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Preface

The gastrointestinal tract is a complex anaerobic microbial ecosystem
containing a vast assemblage of resident microorganisms performing a multitude
of metabolic activities that play a key role in health and disease of humans and
animals. Furthermore, the gastrointestinal microbes have a dominant impact on
the growth and productivity of both ruminant and non-ruminant animals. This
two-volume series on Gastrointestinal Microbiology reviews the literature and
provides a comprehensive account of the biological significance of the microbiota
present in the alimentary tract of a wide range of animals, in terms of their
nutritional ecology, biochemical activities, development and composition,
interactions and role in host health and disease. Recent developments in the areas
of molecular ecology, bacterial genetics, immunological aspects of host microbe
interactions at the level of the intestinal mucosa, bacterial translocation and
intestinal disease are included.

Although emphasis is placed on domestic ruminants and man, systems which
have been extensively researched, this series also provides a full and integrated
account of the nutritional ecology and microbial ecology in the gut of many
diverse mammals, birds, fish, amphibians, reptiles and insects. This broad
perspective allows more realistic interpretation, and better evaluation of, as well
as greater insight into, the evolution, ecology, and function of the gastrointestinal
ecosystem.

These volumes contain contributions from a multidisciplinary group of
internationally recognized authors, all active researchers in their particular fields.
These timely volumes emphasize the nutritional, physiological and ecological
diversity of the gastrointestinal ecosystem and contribute to a wider understanding
of its role not only in normal gastrointestinal function but also in enteric disease.

Xi
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Introduction to Gastrointestinal Microbial
Ecology

Marvin P. Bryant

1. Appreciation of Anaerobiosis

Human appreciation of anaerobic life is relatively recent. It was chiefly Pasteur
(1858) who alerted the world to the actions of microorganisms in the absence of
oxygen. Pasteur described the formation of lactic acid, ethanol, and butyric acid
and their specific microbial origins. Fermentation has become the almost universal
term to describe these and similar processes occurring in the absence of O,.

Pasteur’s demonstration of life without air soon led to development of many
methods for growing such organisms. With all of these methods, many of them
quite adequate for excluding O, from even the most stringently anaerobic organ-
isms, it is surprising that until about 1940 only spore formers and nonspore
formers of clinical importance had been isolated and described (Weiss and Rettger
1937, Prevot 1966). Many of the anaerobes, known from their products to exist
in nature, had not been cultured. This was probably due to the great popularity
of the Petri dish and the ease of isolating aerobic bacteria on plates. Attempts to
inoculate and incubate plates under anaerobic conditions were unsuccessful until
the anaerobic glove box technique was perfected (Aranki et al. 1969).

The degree of oxidation or reduction of a chemical system can be defined by
the redox potential. In nature, oxygen is the almost universal cause of high redox
potential. This raises the question: Does the oxygen or the potential inhibit anaer-
obes? Hungate (1969) used the Nernst equation to calculate the necessary concen-
tration of O, in a culture medium to have a redox potential of —0.33 V (potential
required to initiate growth of methanogens). At this potential, this becomes 1.48
X 1073¢ molecules O,/L. This calculation strikingly illustrates that (1) it is

3



4 Marvin P. Bryant

difficult to obtain low redox potential for cultivation of strict anaerobes; (2) the
permissible concentration of oxygen in solution becomes a statistical function
rather than a finite number of molecules; (3) it is impossible to obtain low redox
potentials simply by removing oxygen, and the corollary (4) that in order to obtain
the required low potential, a reduced system at a lower potential must be added.

This understanding led to development of procedures for media preparation
enabling enumeration and isolation of anaerobic bacteria. The roll tube technique,
with its numerous modifications and improvements since the original description
(Hungate 1950), was considerably superior to other anaerobic methods and con-
tributed much to our knowledge and understanding of anaerobes. Despite the
advent of the anaerobic glove box, with its many advantages, modifications of
the roll tube technique are still widely used and are standard procedures for
anaerobe laboratories. Of importance to the present series on the ecology and
physiology of gastrointestinal microbes, these techniques provided the tools that
enabled microbial ecologists, particularly those working in the rumen, to advance
this field of research significantly.

2. Types of Carbohydrate Fermentation

One of the early problems in the metabolism of anaerobes was to determine
the types of fermentation products formed. Many of the enzymes of interest were
identified by means of Thunberg (1930) tubes in which cells or cell extracts were
analyzed for activity using dyes which changed color with the transfer of Ho.
This was followed by the Warburg respirometer in which a gas was liberated or
consumed. Acid production could also be measured by including bicarbonate in
the medium and calibrating to determine the amount of gas released by a given
amount of each acid. Indeed, the pathways of the more important types of anaero-
bic conversion patterns were firmly established (Wood 1961) through application
of these methods. These fermentations have been reviewed by Hungate (1985)
and include lactic acid, ethanol, acetate, succinate, propionate, butyrate, and
mixed acid fermentations.

The methanogenic fermentation proved more difficult to understand and ana-
lyze both biologically and biochemically. Schnellen (1947) was the first to obtain
pure cultures of methanogens, isolating Methanobacterium formicicum which
utilizes formate and Methanosarcina barkeri which could use acetate, methanol,
CO, and H,/CO». The list of methanogenic substrates has been extended to include
methyl-, dimethyl-, and trimethylamines, the methyl groups being converted to
methane (Ferry 1993). Although the range of methanogenic substrates is limited,
the habitats of methanogens are extremely varied and include sediments, fresh
and salt water, thermal hot springs, tree trunks, salt evaporation ponds, geothermal
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vents, and naturally the rumen and other fermentative gut compartments (Hungate
1985).

The major substrate in anaerobic fermentations is carbohydrate, and since sub-
strate is normally limiting, the pathways yielding the most cell material per unit
of substrate will have a competitive advantage and will therefore tend to predomi-
nate. This leads to formation of acetic, propionic, and butyric acids as end prod-
ucts, at least in the gastrointestinal tract. However, in sediments and anaerobic
digestors the degradation process is extended with the ultimate conversion of these
acids to CO,, CH,, and H,S (Hungate 1985). This resulted in the development of
the concept of interspecies hydrogen transfer and syntrophy during the anaerobic
degradation of organic matter and the discovery and role of obligate proton-
reducing fatty acid syntrophs in this process (McInerney and Bryant 1981). The
extended transformation is possible because of longer residence time allowing
microbial degradation of these and other organic compounds in nature. The unique
pathways, enzymes and coenzymes involved in the terminal processes of carbon
and electron flow in anaerobic ecosystems, namely methanogenesis and acetogen-
esis, have recently been documented in exclusive books on these topics (Ferry
1993, Drake 1994).

3. Historical Introduction to Gut Microecology

This monumental two-volume book is concerned with almost all aspects of
gastrointestinal microbial ecology from normal to pathologic aspects, from fer-
mentation of the microbiota of protozoa and insects to those of humans and
including microbe-microbe and microbe-animal physiologic interactions. Thus,
this introductory chapter is mainly limited to my own experience and knowledge
in anaerobic microbiology since, inadvertently and with much luck, becoming a
part-time undergraduate laboratory glassware washer and very shortly thereafter,
a part-time technician, in the laboratory of Robert E. Hungate in June of 1947
at Washington State College (Bryant 1981).

Hungate is recognized by many as the father of modern-day anaerobic micro-
bial ecology. He was the first Ph.D. student of Cornelis Bernardus (C.B. or Kees)
Van Niel starting in 1930 after Van Niel came to Hopkins Marine Station of
Stanford University in 1929 (Hungate 1979, Van Niel 1967).

Van Niel was a Dutch microbiologist of the Delft School. In the 1670s and
’80s Van Leeuwenhoek, the founder of microbiology, made drawings of Seleno-
monas seen tumbling in samples from the human gingival crevice using his crude
microscope. He lived in Delft, as did Beijerinck, the great Dutch general micro-
biologist, whose student A.J. Kluyver, the initiator of comparative biochemistry,
was the Ph.D. mentor of Van Niel. Thus, it was almost natural that Van Niel’s
students—Hungate and H.A. Barker (1978)—were the first two who would em-
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phasize energy metabolism including fermentation products, in their studies on
various anaerobic microbial species. Hungate, of more ecologic bent, also empha-
sized enumeration of species in their natural habitat, fermentation rates, and turn-
over times of various intermediates in the total microbial ecosystem (Hungate
1960).

Only a few other microbiologists in the era 1920 to 1950 included fermentation
products in their descriptions of anaerobic bacterial species; thus, it was very
difficult for others to identify strains of these species unless they had rather unique
macromorphologies or other unusual features.

Pure cultures of anaerobes were first obtained by the French School of Microbi-
ology (Prévot et al. 1967). In 1861 Louis Pasteur isolated a butyrate-producing
spore former, Clostridium butyricum. A. Veillon described several pathogenic
nonsporing anaerobes, €.g., Bacillus (Bacteroides) fragilis, starting in the 1890s.
More modern examples are Andre Prévot, who started his studies about 1930,
and Madeleine Sebald, his student, who started working with him at the Pasteur
Institute in Paris in the late 1950s. She studied the % G+ C of the DNA of
many gram-negative anaerobes, their fermentation products, and, more recently,
genetics. In 1967, Prévot published his great and massive book with A. Turpin
and P. Kaiser, Les Bactéries Anaérobes, also containing much of the work of
Sebald. This contained 71 genera and over 600 species including many human
and animal pathogens and other bacteria from diverse ecosystems.

In Germany, there was much early interest in anaerobes isolated from humans
and other animals. Fliigge (1886) described Fusobacterium necrophorum (Bacil-
lus necrophorus). Burri and Ankersmit (1906) described Clostridium (Bacterium)
clostridiiforme and other bacteria from the digestive tract of cattle.

Some great microbiologists in other countries, by no means a complete list,
who worked with microbes from anaerobic animal or human ecosystems, includes
Noguchi (treponemes) in the early 1900s (Noguchi 1928) and, more recently,
Mitsuoka (nonsporing anaerobes) from Japan (Mitsuoka 1980).

In the United Kingdom, Sydney Elsden moved to Cambridge in 1946 (first
column chromatography of saturated volatile monocarboxylic fatty acids), where
his colleagues A.J.P. Martin and R.L.M. Synge became Nobel laureates for their
research on chromatography. On moving to the University of Sheffield, Elsden
isolated from the sheep rumen the lactate-fermenting large coccus (LC; Mega-
sphaera elsdenii). Elsden and Lewis (1953) and one of his students, Sheila Wilson
(1953), briefly reported the isolation and features of four groups of bacteria from
the sheep rumen. Elsden sent me Wilson’s more complete manuscript which was
never published because of his very meticulous standards (see Bryant 1959).
I studied bacteria from the bovine rumen and named Butyrivibrio, Prevotella
(Bacteroides) ruminicola, and Succinivibrio dextrinosolvens, which were three
of the groups isolated by Wilson—the fourth being Streptococcus bovis. Later,
much study of ruminal nonsporing anaerobes was done by P.N. Hobson and his
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group at the Rowett Research Institute after S.O. Mann and A.E. Oxford (1954)
isolated the anaerobic levorotatory lactic acid—producing Lactobacillus vitulinus,
typically found in young calves. This long rod species is quite different from the
type strain, which is short and found in both calves and adult cattle (Bryant et
al. 1958a,b, Sharpe et al. 1973, Sharpe and Dellagio 1977). Collins et al. (1994)
showed that L. vitulinus should be placed in a new order rather than in Lactobacil-
lus. Thus, the species found only in young calves should be renamed (‘‘Lacto-
bacillus mannii’> would be appropriate).

In the mid-1950s we started a ‘‘ruminology’’ group (term coined by Raymond
N. Doetsch) that included the University of Maryland group with Ray and his
students in the Microbiology Department, e.g., Ronald J. Gibbons, who has be-
come especially well known for his work in oral microbiology at Forsyth Dental
Center in Boston; my group at Beltsville, e.g., Milton Allison and I.M. (Ike)
Robinson; and the Virginia Polytechnic Institute group at Blacksburg including
W.E.C. Moore and Kendall King (cellulases) and their students. We met about
twice a year to present new information and to have intense discussions often
with considerable deep philosophic content; e.g., Doetsch said pure cultures were
artifacts while I said that the environment normally used for their study was
artifactual.

During these informal meetings, Kendall King suggested that I write a compre-
hensive review of species of rumen bacteria (Bryant 1959) not limited to cellulo-
lytic bacteria (Sijpesteijn 1948, Hungate 1950) while W.E.C. (Ed) Moore sug-
gested that I should broaden my group studies to include anaerobes in man and
other mammals. I told Ed that I had plenty to do involving rumen bacteria.

Thus, in 1966 Ed Moore started his group’s monumental study of mainly
fermentative anaerobes (Moore 1966), which led to their systematic and taxo-
qnomic studies of a huge number of anaerobes from many anaerobic habitats.
Thus, other researchers could now identify many anaerobes from normal and
pathologic systems, especially those from GI tract, (including oral) ecosystems.
Of special significance was the standardized study of many previously isolated
and maintained strains from many different laboratories. For example, many of
the strains from Prévot’s culture collection became known much better. Many
of our groups of bacteria, especially those from young calves (Bryant et al.
1958a,b) were characterized quite well but could not be identified with known
species because of the earlier poor descriptions. After many publications of Moore
and L.V. (Peg) Holdeman and their colleagues, many of these and other bacteria
were identified.

Eggerth (1935) described several gram-positive, nonsporing rods from human
feces—e.g., Bifidobacterium spp. and Butyribacterium rettgeri, now E. limosum
(Barker and Haas 1944). In 1952, I published a paper on a rumen spirochete,
including the first study of fermentation products of an anaerobic spirochete
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(Bryant 1952). It was later named Treponema bryantii (Stanton and Canale-Parola
1980).

Bryant and Burkey (1953) published short descriptions and photomicrographs
of rumen anacrobes later studied in detail. These included Ruminococcus flave-
Jaciens, R. albus, R. bromii, Fibrobacter succinogenes, Prevotella ruminicola,
Eubacterium ruminatium and Eubacterium sp., Selenomonas, Lachnospira, Bu-
tyrivibrio, Succinimonas, Succinivibrio and Treponema. Bryant et al. (1958a,b)
described other anaerobes from young calves, e.g., the long and short species
of Lactobacillus vitulinus, Peptostreptococcus productus, Megasphaera elsdenii,
Fusobacterium necrophorum (shown to degrade lactate), Eubacterium limosum,
and Clostridium clostridiiforme. However, studies on diversity and taxonomy
have been greatly enhanced by the application of phylogenetic analysis based
largely on small subunit rRNA molecules.

Phylogenetic studies of bacteria using 16S rRNA oligonucleotide analysis
started in the laboratory of Carl Woese, University of Illinois, in the 1970s (see
Fox et al. 1977b for earlier references). The phylogenetic analysis of anaerobic
bacteria, the methanogens, started in 1977 in collaboration between Woese’s
laboratory and that of R.S. Wolfe (Fox et al. 1977a,b, Balch et al. 1979). This
resulted in the discovery of a third kingdom, the Archaebacteria, which included
the methanogens. Recently a higher taxonomic level has been proposed which
groups organisms into three domains—Archaea, Bacteria, and Eucarya (Woese
et al. 1990). With these techniques the phylogeny of many other bacteria, includ-
ing many from gastrointestinal ecosystems, was published (Fox et al. 1980). 16S
rRNA sequencing in phylogenetic studies began later (Woese 1987). Very re-
cently the phylogeny of many bacteria from the gastrointestinal tract and other
ecosystems, more or less related to the clostridia, have been studied (Collins et
al. 1994). This includes many genera—e.g., Oxobacter, Syntrophomonas, Seleno-
monas, Acidaminococcus, Megasphera, Quinella, Sporomusa, Ruminococcus,
Roseburia, Peptostreptococcus, Lachnospira, Fusobacterium, Eubacterium, and
anaerobic Lactobacillus, and includes 14 or more families, such as Clostridiaceae,
Syntrophomonadaceae, Selenomonadaceae, Ruminococcaceae, Fusbacteria-
ceae, Eubacteriaceae, Heliococcaceae, and more than six unnamed families.

Avgustin et al. (1994 and references therein) determined the genetic diversity
and phylogenetic relationships of some rumen gram-negative anaerobes, espe-
cially many strains of Prevotella ruminantium. Groups represented by Bryant
strains 23T, GA337, and B,4 are different species, and other species within the
group (Bryant et al. 1958a) are sure to be found. Several species are also sure
to be found in the Butyrivibrio group (Bryant and Small 1956). My idea in naming
single species of groups such as Prevotella (Bacteroides) ruminicola and Butyri-
vibrio fibrisolvens was that, if they were not named, other researchers would not
further study the groups.

I have covered in this prefatory chapter only a small part of an appropriate
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introduction to this two-volume book. It is realized that the microbial ecology
of the gastrointestinal tract of animals as diverse as humans, termites (as in the
studies of Hungate and Breznak), and protozoa are of equal or more importance.
However, the best-known microbial ecosystem is still probably that of the rumen.

4, Future Directions in Gut Microecology

Bacteria have traditionally been classified mainly on the basis of phenotypic
properties. Despite the vast amount of knowledge generated for the ruminal and
other gut ecosystems using traditional techniques, the basic prerequisites for eco-
logical studies, namely, enumeration and identification of all community mem-
bers, have limitations. The two major problems faced by microbial ecologists
include bias introduced by culture-based enumeration and characterization tech-
niques and the lack of phylogenetically based classification scheme (Amann et
al. 1990, 1994; Pace et al. 1985). Modern molecular ecology techniques based
on sequence comparisons of nucleic acids (DNA or RNA) can be used to provide
molecular characterization while at the same time providing a classification
scheme that predicts natural evolutionary relationships. These molecular methods
provide results that are independent of growth conditions and media used. Also
using these techniques, microbes can be classified and identified before they can
be grown in pure culture. An example from the rumen is Quinella ovalis, a
morphologically distinctive but uncultivable organism, which based on 16S rRNA
phylogeny was most closely related to the Selenomonas-Megasphaera-Sporo-
musa group in the gram-positive phylum (Krumbholz et al. 1993).

Furthermore, in situ hybridization with fluorescently labeled rRNA-targeted
nucleic acid probes facilitates in situ identification and phylogenetic placing of
uncultured organisms and provides information on three-dimensional relation-
ships in complex microbial populations (Amann 1995). Ultimately genetic capa-
bilities, expression of these capabilities, and taxonomic information are poten-
tially accessible at the individual cell level using nucleic acid (DNA, or mRNA
and rRNA) targeted in situ hybridization methods. These nucleic acid—based
techniques will enable gut microecologists to answer the most difficult question
in microbial ecology: the exact role or function a specific organism plays in its
natural environment and its quantitative contribution to the whole (Hungate 1960).
Rather than replacing the classical cultural based system, the new molecular-based
techniques can be used in combination with the classical approach to improve
cultivation, speciation, and evaluation of biodiversity. For example, it is worth
noting that the comparative sequence database of 16S and 23S rRNA sequences
(more than 4,000 entries covering about 1,800 species) is largely based on pure
culture cultivation studies.

It could be argued that the technological impetus for major advances in our
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knowledge of gastrointestinal microecology during recent decades has been de-
rived from three major sources: the development of anaerobic culture techniques
and their application to the study of the rumen ecosystem by Hungate et al.; the
use of rodent experimental models to define relationships between gut microbes
and the host by Dubos et al.; and the development of gnotobiotic technology by
which germ-free or defined-microbiota animals could be derived and maintained.
It is likely that the use of molecular ecology techniques based on nucleic acid
probes is likely to generate the next major advance in our knowledge and provide
for the first time not simply a refinement or increased understanding, but a com-
plete description of the gastrointestinal ecosystem.
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