certain regularity conditions, we have Egly(X1) = 0 and Eglg(X1) = —ip.

Proof. We write the formulas under the assumption that X; is continuously
distributed. (For a discrete probability density, we replace the integrals by sums.) Since
Ppo is a probability density, we have 1 = [ py(x) dz for all §. Consequently,

0= %/Pe(iﬁ) dm:/%pe(ff) dx:/]je(m) dr,

with pg () = 0/00 pg(x). Interchanging the differentiation (with respect to ) and the
integration (with respect to ) is permitted under certain regularity conditions. Since
the score function equals {4(z) = 8/901og pg(z) = pe(x)/pe(z), we can rewrite the
right-hand side as

/g:gg pe(z)dz:/éﬁ(z)pe(z)dz:Eeée(Xl)_

This completes the proof of the first assertion: Eglg (X1) = 0. For the proof of the
second assertion, we differentiate | pg(z)dz twice with respect to 6 and find

0= ;;/Pe(ﬁﬁ) dx:/ﬁe(z) dx,

with pg(z) = 0%/90%py(x). )
Differentiating the equality g (x) = pg(z)/pe(x) with respect to 6 gives

; po(x)  (po(x)\2 _ Po(x) ;o
lyo(x) = - = — lg(x)~.
o() po(x) <P9(9€)) po(x) o)
We multiply this by pg () and take the integral with respect to z to find that
Egly(X1) = / po(z) dz — / ly()*po(z) dz
=0- E9 (ég(Xl)Q) = —vary ée(Xl) = —ig,

because varg lg(X1) = Eg(lo(X1)?) — (Eolo(X1))? = Eg(fo(X1)?), by the first
assertion. This proves the second assertion. M
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5.4: Maximum Likelihood Estimators as Near-Pivots

Example 5.11 Poisson distribution

Let X = (X3,...,X,) be a sample from the Poisson(6)-distribution, where § > 0
is unknown. The maximum likelihood estimator for @ is # = X provided X > 0. The
score function is equal to

0 e 00"

: x
lo(z) = %log =g 1.

The Fisher information is then
. X4 1
19 zvarg(T — 1) =3
By Lemma 5.10, we would have found the same expression using the equation

EoX; 1
92 6

If we estimate # by X, then the plug-in estimator for ig is equal to 1/X. The
observed information gives the same estimator since

ig = —Eoly(X,) =

1< 1< X; X 1
*ﬁzgé(Xi):ﬁ = = = :?,
=1 =1 9 ( )

The symmetric approximate confidence interval of confidence level 1 — « is then
_ VX
0=X+—& 4/
\/'ﬁ fl a/2
We could also have found this interval by a more direct route, by applying the central

limit theorem to X . After all, the sequence \/n(X — 6)/+/6 is approximately standard
normally distributed (see Example A.30). ——

Example 5.12 Cauchy distribution

Let X1,..., X, be independent variables with probability density

1
) = S =Py

The log-likelihood equation is

N 2(X—0) 0
P 1+ (X; —0)?
This equation cannot be solved explicitly for 6. Therefore, the maximum likelihood
estimator cannot be written as an explicit function of Xy,...,X,,. However, the
estimator can be determined numerically, for example by reading the position of the
maximum in a graph of the log-likelihood function; see for example Figure 5.3. The
score function is 5 0)

. T —

l = — .

o =TT @6y

185



5: Confidence Regions
The Fisher information can be computed with some difficulty if ig = 1/2; it is constant

as a function of #, and therefore easily estimated to be 1/2. The observed information
is not exactly equal to 1/2; it takes on the form

1s 2 2& @2

where  is the maximum likelihood estimator. —

-250
I

-300
|

T T T T
-200 -100 0 100

Figure 5.3. A realization of the Cauchy log-likelihood function. The curvature in the top is the
observed information.

Example 5.13 Exponential distribution

Let X = (Xi,...,X,) be a sample from the exponential distribution with
unknown parameter \. The maximum likelihood estimator for X is A = 1/X (see
Example 3.12). The score function is equal to

-z

0 1
—log Ae :X—x,

(@) = 35

and the Fisher information is

1 1

x=van (3 - X1) = 35

(3 vary ( b\ 1 /\2

By Lemma 5.10, the Fisher information can also be found using the equation i\ =

—ExA(X1) = 1/X2 If \is estimated by the maximum likelihood estimator, then the

plug-in estimator for 7y is equal to (X)?2. The observed information gives the same
estimator for 7 :
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5.4: Maximum Likelihood Estimators as Near-Pivots

For both estimators for 7, we find the symmetric approximate confidence interval

1 1

)\:::ti —
< \/HXEI /2

for X of confidence level 1 — «.  —

“ 541 Proofof Theorems9
The proof of Theorem 5.9 consists of two parts: a proof of consistency and a proof of
convergence in distribution. The estimator én = én(X 1y...,Xy) is called consistent
for 6 if 6, converges in probability to 6, that is, 0, P9 under # as n — oco. We
give a complete proof for the first part, in the form of a lemma, but only prove the
second part under stronger conditions than those of Theorem 5.9. For a complete proof
of the theorem under weaker conditions than in the theorem, we refer to the book
“Asymptotic Statistics” (Van der Vaart (1998)).

The proofs of both parts are based on an analysis of the following stochastic
function and its expectation:

M, () = %Zn:ag(xiy M) = Eoly(X1).
=1

Note that the argument ¥} of these functions differs from the “true” parameter
that determines the distribution of the observations and that we use to compute the
expectation Ey. (Under the conditions of Theorem 5.9, the variable (£y — £g)(X7)
has a finite first moment, so that M (9) — M (6) = E¢(ly — lp)(X1) is always well
defined. If this is not the case for M (1) itself, then we replace £y in the definitions of
M, and M and everywhere in the lemma and proof below by £y — ¢y; to simplify the
notation, we refrain from doing this.)

Lemma 5.14 Consistency

Suppose that © C R* is compact and convex and that 6 is identifiable. Suppose,
moreover, that the map ) +— log py(x) is continuously differentiable for all x with
gradient £y (x) such that ||ly(z)|| < L(x) for every ¥ € O, where L is a function
with EgL?(X1) < co. Then 0,, P 9 underf asn — oo.

Proof. The proof of the consistency is based on the following two assertions:
(i) The map ¢ — M (¥) is continuous with unique absolute maximum in 6.
(ii) The sequence A,: = supycg ’Mn (W) —M (19)’ converges in probability to 0.
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Suppose that parts (i)—(ii) hold. It follows from the definition of 0,, that M, (én) >
M., (#). If we twice replace M, in this inequality by M, then it follows from part (ii)
that M (6,,) > M (#)—2A,,. For any given § > 0, the closed subset {9 € O: [|9—0| >
0} of © is compact. The continuous function M takes on its maximum in this set, and
that maximum is less than its value in 6, where M has a unique absolute maximum.
For any given § > 0, there hence exists an ¢ > 0 with M (¥) < M(6) — ¢ for all
¢ with ||¢ — || > ¢. Inverting this statement gives that M () > M(6) — ¢ implies
|9 — 6] < 8. We conclude from M (6,,) > M(8) — 2A,, that ||6,, — 0|| < & as soon
as 2A,, < e. By part (ii), the latter has probability converging to 1. We therefore have
|6,, — || < & with probability converging to 1, thus proving the consistency of 0,,.

We now need to prove parts (i)—(ii). For the proof of part (i), we apply the mean
value theorem to see that for every 1J; and 1Jo, there exists a value J between 11 and
¥ such that £y, (x) — Ly, (x) = (V1 — 192)%(1:). It follows that

(5-1) €0, () — Lo, ()] < [[91 — Da2|| L(2).

If we replace 2 by X; and take the expectation under 6, we find |M (¢1) — M (92)| <
|91 — 2| EoL(X1), where Eg L(X7) is finite by assumption. (Note that |[EY| < E|Y|
for every variable Y.) This proves the continuity of M. For the uniqueness of the
maximum, we use that logz < 2(y/z — 1) for all z > 0, so that

M(9) = M(6) = By log %’(Xn} < 2K, [\/Z’ (x1) - 1]
=2 / VDo) y/pe(x)de — 2 = — /(\/pTy(:c) — Vpo())* da.

The integral on the right-hand side is strictly positive when ¢ # 6 unless the densities
py and py are the same, which is excluded by the assumption that the parameter 6 is
identifiable. This proves part (i).

For the proof of part (ii), we fix a § > 0. By the assumed compactness, we
can cover © with finitely many balls of radius d; denote the centers of the balls by
U1,...,Y. For a given ¥ € ©, there then exists a ¥; such that ||¥ — ¥;|| < 4. Using
(5.1), we find that

- %iL(Xi) < ML (9) < Mo (9;) + %iL(X
M(9,) — SEsL(X1) < M(9) < M(D,) + SEoL(Xy).

Subtracting the second equation from the first, we find lower and upper bounds for
M., (9) — M (+%), and therefore also for the absolute value of this difference. If we then
take the supremum over 1, we find

sup|M,, () — M (9)| < max|M., (9;) 9;)| + 6= ZL ) + 6EgL(X1).
9 J
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5.4: Maximum Likelihood Estimators as Near-Pivots

It is important that the maximum on the right concerns a finite set of indices j. For
every fixed j, we have M, (¥;) — M (9;) & 0 as n — oo, by the law of large numbers
(Theorem A.26). The maximum over j therefore converges in probability to O.
Applying the law of large numbers again, we see that n='>""" | L(X;) & EoL(X7)
as n — o0o. We conclude that the right-hand side of the last display converges in
probability to 20 EgL(X7) as n — oo. This is true for every § > 0. Hence the left-
hand side converges in probability to 0. This concludes the proof of part (ii). M

We have now proved that 0., P asn — oo, and continue with a proof that
\/ﬁ(én — 0) converges in distribution to a normal distribution.

Since, by assumption, 6 is an interior point of ©® and én 3 0 as n — oo, we
know that 6,, has probability converging to 1 of also being an interior point of ©. In
that case, 0,, satisfies the likelihood equation M, (én) = 0, where the dot means 9/99.
The mean value theorem gives the existence of a point 6,, between 6,, and 6 such that

0 = M, (6,) = M,,(0) + (6,, — O)M,,(6,,).
We deduce from this that

. VM, (6) R N 10.0)
n(l, —0) = ————= = - A :
V=0 = = G T g (%)

By Lemma 5.10, we have Egég(Xl) = 0; moreover, varg ég(Xl) is by definition
equal to the Fisher information ¢g. By the central limit theorem, the numerator
—n~/ DY / 9(X;) of the fraction on the right-hand side converges in distribution
to an N (0, 19) distribution. The denominator of the fraction is an average of the
variables £; ( ;). Since Gn is stochastic and depends on all observations X7, ..., X,,
these Variables are not independent, and therefore the law of large numbers cannot
be applied as it is. However, 0, B 0 as n — oo, and below we prove that
n~13" f5 (X;) behaves like the average n='Y""" /5(X;), which does satisfy the
law of large numbers, By Lemma 5.10, the limit satisfies Eeé.e(X 1) = —ig, hence
we can conclude that n’lz?ﬂ%n (X;) B —igas n — oo. By Slutsky’s lemma,

Lemma 5.15, we therefore conclude that \/ﬁ(én — 0) converges in distribution to
(1/ig) times an N (0, ig)-distributed variable, that is, to a variable with the N (0, i, !)-
distribution.

For a proof that n='3"7" | (/5 (X;) — £4(X;)) B 0 as n — oo, we now also
assume the existence of a third-order derivative of ¥ — £y () such that |Zy(z)| <
K (x) for every x and every ¥ in a neighborhood of #, where K is a function satisfying
Eg K (X1) < 0o. Applying the mean value theorem to the second-order derivative then

gives |619 —lg(x )| < K(x)|9—06| forall 2 and all ¢ with [ —6| < e and sufficiently
small e. Consequently, for every § > 0, we have
1 .
- . — —9 <
Pg(]n;(zen( 2) — o(X ]>5 16, — 0] 5)
(5.2) =

gpg( ZK )10 —9|>5)
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5: Confidence Regions

By the law of large numbers, the factor n='>"" | K(X;) converges in probability
to EgK(X1) < oo. This implies the existence of a constant M such that
Po(n= 'S | K(X;) < M) — 1. Combining this with the inequality Py (|6,, — 6| >
o/M ) — 0 shows that the right-hand side of (5.2) converges to 0. The same then
holds for the left-hand side. Since én E) 6 as n — oo, this remains true when we drop
the restriction |6,, — 0] < e.

The only part of the proof of the asymptotic normality of \/ﬁ(én — 0) we still
need to do in detail consists of the statements of Lemma 5.10. Solidifying the given
proof of Lemma 5.10 requires further conditions to justify differentiating under the
integral sign. We can also prove the statements in a roundabout way under the existing
conditions (see the proof of Theorem 5.39 in Van der Vaart (1998)). It is remarkable
that Theorem 5.9 does not assume the existence of the second-order derivative @.19, SO
that the statements of Lemma 5.10 are certainly not necessary for a proof; the same
holds for the existence of third-order derivatives. We will not discuss this any further.

Lemma 5.15 Slutsky’s lemma

Let S,, and T,, be random variables or vectors with S,, 5 o for a constant o and
T, ~ T asn — oo. Then

i) S, +T, ~oc+Tasn — oo;

(ii) ifo # 0, thenT,,/S,, ~ T /o asn — oo.

In part (i), the “constant” o and 7" must be vectors of the same length. Part (ii) is
true when o is a scalar but also holds for matrices o. In the latter case, ¢ # 0 means
that o is invertible, and dividing by ¢ means multiplying by its inverse.

Proof. The inequality ||.S,, — o|| < e implieso —e < S,, < o +e&.1f o > 0, then we
can choose ¢ sufficiently small that o — ¢ > 0. In that case, the inequality T}, /S, <
implies T}, < 2(0 4+ ¢), and T, < x(0 — &) implies T}, /S, < x. We conclude that

P(T, <xz(oc—¢),||Sn — ol <€) <P(Tn/Sy < ,[|Sn — o <¢)
<P(Th, <z(o+e), ISy — ol <e).

Since P(||S, — o > &) — 0, the three probabilities in this equation change at most
by a term that converges to 0 if we drop the restriction ||.S,, — o|| < . By applying
the convergence 7;, ~» T’ to the first and third probabilities, we conclude that the limit
(or liminf and limsup) of P(7,,/S, < ) is asymptotically sandwiched between
P(T < (o —¢)) and P(T < x(0 + €)), for every x and € such that z(c — ) and
x(o + €) are continuity points of 2 — P(T" < z). Since a distribution function can
have at most countably many discontinuity points, there exists a sequence €, — 0
such that x(o — &,,) and z(o + €,,) are continuity points for every m. If z is a
continuity point of 7'/, then zo is a continuity point of 7', and P(T" < z(0 — &,,))
and P(T < z(0 +¢&,,)) both converge to P(T'/o < ). The sequence P(T},/S,, < z)
then has the same limit.
The proof of part (ii) when o < 0 and the proof of part (i) are analogous. ™
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5.4: Maximum Likelihood Estimators as Near-Pivots

© 542 Multidimensional Parameters
The above can be extended to the case where the parameter 6 is a vector of dimension
k > 1. The score function is then defined as the gradient

lo(x) = Vg logpe(z) = (aielﬁg(x), e aiekﬁg(x)).

The Fisher information is generalized to a (k x k)-matrix

g = (COVQ((;;/(;(XH, (%ge(Xl))>

Theorem 5.9 remains valid, but \/ﬁ(é — 0) is arandom vector and its limit distribution
is a multivariate normal distribution (see Appendix B). The statement of the “theorem”
must be understood in the sense that the near-pivot (nig)'/2(f — ) is approximately
distributed as a vector Z = (Z1,...,7Z) of k independent N (0, 1)-distributed
variables. ¥

The quadratic form

i,j=1,. ..k

(6 —6)"nig(6 —0) = (Vniy (6 —0))" viy*(6 - )

then approximately has the same distribution as Z7Z = Y% 72, that is, a x3-
distribution (see Section 4.6). For ig an estimator for the matrix g, the set

{0: (0 —6)"nig(6—6) < xi,m}

is therefore a confidence region of asymptotic confidence level 1 — o (for large n).
Geometrically, this set is an ellipsoid in the k-dimensional space, because the Fisher
information matrix 7 is positive definite.

Often, we are only interested in a function g(f) of a higher-dimensional
parameter. Theorem 5.9 can be extended to that case.

Theorem 5.16

Take the situation of Theorem 5.9, but with parameter § € © C R* and a finite,
invertible Fisher information matrix. For a differentiable function g: © — R with
gradient ¢’, under 6, we have

Vi (g(0) — g(0)) ~ N(0,9'(0)ig*g'(0)")

asn — oQ.

¥ By (ig)l/z, we mean a matrix A of the same dimension as ig such that AT A = 4.
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5: Confidence Regions

Proof. The proof consists of two parts. First, Theorem 5.9 holds, precisely as
stated, for multidimensional parameters, where the limit distribution IV (0, i;l) is the
multivariate normal distribution, with covariance the inverse of the Fisher information
matrix. Next, we apply the “delta method” to determine the limit distribution of
\/ﬁ(g(é) —g(0)). This method corresponds to using the fact that this sequence has the
same limit distribution as the first-order Taylor expansion \/ng’(0)(6 — 6) at 0. Since
\/ﬁ(é —0) ~ Z as n — oo, for a normally distributed vector Z with expectation
0 and covariance matrix i, *, we have /ng’(0)(§ — 6) ~ ¢'(8)Z as n — oc. The
random variable ¢’(6)Z has a normal distribution, as in the theorem, because of the
properties of the multidimensional normal distribution (see Lemma B.4). A precise
justification of the delta method can be found in Chapter 3 of Van der Vaart (1998). |

In particular, the first coordinate of § = (61, ..., 0}) corresponds to the function
¢(0) = 0 and gradient ¢/(0) = (1,0, .. .,0). The asymptotic variance of \/n(f; —6;)
is therefore equal to (i;l)(lﬁl), the (1, 1)-element of the inverse matrix i, ' (not to be
confused with 1 divided by the (1, 1)-element of ig). For 6;, we use the confidence
interval

~—1.1/2
- (e s
0y =01 £ %ﬁka/z-
If 05, ..., 0 are known and therefore do not need to be estimated, we have a

one-dimensional estimation problem. We saw in Theorem 5.9 that in this case the
asymptotic variance of \/ﬁ(él — 01) is equal to 1 divided by the Fisher information
for the one-dimensional estimation problem. This value is equal to (i97(1,1))_1, that
is, 1 divided by the (1, 1)-element of the Fisher matrix i¢ in the multidimensional
problem above. In general, we have (’L’.g_l)(lﬁl) < (2'97(111))_1. This means that when
0o, ...,0; are unknown, there is loss of information and #; cannot be estimated as
precisely, resulting in a greater asymptotic variance and a longer confidence interval
for 6;. In some cases (see Example 5.18), the Fisher information matrix is a diagonal
matrix. We then have (ieﬁ(lyl))_l = (Z'g_l)(lﬁl), and not knowing the other parameters
does not lead to any loss of information.

Example 5.17 Multinomial distribution

Let Y = (Y1,...,Y,,) be multinomially distributed with parameters n and
(p1,- .-, Pm); see Example 4.48. We assume n known and the probabilities p1, . . ., pm
unknown. The sum of the probabilities is » .-, p; = 1, and therefore p,, =
1—(p1+...+pm—1). Since p,, is fixed whenever p1, ..., p;,—1 are known, we have
a (m — 1)-dimensional estimation problem. Let p = (p1,...,pm—1) be the vector
of the unknown parameters. We want to construct an approximate confidence region
for p based on the asymptotic distribution of the maximum likelihood estimator for p.
The maximum likelihood estimator for p maximizes the log-likelihood function of the
model; this function is given by

+)_Yilogp;.

— 1 "
0]
p &) Yl"'Ym =
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5.4: Maximum Likelihood Estimators as Near-Pivots

The maximum likelihood estimator for p relative to its parameter space {p €
R™ Lip; > 0, Z;’:llpi < 1} is equal to the vector (Yy/n,Ys/n,..., Yy _1/n)
(see Exercise 3.15).

In this section, we study the situation where were have a sample of size n.
In the multinomial model, we in fact have only one observation (Y7,...,Y,,),
but we can also view this observation as a sum of n independent, identically
distributed subobservations Xy, for £ = 1,...,n with X} multinomially distributed
with parameters 1 and (p1,...,pm). We write Xy = (Xp1,..., Xkm), so that
ZZ:1X 1 = Y, where the sum is coordinate-wise. For this model, the maximum
likelihood estimators for the parameters pq, . . . , ), are the same as in the multinomial
model. This follows from the fact that the log-likelihood functions are equal up to the
first term in the log-likelihood of Y, and this term does not depend on the unknown
parameters. To illustrate the theory in this section, we assume that we observe the

sample X1, ..., X,,. The score function of the model is given by the vector
(X1,1 ~ Xim Xim-1 Xl,m)
P Pm Pm-1 Pm /)

A simple computation gives var, X1; = p;(1 — p;) and covp(X1,;, X1,5) = —pip;
for i # j. The (i, j)-element of the Fisher information matrix i, is therefore given by

(ip)ij =1/pi+1/py fori= jand (ip)ij = 1/pm fori # j.

We can estimate the unknown parameters pi,...,Pn—1 in the Fisher information
matrix by the maximum likelihood estimators pi,...,pm,—1. The approximate
confidence region for p of confidence level 1 — « is now equal to

{P: =) 0= ) < Xiiioa

with p the maximum likelihood estimator for the parameter p and iAp the estimated
Fisher information matrix.

Suppose that we are only interested in estimating p;. We apply Theorem 5.16,
but now with g(p) = p; and gradient ¢’(p) = (1,0,...,0). It immediately follows
that under the assumption that p; is the true parameter, as n — co, we have

Vn(pr —p1) ~ N(0, (i, ),

with variance equal to the (1,1)-element of the inverse Fisher information matrix (o
The (4, j)-element of this matrix is equal to

(i;l)(i7j) =p;(l—p;) fori=jand (i;l)(i7j) = —pip; fori#j.
Note that the ith diagonal element, p;(1 — p;), is equal to var, X ; and the (i, j)-
element of i;l is equal to covy (X1, X1 ;). In short, /n(p1 — p1) is asymptotically
normally distributed with expectation 0 and variance p1(1 — p1) = var, X1,1. To

estimate the variance, we can again replace p; by the maximum likelihood estimator.
An approximate confidence interval of confidence level 1 — « is then equal to

., p(l—p
p1L=p1 =+ 1(\/—Tll)€1—a/2-
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5: Confidence Regions

If we are only interested in estimating the parameter p;, we could also have
reduced the multinomial model to a binomial model with parameters n and p;. We

do not need to estimate the unknown parameters ps, ..., p,, individually; the sum
p2 + ...+ pym =1 — p; suffices. A simple computation shows that we find the same
approximate confidence interval. —

Example 5.18 Normal distribution

Let X = (Xi,...,X,) be a sample from the normal distribution with unknown
parameters £ and o2. We want to determine a confidence interval for .

In Example 5.4, we constructed an exact confidence interval of confidence level
1 — « based on the t,,_1-distributed random variable v/n(X — y)/Sx. This interval
is given by

_x X
H= %tn—l,l—a/?

As an alternative, we could also have taken the exact confidence interval from
Example 5.2 and replaced the parameter o2, which was assumed known, by its
estimator S%. We then find an approximate confidence interval of confidence level
1—a:
Sx
%glfa /2

The only difference with the interval from Example 5.4 is the quantiles. For large n,
there is hardly any difference between the quantiles of the ¢,,_1-distribution and those
of the standard normal distribution, and the intervals will be approximately equal.

When o2 is unknown, we can also construct an approximate confidence interval
for 1 based on the asymptotic distribution of the maximum likelihood estimator for .
Because o is unknown, we are dealing with a two-dimensional estimation problem.
The score function of the model is given by

p=X+

X1 —p (Xy—p)? 1)Tf(§ z 1)T

b (X0 = (T3 5 5 o 207 g7

where we use the abbreviation Z = (X; — p)/o and Z has the standard normal
distribution. The diagonal elements of the Fisher information matrix are then equal to

AN
i (5) = 52
7z 1 1 , 1
V““Wv")(ﬁ B ﬁ) = ot Vo) 2= g0

since Z?2 has the ?-distribution with variance 2. The (1, 2)- and the (2, 1)-elements
of the symmetric Fisher information matrix are equal to

7 72 1 )
COV(’U‘ﬁg) (;, ﬁ) = ﬁ COV(#ya) (Z, Z ) = 07
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5.5: Confidence Regions and Tests

where the last equality follows from cov(Z, Z?) = EZ3 — EZ EZ? = 0 because the
first and third moments of the standard normal distribution are equal to 0. The Fisher
information matrix is therefore equal to

=" 100

Since the Fisher information matrix is a diagonal matrix, we can easily determine its
inverse by inverting the diagonal elements:

—1 o 0'2 0
Yoy T\ 0 20t )

We can again estimate the unknown variance o2 using the sample variance S%.. We

then find the approximate confidence interval for x using Theorem 5.16,

p=X=+ ;9/)%51—04/2-
This is the same approximate interval as at the beginning of this example.

The Fisher information matrix in this example is a diagonal matrix. In this
specific case, we have (%},ﬁ))(l,l) = (i(u,a"‘),(l,l))_l; knowing o2 or not does not
have any influence on the length of the approximate confidence interval for u, up to
the estimation of 2. o

Confidence intervals and tests are closely related. A given set of tests for the problems
Hy: g(#) = 7 automatically defines a confidence region for g(6) and conversely.

Theorem 5.19

Suppose that for every T € g(©), we are given a test of level « for the null hypothesis
Hy: g(0) = 7 (with a critical region that depends only on 7). Then the set of all values
T that are not rejected in testing is a confidence region for g(6) of confidence level
1—o.

Conversely, given a confidence region Gx for g(0) of confidence level 1 — «,
the critical region {z:7 ¢ G} gives a test of confidence level 1 — « for the null
hypothesis Hy: g(0) = 7, forall T € g(©).

Proof. For T € g(©), we define the set O, = {0 € ©: g(0) = 7}, so that Hy: g(0) =
T is equivalent to Hy: 0 € ©...

195



5: Confidence Regions

In the first part of the theorem, we are given, for every 7 € ¢(©), a critical
region K. of a test of level o for Hp: 0 € ©., and the confidence region we have
in mind for g(6) is the set Gx = {7: X ¢ K, }. That this test has level o means
that Po(X € K,) < aforall § € ©,, for every given 7. Since 7 = g(6) for every
6 € ©,, we therefore also have Py(X € K4)) < a forevery 6 € ©. It follows from
the definition of G x that g(f) € G x if and only if X ¢ K ). The first statement of
the theorem now follows from Py (g(f) € Gx) = Po(X ¢ Ky)) > 1 — v, for all
0co.

In the second part, we are given a confidence region G'x for g(6), and the test
we have in mind for the null hypothesis Hy: 0§ € O, has critical region K, = {x: 7 ¢
G }. That Gx has size o means that Pg(g(0) € Gx) > 1—aforall § € O. It follows
from the definition of K that X € K if and only if 7 ¢ Gx. For § € ©,, we have
g(0) = 7, and therefore Py(X € K;) = Po(X € Kyp)) = Po(g(0) ¢ Gx) < a.
We conclude that the test with critical region K. has size «. This proves the second
part of the theorem. |

At first sight, applying this theorem seems a difficult way to construct a

confidence interval: we must test the hypothesis Hy: g(f) = 7 for every 7. This can
indeed be much work, but in some standard cases, it is quite easy.

Example 5.20 Normal distribution

Let X = (Xi,...,X,) be a sample from the N (y, o?)-distribution with unknown
parameters £ and o2, The t-test does not reject the null hypothesis Ho: 1 = puig at

level o when o
X — o
~lp_11-a/2 < VN Sx Stpo11-a/2-

This is equivalent to the inequalities

- S - S
X — \/_)%tnfl,lfa/2 <o < X - \/_)%tnfl,a/Q-

By Theorem 5.19, the confidence interval of confidence level 1 — « for p is then equal
to

—  Sx
=X+ —=t, 11 a/2
w \/ﬁ n—1,1—a/2
We had already found this confidence interval in a different way. ——

Example 5.21 Exponential distribution

Let Xi,...,X,, be a sample from the exponential distribution with unknown
parameter A\. An approximate confidence interval of confidence level 1 — a for A

1S 1 1
)\ = = :t e — —a 7
X \/ﬁxg1 /2
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see Example 5.13. By Theorem 5.19, the test that rejects the null hypothesis Hy: A =
Ao when ) is not in this confidence interval is a test for Hy: A = )\ against the
alternative Hy: A # A of approximate size «. This test corresponds to the Wald test;
see Section 4.8. —

Example 5.22 Binomial distribution

Let X be binomially distributed with unknown parameter p and known n. We can
determine an “exact” confidence interval for p by inverting the exact test for Hy:p =
po discussed in Example 4.24. The best way to do this is to use the test in terms of
p-values. The null hypothesis Hy:p = pg is rejected at size « if, for an observed
value z,

Pp(X >2)<la or P, (X <2)<ia

The confidence region for the observed value x is therefore the set
{p: Py (X >z)>%a and Py(X<z)> %a}.

For z > 1, the function p — P,(X > x) is a continuous function of p that is strictly
increasing from the value 0 in p = 0 to 1 in p = 1; see Figure 5.4. Consequently, the
set {p:Pp(X > ) > fa} isequal to (p;, 1], where p; is the solution of the equation

P, (X >12) = 1o

On the other hand, for x < n — 1, the function p > Pp(X < z) is a continuous
function that is strictly decreasing from 1 in p = 0 to 0 in p = 1. Consequently, the
set {p:P,(X < x) > Ja}isequalto[0,p,), where p, is the solution of the equation

P, (X <z) =i

The desired confidence interval is the intersection (p;, p,) of the two intervals we
found.

If x =0, then P, (X > x) = 1 for every p, and the equation for p; does not have
any solutions. The confidence interval is then [0, p,.). If z = n, then P, (X < z) =
1 for every p, and the equation for p, does not have any solutions. The confidence
interval is then (p;, 1].

The values p; and p, can be solved from the equations using tables or the
computer, or even using the normal approximation (though this goes against the aim
to have an “exact” interval). For example, for « = 0.05, n = 20, and x = 13, the table
gives

Po.sa(X < 13) =0.03037

= p, &~ 0.845.
Po.ss(X < 13) = 0.02194

Likewise, we find p; ~ 0.405, so that the exact confidence interval is (0.405, 0.845).
This interval is indicated in Figure 5.4. ——
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Figure 5.4. Confidence interval for the binomial distribution. The graph shows the functions
p — P,(X > z) (increasing) and p — P, (X < z) (decreasing) for n = 20 and = = 13 and a dashed
line at height 0.025. The 95% confidence interval contains the values between the intersection
points of the curves with the dashed line.

The procedure to deduce confidence regions from tests is, in particular, often applied to
the likelihood ratio test. This test rejects the null hypothesis Hy: 8 = 7 for large values
of the likelihood ratio statistic p;(X)/p-(X), for 0 the maximum likelihood estimator
for 6. In many cases, we use the chi-square approximation to find a critical value
(compare with Theorem 4.43). The likelihood ratio test rejects the null hypothesis
Hy:0 = 7 concerning a k-dimensional parameter when 2log(p,(X)/p-(X)) >
X2 o Tor x2, . the (1 — «)-quantile of the yZ-distribution (this result is a
gefleralization of the one-dimensional restriction in Example 4.45, which can be
extended to a k-dimensional restriction). The procedure in Theorem 5.19 leads to the
confidence region

{Qzlogpg(X) —logps(X) > _%Xixl—a}'

The “inversion of the likelihood ratio test” has the intuitively attractive property that
the confidence region contains those values of the parameter 6 that maximize the
likelihood function.

We can visualize the confidence region using a plot of the log-likelihood function
minus its maximum: minus the log-likelihood ratio 6 +— log pg(x) — log p,(x). For
a one-dimensional parameter, this is a function with a “normal,” two-dimensional
graph. If we draw a horizontal line at height — %xil_a, then the confidence regions
consists precisely of the values of # where minus the log-likelihood ratio statistic rises
above the horizontal line (see Figure 5.5 for an illustration). For multidimensional
parameters, the log-likelihood function is a hypersurface, and the confidence region
is the set of values where the hypersurface rises above height — 3 X%,l—a’ for k the
dimension of the parameter.
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It is clear from the graphical description of the confidence region that the
maximum likelihood estimate always lies in the confidence region, and that the form
of this region is determined by the form of the likelihood function. In particular, a
likelihood ratio confidence region is not necessarily symmetric about the maximum
likelihood estimator; see Figure 5.5 as an illustration. In general, the asymmetry, when
it occurs, is viewed as desirable, as an expression of a different measure of uncertainty
over the parameter in different directions. Note, however, that the likelihood ratio
surface may have several local maxima, and that in extreme situations, this can lead
to a confidence region that consists of more than one disconnected component. It is
unclear whether disconnected confidence regions are desirable.

T T T T T
0 2 4 6 8

Figure 5.5. Minus the log-likelihood ratio statistic as a function of € for a sample of size 4 from
the Poisson distribution with expectation 1. The dotted line is at height 7%)&&_95. The values of
0 for which the curve rises above the line belong to the approximate 95% confidence interval.

Example 5.23 Exponential distribution

Let X = (X1,...,X,) be a sample from the exponential distribution with unknown
parameter A > 0. The log-likelihood function is then

A nlogh =AY X,
i=1
and the maximum likelihood estimator for A is A\ = 1 / X (see Example 3.12). The set

{A: nlog A — Aznzxi — (nlog A — XiXi) > —%x?,ka}

=1 i=1

= {)\: nlog A\ — /\ZXi +nlogX +n > —%Xika}
i=1
is then the approximate confidence region for A based on the likelihood ratio test of
size o —
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Often, we are interested in a confidence region for a component 6; of a higher-
dimensional parameter 6 = (61, ...,0;), instead of a region for the full parameter
vector f. We can easily provide this using the likelihood ratio statistic, by inverting
the test for the hypothesis Hy: 1 = 7, instead of the hypothesis for the full parameter
used earlier (now with 7 € R). The likelihood ratio test rejects the null hypothesis
Hy: 0, = 7 for large values of the test statistic

SUDPgco po(X)
SUPgeco:0,=7 pG(X)

2log

We can often choose the critical value equal to the (1 — «)-quantile of the chi-square
distribution with 1 degree of freedom, because the dimension k of the full model and
the dimension kg = k — 1 of the null hypothesis ©¢ = {6:6; = 7} differ by 1 (see
Example 4.45). The confidence region for 67 consists of the values of 7 that have not
been rejected.

This confidence region can be visualized using the so-called profile likelihood
function.

Definition 5.24 Profile likelihood
The profile likelihood function is given by

Li(m;X) = sup po(X).
0€0:01=71

For a fixed value of 61, the profile likelihood L1 (6;; X) is equal to the maximum
of the “usual” likelihood pg(X) over the remaining parameters 6s,...,60;. By
maximizing the profile likelihood 6, — L;1(f1; X) with respect to 6, we find the
maximum of the “usual” likelihood over the full parameter; the maximum is taken
on in the maximum likelihood estimator 6; for 6;. (This procedure splits finding the
overall maximum of the likelihood in two steps but gives the same maximum.) The
likelihood ratio statistic for testing Hp: 61 = 7 can therefore be written in the form
L1(01; X)/L1(7; X), and when we use the chi-square approximation, the confidence
region for 6, is of the form

{01108 L1(01: X) =log L1 (61 %) > —3x} 1o }-

Using the profile likelihood, we can visualize the likelihood ratio region for #; in a way
analogous to that used for the usual likelihood for the full parameters. We plot minus
the logarithm of the profile likelihood ratio function, log L (61; 2) — log Ll(él; x),
and take as confidence region the values of #; where the function rises above a certain
level.

This procedure can be extended to general functions g of the parameter 6 by
defining the profile likelihood for g as the function 7 — L4(7; X) given by

Ly(1; X) = sup  po(X).
0€O:g9(0)=T7
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+ Example 5.25 Application: compound Poisson process

In Example 3.22, we modeled the monthly payout by a health insurance company and
estimated the unknown parameters ;. and 6 using the maximum likelihood estimators.
Suppose that we want to construct a confidence interval for 6. In Example 4.49, we
discussed the likelihood ratio test for testing Hy: 6 = 6 against Hy: 6 # 0. The test
statistic does not depend on the parameter 1 and, under Hy, asymptotically follows the
chi-square distribution with 1 degree of freedom. The approximate confidence interval
for 6 can now easily be deduced from the above. —

* [EEATes R Confience Reglons [
The Bayesian approach gives an alternative way to quantify the uncertainty of an
estimate. In addition to a point estimator, this approach also gives the posterior
distribution. This distribution is an expression of the uncertainty we have about the
value of the parameter after carrying out the observation. The parameter value is
viewed as a random vector distributed following the posterior distribution.

If we want to express our uncertainty through a margin or region around a point
estimate, then a logical choice would be a region with probability 1 — « under the
posterior distribution. This is not uniquely determined, but in general, we will choose
a symmetric region or the smallest possible region with this property.

This way of constructing an uncertainty margin is completely different from the
methods discussed previously, and there is no guarantee that such a Bayesian region is
also a confidence region in the sense of Definition 5.1. To express this difference, we
speak of a credible region instead of a confidence region. We can show that in many
cases, a credible region based on a large sample is approximately a confidence region
in the usual sense.

The reason for this phenomenon is that Bayesian estimators are asymptotically
normally distributed, and that the differences with maximum likelihood estimators
disappear as the number of observations increases. A credible region is therefore
asymptotically the same as the confidence region based on the maximum likelihood
estimator, discussed in Section 5.4. The basic theorem that explains this is the
Bernstein-von Mises theorem, according to which a posterior distribution is asymp-
totically a normal distribution centered in the maximum likelihood estimator. For
simplicity, we again restrict ourselves to the case where the observation X =
(X1,...,X,) is a sample from partial observations X; with marginal probability
density pp, for 6 € © C R*. Let ©,, be a random variable that has the prior
distribution, so that the posterior distribution is equal to the conditional distribution
of 8, given Xq,..., X,,.
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5: Confidence Regions

Theorem 5.26 Bernstein—von Mises

Suppose that the map ¢ — logpy(x) is continuously differentiable for all x with
gradient {y(x) such that |[f9(x)| < L(z) for every ¥ in a neighborhood of 0,
where L is a function with EgL? (X1) < oo. Suppose, moreover, that the Fisher
information matrix iy is invertible for all ¥ and depends continuously on 9, and
that the maximum likelihood estimator 6,, is consistent for 6. Then for every prior|
probability distribution that is continuous with strictly positive density on ©, we have

_ 1
lim sup By sup|P(6, € B| X1,..., X,) — N (on, ﬁie_l)(B)‘ —0.

n— 00 B

Here, we denote by N}, the k-dimensional normal distribution, see Appendix B,
and by N (u, X)(B) the probability that an Ny (u, X)-distributed variable takes on
a value in B. In the theorem, the supremum of an absolute difference between two
probabilities is taken over all events (sets) B C RF. This difference can be seen as
a distance between the posterior distribution and a certain normal distribution that
also depends on the observations through the maximum likelihood estimator 0,,. The
theorem says that the expectation of this distance converges to 0. The variance of
the approximate normal distribution is exactly the (limit) variance of the maximum
likelihood estimator. By choosing the event B suitably, we can transform the statement
into a statement on a credible region.

Let us specify this for the estimation of a real-valued parameter g(f) based
on a sample from the density py. A natural credible interval is then the interval
between two symmetrically chosen quantiles of the posterior distribution of g(6). If
Fg@n)‘ X1o .. X0 is the distribution function of this posterior distribution and

Qy@.)1x1.. . . X0 () = inf{:l;: Fo@ixi.. .. x, () > 0‘}

is the corresponding quantile function, then the credible interval is

(0% (0%

(5.3) [Qg(én)\xl,. e X (5) A ZICHIE IS (1 B 5)} '

We can compare this with the confidence interval based on the maximum likelihood
estimator, which equals

A §1—ay2 — i S1-a/2 i
[9(6) - 95,15, (05 )T 9(0n) + =2 %15, 95, )7]

by Theorem 5.16. The endpoints of the two intervals agree asymptotically.
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5.7: Bayesian Confidence Regions

Theorem 5.27

In the situation of Theorem 5.26, for a differentiable function g and o € (0,1), we
have

Qg(én)‘xlw . ,Xn(l —a) - g(én) - &ﬁ géniefnl(gén)T = OPgl(l/\/ﬁ)‘

Consequently, under 0 the probability that the credible interval (5.3) contains the
parameter § convergesto1l — o asn — oo.

Proof. The last statement follows from the first and the analogous statement
concerning the coverage probability of the confidence interval based on the maximum
likelihood estimator. See Theorem 5.9 and the discussion following it, or Theo-
rem 5.16 for the case of higher-dimensional parameters. We also use that the difference
between the two types of intervals is of order o(1/4/n), so that we can reduce the
difference to 0 by changing the confidence level 1 — « of the maximum likelihood
interval to a value 1 — &,, with &,, — «. The confidence level of the maximum
likelihood interval still convergesto 1 — a as n — oo.

For the proof of the first statement of the theorem, we restrict ourselves to the
case of a parameter § € R and the identity function, given by ¢g(#) = 6. (The general
case requires a second step, based on the delta method.) For F,(z) = P(@n <
#| X1,...,Xy), by Theorem 5.26 applied with the set B = (—o0,z], we find that
Esup, |Fu(z) — ®((x — pn)/on)| — 0 for p, = 0, and 0, = 1/+/nig. For
x = Qéanu.-.Xn(l — «a), we have F,,(x — 1/n) < 1 — «a < F,(x) because
Q@n X100 . X is the quantile function corresponding to F,,. Consequently,

@(W)+5n§1_agq>(m)+&“

On On

where both rest terms d,, and A,, have an absolute value that is less than sup,, ‘Fn (x)—
®((x — pn)/on) ] and therefore converge in probability to 0. By the continuity of the
standard normal quantile function ® !, we can now invert the inequalities to obtain
(x —1/n— pn)/on < 71 —a—6,) and (x — pp)/on > @711 —a - A,),
which imply @ = pi, + 0, [ (1 — @) + 0p(1)]. ™

As when we apply Bayesian approximation methods, the weakness of the
credible regions lies in the choice of the prior distribution. This choice can
significantly influence the form of the posterior distribution. A “wrong” choice of
prior distribution can thus lead to “wrong” credible regions. Theorem 5.27 shows that
this problem is small when we have sufficiently many observations. In that case, a
possible wrong prior choice is corrected by the observations.

Example 5.28 Binomial distribution

Let X be binomially distributed with parameters n (known) and 6 (unknown). In
Example 3.38, we computed that the posterior distribution with respect to the beta
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5: Confidence Regions

distribution with parameters « and 3 is equal to the beta distribution with parameters
X + aand n — X + (. A credible interval of confidence level 1 — oy with respect to
a beta prior distribution is therefore the interval between the («g/2)- and (1 — v /2)-
quantiles of the beta distribution with parameters X + « and n — X + . Figure 5.6
shows a realization of the posterior density, where the credible interval is indicated by
the thick solid line. —

10

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Figure 5.6. Realization of the posterior density (solid) based on an observation from the binomial
distribution with parameters 100 en 1/2 with respect to the beta prior distribution with parameters
a =25 and 8 = 5 (dashed). The 95% credible interval is indicated by the thick solid line.
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5.8: Summary

Let X be an observation with distribution Py that depends on an unknown parameter
0 € ©. A confidence region for f € © of confidence level 1 — avisamap X — Gx
such that

Pop(Gx30)>1—« forall € ©.

The region G'x depends on X and is therefore stochastic. The confidence level 1 — «
is the probability that this region contains the true value of the parameter.

Confidence regions based on (near-)pivots:

e A pivot is a random variable or vector T = T'(X, ) that has a fixed distribution
that does not depend on the parameter 6. The set of ¢ for which the pivot belongs
to a fixed region (for example, the interval between two quantiles of its fixed
distribution) is a confidence region for 6. A near-pivot is a variable or vector
T = T(X, 0) that has approximately a fixed distribution.

e Maximum likelihood estimators can act as near-pivots. Let py be the marginal
density of a sample X1, ..., X,,. The Fisher information is the number

i@ = varyg é@()(l)7

with 0 — lg(z) = % log pg(z) the score function of the model. Under certain
conditions, the maximum likglihood estimator én for 6 based on Athe sample X =
(X1,...,X,) satisfies \/n(6,, — 0) ~ N(0,i,"). Hence v/nig(0,, — 0) is a near-
pivot. When we use an estimator ig for ig, this gives the approximate confidence

interval for 6: 1

6 - 6:|: —{\617(1/2'
V Nty

Confidence regions based on tests:

e The set of all values 7 for which the hypothesis Hy: g(6) = 7 is not rejected is a
confidence region for g(#). If the test has size «, then the confidence region has
confidence level 1 — a. Conversely, rejecting parameter values that do not belong
to a confidence region gives a test of corresponding size.

e A likelihood ratio region for 6 is a confidence region based on the likelihood ratio
test for Hy: @ = 7. This test does not reject for small values of the likelihood ratio
statistic A(X), so that the confidence region of (approximate) confidence level 1 —«
becomes

{0:M(X) < xk1—a} = {0:1ogpe(X) —logp; (X) > —%xi,ka}v
where 0 is the maximum likelihood estimator for @ and k is the dimension of 6.
This region contains the parameter values where the likelihood function exceeds a
certain bound.
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5: Confidence Regions

1.

10.

Lab workers are trying to measure a certain quantity 6. Normally distributed measurement
errors occur with a standard deviation of 2.3 and expectation 0. The lab workers carry out
25 independent measurements and find an average value of 18.61. Determine a (numerical)
confidence interval for 6 of confidence level 0.98.

. If in the previous exercise, the standard deviation is not assumed known, and the sample

standard deviation is 2.3, what is the (numerical) confidence interval for 6 of confidence
level 0.98?

. Let Xi,...,X,, and Yy, ..., Y, be independent random samples from, respectively, a normal

N(u, o?)-distribution and a normal N(v, o%)-distribution. Determine a confidence interval for
u — v of confidence level 1 — «

(i) if o is known,

(ii) if o? is unknown.

. Let X|,..., X, be a sample from the N(u, o)-distribution. Determine a confidence interval

for o2 based on a suitable pivot.

. Suppose that in 100 independent Bernoulli experiments with unknown probability of success

p, we find 36 cases of success. Determine an (approximate) numerical confidence interval
for p of confidence level 0.95.

. Let Xi,...,X,, and Y1, ..., Y, be independent random samples from, respectively, a normal

N(u, o?)-distribution and a normal N(v, 72)-distribution. Determine a confidence interval for
0% /7% of confidence level 1 — a.

. Let Xy, ..., X, be a sample from the exponential distribution with parameter A.

(i) Determine an exact confidence interval for A based on a suitable pivot.
(ii) Determine an approximate confidence interval for A based on the maximum likelihood
estimator and the large sample method.

. Let Xi,..., X0 be a sample from the Poisson distribution with unknown expectation 6. We

ﬁndx1 ZX3:)C6:)C3IXQZO,Xz:)Cs:le: 1,X4:2,X7:3.
(i) Determine an exact (numerical) confidence interval for 6 of confidence level 0.9.
(ii) Determine an approximate (numerical) confidence interval for 6 of confidence level
0.9 based on the maximum likelihood estimator by applying the large sample method.

. Let Xy, ..., X, be a sample from the distribution with probability density
po(x) = 2x0e7"  for x>0,
and 0 for x < 0. The parameter 6 > 0 is unknown. We can prove that X7, ..., X? are expo-

nentially distributed with parameter 6 and that if 6 = 1, the random variable 2 Z:’:l X? has a
chi-square distribution with 2n degrees of freedom.
(i) Show that 2 Z?:] 6X? is a pivot.
(i1) Determine a (1 —a)100% confidence interval for 6 based on the pivot from the previous
part, expressed in quantiles of a chi-square distribution.

By Example 5.2, the square length of the confidence interval for u based on a sample from
the N(u, 0?)-distribution when o is known is equal to 4(c*/n)&;_, ,. Compare this length
to the expected square length of the interval from Example 5.4 for the case where o is
unknown.
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11.

12.

13.

14.

15.

16.

17.

18.

5: Exercises

Let Xy, .., X, be a sample from the geometric distribution with parameter p.
(i) Determine the Fisher information for p.
(ii) Determine the observed information.
(iii) Determine an approximate confidence interval for p of confidence level 1 — a based on
the maximum likelihood estimator.
(iv) What is the realization of this interval if x; + ... + x40 = 100 and a = 0.05?

Let X, .., X, be a sample from the Bernoulli distribution with parameter p.
(i) Determine the Fisher information for p.
(ii) Determine the observed information.
(iii) Determine an approximate confidence interval for p of confidence level 1 — « based on
the maximum likelihood estimator.
(iv) What is the realization of this interval if x| + ... + xj90 = 32 and @ = 0.05?

Let X, ..., X, be a sequence of independent random variables with probability density py
given by py(x) = 6*xe™® for x > 0, where > 0 is an unknown parameter.
(i) Determine the maximum likelihood estimator for 6.
(i) Compute the plug-in estimator for .
(iii) Compute the observed (Fisher) information for 6.
(iv) Give an approximate confidence interval for 6 of confidence level 1 — & based on the
maximum likelihood estimator for 6.

Let Xi,...,X, be a sample from the probability distribution with density p.(x) =
xA72e7*1 ., where A > 0 is an unknown parameter.
(i) Determine the maximum likelihood estimator for A.
(ii) Determine an approximate confidence interval for A of confidence level 1 — a based on
the maximum likelihood estimator.
(iii) Compare this interval with the interval for 8 = 1/ from the previous exercise.

We carry out 25 independent Bernoulli experiments, each with unknown success probability
p. We find 18 cases of success. Take confidence level 0.95.
(i) Determine an exact confidence interval for p.
(ii) Determine an approximate confidence interval for p based on the large sample method.
Can 25 be viewed as “large” in this context?

Let Xi,..., X, be a sequence of independent random variables with probability density py
given by py(x) = 6*xe™® for x > 0, where > 0 is an unknown parameter.
(1) Determine the likelihood ratio statistic A, for testing the null hypothesis Hy: 6 = 6,
against the alternative hypothesis H;: 8 # 6.
(i1) Determine an approximate confidence interval for 8 of confidence level 1 — « based on
the likelihood ratio statistic.

Let X, ..., X, be a sequence of independent random variables with probability density py
given by py(x) = %e""& for x > 0, where 6 > 0 is an unknown parameter.
(i) Determine the maximum likelihood estimator for 6.
(ii) Determine the likelihood ratio statistic 4, for testing the null hypothesis Hy:6 = 6
against the alternative hypothesis H;: 0 # 6.
(iii) Determine an approximate confidence interval for 6 of confidence level 1 — a based on

the likelihood ratio statistic.

Let Xi,..., X, be a sample from the N(6, 8*)-distribution, with # > 0 unknown. Determine
an approximate confidence interval for 6 based on the likelihood ratio statistic.
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19.

20.

21.

22.

: Confidence Regions

A manufacturer of scales claims that his scales have an accuracy of 2 per mille. This
means that if X denotes the weight of a 1000 mg object measured on an arbitrary scale,
the variance of X is equal to 2> = 4 mg?. We want to study whether the manufacturer
is right. To do this, we take a 1000 mg object and determine its mass using 50 randomly
chosen scales. The different measurements are denoted by Xi, ..., Xso. We assume that the
observations X, ..., X5y are independent and normally distributed with expectation u and
unknown variance 2. The observed sample variance is equal to 4.8. We have also observed

that 377, (x; — 1000)2/50 = 4.8.

(i) Construct a confidence interval for o> of confidence level 0.95 under the assumption
that we know that u = 1000 mg.

(ii) Construct a confidence interval for o> of confidence level 0.95 under the assumption
that y is unknown.

(iii) Describe a test for testing whether o> deviates significantly from the variance given by
the manufacturer. Do this for the case where u is known as well as the case where it
is unknown. Give the null hypothesis. Carry out this test with the confidence interval
from the previous part, a critical region, or a p-value. Take confidence level equal to
0.95.

Let X and Y be independent, binomially distributed variables with respective parameters
(200, py) and (725, p,).
(i) Construct an approximate confidence interval for p; — p, of confidence level 0.95.
(i1) Test, using the confidence region from the previous part, the null hypothesis Hy: p; =
p2 at level 0.05 if we have observed x = 121 and y = 391.

Let X(,) be the maximum of a sample of size n from the uniform distribution on [0, 8].
Determine numbers ¢ and d such that the length of the interval [X,/d, X(,)/c] is minimal
and the interval is also a confidence interval of confidence level 1 — a.

Let X and Y be independent binomially distributed variables with respective parameters
(ny1, p1) and (ny, p2). Determine the profile likelihood function for the parameter g(p1, p2) =
pi/pa.
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THE SALK VACCINE

Polio (or infantile paralysis) is an infectious disease that was virtually eradicated by
vaccination in Western countries in the second half of the twentieth century. The first
vaccines against polio were developed and tested in the 1950s. Jonas Salk’s vaccine
was the most promising of these. After research in a lab, the United States Public
Health Service decided, in 1954, to study this vaccine by carrying out a large field
trial under the American population.

This experiment consisted of vaccinating a large number of children with either
the Salk vaccine or a placebo (an inactive substance) and carrying out a statistical
comparison of the measure of infection by the poliovirus in the two groups. Using a
placebo is standard procedure in these types of clinical trials, and is meant to rule out
possible (usually positive) effects on a patient resulting from the suggestions that they
are being treated. Neither the children nor the doctors administrating the shots knew
whether a placebo or vaccine was administered. it was a double-blind experiment.

The composition of the group of “cases” (the children treated with the vaccine)
and of the control group (the children treated with the placebo) lead to the necessary
complications. A significant problem was that a large number of parents did not give
permission for participation in the trial. Since it was not excluded, and was even
expected, that a positive correlation existed between permission to participate and
susceptibility for polio, the researchers decided to first form a group of children whose
parents had given permission for participation in the trial, and only then decide how
to split the group into a case group and control group. The latter came about through
complete randomization, that is, each child had probability 1/2 of being assigned to
one of the two groups, independently of the other children.

The results were as follows. For a group of about 750 000 children, the parents
of 401974 children gave permission for participation in the trial. Of these children,
200745 were administered the vaccine and 201229 the placebo. Of the treated
children, 57 still contracted polio, while in the placebo group, 142 children contracted
polio.”

This data seems to show that the Salk vaccine significantly reduces the
occurrence of polio. How hard can we make this conclusion? Recall that 57 of the
treated children also contracted polio. Can we say that the Salk vaccine reduces the
probability of contracting polio by a factor of 2.5 (=~ (142/201 229)/(57/200 745))?

Even for a carefully planned trial, these questions are not at all trivial. The
factor 2.5 that shows up in the data at first glance has the highest uncertainty, but
the statement “the Salk vaccine works” also needs further explanation. What do we
mean by “works”? In principle, we are looking for a causal conclusion: just like a
moving billiard ball touching a stationary billiard ball is the reason why the second
ball starts moving, we would like the Salk vaccine to be the reason why there are fewer
cases of polio. A clinical trial as the one carried out here is seen as the best method

® The date can be found in the paper Evaluation of the 1954 Poliomyelitis vaccine field trial, T. Francis,
Journal of American Medical Association 158, 1955.
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5: Confidence Regions

for drawing such a conclusion, but to a certain level, speaking in terms of causes
may be a linguistic question. By the set-up of the experiment, other explanations for
the observed difference have been ruled out as much as possible. Note, however, that
the experiment gives hardly any information on children whose parents did not give
permission for administering the vaccine. It could, for example, be possible that this
group corresponds to the group for which the vaccine does not work. On medical
grounds, this is very improbable, but we should not unquestioningly view the factor
2.5 as applicable to this group of children. For example, it turns out that richer parents
often refused participation, and there is a speculation that children of richer parents
are more susceptible to polio because they build up less resistance in their younger
year because of better hygiene.

The contribution of statistics is the analysis of the data based on a statistical
model. Roughly speaking, the question is: suppose that we repeat the entire
experiment, would we still find similar results (including the factor 2.5), or was this
by chance? What statistical model should we use? It seems impossible to set up an
experiment in which we also include the possibility that a parent (of a randomly chosen
child?) refuse permission to participate. It seems simplest to restrict ourselves to the
group of 401974 participating children. Although, theoretically, we may then not
extend our conclusions to all children, such a generalization does seem reasonable.

Let p1 and po be the probabilities that a randomly chosen child from the given
401974 children contracts polio if they receive, respectively, the vaccine and the
placebo. For every child i = 1,2,...,n = 401974, we observe the pair (C;, P;),
where C; is defined as

C = 1 ifchild i is in the case group,
Y"1 2 ifchild i is in the control group,

and P; as

p— 0 if child i does not contract polio,
7\ 1 ifchild i contracts polio.

The marginal distribution of C; is P(C; = 1) = P(C; = 2) = 1/2, because of
the set-up of the experiment: every child has the same probability of being assigned
to the case group or control group. The conditional distribution of P; given C; =
j is Bernoulli(p;) for j = 1,2, by the definitions of p1 and ps. This fixes the
probability distribution of (C;, P;). We further fix the joint probability distribution
of (Cy,Pr),...,(Cn, P,) by postulating that these vectors are independent. This is
a bad assumption, because polio is infectious and does not occur independently in
different children. We still make the assumption, for want of a better one.

The observations C4, . ..,C, are the result of the randomization and do not
give any information on the parameters p1 and ps. The relevant information in the
observations Py, . .., P, is (intuitively) contained in

X=> P Y=)> P

:C;=1 1:C;=2
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These are the numbers of cases of polio in the case group and control group,
respectively. Given the vector (C1, . ..,C,,), the variables X and Y are independent
and binomially distributed with respective parameters (My: = #{i: C; = 1},p1) and
(My: = #{i: C; = 2}, pa). The simple approach is now to carry out the statistical
analysis conditionally on the observed values m1 and mo of My and Ms. In that
case, we have reduced the problem to the statistical approach in which we observe
the independent variables X and Y with binomial distributions with respective
parameters (my,p1) and (ma, p2).

To test whether the vaccine has a protective effect, we want to test the null
hypothesis Hy: p1 > po against the alternative hypothesis Hy:p1 < po. Within the
statistical model described above, there exists a standard test, the Fisher test for the
(2 x 2)-table, based on the fact that under the null hypothesis, X given X +Y has
a hypergeometric distribution. We will not discuss this here. Because the number of
observations is very large, we are content with an approximate test.

The natural estimator for p1 — po is X /m1 —Y /ma. This has expectation p1 — p2
and variance

var(£ _ i) _mn(-p) N p2(1 = p2)

miy mo mi mo
We can estimate this variance by replacing p1 and ps with X /my and Y /mo. By the
central limit theorem (Theorem A.28), under py = pa, the random variable
T — X/m1 — Y/m2
\/X/ml(l—X/ml) | Y/ma(1=Y/ma)

mi ma

approximately has the standard normal distribution; see Section A.7. If we use T
as test statistic to test the null hypothesis stated above, then we find a left p-value
9.09 x 1072, which is less than any interesting level of the test. The conclusion is that
the vaccine indeed has a protective effect.

To say something about the size of the effect p1 — pa, we estimate this difference
and deduce a 95% confidence interval. As near-pivot, we use

X/ml —Y/m2 - (pl —Pz)

X/mi(1—-X/m1) | Y/m2(1—-Y/ma2)
1 e 1 _|_ 2 o 2

which approximately has the standard normal distribution. For the given data from
the Salk experiment, py — ps is estimated to be —0.000422 and the approximate 95%
confidence interval is equal to —0.000422 + 0.000137.

Since both py and py are small, it seems natural to study the relative size p1/po.
A reasonable estimator is (X/m1)/(Y/mz). In a manner similar to that used for
the difference, we can deduce a confidence interval for p1/ps, but this requires more
knowledge of asymptotic methods than we wish to introduce here, so we refrain from
doing this.

211



This chapter is dedicated to optimality theory for estimators and tests. There are,
generally, many possible choices for estimators and test statistics. If we are looking
for the best estimator or test, it would be useful to reduce the set of possible estimators
and test statistics. We can do this by reducing the observation beforehand by filtering
out irrelevant information on the parameter. We then base the estimator or test statistic
on the reduced observation. This is the subject of Section 6.2.

In Section 6.3, we consider how to find the best estimator and how good the best
estimator is, measured in the measure of quality discussed in Chapter 3, the mean
square error.

Finally, we discuss the quality of tests in Section 6.4. In Chapter 4, we
constructed different tests using ad hoc arguments. Intuitively, most of these tests are
reasonable, but are they also the best possible tests? In the last section of this chapter,
we will show that some of the tests we discussed are uniformly most powerful; this
means that the power of these tests under the alternative hypothesis is maximal.

212



6.2: Sufficient Statistics

If instead of seeing the full observation X, we only see the value of a statistic V(X),
we have, in principle, lost information. For example, X = (X1, ..., X,,) gives more
information than V(X)) = >_" | X;. We call a statistic V sufficient if, given the model,
no relevant information on the unknown parameter has been lost.

Example 6.1 Bernoulli distribution

For a quality control inspection, n items are randomly chosen from a large batch and
tested. We observe X = (X1,...,X,,), where

X — 0 if the ith article is rejected,
* 7| 1 if the ith article is approved.

The result of the inspection is therefore a sequence of symbols consisting of Os and
1s. The unknown proportion p of defect items in the large batch clearly affects the
number V' = """ | X; of observed 1s (the number of approved articles in the sample),
but intuitively, the order in which we see the Os and 1s has little to do with the size of
p. Intuitively, V = Y7 | X; therefore suffices. ——

The technical definition of a sufficient statistic when X has a discrete distribution
is as follows.

Definition 6.2 Sufficient statistic for discrete probability distributions

Suppose that the statistical model for X consists of discrete probability distributions
that depend on the parameter 0. A statistic V. = V(X)) is called sufficient if the
conditional probabilities

P(X =z|V =v)

do not depend on 0, for all possible values of x and v.

The property in the definition is truly special. The distribution of X depends on
the unknown parameter 6, hence so does the joint distribution of (X, V). For a general
statistic V' that is not sufficient, the conditional probabilities Po(X = z| V = v) will
also depend on 6.

Intuitively, we can show as follows that it is plausible that a sufficient quantity
possesses all relevant information on #. We could generate an observation x in two
steps:

- First generate v from the marginal distribution of V; for this, we need the “true”

parameter 6.

- Given v, generate x from the conditional distribution of X given V' = v; provided
that V' is sufficient, we do not need the true 6 for this.
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6: Optimality Theory

We can view the result of these two steps as drawing a sample from the distribution of
X because we always have

Po(X =2) = Po(X =a|V =0)Py(V =),

where the conditional probabilities Po(X = x|V = v) do not depend on 6 when
V' is sufficient. The result therefore contains just as much information as a direct
observation of X in the original experiment. Apparently, all relevant information on 6
is contained in V. If desired, we can always “convert” v to z, by following the second
step of the procedure described above. We do not need to know the parameter for this.

Example 6.3 Bernoulli distribution, continued

In Example 6.1, we showed that intuitively, the variable V' = Z?:lXi is sufficient. To
make this more precise, we must specify the underlying statistical model. We assume
that X, ..., X,, are independent and have the Bernoulli distribution with parameter
p. Then for z; € {0,1}and v € {0,1,...,n},

Py(X1i=m1,..., X, =2,V =0)

P, (X = Xy =V =0) =
P =1 =l =) .
p’A=p)""
o if Zi: T, =0
=4 (et —p)n '

0 otherwise
(2)71 if Y @ =
0 otherwise.

Because the last expression does not depend on p, the variable V' is indeed sufficient.
Note that, as a safeguard, we have included p on the left-hand side. Only at the end of
the computation, where p does play a role in the intermediate steps, do we see that we
can leave out p. —

How do we determine sufficient statistics? The definition is not very useful, because
we first need to guess which statistic V' might be sufficient, and then compute
conditional probabilities that are sometimes rather complicated. The following
theorem offers a solution.
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Theorem 6.4 Factorization theorem

Suppose that the statistical model for X consists of discrete distributions. A statistic
V = V(X)) is sufficient if and only if there exist functions g9 and h such that for all
x and 6,

po(x) = go(V (2))h(x),

where pg is the probability density of X .

Proof. Suppose that V is sufficient. Then
Po(X =2)=Pp(X =2,V =V(z))
= P(X =z|V = V(x))Pg(V = V(x))
The first term on the right-hand side does not depend on 6, because V is sufficient.
This term can therefore be used for i (z). The second term does depend on 6, but only
through V' (), and can therefore be used for gy (V (z)).

Conversely, suppose that the required functions gg and h exist. The conditional

probability
PQ(X = :1707V = 7))

PQ(V = ’U)
is equal to 0 if V(zp) # v. In the other case, where V' (z9) = v, the expression is
equal to

Po(X =0V =) =

Po(X = a0) Py(X = x0)
Po(V=v) X,y Po(X =2)
__ 90(V(wo)) (o)
P (z)= vg9( ) x)
_ 90( )h(xo)
g0(v) DV ()= 1)

h({L‘o)
Zw:V(a;):v h(.’l?)
Neither the last expression nor the condition V' (z¢) = v depends on 6. Hence V is
sufficient. ™

Example 6.5 Bernoulli distribution

For the situation in Example 6.3, we have

Po(X1 = 21,..., Xn = @n) = 9201 (1 — )" 2oims ™
This is a function of > ,x;. We can take h(z) = 1 and go(s) = 6°(1 — 6)"~*. By
the factorization theorem, the variable Y. | X; is sufficient. ——

It is mathematically difficult to extend the definition of sufficiency given above to
continuously distributed random variables X, because the definition of the conditional
probability of X given V' (X ) is not simple mathematically. To avoid this difficulty, we
choose the factorization formula as the definition.
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Definition 6.6 Sufficient statistic

A statistic V(X)) is called sufficient for the observation X with probability density
pg if there exist functions gy and h such that for all  and z,

po(x) = go(V(x)) ().

For discretely distributed observations, we now have two definitions of sufficien-
cy, but these agree by the factorization theorem. This theorem or the last definition says
that a statistic V' is sufficient if the likelihood function (based on the observation X))
depends on 6 only through V' (X). This also suggests that observing V" is “sufficient.”

Sufficient statistics are not at all unique. The observation X itself is, for example,
always sufficient, but this is not an interesting sufficient statistic. An interesting
sufficient statistic is one that is simple and low-dimensional, a statistic that is sufficient
but reduces the data as much as possible. We call a sufficient statistic V' minimally
sufficient if V' is a function of every other sufficient statistic. In that case, we know the
value of V" as soon as we know the value of any sufficient statistic; V' therefore contains
less information. The following lemma shows that this is a meaningful definition.

Lemma 6.7

LetV be a sufficient statistic, and suppose V = f(V*) foramap f. Then V* is also
sufficient. If f is a 1-1 function, then V' = f(V*) is sufficient if and only if V* is
sufficient.

Proof. The first assertion is immediate from the factorization theorem or, in the
continuous case, the definition. We simply note that gy (V(z)) can be further written
as gg o f(V* (z)) The second assertion follows by applying the first one in both
directions. M

Example 6.8 Normal distribution

Let X = (Xi,...,X,,) be a sample from the N (p, 0?)-distribution with unknown
parameters p and o2. We take the natural parameter space for the parameter § =
(p, 02), namely © = R x (0, 00). The joint density of X1,..., X,, is

n 1 2 1 n n 2
H e_%;?(wi_“) = ( ) 672;2 Ei:l(miiﬂ)
1 V2mo? V2mo?
n n
(#) 67@“23_2:%22?:11%-’_:%2?:1“,
V2mo?

So the density depends on X, ..., X,, only through (37" z;, > " z?). The vector
(>Cr X, > X2) is therefore sufficient.
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The vector (X, S%) has a 1-1 relation with this sufficient vector and is therefore
also sufficient. For a random sample from the normal distribution, the sample mean
and sample variance therefore contain all information on p and o2. Note that
(X, S%, X1) is also sufficient, but not minimally sufficient! —

Example 6.9 Uniform distribution

Let X = (Xi,...,X,,) be a sample from the UJ0, 6]-distribution with unknown
parameter € > 0. The joint density of X1,..., X, is

| 1\"
po(z1,...,T0) = HE Lio<ai<oy = (5) Lo, <03
=1

Apparently, X, is sufficient: the largest observation contains all information on the
parameter 6. ——

For discretely distributed observations, we have given a thought experiment
(generating an observation in two steps) to make intuitively plausible that a sufficient
statistic indeed contains all information on the parameter. The name “‘sufficient
statistic” suggest that if we want to estimate an unknown parameter or say something
about its value using a test, the information in the data that is not in the sufficient
statistic is superfluous. As far as estimating is concerned, this is proved in the Rao—
Blackwell theorem (Theorem 6.16) in Section 6.3. In this theorem, we prove that for
every estimator T' = T'(X), there exists an estimator 7* = T™(V/) that depends only
on the sufficient quantity V' and is at least as good as 7' (measured using the mean
square error). For tests, it is a bit more complicated. The quality of a test is determined
by the power function. We thus want to prove that for every test based on X, there
exists a test based on V' with power function at least as powerful. This is only true if
we also allow so-called randomized statistics.

“ 622 Randomized Statisties
The proof that a sufficient statistic contains all relevant information when we are
dealing with tests requires the definition of randomized test statistics.

Definition 6.10 Randomized Statistic

A randomized statistic T = T'(X, U) is a random vector that depends only on X and
an independently generated U|0, 1]-distributed variable U .
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Every “ordinary” statistic is also a randomized statistic. A randomized statistic
may depend not only on the observation but also on a random number U that must
be generated independently of the actual experiment and parameter. This random
number therefore does not contain any information on the parameter. Without this
action that seems useless at first, Theorem 6.11 would not be true. The reason is
that what “remains” of X after the sufficient statistic V' is known, also does not
contain any relevant information, and therefore works as a random number generator.
In Theorem 6.11, we need U to match this irrelevant source of random numbers.
We can show that if the quality of the estimators is measured incorrectly using the
mean square error, randomizing estimators is never meaningful; there is always a
nonrandomized estimator with a smaller mean square error (namely fol T(X,u)du).
For tests, randomizing can be meaningful.

Theorem 6.11

Let V = V(X) be sufficient for the observation X . For every randomized statistic
T =T(X,U), there exists a randomized statistic T*(V, U) based only on V' (and the
randomization U ), such that the probability distributions of T* and T' are the same
under every parameter 0.

We leave out the proof of this theorem. We can apply this theorem to both the
estimation problem and the test problem, and obtain the following corollary. We show
that knowing only V', we can construct estimators and tests that are as good (measured
using the mean square error for the estimators and using the power function for the
tests) as those obtained using the full observation X.

Corollary 6.12

LetV = V(X)) be sufficient for the observation X . For every estimator T = T (X),
there exists an estimator T* = T*(V,U) based only on V (and the randomization
U) with MSE(0; T') = MSE(0; T*) under every parameter 0.

Corollary 6.13

LetV = V(X)) be sufficient for the observation X . For every test statistic T = T'(X)
there exists a test statistic T* = T*(V,U) based only on V' (and the randomization
U), such that the tests {T > c} and {T* > c} have the same power function:
Py(T > ¢) = Py(T* > ¢) for every c and under every parameter 6.

Proofs. Both the mean square error and the power function depend only on the
probability distribution of the statistics 7" or 7. For example, in the case of a test, we
have (if T" is continuously distributed)

Py(T > ¢) = /OopeT(t) dt,
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with pg the probability density of T'. Equality of probability distributions implies
equality of densities p} = pg*, and therefore equality of power functions.

By Theorem 6.11, we can choose the probability distributions of 7" and T equal
to each other. Consequently, we can also choose the mean square errors and the power
functions equal to each other. m

Applying the theorem to the estimation problem is not truly necessary because
the Rao—Blackwell theorem (Theorem 6.16) already convincingly shows the “suffi-
ciency” of sufficient statistics. Note, however, that the proof of the first corollary holds
for every estimation criterion, hence also for other criteria than the mean square error.

The quality of an estimator is quantified by its mean square error (see Section 3.2).
An estimator for an unknown parameter g(6) is good if its mean square error is small
compared to that of other estimators. An estimator 7} for g(6) would be the absolutely
best estimator if

MSE(0; Ty) < MSE(;T)  forall T, 6.

However, such an estimator Ty does not exist. We can see this by realizing that a trivial
estimator T'(X) = g(6y), for a fixed p, is also an estimator. The mean square error of
this estimator for the estimation of g(6) is equal to 0 in § = 6 (but s very bad for g ()
far from g(6p)). An absolutely best estimator should therefore also have mean square
error 0, in every 6, which is impossible as soon as there are two different values g(6).

The problem is that the measure 6 — MSE(6; T') for the quality of an estimator
is a function of the (unknown) parameter, which we want to minimize with respect to
“all” parameters. That is impossible. We need additional criteria for the choice of an
estimator. We give three examples. As the basic criterion for quality, we again take
the mean square error, although most of the theory also holds for other measures of
quality, such as E9|T — g(0)|.

We already discussed the Bayes criterion in Section 3.5. For a given prior density
m on ©, we are looking for the estimator 7" that minimizes

/ MSE(6; T) 7(0) d6.

This is by definition the Bayes estimator with respect to 7, which was found in
Theorem 3.36.
The minimax criterion takes the maximum of the mean square error,

sup MSE(0; T),
6co
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as measure. An estimator 7' is called minimax if T minimizes this maximal risk over
all estimators. Like the Bayes criterion, the minimax criterion reduces the function
6 — MSE(6;T) to a number. A “best” estimator can be found by minimizing this
number over 7. In principle, this is almost always possible.

Example 6.14 Binomial distribution

Suppose that the observation X has the bin(n, p)-distribution. Then the minimax
estimator for p is equal to
X+ 1
T(x)= 22V
n—+n

We can deduce this from the fact that 7" is a Bayes estimator with mean square
error MSE(p; T') that is constant in p € [0, 1] (see Example 3.38). The proof is by
contradiction. If 7" were not minimax, there would exist an estimator S with a smaller
maximum risk, and we would have

MSE(p; S) < sup MSE(g; S) < sup MSE(q;T) = MSE(p; T')

0<¢<1 0<¢<1

forall 0 < p < 1. The first inequality follows from the definition of the supremum, the
second inequality expresses the smaller maximum risk of .S, and the equality follows
from the fact that MSE(p; T') is constant in p. In summary, we have MSE(p; S) <
MSE(p;T) for p € [0,1]. It follows that for every prior distribution, the Bayes
risk of S is less than or equal to the Bayes risk of T, because the Bayes risk is a
weighted version of the mean square error. Since 7' is the Bayes estimator for p for
the beta(%\/ﬁ, %\/ﬁ) prior distribution, 7" minimizes the Bayes risk for this prior
distribution over all estimators. The Bayes risk of S therefore cannot be smaller;
hence, the Bayes risks of the two estimators are equal, so that S is also a Bayes
estimator for p with respect to the same prior distribution. Theorem 3.36 then implies
that S =1T. —

A third criterion, which we will discuss in detail in the next section, is the
criterion of minimum-variance unbiased estimators. The idea is to look for a best
estimator in the class of all unbiased estimators. Since the mean square error of
unbiased estimators is equal to the variance, this means that were are looking for an
unbiased estimator with minimal variance.

220



6.3: Estimation Theory

In this section, we look for the so-called UMVU estimators in an estimation problem.

Definition 6.15 Uniformly minimum-variance unbiased (UMVU)

An estimator T is called uniformly minimum-variance unbiased or UMVU for g(6)
if T is an unbiased estimator for g(0) and varg T < varg S for all 6 and all other;
unbiased estimators S for g(6).

How do we determine UMVU estimators? The Rao—Blackwell theorem is a first
step in the right direction. This theorem says that for every estimator 7" for g(6), there
exists an estimator 7* = 7™ (V") that depends only on the sufficient quantity V', has the
same bias as 7', and has variance less than or equal to that of 7. If we are looking for a
UMVU estimator, then the Rao—Blackwell theorem says that we can restrict ourselves
to unbiased estimators that depend only on a sufficient statistic.

When the distribution of X is discrete, we can construct 7 explicitly: given the
estimator 1°, we define

T*(v) =E(T|V =v) = ZT X =z|V =0).

Since V is sufficient, we may leave 6 out of the subscripts of Eg and Py. Hence T
is indeed an estimator; it is a function of the observations and not of the unknown
parameter 6.

Theorem 6.16 Rao—Blackwell

LetV = V(X)) be a sufficient statistic, and let T = T'(X) be an arbitrary real-valued
estimator for g(6). Then there exists an estimator T* = T*(V') for g(0) that depends
only on V', such that EgT* = E¢T and varg T* < varg T for all §. In particular, we
have MSE(6; T*) < MSE(0; T'). This inequality is strict unless Pg(T* =T') = 1.

Proof. We give the proof only in the case where the distribution of X is discrete.
Let T* = E(T| V). In the paragraph before the theorem, we already saw that 7* does
not depend on the parameter 6 and is therefore an estimator for g(#). By the rules for
conditional expectations, we have

EgT* =Y T*(u)P(V =v) =Y E(T|V =v)Py(V = v) = EgT.
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This proves the assertion E¢T™* = E¢T". We moreover have
EqTT* =Y E(TT*|V = v)Py(V = v)
=Y T*(0)E(T|V = v)Py(V = v)

= T*(v)’Py(V =v)
= Eq(T™).
This implies

EgT? = Eo(T — T*)* 4 2Eo(T — T*)T* + Eo(T*)?
=Ep(T — T*)* + 0+ Eq(T*)?
> Eg(T*)%

Since T" and T have the same expectation, it immediately follows that varg 7" <
varg 1.

The inequality in the last display is strict unless Eg(T — T*)? = 0. This is
equivalent to having T' = T™* with probability 1. |

When we restrict ourselves to the class of unbiased estimators, then by the
Rao-Blackwell theorem, it suffices to consider only unbiased estimators based on a
sufficient quantity. Suppose that for a given sufficient statistic V, there exists only
one estimator 7 = T'(V') that is based on V' and unbiased. Then T is automatically
UMVU. This method, based on finding a special sufficient statistic, works in many
cases. The special property of the sufficient statistic is completeness.

Definition 6.17 Complete statistic

A statistic V' is called complete if Egf (V') = 0 (and therefore Eqy|f(V')| < oo) for
all & € © can hold only for functions f such that P (f(V) =0) = 1 forall6 € ©.

We can prove that if there exists a minimally sufficient statistic, then a sufficient
and complete statistic is also minimally sufficient (see Exercise 6.10). In that case,
the complete statistic contains all necessary, and no superfluous, information from the
data to estimate the model parameter (see Example 6.19).

Theorem 6.18

Let V be sufficient and complete, and let T' = T'(V') be an unbiased estimator for
g(0) that depends only on V. Then T is a UMVU estimator for g(0).
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Proof. By the Rao-Blackwell theorem, for every unbiased estimator S for g(6), there
exists an unbiased estimator S* = S*(V) that depends only on V' and whose variance
is less than or equal to that of S. Now, S* — T is a statistic that depends only on V/,
with Eg(S* — T') = E¢S* — E¢T = 0 for all § because both estimators are unbiased.
By the completeness, we have Py(S* — T = 0) = 1 for all . Hence T' = S* with
probability 1 and varg T' < varg S. W

Example 6.19 Uniform distribution

Let X = (Xq,...,X,,) be a sample from the U[0, §]-distribution. In Example 6.9,
we saw that the maximum X, is sufficient. If the parameter space is equal to © =
(0, 00), then X ,,) is also complete. Therefore, assume that

0
0=Egf( X)) :/ f(x)einnx"_ldx forall > 0.
0

This implies foe f(x)a"tdz = 0 for all @ > 0. If f is continuous, we can
differentiate this equality with respect to 6, which gives f(6)0"~! = 0 for all §. Hence
f = 0. For noncontinuous f, the same conclusion holds, but the deduction requires
measure theory instead of calculus. Hence X(,,) is complete.

Since (n 4 1)/nX(,) is an unbiased estimator for § and depends only on the
sufficient and complete quantity X,,), it immediately follows from Theorem 6.18 that
this estimator is a UMV U estimator for 6. This is a nice result, which indicates that we
cannot find a better unbiased estimator than (n+1)/n.X ). The biased estimator (1 +
2)/(n 4 1) X (5, however, has a slightly smaller mean square error (see Example 3.6)
and is therefore preferable to the UMVU estimator. The difference between the mean
square errors of these two estimators is, however, negligible.

Note that the statistic W = (X(,,),X) is also sufficient, and that 2X is an
unbiased estimator for 6 based on W. We cannot conclude that 2X is UMVU,
because W is not complete. For example, Eg f(W) = 0 for all § > 0 for f(w) =
(n 4+ Dwi/n — 2ws. o

It is not always easy to give a direct proof that a given statistic is complete. The
following theorem applies to many of the standard models. It concerns probability
densities that belong to an “exponential family” of probability densities.

Definition 6.20 Exponential family

A family of probability densities pg that depends on a parameter 6 is called a k-
dimensional exponential family if there exist functions c, h, Q;, and V; such that

pola) = c(@)hz) 2m @OV,
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It follows from the factorization theorem that the statistic V' = (V4,...,V}) ina
given exponential family is sufficient. This statistic is also complete provided that the
parameter space is “sufficiently rich” (see Theorem 6.21).

Theorem 6.21

Suppose that a statistical model is given by a k-dimensional exponential family such
that the set

{(Ql(o)v---an(a))lo € 6} C RF

has an interior point. Then V = (V4, ..., V},) is sufficient and complete.

Proof. We only sketch the proof, restricting ourselves to the case £ = 1 and assuming
that the model is continuous, so that expectations can be given by integrals with respect
to the probability density = — pg(x).

The equation Eg f(V) = 0 implies K (Q(#)) = 0 for K the function defined by
K(z) = [ f(V(2)) h(z)e*V®) dz. The assumptions that this holds for every 6 € ©
and that the set {Q(0):0 € O} contains an interior point imply that the function
K must be well defined and finite for all z in an interval (a,b) C R with a < b.
Since for z € C and v € R we have |e*¥| = eR¢*V, the function K is also well
defined and finite for all complex numbers z with Re z € (a,b). We can, moreover,
prove that the derivative K'(z) exists for every z in this region. (The derivative
is given by K'(2) = [ f(V(2)) h(z)V (z) e*V®) dz, computed by “differentiating
under the integral.” The integral on the right-hand side is indeed finite, because |v]| <
e~ (e7%"+e?) forevery e > Oand v € R, sothat |V]e*V < el (e(zme)V pelzta)V))
where for given z with Re z € (a, b), we choose the value ¢ sufficiently small that both
Re z—¢e and Re z +¢ belong to (a, b) .) In other words, the function K is holomorphic
in the region {z € C:Rez € (a,b)}. By complex analysis, the zero function is the
only holomorphic function on a given region that is 0 in a set that has a limit point.
Hence, from the assumption K (Q(6)) = 0 for all § € © now follows K = 0.

By taking = = Q(0) + it with Q(f) € (a,b) and ¢ € R, we find that
Ege®V f(V) = 0 for every t € R. By the theory of “characteristic functions” of
probability distributions, it follows that f(V) = 0 with probability 1 and that V" is
consequently complete. Let us now give a direct proof of the conclusion that f = 0.
Using the equality | eitve=t"0"/2 gt — ¢=v*/(20*)\ /21 /5, we find, after exchanging
the order of f and Ey, that fory € Rand o > 0,

e—ity—t2a'2/2 dt = \ 27
g

= 27T/¢U(v —y)f(v)ge(v) dv,

0= / Ege™ f(V) Eof(V)e~ (V-0 (207

for ¢, the density of the N (0, o?)-distribution and gy the probability density of V.
Setting fT = flgsoand f~ = —flpco, so that f = fT — f~, we find that ¢, *
(f*q0)(y) = ¢o * (fqo)(y) forevery y € R and o > 0, where * is the convolution
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of two densities. The functions f* gy and f~ gy are both nonnegative. If we integrate
them up to 0, we have f+ = f—, and then f = 0, so the proof is complete. In the other
case, we can multiply f by a constant in order for f*qs and f~gy to be probability
densities of random variables X ™ and X ~. The functions ¢, * (f " qs) and ¢ *(f ~qg)
are then the probability densities of random variables X+ +0Z and X~ + 0 Z, for Z
a variable with the standard normal distribution that is independent of X and X ~.
Equality of the probability densities of the variables X T + ¢ Z and X ~ + ¢ implies
equality in distribution, for every 0 > 0. As 0 — 0, the quantities converge with
probability 1 to X and X . It follows that the latter are also equal in distribution.
The probability densities f*qg and f~qg therefore agree, from which we conclude
that f* = f~ and therefore f = 0. W

The condition of the theorem indirectly requires the parameter space of © to be
sufficiently rich. It is a logical condition, because completeness means that the system
of equations

Eof(V)=0 foralld € ©
has only one solution in f, namely f = 0. If there are “too few” 6, then there are too
few equations to determine f uniquely, and V' is not complete. The condition of the

theorem is flexible: the existence of an arbitrarily small open set in the codomain of )
suffices.

Example 6.22 Binomial distribution

Let X be binomially distributed with parameters n and p. The binomial probability
density can be written as

n n
Tl )T — (1 — p)? wlog(p/(l—p)).
(ra-pr==a-nr(?)e

This statistical model therefore forms a one-dimensional exponential family, with

clp) = (1=p)" h(z) = (1), V(z) = 2, and Q(p) = log(p/(1—p)). If we take [0, 1]
as the parameter space for p, then the set

{Qp):0<p<1}={log(p/(1-p):0<p<1}

of Theorem 6.21 is equal to R and certainly contains an interior point. The statistic
V(X) = X is therefore both sufficient and complete. The estimator X /n for p
is unbiased and based only on the sufficient and complete random variable, and is
therefore a UMVU estimator by Theorem 6.18.

For the same reason, (X/n)? is a UMVU estimator for the expectation
E,(X/n)? = p(1 — p)/n + p*. Can we use this to deduce a UMVU estimator for
p2? ——
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Example 6.23 Poisson distribution

The probability density of a sample X = (Xi,...,X,) from the Poisson(f)-
distribution can be written as

no _9pr,
e 6% 1 o
Hi — 67n07ezi:1x1 log9.

i1 ,Ti! H?:lilill
We conclude that this model forms a one-dimensional exponential family, with ¢(6) =
e h(z) = ([T @)~ Vi(z) = D1 2i, and Q(0) = log 6. The set
{Q(0):0 >0} = {log8:0 > 0} = (—o0,00)
contains an interior point. The sum V(X) = 7"  X; is therefore sufficient and
complete. The estimator X for # is unbiased and based only on the sufficient

and complete random variable, and is therefore a UMVU estimator for 6 (see
Theorem 6.18). —

Example 6.24 Normal distribution

The probability density of a sample X = (Xi,...,X,) from the N(u,0?)-
distribution can be written as

n
12

n
1 1 (. 2 1 n n_ 2 _p \ " 1
H 67202(I17#) :( ) e 2.2 M (362221':1:6I 2a22i:1 i,
/2102 V2mo?
=1

If we take the natural parameter space © = R x (0, 0o) for the parameter = (11, 02),
then the set from Theorem 6.21 is equal to
po =1y, 2 —
{(;,@)-u ER, 02> 0} — R x (—00,0)

and contains an interior point. We conclude that the statistic (> ., X;, > X?)
is sufficient and complete. Because the sample variance can be rewritten as S 2 =
(n — )71 (X, X2 — n(X)?), it immediately follows that X and S% are UMVU
estimators for 1 and o2, ——

Example 6.25 Curved normal family

Let X = (X1,...,X,,) be a sample from the NV (6, 62)-distribution. The joint density
is then given by

H\/zl 92:(%(%*9)2/02 = ( /21 92)ne*%"eZLﬂi/G—%Z;ﬂ?/ez.
i=1 V4T T

This probability density belongs to the two-dimensional exponential family with
1 1
9 = <_a - _) )

and V(X) = (301, X, Y1, X?). However, the condition of Theorem 6.21 is not
satisfied. For € varying over R, the function § — Q(0) is a “one-dimensional curve”
in R?; as a subset of R?, it does not contain any interior points. —
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The previous examples, as well as other examples, give a large number of
interesting cases where a UMVU estimator exists and is reasonable. The UMVU
criterion is therefore very appealing. We do have a few comments:

- Sometimes there is no unbiased estimator.
- Even if there exist (many) unbiased estimators, a UMVU estimator does not
necessarily exist.
- There can exist a biased estimator with an overall smaller mean square error than
that of the UMVU estimator.
- The bias is not invariant under nonlinear transformations: if 7" is UMVU for 6,
then g(7T') is in general not unbiased for g(6), and therefore also not UMVU.
In other words, always (only) looking for UMVU estimators is not wise, and can
sometimes mean looking for a nonexistent estimator. The UMVU criterion is therefore
not the answer to all questions. Unfortunately, there is no criterion in statistics that
always “works” and pleases everyone. In practice, it is wise to apply several methods
that seem reasonable. If the results do not diverge too much, we can confidently use our
favorite criterion. Otherwise, there is a problem that may not be solvable objectively.

Instead of looking for a best estimator according to a specific criterion, we can also try
to give a lower bound for the mean square error of an arbitrary estimator. For a given
estimator, we can then compare the mean square error with the lower bound, and it
is then clear how much this estimator may still be improved. Such a lower bound can
then only depend on the given statistical model.

Such lower bounds naturally lead to the same shortcoming as “best estimators’:
unless we restrict the class of estimators, the absolute lower bound for the mean square
error is 0, and therefore useless.

The Cramér—Rao lower bound is restricted to unbiased estimators. First, consider
the case of a real-valued parameter . If py is the probability density of the (full)
observation X, /g = log pg, and fg = 8/8010og ps = ps/pe is the score function, then
the Fisher information is defined as

[9 = vary fg(X)

Unlike the notation in Chapter 5, we have denoted the Fisher information with a capital
Iy. This is to distinguish between the Fisher information in the full observation and
that in partial observations.

Theorem 6.26 Cramér—Rao inequality

Suppose that 0 — pg(x) is differentiable for every x. Under certain regularity
conditions, the variance of every unbiased estimator T of g(0) € R satisfies

g'(6)*

varg T >
0 = IG )

with g’ the derivative of g.
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Proof. We write the formulas under the assumption that X is continuously
distributed. (For a discrete probability density, we replace the integrals by sums.) Since
9(0) = EoT for all 6, we have

40 =5 [ T@pae)do = [ T(@)a(o) do

- ttomtn s -sfria).

The fact that we may change the order of differentiation and integration comes
from the regularity conditions. (Explicit conditions are given in calculus, or rather
in measure theory.) We already saw in Lemma 5.10 that Egég(X ) = 0. Combining
these two equalities gives ¢/(0) = Eg(Tly(X)) — EgT Eglo(X) = covg (T, lo(X)).
By the Cauchy—Schwarz inequality, we now have

covy (T, ég(X))2 < varg T varg {g (X) = varg TIy.

The inequality of the theorem now follows by replacing covg (T , ég(X )) ? on the left-
hand side by ¢’(#)? and then dividing by Iy. ™

The number g¢'(0)? /Iy is called the Cramér-Rao lower bound for estimating
g(60). For estimating 6, it of course reduces to 1/Iy. We call the lower bound sharp
if there exists an unbiased estimator 7" whose variance is equal to the lower bound.
In that case, T is automatically a UMVU estimator for g(6) because T is an unbiased
estimator for g() and has minimal variance.

The greater the Fisher information, the smaller the Cramér—Rao lower bound.
Theorem 6.26 suggests that in that case, we can give a more accurate estimate of
6. Since the lower bound is not always sharp, this suggestion is not entirely correct.
However, at the end of the chapter, we will see that the bound is sharp for (infinitely)
large samples.

The theorem can be extended to multidimensional parameters 6. In that case, the
Fisher information is not a number but a matrix, the Fisher information matrix

0 0
Ig = ((30\7‘9((‘}0.169()()7 6eﬁg()())> .
? J i,5=1,...k

We still restrict ourselves to real-valued functions g, and denote the gradient of g in 0
by ¢’(#) (a row vector). Then for every unbiased estimator T of ¢(6), we have

varg T > ¢'(0)1, g ()"

In particular, the lower bound for the first coordinate g(6) = 6, is equal to the (1, 1)-

element of 1, ', because in that case the gradient is the vector ¢'(6) = (1,0,...,0).
When the full observation X is made up of independent subobservations
X1,...,X,, we can use that the information is additive.
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Lemma 6.27

Let X and Y be independent random variables. Then the Fisher information in the
observation (X, Y) is equal to the sum of the information in X and Y separately.

Proof. We give the proof only for the case where the parameter 6 is real valued.
The (joint) density of (X,Y) is the product (z,y) — pg(x)ge(y) of the (marginal)
densities of X and Y. The Fisher information in (X,Y") is the variance of the score
function

B ) B
20 log pe(z)qe(y) = 2 log pg(z) + 59 108 46 (y)-

Because of the independence, this variance is the sum of the variances of the two terms
on the right-hand side, namely the Fisher informationin X and Y. m

In particular, the Fisher information in a vector X = (Xq,...,X,) of
independent, identically distributed observations Xj,..., X, is equal to n times
the Fisher information in one X, that is, Iy = nig, where iy denotes the Fisher
information in one observation. The Cramér—Rao inequality then becomes: for every
unbiased estimator of ¢g(#) based on X7, ..., X,,, we have

/ —1 7 T
w7, 2 10O

Example 6.28 Normal distribution

The Fisher information for y in one observation from the N (p1, 02)-distribution (with
o2 unknown) is equal to

iy = varu<% {log( L efé(xlfﬂ)Q/ﬂz)D _ Varu(XIG; M) _ %

oV2T o

The Cramér—Rao lower bound for estimating x based on a sample X7, ..., X, of size
n from the N (u, 0?)-distribution is therefore

This is exactly the variance of the unbiased estimator X for j. In this case, the
Cramér—Rao lower bound is therefore sharp. We have again proved that X is a UMVU
estimator for p, without using the theory of sufficient and complete statistics from
Section 6.2 and Theorem 6.18.

The estimator X2 —0?2 /n is unbiased for ;2 (and an estimator because we assume
o2 known) and a function of the sufficient, complete variable X, hence UMVU. Some
computation gives

o2 41202 204
PV

VarM(X2 — I
n n n
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The Cramér—Rao lower bound for the variance of an unbiased estimator of 2 is equal
to

niy n

((MZ)/)2 B 4N2U2'

Hence in this case, this lower bound is not attained. However, the extra term 20* / n?
is small, and becomes negligible with respect to the first term asn — co. 1

Example 6.29 Binomial distribution

The Fisher information for p in a bin(n, p)-distributed observation X is equal to

vy (g s (3 )0 -0 )]) = s (G 50) = s

The Cramér—Rao lower bound for the variance of an unbiased estimator for p based
on X is therefore

p(1—p)

ra—
This is exactly the variance of the unbiased estimator X /n. Hence in this case, the
Cramér-Rao lower bound is sharp, and we may conclude that X/n is a UMVU
estimator for p. ———

Example 6.30 Uniform distribution

Let X = (X4,...,X,) be a sample from the uniform distribution on the interval
[0, 0]. The estimator (n + 1)/nX,) is unbiased and has variance

n—|—1X B 62
™ = nn+2)

varg

For large n (and every given ), this variance is much smaller than a bound of the
form 1/(nip). So in this case the Cramér-Rao lower bound does not hold. The reason
is that the density does not depend on the parameter in a differentiable manner. An
expression such as £y () is not well defined for all . —

Upon further consideration, it turns out that the Cramér—Rao lower bound is
seldom sharp. Nevertheless, we conclude this section with the essential assertion that,
in a sense, the Cramér—Rao lower bound is asymptotically sharp and that the bound is
attained by the maximum likelihood estimator.

We can see this as follows. We already know from Theorem 5.9 that under 6,
the maximum likelihood estimator 6,, based on a sample of size n from a density that
depends on the parameter in a differentiable manner satisfies

V(0 — 0) ~ N(0,iy")
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as n — 00. A rough interpretation of this result is that, for large n, the random vector
\/_ (6, — 0) is normally distributed with Egv/n(6,, — 6) ~ 0 and varg v/n(6,, — ) ~
! It immediately follows that

A A i
E¢b, =~ 0, varg 0, ~ -2—.
n

In other words, the maximum likelihood estimator is (asymptotically) unbiased for
6 with (asymptotic) variance equal to the Cramér—Rao lower bound, hence equal
to the minimal variance for unbiased estimators. Conclusion: maximum likelihood
estimators are asymptotically UMVU. This result is a strong motivation for using
maximum likelihood estimators.

Maximum likelihood estimators are not the only types of estimators that
are asymptotically UMVU. For example, by the Bernstein—von Mises theorem,
Theorem 5.26, the median of the posterior distribution has the same asymptotic
distribution provided that the prior density is positive on the entire parameter space
O. Since, by this theorem, the posterior distribution is asymptotically normal and
therefore symmetric, it moreover follows that, under certain conditions, most Bayes
estimators are asymptotically normal.

Therefore, based on these asymptotic arguments, we cannot express a preference
for maximum likelihood estimators over Bayes estimators or vice versa. On the other
hand, these arguments do show that these two classes of estimators are preferable to
method of moments estimators, which in general are not asymptotically efficient. The
method of moments is interesting because of its simplicity, and also in cases where
the theoretical moments can be specified but the full probability density cannot. In
the latter case, we cannot implement the maximum likelihood estimators or Bayes
estimators.

According to the theory discussed in Chapter 4, a good test has size less than or equal
to the given level and a power function that is as large as possible. A test is uniformly
most powerful (at a given level) if, under the alternative hypothesis, the power function
is maximal in all possible parameter values. In this section, we discuss several special,
but important, cases in which a uniformly most powerful test exists.

A “simple” hypothesis is one that consists of only one parameter value. In most cases,
for tests of a simple null hypothesis against a simple alternative, there exists an optimal
test, that is, a test with a maximal power function in the parameter value, under the
alternative hypothesis. This is the statement of the following “fundamental lemma” of
the theory of tests.
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Suppose that, for a given parameter space © = {0y,01}, pp, and pg, are
the two possible probability densities of the observation X. Let L(61,6p; X) =
Do, (X) /Do, (X) be the quotient of these densities, evaluated in the observation.

Theorem 6.31 Neyman—Pearson

Suppose that there exists a number c,,, such that Py, (L(Ol, Oo; X) > cao) = .
Then the test with critical region K = {x: L(61,00;x) > cqa,} is most powerful at
level «v for testing Hy: 0 = 0y against H1: 0 = 0.

Proof. By the assumption on the number c,,, the size of the critical region K
mentioned in the theorem is exactly ag. Suppose that K’ is another critical region
of size at most oy, that is, Py, (X € K') < ap. We must prove that Py, (X € K’) <
Py, (X € K).

We claim that for all z,

(1x/(x) — 15 (2)) (po, (x) = cagpo, (x)) < 0.

Indeed, if x € K, then 15/ (2)—1x (2) = 1x/(2)—1 < 0and pe, (2)—caypo, () > 0
by the definition of K. If ¢ K, then both inequalities hold in the other direction.
In both cases, the expression on the left-hand side of the inequality is the product of a
nonpositive and a nonnegative term, and is therefore nonpositive.

The integral of this nonpositive function over the sample space (or the sum if the
distribution is discrete) is then also nonpositive. We can write this as

[ (@) = 12c(0) oy (5) o < o [ (Lir(@) = 12c(0) oy () ds
= Cay(Po, (X € K/) — Py, (X € K))

< Cap (g — ap) = 0.

It follows that Py, (X € K’) < Py, (X € K), and therefore the test with critical
region K is most powerful at level og. M

The test from Theorem 6.31 is intuitively reasonable because it rejects the null
hypothesis Hyp:0 = 6 in favor of the alternative H1:0 = 6; when under H;, the
density pg, (X) in the observation is large with respect to the density pp, (X) under
the null hypothesis. The motivation for this is the same as in the case of the likelihood
ratio test. We view py () as a measure for the probability that the realization = occurs
if 0 is the true parameter, and a small value of pg(z) means that it is improbable that
0 is the true parameter. (When c,, > 1, the test from Theorem 6.31 reduces to the

likelihood ratio test.) Test of the same form as that in Theorem 6.31 are also called
likelihood ratio tests or Neyman—Pearson tests.
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Example 6.32 Gauss test

Let X = (Xi,...,X,) be a sample from the normal distribution with unknown
expectation p and known variance o2. We want to test the simple null hypothesis
Hy: i = po against the simple alternative Hy: 4 = pq. The Neyman—Pearson lemma
says that the test with test statistic

. _ 1 . 2 . 2
L(p, po; X) = exp ( — 252 ;(Xi — )"+ 252 i:1(Xi — 10)?)
= exp (nX (1 — po)/0” + n(ug — 1i)/(207))

and critical region K = {x = (21, ...,xpn): L(p1, po; ) > Cay }» With ¢4, such that
P oo (L(p1, 10; X) > €ay) = o, is the most powerful test at level g for testing
the null hypothesis in question. The null hypothesis is rejected for large values of
L(p1, po; X), that is, for large values of X (uy — po). This means that if g1 > po,
the null hypothesis is rejected for large values of X or, equivalently, for large values
of T = /n(X — ug)/o. The most powerful test is therefore the test that rejects the
null hypothesis for \/n(X — pg)/o greater than a value d,,, such that P, (v/n(X —
to)/o > da,) = ao. Since under p = pg, the quantity \/n(X — pug)/o has the
standard normal distribution, we have d,,, = £1_4,, and the null hypothesis is rejected
for \/n(X — po)/o > &1—a,- This is exactly the Gauss test from Example 4.12. The
conclusion is that the Gauss test is the most powerful test for testing the simple null
hypothesis Hy: pt = 1o against the simple alternative H;: u = pp based on a sample
from the normal distribution with unknown expectation x and known variance 2.

——

Under the null hypothesis, the condition of Theorem 6.31 that there exist a
number c,, such that Py, (L(61,00; X) > co,) = oo is always satisfied when
the likelihood ratio statistic L(6f1,6p; X) has a continuous distribution function.
Namely, the condition is equivalent to the condition that the distribution function of
L(01,0p; X) is equal to 1 — «v in ¢4, . The size of the optimal test is exactly «vg.

If the distribution function of L(61, fp; X) has jumps, then there will not exist a
Ca, for every ag. The statement of Theorem 6.31 can then be incorrect. The idea that
an optimal test can be based on the likelihood ratio statistic L(61, 6p; X ) does remain
true, however. In all cases, we can find a value c,,, such that

Po, (L(01,00; X) > cay) < g < Poy (L(61,00; X) > cay).
If these inequalities are strict, then the test with critical region
K ={2:L(01,00;2) > cay}

has size strictly less than g and the test with critical region K = {x: L(01, 0p; z) >
Cay } has size strictly greater than ay. The second test is not admissible, but the first test
is not necessarily most powerful because we could further enlarge the critical region.
We can construct a more powerful test by sometimes also rejecting the null hypothesis
when L(01,0p; ) = cq,-
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In some examples, the set {x: L(01,00;x) = cq,} can be split into two
subsets Ry and Ry, and the test that rejects when L(61,60; X) > ¢4, and when
L(61,00; X) = cqo and X € R is most pow