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PREFACE

The advent of economical and simple micro computers has left no
excuse for engineers to avoid computer solutions to problems.
Hydraulic engineers now have tools for modelling steady and unsteady
flows in complex pipe networks. Tedious graphical and analogue
simutfations can be discarded with relief. This book is aimed at the
water engineer who has to design water reticulation pipe networks,
trunk mains, pumping lines and storage reservoirs. The practising
engineer often tends to negelect the theoretical side, but when the
occasion arises he requires a rapid, simple answer to problems of
head loss, discharge capacity and pressures. The various computation-
al methods available to him are summarized in this book, starting
with simple steady flow problems and advancing through slow motion
to water hammer in complex networks. The subject matter will also be
of use to students of hydraulic engineering and those contemplating
research in this field.

The iterative techniques for flow analysis of pipe networks such as
the Hardy Cross method are known to most water engineers and have
been applied extensively without the aid of computers. Some lesser
known techniques are in fact simpler to apply on computers, e.g. the
linear method. When it comes to unsteady flow, e.g. water hammer,
computer analysis is much more rapid than the older graphical method
and can account for many more factors such as column separation,
changes in section and branch pipes. Numerical methods for computers
are easy and accurate provided simple rules are followed. This book
condenses and compares various methods for analysing flows and
pressure variations in pipelines, whether they be pumping systems or
multiple reservoir gravity systems. Simple BASIC computer programs
are given in many chapters and these will serve as a basis for more
comprehensive programs which the reader should be able to write after
reading this book.

In addition to those on flow analysis, sections are given on
design of pipe systems using optimization programs, and operation
using computer simulation programs. An introduction to computer
graphics is given but the book does not cover structural design of
pipes. That is covered in another book by the same author, 'Pipeline

Design for Water Engineers' (Eilsevier, 1981).
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CHAPTER 1

HYDRAULICS AND HEAD LOSS EQUATIONS

BASIC EQUATIONS

Most hydraulic problems in pipe systems can be solved starting

with one or more of the basic equations described below, or an

adaptation of them. It is the methods of solution of the equations,

be they analytical, graphical or numerical, which this book is
about.
The three equations which will appear in various forms

throughout the book are the continuity equation, the momentum
equation and the energy equation. For steady, incompressible
one-dimensional flow the continuity equation is simply obtained by
equating the flow rate at any section to the flow rate at another
section along the stream tube. By 'steady flow' it is implied that
there is no variation in velocity at any point. As far as unsteady
flow is concerned the continuity equation has an additional term,
namely the change in storage between the sections.

The momentum equation stems from Newton's basic law of motion
and states that the change in momentum flux between two sections
equals the sum of the forces on the fluid causing the change. For

steady, one- dimensional flow this is
AF = pQ bV (1.1)
x x

where F is the force, P is the fluid mass density, Q is the
volumetric flow rate, V is velocity and subscript x refers to the 'x'
direction.

The basic energy equation is derived by equating the work done
on an element of fluid by gravitational and pressure forces to the
change in kinetic energy. Mechanical and heat energy transfer are
excluded from the equation. In most systems there is a loss of
energy due to friction and turbulence and a term is included in the
equation to account for this. The resulting equation for steady flow
of incompressible fluids is termed the Bernoulli equation and is

conveniently written as:

2 — 2
\ +p1+Z1—\/ +p1+22+he (1.2)

1 2
PR 5 T



where V = mean velocity at a section
VZ/2g = velocity head ({(units of length)
g = gravitational acceleration
P = pressure
p/Y = pressure head (units of length)
Y = unit weight of fluid
z = elevation above an arbitrary datum
he = head loss due to friction or turbulence between

sections 1 and 2.

The sum of the velocity head plus pressure head plus elevation is
termed the total head. Strictly the velocity head should be multiplied
by a coefficient to account for the variation in velocity across the
section of the conduit. The average value of the coefficient for
turbulent flow is 1.06 and for laminar flow it is 2.0. Flow through a
conduit is termed either uniform or non-uniform depending on whether
or not there is a variation in the cross-sectional velocity
distribution along the conduit.

For the Bernoulli equation to apply the flow should be steady,
i.e. there should be no change in velocity at any point with time.
The flow is assumed to be one-dimensional and irrotational. The
fluid should be incompressible, or else a term for strain energy has
to be introduced.

The respective heads are illustrated in Figure 1.1. For most
practical cases the velocity head is small compared with the other
heads, and it may be neglected. In fact it is often the case that
minor head losses due to bends, expansions, etc. can also be

neglected and friction need be the only method whereby head is lost.

ENERGY LINE

| ENTRANCE LOSS
FRICTION LOSS
CONTRACTION LOSS

HYDRAULIC
GRADE LINE
FRICTION LOSS

VELOCITY HEAD
V224

SECTION PRESSURE HEAD
711
SECTION {
ELE VATION

DATUM

Fig. 1.1 Energy heads along a pipeline



FLOW-HEAD LOSS RELATIONSHIPS
Empirical Flow Formulae

The throughput or capacity of a pipe of fixed dimensions depends
on the total head difference between the ends. This head is consumed
by friction and other losses.

The first friction head loss/flow relationships were derived from
field observations. These empirical relationships are still popular in
waterworks practice although more rational formulae have been
developed. The head loss/flow formulae thus established are termed
conventional formulae and are usually given in an exponential form

of the type
v = KD*sY (1.3)

kra”/p™ (1.4)

or S

where V is the mean flow velocity, m, n, x, y, K and K' are
constants, D is the inside diameter of the circular pipe and S is the
head loss gradient (in m head loss per m length of pipe). Some of

the equations more frequently applied are listed below:

Basic Equations S.l. units ft-sec
Hazen-
Williams =K, (V/C y1-85,51.167 K,=6.84 K,=3.03  (1.5)
Manning SZKZ(nV)Z/D]'33 K2=6.32 K2=2.86 (1.6)
Chezy S:K3(V/CZ)2/D K3=13.13 K3=4.00 (1.7)
Darcy S$=av?/2gD Dimensionless (1.8)

Except for the Darcy formula the above equations are not
universal and the 'constant' in the equation depends on the units.
It should be borne in mind that some of the formulae were intended
purely for standard water engineering practice and take no account
of wvariations in gravity, temperature or type of liquid. The friction
coefficients wvary with pipe diameter, surface configuration and age
of pipe.

The conventional formulae are comparatively simple to use as they

do not involve fluid viscosity. They may be solved directly as they
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do not require an initial estimate of Reynolds number to determine
the friction factor (see next section). On the other hand, the more
modern equations cannot be solved directly for rate of flow. Solution
of the formulae for velocity, diameter or friction head gradient is
simple with the aid of a slide rule, calculator, computer, nomograph
or graphs plotted on log-log paper. The equations are of particular
use for analysing flows in pipe networks where the flow/head loss
equations have to be iteratively solved many times.

A popular flow formula in waterworks practice is the Hazen-Wil-
liams formula. Friction coefficients for use in this equation are
tabulated in Tabte 1.1, If the formula is to be used frequently,
solution with the aid of a chart is the most efficient way. Many
waterworks organizations use graphs of head loss gradient plotted
against flow for various pipe diameters, and various C values. As
the value of C decreases with age, type of pipe and properties of

water, field tests are desirable for an accurate assessment of C.

TABLE 1.1 Hazen-Williams friction coefficients C

Type of Pipe Condition

New 25 years 50 years Badly

old old Corroded _

PVC: 150 140 130 130
Smooth concrete, AC: 150 130 120 100
Steel, bitumen
lined, galvanized: 150 130 100 60
Cast iron: 130 110 90 50
Riveted steel,
vitrified, woodstave j2q 100 80 45

Rational flow formulae

Although the conventional flow formulae are likely to remain in
use for many years, more rational formulae are gradually gaining
acceptance amongst engineers. The new formulae have a sound
scientific basis backed by numerous measurements and they are
universally applicable. Any consistent units of measurements may be
used and liquids of various viscosities and temperatures conform to

the proposed formulae.



The rational flow formulae for flow in pipes are similar to those
for flow past bodies or over flat plates (Schlichting, 1960). The
original research was on small-bore pipes with artificial roughness.
Lack of data on roughness for large pipes has been one deterrent to
the use of the relationships in waterworks practice.

The velocity in a full pipe varies from zero on the boundary to a
maximum in the centre. Shear forces on the walls oppose the flow
and a boundary layer is established with each annulus of fluid
imparting a shear force onto an inner neighbouring concentric
annulus. The resistance to relative motion of the fluid is termed
kinematic viscosity, and in turbulent flow it is imparted by
turbulent mixing with transfer of particles of different momentum
between one layer and the next.

A boundary layer is established at the entrance to a conduit and
this layer gradually expands until it reaches the centre. Beyond this
point the flow becomes uniform. The length of pipe required for fully

established flow is given by

3=0.7 Re'/* for turbulent flow (1.9)

The Reynolds number Re = VDA is a dimensionless number
incorporating the fluid wviscosity Vv which is absent in the
conventional flow formuiae. Flow in a pipe is laminar for low

Re (<2000) and becomes turbulent for higher Re (normally the case
in practice). The basic head loss equation is derived by setting the
boundary shear force over a length of pipe equal to the loss in

pressure multiplied by the area:

DL = yh, wD*/4 (1.10)
-'-hf:\%%% (1.11)

- )‘ED %; (1.12)
where A = (41/v)/(V®/2g) is the Darcy friction factor, T is the shear

stress, D is the pipe diameter and hf is the friction head loss over
a length L. X is a function of Re and the relative roughness k/D.
For laminar flow, Poiseuille found that A = 64/Re i.e. A s
independent of the relative roughness. Laminar flow will not occur in
normal engineering practice. The transition zone between laminar and
turbulent flow is complex and undefined but is also of little interest

in practice.



Turbulent flow conditions may occur with either a smooth or a
rough boundary. The equations for the friction factor for both
conditions are derived from the general equation for the velocity
distribution in a turbulent layer, which is derived from mixing

length theory:

T = pkz@qj_v)z (1.13)
y

Integrating with the constant k found to be 0.4 and converting to
Iog1oz
¥ =5.75 log ¥, (1.14)
=) Y
where v is the velocity at a distance y from the boundary. For a
hydrodynamically smooth boundary there is a laminar sub-layer, and
Nikuradse found that y'«y m;— where y' is the boundary layer

thickness, so

/178
— =575 log vy
T/ P

+ 5.5 (1.15)

The constant 5.5 was found experimentalliy.

Where the boundary is rough the laminar sub-layer is affected

and Nikuradse found that y' = k/30 where k is the boundary

roughness.

Thus < = 5.75 log % + 8.5 (1.16)
/o

Rearranging equations 1.15 and 1.16 and expressing v in terms of
the average velocity V by means of the equation Q =/ vdA results in
1. 2 log Re VX' - 0.8 : (1.17)
v
(turbulent boundary layer, smooth boundary) and

D
— =2log ¢ + 1.14 (1.18)
2%
(turbulent boundary layer, rough boundary).

Notice that for a smooth boundary, i is independent of the
relative roughness k/D and for a very rough boundary it is
independent of the Reynolds number Re for all practical purposes.

Colebrook and White combined Equations 1.17 and 1.18 to produce
an equation covering both smooth and rough boundaries as well as
the transition zone:

L 1.14 - 2 log (5 + 9.35

/ bt Rerr ) (1.19)
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Their equation reduces to Equ. 1.17 for smooth pipes, and to Equ.
1.18 for rough pipes. This semi-empirical equation yields satisfactory
results for various commercially available pipes. Nikuradse's
original experiments used sand as artificial boundary roughness.
Natural roughness is evaluated according to the equivalent sand

roughness. Table 1.2 gives values of k for various surfaces.

TABLE 1.2 Roughness of pipe materials (Hydraulics Research Station,
1969). Value of k in mm

Finish Smooth Average Rough
Glass, drawn metals 0 0.003 0.006
Steel, PVC or AC 0.015 0.03 0.06
Coated steel 0.03 0.06 0.15
Galvanized, vitrified clay 0.06 0.15 0.3
Cast iron or cement |ined 0.15 0.3 0.6
Spun concrete or wood stave 0.3 0.6 1.5
Riveted steel 1.5 3 6
Foul sewers, tuberculated

water mains 6 15 30
Unlined rock, earth 60 150 300

Fortunately X is not very sensitive to the value of k assumed. k
increases linearly with age for water pipes. The various rational
formulae for XA were plotted on a single graph by Moody and this
graph is presented as Figure 1.2.

A close approximation to A is often given by the following equation:
A = 0.0055 { 1+(20000k /D + 10%/Re)"/3) (1.20)

This equation avoids an implicit situation but is only a first
approximation which should be substituted in the r.h.s. of (1.19) to
obtain a better value.

Unfortunately the Moody diagram is not very amenable to direct
solution for any variable for given values of the dependent
variables, and a trial and error analysis may be necessary to get
the wvelocity for the Reynolds number if reasonable accuracy is
required. The Hydraulics Research Station at Wallingford (1969)
re-arranged the variables in the Colebrook- White equation to
produce simple explicit flow/head loss graphs. Thus equation 1.19
may be arranged in the form

k 2.5

V = -2 /2gDS log ( + ) (1.21)
3.7D Dv2gDS
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Thus for any fluid at a certain temperature and defined
roughness k, a graph may be plotted in terms of V, D and S.

H o
Figures 1.3 to 1.7 are such graphs for water at ISC and for

various roughnesses K.
in summary the Darcy-Weisbach equation for head loss in circular
pipes

ALV

hf - 2gD

(1.22)

where h is the head loss (or the energy loss per unit weight), X s
the Darcy-Weisbach friction factor, L is the pipe length, D is the
pipe diameter, g is the gravitational acceleration and V is the
average fluid velocity. It may be noted that in North America A» is
replaced by f, whereas British practice is to use another f”in the

equation

he = £'LV?/20R (1.23)

where R is the hydraulic radius D/4 for a circular pipe. Thus f’=
Y.

Since V = 4Q/ "D? (1.24)
we can also rewrite equation 1.22 as

h
f_ 8xQ*
= g (1.25)

Solution of the basic equations

The Colebrook-White formula (1.19) which forms the basis of the

Moody diagram may also be written as

1 - _0.8686 on (—K_ * _2:51 (1.26)
= 3.7D Re/T™
Also Re = VDN = 4Q/nDv (1.27)

The equation must be solved by iteration for h. This can be
1
conveniently done by letting x = A 2 and using the Newton Raphson

iterative scheme,

+ _ _gix)
X X ?(_X) (1-28)
where in this case we have from equation 1.26
- _k+ 2.51x
gl{x) = x + 0.8686 ¢&n (3.7D Re ) (1.29)

and g'(x) is the derivative of g{x). We then obtain



x + 0.8686 on(—— t 2:31x,

st ox oo .70 51/§: } (1.30)
1+ 0.8686 [( K+ 2.51x ]
3.7D Re
where ><Jr is a successive approximation to the solution of g{x) = 0
+
using the prior approximation x. Setting x = x+ and solving for x

several times, the solution can be obtained to any desired accuracy.

This equation converges rapidly for almost any starting value of
x and can be easily solved on a computer or on a programmable
calculator. Using this equation in combination with equations (1.22)

and (1.27) one can solve for head loss.

hfng (1.31)
Note that since x = v
3/2
Re vVi= v Zghf7L D" /v (1.32)

so that (1.26) can be solved directly for V given h

and k:

V= /2gbh /L' -0.8686 ¢n ( k_+ 2.51v (1.33)
3.7D 2gD’h,/L

If however, V is given then either X or hf must be obtained

f’ L" g’ D,\)

employing an iterative procedure.

Comparison of Friction Formulae

The Darcy equation may be written as

v = /2g/x /SD (1.35)
or V. = C, /SR (1.36)
which is termed the Chezy equation and the Chezy coefficient is

c, = /8a/ (1.37)

The Hazen-Williams equation may be rewritten for all practical

purposes in the following dimensionless form:
s = 515(v/c,)? (C /Re)’"/aD (1.38)

By comparing this with the Darcy-Weisbach equation (1.25) it may
be deduced that

)‘O.SAReO.OB)

CW = 42.4 ( (1.39)
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Fic. 1.4 FRICTION LOSS CHART FOR PIPES FLOWING FULL
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Typical examples:
Coated steel
Wrought iron

This chart is derived from the Darcy-
Weisbach eqguation

h _ 8@
L a%gD*
where

h = head loss due to friction

L = length of pipe

A = friction factor

Q= discharge

9 = acceleration due to gravity
(9.81 m/s?)

D = internal diameter of pipe

The friction factor, A, has been determined
using the Colebrook-White equation:
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where
k = boundary ruughness
R, = Reynoids number
4Q
" wDy
v = kinematic viscosity

1.15 x 1078 m?/s tor water at 15°C
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Typical examples:
Galvanised iron
Coated cast iron
Glazed vitrified clay

This chart is derived Irom the Darcy-
Weisbach equation

hoaQ
L wigDs
where -
h = head loss due to triction
L = Jtength ol pipe
A = friction tactor
Q= discharge
g = acceleration due to gravity
{9.81 m/s?)
D = internat dsameter of pipe

The fnctinn tactor, A has heen determined
nsing the Colebrook -White equation

Vo, ko, 2w
o a2+ 28
A T30 R

where
k= boundary roughness
Re = Reynolds number
=%
" D

v = kinemalic viscosity
= 1,15 x 106 m¥/s tnr water at 15°0C
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k= 0.15 mm

FRICTION LOSS CHART FOR PIPES FLOWING FULL

FIG. 1.6

(for water at 15°C)

Rusty wrought iron
Uncoated cast iron

Typical examples:

> £

> @
m 5 s &
c S & o
o = 8
£ ° 2 &
m e _®
£ -] c5 E
> P evw/.m
@£ mm'WMml
28 . Zc§5E8n ¢
97 & To=6 805
28 g|f BPggicse
28 S|t 2288
t
s§ o I
Cg £lo 9o «<0o 0
w2 ]
me £ N
-2 H

The triction tactor, A, has been determined

[3)
o
bl
=
. ©
5 &
= [
] 2 » H
u1f “
T 1l o 2%
@ o~ c ==
-4 £ 2 3
2 gm L F4
z o+ 3 3%
£ [
g o B2 $E
Z k_7, sE ¢
3~JdO- £33 2
g & B E x
m =3 5 a v
ICE-1 oo Qo £~
3 w B& V[F xe
g ko [l
£ | [
o e P xX >
£ 2
8 H

<A/

7 — <

N T RS [ - o~ .
N/ Dot WACSYIIRN I~
NN/ a2 NAR AN

NS /1 ” ‘, YN
UERWANRVARUYARZS NV AR S
m_ikb _ /,v\,lk \f// \A.K/ \/lVf
: ! i
| Panl 071\ P AV N/
- F—F S , — . N
R WA 1 71e j ~7 VAR
VAEER N i/ N / N a d !
yARN </ S U AN N /- NS
’ - WERD. ANV AER'N
R f\as_b N w / Pl o L \
LN T LT T ey SSA 7/ N
LN L) Sow)Y /1 OSNITTOANIENS

)
c © © « 0o« - o ©

(anyewopy Jad sasiew) ssoj peaH

%
LA

g8 88

<
Discharge (litres per second)

Q
®



I6. 1.7 FRICTION LOSS CHART FOR PIPES FLOWING FULL

(for water at 15°C)

k = 0.3 mm
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Typicat examples:
Wood stave pipes
Spun concrete

This chart is derived from the Darcy-

Weisbach equation:
h 8r 0%
T = w2gDs
where

The friction factor, A, has been determined
using the Colebrook-While equation

1 g (L+ ﬂ)
A "\370 7 ReVA
where
= boundary roughness

= kinem; atic viscosh

> viscosity
= 1,15 x 108 m¥/s for water at 15°C

Sl



16

The Hazen-Williams coefficient CW is therefore a function of X and
Re and values may be plotted on a Moody diagram (see Figure 1.2}.
It will be observed from Figure 1.2 that Jlines for constant

Hazen-Williams coefficient coincide with the Colebrook-White lines only

in the transition zone. In  the completely turbulent zone for
non-smooth pipes the coefficient will actually reduce the greater the
Reynolds number, i.e. one cannot associate a certain Hazen-Williams

coefficient with a particular pipe as it varies with the flow rate.
The Manning equation is widely used for open channel flow and

part full pipes. The equation is

1
Vo= SRhse (1.40)
where K is 1.000 in S| units and 1.486 in ft |b units, and R is the
hydraulic radius A/P where A is the cross sectional area of flow and

P the wetted perimeter. R is D/4 for a circular pipe, and in general

for non-circufar sections, 4R may be subétituted for D.

TABLE 1.3 Values of Manning's 'n'

Smooth glass, plastic 0.010
Concrete, steel (bitumen lined), galvanized 0.011
Cast Iron 0.012
Slimy or greasy sewers 0.013
Rivetted steel, vitrified, wood-stave 0.015
Rough concrete 0.017

MINOR LOSSES

One method of expressing head loss through fittings and changes in
section is the equivalent length method, often wused when the
conventional friction loss formulae are used. Modern practice is to
express losses through fittings in terms of the velocity head, i.e.

h€= KVZ/2g where K is the loss coefficient. Table 1.4 gives typical
loss coefficients although valve manufacturers may also provide
supplementary data and loss coefficients K which will vary with gate

opening. The velocity V to use is normally the mean through the full

bore of the pipe or fitting.



TABLE 1.4 Loss coefficients for pipe fittings.
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Bends hp = KBV2/29
Bend angle Sharp r/D=1 2 6
30° 0.16 0.07 0.07 0.06
45° 0.32 0.13 0.10 0.08
60° 0.68 0.18 0.12 0.08
90° 1.27 0.22 0.13 0.08
180° 2.2 0.40 0.25 0.15
Valves hV = KVVZ/Zg
Opening: 1/4 1/2 3/4 Full
Sluice 24 5.6 .0 0.2
Butterfiy 120 7.5 1.2 0.3
Globe 160 40 20 10
Needl e 4 1 0.6 0.5
Ref lux 1-2.5
.
Contractions and expansions in cross section
Contractions: Expansions:
- 2 - 2
h_ K.V, /29 hC K.V, /2g
Ag/A Ay/A,
Wal i
angl e 0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 .6 .8
7.52 .13 .08 .05 .02 .0 O
15 .32 .24 .15 .08 .02 0
302 .78 .45 .27 .13 .03 0
180 .5 .37 .25 .15 .07 O 1.0 .64 .36 17 .04 0
Entrance and exit losses: hé=KeV2/Zg
Entrance Exit
Protruding 0.8 1.0
Sharp 0.5 1.0
Bevel led 0.25 0.5
Rounded 0.05 0.2




It is frequentliy unnecessary to calculate the losses in all pipe
fittings if in fact they need to be considered at all. The full
velocity head V?/2g is typically less than 0.2m so even the full
velocity head is small in comparison with many line friction head
losses. The losses due to fittings rarely exceeds 5% of the friction
loss except for very high design pressure heads when it is
economical to reduce the diameter of fittings such as valves.

On the other hand, the presence of air in pipelines can add to
the friction loss. Although air will seldom build up to create a large
pocket in comparison with the cross sectional area there is
frequently air in free bubble form in transport. The presence of 1%
of free air is not impossible and since the head loss is nearly
proportional to V? the corresponding head loss increases 2%.

Fittings can be accounted for by adding the losses to the friction

loss:

Thus h = h]c + h@ (1.41)
i} XD_L V_; N Z"yzig (1.42)
- (*_ED_ + zK)Yzz_g (1.43)

One method is to add on an equivalent length of pipe to give the

same head loss as the fitting. The equivalent length is from (1.43)
L" = (D/2)IK (1.44)

Obviously the variation of X with Re is not strictly accounted for
this way and neither is the variation of K or discharge coefficient

of valves with opening.

USE OF HEAD LOSS CHARTS FOR SOLUTION OF SIMPLE PIPE SYSTEMS

Many of the following chapters describe methods of calculating
head losses in complex pipe networks. Those problems have a number
of unknowns. For instance if a pipe with a known head changes
diameter along its length, the head loss for each section, as well
as the total flow rate may be unknown. Similarly if the pipe
branches, the flows as well as the head losses become unknowns.
Some additional facts are needed to solve for all the unknowns. The

continuity equation is invariably utilized in such cases. In general,
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however, it is necessary to simplify the flow-head loss relationships
somewhat where simultaneous solutions of a number of equations are
involved. Thus if the Darcy head loss equation is utilized the
friction factor X could be assumed a constant. Alternatively an

equation of the following form is used

h = kea"/p™ (1.45)
where K is assumed constant for all pipes. In many of the numerical
and iterative methods explained later these simplifications are not
essential and friction factors varying with pipe and flow can be
accounted for. |f equivalent pipe or analytical methods are employed
the simplifications are necessary, or at least the assumption that
friction factor is independent of flow rate.

One method of accounting for simple pipes in series or in parallel
is the equivalent pipe method. The diameter of an equivalent pipe to
replace a compound pipe may be derived analytically (see Chapter 2)
or more simply, if computations are to be performed by hand,
obtained from a Yead loss chart such as Figure 1.5

Consider as an example a compound pipe comprising a 300 mm
bore 1000 m long pipe in series with (leading into} a 400 mm bore
pipe 2000 m long. A simple relationship between head loss and flow
rate is not possible unless the pipe is replaced by an equivalent
uniform bore pipe, say 3000 m ifong. A method of obtaining the
diameter of such a pipe is to assume a reasonable filow rate (e.g.
100 ¢/s) and read off the total head loss from Figure 1.5: h = 5.4 +
1.3 X 2 km = 8 m, so that the mean head loss gradient is 8/3 = 2.67
m/km and the equivalent pipe diameter to discharge 100 £/s is 345
mm.

As another example consider a 500 mm bore pipe, 3000 m long
laid paralle! to a 700 mm bore pipe 4000 m long and both pipes are
connected at both ends. In this case a total head loss is assumed,
say 10 m. The head gradient along the 500 mm pipe is 3.33 m/km
and the flow rate from Figure 1.5 is 300. The head gradient along
the 700 mm bore pipe is 2.5 m/km and the flow rate 620 £/s. An
equivalent pipe with a length of, say, 4000 m to discharge 920 £/s
at a gradient of 10 m/4 = 2.5 m/km would require a bore of 820 mm.

It should be noted that Figure 1.5 is for a particular roughness and
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slightly different results would be obtained if alternative head loss
charts were employed or even if different flow or head loss
assumptions were made to start with. That is because the effect of
varying Reynolds number was ignored. A more accurate solution could
have been obtained by using the Moody diagram or the Colebrook-
White equation and iterating. The additional effort is, however,
seldom justified in real systems as the losses due to many factors

(including roughness) are only estimates anyway.
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CHAPTER 2

ALTERNATIVE METHODS OF PIPE NETWORK FLOW ANALYSIS

TYPES OF PIPEFLOW PROBLEMS

The hydraulic engineer is confronted with many problems in the
planning, design and operation of piped water supply systems. The
problems can be divided into analysis and design types, both for
steady flow and unsteady flow.

The analysis of steady flows in simple pipes may be for flow rate
(given the head loss) or for head loss {(given the flow rate). The
same calculations apply to compound pipes (in parallel or series)
although solution of more than one equation is then involved. When
it comes to branched or looped networks more sophisticated methods
become necessary.

The design pgoblem is usually treated as a steady state problem.
That is for known heads and drawoffs, the engineer has to select the
pipe layout and diameter and reservoir location and size. The latter
aspect, namely reservoir sizing is really an unsteady flow probiem
which may often be solved using steady-state equations. Net outfiow
over the peak drawoff period may be assessed by multiplying drawoff
rate by time.

For more rapid variations in flow 'rigid column' surge theory or
even elastic water hammer theory is necessary to determine heads
and transient flows. Computer analysis is practically essential. Once
suitable programs are available they could, however, even be used
to determine steady-state flows or heads.

The design problem associated with wunsteady flows is the
determination of pipe wall thicknesses, and the operating rules for

valves, pumps etc.

METHODS OF SOLUTION

Where complex pipe networks are utilized for water distribution it
is not easy to calculate the flow in each pipe or the head at each
point. Even if the flow-head loss equation assumed is explicit for

each given pipe length, diameter and roughness, the non-linear
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relationship between head loss and flow makes calculation difficult.
In unlooped tree-like networks the flows will be defined by the
drawoffs but if the pipe network incorporates closed loops flows are
unknown as well as heads at the various nodes.

The complexity of the pipe network, as well as the facilities
available for computation, will dictate which method of analysis is
to be utilized. Many of the following methods can be performed
manually whereas computers are required for the more complex
methods, particularly where unsteady flow is involved:

1. Equivalent pipes for compound pipes in series.

2. Equivalent pipes for complex pipes in paratlel.

3. Trial and error methods for multiple reservoir problems.
4

. Analytical solution of flow-head Iloss equations for compound

pipes.

5. Analytical solution of flow-head loss equations for pseudo-steady
flow.

6. Iterative node head <correction for predominantly branched

networks (by hand or computer).

7. Iterative loop flow correction for Iooped networks (by hand or
computer).

8. Simultaneous solution of the head loss equations for all pipes by
matrix or iterative methods (easiest for laminar flow when head
loss is linearly proportional to flow).

9. Linearization of head loss equation and iterative solution for
heads at nodes.

10. Linearization of head loss equation and iterative solution for
flows in pifes.

11. Analytical solution of rigid column unsteady flow equation.

12. Numerical solution of finite difference form of rigid column
acceleration equation, head loss equation and continuity equa-
tion.

13. Graphical analysis for unsteady rigid column flow.

14. Graphical analysis for unsteady elastic water hammer.

15. Finite difference and characteristic solution of differential water
hammer equations using computers. Valves, pumps, vaporization,
release systems and branches may be considered.

Generally the equations used are:
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(i) Continuity of flow at junctions (net inflow less drawoff must
be zero).

(ii) Head differences between nodes equal friction head loss in the
pipes linking them. Minor losses and velocity head are
generally neglected or included in the friction term, or an
eguivalent length of pipe is added to the pipeline to allow for
minor losses.

(iii) Dynamic equations of motion - only where acceleration or

deceleration of water is significant.
SIMPLE PIPE PROBLEMS

Calculation of Head Difference, Given Flow Rate

For the case of a known flow rate in a pipe of known length,
diameter and roughness, the calculation of head loss is simple and
direct, using for example the Hazen-Williams equation,

1.85/D1 .167

h, = 6.84L(V/C) (m-s units) (2.1)

§
where C is the Hazen-Williams coefficient e.g. 140 for smooth pipes
reducing for rough pipes, or the Darcy-Weisbach equation,
_oAL Ve

f D 2g (2.2)
where A is a function of the pipe relative roughness and the
Reynolds number, Re = VD/v, v is the kinematic viscosity of the
fluid, V is the mean velocity, D the pipe bore, L the pipe length

and g is gravitational acceleration.
Calculation of Flow Rate, Given Head Difference

The exponential type of equation, e.g. Hazen-Williams, can be
solved directly for flow velocity and hence discharge rate. This is
one reason why this type of equation remains popular despite its
empiricism. The more scientific formula of Darcy has to be solved
iteratively for this case as the Reynolds number is a function of
flow velocity which is an unknown. The procedure is to guess a V,
calculate the corresponding Re, read * from a Moody diagram (or
calculate it from the Colebrook—- White equation) and solve for a new

flow wvelocity from the head loss equation. It is generally not
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necessary to repeat the process with the new velocity more than
twice as the flow converges rapidly. |If the procedure is to be
utilized in a computer a Newton Raphson convergence method could be
programmed (see Chapter 1). |If the computations are performed
manually a head loss chart based on the equations can be used to

simplify the calculations.
INTER-CONNECTED RESERVO!RS

A more complicated problem involves the calculation of both flow
rate and head drop along compound pipes inter-connecting a number
of reservoirs. For example a drawoff may occur from a point in a
pipe network which is fed from a number of reservoirs - the problem
is to estimate the flow rate in each pipe and the head at the
drawoff point.

It is assumed that the friction factors, diameters and lengths of
all pipes are known. Also, the level in each reservoir remains
constant and the pressure head is nowhere negative in the pipe

network. A simple such supply system is depicted in Figure 2.1

Water level 30

Water Tevel 20m

Fig. 2.1 Inter-connected Reservoirs

The problem can be reduced to the estimation of the residual
head at node 3. Then the corresponding flow in each of pipes 1-3

and 2-3 can be calculated. If the net flow to node 3 does not equal
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the drawoff, 100£/s, the assumed head at node 3 is incorrect and
should be revised. A trial and error method could be employed to
obtain a more accurate head at 3. Thus if the net flow towards 3 in
both pipes exceeded 100#/s the head should be increased, and if the
flow was too low the head should be decreased. The final head at 3
should be above ground level or else the flow of 1008/s would be
unobtainable as air would be drawn into the pipelines through air

valves and fittings.

If kK = 0.0lmm, x = 0.014. Try H3 = 25m and solve for Cl31
35¢/s, Q,, = +802/s, so H, is too high. Repeating with Hy = 21m, it
will be found Q23 = 110¢/s, Q31 =10 ¢/s.

A methodical and converging method for improving the estimation
of the head at 3 at each iteration is demonstrated later (the node
head correction method). The methods (trial and error, or iterative
relaxation) could be employed for more complex situations, e.g. 3 or
more reservoirs, more than one drawoff and compound pipes with
changes 1n diametgr.

Alternatively an analytical solution could be obtained.

. _ 2

Thus if H, - Hy = k,Q (2.3)

— 2

and Hy - Hy = k,Q, (2.4)
Then using C,l1 + Q2 = Q3 to eliminate Cil2 and H3 (2.5)

- z RN
Q.l = —2k2Q3_-t /(2k203) - 4(k1—k2)(H2—H1—k2Q3 } (2.6)

2(k1—k2)

For A = 0.014 then l<1 = 3622 and kz = 712 so Q1 = -0.014 or -0.035

m?®/s. The latter solution is found on inspection to be incorrect and

so Q2 = 0.1 + 0.0t4 = 0.114 m*/s.
PSEUDO STEADY FLOW

If the water levels in two inter-connected reservoirs change with
time, it may still be possible to obtain an analytical solution to the
flow rate and water levels at any time. Acceleration is neglected in

the calculation for the example in Figure 2.2.

Assuming a head loss equation of the form

h = H, - H, =K a" (2.7)

(e.g. K = AL/2gD°(n/4)?> and n = 2 for the Darcy equation). (2.8)
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Fig. 2.2 Inter-connected reservoirs with heads converging

then
a = (hK)t/n (2.9)

For continuity

dH1A1 = deA2 = Qdt . (2.10)

. -dh = dH +dH, = Qdt(1/A;+1/A,) (2.11)

= (h/K)'/”(1/A1+1/A2)dt
(1/A1+1/A2)dt :

_dh _ (2.12)
h17F K1/n
1/n :
. K 1-1/n 1-1/n 3
Integrating, (1—1fn)(1/A1+1/A2) (ht —ho ) =4t (2.13)

i.e. starting with a known head difference ho’ the relationship
between ht and time t may be determined from this equation.
The problem could also be solved numerically and such methods

are discussed in chapters 7 and 8.
COMPOUND PIPES
Equivalent Pipes for Pipes in Series

It is often useful to know the equivalent pipe which would give
the same head loss and flow as a number of inter-connected pipes in
series or parallel. The equivalent pipe may be used in place of the
compound pipes to perform further flow calculations.

The equivalent diameter of a compound pipe composed of sections
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of different diameters and lengths in series may be calculated by
equating the total head loss for any flow to the head loss through
the equivalent pipe of length equal to the length of compound pipe:-
m - zke@" /D™ (2.14)
1/m

} (2.15)

K(ze)Q"/D_

. De = {Ze—m
1(¢/D)

{(m is 5 in the Darcy formula and 4.85 in the Hazen-Williams

formula).

Fig. 2.3 Pipes in Series

Complex Pipes in Parallel

Fig. 2.4 Pipes in Parallel
Similarly, the equivalent diameter of a system of pipes in
paraltel is derived by equating the total flow through the equivalent

pipe 'e' to the sum of the flows through the individual pipes 'i' in
parallel:

Now h = hi (2.16)
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i.e. ke Q™" = ke.q,"/0" (2.17)
e e [ j

So Q. = (ee/ei)V”(Di/De)m/”Q (2.18)
and @ = zq = z[(ee/ei)'/”(voi/oe)m/”a] (2.19)
Cancelling out Q, and bringing De and ee to the left hand side,

(o M/e AL z(D.m/e.)”” (2.20)

e e i i
and if each £ is the same,
D, = Dim/”)”/m (2.21)

The equivalent diameter could also be derived using a flow/head
loss chart. For pipes in parallel, assume a reasonable head loss and
read off the flow through each pipe from the chart. Read off the
equivalent diameter which would give the total flow at the same head
loss. For pipes in series, assume a reasonable flow and calculate
the total head loss with the assistance of the chart. Read off the
equivalent pipe diameter which wduld discharge the assumed flow
with the total head loss across its length.

It often speeds network analyses to simplify pipe networks as
much as possible using equivalent ‘diameter;s for minor pipes in
series or parallel. Of course the methods of network analysis
described below could always be wused to analyse flows through
compound pipes and this is in fact the preferred method for more

complex systems than those discussed above.
NODE HEAD CORRECTION METHOD

A converging iterative method of obtaining the correct heads at
nodes and the corresponding pipe flows is often used, especially for
complex branched networks with multiple reservoirs. This method is
termed the node head correction method. It is necessary to assume
initial heads at each node. Heads at nodes are then corrécted by
successive approximation. The steps in an analysis are as follows:-
(1) Draw the pipe network schematically to a clear scale. Indicate

all inputs, drawoffs, fixed heads and booster pumps.
(2) Assume initial arbitrary but reasonable heads at each node
(except if the head at that node is fixed). The more accurate

the initial assignments, the speedier will be the convergence of
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the solution.

(3) Calculate the flow in each pipe to any node with a variable
head using a formula of the form Q = (th/KQ)Vn or using a
flow/head loss chart.

(4) Calcuiate the net inflow to the specific node and if this is not

zero, correct the head by adding the amount

AH = ZQ (2.22)
I (Q/nh)
This equation is derived as follows:-
Since Q= (hDM/ke)!/" (2.23)
dQ = Qdh/nh (2.24)
We require £(Q + dQ) = 0O
ie. zaq +gdh =0 (2.25)
nh
But dH = -dh where h is head loss and
H is head at node (2.26)
.
So AH = :Q (2.27)
(Q/nh)

Flow @ and head loss - are considered positive if towards the
node. H is the head at the node. Inputs (positive) and drawoffs
(negative) at the node should be included in Q.

(5) Correct the head at each variable-head node in similar manner,
i.e. repeat steps 3 and 4 for each node.

(6) Repeat the procedure (steps 3 to 5) until all flows balance to a
sufficient degree of accuracy. I[f the head difference between
the ends of a pipe is®zero at any stage, omit the pipe from the
particular balancing operation.

It should be noted that the node head correction method in some
cases converges slowly if at all or it can be unstable. This can be
the case if the system is unbalanced, i.e. one pipe with a high
head loss is adjacent to another pipe with a low head loss. A small
head co‘r‘r*ection at the common node could cause a large change in
flow, evén a flow reversal in the low head loss pipe. In fact a head
correction should be less than the head loss in any pipe connecting
to the node in question. It may therefore take many iterations to
work a correction out of the system. Alternatively the flow rate could
oscillate wildly and no longer comply with the linearized relationship

between a small change in head loss and change in flow.
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On the other hand, data input is very simple for the node head
correction method. No loops have to be assumed and initial flows
need not be estimated. Heads can be taken as ground levels for each
node to start with so sometimes no initial heads have to be
estimated. It is easier to identify pipes by the nodes they connect
rather than the loops they separate. It is easier to interpret the
results. Final heads are given for each node instead of just line
head losses as for the loop method. |f changes are required once a
preliminary analysis is done it is easy to add, subtract or alter
pipes with the node method. Many of these advantages are retained

in the linear method described in Chapter 4.

COMPUTER PROGRAM BASED ON NODE HEAD CORRECTION METHOD

The method is very easy to use and simple to program (see
computer program appended to this chapter). Data input is also
simple, and easy to change after a% run. The method is, however,
slow to converge in cases of unbalanced layouts or low and high
head loss combinations. An example is depicted after the program
listing, together with input listing and output. The same example is

analysed in chapter 3 using a different method.

Program Input

The program is run interactively and will prompt for the

following information:

Line 1: Network name
Line 2: No. of pumps; No. of nodes (total); No. of fixed head nodes
(reservoirs); permissible final maximum change in head per iteration

in m (the 'error'); Darcy factor (assumed constant for all pipes);
Head at node 1 (which must be a reservoir) in metres. Note that in
numbering nodes, the fixed heads should be numbered first.

Line 3 and subsequent lines (one for each pipe): Top node No.;

Bottom node (the correct order is not important at this stage);
Length in metres; Diameter in metres; First estimate of head at
bottom node in metres; Drawoff at bottom node in m®/s.

Pipe data can be put in any order but every node in the system

should have its head and drawoff defined in the data input, i.e.
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each node should be a bottom node in at least one pipe. |f data
(head and drawoff) for any node is supplied twice thus it is only
the last data which is recorded. Drawoffs are ignored at fixed head
nodes. ‘
When the answers are printed, the top head node and bottom node
wili be in the correct order thus defining flow direction. The head

at the bottom node is also given.

H1=1000m (g) H2=998.5m
700m 500m .45

500m (.25
.08m*
> 0 m /s
400m 0.3
300m §.25
200m .25

0

0.1m*/s

Fig. 2.5 Network analysed by program

NEWTON-RAPHSON METHOD

Most methods of network analysis described here are based on a
linearization of the head loss equations. Even the Hardy Cross
methods are based on a linear increment in flow being proportional
to a linear increment in head loss. The method hereunder does not

require such a linearization by the analyst but a mathematical
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approximation to the non-linear head loss term is improved in steps
using linear increments. The Newton- Raphson technique is used to
solve the non-linear head-flow equations simultaneously for each pipe
in the network. The method is said by Jeppson (1976) to have rapid
convergence, but requires a close initial estimate of flows if
instability is to be avoided. It also requires relatively Ilittle
computer storage.

The method used in Chapter 1 to solve the Colebrook-White

equation for A, is based on the approximation
- Fix )
Xl = Xm T m (2.28)
F (xm)
where F (x) is the function of x to be solved (F{x) = 0) and F’ is

the differential of F with respect to x. Subscript m refers to the
m-th iteration. This equation comes directly from the first order
approximation

Fr(x ) = F(me

m X X
m+1 m

) - F(xm) where F(x =0 (2.29)

h+1)

The convergence is rapid because the error in the m+l-th
iteration is proportional to the error in the m-th iteration squared.
This is termed quadratic convergence. The method applied to the
simultaneous solution of a number of non-linear equations for heads

at nodes is demonstrated with an example below

(:) H=100m

H=80 m o
i 1000m x200mm @ 500m x150mm 00m x200m m

J

30 ¢/s

0.02LQ%*¢/s
DSm10002x (v /4)?

Head losses H

= 0.0325x10" ° LQ*/D°*(D in m, Q in 2/s, L in m)

1 1

*.Q = 5547h2p%2 /2
1
Q12 = 3.14 H122
1

Q23 = 2.16 H23%
1
Q34 = 4.96 H3472
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Set F2 = Q12-Q23 -30 =0 for flow balance at node 2
= 3.14(80—H2)%-2.16(H2—H3)% - 30
F3 = Q23-Q34 = 0 for flow balance at node 3
= 2.16(H2—H3)%—4.96(H3—100)%
%5% = 1.57/(80-H2)% - 1.08/(H2—H3)%
gg% = - 1.08/(H2—H3)%—2.48/(H3~100)%
Try H2 = 55m, H3 = 90m
Then H22 = 55 - 3.14(80—55)%;2.16(55-90)%—?0 = 56.06
1.57/(80-55)2%2-1.08/(55-90) 72
H32 = 90 - —2.16(55—90)%—4.96(90—100)% = 87.0

L 1
-1.08/(55-90)2-2.48/(90-100)2

Note (55-90)% is assumed to be —(90—-55)% etc. to account for flow
direction. The new heads can be re-substituted into the equations for
the next iteration and so on.

It will be observed that the resulting equations are in effect the
same as those for the node head correction method. I|f the basic
equations were written in terms of unknown flows instead of heads,

the resulting equations would be the same as the loop flow correction

equation (see Ch. 3). The equations may, however, be solved
simultaneously for all new flows instead of for one loop at a time
{Ch. 3).
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Network analysis by Node Head Correction-Program Output and Input

3256

FRINT "PIPE NET RNARL RBY NODE
HEAD CORR"
OIM KOS . LaoSas . So5a) . 00507 .

GL5@x, H(SEY . PCSAD
DISP "METWOREK HAME":
INFUT Ls$
G=9.8 + 32 IF FT-5 UNITS
DISP “HFIPES.NHODES,NRESS.EE
Rm.DRRCY ¢, TOPHm" ;

INPUT N1, HZ2.H3, HI F.H{L)

FOR J=1 TO N1 t FIXED HEADZ
NUMBEFRED FIRST

DISP "HODE1+.NODE2-.,Lm.Dm, IH
ITLHZ.0Zw3 s";
INPUT KLd . Lod?. X
S B2

H{L T J22=H2
PLLC ) »=02

FCAd=F

NEXT J

FOR It=1 TO 58 !
v=a

FOR J=1 TO Nt

IF H{EC > 2 <2HLC A
H{KCI32=H{LC 12+ .81

(S, DA, H2

MAX ITHNS

THEH tg@

IF HeR OO >=H(L (I3 THEN zz@
U=1.¢.3>

LCao=KCA2

KJa=U

HI=HKCIO Y —HOLO A )
BCAd=S@R{HIXDOC I :
GAF/7XCd)

NEXT J

FOR I=N3+1 TO N2

R=-P{I>

S=@

FOR 4=1 TO N1

IF K{J><>1 THEH 2338
R=R-QC.1>

S=84+4Q () CHOK A2 Y-H{LJD 23
GOTO 3enm

IF LC32<>1 THEHM 368
R=R+Q¢ 4}

S=S+Q{ I3 - THK (DD Y-HCL{dD 3D
NEXT

HCIX=H(I>+2%¥F~S

IF RBS(2X%R~-S><=V THEK 48a
U=ABRS(2%XR/SX

NEXT 1

IF U<H3 THEN 43@

NEXT 11
PRINT L%
PRINT *
3s8 HZM
FOR =1 T0O M1

PRINT USING 476 : K42, L(Jd),
HOA3,0C . QX HLC A D

iMAGE DOO.ODD, DDDROGC,. DD . ODOLD
D.DpDLO.DODDD . D

HEXT J

END

H+ H- ACMY DiM» QM

PIFE NET AHAL BY HODE HERD CORER
TESTRUHN

M+ H- LMy DMy HZM

1 4 7o 2ea a

2 4 56a 45 . =]

1 3 Sea 254 @91 994 .2

4 I 6AB 156 alg 994 &

2 5 Zea 25 193 990 3

& 5 588 | z2o6 BA41 998 3

4 & 480 | F@a 144 233 8

&€ 7 2@ 256 _@3% 9911
NETWORE NAME?
TESTRUN
HF IPES. NNODES, NRESS . ERPm, DARCY § .,
TOFHmM?
2.7.2, 815, 1088
NODE1+. NDDE'—,Lm,Gm IHITLHZ . ¢Z2m3
<57
1.4,7B0, . 2,337, .68
HODE1+, HODEZ- . Lm.Dm. INITLHZ. 22m3
s5?
4,2.,508, 45,993 .5.8
HODE1+.HODEZ2~.Lm:Dm. INITLHZ. Q2m3
-
i.3,588, 25,995.9
NODE1+,NODE2—-.Lm.Dm. INITLHZ,G2m3
-3
3.4.6088, 15,997,858
HODEL+ . NHODEZ—.tm. .Dm. INITLHZ., G2r3
57
3,5.38@. . 25,9%2. .15
NODE 1+, NHODEZ= . Lm,Dm. INITLHZ, @2m3
/57
5,6,3%84, . 2,934.8

NODE1+,NODEZ-.Lm.
~572

4,5.488, 2,996.8

NODE1+. NDDEd—.Lm:Dm,

s

6,7.2688, 25,987, .1

Dm .

IHITLHZ . @2m3

INITLHZ, 02m3
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CHAPTER 3
LOOP FLOW CORRECTION METHOD OF NETWORK ANALYSIS
INTRODUCTION

An efficient method of analysing the flows in pipe networks was
developed by Hardy Cross (1936). The numerical method can be
performed manually or by computer and is one of the most rapid
methods of manually estimating flows and head losses in a network:
with closed loops. By closed loops it is implied that there are
alternative routes supplying any of the (known) drawoffs from the
system. Provided the loops are selected judiciously the number of
iterations may be considerably less than the number of individual
pipes in the network and convergence is rapid.

The method suffers the disadvantages that the network has to be
drawn in the form of a number of closed loops or routes and initial
flows have to be‘estimated such that flows balance at each node or
intersection. There are further complications when more than one
reservoir or fixed head is included or when branch pipes feature.

Pipes join nodes or junctions and drawoffs should be taken from
the nodes. The number of nodes should be minimized to minimize the
number of pipes in the network. This may be done by lumping a lot
of drawoffs, e.g. from a block of houses, together and taking them
off a central point. Where local head losses are important the
number of nodes may not be able to be reduced much. On the other
hand, the longer the lengths of individual pipes the more rapidly

data assembly and analysis can be done.
METHOD OF FLOW CORRECTION

The method requires an initial realistic estimate of flows which
are successively corrected. Corrections are made in steps to the flows
in closed loops, using a relaxation or converging iterative method.
The basis of the correction is derived as follows. A first order

approximation to the differential of the head loss equation is made:
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Assuming h = kLQ"/D™ (3.1)

Then dh = KLn@" 'aa/p™ = (nh/Q)da (3.2)

The total net head loss around any closed loop should be zero
and if it is not, the head losses are incorrect and should be

adjusted by dh:

Then s(h+dh) = 0 (3.3)

th + Zdh = 0 (3.4)

th + zZ(nh/Q)dQ = 0 (3.5)

AQ = -3h (3.6)
nz{h/Q)

If the Darcy-Weisbach equation is used for head losses, n=2 and
m=5, whereas the Hazen-Williams equation would give n=1.85 and
m=4.85. Some degree of freedom is available in selecting n. It may
also be noted that Q and h may be in any units, e.g. €/s and m
respectively.

Barlow and Markland (1969) showed how a second order approxi-
mation to the differential produced a more rapid convergence.

Steps in analysis may be set out as follows (Instn. of Water
Engineers, 1969);

1. Draw the network plan to a clear scale and set all data such as
pipe lengths and diameters, reservoir heads and drawoffs on the
plan. In fact it is often convenient to set the calculations out
on such a plan.

2. Number the closed loops consecutively and mark positive direc-
tions, e.g. clockwise.

3. Starting with any pipe in any loop, assig'n an arbitrary but
sensible flow and flow direction to this pipe. Repeat for an
adjacent pipe taking care that the flow balances at the
intermediate node, i.e. net inflow to less drawoff from each node
must be zero. Proceed thus through the network allocating flows
to each pipe. The number of assumptions necessary will equal
the number of inner loops, i.e. a new flow will have to be
assumed at each new loop. The more accurate the initial
estimates of flows the speedier will be the solution.

4, Calculate the head loss in each pipe using a formula of the form
h = kKLQ"/D™. Also calculate the term h/Q for each pipe

retaining the positive value of h and Q in this case.
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5. Select a loop such as the most prominent one if performing the
analysis manually, or proceed in numerical order starting at
loop 1 if using a computer. Calculate the net head loss around
the loop, adding head drops, or subtracting head increases if
the flow is in the adverse direction.

6. |If the net head loss around the loop is not zero, correct the

flows in each pipe in the loop using the formula

AQ = -Zh/ni(h/Q). (3.6)

7. Repeat steps 5 and 6 for each loop.

8. Repeat steps 4 to 7 until the head losses around each loop
balance to a satisfactory degree or until the flow corrections are
negligible. »

9. Calculate the head at each node by starting at a known head
point and going from pipe to pipe. Compare the heads at each
node with ground levels to determine the residual pressure head.
It is easier to estimate head losses from a head loss chart than

to use an equatisn if the procedure is done manually. The value of

n can also be set at 2 for ease of manual computations.

If h (and consequently Q) works out at zero for any pipe during
the computations, h/Q should be assumed to be zero in calculating

Ih/Q for the corresponding loop or loops.
LOOP SELECTION

It is most convenient to select and number consecutively loops
adjacent to each other when proceeding across the network. This is,
however, not necessarily the method which will result in most rapid
numerical convergence when correcting flows. By carefully designat-
ing loops the convergence can be speeded up. Remember a correction
can only proceed at the rate of one loop at a time through the
system.

It is often convenient to have some of the loops embracing the
larger pipes, i.e. cutting across small minor loops. Alternatively the
outer pipes can be imagined as a loop turned inside out. The space
outside the network thus has a loop number. The method will work
whether or not such additional loops are included. If a pipe is
identified by two loop numbers then it is necessary to number the

outer loop.
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The procedure of identifying pipes by the loops they separate
may also be used to indicate the direction of flow. [f all loops obey
a sign convention such as clockwise positive, then the loop in which
the flow is in the positive direction can always be given first when
identifying a pipe and its flow direction.

When computing the flow correction for successive loops, the head
loss calculation and flow corrections may be made for one loop at a
time, or else all the flow corrections may .be computed before
correcting all the loop flows together. The former procedure is
easiest to computerize whereas the latter procedure is often the
easiest when doing the calculations manually. Careful attention has
to be paid to signs and directions, however, or else the flow

balance can be lost for some of the nodes.
MULTIPLE RESERVOIRS

The loop network method becomes tr;icky when more than one fixed
head reservoir is incorporated in the pipe network. The simplest
method of coping with multiple reservoirs is to insert a dummy pipe
connecting the reservoirs (one dummy pipe per additional reservoir
above one}. One additional loop is thereby created per dummy pipe.
The length and diameter of dummy pipes may be selected arbitrarily
and the estimated flow in a dummy pipe should correspond to the
head difference between the reservoirs it connects.

The flow and head loss in the dummy pipe are taken into account
in calculating th and 1h/Q around the respective loops, but the flow
is not corrected in dummy pipes when the flow correction is made

around the relevant loop.
BRANCH PIPES

Although predominantly tree-like networks without closed loops
can often be handlied most efficiently using the node head correction
method, it is possible to include branch pipes in the loop method.
The flow in an isolated branch pipe should be pre - defined (unless
the branch connects a reservoir when it will be incorporated in a
loop with a dummy pipe). Therefore the head loss can be estimated

without resorting to iterations except if it is a compound pipe made
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up of a number of diameters in series. Even then, equivalent pipe
methods are possible.

In general either the head at a node, or the drawoff, can be
defined. In either case the other variable has to be calculated in
the network analysis.

The method of including branch pipes with defined flows in a
network programme is to ascribe arbitrary loop numbers greater than
the number of real loops to the branch pipe, and not correct the

flows in those loops.
PUMPS AND PRESSURE REDUCING VALVES

Pumps may be assumed to increase or boost the head in a pipe in
one direction by a specified amount. Pressure reducing valves, on
the other hand, may reduce the head by a specified head and can
be treated as a negative pumping head. (If either operates to give a
fixed total heads at a point that point may be treated like a
fixed-head reservoir).

A pumping head would be included in an analysis by subtracting
head generated from the friction head drop if proceeding around the
loop in the direction of positive flow in the pipe with pump. If the
flow is against the pumping head add the friction head and
pumping head. This pumping head is included in £h but not in £h/Q
when proceeding around the loop. The computation for Q is then as
before.

Where a preset valve or fitting in a pipe causes a head loss in
the direction of flow the fitting can gener‘élly be converted to an
equivalent length of pipe and added to the real pipe length. Thus if
the head loss through the fitting is KV?/2g and the friction head
loss in the pipe is (x» L/D)V®/2g, then the equivalent additional
length of pipe is '

AL = KD/x (3.7)
If the pumping head is a function of the flow rate, e.g.
_ 2
hp =a, + a1Q + azQ (3.8)
where ag = the pump shutoff head and a, and a, are pump
constants,

then equation (3.6) will be replaced as follows:
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The revised Q, = (@ + da) (3.9)

For any pipe head drop h = kLa"/oM - ao—a]Q—azQ2 (3.10)

or if h is the uncorrected head drop,

h+dh = KL(Q"+n Q”“dQ+...)/Dm-aO—a1(Q+do)-a2(oz+2QdQ+...) (3.11)

The total head drop around a loop must be zero:

Z(h+dh}) =0 (3.3)

Hence da = - KLQ"/DM-ag-a;0-ay0f) (3.12)
ni KLQn_1/Dm—a]—2Qa2

or ag = ~Ehehp) (3.13)

n h > +
z ( f/Q) (a1 2Qa2)
PRACTICAL DESIGN

The water engineer may be required to analyse a pipe network to
check flows or heads. He may have to check pressure heads for aged
networks to see if they are sufficient, or to re-analyse a network for
a revised demand pattern. Alternatively the system may have been
designed to cope with a certain demand pattern and abnormal
conditions have to be checked. For example, design of pipe sizes
may have been based on peak period drawoffs, but an abnormal load
may come on the system when a fire hydrant is operated. Then lower
pressures generally may be tolerable provided the fire demand is
met. For example spread over a township, peak house demands may
be assumed to be 0.1 £/s whereas individual fire hydrants may have
to deliver more than 10 2/s.

Pipe sizes have to be selected by trial and error. The network
will be analysed for each assumed pipe network layout and pipe
diameter until a satisfactory arrangement is at hand. Generally a
tree-like network with a radiating distribution of pipes becoming
smaller in diameter towards the tips is the most economic, but closed
loops are required for security in case pipes are damaged or taken
out of commission. The tree - like network with consequent known
flows can be optimized using linear programming methods but trial
and error design is necessary for looped systems. As a guide the
head loss gradients should be lesser the larger the pipe diameter or
flow, but care is necessary to ensure pressures are not too high in

valleys(e.g. 100m upper limit for household fittings) or too low at
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high points (e.g. 15m lower limit for residential areas). In
undulating areas, pressure reducing valves may be required to meet
these pressure |imits, or many reservoirs could be used to supply

separate zones.

COMPUTER PROGRAM FOR LOOP FLOW CORRECTION METHOD

The accompanying computer program in BASIC language is based
on the loop flow correction method. It is adapted to suit a HP-85
computer and as the program stands it can handle 50 pipes. No
pumps are permitted. It is in S| units (metres and seconds) but by
adjusting G from 9.8 to 32 it may be run in ft-sec units. Also where
m is indicated in the printout, ft should be assumed if calculations
are to be in ft-sec units.

The Darcy head loss equation is used with a constant friction
factor X (equivalent to f in North America). The symbol F in the
program represents A and is assumed the same for each pipe. » and
pumping heads could in fact be read for each pipe but this would
increase data input.

Input requested interactively is:

Line 1; Name of system

Line 2; No. of pipes; No. of loops; No. of reservoirs; Error
permitted in m®/s; Darcy friction factor.

Line 3 (One for each pipe starting with dummy pipes); Positive

etc. loop; Negative loop; Length (m); Diameter (m); Initial

estimate of flow (m®/s).

Running time is roughly 1s per 3 pipes per iteration.



Fig. 3.1 - Loop flow correction network analysis

h = 0.015L Q/2gD* (3)*1000?
(h in.m, L inm, Q in 2/s, D inm
. h = 1.24 x 10°LQ*/D*

Fixed head
60m
] 2000 x 0.3m
o
e T2OT5 0T
101 11 0.1
h h
Q _h h/Q 98 1%6 78 018
309703 | 68 13 0.2
49 20 0.4 ¢ fzz:) 67 c
o w
52 8/s o o~
. th th/Q ~zh/2:h/Q e
'4'2’ '|'[ - x
g| 4 07 -3 EFI7Z T3 -
g Shszs--2
3)  1000m x 0.15m (3} 2000m x 0.2n 100 &/s
285 08 5 % 0
50 &/s 100 67 40 0.6
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Computer program for Hardy Cross Loop Method with Output and Input

16 FEINT "FIPE NET RNHAL DSNG H- 226 FOR J=1 TO N1
C LOOF MTD" S33 PRINHT USIMG 5S40 5 E<Cdrx.L<dh.

2 DI K(SAx . Lo SE XOSan, 005, R S L R L P A,
QeSas . HeSE L F a0 S4@ IMAGE 0DD. DDD.ODODD. DD . 00D, D

30 DISF "HETHORE HAME": 0.00D,DOD O

4@ INFUT L% 5368 NEXT J

5@ G=9.% t 32 1F FT-§ UNITS 5668 END

68 DISP "NPIPES HLOOPS,NRESS.ER
m3/s,DARCY {%; FIFE HET AMAL USHG H-© LOOP MTD

7@ INPUT NI1.NZ.NZ.01.F TESTLOOF

g@s FOR J=1 TO N1 ' pUMMY PIPES L+ L-  Him» Dim> omlss Him?
JOIHING RESS FIRST 1 4 188 16x  @ie 1 Z

9@ DISP "LOOF1+,LO0P2—,Lm.Dm. 12 2 1 FR@ 208 @3z Z.&
It 4 2 S5e@ 2SR @9z 5.4

188 INPUT Ko > LOdy . ¥edn, 0odr, 00 2 I gpA 158 @16 2.5
13 4 3 30 256  18% 4. &

118 IF @oJdy THEN 138 2 4 Sae  2ee @41 3.2

128 GCJr=0 1 4 Sp@  45p  2@E | .4

1368 FClr=F 3 4 4808 IAae 141 4@

149 H(II=FCAXHCDEQC D A2 2,677 5 S5 ze@ 25 189 .S
@5~2/0(13"~5

156 NEXT J

168 FOR It=1 TO S@ 1 MAX ITHS HETWORK NAME?

178 V=0 TESTLOOF

189 FOR I={ TO NZ HPIPES.HLOOPS . NRESS.ERm3 s, DARCY

186 R=8 £7

280 5=A 9.4.2. 861, 315

218 FOR J=1 TO Nt LOOP1+.LO0FPZ-.Lm.Dn, IGn3. =7

239

248
256
260
278
289

z2aa
3aa
318
328
338

356

516

IF K< T THEM 27a

HCA»=F e A3¥%CDFRDCIIAZ222767 .7

e5~Z/DC A2 ~5

R=R+HY 1>

S=S+H{ ) - 1D

GOTO 318

IF L4J><>1 THEHWH Z1@
HEJp=F{ID¥RCXQCI3 2267,
85+2<0C I "5
R=R-H{.J2
S=S+HCJ3 -0 LD
NEXT J
T=—(Rs5/2}

FOR J=N3 T0 H1i
IF K(J4><>T THEM
QCJI=QCIO+T
GOTO 39@

IF L{JA><>1 THEM
R{dr=0¢CJI3-T

IF R¢J)>=B THEN
B dr=—01LID

U=L <)

LC =KD
K(JSr=U

IF RBS(T>»<=Y THEN 468
V=RBS{T?

NEXT J

HEXT 1

IF V<R1 THEH 506
NEXT It

PRINT L%

PRINT " L+ L-
375 Himo>"

XCm>» Dim>

Gm

1.4.10, 1, @1
LOOFP1+.LGOP2-.Lm.
2:.1.7@83, 2,8
LOOPL+,LO0P2Z-,Lm.
4,2,588, 25, 1%
LOOF1+.L00OP2-.Lm.
3.2.,680. 15,4a
LQOP1+,L00PZ—,Lm.
4,323,300, .25, .18
LOOP1+.L00P2~.Lm.
4,3,9048, 2. @3
LOOPL1+, LOQFP2-,Lm.0Om.
1.4,586, 45, 15
LGOP1+.LO0OP2-.Lm,0Om. IOm3-=7
2.4.4@1, 2. @7
LODP1+,.LOOPZ—.Lw.0n. IGm3 =7
59.5,288, 25, .1

ey

O, IGmZ- =7

Om.IDm2 =7
Dm. IGm3- =72
Om. IBn3 =2
Om. IGm2/s?

IdmI- =2
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pseudo~pipe with head loss=H1-H2
VN ~

Ve AN N
/ 10Qm\_Q\] N\
-~ : \
/ ~ Loop(1)} + \x \
/ Y NLOT Y\
/ \
/ H1=1000m 2 ) H2=998.5m
/ \s00m 0.45
/ .]5-‘initia1 assumed flows
500m (.25 |for loop method (ch 3)

3
) 0/.08m /s

0.1m% /s

Fig. 3.2 Network analysed by program using {oop method
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CHAPTER 4
LINEAR METHOD
INTRODUCT ION

The trial and error and relaxation methods of pipe network
analysis were originally developed for manual solution. Calculations
proceed from one pipe to the next in a routine manner and large
matrices or solution of simultaneous equations are not required. The
methods suffer disadvantages such as poor convergence for some
systems unless improved solution methods are used (e.g. Barlow and
Markland, 1969). With the development of digital computers came
methods of inversion of matrices and methods of solution of sets of
linear equations, e.g. Gauss' method of elimination. Rapid conver-
gence of non-linear equations, employing numerical method such as
that of NewtoniRaphson (e.g. Martin and Peters 1963) is also
possible.

The possibility of solution of a matrix of equations for pipe
networks relating flows to head losses and including flow balance at
each node thus arises. Except for laminar flow which is rarely
encountered in waterworks practice, the flow-head loss relationship
for pipes is non-linear. This makes the establishment and solution of
linear simultaneous equations difficult. A method of converting the
equations to a linear form was proposed by Wood and Charles (1972).
The linearization makes matrix solution of a set of simultaneous
equations relatively easy. The linear form of head loss-flow equation
is in fact an approximation to the true -equation and the
approximation is improved iteratively by substituting revised flows
into a 'constant' in the head loss equation. The Ilinearization
techniques can be applied in solving for flows around loops or heads
at nodes (lsaacs and Mills, 1980). A comparison of the various
methods was made by Wood and Rayes (1981). Although the linear
method reduces computational effort, it - can result in oscillating
solutions and averaging methods may be required to speed
convergence (Wood and Charles, 1972). There are also problems of
convergence for the node method where some pipes have low head

losses, as for the node head correction method of Hardy Cross.
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In general a set of equations is establiished as follows:

At each node, for continuity

n. = drawoff (4.1)
in

There are | equations for j 'closed' nodes or junctions. That is
only nodes which can vary in head are considered thus, and
junctions where the head is fixed have to have a variable volume.

For such nodes the continuity equation becomes
AtEQin = increase in volume stored (4.2)

If the relationship between volume and head is known this could
be utilized but it is common practice to assume reservoir levels are
fixed, that is for steady state conditions volumes are assumed
constant. Therefore the mass balance equations at reservoirs or
fixed head nodes are not required as the number of variables in
the networks is reduced by the number of fixed head reservoirs.
Alternatively the above equation is replaced by one of the form for

each known head junction .

H = constant
There are also i equations (one for each closed loop) of the

following form
th =0 (4.3)

where h is the head loss in a selected direction in one pipe
forming the loop, i.e. the net head loss around each closed loop
must be zero. Now each head loss h is related to the flow rate in
the pipe, Q, by an equation of the form

n

h = KQ (4.4)

so that heads can be replaced by the term involving Q for each
pipe. It can be shown that in a network with i pipes, j nodes and

m loops, (only counting internal loops)

i=j+m-1 (4.5)
This holds for all networks with closed loops as well as open
tree-like branches. There are j - 1 continuity or fixed head

equations (the additional one is redundant) and m loop equations,
thus giving a total of i equations for i unknowns if flows are used
as the unknowns. The jf equations for known heads can be omitted

where jf is the number of fixed head nodes.
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omitted where jf is the number of fixed head nodes.

Alternatively, if heads at nodes are regarded as the unknowns
there are | equations for nodes, where each flow Q in m pipes is
replaced by (h/K)Vn.

There are m equations retating head loss to flow in the pipes,
so that once the Q's in the head loss equations are replaced by H1
- HZ the number of equations is still j for solving for j unknown
heads.

Unfortunately, except in laminar flow situations the equations
relating h and Q are non-linear so direct simultaneous solution of
both the node equations and the loop flow equations is difficutlt.
There is no easy method of solution of non-linear simultaneous
equations and trial and error or numerical methods usually have to
be employed. The method used here, the linear method, is to
approximate the head loss equations by linear equations and then
they can be solved simultaneously by various methods. Where
computer storade is no problem, Gauss elimination is an efficient
method, and if storage is limited but computing time is readily
available, successive approximation, e.g. successive over-relaxation

and Newton Raphson methods can be employed.
LINEAR METHOD APPLIED TO LOOP FLOWS

If the head loss in any pipe can be expressed by an equation

such as

h, = K.Q." (4.6)

h. =K.Q n-lg. - K’Q, (4.7)

where Ki is a function of the length of pipe i, its diameter and
roughness, Qi is the flow rate and Qio is the flow rate indicated
by the previous iteration. Both Qi and hi are unknowns for each
iteration and a set of equations relating flow and head loss is
established:

Around each loop, Zhe =0 (4.8)
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i.e. IK. Q. =0 (4.9)

and for each node j: ZQij = qJ. (4.10)

where Qij is the flow in pipe i to node j, Qim is the flow in pipe i
in loop m and qj is the drawoff at node j.
If there are i pipes, j nodes and m loops, then it was stated that

=]+ m -1 (4.11)

There are | node equations and m loop equations so there are
i+1 equations in total of which one is redundant so one can solve
for i flows. The resulting set of linear equations has to be solved
a number of times. Each time, new QIIS emerge and the Ki"s are
revised (improved) before re-solving the equations. Initial flow
rates have to be estimated prior to the first solution of the linear
equations.

Although the above method converges fairly well the following
method is easier to visualize and is explained in more detail.

A

LINEAR METHOD FOR NODE HEADS

In this case the Darcy head loss equation will be used to

simplify the calculations. The friction loss equation for a pipe is

then written as QU.IQU.I = hij/Kij where Qij is the flow from node i
to node |, hij is the head difference between i and | and Kij =
N s g2 . . . 3 .
8 iJ.Zij/gdijﬂ I f Qijo is an approximate solution to QIJ (obtained
from a previous iteration or from an initial estimate) and if one
substitutes cij = 1/(Kij|Qijo|)’ then a 'linear' equation results;
Q.. = C..h. . (4.12)
ij ijoij

Substituting into the continuity equation at each node j,

IQ.. = q. (4.13)
1y qJ

:C..h.. = q. 4.14
TS ( )

Replacing hij by Hi_Hj

2(C, H.-C. H.) = qg. (4.15)
tyo (] J

Hence Hj = IC, H.-q, (4.16)

ol
tC

One has J linear equations (equal to the number of variable
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head nodes) for J unknowns (the heads H at each node). The
equations can be solved by various techniques, e.g. Gauss elimina-
tion method, or the Gauss Siedel iterative method. A successive
over-relaxation method is employed in the accompanying computer
program as it requires |little memory whereas a matrix would
require a large computer storage capacity.

To avoid overshoot an averaging procedure can be introduced
after each step,
HJ.' = WHj1+(1—W)Hjo (4.17)

where 0 <w <1 and subscript o refers to the previous HJ and 1 to
the recent Hj'

After solution of the equations for each Hj’ flows Qij in each
pipe are calculated and then each Cij' The linearization procedure
is then repeated and a new set of equations solved for the heads at
each node Hj' The procedure is repeated until convergence is

satisfactory.
Pumps

If a pump in a line generates a specific head, hp’ then the
head loss is Hi—Hj+hp. Equation (4.10) is therefore replaced by
IC. . (H.-H.+h = . 4.18
IJ( i, p) a; ( )
IC..(H.+h_)-q.
P p) 9
i iC. .
1)

If the pumping head is a function of the flow rate, the convergence

(4.19)

can be slow.
COMPUTER PROGRAM FOR LINEAR METHOD

A  BASIC program is presented. The program is written to
minimize data input. Thus no pumps or pressure reducing valves
are possible as the program stands. Also the Darcy friction factor
is assumed constant. In fact it could be varied from pipe to pipe
and with Reynolds number and pipe roughness with small

modifications, but the former would increase input and the latter



50

would increase computational time.

A great advantage is that no initial flows or heads need be
assumed. Flows are initially set to correspond to unit velocity
and the corresponding heads are calculated at successive nodes.
This procedure can lead to slow convergence for some cases but
is in fact one of the main advantages of this method.

Input and output are in metres and cubic metres per second.
The input is prompted at each line. Typical running time on an
HP85 is 5s per pipe and the number of pipes could be increased
above 30 by altering the dimension statement.

The appended program follows the procedure qescr‘ibed previous-
ly. The variable names used follow the nomenclature used in the

above section in general., Although data is in S.l. units here it

will also work in ft- s units if G is altered to 32.2 (line 69 of
program}). It should be noted that the speed of the program could
be improved for large networks if the iterations between lines

360 and 410 were limited to the pipess connecting to that node.
This would require a new dimensioned variable for each node and

a connectivity search. -

Description of Variables in Program

C(K) SD/FX

Cc2 Sums H(l) for each S$.0.R. iteration

C3 Sums AF

D(K) Pipe diameter {(in m)

D2 Holds the old value of H(l) to com-
pute AH

F(K) Darcy friction factor F of pipe K

F1 Darcy friction factor for all pipes

H(1) Head at junction

| Node counter

J Number of nodes in system

J1(1) Joint beginning number

J2(1) Joint end number

J3 Number of fixed head nodes (Number-
ed first)

K Iteration counter

L Node counter

M Pipe counter

NO Maximum number of main iterations
e.g. J+t5

N1 Maximum number of S.0.R. iterations
within each main iteration e.g. ]+10

N2 Counts the number of main iterations

N3 Counts the total number of S.0.R.

iterations



Q(K)
Q1
Q2(1)

S2(1)

S3
S4(l)

S5
TO

T1

X(K)
Data Required

Line 1:

Line 2:

Line 3 to J3+3:

(J3 lines)
l.ine 4+J3 to 4+J3+P:

General Comments
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Number of pipes in system
Flow in pipe m®/s
Drawoff in m’/s
Drawoff from junction (+ve out of
junction)
gr’/8
LK. .

1J
Counts the number of H(!)'s
LK. . H.

(]
Holds old Q(K) value for calculation of
average of old value and continuity value
Tolerance on head calculation in F e.g.
0.0001
Tolerance on S.0.R. loop in metres on
heads e.g. 0.01
S.0.R. factor w e.g. 1.3m. Must be
between 1 and 2.
Pipe length {(in m)

Heading. This can be any alphanumeric
expression up to 18 characters long. Will
be printed out at head of results.

P : Number of pipes

J : Total number of junctions or nodes
J3 : Number of junctions with fixed heads
F1: Darcy friction factor, assumed the

same for all pipes e.g. 0.015

J(1): Head at successive fixed-head nodes
(which must be numbered first)

(P lines, in order such that any node
except fixed head is referred to first as
a J2 then as a J1)

JI(K): Joint begin no.

J2(K): Joint end no. Make sure each node
is an end number at least once to
allocate a drawoff.

X(K): Pipe length (in m)

D(K): Pipe diameter (in m)

Q2(J2(K)): Drawoff from end node (in
m3/s); if this information is read twice
the last value is retained.

Generally the linear method converges in far less iterations than

the Hardy Cross method. Between 4 and 10 successive approximations

to the flow is all

to 100 pipes. The

is reguired even for networks involving up

snag is the solution of large numbers of
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simultaneous equations. |If successive over-relaxation is used at
least that number of substitutions may be required.

The initial flow assumption may be critical in some cases. The
program assumes a velocity of 1m/s and calculates the correspond-
ing flow rate in m®/s for each pipe. The initial heads at each node
are also based on this assumption and these values are used to
start the SOR improvement of head at each node. When data for
each pipe are read into the computer the head at the assumed
downstream node is calculated on this basis provided the
upstream head is known. Hence the order in which data are supplied
should be such that the assumed upstream node head has been
calculated, or supplied in the case of reservoirs. Wood and Charles
(1972) use a unit flow rate in each pipe for the first estimate but
this can lead to large errors especially if the pipe diameters vary
widely. Alternatively it could be assumed to start that flows are
taminar.

Although the convergence is fairly raSid, it has been observed
that successive trials oscillate about the final value. To overcome
this the next approximation can be taken as the mean of the

previous two values (whether flows or heads are the unknowns) .

Computer Program for Linear Method Network Analysis with Output

and Input (same example as in Chapters 2 and 3).
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CHAPTER 5

OPTIMUM DESIGN OF BRANCHED PIPE NETWORKS BY LINEAR
PROGRAMM | NG

INTRODUCTION

In the previous chapters the pipe diameters, lengths and layouts
were assumed known and the corresponding flows and heads were
computed.. Design of pipe networ‘i(s could only be undertaken by
trial. The design problem is not as easy as the analysis probiem. In
the next two chapters approximate methods for direct design of pipe
networks are given. Economics dictates the most practical design in
each case.

Linear programming is a powerful optimization technique, but it
may only be used if the relationship between variables is linear.
Linear programming cannot be used for optimizing the design of pipe
networks with closed loops without resort to successive approxima-
tions. It can be used to design trunk mains or tree-like networks
where the flow in each branch is known. Since the relationships
between flow, head loss, diameter and cost are nonlinear, the
following technique is used to render the system linear: For each
branch or main pipe, a number of pre-selected diameters is allowed
and the length of each pipe of different diameter is treated as the
variable. The head losses and costs are linearly proportional to the
respective pipe lengths. Any other type of linear constraint can be
treated in the analysis. It may be required to maintain the pressure
at certain points in the network above a fixed minimum (a linear
inequality of the greater-than-or-equal-to-type) or within a certain
range. The total length of pipe of a certain diameter may be

restricted because there is insufficient pipe available, etc.
SIMPLEX METHOD FOR TRUNK MAIN DIAMETERS

The following example concerns a trunk main with two drawoff
points. The permissible diameters of the first leg are 250 and 200
mm, and of the" second leg, 200 and 150 mm. There are thus four
variables, X1, X2, )(3 and X4 which are the lengths of pipe of
different diameters. This simple example could be optimized by

manual comparison of the cost of all alternatives giving the correct
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head loss, but linear programming is used here to demonstrate the

technique.

H=10m
B 26 /s 1% (s
RESERVOIR
H=5m
LENGTH m 500 £00
FLOW Us &0 . 14
DIAMETER mm 250 200 200 150
UNKNOWN LENGTHm X X, X3 X,
OPTIMUM LENGTHm 50 450 0 400
HEAD LOSS m 012 3.2 0 1.68 TOTAL 5.0
Fig. 5.1 Least-cost trunk main by linear programming.

The head losses per 100 mm of pipe and costs per m for the
.
various pipes are indicated below:-

TABLE 5.1 Pipe Diameters and Costs

Diameter Head loss @ 40 £/s @ 14 2/s Cost
mm m/100 m m/100 m $100/100m
250 0.25 5
200 0.71 0.1 4
150 0.42 3

The linear constraints on the system are expressed in equation
form below and the coefficients of the equations are tabulated in

Table 5.3 (1). Lengths are expressed in hundred metres.

TABLE 5.2 Constraint Equations

Lengths >(1 + x2 = 5
X3 + )(4 = 4
Head Loss O.ZSXI + O.71>(2 + 0.1)(3 + O.AZXA =5

Objective Function: SX1 + 4)(2 + 4)(3 3)(4 = min.
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The computations proceed by setting all real variables to zero, so
it is necessary. to introduce artificial slack variables into each
equation to satisfy the equality. The slack variables are designated
a, b and c¢ in Table 5.3(1), and their cost coefficients are set at
very high values designated m. To initiate the solution, the slack
variables a, b and ¢ are assigned the wvalues 5, 4 and 5
respectively (see the third column of Table 5.3(1).

The numbers in any particular line of the main body of the table
indicate the amount of the program variable which would be
displaced by introducing one unit of the column variable. Thus one
unit of )(1 would displace 1 unit of a and 0.25 units of c.

To determine whether it is worthwhile replacing any variable in
the program by any other variable, a number known as the
opportunity number is calculated for each column. If one unit of )(1
was introduced, then the cost would increase by (5 - (1 x m) - (0 +
m) - (0.25 + m)), which is designated the opportunity value, i.e.
the opportunity value for each column is calculated by multiplying
the entries in that column by the corresponding cost coefficients of
the program variable in the second column and subtracting the total
thus formed from the cost coefficient of the column variable. The
most profitable variable to introduce would be XZ’ since it shows the
greatest cost reduction per unit {or negative opportunity value). The
)(2 column is now designated the key column. The key column is that
which shows the lowest opportunity value (in the cost minimization
case). Only one variable may be introduced at a time.

To determine the maximum amount of the key column variable
which may be introduced, calculate the replacement ratios for each
row as follows:-

Divide the amount of the program variable for each row by the
corresponding number in the key column. The lowest positive
replacement ratio is selected as that is the maximum amount which
could be introduced without violating any of the constraints. The row
with the lowest positive replacement ratio is designated the key row
and the number at the intersection of the key column and key row,
the key number.

A After introducing a new variable, the matrix Iis rearranged
(Table 5.3(11)) so that the replacement ratios remain correct. The

program variable and its cost coefficient in the key row are replaced
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TABLE 5.3 Linear programming solution of pipe problem

| Variable
Cost coef.
C;gg gz:; Amt . X1 )(2 X3 XA a b c
* * 5 4 4 3 m m m
a m 5 1 1 1
b m 4 1 1 1
c m 5 0.25 0.71 0.10 0.42 1
OPPORTUNITY
VALUE : 5-1.25m 4-1.71m 4-1.1m 3-1.42m 0O 0 0
KEY COLUMN
11
1 X2 X3 X4 a b c
4 4 3 m m m
)(2 4 5 1 1 1
b m 4 1 1 1
c m 45 1-0.46 0.1 0.42 -0.71 ]
.
1+0.46m O 4-1.1m 3-1.42m 1.71m-4 0 0
L X X X X b c
1 2 3 4 a
5 & 4 3 m m m
X2 4 5 1 1 1
b m 0.55 . 0.76 1.69 -2.38
X4 3 3.45 1.1 0.24 1 -1.69 2.38
1.1-1.Im O 3.28-0.76m O 1.1-0.69m 3.38-8.2
v
X1 2 X3 Xh a b c
5 4 4 3 m m m
X2 4 4.5 1 -0.69 1 2.16
X1 5 0.5 1 0.69 1.52 -2.16
X, 3 4 1 1
4
0 0 Q.31 0 m- m m-

(NO FURTHER IMPROVEMENT POSSIBLE )

Repl .
ratio

5/1%
5/.71

*key
row

w &
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by the new variable and its cost coefficient. The amount column as

well as the body of the table are revised as follows:-

Each number in the key row is divided by the key number.

From each number in a non-key row, subtract the corresponding
number in the key row multiplied by the ratio of the old row number
in the key column divided by the key number. The new tableau is
given as Table 5.3(11).

The procedure of studying opportunity values and replacement
ratios and revising the table is repeated until there is no further
negative opportunity value. In the example, Table 5.3 (1V) shows all
positive opportunity values so the least-cost solution is at hand
(indicated by the current program variables and their corresponding
values).

The reader should refer to a standard textbook on linear
programming (e.g. Dantzig, 1963) for a full description of the
technique. There are many other cases a few of which only can be
mentioned below:

(1) If the constraints are of the < =(less-than-or-equal- to) type
and not just equations, slack variables with zero cost
coefficients are introduced into the |.h.s. of each constraint to
make them equations. The artificial slack variables with high
cost coefficients are then omitted.

(2) If the constraints are of the> =(greater-than-or- equal-to) type,
introduce artificial slack variables with high cost coefficients
into the l.h.s. of the constraint and subtract slack variables
with zero cost coefficients from each inequality to make them
equations.

(3) If the objective function is to be minimized, the opportunity
value with the highest negative value is selected, but if the
function is to be maximized, the opportunity value with the
highest positive value is selected.

Note all variables are assumed to be positive.

(4) The opportunity values represent shadow values of the
corresponding variables i.e. they indicate the value of
introducing one unit of that variable into the program.

(5) If two replacement ratios are equal, whichever row is selected,
the amount of program variable in the other row will be zero

when the matrix is rearranged. Merely assume it to have a
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very small value and proceed as before.

NETWORK DESIGN

Most networks can be simplified to a tree-like network with known
design flows. The most economic network is in fact a tree-like
network and loops are purely for backup. In tree-like networks the
pipe legs can be made up of lengths of commercially available
diameters with costs and head losses per metre or kilometre inserted
as a function of flows beforehand. The range of diameters can be
limited by experience.

Example - Determine the least-cost pipe diameters for the network

illustrated below

X1 H=50m
Pipe bore, mm ¢350
Head Toss 2.5m/km l 0 .
Cost R100/m

X2 Total Tlength
$300 2000m
5.5m/km 100 €/s
R85/m (So1-992m)

X3
¢ 250
18m/km (1008m}
R70/m 800m 20 ¢/s
I
‘4 (————= H=20m
+300) ] 0 )(((6” )((27300m)
3%%% 6200 6 150
2m/km 8m/km
R50/m R40/m
X5
¢ 250
9m/km (1000m)
R70/m 1
H=0

Fig. 5.2 Plan of branch network for exanple

Denote the unknown lengths of individual sections as X.



In algebraic form the constraints are:

Head losses along each route:

0.0025X1+0.0055X2+0.018X3+0.0038X4+0.009X5< 50

0.0025X1+0.0055X2+0

Lengths:
X1+X2+X3

X4+X5
X6+X7

Objective function:

.018X3+0.002X6+0.008X7<30

Minimize 100X1+85X2+70X3+85X4+70X5+50X6+40X7
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Solution using an LP computer package on an HP85 micro computer :
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25 . pa 7@ e
Fe. a8 58.88
o an @.8s
9. 2a 8. aa

SOLUTION: PIPE

= AFTER S ITERATICHS
VALUE
17 .94
18R¢& .
292
16a6.
a8 .
OB FUNC VRLUE = 256820
oDUARL YARTABLES
COLUMH CONETRRAINT VALUE
& H1 g pag
9 HZ 1268 . ava
14 L1 -1
11 Le -7 . ges
12 L3 -49 cBg
TAELERU AFTER 5 ITERRATIONS
L1 a_Be 9.6A
-.@al a. an .
a_aa 1. 63 -1
a.on -.81
17 .48
—-.24 a. ae 1.8
0. aa a.eq -.4
a. aa Q. aa 28 .4
= . 44 S alt] -.&
iagg _aun
1.24 1. ae a.g
2. a3 3. a8 -4
I 1] e Ba -g&.a
1.44 == <] cE
952 aa
@ . aa a on a.
1. 1. 9@ a.
a. ap o aa @ .
woae 1.4 =
1rea aa
9. aa a. aa a.
B ae (2= s 1.
1. 68 B aa a.
7. aa 2. an 1.
San  an
11 .48 Q. an e.a
15.&a8@ =1 2.8
@ a8 a . fa 1260 .9
-91 5o -78a. aa -49 &
-256586 @8

£ D0

RS

Do

SURPLUS VARIABLES ARE SUBTRACTED
FROM THE LEFT SIDE OF >=
INEQUALITIES

SLACK VARIABLES ARE ADDED TO THE
LEFT SIDE OF <= INEQUALITIES

ARTIFICIAL VARIABLES ARE ADDED
TO THE LEFT SIDE OF EQUALITIES
& >= INEQUARLITIES TO GEHNHERATE AN
INITIAL BASIC FERSIBLE SOLUTIOHN

THE FIWAL BRSTS COMTRINS ALL
YARIABLES IN THE SOLUTION

THE OUAL VARIAELE VARALUE <CSHRDOM
PRICEY IS THE AMOUNT OF CHANGE
IN THE VALUE OF THE CBRJECTIVE
FUHCTIOH FOR ERCH UUMIT BY WHICH
THE CONSTRAINT RIGHT-HAHD-SIDE
CRHS> YARLUE IS CHANGED

SENSITIVITY ANRLYSIS

CONSTRAINT RHS VALUE RARHNGIHG

CON LOWEF RHS UPFE
LIMIT YALUE LIMI

HL » 32.¢68 50 .96 UNBHI
Hz 17 .46 26 a0 42 .4
Li 1311 .11 2z@aa 868 4298 9
2 .48 1888 86 2933 3
L3 .an geR . ag@ 2375 . @

0OBJ FUNC COEFF RANGIHG
BRSIS VARIABLES

VAR LOWER B4 FHC UPPE}

LIMIT YALUE LIMI®

X3 64 .17 e . an 85 . &

3 79 .68 25 .69 56 .37

®a .o e 08 5. &

ks UHBND 4626 42 31
0B FUNC COEFF RAHGIHG
HON-BRSIS VARIABLES

VAR LOMWER 0Bl FNC UPPEF

LIMIT YALUE LINMIT

A1 2e .68 120 a6 UNBNL

®4 7a. 68 85 .08 UNBNL

®e 47 . 2@ 56.068 LNBNLC

MITHIM THE LIMITS YOU MAY CHANGE
THE VHALUE OF ANY ONE CONSTRAINT
RHS OR 0BJ FUNC COEFF WITHOUT
CAUSING VARIABLES TO ENTER OR
LEAYE THE SOLUTION

BUT., VALUES FOR THE 0B FUNLC AHD
SOLUTIDON YARIABLES MAY CHANGE
HHEN THIS 1S DONE
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LOOPED NETWORKS - LP OPTIMIZATION

When pipe loops are created by connecting pipes into the system
at more than one place, the problem description becomes non- flinear
and cannot be solved directly by linear programming methods. That
is largely because the flows are unknown. If, however, the network
can be reduced to a tree-like network the problem is again
simplified. The least-cost network is in fact invariably a tree-like
network - the problem being to identify the tree. Because of the
economy of scale in pipe transport, the most economic layout is with
only one pipe supplying to any point. |If this is accepted, then a
close approximation to the best (least cost) tree-iike network can be
obtained by linear programming as follows.

Starting with a looped network number each node j, and each
pipe i, define arbitrarily the positive flow directions, then set up
the following (linear) constraints in terms of the unknown, Q, in
each pipe i: N

For flow balance at each node j,

EQi into node j = qj (drawoff from node j)

Objective function: Minimize ZQiLi

where Li is the known length of pipe i.

This will minimize the bulk transport, i.e. the litres per second
times metres. Strictly this will not be the optimum for non-linear
flow rate-cost relationships since economy of scale is not introduced.
Each pipe cost is more likely to be proportional to Q™ (m<1), so
that a more accurate but non-linear objective function would be Min
ZLiQim. Separable programming methods (Hadley, 1964) coulid be
employed to optimize such a problem but the approach here plus
engineering judgement should génerally suffice. Bhave (1978), pre-
sented a manual method of obtaining a similar optimum network to
that proposed here, and Powell and Barnes (1982) proposed an

alternative hierarchical method.
LINEAR PROGRAMMING PROGRAM
The appended program is suitable for optimizing both stages of a

network, the network 'layout' and the pipe diameters. The program

minimizes the objective function, and supplies the coefficients for all
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dummy variables and artificial variables required for the simplex
method.

The program is followed by an example. A network is reduced to
a branched system and then the pipe diameters are selected. The
input for each section follows and the optimal solution, namely

optimum program variables, their magnitudes and costs.

Symbols in linear programming optimization program by minimization

A1) Objective coefficient of variable in program
B(J) Objective coefficient of variable in program
B2 Net cost

E(J) B - IX/A

E2 Min E

| Row no.

12 Key |

J Column no.

J2 Key J

N Total no. of vawriables plus dummys
N1 No. variables

M Total columns

M1 No. of <= constraints

M2 No. of = constraints

M3 No. of >= constraints

R(1) Replacement ratio

R2 Min replacement ratio

V(i) Variable no. in program

X{J,1) Matrix coefficient

X1(J,1) Matrix coefficient

Z(1) Magnitude of variable in program
Z1(1) Magnitude of variable in program

Note input numbers should be between 0.001 and 1000

First Problem: Network Layout

Reservoir //Answer Q=(280)¢/s \&J (200) —>

(4) (3) Assumed
500m 500m flow

l direction
(0) (80)

(0)
Node @ (5) 450 m=~————> (0) f5 Z 3 80 ¢/s Drawoff

Fig. 5.3
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Q1 - -Q, =0

Constraints: node 2:

node 4: @, - Q
3: @, +Q
5: Q,+ Q. - Q.= 80

5 6
Minimize I QL=400Q1+300Q +500Q3+500Q4+450Q

node

N 0 o

node

w N

5+7OOQ6
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Second Problem: Pipe Sizing

Q,L = 280 ¢/s, 400m 200 ¢/s, 300m
7/ e ~ p e ~
Variable X1 X2 X3 X4 X5
Dia, mm 400 350 300 350 300
Grad m/km 9 17 40 9 20
1 Cost $/m 1Q0 80 ) 70 /{\ 80 . 70 (E)
Answer L=(0) (0) (400) N (0) (300)
X6
P50
9
60
(0)
80 2/s
X7
500‘m b 00
30
50
(500)

O,

Fig. 5.4

Constraints; Head loss to 3: .009X1+.017X2+.04X3+.009X4+.02X5<50
57 .009X1+,017X2+,.04X3+.009X6+,03X7<70

Length X1-X3: X1+X2+X3 400

X4-X5: X4+X5 300

X6-X7: X6+X7 = 500
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Linear programming program

1é t LTHERFR PREOGRAMMIIHG MIMIMI
21032, ;

U) 29
H‘Jﬂ‘sza

'a'

3 DI F "NHNE":

INFPUT H#

OISP “NO.YARBLS.HOD COHSTRAIH
Tez,=,>»=";

THPUT H1.H1.MZ2.MZ

M=M1+M2+M32

M=Hi+M1+M2+MI%2

FOR I=1 TO ®M

FOR —1 TO N

=

g :

HEXT

MEXT 1

DISP “INPUT COEFS IM COHSTRA
INTS IW ORDER <=.=.
FOR I=1 TO M

DISP “COEFS IN COMSTRAINT":I
FOR J=1 T H1

OISP "X

INPUT Xid,I>

NEXT J v

Jd=H1

IF IXM1 THEM :
Hod+1, 1=t

WOT =041
AReIa=BC 4413
GOTO 298
2 IF I>M24M1 THEN 3246
298 NOd+1.T3=1
3

U g ol [0 e QL0000 =T
B AR R RN o

s b b b b

-

IR R
500000 = T
gD AR el vl

1
Doy

B¢ 1+]1>=99999950

WiTr=141

ACI2=EBCA+]D

50TO 398

Xid+1,1a=-1

KOJ+M3+T, 1r=1

BCI+MI+] )=29559939
WoIsr=J4+M3+]1

A{IX=BCA+ME+TID

MEXT 1

FOE I=1 TO M

DISP IIPHA‘\“ .

INFUT 2¢I2

NEXT 1

DIsP “OBJ FH CUEFS FOR MINIM
S1-"a N

FOR I=1 TO N1
DISF "OBJ.COEF.
IHPUT BoJ2
HEXT J

FOorR J=1 TO N
586 EC =B 42

916 FOR I=1 TD M
528 ECIO=ECI2-X{ IX¥ACT)
538 NEXT I

946 NEXT U

456
450
470
48a
494

WYL

EZ=8&

FOR Jd=1 TO N

IF EC{J>>=E2 THEH &8¢
EZ=E{J>

J2=4

NEXT J

IF EZ2>=@ THEM 938
FOR I=1 TO M

IF 2(1>>9 THEN €38
Z{1)= 806801

IF ¥(Jt2,1X)<>8 THEN £54a
¥CJ2,1)=. 00000601

REI =Z(CI RnC 2.0

NEXT 1
R2=9939999299%99

FOR I=1 TO M

IF R(I><=R THEM 73R
IF R(I»>=R2 THEN 738
R2=R<(I>

12=1

NEXT I

FOR I=1 TO M

Z1C¢Iy=2012

FOR J=1 TO N

RICH, Io=XHCd, 13

NEXT J

NEXT 1

FOR I=1 TO M

ZET=21C~21(I20%K1¢I2

1042.12>

FOR =1 TO H

B, Ta=0170,1)-

2,108 42,122

NEXT J

NEXT I

ECI22=21 (125815 02,120

FOR J=1 TU H

XCJaI2r=R1C, 122 %10 U2

NEXT J

RL12X=BC 322

U(Igrx=Jz

GOTO 436

BzZ2=@

FOR I=1 TO M

B2=R2+ACII¥Z2¢ 1>

HEXT I

PRINT “LP OPTIMZN "

PRINT "YARIAEBLE.

COST COEF"

FOR I=1 TO M
FRINT USING 1814 ;
LRI
IMARGE DDODOD.DDODODOD
pooG . DDo
NEKXKT I
PRINT USING 1@35 ;
IMAGE “COST=".D
STOP
END

JIdeN

144, 120K 0d

s 122

iN$
MAGHITUDE.,

MOl , 241

.0D0. DD

Bz
DODOODODDOD
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CHAPTER 6
DYNAMIC AND NON-LINEAR PROGRAMMING FOR LOOPED NETWORKS

Chapters 2 to 4 described methods for calculating the flows in
pipe networks with or without closed loops. For any particular pipe
network layout and diameters, the flow pattern corresponding to
fixed drawoffs or inputs at various nodes could be calculated. To
design a new network to meet certain drawoffs, it would be
necessary to compare a number of possibilities. A proposed layout
would be analysed and if corresponding flows were just sufficient to
meet demands and pressures were satisfactory, the layout would be
acceptable. If not, it would be necessary to try alternative
diameters for pipe sizes and analysis of flows is repeated until a
satisfactory solution is at hand. This trial and error process would
then be repeated for another possible layout. Each of the final
networks so derived would then have to be costed and that network
with least cost selected.

A  technique of determining the Ileast-cost network directly,
without recourse to trial and error, would be desirable. No direct
and positive technique is possible for general optimization of
networks with closed loops. The problem is that the relationship
between pipe diameters, flows, head losses and costs is not linear
and most routine mathematical optimization techniques require linear
relationships. There are a number of‘ situations where mathematical
optimization techniques can be used to optimize layouts and these
cases are discussed and described below. The cases are normally
confined to single mains or tree-like networks for which the flow in
each branch is known. To optimize a network with closed loops,
random search techniques or successive approximation techniques are
needed.

Mathematical optimization techniques are also known as systems
analysis techniques (which is an incorrect nomenclature as they are
design techniques not analysis techniques), or operations research
techniques (again a name not really descriptive). The name
mathematical optimization techniques will be retained here. Such
tecniques include simulation {(or mathematical modelling) coupled with
a selection technique such as steepest path ascent or random

searching.
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The direct optimization methods include dynamic programming,
which is useful for optimizing a series of events or things,
transportation progamming, which is useful for allocating sources to
demands, and linear programming, for inequalities, (van der Veen,
1967 and Dantzig, 1963.)Linear programming usually requires the use
of a computer, but there are standard optimization programs

availabie.

DYNAMIC PROGRAMMING FOR OPTIMIZING COMPOUND PIPES

One of the simplest optimization techniques, and indeed one which
can normally be used without recourse to computers, is dynamic
programming. The technique is in fact only a systematic way of
selecting an optimum program from a series of events and does not
involve any mathematics. The technique may be used to select the
most economic diameters of a compound pipe which may vary in
diameter along its length depending on pressures and flows. For
instance, consider a trunk main supplying a number of consumers
from a reservoir. The diameters of the trunk main may be reduced as
drawoff takes place along the line. The problem is to select the most
economic diameter for each section of pipe.

A simple example demonstrates the use of the technique. Consider
the pipeline in Figure 6.1. Two consumers draw water from the
pipeline, and the head at each drawoff point is not to drop below 5
m, neither should the hydraulic grade line drop below the pipe
profile at any point. The elevations of each point and the lengths
of each section of pipe are indicated. The cost of pipe is $0.1 per
mm diameter per m of pipe. (In this case the cost is assumed to be
independent of the pressure head, although it is simplie to take
account of such a variation). The analysis will be started at the
downstream end of the pipe (point A). The most economic arrangement
will be with minimum residual head i.e. 5 m, at point A. The head,
H, at point B may be anything between 13 m and 31 m above the
datum, but to simplify the analysis, we will only consider three
possible heads with 5 m increments between them at points B and C.

The diameter D of the pipe between A and B, corresponding to
each of the three allowed heads may be determined from a head loss

chart and is indicated in Table 6.1 (1) along with the corresponding
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Ha=3Im B
= ] |
12m
_{_
l " L/s nm
8m
I DAT UM
DRAWOFF 80L/S
2000 m 1000m 2000 m
™ | i !
A 8 c o]
ANSWER DIA = 260mm 310mm 340mm
Fig. 6.1 Profile of pipeline optimized by dynamic programming.
cost.
We will also consider only three possible heads at point C. The

number of possible hydraulic grade lines between B and C is 3 x 3 =

9, but one of these is at an adverse gradient so may be
disregarded. In Table 6.1 (I}) a set of figures is presented for each
possible hydraulic grade line between B and C. Thus if HB = 13 and
HCE = 19 then the hydraulic gradient from C to B is 0.006 and the

diameter required for a flow of 110 €/s is 310 mm {(from Figure 1.3}.
The cost of this pipeline would be 0.1 x 310 x 1 000 = $31 000. Now
to this cost must be added the cost of the pipe between A and B, in
this case $60 000 (from Table 6.1(1)). For each possible head HC
there is one minimum total cost of pipe between A and C, marked
with an asterisk, It is this cost and the corresponding diameters
only which need be recalled when proceeding to the next section of
pipe. In this example, the next section between C and D is the last
and there is only one possible head at D, namely the reservoir
level.

In Table 6.1 (lIl) the hydraulic gradients and corresponding
diameters and costs for Section C - D are indicated. To the costs of
pipe for this section are added the costs of the optimum pipe
arrangement up to C. This is done for each possible head at C, and
the least total cost selected from Table 6.1 (l11). Thus the minimum
possible total cost is $151 000 and the most economic diameters are
260, 310 and 340 mm for Sections A - B, B - C and C - D
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TABLE 6.1 Dynamic programming optimization of a compound pipe

HEAD |HYDR. [DIA.
AT B [GRAD. |mm

H h D COSsT

13 |1.004 |300 60000

18 |.0065 {260 52000

23 |[.009 |250 50000

I He= 19 24 29
Hg |Pe_g Do_g | COST he_g|De_g| €OST he 8l Pc_g COoSsT
$ $ $
13 006 (310 31000 011|270 | 27000 016{ 250 | 25000
60000 60000 60000
91000% 87000 85000
18 |.001 [430 43000 |.006|310 [31000 | .011|270 | 27000
52000 52000 52000
95000 83000 79000%
23 .001| 430 | 43000 | .006/ 310 | 31000
50000 50000
93000 81000
I He |rp_e {Pp_c | COST
$
19 [.006 |310 62000
91000
153000
24 1.0035 (340 68000
83000
151000%*

29 .00t 430 86000
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respectively. It may be desirable to keep pipes to standard
diameters in which case the nearest standard diameter could be
selected for each section as the calculations proceed or each length
could be made up of two sections; one with the next larger standard
diameter and one with the next smaller standard diameter, but with
the same total head loss as the theoretical result.

Of course many more sections of pipe could be considered and the
accuracy would be increased by considering more possible heads at
each section. The cost of the pipes could be varied with pressures.
A booster pump station could be considered at any point, in which
case its cost and capitalized power cost should be added in the
tables. A computer may prove useful if many possibilities are to be
considered, and there are standard dynamic programming programs
available.

It will be seen that the technique of dynamic programming
reduces the number of possibilities to be considered by selecting the
least-cost arrangement at each step. Kally, (1969) and Buras and
Schweig, (1969) describe applications of the technique to similar and

other oroblems.

TRANSPORTAT ION PROGRAMMING FOR LEAST-COST ALLOCATION OF
RESOURCES

Transportation programming is another technique which normally
does not require the use of a computer. The technique is of use
primarily for allocating the vyield of a number of sources to a
number of consumers such that a least-cost system is achieved. The
cost of delivering the resource along each route should be linearly
proportional to the throughput along that route and for this reason
the technique is probably of no use in selecting the optimum pipe
sizes. It is of wuse, however, in selecting a least-cost pumping
pattern through an existing pipe distribution system, provided the
friction head is small in comparison with static head, or for
obtaining a planning guide before demands are accurately known.

An example serves to illustrate the technique. In this example,
there are two sources of water, A and B, and two consumers, M and
N. A and B could deliver 12 and 20 ¢/s respectively and M and N

require 10 and 15 €/s respectively. Thus there is a surplus of
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water. The cost of pumping along routes A - M, A - N, B - M and B
- N are 5,7, 6 and 9 c/1 000 litres respectively.

CONSUMER ™ N
REQUIREMENT 10 L/S 15118

SOURCE
YIELD 12L7S 20L5

Fig. 6.2 Least-cost allocation pattern for transportation
programming example.

TABLE 6.2 Transportation programming - optimization of an
allocation system

(1) CONSUMER: M N SURPLUS EVALUATION
SOURCE YIELD  REQUIREMENTS: 10 15 7 NUMBER:
5 7 0 0
A 12 ol 1271 -2
t 6 I 9 0 2
— 4
B 20 71 13 7
EVALUATION NUMBER: 5 7 -2
10 15 7
(1D 5 71 0 0
A 12 4112 -2
6 9 0 2
B 20 10 3 7
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The data are set out in tabular form for solution in Table
6.2(1). Each row represents a source and each column a demand. The
unit cost of delivery along each route is indicated in the top right
corner of the corresponding block in the table. The first step is to
make an arbitrary initial assignment of resources in such a manner
that each yield and demand is satisfied. Starting with the top left
block of the table, the maximum possible allocation is 10. This
satisfies the demand of column M and the amount is written in the
bottom left corner of block AM. Proceeding to the next column, since
the first column is completed, the maximum possible allocation in the
first row is 2, which satisfies the yield of row A. So the next block
to be considered is in row B, namely column N. Proceed through the
table making the maximum possible assignment at each stage until
all resources are allocated (even if to the slack column). Thus the
next allocation is the 13 in the second row, then the 7 in the third
column.

Once an initial allocation is made the figures are rearranged
methodically until a least-cost distribution emerges. To decide which
would be the most profitable arrangement, assign a relative
evaluation number to each row and column as follows:-

Assign the value 0 to row 1 and work out the other evaluation
numbers such that the sum of the row evaluation number and column
evaluation number is equal to the cost coefficient for any occupied
block. The value for column M is 5, for column N is 7, for row B is
2, and so on. Now write the sum of the row and column evaluation
numbers beneath the cost coefficient of each unoccupied block. If
this sum is bigger than the cost coefficient of the block, it would
pay to introduce a resource allocation into the block. This is not
easy to see immediately, but stems from the method of determining
each evaluation sum from the cost coefficients of occupied blocks.
The biggest possible rate of improvement is indicated by the biggest
difference between the evaluation sum and the cost coefficient. The
biggest and in fact in our case the only, improvement would be to
introduce an amount into Block BM. The maximum amount which can
be put in block BM is determined by drawing a closed loop using

occupied blocks as corners (see the dotted circuit in Table 6.2(1)).
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Now for each unit which is added to block BM, one unit would have
to be subtracted from block BN, added to block AN and subtracted
from block AM to keep the yields and requirements consistent. In
this case the maximum aliocation to BM is 10, since this would
evacuate block AM. The maximum re-distribution i.e. 10 is made, and
the amount in the block at each corner of the closed loop adjusted
by 10 to satisfy yields and requirements. Only one re- distribution
of resources should be done at a time.

After making the best new allocation, re-calculate the evaluation
number and evaluation sums as in Table 6.2 (1i). Allocate resource
to the most profitable block and repeat the re-distribution procedure
until there is no further possible cost improvement, indicated by the
fact that there is no evaluation sum greater than the cost coefficient
in any block. In our example we arrived at the optimum distribution
in two steps, but more complicated patterns involving more sources
and consumers may need many more attempts.

The example «can only serve to introduce the subject of
transportation programming. There are many other conditions which
are dealt with in textbooks on the subject of mathematical
optimization techniques such as van der Veen (1967)and Dantzig ( 1963)
and this example only serves as an introduction. For instance, if
two blocks in the table happened to be evacuated simultaneously, one
of the blocks could be allocated a very small quantity denoted by
'e' say. Computations then proceed as before and the quantity 'e'

disregarded at the end.
STEEPEST PATH ASCENT TECHNIQUE FOR EXTENDING NETWORKS

A 'steepest path ascent technique' can be used for extending
pipeline networks at minimum cost (Stephenson, 1970}. The technique
is primarily for adding new pipes to existing networks when demands
exceed the capacity of the existing pipe networks.

It is usually possible to supply points in a system along various
routes or from alternative sources. It may not be necessary to lay a
new pipeline all the way from the source to the demand, or
alternatively the diameter of the new pipe may vary from one section
to another. The fact that elevation, and hence pressure head, varies
along a pipeline route causes different pipe diameters to be optimal

at different sections.
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On account of the complexity of the optimization technique, use of
a computer is essential. Alternative routes along which water could
be supplied to the node in question are pre-selected manually. The
computer program is used to determine the optimum pipelines and
corresponding diameters to meet the specific demands.

An informal demonstration that the method yields an optimum

design is given with the aid of diagrams.

STEEPEST PATH

\

Y

/ X

Fig. 6.3 Relationship between discharge and
cost of two pipes.

©.

bo s 29 8

202 =

Fig. 6.4 Steepest path projected onto C1—C2 plane
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Pipeline costs increase with increasing diameter and wall
thickness. Wall thickness usually increases in proportion to the
diameter, so the cost per metre will be a function of the square of

the diameter.

Now for a given head gradient, the discharge is proportional to
the pipe diameter to a power of approximately 2.5. However, if the
pipe is not laid along the entire route from the source to the
demand, but merely reinforces part of the network, the capacity will
be limited by the capacity of the remainder of the network. Hence it
may be deduced that discharge varies with cost of a new pipe
section to a power greater than unity, but is limited by the capacity
of the remainder of the pipe network.

If more than one proposed new pipe is involved the relationship
between discharge and pipe costs is multi-dimensional. Figure 6.3
illustrates the relationship between discharge at a particular node
and cost of two possible pipes in the network.

The curves on the C1 - C2 plane in Figure 6.3 are lines of
constant discharge Q. The shortest path between two Q lines spaced
a small distance apart is a line perpendicular to the Q lines. This
is the path with the steepest discharge/cost gradient, and is the one
sought. The procedure is therefore to start at the origin and proceed
in increments on the C1 - C2 plane, each increment being
perpendicular to the next Q line, until the desired discharge Q is
attained.

To determine the increments in diameter corresponding to
increments in cost, the actual increment in cost of each pipe for a
step on the C - C2 plane has to be calculated. Consider the

1

triangie XYZ, enlarged in Figure 6.4. C] and C2 corresponding to

increment YW in Q are to be determined.

8 3q)? 3
E//(Tm/ 50+ Caos 3
BCZ

Now cos ©

TS 5Q 5q
" i, //‘ ac,)” * (e’

W = AQ/S—SCOSO
1
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8Q

AC, = YW cos e = AQ/ ﬁ1 cos?O
3Q
80 3¢

1
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Similarly AC2 = YW cos ¢
= AQ _& cos? ¢
2
3Q
AQ ==
_ BCZ
( )2+( )2

In a similar manner, for n possible pipes, it may be proved that

3Q
£Q c,
AC. =

b )2
1 =1 n 1

The rate of increase of discharge with respect to the cost Ci of
any pipe, 3Q/3C is determined by analyzing the network with and
without a small increment in diameter Di.The increase in discharge,
divided by the increase in cost of pipe i associated with the
increase in diameter, gives the required relationship. The increment
in discharge per step, 4Q, is pre-selected so that the increase in
cost of each pipe is yielded by the above equation at each step. The
corresponding increases in diameter are then calculated from the
known diameter/ cost relationships. The diameters of the proposed
pipes are increased in steps until the discharge at the specified
node is sufficient. A network analysis should be performed after each
step to re-balance the system.

It will be observed from Figure 6.3 that it is unlikely that any
local maxima will be reached with the technique as the dis-
charge/cost curves are generally concave upwards, and have few
points of inflection.

So far the technique has been used to supplement the supply to
only one node at a time. It has been found that the pipeline system
should be well conditioned for satisfactory convergence. It is usually

necessary to initialize the diameters of proposed pipes at a value
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greater than zero (say of the order of 1/4 of the anticipated final
diameter). Otherwise the linear approximation to the differential
equations is unrealistic for the initial steps and false results are

yielded.

DESIGN OF LOOPED NETWORKS

It was explained previously that it is not possible to design a
pipe reticulation network with closed loops without recourse to trial
and error or successive approximations., The non-ljnear flow/head
loss relationship, the fact that fiow magnitudes and directions are
initially unknown, that pipe diameters should conform to standard
sizes and be larger than specified minimum sizes, and that certain
minimum pressures are required, all pose problems. There are many
approaches to the solution for the least-cost looped network, none of
which, it should be noted, overcome all the problems and ensure that
a true least-cost solution, and not a local peak in the cost function,
is at hand. The solutions are nevertheless invariably more economic
than a network which is designed by standard methods, and offer a
starting system for manipulation by the design engineer.

Some techniques proposed for achieving least-cost solutions,

together with their limitations, are outlined below.

(i) Loop/node correction method

A method of least-cost design, which does not depart radically
from the familiar methods of Hardy Cross analysis, was developed by
the author. The optimization procedure is not based on linear or
non-linear programming techniques which are unfamiliar to most
engineers. Instead successive cost revisions are performed for each
node and for each loop in the network using a correction based on
the differential of the cost function determined as follows:—

Assume any pipe cost C = a Dbe (6.2)

where a and b are constants.
Now the diameter, D, can be expressed in terms of flow Q and
head loss h for any pipe: D=(K€Qn/h)1/rn
where K, m and n are constants
So C = a(kea"/n)?/™Me
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Differentiating, dC=(nb/m){(C/Q)}dQ-(b/m)(C/h)dh (6.3)

i.e. the cost of any pipe can be varied in two ways: by varying
flow, Q, keeping the head loss, h, constant, and by varying h while
maintaining Q constant. Actually, both factors must be considered in
designing a least-cost network. The fact that the diameters and
corresponding costs are functions of the two independent variables is
often overlooked in mathematical optimization models.

The complete optimization procedure for a network is therefore as

follows:

(1) Assume a pipe layout and assume any reasonable initial

diameter for each pipe.

(2) Analyse the network using, say, the Hardy Cross method, to
determine flows in each pipe and heads at each node. Any

number of constant head reservoirs and drawoffs is permitted.

(3) For each loop in turn, calculate the sum of dC/dQ = (nb/m) C/Q
for each pipe in the loop. If Q is in the assumed positive
direction around the loop take the positive value of dC/dQ,
otherwise the negative value. Now Iif IdC/dQ is positive, i.e.
cost increases if flow increases, it would pay to reduce the
flow in the positive direction around the loop. Conversely if
£dC/dQ is negative, it would pay to increase the flow around the
loop. Subtract or add an increment in flow around the loop
depending on the sign of IdC/dQ, and decrease or increase the
diameter of each pipe in the loop respectively to keep the head
losses constant. The maximum size of increment is that which
would reduce any flow to zero, or reduce any pipe diameter to
a specified minimum size. An increment slightly smaller than
this, say half this value, is preferable. Proceed from loop to
loop, repeating this analysis. It is preferable to proceed in the
order of decreasing absolute value of IdC/dQ, which means the
loops should be ranked in order before making the flow

corrections.

(4} For each node in turn other than fixed-head reservoirs,
calcutate the sum of dC/h = (b/m)(C/h) for each pipe connecting
the node. Take the positive value if the head drops towards the

node in question and the negative value if the head drops away
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from the node. If :1dC/dh is positive it pays to reduce the
head, H, at the node, and if it is negative, it pays to
increase the head. By increasing the head at the node, pipes
leading to the node will have to be increased in diameter and
the pipes leading away reduced in diameter to maintain the
flows. Conversely a decrease in head wiill decrease diameters of
pipe leading to the node and increase the diameters of pipes
leading away. Determine the maximum change in head permis-
sibie to produce a decrease in cost without altering any flow
directions or reducing pipe diameters to less than specified
minimums. The head of the node should also be maintained
above the specified minimum. Vary the head correspondingly, or
preferably Iimit the head change to, say, half the maximum
permissible and calculate the new pipe diameters connecting the

node.

(5) Repeat steps 3 and 4 until no further improvement in cost is
discernable. No further network analyses are necessary as once
the initial flow balance of step 2 has been achieved it is not
unbalanced. Notice however that once the flow directions have
been established they cannot be altered. [t is therefore
important that the initially assumed diameters are realistic and

that the corresponding flow pattern is generally correct.

The technique will yield non-standard pipe diameters and these
wilt have to be corrected by assuming the nearest standard pipe size
or by letting each pipe comprise two sections, one the next standard
size greater and the other the next standard size less than the
diameter yielded by the analysis. The corresponding length of each
section is calculated from the fact that the total head loss must
equal that indicated by the analysis. The calculations should be
performed by computer as they are lengthy and definitely not as

simple as those for a Hardy Cross network analysis.

(ii}) Flow correction by linear programming

In the previous section it was demonstrated that for each pipe dC
is linearly proportional to dQ and dH. (This is provided the
increments in @ and H are small). If the objective function is taken

as the minimization of IdC for each pipe, the problem may be set up
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as a linear programming optimization problem. The linear constraints
would be:

For each node, IdQ in = 0 where dQ could be positive or negative,
and H >a specified minimum.

The objective function is ZdC = minimum, where dC is a linear
function of increments in flows in each pipe and heads at each node.
A standard linear programming program could be used to select the
changes in flow along each pipe and head at each node once an
initial network is assumed and analysed. The corresponding dia-
meters could then be calculated. Unless the increments in flow and
head are confined to very small values, the head losses will be
unbalanced after the linear programming optimization and a network
analysis will be required. The linear programming optimization and
network analysis should be iterated wuntil there is no further
reduction in the total network cost. The subprogramme for setting up
the linear programming tableau is complicated and a large computer
core storage is required for reasonably targe networks.

The core storage required is proportional to the square of the
number of pipes, whereas it is proportional to the linear number of
pipes for the Loop/Node Correction Method.

Non-standard diameters are yielded, and the flow directions are

not altered once an initial assumption is made.

(iii) Non-linear programming

As the problem of design of a pipe network is non-linear a
standard or '"canned" non-linear programming computer program couid
be used. Many of these programs are based on the steepest path
ascent technique. A sub-program would be required to formulate the
constraints and the objective function. The constraints could be
expressed as linear functions but the objective function is nonlinear.

The constraints are:-

For each node IQ in =0

For fixed-head nodes H = a specified value.

For variable head nodes, H2> a specified minimum.
For each loop Zh = 0.

The objective function is IC =% a (K¢ Qﬁ/h)(| /m)

=  minimum
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Non-standard diameters are yielded and flow directions must be
assumed beforehand. As the technique of nonlinear programming is
fairly -complicated, it may be difficult to debug the program if

errors occur.

(iv}) Optimum length method

Kally (197t) proposed a method very similar to the linear
programming method of optimization of tree-like networks with known
flows.

Since the flows are likely to re-distribute after optimization of a
looped network by this method, Hardy Cross analysis is necessary to
balance flows at each node, after which a further optimization is
performed, and so on.

An initial estimation of diameter is fed into the program, which
calculates flows by Hardy Cross analysis. For a small change in
diameter along a portion of any pipe, the corresponding head
changes at various nodes are calculated. The relationships between
head change and length of enlarged {(or reduced) pipes is assumed
linear, and the optimum lengths of each section of new diameter
calculated by linear programming. Diameters may be confined to

standard sizes.

(v) Equivalent pipe method

Deb, (1973} replaces all pipes in a layout by pipes with a common
predefined length and equivalent diameters (i.e. such that head
losses remain unaffected).

An initial flow pattern is assumed and corrected in steps by
adjusting pipe sizes for successive loops. The total pipe cost for any
loop is a minimum at some flow extreme i.e. with the flow in some
pipes in the loop equal to the specified minimum.

A constraint limiting the minimum rate of flow through each pipe
may be imposed (for reliability and continuity of supply in case of
bursts or blockage closed loops and specified minimum flows in pipes
are usually required).

A minimum cost if assumed for each loop and a flow correction

which will bring the loop cost to the assumed figure is calculated.
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If the minimum flow constraint is violated, a new minimum cost
figure is assumed and then the flows corrected accordingly. If the
flows are within permissible limits, a slightly lower loop cost is
assumed, and flows corrected again. This is repeated until the cost
cannot be reduced any more without violating the constraints.

The technique vyields non-standard diameters, and is highly
dependent on the initial flow assumptions. The equations involved

tend to obscure the initial assumptions.
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CHAPTER 7

CONTINUOUS SIMULATION

The previous chapters have been confined to steady flow in
pipe networks with constant reservoir heads. |n subsequent chapters
unsteady flow 1is considered. As a first approximation the water
column in a pipe is assumed to be incompressible and the accelera-
tions and decelerations are estimated on that basis. |In subsequent
chapters the compressibility of the water and the pipe is consider-
ed. The latter is termed water hammer.

There are many unsteady flow conditions, however, in which
neither the compressibility nor accelerations are significant. An
example is the slow depletion of storage in a reservoir over a num-
ber of hours, for instance during peak flows in a reticulation sys-
tem. The reservoir will subsequently be refiilled by pumping when
the demand is lower, for example during the nights and weekends.
This is an unsteady flow situation to which the steady flow equa-
tions can be applied without appreciable error. That is, pipe fric-
tion is the major head loss term but continuity is also applied
in order to observe the variations in storage levels. Corresponding
to changes in stored volume the water level in the reservoirs will
change and consequently the heads on the reticulation system will
change. These in turn wili affect the discharges.

It is frequently necessary to analyse reticulation systems on
this basis in order to determine reservoir capacities and pumping
rates for a water reticulation system. The omission of the accelera-
tion and elasticity terms makes the simulation much easier and
the time interval can be hours instead of seconds which reduces
computational time considerably. Although the so-called global com-
puter program based on the water hammer equations could be em-
ployed it would be inefficient and unjustified. In this chapter the
coninuity equation and pipe friction eqguations are used to develop
a general purpose simulation program for studying fluctuations
in storage in a complex pipe water supply system.

Most water supply systems can be assumed to comprise two major
components, one a link or pipe and the other a node which could

be a pipe junction or a reservoir. The handling of the node would
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depend on the description of its operation. A constant head reser-
voir would be regarded as a node of infinite surface area whereas
at the other extremity the outflow could be a function of the stor-
.age volume which in turn controls the head on the discharge ori-
fice.

The simulation approach can frequently be used to optimize the
design of a water reticulation system where direct optimization tech-
niques would be too complicated. Another advantage of simulation
is that it can incorporate non-linear equations and specified func-
tions and does not have to be based on average or assumed steady

state conditions.
SYSTEMS ANALYSIS TECHNIQUES AND THE USE OF SIMULATION MODELS

Developments in operation research have led to numerous extreme-
ly power'foI systems analysis techniques. These techniques can be
broadly classified into two main categories:

1) Direct optimization techniques
2) Simulation techniques.

Direct optimization techniques can be used to find the optimum

solution to certain problems. Grosman (1981) describes the appli-
cation of transportation programming, extended transportation pro-
gramming, tinear programming and separable programming. Costs
are estimated for raw water, conveyancing and desalination. The
techniques are used to calculate the average flows from each source
to each demand point. The flows satisfy minimum water quality
and quantity constraints and result in the minimum total cost solu-
tion.

The techniques used in many studies assume steady state condi-
tions. Average flows and constant water quality are assumed at
all the sources and demand points. The average flows are calculat-
ed which result in the minimum cost. Real water systems are never
in a steady state. Water required at demand points generally varies
between zero and several hundred f{itres a second. During peak
demand periods it may not be possible to draw water from the dif-
ferent sources in the optimum ratio determined. The concentration
of pollutants in some sources varies throughout the day and week

depending on what source was used and the proportion of clean
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water. It can be concluded that optimum solutions derived from
deterministic models which assume steady flows and constant water

quality may not be realistic. The 'optimum solution' cannot guaran-

tee that the constraints will be satisfied at all times, that the
solution is practical or, indeed, that the solution is an optimal
one at all.

Simulation provides a means of observing the behaviour of the
components of a system under varying conditions. No ‘'solution'
in the mathematical sense is sought. The objective is to gain an
understanding of the relationships among components of the system
and to find ways to make them work together in the best possible
way. Simulation does not vyield an optimal solution directly and
it is thus necessary to simulate iteratively in order to achieve
an optimum. Even when combined with efficient techniques for select-
ing the values of each decision variable, an enormous computational
effort may lead to a solution which is still far from the best pos-
sible.

To its credit, simulation can be used to solve models with high-
ly non-linear relationships and constraints. The direct optimization
techniques are seldom able to deal with all the complexities and
non-linearities which are easily incorporated into a simulation mod-
el. Simulation can be used to experiment with alternative 'optimum
solutions' and together with direct optimization techniques it may
be possible to narrow the search for a real global optimum. Little
or no cost, time or risk is involved with simulation. The time scale
can be controlled and long and short term effects of quantity and
quality can be determined and used as an aid to decision making
and planning. More important, variables and parameters can be
identified by changing their values and studying the effects. Cer-
tain parameters and relationships can be determined from simula-
tions. A simulation model can be visualised by most people and
the results are generally more convincing than those obtained from
deterministic approaches.

The rate of change of water quantity and quality, with respect
to time can always be described by a set of first order ordinary
differential equations. These equations can be solved simultaneousiy
at each iteration in a simulation using powerful numerical methods.

The solution to the set of equations yields the volume of water
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in each storage component of the system at the end of each simula-
tion time-step. These values can be used in conjunction with the
operating rules and various relationships to determine pump on/off
settings, make-up flows, demands, overflows etc. The degree to which
the model represents the real system and the accuracy of the results
depends on the validity of the model and the accuracy of the
solution of the set of equations.

A general simulation program has been written which can be used
to simulate water modeis. The model must be described by a system
of first-order ordinary differential equations. Such a model,
consisting of j equations and involving q variables, can be written

in the general form:

di= Ot %, %, ymmmx df_"ix_z’___dx_i ) (7.1)
dt A A q’dt dt dt
where i = 1,2 —

According to James (1978), the orderly procedure for constructing

simulation models is:

1) Systems Analysis: the salient components, inter-actions, relation-

ships and dynamic mechanism of a system are identified.

2] Systems Synthesis: the model is constructed and coded in accord-

ance with Step 1).

3) Verification : the model's responses are compared with those
which would be expected if the model's structure was prepared
as intended.

4) Validation: the responses from the verified model are compared to

corresponding observations of, and measurements from the actual

system.
5) Inference: experiments with, and comparisons of responses from,
the verified and validated model - this is the design stage.

MATHEMATICAL MODELLING OF WATER QUALITY

Modelling Concepts

A field to which many of the present concepts can be applied is

that of water quality deterioration in industrial systems. Cooling and

washing systems are examples where quality will deteriorate in time.
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It is not easy to predict the rate of build-up of dissolved salts or
the equilibrium concentrations in water reticulation systems, even
with an understanding of the origins and methods of concentration of
salts. This is because of the complex nature of industrial water
recirculation systems. One way of accounting for all these effects in
a real system appears to be by modelling the system on a computer.

Once a model is produced and validated, it may be used to
improve the operation of existing service water reticulation systems
and for optimizing the design of new systems. It is one of the objec-
tives of a research programme to produce such a mathematical model
which will be formulated in general terms for adaptation to any
particular system.

The build-up of impurities in water can be simulated mathemati-
cally together with the water recirculation cycle. The flows of water
in conduits or in vapour form in the air in and out of the system
can be calculated. The processes of evaporation, condensation, pol-

lution and make-up can all be modelled.

Mass Balances

For the purposes of mathematical simulation of water systems, the
system must be described in terms of equations. One-stage systems
can be described in terms of a mass balance equation which can be
solved analytically. In other more complex situations it is necessary
to express the equations in finite difference form and solve them
numerically. Different types of models and the assumptions therein
are described below.

Parameters whereby pollution is measured may either be conserva-
tive or non-conservative. In a conservative system input to any part
of the system equals outflow. Thus, if the parameter studied is water
flow then evaporation will be neglected in a conservative model.
Similarly if the parameter is a chemical compound it is assumed
there is no reaction, deposition or solution in a conservative model.

The model may be steady-state or time-varying. During the start-
up period of a mine as concentrations build up the system is said to
be unsteady. After a while the system may reach equilibrium. That
is, in the case of salts in solution, the increases in mass of

dissolved solids in the system due to leaching or evaporation equals
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the loss by pumping or deposition.

Mixed and Plug Flow Systems

In a plug-flow system, the water is assumed to travel through
the pipes and drains at a certain rate, conveying impurities at that
rate. The salts content at any point can therefore be affected in a
series of steps as water with different concentrations arrives at that
point. In a completely mixed system, the concentration of salts will
be the same at every point. An input is assumed to spread
instantaneously through the system so that the concentration
increases by the mass of salt input divided by the total volume of
water in the system. This simplified mechanism is often satisfactory

to describe systems which exhibit gradual rates of change in

concentrations. Real systems will probably be between plug flow and
completely mixed, as there will be diffusion and mixing due to
turbulence and cross connections. In general salts are conveyed by

advection {lateral transport) and dispersion.
Examples

The simplest illustration of the use of the mass balance equations
is for a steady-state system. Q is flow rate in £/s or MZ/d, C is the

concentration in mg/f. Inflow of water and of salts per unit time

equals outflow rate:

Fig. 7.1 Point Node

Q, +a, = Q (7.2)

Q,C, +Q,C, = Q,C, (7.3)

.. Cy = Q,C,+Q,C, (7.4)
Q,+q,
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e.g. if Q1 = 5 M2/d, Q2 = 10 M2/d (water flow rate)
C1 = 400 mg/¢, CZ = 100 mg/? (salt concentration)
then C3 = 200 mg/¢
and the total mass of salt discharged per day
= Q?’C3 = 15 x 200 = 3000 kg/d. (7.5)

A completely mixed system can be described by differential equa-

tions: Subscript i refers to inflow, e to exit, s to initial condi-
tions.

Volume S

Conc. C

Fig. 7.2 Mixed flow node

a.c. =a.c + 4s€) (7.6)
i e dt
=QC + Sﬁ for constant S (7.7)
e dt
N _ SdC
-dt =g ac (7.8)
i e
C,
1
(e}
CS t

Fig. 7.3 Diffuse node

Integrating and evaluating the constant of integration from the

fact that C = CS at t = 0:

-
1

S én Q.C.-QC
i i "e’s

( ) (7.9)
a ac-ac
e 1 | e
R R ATl (7.10)
© Q Q_t/s
e e
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e.g. at t = 0O, C=CS, and att="°,or‘Qe=‘”or‘S=O,

Observe that if Qi does not equal Qe’ there must be internal
gains or losses, e.g. due to evaporation.

The previous example could be studied numerically. Although this
requires specific numbers, it is often the only practical way of
solving more complex problems.

Assume S = 1000 m®, Qi =1 m'/s = Qe’ CS =0, Ci = 500 mg/e.

Choose At = 100 s. The choice of At can affect the speed of
solution, the accuracy of results and the numerical stability of the
computations. It must be determined by trial, from experience or

from theoretical considerations.

€7 Cy
NowQC. —ac=95 21 (7.11)
[ e At
..c,=c, +2 a(c.-c,) =c, + 0.1(500-C,) (7.12)
2 1 s i i 1 1 1

The computations can be set out in tabular form as follows:

t C1 500—C1 x0.1 C2
0 0 500 50 50
100 50 450 45 95
200 95 405 40 135
300 135 365 37 172
1000 326 174 17 343 mg/e

Equation (7.10) would indicate C = 316 mg/¢ at t = 1000s, which is
comparable with the result indicated by the numerical solution of
343 mg/e.

Systems Analysis

A more sophisticated approach than the simulation method des-
cribed above is the use of systems analysis and optimization tech-
niques, with the assistance of computers if necessary. The methods

allow an optimum design to be selected from numerous alternatives.
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The alternative standard engineering approach is to select the best
option from a few selected designs. The latter approach is tedious
where there are many alternatives.

The design optimization approach involves the creation of a
general configuration in which the numerical value of independent
variables has not been fixed. An overall economic objective is
defined and the system is described in terms of equations or con-

straints.

NUMERICAL METHODS FOR THE SOLUTION OF SINGLE DIFFERENTIAL
EQUATIONS

Numerical solutions appear in the form of a tabulation of the
values of the functions at various values of the independent time
variable and not as a functional relationship. Numerical methods
have the ability to solve practically any equation but they have
the disadvantage that the entire table must be recomputed if the
initial conditions are changed.

If a function f(t) can be represented by a power series in a

certain interval then it can be represented by the Taylor series

expanded about a point t = to’ i.e. about the initial value:

_ | H 2 I 3
y(t) y(to)+y (to)(t—t0)+y (to)(t—to) +y (to)(t—to) oo, (7.13)

2! 3!

Letting n represent the previous step at time tO and n+1 represent
the next step at to+h, the series can be written as:

- I, 2 [ I
Yne1TYpthy thoy bty (7.14)

2 6

Consider the example problem

dy
vo= 2Y o
y ot y+t (7.15)

with initial conditions

y(0) =1 (7.16)
This is a linear time variant 1st order differential equation.
The analytical solution to the problem, y = Zet—t—1 will be used to

compare the numerical results of some of the methods and to

itlustrate the error at any step.
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The Euler Method

The Euler method is the simplest but least accurate of all the
methods discussed. To obtain an exact numerical solution to the

example problem (7.15), all the derivatives y”, y'”, y'v

.e. must
be evaluated and substituted into the Taylor series (7.14). Knowing
the initial wvalues of Yo yn', yn” cees Yo could be evaluated
after a time increment h. The values of aill the derivatives could
then be calculated at n+!, and Y mt2 could be evaluated after the
next time increment and so on. Derivatives of arbitrary functions
cannot easily be formulated in computer programs. The derivatives
y”, Y”l, etc. are easy to evaluate for the exampie (7.15) but
this is not generally the case. The Euler method truncates the
Taylor series by excluding the terms after the first derivative and
eliminates the problem of having to evaluate the second and

subsequent derivatives. Then
- I 2 .
yn+]—yn+hyn +0(h?) error (7.17)

Negiecting hzyn”/z and the subsequent terms in (7.14) results
in a truncation error of order h® which is denoted 0(h?®). This is
the local error and results from one step only, i.e. from n to n+l.
It can be shown that the giobal error accumulated over many steps
becomes 0(h), i.e. an error of order h,

Substituting the example (7.15) into the Euler algorithm (7.17)

gives:

Yo=Y thely 1) (7.18)

The initial condition y{0)=1 means that y=0 at t=0. Choosing the
time increment h=0.02 and letting the step number n=0 at t=0, the

values for y can be evaluated at successive time increments as

follows:

Y =yothlyg+ty) = 140.02(1+0) = 1.0200 (7.19)
y,=y,+h(y +t ) = 1.0200+0.02(1.0200+0.02) = 1.0408 (7.20)
Y37y ,+thly +t, )= 1.0408+0.02(1.040+0.04) = 1.0624 (7.21)
V4= = 1.0848 (7.22)
Vg= = 1.1081  (7.23)
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The numerical solution after 5 steps is y(0.10)=1.1081 whereas
y=2et-t—1 gives the exact analytical solution as y(0.10)=1.1103.
Hence the absolute global error is 0.0022, i.e. two-decimal-place
accuracy. Since the global error of the Euler method is proportional
to h, i.e. 0(h), the step size h must be reduced at least 22- fold
to gain four-decimal accuracy, i.e. h 0.004., This would increase
the computational effort 22-fold. Fig. 7.4 shows how the siope at
the beginning of the interval yﬁ| is used to determine the function

value at the end of the iteration in the Euler method.

Analytical
5 /?oTETn
1
g1
Yo o
true y,
Yo
to t, t
Fig. 7.4 The Euler method
The slope at the beginning of the interval is always wrong

unless the solution is a straight line. Thus the simple Euler method
suffers from the disadvantage of lack of accuracy, requiring an
extremely small step size.

The Modified Euter Method

Fig. 7.4 and the subsequent discussion suggest how the Euler
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method can be improved with little additional computational effort.
The arithmetic average of the slopes at the beginning and the end
of the interval is used (only the slope at the beginning is used in

the Euler method).

[
- y oty (7.24)
Yne1™ Yn + h'n n+1
2
The Euler algorithm must first be wused to predict Y4y S©

that vy can be estimated. Applying the same example (7.15) as

n+1
before and substituting y1= x+t into (7.24) gives

yn+1=yn+h(yn+tn) * (yn+1+tn+1) (7.25)
2
Substituting the Euler equation (7.18) for Yt gives
Y =
ntl =y +hiy +t ) + (y_+h{y_+t ) + t_ ) (7.26)
2
Using h=0.02 and the initial conditions: y0=1,t0=0
vi=vothlygtty) + (ygthly+tgy)+t,) (7.27)
2
=1+0.02 (1+0) +(1+0.02(1+0)+0.02) (7.28)
2
=1.0204 (7.29)
y2=l.0204+0.02(1.0204+0.02)+(1.0204+0.02(1.0204+0.02)+0.04)
2
(7.30)
=1.0416 (7.31)

y5=1.1104 cf analytical solution 1.1103

The answer agrees to within 1 in “the fourth decimal place.
Nearly twice as much work was done as in the Euler method but
certainly not the 22 times more that would have been needed with
that method to attain four decimal place accuracy. It can be shown

that the local and global errors of the Modified Euler method are
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0(h*) and 0(h?) respectively. The Modified Euler and the simple
Euler methods are often referred to as second and first order meth-

ods respectively.
Runge-Kutta Methods

The Fourth-Order Runge-Kutta methods are amongst those which
provide the greatest accuracy per unit of computational effort. The
development of the method is algebraically complicated and is given
completely in Stummel and Hainer (1978) while Gerald (1980) derives
the Second-Order Runge-Kutta algorithm and explains the principles
behind the methods. All the Runge-Kutta methods use the simple
Euler method as a first estimate. [mproved estimates are then made
using previous estimates and different time- values within the time
interval h. A weighted average of all the estimates is used to
calculate Yel® The Fourth-Order Runge-Kutta methods are the most
widely used because of their power and simplicity. The following is
a particular Fourth-Order method which is commonly used and which

is included in the simulation program:

yn+1=yn+6—1( k]+2k2+2k3+l<4) (7.32)
ky = hflt ,y ) (7.33)
k, = hf(tn+%h,yn+%k1) (7.34)
ky = hflt +3h,y +ik,) (7.35)
ky, = hf(t oy, +ky) (7.36)

Again the problem given in (7.15) above is solved as an ex-
ample: dy/dt=f(t,y)=t+y,y(0)=1. This time y(0.1) is calculated in
one step (h=0.1) whereas y(0.1) was calculated in five time incre-

ments (h=0.02) using the simple and modified Euler methods above.

klzh(tn+yn)

=0.1(0+1) = 0.10000 (7.37)
k2=0.1(0.05+1.05) = 0.11000 (7.38)
k;=0.1(0.05+1.055) = 0.11050 (7.39)



101

k4=0.1(0.10+1.1105) = 0.12105 (7.40)
y(0.1)=1 .oooo+l6(o.1oooo+zxo.11ooo+2xo.11oso+o.12105) (7.41)
=1.11034 (7.42)

This agrees to five decimals with the analytical result and
illustrates a further gain in accuracy with less effort than required
by the previous Euler methods. It is computationally more efficient
than the modified Euler method because, while four evaluations of
the function are required for each step rather than two, the steps
can be many-fold larger for the same accuracy. The simple Euler
method would have required of the order of 220 steps to achieve
five-decimal accuracy in y{(0.1) but each step involves only one
evaluation of the function. The efficiency of the Euler and
Runge-Kutta methods can be roughly compared by calculating the
number of function evaluations required for the same order of
accuracy. In this particular example the Runge-Kutta method is
approximately 50 times more efficient than the simple Euler method
(220/4). The local error term for the Fourth-Order Runge- Kutta
algorithm (7.36) is O(h5) and the global error would be about
o(h®).

Multistep Methods

The simple Euler, Modified Eulier and Runge-Kutta methods are
called single step methods because they use only the information
from the last step computed. In this they have the ability to per-
form the next step with a different step size and are ideal for
beginning the solution where only the initial conditions are availa-
bte. The principie behind a multistep method is to utilize the past
values of y and/or y| to construct a polynomial that approximates
the derivative function and to extrapolate this into the next time
interval. Most multistep methods have the disadvantage that they
use a constant step size h to make the construction of the
polynomial easier. Another disadvantage of multistep methods is that
several past points are required whereas only the initial conditions

are available at the start. The starting values are generalily
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calculated from the initial conditions using a single-step method

such as a Runge-Kutta method.

REAL-TIME OPERATION OF WATER SUPPLY SYSTEMS

Although numerical models are of direct use for planning and
eventually design of the components in a water supply system they
can equally well be applied on-line for the operation of the system.
Shamir (1981) described a number of applications of the connection
between data loggers and mini computers for optimizing the
operation of systems of reservoirs and water supply pipes. Cost
minimization of these operations can be performed on a continuous
basis (example Sterling and Coulbeck, 1975). On the other hand,
when applied off-line the methods can be used to identify shortfalls
in the system (Rao and Bree, 1977).

The telecommunication of reservoir levels, pipe pressures and
flow rates is relatively simple whether in analogue or digital form.
Although there are problems with the measurement of discharge
rate the accuracy of simpie methods is still probably more than
adequate to cope with the predicted future demands. Forecasting in
fact is the most difficult aspect of the real time simulation. Demand
patterns may be approximated by Fourier methods. [t is generally
possible to prepare a daily and weekly demand pattern on a
deterministic basis but the introduction of probability makes the
calculations more cumbersome. Growth in demand can also be
included in the simulation.

The simulation program can be used to investigate alternative
operating methods. Constraints on resource availability such as
water, power or manpower can be built into the program. Costs can
be minimized by including energy tariffs and income from water

sales. Quality constraints can also be included,

COMPUTER PROGRAM TO SIMULATE RESERVOIR LEVEL VARIATIONS IN A
PIPE NETWORK

The accompanying computer program will simulate the variations
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in water level in reservoirs in addition to performing a network
flow balance.

The program is based on the node head correction program in
Chapter 2 with an additional variable, area of reservoir for each
'fixed head' or, in this case, 'reservoir type' node. If the
simulation duration T1 in hours and time increment T2 are input,
for example 24 and 1, then the heads at each node and water level
in each reservoir will be printed out for every hour. The actual
network iterations each time interval after the first should be
minimal since the network flows are balanced in the first iteration
and only unbalance due to reservoir level changes which will have
to be corrected at subsequent time intervals. Although drawoffs are
time-fixed in the present program, they could be altered at pauses
in the running or inserted in equation form.

The output, namely level variations, could be used to estimate
required reservoir depths (using trial reservoir surface areas) and

in fact to see at which reservoir locations the storage is most

100 ¢/S

100m?
100m

-
(1]
"
>
]
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1000m x 180mm

3000m x 150mm

x
'

90m

Fig. 7.5 System for continuous simulation example
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required. Data requirements are similar to the analysis program
with the following additions.

In the first data line after the name, the simutlation duration
and increment in hours is added at the end of the line. In the
pipe data, the first pipes should be from the various reservoirs
with the surface areas of the up-stream reservoirs in square
metres given at the end of the pipe data lines. !n order to display
the reservoir levels in the biggest reservoir it is necessary to have
a supply pipe from a pseudo fixed head, very large, reservoir to
represent a pumped supply feeding into the actual biggest level

reservoir in the distribution system.
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Computer program for continuous simulation of pipe network with

reservoirs

1¢ FRINT "FIFE HET SIMUL BY KOG
E HERD CORE"

6 OIM K(S@:,L(S8y, . BSar . DiSal.,
BCSAY HYySAy F{SAY.RISAL

Z@ DISE "NETWORK NAMEY;

40 IMPUT L%

9@ G=9.3 ) 2Z IF FT-S UNIT=Z

€& DISP *"NFIPES.NNODEC.MPES.ERn
+DRARCY f.TOPHm.SIMLNh.DTh";

78 IHFUT NI, H2,NI, HI.F. HI1>,T1.
T2

39 FOR f=1 T2 N1 ! FIXED HEADS
NUMBERED FIEST

9a DISP "NORE1+,.NODEZ-.Lm.Dm.IN
TLHZ . G2m3=., AnZFORFHUSY ;

25 IF J<=N3 THEN 1@3

166 INFUT Kodx,Lodr.®qdrx Dadr, HE
. B2

182 GOTD tle

182 INPUT k A PR SR B I G B TP LA P & ]

ix)

118 HOL 13 2=H2Z

1z FOLO O 2=02

138 F{d>=F

148 NEXT |

142 PRIMT L%

145 FOR T3=a TO Ti1 =TEP T2

1%@ FOR Ii=1 TO S& ! MAX ITHS

168 Y=
FOR =1 TO N1

TCAFax=HOL 0 Y THEN z2Z@

2 B .h

219 K. I\"H

229 HI=HCK (YD -HL{ A2

23286 B> QQP'HI?D(liﬂqx 7B85~2% 2%
232 NEXT :

223 IF I1>1 THEN 25@8

234 FOR I=1 TG N7

239 HCID=HCID-PLID 7RSI ET2X358R
236 FOR J=1 TO Ni

238 IF K{l1)=1 THEN 246

246 IF L(Jd3=1 THEN 242

241 GQATO 242

242 HCID=HC(I»+BC I3 /ACIDIXT2%3600
242 GOTO 24%

246 HCID=H(I -R( 1> -ACI2%XT2%3Z538
247 GOTO 249

243 NEXT J

249 HEXT 1

258 FOR I=N3+1 T N2

268 R=—-PI{I2

279 S=18

288 FOR J=1 TO HNi

29 IF ¥K<{J324>1 THEMN Z23e&

388 R=R-QCJ>

318 S5=S+0{ ) s THOE S —HOLOdY 30
228 GOATO 3c8

333 IF L{1»<>1 THEN 368

ISR EN]
= b
D s ARt

HETHORE

VA HOK DY 3 —HEL T 0

HIIY=H(T 2 +2%R /S
IF ABES(Z¥R/SH =V
Y=ABS{2%R.S>
NEXT I

IF V<HZ THEN 448
HEX®T 11

PRINT " N+ HN-
E/5 HEZM"; T3

FOR =1 TO M1
PRINT USING 476 ; ¥ 41>, LC00.
ROV, DCA3, QD HILCAY)
IMAGE DDD, DD, DDODD . DD
0. DDO. ODDOD . 1

NEXT 4

MEXT T3

END

THEH 4ne

Z{M> DOM> OM

opo. o

HRHEY

TESTRES
HPIFES, MHODES . NRES . ERm, DARCY £ . TO

PHia, SIMLHB,
2,3.,2,.

NODE1+.HODEZ—, L. D,

DTh™
1, 82,188,321
IHTLHZ, 9#2m3s

:HmEFURFHUb

1,2.3@86, 15,992, B5.100
HODE1+.NDDE2-.Lm,Dm. IHTLHZ. 2m3=
s AnZFORFHUSY

Z.3,18@9, 18,78, 1,208
MODE1+.NODEZ—. Lm. Dm. INTLHZ2, Q2m3s
. Am2FORFHUS?

1,3,2838, 2.78, 1

PIFE HET ANAL BY NODE HERD COFRFR

TESTRES

H+ H- 2CFs DOMy GMELS HZM @
1 2 3@ad | 158 13 89 .3
2 I 18BB 188  A41 3.2
i 3 2886 288  a5% &£3.2
N+ H- ACHMY DOMY BM3ICS HEM L
1 2 3ape 158 A1z ag .6
2 2 1389 184 441 €3.2
1 2 zaaa  Z2@a @59 €3 .2

N+ H- ZCM3 DCMY OMZ-5 HzZm 2
1 2 Jaea 156 L2132 gg .9
2 3 12eB 194 041 62.1
1 3 2eae 288 .859 62 .1

N+ H- X(M) DCM) DM3-S HZM 32
1z 36e8 15@ 2812 av .3
2 3 loee 188 41 82.1
1 3 2een 288 @59 £2.1
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CHAPTER 8

UNSTEADY FLOW ANALYSIS BY RIGID COLUMN METHOD

RIGID WATER COLUMN SURGE THEORY

Transients in closed conduits are normally classed into two cate-
gories: slow motion mass oscillation of the fluid which is referred
to as surge, and rapid change in flow accompanied by elastic
strain of the fluid and conduit which is referred to as water ham-
mer. For slow or small changes in flow rate or pressure the two
theories yield similar results.

It is normally easier to analyse a system by rigid column
theory than by elastic theory. On the other hand there are many
situations where it is inaccurate or even dangerous to apply this
simplified theory, and water hammer theory must be applied. With
rigid column theory the water in the conduit is treated as an
incompressible -mass, although the -water column is free to move
around bends and through expansions etc. A pressure difference
applied across the ends of the column produces an instantaneous
acceleration throughout its length. The basic equation relating the
head difference between the ends of the water column in a uniform
bore conduit to the rate of change in velocity is derived from
Newton's basic law of motion, and is

h::gE%t! (8.1)

where h is the difference in head between the two ends, L is the
conduit length, v is the flow velocity, g is gravitational accelera-
tion and t is time.

The equation is useful for calculating the head rise associated
with slow deceleration of a water column. It may be used for
calculating the water level variations in a surge shaft following
power trip or starting up in a pumping line, or power load
changes in a hydroelectric installation fed by a pressure pipeline.
The equation may be solved in steps of At by computer, in tabular

form or graphically.
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Example 1
Numerical Analysis of Surge Shaft

A 100 m long penstock with a cross-sectional area, A1, of 1 m?
is protected against water hammer by a surge shaft at the turbine,
with a cross-sectional area, A2, of 2 m* and an unrestricted
orifice. The initial velocity in the conduit is 1 m/s and there is a
sudden complete load rejection at the turbine. Calculate the
maximum rise in water level in the surge shaft neglecting friction.

Take A = 1 sec. Then from Equ. 8.1, Av = -ghat/L. = -9.8h/100

=-0.098h. By continuity, Ah = A1vAt/A2 = 1v/2 = 0.5v.

t Ah=0.5v h Av= -0.098h v
0-1 0.5 0.5 -0.049 0.951
1-2 0.476 0.976 -0.096 0.855
2-3 0.428 1.404 -0.138 0.717
3-4 0.359 1.763 -0.173 0.544
4-5 0.272 2.035 -0.199 0.345
5-6 0.172 2.207 -0.216 0.129
6-7 0.064 2.271% -0.223 -0.094

The maximum rise is 2.27 m, which may be compared with the
analytical solution of 2.26 m. The accuracy of the numerical method
could be improved by taking smaller time intervals or taking the
mean v and h over the time intervals to calculate ah and av

respectively. The method can readily be extended to include head

losses, and is calculator-orientated.

Fig. 8.1 Derivation of rigid column equation of motion
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DERIVATION OF BASIC EQUATION

Net body force along pipeline = wAL sin 6

= wA(h,-h ) (8.2)
Force = mass x acceleration
w(hz—h1—hf)A = -(w/g)AL dv/dt (8.3)
(hz—h]) = hg - (L/g)dv/dt (8.4)

SOLUTION OF EQUATION OF MOTION

The equation can be solved analytically in some cases, or by
graphical means (Jaeger, 1956) or numerically (manually or by
computer).

Oniy the simplest of surge systems (constant conduit cross-
section and no friction) can be studied analytically. That is the
relationships between velocity and amplitude and time can be
derived In algebraic form. Consider as an example the simple
U-tube in Fig. 8.2 which is disturbed by forcing the liquid up one
leg to start. The equation of motion from (8.1} is
and since v = % ,g—;/ = S—ztg-

Integrating twice with respect to t gives y = Y max cos(1/2g/L)
(8.6)
where the constants of integration are from Y=Y ax at t=0, and

dy/dt = 0 when t=0.

*y

mean levels

-—
N
SNNNNNAN

L

Fig. 8.2 U-tube
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The oscillations obviously repeat every 21Y¥ L/2g which is the

period. (8.7)
The velocity is dy/dt = —ymax-/ZQ/L sin (tV/2g/L) (8.8)
and Vax = Ymax” 2g/L (8.9)

For the case of a conduit of area At leading from a reservoir

with constant level to a surge shaft with cross-sectional area As’

A, Ty

the relationship is slightly different.

Surge shaft

sudden valve closure

Fig. 8.3 Simple surge shaft

It is customary to neglect the inertia of the water in the surge

shaft. Then for the flow in the tunnel,

L dv

Dynamics: 3 dt +y =0 (8.10)
Continuity: vA = Asdy/dt (8.11)
A
. dv = "'s d’y
gt A, T (8.12)
A
. L s dy _
g’A_‘th’“Ly_O (8.13)

-

The general solution to this is y=a cos 27nt/T+b sin 2nt/T(8.14)

where T = 2n/LA_7gA| (8.15)

If at t=0, y=0 then a=0

Also % = :lv = %—nb cos Z;t

If at t=0, Vv, then b=vO 'z 7w = Vo 5 A_S (8.16)
_ /{—A\? . /g At

Then y= Vo 3 A—S sin t E-A—S (8.17)
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A More Precise Method for Manual Numerical Analysis

The simple numerical method illustrated should really only be
applied with very small time increments. A large number of steps
may therefore be involved and the method is more appropriate to
digital computer solution. When manual methods are employed it is
suggested the finite difference equations be written in implicit or
time averaged form. Thus the average h over a time interval is

used, namely (h, + hI)/Z to calculate Av, and the average velocity

2

in the conduit or tunnel (v, + v1)/2 to calculate Ah over each

time interval. It is then iecessar‘y to solve the two equations
(dynamic and continuity) simultaneously for h2 and Vo Alternative-
ly one may work in terms of flow rate Q instead of v. The
following equations are solved for h2 and QZ' A head loss term, he
is also introduced for throttling at the surge shaft iniet. The inlet
area is Ai’ and the head loss term is expressed in terms of the
previous flow rate as an implicit solution would be more complicated
for the quadratic term. Thus head losses must be small relative to

surge rises.

Dynamic: 02 = Q1—(gAtAt/L){(h2+h1)/2 + hf} (8.18)
_ 2\
where h, = KQtlf;ltl/(ZgAi ) (8.19)
Continuity: I'\z—h1=(C]2+Q,)At/2As (8.20)
Solving for C,‘l2 and hzz
2

o - Q,-(gA 8t/L) h +(Q8t/4A_)+KQ, 1Q [/(29A %)} (8.21)
2 1+gAtAt2ﬂ;LAS

and h, = h1+(Qz+Q])At/(2AS) (8.22)

Another useful application of the rigid water column equation is
with water column separation. Following the stopping of a pump at
the upstream end of a pumping line, the pressure frequently drops
sufficiently to cause vaporization at peaks along the line. In such
cases the water column beyond the vapour pocket will decelerate
slowly and rigid column theory is sufficiently accurate for analy-
sis. Equ. 8.1 may be integrated twice with respect to time t to

determine the distance the water column will travel before stopping.



Simple open surge tank Variable area surge tank

Throttled inlet/outlet Closed surge tank

./

Differential area surge tank

Fig. 8.4 Types of surge tanks



12

If the pumps stop instantaneously the volume of the vapour pocket
behind the water column of length £ will be Q=A€voz/29h where vo

is the initial flow velocity.
SURGE TANKS

By breaking a length of closed conduit with a free water sur-
face, the water hammer pressure and surge amplitude can be re-
duced considerably. The use of surge tanks for this purpose is
common in hydroelectric installations with tunnels but not encount-
ered regularly in pumped or pipe systems where the pressures are
greater and consequently surge tank heights would be excessive.
Some shapes of surge tanks are indicated in Figure 8.4. Apart from
the throttled and closed surge tanks, the hydraulic calculations,
namely water level variations and pressures, can be performed
analytically or numerically employing two equations. One is the

dynamic equation (8.1) and the other is the continuity equation,

VIA, = VAEVOA, S Azdy/dt (8.23)

where v is velocity, A is cross-sectional area, y is water depth, t
is time, subscript 1 refers to the conduit and 2 to the open surge
shaft and 3 to the inlet.

In the case of throttles, the head in the conduit could rise
higher than the water level in the surge shaft by the head loss
through the throttie. The loss through the restriction could be
represented by he = Ki/o v3|v3|/29 where Ki/o could vary depending
on whether the flow is into or out of the opening. Generally the
throttle serves to reduce the water level fluctuations in the surge
shaft and since the head loss is out of phase with the level
variations (see Figure 8.5) it will not increase the maximum head
in the conduit if not excessive.

Approximations to the damped surges can be obtained by analy-
tical methods (Pickford, 1969).

Alternative methods of analysis of surge shafts are graphically

(Jaeger, 1956 and 1977) and with the aid of charts (Rich, 1963).
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f1na1 level

water Tevel in
surge shaft 1////

\\/

Tnitial water Tevel

Fig. 8.5 Surge in throttled surge shaft

Example 2

\\\\\T1me

Numerical Analysis of Penstock Protected with an Air Chamber

From Boyles law Hoso = HS (8.24)
assuming isothermal expansion
where head H is absolute i.e. + atmospheric head
Continuity: AS = vAast (8.25)
Dynamics: Av = _—29 Hat (rigid column equ.) (8.26)
L = 1000m, HO = 30m = 40m absolute, Vg = 1.5m/s, A= 0.2m?%,
S = 1m*®,st = .5s
o
t H = A—SO Av= -,005H v AS=-0.1v S
0-.5 30+10=40 -.2 1.3 -.13 .87
.5-1 46.0 -.23 1.07 -.11 .76
-1.5 52.6 -.26 81 -.08 68
-2 58.8 -.29 52 -.05 63
-2.5 63.5 -.31 21 -.02 .61
-3 65.6% -.33 -.12 01 .62
-3.5 64.5 -.32 -.44 04 68
-4
Max H = 65.6 - 10 = 55.6m.

This analysis is not particularly accurate as accelerations were too

great to permit accuracy with rigid column

demonstrates use of the technique.

theory.

It nevertheless
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assume water level rise
:: negligible

—_— SO,S

Neglect losses
sudden load rejection
turbine

Fig. 8.6 Numerical analysis of penstock protected with an air

chamber
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CHAPTER 9

WATER HAMMER THEORY

BASIC WATER HAMMER EQUATIONS

The fundamental wave equations describing the phenomenon of
water hammer may be arrived at from consideration of conservation
of momentum and of mass. The following derivation is for the
general case of a pipe inclined at any angle to the horizontal and
friction head loss varying with the square of the velocity. The

notation used is given in Figure 9.1.

pd dx
2
b
-—
Fig. 9.1 Longitudinal and cross sections through pipe
Conservation of Momentum
The following equation is derived from a force-momentum

batance, but it is possible to derive it starting from Bernoulli's
energy equation. Newton's Second Law of motion is applied to an
element of fluid Adx moving in the x- direction (see Figure 9.1).
The resultant force in the x-direction equals the rate of change of

momentum in that direction:

widx w dv

ap .
- +— - - 6 =—, = .
DA (p ade)A WA 35d WAdx sin gAdxclt (9.1)
. dv _ av 3V
and since "4_{ = —aT —a—;V, (9.2)
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the equation becomes

2

B E LT wsine + wal - 0. (9.3)
ax g x g at 2gd
2
= P v (9.4)

Put h = W+ z + 39
then Wa—h =3P L wiz o Wy 3v (9.5)

3x X X g x

3
where BE =sin 0. (9.6)

X

Hence the momentum equation becomes

=0 (9.7)

To account for the directional change in head loss with velocity one
can write v|v| instead of v?:

ah

v + >\v|v|=

ax lg St 2gd 0 (9.8)

In this equation the velocity head v?/2g has been included in the
total head h. One can take h as the piezometric head p/W + z and
write the momentum equation thus:

v Av? o
+ V—x) + 79d - 0 (9.9)

Tw
<

Generally the term vav /3x is small compared with 3v/3t and can
be neglected, but it can be accounted for in numerical solutions if

necessary, e.g. in flexible plastic piping.
Conservation of Mass

The second differential equation arises from continuity. The
difference between the rate of mass inflow to and outflow from an
elemental length of pipe is equated to the rate of increase of
storage caused by elastic expansion of the pipe and elastic

compression of the water.

The rate of stress increase in the pipe wall is (d/2b)sp/3t

The corresponding rate of strain is (d/2bE)s p/3t

and the rate of increase in diameter is (d®/2bE)ap/at

Now A = nd®/a (9.10)

. %A _ 1 o
3t 2 Tat (9.11)
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(9.12)

Q
fe]

28]
[\
-8}
-

The rate of increase in volume over a length dx is given by

95y = BA 4y (9.13)
3t at
- Td®dx 3p (9.14)
4GE 3t

Longitudinal strains have been r')eglected here. It has also been
assumed that longitudinal stress which would affect the lateral
expansion due to the Poisson's ratio effect is insignificant although
they can be included if desired.

The rate of increase in storage caused by elastic compression of

water is
9s
2 _ 1d’ Ip
5t - K 9 T (9.15)

Equating inflow minus outflow to rate of change of storage,

(ndzdx + ndex) Ip (9.16)

4K 4bE’ 8t

e, o by gy e (9.17)
Again, if we put h = p/W and recall 3z/3t = 0, we get
&, _g 3h

Bx+?F:O (9.18)

where ¢ = 1/ /p(% + bcé )

The basic differential water hammer equations, including a friction

term, thus become

oh 1 v _ avlv] _

+ — 2L 4 . .
” 3 3 79d 0 (9.19)
and
ah c?av
2+ = 2Y =
ot 3 ax 0 (9.20)

Omitting the friction term the equations become

oh 1av

_ =T =

o gt 0 (9.21)
2

ah + < a_._v =0 (9-22)

at g 3

The general solution to these equations is
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h —ho+f1(t ——C) +f2(t +—C) (9.23)
= <] _ X g X

vioEvooF cf1(t C) + sz(t +C) (9.24)

which indicates that pressure and velocity changes are propagated
+
at speed —c along the pipe. ¢ is referred to as the water hammer

wave celerity.

Where longitudinal expansion is allowed for a more accurate

expression for c is

1 kd
= — —= a
c 1/ (K + bE) (9.25)
5 .
where k = z ~ M for pipe supported at one end only

= 1 - p? for both ends fixed

=1 for a pipe with expansion joints

p is the Poisson ratio which for steel is 0.3

E is the elastic modulus, (210 000 N/mm? for steel),

K is the bulk modulus of fluid, (2100 N/mm?® for water),

ke

is the fluid mass density, (1000 kg/m® for water),

d and b are the pipe diameter and wall thickness respectively, h
is total head, x is distance along pipe, g is gravitational
acceleration (9.81 m/s®’), t is time, v is flow velocity, and X is the
Darcy-Weisbach friction coefficient ( A in British practice and f in
U.S. practice). A is actually a function of the flow velocity as
indicated by the Colebrook-White equation or a Moody diagram. It
is also affected by unsteady motion but no quantitative assessment

of this is available
EFFECT OF AIR

The presence of free air in pipelines can reduce the severity of
water hammer considerably. Fox (1977) indicates that the celerity
(speed) of an elastic wave with free air is

c = ! (9.26)

1 d
/"‘TUFE*

Tl



119

For large air contents this reduces to c = W (9.27)
where p is the absolute pressure and f is the free gas fraction by
volume.

¢ is reduced remarkably for even relatively low gas contents.
Thus 2% of air at a pressure head of 50 m of water reduces the
celerity from about N100 m/s for a typical steel pipeline to 160 m/s.

The Joukowsky water hammer head is

sh =S av (9.28)

where Av is the change in velocity of flow. There is thus a large
reduction in water hammer head h for a relatively small fraction of
air. If the air collects at the top of the pipe there is no reason to
see why the same equation cannot apply. Stephenson (1967) on the
other hand derived an equation for the celerity of a bore in a
partly full pipe. The celerity derived from momentum principles is

for small air proportions
¢ =Y gban/f (9.29)

where Ah is the head rise behind the bore. This indicates a
celerity of 158 m/s for f = 0.02 and h = 50 m.

There is a school of thought which favours the installation of
air valves in pipelines as a means of reducing water hammer
overpressures. The intention is primarily to cushion the impact of
approaching columns. Calculations will, however, indicate that an
excessively large volume of air is required to produce any
significant reduction in head. The idea stems from the use of air
vessels to alleviate water hammer in pipelines. It will be realized
that air in air vessels is under high pressure initially and
therefore occupies a relatively small volume. Upon pressure
reduction following a pump trip, the air from an air vessel expands
according to the equation pUk = constant where U is the volume of
air. The size of air valves to draw in the necessary volume of air
at low (vacuum) pressures will be found on analysis to be exces-

sive for large diameter pipelines.
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METHODS OF ANALYSIS

A common method of analysis of pipe systems for water hammer
pressures used to be graphically (Lupton,1953). Friction was
assumed  to be concentrated at one end of the pipe or at a few
points along the line, and the water hammer equations were solved
simultaneously with the valve or pump characteristics on a graph of
h plotted against v, for successive time intervals. This method is
now largely replaced by computers e.g. Chaudhry, 1979.

The most economical method of solution of the water hammer
equations for particular systems is by digital computer. Solution is
usually by the method of characteristics (Streeter and Wylie, 1967)
which differs little in principle from the old graphical method or
by finite differences (Stephenson, 1966)}. The differential water
hammer equations are expressed in finite difference form and solved
for successive time intervals. The conduit is divided into a number
of intervals and At is set equal to A x/c. The x - t grid on
which solution takes ptace is depicted in Fig. 9.2. Starting from
known conditions along the pipeline at time t, one proceeds to
calculate the head and velocity at each point along the line at time
t + A,

By adding equations (9.19) and (9.20) divided by ¢, the partial

differential terms can be replaced by total differentials and one

obtains
dx _ X C c av|v]dt _
for gt -t dh + 9dv + 294 =0 (9.30)
dx _ i C av|v|dt
for gt - - ¢ dh - gdv - T 2gd 0 (9.31)
Equs.(9.30) and (9.31) may be solved for h‘p and v'p at point p

at time t + At in terms of known h and v at two other points g

and r at time t. Thus for dh=h" -h dv=v’'-v_ and for r
ap, p g’ p q P,

dh:hplfhr‘ and dv=vé—vr‘. The resulting equations, termed the
characteristic equations, are
+ + - X _ !
o hq h. i Ve Ve + cdt Vrlvrl vq|vql (9.32)
p 2 g 2 2gd 2
+ h -h - adt + !
vt - oa’r 20 dt velveltvglvgl (9.33)
P 2 c 2 2d 2
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TIME

t+At

At

e DISTANCE
L2x ] ALONG PIPE

Fig. 9.2 x - t Grid for water hammer analysis by
characteristics method.

At the terminal points, an additional condition is wusually
imposed; either h is fixed, or v is a function of a gate opening or
pump speed. The correct Equ. (9.30) or (9.31) is solved
simultaneously with the known condition to evaluate the new h and
v at time t + At. The computations commence at known conditions
and are terminated when the pressure fluctuations are sufficiently
damped by friction.

Where a branch pipe s occurs (flow out of p to s) or there is a
change in diameter, then Equs. (9.32) to (9.33) should be
replaced by Equs.(9.34) to (9.37):

h'y = [hqu+hrAr+hsAs+(°/9)(Qq'Qp‘Qs)‘(C"dt/Zg)'
(@ la l/d A Q. da ld A o la|/d A )]/ (A +A +A ) (9.34)
then Q' = Qq+(Aq9/C)(hq—h'p)-AquQqut/qu Aq (9.35)
Q. = Qr+(Arg/c)(h'p—hr)—AerQr‘ldt/Zdr A (9.36)
Q‘ps = QS+(A59/C)(h'p—hs)~>‘Qs|QS|dt/2dS A (9.37)

Where Qpr‘ is flow out of p to r etc. and Qq is the flow out of g to
p etc.
It should be noted that the finite difference form of the

equations above is termed explicit since head losses are expressed
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in terms of the velocities at the previous time interval. Where head
losses are significant compared with the water hammer heads, an
implicit solution may be necessary (Chaudhry and Yevjevich, 1981).
The latter is, however, more complicated as the equations involve
more unknowns and simultaneous solutions of equations for every
point in space are necessary. The equations also become non-linear.

A method of overcoming these problems is explained in Chapter 12.
VALVES

At a valve or other constriction it is necessary to solve one of
the characteristic equations and the valve discharge equation
simultaneousiy. A valve acts in effect like a constriction which
increases head losses. One may therefore enquire why the head loss
cannot be treated as for friction head loss. It will be recalled that
friction head loss was assumed to be a function of velocity at the
previous point and previous time interval. Unfortunately this method
becomes increasingly inaccurate (and unstable) for increasing head
losses and an explicit (new time) function is generally required for
the head loss at a constriction. (It is however exceedingly
laborious to account for a new velocity head loss at a pipe branch,
so in the case of network programs a weighted pseudo-implicit
method has been employed).

The discharge characteristic of a valve can be expressed in the

following way:

Q= chA Y H (9.38)

where Q is the flow in the valve, H is the head loss across the
valve and Cd is a discharge coefficient. F is the fractional opening
of the valve (0 is closed and 1 is fully open). The discharge
coefficient is often a function of F unfortunately but this will be
accounted for here by assuming the only variable is F.

The degree of valve opening as a function of time in the case of
uniform stem travel or proportional turns of a handwheel s
generally non-linear. For most valves the hole closes more rapidly
near the end of the travel of the gate. The following figure
itlustrates the proportional area open for different valves as a

function of time assuming steady turning of the handwheel or actua-
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tor, (the actuator can be controlled to close non-linearly if desired

and this will be discussed under chapter 12.
1.0 I
A +—gate valve LI 1—2[ arcos (1-x) -(1-x)sin arcos(1-x)]
v Ao ™
0.8 A 2
- . B .
5 spherical valve E'F[ arcos x-x sin (arcos x)]
VAN
0.6 | A ! J
butterfly valve T 1-sin xn/2 @
Gate valve
0.4 |
l/—”\‘
%@2
0.2 » Spherical
0 i 1 t 1 1 I I l @
0.2 0.4 0.6 0.8 1.0 Butterfly

Proportional rotation of handwheel
from open to closed
Fig. 9.3 Proportional areas for some valves

For gate valves the F - T relationship can be approximated by

a parabolic function:
F=1-(t/T)? {9.39)

In general the head loss function can be written

Q ={1—(t/T)N}Ap/(H/Ho)' (9.40)
where Ho = initial H/VO2 i.e. initial head loss through fully open

valve divided by initial velocity squared. Apis the pipe area.

Solving this and the characteristic equation at the downstream end

of a pipe
c wlv]dx
dh + —gd\/ + '——zgd_ =0 (9.30)
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vields . XQ1|Q1|dx ch -\
Q= { (=) -b(3=—57—~-5—-h+2)
A 2gdA A
o 9% 9
(Ap[1—(t/T)N])2/Ho (9.41)
c A L1-(e/T)N])?
- = (-P 1/2
gAp Ho
QZ
and h = + 2 (9.42)

(Ap[I—(t/T)N])Z/Ho

where Z is the downstream head, H is the head above Z and h
is the total head. Subscript 1 refers to the upstream point
at the previous time interval, and p to the pipe upstream of the
valve. 't is time, T is the closure time of a valve, t/T is the
proportional operation of the handwheel assuming a constant rate of

operation and A is the open area.
ACCURACY AND STABILITY OF FINITE DIFFERENCE SCHEMES

The water hammer equations are non-linear partial differential
equations. As they cannot be solved analytically for most cases,
numerical techniques are employed. Most existihg methods can be
classified as follows:

a) explicit finite difference methods
b) implicit finite difference methods
c) finite element methods.

The implicit method of solution is a method whereby a simul-
taneous solution of all the flow properties is obtained by solving a
matrix; its main advantage is that the ratio of space to time
interval, &/At, is not governed by any stability criteria and the
method is considered to be stable for any choice of Ax and 4t. Most
previous investigators considered this to be an advantage. Others,
however, found that it is not always possible to make practical use
of this '"advantage" as for high ratios of Ax/At inaccuracy in the
results was high. Impiicit methods are also not convenient for use
as one cannot keep track of results at different time periods.

Finite element methods are usually avoided as they are expen-

sive to run and accuracy and stability criteria can be tedious.
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Explicit finite difference schemes have been widely used in the
past for the solution of different non-linear partial differentiat
equations. They differ from each other in the way they define the
variable gradients, but they all express the flow properties at a
certain time as a function of the flow properties at a previous
time, thus permitting an explicit solution. They are simple to use
as they use a fixed regular grid and it is easier to follow the
variation of the flow properties along the catchment as the solution
is performed explicitly. They have been found to be accurate and
economical when properly used. The problems accompanying the
choice and the use of an explicit finite difference scheme are,
however, those of accuracy and stability. Choosing the most proper
scheme and using it accordingly is, therefore, important in

obtaining stable and accurate results.

Basic Terms Related to Accuracy and Stability for
Difference Schemes

Many natural systems which are continuous functions can be
described by differential equations. |f the differential equations
cannot be solved mathematically one usually resorts to numerical
techniques by approximating the differential equations to a comput-
ational algorithm using difference schemes. This procedure raises
two basic questions. '"How well is the natural system modelled by
the differential equations?", and "How well is the solution to the
differential equations represented by the computational algorithm?"
In the analysis to follow more attention is paid to the second
question. The first question can only be answered by studying the

behaviour of the natural system and comparing it to the equations

applied to it. Therefore it will be assumed here that the
differential equations approximate the system well. The difference
between the differential equations and the difference scheme

approximating them is called a Truncation error (Tr),

i.e. Differential equations = Difference scheme + Tr (9.43)
The truncation error can readily be established using Taylor's

expansion. There is also a difference in the solutions of the two

schemes which one calls the Error (E),
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i.e. Solution of Differential equations = Solutions of Difference
equations + E (9.44)

The exact value of the Error cannot really be obtained in this
case as the differential equations cannot be solved analytically. We
say that a difference scheme is consistent with a set of Differential
equations if the Truncation error tends to zero as the space and
time increments tend to zero,
i.e. Consistent if limit Tr = O

as Ax,At-»0 (9.45)

We say that the solution of the difference scheme is convergent
with the solution of the differential equations if the Error tends to
zero as the space and time increments tend to zero,
i.e. Convergent if limit E = O

as Ax,At=>0 (9.46)

Numerical Diffusion is the process in which the Error (E) is
formed. It is the development of the truncation error (Tr) to the
error (E) through the numerical technique used. It generally mani-
fests in the form of an attenuation and spreading of wave fronts.
If computations at points distance Ax apart are at time intervals At
then numerical diffusion will proceed through the system at a rate
Ax/ At,

Stability and Accuracy Criteria for an Explicit

Finite Difference Scheme

Since one is dealing with non-linear partial differential equa-
tions (p.d.e's) there is no rigorous proof specifying stability
criteria.

In the sofution of a non-linear set of p.d.e's like the Water
Hammer equations it was found that both stability and accuracy are
influenced by the values chosen for the space increment {4x) and
the time increment ( At). In particular, a critical ratio of Ax/At
i.e. {(ax/ At)cr" exists for determining whether a scheme will run
under stable conditions or not. The effects of Ax and At on

stability and accuracy are summarized in Figure (9.4).
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|
AX ] )
solution is solution 1is
stable unstable
- .
Accuracy of solution
» decreases because of
numerical diffusion
If the difference scheme is
convergent for a fixed (ax/at)
the smaller ax and At the more
accurate the solution.
0 —
0 (ax/at)
(Ax/At)Cr
——————————P»

Fig. 9.4 Effect of values on Ax and At on stability and
accuracy for an explicit finite difference scheme

From Figure (9.4) one can deduce that the main criteria in the
selection of Ax and At values for an explicit finite difference
scheme are:

a) that the scheme shall proceed under stable conditions i.e.

Ax Ax

—_— > i .

x 205 o (9.47)
Ax AX e . R .

b) —= shall be close to (=) to minimize diffusion errors and
At At ‘cr

obtain optimal accuracy.
c) The difference scheme shall be convergent. This could be ascer-
tained by running the scheme with different Ax's and At's and

comparing with analytical results in a simple case.
Determining (Ax/At)
cr
(Ax/At)cr- has been shown to be the speed of wave as it is

propagated. This can be demonstrated by considering the method of

characteristics
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The method of characteristics describes flow in the form of
waves travelling along or against the flow at a specific velocity,
dx/dt. The family of curves described by dx/dt in the x - t plane
are called the characteristics. The flow properties, velocity and
total depth, in the case of the water hammer equations are des-
cribed by relationships obtained from the wave equations (1 and 2)
using the relationships of dx/dt. In other words, the relationships
derived describe the flow properties as seen by an observer
travelling along the flow at a velocity defined by the characteris-
tics. v

In the case of the water hammer equations, a wave is caused by
a velocity gradient, i.e. change in velocity anywhere in the flow,
e.g. shutting of valves etc. This wave is propagated with or
against the flow at a velocity of + ¢ as given by the equation
dx/dt = + ¢ (9.48)

As the wave travels it propagates information about the velocity
gradient to different points in the conduit. The concept of
information propagation by the wave in time and space can be
illustrated by considering the characteristic curves defined by

equation (9.48). This is illustrated in Figure (9.5)

C c
2
. 2
1 1
T
R .
t,
A B . .
t
Xa R X
]
xR

Fig. 9.5 Propagation of information along characteristics of
the water hammer equations
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In Figure 9.5, C1 and C2 are a set of characteristics described
by equation (9.48). Suppose that the flow properties, total head
and velocity are known at points A and B, x, and Xg distances

A

from the origin at time t1. One can then obtain the flow properties
at a point R which lies on the same characteristics as points A and

B, x5, distance from the origin at time tz.

Tie critical space to time interval ratio, (Ax/At)cr*’ can be
shown to be the wave speed by considering a central difference
scheme for solving the water hammer equations. The scheme s
itlustrated in Figure 9.6.

Let i represent a space interval, and k represent a time inter-
val as shown in Figure 9.6. The point in question, i.e. where the
flow properties are to be calculated, has the co-ordinates (i, k}.
Information about the flow properties is sought from the previous
time interval. In Figure 9.6(a) the true propagation speed is
smaller than the numerical propagation speed while in Figure 9.6(b)
the converse is true. Numerical propagation lines are lines that
have a slope &x/At in the x-t plane while true propagation lines
have a slope dx/dt in the x-t plane. In Figure 9.6(a) information
is obtained within the i-l, i+l range by the true propagation lines.

In Figure 9.6(b) information is sought by the true propagation

lines outside the i-I, i+l range. Since information outside this
range is not propagated by the numerical scheme, it cannot be
found and thus instability will result.

For stability of an explicit finite difference scheme the following
must, therefore, hold:

Ax dx
st 23t (9.49)

This is referred to as the "CFL condition'" after Courant, Fried-
richs and Lewy (1956), or simply the Courant criterion for stabil-
ity.

To minimize diffusion errors as mentioned earlier Ax/At must be
as close as possible to dx/dt. Using the result in equation (9.48),
/At is chosen to be equal to the wave celerity, i.e.

Ax

== (9.50)
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t t
1N
N v
/4
k 7
i N
k-1 '
> x 1-1 1 i+ > X
AX
R
AX dx AX dx
(a) 2t > dt {b) At < at

——————— Numerical propagation lines; slope(ax/at)

----------- True propagation lines; slope (dx/dt)

Fig. 9.6 Comparison of numerical and theoretical propagation of
information in a central difference scheme

Equation (9.50) is used to define the space and time interval.
The relationship ensures that the difference scheme is run under
stable conditions with no diffusion errors. The solution of the
equation is further made more accurate by the choice of smaller Ax

and at At intervals as can be seen from Figure (9.4).
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BASIC COMPUTER PROGRAM FOR ANALYSING GRAVITY LINE WITH ONE

DRAWOFF ALONG THE LINE,

VARIABLE PIPE DIAMETER,

NUMBER OF

INTERVALS AND CLOSURE TIME OF DOWNSTREAM GATE VALVE.

Input is as follows:

Line 1; Title

Line 2: Pipelength, m; Celerity m/s; Valve closure time, s;
Number of pipe divisions; Endflow m®/s; Number of
iterations (in 1 iteration wave travels 1 pipe
division so At= AL/C); Point at which draw-off
occurs.

Line 3; Drawoff m®/s (put 0 if none).

Line 4 etc.;

Later lines;

278

280
29%8a

Eievations

in m of each point

fixed reservoir level),

1 MRTER HAMMER GRAVITY LIHE
HWITH VALWE CLOSURE AT DS END
OIM Z<21),Hez12. D021 .5421),
AC21Y,5(21,P(212,R21 >

DISF “FPIPE NAME";

INFUT NS

G=%2.8 1 32.2 IF FT-5 UHITS
DISP “Lm.Cwm~/s, TUALVES, NIHTS.
Vw3 s, ITS. BRRAWOFFPT";

INPUT ¥,C,.T,N1.,G1,11,M1
NZ2=N1+1

DISP "DRAWOFF
FOR J=1 TO N2
FC =0

HEXT J

INPUT P(M1)
DISP "ELEVATIONSm1 BY 1-".N2

m~3s8";

FOR J=1 TOD N2

INPUT 240

NEXT J

HC10=2(1)

Hi=1 ! HL-YB~2 THRU

GATE VYALY=2,BV=.5,NV=

OPN VALV

Yi=z2 !
1
D1=X/N1
Dz=D1~-C
DISP "DIASm1l BY 1-",N1

FOR =1 TO N1

INPUT DCJ)

NEXT J

PRINT "WATER HAMMER DT VALVE
CLOSURE *.N%

M2=M1i-1

FOR J=1 TO M1-1

386
3ia
329
33e
348
358
368
378
386
298
4080
418
420
438

440
450

460
47éa
488
490
56008

Sila
See
538
S48
556
S68

578a

(first one being the

(one per line).

Diameters of each pipe division in m (one per line).

DCIr=01+P (ML)

REXT J

FOR J=M1 TO NZ

RCIr=01

NEXT J

S1=@

FOR J=1 TO NI
ACID=.785XD(N)~2
S1=814Q¢ S>3 ~2-/0C1>+5

NEXT J

D(N2>=D(N1)D

ACN2I=A(NT>
HCN2Y=Z (N2> +HIX(Q1/ACHLID)»~2
F=(Z{1)Y-H(N2) ) X2XGY . 785~2-D1
751 :

FOR J2=2 T Hi
HONL4+2-J2)=H(N1+3-123+FID1 %0
(N1+2~-12>~272/G7D(N1+2-J2> /A
(N1+2-J2)~2

HEXT J2

FOR I=1 TO I1

FOR J=1 TO N2

RCII=0CI)

SCIr=H{ D)

NEXT

FOR J=2 TO N1
H2=R{J-12-R(J+1D-PCI+1)-P{ D)
H3==-((R(J+1D+P(I+1D3XABSC(R( )
;l)+P(J+l))/H(J>/D(J)XFXDZ/2

H2=H2-FXD2-2¥R(J-1D¥ABS (R J-
123-8C4-1>,DCJ-1Y-H3
H2=H2XC/G+{(S(J-1IXACI-1>+8(J
+1OXACI))D
H{ID=H2/(ACI-1X4+ACS))



626
630
&40
650

6560
676
586
590

7aa

718
vea
73a

748
756
760
770
780

Q2=R{A-1I+G/CHCSC -1 2-HC(J2 0%
ACJ-12
RCII=R2-FAR(I-1DXABS(RCI-1 23
*0D2-2/-.DCI-12,ACI-10-FC >
NEXT J

IF I¥D2>=T THEW 28
TI=CACHIX(1-CIXDZ2-/To~V122~2
~H1
G3=CY¥FIR(NIDXABS(R(NL X2 XD2-2
/G DENL Y 7ACHL »~2
Q3=03-CHRINMI>»/G/ACNL»-SC(H1O+
ZCHZD
BCN22=(8QR{CC/GAACHT ) )~ 2-4%0
3-T152-CsG-RCHL>DXTL /2
HCNZY=QC{N2)Y~2/T1+2(H2D

GOTO 7a8

B(N2)=8
H(NZ2)=(R(N1>X-F*02-2XK(N1>XAR
SCRCN1D»/ACHNL X/ DC(HID DXC-/G AL
N1>+S{N1>
QC1=RC2HO+P (2 +G/CRKACLIIX(HOL
I=SC2X-FX(R(Z2I+P(2ZIIXABS(RY
2)+P (232 »%D2-,2-0012/70C1D
PRINT “HNODE FLOQ M3~S HERAD"
FOR J=1 TO M2

PRINT USIHG 748 : J,BCJ),HCJ
b

IMAGE DDOD.DDOD . DOD.DDDD . O
NEXT 4

NEXT 1

STOF

END

FIFE HAME?T

SAMFLE EUH

Lm.Cm-=. TUALVEs , NINTS. QYm3 =, ITE
s DRAWOFFPT >

3p80,1088, 32,3, 1.208.2

DRAWCGFF m~3-57

.83

ELEVATIONSm1 BY 1- 4 7
1086

ze

?

2a

l‘?

Sa

DIASmY BY 1- 2



METER
SHMEL
NOGE

HOD

M

HOoO

PV el PG TP o) P = 01 s o) P e T L G [ e

5
=

HaD

HOD

PIT B Ced Polt = TP B e T b [T B (o) ) e

HOD

HOD

HOD

HoD

D T s ) T s [T s i) o) i [T o () [ e

HOD

A g PO e [T LT

HAMip R 07 Valye
E FLUN
FLO MZ~5 HERD
198 10B @
1éa G
it %
.18 2

m-

O R DN P S T v =) L D T O
[m]

Xy ]
[l ii¥s Jua)

VR R o e Y]
m .

m.
[}

FLO . MZ~S HERD
.145 185 .0
a3 238 .3
.ap1 z22e .8

7.‘

aae 227 .

a@l 232
a ann 2346
FLO.M3~S HERD
-.038 166
~.8939 181
-.@81 229
Boaag 234

0 T 09 T D
L]

FLO.M2Z2~S HERD

~.B40 100 @

- .828 184 .7

-.887 18z2.2

a.888 -2 3
FLO M3~5 HEAD
-.848 168 P

-.agg &7 .7

-.aBz -23 .1

Q. adth -20 5

FLO M3~S HERD
-.B835 166 .8

-.883 -24 8

-.ae82 -22 4

B @86 -25 .9
FLO M3Z~5 HEAD
1323 108 .8
—-.@81 -2z .1
-\l -27 &
@ aen -2¢ 2

FLO . M3~5 HERD
132 168 .o
Jazz 238
.apl -z2S @
Q.86 ~-z3 3
FLO M3~5 HEARD
132 169 .6
.83 9z g
.883 89.3
8 eap -23 .7
.MZ2~5 HERAD
132 188 @&
.B8z 92 .3
.88t 92 7
B_aaa zas6 . 1
FLO MZ~5 HERD
132 188 .0
.ag@ 95 .=
.881 247 .2
6.806 2ZAC 4
FLO.M32~5 HERD
.129 188 @
.82 2a3.9
.ae1 267 .5
2,886 288 3
HER
B
£
Q

13 P P e O PP P = G0 P Ty

FLO M3~ EAD

-.824 1w
.8ap 2ad &
.aa1 269 9

@.a00 208 7

FLO.MZ~S HERAD
-.824 1ea. &
-. 875 188 5
-.@8a1 287 .7
.38 211 .6

FLO.M2~5 HERD
-.B25% 1@a9.
-.875 166 .
-.B75 1RA3.
A _8pn 286 .

==

133



134

3000 mL

C=1000m/s

List of symbols in gravity pipe water hammer analysis program

Symbols

A(J)
c
D(J)
D1
D2

F

G
H{J)
H2
H3
H1

11

z(J)

Area of pipe

Celerity

Diameter of next section

Increment in X

Increment in T

Darcy friction factor in H = FXV?/2GD
Gravitational acceleration, 9.81
Head

Dummy variable

Dummy variable

Head loss through valve/V?

Number of iterations

lteration number

Node number

Counter

Length

M2-1

Name

Number of sections in main pipe
N1 + 1

J at which draw-off occurs (any node
2 to N1)

Draw-off

Draw-off from main pipe end

Flow

Draw-off branch

Q at previous time interval

H at previous time interval

Q?/D

Time in seconds to closéﬁha\in pipe
line downstream valve

Dummy variable

Power in valve area-closure equation
Length of pipe

Elevation
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CHAPTER 10

BOUNDARY CONDITIONS IN WATER HAMMER

DESCRIPTION

The finite difference solution of the characteristic equations
starts from known conditions along the pipe at a specified time.
The conditions may be steady-state flows and heads as defined
by the analyst or as determined from a given friction head loss-
flow relationship together with given reservoir heads at either
end of the line. After the first iteration it is unnecessary to refer
to the initial flow conditions at intermediate points but the end
conditions should still be known. These conditions may also be
specified by the wuser, but it is these conditions which dictate
in what way the flows are to vary.

Thus if wvalve closure is to be the cause of water hammer,
the valve opening has to be specified as well as the relationship
between discharge and head loss across the valve. The latter can
be given in equation form and the valve opening can also be speci-
fied as a function of time, or even controlled by the program
(termed valve stroking and can be used to limit head rises)
(Wylie and Streeter, 1978).

Where a pipe leads to or from a reservoir, the reservoir head
is generally specified. This may be at a fixed level if the water
level does not vary much, or the water level may vary as flow
occurs into or out of the reservoir.

Other boundary conditions encountered included changes in
pipe diameter, closed end pipes, or branches for both of which
the relationship between head and filow may be determined by equa-
tions such as (9.34) to (9.37) (the cross sectional area of a pipe

beyond the closed end is taken as zero).
Conditional Boundary Conditions
During the course of computations the physical Ilimits to an

assumption may be encountered. Thus if the head computed using

equation (9.34) was to be below vapour head of the liquid, the
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liquid would vaporize. The head would be unable to drop below
the vapour pressure so it should be set equal to vapour pressure
and the liquid assumed to vaporize. The extent of the vaporization
(the wvolume) could be computed by calculating the flow rate up-
stream and downstream of the point using equations (9.35) or
(9.36). The increase in vapour volume Iis the difference in the
two fiow rates either side of the point, multiplied by the time
increment. Chapter 11 elaborates on this type of problem.

It may be that the engineer imposes controls on the system
to limit flow rates or pressures. Control valves can be used to
limit maximum fiow rates, or pressures. The use of control valves
and other forms of water hammer protection, e.g. surge tanks,
non-return valves and air vessels is described later.

Spring loaded release valves can be set to discharge at a
specified rate when the pressure against them exceeds a preset
figure. This condition can be programmed as well as the discharge-
head relationship through the open valve. A further disadvantage
of the rupture disc (Fia.10.1 b) is that the line could drain after
it has opened, unless there is also a control valve on the Tee.
Both above methods require the head to increase before they oper-
ate, and by that time it may be too late to protect other points
in the pipe system. There are many control wvalves which operate
on this direct principle e.g. Figure 10.1c. On the other hand,
there are pilot operated valves which could commence opening
on sensing the first downsurge, e.g. Figure 10.le. In such cases
a sub-program is required to check the operating condition of
the valve.

It should be noted that pressure reducing valves, or in fact
any constriction is liable to cause cavitation downstream if the
cavitation number is too high. The cavitation index is generally
of the form
P -P
K = ﬁ (10.1)
where P is pressure and subscript d refers to downstream, v to
vapour and u to upstream. Depending on the valve design, values
as low as 0.3 are possible before the onset of cavitation. If cavi-
tation occurs, vapour bubbles and gas release may occur down-

stream which actually reduce the water hammer wave celerity.
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This can in turn reduce the downsurge downstream if the valve is
closing, which in turn provides a stabilizing characteristic to ‘the
valve. On the other hand, cavitation erosion of pipework is a

troublesome phenomenon to be avoided.
WATER HAMMER PROTECTION OF PUMPING LINES

The pressure transients following power failure to electric motor
driven pumps are usually the most extreme that a pumping system
will experience. Nevertheless, the pver-pressures caused by starting
pumps should also be checked. Pumps with steep head/flow
characteristics often induce high over-pressures when the power is
switched on so a wave with a head equal to the closed valve head
is generated. By partly closing the pump delivery valves during
starting, the over-pressures can be reduced.

If the pumps supplying an unprotected pipeline are stopped
suddenly, the flow will also stop. If the pipeline profile is rela-
tively close to the hydraulic grade line, the sudden deceleration of
the water column may cause the pressure to drop to a value less
than atmospheric pressure. The lowest value to which pressure could
drop is vapour pressure. Vaporization or even water column
separation may thus occur at peaks along the pipeline. When the
‘pressure wave is returned as a positive wave the water columns
will rejoin giving rise to water hammer over-pressures.

Unless some method of water hammer protection is installed, or
friction plays a significant role in reducing water hammer pressures
before positive return surge occurs, a pumping pipeline system may
have to be designed for maximum water hammer overhead equal to
cvo/g (termed the Joukowsky head). In fact this is often done with
high-pressure lines where water hammer heads may be small in
comparison with the pumping head. For short lines this may be the
most economic solution, and even if water hammer protection is
installed it may be prudent to check that the ultimate strength of
the pipeline is sufficient should the protective device fail.

The philosophy behind the design of most methods of protection
against water hammer is similar. The object in most cases is to

reduce the downsurge in the pipeline caused by stopping the
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Screw-down to preset
spring 1oad

| I: -% Isolating valve
) [N 3
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valve
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\_/— Flexible diaphragm valve
-] [27 e.g. Clayton
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c. Pneumatically loaded
release valve

Valve e.g. sluice valve

Electric motor
Pressure actuated contact

é) (]
d. Electrically operated valve
(opening and closing)

Needle control
Non return
valve Piston seal

~ valve
Pilot pressure -

sensor r 1\\
&

e. Self actuated pilot controlled valve
could be opened during the downsurge

Fig. 10.1 Release valves
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pumps. The upsurge will then be correspondingly reduced, or may
even be entirely eliminated. The most common method of limiting
the downsurge is to feed water into the pipe as soon as the pres-

sure tends to drop.

| E—— HYDRAULIC GRADE LINE TANK DELIVERY
- RESERVOIR

Ho
N R
AR
VESSEL
SUCTION
RESERVOR
4 4y |
PUMP

Fig. 10.2 Pipeline profite illustrating suitable locations for
various devices for water hammer protection

Suitable locations for various protective devices are illustrated
in Figure 10.2. Most of the systems involve feeding water into
the pipe. Observe that in all cases the sudden momentum change
of the water column beyond the tank is prevented so the elastic
water hammer phenomenon is converted to a slow motion surge
phenomenon. Part of the original kinetic energy of the water col-
umn is converted into potential energy instead of elastic energy.
The water column gradually decelerates under the effect of the
difference in heads between the ends. I[f it was allowed to deceler-
ate the water column would gather momentum in the reverse direc-
tion and impact against the pump to cause water hammer over-pres-
sures. |f, however, the water column is arrested at its point of
maximum potential energy, which coincides with the point of mini-

mum kinetic energy, there will be no sudden change in momentum
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and consequently no water hammer over-pressure. The reverse flow
may be stopped by installing a reflux valve or throttling device
at the entrance to the discharge tank or air vessel, or in the
pipeline. A small orifice bypass to the refiux valve would then
allow the pressures on either side to gradually equalize.

Fortunately charts are available for the design of air vessels
and for investigation of the pump inertia effects, so that a water
hammer analysis is not normally necessary (Stephenson, 1981).
Rigid water column theory may be employed for the analysis of
surge tank action, and in some cases, of discharge tanks.

If the pipeline system incorporates in-line reflux valves or
a pump bypass valve, an elastic water hammer analysis is usualliy
necessary. The analysis may be done graphically or, if a number
of solutions of similar systems are envisaged, a computer program
could be developed. Normally the location, size and discharge
characteristics of a protective device such as a discharge tank
have to be determined by trial and error. The location and size
of in-line or bypa§s reflux valves may similarly have to be deter-
mined by trial. In these instances a computer program is usually
the most economical method of solution, as a general program could
be developed, and by varying the design parameters methodically,

an optimum solution arrived at.
NON-RETURN VALVES

In some situations the strategic location of a non-return valve,
or check valve or reflux valve, is sufficient to prevent or at
least reduce water hammer over-pressures. Where water column
separation occurs the installation of a non-return valve down-
stream of the pocket could prevent flow reversal and the subse-
guent over-pressures.

In another type of application, water could be drawn into
the pipeline from the suction reservoir or a tank when the head
in the main pipe drops below the head outside. This water would
fill the cavity and likewise reduce the return surge.

Non-return valves are included with conditional statements
in computer programs. When the flow rate is positive then an in-

line valve remains open with minimal head loss. When the flow
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reverses, or attempts to reverse the valve closes. The flow rate and
head are initially calculated using equations (9.32) and (9.33).
Then the flow check is made. [f negative, the flow rate is reset
equal to zero on either side of the valve and the head upstream
and downstream re-compiled using equations (9.30) and (9.31)
respectively. There may be a further conditional check for head,
and if the upstream head is less than vapour head, it is reset and
the upstream flow recalculated.

The use of off-line non-return valves with discharge tanks is

itlustrated in Figure 10.3.

OVERFLOW

SCOUR }

OUTLET
REFLUX

1SOLATING
VALYE

N7

Fig. 10.3 Discharge tank

In principle many forms of water hammer protection for pumping
lines operate similarly. That is they discharge liquid into the
pipeline when the pressure in the line drops after a pump trip.
This fills the potential wvacuum or at least reduces the downsurge.
When the ({positive) water hammer wave then returns from the far
end of the line it will be reduced in amplitude correspondingly.
The types of protection which operate thus include air vessels,
pump bypasses with non-return valves, flywheels on pumps,
discharge tanks and in-line non-return valves. Surge tanks operate
on a slightly different principle, i.e. they offer a continuous
insulation effect protecting the pipeline beyond them against
over-pressures. The analyis of various types of surge tank is
described by Rich (1963).
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AIR VESSELS

Air vessels are often used to cushion water hammer over-pres-
sures or to feed water into the low pressure zone created by stop-
ping pumps. They are also used to balance flow on reciprocating
pump systems. Air vessels generally contain air at the operating
pressure of the adjacent pipeline. They are connected to the pipe-
line via a pipe which may have a constriction. This outlet constri-
tion will reduce the volume of water forced from the air vessel into
the pipe when a low-pressure 2zone is created in the pipe. This
constriction has the disadvantage that pressures in the pipe are
lower after the pump trip than without the constriction.

The air vessel outlet- could also have a non-return valve incor-
porated in the outlet to reduce backflow when the positive surge
occurs. This prevents the returning water column gathering
momentum and reduces the volume of air needed to cushion the final
maximum return flow. The most efficient return flow is usually a
restricted bypass pipe around the discharge non-return valve.,ﬁhis
lets back some flow but also acts as a constriction or thr‘ottle.\ The
optimum combination of air vessel capacity, initial air volume,
outlet size and inlet size must be found by trial. There are charts
available for preliminary selection of air vessel size (Stephenson,

1981; Thorley and Enever, 1979).
Air Vessel Equations

The air in the air vessel, on release, expands in accordance
with the laws of physics. The expansion is usually in-between
isothermal (PS = constant, where P is absolute pressure and S is
volume) and adiabatic (PS1'4 constant). The relationship generally
adopted is PS1'2 = constant. (10.2)

The increment in volume of air, dS is obtained from the contin-

uity equation

ds = (Q —Ql)dt (10.3)

2
where QZ is the discharge rate in the pipeline beyond the air
vessel connection and Q1 before the air vessel, averaged over the

time period, dt.
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The change in pressure head in the air vessel over the time dt
can be calculated from the air expansion. The head in the pipeline
adjacent to the air vessel is calculated by subtracting the head
loss in the connecting pipe or bypass, (depending on whether flow
is out or in). The new discharge rates in the pipeline are then

calculated using the respective characteristic equations

Q/=Q +(A h -h’)-xQ_|Q _|dt/2dA 10.4
179 {Ag/c){ q ) qi ql / ( )
Q2=Qr+(Ag/c)(h —hr)-XQrIerdt/ZdA (10.5)

where q is an upstream point, r is a downstream point and the
prime” refers to the new values.

If dt is large it may be necessary to use the mean values of Q]
and Cz2 over the time interval, and not the initial values. This is
an implicit solution and would mean the above equations would have
to be iterated a few times to obtain the discharge rates at the end

of the time interval.

COMPRESSOR ;—_,_—__:J

WATER LEVELJ UPPER 1 . .
UMIT SWITCHES | LOWER

OUTLET
REFLUX

THROTTLED
INLET

ISOLAT ING
VALVE

Figure 10.4 Air Vessel
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CHAPTER 11

WATER COLUMN SEPARATION

INTRODUCTION

Water cannot tolerate a pressure less than its vapour pressure,
which is a function of the temperature but is only a few metres
absolute head. When the pressure in a water column is reduced, for
instance by stopping a pump, the pressure may reduce to below
atmospheric and ‘'to the vapour pressure of the water. The inherent
energy then no longer converts to strain energy but kinetic energy.
The head may not drop low enough to stop the water column so that
downstream of the cavity it proceeds, albeit at a lower velocity, in
the same direction as initially, creating a cavity in the conduit
between the pump and the water column.

The cavity is wvacuous but contains water vapour and some air
which will come out of solution due to the lowering of the pressure
in the water. It is also possible that air will be drawn in through

air valves on the line or even through the pumps. This air has a

limited elastic effect in cushioning the pressure drop and
subsequent rise on return of the water column. It is generally
found, however, that the mass of air is too smail to have a

noticeable effect in reducing the subsequent water hammer pressure
rise.

The form of the cavity created by the drop in pressure is time-
dependent although the total wvolume can be computed accurately
using mass balance and even the rigid column equations in some
cases. It is often sufficiently accuraté to assume the cavity occu-
pies the full cross sectional area of the pipe and the effective
length can thence be determined at any time if the volume is
known. Initially the cavity occurs in the form of bubbles dispersed
across the section of the conduit. The bubbles rise to the top of the
section and may aiso travel longitudinally before coalescing to
create a pocket. In fact it is only in steep pipes that the interface

is sharp, and in longitudinal pipes the cavity or vapour pocket
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spreads longitudinally. A bore may travel up the line to spread the
cavity laterally. {f the cavity spreads over more than one 'node',
water hammer calculations are complicated but often the cavity can
be imagined as occuring in separate pockets at nodes {see Martin,
1981),

§rf h— 4 4

Simplistic Cavity

Spreading of Cavity

Sloping Tine

Figure 11.1 Shape of cavity

The mechanics of water hammer accompanied by column separa-
tion can most readily be visualized using the graphical method,
(see Fig. 11.2).

Whether the graphical method or a computational method is
employed, a check is made at each stage to ensure the head does
not drop below vapour pressure head. Once it does, a subroutine is
entered setting it equal to vapour head and accumulating a volume
of vapour pocket by adding AS=AV A dt to S each time step, where

A is the difference in downstream and upstream velocities.

COMPUTATIONAL TECHNIQUE FOR COLUMN SEPARATION

The method of handling water column separation or vaporization
numerically is to an extent a process of trial. At any time interval
head and flow may first be computed assuming continuity at each

point, that is inflow equals outflow. The head is computed without
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heed to separation. |If the resulting head is less than vapour
pressure head, it can be set equal to vapour head, e.g. + 1 m
absolute or -9 m gauge head. |f, however, there is an air valve on
the line near that point, or even considerable air transported in
the flow, the 'separation' head may in fact be higher. The air
mass drawn in is generally negligible and will have no cushioning
effect when the water columns subsequently rejoin (a comparison
with the size of an air receiver to prevent water hammer will
reveal this). At the upper limit the head will approach atmospher-
ic, i.e. it will be the elevation of the pipe above datum.

The flow rates upstream and downstream of the pocket are now
recomputed using the respective characteristic equations and substi-
tuting vapour head for head at the point. Then the increase in
vapour pocket volume over the next time interval is computed, At(Qo
—Qi) where Qi is inflow and Qo outfiow at the point.

A tally of the cumulative vapour pocket volume at each such
point is maintained during the successive computations. As long as
this volume is greater than zero the head must be equated to
vapour head and the flows each side of the point computed thus.

When the vapour pocket reverts to zero (or turns negative) then
the head is recalculated for a continuous water column. The vapour
pocket may collapse between computational time intervals, in which
case the head rises to a lesser extent than would be predicted
assuming it rises at the end of the time interval (compare point M2
with M1 in Figure 11.2). i

If a one-way discharge tank is used to reduce water hammer the
same computational procedure is employed. The discharge tank is
connected to the pipeline through a non-return valve and discharges
only when the head in the pipe drops below the tank head. Thus
return flow and vapour pocket collapse are eliminated. The tally on
volume of separation is thus maintained as for a vapour pocket but
as soon as it attempts to reduce, the non-return valve prevents this

and the head rises as for a water column without separation.
SIMPLIFIED R!GID COLUMN ANALYSIS

If the water column can be assumed to separate at a known
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Figure 11.2 Drop in head due to pump trip and subsequent
rise in rejoining of water columns
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point and the subsequent downstream head changes are small, the
following analysis will indicate the extent of column travel before
reversal. The downstream column may be assumed to deceierate

according to the following equation:

h (11.1)

|

|

|
[al(e}

where h is the decelerating head, which could be the difference
between the vapour pressure head in the vapour pocket and the
elevation head of the downstream open end. Friction head can also
be added to h if it is significant, and it will act in an upstream
direction while the water column is decelerating, and subsequently
in the opposite, downstream (towards discharge end) direction when
the water column reverses. This will cause a reduction in the
return velocity of the water column whereas the following analytical
solution without friction will indicate a return velocity equal to the
original velocity in magnitude:

Integrating the previous equation with time, we get
V=V~ ght/L (11.2)
here Vo is the constant of integration which is the initial m

velocity. Now when the column reaches its extremity before revers-—

ing, v = 0 hence t = vOL/gh (11.3)
Integrating again gives the distance the water column travels

x = vot—ghtz/ZL {(11.4)
Substituting for t at v=0 gives

Xax = vozL/Zgh (11.5)

Hence the maximum volume of cavity is Ax = ALv ?/2gh
max o
(11.6)

Rising Mains
Along gently rising pumping pipelines the vaporization may

occur along a considerable length of pipe. The spreading of the

vapour pocket front will occur initially as fast as an elastic
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wave, but the subsequent refilling will be slower owing to the
additional ‘'elasticity' in the vapour pocket.

In the following analysis the magnitude of the vapour pocket
formed in the rising length of pipeline is evaluated in equation
form. The cross sectional area occupied by the vapour is shown to
be very small in relation to the total pipe cross sectional area. It
is proved that the vapour pocket 1is rapidly filled by surges
travelling along the pipeline from both ends, and that no water
hammer pressure rise is associated with the filling of the pocket.

To simplify the analysis it is assumed that the pipe beyond
point C is inclined at a constant angle 6 to the horizontal. Heads

are absolute values, that is gauge plus atmospheric.

\ . atmospheric
initial head hg (absolute) ) 3 head

Figure 11.3 Simplified pipe profile for theoretical study

The velocity at any point x between ¢ and the delivery end,

(see Figure 11.3) after the initial negative wave has passed, is

= 8 x— i _alt=271 sj
v Vo C[Aho {x xc)sme] glt c] sin @ (11.7)

The second term on the right hand side is the velocity reduction
caused by the initial negative surge, while the last term is the
deceleration due to gravity. The continuity equation applicable is

) aA
‘B';(av) + 51 o] (11.8)

-
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Figure 11.4 Detail at surge front

where A is the cross sectional area of water in the pipe. If the
cross sectional area of the vapour 'a' may be assumed to be small
in comparison with the total cross section A, the last equation may

be simplified to
sd 3V
R~ (11.9)

from (11.7) 3v/8x = 2g sind/c, so that (11.9) may be integrated to

yield

a_2g9 sin 8 (t=2) (11.10)
A c c '

This equation illustrates that 'a' is small compared with A.

At the open delivery end the head remains at atmospheric head
ha. When the negative wave reaches this point water is forced back
into the pipe. A surge travels back along the pipe, filling the
vapour pocket. In order to study this surge let the analyst travel
with the surge, at celerity Cge Apply momentum principles to the

free body of water shown in Figure 11.4.

2 = — 2 -
p(v]+cs) (A-a)+ pgy1(A—a) = (v2+cs) Ap+pgAhA+pgy2A (11.11)

Here p is the mass density of water and y is the depth to the

centroid of the cross section of water. The velocity v may be

2

c, a and A with the aid of the

expressed in terms of v
1’ s

continuity equation:
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(v1+cs)(A—a) = (v2+cS)A (11.12)

Since (A-a) is very nearly equal to A, y](A—a) is nearly equal

to yzA. Solving the last two equations for o

cszv/gAh% (11.13)

chh

] x
2 sme(t—z)

For many practical situations this equation will yield values of ¢
between 500 and 1000 m/s, illustrating that it is of the same order of
magni tude as the wave celerity of a full pipe. The velocity change at
the surge front may be expressed in terms of Ah by rewriting (11.12) and

(11.13) as follows:-

Al (v]+cs)—(v2+cs) ]= gAhA/cS

=]
2) = 2hh

s
PROGRAM FOR SIMULATION OF WATER HAMMER IN PUMPLINES
FOLLOWING PUMPTRIP

The accompanying basic computer program for an HP-85
calculates water hammer pressures in a pipeline following a
pumptrip. The pump is assumed at the upstream end, the pipe
diameter is constant, but friction is accounted for. Data is

requested interactively as follows;

Line 1: The name of the system
Line 2: The number of sections
Line 3: The number of iterations (e.g. if the pipe is

divided into 4 intervals, 4 iterations represent the

travel time for the water hammmer wave up the

pipe)
Line 4: Length (m)
Line 5: Diameter (m)
Line 6: Wavespeed (m/s)
Line 7: Flow rate {(m?*/s)
Line 8: Friction head (m)
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Line 9

onwards: Elevation of each successive point (all in m and s
units).

The first and last elevations should represent the water level in

the suction sump and delivery reservoir (both assumed constant).

The program assumes the pump trips immediately the simulation

starts, and prints out heads and flows at each point every inter-

val.

Water column separation is accounted for in a simplistic way.
When the head drops to the elevation of the pipe at any point, or
tries to drop below the elevation, it is set equal to elevation and
the flow rate both before and after the point are re-calculated for
the new head. Vapour pocket volume is computed by summing the
difference between the two flows and when it turns to zero (or a
negative value) the head reverts to that indicated by the finite
difference equations for a full pipe. The spreading or longitudinal
movement of vapour pockets are neglected, and no reduction in wave
speed is made. Due to this simplification and the fact that vapour
pocket closure can only occur at the computational time, the
program can overestimate water hammer pressure due to pocket
collapse.

The maximum heads at each head along the line are plotted

above the pipe profile at the end of the run.

List of symbols in program for pumpline water hammer analysis

A cross sectional area

B celerity of wave

D diameter 5

D1 sum of 1/D

E mass density of liquid

F unit friction

F1 total friction head

F2 friction term

F3 friction term

G gravitational acceleration
H head

H2 head term

I iteration number

19 printout interval (0O = only summary required,

1 = full listing of heads)
J pipe number



number of iterations
name

number of pipe
M + 1

maximum head
head term in plot
flow beyond point
flow term

flow
flow
flow in front of point
time increment

head at previous time
length

length interval
vapour pocket volume
elevation

intervals

—_— oo

[\

\V]

N-()[\<>XC—I—+UIZUDD'UUZZI‘X

in front of point at previous time
beyond point at previous time

interval
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interval
interval

Computer Program for Analysis of Water Hammer after Pumptrip

1@ !
AFTER FUMP TRIP- WAP
ODIM ARC21),.BC215,FC(21),H(21),

P(21).0(21),R(21>,UC21)>,2(21 3
)

OIM DC2B>.Y0C21),T€¢21>,5(21)>
DISP "PUMPSTOF PIFE NAME™:
INPUT LS

DISP "HO. SECHE":

INPUT M

Mi=M+1

DISP “"NO.ITERARTIONS *;
INFUT ¥

DISP “PIPE LENGTH.m®:
THFUT X

DISP “"DIA m"“:

INFUT D1

DISP "WRAVESPEED.m-=":
IMFUT €

DISP "FLD RATE.m3-=";
INFPUT QU1

A DISP "FRICTION LOSS.m";

B INFUT F1

3 OISP "ELEV(m> POINHT 1-".M1
8 FOR J=t TO M1

DISP

INFUT Z2C)

NEXT J

I19=1

E=1088p0

G=9 . ¢

288 K2=¥-M

290 Tz=X2-C
DOM1dX=0141)
ni=e
FOR

g =2 L0 =

(YW
CEPITIVH OO

ooy
E-3

156

=1 TO M

WATER HAEMMER IN PIFELINES Z3@

248

Go>=n1;

RC1>=_785%D0 4x~2
01=D1+1 /D I>~5

HEXT J

HOld=Z(M1X+F1

FOR .I=1 To M1 1 PIPE SECHNS
@Cir=60C1 ’
TLA1X=QC 1)

Y (Jdd=0a

FCD=F1/D1-0 DHA5-QC13~2
HOAd+13=H( D -F (U230 (1x~2
PCIY=HCD

HEXT J

PRINT “WATERHAMMER
FOR I=1 TO K

IF I9<1 THEN 518
PRINT " PHT HEADm

"L

FlOms":1

FOFR =1 TO M1
PRINT USING 75@ ; L.H(12,002

SCI¥=QCH)

NEXT J

g¢1>=8
HO1)=U(2)+C/G/AC1IIXIRC1X-R(2
II+F(1IXRC2ITARBS(R(ZD)

IF Y(1)><{=0 THEN 568

GOTD 564

Y(1)=8R

IF HC(1)>>Z41> THEN 579
HO1)=2(1)
RC1)=R(23-ACIIFGACRCUC2D-H(1
IHFC1IIR(ZIXABS(RIZ IS
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5682
S76
5840

YO =Y{1)+R{1IXE/HC

FOR 4=2 TO N
F2=F(J-12%SCI-1DXABS(S(Jd-13D
FI=F(DIRCI+IDEABRS(R( I+ 122
B2=UCJ-1)-UCI+1I+CAGR(RICI+1D
CACIIHEE )1 3/7RCI-1DD

B SI=(R2-F2-F322G-/C/- 0180 D+
1-RCA-127

TCI3=RCH
H2={S(J-12-R{I+1DIXC/G+UC M-
PEACA1IHFUCATIIFIRCID

HC D =IH2+F3IXACJI-F2XACI-12 )~
CACA—1D+ACAID

IF Y1) <=& THEHN 526

GOTD 636

YC1r=a

IF HCJX>2:0J> THEN 641

HO =210
TCIY=SCI-1D+ACI-1IXGACX U I
17—HCII-F{I-123FSCH-10F¥ABS (S
J-132>
BCH=R(IH1I-ACIHHERG TR I+1D
—HOIX+F L DR IHIDOIABS (RIS
)

T1=(RCD-TCI23¥T2

IF Y(JIr+¥Y12Y0 D -2 THEN €29
Yieid=a € 0T0 519
¥LD=YIr+Y1

NEXT J
RIMII=S(MI+R(MIG/CHX UM -HC
M1>-F(HMIESCMOXRESC(ELM D) D
TCM1)=R(M1)

HOM1>=2(M1>

FOR =1 TO M1

IF HCJIY<=PC(J> THEH 7@€

PCId=HCI?

HEXT J

NEXT 1

PRINT “ PNT ELV.m FLO.m3s MA
¥ H"

FOR =1 TO M1

PRINT USING 75@ : 12400440
».PCH

IMRGE DDOD.DODDDOD.DDD . DOD.DDD
opo

NEXT U

PRINT

Ve

’ga
799
21 1]
8198
828
8339
&4a
359
ge@
878
aee
396
oan
219
azp

338
94@

PRINT “HEADS & 106M INCF
VE PUMP *
P1=P(1)+208
21=2(1>)-196 .
GCLERR

SCRLE 1.M1,21,P1
YZA¥KIS 2¢1)>,1
YRXIS 1,1R@
MOVE 1.2(1>

FOR 1=2 70O M1
DRAK J.Z

NEXT J

MOVE 1.PC1)

FOR J=2 TO M1
DRAK 4.P{ D)

NEXT J

CorYy

STOP

END

213
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CHAPTER 12
WATER HAMMER AND FLOW ANALYSIS IN COMPLEX PIPE SYSTEMS
THE PROBLEM OF FLOW ANALYSIS IN COMPLEX PIPE NETWORKS

In many municipavl and industrial water distribution systems
the pipework follows no regular geometric layout and is developed
as the requirements grow. Although the main supply pipe may
be predesigned, extensions are often of wvariable diameter and
lengths and the distribution system at the ends of these pipes
is even more complex. Similar problems often arise in pumping
columns and in fact the water hammer pressures due to the trip-
ping of a pump can often be the most severe pressure condition
in the pipeline.

Where hydraulic pressures can be high, such as down the shaft
of a mine, the corresponding pipe velocities are often very high
e.g. above 5 metres per second. The high velocity 1is accepted
as it reduces the pipe diameter thus saving in capital cost. In
the case of gravity mains the hydraulic gradients can be very
high and the corresponding pipe velocities will also be wvery high.
Unfortunately the water hammer heads associated with changes
of flow are directly proportional to the flow velocity and conse-
quently an accurate water hammer pressure analysis is necessary
or else a sophisticated method of protecting the pipe system
against water hammer is required.

There are three main stages in the analysis of a water reticuta-
tion system. During the initial planning stages the pipes have
to be sized and the corresponding wall thicknesses selected before
installation. Pipe bores should reduce the greater the pressure
in order to minimize wall thicknesses and costs. Where there are
off-takes then the diameter of the pipe may be reduced. The total
available head will depend on the elevation of the supply point
below the supply reservoir or else on a pumping head. The head-
losses along individual sections of the pipe can be distributed

between various lengths of pipes depending on flow rates. In fact
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simple linear programming optimization methods {(Stephenson, 1981)
can be used to select least cost pipe diameters in such a branch
network. Alternatively dynamic programming methods can be used to
select successively decreasing diameters down deep mine shafts,
(Bernstein, 1982).

Pipe sizes are based on an initial estimate of design flow but
in later years the flows may be increased or altered and it is
necessary to analyse the system to determine the flows which can be
obtained from the system. For example where water is taken from a
pipe for supplying cooling coils then it is important that the
pressure be known at each branch along the distribution pipe. As
the head at each branch point is not known explicitly it must be
calculated from headloss equations. This is not an easy matter as
there are a number of unknowns and it is often necessary to use
successive approximation methods to determine the flows and
pressures in the individual pipe lengths. The probiem may be
aggravated by changing friction factors with time. As the pipes
corrode or scale the bores will be affected and the corresponding
friction IoSses change. Although iterative solution of the Darcy-
Weisbach flow resistance equation is possible this degree of sophis-
tication is often not warranted as the exact roughness effect on the
hydrautic capacity can only be estimated roughiy anyway.

The third problem in analysing pipe reticulation systems is the
determination of transient water hammer pressures due to closing
valves or tripping pumps. The water hammer head can be several
hundred metres if the flow in a pipe is reduced rapidly such as
due to the closure of a valve. This head should be added onto the
static heads so that it may reduce the factor of safety of the
system and in fact has been known to burst pipes or fittings. Valve
closure times must therefore be selected to prevent water hammer
pressures being excessive and similarly precautions have to be
taken to minimize water hammer pressures due to pumps tripping.
Water hammer pressure waves can also be reflected from the ends of
branch pipes and be more severe in the branch pipe than in the
main pipe where the fiow is altered. Since water reticulation
systems can be fairly complex the use of computers is necessary for

accurate analysis.
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The two problems of analysis of flow in pipe networks and
the calculation of water hammer pressures due to changing of the
flows can be done using one computational approach. The two pro-
blems have been combined in developing a program the basis of
which is described here. The effort in feeding data into a comput-

er for the various analyses is thus minimized.

CONVENTIONAL METHODS OF NETWORK ANALYSIS

The standard methods of analysing flows and headlosses in
complex piping systems were developed by Hardy Cross in 1936
and are still used by many engineers on account of their simplici-
ty, the ease of visualization of the procedure and the possibility
of doing the calculations manually instead of resorting to comput-
ers. In earlier chapters these methods and others more computer
orientated are described.

Very mathematical methods such as the solution of a set of
simultaneous equations describing the flow of headloss relation -
ships in a pipe network have been proposed. An alternative ap-
proach is to simulate the system using the differential water ham-
mer equations. Starting with any assumed flows and heads the
flows will eventually stabilize at their steady-state values.

Although siightly more complicated if the problem is only the
determination of flow rates in closed networks, the following proce-
dure in fact is efficient computationaily and is considerably en-
hanced by the ease of supply of data to the computer. The method
relies on the fact that if a valve or pump in a pipe network is
operated, then after a length of time friction will damp the elastic
waves travelling backwards and forwards in the pipe network
and a steady-state will emerge. One therefore has the steady-state
flows and pressures throughout the network. The method can be
extended to predict pressure and flow histories at every point
in the system. These are the pressures and flows which will actual-
ly occur at any interval, which is not the case for the network
analysis methods described previously. Consequently if transient

conditions are to be studied the method will yield them as well.
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There have also been many computer programs developed for
analysing water hammer pressures in pumping mains and pipe
networks. Although the method of finite differences is more rapid
for solution of the differential equations of fluid motion, the meth-
od of characteristics (Streeter and Wylie, 1967) is generally pre-
ferred as the computations are more straightforward and can be
applied to varying boundary conditions more easily than the cen-
tred finite difference methods. All the methods start with the basic

differential equations of continuity and momentum,

2
Sh, e 3v g (12.1)
at g X
3h, 1 dv aviv] _
ax g3t " T2ga ° (12.2)

The symbol h denotes water head (the sum of pressure head
and potential head above a specified datum), v is the water velo-
city averaged across the cross section of the pipe, d is the pipe
diameter, t is time, x is distance along the direction of flow,
X is the Darcy-Weisbach friction coefficient which can vary with
Reynolds number, g is gravitational acceleration and the term
vlv| is used in place of v® as it accounts for changing direction
of the friction headloss when the flow changes direction. c¢ is
the water hammer wave celerity which may be shown to equal
1/ o(1/K + d/Et}] where o is the mass density of the fluid, K

is its bulk modulus, d is the pipe diameter, t its wall thickness
and E its elastic modulus. For steel water pipes c¢ is generally
of the order of 1100 m/s but increases for thick-wall pipes. Adopt-
ing the time-distance grid indicated in Figure 12.1 then the ensu-
ing characteristic equations give the relationship between head
and velocity at known initial or boundary conditions and those
at a new point in time. Invariably the friction equation is used
in an explicit form, that is v in the friction term is assumed
to be the v at the previous time interval and previous point in

space.
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TIME

t+ ot .
At \ o
= DISTANCE ALONG PIPE
Fig. 12.1 x-t Grid for water hammer analysis by characteristic
method.

METHOD OF SOLUTION OF THE EQUATIONS

Starting with the finite difference form of the differential equations

and substituting :_tx = +¢ yields

C

t - + + = L + = .
hb ht P 9(vb vt) fv vl 0 (12.3)
where p is pumping head, and the prime ' refers to new values
after iteration, and f = (AL/D + k)/29, where losses due to fittings

are kv?/2g. Subscript b refers to the bottom {(downstream) end and
t to the top (upstream) end of a pipe although these are
arbitrarily defined as the flow direction can vary.

Generally it is sufficient to use the explicit form of ALv?/2gd,
i.e. the velocity at the previous time interval is used in the finite
difference forms of the equations. That is satisfactory provided
friction loss is small compared with water hammer head. In some
situations this is not the case, for example a pipe burst down a
shaft can result in a steady-state friction head loss down the shaft
of several hundred metres. The head loss term kv®/2g is also
significant in many situations, e.g. when the head loss is through
a valve. It is, nevertheless, much easier from the point of view of

computations to fump the two head loss terms together.
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It is, on the other hand, difficult to solve the characteristic
equations in implicit form, i.e. with the velocity in the head loss

term that at the new time. If this is attempted a quadratic expres-

sion results and computations are cumbersome. In chapter 9 the
head loss term was solved in implicit form for a simple case, i.e.
with known head downstream of a wvalve. |n general the head

downstream is also an unknown and must be obtained by simultan-
eous solution of the head loss/discharge equation and the water
hammer equation. A further complication arises when there are
branches and changes in diameter at the upstream or downstream
nodes. The head at such a node is obtained by summating the
effects from each branch by employing the continuity equation at
the node.

It should also be noted that the answer will depend on whether
the head loss is assumed to be at the far end or the near end of
the line. An averaging procedure would introduce further compli-
cations and, in any case, concentrated head losses such as valves
are usually at one end or the other.

In order to avoid many of these difficulties for a branched pipe
network some simplification is necessary. A semi-explicit solution is
obtained, but a degree of implicitness is introduced to stabilize the
solution. This method is sometimes unstable, but, as stated, a
complete implicit method is complex. A weighted compromise between

a fully explicit form and a semi implicit form is

— _ 1
fv|v] F fvblv + (1-F) fv |vb|.

bl

I(h -h F 4
v + ( -h! -p- fv IV |)
. P t b b 'b (12.4)
Then solving (12.3) Vb 1+(1—F)f9|]vbl/C

Substituting into the continuity equation EAiv where ap

. =q
bi b
is the drawoff at node b connecting i pipes each with area Ai’ and

solving for h '

b
. v:-ig +ZA(ht—p+cvt/9—Ffvb|vb|)
b g c+(1-F)fg|vbI
5 A
c+(1—F)fg]vb[ (12.5)
This is then substituted into (12.4) to obtain velocity v, ' in each

b



166

pipe leading to b. It will be observed that the explicit form of the
head loss equation is not the only form wused in the above
equations. Explicit solution can lead to serious instability in the
computations if the time interval selected for analysis is excessive.
In fact when rapid valve closure is to be considered the numerical
solutions have been known to become unstable and magnify errors.
This is because the head loss through the valve or through the
pipe is based on the velocity at the previous time interval and not
at the new time interval. In fact the most accurate method would be
to take the average flow velocity at the beginning and end of the
time interval. This would render the equations exceedingly
cumbersome and quadratic equations have to be solved on an
iterative basis for each node. In order to simplify the procedure
and adapt it to microcomputer solution the above simplification was
therefore made. The procedure in effect adopted a weighted average
of the previously described pseudo- explicit-implicit method and a
purely explicit method.

It is also assumed that the relevant velocity for head loss
determination is that at the end specified as the 'bottom' or down-
stream end of the pipe. Although flow directions can change during
flow variations the 'bottom end' is in fact specified as a fixed
position by the analyst.

Where water hammer analysis is not important and the program
is used purely for the analysis and determination of steady-state
flows in a pipe network then damping can be increased by assuming
a very low or artificial water hammer wave celerity. The celerity of
each pipe in the system to be analysed is defined by the user as
being its pipe length divided by the selected time interval between
successive analyses. Thus by selecting a long time interval between
successive computations the water hammer waves are eliminated and
friction controls the equations. The flows will therefore rapidly
converge to steady-state flows. Obviously this technique should not
be used where true water hammer heads are required and it may be
necessary to select a smaller time interval, for example less than

one second, for water hammer analyses.
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BOUNDARY CONDITIONS

The head at certain input points and discharge points will be
fixed by the head in a reservoir and such nodes wiil not have the
head changed in the computations. There is also the problem of
very low heads which may cause water column separation. When for
instance, a pump is suddenly stopped in a low-head pumping main
then the water hammer head initially drops and this may vaporize
the water. The program accommodates this effect automatically and
the head will not drop below the specified head at any node. A
vapour pocket will therefore grow and diminish in size as waves
travel up and down the pipes. The corresponding water hammer
head when the water columns rejoin will be computed automatically.

Distribution pipes often have pressure reducing vaives or surge
relief valves installed to ensure no excessive pressure rises. A
pressure reducing valve can, in fact, be treated as a reverse
pump.

The positioning of control valves in the pipe network is also of
importance from the point of view of rapid accessibility and closure
in times of emergency or for control purposes. Such valves can be
timed to close over a specified period in order to control water
hammer pressures. In the case of automatic control! valves they can
be installed to operate when pressures or flows exceed certain
limits. The program can accommodate the opening or closing of
valves at any point in time and the combined opening and closing
of a valve in the same simulation can be made by imagining two
valves in the same position.

An application of the program to steady-state flows is in the
analysis of flow in a reticulation system for various conditions.
Although pipes are normally designed on a reasonable load factor
with selected design flows to meet certain duties, there are often
abnormal situations to be considered. Where the water reticulation
system is to be used for fire-fighting then high peaks may be
required at specified points and at the same time specified mini-
mum pressures will have to be achieved. In such cases it can
be assumed that other loads will be reduced or eliminated in order

to achieve the necessary peak flows.



168

(0) H=1000 m

500 m
300 mm dia.

600 m 150 mm dia.
L

(L)} (3) H= 500

500 m
250 mm dia.

700 m 200 mm dia.

Fig. 12.2 Simple pipe network analysed for flows and heads

The analysis of the system for determining maximum water ham-
er pressures at various points in the system is also of interest.
The water hammer pressures may be caused by the tripping of
a pump or the opening or more probably the closing of a valve,
or valves, in the system. An example of a case which is likely
to be severe is where the pipe supplies water at a high velocity
down a shaft at a high pressure. For instance the supply to a
hydraulic turbine may have to be rapidly controlled as electrical
load is shed. In figure 12.5 the resuits of such an analysis are
plotted for node number 2 in Figure 12.2. The system was initially
analysed to determine steady-state heads then the valve in pipe
2-4 was shut at t = 10 sec (at iteration 20 using 0.55 intervals).
The wvalve was shut uniformly in 5 seconds. The heads at each
node were tabulated at specified time intervals. The control valves
to such turbines can be adjusted to operate over specified times
and the closure time can be selected by trial and error or by
using an additional algorithm on the program described here which

enables the program to recommend the valve closure time.

VALVE STROKING

The reader has been presented with methods of anaiysing pipe
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systems for flows and pressures, both under steady flow conditions
and for transient conditions. The network analysis for flows gives
indirectly the diameters required for the various pipes. Water
hammer analysis will then reveal maximum pressures which, in
turn, indicate pipe wall thicknesses.

Both types of analysis vyield indirect answers, i.e. a trial
and error approach is required. In the case of some networks,
pipes can be sized directly using optimization methods. When it
comes to water hammer analysis the direct design approach is
often more difficult when it comes to optimum operation from the
water hammer point of view. Thus if the engineer is confronted
with a pipe system and is required to specify valve closure times
he may resort to a trial and error approach - requiring an analy-
sis for each assumed valve closure rate.

In some cases a direct solution may be obtained for a valve
closure relationship where pressures are to be maintained within
specified limits. The control of flow in a pre-determined way is
complicated by the fact that flow rate depends on pressure which,
in turn, is affected by changes in flow. For instance, the closure
of a wvalve gives rise to pressure increases upstream, which in
turn can affect the flow rate through the vaive.

The procedure of closure of a valve in a pattern which limits
pressure rises to set values is referred to as valve stroking
(Streeter and Wylie, 1967). A mathematical solution to the valve
closure time is possible for single pipes with or without friction.
In fact the minimum valve closure time is yielded as well as the
rate of closure in various steps.

For a single frictionless pipe the minimum valve closure time
(while maintaining the head at some point B less than HBmax)
is obtained with the following operating procedure. At the com-
mencement of operations at the discharge end valve A is closed

uniformly, such that the head at point 'B' along the line rises

to HBmax in the time 2L/c (see Figure 12.3). This is assuming
H is less than H +cv/g. The actual flow rate through the
Bmax o}

valve after 2L/c seconds may be solved from the water hammer
equation applied to the valve, AHA = cAv/g and the valve dis-

. _ .
charge equation VA K »’HA
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Now the closing of the valve is continued at a uniform rate

maintaining the head at B equal to HBmax'

A
HBmax /

(=]

Fig. 12.3 Maximum head along pipe
Complex pipe system

If a valve is to be closed a number of pipe lengths away from
a point where the head is to be limited, the mathematical relation-
ship between the cause and effect can become cumbersome. If
branch pipes, changes in diameter and friction are involved the
relationship becomes even more complicated. For such cases it is
often simplest to obtain the relationship between valve closure rate
at some point 'A' and head rise at a point 'B' by trial. The
relationship between AhB and partial wvalve closure could be
computed at each successive time step. |f the gradient is too steep
or too flat the valve closure over the next time interval could be
adjusted geometrically.

Thus assume the line HBOD in Figure 12.4 is a target head rise
function at a specified node B. After one iteration with an assumed
trial valve closure time T, the head HB rises to C. This is less
than expected so the wvalve closure could be speeded up by the
ratio S(HBOD)/S(HBOC) where S is the slope of the line in Figure
12.4. The correction to the closing speed of the valve could be
continued each step.

It will, however, be found that if the time intervals are too
large or the point B is too close to the valve A that overshoot or

unexpected or even misleading answers can occur. A target closure



171

Target HB
Rapid controlled
' Dfrise
1st trial inear head rise
rise y
B0

1st trial closure
time

Fig. 12.4 Feedback method of controlling head at B

time and gate closure characteristic must be estimated beforehand
and this can only be refined using this technique. If reflections
occur somewhere in the system causing the heads to reverse or
drop, obviously the proportional correction is unapplicable anld the
valve is being closed too quickly or the time step is too great.

The accompanying computer printouts and plots of heads versus
time are from a program based on the above principle.

The programmer may enquire from the program over what time he
should close the valve in order to not exceed a specified head at a
specified point in the pipe network. The method is to employ a
feedback principle and gradient method for projecting water hammer
heads at the specified node. The program will therefore successively
correct the closure time of the valve keeping an eye on the head
increase at the designated node. In fact the head at the designated
node will be plotted on the screen as computations proceed and
subsequently be transferred to a graph such as Figure 12.6. The
maximum head specified for node 2 was 1100 m above the datum,
whereas the maximum which actually occurred was 1121 m c.g. 1167
m for the valve closure in 5 seconds in Figure 12.5

The most severe such conditions are likely to arise where there
is a burst in a pipe which is to be followed by a rapid valve

closure upstream of the burst. At steady-state runaway conditions
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the flow velocities can reach very high values. On the other hand
the heads at the end of the system are consequently very low as
most of the head will be dissipated in friction and through various
fittings in the pipe system. The friction is therefore very high and
the damping effect of the friction may often result in the water
hammer pressure rising not much more than that for valve closure
under normal operating conditions. Nevertheless each system should

be analysed individually before such conclusions are made.
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CHAPTER 13

GRAPHICAL WATER HAMMER ANALYSIS

REASONS FOR GRAPHICAL APPROACH

Although not advocated for general use, the graphical methods of
water hammer calculation still retain a place in water hammer
analysis. The graphical method proposed by Allievi (1925) and
developed by Bergeron {1935) and Schnyder (1937) is well suited for
illustrating the mechanics of water hammer wave reflection. A
clearer understanding of the wave reflections is possible by
students than with the use of a computer program. Variable wave
speed, changes in diameter, the effects of valve closure, water
column separation and friction can all be portrayed graphically.
The technique does become laborious if many steps are required,
and the manpower to look at alternative designs often becomes
excessive. Computer solution is more economic in the majority of

cases, especially if multiple solutions are required.

BASICS OF METHOD

The graphical method is based on the linear relationship AH =
(c/g) NV (13.1)

If one plots head H against velocity V the line will have a
slope of + or -c/g. The procedure is therefore to plot lines through
the known (starting) points on an H versus V plot. Where the line
crosses another known relationship between H and V (e.g. at a
valve or another c/g line) the new conditions are obtained. It is in
fact a way of solving two equations graphically for 2 unknowns,
namely H and V.

The graphical method is in fact identical to the characteristics

method, since one starts with the same equations (see chapter 9):

for %"t = 4¢3 8H = - ZaV - AV|V|L/2gd (13.2)
for Qa’it = —c ; AH = 59 AV + aV|V|L/2gd (13.3)
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where L is the length of pipe over which the flow velocity changes
by V and head changes by AH.

The procedure employing the equations is to calculate graphical-
ly at intervals in time the head and velocity at selected points
spaced L apart along the line. If L is not the total pipe length it
is necessary that each L is such that waves arrive at the junction
from either end at the same time. Thus each L/c should equal the
selected time interval between computed conditions. In this way
pipes with changes in wave celerity and even changes in diameter
can be accounted for. In the latter case, and if branch pipes exist
the diagram should be replaced by a H-Q plot (see later).

An explanation of the procedure follows with reference to Figure
13.1. On the H-V graph one marks the known conditions, namely Ho
the static head, and V0 the initial line velocity. if line friction is
significant the relationship between line velocity and line head at
R is plotted as a parabola below the Ho line (the curve Ho_Hf)'
Note that on the negative V side the parabola curves upwards since
AWIV|L/2gd is in the opposite direction.

The wvalve discharge characteristics are also plotted on the
graph since a relationship between discharge through and head
across the downstream valve is required to be solved simultaneously
with the water hammer characteristic equation. The relationship
between flow and head drop through a valve is generally assumed
to be of the form HL = K /V where V is the pipe velocity which is
directly proportional to flow rate in m’/s. The factor K reduces as
the valve is closed and it is a function of open area as well as
discharge characteristic. If it is reduced in a defined way the
factor K is known at each step of L/c seconds. Its initial value is

obtained from
K =H //V (13.4)
o Vo ¢}

where Hvo is the initial head toss through the valve (Ho_Hf) at a
line velocity Vo' A parabola can be drawn through the points (HO,VO)
with its apex at (0,0). Other parabolae can be drawn at
different valve openings provided K is known.

Figure 13.1 illustrates the graphical procedure for the case
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Figure 13.1 Graphical analysis for slow valve closure in gravity
line with friction
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of slow valve closure at the downstream end (point S) of a gravity
line with initial friction head loss Hf.

The waves emanating at the valve proceed up and down the
pipeline in time as indicated by the full lines on the x-t chart.
The characteristic equations (13.2) and (13.3) are applied across
the waves. For instance, in order to compute conditions at point Sl,
commence at the defined boundary point R and use the charac-

0]
teristic corresponding to dx/dt = +4c to obtain V and H at S,. On

the H-V graph the line starting at Ro (Ho’vo) drops by Hf=)‘1/|V|L
/2gd and then proceeds along a line with slope -c/g. The point S1
is also on the valve characteristic for time L/c.

It may be noted that the line friction is assumed concentrated
at the upstream end in this case since it is the velocity at point
Ro which was used in establishing the friction head. For charac-
teristics in the opposite direction to compute conditions at point R,
the velocity at the downstream end is used to assess friction loss.
Thus, starting at point 81 on the H-V diagram one draws a line up

by Hf (the difference between the H0 and Hf lines at VS,) and then

1
draws a line with slope +c/g. Where that line intersects the Ho line

is point RZ' One proceeds in this manner to establish points S R

3) 4’
55, R6 etc. Similarly, starting at point SO one can establish

successively points R S R S, etc. {(not done in Figure 13.1)

172 73 Th

MID-POINTS AND CHANGE IN DIAMETER

It is frequently necessary to determine heads at intermediate
points along the line, for instance in order that the pipe wall
thickness can be varied to suit the maximum heads. In such cases
the pipe is divided into a number of intervals. The heads at the
end points are determined as before commencing from an adjacent
known point and using the relevant characteristic equation to
establish the boundary condition at the next time interval. The time
interval between computations is AL/c where AL is the length
intervat. Each AL/c should be the same no matter how many inter-
vals there are. There is the possibility of ¢ varying from one

interval to the other, which can be accommodated in this way. The
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friction head per interval is AV|V]|aL/2gd.

The head and flow at intermediate points is established by
projecting two characteristic lines from neighbouring points on each
side. Where the two lines meet (slope - c¢/g from the upstream point
and + c¢/g from the downstream point) is the head and line velocity
at the mid-point.

The same procedure is applicable if there is a change in dia-
meter. In such cases, however, it is convenient to plot H against
flow rate Q not V. Then aAH = i[g— %\q + 2Q|QlaL/2gdA?]. (13.5)
where A is the pipe cross sectional area so the siope of the lines
on the H-Q graph are + c¢/gA, where A ({and c¢) and hence the
slopes could be different for each section. The procedure is illus-

trated in Figure 13.2.
PUMPING LINES

When pumps trip in a pumping line there is first a drop in
head downstream {on the delivery side) of the pump. The:  same
graphical procedures can be followed to determine initial head drop
and subsequent head rises.

It often occurs that the drop in head is sufficient to cause
water vaporization at points along the line. The mechanics of
separation and subsequent rejoining of the water columns was
described in Chapter 10. A separate tally must be kept of vapour
pocket volumes as they expand and later contract in order to iden-
tify the time the head rise occurs on rejoining. It may be neces-
sary to divide the pipe into a number of increments in order to
pick up the locations of vapcur pockets.

A simitar procedure can be adopted if water hammer discharge
tanks are used to eliminate water hammer overpressures. In such
cases the vapour pocket does not need to collapse before the head
rises.

Many systems of protecting pumping lines against water hammer
overpressures are possible. One method is the use of release
valves. A valve immediately downstream of the pump non-return

valve is opened after the pump is tripped and subsequently slowly
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closed. The analysis of such a valve is done graphically in Figure
13.3.

The rotational inertia of the pump can also assist in reducing
water hammer. Parmakian (1955) and Pickford (1969) describe me-
thods of graphical analysis of the transients following pumptrip
with the pump rotational characteristics included. For graphical
analyses of surge shafts and rigid column transients, the reader is

also referred to Jaeger (1956).
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CHAPTER 14

PIPE GRAPHICS

INTRODUCT ION

It is frequently informative and useful to draw a pipe network
to scale. Sketch plans were utilized in the chapters on pipe net-
work analysis and optimization and pipe profiles were drawn for
water hammer analysis. Three dimensional depiction, or viewing
from alternative angles would be even more useful. The relation-
ship between elevation of the pipe and the pressure head at ail
points would be very illustrative when pressure limits and grad-

ients have to be studied. Bottlenecks can frequently be pinpointed

in this manner, as steep hydraulic gradients will stand out. High
heads likely to cause bursts, and low heads resulting in insuf-
ficient pressures, will also be identified. This type of depiction

is possible in 3-dimensional grapbhics.

Industrial water systems can be particularly complicated to
visualize unless some form of graphical display is available. Wat-
er distribution networks and fire fighting systems supplying fac-
tory complexes on a number of levels are typical examples. These
systems are frequently extended as the factory grows, and a rec-
ord of pipe positions would be of use in later extensions. Suitable
positions of connections, duplications and additional storage can
be visualized on a 3-dimensional drawing.

The computer screen is the ideal place to depict such systems.
Interactive construction  and amendments to a pipe system can be
performed before pipe runs, drawings and orders are finalized.
A considerable cost savings is possible if mistakes are ironed
out on the screen and not on site.

Computer graphics enables the drawing scale, size and viewing
angle to be altered at will, until the best picture for any purpose
is obtained. Various pipes, connections or valves may be best
viewed from another angle and detail pictures of any particular
part of the system can be called on while the engineer sits at

the computer.
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Graphics are particularly useful in the fabrication of industrial
pipework subject to close tolerances. In fact for many plants,
factories or refineries a physical model of the plant is made to iron
out problems before construction commences. During the modelling
problem areas are identified and remedial steps taken. For example
pipes which get in the way of each other can be relocated. Support
systems can be designed for stacks of pipes to minimize space and
maximize the strength of the system. Tight corners, bends and
intersections where erection is likely to be difficult will be
identified. High head loss areas, e.g. sharp bends one after the
other, valves and tees can be ironed out. Locations for measuring
orifices in accessible, long, straight sections will be facilitated. It
is preferable to sort out such problems at design stage with a
physical model or graphical portrayal rather than at erection
stage. Erection costs and re-fabrication of incorrect assemblies will
be reduced. Erection time will be more rapid and further savings
are possible.

It will be found that the cost of a computer graphics model is
less than that of a physical model. It can be assembled faster, and
can match many of the features of a real model, e.g. colour coding
for pipes, standard codes for various devices such as valves, and
ease of viewing. In some ways it is superior, e.g. rapid variation
of viewing angle, =zooming for closeups, linking to a hydraulic
analysis model, and rapid alterations to the set-up. In some other
features it is inferior. For instance, to view the plant from a
stightly different angle may require a coded instruction, a clearing
of the screen and re-drawing the system which takes time. The
computer is less portable than a physical model and colour screen
graphics suffer poor resolution, although this can be overcome by
plotting the picture on paper (hard copy).

A computer program for drafting and design of pipe layouts can
easily be linked to other programs for analysing flows and
pressures, as well as programs for stress analysis. Temperature
movements, superimposed loads and supports all add to longitudinal
stresses, while internal pressures, supports and external loads

cause circumferential stressing. Supports can be repositioned to
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reduce stress concentration by going back and forth between the

layout and the analysis programs.

INTERACTIVE DRAWING

On some of the commercially available computer aided drafting
(CAD) systems for piping, editing can be done directly on the
drawing or screen. Data can generally be input off a sketch or
drawing with the aid of a digitizer. That is, the location of a
point is identified with a pointer on a drawing or a cursor or
arrow on a screen. The cursor can be moved around by hand con-
trolled buttons until it points to the correct spot on the screen.
Then by pushing the correct key, a symbol such as a valve, a
flange or reducer is reproduced on the drawing.

in the simple program accompanying data can only be read in
or changed in alphanumeric mode, that is by means of co-ordinates
and not while the picture is on the screen. This is a limitation of
the computer wused, but large systems can use more interactive
drawing, that is adding to and editing while the picture is in
front of one.

In many modern CAD systems the draftsman has a menu in front
of him and identifies the correct symbol! with an arrow before
pushing a button to reproduce the symbol. The size and orientation
of the device can also be controlled by keys or buttons suitably

designated.

Fig. 14.1 3 -dimensional depiction of a catchment
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Many of the symbols are diagrammatic, i.e. distinguishing the
characteristics of the device rather than its appearance. This
assists in distinguishing between, for example, butterfly valves,
globe valves, gate valves and control valves.

Figure 14.2 was abstracted by Lamit (1981) from ANSI| standards
and covers a wide range of symbols.

Annotation and lettering can also be done by locating the label
sizing the letters and then typing the l!abeis on a keyboard.

Once the drawing on the screen {cathode ray tube or C.R.T.) is
to the satisfaction of the draftsman it may be reproduced on a
proper sheet. This can be to a larger scale than on the C.R.T.
and, if done on a drafting machine, the quality of lines and reso-
lution will be much better than on the C.R.T. This is particularly
so if colour graphics are used, as colour resolution is only 1/3 of
that for black and whife on a C.R.T. It is still often useful to use
different codes to depict different types of line, for example to
distinguish between gas, water, products, etc. by means of dashed,

dotted or full lines.
COMPUTER PROGRAM FOR PIPE GRAPHICS

The appended computer program was written for a micro computer

depiction of piping systems.
Program Description

The program as written can accommodate 100 pipes and 100
devices (flanges, valves or tanks). Unless detail close-up views are
used this number of pipes will more than clutter the screen of the
HP-85. Alternatively if a colour screen were available or if
drawings were reproduced graphically on paper, different colours
could be used to depict different pipes, e.g. cold water, hot water,
sewers, ventilation ducts or high pressure. Alternative computers,
e.g. the HPB87, present different types of lines, e.g. dashed or
dotted, which are also useful for distinguishing lines.

Input is typed below the program starting from line 700, and
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Fig. 14.2 Symbols for pipe fittings
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requires

Line 1.

line numbers as well as a DATA statement followed by:

Left hand limit, Right hand limit, Lower {imit, Upper
limit of screen display (in metres or ft.), Angle of
viewing measured from x to y axis, Angle up of view-
ing measured from x-z plane. Since the HP-85 screen is
4 x 3, the differ‘encé between the left and right hand
limits should be 4/3 times the difference between the
upper and lower limit for an undistorted scale. A
practical angle combination for Iisometric viewing is

300, 15°.

Line 2 onwards: Pipe data i.e., X1,Y1,21,X2,Y2,22 of start and

Device

lines:

end points on the pipe, Cost per metre of pipe.
After the last real pipe line, insert a data line with

0,0,0,0,0,0,0 to identify the last pipe.

The information on devices: Pipe no. (in the order
typed in), Distance from start point to end point meas-
ured along the pipe, Type of device (1 = flange rep-
resented by a vertical line, 2 = valve represented by
X, 3 = tank represented by U), Size of device (m or
ft.).

After the last device line, insert a data line with
0,0,0,0 to identify end of data. After running the
program, it remains activated until PAUSE is pressed,
or untif K1 is pressed. In the latter case the program
is reset to amend any pipe and a screen display
requests the pipe number (in order of original pipe
input), the new X1,Y1,2Z21,X2,Y2,Z22 and C for amend-
ment. Upon typing in this data and pushing END
LINE, that pipe on the picture is altered and the cost
also corrected. Note that this amend facility is not
available for altering screen limits or viewing angles
as the whole picture has to be drawn again in these

cases.
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Fig. 14.3 Fire Distribution Piping Depiction

Example

The appended program is used to depict the fire fighting water
distribution network to a double-storey building. Water is supplied
from a roof tank through a double looped pipe network. An isolat-
ing valve is indicated downstream of the tank and a flanged con-
nection extends from the lower floor to a future extension. Data
describing the system follows the computer program. The cost of
each pipe is estimated to be $10 per metre length.

Upon running the program the general view in Figure 14.3a was
depicted and copied from the screen. The viewing angle is 30° from
the x-axis and 15° up. A more detailed view (Figure 14.3b) of the
supply tank from an (0,0) angle was also obtained. Note that in

each case the total cost of the system is also indicated.

Symbols in pipe graphics program

Al angle of viewing from x-axis measured in vy
direction
A2 angle of viewing from z-axis measured towards
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x-y plane.

C cost of pipe per unit length

c2 total cost of pipes

H1 dimension of device

K 0 = original data, 1 = amended pipe data
L(M) length

L1 distance along pipe from start to device
M pipe counter

N device counter

T1 device type. 1 = flange, 2 = valve, 3 = tank
u X - co-ordinate

uo left hand limit on screen

ut(m) start point in screen x-co-ordinates
uz(m) end point in screen x-co-ordinates

us x-co-ordinate of device in plane of screen
uo right hand limit on screen

\Y) y—-co-ordinate

w z-co-ordinate

W5 z-co-ordinate of device in plane of screen
WO lower limit on screen

W1(M) start point in screen z-co-ordinate

W2(M) end point in screen z-co-ordinates

W5 z-co~-ordinate of device in plane of screen
w9 upper limit on screen

X1 start x of line

X2 end x of line

X3(M) X1

X4(M) X2

X5 x-co-ordinate of device

Y1 start y of line

Y2 end y of line

Y3(M) Y1

Y4(M) Y2

Y5 y~co-ordinate of device

21 start z of line

22 end z of line

23(M) Z1

24(M) 22

25 z-co-ordinate of device.
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Fig. 14.4 Computer flatbed plot of graded sewer

COMPUTER GRADING

Pipelines are well suited for automatic grading by computer and
drawing of sections by a linked plotter. A network is designed
largely on empirical bases which can be readily programmed as
constraints.

Although it is possible to start from data from a contour plan
and develop the plan layout within the computer, it is preferable to
lay the network out on a plan, peg and survey it in the field and
feed the data from pegging sheets directly to the computer. A
suitable program will then select the most economic depths and pipe
diameters. The data may be displayed in summary form for visual

inspection and adjustment if desired, taking off quantities. The
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results are then submitted to a separate plotting routine for
drawing longitudinal sections. Such a plot is illustrated in Figure
14.14.

REFERENCES

ANSI 232.23. Symbols for pipe fittings )
Lamit, L.G., 1981, Piping Systems, Drafting and Design. Prentice
Hall, Eaglewood Cliffs. 612 pp.
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CHAPTER 15

COMPUTER PROGRAMMING IN BASIC

DESCRIPTION

BASIC is an elementary computer language orientated to technical
problem solving, and somewhat similar to FORTRAN language. BASIC
is often used on microcomputers which are designed to streamline
the human input effort. Some of the statements in the language are
actually commands to the computer as well as program steps.

The programming may be classified into various types, e.g.
Statements, Functions, Operators and Commands. Statements are
program lines which have to be numbered in the correct order
although not necessarily sequentially, e.g.

10
20
21
50
200

Computer Commands

Some statements activate the computer, e.qg.

AUTO [begin statement no., [increment]]e.g. AUTO 100,5 makes
the computer start at statement 100 and auto-
matically increment each number by 5
during input. Numbers in [] are optional.

CAT produces a list of everything on the tape.

CONT [statement no.], continues execution of a program at the
specified statement no. after a PAUSE.

COPY reproduces information on the screen to paper.

DELETE first statement no. [last statement no.] removes those
statements from the program.

ERASETAPE initializes a tape

INIT resets the program to the first line and sets all

variables to undefined values.
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LIST [begin statement no. [end statement no.]] lists the program
on screen.

LOAD '"program name' copies the program from a tape or disc to
computer memory.

PLIST [begin statement no. [end statement no.]] lists the program
on paper.

REN [first statement no.[increment]] renumbers the program lines
as specified. Default values are 10,10.

RUN [statement no.] starts execution of the program from the speci-
fied statement.

SCRATCH deletes the program from memory.

STORE "program name''. Stores the program onto tape or disc.

SECURE "filename", "security code'", type. Type O secures against
LIST, PLIST and EDIT. Type 1 against STORE,
LIST, PLIST and EDIT. Type 2 against STORE,
PRINTH ,STORE BIN and Type 3 against CAT.
e.g. SECURE "PROGI1","XY,' 1. .

UNSECURE '"filename'", '"security code", type.

ARITHMETIC

The following symbols are used in arithmetic statements
+ add
- subtract
multiply
+  divide
A  raise to the power.
The arithmetic functions have certain priorities and the prece-

dence is A*,* and , + and —, thus A+B*CAD is A+{B*(cP)}.

LOGICAL OPERATORS

equal to

A

less than
> greater than

F not equal to
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VARIABLES

Any letter may be used to represent a variable, as well as any
letter followed by a number, e.g. A,B3. Subscript variables are
confined to letters, e.g. C(3). Up to two subscripts are possible,
e.g. D{4,5). Nested parentheses are evaluated from inwards out.

Arrays should be preceded by a DIM (dimension) statement if
subscripts exceed 10, e.g. DIM A(20), B(30,100).

PRECISION
REAL variables are accurate to 12 digits, while SHORT INTEGER

variables are truncated to 5 digits. REAL precision is used unless

variables are dectared SHORT or INTEGER.

FUNCTIONS

ABS{x) absolute, positive, value of x
ACS(x) arcos (x)

ASN(x) arcsin x

ATN({x) arctan x

CEIL(x) smallest integer<=x

COS(x) cosin X

COT{x) cotangent x

CSC(x) cosecant x )

DTR{x) degrees to radius

EXP(x) e

FLOOR(x) same as INT(x)

FP(x) fractional part of x

INT(x) largest integer <=x

IP(x) integer part e.g. IP(-3.276)= -3
LGT(x) log, .x

LOG(x) natural log x

MAX(x,y) x or y whifhever is largest
MIN(x,y) x or y whichever is smallest
MOD integer e.g. MOD B = positive integer value of B
PI 3.14159265359

RMD(x,y) remainder of x/y-y*IP(x/y)

RND next number x in a random sequence 0<=x<1
RTD(x) radius .to degrees

SEC(x) secant x

SGN({x) sign of x, + or -

SIN(x) sine x

SQR(x) square root of x
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TAB(n) skips to column n

TAN(x) tangent of x

VAL {S$) numerical equivalent of string S%
VALS$(x) string equivalent of x

SPECIAL CHARACTERS

@ permits multi-statement line, e.g. 100 A=B @
GOTO 200

! delimits a remark e.g. 100 A=B!A IS A NEW
VARIABLE

? prompts for input

ron delimits a string of text which is displayed

BASIC PROGRAMMING STATEMENTS

The following statements can be incorporated in programs.

ASSIGN number TO ''mame", e.g. ASSIGN 2 TO "DATA"

CHAIN "filename'. Loads and runs the program.The current pr‘égr‘am
is deleted except for 'common' variable and
"assigned" buffers.

CLEAR Clears the screen

COM Common variable list. Used with CHAIN

CREATE "filename", number of records [number of bytes per record]
Establishes a data file of the specified size.

DATA list. Provides constants and/or strings from which
READ statements abstract data.

DEFAULT ON/OFF prevents or cancels some math errors from halt-
ing execution

DEF FN name [(parameter)][= expression]. Defines a special function
within a program, e.g. DEF FN A(X)=SQR (X4+2+2%X)

DEG Sets degree mode for trig functions

DIM list. Declares the maximum subscripts for arrays.
e.g. DIM A(20), B(50,100)
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DISP [list] displays the list on the screen. e.g. DISP "A
EQUALS", B
DISP USING format line [; list]. Displays on screen according to the

format in format line. If a line number is used
that line headed IMAGE acts as the format, e.g.
DISP USING 50;A,B

END Terminates program execution

FOR counter = first value TO last value [step increment]. The
statements up to a line NEXT counter are
repeated for the counter proceeding from the
first value to the last value. The counter
step is one uniess otherwise specified.

GOSUB statement no. The next statement executed is the specified
statement in a subprogram. Control is returned
to the main program with a RETURN statement.

GOTO statement no. Control is transferred to the designated
statement

GRAD sets trig operations to grads. (400 grads in
360°)

IF expression THEN statement number [ELSE statement number

1 2]'
If the expression is true control is transferred

to statement1 and if not, to the next
statement [or statementz]

IMAGE format. Used with PRINT USING or DISP USING statements to
specify the format of the output.
The following can be specified:

n(.....) repeats the operation in parenthesis n
times

string character

L.H. digit position or leading zero
L..H. digit position or leading blank
decimal point position

sign (+ or -)

minus or blank

exponential form ESDDD

blank

carriage return

" literal

e.g. IMAGE 2D.DDD,2XZDD

INPUT variable name [, variable name ...] Variables are assigned

O N >

~XmzZw-
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values on the keyboard when a prompt "?"
appears on the screen

INTEGER variable [subscripts] .... Specifies variables as integers
and dimensions them

KEY LABEL Displays labels associated with ON KEY state-
ments

LOAD BIN "filename". Loads a binary coded file from tape into
memory

NEXT counter. Returns control to a FOR statement

ON ERROR GOTO statement number. Transfers to designated statement
if a recoverable execution error is encountered

ON expression GOTO list. Transfers control to the statement no.
in the list corresponding to expression
being 1, 2, 3 etc.

PAUSE Halts execution until CONT is encountered

PRINT [USING statement number][list]. Prints the list on paper
using the format in the specified statement
number or in free format. Items in the
list must be separated by commas or semicolons,
e.g. PRINT USING 100;A,B(5), "I1S THE ANSWER"

PRINTER 1S code number. Redefines the printer. 1=screen, 2=paper

PURGE file name. Eliminates the designated file from tape

RAD Sets radian mode for trig functions

RANDOMI!ZE [expression]. Generates a random number seed. By
specifying an expression the random number
sequence can be repeated

READ [ buffer no.] name1[,name2 ...]. Reads a string of variables
from DATA statements or from a buffer

REAL variable [(subscripts)] ... Declares variables real and
dimensions them

REM [anything] remark statement, not for execution, same as !

RENAME oldname TO newname. File is renamed

RESTORE [statement no,]. Resets data printer to the specified
statement or to the beginning of the data file

RETURN Transfers control from the last line of a

subroutine back to the original program line
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following a GOSUB statement

SHORT variable [(subscript)] ... Declares variables short and
dimensions them

STOP Terminates execution and returns pointer to first
statement

STORE BIN "name". Stores the file named on tape

TRACE Used to follow statements executed. NORMAL will

cancel the TRACE operation

GRAPHICS STATEMENTS

The HP series 80 microcomputer enables graphs to be plotted on the

screen and on paper using the following simple statements.

ALPHA Sets display to alphanumeric mode

BPLOT string, number of characters per line. Plots a group of dots
as specified by the string

DRAW x-co-ordinate, y-co-ordinate. Draws a line from current pen
position to specified (x,y)

GCLEAR [vy] clears screen below specified y value

GRAPH Sets display to graphic mode

IDRAW x-increment, y-increment. Draws a line from current pen
position to position determined by the x and y
increments

IMOVE x-increment, y-increment. Moves the pen by the specified

increments, without drawing a line

LABEL string. Writes the string starting at the current pen
position
LDIR angle. Specifies direction of label (angle=0 or 90°)

MOVE x-co-ordinate, y-co-ordinate. Moves pen from current position
to (x,y) without drawing a line

PEN number, Specifies whether dots are black (negative
number) or white (positive number)

PENUP Lifts pen up

PLOT x-co-ordinate, y-co-ordinate. Makes a dot at (x,y)

SCALE x-min, x-max, y-min, y-max. Sets the x and y scale on the

screen between the limits specified
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XAXIS y intercept [,tic spacing [xmin, xmax]]. Draws a horizontal
axis with tic marks and within limits specified.
Negative tics specify the right side as reference

YAXIS x intercept [,tic spacing [ymin, ymax]}]. Draws a vertical

axis

(By courtesy of the Hewlett Packard company.)
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Acceleration, 113
Accuracy, 97,124
Advection, 92

Air, 18,118,148

Air valves, 119, 141
Air vessels, 143
Albertson, M.L. 20
Allievi, L, 175, 182
Allocation, 72
Analytical solution, 22, 96
Arithmetic, 193
Assumptions, 36
Averaging, 45

Barlow, J.F., 44,45,54
BASIC, 192

Basic equations,
Bend, 17
Bergeron, L, 175,
Bernoulli equation,
Bhave, P.R., 63, 69
Boundary conditions,
Boundary layer, 5
Boyles law, 113
Branch pipe, 38, 55,

1

182
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136, 167

161, 165
Cathode ray tube, 186
Cavitation, 137, 138

Celerity, 118, 129

Characters, 187,
Characteristics,
Chaudhry, M.H.,
Chezy, 3, 10
Closed loops, 70, 85
Colebrook and White, 6
Colebrook-White equation,
23, 32, 118
Command, 193
Compound pipes, 26
Computer programs,
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Cost, 188
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Diffusion, 92, 126
Discharge coefficient,
176
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Diskin, M.H,,20
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Drawoff, 25,55
Dummy pipes, 38
Dynamic equation, 23,
Dynamic programming,
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Elasticity, 116
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Empirical, 3
Energy, 1,2, 140
Entrance loss, 17
Equivalent length,
Equivalent pipe,
Error, 125
Euler, 97
Evaporation,
Exit loss, 17
Explicit, 128,165

18
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Feedback, 171
Finite difference, 124
Fire hydrant, 40,183

Flow correction, 83
FORTRAN, 113
Fourier methods, 102
Fourth order, 100
Friction, 117
Friction factors, 4

Friction loss charts,
Function, 193

equations,

1

1
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22,

160

110
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Hadley, G., 63, 69
Hazen-Williams, 3,4,10,16,23
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Head loss, 1,3,16,35,40,71,122
Houses, 35

Hydraulic grade line, 2, 72
Hydraulic radius, 16

Hydraulics research station, 7,20

Implicit, 165

Industrial systems, 183
tnertia, 109

Initial flows, 51

Initial values, 57
Integration, 110
Interactive computing, 102
Interactive drawing, 185
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Iterative methods, 10, 153
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James, W., 90, 105
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Kinematic viscosity, 5, 23
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Linear programming, 63, 83
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Link, 87

Load rejection, 103
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Manning, 3, 16

Manual analysis, 35, 110
Markland, E., 45,54
Martin, C,S., 147, 159
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