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V 

PREFACE 

The advent of economical a n d  simple micro computers has le f t  no 

excuse fo r  engineers to avo id  computer solut ions to problems. 

Hydrau l  i c  engineers now have tools fo r  model I i n g  steady and  unsteady 

f lows in complex p ipe  networks.  Tedious g raph ica l  and  analogue 

simulat ions can  be d iscarded w i t h  re l i e f .  Th is  book i s  aimed a t  the 

water engineer who has to design water re t i cu la t i on  p ipe  networks,  

t runk  mains,  pumping  l ines  and  storage reservo i rs .  The p r a c t i s i n g  

engineer of ten tends to negelect the theoret ical  side, bu t  when the 

occasion ar ises  he requ i res  a r a p i d ,  simple answer to problems of 

head loss, d ischarge capac i ty  a n d  pressures.  The va r ious  computation- 

a l  methods a v a i l a b l e  to h im a re  summarized i n  t h i s  book, s t a r t i n g  

w i t h  s imple steady f low problems and  advanc ing  th rough slow motion 

to water hammer in complex networks. The subject mat te r  w i l l  a lso be 

of use to students of h y d r a u l i c  eng ineer ing  and  those contemplat ing 

research in t h i s  f i e l d .  

The i t e r a t i v e  techniques fo r  f low a n a l y s i s  of p ipe  networks such as 

the Hardy  Cross method a r e  known to most water engineers and  have 

been app l i ed  ex tens ive ly  wi thout the a i d  of computers. Some lesser 

known techniques a r e  in fac t  s imp ler  to a p p l y  on computers, e.g. the 

l i nea r  method. When i t  comes to unsteady f low,  e.g.  water hammer, 

computer a n a l y s i s  i s  much more r a p i d  than the o lder  g raph ica l  method 

and can account fo r  many more fac to rs  such as column separat ion,  

changes i n  section and  b ranch  pipes. Numerical methods fo r  computers 

a re  easy and accura te  p rov ided  simple ru les  a re  fo l lowed. Th is  book 

condenses and  compares va r ious  methods fo r  a n a l y s i n g  f lows and  

pressure v a r i a t i o n s  in p ipe l ines ,  whether they be pumping systems o r  

mu1 t i p l e  rese rvo i r  g r a v i t y  systems. Simple BASIC computer programs 

are g iven in many chapters  and  these w i l l  serve as a bas i s  fo r  more 

comprehensive programs wh ich  the reader  should be ab le  to wr i t e  a f te r  

read ing  t h i s  book. 

I n  add i t i on  to those on f low ana lys i s ,  sections a re  g iven on 

design of p ipe  systems us ing  op t im iza t ion  programs, and  operat ion 

us ing  computer s imu la t ion  programs. An in t roduc t ion  to computer 

g raph ics  i s  g i ven  b u t  the book does not cover s t r u c t u r a l  design of 

p ipes. That i s  covered in another book b y  the same author ,  'P ipe l i ne  

Design fo r  Water Eng ineers '  (E lsev ie r ,  1981 1 .  
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CHAPTER 1 

HYDRAULICS AND HEAD LOSS EQUATIONS 

BAS I C EQUAT I ONS 

Most hyd rau l i c  problems i n  pipe systems can be solved s ta r t i ng  

with one or more of the basic equations described below, or an 

adaptation of them. I t  i s  the methods of solution of the equations, 

be they ana ly t i ca l ,  graphica l  or  numerical, which th is  book i s  

about. 

The three equations which w i l l  appear i n  various forms 

throughout the book are the cont inu i ty  equation, the momentum 

equation and the energy equation. For steady, incompressible 

one-dimensional flow the cont inu i ty  equation i s  simply obtained by 

equating the flow r a t e  at any section to the flow r a t e  at another 

section along the stream tube. By 'steady f low'  i t  is  implied that 

there i s  no va r ia t i on  i n  velocity a t  any point .  As f a r  as unsteady 

flow i s  concerned the cont inui ty equation has an addi t ional  term,  

namely the change i n  storage between the sections. 

The momentum equatior! stems from Newton's basic law of motion 

and states that the change in  momentum f l u x  between two sections 

equals the sum of the forces on the f l u i d  causing the change. For 

steady, one- dimensional flow th i s  i s  

AFx = P Q  A V x  ( 1 . 1  1 

where F is the force, P is  the f l u i d  mass densi ty,  Q is  the 

volumetric flow rate,  V i s  velocity and subscript x refers to the ' x '  

direct ion. 

The basic energy equation i s  der ived by equat ing the work done 

on an element of f l u i d  by grav i ta t ional  and pressure forces to the 

change i n  k ine t i c  energy. Mechanical and heat energy t ransfer are 

excluded from the equation. I n  most systems there is a loss of 

energy due to f r i c t i on  and turbulence and a term i s  included i n  the 

equation to account for  th is.  The resul t ing equation for  steady flow 

of incompressible f l u ids  i s  termed the Bernoul l i  equation and i s  

conveniently wr i t ten as: 

v,2 + p1  + z, = v22 + P1 + z2 + he 
- -  

Y 
- -  
29 Y 29 

(1.2) 



where V = mean velocity at a section 
V2/2g = velocity head ( u n i t s  of length) 
9 = grav i ta t ional  acceleration 
P = pressure 
p/Y = pressure head ( u n i t s  of length) 
Y = u n i t  weight of f l u i d  
Z = elevation above an a r b i t r a r y  datum 

he 
= head loss due to f r i c t i on  or turbulence between 

The s u m  of the velocity head p lus pressure head p lus elevat ion i s  

termed the total head. St r ic t ly  the velocity head should be mu l t i p l i ed  

by a coefficient to account for  the var ia t ion in veloci ty across the 

section of the conduit. The average value of the coefficient for  

turbulent flow i s  1.06 and for laminar flow i t  i s  2.0. Flow through a 

conduit is  termed e i ther  uniform or  non-uniform depending on whether 

or not there i s  a va r ia t i on  i n  the cross-sectional veloci ty 

d is t r ibut ion a long the conduit. 

sections 1 and 2. 

For the Bernoul l i  equation to apply  the flow should be steady, 

i.e. there should be no change i n  velocity a t  any point  wi th  time. 

The flow i s  assumed to be one-dimensional and i r ro tat ional .  The 

f l u i d  should be incompressible, or else a term fo r  s t r a i n  energy has 

to be introduced. 

The respective heads are i l l us t ra ted  in F igure 1 . 1 .  For most 

pract ica l  cases the velocity head i s  small compared wi th  the other 

heads, and i t  may be neglected. I n  fact i t  i s  often the case that 

minor head losses due to bends, expansions, etc. can also be 

neglected and f r i c t i on  need be the only method whereby head i s  lost. 

ENTRANCE L O S S  

FRICTON LOSS 
CONTRACTION L O S S  

F R I C T I O N  LOSS 

VELOCITY H A D  "hP 
PRESSURE H E A D  

PI 6 

E L E  VAT!ON 

Fig.  1.1 Energy heads along a p ipe l ine 



3 

FLOW-HEAD LOSS RELAT I ONSH I PS 

E m p i r i c a l  F l o w  F o r m u l a e  

The t h r o u g h p u t  o r  c a p a c i t y  o f  a p i p e  o f  f i x e d  d imens ions  depends 

on the t o t a l  h e a d  d i f f e r e n c e  between t h e  ends.  T h i s  h e a d  i s  consumed 

b y  f r i c t i o n  a n d  o t h e r  losses. 

The f i r s t  f r i c t i o n  head loss/ f low r e l a t i o n s h i p s  were d e r i v e d  f rom 

f i e l d  o b s e r v a t i o n s .  These e m p i r i c a l  r e l a t i o n s h i p s  a r e  s t i l l  p o p u l a r  in  

w a t e r w o r k s  p r a c t i c e  a l t h o u g h  more r a t i o n a l  f o r m u l a e  h a v e  been 

developed.  The h e a d  loss/ f low f o r m u l a e  t h u s  e s t a b l i s h e d  a r e  termed 

convent iona l  f o r m u l a e  a n d  a r e  u s u a l l y  g i v e n  in a n  e x p o n e n t i a l  fo rm 

o f  the  t y p e  

v = K D ~ S Y  ( 1 . 3 )  

o r  s = K ' Q " / D ~  ( 1 . 4 )  

where V i s  the  mean f l o w  v e l o c i t y ,  m, n, x ,  y ,  K and K '  a r e  

cons tan ts ,  D i s  t h e  i n s i d e  d iameter  o f  the  c i r c u l a r  p i p e  a n d  S i s  the  

head loss g r a d i e n t  ( i n  m head loss p e r  m l e n g t h  of  p i p e ) .  Some o f  

the e q u a t i o n s  more f r e q u e n t l y  a p p l i e d  a r e  l i s t e d  below:  

Bas ic  E q u a t i o n s  S . I .  u n i t s  f t-sec 

Hazen- 
1.85 1.167 =6.84 K =3.03 (1.5)  W i l l i a m s  S=Kl(V/Cw) /D 

K =2.86 (1.6) M a n n i n g  S=K2(nVl2 /D 
1 1 

2 2 
K =6.32 1.33 

- 
K =4.00 (1.7) 

(1.8) 
3 

K =13.13 

D i m e n s i o n l e s s  
3 Chezy S=K3(V/cz)* /D 

Darcy  S=XV2/2gD 

Except  f o r  the  D a r c y  f o r m u l a  the  above e q u a t i o n s  a r e  no t  

u n i v e r s a l  a n d  the  ' c o n s t a n t '  in  the  e q u a t i o n  depends on the  u n i t s .  

I t  s h o u l d  b e  b o r n e  in m i n d  t h a t  some o f  t h e  f o r m u l a e  were i n t e n d e d  

p u r e l y  f o r  s t a n d a r d  w a t e r  e n g i n e e r i n g  p r a c t i c e  a n d  t a k e  n o  account  

o f  v a r i a t i o n s  i n  g r a v i t y ,  tempera ture  o r  t y p e  of l i q u i d .  The f r i c t i o n  

c o e f f i c i e n t s  v a r y  w i t h  p i p e  d iameter ,  s u r f a c e  c o n f i g u r a t i o n  a n d  a g e  

of  p i p e .  

The c o n v e n t i o n a l  f o r m u l a e  a r e  c o m p a r a t i v e l y  s i m p l e  t o  use a s  they  

do no t  i n v o l v e  f l u i d  v i s c o s i t y .  They may b e  s o l v e d  d i r e c t l y  a s  they 
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do not requi re  an i n i t i a l  estimate of Reynolds number to determine 

the f r ic t ion factor (see next sect ion).  On the other hand, the more 

modern equations cannot be solved d i rect ly  for  ra te  of flow. Solution 

of the formulae for veloci ty,  diameter o r  f r i c t i on  head gradient is 

simple wi th  the a i d  of a s l ide ru le ,  calculator,  computer, nomograph 

or  graphs plotted on log-log paper. The equations are of pa r t i cu la r  

use for analys ing flows i n  p ipe networks where the flow/head loss 

equations have to be i t e ra t i ve l y  solved many times. 

A popular flow formula i n  waterworks pract ice i s  the Hazen-Wil- 

l iams formula. Fr ic t ion coefficients for  use i n  th is equation are 

tabulated i n  Table 1 . 1 .  I f  the formula i s  to be used frequent ly,  

solution wi th  the a i d  of a char t  is  the most ef f ic ient  way. Many 

waterworks organizations use graphs of head loss gradient plot ted 

against  flow for  various pipe diameters, and var ious C values. As 

the value of C decreases wi th  age, type of p ipe and properties of 

water, f i e ld  tests are desirable for  an accurate assessment of C. 

TABLE 1.1 Hazen-Williams f r ic t ion coefficients C 

Type o f  P i p e  Condi t i  on 
New 25 y e a r s  50 y e a r s  Bad I y 

o l d  o l d  C o r r o d  e d  

PVC : 150 140 130 

S t e e l ,  b i  tumen 
Smooth c o n c r e t e ,  A C :  1 5 0  130 120 

I i n e d ,  g a l v a n i z e d :  150 130 100 
Cast i r o n :  130 110 9 0  
R i v e t e d  s t e e l ,  

v i t r i f i e d ,  woodstave 1 2 0  100 80 

130 
100 

60 
50 

45 

R a t i o n a l  f low f o r m u l a e  

Although the conventional flow formulae are l i ke l y  to remain i n  

use for  many years, more rat ional  formulae are g radua l l y  ga in ing 

acceptance amongst engineers. The new formulae have a sound 

scient i f ic  basis backed by numerous measurements and they are 

universa l ly  appl icable.  Any consistent un i t s  of measurements may be 

used and l i qu ids  of var ious viscosities and temperatures conform to 

the proposed formulae. 
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The rat ional  flow formulae for flow in  pipes are sim 

for flow past bodies or over f l a t  plates (Schl icht ing,  

o r i g ina l  research was on smal I-bore pipes wi th  a r t i f i c i a  

Lack of data on roughness fo r  large pipes has been one 

the use of the relat ionships i n  waterworks practice. 

I a r  to those 

1960). The 

roughness. 

deterrent to 

The velocity i n  a f u l l  p ipe var ies from zero on the boundary to a 

maximum i n  the centre. Shear forces on the wal ls  oppose the flow 

and a boundary layer i s  established wi th  each annulus of f l u i d  

impart ing a shear force onto an inner neighbouring concentric 

annulus. The resistance to re la t ive motion of the f l u i d  i s  termed 

kinematic v iscosi ty,  and in  turbulent flow i t  i s  imparted by 

turbulent m ix ing  wi th  t ransfer of par t ic les of d i f ferent momentum 

between one layer  and the next. 

A boundary layer  i s  established at the entrance to a conduit and 

th is  layer g radua l l y  expands u n t i l  i t  reaches the centre. Beyond th is  

point the flow becomes uniform. The length of p ipe required for f u l l y  

established flow i s  g iven by 

5=0.7 for  turbulent flow (1.9) 
D 

The Reynolds number Re = V D h  i s  a dimensionless number 

incorporat ing the f l u i d  v iscosi ty u which is absent i n  the 

conventional flow formulae. Flow i n  a p ipe i s  laminar for  low 

Re ( < 2 0 0 0 )  and becomes turbulent for  h igher R e  (normal ly the case 

in  pract ice) .  The basic head loss equation i s  der ived by setting the 

boundary shear force over a length of p ipe equal to the loss i n  

pressure mu1 tip1 ied by the area: 

rnDL = yhf rrD2/4 (1.10) 

( 1 . 1 1 )  

(1.12) 

where X = (4.r /v) / (V2/2g) i s  the Darcy f r i c t i on  factor, T i s  the shear 

stress, D i s  the pipe diameter and h i s  the f r i c t i on  head loss over 

a length L. X is  a function of Re and the re la t i ve  roughness k/D.  

For laminar flow, Poiseuil le found that = 64/Re i.e. is  

independent of the re la t i ve  roughness. Laminar flow w i l l  not occur i n  

normal engineering practice. The t rans i t ion zone between laminar and 

turbulent flow i s  complex and undefined but i s  also of l i t t l e  interest 

in practice. 

f 
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Turbu len t  f low cond i t ions  may occur w i t h  e i t he r  a smooth o r  a 

rough boundary .  The equat ions  for  the f r i c t i o n  fac to r  f o r  bo th  

cond i t ions  a re  de r i ved  from the general  equat ion fo r  the ve loc i ty  

d i s t r i b u t i o n  i n  a tu rbu len t  l aye r ,  wh ich  i s  de r i ved  from m i x i n g  

I eng th  theory : 

In teg ra t i ng  

= 5.75 log 

G77 

(1.13) 

w i t h  the constant k found to be 0.4 and  conver t ing  to 

Y - 
Y '  

(1.14) 

where v i s  the ve loc i ty  at a d is tance y f rom the boundary .  For a 

hydrodynamica l  l y  smooth boundary  there i s  a l am ina r  sub- layer,  a n d  

N ikuradse found tha t  y ' a v  /m where y '  i s  the boundary  l aye r  

th ickness, so 

(1.15) 

The constant 5.5 was found exper imen ta l l y .  

Where the boundary  i s  rough  the l am ina r  sub- layer  i s  af fected 

and  N ikuradse found tha t  y '  = k/30 where k i s  the boundary  

roughness. 

V 
Thus - = 5.75 log $ + 8.5 rn (1.16) 

Rear rang ing  equat ions  1.15 and  1.16 and express ing  v in terms of 

the average ve loc i t y  V b y  means of the equat ion Q = I  vdA resu l t s  in 

_ _  - 2 log Re /T-  0.8 
n- 
( t u r b u l e n t  boundary  l aye r ,  smooth boundary )  and  

D 
k 

- _  - 2 log - + 1.14 
Jx' 

(1.17) 

( 1  .la) 

( t u rbu len t  boundary  l aye r ,  rough  b o u n d a r y ) .  

Notice tha t  f o r  a smooth boundary ,  i s  independent of the 

r e l a t i v e  roughness k / D  and  f o r  a ve ry  rough  boundary  i t  i s  

independent of the Reynolds number Re fo r  a l l  p r a c t i c a l  purposes. 

Colebrook and  White combined Equat ions 1.17 and  1.18 to produce 

a n  equat ion  cove r ing  bo th  smooth a n d  rough  boundar ies  as  wel l  as 

the t rans i t i on  zone: 

1 1 k 9.35 f i  = 1.14 - 2 log ( -  + ___ 
D R e v "  

(1.19) 
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Their equation reduces to Equ. 1.17 for  smooth pipes, and to Equ. 

1 .I8 for  rough pipes. This semi-empirical equation y ie lds satisfactory 

resul ts for  var ious commercially avai lab le pipes. Nikuradse's 

o r i g ina l  experiments used sand as a r t i f i c i a l  boundary roughness. 

Natural roughness i s  evaluated according to the equivalent sand 

roughness. Table 1.2 gives values of k for  var ious surfaces. 

TABLE 1.2 Roughness of p ipe mater ia ls (Hydraul ics Research Station, 

1969). Value of k i n  mm 

F i n i s h  Smooth Average 

G l a s s ,  drawn m e t a l s  
S t e e l ,  PVC o r  AC 
Coated s t e e l  
G a l v a n i z e d ,  v i t r i f i e d  c l a y  
Cast i r o n  o r  cemen t I i n e d  
Spun c o n c r e t e  o r  wood s t a v e  
R i v e t e d  s t  eel  
Fou I sewers,  t u b e r c u  I a t  ed 
w a t e r  mains 
Un l  i n e d  r o c k ,  e a r t h  

0 
0.015 
0.03 
0.06 
0.15 
0.3 
1.5 

6 
60 

0.003 
0.03 
0.06 
0.15 
0.3 
0.6 
3 

15 
150 

Rough 

0.006 
0.06 
0.15 
0.3 
0.6 
1.5 
6 

____ 

3 0  
300  

Fortunately A i s  not very sensitive to the value of k assumed. k 

increases l i nea r l y  wi th  age for  water pipes. The var ious rat ional  

formulae for A were plot ted on a s ingle graph b y  Moody and th i s  

graph i s  presented as Figure 1.2. 

A close approximation to A i s  often given by the fol lowing equation: 

A = 0.0055 { 1+(20000k/D + 106/Re)1/31 (1.20) 

This equation avoids an impl ic i t  s i tuat ion but  i s  only a f i r s t  

approximation which should be substituted i n  the r.h.s. of (1.19) to 

obtain a better value. 

Unfortunately the Moody diagram i s  not very amenable to direct  

solution for  any va r iab le  for  g iven values of the dependent 

var iables,  and a t r i a l  and error  analys is  may be necessary to get 

the velocity for  the Reynolds number i f  reasonable accuracy i s  

required. The Hydraul ics Research Station at Wal l ingford (1969) 

re-arranged the var iab les i n  the Colebrook- White equation to 

produce simple exp l i c i t  flow/head loss graphs. Thus equation 1 .I9 

may be arranged i n  the form 

1 
k + 2.51~ v = -2 J2gDS' log (- 
3.70 D m  

(1.21) 
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Thus f o r  a n y  f l u i d  a t  a c e r t a i n  tempera ture  a n d  d e f i n e d  

roughness  k ,  a g r a p h  may b e  p l o t t e d  in terms of  V ,  D a n d  5. 

15"C a n d  f o r  
F i g u r e s  1.3 to  1.7 a r e  such g r a p h s  f o r  w a t e r  a t  

v a r i o u s  roughnesses K .  

In summary the  Darcy-Weisbach e q u a t i o n  f o r  h e a d  loss in c i r c u l a r  

p i pes 

(1.22) 

where h i s  the  h e a d  loss ( o r  the  e n e r g y  loss p e r  u n i t  w e i g h t ) ,  X i s  

the  Darcy-Weisbach f r i c t i o n  f a c t o r ,  L i s  the  p i p e  l e n g t h ,  D i s  the 

p i p e  d iameter ,  g i s  the  g r a v i t a t i o n a l  a c c e l e r a t i o n  a n d  V i s  the 

a v e r a g e  f lu id  v e l o c i t y .  I t  may b e  noted t h a t  in N o r t h  Amer ica X i s  

r e p l a c e d  b y  f ,  whereas B r i t i s h  p r a c t i c e  i s  to  use another  f ' i n  the 

e q u a t i o n  

hf = f 'LV2/2gR (1.23) 

where R i s  the  h y d r a u l i c  r a d i u s  D/4 f o r  a c i r c u l a r  p i p e .  Thus f ' =  

64. 

Since V = 4Q/rD2 

we c a n  a l s o  r e w r i t e  e q u a t i o n  1.22 a s  

-- h f -  8XQ2 
L V'gD 

Solution of the basic equations 

(1.24) 

(1.25) 

The Colebrook-Whi te  f o r m u l a  (1.19) w h i c h  forms the  b a s i s  o f  the  

Moody d i a g r a m  may a l s o  b e  w r i t t e n  a s  

k + 2.51 , 1 = -0.8686 Pn (- ___ - 
v f - r  

_ _ _  I 

3.7D R e r  
(1.26) 

A lso Re = VD/v = 4Q/nDv (1.27) 

The e q u a t i o n  must  b e  s o l v e d  b y  , i t e r a t i o n  f o r  h. T h i s  c a n  be 

c o n v e n i e n t l y  done b y  l e t t i n g  x = X -' a n d  u s i n g  the  Newton Raphson 

i t e r a t i v e  scheme, 

- 

where in t h i s  case we h a v e  f rom e q u a t i o n  1.26 

) 
k + 2 . 5 1 ~  

g ( x )  = x + 0.8686 en (- - 
3.7D Re 

(1.28) 

(1.29) 

and g ' ( x )  i s  the  d e r i v a t i v e  o f  g ( x ) .  We then o b t a i n  
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1 k + 2 . 5 1 ~  
x + 0.8686 en(----- - 

3.7D Re 
2.51 Re 

1 (1.30) 
1 

x+ = x - I  
+ o'8686 k + /2.5lX (m Re 1 

where x+ i s  a successive approx imat ion  to the solut ion of g ( x )  = 0 

us ing  the p r i o r  approximat ion x .  Sett ing x = x+ and  so lv ing  fo r  x 

several  times, the solut ion can be ob ta ined to any  desired accuracy.  

+ 

Th is  equat ion converges r a p i d l y  fo r  almost any  s t a r t i n g  va lue  o f  

x and  can be eas i l y  solved on a computer o r  on a programmable 

ca lcu la to r .  Using t h i s  equat ion in combinat ion w i t h  equat ions (1.22) 

and  (1.27) one can solve f o r  head loss. 

hf2gD 

Lvz Note that since A = 

(1.31) 

so that (1.26) can be solved d i r e c t l y  fo r  V g i ven  hf, L, 9, D , v  

and k :  

) 
k + 2 . 5 1 ~  

3.7D 1 2gD3 h f /L '  
V = J2gDhf/L' -0.8686 en (- (1.33) 

I f  however, V i s  g iven  then e i the r  A o r  hf must be ob ta ined 

employing an  i t e r a t i v e  procedure. 

Comparison of Friction Forrnul ae 

The Darcy equat ion may be wr i t t en  as 

v 

o r  v = cZ fi 

(1.35) 

(1.36) 

which i s  termed the Chezy equat ion and  the Chezy coeff ic ient  i s  

c Z  =m (1.37) 

The Hazen-Wi I I iams equat ion may be rewr i t t en  fo r  a l  I prac t i ca l  

purposes in the fo l l ow ing  dimensionless form: 

S = 515(V/CW)' (Cw/Re)'*15/gD (1.38) 

By comparing t h i s  w i th  the Darcy-Weisbach equat ion (1.25) i t  may 

be deduced tha t  

c W  = 42.4 (A0'54Re0*08 ) (1.39) 



FIG. 1.3 FRICTION LOSS CHART FOR PIPES FLOWING FULL 
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FIG. 1.5 FRICTION LOSS CHART FOR PIPES FLOWING FULL 
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The Hazen-Wil l iams coeff ic ient  C i s  therefore a func t ion  of X and  

Re and  va lues  may be p lo t ted  on a Moody d iag ram (see F igu re  1.2). 

I t  w i l l  be observed from F igu re  1.2 tha t  l ines  fo r  constant 

Hazen-Williams coeff ic ient  coincide w i t h  the Colebrook-White I ines on ly  

in the t r a n s i t i o n  zone. I n  the completely tu rbu len t  zone fo r  

non-smooth p ipes  the coeff ic ient  w i  I I a c t u a l l y  reduce the grea ter  the 

Reynolds number, i .e. one cannot associate a ce r ta in  Hazen-Wi I I iams 

coeff ic ient  w i t h  a p a r t i c u l a r  p i p e  as i t  va r ies  w i t h  the f low ra te .  

W 

The Mann ing  equat ion i s  w ide ly  used fo r  open channel  f low and  

p a r t  fu l l  p ipes. The equat ion  i s  

V = K R 2 k  sf (1.40) 

where K i s  1.000 i n  S I  u n i t s  and  1.486 in f t  I b  u n i t s ,  and  R i s  the 

n 

h y d r a u l i c  r a d i u s  A/P where A i s  the cross sect ional  a rea  of f low and  

P the wetted per imeter .  R i s  D/4 f o r  a c i r c u l a r  p ipe ,  a n d  in general  

f o r  nov -c i r cu la r  sections, 4R may be sub2t i tu ted  fo r  D .  

TABLE 1 . 3  V a l u e s  o f  M a n n i n g ' s  I n '  

__._____ 

Smooth g l a s s ,  p l a s t i c  0.010 
C o n c r e t e ,  s t e e l  ( b i  tumen I i n e d ) ,  g a l v a n i z e d  0.01 1 
C a s t  I r o n  0 .012 
S I  imy o r  g r e a s y  sewers  0.01 3 
R i v e t t e d  s t e e l ,  v i t r i f i e d ,  w o o d - s t a v e  0.01 5 
Rough c o n c r e t e  0 .017  

MINOR LOSSES 

One method of express ing  head loss th rough f i t t i n g s  and  changes in 

section i s  the equ iva len t  leng th  method, of ten used when the 

convent ional  f r i c t i o n  loss formulae a re  used. Modern p rac t i ce  i s  to 

express losses th rough f i t t i n g s  in terms of the ve loc i ty  head, i.e. 

h = KV2//2g where K i s  the loss coeff ic ient .  Tab le  1.4 g ives  t y p i c a l  

loss coeff ic ients a l t hough  v a l v e  manufac turers  may a lso  p rov ide  

supplementary d a t a  a n d  loss coef f i c ien ts  K wh ich  w i l l  v a r y  w i t h  ga te  

opening. The ve loc i ty  V to use i s  normal ly  the mean th rough the f u l l  

bore of the p ipe  or f i t t i n g .  

c' 
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TABLE 1.4 Loss coef f i c ien ts  f o r  p ipe  f i t t i n g s .  

Bends hB = KBV2/2g  

Bend a n g l  e Sharp  r / D = l  2 6 

30° 0 . 1 6  0.07 0 . 0 7  0.06 
45O 0.32 0.13 0 .10  0 .08  
60° 0 .68  0.18 0 .12  0 .08  
g o o  1 . 27  0.22 0 .13  0 .08  
1 80° 2 .2  0.40 0.25 0.15 

V a l v e s  hv = K V V f / 2 g  
Open I n g  : 1 / 4  1 / 2  3 /4  F u l  I 

S l u i c e  
B u t t e r f l y  
G I  obe 
Need I e 
Ref l u x  

24 5.6 1 . o  0 .2  
120 7.5 1.2 0 .3  
160 40 2 0  10 

4 1 0.6 0 .5  
1 -2 .5  

b 
C o n t r a c t  i o n s  a n d  e x p a n s i o n s  i n  c r o s s  s e c t i o n  

C o n t r a c t  i o n s :  E x p a n s i o n s :  

hc = K c V 2 2 / 2 g  hc = KcVl2 /2g  

A2 /A  1 A 1 /*2 
Wal I 
a n g l e  0 0 .2  0 .4  0 .6  0 .8  1 . 0  0 0 .2  0 .4  0 .6  0 . 8  1.0 

7.5O .13  .08  .05  .02  . O  0 
15' .32  .24  .15  . 08  . 0 2  0 
30° .78  .45  .27  .13  .03  0 

180' . 5  .37  .25  .15  .07  0 1.0 .64  .36  .17  .04  0 

En t r a n c e  and  ex i t I o s s e s :  he= K e V 2  /2g  

En t r a n  c e  E x i t  

P r o t r u d i n g  
Sharp  
B e v e l  I ed  
Rounded 

0 . 8  
0.5 
0.25 
0.05 

1 . o  
1 . o  
0.5 
0 .2  



18 

I t  i s  frequently unnecessary to calculate the losses i n  a l l  p ipe 

f i t t i n g s  i f  i n  fact they need to be considered a t  a l l .  The f u l l  

velocity head V2/2g i s  t yp i ca l l y  less than 0.2m so even the f u l l  

velocity head is small i n  comparison wi th  many l i ne  f r i c t i on  head 

losses. The losses due to f i t t i n g s  ra re l y  exceeds 5% of the f r i c t i on  

loss except for  very h i g h  design pressure heads when i t  i s  

economical to reduce the diameter of f i t t i n g s  such as valves. 

On the other hand, the presence of a i r  i n  pipel ines can add to 

the f r i c t i on  loss. Although a i r  w i l l  seldom b u i l d  up to create a large 

pocket i n  comparison wi th  the cross sectional area there i s  

frequently a i r  i n  free bubble form i n  transport. The presence of 1 %  

of free a i r  is not impossible and since the head loss is near ly 

proportional to V 2  the corresponding head loss increases 2%. 

F i t t ings can be accounted for  by adding the losses to the f r i c t i on  

loss: 

Thus h = h f  + h r 

One method i s  to add on an equiva 

same head loss as the f i t t i n g .  The equ 

L ’  = ( D / ~ ) z K  

(1.41) 

(1.42) 

(1.43) 

ent length of p ipe to g ive the 

valent length i s  from (1.43) 

(1.44) 

Obviously the var ia t ion of 1 wi th  Re i s  not s t r i c t l y  accounted for  

th is way and nei ther is the va r ia t i on  of K or  discharge coefficient 

of valves wi th  opening. 

USE OF HEAD LOSS CHARTS FOR SOLUTION OF SIMPLE PIPE SYSTEMS 

Many of the fo l lowing chapters describe methods of ca lcu lat ing 

head losses i n  complex pipe networks. Those problems have a number 

of unknowns. For instance i f  a p ipe wi th  a known head changes 

diameter along i t s  length, the head loss for  each section, as well 

as the total flow ra te  may be unknown. Simi lar ly  i f  the pipe 

branches, the flows as w e l l  as the head losses become unknowns. 

Some addi t ional  facts are needed to solve for  a l l  the unknowns. The 

cont inui ty equation i s  i nva r iab l y  u t i l i zed  i n  such cases. I n  general, 
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however, i t  i s  necessary to s impl i fy the flow-head loss relat ionships 

somewhat where simultaneous solutions of a number of equations are 

involved. Thus i f  the Darcy head loss equation i s  u t i l ized the 

f r i c t i on  factor X could be assumed a constant. Al ternat ively an 

equation of the fo l lowing form i s  used 

h = KLQn/Dm ( 1 . 4 5 )  

where K is assumed constant for  a l l  pipes. I n  many of the numerical 

and i terat ive methods explained la ter  these simp1 i f icat ions are not 

essential and f r i c t i on  factors va ry ing  wi th  pipe and flow can be 

accounted for .  I f  equivalent pipe or  analy t ica l  methods are employed 

the simpl i f icat ions are necessary, or  a t  least the assumption that 

f r ic t ion factor i s  independent of flow rate.  

One method of accounting for  simple pipes i n  series or  in para l le l  

i s  the equivalent pipe method. The diameter of an equivalent pipe to 

replace a compound p ipe may be der ived ana ly t i ca l l y  (see Chapter 2 )  

or more simply, i f  computations are to be performed by hand, 

obtained from a h e a d  loss char t  such as Figure 1 .5  

Consider as an example a compound pipe comprising a 300 mrn 

bore 1000 m long p ipe i n  series wi th  ( leading in to)  a 400 mm bore 

pipe 2000 m long. A simple relat ionship between head loss and flow 

rate is not possible unless the p ipe is replaced b y  an equivalent 

uniform bore pipe, say 3000 m long. A method of obtaining the 

diameter of such a pipe is to assume a reasonable flow rate (e.g. 

100 e / s )  and read of f  the total head loss from Figure 1 .5 :  h = 5 .4  + 

1 .3  X 2 km = 8 rn, so that the mean head loss gradient is 8 / 3  = 2.67 

m/km and the equivalent pipe diameter to discharge 100 e / s  i s  345 

mm. 

As another example consider a 500 mm bore pipe, 3000 m long 

l a i d  pa ra l l e l  to a 700 mm bore pipe 4000 m long and both pipes are 

connected at  both ends. I n  th i s  case a total head loss i s  assumed, 

say 10 m. The head gradient along the 500 mm pipe i s  3.33 m/km 

and the flow r a t e  from Figure 1.5 i s  300. The head gradient along 

the 700 mm bore p ipe i s  2.5 m/km and the flow rate 620 P / s .  An 

equivalent pipe wi th  a length of, say, 4000 m to discharge 920 e / s  

a t  a gradient of 10 m/4 = 2.5 m/km would requi re a bore of 820 mm. 

I t  should be noted that Figure 1.5 i s  for  a pa r t i cu la r  roughness and 
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s l i g h t l y  d i f f e r e n t  r e s u l t s  w o u l d  b e  o b t a i n e d  i f  a l t e r n a t i v e  h e a d  loss 

c h a r t s  were emp loyed  o r  even  i f  d i f f e r e n t  f l o w  o r  h e a d  loss 

assumpt ions  were made to s t a r t  w i t h .  T h a t  i s  because  t h e  e f f e c t  of 

v a r y i n g  Reynolds number  was i g n o r e d .  A more a c c u r a t e  s o l u t i o n  c o u l d  

h a v e  been o b t a i n e d  b y  u s i n g  the  Moody d i a g r a m  o r  t h e  Colebrook-  

Whi te  e q u a t i o n  a n d  i t e r a t i n g .  The a d d i t i o n a l  e f f o r t  i s ,  however ,  

seldom j u s t i f i e d  i n  r e a l  systems a s  the  losses d u e  t o  m a n y  f a c t o r s  

( i n c l u d i n g  r o u g h n e s s )  a r e  o n l y  es t ima tes  a n y w a y .  
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CHAPTER 2 

ALTERNATIVE METHODS OF PIPE NETWORK FLOW ANALYSIS 

TYPES O F  P IPEFLOW PROBLEMS 

The h y d r a u l i c  engineer i s  confronted w i th  many problems i n  the 

p lann ing ,  des ign  a n d  opera t ion  of p iped  water supp ly  systems. The 

problems can be d i v i d e d  in to  a n a l y s i s  and design types, both fo r  

steady f low a n d  unsteady f low. 

The a n a l y s i s  of steady f lows in simple p ipes  may be fo r  f low r a t e  

( g i v e n  the head loss )  o r  f o r  head loss ( g i v e n  the f low r a t e ) .  The 

same ca lcu la t i ons  a p p l y  to compound p ipes  ( i n  p a r a l l e l  o r  ser ies) 

a l though so lu t ion  of more than one equat ion  i s  then invo lved.  When 

i t  comes to b ranched o r  looped networks more sophist icated methods 

become necessary. 

The design pcoblem i s  u s u a l l y  t rea ted  as a steady state problem. 

That i s  f o r  known heads and  drawoffs,  the engineer has  to select the 

p ipe  layout  and  diameter and  rese rvo i r  locat ion and  size. The la t te r  

aspect, namely rese rvo i r  s i z ing  i s  r e a l l y  an  unsteady f low problem 

which may of ten be solved us ing  steady-state equat ions.  Net outf low 

over the peak drawof f  per iod  may be assessed b y  m u l t i p l y i n g  drawoff  

r a t e  b y  time. 

For more r a p i d  va r ia t i ons  in f low ' r i g i d  column' surge  theory o r  

even e las t i c  water hammer theory i s  necessary to determine heads 

and t rans ien t  f lows. Computer a n a l y s i s  i s  p r a c t i c a l l y  essent ia l .  Once 

su i tab le  programs a re  a v a i l a b l e  they could,  however, even be used 

to determine steady-state f lows o r  heads. 

The design problem associated w i t h  unsteady f lows is  the 

determinat ion of p ipe  wal I thicknesses, and  the opera t i ng  ru les  fo r  

va lves ,  pumps etc. 

METHODS OF SOLUTION 

Where complex p ipe  networks a r e  u t i l i z e d  fo r  water d i s t r i b u t i o n  i t  

i s  not easy to ca l cu la te  the f low in each p ipe  o r  the head a t  each 

po in t .  Even i f  the f low-head loss equat ion assumed i s  e x p l i c i t  f o r  

each g i ven  p i p e  length ,  diameter a n d  roughness, the non- l inear  
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relat ionship between head loss and flow makes calculat ion d i f f i c u l t .  

I n  unlooped tree-like networks the flows w i l l  be defined by the 

drawoffs but  i f  the pipe network incorporates closed loops flows are 

unknown as well as heads a t  the var ious nodes. 

The complexity of the p ipe network, as well as the fac i l i t i es  

ava i l ab le  fo r  computation, w i l l  d ictate which method of analys is  i s  

to be ut i l ized.  Many of the fo l lowing methods can be performed 

manual ly whereas computers are required for the more complex 

methods, p a r t i c u l a r l y  where unsteady flow i s  involved: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

9. 

Equivalent pipes for compound pipes i n  series. 

Equivalent pipes for  complex pipes i n  pa ra l l e l .  

T r i a l  and e r ro r  methods for mu1 t i p le  reservoir  problems. 

Analy t ica l  solution of flow-head loss equations for compound 

pipes. 

Analyt ical  solution of flow-head loss equations for  pseudo-steady 

flow. 

I terat ive node head correction for  predominantly branched 

networks ( b y  hand or  computer). 

I terat ive loop flow correction for  looped networks (by  hand or 

computer). 

Simultaneous solution of the head loss equations for a l l  pipes b y  

matr ix  or  i t e ra t i ve  methods (easiest for  laminar flow when head 

loss i s  l i nea r l y  proportional to f low) .  

L inear izat ion of head loss equation and i terat ive solution fo r  

heads at  nodes. 

10. L inear izat ion of head loss equation and i terat ive solution for  

flows i n  piEes. 

1 1 .  Analyt ical  solkition of r i g i d  column unsteady flow equation. 

12. Numerical solution of f i n i t e  difference form of r i g i d  column 

acceleration equation, head loss equation and cont inui ty equa- 

tion. 

13. Graphical analys is  for  unsteady r i g i d  column flow. 

14. Graphical analys is  for- unsteady elast ic water hammer. 

15. F in i te  difference and character ist ic solution of d i f ferent ia l  water 

hammer equations us ing computers. Valves, pumps, vapor izat ion,  

release systems and branches may be considered. 

Genera I I y the equations used are:  
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Cont inu i ty  of f low a t  junc t ions  (ne t  in f low less drawof f  must 

be ze ro ) .  

Head di f ferences between nodes equa l  f r i c t i o n  head loss in the 

p ipes  l i n k i n g  them. Minor  losses and ve loc i ty  head a r e  

genera l l y  neglected o r  inc luded in the f r i c t i o n  term, o r  an  

equ iva len t  leng th  of p ipe  i s  added to the p ipe l i ne  to a l low f o r  

minor losses. 

Dynamic equat ions of motion - on ly  where accelerat ion o r  

decelerat ion of water i s  s i g n i f i c a n t .  

SIMPLE P I PE PROBLEMS 

Calculation OF Head Difference, Given F l o w  Rate 

For the case of a known f low r a t e  in a p ipe  of known length,  

diameter and roughness, the ca l cu la t i on  of head loss i s  s imple and  

d i rec t ,  us ing  f o r  example the Hazen-Williams equat ion,  

hf = 6.84L(V/C) l e s s  /D 1 * 1 6 7  (m-s u n i t s )  (2.1) 

where C i s  the Hazen-Wil l iams coeff ic ient  e.g. 140 fo r  smooth p ipes  

reduc ing  f o r  rough  pipes, o r  the Darcy-Weisbach equat ion ,  

XL vz 
hf =3- (2.2) 

where A i s  a func t ion  of the p i p e  r e l a t i v e  roughness and the 

Reynolds number, Re = VD/v, v i s  the k inemat ic  v iscos i ty  of the 

f l u i d ,  V i s  the mean ve loc i ty ,  D the p ipe  bore, L the p ipe  length  

and g i s  g r a v i t a t i o n a l  accelerat ion.  

Calculation of F l o w  Rate, Given Head Difference 

The exponent ia l  t ype  of equat ion,  e.g. Hazen-Wil l iams, can be 

solved d i r e c t l y  f o r  f low ve loc i ty  a n d  hence d ischarge ra te .  Th is  i s  

one reason why t h i s  type of equat ion remains popu la r  despi te i t s  

empir ic ism. The more sc ien t i f i c  fo rmula  of Darcy has  to be solved 

i t e r a t i v e l y  fo r  t h i s  case as the Reynolds number i s  a func t ion  of 

f low ve loc i ty  wh ich  i s  a n  unknown. The procedure i s  to guess a V ,  

ca l cu la te  the corresponding Re, read  1 from a Moody d iag ram ( o r  

ca l cu la te  i t  f rom the Colebrook- White equat ion)  a n d  solve f o r  a new 

f low ve loc i ty  from the head loss equat ion.  I t  i s  genera l l y  not 
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necessary to r e p e a t  the process w i t h  the new v e l o c i t y  more t h a n  

t w i c e  a s  the f l o w  converges  r a p i d l y .  I f  the  p r o c e d u r e  i s  to b e  

u t i l i z e d  in a computer  a Newton Raphson convergence method c o u l d  b e  

programmed (see Chapter  1 ) .  I f  the  computa t ions  a r e  per fo rmed 

m a n u a l l y  a h e a d  loss c h a r t  based o n  the e q u a t i o n s  c a n  be  used to  

s i m p l i f y  the  c a l c u l a t i o n s .  

I NTER-CONNECTED RESERVO I RS 

A more compl ica ted  prob lem i n v o l v e s  the c a l c u l a t i o n  o f  b o t h  f l o w  

r a t e  a n d  head d r o p  a l o n g  compound p i p e s  i n t e r - c o n n e c t i n g  a number  

of  r e s e r v o i r s .  F o r  example  a d r a w o f f  may occur  f rom a p o i n t  in  a 

p i p e  ne twork  w h i c h  i s  f e d  f rom a number  o f  r e s e r v o i r s  - the  prob lem 

i s  to es t imate  the f low r a t e  in each p i p e  a n d  the h e a d  a t  the 

d r a w o f f  p o i n t .  

I t  i s  assumed t h a t  the f r i c t i o n  f a c t o r s ,  d iameters  a n d  l e n g t h s  of  

a l l  p i p e s  a r e  known.  Also, the leve l  in  each r e s e r v o i r  r e m a i n s  

cons tan t  a n d  the p r e s s u r e  head i s  nowhere n e g a t i v e  in the p i p e  

ne twork .  A s i m p l e  such s u p p l y  system i s  d e p i c t e d  i n  F i g u r e  2.1 

I I / 1 I 

F i g .  2.1 In ter -connected Reservo i rs  

Water l e v e l  30 

The prob lem c a n  be  reduced to  the es t imat ion  of the  r e s i d u a l  

head a t  node 3. Then the c o r r e s p o n d i n g  f low in  each of  p i p e s  1-3 

a n d  2-3 c a n  b e  c a l c u l a t e d .  I f  the  ne t  f l o w  to node 3 does no t  e q u a l  
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the drawoff, lOO@/s, the assumed head at node 3 i s  incorrect and 

should be revised. A t r i a l  and error  method could be employed to 

obtain a more accurate head at 3. Thus i f  the net flow towards 3 i n  

both pipes exceeded lOOP/s the head should be increased, and i f  the 

flow was too low the head should be decreased. The f i n a l  head at 3 

should be above ground level or  else the flow of l O O @ / s  would be 

unobtainable as a i r  would be drawn into the pipel ines through a i r  

valves and f i t t i ngs .  

I f  k = O.Olmm, X 0.014. T ry  H3 = 25m and solve for  Q = 

= 21m, i t  
31 

3 5 4 / s ,  Q23 = +8O@/s,  

wi l l  be found Q 

so H3 i s  too h igh.  Repeating wi th  H 
3 

= 11OP/s, Q31 = 10 @ / s .  
23 

A methodical and converging method for  improving the estimation 

of the head at 3 at each i terat ion i s  demonstrated later ( the node 

head correction method). The methods ( t r i a l  and error ,  o r  i terat ive 

relaxat ion) could be employed for more complex situations, e.g. 3 o r  

more reservoirs, more than one drawoff and compound pipes with 

changes in  diameter. 

Al ternat ively an analy t ica l  solution could be obtained. 

Thus i f  H1 - H3 = k lQIZ (2.3) 

and H2 - H3 = k2Q22 (2.4) 

(2.5) Then using Q1 + Q2 = Q to el iminate Q2 and H 
3 

Q1 = -2k,Qg /(2k2Q3)' - 4 ( k l - k 2 ) ( H  2 -H 1 2 3  -k Q ' f  (2.6)  

For = 0.014 then kl = 3622 and k 2  = 712 so Q1 = -0.014 or -0.035 

m'/s. The la t ter  solution is found on inspection to be incorrect and 

so Q2 = 0.1 + 0.014 = 0.114 rn'/s. 

3 

2 ( k l - k 2 )  

X 

PSEUDO STEADY FLOW 

I f  the water levels i n  two inter-connected reservoirs change wi th  

time, i t  may s t i l l  be possible to obtain an analy t ica l  solution to the 

flow rate and water levels at any time. Acceleration i s  neglected i n  

the calculat ion fo r  the example i n  F igure 2.2. 

Assuming a head loss equation of the form 

h =  H, - H2 = K Qn (2.7) 

(e.g. K = X L/2gD5 ( ~ / 4 ) '  and n = 2 for  the Darcy equat ion).  (2 .8 )  
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Fig.  2.2 Inter-connected reservoirs wi th  heads converging 

then 

Q = (h/K)l/n 

For cont inui ty 

dHIAl = dH2A2 = Qdt 

... -dh = dH,+dH2 = Qdt( l /A1+l /AZ) 

b 

( hlt- 1 /n - 1 - 1 / n ) = A t  
K l / n  

( 1 - l / n )  ( l / A 1  +1 /A2) 0 
I n t egra t i ng , 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

i.e. s ta r t i ng  wi th  a known head difference ho, the re la t ionship 

between h and time t may be determined from th i s  equation. 
t 

The problem could also be solved numerical ly and such methods 

are discussed i n  chapters 7 and 8. 

COMPOUND P I PES 

Equivalent Pipes for Pipes in Series 

I t  i s  often useful to know the equivalent pipe which would g ive 

the same head loss and flow as a number of inter-connected pipes i n  

series or pa ra l l e l .  The equivalent pipe may be used i n  place of the 

compound pipes to perform fur ther  flow calculations. 

The equivalent diameter of a compound pipe composed of sections 
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of di f ferent diameters and lengths i n  series may be calculated by 

equat ing the total head loss for  any flow to the head loss through 

the equivalent pipe of length equal to the length of compound pipe:- 

( 2 . 1 4 )  

( 2 . 1 5 )  

( m  i s  5 i n  the Darcy formula and 4.85 i n  the Hazen-Williams 

formula).  

Fig.  2.3 Pipes i n  Series 

Complex Pipes in Para l le l  

Fig. 2.4 Pipes i n  Para l le l  

S imi lar ly ,  the equivalent diameter of a system of pipes 

pa ra l l e l  is  der ived by equat ing the total flow through the equivalent 

pipe ' e l  to the sum of the flows through the i nd i v idua l  pipes ' i '  ' i n  

para1 le l :  

Now h = h. (2 .16)  
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i.e. KPeQnD! = KeiQin/Dm (2.17) 

so ai = ( P e / e i ) ' / n ( ~ i / ~ e ) m / n ~  (2.18) 

and Q = Z Q i  = C[(Pe/Pi)'/n(Di/De)m/nQ] (2.19) 

Cancell ing out Q, and b r ing ing  D and ee  to the left hand side, 

(2.20) (Dem/Pe) ' / "  = C ( D i m / P i )  1 / n  

and i f  each P i s  the same, 

m/n n/m 
De = ( C D i  ) (2.21 

The equivalent diameter could also be der ived using a flow/head 

loss chart .  For pipes i n  pa ra l l e l ,  assume a reasonable head loss and 

read of f  the flow through each pipe from the char t .  Read off the 

equivalent diameter which would g i ve  the total flow a t  the same head 

loss. For pipes i n  series, assume a reasonable flow and calculate 

the total head loss wi th  the assistance of the chart .  Read of f  the 

equivalent p ipe diameter which wduld discharge the assumed flow 

wi th  the total head loss across i t s  length. 

I t  often speeds network analyses to s impl i fy pipe networks as 

much as possible using equivalent diameters for  minor pipes i n  

series or  pa ra l l e l .  Of course the methods of network analys is  

described below could always be used to analyse flows through 

compound pipes and th i s  i s  i n  fact the preferred method for more 

complex systems than those discussed above. 

NODE HEAD CORRECT ION METHOD 

A converging i terat ive method of obtaining the correct heads at 

nodes and the corresponding p ipe flows is often used, especially for  

complex branched networks wi th  mul t ip le  reservoirs. This method i s  

termed the node head correction method. I t  is  necessary to assume 

i n i t i a l  heads at each node. Heads at nodes are then corrected by 

successive approximation. The steps i n  an analys is  are as follows:- 

( 1 )  Draw the pipe network schematically to a c lear scale. Indicate 

a l l  inputs, drawoffs, f ixed heads and booster pumps. 

(2 )  Assume i n i t i a l  a r b i t r a r y  but reasonable heads at  each node 

(except i f  the head a t  that node i s  f i xed ) .  The more accurate 

the i n i t i a l  assignments, the speedier w i l l  be the convergence of 
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the solution. 

( 3 )  Calculate the flow in each pipe to any node wi th  a va r iab le  

head using a formula of the form Q = ( h D m / K t ) ' / "  or using a 

f low/head loss chart .  

( 4 )  Calculate the net inflow to the specific node and i f  t h i s  i s  not 

zero, correct the head by adding the amount 

AH = C Q  m 
This equation i s  der ived as follows:- 

Since Q = (hDm/K@)'/" 

dQ = Qdh/nh 

We requi re Z ( Q  + dQ) = 0 
Qd h 

i.e. C Q  + C - 
nh 

= o  
But dH = -dh where h i s  head loss and 

H is head a t  node 

( 2 . 2 2 )  

( 2 . 2 3 )  

( 2 . 2 4 )  

( 2 . 2 5 )  

( 2 . 2 6 )  

\ 
( 2 . 2 7 )  AH = Z Q  so zo 

Flow Q and head loss are considered posi t ive i f  towards the 

node. H is the head a t  the node. Inputs (pos i t ive)  and drawoffs 

(negat ive) a t  the node should be  included i n  Q .  

( 5 )  Correct the head a t  each variable-head node i n  s imi lar  manner, 

i .e. repeat steps 3 and 4 for  each node. 

( 6 )  Repeat the procedcre (steps 3 to 5 )  u n t i l  a l l  flows balance to a 

suff ic ient  degree of accuracy. I f  the head difference between 

the ends of a pipe i s  zero at any stage, omit the pipe from the 

p a r t i c u l a r  ba lanc ing operation. 

I t  should be noted that the node head correction method i n  some 

cases converges slowly i f  a t  a l l  or i t  can be unstable. This can be 

the case i f  the system i s  unbalanced, i.e. one pipe wi th  a h igh  

head loss is adjacent to another p ipe w i th  a low head loss. A small 

head correction at the common node could cause a large change i n  

flow, even a flow reversal  i n  the low head loss pipe. I n  fact a head 

correction should be less than the head loss i n  any pipe connecting 

to the node i n  question. I t  may therefore take many i terat ions to 

work a correction out of the system. Al ternat ive ly  the flow ra te  could 

osci l late w i l d l y  and no longer comply wi th  the l inear ized relat ionship 

between a s m a l l  change i n  head loss and change i n  flow. 



30 

O n  the o t h e r  h a n d ,  d a t a  i n p u t  i s  v e r y  s i m p l e  f o r  the node h e a d  

c o r r e c t i o n  method. No loops h a v e  to b e  assumed a n d  i n i t i a l  f l o w s  

need not  be  es t imated .  Heads c a n  b e  t a k e n  a s  g r o u n d  l e v e l s  f o r  each 

node to s t a r t  w i t h  so sometimes no i n i t i a l  heads  h a v e  to b e  

est imated.  I t  i s  e a s i e r  to i d e n t i f y  p i p e s  b y  the nodes they connect  

r a t h e r  t h a n  the  loops they  separa te .  I t  i s  e a s i e r  to  i n t e r p r e t  the  

r e s u l t s .  F i n a l  heads  a r e  g i v e n  f o r  each node i n s t e a d  o f  j u s t  l i n e  

head losses as f o r  the loop method. I f  changes a r e  r e q u i r e d  once a 

p r e l i m i n a r y  a n a l y s i s  i s  done i t  i s  easy  to add, s u b t r a c t  o r  a l t e r  

p i p e s  w i t h  the  node method. M a n y  o f  these a d v a n t a g e s  a r e  r e t a i n e d  

in  the l i n e a r  method d e s c r i b e d  in Chapter  4 .  

COMPUTER PROGRAM BASED ON NODE HEAD CORRECTION METHOD 

The method i s  v e r y  easy  to  use and s i m p l e  to p r o g r a m  (see 

computer  p r o g r a m  appended to  t h i s  c h a p t e r ) .  D a t a  i n p u t  i s  a l s o  

s imple,  a n d  easy  to c h a n g e  a f t e r  a' run. The method i s ,  however ,  

s l o w  to converge in cases of  u n b a l a n c e d  l a y o u t s  o r  low a n d  high 

head loss combina t ions .  An example  i s  d e p i c t e d  a f t e r  the p r o g r a m  

l i s t i n g ,  together  w i t h  i n p u t  l i s t i n g  a n d  o u t p u t .  The same example  i s  

a n a l y s e d  in  c h a p t e r  3 u s i n g  a d i f f e r e n t  method. 

Program Input 

The p r o g r a m  i s  run i n t e r a c t i v e l y  a n d  w i l l  p rompt  f o r  the  

f o l l o w i n g  i n f o r m a t i o n :  

L i n e  1 :  Network name 

L i n e  2: No. o f  pumps;  No. o f  nodes ( t o t a l ) ;  No. o f  f i x e d  head nodes 

( r e s e r v o i r s ) ;  p e r m i s s i b l e  f i n a l  maximum c h a n g e  in  h e a d  p e r  i t e r a t i o n  

in m ( t h e  ' e r r o r ' ) ;  D a r c y  f a c t o r  (assumed cons tan t  f o r  a l l  p i p e s ) ;  

Head a t  node 1 ( w h i c h  must  b e  a r e s e r v o i r )  in metres. Note t h a t  in 

n u m b e r i n g  nodes, t h e  f i x e d  heads s h o u l d  be  numbered f i r s t .  

L i n e  3 a n d  subsequent  l i n e s  (one f o r  each p i p e ) :  Top node No.; 

Bottom node ( t h e  c o r r e c t  o r d e r  i s  not  i m p o r t a n t  a t  t h i s  s t a g e ) ;  

L e n g t h  in metres;  Diameter  in metres; F i r s t  es t imate  of h e a d  a t  

bot tom node in metres;  Drawof f  a t  bot tom node in m3/s.  

P i p e  d a t a  c a n  b e  p u t  in a n y  o r d e r  b u t  e v e r y  node in the  system 

s h o u l d  h a v e  i t s  h e a d  a n d  d r a w o f f  d e f i n e d  in the d a t a  i n p u t ,  i.e. 
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2 5  

each node should be a bottom node i n  at least one pipe. I f  data 

(head and drawoff)  f o r  any node is supplied twice thus i t  i s  only 

the last data which i s  recorded. Drawoffs are ignored at f ixed head 

nodes. 

When the answers are pr in ted,  the top head node and bottom node 

w i l l  be i n  the correct order thus def in ing flow direction. The head 

at the bottom node i s  also given. 

l \  1 500m 

300m 

i 2 = 9 9 8 . 5 m  

i 2 5  f ' 

Fig. 2.5 Network analysed by program 

NEWTON-RAPHSON METHOD 

Most methods of network analys is  described here are based on a 

l inear izat ion of the head loss equations. Even the Hardy Cross 

methods are based on a l inear  increment i n  flow being proportional 

to a l i nea r  increment i n  head loss. The method hereunder does not 

requi re  such a l inear izat ion by the analyst  but  a mathematical 
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approx imat ion  to the non- l inear  head loss term i s  improved in  steps 

us ing  I i nea r  increments. The Newton- Raphson technique i s  used to 

solve the non-l i nea r  head-f low equat ions s imultaneously f o r  each p i p e  

in the network.  The method i s  s a i d  b y  Jeppson (1976) to have  rapid 

convergence, b u t  requ i res  a close i n i t i a l  est imate of f l o w s  i f  

i n s t a b i l i t y  i s  to be avoided. I t  a lso  requ i res  r e l a t i v e l y  l i t t l e  

computer storage. 

The method used i n  Chapter 1 to solve the Colebrook-White 

equat ion f o r  h , i s  based on the approx imat ion  

where F ( x )  i s  the func t ion  of x to be solved ( F ( x )  = 0 )  and F ’  i s  

the d i f f e ren t i a l  of F w i t h  respect to x .  Subscr ip t  m re fe rs  to the 

m-th i te ra t ion .  T h i s  equat ion comes d i r e c t l y  from the f i r s t  o rde r  

approx imat  ion 

F ’ ( x m )  = F (xm+, )  - F ( x m )  where F ( X ~ + ~ )  = 0 

X - x  
m+l m 

(2.29) 

The convergence i s  r a p i d  because the e r r o r  in the m+l - th  

i t e ra t i on  i s  p ropor t i ona l  to the e r r o r  in the m-th i t e r a t i o n  squared. 

Th is  i s  termed q u a d r a t i c  convergence. The method a p p l i e d  to the 

s imultaneous so lu t ion  of a number of non- l inear  equat ions f o r  heads 

a t  nodes i s  demonstrated w i t h  an  example below 

H=80 m 

1 OOOm x200m m 
I 

t 
30 t / s  

Head l o s s e s  H = 0 . 0 2 L Q Z f / s  

D S  ml  0002 x (71  / 4  ) 

= 0 . 0 3 2 5 ~ 1 0 - ~  L Q 2 / D 5 ( D  i n  m, Q in f/s, L in m)  

. ’ .Q = 5547h’D5I2 /L4  
1 

8 1 2  = 3.14 H 1 2 I  

8 2 3  = 2 .16  H 2 3 2  

8 3 4  = 4 . 9 6  H 3 4 I  

1 

1 
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T h e n  

S e t  F 2  

F 3  

d F  2 
dH 2 

d F 3  
dH 3 

T r y  H 2  

- 

- 

H 2 2  

H 3 2  

= '212-823 - 3 0  = 0 f o r  f l o w  b a l a n c e  a t  n o d e  2 

= 3 . 1 4 ( 8 O - H 2 ) ' - 2 . 1 6 ( H 2 - H 3 ) '  - 3 0  

= Q 2 3 - 8 3 4  = 0 f o r  f I ow b a l a n c e  a t  n o d e  3 

= 2 .16  (H2-H3)  ' -4 .96 ( H 3 - 1 0 0 ) '  

= 1 . 5 7 / ( 8 0 - H 2 ) ?  - 1 . 0 8 / ( H 2 - H 3 ) e  

= - 1 .08/(H2-H3)i-2.48/(H3-100)i 

= 55m, H 3  = 90m 

= 5 5  - 3.14(80-55)'-2.16(55-90)'-30 = 5 6 . 0 6  

1 1 

1 1 

1 1 

1 1 

I I 

1.57/(80-55)'-1.08/(55-90): 1 

= 9 0  - -2.16(55-90)'-4.96(90-100)p = 8 7 . 0  

-1.08/(55-90)~-2.48/(90-100)' 
1 

1 1 

Note (55-90)' i s  assumed to  b e  - (90 -55 )?  etc .  t o  account  f o r  f l ow  

d i r e c t i o n .  The new heads  c a n  b e  r e - s u b s t i t u t e d  i n t o  t h e  e q u a t i o n s  f o r  

the n e x t  i t e r a t i o n  a n d  so on.  

I t  w i l l  b e  o b s e r v e d  t h a t  t h e  r e s u l t i n g  e q u a t i o n s  a r e  i n  e f fec t  t he  

same as  those f o r  t he  node h e a d  c o r r e c t i o n  method. I f  t he  b a s i c  

e q u a t i o n s  were w r i t t e n  i n  terms o f  u n k n o w n  f l o w s  i n s t e a d  o f  heads ,  

t he  r e s u l t i n g  e q u a t i o n s  w o u l d  b e  t h e  same a s  t h e  loop f l o w  c o r r e c t i o n  

e q u a t i o n  (see C h .  3 ) .  The e q u a t i o n s  m a y ,  however ,  b e  s o l v e d  

s i m u l t a n e o u s l y  f o r  a l l  new f l o w s  i n s t e a d  o f  f o r  one loop a t  a t ime 

(Ch .  3 ) .  
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Network a n a l y s i s  by Node Head Correct  ion-Program Output and Input 

5 e  
68. 

78 
80 

90 

180 

118 
120 
138 
148 
158 
168 
170 
172 
174 
188 
190 
208 
218 
228 
238 

410 
428 
438 
44u 

450 
468 

470 

488 

Gz9.8 ! 32 I F  FT-S U N I T S  
D I S P  "HPlPES..NHODES,NRESS,E~ 
Rm.. DARCY f I TOPHm" i 

FOR J=l TO N 1  I F I X E D  HEADS 
NUMBEF'ED F I R S T  
D I SP " NODE 1 + .. NODE2- I Lnr I Dm I I N 
ITLH2,Q2m?. / s " ;  
I NPClT K i; J X < J > , D < J ? , H 2  
, 42 
H<LC.J> j = H 2  
p ( L < J j ? = ~2 
F < J > =F 
NEXT 3 
FOR Il=l TI2 50 ! MAX I T H S  
U=B 
FOR J=l  TO N1 
I F  H < K < J ) ~ : ~ < > H ( L ( J > >  THEN 188 
H < K < J j > = H < L ( J ) : > +  0 1  
I F  H I K C . J j l > = H < L ( J l j  THEN 228 
lJ=L < -J 1 
L < J > =K ( J  > 

I NPUT N 1 N2 > t.13, H3, F 2 H < 1 3 

. L 1:. J 3 

S = N  
F O R  J = l  TO N l  
I F  K ( J > < > I  THEN 338 
R=R-Qi;J, 
S=S +Q ( J 1 i < H ( K < .I 
GOTO 368 
I F  L < . . J > O I  THEN 

. . . 
I F  U<H3 THEN 438 
NEXT I 1  
P R I N T  L b  

? - H < L  

368 

) - H < L  

I THEN 

(J?!? 

( J ? ) ?  

468 

. . . - . . . - . 
P R I N T  " H+ N- X I M )  @ < M ?  QM 
3/5 H2M" 
FOR J = l  TO Nl 
P R I N T  USING 478 ; K!:J?,L(J!.. 
XCJ)  , D < . J j  .,Q<.J> .H<L<..J>:> 
1tlAGE DDD DDD, ~ @ @ C I @ ,  D@ . DUD, I? 
D.DDD>DDDDD.D 
NEXT J 

F'I' NUDE HERO t;OFF' 

H 2 M  
397 p 
9'7.4 
9 9 4 . 8  
9 9 4  . e  
990 3 
998.3 
9 9 3 . 8  
9 9 1 . 1  

NETWORK NHME? 
TEST I? CIN 
NPIPES., NNClDES, NRESS I ERRm, DARCYf  ., 
TOF'Hm? 
e..7.3.. 1.. .815.. 1880 
NODEl+.. NODE2-, La, DNI: INITLH2..C!2m3 

498 END 
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CHAPTER 3 

LOOP FLOW CORRECTION METHOD OF NETWORK ANALYSIS 

I NTRODUCT I ON 

An ef f ic ient  method of analys ing the flows i n  pipe networks was 

developed by Hardy Cross (1936). The numerical method can be 

performed manual ly or  by computer and i s  one of the most r a p i d  

methods of manual ly estimating flows and head losses in a network 

wi th  closed loops. By closed loops i t  i s  impl ied that there are 

a l ternat ive routes supply ing any of the (known) drawoffs from the 

system. Provided the loops are selected judic iously the number of 

i terat ions may be considerably less than the number of i nd i v idua l  

pipes i n  the network and convergence i s  rap id.  

The method suffers the disadvantages that the network has to b e  

drawn i n  the ’ form of a number of closed loops or  routes and i n i t i a l  

flows have to be estimated such that flows balance at  each node or  

intersection. There are fur ther  complications when more than one 

reservoir  or  f ixed head i s  included o r  when branch pipes feature. 

\ 

Pipes jo in  nodes or  junctions and drawoffs should be taken from 

the nodes. The number of nodes should be minimized to minimize the 

number of pipes i n  the network. This may be done b y  lumping a lot 

of drawoffs, e.9. from a block of houses, together and tak ing them 

off a central  point .  Where local head losses are important the 

number of nodes may not be able to be  reduced much. On the other 

hand, the longer the lengths of i nd i v idua l  pipes the more r a p i d l y  

data assembly and analys is  can be done. 

METHOD OF FLOW CORRECTION 

The method requires an i n i t i a l  rea l i s t i c  estimate of flows which 

a re  successively corrected. Corrections are made i n  steps to the flows 

in  closed loops, using a re laxat ion or  converging i terat ive method. 

The basis of the correction i s  der ived as follows. A f i r s t  order 

approximation to the d i f ferent ia l  of the head loss equation i s  made: 
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Assuming h = KLQn/Dm 

Then dh = KLnQ"-'dQ/Dm = (nh/Q)dQ 

The total net head loss around any closed loop should be zero 

and i f  i t  is  not, the head losses are incorrect and should be 

adjusted by dh: 

Then Z(h+dh) = 0 (3.3 

Ch + Cdh = 0 (3.4 

Zh + Z(nh/Q)dQ = 0 (3.5 

A Q  = -Lh ( 3 . 6 )  

I f  the Darcy-Weisbach equation i s  used for head losses, n=2 and 

m=5, whereas the Hazen-Williams equation would g i ve  n=1.85 and 

m=4.85. Some degree of freedom i s  ava i l ab le  i n  selecting n. I t  may 

also be noted that Q and h may be i n  any uni ts,  e.g. P/s and m 

respect ivel  y . 

nco 

Barlow and Markland (1969) showed how a second order approxi-  

mation to the d i f ferent ia l  produced a more r a p i d  convergence. 

Steps i n  analys is  may be set out as follows ( l n s t n .  of Water 

Engineers, 1969); 

1 .  Draw the network p lan to a c lear scale and set a l l  data such as 

pipe lengths and diameters, reservoir  heads and drawoffs on the 

p lan.  I n  fact i t  i s  often convenient to set the calculat ions out 

on such a p lan.  

2. Number the closed loops consecutively and mark posi t ive direc- 

t ions, e.g. clockwise. 

3. Start ing wi th  any p ipe i n  any loop, assign an a r b i t r a r y  but 

sensible flow and flow direct ion to th is pipe. Repeat for  an 

adjacent p ipe tak ing care that the flow balances at the 

intermediate node, i.e. net inflow to less drawoff from each node 

must be  zero. Proceed thus through the network a l locat ing flows 

to each pipe. The number of assumptions necessary w i l l  equal 

the number of inner loops, i.e. a new flow w i l l  have to be  

assumed at  each new loop. The more accurate the i n i t i a l  

estimates of flows the speedier w i l l  be the solution. 

4 .  Calculate the head loss i n  each pipe using a formula of the form 

h = KLQn/Dm. Also calculate the term h/Q for each p ipe 

re ta in ing  the posi t ive value of h and Q i n  th is  case. 
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5. 

6 .  

7. 

8 .  

9. 

Select a loop such as the most prominent one i f  performing the 

analysis manual ly,  or  proceed i n  numerical order s ta r t i ng  at 

loop 1 i f  using a computer. Calculate the net head loss around 

the loop, adding head drops, or subtract ing head increases i f  

the flow i s  i n  the adverse direction. 

I f  the net head loss around the loop is not zero, correct the 

flows i n  each p ipe i n  the loop using the formula 

A Q  = -Zh/nZ(h/Q). ( 3 . 6 )  

Repeat steps 5 and 6 for  each loop. 

Repeat steps 4 to 7 u n t i l  the head losses around each loop 

balance to a sat isfactory degree or  u n t i l  the flow corrections are 

negl ig ib le.  

Calculate the head at each node by s ta r t i ng  at a known head 

point  and going from pipe to pipe. Compare the heads at each 

node wi th  ground levels to determine the residual  pressure head. 

I t  is  easier to estimate head losses from a head loss chart  than 

to use an equatizn i f  the procedure i s  done manual ly.  The value of 

n can also be set a t  2 f o r  ease of manual computations. 

I f  h (and consequently Q )  works out a t  zero for  any pipe dur ing 

the computations, h/Q should be assumed to be zero i n  ca lcu lat ing 

Zh/Q for the corresponding loop o r  loops. 

LOOP SELECT I ON 

I t  i s  most convenient to select and number consecutively loops 

adjacent to each other when proceeding across the network. This is,  

however, not necessarily the method which w i l l  resu l t  i n  most r a p i d  

numerical convergence when correct ing flows. By carefu l ly  designat- 

ing loops the convergence can be speeded up. Remember a correction 

can only proceed at  the rate of one loop at  a time through the 

system. 

I t  i s  often convenient to have some of the loops embracing the 

larger  pipes, i.e. cut t ing across small minor loops. Al ternat ively the 

outer pipes can be imagined as a loop turned inside out. The space 

outside the network thus has a loop number. The method w i l l  work 

whether or not such addi t ional  loops are included. I f  a p ipe i s  

ident i f ied b y  two loop numbers then i t  is  necessary to number the 

outer loop. 
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The procedure of ident i fy ing pipes by the loops they separate 

may also be used to indicate the direct ion of f low. I f  a l l  loops obey 

a sign convention such as clockwise positive, then the loop i n  which 

the flow is i n  the posi t ive direct ion can always be given f i r s t  when 

ident i fy ing a pipe and i t s  flow direction. 

When computing the flow correction for  successive loops, the head 

loss calculat ion and flow corrections may be made for  one loop at a 

t ime ,  or else a l l  the flow corrections may .be computed before 

correcting a l l  the loop flows together. The former procedure i s  

easiest to computerize whereas the la t ter  procedure i s  often the 

easiest when doing the calculat ions manual ly.  Careful at tent ion has 

to be pa id  to s igns and directions, however, or  else the flow 

balance can be lost for  some of the nodes. 

MULT I PLE RESERVO I RS 

The loop network method becomes t r i c k y  when more than one f i xed  

head reservoir  is  incorporated i n  the pipe network. The simplest 

method of coping wi th  mul t ip le  reservoirs i s  to insert a dummy p ipe 

connecting the reservoirs (one dummy p ipe per addi t ional  reservoir  

above one). One addi t ional  loop i s  thereby created per dummy pipe. 

The length and diameter of dummy pipes may be selected a r b i t r a r i l y  

and the estimated flow i n  a dummy p ipe should correspond to the 

head difference between the reservoirs i t  connects. 

The flow and head loss i n  the dummy pipe are taken into account 

i n  ca lcu lat ing z h  and c h / Q  around the respective loops, but  the flow 

is not corrected in dummy pipes when the flow correction i s  made 

around the relevant loop. 

BRANCH PIPES 

Although predominantly tree-like networks without closed loops 

can often be handled most e f f ic ient ly  using the node head correction 

method, i t  i s  possible to include branch pipes i n  the loop method. 

The flow i n  an isolated branch p ipe should be p r e -  defined (unless 

the branch connects a reservoir  when i t  w i l l  be incorporated i n  a 

loop wi th  a dummy p ipe ) .  Therefore the head loss can be estimated 

without resort ing to i terat ions except i f  i t  i s  a compound p ipe made 
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up of a number of diameters i n  series. Even then, equivalent pipe 

methods are possible. 

I n  general e i ther  the head at a node, or the drawoff, can be 

defined. I n  ei ther case the other va r iab le  has to be calculated i n  

the network analysis.  

The method of inc lud ing branch pipes wi th  defined flows i n  a 

network programme i s  to ascr ibe a r b i t r a r y  loop numbers greater than 

the number of rea l  loops to the branch pipe, and not correct the 

flows in  those loops. 

PUMPS AND PRESSURE REDUCING VALVES 

Pumps may be assumed to increase or boost the head i n  a pipe i n  

one direct ion b y  a specified amount. Pressure reducing valves, on 

the other hand, may reduce the head by a specified head and can 

be treated as a negative pumping head. ( I f  e i ther operates to g i ve  a 

f ixed total h e a d  at a point that point may be treated l i ke  a 

fixed-head reservo i r ) .  

A pumping head would be included i n  an analys is  by subtract ing 

head generated from the f r i c t i on  head drop i f  proceeding around the 

loop in  the direct ion of posi t ive flow i n  the p ipe wi th  pump. I f  the 

flow i s  against  the pumping head add the f r i c t i on  head and 

pumping head. This pumping head i s  included in  1 h but  not i n  Zh/Q 

when proceeding around the loop. The computation for  Q i s  then as 

before. 

Where a preset valve or f i t t i n g  i n  a pipe causes a head loss i n  

the direct ion of flow the f i t t i n g  can general ly be  converted to an 

equivalent length of pipe and added to the real  p ipe length. Thus i f  

the head loss through the f i t t i n g  i s  KVZ/2g and the f r i c t i on  head 

loss i n  the pipe i s  ( A  L/D)V2/2g, then the equivalent addi t ional  

length of p ipe is 

AL = KD/A (3.7) 

I f  the pumping head i s  a function of the flow rate,  e.g. 

(3.8) 
2 

h = a  + a Q + a 2 Q  
P O 1  

2 are pump 
= the pump shutoff head and al and a 

0 
where a 

cons tan ts, 

then equation (3.6) w i l l  be replaced as follows: 
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The revised Q1 = (Q + dQ) 

For any pipe head drop h = KLQn/Dm - a. 

or i f  h i s  the uncorrected head drop, 

h+dh = KL(Qn+n Qn-'dQ+. . . )/Dm-aO-a, (Q+dQ 

2 
alQ-a Q 

2 

(3.9) 
(3.10) 

-a2(Q2+2QdQ+...) (3 .11 )  

The total head drop around a loop must be zero: 

C(h+dh) = 0 (3 .3 )  

Hence dQ = - c (  KLQn/Dm-a0-alQ-a2QZ (3 .12 )  

n c KLQn- l  /Dm-a -2Qa2 

-C(h -h ) 

n C ( h  /Q)-C(al+2Qa2) 
or A Q  = f P  

f 

(3.13) 

PRACT I CAL DES I GN 

The water engineer may be required to analyse a pipe network to 

check flows o r  heads. He may have to check pressure heads for  aged 

networks to see i f  they are suf f ic ient ,  or  to re-analyse a network for  

a revised demand pattern.  Al ternat ivety the system may have been 

designed to cope wi th  a certain demand pattern and abnormal 

conditions have to be checked. For example, design of p ipe sizes 

may have been based on peak per iod drawoffs, but  an abnormal load 

may come on the system when a f i r e  hydrant  is operated. Then lower 

pressures general ly may be tolerable provided the f i r e  demand i s  

met. For example spread over a township, peak house demands may 

be assumed to be 0.1 @ / s  whereas i nd i v idua l  f i r e  hydrants  may have 

to de l iver  more than 10 e / s .  

Pipe sizes have to be selected b y  t r i a l  and error.  The network 

w i l l  be analysed for  each assumed pipe network layout and p ipe 

diameter u n t i l  a sat isfactory arrangement i s  a t  hand. Generally a 

tree-I ike network wi th  a rad ia t i ng  d is t r ibut ion of  pipes becoming 

smaller i n  diameter towards the t ips i s  the most economic, but  closed 

loops are requi red for  security i n  case pipes are damaged or taken 

out of commission. The tree - l i ke  network wi th  consequent known 

flows can be optimized us ing l inear  programming methods but t r i a l  

and error  design i s  necessary for  looped systems. As a guide the 

head loss gradients should be lesser the larger  the pipe diameter or  

f low, but  care i s  necessary to ensure pressures are not too h igh  i n  

val leys(e.g.  lOOm upper l imi t  for  household f i t t i n g s )  or too low at  



41 

high points (e.g. 15m lower l im i t  for  resident ia l  areas).  I n  

undulat ing areas, pressure reducing valves may be requi red to meet 

these pressure l imi ts,  or  many reservoirs could be used to supply 

separate zones. 

COMPUTER PROGRAM FOR LOOP FLOW CORRECTION METHOD 

The accompanying computer program i n  BASIC language i s  based 

on the loop flow correction method. I t  is  adapted to sui t  a HP-85 

computer and as the program stands i t  can handle 50 pipes. No 

pumps are permitted. I t  i s  i n  S I  un i t s  (metres and seconds) but by 

ad just ing G from 9.8 to 32 i t  may be r u n -  i n  ft-sec uni ts.  Also where 

m i s  indicated i n  the pr in tout ,  f t  should be assumed i f  calculations 

are to be i n  ft-sec uni ts.  

The Darcy head loss equation i s  used wi th  a constant f r i c t i on  

factor (equivalent to f i n  North America). The symbol F i n  the 

program represents X and i s  assumed the same for  each pipe. X and 

pumping heads could i n  fact be read fo r  each p ipe but  t h i s  would 

increase data input.  

Input  requested in teract ive ly  is: 

L ine 1 ;  Name of system 

L ine 2 ;  No. of pipes; No. of loops; No. of reservoirs; Error  

permitted i n  m3/s; Darcy f r i c t i on  factor.  

L ine 3 (One for  each pipe s ta r t i ng  wi th  dummy p ipes) ;  Positive 

etc. loop; Negative loop; Length ( m ) ;  Diameter (m);  I n i t i a l  - 
estimate of f low (m’/s). 

Running time i s  roughly 1s per 3 pipes per i terat ion.  
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p s e u d o - p i p e  w i t h  h e a d  l o s s = H l - H 2  
/ %  \ 

\ 
n 1  \ 

' fi H1=1000m I 
I 

a1  a s s u m e d  
o o p  m e t h o d  

08m3 / s  

" 1 1  4 0 0 i  Q . 3  

e d  l o o p s  

f 1 o w s  
( c h  3 )  

F ig .  3.2 Network analysed by program using loop method 
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CHAPTER 4 

LINEAR METHOD 

I NTRODUCT I ON 

The t r i a l  and error  and re laxat ion methods of p ipe network 

analys is  were o r i g i n a l l y  developed for  manual solution. Calculations 

proceed from one pipe to the next i n  a rout ine manner and large 

matrices or solution of simultaneous equations are not required. The 

methods suffer disadvantages such as poor convergence for some 

systems unless improved solution methods are used (e.g. Barlow and 

Markland, 1969). With the development of d i g i t a l  computers came 

methods of inversion of matrices and methods of solution of sets of 

l inear  equations, e.g. Gauss' method of e l iminat ion.  Rapid conver- 

gence of non-l inear equations, employing numerical method such as 

that of Newton-Raphson (e.g. Mar t in  and Peters 1963) i s  also 

possible. 

The poss ib i l i ty  of solution of a matr ix  of equations for pipe 

networks re la t i ng  flows to head losses and inc lud ing flow balance at 

each node thus arises. Except for  laminar flow which i s  ra re l y  

encountered i n  waterworks pract ice,  the flow-head loss relat ionship 

for pipes i s  non-linear. This makes the establishment and solution of 

I inear simultaneous equations d i f f i cu l t .  A method of converting the 

equations to a l inear  form was proposed by Wood and Charles (1972). 

The l inear izat ion makes matr ix  solution of a set of simultaneous 

equations re la t i ve l y  easy. The l inear  form of head loss-flow equation 

is i n  fact an approximation to the t rue equation and the 

approximation i s  improved i terat ive ly  by subst i tu t ing revised flows 

into a 'constant '  i n  the head loss equation. The l inear izat ion 

techniques can be appl ied i n  solv ing for flows around loops or heads 

at  nodes ( Isaacs and Mi l ls ,  1980). A comparison of the var ious 

methods was made by Wood and Rayes (1981). Although the l inear  

method reduces computational ef for t ,  i t  can resul t  i n  osc i l la t ing 

solutions and averaging methods may be required to speed 

convergence (Wood and Charles, 1972). There are also problems of 

convergence for the node method where some pipes have low head 

losses, as for  the node head correction method of Hardy Cross. 
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I n  general a set of equations i s  established as follows: 

A t  each node, for  cont inui ty 

XIin = drawoff (4.1 

There are j equations for j 'closed' nodes o r  junctions. That i s  

only nodes which can va ry  i n  head are considered thus, and 

junctions where the head i s  f ixed have to have a va r iab le  volume. 

For such nodes the cont inui ty equation becomes 

A t C Q i n  = increase i n  volume stored (4.2) 

I f  the re la t ionship between volume and head i s  known th i s  could 

be ut i l ized but i t  i s  common pract ice to assume reservoir  levels are 

f ixed, that i s  for  steady state conditions volumes are assumed 

constant. Therefore the mass balance equations at  reservoirs or  

f ixed head nodes are not required as the number of var iab les i n  

the networks i s  reduced by the number of f ixed head reservoirs. 

Al ternat ively the above equation i s  replaced by one of the form for 

each known head junct ion 

H = constant 

There are also i equations (one for  each closed loop) of the 

fo l lowing form 

\ 

I h  = 0 ( 4 . 3 )  

where h i s  the head loss i n  a selected direct ion i n  one pipe 

forming the loop, i .e. the net head loss around each closed loop 

must be zero. Now each head loss h i s  re lated to the flow ra te  i n  

the pipe, Q ,  b y  an equation of the form 

h = KQn ( 4 . 4 )  

so that heads can be replaced b y  the term involv ing Q for  each 

pipe. I t  can be shown that i n  a network wi th  i pipes, j nodes and 

m ioops, (oniy counting in ternal  loops) 

i = j + m -  1 ( 4 . 5 )  

This holds for  a l l  networks wi th  closed loops as well as open 

tree-like branches. There are j - 1 cont inui ty o r  f ixed head 

equations ( the addi t ional  one i s  redundant)  and m loop equations, 

thus g i v i n g  a total of i equations for  i unknowns i f  flows are used 

as the unknowns. The j f  equations for known heads can be omitted 

where j f  i s  the number of f ixed head nodes. 
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oniitted where j i s  the number of f i xed  head nodes. 
f 

A l ternat ive ly ,  i f  heads a t  nodes a re  regarded as the unknowns 

there  are j equations for nodes, where each flow Q i n  m pipes i s  

replaced by (h/K) . 1/n 

There are m equations re la t i ng  head loss to flow i n  the pipes, 

1 so that once the Q ' s  i n  the head loss equations are replaced by H 

- H2 the number of equations i s  s t i l l  j for  solv ing for j unknown 

heads. 

Unfortunately, except i n  laminar flow si tuat ions the equations 

re la t i ng  h and Q are non-linear so direct  simultaneous solution of 

both the node equations and the loop flow equations i s  d i f f i cu l t .  

There i s  no easy method of solution of non-linear simultaneous 

equations and t r i a l  and error  or  numerical methods usual ly  have to 

be employed. The method used here, the l inear  method, is to 

approximate the head loss equations b y  l inear  equations and then 

they can be solved simul taneously b y  var ious methods. Where 

computer storac& i s  no problem, Gauss el iminat ion i s  an ef f ic ient  

method, and i f  storage i s  l imi ted but  computing time i s  readi ly  

avai  lable, successive approximation, e.g. successive over-relaxation 

and Newton Raphson methods can be employed. 

LINEAR METHOD APPLIED TO LOOP FLOWS 

I f  the head loss i n  any p ipe can be expressed b y  an equation 

such as 

h. = K.Q." I I  ( 4 . 6 )  

i t  can be rewr i t ten approximately as follows 

n-1 
h.  K.Q. Qi = KfQ. 

where K. i s  a funct ion of the length of p ipe i ,  i t s  diameter and 

roughness, Q.  i s  the flow r a t e  and Q. i s  the flow ra te  indicated 

by the previous i terat ion.  Both €Ii and h. are unknowns for  each 

i terat ion and a set of equations re la t i ng  flow and head loss is 

established: 

( 4 . 7 )  
I I 10 

10 

Around each loop, Che = 0 ( 4 . 8 )  
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i.e. CK.: aim = o (4.9) 

and  fo r  each node j :  ZQ.. = q .  (4.10) 

where Q.. 
I J  

i n  loop m and  q .  i s  the drawof f  a t  node j .  

I f  there a r e  i pipes, j nodes and  m loops, then i t  was s ta ted  tha t  

i = j + m - 1  (4.11) 

I J  J 

the f low in p ipe  i i s  to node j ,  Qim i s  the f low in p ipe  i 

J 

There a re  j node equat ions and m loop equat ions so there a re  

i+ l  equat ions in to ta l  of which one i s  redundant  so one can solve 

for  i f lows. The r e s u l t i n g  set of l i n e a r  equat ions has to be solved 

a number of times. Each time, new Q.'s emerge and  the K."s a r e  

rev ised ( improved)  before re -so lv ing  the equat ions.  I n i t i a l  f low 

ra tes  have to be estimated p r i o r  to the f i r s t  so lu t ion  of the l i nea r  

equat ions.  

Al though the above method converges f a i r l y  we1 I the fo l l ow ing  

method i s  easier to v i sua l i ze  a n d  i s  exp la ined  in more de ta i l .  
\ 

L I N E A R  METHOD FOR NODE HEADS 

I n  th i s  case the Darcy head loss equat ion w i l l  be used to 

s imp l i f y  the ca lcu la t ions .  The f r i c t i o n  loss equat ion  fo r  a p ipe  i s  

then wr i t t en  as Q . . l Q . . /  = h . . / K . .  where Q.. i s  the f low from node i 

to node j ,  h . .  i s  the head d i f fe rence between i and  j and K . .  = 

8 X..C../gd?.n'.  I f  Q.. i s  an  approx imate  so lu t ion  to Q.. (ob ta ined 

from a prev ious  i t e ra t i on  o r  from a n  i n i t i a l  est imate) and  i f  one 

subs t i tu tes  C . .  = l / ( K . . l Q . .  I ) ,  then a ' l i n e a r '  equat ion  resu l ts ;  

I J  I J  I J  I J  I J  

I J  I J  

I J  I J  I J  I J O  I J  

I J  I J  I J O  

ZQ.. = C . . h . .  (4.12) 

Subs t i t u t i ng  in to  the con t inu i t y  equat ion  a t  each node j, 
' J  I J  I J  

C Q . .  = q. 
I J  J 

Z C . . h . .  = q. 
I J  I J  J 

Replacing h . .  b y  H.-H. 
I J  I J  

C(C..H.-C..H.) = q .  
I J  I I J  J J 

Hence H .  = CC..H.-q. 
J I J I  J 

C C . .  
I J  

(4.13) 

(4.14) 

(4.15) 

(4.16) 

One has J l i nea r  equat ions (equa l  to the number of v a r i a b l e  
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h e a d  nodes)  f o r  J u n k n o w n s  ( t h e  heads  H a t  each  n o d e ) .  The 

e q u a t i o n s  c a n  b e  s o l v e d  b y  v a r i o u s  techn iques ,  e . g .  Gauss e l i m i n a -  

t i o n  method,  o r  t he  Gauss Siedel i t e r a t i v e  method. A success ive 

o v e r - r e l a x a t i o n  method i s  emp loyed  in the  a c c o m p a n y i n g  computer  

p r o g r a m  a s  i t  r e q u i r e s  l i t t l e  memory whereas a m a t r i x  w o u l d  

r e q u i r e  a l a r g e  compu te r  s t o r a g e  c a p a c i t y .  

To a v o i d  ove rshoo t  an a v e r a g i n g  p r o c e d u r e  c a n  b e  i n t r o d u c e d  

a f t e r  e a c h  s tep,  

H . '  = wH. + ( l - w ) H .  ( 4 . 1 7 )  

where  0 'w ' 1  and s u b s c r i p t  o r e f e r s  to  the  p r e v i o u s  H. and 1 to 

t h e  recen t  H.. 

J J 1  JO 

J 

J 
A f t e r  s o l u t i o n  o f  t he  e q u a t i o n s  f o r  each  H. ,  f l o w s  8.. in each  

p i p e  a r e  c a l c u l a t e d  and then  e a c h  C. . .  The l i n e a r i z a t i o n  p r o c e d u r e  

i s  t h e n  r e p e a t e d  and a new set o f  e q u a t i o n s  s o l v e d  f o r  t he  heads  a t  

J I J  

I J  

each  node H . .  The p r o c e d u r e  i s  r e p e a t e d  u n t i l  convergence i s  

sa t  i sf ac  t o r y .  
J 

\ 

Pumps 

I f  a pump in a l i n e  genera tes  a s p e c i f i c  h e a d ,  h then  the  
P '  

h e a d  loss i s  H.-H.+h . E q u a t i o n  ( 4 . 1 0 )  i s  t h e r e f o r e  r e p l a c e d  b y  
I J P  

X . . (H i -H .+h  ) = q. ( 4 . 1 8 )  
I J  J P  J 

CC..(Hi+h ) - q .  
P J  

CC.. 
I J  

: . H . =  I J  
J 

( 4 . 1 9 )  

I f  t he  p u m p i n g  h e a d  i s  a f u n c t i o n  o f  t h e  f l o w  r a t e ,  t he  convergence 

c a n  b e  s low .  

COMPUTER PROGRAM FOR LINEAR METHOD 

A BASIC p r o g r a m  i s  p resen ted .  The p r o g r a m  i s  w r i t t e n  to 

m i n i m i z e  d a t a  i n p u t .  T h u s  no  pumps  o r  p r e s s u r e  r e d u c i n g  v a l v e s  

a r e  p o s s i b l e  a s  the  p r o g r a m  s t a n d s .  A lso t h e  D a r c y  f r i c t i o n  f a c t o r  

i s  assumed c o n s t a n t .  I n  f a c t  i t  c o u l d  b e  v a r i e d  f r o m  p i p e  to  p i p e  

and w i t h  Reyno lds  number  and p i p e  r o u g h n e s s  w i t h  s m a l l  

m o d i f i c a t i o n s ,  b u t  t h e  fo rmer  w o u l d  i nc rease  i n p u t  and the  l a t t e r  
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w o u l d  i nc rease  c o m p u t a t i o n a l  t ime.  

A g r e a t  a d v a n t a g e  i s  t h a t  n o  i n i t i a l  f l o w s  o r  h e a d s  need  b e  

assumed. F lows a r e  i n i t i a l l y  set to c o r r e s p o n d  to u n i t  v e l o c i t y  

a n d  t h e  c o r r e s p o n d i n g  h e a d s  a r e  c a l c u l a t e d  a t  success i ve  nodes. 

T h i s  p r o c e d u r e  c a n  l e a d  t o  s low convergence  f o r  some cases but 

i s  in f a c t  one o f  t he  m a i n  a d v a n t a g e s  o f  t h i s  method.  

I n p u t  and o u t p u t  a r e  in  metres and c u b i c  me t res  p e r  second. 

The i n p u t  i s  p r o m p t e d  a t  e a c h  l i n e .  T y p i c a l  running t ime  o n  an 

HP85 i s  5 s  p e r  p i p e  and t h e  n u m b e r  o f  p i p e s  c o u l d  b e  i n c r e a s e d  

above  30 b y  a l t e r i n g  the  d imens ion  s ta temen t .  

The appended  p r o g r a m  f o l l o w s  t h e  p r o c e d u r e  Slescribed p r e v i o u s -  

l y .  The v a r i a b l e  names u s e d  f o l l o w  t h e  n o m e n c l a t u r e  used  in  t h e  

above  sec t i on  in  g e n e r a l .  A l t h o u g h  d a t a  i s  in S . I .  u n i t s  h e r e  i t  

w i l l  a l s o  w o r k  in  f t -  s u n i t s  i f  G i s  a l t e r e d  t o  32.2 ( l i n e  69 o f  

p r o g r a m ) .  I t  s h o u l d  b e  no ted  t h a t  t h e  speed o f  t h e  p r o g r a m  c o u l d  

b e  improved  fo r  l a r g e  n e t w o r k s  i f  t h e  i t e r a t i o n s  between l i n e s  

360 and 410 were l i m i t e d  to  t h e  p i p e a  c o n n e c t i n g  to  t h a t  node. 

T h i s  w o u l d  r e q u i r e  a new d imens ioned  v a r i a b l e  f o r  each  node and 

a c o n n e c t i v i t y  sea rch .  

D e s c r i p t i o n  of V a r i a b l e s  in P r o g r a m  

K 
L 
M 
NO 

N1 

N2 
N3 

SD/FX 
Sums H ( I )  f o r  each  S.O.R. i t e r a t i o n  
Sums AF 
P i p e  d i a m e t e r  ( i n  m )  
Ho lds  t h e  o l d  v a l u e  o f  H ( I )  t o  com- 
p u t e  AH 
D a r c y  f r i c t i o n  f a c t o r  F o f  p i p e  K 
D a r c y  f r i c t i o n  f a c t o r  f o r  a l l  p i p k s  
Head a t  j u n c t i o n  
Node c o u n t e r  
Number o f  nodes in  system 
Jo in t  b e g i n n i n g  number  
Jo in t  e n d  number  
Number o f  f i x e d  h e a d  nodes (Number-  
e d  f i r s t )  
I t e r a t i o n  c o u n t e r  
Node c o u n t e r  
P i p e  c o u n t e r  
Max imum n u m b e r  o f  m a i n  i t e r a t i o n s  
e.g. J+5 
Max imum number  of S.O.R. i t e r a t i o n s  
w i t h i n  e a c h  m a i n  i t e r a t i o n  e.g. J+10 
Coun ts  t h e  number  o f  m a i n  i t e r a t i o n s  
Coun ts  t h e  t o t a l  n u m b e r  o f  S.O.R. 
i t e r a t i o n s  
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TO 

T1 

D a t a  Requi red  

L i n e  1 :  

L i n e  2: 

Number o f  p i p e s  in system 
F low in p i p e  m’/s 
Drawof f  in m’/s 
D r a w o f f  f r o m  j u n c t i o n  (+ve  o u t  o f  
j u n c t i o n )  

CK.. 
‘ J  

Counts the  number  of  H (  1 ) ’ s  

g n 2 / 8  

CK. .H. 
I J  J 

Holds o l d  Q ( K )  v a l u e  f o r  c a l c u l a t i o n  of 
a v e r a g e  o f  o l d  v a l u e  a n d  c o n t i n u i t y  v a l u e  
To le rance on head c a l c u l a t i o n  in F e.g.  
0.0001 
To le rance on S.O.R. loop in metres on 
heads e.g.  0.01 
S .O.R .  f a c t o r  w e.g. 1.3m. Must be  
between 1 a n d  2. 
P i p e  l e n g t h  ( i n  m )  

Head ing .  T h i s  c a n  b e  a n y  a l p h a n u m e r i c  
express ion  up to 18 c h a r a c t e r s  long.  W i l l  
be  p r i n t e d  ou t  a t  head o f  r e s u l t s .  
P : Number of  p i p e s  
J : Tota l  number o f  j u n c t i o n s  o r  nodes 
J3 : Number o f  j u n c t i o n s  w i t h  f i x e d  heads 
F l  : D a r c y  f r i c t i o n  f a c t o r ,  assumed the 
same f o r  a l l  p i p e s  e.g.  0.015 

L i n e  3 to J3+3: J (  I ) : Head a t  success ive f i xed-head nodes 
(J3 l i n e s )  ( w h i c h  must be  numbered f i r s t )  
L i n e  4+J3 to  4+J3+P: ( P  l ines ,  in o r d e r  such t h a t  a n y  node 

except  f i x e d  head i s  r e f e r r e d  to  f i r s t  a s  
a J2 then as a J1) 
J l  ( K ) :  Jo in t  b e g i n  no .  
J 2 ( K ) :  Jo in t  e n d  no. Make s u r e  each node 
i s  a n  e n d  number  a t  leas t  once to 
a l l o c a t e  a d r a w o f f .  
X ( K ) :  P i p e  l e n g t h  ( i n  m )  
D ( K ) :  P i p e  d iameter  ( i n  m )  
Q 2 ( J 2 ( K ) ) :  Drawof f  f r o m  e n d  node ( i n  
m’ /s) ;  i f  t h i s  i n f o r m a t i o n  i s  r e a d  tw ice  
the l a s t  v a l u e  i s  r e t a i n e d .  

General  Comments 

G e n e r a l l y  the l i n e a r  method converges  in f a r  less i t e r a t i o n s  t h a n  

the  H a r d y  Cross method. Between 4 a n d  10 success ive a p p r o x i m a t i o n s  

to the  f l o w  i s  a l l  t h a t  i s  r e q u i r e d  even f o r  n e t w o r k s  i n v o l v i n g  up 

to 100 p i p e s .  The snag i s  the  s o l u t i o n  o f  l a r g e  numbers of  
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s imu l  taneous equat ions .  I f  success ive o v e r - r e l a x a t i o n  i s  used a t  

leas t  t h a t  number  o f  s u b s t i t u t i o n s  may b e  r e q u i r e d .  

The i n i t i a l  f l o w  assumpt ion  may b e  c r i t i c a l  in some cases. The 

p r o g r a m  assumes a v e l o c i t y  o f  l m / s  a n d  c a l c u l a t e s  the correspond-  

ing f low r a t e  in m 3 / s  f o r  each p i p e .  The i n i t i a l  heads  a t  each node 

a r e  a l s o  b a s e d  on t h i s  assumpt ion  a n d  these v a l u e s  a r e  used to  

s t a r t  the  SOR improvement  of  h e a d  a t  each node. When d a t a  f o r  

each p i p e  a r e  r e a d  i n t o  the computer  the  h e a d  a t  the assumed 

downstream node i s  c a l c u l a t e d  on t h i s  b a s i s  p r o v i d e d  the  

ups t ream head i s  known.  Hence the  o r d e r  in w h i c h  d a t a  a r e  s u p p l i e d  

s h o u l d  b e  s u c h  t h a t  the  assumed ups t ream node head h a s  been 

c a l c u l a t e d ,  o r  s u p p l i e d  in the  case o f  r e s e r v o i r s .  Wood a n d  C h a r l e s  

(1972) use  a u n i t  f l o w  r a t e  in each p i p e  f o r  the f i r s t  es t imate  b u t  

t h i s  c a n  l e a d  to  l a r g e  e r r o r s  e s p e c i a l l y  i f  the  p i p e  d iameters  v a r y  

w i d e l y .  A l t e r n a t i v e l y  i t  c o u l d  b e  assumed to s t a r t  t h a t  f l o w s  a r e  

l a m i n a r .  

A l t h o u g h  the  convergence i s  f a i r l y  rap\ id ,  i t  h a s  been observed 

t h a t  success ive t r i a l s  o s c i l l a t e  about  the f i n a l  v a l u e .  To overcome 

t h i s  the n e x t  a p p r o x i m a t i o n  c a n  b e  t a k e n  a s  the mean o f  the  

p r e v i o u s  two v a l u e s  ( w h e t h e r  f l o w s  o r  heads  a r e  the  u n k n o w n s ) .  

Computer Program for Linear Method Network Analysis with Output 

and Input (same example as in Chapters 2 and 3 ) .  

I NF'IUT ,, NO- 
01 SP 
Y 4 " 

N P I  PE'?, NODES - F I i:H . DHF'C 

D I S P  L :  
It4PCIT H i  Li 
NEXT L 
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NEXT K 
F O F  C=1 TO P 
.-. -,.-'i - . I1 i K , ?=S2i(.-II .. .. - 

F'I F'ENET 
TOPN BgTI.4 X u  

1 3 588 
1 4 788 
3 4 688 
2 4 588 
3 5 308 
5 6 588 

E. 7 2 8 R  
4 t; 488 

Dni 
258 
2 8 R  
158 
4 5 8  
256 
288 
3 R 8  
256 

t+APIE 

TESTL I H 
tJF'IPES> NODES, F I X H  * OHRCY f 
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CHAPTER 5 

OPT IMUM DESIGN OF BRANCHED P I PE NETWORKS BY L I NEAR 

PROGRAMM I NG 

I NTRODUCT I ON 

In the  p r e v i o u s  c h a p t e r s  the  p i p e  d iameters ,  l e n g t h s  a n d  l a y o u t s  

were assumed k n o w n  a n d  the  c o r r e s p o n d i n g  f l o w s  a n d  heads were 

computed. Design o f  p i p e  n e t w o r k s  c o u l d  o n l y  b e  u n d e r t a k e n  b y  

t r i a l .  The d e s i g n  prob lem i s  no t  a s  easy  a s  the a n a l y s i s  problem. I n  

the n e x t  two c h a p t e r s  a p p r o x i m a t e  methods f o r  d i r e c t  d e s i g n  of p i p e  

n e t w o r k s  a r e  g i v e n .  Economics d i c t a t e s  the most p r a c t i c a l  d e s i g n  in 

each case. 

L i n e a r  p r o g r a m m i n g  i s  a p o w e r f u l  o p t i m i z a t i o n  techn ique,  b u t  i t  

may o n l y  b e  used i f  the  r e l a t i o n s h i p  between v a r i a b l e s  i s  l i n e a r .  

L i n e a r  p r o g r a m m i n b  cannot  b e  used f o r  o p t i m i z i n g  the d e s i g n  of p i p e  

n e t w o r k s  w i t h  c losed loops w i t h o u t  r e s o r t  to success ive approx ima-  

t ions .  I t  c a n  b e  used to d e s i g n  t r u n k  m a i n s  o r  t r e e - l i k e  n e t w o r k s  

where the f low in each b r a n c h  i s  known.  Since the r e l a t i o n s h i p s  

between f l o w ,  h e a d  loss, d i a m e t e r  a n d  cost a r e  n o n l i n e a r ,  the 

f o l l o w i n g  techn ique i s  used t o  r e n d e r  the system l i n e a r :  F o r  each 

b r a n c h  o r  m a i n  p i p e ,  a number  o f  pre-se lected d iameters  i s  a l l o w e d  

a n d  the l e n g t h  o f  each p i p e  o f  d i f f e r e n t  d iameter  i s  t r e a t e d  a s  the 

v a r i a b l e .  The h e a d  losses a n d  costs  a r e  l i n e a r l y  p r o p o r t i o n a l  to the 

r e s p e c t i v e  p i p e  lengths .  Any  o t h e r  t y p e  o f  l i n e a r  c o n s t r a i n t  c a n  b e  

t r e a t e d  in the a n a l y s i s .  I t  may be  r e q u i r e d  to  m a i n t a i n  the  p r e s s u r e  

a t  c e r t a i n  p o i n t s  in the n e t w o r k  above a f i x e d  min imum ( a  l i n e a r  

i n e q u a l  i t y  o f  the  grea ter - than-or -equa l - to - type)  o r  w i t h i n  a c e r t a i n  

r a n g e .  The t o t a l  l e n g t h  o f  p i p e  of  a c e r t a i n  d iameter  may be  

r e s t r i c t e d  because there  i s  i n s u f f i c i e n t  p i p e  a v a i l a b l e ,  e tc .  

SIMPLEX METHOD FOR TRUNK MAIN DIAMETERS 

The f o l l o w i n g  example  concerns  a t r u n k  m a i n  w i t h  two d r a w o f f  

p o i n t s .  The p e r m i s s i b l e  d iameters  o f  the f i r s t  l e g  a r e  250 a n d  200 

mm, a n d  o f  the' second leg ,  200 a n d  150 mm. There  a r e  t h u s  f o u r  

v a r i a b l e s ,  X 1 ,  X2, X j  a n d  X4 w h i c h  a r e  the  l e n g t h s  o f  p i p e  of 

d i f f e r e n t  d iameters .  T h i s  s i m p l e  example  c o u l d  b e  op t im ized b y  

m a n u a l  compar ison  o f  the  cost o f  a l l  a l t e r n a t i v e s  g i v i n g  the cor rec t  
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h e a d  loss, but l i n e a r  p r o g r a m m i n g  i s  used h e r e  t o  demonstrate the  

technique.  

H:lOrn 

2 6  11s 14 11s 

RESERVOIR rl f 1w5m 
LOO 

t r ,  
LENGTH m 500 
FLOW 11s LO 

DIAMETER m m  250 2 00 2 00 150 

X2 x3 XL UNKNOWN LENGTH m X ,  
OPTIMUM LENGTHm 50 L 50 0 4 00 

HEAD LOSS m a12 3.2 0 1.68 TOTAL 5.0 

F i g .  5.1 Least-cost t r u n k  m a i n  b y  l i n e a r  p r o g r a m m i n g .  

The head losses p e r  100 mm of  p i p e  a n d  cos ts  p e r  m f o r  the  
\ 

v a r i o u s  p i p e s  a r e  i n d i c a t e d  below:-  

TABLE 5.1 P i p e  Diameters a n d  Costs 

Diameter  Head loss @ 40 P / s  @ 14 P / s  cos t  
mm m/100 m m/IOO m $1 O O / ~  OOm 

250 0.25 5 
200 0.71 0.1 4 
150 0.42 3 

The l i n e a r  c o n s t r a i n t s  o n  the  system a r e  expressed in e q u a t i o n  

form below a n d  t h e  c o e f f i c i e n t s  of  the  e q u a t i o n s  a r e  t a b u l a t e d  in 

T a b l e  5.3 ( I ) .  L e n g t h s  a r e  expressed in h u n d r e d  metres. 

TABLE 5.2 C o n s t r a i n t  E q u a t i o n s  

= 5  
x 1  + x2 L e n g t h s  

x4 = 4 
x3  + 

Head Loss 0.25X, + 0.71X2 + 0.1X3 + 0.42X4 = 5 

Ob jec t ive  F u n c t i o n :  5X1 + 4X2 + 3X4 = m i n .  4x 3 
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The computa t ions  proceed b y  s e t t i n g  a l l  r e a l  v a r i a b l e s  to  zero, so 

i t  i s  necessary  to  i n t r o d u c e  a r t i f i c i a l  s l a c k  v a r i a b l e s  i n t o  each 

e q u a t i o n  to  s a t i s f y  the e q u a l i t y .  The s l a c k  v a r i a b l e s  a r e  d e s i g n a t e d  

a, b a n d  c in T a b l e  5 .3 (1) ,  and t h e i r  cost c o e f f i c i e n t s  a r e  set  a t  

v e r y  high v a l u e s  d e s i g n a t e d  m. To i n i t i a t e  the  so lu t ion ,  the  s l a c k  

v a r i a b l e s  a ,  b a n d  c a r e  ass igned the  v a l u e s  5, 4 a n d  5 

r e s p e c t i v e l y  (see the  t h i r d  co lumn of T a b l e  5 . 3 ( 1 ) .  

The numbers  in a n y  p a r t i c u l a r  l i n e  o f  

i n d i c a t e  the amount o f  the p r o g r a m  

d i s p l a c e d  b y  i n t r o d u c i n g  one u n i t  of the  

u n i t  of X 1  w o u l d  d i s p l a c e  1 u n i t  o f  a a n d  

To de termine whether  i t  i s  w o r t h w h i l e  

the p r o g r a m  b y  a n y  o t h e r  v a r i a b l e ,  

the  m a i n  b o d y  of  the  t a b l e  

v a r i a b l e  w h i c h  wou ld  b e  

co lumn v a r i a b l e .  Thus one 

0.25 u n i t s  of c. 

r e p l a c i n g  a n y  v a r i a b l e  in 

a number  k n o w n  a s  the 

o p p o r t u n i t y  number  i s  c a l c u l a t e d  f o r  each co lumn.  I f  one u n i t  o f  X 1  

was i n t r o d u c e d ,  then the cost w o u l d  inc rease b y  ( 5  - ( 1  x m )  - ( 0  + 

m )  - (0.25 + m)),, w h i c h  i s  d e s i g n a t e d  the o p p o r t u n i t y  v a l u e ,  i .e. 

the o p p o r t u n i t y  v a l u e  f o r  each co lumn i s  c a l c u l a t e d  b y  m u l t i p l y i n g  

the e n t r i e s  in t h a t  co lumn b y  the c o r r e s p o n d i n g  cost c o e f f i c i e n t s  of  

the p r o g r a m  v a r i a b l e  in the second co lumn a n d  s u b t r a c t i n g  the to ta l  

thus  formed f rom the  cost coe f f i c ien t  o f  the  co lumn v a r i a b l e .  The 

most p r o f i t a b l e  v a r i a b l e  to i n t r o d u c e  w o u l d  be  X2, s ince  i t  shows the  

grea tes t  cost r e d u c t i o n  p e r  u n i t  ( o r  n e g a t i v e  o p p o r t u n i t y  v a l u e ) .  The 

X co lumn i s  now d e s i g n a t e d  the  k e y  co lumn.  The k e y  co lumn i s  t h a t  

w h i c h  shows the lowest o p p o r t u n i t y  v a l u e  ( i n  the  cost m i n i m i z a t i o n  

case) .  O n l y  one v a r i a b l e  may b e  i n t r o d u c e d  a t  a t ime. 

2 

To de termine the maximum amount o f  the k e y  co lumn v a r i a b l e  

wh ich  may be  i n t r o d u c e d ,  c a l c u l a t e  the  rep lacement  r a t i o s  f o r  each 

row a s  fo l lows:-  

D i v i d e  the  amount o f  the  p r o g r a m  v a r i a b l e  f o r  each row b y  the 

c o r r e s p o n d i n g  number  i n  the k e y  co lumn.  The lowest p o s i t i v e  

rep lacement  r a t i o  i s  se lected a s  t h a t  i s  the maximum amount w h i c h  

c o u l d  b e  i n t r o d u c e d  w i t h o u t  v i o l a t i n g  a n y  of the  c o n s t r a i n t s .  The row 

w i t h  the  lowest p o s i t i v e  rep lacement  r a t i o  i s  d e s i g n a t e d  the k e y  row 

a n d  the  number  a t  the  i n t e r s e c t i o n  o f  the  k e y  co lumn a n d  k e y  row,  

the k e y  number.  

A f t e r  i n t r o d u c i n g  a new v a r i a b l e ,  the  m a t r i x  i s  r e a r r a n g e d  

( T a b l e  5 . 3 ( 1 l ) )  so t h a t  the  rep lacement  r a t i o s  r e m a i n  cor rec t .  The 

p r o g r a m  v a r i a b l e  a n d  i t s  cost c o e f f i c i e n t  in the  k e y  row a r e  r e p l a c e d  
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Prcg. Cost Amt. 
Var. Coef. 

TABLE 5.3 Limear programming solut ion of p ipe  problem 

a b c RepI. 
ra t io  x2 x3 x4 X, 

5 4 4 3 rn m m  

I Var iab le  
Cost coef. 

r 1 

a r n 5  
b m 4  
C m 5  

WPORTUN 1lY 
VALUE : 

4 5 3 rn 4 
C rn 1.45 

1 1 1 

0.25 0.71 0.10 0.42 1 
1 1 1 

5/  1 ’* 

5/.71 
m 

5-1.2% 4-1.71rn 4-l.lm 3-1.42m 0 
KEY C O L M  

0 0 *key 
row 

a b c  

5 4 4 3 m m r n  

1 1 1 

x 1  x2 x3 x4 

1 1 1 
-0.46 0.1 0.42 -0.71 1 

\ 

1+0.46m 0 4-l.lm 3-1.4h 1.71rn-4 0 0 

a b c  
I l l  

x2 x3 x4 
4 4 3 rn m m  

2 
x4 

I V  

x2 
x 1  
x4 

4 5 
rn 0.55 
3 3.45 

4 4.5 
5 0.5 
3 4 

1 1 1 
1.1 0.76 1.69 -2.38 

-1 , l  0.24 1 -1 -69 2.38 

1.1-l.lm 0 3.28-0.76m 0 t.1-0.6% 3.38-8.2 

a b c  

5 4 4 3 rn m r n  
x 1  x2 x3 x4 

1 -0.69 1 2.16 
1 0.69 1.52 -2.16 

1 1 

0 0 0.31 0 rn- m m  

(NO FURTHER IWROVEhENT POSS l WE ) 

m 

4 
3.458 

5 
0.5*& 
- 
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by the new va r iab le  and i t s  cost coefficient. The amount column as  

well as the body of the table are revised as follows:- 

Each number i n  the key row i s  d iv ided b y  the key number. 

From each number in a non-key row, subtract  the corresponding 

number i n  the key row mu l t i p l i ed  b y  the r a t i o  of the o ld  row number 

i n  the key column d iv ided by the key number. The new tableau i s  

given as Table 5.3(1 I ) .  

The procedure of s tudy ing opportuni ty values and replacement 

ra t ios and rev i s ing  the table is repeated u n t i l  there i s  no fur ther  

negative opportuni ty value. I n  the example, Table 5.3 ( I V )  shows a l l  

posi t ive opportuni ty values so the least-cost solution i s  a t  hand 

( indicated by the current program var iab les and the i r  corresponding 

values).  

The reader should refer to a standard textbook on l inear  

programming (e.g. Dantzig, 1963) fo r  a f u l l  description of the 

technique. There are many other cases a few of which only can be 

men t ioned be low : 4 

I f  the constraints are of the < = (less-than-or-equal- to) type 

and not just  equations, slack var iables wi th  zero cost 

coefficients are introduced into the 1.h.s. of each constraint to 

make them equations. The a r t i f i c i a l  slack var iab les wi th  h igh  

cost coefficients are then omitted. 

I f  the constraints are of the > = (greater-than-or- equal-to) type, 

introduce a r t i f i c i a l  slack var iab les wi th  h i g h  cost coefficients 

into the i.h.s. of the constraint  and subtract  slack var iables 

wi th  zero cost coefficients from each inequal i ty  to make them 

equations. 

I f  the objective funct ion i s  to be minimized, the opportuni ty 

value wi th  the highest negative value i s  selected, but i f  the 

funct ion i s  to be maximized, the opportuni ty value wi th  the 

highest posi t ive value i s  selected. 

Note a l l  var iab les are assumed to be positive. 

The opportuni ty values represent shadow values of the 

corresponding var iables i .e. they indicate the value of 

introducing one u n i t  of that va r iab le  into the program. 

I f  two replacement ra t ios are equal, whichever row i s  selected, 

the amount of program va r iab le  i n  the other row w i l l  be zero 

when the ma t r i x  i s  rearranged. Merely assume i t  to have a 
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v e r y  smal l  v a l u e  a n d  proceed a s  before.  

NETWORK DESIGN 

Most networks  c a n  b e  s i m p l i f i e d  to  a t r e e - l i k e  n e t w o r k  w i t h  k n o w n  

d e s i g n  f lows.  The most economic ne twork  i s  in f a c t  a t r e e - l i k e  

ne twork  a n d  loops a r e  p u r e l y  f o r  b a c k u p .  In t r e e - l i k e  n e t w o r k s  the  

p i p e  legs  c a n  b e  made u p  of  l e n g t h s  of  commerc ia l l y  a v a i l a b l e  

d iameters  w i t h  costs  a n d  head losses p e r  metre o r  k i l o m e t r e  i n s e r t e d  

a s  a f u n c t i o n  o f  f l o w s  be forehand.  The r a n g e  of d iameters  c a n  b e  

l i m i t e d  b y  exper ience.  

Example  - Determine the  least-cost p i p e  d iameters  f o r  the  ne twork  

i I  l u s t r a t e d  below 

x 1  

P i p e  b o r e ,  mm e 3 5 0  
H e a d  l o s s  2.5m/km 
c o s t  R1 O O / m  

x 2  
@ 3 0 0  

R 8 5 / r  
5 .5m/km 

x 3  
e 2 5 0  

18m/km 
R 7 0 h  

x 4  
@ 3 0 0  

3.8m/km 
R85/m 

x 5  
e 2 5 0  

9m/ km 
R70/m 

H=50m 

0 

T o t a l  l e n g t h  
2 0 0 0 m  
1 0 0  e / s  
( S o l - 9 9 2 m )  

( 100811 
800m 2 0  t / s  
I 

I 
- H=20m 

(0) 
X6 

( 800111 1 
x 7  

@ 2 0 0  Q 1 5 0  
2m/km 8m/km 
R50 /m R40 /m 

1 O O O m  1 

F i g .  5.2 P lan  o f  t ranch network f o r  example 

Denote the u n k n o w n  l e n g t h s  o f  i n d i v i d u a l  sect ions a s  X. 
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I n  algebraic form the constraints are:  

Head losses along each route: 

0.0025X1+0.0055X2+0.018X3+0.0038X4+0.009X5(50 

0.0025X1+0.0055X2+0.018X3+0.002X6+0.008X7~30 

Lengths: 

Xl+X2+X3 = 2000 

x4+x5 = 1000 

X6+X7 = 800 

Objective funct ion:  

Minimize 1OOX1+85X2+7OX3+85X4+7OX5+5OX6+4OX7 
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78 88 SURPLIJS VARIABLES ARE SUBTRACTED l e e  88 85 ee 
85 88 78  80 50 80 FROM THE LEFT S IDE OF >= 
48 88 8 ee 8 88 INEQUALIT IES 

8 88 8 80 8 08 
8 Be SLACK VARIABLES ARE ADDED TO THE 

OPTIMAL SiiLIUTION P I P E  LEFT S IDE OF <= INEQUALITIES 

~ f i ~ 1 5 ,  AFTEP 5 ITERATIONS A R T I F I C I A L  'JAPIABLES ARE ADDED 
TO THE LEFT S IDE OF EQUALIT IES 
8 >= INEQUALITIES TO GENERATE AN ';$LyiM I N I T I A L  BASIC FEASIBLE SOLUTION 

'*!AP I HBLE 
SLACK 1 

TABLEAU AFTEF' 
9 98 
- 81 
8 Bb'r 
8 88 

17.48 

- 24 
8 . 8 8  
8.88 
- 44 

1688.88 

1 . 2 4  
8 . 0 8  
8 . 8 8  
1.44 

992.88 

8 88 
1 .8rl 
8.88 
8 . 88 

1 8 8 8 .  88 

8.80 
8 . 8 8  
1 -88 
8.88 

888. 88 

11 - 4 8  
15.88 
8.80 

-91 .ha 
-256888.88 

8 .  88 
. 8 1  

- 1 . 8 B  
.81  

1 .  BE1 
- 4 .a 

5 8 ,  8 B  
- .E.4 

8.88 
. 4:3 

-88. 88 
,' 6 4 

8.88 
8 .  88 
6 . 8 8  
8 .  68 

1 .  88 
8 . 8 0  
1 . 6 8  

8.88 
2.80 

1200. 8Ei 
- 4 9 . 6 8  

H2 17.48 38 88 42 41 
L 1  1311 11 2008 88 4290 9 
L 2  B 0  1088 80 2933 3 
L 3  . 98  880 08 2375 81 

OBJ FLINC COEFF RANGItiG 
BASIS  VAPIHRLES 

UHR LObJEP O B J  FNC IJPPEI 

x 3  6 4  17 7 @  08 85 0,  
1.: 2 78 68 85 88 96 8- 
X 5  88 70 08 85 6( 
:.: 7 UNBND 48 88 42 8i 

L I M I T  'sJFiLUE L I M I  

OBJ FllNC COEFF RAHGING 
NON-BASIS VARIABLES 

VAR LONER OBJ FNC UPPEF 
L I M I T  VALUE L I M I l  

X1 88.68  100.98 UNBNC 
x4 70.80 8 5 . 0 0  UNBNC 
X 6  4 7 . 2 8  58.08 IJNBNC 

WITHIN THE L I M I T S  Y O l l  MAY CHANGE 
THE VALUE OF ANY ONE CONSTRAINT 
RHS OR OBJ FUNC COEFF WITHOUT 
CAIJSING 'JRRIABLES TO ENTER OR 
LEAVE THE SOLCfTION 

BUT, VALUES FOP THE OBJ FUNC: AND 
SOLUTION VARIABLES MAY CHANGE 
LdHEN T H I S  I S  DONE 
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LOOPED NETWORKS - LP OPTIMIZATION 

When p ipe loops are created by connecting pipes into the system 

at  more than one place, the problem description becomes non- l inear  

and cannot be solved d i rect ly  by l inear  programming methods. That 

i s  large ly  because the flows a re  unknown. I f ,  however, the network 

can be reduced to a tree-like network the problem i s  again 

s impl i f ied.  The least-cost network is i n  fact i n v a r i a b l y  a tree-like 

network - the problem being to ident i fy  the tree. Because of the 

economy of scale i n  pipe transport ,  the most economic layout is wi th  

only one pipe supply ing to any point .  I f  t h i s  i s  accepted, then a 

close approximation to the best ( least  cost) t ree- l ike network can be 

obtained by l inear  programming as follows. 

Star t ing wi th  a looped network number each node j, and each 

pipe i ,  define a r b i t r a r i l y  the posi t ive flow directions, then set up 

the fol lowing ( l i n e a r )  constraints i n  terms of the unknown, Q ,  i n  

each pipe i : \ 

For flow balance at each node j, 

ZQ. into node j = q. (drawoff  from node j )  
J 

Objective funct ion:  Minimize Z Q i L i  

where L.  is the known length of p ipe i. 

This w i l l  minimize the bu lk  t ransport ,  i.e. the l i t r es  per second 

times metres. S t r i c t l y  t h i s  w i l l  not be the optimum for non-linear 

flow rate-cost relat ionships since economy of scale i s  not introduced. 

Each pipe cost i s  more l i ke l y  to be proport ional  to Qm ( m < l ) ,  so 

that a more accurate but non-linear objective funct ion would be  M i n  

Z LiQim. Separable programming methods (Hadley, 1964) could be 

employed to optimize such a problem but the approach here p lus 

engineering judgement should general ly suffice. Bhave (1978), pre- 

sented a manual method of obta in ing a s im i la r  optimum network to 

that proposed here, and Powell and Barnes (1982) proposed an 

a l  ternat i ve h ierarch ica I method. 

L I NEAR PROGRAMM I NG PROGRAM 

The appended program i s  su i tab le for  optimizing both stages of a 

network, the network ' l ayou t '  and the pipe diameters. The program 

minimizes the objective function, and supplies the coefficients for  a l l  
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dummy v a r i a b l e s  and a r t i f i c i a l  v a r i a b l e s  r e q u i r e d  f o r  t he  s i m p l e x  

method. 

The p r o g r a m  i s  f o l l o w e d  b y  an examp le .  A n e t w o r k  i s  r e d u c e d  to 

a b r a n c h e d  system and t h e n  t h e  p i p e  d iamete rs  a r e  se lected.  The  

input f o r  each  sec t i on  f o l l o w s  and t h e  o p t i m a l  s o l u t i o n ,  n a m e l y  

op t imum p r o g r a m  v a r i a b l e s ,  t h e i r  m a g n i t u d e s  a n d  costs .  

Symbols  in l inear p r o g r a m m i n g  o p t i m i z a t i o n  p r o g r a m  by m i n i m i z a t i o n  

A ( I )  
B ( J )  
82  
E ( J )  
E2 
I 
12 
J 
J2 

N 
N1 
M 
M1 
M2 
M3 
R ( I )  
R2 

V ( I )  
X(J, 
X1 ( J  
Z ( I )  
Z l ( l  

Note 

O b j e c t i v e  c o e f f i c i e n t  o f  v a r i a b l e  in p r o g r a m  
O b j e c t i v e  c o e f f i c i e n t  o f  v a r i a b l e  in p r o g r a m  
Net cost 
B - Z X / A  
M i n  E 
Row no. 
Key I 
Column no. 
Key J 

To ta l  no. o f  veWiables p l u s  dummys 
No. v a r i a b l e s  
To ta l  co lumns  
No. o f  < =  c o n s t r a i n t s  
No. o f  = c o n s t r a i n t s  
No. o f  > =  c o n s t r a i n t s  
Rep I acemen t r a t  i o  
M i n  rep lacemen t  r a t i o  

V a r i a b l e  no. in  p r o g r a m  
M a t r i x  c o e f f i c i e n t  
M a t r i x  c o e f f i c i e n t  
M a g n i t u d e  of v a r i a b l e  in p r o g r a m  
M a g n i t u d e  of v a r i a b l e  i n  p r o g r a m  

i n p u t  n u m b e r s  s h o u l d  b e  between 0.001 and 1000 

F i r s t  Problem: Ne twork  L a y o u t  

SUP 
Reserv 

PlY 
o i  r 

Node 

Pipe ( 1  1 400111- 
Answer Q=(280)e/s (200 1 

Fig. 5.3 
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Const ra in ts :  node 2: 8,  - Q 2 - Q 3 = 0  

= o  node 4 :  Q4 - Q 

= 200 node 3: 

node 5: Q3 + Q5 - Q6 = 80 

5 

'2 + ' 6  

M in i m ize E QL=4OOQ +300Q +500Q3+500Q4+450Q5+700Q6 
1 2 

2 

.7 - 
RHS 4 '7 
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S e c o n d  P r o b l e m :  P i D e  Sizina 

Q,L = 280 e / s ,  400m 200 P / s ,  300m 

A 
/ * 

V a r i a b l e  X1 x 2  ?3 /x 4 x 5' 
D i a ,  mm 400 350 300 350 300 
G r a d  m / k m  9 1 7  9 20  

C o s t  $ / m  100 80 

( 0 1  (400  1 ( 3 0 0  1 

80  e / s  
500 m 

F i g .  5 . 4  

C o n s t r a i n t s ;  H e a d  l o s s  t o  3 :  . 0 0 9 X 1 + . 0 1 7 X 2 + . 0 4 X 3 + . 0 0 9 X 4 + . 0 2 X 5 ~ 5 0  

. 009X1+ .  01 7X2+ .  0 4 X 3 + .  009X 6 + . 0 3 X 7 ~ 7 0  5': 

L e n g t h  X l - X 3 :  X l + X 2 + X 3  = 4 0 0  

x 4 - x 5 :  x 4 + x 5  = 3 0 0  

X6-X7 :  X6+X7 = 5 0 0  
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INPUT COEFS I N  CONSTFAINTS I N  OR 
DEH I,=..=,>= 
COEFS IN CONSTRAINT 1 
X l ?  
.889 
X 2 ?  
. 0 1 7  
X 3 ?  
. a 4  
x 4 ? 

:.;7? 
. 8: 

COEFS 114 CONSTRAINT 3 
X i ?  
1 
x 2 ? 
1 
x 3 ? 
1 
x 4 '7 
8 
X S ?  

L P  OPTIP1Zt.I P I P E  D I H S  
'JAR I ABLE .- MHGb4 I TLICIE .s COST COEF 
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Linear  programming program 

10 

zij 

-r 328 
.:. 3 b j  

348 
3 5 t3 
368 
378 
388 
338 
488 
418 
428 
4.3 8 
448 

458 
468 
478 
486 
498 
588 
510 
528 
538 
548 

-- - 

FOR .J=l TO N l  
D I S P  " O B J .  CnEF 
IHPIJT BilJS 
NEXT J 
FOR .J=1 T@ N 
E i J .:- = B r J j 
F O R  1=1 TO M 
E < J > =E C .I i -'A ( J , 
NEXT I 
NEXT J 

550 EZ=@ 
J 8 M  FUR J = l  T O  N 
578 I F  EcJ)>=E2 THEN 658 
538 E 2 = E I J >  
538 J2=J 
600 NEXT J 
618 I F  E 2 > = 8  THEN 938 
620 F O R  1 = 1  TO M 
624 I F  Z i I > > @  THEN 638 
626 Z < I j = . 8 8 0 8 1  
630 I F  X C J 2 , I ? ( > r 3  TFEN 658 
G48 X < J 2 , 1 ) = . @ @ 0 O B B I  
656 R < I > = Z < I j / X ( J 2 , , 1 >  
668 NEXT I 
676 R2=999999939999 
G8El FOR 1=1 T @  M 
698 I F  R < I > < = 8  THEN 738 
7 8 B  I F  R(I>>=R2 THEN 730 
718 R 2 = R < I )  
726 I 2 = I  
738 NEXT I 
748 FOR 1=1 TO M 
758 Z l I I > = Z < I >  
768 FOR J=l TO N 
779 X l I J , I ) = X ( J ,  Ii 
7B8 NEXT J 
798 NEXT I 
888 FOR 1=1 TO M 

1 ,:Jz. I.?) 

=.-- 

818 Z < I > = Z l (  I ~ ~ - Z l < I 2 > * X 1 ~ . - I 2 . ,  I > . ' X  

820  FCIR J = l  TO t.1 
S30 Xi.!, I > = X l ' J . .  I i - X l ~ ~ ~ J , I ~ i ~ : ~ i r . t  

840  NEXT J 
858 NEXT I 
868 Z I I ~ ) = Z ~ I I ~ ? I X ~ ~ . J ~ ,  12) 
878 FOR J=l TO N 
8 8 8  X r J ?  I ; ' j = X l C J ,  I2 .> /X l * :J2 . ,  12) 
898 NEXT J 
9 8 8 H 1: I 2 Z =B r; .J 2 > 
518 U C I Z > = J 2  
928 GOTO 498 
938 BZ=8 
348 FOR 1=1 TO M 
558 BE=B2+H I I > 1:zc I > 
968 NEXT. I 
378 P R I N T  "LP OPTIMZN " i N f  
988 P R I N T  " V A R I A B L E ,  MAGt.(ITUDE, 

998 FOR 1 = 1  TO M 
1988 P R I N T  U S I N G  1818 i V C I ? , Z < I  

j ,  A < I :I 
DDDD . DUD 

2 .- I j / X  1 t: J Z  .. 12 ) 

C@ST COEF" 

1818 IMHGE DODDnD,@D@@@DD.DDD,DD 

I 0 2 0  NEXT I 
1836 PRINT U S I N G  1835 i BZ 

1 0 4 0  STOP 
1858 END 

1035 IMAGE " C @ S T = " ,  @@@DDDDR.@DCI 
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CHAPTER 6 

DYNAMIC AND NON-LINEAR PROGRAMMING FOR LOOPED NETWORKS 

Chapters 2 to 4 described methods for ca lcu lat ing the flows i n  

pipe networks w i th  or  without closed loops. For any p a r t i c u l a r  p ipe 

network layout and diameters, the flow pat tern corresponding to 

f ixed drawoffs o r  inputs at  var ious nodes could be calculated. To 

design a new network to meet cer ta in  drawoffs, i t  would be 

necessary to compare a number of possibi l i t ies.  A proposed layout 

would be analysed and i f  corresponding flows were just  suf f ic ient  to 

meet demands and pressures were sat isfactory,  the layout would be 

acceptable. I f  not, i t  would be necessary to t r y  a l ternat ive 

diameters fo r  p ipe sizes and analys is  of flows i s  repeated u n t i l  a 

sat isfactory solution i s  at hand. This t r i a l  and error  process would 

then be repeated for  another possible layout.  Each of the f i n a l  

networks so der ived would then have to be costed and that network 

w i th  least cost selected. 

A technique of determining the least-cost network d i rect ly ,  

without recourse to t r i a l  and error ,  would be desirable. No direct  

and posi t ive technique i s  possible for  general optimization of 

networks wi th  closed loops. The problem is that the relat ionship 

between p ipe diameters, flows, head losses and costs i s  not l inear  

and most rout ine mathematical optimization techniques requi re l inear  

relationships. There are a number of s i tuat ions where mathematical 

optimization techniques can be used to optimize layouts and these 

cases are discussed and described below. The cases are normal ly 

confined to s ingle mains or  tree-like networks for  which the flow in 

each branch i s  known. To optimize a network wi th  closed loops, 

random search techniques or  successive approximation techniques are 

needed. 

Mathematical optimization techniques are also known as systems 

analys is  techniques (which i s  an incorrect nomenclature as they are 

design techniques not analys is  techniques), or  operations research 

techniques (aga in  a name not r e a l l y  descr ipt ive).  The name 

mathematical optimization techniques w i l l  be retained here. Such 

tecniques include simulation (o r  mathematical model l i n g )  coupled wi th  

a selection technique such as steepest path ascent or  random 

searching. 
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The direct  optimization methods include dynamic programming, 

which is useful f o r  opt imizing a series of events or  things, 

t ransportat ion progamming, which i s  useful for  a l locat ing sources to 

demands, and I inear programming, f o r  inequal i t ies,  ( v a n  der Veen, 

1967 and Dantzig, 1963.) Linear  programming usual ly  requires the use 

of a computer, but there are standard optimization programs 

avai lab le.  

DYNAM I C PROGRAMM I NG FOR OPT I M I Z  I NG COMPOUND P I PES 

One of the simplest optimization techniques, and indeed one which 

can normally be used without recourse to computers, i s  dynamic 

programming. The technique i s  i n  fact  only a systematic way of 

selecting an optimum program from a series of events and does not 

involve any mathematics. The technique may be used to select the 

most economic diameters of a compound pipe which may va ry  in 

diameter along i t s  length depending on pressures and flows. For 

instance, consider a t runk main supply ing a number of consumers 

from a reservoir .  The diameters of the t runk main may be reduced as 

drawoff takes place along the l ine. The problem i s  to select the most 

economic diameter for  each section of pipe. 

A simple example demonstrates the use of the technique. Consider 

the p ipe l ine i n  F igure 6.1. Two consumers draw water from the 

pipel ine,  and the head a t  each drawoff point  i s  not to drop below 5 

m, nei ther should the hyd rau l i c  grade l i ne  drop below the p ipe 

p ro f i l e  a t  any point .  The elevations of each point  and the lengths 

of each section of p ipe are indicated. The cost of p ipe i s  $0.1  per 

mm diameter per m of pipe. ( I n  th i s  case the cost i s  assumed to be 

independent of the pressure head, al though i t  i s  simple to take 

account of such a va r ia t i on ) .  The analys is  w i l l  be started at  the 

downstream end of the p ipe (point  A).  The most economic arrangement 

w i l l  be wi th  minimum residual  head i.e. 5 m, at  point  A. The head, 

H, at point  B may be anyth ing between 13 m and 31 m above the 

datum, but  to s impl i fy  the analysis,  we w i l l  only consider three 

possible heads wi th  5 m increments between them at  points B and C. 

The diameter D of the p ipe between A and B, corresponding to 

each of the three allowed heads may be determined from a head loss 

char t  and i s  indicated in Table 6.1 (1) along wi th  the corresponding 
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ANSWER OIA = 260nm 3 1 0 m  3 LO mm 

F i g .  6.1 P r o f i l e  o f  p i p e l i n e  o p t i m i z e d  b y  d y n a m i c  p r o g r a m m i n g .  

cost . 
We w i l l  a l s o  c o n s i d e r  o n l y  t h r e e  p o s s i b l e  heads  a t  p o i n t  C .  The 

number  of  p o s s i b l e  h y d r a u l i c  g r a d e  l i n e s  between B a n d  C i s  3 x 3 = 

9, b u t  one o f  these i s  a t  a n  a d v e r s e  g r a d i e n t  so may b e  

d i s r e g a r d e d .  I n  T a b l e  6.1 ( I t )  a set of f i g u r e s  i s  p resented  f o r  each 

p o s s i b l e  h y d r a u l i c  g r a d e  l i n e  between B a n d  C. Thus i f  HB = 13 a n d  

HCE = 19 then the  h y d r a u l i c  g r a d i e n t  f rom C to  B i s  0.006 a n d  the  

d iameter  r e q u i r e d  f o r  a f low of 110 e / s  i s  310 mm ( f r o m  F i g u r e  1 .3 ) .  

The cost o f  t h i s  p i p e l i n e  w o u l d  be  0.1 x 310 x 1 000 = $31 000. Now 

to t h i s  cost must  b e  added the  cost o f  the  p i p e  between A a n d  B, in 

C t h i s  case $60 000 ( f r o m  T a b l e  6 . 1 ( 1 ) ) .  For  each p o s s i b l e  head H 

there  i s  one min imum t o t a l  cost o f  p i p e  between A a n d  C, m a r k e d  

w i t h  a n  a s t e r i s k .  I t  i s  t h i s  cost a n d  the  c o r r e s p o n d i n g  d iameters  

o n l y  w h i c h  need b e  r e c a l l e d  when p r o c e e d i n g  to  the  n e x t  sec t ion  o f  

p ipe .  I n  t h i s  example,  the  n e x t  sec t ion  between C a n d  D i s  the  l a s t  

a n d  there  i s  o n l y  one p o s s i b l e  head a t  D, namely  the r e s e r v o i r  

leve l .  

I n  T a b l e  6.1 ( I1  I )  the  h y d r a u l i c  g r a d i e n t s  a n d  cor respond ing  

d iameters  a n d  costs  f o r  Sect ion C - D a r e  i n d i c a t e d .  To the  costs of  

p i p e  f o r  t h i s  sec t ion  a r e  a d d e d  the  costs  o f  the  op t imum p i p e  

ar rangement  up to C. T h i s  i s  done f o r  each p o s s i b l e  head a t  C, a n d  

the least  t o t a l  cost  se lected f r o m  T a b l e  6.1 ( I  I I ) .  Thus  t h e  min imum 

poss ib le  t o t a l  cost  i s  $151 000 a n d  t h e  most economic d iameters  a r e  

260, 310 a n d  340 mm f o r  Sections A - 8, B - C a n d  C - D 
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TABLE 6 . 1  D y n a m i c  p r o g r a m m i n g  o p t i m i z a t i o n  o f  a c o m p o u n d  p i p e  

I HEAD HYDR. D I A .  
/AT B /GRAD. I_ 1 

I l l  

19 

24 

29 

19 24 29 1 

6 0 0 0 0  6 0 0 0 0  6 0 0 0 0  
9 1000": 87000 8 5 0 0 0  

I I I I I I I 

.001 430 43000 . 0 0 6  310 il 31000 

I 1  5 0 0 0 0  5 0 0 0 0  

I 
.0035 

.oo 1 

340 

430 

COST 
$ 

6 2 0 0 0  
91000 

153ooo 

6 8 0 0 0  
83000 
l?A-tiEi* 

86000 
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respectively. I t  may be desirable to keep pipes to standard 

diameters in which case the nearest standard diameter could be 

selected for  each section as the calculat ions proceed or  each length 

could be made up of two sections; one wi th  the next larger  standard 

diameter and one w i th  the next smaller standard diameter, but  wi th  

the same total head loss as the theoretical resul t .  

Of course many more sections of p ipe could be considered and the 

accuracy would be increased b y  considering more possible heads at  

each section. The cost of the pipes could be var ied wi th  pressures. 

A booster pump stat ion could be  considered at  any point ,  in which 

case i t s  cost and capi ta l ized power cost should be added i n  the 

tables. A computer may prove useful i f  many poss ib i l i t ies  are to be 

considered, and there are standard dynamic programming programs 

avai lab le.  

I t  w i l l  be seen that the technique of dynamic programming 

reduces the number of poss ib i l i t ies  to be considered b y  selecting the 

least-cost arrangement at each step. Kal ly ,  (1969) and Buras and 

Schweig, (1969) describe appl icat ions of the technique to s imi lar  and 

other oroblems. 

TRANSPORTATION PROGRAMMING FOR LEAST-COST ALLOCATION O F  

RE SOURCES 

Transportation programming i s  another technique which normal ly 

does not requi re  the use of a computer. The technique i s  of use 

p r imar i l y  for  a l locat ing the y ie ld  of a number of sources to a 

number  of consumers such that a least-cost system i s  achieved. The 

cost of de l iver ing the resource along each route should be l i nea r l y  

proport ional  to the throughput along that route and for t h i s  reason 

the technique i s  probably of no use i n  selecting the optimum pipe 

sizes. I t  i s  of use, however, in selecting a least-cost pumping 

pattern through an ex is t ing p ipe d is t r ibut ion system, provided the 

f r i c t i on  head is small in comparison wi th  stat ic head, or  for  

obtaining a p lann ing  guide before demands are accurately known. 

An example serves to i l l us t ra te  the technique. In th i s  example, 

there are two sources of water, A and B, and two consumers, M and 

N. A and B could de l iver  12 and 20 O/s respectively and M and N 

requi re 10 and 15 O/s respectively. Thus there i s  a surplus of 
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water. The cost of pumping a long  routes A - M, A - N, B - M and  6 

- N a re  5,7, 6 and  9 c/l 000 l i t r e s  respec t ive ly .  

comuwu M 
REQUIREMENT 10  LIS 

N 
15 LIS  

SOURCE A 

YIEU) 12 LfS 

F ig .  6.2 Least-cost a l loca t ion  pa t te rn  fo r  t ranspor ta t ion  
programming example. 

TABLE 6.2 Transpor ta t ion  programming - opt im iza t ion  of a n  
a l l oca t i on  system 

CONSUMER: M N SURPLUS (1) 

SOURCE YIELD REQUIREMENTS: 10 

A 12 

B 20 

EVALUATION NUMBER: 5 

(11) 

A 1 2  

B 20 

p 
10 

4 

7 

0 

-2 

0 

/7 
7 -2 

15 7 

7 

12 

9 

3 

7 -2 

EVALUATION 

NUMBER: 

0 

2 

0 

2 
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The data are set out in tabu la r  form for  solution i n  Table 

6.2( I ) .  Each row represents a source and each column a demand. The 

u n i t  cost of de l ivery  along each route i s  indicated i n  the top r i g h t  

corner of the corresponding block i n  the table. The f i r s t  step i s  to 

make an a r b i t r a r y  i n i t i a l  assignment of resources i n  such a manner 

that each y ie ld  and demand is satisfied. Star t ing wi th  the top lef t  

block of the table, the maximum possible al locat ion i s  10. This 

satisfies the demand of column M and the amount is wr i t ten i n  the 

bottom lef t  corner of block AM. Proceeding to the next column, since 

the f i r s t  column is completed, the maximum possible al locat ion i n  the 

f i r s t  row i s  2, which sat isf ies the y ie ld  of row A. So the next block 

to be considered i s  i n  row B, namely column N. Proceed through tke 

table making the maximum possible assignment a t  each stage u n t i l  

a l l  resources are allocated (even i f  to the slack column). Thus the 

next al locat ion i s  the 13 in the second row, then the 7 in the t h i r d  

co I umn . 
Once an i n i t i a l  a l locat ion i s  made the f igures are rearranged 

methodically u n t i l  a least-cost d is t r ibut ion emerges. To decide which 

would be the most prof i tab le arrangement, assign a re la t i ve  

evaluat ion number to each row and column as follows:- 

Assign the value 0 to row 1 and work out the other evaluat ion 

numbers such that the sum of the row evaluat ion number and column 

evaluat ion number i s  equal to the cost coefficient for  any occupied 

block. The value fo r  column M i s  5, for  column N i s  7, for  row B i s  

2 ,  and so on. Now wr i te  the sum of the row and column evaluat ion 

numbers beneath the cost coefficient of each unoccupied block. I f  

t h i s  sum i s  b igger  than the cost coefficient of the block, i t  would 

pay to introduce a resource al locat ion into the block. This i s  not 

easy to see immediately, but  stems from the method of determining 

each evaluat ion sum from the cost coefficients of occupied blocks. 

The biggest possible r a t e  of improvement i s  indicated by the biggest 

difference between the evaluat ion sum and the cost coefficient. The 

biggest and i n  fact i n  our case the only ,  improvement would be to 

introduce an amount in to  Block BM. The maximum amount which can 

be put i n  block BM i s  determined b y  drawing a closed loop using 

occupied blocks as corners (see the dotted c i r c u i t  in Table 6.2(1 ) ) .  
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Now for each u n i t  which i s  added to block BM, one u n i t  would have 

to be subtracted from block BN, added to block AN and subtracted 

from block AM to keep the yields and requirements consistent. I n  

th is  case the maximum al locat ion to BM i s  10, since this would 

evacuate block AM. The maximum re-distr ibut ion i.e. 10 i s  made, and 

the amount i n  the block a t  each corner of the closed loop adjusted 

by 10 to sat isfy y ie lds and requirements. Only one re- d is t r ibut ion 

of resources should be done at  a time. 

After making the best new al locat ion,  re-calculate the evaluation 

number and evaluat ion sums as i n  Table 6.2 ( I  I ) .  Allocate resource 

to the most prof i tab le block and repeat the re-d is t r ibut ion procedure 

u n t i l  there is no fur ther  possible cost improvement, indicated by the 

fact that there i s  no evaluat ion sum greater than the cost coefficient 

i n  any block. I n  our example we a r r i v e d  a t  the optimum dis t r ibut ion 

i n  two steps, but more compl icated patterns invo lv ing more sources 

and consumers may need many more attempts. 

The example can only serve to introduce the subject of 

t ransportat ion programming. There are many other conditions which 

are deal t  wi th  i n  textbooks on the subject of mathematical 

optimization techniques such as van der Veen (1967)and Dantzig ( 1963) 

and th i s  example only serves as an introduction. For instance, i f  

two blocks i n  the table happened to be evacuated simultaneously, one 

of the blocks could be allocated a very small quant i ty  denoted by 

' e '  say. Computations then proceed as before and the quant i ty  ' e l  

disregarded at the end. 

STEEPEST PATH ASCENT TECHNIQUE FOR EXTENDING NETWORKS 

A 'steepest path ascent technique' can be used for extending 

p ipe l ine networks a t  minimum cost (Stephenson, 1970). The technique 

i s  p r i m a r i l y  for  adding new pipes to ex is t ing networks when demands 

exceed the capacity of the ex is t ing p ipe networks. 

I t  i s  usual ly  possible to supply points i n  a system along var ious 

routes or  from a l ternat ive sources. I t  may not be necessary to lay a 

new pipel ine a l l  the way from the source to the demand, or 

a l t e rna t i ve l y  the diameter of the new p ipe may va ry  from one section 

to another. The fact that elevation, and hence pressure head, var ies 

along a p ipe l ine route causes di f ferent pipe diameters to be optimal 

a t  d i f ferent sections. 
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O n  account of the complexi ty of the op t im iza t ion  technique, use of 

a computer i s  essent ia l .  A l te rna t i ve  routes a long which water cou ld  

be supp l ied  to the node in quest ion a r e  pre-selected manua l ly .  The 

computer program i s  used to determine the optimum p ipe l ines  and  

corresponding diameters to meet the speci f ic  demands. 

A n  informal demonstrat ion tha t  the method y ie lds  an optimum 

design i s  g i ven  w i t h  the a i d  of diagrams. 

F ig .  6.3 Relat ionship between d ischarge and 
cost of two pipes. 

Fig.  6.4 Steepest p a t h  projected onto C,-C2 p lane  
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Pipel ine costs increase w i t h  increasing diameter and wal I 

thickness. Wall thickness usual ly  increases i n  proport ion to the 

diameter, so the cost per metre w i l l  be a funct ion of the square of 

the diameter. 

Now for a given head gradient,  the discharge i s  proport ional  to 

the pipe diameter to a power of approximately 2.5. However, i f  the 

p ipe i s  not l a i d  along the ent i re  route from the source to the 

demand, but merely reinforces p a r t  of the network, the capacity w i l l  

be l imi ted b y  the capaci ty of the remainder of the network. Hence i t  

may be deduced that discharge var ies wi th  cost of a new p ipe 

section to a power greater than un i t y ,  but  i s  l imi ted by the capacity 

of the remainder of the pipe network. 

I f  more than one proposed new p ipe i s  involved the relat ionship 

between discharge and pipe costs i s  mu1 ti-dimensional. Figure 6.3 

i I  lustrates the re la t ionship between discharge at  a pa r t i cu la r  node 

and cost of two possible pipes in the network. 

The curves on the C 1  - C2 plane in F igure 6.3 are l ines of 

constant discharge Q. The shortest pa th  between two Q l ines spaced 

a small distance apar t  i s  a l i ne  perpendicular to the Q l ines. This 

is the path w i th  the steepest discharge/cost gradient,  and i s  the one 

sought. The procedure i s  therefore to s ta r t  at the o r i g i n  and proceed 

in  increments on the C 1  - C2 plane, each increment being 

perpendicular to the next Q l ine,  u n t i l  the desired discharge Q i s  

attained. 

To determine the increments i n  diameter corresponding to 

increments i n  cost, the actual  increment i n  cost of each p ipe for  a 

step on the C 1  - C2 plane has to be calculated. Consider the 

t r i ang le  XYZ, enlarged in Figure 6 . 4 .  C 1  and C corresponding to 

increment YW i n  €I are to be determined. 
2 

a Q  Now cos 0 = - /](*Q/ -$;' + ( AQ/  -I2 
aQ a c l  
ac2 
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AC,  = YW cos 0 = AQf - a Q  cos20 
ac1 

S i m i l a r l y  AC2 = YW cos + 

L 

In a s i m i l a r  manner ,  f o r  n p o s s i b l e  p i p e s ,  i t  may b e  p r o v e d  t h a t  

The r a t e  of  inc rease of  d i s c h a r g e  w i t h  respect  to  the  cost C .  o f  

a n y  p i p e ,  a Q / a C  i s  de termined b y  a n a l y z i n g  the ne twork  w i t h  a n d  

w i t h o u t  a s m a l l  increment  in  d i a m e t e r  D..The increase in  d i s c h a r g e ,  

d i v i d e d  b y  the inc rease in cost  o f  p i p e  i assoc ia ted  w i t h  the  

inc rease in  d iameter ,  g i v e s  the  r e q u i r e d  r e l a t i o n s h i p .  The increment  

i n  d i s c h a r g e  p e r  s tep,  A Q ,  i s  pre-se lected so t h a t  the  inc rease in 

cost of each p i p e  i s  y i e l d e d  b y  the  above e q u a t i o n  a t  each step. The 

c o r r e s p o n d i n g  inc reases  i n  d iameter  a r e  then c a l c u l a t e d  f rom the  

known d iameter /  cost r e l a t i o n s h i p s .  The d iameters  of the proposed 

p i p e s  a r e  inc reased in steps u n t i l  the d i s c h a r g e  a t  the s p e c i f i e d  

node i s  s u f f i c i e n t .  A network  a n a l y s i s  s h o u l d  be  per fo rmed a f t e r  each 

s tep  to re -ba lance the system. 

I t  w i l l  b e  observed f rom F i g u r e  6.3 t h a t  i t  i s  u n l i k e l y  t h a t  a n y  

loca l  max ima w i l l  b e  r e a c h e d  w i t h  the techn ique a s  the d is -  

charge/cost  c u r v e s  a r e  g e n e r a l l y  concave u p w a r d s ,  a n d  h a v e  few 

p o i n t s  o f  i n f l e c t i o n .  

So f a r  the  t e c h n i q u e  h a s  been used to supplement  the  s u p p l y  to 

o n l y  one node a t  a t ime. I t  h a s  been f o u n d  t h a t  the p i p e l i n e  system 

s h o u l d  b e  w e l l  c o n d i t i o n e d  f o r  s a t i s f a c t o r y  convergence.  I t  i s  u s u a l l y  

necessary to i n i t i a l i z e  the d iameters  of  proposed p i p e s  a t  a v a l u e  
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greater than zero (say of the order of 1/4 of the ant ic ipated f i na l  

diameter). Otherwise the l inear  approximation to the d i f ferent ia l  

equations i s  unreal is t ic  for  the i n i t i a l  steps and false resul ts are 

yielded. 

DESIGN OF LOOPED NETWORKS 

I t  was explained previously that i t  i s  not possible to design a 

pipe ret icu la t ion network wi th  closed loops without recourse to t r i a l  

and error  or successive approximations. The non-ljnear flow/head 

loss relat ionship,  the fact that flow magnitudes and directions are 

i n i t i a l l y  unknown, that p ipe diameters should conform to standard 

sizes and be larger  than specified minimum sizes, and that certain 

minimum pressures are required, a l l  pose problems. There are many 

approaches to the solution for  the least-cost looped network, none of 

which, i t  should be noted, overcome a l l  the problems and ensure that 

a t rue least-cost solution, and not a local peak i n  the cost function, 

i s  at hand. The solutions are nevertheless i n v a r i a b l y  more economic 

than a network which is designed b y  standard methods, and offer a 

s ta r t i ng  system for manipulat ion b y  the design engineer. 

Some techniques proposed for  achieving least-cost solutions, 

together wi th  the i r  l imi tat ions,  are out l ined below. 

( i ) Loop/node correct ion method 

A method of least-cost design, which does not depart rad i ca l l y  

from the fam i l i a r  methods of Hardy Cross analysis,  was developed by 

the author. The optimization procedure i s  not based on l inear  or 

non-l inear programming techniques which are unfamiliar to most 

engineers. Instead successive cost revis ions are performed for  each 

node and for  each loop i n  the network using a correction based on 

the d i f ferent ia l  of the cost function determined as follows:- 

(6.2) 
b 

Assume any p ipe cost C = a D t 

where a and b a re  constants. 

head loss h for  any pipe: D=(KtQn/h)'/m 

Now the diameter, D, can be expressed in  terms of flow Q and 

where K ,  m and n a re  constants 
So C = a(KtQn/h) b/mt 
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Different i a  t i ng , dC= ( nb/m) ( C/Q) dQ-( b/m ) ( C / h  ) d h (6.3) 

i.e. the cost of any p ipe can be va r ied  in two ways: b y  va ry ing  

flow, Q ,  keeping the head loss, h ,  constant, and b y  va ry ing  h whi le 

maintaining Q constant. Actual ly,  both factors must be considered in 

designing a least-cost network. The fact  that  the diameters and 

corresponding costs are functions of the two independent var iab les i s  

often overlooked i n  mathematical optimization models. 

The complete optimization procedure fo r  a network i s  therefore as 

follows: 

( 1 )  Assume a pipe layout and assume any reasonable i n i t i a l  

diameter fo r  each pipe. 

( 2 )  Analyse the network using, say, the Hardy Cross method, to 

determine flows in each p ipe and heads at  each node. Any 

number of constant head reservoirs and drawoffs i s  permitted. 

( 3 )  For each loop in turn,  ca lcu late the sum of dC/dQ = (nb/m) C/Q 

for  each p ipe in the loop. I f  Q i s  i n  the assumed posi t ive 

direct ion around the loop take the posi t ive value of dC/dQ, 

otherwise the negative value. Now i f  cdC/dQ i s  positive, i.e. 

cost increases i f  f low increases, i t  would pay to reduce the 

flow in the posi t ive direct ion around the loop. Conversely i f  

ZdC/dQ i s  negative, i t  would pay to increase the flow around the 

loop. Subtract or  add an increment in flow around the loop 

depending on the sign of ZdC/dQ, and decrease o r  increase the 

diameter of each p ipe in the loop respectively to keep the head 

losses constant. The maximum size of increment i s  that which 

would reduce any flow to zero, or  reduce any p ipe diameter to 

a specified minimum size. A n  increment s l i g h t l y  smaller than 

this,  say h a l f  th is  value, i s  preferable. Proceed from loop to 

loop, repeat ing th i s  analysis.  I t  i s  preferable to proceed i n  the 

order of decreasing absolute value of ZdC/dQ, which means the 

loops should be ranked i n  order before making the flow 

correct ions. 

( 4 )  For each node i n  tu rn  other than fixed-head reservoirs, 

calculate the sum of dC/h = (b/m)(C/h) for  each p ipe connecting 

the node. Take the posi t ive value i f  the head drops towards the 

node i n  question and the negative value i f  the head drops away 
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from the node. I f  CdC/dh i s  posi t ive i t  pays to reduce the 

head, H, a t  the node, and i f  i t  i s  negative, i t  pays to 

increase the head. By increasing the head at  the node, pipes 

leading to the node w i l l  have to be increased in diameter and 

the pipes leading away reduced i n  diameter to maintain the 

flows. Conversely a decrease i n  head w i l l  decrease diameters of 

p ipe leading to the node and increase the diameters of pipes 

leading away. Determine the maximum change in head permis- 

s ib le to produce a decrease i n  cost without a l t e r i ng  any flow 

directions or  reducing p ipe diameters to less than specified 

minimums. The head of the node should also be maintained 

above the specified minimum. Vary the head correspondingly, or  

preferably l im i t  the head change to, say, ha l f  the maximum 

permissible and calculate the new p ipe diameters connecting the 

node. 

( 5 )  Repeat steps 3 and 4 u n t i l  no fur ther  improvement in cost i s  

discernable. No fur ther  network analyses are necessary as once 

the i n i t i a l  flow balance of step 2 has been achieved i t  i s  not 

unbalanced. Notice however that  once the flow directions have 

been established they cannot be altered. I t  i s  therefore 

important that  the i n i t i a l l y  assumed diameters a re  rea l i s t i c  and 

that the corresponding flow pat tern i s  general ly correct. 

The technique w i l l  y i e ld  non-standard pipe diameters and these 

w i l l  have to be corrected b y  assuming the nearest standard p ipe size 

or by le t t ing each pipe comprise two sections, one the next standard 

size greater and the other the next standard size less than the 

diameter yielded by the analysis.  The  corresponding length of each 

section is calculated from the fact that the total head loss must 

equal that indicated by the analysis.  The calculat ions should be 

performed b y  computer as they are lengthy and def in i te ly  not as 

simple as those for a Hardy Cross network analysis.  

( i i )  Flow correction b y  l inear  programming 

I n  the previous section i t  was demonstrated that for  each p ipe dC 

i s  l i nea r l y  proport ional  to dQ and dH. (This i s  provided the 

increments in Q and H are smal l ) .  I f  the objective funct ion i s  taken 

as the minimization of CdC fo r  each pipe, the problem may be set up 
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as a l inear  programming optimization problem. The I inear constraints 

would be: 

For each node, ZdQ i n  = 0 where dQ could be posi t ive or negative, 

and H 'a specified minimum. 

The objective funct ion i s  C dC = minimum, where dC i s  a l inear  

function of increments i n  flows i n  each pipe and heads at  each node. 

A standard l inear  programming program could be used to select the 

changes i n  flow along each pipe and head at each node once an 

i n i t i a l  network i s  assumed and analysed. The corresponding d ia-  

meters could then be calculated. Unless the increments i n  flow and 

head are confined to very small values, the head losses w i l l  be 

unbalanced af ter  the I inear programming optimization and a network 

analys is  w i l l  be required. The l inear  programming optimization and 

network analys is  should be i terated u n t i l  there is no fur ther  

reduction i n  the total network cost. The subprogramme for set t ing up 

the l inear  programming tableau i s  complicated and a large computer 

core storage i s  requi red for  reasonably large networks. 

The core storage required i s  proport ional  to the square of the 

number of pipes, whereas i t  i s  proport ional  to the l inear  number of 

pipes fo r  the Loop/Node Correction Method. 

Non-standard diameters are yielded, and the flow directions are 

not al tered once an i n i t i a l  assumption is made. 

( i  i i )  Non-l inear programming 

As the problem of design of a pipe network i s  non-linear a 

standard or "canned" non-l inear programming computer program could 

be used. Many of these programs are based on the steepest path 

ascent technique. A sub-program would be requi red to formulate the 

constraints and the objective function. The constraints could be 

expressed as l inear  functions but the objective funct ion is nonl inear.  

The constraints are:- 

For each node C Q  in = 0 

For fixed-head nodes H = a specified value. 

For va r iab le  head nodes, HL a specified minimum. 

For each loop C h = 0. 

The objective funct ion i s  CC = Z a (Ke Qn/h) ( 1  /m) 

= minimum 
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Non-standard diameters are y ie lded and flow direct ions must be 

assumed beforehand. As the technique of nonl inear programming is 

f a i r l y  complicated, i t  may be d i f f i c u l t  to debug the program i f  

e r r o r s  occur. 

( i v )  Optimum length method 

Kal ly  (1971) proposed a method very s im i la r  to the l inear  

programming method of optimization of tree-I ike networks wi th  known 

flows. 

Since the flows are l i ke l y  to re-d is t r ibute af ter  optimization of a 

looped network by th is  method, Hardy Cross analys is  is necessary to 

balance flows at each node, a f ter  which a fur ther  optimization i s  

performed, and so on. 

An i n i t i a l  estimation of diameter i s  fed into the program, which 

calculates flows by Hardy Cross analysis.  For a small change in 

diameter along a port ion of any pipe, the corresponding head 

changes at var ious nodes are calculated. The relat ionships between 

head change and length of enlarged ( o r  reduced) pipes i s  assumed 

l inear ,  and the optimum lengths of each section of new diameter 

calculated by l inear  programming. Diameters may be confined to 

standard sizes. 

( v )  Equivalent p ipe method 

Deb, (1973) replaces a l l  pipes i n  a layout b y  pipes wi th  a common 

predefined length and equivalent diameters ( i  .e. such that head 

losses remain unaffected). 

An i n i t i a l  flow pat tern i s  assumed and corrected in steps by 

adjust ing p ipe sizes for  successive loops. The total p ipe cost for  any 

loop i s  a minimum at some flow extreme i.e. w i th  the flow i n  some 

pipes i n  the loop equal to the specified minimum. 

A constraint l im i t i ng  the minimum ra te  of f low through each pipe 

may be imposed ( f o r  r e l i a b i l i t y  and cont inu i ty  of supply i n  case of 

bursts  or blockage closed loops and specified minimum flows i n  pipes 

are usual ly  requ i red ) .  

A minimum cost i f  assumed for each loop and a flow correction 

which w i l l  b r i n g  the loop cost to the assumed f i gu re  is calculated. 
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I f  the  m in imum f l o w  c o n s t r a i n t  i s  v i o l a t e d ,  a new m in imum cost 

f i g u r e  i s  assumed and then  the  f l o w s  c o r r e c t e d  a c c o r d i n g l y .  I f  t h e  

f l o w s  a r e  w i t h i n  p e r m i s s i b l e  l i m i t s ,  a s l i g h t l y  l ower  loop cost i s  

assumed, and f l o w s  c o r r e c t e d  again. T h i s  i s  r e p e a t e d  u n t i l  t h e  cost  

canno t  b e  r e d u c e d  a n y  more w i t h o u t  v i o l a t i n g  t h e  c o n s t r a i n t s .  

The t e c h n i q u e  y i e l d s  n o n - s t a n d a r d  d iamete rs ,  and i s  h i g h l y  

dependent  on  t h e  i n i t i a l  f l o w  assumpt ions .  The e q u a t i o n s  i n v o l v e d  

t e n d  to  o b s c u r e  t h e  i n i t i a l  assumpt ions .  
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CHAPTER 7 

CONT I NUOUS S I MULAT I ON 

The previous chapters have been confined to steady flow in  

pipe networks wi th  constant reservoir  heads. I n  subsequent chapters 

unsteady flow i s  considered. As a f i r s t  approximation the water 

column i n  a p ipe i s  assumed to be  incompressible and the accelera- 

tions and decelerations are estimated on that basis. I n  subsequent 

chapters the compressibi l i ty  of the water and the pipe i s  consider- 

ed. The la t ter  i s  termed water hammer. 

There are many unsteady flow conditions, however, i n  which 

nei ther the compressibi l i t y  nor accelerations are s igni f icant.  An 

example i s  the slow depletion of storage in  a reservoir  over a num- 

ber of hours, for  instance du r ing  peak flows in a ret icu la t ion sys- 

tem. The reservoir  w i l l  subsequently be r e f i l l e d  by pumping when 

the demand i s  lower, for  example d u r i n g  the n igh ts  and weekends. 

This i s  an unsteady flow s i tuat ion to which the steady flow equa- 

tions can be appl ied without appreciable error.  That is ,  p ipe f r i c -  

t ion i s  the major head loss term but  cont inu i ty  i s  also appl ied 

i n  order to observe the var ia t ions i n  storage levels. Corresponding 

to changes i n  stored volume the water level i n  the reservoirs w i l l  

change and consequently the heads on the ret icu la t ion system w i l l  

change. These i n  t u r n  w i l l  affect the discharges. 

I t  i s  f requent ly necessary to analyse ret icu la t ion systems on 

th i s  basis i n  order to determine reservoir  capacities and pumping 

rates for  a water re t icu la t ion system. The omission of the accelera- 

t ion and e last ic i ty  terms makes the simulation much easier and 

the time in terva l  can be hours instead of seconds which reduces 

computational time considerably. Although the so-called global com- 

puter program based on the water hammer equations could be em- 

ployed i t  would be inef f ic ient  and unjust i f ied.  I n  th i s  chapter the 

coninui ty equation and pipe f r i c t i on  equations are used to develop 

a general purpose simulation program for  studying f luctuat ions 

i n  storage in a complex p ipe water supply system. 

Most water supply systems can be assumed to comprise two major 

components, one a l i n k  or p ipe and the other a node which could 

be a p ipe junct ion or  a reservoir .  The handl ing of the node would 
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depend on the description of i t s  operation. A constant head reser- 

vo i r  would be regarded as a node of i n f i n i t e  surface area whereas 

at the other extremity the outflow could be a funct ion of the stor- 

.age volume which i n  tu rn  controls the head on the discharge o r i -  

fice. 

The simulation approach can frequent ly be used to optimize the 

design of a water re t icu la t ion system where direct  optimization tech- 

niques would be too complicated. Another advantage of simulation 

is that i t  can incorporate non-linear equations and specified func- 

tions and does not have to be based on average or  assumed steady 

state conditions. 

SYSTEMS ANALYSIS TECHNIQUES AND THE USE O F  SIMULATION MODELS 

Developments i n  operation research have led to numerous extreme- 

l y  powerful systems analys is  techniques. These techniques can be 

broadly c lass i f ied in to  two main categories: 

1 )  Direct optimization techniques 

2 )  Simulation techniques. 

Direct optimization techniques can be used to f i n d  the optimum 

solution to cer ta in  problems. Grosman (1981) describes the appl i -  

cation of t ransportat ion programming, extended transportat ion pro- 

gramming, I inear programming and separable programming. Costs 

are estimated for raw water, conveyancing and desalination. The 

techniques are used to calculate the average flows from each source 

to each demand point .  The flows sat isfy m i n i m u m  water qua l i t y  

and quant i ty  constraints and resul t  i n  the minimum total cost solu- 

t ion. 

The techniques used i n  many studies assume steady state condi- 

tions. Average flows and constant water qua l i t y  are assumed at  

a l l  the sources and demand points. The average flows are calculat-  

ed which resul t  i n  the minimum cost. Real water systems are never 

in a steady state. Water required at demand points general ly var ies 

between zero and several hundred l i t r es  a second. Dur ing peak 

demand periods i t  may not be possible to draw water from the d i f -  

ferent sources i n  the optimum r a t i o  determined. The concentration 

of po l lu tants  i n  some sources var ies throughout the day and week 

depending on what source was used and the proport ion of clean 
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water .  I t  c a n  be  conc luded t h a t  op t imum s o l u t i o n s  d e r i v e d  f rom 

d e t e r m i n i s t i c  models  w h i c h  assume s teady  f l o w s  a n d  cons tan t  w a t e r  

q u a l i t y  may no t  be  r e a l i s t i c .  The 'op t imum s o l u t i o n '  cannot  g u a r a n -  

tee t h a t  the  c o n s t r a i n t s  w i l l  b e  s a t i s f i e d  a t  a l l  t imes, t h a t  the  

s o l u t i o n  i s  p r a c t i c a l  o r ,  indeed,  t h a t  the  s o l u t i o n  i s  a n  o p t i m a l  

one a t  a l l .  

S i m u l a t i o n  p r o v i d e s  a means o f  o b s e r v i n g  the  b e h a v i o u r  o f  the  

components of  a system u n d e r  v a r y i n g  c o n d i t i o n s .  No ' s o l u t i o n '  

in the  mathemat ica l  sense i s  sought .  The o b j e c t i v e  i s  to g a i n  a n  

u n d e r s t a n d i n g  o f  the r e l a t i o n s h i p s  among components of  the system 

a n d  to f ind w a y s  to make them work  together  in  the best  p o s s i b l e  

way.  S i m u l a t i o n  does no t  y i e l d  a n  o p t i m a l  s o l u t i o n  d i r e c t l y  a n d  

i t  i s  t h u s  necessary  to s i m u l a t e  i t e r a t i v e l y  in o r d e r  to ach ieve  

an opt imum. Even when combined w i t h  e f f i c i e n t  techn iques  f o r  select- 

i n g  the v a l u e s  o f  each dec is ion  v a r i a b l e ,  a n  enormous computa t iona l  

e f f o r t  may l e a d  to a s o l u t i o n  w h i c h  i s  s t i l l  f a r  f rom the  best  pos- 

s i b l e .  

To i t s  c r e d i t ,  s i m u l a t i o n  c a n  be  used to so lve  models  w i t h  h i g h -  

l y  n o n - l i n e a r  r e l a t i o n s h i p s  a n d  c o n s t r a i n t s .  The d i r e c t  o p t i m i z a t i o n  

techn iques  a r e  seldom a b l e  to dea l  w i t h  a l l  the  complex i t ies  a n d  

n o n - l i n e a r i t i e s  w h i c h  a r e  e a s i l y  i n c o r p o r a t e d  i n t o  a s i m u l a t i o n  mod- 

e l .  S i m u l a t i o n  c a n  be  used to exper iment  w i t h  a l t e r n a t i v e  'opt imum 

s o l u t i o n s '  a n d  together  w i t h  d i r e c t  o p t i m i z a t i o n  techn iques  i t  may 

be p o s s i b l e  to n a r r o w  the search  f o r  a r e a l  g l o b a l  optimum. L i t t l e  

o r  no cost ,  t ime o r  r i s k  i s  i n v o l v e d  w i t h  s i m u l a t i o n .  The t ime sca le  

c a n  be  c o n t r o l l e d  a n d  l o n g  a n d  s h o r t  term e f fec ts  of  q u a n t i t y  a n d  

q u a l i t y  c a n  b e  de termined a n d  used a s  a n  a i d  to dec is ion  m a k i n g  

a n d  p l a n n i n g .  More i m p o r t a n t ,  v a r i a b l e s  a n d  parameters  c a n  be  

i d e n t i f i e d  b y  c h a n g i n g  t h e i r  v a l u e s  a n d  s t u d y i n g  the ef fects .  Cer- 

t a i n  p a r a m e t e r s  a n d  r e l a t i o n s h i p s  c a n  be  de termined f rom s imu la-  

t ions .  A s i m u l a t i o n  model c a n  b e  v i s u a l i s e d  b y  most people a n d  

the r e s u l t s  a r e  g e n e r a l l y  more c o n v i n c i n g  t h a n  those o b t a i n e d  f rom 

determ in i st i c  approaches.  

The r a t e  of  c h a n g e  o f  w a t e r  q u a n t i t y  a n d  q u a l i t y ,  w i t h  respect  

to t ime c a n  a l w a y s  b e  d e s c r i b e d  b y  a set o f  f i r s t  o r d e r  o r d i n a r y  

d i f f e r e n t i a l  e q u a t i o n s .  These e q u a t i o n s  c a n  b e  s o l v e d  s i m u l t a n e o u s l y  

a t  each i t e r a t i o n  in a s i m u l a t i o n  u s i n g  p o w e r f u l  n u m e r i c a l  methods. 

The s o l u t i o n  to the  set o f  e q u a t i o n s  y i e l d s  the vo lume of w a t e r  



90 

in each storage component of the system at the end of each simula- 

t ion time-step. These values can be used in  conjunction wi th  the 

operating ru les and var ious relat ionships to determine pump on/off 

settings, make-up flows, demands, overflows etc. The degree to which 

the model represents the rea l  system and the accuracy of the resul ts 

depends on the v a l i d i t y  of the model and the accuracy of the 

solution of the set of equations. 

A general simulation program has been wr i t ten which can be used 

to simulate water models. The model must be described by a system 

of f i rst-order o rd ina ry  d i f ferent ia l  equations, Such a model, 

consisting of j equations and involv ing q var iables,  can be wri t ten 

i n  the general form: 

dx.  dxl,dx2, d x .  

dt Q(t,x1,x2,---x q ' d t  - - dt --- dt  
J )  1 -  - -  

where i = 1 ,2  --- j 

According to James (1978), the order ly  procedure for  constructing 

simulation models i s :  

Systems Analysis: the sal ient  components, inter-actions, re lat ion- 

ships and dynamic mechanism of a system are ident i f ied.  

Systems Synthesis: the model i s  constructed and coded i n  accord- 

ance wi th  Step 1 ) .  

Ver i f icat ion : the model's responses are compared wi th  those 

which would be expected i f  the model's structure was prepared 

as intended. 

Val idat ion:  the responses from the ver i f ied model are compared to 

corresponding observations of, and measurements from the actual  

system. 

Inference: experiments wi th,  and comparisons of responses from, 

the ver i f ied and va l idated model - th is  i s  the design stage. 

-- 

MATHEMAT I CAL  MODELL I NG O F  WATER QUAL I TY 

Model I ing Concepts 

A f i e l d  to which many of the present concepts can be appl ied i s  

that of water qua1 i t y  deter iorat ion i n  indust r ia l  systems. Cooling and 

washing systems are examples where q u a l i t y  w i l l  deteriorate i n  time. 
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I t  is  not easy to predict  the rate of bui ld-up of dissolved sal ts or  

the equi I ib r ium concentrations i n  water re t icu la t ion systems, even 

wi th  an understanding of the o r ig ins  and methods of concentration of 

salts. This i s  because of the complex nature of i ndus t r i a l  water 

rec i rcu lat ion systems. One way of accounting for  a l l  these effects i n  

a real  system appears to be b y  modell ing the system on a computer. 

Once a model i s  produced and val idated, i t  may be used to 

improve the operation of ex is t ing service water re t icu la t ion systems 

and fo r  opt imizing the design of new systems. I t  i s  one of the objec- 

t ives of a research programme to produce such a mathematical model 

which w i l l  be formulated i n  general terms for  adaptation to any 

pa r t i cu la r  system. 

The bui ld-up of impur i t ies in water can be simulated mathemati- 

ca l l y  together w i th  the water rec i rcu lat ion cycle. The flows of water 

i n  conduits or  in vapour form i n  the a i r  in and out of the system 

can be calculated. The processes of evaporation, condensation, pol- 

lu t ion and make-up can a l l  be modelled. 

Mass Ba I ances 

For the purposes of mathematical simulation of water systems, the 

system must be described i n  terms of equations. One-stage systems 

can be described i n  terms of a mass balance equation which can be 

solved ana ly t i ca l l y .  I n  other more complex s i tuat ions i t  i s  necessary 

to express the equations i n  f i n i t e  difference form and solve them 

numerical ly.  Different types of models and the assumptions therein 

are described below. 

Parameters whereby pol lut ion i s  measured may ei ther be conserva- 

t i ve  or  non-conservative. I n  a conservative system input to any p a r t  

of the system equals outflow. Thus, i f the parameter studied i s  water 

flow then evaporation w i l l  be neglected i n  a conservative model. 

S imi lar ly  i f  the parameter i s  a chemical compound i t  i s  assumed 

there i s  no reaction, deposition or  solution i n  a conservative model. 

The model may be steady-state or  t ime-varying. Dur ing the start-  

up per iod of a mine as concentrations b u i l d  up the system i s  sa id to 

be unsteady. After a whi le the system may reach equi l ibr ium. That 

is, i n  the case of sal ts i n  solution, the increases i n  mass of 

dissolved solids i n  the system due to leaching or  evaporation equals 
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the loss b y  p u m p i n g  o r  depos i t ion .  

Mixed and Plug Flow Systems 

I n  a p l u g - f l o w  system, the  w a t e r  i s  assumed to t r a v e l  t h r o u g h  

the p i p e s  a n d  d r a i n s  a t  a c e r t a i n  r a t e ,  c o n v e y i n g  i m p u r i t i e s  a t  t h a t  

r a t e .  The s a l t s  conten t  a t  a n y  p o i n t  c a n  there fore  b e  a f fec ted  in a 

s e r i e s  o f  s teps  a s  w a t e r  w i t h  d i f f e r e n t  c o n c e n t r a t i o n s  a r r i v e s  a t  t h a t  

p o i n t .  I n  a comple te ly  m i x e d  system, the c o n c e n t r a t i o n  of  s a l t s  w i l l  

be  the same a t  e v e r y  p o i n t .  An i n p u t  i s  assumed to s p r e a d  

i n s t a n t a n e o u s l y  t h r o u g h  the system so t h a t  the c o n c e n t r a t i o n  

increases b y  the  mass o f  s a l t  i n p u t  d i v i d e d  b y  the t o t a l  volume of  

water  i n  the  system. T h i s  s i m p l i f i e d  mechanism i s  o f t e n  s a t i s f a c t o r y  

to descr ibe  systems wh ich  e x h i b i t  g r a d u a l  r a t e s  of  change in 

concent ra t ions .  Real systems w i l l  p r o b a b l y  be  between p l u g  f low a n d  

complete ly  m i x e d ,  a s  there  w i l l  be  d i f f u s i o n  a n d  m i x i n g  due to  

t u r b u l e n c e  a n d  c ross  connect ions.  I n  genera l  s a l t s  a r e  conveyed b y  

a d v e c t i o n  ( l a t e r a l  t r a n s p o r t )  a n d  d i s p e r s i o n .  

Examples 

The s imp les t  i l l u s t r a t i o n  o f  the  use of the mass b a l a n c e  e q u a t i o n s  

i s  f o r  a s teady-s ta te  system. Q i s  f l o w  r a t e  in  P/s  o r  MP/d, C i s  the 

concent ra t ion  in  mg/P. I n f l o w  of  w a t e r  a n d  o f  s a l t s  p e r  u n i t  t ime 

e q u a l s  o u t f l o w  r a t e :  

F i g .  7 . 1  P o i n t  N o d e  

= Q 3  
Q 1  + Q 2  
Q I C l  + Q 2 C Z  = Q 3 C 3  

. .  c 3  = Q l C 1 + Q 2 C 2  

+Q2 

( 7 . 2 )  

( 7 . 3 )  

(7.4) 
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e . g .  i f  Q, = 

c ,  = 

t h e n  c 3  = 

a n d  t h e  t o t a  

- - 

5 MP/d ,  Q 2  - - 

4 0 0  m g / e ,  C 2  = 

200 mg/@ 

m a s s  o f  s a l t  d 

Q 3 C 3  = 15 x 200 

0 Me/d  ( w a t e r  f l o w  r a t e )  

00 mg/e ( s a l t  c o n c e n t r a t i o n )  

s c h a r g e d  p e r  d a y  

= 3 0 0 0  kg /d .  ( 7 . 5 )  

A comple te ly  m i x e d  system c a n  b e  descr ibed b y  d i f f e r e n t i a l  equa-  

t i o n s :  S u b s c r i p t  i r e f e r s  to i n f l o w ,  e to  e x i t ,  s to  i n i t i a l  cond i -  

t ions .  

Volume S 

Conc. C 

F i g .  7.2 M i x e d  f l o w  node 

d ( S C )  Q i C i  = Q e C  + - 
d t  

dC 
d t  

= Q C + S- f o r  c o n s t a n t  S 

SdC .’. d t  = 
Q i C i - Q e C  

F i g .  7 . 3  D i f f u s e  n o d e  

I n t e g r a t i n g  a n d  e v a l u a t i n g  the  cons tan t  of i n t e g r a t i o n  f rom the 

f a c t  t h a t  C = C a t  t = 0: 

t = S en Q i C i - Q  C 
- ( Q i C i - Q e C  s ,  
‘e 

Q i C i  - Q i C i / Q e -  C s  

Q e t / S  
o r  C = - 

‘e 
e 

( 7 . 9 )  

( 7 . 1 0 )  
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e.g. at t = 0, C = C and at t = - ,  or  Qe = - o r  S = 0, 
5 ’  

c = (ai/ae)ci 

Observe that i f  Qi does not equal Be, there must be in ternal  

The previous example could be studied numerical ly.  Although th i s  

requires specific numbers, i t  i s  often the only pract ica l  way of 

solv ing more complex problems. 

gains or  losses, e.g. due to evaporation. 

Assume S = 1000 m 3 ,  Qi = 1 m 3 / s  = Q e, C s  = 0, Ci  = 500 m g / t .  

Choose At = 100 s. The choice of At can affect the speed of 

solution, the accuracy of resul ts and the numerical s t a b i l i t y  of the 

computations. I t  must be determined by t r i a l ,  from experience or  

from theoret ica I cons idera t ions. 

c -c 

I I  At 

A t  .. C 2  = C 1  + - Q . ( C . - C  ) = C + 0 .1 (500-C1)  
S l l l  1 

( 7 . 1 1 )  

( 7 . 1 2 )  

2 1  
NOW Q . C .  - Q C = S - 

The c o m p u t a t i o n s  can b e  se t  out  i n  t a b u l a r  f o r m  a s  f o l l o w s :  

t cl 500-C, ~ 0 . 1  c, 
0 0 500 50 50 

100 50 450 45 95 
200 95 405 40 135 
300 135 365 37 172 

1000 326 174 17 343 mg/ t  

Equation (7.10) would indicate C = 316 m g / t  at  t = lOOOs, which i s  

comparable wi th  the resul t  indicated by the numerical solution of 

343 mg/t .  

Systems Analysis 

A more sophisticated approach than the simulation method des- 

cr ibed above is the use of systems analys is  and optimization tech- 

niques, wi th  the assistance of computers i f  necessary. The methods 

al low an optimum design to be selected from numerous al ternat ives.  
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t 

a. P l u g  flow 

C 

t 

b. C o m p l e t e l y  m i x e d  s y s t e m  

I C I  

ti C 

C .  D i f f u s e  s y s t e m  

C 

t 

F i g .  7 .4  Comparison o f  p l u g  f l o w  and m i x e d  s y s t e m s  
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The a l ternat ive standard engineering approach i s  to select the best 

option from a few selected designs. The la t ter  approach i s  tedious 

where there are many a I terna t i ves. 

The design optimization approach involves the creation of a 

general conf igurat ion i n  which the numerical value of independent 

var iables has not been f ixed. An overa l l  economic objective i s  

defined and the system is described in  terms of equations or con- 

s t ra in  t s. 

NUMER I CAL METHODS FOR THE SOLUT I ON OF S I NGLE D I FFERENT IAL 

EQUAT I ON5 

Numerical solutions appear i n  the form of a tabulat ion of the 

values of the functions at  var ious values of the independent time 

va r iab le  and not as a funct ional  re lat ionship.  Numerical methods 

have the a b i l i t y  to solve p rac t i ca l l y  any equation but they have 

the disadvantage that the ent i re  table must be recomputed i f  the 

i n i t i a l  conditions a re  changed. 

I f  a funct ion f ( t )  can be represented by a power series i n  a 

cer ta in  in terva l  then i t  can be represented by the Taylor series 

expanded about a point  t = t i.e. about the i n i t i a l  value: 
0' 

(7.13) 

Lett ing n represent the previous step at  time to and n+l  

the next step at  t +h, the series can be wr i t ten as: 

represent 

0 

'n+1 

Consider the example problem 

)/' = dy = 
dt y+ t  

(7.14) 

(7.15) 

wi th  i n i t i a l  conditions 

Y(0) = 1 (7.16) 

This is a l i nea r  time va r ian t  1st order d i f ferent ia l  equation. 

The analy t ica l  solution to the problem, y = 2e -t-1 w i l l  be used to 

compare the numerical resul ts of some of the methods and to 

i l l us t ra te  the error  at any step. 

t 
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The Euler Method 

The Eu ler  method i s  the simplest b u t  least accura te  of a l l  the 

methods discussed. To ob ta in  an  exact numerical  so lu t ion  to the 

example problem (7.15), a l l  the de r i va t i ves  y , y , y iV  ... must 

be eva lua ted  a n d  subs t i tu ted  i n to  the Tay lo r  ser ies (7.14). Knowing 

' 1  ..., yn+l cou ld  be eva lua ted  the i n i t i a l  va lues  of y 

a f te r  a time increment h. The va lues  of a l l  the de r i va t i ves  cou ld  

then be ca l cu la ted  a t  n + l ,  a n d  yn+2 cou ld  be eva lua ted  a f te r  the 

next t ime increment a n d  so on. Der iva t ives  of a r b i t r a r y  func t ions  

cannot eas i l y  be formulated in computer programs. The de r i va t i ves  

y ' l ,  Y l l I ,  etc. a r e  easy to eva lua te  f o r  the example (7.15) b u t  

t h i s  i s  not genera l l y  the case. The Eu ler  method t runcates  the 

Tay lo r  ser ies b y  exc lud ing  the terms a f t e r  the f i r s t  d e r i v a t i v e  and  

e l im ina tes  the problem of h a v i n g  to eva lua te  the second and  

subsequent de r i va t i ves .  Then 

Yn+ ,=Yn+hYn  I+0(h2  ) e r r o r  (7.17) 

I 1  I l l  

I 
n '  'n7 'n 

Neglect ing h 2 y n i 1 / 2  and  the subsequent terms in (7.14) resu l t s  

in a t runca t ion  e r r o r  of o rder  h2 wh ich  i s  denoted O ( h 2 ) .  Th is  i s  

the local  e r r o r  and r e s u l t s  f rom one step on ly ,  i.e. from n to n+l.  

I t  can be shown tha t  the g loba l  e r r o r  accumulated ove r  many steps 

becomes O (  h) , i .e. an  e r r o r  of o rde r  h. 

Subs t i t u t i ng  the example (7.15) i n t o  the Eu ler  a lgo r i t hm (7.17) 

g i ves :  

Y n + 1 = Y n  +h.(yn+tn) (7.18) 

The i n i t i a l  cond i t ion  y (O)= l  means tha t  y=O a t  t=O. Choosing the 

t ime increment h=0.02 a n d  l e t t i n g  the step number n = O  a t  t=O, the 

va lues  f o r  y can  be eva lua ted  a t  successive t ime increments as  

fo l  lows: 

+ h ( y  + t  ) = 1 + 0 . 0 2 ( 1 + 0 )  = 1.0200 ( 7 . 1 9 )  
Y 1 = Y o  0 0  
Y2=Y l+h (Y l+ t l )  = 1.0200+0.02(1.0200+0.02) = 1 .0408 ( 7 . 2 0 )  

y =y + h ( y  + t  ) =  1 . 0 4 0 8 + 0 . 0 2 ( 1  .040+0 .04 )  = 1 .0624 ( 7 . 2 1 )  

Y 4 =  = 1 .0848 ( 7 . 2 2 )  

Y 5=  = 1.1081 ( 7 . 2 3 )  

e t c .  

3 2  2 2  
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The numerical solution af ter  5 steps i s  y(0.10)=1 .lo81 whereas 

y=2e -t-1 gives the exact analy t ica l  solution as y(O.10)=1.1103. 

Hence the absolute global  e r ro r  i s  0.0022, i.e. two-decimal-place 

accuracy. Since the global  er ror  of the Euler method i s  proport ional  

to h, i.e. O(h) ,  the step size h must be reduced at  least 22- fo ld  

to gain four-decimal accuracy, i.e. h 0.004. This would increase 

the computational ef for t  22-fold. Fig.  7.4 shows how the slope at 
I .  

the beginning of the in terva l  y I S  used to determine the function 

value a t  the end of the i terat ion i n  the Euler method. 

t 

I Analytical 

Fig.  7.4 The Euler method 

t 

The slope at  the beginning of the in terva l  i s  a lways wrong 

unless the solution i s  a s t ra igh t  l ine.  Thus the simple Euler method 

suffers from the disadvantage of lack of accuracy, requ i r i ng  an 

extremely small step size. 

The Modified Euler Method 

Fig.  7.4 and the subsequent discussion suggest how the Euler 
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method can be improved w i t h  l i t t l e  add i t i ona l  computat ional  e f fo r t .  

The ar i thmet ic  average of the slopes a t  the beg inn ing  and  the end 

of the i n te rva l  i s  used (on l y  the slope a t  the beg inn ing  i s  used i n  

the Eu ler  method). 

(7.24) 

Y n + 1  The Eu ler  a lgo r i t hm must f i r s t  b e  used to p red ic t  

that  Y 

before and  subs t i t u t i ng  y = x+t i n to  (7.24) gives 

n+l I can be estimated. App ly ing  the same example (7.15) as 
1 

( 7 . 2 5 )  

S u b s t i t u t i n g  t h e  E u l e r  e q u a t i o n  ( 7 . 1 8 )  f o r  yn+l g i v e s  

'n+1 = y + h ( y n + t n )  + ( y n  +h (Yn+ tn  1 + t  n+l ) ( 7 . 2 6 )  

2 

U s i n g  h=0 .02  a n d  t h e  i n i t i a l  cond i  t i o n s :  y o = l ,  t = O  0 

( 7 . 2 7 )  

=1+0.02 ( 1 + 0 )  + ( 1 + 0 . 0 2 ( 1 + 0 ) + 0 . 0 2 )  ( 7 . 2 8 )  
2 

=1 .0204 ( 7 . 2 9 )  

y = 1 . 0 2 0 4 + 0 . 0 2 ( 1 . 0 2 0 4 + 0 . 0 2 ) + ( 1 . 0 2 0 4 + 0 . 0 2 ( 1 . 0 2 0 4 + 0 . 0 2 ~ + 0 ~ 0 ~ ~  
2 2 

( 7 . 3 0 )  

=l .0416 ( 7 . 3 1 )  

y5=1.1104 c f  a n a l y t i c a l  s o l u t i o n  1.1103 

The answer agrees to w i t h i n  1 in " the  fou r th  decimal place. 

Near ly  twice as much work was done as in the Eu ler  method b u t  

ce r ta in l y  not the 22 times more tha t  would have been needed w i t h  

t ha t  method to a t t a i n  fou r  decimal p lace  accuracy.  I t  can be shown 

that the local and  g loba l  e r ro rs  of the Modif ied Eu ler  method a re  
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O ( h 3 )  a n d  O ( h Z )  r e s p e c t i v e l y .  The M o d i f i e d  E u l e r  and the  s i m p l e  

E u l e r  methods a r e  o f t e n  r e f e r r e d  to  a s  second a n d  f i r s t  o r d e r  meth- 

ods r e s p e c t i v e l y .  

Runge-Ku t ta Met hods 

The Four th -Order  Runge-Kut ta  methods a r e  amongst those w h i c h  

p r o v i d e  the g r e a t e s t  a c c u r a c y  p e r  u n i t  o f  computa t iona l  e f f o r t .  The 

development o f  the  method i s  a l g e b r a i c a l l y  compl ica ted  a n d  i s  g i v e n  

complete ly  in Stummel a n d  H a i n e r  (1978) w h i l e  G e r a l d  (1980) d e r i v e s  

the Second-Order Runge-Kut ta  a l g o r i t h m  a n d  e x p l a i n s  the  p r i n c i p l e s  

b e h i n d  the methods. A l l  the Runge-Kut ta  methods use the  s i m p l e  

E u l e r  method a s  a f i r s t  est imate.  Improved es t imates  a r e  then made 

u s i n g  p r e v i o u s  es t imates  a n d  d i f f e r e n t  t ime- v a l u e s  w i t h i n  the  t ime 

i n t e r v a l  h. A weighted  a v e r a g e  of  a l l  the es t imates  i s  used to 

The Four th -Order  Runge-Kut ta  methods a r e  the  most c a l c u l a t e  y 

w i d e l y  used because o f  t h e i r  power  a n d  s i m p l i c i t y .  The f o l l o w i n g  i s  

a p a r t i c u l a r  Four th -Order  method w h i c h  i s  commonly used a n d  w h i c h  

i s  i n c l u d e d  in  the  s i m u l a t i o n  p r o g r a m :  

n+l * 

yn+,=y +l( k1+2k2+2k3+k4) 
" 6  

k l  = h f ( t n , y n )  

k 2  = h f  ( t n + i h , y n + i k l  ) 

k 3  = h f  ( t n + $ h , y n + i k 2 )  

(7.32) 

(7.33) 

( 7 . 3 4 )  

( 7 . 3 5 )  

k 4  = hf ( t n + l  , y n + k 3 )  ( 7 . 3 6 )  

A g a i n  the  prob lem g i v e n  in (7.15) above i s  s o l v e d  a s  an ex- 

ample:  dy/dt=f(t,y)=t+y,y(O)=l. T h i s  t ime y(O.1) i s  c a l c u l a t e d  in 

one s tep (h=0.1) whereas y(O.1) was c a l c u l a t e d  in  f i v e  t ime incre-  

ments (h=0.02) u s i n g  the  s i m p l e  a n d  m o d i f i e d  E u l e r  methods above.  

k =h ( t n + ~ n  ) 

=o .  1 ( 0 + 1 )  = 0.10000 

k 2 = 0 . 1  ( 0 . 0 5 + 1  . 0 5 )  = 0 . 1 1 0 0 0  

k 3 = 0 . 1 ( 0 . 0 5 + 1 . 0 5 5 )  = 0 . 1 1 0 5 0  

( 7 . 3 7 )  

( 7 . 3 8 )  

( 7 . 3 9 )  
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k4=0.1 (0.10+1 .1105) = 0.12105 (7.40) 

(7.41) y (0.1 ) =1 .OOOO+-,( 0.10000+2x0.11000+2x0.11050+0.12105) 

=1 .11034 (7.42) 

1 

This agrees to f i ve  decimals wi th  the analy t ica l  resul t  and 

i l lus t ra tes a fur ther  ga in i n  accuracy wi th  less ef for t  than requi red 

by the previous Euler methods. I t  i s  computationally more ef f ic ient  

than the modified Euler method because, whi le four evaluations of 

the funct ion are required for each step rather  than two, the steps 

can be many-fold larger  for  the same accuracy. The simple Euler 

method would have required of the order of 220 steps to achieve 

five-decimal accuracy i n  y(O.1) but each step involves only one 

evaluat ion of the function. The efficiency of the Euler and 

Runge-Kutta methods can be roughly compared by ca lcu lat ing the 

number of funct ion evaluations required for the same order of 

accuracy. I n  th is  pa r t i cu la r  example the Runge-Kutta method is 

approximately 50 times more ef f ic ient  than the simple Euler method 

(220/4). The local e r ro r  term for the Fourth-Order Runge- Kutta 
5 

a lgor i thm (7.36)  i s  O(h ) and the global er ror  would be about 

0 ( h 4 ) .  

Mult istep Methods 

The simple Euler, Modified Euler and Runge-Kutta methods are 

cal led s ingle step methods because they use only the information 

from the last step computed. I n  th i s  they have the a b i l i t y  to per- 

form the next step wi th  a di f ferent step size and are ideal for  

beginning the solution where only the i n i t i a l  conditions are avai la-  

ble. The p r inc ip le  behind a mult istep method is to u t i l i ze  the past 

values of y and/or y l  to construct a polynomial that approximates 

the der ivat ive function and to extrapolate th is  into the next time 

in terva l .  Most mu1 tistep methods have the disadvantage that they 

use a constant step size h to make the construction of the 

polynomial easier. Another disadvantage of multistep methods i s  that 

several past points are required whereas only the i n i t i a l  conditions 

are ava i l ab le  at the s tar t .  The s ta r t i ng  values are generally 
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calculated from the i n i t i a l  conditions using a single-step method 

such as a Runge-Kutta method. 

REAL-TIME OPERAT I ON OF WATER SUPPLY SYSTEMS 

Although numerical models are of d i rect  use for p lanning and 

eventual ly design of the components in a water supply system they 

can equal ly  well be appl ied on-line for  the operation of the system. 

Shamir (1981) described a number of appl icat ions of the connection 

between data loggers and mini  computers for  opt imizing the 

operation of systems of reservoirs and water supply pipes. Cost 

minimization of these operations can be performed on a continuous 

basis (example Ster l ing and Coulbeck, 1975). On the other hand, 

when appl ied of f - l ine the methods can be used to ident i fy  shor t fa l ls  

i n  the system (Rao and Bree, 1977). 

The telecommunication of reservoir  levels, p ipe pressures and 

flow rates is re la t i ve l y  simple whether i n  analogue or  d i g i t a l  form. 

Although there are problems wi th  the measurement of discharge 

ra te  the accuracy of simple methods i s  s t i l l  probably more than 

adequate to cope wi th  the predicted fu ture demands. Forecasting in 

fact  i s  the most d i f f i c u l t  aspect of the rea l  time simulation. Demand 

patterns may be approximated by Four ier  methods. I t  i s  general ly 

possible to prepare a d a i l y  and weekly demand pat tern on a 

deterministic basis but the introduct ion of p robab i l i t y  makes the 

calculat ions more cumbersome. Growth i n  demand can also be 

included i n  the simulation. 

The simulation program can be used to invest igate a l ternat ive 

operat ing methods. Constraints on resource a v a i l a b i l i t y  such as 

water, power or  manpower can be b u i l t  into the program. Costs can 

be minimized by inc lud ing energy t a r i f f s  and income from water 

sales. Qua l i t y  constraints can also be included. 

COMPUTER PROGRAM TO SIMULATE RESERVOIR LEVEL VARIATIONS IN A 

PIPE NETWORK 

The accompanying computer program w i l l  simulate the var ia t ions 
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i n  water level i n  reservoirs i n  addi t ion to performing a network 

flow balance. 

The program i s  based on the node head correction program i n  

Chapter 2 wi th  an addi t ional  var iab le,  area of reservoir  for  each 

' f i xed  head' or ,  i n  th i s  case, ' reservoir  type'  node. I f  the 

simulation durat ion 1 1  i n  hours and time increment T2 are input,  

for  example 24 and 1 ,  then the heads at each node and water level 

i n  each reservoir  w i l l  be p r in ted  out for  every hour. The actual  

network i terat ions each time in terva l  af ter  the f i r s t  should be 

minimal since the network flows are balanced i n  the f i r s t  i terat ion 

and only unbalance due to reservoir  level changes which w i l l  have 

to be corrected a t  subsequent time in terva ls .  Although drawoffs are 

time-fixed i n  the present program, they could be  al tered at  pauses 

i n  the runn ing  or  inserted i n  equation form. 

The output, namely level var ia t ions,  could be used to estimate 

required reservoir  depths (us ing t r i a l  reservoir  surface areas) and 

in  fact to see at which reservoir  locations the storage i s  most 

100  e / s  
R e s .  
\ 

A = 100m2 

H, = lOOm 

Fig.  7.5 System for continuous simulation example 
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r e q u i r e d .  D a t a  r e q u i r e m e n t s  a r e  s i m i l a r  t o  t h e  a n a l y s i s  p r o g r a m  

w i t h  t h e  f o l l o w i n g  a d d i t i o n s .  

I n  the  f i r s t  d a t a  l i n e  a f t e r  t h e  name, t h e  s i m u l a t i o n  d u r a t i o n  

and inc remen t  in h o u r s  i s  a d d e d  a t  t h e  e n d  o f  t h e  l i n e .  In t h e  

p i p e  d a t a ,  t h e  f i r s t  p i p e s  s h o u l d  b e  f r o m  t h e  v a r i o u s  r e s e r v o i r s  

w i t h  the  s u r f a c e  a r e a s  o f  t he  up -s t ream r e s e r v o i r s  in s q u a r e  

metres g i v e n  a t  t h e  e n d  of t h e  p i p e  data l i n e s .  In o r d e r  to  d i s p l a y  

the  r e s e r v o i r  l e v e l s  in the  b i g g e s t  r e s e r v o i r  i t  i s  necessa ry  to h a v e  

a s u p p l y  p i p e  f rom a pseudo  f i x e d  head ,  v e r y  l a r g e ,  r e s e r v o i r  to 

r e p r e s e n t  a pumped  s u p p l y  f e e d i n g  i n t o  the  a c t u a l  b i g g e s t  l eve l  

r e s e r v o i r  in the  d i s t r i b u t i o n  system. 
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Computer program for umtinwus simu 
raservoirr 

l @  

28 

38 
48  

68 

78 

80 

90 

95 
180 

183 
188 

58 

118 
12e 
130 
148 
142  
145 
158 

TUPIIT I * _... -. -- 
G = 9 . 8  ! 32 IF FT-S UNITS 
DISP 'NPIPES,NNODES*NRES,ERc 
, OftRCY f .- TOPHn, SIHLNh, DThm i 
INPUT Nl,N2,N3rH3,F,H(l),TII 
T2  
FOR J=l TO N l  ! FIXED HEADS 
YUHBERED FIRST 
DISP mNODE1+,NODE2-.L~~D~,IN 
T L H ~ . Q ~ ~ ~ ~ , A ~ I ~ F O R F H U S ~ ~  
I F  J<=N3 THEN 188 
INPUT K<J),LCJ),X<J),D<J>,H2 
> 62 

INPUT K<J),L(J>rX<J),D<J),H2 
,QE,A<KCJ>) 

GOTO i r e  

H<L<J))=H2 
PCL<J))=QZ 
F<J)=F 
NEXT J 
PRINT L I  
FOR T3=0 TO T1 STEP T2 
FOR Il=l TO 58 ! MAX ITN8 

21 
22  
23 

2 3  
22  
23 
2 3  
23 
23 
2 4  
2 4  
24 
2 4  
24 
2 4  
2 4  
2 4  
2s 
26 
27 
2E 
25 

31 
32 
3 3  

38 

G/F /X<  J) > 
12 NEXT J 
13 IF. 11>i THEN 258 
14 FOR 101 TO M J  
15 H<I)=H<I)-P<I>/A<I)%T2?3608 
16 FOR J=l TO N1 
18 I F  K < J ) = I  THEN 246 
18 I F  LCJ)=I THEM 242 
11 GOTO 249 
12 H<I)=H<I)+QCJ)/ACI>%T2%3608 
i3 GOTO 249  
16 H(I)=H<I)-Q<J)/~<I)ST2tJ688 
I7 GOTO 249 
18 NEXT J 
19 NEXT I 
i8 FOR I=N3+1 TO N2 
i8 R=-P<I> 
0 s=0 
t0 FOR J=1 TO N l  
10 I F  K < J ) < > I  THEN 330 
18 RoR-QC J) 
.0 SrS+Q<J)/<H<K<J)>-H(L<J,)) 
!8 GOTO 368 
10 I F  L<J)C>I THEN 360 

lation of pipe network with 

346 

360 
378 
388 
390 
480 

358 

418 
428 
448 

458 
468 

478 

488 
485  
498 

p=R+O < .I > 
S=S+Q<J>#LH<K<J>}-H(LCJ,S? 
NEXT J 
HLI>=H<I>+E*R/S 
I F  ABS<2tR6)<=V THEN 40@ 
V-ABSCE?R,S) 
NEXT I 
YF V<H3' THEN 440 
NEXT I1 
PRINT ' N+ N- X<H) D<M> QM 
3 / S  H2M"iTS 
FOR J-1 TO N l  
PRINT USING 478 i V < - l > a L < J : ' ,  
X<J>,D<J),Q<J),H<L<J,) 
IHAGE DDD,DDDIDDDDU*DD.DDD.D 
D.DD0,DDDQD.D 
NEXT J 
NEXT T 3  
END 

NETUORK NAME? 
TESTRES 
NPIPES,NNODES,NRES,ER~,OARCYf~lO 
PHriSlMLNh,DTh? 

H O D E ~ + , N O O E ~ - , L D , D R ~ I N T L H ~ ~ ~ ~ D ~ ~  

1>2>3088#, 15890, .8S# 180 

~ADEFORFHUS? 
2,3,1888,  .18,78~ . 1 ~ 2 0 8  
NODEl+,NODE2-,L~,D~~XNTLHZ,Q2r3s 
, ADEFGRFHUS? 
1r3,2080, . 2 * 7 8 ,  . 1  

3,3r2r. i r .e2r1e0.3r1 

, AnEFORFHUS? 

NOOE1+rNODE2-rLn,Dn,INTLH2,Q2~3~ 

PIPE MET ANRL BY NODE HERD CORR 

TESTRES 
N+ N- X < M >  D < k >  QH3/S H2H 8 

1 2 3009 ,158 013 89.3 
2 3 ism .i8e ,841 63.2 
1 3 2888 ,286 ,859 63.2 

N+ N- X<H> O<W> BM3/S H2H 1 
1 2 3808 .158 ,013 88.6 
2 3 1800 ,188 .841  63 .2  
1 3 2800 .208 .859 63.2 

N+ N- XCH) O<M> Q H 3 4  H2M 2 
1 2 3808 150 ,813 88.8 
2 3 1800 ,180 . a41  62.1 

N+ H- X<M> D<H> QM3/S H2M 3 
1 2 3800 .158 813 8 7 . 3  
2 3 1880 .188 841 62.1 
1 3 2800 .288 .859 62.1 

i 3 2009 .200 .cis9 62.1 
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CHAPTER 8 

UNSTEADY FLOW ANALYSIS BY R I G I D COLUMN METHOD 

RIGID WATER COLUMN SURGE THEORY 

Transients i n  closed conduits are normal ly classed into two cate- 

gories: slow motion mass osc i l la t ion of the f l u i d  which i s  referred 

to as surge, and r a p i d  change in  flow accompanied by e last ic  

s t ra in  of the f l u i d  and conduit w h i c h  is  referred to as water ham- 

mer. For slow or  small changes i n  flow ra te  or  pressure the two 

theories y ie ld  simi tar  resul ts.  

I t  i s  normal ly easier to analyse a system by r i g i d  column 

theory than by elast ic theory. On the other hand there are many 

si tuat ions where i t  i s  inaccurate or even dangerous to apply  th i s  

s impl i f ied theory, and water hammer theory must be appl ied.  With 

r i g i d  column theory the water i n  the conduit i s  treated as an 

incompressible -mass, al though the water column i s  free to move 

around bends and through expansions etc. A pressure difference 

appl ied across the ends of the column produces an instantaneous 

acceleration throughout i t s  length. The basic equation re la t i ng  the 

head difference between the ends of the water column i n  a uniform 

bore conduit to the ra te  of change in velocity i s  der ived from 

Newton's basic law of motion, and i s  

(8 .1 ) 
-L dv h = - -  
g dt  

where h i s  the difference in head between the two ends, L i s  the 

conduit length, v i s  the flow veloci ty,  g is g rav i ta t i ona l  accelera- 

t ion and t i s  time. 

The equation i s  useful for  ca lcu lat ing the head r i se  associated 

wi th  slow deceleration of a water column. I t  may be used for  

ca lcu lat ing the water level var ia t ions i n  a surge shaft fo l lowing 

power t r i p  or s ta r t i ng  up i n  a pumping l ine,  or power load 

changes i n  a hydroelectr ic insta l la t ion fed by a pressure pipel ine.  

The equation may be solved i n  steps of A t  b y  computer, i n  tabular  

form or g raph ica l l y .  
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Example 1 

Numerical Analysis of Surge Shaft 

A 100 m long penstock w i t h  a cross-sectional area, A t ,  of 1 m2 

i s  protected aga ins t  water hammer b y  a surge shaft  a t  the tu rb ine ,  

w i t h  a cross-sectional area, A2, of 2 m2 and  an unres t r i c ted  

o r i f i ce .  The i n i t i a l  ve loc i ty  in the condui t  i s  1 m/s and  there i s  a 

sudden complete load reject ion a t  the tu rb ine .  Calculate the 

maximum r i s e  in water level in the surge shaf t  neglect ing f r i c t i on .  

Take At = 1 sec. Then from Equ. 8.1, Av  = -ghA t/L = -9.8h/100 

=-0.098h. By con t inu i t y ,  A h  = A,vAt/A2 = l v / 2  = 0 . 5 ~ .  

t Ah=0.5v h Av= -0 .098h V 

0 -  1 0 . 5  0.5 -0.049 0.951 
1-2 0 .476  0.976 -0.096 0.855 
2-3 0.428 1 .404 -0.138 0 .717 
3-4 0 .359  1 .763 -0.173 0.544 
4-5 0 .272 2.035 -0 .199  0.345 
5-6 0 .172  2 .207 -0 .216 0 .129  
6-7 0 .064  2.271* -0.223 -0.094 

The maximum r i s e  i s  2.27 m, which may be compared w i t h  the 

a n a l y t i c a l  so lu t ion  of 2.26 m. The accuracy of the numerical  method 

cou ld  be improved b y  t a k i n g  smal ler  time i n t e r v a l s  o r  t ak ing  the 

mean v and h over the time i n t e r v a l s  to ca lcu la te  A h  and A V  

respec t ive ly .  The method can r e a d i l y  be extended to inc lude head 

losses, and i s  ca lcu la to r -o r  ienta ted. 

F ig .  8.1 Der iva t ion  of r i g i d  column equat ion of motion 
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DERIVATION OF BASIC EQUATION 

Net b o d y  fo rce  a l o n g  p i p e l i n e  = wAL s i n  0 

= w A ( h  -h ) 
2 1  

Force = mass x a c c e l e r a t i o n  

w ( h  -h -h )A = - ( w / g ) A L  d v / d t  

.*. 
2 1 f  
( h  -h ) = hf - ( L / g ) d v / d t  2 1  

( 8 . 2 )  

( 8 . 3 )  

(8.4) 

SOLUTION OF EQUATION OF MOTION 

The e q u a t i o n  c a n  b e  s o l v e d  a n a l y t i c a l l y  in some cases, o r  b y  

g r a p h i c a l  means (Jaeger ,  1956) o r  n u m e r i c a l l y  ( m a n u a l l y  o r  b y  

c o m p u t e r ) .  

O n l y  the  s i m p l e s t  o f  s u r g e  systems ( c o n s t a n t  c o n d u i t  cross-  

sect ion and n o  f r i c t i o n )  c a n  b e  s t u d i e d  a n a l y t i c a l l y .  T h a t  i s  t he  

r e l a t i o n s h i p s  between v e l o c i t y  and a m p l i t u d e  and t ime  c a n  b e  

d e r i v e d  in a l g e b r a i c  f o r m .  Cons ide r  a s  an e x a m p l e  the  s i m p l e  

U-tube in  F i g .  8.2 w h i c h  i s  d i s t u r b e d  b y  f o r c i n g  the  l i q u i d  up one 

l e g  to s t a r t .  The  e q u a t i o n  o f  mo t ion  f r o m  (8.1)  i s  

d y  d v  - d 2 y  
d t  ' d t  - dtz and s i n c e  v = - 

I n t e g r a t i n g  t w i c e  w i t h  respec t  to t g i v e s  y = cos(  t m ,  
'ma, 

(8 .6)  

a t  t=O, and 
'='ma, 

where  t h e  c o n s t a n t s  o f  i n t e g r a t i o n  a r e  f r o m  

d y / d t  = 0 when t=O. 

mean l eve l s  
Y 

F i g .  8.2 U-tube 



109 

The osc i l l a t i ons  obv ious ly  repeat every  2 n m  which  i s  the 

per iod .  (8.7) 

The ve loc i t y  i s  dy /d t  = -y  s i n  ( t a  (8.8) 
max 

and - _  J2g/L' (8.9) 
"max - 'max 

For the case of a condu i t  of a rea  A lead ing  from a rese rvo i r  

5' 

t 
w i th  constant level  to a surge  shaf t  w i t h  cross-sectional a rea  A 

the re la t i onsh ip  i s  s l i g h t l y  d i f f e ren t .  

h 

- AS - - - 

Surge shaft 

0 

sudden valve closure 

F ig .  8.3 Simple surge  shaf t  

I t  i s  customary to neglect the i n e r t i a  of the water in the surge 

shaf t .  Then f o r  the f low in the tunnel ,  

L *  
Dynamics: - d t + Y = O  

9 
Con t inu i t y :  vA = Asdy/dt 

t 

:. - d v  = 3 d 2 y  
d t  A t  dt2 
g A t  dt2' = 

A . C s  d 2 Y  . .  

(8.10) 

(8.11) 

(8.12) 

(8.13) 

The general  so lu t ion  to t h i s  i s  y=a cos 2nt/T+b s i n  2nt/T(8.14) 

where T = 2 n / v t  (8.15) 

I f  a t  t=O, y=O then a=O 

I f  a t  t=O, v=v then 
0 

Then y= v f i  s in  
0 9 A s  

2 n t  
T 

cos - 

(8.16) 

(8.17) 
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A More Precise Method for Manual Numerical Analysis 

The s imp le  n u m e r i c a l  method i l l u s t r a t e d  s h o u l d  r e a l l y  o n l y  b e  

a p p l i e d  w i t h  v e r y  smal l  t ime increments.  A l a r g e  number  o f  s teps 

may there fore  b e  i n v o l v e d  a n d  the  method i s  more a p p r o p r i a t e  to 

d i g i t a l  computer so lu t ion .  When manua l  methods a r e  employed i t  i s  

suggested the  f i n i t e  d i f fe rence e q u a t i o n s  be  w r i t t e n  in i m p l i c i t  o r  

t ime a v e r a g e d  form.  Thus  the  a v e r a g e  h o v e r  a t ime i n t e r v a l  i s  

used, (h2 + h )/2 to  c a l c u l a t e  Av, a n d  the a v e r a g e  v e l o c i t y  

( v 2  + v )/2 to  c a l c u l a t e  A h  o v e r  each i n  the c o n d u i t  o r  tunne l  

t ime i n t e r v a l .  I t  i s  then necessary to so lve  the  two equat ions  

( d y n a m i c  a n d  c o n t i n u i t y )  s imu l taneous ly  f o r  h2 a n d  v2. A l t e r n a t i v e -  

l y  one may work  in terms o f  f low r a t e  Q i n s t e a d  of v .  The 

f o l l o w i n g  equat ions  a r e  so lved f o r  h2 and Q2. A head loss term, 

i s  a lso  i n t r o d u c e d  f o r  t h r o t t l i n g  a t  the  s u r g e  s h a f t  i n l e t .  The i n l e t  

a r e a  i s  A,, and the head loss term i s  expressed in  terms o f  the  

p r e v i o u s  f low r a t e  a s  a n  i m p l i c i t  s o l u t i o n  wou ld  be  more compl ica ted  

f o r  the  q u a d r a t i c  term. Thus head losses must be  smal l  r e l a t i v e  to 

surge  r i ses .  

namely  1 

1 

he 

Dynamic:  Q2 = Q1- (gAtAt /L ) { (h2+h, ) /2  + hf} 

where he = KQt lQt l / (2gAzi  ) 

C o n t i n u i t y :  h -h =(Q2+Ql)At/2As 
2 1  

(8.18) 

(8.19) 

(8.20) 

2: 
Solv ing  f o r  Q2 a n d  h 

Q, - (  gAt A t /L  ) {  hl + (  Q1 A t/4AS)+KQ, I Q, 1 / (2gAi2 1 
(8.21) 

Q2 - l+gAtA t2/4LAS 

a n d  h2 = hl+(Q2+Q1 )At / (2As)  (8.22) 

Another  use fu l  a p p l i c a t i o n  o f  the  r i g id  water  co lumn e q u a t i o n  i s  

w i t h  water  co lumn separa t ion .  F o l l o w i n g  the  s t o p p i n g  o f  a pump a t  

the ups t ream end o f  a p u m p i n g  l i n e ,  t h e  p r e s s u r e  f r e q u e n t l y  d r o p s  

s u f f i c i e n t l y  to cause v a p o r i z a t i o n  a t  peaks  a l o n g  the  l i n e .  In such 

cases t h e  w a t e r  co lumn beyond the  v a p o u r  pocket  w i l l  dece le ra te  

s l o w l y  and r i g i d  co lumn theory  i s  s u f f i c i e n t l y  a c c u r a t e  f o r  a n a l y -  

s is .  Equ. 8.1 may be  i n t e g r a t e d  tw ice  w i t h  respect  to t ime t to  

determine the  d i s t a n c e  the  w a t e r  co lumn wi  I I t r a v e l  be fore  s topp ing .  



1 1 1  

S i m p l e  o p e n  s u r g e  t a n k  V a r i a b l e  a r e a  s u r g e  t a n k  

T h r o t t l e d  i n l e t / o u t l e t  C l o s e d  s u r g e  t a n k  

D i f f e r e n t i a l  a r e a  s u r g e  t a n k  

F i g .  8.4 T y p e s  o f  s u r g e  t a n k s  
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I f  the pumps stop instantaneously the volume of the vapour  pocket 

beh ind  the water column of leng th  e w i l l  be Q=Aev 2 /2gh where v 

i s  the i n i t i a l  f low ve loc i ty .  

SURGE TANKS 

By b reak ing  a length  of closed condu i t  w i t h  a f ree water sur -  

face, the water hammer pressure  and  surge ampl i tude can be  re- 

duced cons iderab ly .  The use of surge  tanks  f o r  t h i s  purpose i s  

common i n  hydroe lec t r i c  i ns ta l l a t i ons  w i t h  tunnels b u t  not encount- 

ered r e g u l a r l y  in pumped o r  p ipe  systems where the pressures a r e  

grea ter  and  consequently surge  tank  he igh ts  wou ld  be excessive. 

Some shapes of surge  tanks  a re  ind ica ted  in F i g u r e  8.4. Apar t  from 

the th ro t t l ed  and  closed surge  tanks, the h y d r a u l i c  ca lcu la t ions ,  

namely water level v a r i a t i o n s  and  pressures,  can be performed 

a n a l y t i c a l l y  or numer i ca l l y  employing two equat ions.  One i s  the 

dynamic equat ion (8.1) and the o ther  i s  the con t inu i t y  equat ion,  

v A = v3A3=G2A2 = A2dy/dt (8.23) 

where v i s  ve loc i ty ,  A i s  cross-sectional a rea ,  y i s  water depth,  t 

i s  time, subscr ip t  1 re fe rs  to the condu i t  and  2 to the open surge  

shaf t  and  3 to the i n le t .  

1 1  

In the case of th ro t t les ,  the head in the condu i t  cou ld  r i s e  

h ighe r  than the water level  in the surge  shaf t  b y  the head loss 

th rough the th ro t t le .  The loss th rough the res t r i c t i on  cou ld  be  

represented b y  he = K .  cou ld  v a r y  depending 

on whether the f low i s  i n to  o r  out of the opening. General ly the 

th ro t t l e  serves to reduce the water level f l uc tua t i ons  in the surge  

shaft  and  since the head loss i s  out of phase w i t h  the level  

va r ia t i ons  (see F igu re  8.5) i t  w i l l  not increase the maximum head 

i n  the condu i t  i f  not excessive. 

v31v31/2g where K .  
I / o  I / o  

Approximat ions to the damped surges can be ob ta ined b y  a n a l y -  

t i c a l  methods (P ick fo rd ,  1969). 

A l te rna t i ve  methods of a n a l y s i s  of surge sha f t s  a re  g r a p h i c a l l y  

(Jaeger, 1956 and  1977) and  w i t h  the a i d  of c h a r t s  (Rich,  1963). 
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Load rejection 

head loss into surge shaft 

F i g .  8.5 Surge in t h r o t t l e d  s u r g e  s h a f t  

Example  2 

Numer ica l  A n a l y s i s  of Penstock Pro tec ted  w i t h  an A i r  Chamber 

F rom Boy les  law H S = HS 

assuming iso thermal  e x p a n s i o n  
0 0  

(8 .24)  

where h e a d  H i s  a b s o l u t e  i .e. + a tmospher ic  head 

C o n t i n u i t y :  AS = vAAt (8.25) 

Dynamics:  Av = 3 HAt ( r i g i d  co lumn e q u . )  (8 .26)  e 
L = 1000m, Ho = 30m = 40m abso lu te ,  v = 1.5m/s, A= 0.2mZ, 

= l m 3 , A t  = .5s 

t H = -  A V= - .005H V A S=-O.1 v S C 

40 

0 - . 5  
. 5 -1  

- 1 . 5  
- 2  
- 2 . 5  
- 3  
- 3 . 5  
-d 

3 0 + 1 0 = 4 0  - . 2  1 . 3  
4 6 . 0  - .  23 1 . 0 7  
5 2 . 6  - .  2 6  . 8 1  
5 8 . 8  - .  2 9  . 5 2  
6 3 . 5  - .  31 . 2 1  

-. 33  - . 1 2  
6 4 . 5  -. 3 2  - . 4 4  

6 5 .  6:: 

- 

- . 1 3  
-. 1 1  
- .  0 8  
- .  0 5  
- .  0 2  

.01  

. 0 4  

~ 

. 8 7  

. 7 6  

. 6 8  

. 6 3  

. 6 1  

. 6 2  

. 6 8  

Max H = 6 5 . 6  - 1 0  = 55 .6m.  

T h i s  a n a l y s i s  i s  no t  p a r t i c u l a r l y  a c c u r a t e  a s  acce le ra t ions  were too 

g r e a t  to  p e r m i t  a c c u r a c y  w i t h  r i g i d  co lumn theory .  I t  never the less  

demonstrates use of the  techn ique.  
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F ig .  8.6  Numerical a n a l y s i s  of penstock protected w i t h  a n  a i r  

chamber 
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CHAPTER 9 

WATER HAMMER THEORY 

BAS I C WATER HAMMER EQUATIONS 

The fundamental wave equations describing the phenomenon of 

water hammer may be a r r i v e d  at  from consideration of conservation 

of momentum and of mass. The fol lowing der ivat ion i s  f o r  the 

general case of a p ipe incl ined at  any angle to the horizontal and 

f r i c t i on  head loss va ry ing  wi th  the square of the velocity. The 

notation used i s  g iven i n  Figure 9.1. 

pd dx 
2 

Fig.  9.1 Longi tudinal  and cross sections through p ipe 

Conservation of Momentum 

The fol lowing equation i s  der ived from a force-momentum 

balance, but i t  is  possible to der ive i t  s ta r t i ng  from Bernoulli 's 

energy equation. Newton's Second Law of motion i s  appl ied to an 

element of f l u i d  Adx moving i n  the x- d i rect ion (see F igure 9.1). 

The resul tant  force i n  the x-direction equals the r a t e  of change of 

momentum i n  that d i rect ion:  

(9.1 ) pA - (p+*dx)A - W A A c x - W A d x  sin e=-Adx- W dv 
ax 2gd d t  

dv - av av and since -.- - - + -v. (9.2) 
clt at ax 
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the equat ion becomes 

(9.3) 

(9.4) 

ah az wv av (9.5) 
ax a x  a x  g a x  

then W- =% + W- + - - 

(9.6) az 
where a-x =sin 0.  

Hence the momentum equat ion  becomes 

(9.7) 

To account fo r  the d i rec t i ona l  change in head loss w i t h  ve loc i ty  one 

can w r i t e  v l v l  ins tead of v2  : 

In  t h i s  equat ion the ve loc i ty  head v2 /2g  has  been inc luded in the 

to ta l  head h .  One can take  h as the piezometric head p/W + z and 

w r i t e  the momentum equat ion  thus :  

av x v 2  ah + 1 (a” + v-) + - = 0 
ax g a t  a x  2gd 

(9.9) 

General ly the term v a v  / a x  i s  smal l  compared w i t h  a v / a t  and  can 

be neglected, b u t  i t  can be accounted fo r  i n  numerical  solut ions i f  

necessary, e.g. i n  f l e x i b l e  p l a s t i c  p i p i n g .  

Conservation of Mass 

The second d i f f e r e n t i a l  equat ion  ar ises  from con t inu i t y .  The 

di f ference between the r a t e  of mass in f low to and  ou t f low from an 

elemental leng th  of p ipe  i s  equated to the r a t e  of increase of 

storage caused b y  e las t i c  expansion of the p ipe  and  e las t i c  

compression of the water.  

The r a t e  of stress increase in the p ipe  wa l l  i s  (d/2b)d p/a t 

The corresponding r a t e  of s t r a i n  i s  (d/2bE)a p/a t 

and  the r a t e  of increase in diameter i s  (d2 /2bE)ap/a t  

Now A = nd2/4 (9.10) 

aA - nd ad 
a t  2 at 

- .. (9.11) 
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- nd d2 ap 
2 2 b E  a t  

_ -  

The r a t e  of i n c r e a s e  in vo lume o v e r  a l e n g t h  d x  i s  g i v e n  b y  

(9.12) 

(9 .  

- n d 3 d x  ap (9.  
4bE at 

L o n g i t u d i n a l  s t r a i n s  h a v e  been neg lec ted  here.  I t  h a s  a l s o  

3 )  

4 )  

been 

assumed t h a t  l o n g i t u d i n a l  s t ress  w h i c h  w o u l d  a f f e c t  the l a t e r a l  

e x p a n s i o n  d u e  t o  the P o i s s o n ' s  r a t i o  e f fec t  i s  i n s i g n i f i c a n t  a l t h o u g h  

they  c a n  b e  i n c l u d e d  i f  des i red .  

The r a t e  of  i n c r e a s e  in s t o r a g e  caused b y  e l a s t i c  compression of 

w a t e r  i s  

E q u a t i n g  i n f l o w  m i n u s  o u t f l o w  to r a t e  of c h a n g e  of s torage,  

av n d 2 d x  n d 3 d x  ap 
ax 4K 4bE) 

VA - ( V  + -dx)A = (- + - 
' a V + ( L + - ) * = o  d 
1.e. - ax K b E  a t  

A g a i n ,  i f  we p u t  h = p / W  a n d  r e c a l l  az /a t  = 0, we get  

(9.15) 

(9.16) 

(9.17) 

(9.18) 

where  c = 1 /  C - T  p ( -  + -) 

The b a s i c  d i f f e r e n t i a l  w a t e r  hammer equat ions ,  i n c l u d i n g  a f r i c t i o n  

term,  t h u s  become 

-+- ah 1 a v + x v l v l = o  
ax g at 2gd 

a n d  

ah c 2  av - + - -  = o  
at g ax 

O m i t t i n g  the  f r i c t i o n  te rm the  e q u a t i o n s  become 

ah l a v  
ax gat = O 
- + -- 

(9.19) 

(9.20) 

(9.21) 

(9.22) 

The g e n e r a l  s o l u t i o n  to these e q u a t i o n s  i s  
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( 9 . 2 3 )  

X X 
v = v + 2f ( t  - - )  + 2f ( t  + - )  

0 c 1  c c 2  
( 9 . 2 4 )  

which ind ica tes  tha t  pressure and  ve loc i ty  changes a r e  propagated  

a t  speed +c a long the p ipe .  c i s  re fe r red  to as  the water  hammer 

wave ce le r i t y .  

Where l ong i tud ina l  expansion i s  a l lowed fo r  a more accura te  

expression f o r  c i s  

c =I/$- ( 9 . 2 5 )  

5 
where  k = - - p f o r  p i p e  s u p p o r t e d  a t  one end o n l y  

= 1 - p 2  f o r  b o t h  ends  f i x e d  

= 1 f o r  a p i p e  w i t h  e x p a n s i o n  j o i n t s  

p i s  t h e  P o i s s o n  r a t i o  w h i c h  f o r  s t e e l  i s  0 . 3  

E i s  the e las t i c  modulus, (210 000 N/mmZ f o r  s tee l ) ,  

K i s  the b u l k  modulus of f l u i d ,  (2100 N/mm2 fo r  wa te r ) ,  

P i s  the f l u i d  mass dens i ty ,  (1000 kg/m3 f o r  wa te r ) ,  

d and  b a r e  the p ipe  diameter and  w a l l  th ickness respec t ive ly ,  h 

i s  to ta l  head, x i s  distance a long p ipe ,  g i s  g r a v i t a t i o n a l  

accelerat ion (9.81 m/s2 ) ,  t i s  time, v i s  f low ve loc i ty ,  and  A i s  the 

Darcy-Weisbach f r i c t i o n  coeff ic ient  ( X in  B r i t i s h  p rac t i ce  and  f in  

U.S. p r a c t i c e ) .  X i s  a c t u a l l y  a func t i on  of the f low ve loc i ty  as  

ind ica ted  b y  the Colebrook-White equat ion  o r  a Moody d iagram.  I t  

i s  a lso  a f fec ted  b y  unsteady motion b u t  no q u a n t i t a t i v e  assessment 

of t h i s  i s  a v a i l a b l e  

EFFECT O F  A I R  

The presence of f ree  a i r  in p ipe l i nes  can reduce the sever i ty  of 

water hammer cons iderab ly .  Fox (1977) ind ica tes  tha t  the ce le r i t y  

(speed) of an  e las t i c  wave w i t h  f ree  a i r  i s  

(9.26) L m p ( -  + - + - ) 
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For large a i r  contents th i s  reduces to c = (9.27) 

where p i s  the absolute pressure and f is  the free gas fract ion by 

volume. 

c i s  reduced remarkably for  even re la t i ve l y  low gas contents. 

Thus 2% of a i r  a t  a pressure head of 50 m of water reduces the 

ce ler i ty  from about 1100 m/s for  a typ ica l  steel p ipel ine to 160 m/s. 

The Joukowsky water hammer head i s  

(9.28) -C 
A h  =- Lv 

9 

where Av i s  the change in velocity of f low. There i s  thus a large 

reduction i n  water hammer head h fo r  a re la t i ve l y  small f ract ion of 

a i r .  I f  the a i r  collects at the top of the pipe there i s  no reason to 

see why the same equation cannot apply .  Stephenson (1967) on the 

other hand der ived an equation for  the ce ler i ty  of a bore i n  a 

p a r t l y  f u l l  p ipe.  The ce ler i ty  der ived from momentum pr inc ip les is 

for  small a i r  proportions 

c = JgAh / f  (9.29) 

where Ah i s  the head r i se  behind the bore. This indicates a 

ce ler i ty  of 158 m/s for  f = 0.02 and h = 50 m. 

There i s  a school of thought which favours the insta l la t ion of 

a i r  valves i n  pipel ines as a means of reducing water hammer 

overpressures. The intent ion i s  p r i m a r i l y  to cushion the impact of 

approaching columns. Calculations w i l l ,  however, indicate that an 

excessively large volume of a i r  i s  required to produce any 

s ign i f icant  reduction in head. The idea stems from the use of a i r  

vessels to a l l ev ia te  water hammer i n  pipelines. I t  w i l l  be realized 

that a i r  i n  a i r  vessels is under h igh pressure i n i t i a l l y  and 

therefore occupies a re la t i ve l y  smal I volume. Upon pressure 

reduction fo l lowing a pump t r i p ,  the a i r  from an a i r  vessel expands 

according to the equation pUk = constant where U i s  the volume of 

a i r .  The size of a i r  valves to draw i n  the necessary volume of a i r  

at low (vacuum) pressures w i l l  be found on analys is  to be  exces- 

s ive for  large diameter pipelines. 
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METHODS O F  ANALYSIS 

A common method o f  a n a l y s i s  o f  p i p e  systems f o r  w a t e r  hammer 

pressures  used to b e  g r a p h i c a l l y  (Lupton ,1953) .  F r i c t i o n  was 

assumed to b e  concent ra ted  a t  one e n d  of  the p i p e  o r  a t  a few 

p o i n t s  a l o n g  the  l i n e ,  a n d  the  w a t e r  hammer e q u a t i o n s  were so lved 

s imu l taneous ly  w i t h  the  v a l v e  o r  pump c h a r a c t e r i s t i c s  on a g r a p h  of 

h p l o t t e d  a g a i n s t  v ,  f o r  success ive t ime i n t e r v a l s .  T h i s  method i s  

now l a r g e l y  r e p l a c e d  b y  computers e.9.  C h a u d h r y ,  1979. 

The most economical method o f  s o l u t i o n  o f  the  w a t e r  hammer 

e q u a t i o n s  f o r  p a r t i c u l a r  systems i s  b y  d i g i t a l  computer .  So lu t ion  i s  

u s u a l l y  b y  the  method of  c h a r a c t e r i s t i c s  (S t ree ter  a n d  Wyl ie ,  1967) 

w h i c h  d i f f e r s  l i t t l e  in  p r i n c i p l e  f rom the o l d  g r a p h i c a l  method o r  

b y  f i n i t e  d i f f e r e n c e s  (Stephenson, 1966). The d i f f e r e n t i a l  water  

hammer e q u a t i o n s  a r e  expressed in f i n i t e  d i f f e r e n c e  fo rm a n d  s o l v e d  

f o r  success ive t ime i n t e r v a l s .  The c o n d u i t  i s  d i v i d e d  i n t o  a number  

of  i n t e r v a l s  a n d  A t  i s  set e q u a l  to A x/c .  The x - t g r i d  o n  

w h i c h  s o l u t i o n  takes  p l a c e  i s  d e p i c t e d  in F i g .  9.2. S t a r t i n g  f rom 

known c o n d i t i o n s  a l o n g  the p i p e l i n e  a t  t ime t ,  one proceeds to 

c a l c u l a t e  the  h e a d  a n d  v e l o c i t y  a t  each p o i n t  a l o n g  the  l i n e  a t  t ime 

t + A t .  

By a d d i n g  e q u a t i o n s  (9.19) a n d  (9.20)  d i v i d e d  b y  c ,  the p a r t i a l  

d i f f e r e n t i a l  terms c a n  b e  r e p l a c e d  b y  t o t a l  d i f f e r e n t i a l s  a n d  one 

o b t a i n s  

(9.30) 

cX v I v l d t  = o  
29d 

f o r  - dx - - - c : dh - Z d v  - 
d t  9 

(9.31)  

Equs. (9.30)  a n d  (9.31)  may b e  s o l v e d  f o r  h '  a n d  v '  a t  p o i n t  p 

a t  t ime t + A t  in terms o f  k n o w n  h a n d  v a t  two o t h e r  p o i n t s  q 

a n d  r a t  t ime t .  Thus  f o r  qp, dh=h'-h d v = v ' - v  a n d  f o r  r p ,  

dh=h'-h a n d  d v = v ' - v  . The r e s u l t i n g  e q u a t i o n s ,  termed the 

P P 

P q '  P q  

~r ~r 
c h a r a c t e r i s t i c  e q u a t i o n s ,  a r e  

h +hr + c v - v r  + c d t h  v ( v  1 - v  
9 r r q l v q  I 

v +v g h -h - h d t  v , I v r ~ + v q l v q ~  I 

h l  =L -- ~ 

P 2 9 2  29d 2 

v l  = 9 + - q r  - 
D 2 c 2  2d 2 

( 9 . 3 2 )  

( 9 . 3 3 )  
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TIME 

0 0 

Fig .  9.2 x - t Gr id  fo r  water hammer ana lys i s  by 
charac  t e r i  s t ics method. 

At the te rmina l  points,  an add i t i ona l  cond i t ion  i s  usua l l y  

imposed; e i t he r  h i s  f i xed ,  o r  v i s  a func t ion  of a gate opening or 

pump speed. The correct  Equ. (9.30) o r  (9.31) i s  solved 

simultaneously w i t h  the known cond i t ion  to eva lua te  the new h and 

v a t  time t + At. The computations commence a t  known condi t ions 

and a r e  terminated when the pressure f luc tua t ions  a r e  su f f i c i en t l y  

damped b y  f r i c t i on .  

Where a b ranch  p ipe  s occurs ( f low out of p to s )  o r  there i s  a 

change in diameter, then Equs. (9.32) t o  (9.33) should be 

replaced b y  Equs. (9.34) to (9.37): 

h '  = [ hqAq+hrAr+hSAS+(c/g) (Q -Q,-Qs)-(chdt/2g). 
P 9 

(QqIQqI/dqAq-QrIQrI /drAr-QsIQsI/dSAs) ] / ( A  +Ar+As) (9.34) 

qP q 4 4 P d q 1  / q q 

q 

then 8' = Q + ( A  g / c ) ( h  -h'  )-ha Q dt 2d A (9.35) 

QIpr = Qr+(Arg/c) ( hSp-hr)-h Qr lar[  dt/2dr Ar (9.36) 

Q' = Qs+(ASg/c) (h'p-hs)-hQSIQSldt/2dS As (9.37) 
PS 

Where Q i s  f low out of p to r etc. and  Q i s  the f low out of q to 

p etc. 
P r  q 

I t  should be noted tha t  the f i n i t e  di f ference form of the 

equat ions above i s  termed e x p l i c i t  s ince head losses a r e  expressed 
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i n  terms of the velocities at  the previous time in terva l .  Where head 

losses are s ign i f icant  compared w i th  the water hammer heads, an 

impl ic i t  solution may be necessary (Chaudhry and Yevjevich, 1981 ) .  

The l a t t e r  is, however, more complicated as the equations involve 

more unknowns and simultaneous solutions of equations for  every 

point i n  space a re  necessary. The equations also become non-linear. 

A method of overcoming these problems i s  explained i n  Chapter 12. 

VALVES 

At a valve or  other constr ict ion i t  i s  necessary to solve one of 

the character ist ic equations and the valve discharge equation 

simultaneously. A valve acts i n  effect l i ke  a constr ict ion which 

increases head losses. One may therefore enquire why the head 1055 

cannot be treated as for  f r i c t i on  head loss. I t  w i l l  be recal led that 

f r i c t i on  head loss was assumed to be a function of velocity a t  the 

previous point and previous time in terva l .  Unfortunately th i s  method 

becomes increasingly inaccurate (and  unstable) for  increasing head 

tosses and an exp l i c i t  (new time) funct ion i s  general ly required for  

the head loss a t  a constriction. ( I t  i s  however exceedingly 

laborious to account for  a new veloci ty head loss at a pipe branch, 

so i n  the case of network programs a weighted pseudo-implicit 

method has been employed). 

The discharge character ist ic of a va lve can be expressed i n  the 

fo l lowing way: 

Q = C d F A m  (9.38) 

where Q i s  the flow i n  the valve,  H i s  the head loss across the 

valve and Cd i s  a discharge coefficient. F i s  the f ract ional  opening 

of the valve (0 i s  closed and 1 is  f u l l y  open). The discharge 

coefficient i s  often a funct ion of F unfortunately but t h i s  w i l l  be 

accounted for  here by assuming the only va r iab le  i s  F. 

The degree of va lve opening as a function of time i n  the case of 

uniform stem t ravel  or  proport ional  turns of a handwheel i s  

general ly non-linear. For most valves the hole closes more r a p i d l y  

near the end of the t ravel  of the gate. The fol lowing f i gu re  

i l lus t ra tes the proport ional  area open for di f ferent valves as a 

function of time assuming steady tu rn ing  of the handwheel or  actua- 
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tor, ( the actuator can be controlled to close non- l inear ly i f  desired 

and th i s  w i l l  be discussed under chapter 12. 

1 . o  

A 
Azi 

0.8 

0.6 

0 .4  

0.2 

0 

- ( l - x ) s i n  a r c o s  

s i n  ( a r c o s  x!l -. 
/ \  
' I  

G a t e  v a l v e  

/ - \  

S p h e r i c a l  

( 1 -  

. o  B u t t e r f l y  0 . 2  0 . 4  0 .6  0.8 

P r o p o r t i o n a l  r o t a t i o n  o f  h a n d w h e e l  
f r o m  o p e n  t o  c l o s e d  

Fig.  9.3 Proportional areas for some valves 

For gate valves the F - T relat ionship can be approximated by 

a parabol  ic  funct ion : 

F = 1 - ( t /T) '  (9.39) 

I n  general the head loss funct ion can be wr i t ten 

Q = { l - ( t / T ) N I A p m  (9.40) 

where Ho = i n i t i a l  H/Vo' i.e. i n i t i a l  head loss through f u l l y  open 

va lve d i v ided  b y  i n i t i a l  velocity squared. A i s  the p ipe area. 

Solving th i s  and the character ist ic equation at the downstream end 

of a pipe 

dh + s v  + 

P 

X v l v l d x  = 0 (9.30) 
9 29d 
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J 

c . .AD 

( 9 . 4 1 )  

+ z  Q Z  
and h = 

( A  [ 1 - ( t / T ) N ] ) 2 / H o  
P 

( 9 . 4 2 )  

where Z i s  t h e  downstream head,  H i s  t h e  head above Z and h 

i s  t h e  t o t a l  head.  S u b s c r i p t  1 r e f e r s  t o  t h e  u p s t r e a m  p o i n t  

at the previous time in terva l ,  and p to the pipe upstream of the 

valve. t i s  time, T is the closure time of a valve,  t/T i s  the 

proportional operation of the handwheel assuming a constant r a t e  of 

operation and A i s  the open area. 

ACCURACY AND STABILITY O F  FINITE DIFFERENCE SCHEMES 

The water hammer equations are non-linear p a r t i a l  d i f ferent ia l  

equations. As they cannot be solved ana ly t i ca l l y  f o r  most cases, 

numerical techniques are employed. Most ex is t ing methods can be 

c lass i f ied as follows: 

a )  exp l i c i t  f i n i t e  difference methods 

b )  impl ic i t  f i n i t e  difference methods 

c )  f i n i t e  element methods. 

The impl ic i t  method of solution i s  a method whereby a simul- 

taneous solution of a l l  the flow properties is obtained b y  so lv ing a 

matr ix ;  i t s  main advantage i s  that the r a t i o  of space to time 

in terva l ,  &/At, i s  not governed b y  any s t a b i l i t y  c r i t e r i a  and the 

method i s  considered to be stable for  any choice of Ax and At. Most 

previous invest igators considered th i s  to be an advantage. Others, 

however, found that i t  i s  not a lways possible to make pract ica l  use 

of th is "advantage" as fo r  h i g h  rat ios of Ax/At inaccuracy i n  the 

resul ts was h igh.  Impl ic i t  methods are also not convenient for  use 

as one cannot keep t rack of resul ts a t  d i f ferent time periods. 

F in i te  element methods are usual ly  avoided as they are expen- 

s ive to r u n  and accuracy and s t a b i l i t y  c r i t e r i a  can be tedious. 
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Exp l i c i t  f i n i t e  difference schemes have been widely used in  the 

past for  the solution of d i f ferent non-l inear p a r t i a l  d i f ferent ia l  

equations. They d i f f e r  from each other i n  the way they define the 

va r iab le  gradients,  but  they a l l  express the flow properties at  a 

certain time as a function of the flow properties at a previous 

time, thus permi t t ing an exp l i c i t  solution. They are simple to use 

as they use a f ixed regu la r  g r i d  and i t  i s  easier to follow the 

va r ia t i on  of the flow properties along the catchment as the solution 

is performed exp l i c i t l y .  They have been found to be accurate and 

economical when proper ly used. The problems accompanying the 

choice and the use of an exp l i c i t  f i n i t e  difference scheme are, 

however, those of accuracy and s t a b i l i t y .  Choosing the most proper 

scheme and using i t  accordingly is,  therefore, important i n  

obta in ing stable and accurate results. 

Basic Terms Related to Accuracy and S tab i l i t y  for  
Difference Schemes 

Many natura l  systems which are continuous functions can be 

described by d i f ferent ia l  equations. I f  the d i f ferent ia l  equations 

cannot be solved mathematically one usual ly  resorts to numerical 

techniques by approximat ing the d i f ferent ia l  equations to a comput- 

at ional  a lgor i thm using difference schemes. This procedure raises 

two basic questions. "How well i s  the natura l  system modelled by 

the d i f ferent ia l  equations?", and "How well i s  the solution to the 

d i f ferent ia  1 equations represented b y  the computa t iona I a lgor i  thm?" 

I n  the analys is  to follow more attention i s  p a i d  to the second 

question. The f i r s t  question can only be answered by studying the 

behaviour of the natura l  system and comparing i t  to the equations 

appl ied to i t .  Therefore i t  w i l l  be assumed here that the 

d i f ferent ia l  equations approximate the system we1 I .  The difference 

between the d i f ferent ia l  equations and the difference scheme 

approximat ing them i s  cal led a Truncation error  ( T r ) ,  

i.e. Di f ferent ia l  equations = Difference scheme + T r  ( 9 . 4 3 )  

The truncat ion error  can read i l y  be established using Tay lo r ' s  

expansion. There is also a difference i n  the solutions of the two 

schemes which one ca l l s  the Error  ( E ) ,  
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i .e. Solution of Di f ferent ia l  equations = Solutions of Difference 

equations f E ( 9 . 4 4 )  

The exact value of the E r ro r  cannot r e a l l y  be obtained i n  th is  

case as the d i f ferent ia l  equations cannot be solved ana ly t i ca l l y .  We 

say that a difference scheme i s  consistent wi th  a set of Di f ferent ia l  

equations i f  the Truncation error  tends to zero as the space and 

time increments tend to zero, 

i.e. Consistent i f  l im i t  T r  = 0 

as Ax, At + 0 ( 9 . 4 5 )  

We say that the solution of the difference scheme is convergent 

wi th  the solution of the d i f ferent ia l  equations i f  the Error  tends to 

zero as the space and time increments tend to zero, 

i.e. Convergent i f  l im i t  E = 0 

as Ax,At+O ( 9 . 4 6 )  

Numerical Diffusion is the process i n  which the Error  (E) i s  

formed. I t  i s  the development of the t runcat ion error  ( T r )  to the 

e r ro r  (E)  through the numerical technique used. I t  general ly mani- 

fests in the form of an attenuation and spreading of wave fronts. 

I f  computations a t  points distance Ax apar t  are a t  time in terva ls  A t  

then numerical d i f fus ion w i l l  proceed through the system at  a ra te  

Ax/ At. 

Stability and Accuracy Criteria for an Explicit 

Finite Difference Scheme 

Since one i s  deal ing wi th  non-linear p a r t i a l  d i f ferent ia l  equa- 

r igorous proof speci fy ing s t a b i l i t y  t ions (p.d.e 's)  there is no 

c r  i ter i a. 

I n  the solution of a non-l 

Hammer equations i t  was found 

influenced by the values chose 

near set of p.d.e 's l i k e  the Water 

that both s t a b i l i t y  and accuracy are 

for  the space increment (Ax )  and 

the time increment ( At). I n  pa r t i cu la r ,  a c r i t i c a l  r a t i o  of Ax/A t 

i.e. exists for  determining whether a scheme w i l l  r u n  

under stable conditions or  not. The effects of Ax and At on 

s tab i l i t y  and accuracy are summarized i n  Figure ( 9 . 4 ) .  

( Ax/ AtIcr., 
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0 

A 
solution is  
stable - solution is 

unstabl e - 
Accuracy of Solution 
decreases because of 
numerical diffusion + If the difference scheme i s  

convergent for  a fixed ( A X / A t )  
the smaller Ax and A t  the more 
accurate the solution. 

t 

Fig. 9.4 Effect of values on Ax and At on s t a b i l i t y  and 
accuracy for an exp l i c i t  f i n i t e  difference scheme 

From Figure (9.4) one can deduce that the main c r i t e r i a  in the 

selection of Ax and At values fo r  an exp l i c i t  f i n i t e  difference 

scheme are: 

a )  that the scheme sha l l  proceed under stable conditions i.e. 

(9.47) 

Ax A X  
At At c r  

b )  - shal l  be close to (-) to minimize d i f fus ion errors and 

obta in  optimal accuracy. 

c )  The difference scheme sha l l  be convergent. This could be ascer- 

tained b y  runn ing  the scheme w i th  di f ferent A x ' s  and A t ' s  and 

comparing wi th  analy t ica l  resul ts  in a simple case. 

Determining (Ax/AtIcr 

(Ax/At)cr has been shown to be the speed of wave as i t  i s  

propagated. This can be demonstrated b y  considering the method of 

character ist ics 
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The method of character ist ics describes flow i n  the form of 

waves t rave l l i ng  along or  against  the flow at  a specific veloci ty,  

dx/dt .  The fami ly  of curves described by dx/dt i n  the x - t p lane 

are cal led the character ist ics.  The flow properties, veloci ty and 

total depth, i n  the case of the water hammer equations are des- 

cr ibed by relat ionships obtained from the wave equations ( 1  and 2 )  

using the relat ionships of dx/dt. I n  other words, the relat ionships 

der ived describe the flow properties as seen by an observer 

t rave l l i ng  along the flow at  a velocity defined by the characteris- 

t ics. 

I n  the case of the water hammer equations, a wave i s  caused by 

a velocity gradient ,  i.e. change i n  velocity anywhere i n  the flow, 

e.g. shutt ing of valves etc. This wave i s  propagated wi th  or  

against the flow a t  a velocity of 2 c as given by the equation 

dx/dt = 2 c ( 9 . 4 8 )  

As the wave t ravels  i t  propagates information about the velocity 

gradient to di f ferent points i n  the conduit. The concept of 

information propagation by the wave in  time and space can be 

i I  lustrated by considering the character ist ic curves defined by 

equation ( 9 . 4 8 ) .  This i s  i l l us t ra ted  i n  Figure ( 9 . 5 )  

t 

X 

Fig. 9.5 Propagation of information along character ist ics of 
the water hammer eauations 
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I n  F igure 9.5, C1  and C2 are a set of character ist ics described 

by equation (9.48). Suppose that the flow properties, total head 

and velocity are known at points A and 0 ,  xA and xB distances 

from the o r i g i n  at time tl. One can then obtain the flow properties 

a t  a point  R w h i c h  l ies on the same character ist ics as points A and 

B, xR distance from the o r ig in  at  time t . 
The c r i t i c a l  space to time in terva l  ra t i o ,  ( A x / A  t )cr ,  can be 

shown to be the wave speed by considering a central  difference 

scheme for  solv ing the water hammer equations. The scheme i s  

i l l us t ra ted  i n  F igure 9.6. 

Let i represent a space in te rva l ,  and k represent a time inter- 

v a l  as shown in F igure 9.6. The point i n  question, i.e. where the 

flow properties are to be calculated, has the co-ordinates ( i ,  k). 

Information about the flow properties i s  sought from the previous 

time in terva l .  I n  F igure 9.6(a) the t rue propagation speed i s  

smaller than the numerical propagat ion speed whi le in Figure 9.6(b) 

the converse i s  true. Numerical propagation l ines are l ines that 

have a slope Ax/At i n  the x-t p lane while t rue propagation l ines 

have a slope dx/dt  in the x-t plane. I n  F igure 9.6(a) information 

i s  obtained w i th in  the i - I ,  i+ l  range b y  the t rue propagation lines. 

I n  Figure 9.6(b) information i s  sought by the t rue propagation 

l ines outside the i - I ,  i+ l  range. Since information outside th is  

range i s  not propagated b y  the numerical scheme, i t  cannot be 

found and thus i ns tab i l i t y  w i l l  resul t .  

For s t a b i l i t y  of an exp l i c i t  f i n i t e  difference scheme the fol lowing 

must, therefore, hold:  

A 5  >dx 
At - dt 

(9.49) 

This i s  re fer red to as the "CFL condition" af ter  Courant, Fried- 

r i c h s  and Lewy (1956), or  simply the Courant c r i t e r i on  for  s tab i l -  

i t y .  

To minimize d i f fus ion errors as mentioned ea r l i e r  Ax/A t must be 

as close as possible to dx/dt. Using the resul t  in equation (9.48), 

&/At i s  chosen to be equal to the wave ce ler i ty ,  i.e. 

(9.50) 
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t t 

A \ I A ,  . 
\y 

k k 

k-1 - k -  1 

. W X  - * X  
i - I  i ,i+l i - I  i i+l 

- N u m e r i c a l  p r o p a g a t i o n  1 i n e s ;  s l o p e ( A x /  A t )  

- - - - - - - - - - -  T r u e  p r o p a g a t i o n  1 i n e s ;  s l o p e  ( d x / d t )  

Fig .  9.6 Comparison o f  numerical  a n d  theoret ical  p ropagat ion  of 
informat ion in a cen t ra l  d i f ference scheme 

Equat ion (9.50) i s  used to def ine the space and  t ime in te rva l .  

The re la t i onsh ip  ensures tha t  the di f ference scheme i s  run under  

s tab le  condi t ions w i t h  no d i f f us ion  errors.  The so lu t ion  of the 

equat ion i s  f u r t h e r  made more accura te  b y  the choice of smal ler  Ax 

and  a t  A t  i n t e r v a l s  as can be seen from F igu re  (9.4). 
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BAS I C COMPUTER PROGRAM FOR ANALYS 1 NG GRAV I TY L I NE W I TH ONE 

DRAWOFF ALONG THE L INE,  VARIABLE P IPE DIAMETER, NUMBER OF 

INTERVALS AND CLOSURE T IME OF DOWNSTREAM GATE VALVE. 

I n p u t  i s  a s  f o l l o w s :  

L i n e  1 ;  T i t l e  

L i n e  2: P i p e l e n g t h ,  m; C e l e r i t y  m/s; V a l v e  c l o s u r e  t ime, s ;  

Number o f  p i p e  d i v i s i o n s ;  E n d f l o w  m'/s; Number of 

i t e r a t i o n s  ( i n  1 i t e r a t i o n  w a v e  t r a v e l s  1 p i p e  

d i v i s i o n  so At= AL /C) ;  P o i n t  a t  w h i c h  d raw-o f f  

occu rs .  

L i n e  3; D r a w o f f  m'/s ( p u t  0 i f  n o n e ) .  

L i n e  4 etc.; E l e v a t i o n s  in m of each  p o i n t  ( f i r s t  one b e i n g  t h e  

f i x e d  r e s e r v o i r  l e v e l ) ,  (one p e r  l i n e ) .  

L a t e r  l i n e s ;  D iamete rs  o f  e a c h  p i p e  d i v i s i o n  in m (one  p e r  l i n e ) .  

80 N 2 = N l t l  
90 D I S P  DRFtUOFF mA3 

108 FOR J = l  TO N2 
110 P(J?=8 
120 NEXT J 
138 INPUT P ( M 1 )  
1 4 0  D I S P  "ELEVHTIONSm 

158 FOR J=l  T O  N2 
16B INPUT ZCJ 
1 7 0  NEXT J 
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768 NEXT I 
778  STOP 
7 8 0  END 

P I P E  NRME? 
SAMPLE RClN 
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L -. 
4 

t4 0 D E 
1 
i 

&* 
7 

NUDE FLO . M3^S HERO 
1 - . 8 3 8  1 8 8 . 8  
L '2 .El88 327 4 

t4 U 0 E 
1 

4 
tJODE 

1 
3 

7 
L 

L. 

4 
N O D E  

1 

FLU. N3"5 H E R D  
- . @ 3 S  l e e . @  
-.BY9 181.8 
- . 8 8 1  229.5 
8 . 8 0 8  2 3 4 . 1  

FLO. M3"S HEQ@ 
- . a 4 8  1 B 0 . 9  
- . a 8 9  1 8 1 . 9  
- . 1389 185.  2 
8 . 0 8 8  228 .1  

FLO.M3^S HEAD 
- . 0 4 9  1 8 8 . 8  
- . El913 1883.7 
-.El87 182.2 ~ ~~ 

4 8.688 - 2 0 . 3  

1 -.a48 188 .8  
2 -.@I88 9 7 . 7  

t4ODE FLO . M3^S H E R D  

1 
3 

. j  

... - 
4 

t.4 U 0 E 
1 
9 

3 

i - 
4 

HOUE 
1 
2 

. B e 1  -25.8 
B 888 -29.3 

FLcl . M3"S HER@ 
132 
883 

132 
. 8 8 2  

13' 
080 

8 9 . 9  
- 2 3 . 7  

3 .a81 297.2 
4 8 . 8 8 9  286.4 

1 .12Q 1 8 B . 8  
. B e 2  288.9 

NCfUE FLO. M3̂ S H E A D  

'7 
L - 
3 
4 

NODE 
1 
2 

4 
NODE 

1 

7 
I-' 

4 
H0DE 

1 
2 
3 
4 

.@@I1 
E1.889 

FLO. M 3  - 824  
888 

.091 
8 .  B88 

FLU. M 3  
- .824  
- ,  975 
- . 891  
9.L398 21 1 . 6  

FLO. M3*S HERD 
- . 8 2 5  1sa.e  
- . 0 ? 5  199.7 
-.@?5 193.5 
0 .808  286.7 
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3 / s  O.lm 

t 

c =  1000m/s 

L i s t  of symbols in  g r a v i t y  p ipe  water hammer ana lys i s  program 

Symbols 

A ( J )  
C 
D ( J )  
Dt 
D2 
F 
G 
H(J )  
H2 
H3 
H1 
I 1  
I 
J 
J2 
L 
M3 
NS 
N1 
N2 
M1 

P(J 
81 
Q(J  
43  
R ( J  
S(J 
s1 
T 

T1 
v1 
X 
Z (J )  

Area of p ipe  
Ce ler i t y  
Diameter of nex t  section 
Increment in X 
Increment in T 
Darcy f r i c t i o n  fac to r  in H = FXV2/2GD 
Grav i ta t i ona l  accelerat ion,  9.81 
Head 
Dummy v a r i a b l e  
Dummy v a r i a b l e  
Head loss th rough valve/V’ 
Number of i t e ra t i ons  
I t e ra t i on  number 
Node number 
Counter 
Length 

Name 
Number of sections in main  p ipe  
N1 + 1 
J a t  which draw-off  occurs ( a n y  node 
2 to N1) 
Draw -off 
Draw-off from main  p ipe  end 
Flow 
Draw-off b ranch  
P a t  p rev ious  time i n t e r v a l  
H a t  p rev ious  time i n t e r v a l  
P2 /D 
Time in  seconds to c lose ‘mp in p ipe  
l i n e  downstream va lve  
Dummy v a r i a b l e  
Power in  v a l v e  area-closure equat ion 
Length  o f  p ipe  
E leva t ion  

M2-1 
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CHAPTER 10 

BOUNDARY COND I T IONS I N WATER HAMMER 

DESCRIPTION 

The f i n i t e  difference solution of the character ist ic equations 

s tar ts  from known conditions along the pipe at  a specified time. 

The conditions may be steady-state flows and heads as defined 

by the analyst  or as determined from a given f r i c t i on  head loss- 

flow relat ionship together wi th  g iven reservoir  heads at e i ther 

end of the l ine.  After the f i r s t  i terat ion i t  i s  unnecessary to refer 

to the i n i t i a l  flow conditions at  intermediate points but  the end 

conditions should s t i l l  be known. These conditions may also be 

specified by the user, but  i t  i s  these conditions which dictate 

in what way the flows are to va ry .  

Thus i f  va lve closure i s  to be the cause of water hammer, 

the valve opening has to be specified as well as the relat ionship 

between discharge and head loss across the valve.  The  la t ter  can 

be given in equation form and the va lve opening can also be speci- 

f ied as a funct ion of time, or  even controlled by the program 

(termed valve s t rok ing and can be used to l im i t  head r ises) 

(Wylie and Streeter, 1978) .  

Where a p ipe leads to or  from a reservoir ,  the reservoir  head 

i s  general ly specified. This may be at a f ixed level i f  the water 

level does not va ry  much, or  the water level may va ry  as flow 

occurs into or  out of the reservoir .  

Other boundary conditions encountered included changes i n  

pipe diameter, closed end pipes, or  branches for  both of which 

the relat ionship between head and flow may be determined by equa- 

tions such as ( 9 . 3 4 )  to ( 9 . 3 7 )  ( the cross sectional area of a pipe 

beyond the closed end i s  taken as zero). 

Conditional Boundary Conditions 

During the course of computations the physical  l imi ts  to an 

assumption may be encountered. Thus i f  the head computed us ing 

equation ( 9 . 3 4 )  was to be below vapour head of the liquid, the 
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l i q u i d  would vaporize. The head would be unable to drop below 

the vapour pressure so i t  should be set equal to vapour pressure 

and the l i q u i d  assumed to vaporize. The extent of the vapor izat ion 

( the volume) could be computed by ca lcu lat ing the flow r a t e  up- 

stream and downstream of the point  using equations (9.35) or 

(9.36). The increase i n  vapour volume i s  the difference in the 

two flow rates ei ther side of the point ,  mul t ip l ied b y  the time 

increment. Chapter 1 1  elaborates on th i s  type of problem. 

I t  may be that the engineer imposes controls on the system 

to l imi t  flow rates or pressures. Control valves can be used to 

l imi t  maximum flow rates, or  pressures. The use of control valves 

and other forms of water hammer protection, e.g. surge tanks, 

non-return valves and a i r  vessels i s  described la ter .  

Spring loaded release valves can be set to discharge at a 

specified ra te  when the pressure against them exceeds a preset 

f igure.  This condition can be programmed as w e l l  as the discharge- 

head relat ionship through the open valve. A fur ther  disadvantage 

of the rup tu re  disc (Fig.10.1 b )  i s  that the l i ne  could d ra in  af ter  

i t  has opened, unless there i s  also a control va lve on the Tee. 

Both above methods requi re the head to increase before they oper- 

ate, and by that time i t  may be too late to protect other points 

i n  the pipe system. There are many control valves which operate 

on th i s  direct  p r i nc ip le  e.g. Figure 10.1~.  On the other hand, 

there are p i l o t  operated valves which could commence opening 

on sensing the f i r s t  downsurge, e.g. Figure 10.le. I n  such cases 

a sub-program i s  required to check the operat ing condition of 

the valve.  

I t  should be noted that pressure reducing valves, or  in fact 

any constriction i s  l i ab le  to cause cav i ta t ion downstream i f  the 

cav i ta t ion number i s  too h igh.  The cav i ta t ion index i s  generally 

of the form 
P -P 

P -P 
K = -  d v  

u d  
( 1 0 . 1  1 

where P i s  pressure and subscript d refers to downstream, v to 

vapour and u to upstream. Depending on the va lve design, values 

as low as 0.3 are possible before the onset of cavi tat ion.  I f  cav i -  

tat ion occurs, vapour bubbles and gas release may occur down- 

stream which actual ly  reduce the water hammer wave celer i ty.  
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This can i n  tu rn  reduce the downsurge downstream i f  the va lve i s  

closing, which in tu rn  provides a s tab i l i z i ng  character ist ic to the 

valve.  On  the other hand, cav i ta t ion erosion of pipework i s  a 

troublesome phenomenon to be avoided. 

WATER HAMMER PROTECTION OF PUMPING LINES 

The pressure t ransients fo l lowing power f a i  lure to electr ic motor 

d r i ven  pumps a re  usual ly  the most extreme that a pumping system 

w i  I I experience. Nevertheless, the pver-pressures caused by s ta r t i ng  

pumps should also be checked: Pumps wi th  steep head/flow 

character ist ics often induce high over-pressures when the power i s  

switched on so a wave w i th  a head equal to the closed va lve head 

i s  generated. By p a r t l y  c losing the pump del ivery  valves du r ing  

s tar t ing,  the over-pressures can be reduced. 

I f  the pumps supply ing an unprotected p ipe l ine are stopped 

suddenly, the flow w i l l  a lso stop. I f  the p ipe l ine p ro f i l e  i s  re la-  

t i ve l y  close to the hyd rau l i c  grade I ine, the sudden deceleration of 

the water column may cause the pressure to drop to a value less 

than atmospheric pressure. The lowest value to which pressure could 

drop is vapour pressure. Vaporization or  even water column 

separation may thus occur at peaks along the pipel ine.  When the 

pressure wave i s  returned as a posi t ive wave the water columns 

w i l l  re jo in  g i v i n g  r i s e  to water hammer over-pressures. 

Unless some method of water hammer protection i s  instal led,  or  

f r i c t i on  p lays  a s ign i f icant  ro le  in reducing water hammer pressures 

before posi t ive re tu rn  surge occurs, a p u m p i n g  p ipe l ine system may 

have to be designed for  maximum water hammer overhead equal to 

cv / g  (termed the Joukowsky head).  In fact  t h i s  i s  often done w i th  

high-pressure l ines where water hammer heads may be small i n  

comparison wi th  the pumping head. For short l ines th i s  may be the 

most economic solution, and even i f  water hammer protection i s  

insta l led i t  may be prudent to check that the ul t imate strength of 

the p ipe l ine i s  suf f ic ient  should the protect ive device f a i l .  

0 

The philosophy behind the design of most methods of protection 

against water hammer is s imi lar .  The object i n  most cases i s  to 

reduce the downsurge i n  the p ipe l ine caused b y  stopping the 



139 

Screw - down t o  preset 
s p r i n g  load 

Isolating valve 

dh a .  Spring loaded r e l e a s e  b. Rupture disc 
valve 

e A c c u m u l  ator 

c. Pneumatically loaded 
re1 ease valve 

Valve e.g. sluice valve 
Electric motor 

actuated contact 

d .  Electrically operated valve 
(opening and closing) 

Needle control 

Piston seal 
, valve 

Non return 
valve 

e.  Self actuated pi lot  controlled valve 
could be opened during the downsurge 

Fig. 10.1 R e l e a s e  valves 
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pumps. The upsurge w i l l  then be correspondingly reduced, or  may 

even be ent i re ly  eliminated. The most common method of l im i t i ng  

the downsurge i s  to feed water into the p ipe as soon as the pres- 

sure tends to drop. 

S UR 
HYDRAULIC GRADE LINE JAN DELIVERY 

RE SE R H) IR 

I 

3 

Fig.  10.2 Pipel ine p ro f i l e  i l l u s t r a t i n g  sui table locations for 
various devices for water hammer protection 

Suitable locations for var ious protective devices are i I lustrated 

in Figure 10.2. Most of the systems involve feeding water into 

the pipe. Observe that i n  a l l  cases the sudden momentum change 

of the water column beyond the tank i s  prevented so the elast ic 

water hammer phenomenon i s  converted to a slow motion surge 

phenomenon. Part  of the o r ig ina l  k ine t i c  energy of the water col- 

umn i s  converted in to potent ia l  energy instead of e last ic energy. 

The water column g radua l l y  decelerates under the effect of the 

difference i n  heads between the ends. I f  i t  was allowed to deceler- 

ate the water column would gather momentum i n  the reverse direc- 

t ion and impact against  the pump to cause water hammer over-pres- 

sures. I f ,  however, the water column i s  arrested at  i t s  point  of 

maximum potent ia l  energy, which coincides wi th  the point  of m i n i -  

mum k inet ic  energy, there w i l l  be no sudden change in momentum 
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and consequently no water hammer over-pressure. The reverse flow 

may be stopped b y  i ns ta l l i ng  a re f l ux  va lve or  t h ro t t l i ng  device 

at  the entrance to the discharge tank or a i r  vessel, or  i n  the 

pipel ine.  A small or i f ice bypass to the re f l ux  va lve would then 

allow the pressures on e i ther  side to g radua l l y  equal ize. 

Fortunately char ts  are ava i l ab le  for  the design of a i r  vessels 

and for  invest igat ion of the pump ine r t i a  effects, so that a water 

hammer analys is  i s  not normal ly necessary (Stephenson, 1981 ) .  

R ig id  water column theory may be employed for the analys is  of 

surge tank action, and in some cases, of discharge tanks. 

I f  the p ipe l ine system incorporates in- l ine re f l ux  valves or 

a pump bypass valve,  an elast ic water hammer analys is  i s  usual ly  

necessary. The analys is  may be done g raph ica l l y  o r ,  i f  a number 

of solutions of s im i l a r  systems are envisaged, a computer program 

could be developed. Normally the location, size and discharge 

character ist ics of a protect ive device such as a discharge tank 

have to be determined by t r i a l  and error.  The location and size 

of in- l ine or  bypass re f l ux  valves may s im i la r l y  have to be deter- 

mined b y  t r i a l .  I n  these instances a computer program i s  usual ly  

the most economical method of solution, as a general program could 

be developed, and b y  va ry ing  the design parameters methodically, 

an optimum solution a r r i v e d  at. 

\ 

NON-RETURN VALVES 

I n  some si tuat ions the strategic location of a non-return valve,  

or check va lve o r  re f l ux  valve, i s  suf f ic ient  to prevent or  a t  

least reduce water hammer over-pressures. Where water col umn 

separation occurs the insta l la t ion of a non-return va lve down- 

stream of the pocket could prevent flow reversal and the subse- 

quent over-pressures. 

I n  another type of appl icat ion,  water could be drawn into 

the p ipe l ine from the suction reservoir  or  a tank when the head 

in the main pipe drops below the head outside. This water would 

f i l l  the cav i t y  and likewise reduce the return surge. 

Non-return valves are included wi th  conditional statements 

in computer programs. When the flow ra te  i s  posi t ive then an in- 

l ine va lve remains open wi th  minimal head loss. When the flow 
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reverses, or  attempts to reverse the va lve closes. The flow r a t e  and 

head are i n i t i a l l y  calculated us ing equations (9.32) and (9.33). 

Then the flow check i s  made. I f  negative, the flow r a t e  i s  reset 

equal to zero on e i ther  side of the va lve and the head upstream 

and downstream re-compiled us ing equations (9.30) and (9.31) 

respectively. There may be a fu r the r  conditional check fo r  head, 

and i f  the upstream head i s  less than vapour head, i t  i s  reset and 

the upstream flow recalculated. 

The use of of f - l ine non-return valves wi th  discharge tanks i s  

i l l us t ra ted  i n  F igure 10.3. 

Fig. 10.3 Discharge tank 

I n  p r i nc ip le  many forms of water hammer protection fo r  pumping 

l ines operate s im i la r l y .  That i s  they discharge l i q u i d  in to  the 

p ipe l ine when the pressure in the l i ne  drops af ter  a pump t r i p .  

This f i l l s  the potent ia l  vacuum o r  a t  least reduces the downsurge. 

When the (pos i t ive)  water hammer wave then returns from the f a r  

end of the l i ne  i t  w i l l  be reduced in amplitude correspondingly. 

The types of protection which operate thus include a i r  vessels, 

pump bypasses wi th  non-return valves, f lywheels on pumps, 

discharge tanks and in-I ine non-return valves. Surge tanks operate 

on a s l i gh t l y  di f ferent pr inc ip le ,  i.e. they of fer  a continuous 

insulat ion effect protecting the p ipe l ine beyond them against  

over-pressures. The ana ly i s  of var ious types of surge tank i s  

described b y  Rich (1963). 
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AIR VESSELS 

A i r  vessels are often used to cushion water hammer over-pres- 

sures or  to feed water in to  the low pressure zone created b y  stop- 

p ing  pumps. They are also used to balance flow on reciprocat ing 

pump systems. A i r  vessels general ly contain a i r  a t  the operat ing 

pressure of the adjacent pipel ine.  They are connected to the pipe- 

l i ne  v i a  a p ipe which may have a constriction. This outlet constri- 

t ion w i l l  reduce the volume of water forced from the a i r  vessel into 

the pipe when a low-pressure zone i s  created in the pipe. This 

constr ict ion has the disadvantage that pressures in the p ipe are 

lower af ter  the pump t r i p  than without the constriction. 

The a i r  vessel outlet could also have a non-return va lve incor- 

porated i n  the outlet to reduce backflow when the posi t ive surge 

occurs. This prevents the re tu rn ing  water column gather ing 

momentum and reduces the volume of a i r  needed to cushion the f i na l  

maximum re tu rn  flow. The most ef f ic ient  re tu rn  flow i s  usual ly  a 

rest r ic ted bypass p ipe around the discharge non-return valve. ,This 

lets back some flow but also acts as a constr ict ion or throt t le.  The 

optimum combination of a i r  vessel capaci ty,  i n i t i a l  a i r  volume, 

outlet size and in le t  size must be found by t r i a l .  There qre charts 

ava i l ab le  for  pre l iminary selection of a i r  vessel size (Stephenson, 

1981; Thorley and Enever, 1979). 

ff 

A i r  Vessel Equations 

The a i r  i n  the a i r  vessel, on release, expands i n  accordance 

wi th  the laws of physics. The expansion is usual ly  in-between 

isothermal (PS = constant, where P i s  absolute pressure and S i s  

volume) and adiabat ic  (PS le4  constant) .  The re la t ionship generally 

adopted i s  PSlm2 = constant. (10.2) 

The increment 

ui ty equation 

dS = (Q2-Ql)dt 

where Q2 is  the 

vessel connection 

time period, d t .  

i n  volume of a i r ,  d S  is obtained from the contin- 

(10.3) 

discharge r a t e  i n  the p ipe l ine beyond the a i r  

and 8, before the a i r  vessel, averaged over the 
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The change i n  pressure head i n  the a i r  vessel over the t i m e  dt 

can be calculated from the a i r  expansion. The head i n  the p ipe l ine 

adjacent to the a i r  vessel i s  calculated by subtract ing the head 

loss i n  the connecting pipe or  bypass, (depending on whether flow 

is out or  i n ) .  The new discharge rates i n  the p ipe l ine are then 

ca I cu lated using the respective character ist i c  equations 

( 1 0 . 4 )  

Qi=Qr+(Ag/c) ( h ’ -hr ) - XQr 1 Qr I dt/2dA 

where q i s  an upstream point ,  r i s  a downstream point  and the 

pr ime’ refers to the new values. 

(10.5) 

1 
and Q2 over the time in te rva l ,  and not the i n i t i a l  values. This i s  

an impl ic i t  solution and would mean the above equations would have 

to be i terated a few times to obtain the discharge rates at the end 

of the time in terva l .  

I f  dt i s  large i t  may be necessary to use the mean values of Q 

COMPRESSOR 

WATER 

THROTTLED 
INLET 

Figure 10.4 A i r  Vessel 
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CHAPTER 1 1  

WATER COLUMN SEPARATION 

I NTRODUCT I ON 

Water cannot tolerate a pressure less than i t s  vapour pressure, 

which i s  a funct ion of the temperature but  i s  only a few metres 

absolute head. When the pressure i n  a water column i s  reduced, for  

instance b y  stopping a pump, the pressure may reduce to below 

atmospheric and to the vapour pressure of the water. The inherent 

energy then no longer converts to s t ra in  energy bu t  k ine t i c  energy. 

The head may not drop low enough to stop the water column so that 

downstream of the cav i t y  i t  proceeds, a lbe i t  a t  a lower velocity, i n  

the same direct ion as i n i t i a l l y ,  creat ing a cav i t y  in the conduit 

between the pump and the water column. 

The cav i t y  i s  vacuous bu t  contains water vapour and some a i r  

which w i l l  come out of solution due to the lowering of the pressure 

i n  the water. I t  i s  also possible that a i r  w i l l  be drawn i n  through 

a i r  valves on the l i n e  or even through the pumps. This a i r  has a 

l imi ted elast ic effect i n  cushioning the pressure drop and 

subsequent r i se  on re tu rn  of the water column. I t  is  general ly 

found, however, that the mass of a i r  i s  too small to have a 

noticeable effect i n  reducing the subsequent water hammer pressure 

r ise.  

The form of the cav i t y  created by the drop i n  pressure i s  time- 

dependent al though the total volume can be computed accurately 

us ing mass balance and even the r ig id  column equations in some 

cases. I t  i s  often suf f ic ient ly  accurate to assume the cav i t y  occu- 

pies the f u l l  cross sectional area of the p ipe and the effective 

length can thence be determined a t  any time i f  the volume i s  

known. I n i t i a l l y  the cav i t y  occurs i n  the form of bubbles dispersed 

across the section of the conduit. The bubbles r i s e  to the top of the 

section and may also t ravel  longi tud ina l ly  before coalescing to 

create a pocket. I n  fact i t  i s  only i n  steep pipes that the interface 

is sharp, and i n  longi tud ina l  pipes the cav i t y  or  vapour pocket 
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spreads longi tud ina l ly .  A bore may t ravel  up the l i ne  to spread the 

cav i t y  l a te ra l l y .  I f  the cav i t y  spreads over more than one 'node', 

water hammer calculat ions are complicated bu t  often the cav i t y  can 

be imagined as occuring i n  separate pockets at nodes (see Mart in ,  

1981 1 .  

Spreading o f  Cavity 

i ne 

F igure 1 1 . 1  Shape of cav i t y  

The mechanics of water hammer accompanied b y  column separa- 

t ion can most read i l y  be visual ized us ing the graphica l  method, 

(see Fig.  11.2) .  

Whether the graphical  method or  a computational method i s  

employed, a check is made at  each stage to ensure the head does 

not drop below vapour pressure head. Once i t  does, a subroutine i s  

entered sett ing i t  equal to vapour head and accumulating a volume 

of vapour pocket by adding A S = A V  A dt to S each time step, where 

AV is  the difference in downstream and upstream velocities. 

COMPUTATIONAL TECHNIQUE FOR COLUMN SEPARATION 

The method of handl ing water column separation or  vaporization 

numerical ly is to an extent a process of t r i a l .  At any time in terva l  

head and flow may f i r s t  be computed assuming cont inu i ty  at each 

point ,  that i s  inf low equals outflow. The head is computed without 
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heed to separation. I f  the resul t ing head i s  less than vapour 

pressure head, i t  can be set equal to vapour head, e.g. - + 1 m 

absolute or -9 m gauge head. I f ,  however, there i s  an a i r  va lve on 

the 

the 

mass 

ef fec 

wi th  

ine near that point ,  or  even considerable a i r  transported i n  

low, the 'separat ion'  head may in fact be higher.  The a i r  

drawn i n  i s  general ly negl ig ib le  and w i l l  have no cushioning 

when the water columns subsequently re jo in  ( a  comparison 

the size of an a i r  receiver to prevent water hammer w i l l  

reveal t h i s ) .  At the upper l imi t  the head w i l l  approach atmospher- 

IC, 1.e. i t  w i l l  be the elevat ion of the p ipe above datum. 
. .  

The flow rates upstream and downstream of the pocket are now 

recomputed using the respective character ist ic equations and substi- 

tu t ing vapour head for  head at the point. Then the increase i n  

vapour pocket volume over the next time in terva l  i s  computed, A t ( Q o  

- Q i )  where Q. i s  inflow and Q outflow at the point .  

A t a l l y  of the cumulative vapour pocket volume a t  each such 

point i s  maintained du r ing  the successive computations. As long as 

th is volume i s  greater than zero the head must be equated to 

vapour head and the flows each side of the point  computed thus. 

When the vapour pocket reverts to zero (o r  turns negat ive) then 

the head i s  recalculated for  a continuous water column. The vapour 

pocket may collapse between computational time in terva ls ,  in which 

case the head r ises to a lesser extent than would be predicted 

assuming i t  r ises a t  the end of the time in terva l  (compare point  M2 

wi th  M1 i n  Figure 11.2). 

I f  a one-way discharge tank i s  used to reduce water hammer the 

same computational procedure i s  employed. The discharge tank i s  

connected to the p ipe l ine through a non-return va lve and discharges 

only when the head in the p i p e  drops below the tank head. Thus 

re tu rn  flow and vapour pocket collapse are eliminated. The t a l l y  on 

volume of separation i s  thus maintained as for  a vapour pocket bu t  

as soon as i t  attempts to reduce, the non-return va lve prevents th i s  

and the head r ises as for  a water column without separation. 

SIMPLIFIED R I G I D  COLUMN ANALYSIS 

I f  the water column can be assumed to separate at  a known 
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Figure 11.2 Drop i n  head due to pump t r i p  and subsequent 
r i se  i n  re jo in ing of water columns 
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point  and the subsequent downstream head changes a re  small, the 

fo l lowing analys is  w i l l  indicate the extent of column travel  before 

reversal .  The downstream column may be assumed to decelerate 

according to the fo l lowing equation: 

where h i s  the decelerating head, which could be the difference 

between the vapour pressure head i n  the vapour pocket and the 

elevation head of the downstream open end. Fr ic t ion head can also 

be added to h i f  i t  i s  s ign i f icant ,  and i t  w i l l  act i n  an upstream 

direct ion whi le the water column i s  decelerating, and subsequently 

i n  the opposite, downstream (towards discharge end) direct ion when 

the water column reverses. This w i l l  cause a reduction i n  the 

re tu rn  velocity of the water column whereas the fol lowing analy t ica l  

solution without f r i c t i on  w i l l  indicate a re turn velocity equal to the 

o r ig ina l  velocity i n  magnitude: 

In tegrat ing the previous equation wi th  time, we get 

v = v - ght/L (11.2) 

-\ 
0 

here v i s  the constant of integrat ion which i s  the i n i t i a l  flow 

veloci ty.  Now when the column reaches i t s  extremity before revers- 

ing,  v = 0 hence t = voL/gh (11.3) 

In tegrat ing again gives the distance the water column travels 

x = v t-ghtz/2L 

Subst i tut ing for  t a t  v=O gives 

X = v 'L/2gh 
max 

(11.4) 

(11 .5)  

Hence the maximum volume of cav i t y  i s  Ax = ALvo2/2gh 
max 

(11.6) 

Rising Mains 

Along gent ly r i s i n g  pumping pipel ines the vapor izat ion may 

occur along a considerable length of pipe. The spreading of the 

vapour pocket f ront  w i l l  occur i n i t i a l l y  as fast as an elast ic 
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wave, but  the subsequent r e f i l l i n g  w i l l  be slower owing to the 

addi t ional  ' e l a s t i c i t y '  i n  the vapour pocket. 

I n  the fo l lowing analys is  the magnitude of the vapour pocket 

formed in  the r i s i n g  length of p ipe l ine i s  evaluated i n  equation 

form. The cross sectional area occupied by the vapour i s  shown to 

be very small i n  re la t ion to the total p ipe cross sectional area. I t  

i s  proved that the vapour pocket i s  r a p i d l y  f i l l e d  b y  surges 

t rave l l i ng  along the p ipe l ine from both ends, and that no water 

hammer pressure r i se  i s  associated wi th  the f i l l i n g  of the pocket. 

To s impl i fy  the analys is  i t  is  assumed that the pipe beyond 

point  C i s  inc l ined at a constant a n g l e  e to the horizontal. Heads 

a re  absolute values, that i s  gauge p lus  atmospheric. 

F igure 1 1  .3 Simpl i f ied pipe p ro f i l e  for  theoretical study 

The velocity a t  any point  x between c and the del ivery  end, 

(see F igure 11.3) a f ter  the i n i t i a l  negative wave has passed, is 

X 
v = v - 9 [ A h  -(x-x )sine]-g[t--] s i ne  

X o c  0 
(11.7) 

The second term on the r i g h t  hand side i s  the veloci ty reduction 

caused by the i n i t i a l  negative surge, w h i l e  the last term is the 

deceleration due to g rav i t y .  The cont inu i ty  equation appl icable i s  

a aA  
- (av )  + - = 0 ax a t  (11.8) 
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1 

F igu re  11.4 Deta i l  a t  surge  f ron t  

where A i s  the cross sectional a rea  of water in the p ipe .  I f  the 

cross sect ional  a rea  of the vapour  ' a '  may be assumed to be smal l  

in comparison w i t h  the to ta l  cross section A, the las t  equat ion may 

be simp1 i f i e d  to 

(11.9) 

from (11.7) av /ax  = 29 sin8/c,  so tha t  (11.9) may be in tegra ted  to 

y i e l d  

( 1 1  .lo) 

Th is  equat ion i l l u s t r a t e s  tha t  ' a '  i s  smal l  compared w i t h  A. 

At the open d e l i v e r y  end the head remains a t  atmospheric head 

ha. 
When the negat ive  wave reaches t h i s  po in t  water i s  forced back 

i n to  the p ipe .  A surge t r a v e l s  back a long  the p ipe ,  f i l l i n g  the 

vapour pocket. In order  to s tudy  t h i s  surge let  the ana lys t  t r a v e l  

w i t h  the surge, a t  ce le r i t y  c . App ly  momentum p r i n c i p l e s  to the 

f ree  body of water shown in F i g u r e  11.4. 

P ( v  +c ) 2  ( A-a)+ pgyl (A-a) = ( v  +c )2AP+PgAhAtPgy2A ( 1 1 . 1 1 )  
1 s  2 s  

Here P i s  the mass dens i ty  of water  and 7 i s  the depth to the 

cent ro id  of the cross section of water.  The ve loc i ty  v2  may be 

expressed in terms of v l ,  cs, a a n d  A w i t h  the aid of the 

cont inui t y  equat ion : 
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(v l+cs ) (A -a )  = ( v  +c )A 
2 s  

(11.12) 

S ince  (A -a )  i s  v e r y  n e a r l y  e q u a l  to A, y ( A - a )  i s  n e a r l y  e q u a l  
1 

to y A. S o l v i n g  t h e  l a s t  two e q u a t i o n s  f o r  c 
2 

c e m  a 

=r 2 s ine ( t - )  

(11 .13) 

(11 .14) 

F o r  m n y  p r a c t i c a l  s i t u a t i o n s  t h i s  equa t ion  w i l l  y i e l d  va lues  of c 

between 500 and 1000 m/s, i I l u s t r a t  ing t h a t  i t  i s  o f  t h e  same orde r  o f  

m g n i t u d e  a s  t h e  Mave c e l e r i t y  o f  a f u l  I p i p e .  The v e l o c i t y  change a t  

t h e  surge f r o n t  m y  b e  expressed in terms o f  A h  b y  r e w r i t i n g  (11.12) and 

(11.13) a s  f o l  lows:- 

A[ ( V , + C ~ ) - ( V ~ + C ~ )  I = gAhA/cS 

:. ( v  -v ) = 9Ah 
1 2 c s  

PROGRAM FOR SIMULATION OF WATER HAMMER I N  PUMPLINES 

FOLLOW I NG PUMPTR I P 

The a c c o m p a n y i n g  b a s i c  compu te r  p r o g r a m  f o r  a n  HP-85 

c a l c u l a t e s  w a t e r  hammer p r e s s u r e s  in  a p i p e l i n e  f o l l o w i n g  a 

p u m p t r i p .  The pump i s  assumed a t  t he  u p s t r e a m  end ,  the  p i p e  

d i a m e t e r  i s  c o n s t a n t ,  b u t  f r i c t i o n  i s  accoun ted  f o r .  D a t a  i s  

r e q u e s t e d  i n t e r a c t i v e l y  as f o l l o w s ;  

L i n e  1 :  The name of t h e  system 

L i n e  2: T h e  n u m b e r  o f  sec t i ons  

L i n e  3 :  The n u m b e r  o f  i t e r a t i o n s  

d i v i d e d  i n t o  4 i n t e r v a l s ,  4 

t r a v e l  t ime  f o r  t h e  w a t e r  

L i n e  4:  

L i n e  5 :  

L i n e  6 :  

L i n e  7 :  

L i n e  8: 

p i p e )  

L e n g t h  ( m )  

D iamete r  ( m )  

Wavespeed (m/s )  

F l o w  r a t e  (m’/s) 

F r i c t i o n  h e a d  ( m )  

(e .g.  i f  t he  p i p e  i s  

i t e r a t i o n s  r e p r e s e n t  t h e  

hamrnmer wave  up the  
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L ine 9 

on wards : Elevation of each successive point  ( a l l  in m and s 

un i t s )  . 
The f i r s t  and last elevations should represent the water level i n  

the suction sump and del ivery  reservoir  (both assumed constant). 

The program assumes the pump t r i p s  immediately the simulation 

starts,  and p r i n t s  out heads and flows a t  each point  every inter-  

va l .  

Water column separation i s  accounted for  i n  a s impl ist ic way. 

When the head drops to the elevat ion of the pipe a t  any point ,  or  

t r ies to drop below the elevation, i t  i s  set equal to elevat ion and 

the flow rate both before and af ter  the point are re-calculated for 

the new head. Vapour pocket volume i s  computed by summing the 

difference between the two flows and when i t  turns to zero ( o r  a 

negative va lue)  the head reverts to that indicated by the f i n i t e  

difference equations for  a f u l l  pipe. The spreading o r  longi tud ina l  

movement of vapour pockets are neglected, and no reduction i n  wave 

speed i s  made. Due to t h i s  s impl i f icat ion and the fact  that vapour 

pocket closure can only occur at the computational time, the 

program can overestimate water hammer pressure due to pocket 

collapse. 

The maximum heads at  each head along the l ine are plot ted 

above the p ipe p ro f i l e  a t  the end of the run. 

L i s t  of symbols in program for pumpl ine  water  hammer a n a l y s i s  

A 
B 
D 
D1 
E 
F 
F1 
F2 
F3 
G 
H 
H2 
I 
19 

J 

cross sectional area 
celer i ty of wave 

5 diameter 
sum of l / D  
mass density of l i q u i d  
u n i t  f r i c t i on  
total f r i c t i on  head 
f r i c t i on  term 
f r i c t i on  term 
grav i ta t ional  acceleration 
head 
head term 
i terat ion number 
pr in tout  in terva l  (0 = only summary required, 

p ipe number 
1 = f u l l  l i s t i n g  of heads) 
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K 
L 
M 
M1 
P 
P1 
Q 
8 2  
R 
S 
T 
T2 
U 
X 
x 2  
Y 
2 

number  o f  i t e r a t i o n s  
name 
number  o f  p i p e  i n t e r v a l s  
M + l  
max imum h e a d  
h e a d  te rm in p l o t  
f low b e y o n d  p o i n t  
f l o w  te rm 
f l o w  in f r o n t  o f  p o i n t  a t  p r e v i o u s  t ime i n t e r v a l  
f l o w  b e y o n d  p o i n t  a t  p r e v i o u s  t ime i n t e r v a l  
f low in f r o n t  o f  p o i n t  
t ime increment  
head a t  p r e v i o u s  t ime i n t e r v a l  
l e n g t h  
l e n g t h  i n t e r v a l  
v a p o u r  pocket  vo lume 
e I e v a  t i o n  

Computer Program for  Analysis of Water Hammer a f t e r  Pumptrip 

16 ! WATER HEMWER I N  PIF'ELINES33E' D ~ : J > = I S i l i  

28 l31F A<21),B(21j1F<2]).H(21), 358 nl=nl+l/D<J>*5 
AFTER PUMP TRIP-  WAP 3 4 9  a<.))=. 7s5m1,1 )^2  

P < 2 1 > ~ Q < 2 1 > r R C 2 1 ~ ~ U ~ Z 1 ~ ~ 2 ~ 2 1 3 6 9  NEXT J ' 

) 378 H i 1 > = Z  C fi 1 > +F 1 
38 @ I N  D C 2 8 j . Y C E l > , T ( 2 1 ~ , 5 ( ~ 1 )  3 8 8  FOR J = l  TO M l  ! P I F E  SECNS 
4 8  DISP "PUl'lPST@F P I F E  NAME'; 398 C! iJ>=C!* : l )  
58 TNPIIT I S 395 Tc.J)=Q(.-I> - - - . . - . - 
52 D15.P "HCI. SEWS': 
68 IHPIJT M 
7ci HI=M+l . -  . _  
88 DICP "NO ITERHTIl3NS ' I .  428 P(J )=H<J)  
99 IHF'UT Y 438 NEXT J 

1 8 9  @ I E P  " P I P E  LENGTY.rn". 4 4 8  P P I N T  'WATEPHAtlMER " J L )  
1 1 1 7  T U F ' I I T  S 45fr FOP I = 1  TO Y 

469 I F  I S < l  THEN 518 
478 PRINT a PNT HEfiDmi FLOWIS" i I 
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778 PRINT WEADS e i eew INCF FIE 
UE PlUHP 

786 P l = P < 1 > + 2 6 8  
799 21=2<1~-168 
868 GCLERR 
919 SCRLE l . M l , Z l , P l  
826 XAXIS Z ( l > , l  
839 YAXIS 131ee 
848 MOVE 1,2(1) 
359 FOP J=2 TO Ill 
868 @RAW J , Z ( J )  
878 NEXT J 
€!Re MOVE 1 , P C l )  
Y98 FOP J=2 TO IT1 
988 DRAW J,PCJ) 
918 NEXT J 
928 COPY 
938 STOP 
948 END 
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output 

5 4 

F!4T 

- 
3 
4 
5 

PHT 

4 
5 

PHT 
1 

288 
YEADm 

i 38 
97 

i em 
97 

286 
HEAQm 

138 
141 
I80 
282 
288 

HERDm 
143 

. lee 
FLOms 6 
6.8@@ - . P26 

, 8 3 4  
I032 - e33 

FLOas 7 
e .  eee - .  @(?2 

. e34 
- . # 3 1  - . e33 
FLOms 8 
8.088 

2 141 - . B e 2  
3 195 - . e x  
4 292 - .a31 
5 288 -.e2Es 

PNT HERDm FtOns 3 
1 143 e.eee 
2 197 - . 9 3 4  
3 195 -.8X 
4 193 - . 0 3 4  
5 2013 -.ECG 

PHT HEflDa FLOms 10 
I 250 @.Be@ 
1 197 - . 0 3 4  - 
3 195 - .%32 
4 193 -.El34 
= 268 - . R 3 8  

FGT HEflDn FLOms 11 
I 
‘2 
3 
4 
5 

PN r 
1 
2 
3 
4 
5 

PHT 
1 
2 
3 
1 

256 9.8@@ 
24s .mi  
; 9 5  - . e x  
282 -.a36 
206 -.I338 

245 0 .@B@ 
248 . g e l  
255 -.00J 
Z @ 2  -.@34 
288 - .035 

245 0 . 0 B 0  
252 - . @ 8 4  
255 -.Re3 
252 - . ee l  

W R O n  FLOms 12 

HEFlOm FLOrns 13 

5 208 - .635  
PNT HEFlOmr FLOas 14 

1 259 8 .000 
2 252 -.a04 
3 250 -.@a3 
4 252 - .Be1 ~~ 5 208 .a31 

1 259 @ . e m  
2 z57 .@el 

PNT HEAOm FLOns 15 

~ 

3 250 -.803 
4 la8 .@38 
5 200 .031  

1 254 @ . m e  
2 257 .eel 

4 198 ,038 
5 200 .828 

PNT HEROm FLOns 16 

3 285 . e w  

PNT YEROm FLOlrs 17 
1 254 e . 0 m  
2 243 .832 
3 205 .834 

5 298 .828 
4 287 .032 

PNT HERDs FLOms 18 

3 205 .@31 
4 207 .a32 
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I npu t 

HE 
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CHAPTER 12 

WATER HAMMER AND FLOW ANALYSIS I N  COMPLEX P I P E  SYSTEMS 

THE PROBLEM O F  FLOW ANALYSIS IN COMPLEX PIPE NETWORKS 

I n  many mun ic ipa l  and  i n d u s t r i a l  water d i s t r i b u t i o n  systems 

the pipework fo l lows no r e g u l a r  geometric layout  and  i s  developed 

as the requirements grow. Al though the main  supp ly  p ipe  may 

be predesigned, extensions a r e  of ten of v a r i a b l e  diameter and  

lengths and the d i s t r i b u t i o n  system a t  the ends of these p ipes  

i s  even more complex. S im i la r  problems often a r i se  in pumping 

columns and  i n  fact  the water hammer pressures due to the t r i p -  

p i n g  of a pump can of ten be the most severe pressure cond i t ion  

i n  the p ipe l ine .  

Where h y d r a u l i c  pressures can be h i g h ,  such as down the shaf t  

of a mine, the corresponding p ipe  ve loc i t ies  a re  of ten very  h i g h  

e.g. above 5 metres per second. The h i g h  ve loc i ty  i s  accepted 

as i t  reduces the p ipe  diameter thus sav ing  i n  c a p i t a l  cost. I n  

the case of g r a v i t y  mains the h y d r a u l i c  g rad ien ts  can be very  

h i g h  and  the corresponding p ipe  ve loc i t ies  w i l l  a lso be ve ry  h igh .  

Unfor tunate ly  the water hammer heads associated w i th  changes 

of f low a re  d i r e c t l y  p ropor t iona l  to the f low ve loc i ty  and conse- 

quent ly  an accura te  water hammer pressure  a n a l y s i s  i s  necessary 

o r  else a sophist icated method of p ro tec t ing  the p ipe  system 

aga ins t  water hammer i s  requ i red .  

There a re  three main stages i n  the ana lys i s  of a water re t i cu la -  

t ion  system. Dur ing  the i n i t i a l  p l a n n i n g  stages the p ipes  have 

to be sized and  the corresponding wal I thicknesses selected before 

i ns ta l  la t ion .  Pipe bores should reduce the g rea te r  the pressure 

i n  o rder  to minimize wa l l  thicknesses and  costs. Where there a re  

of f - takes then the diameter of the p ipe  may be reduced. The to ta l  

a v a i l a b l e  head w i l l  depend on the e leva t ion  of the supp ly  po in t  

below the supp ly  rese rvo i r  o r  else on a pumping head. The head- 

losses a long i n d i v i d u a l  sections of the p ipe  can be d i s t r i b u t e d  

between va r ious  lengths of p ipes  depending on f low ra tes .  I n  fac t  
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s i m p l e  l i n e a r  p r o g r a m m i n g  o p t i m i z a t i o n  methods (Stephenson, 1981 ) 

c a n  b e  used to select leas t  cost p i p e  d iameters  i n  such a b r a n c h  

n e t w o r k .  A l t e r n a t i v e l y  d y n a m i c  p r o g r a m m i n g  methods c a n  b e  used to 

se lect  success ive ly  d e c r e a s i n g  d iameters  down deep mine shaf ts ,  

( B e r n s t e i n ,  1982). 

P i p e  s izes a r e  based on a n  i n i t i a l  es t imate  of  d e s i g n  f low b u t  

in  l a t e r  y e a r s  the f lows may be  inc reased o r  a l t e r e d  a n d  i t  i s  

necessary  to a n a l y s e  the  system to de termine the  f l o w s  wh ich  c a n  be  

o b t a i n e d  f rom the  system. F o r  example  where w a t e r  i s  t a k e n  f rom a 

p i p e  f o r  s u p p l y i n g  c o o l i n g  c o i l s  then i t  i s  i m p o r t a n t  t h a t  the 

p r e s s u r e  b e  k n o w n  a t  each b r a n c h  a l o n g  the d i s t r i b u t i o n  p i p e .  As  

the h e a d  a t  each b r a n c h  p o i n t  i s  no t  known e x p l i c i t l y  i t  must be  

c a l c u l a t e d  f rom head loss  e q u a t i o n s .  T h i s  i s  not  a n  easy m a t t e r  a s  

t h e r e  a r e  a number  of  unknowns a n d  i t  i s  o f t e n  necessary to use 

success ive a p p r o x i m a t i o n  methods to de termine the f lows a n d  

pressures  in the  i n d i v i d u a l  p i p e  lengths .  The prob lem may be  

a g g r a v a t e d  b y  c h a n g i n g  f r i c t i o n  f a c t o r s  w i t h  t ime. As the p i p e s  

cor rode o r  s c a l e  the  bores  w i l l  b e  a f fec ted  a n d  the cor respond ing  

f r i c t i o n  losses change.  A l t h o u g h  i t e r a t i v e  s o l u t i o n  of  the Darcy-  

Weisbach f l o w  r e s i s t a n c e  e q u a t i o n  i s  p o s s i b l e  t h i s  degree of  sophis-  

t i c a t i o n  i s  o f t e n  no t  w a r r a n t e d  a s  the  e x a c t  roughness  e f fec t  on the 

h y d r a u l i c  c a p a c i t y  c a n  o n l y  be  es t imated r o u g h l y  a n y w a y .  

The t h i r d  p rob lem in a n a l y s i n g  p i p e  r e t i c u l a t i o n  systems i s  the 

d e t e r m i n a t i o n  of  t r a n s i e n t  w a t e r  hammer pressures  d u e  to c l o s i n g  

v a l v e s  o r  t r i p p i n g  pumps. The w a t e r  hammer h e a d  c a n  b e  severa l  

h u n d r e d  metres i f  the  f low in a p i p e  i s  reduced r a p i d l y  such as 

d u e  to  the  c l o s u r e  o f  a v a l v e .  T h i s  head s h o u l d  b e  a d d e d  on to  the 

s t a t i c  heads  so t h a t  i t  may reduce the  f a c t o r  o f  sa fe ty  o f  the 

system a n d  in f a c t  h a s  been k n o w n  to b u r s t  p i p e s  o r  f i t t i n g s .  Va lve  

c l o s u r e  t imes must  there fore  b e  se lected to  p r e v e n t  water  hammer 

pressures  b e i n g  excess ive  a n d  s imi  l a r l y  p r e c a u t i o n s  h a v e  to be  

t a k e n  to m i n i m i z e  w a t e r  hammer pressures  due to pumps t r i p p i n g .  

Water hammer p r e s s u r e  waves c a n  a l s o  b e  r e f l e c t e d  f rom the ends  of  

b r a n c h  p i p e s  a n d  be  more severe in the b r a n c h  p i p e  t h a n  in the  

m a i n  p i p e  where the f l o w  i s  a l t e r e d .  Since water  r e t i c u l a t i o n  

systems c a n  be  f a i r l y  complex the use of  computers i s  necessary f o r  

a c c u r a t e  a n a l y s i s .  
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The two problems of analys is  of flow i n  pipe networks and 

the calculat ion of water hammer pressures due to changing of the 

flows can be done using one computational approach. The t w o  pro- 

blems have been combined i n  developing a program the basis of 

which i s  described here. The ef for t  i n  feeding data into a comput- 

er for  the var ious analyses i s  thus minimized. 

CONVENT I ONAL METHODS OF NETWORK ANALYSIS 

The standard methods of analys ing flows and headlosses i n  

complex p ip ing  systems w e r e  developed by Hardy Cross i n  1936 

and are s t i l l  used by many engineers on account of the i r  s impl ic i -  

ty ,  the ease of v isual izat ion of the procedure and the poss ib i l i ty  

of doing the calculat ions manual ly instead of resort ing to comput- 

ers. I n  ea r l i e r  chapters these methods and others more computer 

orientated are described. 

Very mathematical methods such as the solution of a set of 

simultaneous equations descr ib ing the flow of headloss re la t ion - 

ships i n  a pipe network have been proposed. An a l ternat ive ap- 

proach i s  to simulate the system using the d i f ferent ia l  water ham- 

mer equations. Start ing wi th  any assumed flows and heads the 

flows w i l l  eventual ly s tab i l ize at t he i r  steady-state values. 

Although s l i g h t l y  more complicated i f  the problem i s  only the 

determination of flow rates i n  closed networks, the fo l lowing proce- 

dure i n  fact i s  ef f ic ient  computationally and i s  considerably en- 

hanced by the ease of supply of data to the computer. The method 

rel ies on the fact  that i f  a va lve or  pump i n  a p ipe network i s  

operated, then af ter  a length of time f r i c t i on  w i l l  damp the elast ic 

waves t rave l l i ng  backwards and forwards i n  the pipe network 

and a steady-state w i l l  emerge. One therefore has the steady-state 

flows and pressures throughout the network. The method can be 

extended to predict  pressure and flow histor ies at every point  

in the system. These are the pressures and flows which w i l l  actual-  

l y  occur a t  any i n te rva l ,  which i s  not the case for the network 

analys is  methods described previously.  Consequently i f  t ransient 

conditions are to be studied the method w i l l  y i e ld  them as well. 
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There have also been many computer programs developed for 

analys ing water hammer pressures i n  pumping mains and pipe 

networks. Although the method of f i n i t e  differences i s  more r a p i d  

for solution of the d i f ferent ia l  equations of f l u i d  motion, the meth- 

od of character ist ics (Streeter and Wylie, 1967) i s  general ly pre- 

ferred as the computations are more s t ra ight forward and can be 

appl ied to va ry ing  boundary conditions more easi ly than the cen- 

t red f i n i t e  difference methods. A l l  the methods s tar t  wi th  the basic 

d i f ferent ia l  equations of cont inu i ty  and momentum, 

(12.1) 

(12.2) 

The symbol h denotes water head ( the sum of pressure head 

and potential head above a specified datum),  v i s  the water velo- 

c i t y  averaged across the cross section of the pipe, d i s  the pipe 

diameter, t i s  time, x i s  distance along the direct ion of f low, 

i s  the Darcy-Weisbach f r i c t i on  coefficient which can va ry  wi th  

Reynolds number, g i s  grav i ta t ional  acceleration and the term 

v l v l  i s  used i n  place of v2 as i t  accounts for  changing direct ion 

of the f r i c t i on  headloss when the flow changes direction. c i s  

the water hammer wave ce ler i ty  which may be shown to equal 

1/J[ P ( l / K  + d / E t ) ]  where P i s  the mass density of the f l u i d ,  K 

i s  i t s  bu l k  modulus, d i s  the pipe diameter, t i t s  wal l  thickness 

and E i t s  e last ic  modulus. For steel water pipes c i s  general ly 

of the order of 1100 m/s but increases for th ick-wal l  pipes. Adopt- 

ing the time-distance g r i d  indicated i n  Figure 12.1 then the ensu- 

ing character ist ic equations g ive the relat ionship between head 

and velocity at known i n i t i a l  or  boundary conditions and those 

at a new point  i n  time. Inva r iab l y  the f r i c t i on  equation i s  used 

in  an exp l i c i t  form, that i s  v i n  the f r i c t i on  term i s  assumed 

to be the v at the previous time in terva l  and previous point  i n  

space. 
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T I M E  

F i g .  12.1 x- t  G r i d  f o r  water hammer a n a l y s i s  b y  cha rac te r i s t i c  

method. 

METHOD OF SOLUT 

S ta r t i ng  w i th  the 

ON OF THE EQUATIONS 

f i n i t e  d i f fe rence form of the d i f f e ren t i a l  equat ions 
d x  
d t  

and subs t i t u t i ng  - = + c  y ie lds  

h b '  - h + p + c ( v  ' - v ) + f v l v l  = 0 ( 1 2 . 3 )  
t g b  t 

where p i s  pumping head, and  the p r ime  ' re fe rs  to new va lues  

a f te r  i t e ra t i on ,  a n d  f = ( A L / D  + k ) / 2 g ,  where losses due to f i t t i n g s  

are  kv2 /2g .  Subscr ipt  b re fe rs  to the bottom (downstream) end and  

t to the top (upstream) end of a p ipe  a l though  these a re  

a r b i t r a r i l y  de f ined as the f low d i rec t i on  can v a r y .  

General ly i t  i s  su f f i c ien t  to use the e x p l i c i t  form of XLv2/2gd, 

i.e. the ve loc i ty  a t  the prev ious  t ime i n t e r v a l  i s  used i n  the f i n i t e  

di f ference forms of the equat ions.  That i s  sa t is fac to ry  p rov ided  

f r i c t i o n  loss i s  smal l  compared w i t h  water hammer head. In some 

s i tua t i ons  t h i s  i s  not the case, fo r  example a p ipe  b u r s t  down a 

shaf t  can r e s u l t  in  a steady-state f r i c t i o n  head loss down the shaf t  

of several  hundred metres. The head loss term k v 2 / 2 g  i s  a lso  

s ign i f i can t  in many s i tua t ions ,  e.g. when the head loss i s  th rough 

a va lve .  I t  is ,  nevertheless,  much eas ie r  from. the po in t  of v iew of 

computations to lump the two head loss terms together. 
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I t  i s ,  on the  o t h e r  h a n d ,  d i f f i c u l t  to so lve  the c h a r a c t e r i s t i c  

e q u a t i o n s  in  i m p l i c i t  form,  i .e. w i t h  the v e l o c i t y  in the  head loss 

te rm t h a t  a t  the  new t ime. I f  t h i s  i s  a t tempted a q u a d r a t i c  expres-  

s i o n  r e s u l t s  a n d  computa t ions  a r e  cumbersome. I n  c h a p t e r  9 the 

h e a d  loss te rm was so lved in i m p l i c i t  fo rm f o r  a s i m p l e  case, i .e. 

w i t h  k n o w n  h e a d  downstream of  a v a l v e .  I n  genera l  the head 

downstream i s  a l s o  a n  unknown a n d  must  b e  o b t a i n e d  b y  s i m u l t a n -  

eous s o l u t i o n  o f  the  head loss /d ischarge e q u a t i o n  a n d  the water  

hammer e q u a t i o n .  A f u r t h e r  c o m p l i c a t i o n  a r i s e s  when there  a r e  

b r a n c h e s  a n d  changes in d iameter  a t  the  ups t ream o r  downstream 

nodes.  The head a t  such a node i s  o b t a i n e d  b y  summat ing the 

e f fec ts  f rom each b r a n c h  b y  e m p l o y i n g  the  c o n t i n u i t y  e q u a t i o n  a t  

the  node. 

I t  s h o u l d  a l s o  b e  noted t h a t  the  answer  w i l l  depend o n  whether  

the  h e a d  loss i s  assumed to b e  a t  the f a r  e n d  or the n e a r  e n d  of 

the  l i n e .  An a v e r a g i n g  p r o c e d u r e  w o u l d  i n t r o d u c e  f u r t h e r  compl i -  

c a t i o n s  and, in a n y  case, concent ra ted  h e a d  losses such a s  v a l v e s  

a r e  u s u a l l y  a t  one e n d  o r  the  o t h e r .  

I n  o r d e r  to a v o i d  many o f  these d i f f i c u l t i e s  f o r  a b r a n c h e d  p i p e  

ne twork  some s i m p l i f i c a t i o n  i s  necessary .  A s e m i - e x p l i c i t  s o l u t i o n  i s  

o b t a i n e d ,  b u t  a degree o f  i m p l i c i t n e s s  i s  i n t r o d u c e d  to s t a b i l i z e  the  

so lu t ion .  T h i s  method i s  sometimes u n s t a b l e ,  b u t ,  a s  s ta ted ,  a 

complete imp1 i c i t  method i s  complex.  A we igh ted  compromise between 

a f u l l y  e x p l i c i t  fo rm a n d  a semi i m p l i c i t  fo rm i s  

f v l v l  = F f v  I v  I + ( I - F )  f v ' ( v b l .  
b b  

vt+?(ht -h lb-p-F f v  b b  I v  1 )  (12.4) 
Then s o l v i n g  (12.3) v b '  = 

1+(  1 - F ) f g  I v b  I/c 

b 
i s  the  d r a w o f f  a t  node b connect ing  i p i p e s  each w i t h  a r e a  A , ,  a n d  

s o l v i n g  f o r  h I 

S u b s t i t u t i n g  i n t o  the  c o n t i n u i t y  e q u a t i o n  ' A . v  . = qb where q 
I bi 

b 

(12.5) 

T h i s  i s  then s u b s t i t u t e d  i n t o  (12.4) to o b t a i n  v e l o c i t y  v b '  i n  each 



pipe leading to b. I t  w i l l  be observed that the exp l i c i t  form of the 

head loss equation i s  not the only form used i n  the above 

equations. Exp l i c i t  solution can lead to serious i ns tab i l i t y  i n  the 

computations i f  the time in terva l  selected for analys is  i s  excessive. 

I n  fact when r a p i d  va lve closure i s  to be considered the numerical 

solutions have been known to become unstable and magnify errors.  

This i s  because the head loss through the va lve or  through the 

pipe i s  based on the veloci ty at the previous time in te rva l  and not 

a t  the new time in terva l .  I n  fact the most accurate method would be 

to take the average flow velocity at the beginning and end of the 

time in terva l .  This would render the equations exceedingly 

cumbersome and quadrat ic  equations have to be solved on an 

i terat ive basis fo r  each node. I n  order to s impl i fy  the procedure 

and adapt i t  to microcomputer solution the above s impl i f icat ion was 

therefore made. The procedure i n  effect adopted a weighted average 

of the previously described pseudo- expl ic i t - impl ic i t  method and a 

pure ly  exp l i c i t  method. 

I t  i s  also assumed that the relevant veloci ty for  head loss 

determination is that a t  the end specified as the 'bottom' or  down- 

stream end of the pipe. Although flow direct ions can change du r ing  

flow var ia t ions the 'bottom end' is  i n  fact  specified as a f ixed 

position b y  the analyst .  

Where water hammer analys is  i s  not important and the program 

i s  used pure ly  fo r  the analys is  and determination of steady-state 

flows i n  a pipe network then damping can be increased by assuming 

a very low or  a r t i f i c i a l  water hammer wave ce ler i ty .  The ce ler i ty  of 

each pipe i n  the system to be analysed i s  defined by the user as 

being i t s  pipe length d iv ided by the selected time in terva l  between 

successive analyses. Thus by selecting a long time in terva l  between 

successive computations the water hammer waves are e l  iminated and 

f r i c t i on  controls the equations. The flows w i l l  therefore r a p i d l y  

converge to steady-state flows. Obviously th is  technique should not 

be used where true water hammer heads are required and i t  may be 

necessary to select a smaller time in te rva l ,  for  example less than 

one second, for  water hammer analyses. 
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BOUNDARY COND I T IONS 

The head at certain input points and discharge points w i l l  be 

f ixed b y  the head i n  a reservoir  and such nodes w i l l  not have the 

head changed i n  the computations. There i s  also the problem of 

very  low heads which may cause water column separation. When for  

instance, a pump i s  suddenly stopped i n  a low-head pumping main 

then the water hammer head i n i t i a l l y  drops and th is  may vaporize 

the water. The program accommodates th i s  effect automatical l y  and 

the head w i l l  not drop below the specified head at  any node. A 

vapour pocket w i l l  therefore grow and diminish i n  size as waves 

t ravel  up and down the pipes. The corresponding water hammer 

head when the water columns re jo in  w i l l  be computed automatically. 

Dis t r ibut ion pipes often have pressure reducing valves or surge 

re l ie f  valves insta l led to ensure no excessive pressure rises. A 

pressure reducing valve can, i n  fact ,  be treated as a reverse 

PUMP. 

The posi t ioning of control valves i n  the pipe network i s  also of 

importance from the point of view of r a p i d  accessibi l i ty  and closure 

i n  times of emergency or for control purposes. Such valves can be 

t i m e d  to close over a specified per iod i n  order to control water 

hammer pressures. I n  the case of automatic control valves they can 

be insta l led to operate when pressures or  flows exceed certain 

l imi ts.  The program can accommodate the opening or  closing of 

valves at  any point  i n  time and the combined opening and closing 

of a va lve i n  the same simulation can be made by imagining two 

valves i n  the same position. 

An appl icat ion of the program to steady-state flows i s  i n  the 

analys is  of flow i n  a re t icu la t ion system for  var ious conditions. 

Although pipes are normally designed on a reasonable load factor 

wi th  selected design flows to meet cer ta in  duties, there are often 

abnormal s i tuat ions to be considered. Where the water ret iculat ion 

system i s  to be used for  f i r e - f i gh t i ng  then h igh  peaks may be 

requi red at  specified points and at the same time specified mini-  

mum pressures w i l l  have to be achieved. I n  such cases i t  can 

be assumed that other loads w i l l  be reduced or  eliminated i n  order 

to achieve the necessary peak flows. 
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300  mm d i a .  

600  m 150 mm d i a .  

250 mm dia. 

( 2 )  X 
( 4 )  H = 0 

Fig.  12.2 Simple p ipe network analysed for flows and heads 

The analys is  of the system for  determining maximum water ham- 

er pressures at var ious points i n  the system i s  also of interest. 

The water hammer pressures may be caused by the t r i pp ing  of 

a pump or the opening or  more probably the closing of a valve,  

or valves, i n  the system. An example of a case which i s  l i ke l y  

to be severe i s  where the pipe supplies water at a h igh  velocity 

down a shaft at a h igh  pressure. For instance the supply to a 

hydraul  i c  turbine may have to be r a p i d l y  control led as electr ical  

load i s  shed. I n  f i gu re  12.5 the resul ts  of such an analys is  are 

plot ted for node number 2 i n  Figure 12.2. The system was i n i t i a l l y  

analysed to determine steady-state heads then the va lve i n  pipe 

2-4 was shut at t = 10 sec (a t  i terat ion 20 using 0.55 i n te rva l s ) .  

The valve was shut uni formly i n  5 seconds. The heads at each 

node were tabulated at specified time intervals.  The control valves 

to such turbines can be adjusted to operate over specified times 

and the closure time can be selected by t r i a l  and error  o r  by 

using an addi t ional  a lgor i thm on the program described here w h i c h  

enables the program to recommend the va lve closure t ime.  

VALVE STROKING 

The reader has been presented wi th  methods of analys ing pipe 
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systems for flows and pressures, both under steady flow conditions 

and for transient conditions. The network analys is  for  flows gives 

ind i rect ly  the diameters required for  the var ious pipes. Water 

hammer analys is  w i  I I then reveal maximum pressures which, in 

turn,  indicate pipe wal I thicknesses. 

Both types of analys is  y ie ld  indirect  answers, i.e. a t r i a l  

and error  approach i s  required. I n  the case of some networks, 

pipes can be sized d i rect ly  using optimization methods. When i t  

comes to water hammer analys is  the direct  design approach i s  

often more d i f f i c u l t  when i t  comes to optimum operation from the 

water hammer point  of view. Thus i f  the engineer i s  confronted 

wi th  a pipe system and i s  required to specify va lve closure times 

he may resort to a t r i a l  and error  approach - requ i r i ng  an analy-  

s is for  each assumed valve closure rate.  

I n  some cases a direct  solution may be obtained for a valve 

closure re la t ionship where pressures are to be maintained wi th in  

specified l imi ts.  The control of f low i n  a pre-determined way i s  

complicated by the fact that flow r a t e  depends on pressure whi'ch, 

i n  turn,  i s  affected by changes i n  flow. For instance, the closure 

of a valve gives r i se  to pressure increases upstream, which i n  

tu rn  can affect the flow ra te  through the valve. 

The procedure of closure of a va lve i n  a pat tern which l imi ts  

pressure rises to set values i s  referred to as va lve stroking 

(Streeter and Wylie, 1967). A mathematical solution to the va lve 

closure t i m e  i s  possible for  s ingle pipes w i t h  or  without f r ic t ion.  

I n  fact the minimum valve closure time i s  yielded as well as the 

ra te  of closure i n  var ious steps. 

For a s ingle f r ic t ionless pipe the minimum valve closure time 

(wh i l e  mainta in ing the head at some point B less than HBmax ) 

i s  obtained wi th  the fo l lowing operat ing procedure. At the com- 

mencement of operations at the discharge end va lve A i s  closed 

uni formly,  such that the head at point  ' B '  along the l i ne  r ises 

i n  the time 2L/c (see F igure 12.3). This i s  assuming 
to HBmax 

i s  less than Ho+cv/g. The actual flow r a t e  through the 
HBmax 
va lve af ter  2L/c seconds may be solved from the water hammer 

equation appl ied to the valve,  A H A  = cAv/g and the va lve dis- 

charge equation V = K 5. 
A 
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Now the closing of the va lve i s  continued at a uniform rate 

maintaining the head at B equal to HBmax. 

Ho 
- 

B A 

Fig.  1'2.3 Maximum head along pipe 

Complex pipe system 

I f  a va lve i s  to be closed a number of p ipe lengths away from 

a point where the head is to be l imi ted, the mathematical relation- 

ship between the cause and effect can become cumbersome. I f  

branch pipes, changes i n  diameter and f r i c t i on  are involved the 

relat ionship becomes even more complicated. For such cases i t  i s  

often simplest to obtain the re la t ionship between va lve closure rate 

at some point ' A '  and head r i se  at a point  ' B '  by t r i a l .  The 

re1 at ionsh i p between AhB and p a r t i a l  va lve closure could be 

computed at  each successive time step. I f  the gradient is too steep 

or too f l a t  the valve closure over the next time in terva l  could be 

adjusted geometrically. 

Thus assume the l ine HBOD i n  F igure 12.4 i s  a target head r ise 

function at  a specified node B. After one i terat ion wi th  an assumed 

t r i a l  va lve closure time T ,  the head HB rises to C. This i s  less 

than expected so the va lve closure could be speeded up by the 

r a t i o  S ( H  D)/S(H C )  where S i s  the slope of the l i ne  i n  Figure 

12.4. The correction to the c losing speed of the va lve could be 

continued each step. 

60 BO 

I t  w i l l ,  however, be found that i f  the time in terva ls  are too 

large o r  the point  B i s  too close to the valve A that overshoot or 

unexpected or  even misleading answers can occur. A target closure 



171 

t 
/ T 

Target HB 

1 s t  t r i a l  
time 

t 
c losure  

Fig.  12.4 Feedback method of cont ro l l ing head at  B 

time and gate closure character ist ic must be estimated beforehand 

and th is  can only be ref ined us ing th is  technique. I f  reflections 

occur somewhere i n  the system causing the heads to reverse or 

drop, obviously the proport ional  correction is unappl icable and the 

va lve i s  being closed too qu ick l y  or the time step i s  too great. 

The accompanying computer pr in touts  and plots of heads versus 

time are from a program based on the above pr inc ip le .  

The programmer may enquire from the program over what t ime  he 

should close the va lve i n  order to not exceed a specified head at  a 

specified point  i n  the pipe network. The method is to employ a 

feedback p r inc ip le  and gradient method for project ing water hammer 

heads a t  the specified node. The program wi l  I therefore successively 

correct the closure time of the va lve keeping an eye on the head 

increase a t  the designated node. I n  fact the head a t  the designated 

node w i l l  be plot ted on the screen as computations proceed and 

subsequently be transferred to a graph such as F igure 12.6. The 

maximum head specified for  node 2 was 1100 m above the datum, 

whereas the maximum which actual ly  occurred was 1121 m c.g. 1167 

m for  the va lve closure in 5 seconds i n  Figure 12.5 

The most severe such conditions are l i k e l y  to ar ise where there 

i s  a burst  i n  a p ipe which i s  to be followed b y  a r a p i d  va lve 

closure upstream of the burst .  A t  steady-state runaway conditions 
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the f low ve loc i t ies  can reach ve ry  h i g h  va lues .  O n  the other h a n d  

the heads a t  the end of the system a r e  consequently v e r y  low as  

most of the head w i l l  be d iss ipa ted  in f r i c t i o n  and  th rough va r ious  

f i t t i n g s  i n  the p ipe  system. The f r i c t i o n  i s  therefore v e r y  h i g h  a n d  

the damping effect of the f r i c t i o n  may of ten resu l t  in the water  

hammer pressure r i s i n g  not much more than tha t  f o r  v a l v e  c losure  

under normal ope ra t i ng  condi t ions.  Nevertheless each system shou ld  

be ana lysed i n d i v i d u a l l y  before such conclusions a r e  made. 
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CHAPTER 13 

GRAPH I CAL WATER HAMMER ANALYSIS 

REASONS FOR GRAPHICAL APPROACH 

Although not advocated for general use, the graphical  methods of 

water hammer calculat ion s t i l l  r e ta in  a place in water hammer 

analysis.  The graphica l  method proposed by A l l i ev i  (1925) and 

developed b y  Bergeron (1935) and Schnyder (1937) i s  well suited for  

i l l u s t r a t i n g  the mechanics of water hammer wave ref lect ion.  A 

c learer understanding of the wave reflections i s  possible by 

students than wi th  the use of a computer program. Var iab le wave 

speed, changes i n  diameter, the effects of va lve closure, water 

column separation and f r ic t ion can a l l  be portrayed graphica l ly .  

The technique does become laborious i f  many steps are required, 

and the manpower to look at a l ternat ive designs often becomes 

excessive. Computer solution i s  more economic in the major i ty  of 

cases, especially i f  mul t ip le  solutions are required. 

BASICS OF METHOD 

The graphica l  method i s  based on the l inear  relat ionship AH = 

(c /g)  M ( 1 3 . 1 )  

I f  one p lo ts  head H against velocity V the l i ne  w i l l  have a 

slope of + or  -c/g. The procedure i s  therefore to p lo t  l ines through 

the known ( s t a r t i n g )  points on an H versus V p lot .  Where the l ine 

crosses another known relat ionship between H and V (e.g. a t  a 

valve or  another c/g l i ne )  the new conditions are obtained. I t  i s  i n  

fact a way of solv ing two equations g raph ica l l y  for  2 unknowns, 

namely H and V.  

The graphical  method i s  i n  fact ident ical  to the character ist ics 

method, since one s ta r t s  wi th  the same equations (see chapter 9 ) :  

dx 
dt 

for  - = +c ; AH = - $lV - xVIVIL/Zgd (13.2) 

(13.3) 
dx 

for  - = -c ; A H  = A V  + xVIVIL/Pgd 
dt 9 
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where L i s  the length of p ipe over which the flow velocity changes 

by V and head changes by AH. 

The procedure employing the equations i s  to calculate graphica l -  

l y  a t  in terva ls  i n  time the head and velocity a t  selected points 

spaced L apar t  along the l ine. I f  L i s  not the total p ipe length i t  

i s  necessary that each L i s  such that waves a r r i v e  a t  the junct ion 

from either end at the same time. Thus each L/c should equal the 

selected time in terva l  between computed conditions. I n  th is  way 

pipes wi th  changes in  wave ce ler i ty  and even changes in  diameter 

can be accounted for .  I n  the la t ter  case, and i f  branch pipes exist  

the diagram should be replaced by a H-Q plot  (see l a t e r ) .  

An explanat ion of the procedure follows wi th  reference to Figure 

13.1. On the H-V graph one marks the known conditions, namely H 

the stat ic head, and Vo the i n i t i a l  l ine veloci ty.  I f  l i ne  f r i c t i on  i s  

s ign i f icant  the relat ionship between l ine velocity and l ine head at 

R i s  plotted as a parabola below the H l i ne  ( the curve H - H f ) .  

Note that on the negative V side the parabola curves upwards since 

XVIVIL/2gd i s  i n  the opposite direct ion.  

The valve discharge character ist ics are also plotted on the 

graph since a relat ionship between discharge through and head 

across the downstream valve is requi red to be solved simultaneously 

with the water hammer character ist ic equation. The relat ionship 

between flow and head drop through a valve i s  general ly assumed 

to be of the form H = K where V i s  the p ipe velocity which i s  

direct ly proport ional  to flow rate i n  m’/s. The factor K reduces as 

the valve i s  closed and i t  i s  a funct ion of open area as well as 

discharge character ist ic.  I f  i t  is  reduced i n  a defined way the 

factor K i s  known at each step of L/c seconds. I t s  i n i t i a l  value i s  

obtained from 

KO = Hvo/ Jvd ( 1 3 . 4 )  

where H i s  the i n i t i a l  head loss through the va lve ( H  -Hf)  a t  a 

l ine velocity V . A parabola can be drawn through the points ( H  V )  
0 0’ 0 

wi th  i t s  apex at (0,O). Other parabolae can be drawn at 

d i f ferent va lve openings provided K is known. 

L 

vo 

Figure 13.1 i l lus t ra tes the graphical  procedure for  the case 
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F igu re  13.1 G r a p h i c a l  ana lys i s  fo r  s low  va l ve  c losure i n  g r a v i t y  
l i ne  w i th  f r i c t i o n  
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of slow valve closure at the downstream end (po int  S )  of a g r a v i t y  

l ine wi th i n i t i a l  f r i c t i on  head loss H 
f ‘  

The waves emanating at  the va lve proceed up and down the 

pipel ine i n  time as indicated by the f u l l  l ines on the x-t chart .  

The character ist ic equations (13.2) and (13.3) are appl ied across 

1 ’  the waves. For instance, i n  order to compute conditions at  point  S 

commence at the defined boundary point  Ro and use the charac- 

ter ist ic corresponding to dx/dt  = +c to obtain V and H at  S1. On 

the H-V graph the l i ne  s ta r t i ng  at R (Ho,Vo) drops by Hf=XVIVIL 

/2gd and then proceeds along a l ine wi th  slope -c/g. The point  S, 

is  also on the va lve character ist ic f o r  time L/c. 

I t  may be noted that the l ine f r i c t i on  i s  assumed concentrated 

at  the upstream end i n  th i s  case since i t  i s  the velocity at point 

Ro which was used i n  establ ishing the f r i c t i on  head. For charac- 

ter ist ics i n  the opposite direct ion to compute conditions a t  point R ,  

the velocity at the downstream end i s  used to assess f r i c t i on  loss. 

Thus, s ta r t i ng  at point  S1 on the H-V diagram one draws a l ine up 

by Hf ( the difference between the H and Hf l ines at VS1)  and then 

draws a l ine wi th  slope +c/g. Where that l ine intersects the H l i ne  

i s  point R2. One proceeds i n  th i s  manner to establ ish points S 

S5, R6 etc. S imi lar ly ,  s ta r t i ng  at  point So one can establ ish 

successively points R 1 ,  S2, R3, Sq etc. (not done i n  Figure 13.1) 

0 

3’ R4’ 

MID-POINTS AND CHANGE I N  DIAMETER 

I t  i s  f requent ly necessary to determine heads at intermediate 

points along the l ine,  for  instance i n  order that  the pipe wal l  

thickness can be var ied to su i t  the maximum heads. I n  such cases 

the p ipe i s  d iv ided into a number of in terva ls .  The heads at the 

end points are determined as before commencing from an adjacent 

known point and using the relevant character ist ic equation to 

establ ish the boundary condition at the next time in terva l .  The time 

in terva l  between computations is A L / c  where AL is the length 

in terva l .  Each AL/c should be the same no matter how many inter-  

va ls  there are. There i s  the poss ib i l i ty  of c v a r y i n g  from one 

in terva l  to the other, which can be accommodated i n  th i s  way. The 
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f r i c t i on  head per in terva l  is  XVIVlAL/2gd. 

The head and flow at  intermediate points i s  established by 

project ing two character ist ic I ines from neighbour ing points on each 

side. Where the two lines meet (slope - c/g from the upstream point  

and + c/g from the downstream point )  i s  the head and l ine 

at the mid-point. 

The same procedure i s  appl icable i f  there i s  a change 

meter .  I n  such cases, however, i t  is  convenient to plot  H 

flow rate Q not V .  Then AH = +[- A + XQ1Q1AL/2gdAZ]. 
c AQ 

- - 9  

Jeloc i ty 

i n  dia- 

against 

13.5) 
- 

where A i s  the p ipe cross sectional area so the slope of the l ines 

on the H-Q graph are 2 c/gA, where A (and  c) and hence the 

slopes could be di f ferent for  each section. The procedure is i l lus-  

t ra ted i n  F igure 13.2. 

PUMP I NG L I NES 

When pumps t r i p  i n  a pumping l ine there i s  f i r s t  a drop i n  

head downstream (on the del ivery s ide) of the pump. The same 

graphical  procedures can be followed to determine i n i t i a l  head drop 

and subsequent head rises. 

I t  often occurs that the drop i n  head i s  suf f ic ient  to cause 

water vapor izat ion at points along the l ine. The mechanics of 

separation and subsequent re jo in ing of the water columns was 

described i n  Chapter 10. A separate t a l l y  must be kept of vapour 

pocket volumes as they expand and la ter  contract i n  order to iden- 

t i f y  the time the head r i se  occurs on rejoining. I t  may be neces- 

sary to d i v ide  the pipe into a number of increments i n  order to 

p ick up the locations of vapcur pockets. 

A s imi lar  procedure can be adopted i f  water hammer discharge 

tanks are used to el iminate water hammer overpressures. I n  such 

cases the vapour pocket does not need to collapse before the head 

rises. 

Many systems of protecting pumping l ines against water hammer 

overpressures are possible. One method i s  the use of release 

valves. A va lve immediately downstream of the pump non-return 

va lve i s  opened af ter  the pump i s  t r ipped and subsequently slowly 
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Fig. 13.2 G r a p h i c a l  c a l c u l a t i o n  of w a t e r  h a m m e r  h e a d s  a t  m i d - l i n e  
w i t h  c h a n g e  in p i p e  d i a m e t e r  
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release va lve 
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closed. The a n a l y s i s  o f  s u c h  a v a l v e  i s  done g r a p h i c a l l y  in F i g u r e  

13.3. 

The r o t a t i o n a l  i n e r t i a  o f  t h e  pump c a n  a l s o  a s s i s t  in r e d u c i n g  

w a t e r  hammer. P a r m a k i a n  (1955) and P i c k f o r d  (1969) d e s c r i b e  me- 

thods o f  g r a p h i c a l  a n a l y s i s  o f  t h e  t r a n s i e n t s  f o l l o w i n g  p u m p t r i p  

w i t h  the  p u m p  r o t a t i o n a l  c h a r a c t e r i s t i c s  i n c l u d e d .  F o r  g r a p h i c a l  

a n a l y s e s  o f  s u r g e  s h a f t s  and r i g i d  co lumn t r a n s i e n t s ,  t h e  r e a d e r  i s  

a 1 so r e f e r r e d  to Jaeger  ( 1956) . 
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CHAPTER 14 

PI PE GRAPH I CS 

INTRODUCTION 

I t  i s  f requent ly informative and useful to draw a pipe network 

to scale. Sketch p lans were u t i l i zed  i n  the chapters on pipe net- 

work analys is  and optimization and p ipe prof i les  were drawn for 

water hammer analysis.  Three dimensional depiction, or  viewing 

from a l ternat ive angles would be even more useful. The relat ion- 

ship between elevation of the p ipe and the pressure head at a l l  

points would be very i l l us t ra t i ve  when pressure l imi ts  and grad- 

ients have to be studied. Bottlenecks can frequent ly be pinpointed 

i n  th i s  manner, as steep hyd rau l i c  gradients w i l l  stand out. High 

heads l i k e l y  to cause bursts, and low heads resul t ing i n  insuf- 

f ic ient  pressures, w i l l  also be ident i f ied.  This type of depiction 

i s  possible i n  3-dimensional graphics.  

I ndus t r i a l  water systems can be p a r t i c u l a r l y  complicated to 

v isual  ize unless some form of graphica l  d isp lay i s  avai lab le.  Wat- 

er d i s t r i bu t i on  networks and f i r e  f i gh t i ng  systems supply ing fac- 

tory complexes on a number of levels are typ ica l  examples. These 

systems are f requent ly extended as the factory grows, and a rec- 

o rd  of pipe positions would be of use i n  later extensions. Suitable 

positions of connections, dupl icat ions and addi t ional  storage can 

be visual ized on a 3-dimensional drawing. 

The computer screen i s  the ideal place to depict such systems. 

In teract ive construction and amendments to a p ipe system can be 

performed before p ipe runs, drawings and orders are f inal ized. 

A considerable cost savings i s  possible if mistakes are ironed 

out on the screen and not on site. 

Computer graphics enables the drawing scale, size and viewing 

angle to be al tered at w i l l ,  u n t i l  the best p ic ture for  any purpose 

i s  obtained. Various pipes, connections or valves may be best 

viewed from another angle and deta i l  p ictures of any pa r t i cu la r  

p a r t  of the system can be ca l led on whi le the engineer s i ts  a t  

the computer. 
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Graphics are p a r t i c u l a r l y  useful i n  the fabr icat ion of i ndus t r i a l  

pipework subject to close tolerances. I n  fact for  many p lants ,  

factories or ref iner ies a physical  model of the p lant  i s  made to i ron 

out problems before construction commences. Dur ing the model I ing 

problem areas are ident i f ied and remedial steps taken. For example 

pipes which get i n  the way of each other can be relocated. Support 

systems can be designed for stacks of pipes to minimize space and 

maximize the strength of the system. Tight corners, bends and 

intersections where erection i s  l i ke l y  to be  d i f f i c u l t  w i l l  be 

ident i f ied.  High head loss areas, e.g. sharp bends one af ter  the 

other, valves and tees can be ironed out. Locations for  measuring 

or i f ices i n  accessible, long, s t ra igh t  sections w i l l  be fac i l i ta ted.  I t  

i s  preferable to sort out such problems at  design stage wi th  a 

physical  model or graphical  po r t raya l  ra ther  than at  erection 

stage. Erection costs and re-fabr icat ion of incorrect assemblies w i  I I 

be reduced. Erection time w i l l  be more r a p i d  and fur ther  savings 

are possible. 

I t  w i l l  be found that the cost of a computer graphics model i s  

less than that of a physical  model. I t  can be assembled faster,  and 

can match many of the features of a real  model, e.g. colour coding 

for  pipes, standard codes fo r  var ious devices such as valves, and 

ease of viewing. I n  some ways i t  i s  superior, e.g. r a p i d  var ia t ion 

of v iewing angle, zooming for  closeups, l i n k i n g  to a hydraul ic  

analys is  model, and r a p i d  al terat ions to the set-up. I n  some other 

features i t  is  in fer ior .  For instance, to view the p lan t  from a 

s l i gh t l y  di f ferent angle may requi re a coded instruct ion,  a c lear ing 

of the screen and re-drawing the system which takes time. The 

computer i s  less portable than a physical  model and colour screen 

graphics suffer poor resolution, a l though this can be overcome b y  

p lo t t ing the p ic ture on paper ( h a r d  copy) .  

A computer program for  d ra f t i ng  and design of p ipe layouts can 

easi ly be l inked to other programs for  analys ing flows and 

pressures, as w e l l  as programs for  stress analysis.  Temperature 

movements, superimposed loads and supports a l  I add to longi tud ina l  

stresses, while internal  pressures, supports and external  loads 

cause circumferential stressing. Supports can be repositioned to 



185 

reduce stress concentrat ion b y  go ing  back and f o r t h  between the 

layout  a n d  the a n a l y s i s  programs. 

I NTERACT I VE DRAW I NG 

O n  some of the commercial ly a v a i l a b l e  computer a ided d r a f t i n g  

( C A D )  systems f o r  p i p i n g ,  e d i t i n g  can be done d i r e c t l y  on the 

d r a w i n g  o r  screen. Data can genera l l y  be i npu t  o f f  a sketch o r  

d r a w i n g  w i t h  the a i d  of a d i g i t i z e r .  That is,  the locat ion of a 

po in t  i s  i den t i f i ed  w i th  a po in te r  on a d r a w i n g  o r  a cursor  o r  

a r row on a screen. The cursor  can be moved around b y  hand  con- 

t ro l l ed  bu t tons  u n t i l  i t  po in t s  to the correct  spot on the screen. 

Then b y  push ing  the correct  key ,  a symbol such as a va lve ,  a 

f l ange  o r  reducer i s  reproduced on the d raw ing .  

I n  the simple program accompanying da ta  can on ly  be read  in 

o r  changed in a lphanumer ic  mode, tha t  i s  b y  means of co-ordinates 

and  not wh i l e  the p i c t u r e  i s  on the screen. Th is  i s  a l im i ta t i on  of 

the computer used, b u t  l a rge  systems can use more i n te rac t i ve  

d raw ing ,  t ha t  i s  a d d i n g  to and  e d i t i n g  wh i l e  the p i c tu re  i s  i n  

f ron t  of one. 

In  many modern CAD systems the dra f tsman has  a menu in f ron t  

of h im and  iden t i f i es  the correct  symbol w i t h  a n  ar row before 

push ing  a bu t ton  to reproduce the symbol. The size and  or ien ta t ion  

of the device can a l so  be cont ro l led  b y  keys o r  bu t tons  s u i t a b l y  

des i gnat ed . 

F i g .  14.1 3-dimensional  depict ion of a catchment 



186 

Many of the symbols are diagrammatic, i.e. d is t inguish ing the 

character ist ics of the device rather  than i t s  appearance. This 

assists i n  d is t inguish ing between, for- example, bu t te r f l y  valves, 

globe valves, gate valves and control valves. 

Figure 14.2 was abstracted by Lamit (1981) from ANSI standards 

and covers a wide range of symbols. 

Annotation and le t ter ing can also be done by locat ing the label 

s iz ing the letters and then t yp ing  the labels on a keyboard. 

Once the drawing on the screen (cathode r a y  tube or  C.R.T.)  i s  

to the satisfaction of the draftsman i t  may be reproduced on a 

proper sheet. This can be to a larger  scale than on the C.R.T.  

and, i f  done on a d r a f t i n g  machine, the qua l i t y  of l ines and reso- 

lu t ion w i l l  be much better than on the C.R.T. This i s  p a r t i c u l a r l y  

so i f  colour graphics are used, as colour resolution is only 1/3 of 

that for  b lack and whife on a C.R.T. I t  i s  s t i l l  often useful to use 

di f ferent codes to depict d i f ferent types of l ine,  for  example to 

d is t inguish between gas, water, products, etc. b y  means of dashed, 

dotted o r  f u l l  l ines. 

COMPUTER PROGRAM FOR PIPE GRAPH I CS 

The appended computer program was wri t ten for  a micro computer 

depiction of p i p i n g  systems. 

Program Description 

The program as wr i t ten can accommodate 100 pipes and 100 

devices ( f langes, valves or  t anks ) .  Unless deta i l  close-up views are 

used th i s  number of pipes w i l l  more than c lu t ter  the screen of the 

HP-85. A l ternat ive ly  i f  a colour screen were ava i l ab le  or  i f  

drawings were reproduced graphical  l y  on paper, d i f ferent colours 

could be  used to depict d i f ferent pipes, e.g. cold water, hot water, 

sewers, vent i la t ion ducts or  h igh  pressure. Al ternat ive computers, 

e.g. the HP87, present di f ferent types of l ines, e.g. dashed or  

dotted, which are also useful for  d is t inguish ing l ines. 

Input  i s  typed below the program s ta r t i ng  from l i ne  700, and 
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TYPE 

, 32 CmIFtCE 

33 REDUCtWG 

34 SOCKET WELO 

35 WELD NECK 

43 EXPANSION 

46 LATERAL 

87 LOCISHELD td;3 
VALVE 

48 YOTOP CONTROL 
VALVE +& 

PLUGS 

+c, a BULL 

XAR 

F ig .  14.2 Symbols  for  pipe f i t t i n g s  
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r e q u i r e s  l i n e  numbers  a s  w e l l  a s  a DATA statement fo l lowed b y :  

L i n e  1 :  L e f t  h a n d  l i m i t ,  R i g h t  h a n d  l i m i t ,  Lower  l i m i t ,  Upper  

l i m i t  o f  screen d i s p l a y  ( i n  metres o r  f t . ) ,  A n g l e  o f  

v i e w i n g  measured f rom x to  y a x i s ,  A n g l e  up o f  v iew-  

i n g  measured f rom x-z p l a n e .  Since the  HP-85 screen i s  

4 x 3 ,  the  d i f f e r e n c e  between the l e f t  a n d  r i g h t  h a n d  

l i m i t s  s h o u l d  be  4 / 3  t imes the d i f f e r e n c e  between the  

u p p e r  a n d  lower  l i m i t  f o r  a n  u n d i s t o r t e d  scale.  A 

p r a c t i c a l  a n g l e  c o m b i n a t i o n  f o r  i somet r ic  v i e w i n g  i s  

30°, 15". 

L i n e  2 o n w a r d s :  P i p e  d a t a  i .e . ,  X l ,Y l ,Z l ,X2,Y2,Z2 o f  s t a r t  a n d  

e n d  p o i n t s  on the p i p e ,  Cost p e r  met re  o f  p i p e .  

A f t e r  the l a s t  r e a l  p i p e  l i n e ,  i n s e r t  a d a t a  l i n e  w i t h  

O,O,O,O,O,O,O to  i d e n t i f y  t h e  l a s t  p i p e .  

Device 1ines:The i n f o r m a t i o n  o n  dev ices :  P i p e  no.  ( i n  the o r d e r  

t y p e d  i n ) ,  D is tance f rom s t a r t  p o i n t  to  e n d  p o i n t  meas- 

u r e d  a l o n g  the p i p e ,  T y p e  o f  d e v i c e  ( 1  = f l a n g e  rep-  

resented  b y  a v e r t i c a l  l i n e ,  2 = v a l v e  represented  b y  

X ,  3 = t a n k  represented  b y  U ) ,  Size o f  d e v i c e  (m o r  

f t . ) .  

A f t e r  the  l a s t  d e v i c e  l i n e ,  i n s e r t  a d a t a  l i n e  w i t h  

O,O,O,O to  i d e n t i f y  e n d  of  d a t a .  A f t e r  running the  

p r o g r a m ,  i t  r e m a i n s  a c t i v a t e d  u n t i l  PAUSE i s  pressed,  

o r  u n t i l  K1 i s  pressed.  I n  the l a t t e r  case the p r o g r a m  

i s  reset  to amend a n y  p i p e  a n d  a screen d i s p l a y  

reques ts  the p i p e  number  ( i n  o r d e r  o f  o r i g i n a l  p i p e  

i n p u t ) ,  the  new X1 ,Y1 ,Z1 ,X2,Y2,Z2 a n d  C f o r  amend- 

ment. Upon t y p i n g  in t h i s  d a t a  a n d  p u s h i n g  END 

L INE,  t h a t  p i p e  on the p i c t u r e  i s  a l t e r e d  a n d  the  cost 

a l s o  cor rec ted .  Note t h a t  t h i s  amend f a c i l i t y  i s  no t  

a v a i l a b l e  f o r  a l t e r i n g  screen l i m i t s  o r  v i e w i n g  a n g l e s  

a s  the  whole p i c t u r e  h a s  to  b e  d r a w n  a g a i n  in  these 

cases. 
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Fig.  14.3 F i re  Dis t r ibut ion Pip ing Depiction 

Example 

The appended program i s  used to depict the f i r e  f i gh t i ng  water 

d is t r ibut ion network to a double-storey bui  Id ing.  Water i s  supplied 

from a roof tank through a double looped pipe network. An isolat- 

ing va lve i s  indicated downstream of the tank and a f langed con- 

nection extends from the lower floor to a fu ture extension. Data 

descr ib ing the system follows the computer program. The cost of 

each pipe i s  estimated to be $10 per metre length. 

Upon runn ing  the program the general view i n  F igure 14.3a was 

depicted and copied from ?e screen. The viewing angle i s  30° from 

the x-axis and 15" up. A more detai led view (F igure 14.3b) of the 

supply tank from an ( 0 , O  angle was also obtained. Note that i n  

each case the total cost of the system i s  also indicated. 

Symbols in pipe g r a p h i c s  program 

A1 

A2 

angle of v iewing from x-axis measured i n  y 
direct  ion 
angle of v iewing from z-axis measured towards 
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x-y plane. 
cost of p ipe per u n i t  length 
total cost of pipes 
dimension of device 
0 = o r i g ina l  data,  1 = amended p ipe data 
length 
distance along pipe from star t  to device 
p ipe counter 
device counter 
device type. 1 = f lange, 2 = valve,  3 = tank 
x - co-ordinate 
lef t  hand l im i t  on screen 
s tar t  point  i n  screen x-co-ordinates 
end point i n  screen x-co-ordinates 
x-co-ordinate of device i n  plane of screen 
r i g h t  hand l im i t  on screen 
y-co-ord i na te 
z-co-ord i na te 
z-co-ordinate of device in plane of screen 
lower l imi t  on screen 
s tar t  point i n  screen z-co-ordinate 
end point  i n  screen z-co-ordinates 
z-co-ordinate of device i n  plane of screen 
upper l imi t  on screen 
s tar t  x of l ine 
end x of l ine 
x1 
x 2  
x-co-ordinate of device 
s ta r t  y of l ine 
end y of l i ne  
Y l  
Y2 
y-co-ord i na te of dev ice 
s tar t  z of l ine 
end z of l i ne  
21  
2 2  
z-co-ordinate of device. 
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, 1.0 , D A T U M  I 

I I I 

COVER L E V E L  

F ig .  14.4 Computer f latbed plot  of graded sewer 

COMPUTER GRAD I NG 

Pipelines are well sui ted for  automatic grading by computer and 

drawing of sections by a l inked plot ter .  A network i s  designed 

largely  on empir ical  bases which can be read i l y  programmed as 

constraints. 

Although i t  i s  possible to s tar t  from data from a contour p lan  

and develop the p l a n  layout w i th in  the computer, i t  i s  preferable to 

lay the network out on a p lan ,  peg and survey i t  i n  the f i e ld  and 

feed the data from pegging sheets d i rect ly  to the computer. A 

sui table program w i l l  then select the most economic depths and pipe 

diameters. The data may be displayed i n  summary form for v isual  

inspection and adjustment i f  desired, tak ing of f  quant i t ies.  The 
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resul ts are then submitted to a separate p lo t t i ng  rout ine fo r  

drawing longi tudinal  sections. S u c h  a plot  i s  i l l us t ra ted  i n  Figure 

14.14. 
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CHAPTER 15 

COMPUTER PROGRAMM I NG IN BAS I C 

DESCRIPTION 

BASIC i s  an e l e m e n t a r y  compu te r  l a n g u a g e  o r i e n t a t e d  to t e c h n i c a l  

p r o b l e m  s o l v i n g ,  and somewhat s i m i l a r  to FORTRAN l a n g u a g e .  BASIC 

i s  o f t e n  used  on  m ic rocompu te rs  w h i c h  a r e  d e s i g n e d  to s t r e a m l i n e  

the  human  i n p u t  e f f o r t .  Some o f  t h e  s ta temen ts  in t h e  l a n g u a g e  a r e  

a c t u a l l y  commands to t h e  compu te r  a s  w e l l  a s  p r o g r a m  steps.  

The p r o g r a m m i n g  may  b e  c l a s s i f i e d  i n t o  v a r i o u s  t ypes ,  e.g. 

Statements, F u n c t i o n s ,  O p e r a t o r s  and Commands. Statements a r e  

p r o g r a m  l i n e s  w h i c h  h a v e  to b e  numbered  in  t h e  c o r r e c t  o r d e r  

a l t h o u g h  n o t  n e c e s s a r i l y  s e q u e n t i a l l y ,  e.g. 

10 

20 

21 

50 

200 

Computer Commands 

Some s ta temen ts  a c t i v a t e  t h e  compu te r ,  e .g.  

AUTO [ b e g i n  s tatement  no. ,  [ i n c r e m e n t ] ] e . g .  AUTO 100,5 makes 

t h e  compu te r  s t a r t  a t  s ta tement  100 and au to -  

m a t i c a l l y  i nc remen t  e a c h  n u m b e r  b y  5 

d u r i n g  i n p u t .  Numbers  in [I a r e  o p t i o n a l .  

CAT p roduces  a l i s t  o f  e v e r y t h i n g  o n  t h e  tape.  

CONT [s ta temen t  n o . ] ,  c o n t i n u e s  e x e c u t i o n  o f  a p r o g r a m  a t  t he  

s p e c i f i e d  s tatement  no. a f t e r  a PAUSE. 

COPY r e p r o d u c e s  i n f o r m a t  i o n  o n  t h e  sc reen  to p a p e r .  

DELETE f i r s t  s ta tement  no.  [ l a s t  s ta tement  no . ]  removes those 

s ta temen ts  f r o m  t h e  p r o g r a m .  

ERASE TAPE i n i t i a l i z e s  a t a p e  

I N l T  r e s e t s  t h e  p r o g r a m  to t h e  f i r s t  l i n e  and sets  a l l  

v a r i a b l e s  to u n d e f i n e d  v a l u e s .  
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L I S T  [ b e g i n  s tatement  no. [ e n d  s tatement  n o . ] ]  l i s t s  t h e  p r o g r a m  

o n  screen. 

LOAD " p r o g r a m  name" cop ies  the  p r o g r a m  f rom a t a p e  o r  d i s c  to 

compu te r  memory. 

PL IST  [ b e g i n  s tatement  no. [ e n d  s tatement  n o . ] ]  l i s t s  the  p r o g r a m  

o n  p a p e r .  

REN [ f i r s t  s ta tement  no.  [ i n c r e m e n t ] ]  r e n u m b e r s  t h e  p r o g r a m  I i nes  

a s  s p e c i f i e d .  D e f a u l t  v a l u e s  a r e  1 0 , l O .  

RUN [s ta temen t  no. ]  s t a r t s  e x e c u t i o n  of t h e  p r o g r a m  f r o m  t h e  speci -  

SCRATCH 

f i e d  s tatement .  

de le tes  t h e  p r o g r a m  f rom memory. 

STORE " p r o g r a m  name". Stores t h e  p r o g r a m  on to  t a p e  o r  d i s c .  

SECURE " f i  lename", " s e c u r i t y  code", t ype .  T y p e  0 secures a g a i n s t  

L I S T ,  PLIST and EDIT .  T y p e  1 a g a i n s t  STORE, 

L IST ,  PL IST  and EDIT.  T y p e  2 a g a i n s t  STORE, 

PRINT#,STORE B I N  and T y p e  3 a g a i n s t  CAT. 

e.g. SECURE "PROGl" , "XY~'  1 .  

UNSECURE " f i  lename", " s e c u r i t y  code", t ype .  

AR I THMET I C 

The f o l l o w i n g  symbo ls  a r e  used  in a r i t h m e t i c  s ta temen ts  

+ add 

- s u b t r a c t  

'> m u l t i p l y  

d i v i d e  

A r a i s e  t o  t h e  power .  

The a r i t h m e t i c  f u n c t i o n s  h a v e  c e r t a i n  p r i o r i t i e s  and t h e  prece-  
D 

dence i s  A + , *  and , + and -, t h u s  A+B*C"D i s  A + { B * ( C  ) } .  

LOG I CAL OPERATORS 

= e q u a l  t o  

l ess  t h a n  

> g r e a t e r  t h a n  

f n o t  e q u a l  t o  
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VARIABLES 

Any l e t t e r  m a y  b e  used  to  r e p r e s e n t  a v a r i a b l e ,  a s  w e l l  a s  a n y  

l e t t e r  f o l l o w e d  b y  a number ,  e.g. A,B3. S u b s c r i p t  v a r i a b l e s  a r e  

c o n f i n e d  to  l e t t e r s ,  e.g. C ( 3 ) .  Up to  two s u b s c r i p t s  a r e  p o s s i b l e ,  

e.g. D (4 ,5 ) .  Nested pa ren theses  a r e  e v a l u a t e d  f rom i n w a r d s  ou t .  

A r r a y s  s h o u l d  b e  p receded  b y  a D I M  ( d i m e n s i o n )  s ta tement  i f  

s u b s c r i p t s  exceed 10, e .g.  D IM A ( 2 0 ) ,  B(30,lOO). 

PRECISION 

REAL v a r i a b l e s  a r e  a c c u r a t e  to  12 d i g i t s ,  w h i l e  SHORT INTEGER 

v a r i a b l e s  a r e  t r u n c a t e d  to  5 d i g i t s .  REAL p r e c i s i o n  i s  used  u n l e s s  

v a r i a b l e s  a r e  d e c l a r e d  SHORT o r  INTEGER. 

FUNCT IONS 

ABS(x )  
ACS(x)  
ASN(x)  
A T N ( x )  
C E I L ( x )  

COT(x )  

D T R ( x )  
EXP ( x )  
FLOOR(x)  
F P ( x )  
I N T ( x )  
I P ( x )  
L G T ( x )  
LOG(x )  
MAX(x ,  y ) 
M I N ( x , y )  
MOD 
P I  
RMD(x,  y ) 
RND 
R T D ( x )  
SEC(x)  
SGN(x) 
S I N ( x )  
SQR(x)  

COS(X) 

CSC(X) 

a b s o l u t e ,  p o s i t i v e ,  v a l u e  o f  x 
a r c o s  ( x )  
a r c s i n  x 
a r c t a n  x 
sma l  l es t  i n t e g e r < = x  
c o s i n  x 
c o t a n g e n t  x 
cosecant  x 
degrees  t o  r a d i u s  

same a s  I N T ( x )  
f r a c t i o n a l  p a r t  o f  x 
l a r g e s t  i n t e g e r  < = x  
i n t e g e r  p a r t  e.g. lP(-3.276)= -3 

n a t u r a l  l o g  x 
x o r  y w h i z h e v e r  i s  l a r g e s t  
x o r  y w h i c h e v e r  i s  s m a l l e s t  
i n t e g e r  e.g. MOD B = p o s i t i v e  i n t e g e r  v a l u e  o f  B 
3.14159265359 
r e m a i n d e r  o f  x / y - y q l P ( x / y )  
n e x t  n u m b e r  x in a r a n d o m  sequence o<=x< l  
r a d i u s  to  degrees 
secant  x 
s i g n  o f  x ,  + o r  - 
s i n e  x 
s q u a r e  r o o t  o f  x 

X 

loglox 
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T A B ( n )  s k i p s  to  co lumn n 
T A N ( x )  t a n g e n t  o f  x 
VAL (S$) n u m e r i c a l  e q u i v a l e n t  o f  s t r i n g  S$ 
V A L $ ( x )  s t r i n g  e q u i v a l e n t  o f  x 

SPECIAL CHARACTERS 

I, I, 

p e r m i t s  mu l t i - s ta temen t  l i n e ,  e .g.  100 A=B @ 

GOT0 200 

d e l i m i t s  a r e m a r k  e.g. 100 A=B!A I S  A NEW 

VAR I ABLE 

p r o m p t s  f o r  i n p u t  

d e l i m i t s  a s t r i n g  o f  t e x t  w h i c h  i s  d i s p l a y e d  

BAS I C PROGRAMM I NG STATEMENTS 

The f o l l o w i n g  s ta temen ts  c a n  b e  i n c o r p o r a t e d  in  p r o g r a m s .  

ASSIGN n u m b e r  TO "name", e .g.  ASSIGN 2 TO "DATA" 

CHAIN " f i l ename" .  L o a d s  and r u n s  the  p rog ram.The  c u r r e n t  p r o g r a m  

i s  d e l e t e d  excep t  f o r  "common" v a r i a b l e  and 

"ass igned"  b u f f e r s .  

CLEAR C l e a r s  t h e  sc reen  

COM Common v a r i a b l e  l i s t .  Used w i t h  CHAIN 

CREATE " f i l ename" ,  n u m b e r  o f  r e c o r d s  [ n u m b e r  o f  b y t e s  p e r  r e c o r d ]  

E s t a b l i s h e s  a d a t a  f i l e  o f  t h e  s p e c i f i e d  s i ze .  

DATA l i s t .  P r o v i d e s  c o n s t a n t s  a n d / o r  s t r i n g s  f r o m  w h i c h  

READ s ta temen ts  a b s t r a c t  d a t a .  

DEFAULT ON/OFF p r e v e n t s  o r  c a n c e l s  some m a t h  e r r o r s  f r o m  h a l t -  

ing e x e c u t i o n  

DEF FN name [ ( p a r a m e t e r ) ] [ =  e x p r e s s i o n ] .  Def ines a s p e c i a l  f u n c t i o n  

w i t h i n  a p r o g r a m ,  e.9. DEF FN A(X)=SQR (X+2+2*X)  

DEG Sets deg ree  mode f o r  t r i g  f u n c t i o n s  

D I M  l i s t .  Dec la res  the  max imum s u b s c r i p t s  f o r  a r r a y s .  

e.g. D IM A ( 2 0 ) ,  B(50,lOO) 
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DlSP [ l i s t ]  d i s p l a y s  t h e  l i s t  o n  the  screen.  e.g. DlSP "A 

EQUALS", B 

DlSP USING f o r m a t  l i n e  [ ;  l i s t ) .  D i s p l a y s  o n  screen a c c o r d i n g  to  t h e  

f o r m a t  i n  f o r m a t  l i n e .  I f  a l i n e  n u m b e r  i s  used  

t h a t  l i n e  headed  IMAGE a c t s  a s  t h e  f o r m a t ,  e .g.  

DISP USING 50;A,B 

END T e r m i n a t e s  p r o g r a m  e x e c u t i o n  

FOR c o u n t e r  = f i r s t  v a l u e  TO l a s t  v a l u e  [ s t e p  i n c r e m e n t ] .  The 

s ta temen ts  up to  a l i n e  NEXT c o u n t e r  a r e  

r e p e a t e d  f o r  t h e  c o u n t e r  p r o c e e d i n g  f r o m  t h e  

f i r s t  v a l u e  to  t h e  l a s t  v a l u e .  The c o u n t e r  

s tep  i s  one u n l e s s  o t h e r w i s e  s p e c i f i e d .  

GOSUB statement  no.  T h e  n e x t  s ta tement  execu ted  i s  t h e  s p e c i f i e d  

s ta temen t  i n  a s u b p r o g r a m .  C o n t r o l  i s  r e t u r n e d  

to the m a i n  p r o g r a m  w i t h  a RETURN statement .  

GOT0 statement  no .  Con t ro l  i s  t r a n s f e r r e d  to  t h e  d e s i g n a t e d  

st a t  emen t 

GRAD se ts  t r i g  o p e r a t i o n s  to grads. (400 grads in 

360") 

I F  e x p r e s s i o n  THEN statement  n u m b e r  [ELSE statement  n u m b e r  1. 1 2 
I f  t h e  e x p r e s s i o n  i s  t r u e  c o n t r o l  i s  t r a n s f e r r e d  

to s tatement ,  and i f  n o t ,  t o  t h e  n e x t  

s ta tement  [ o r  s ta tement  ] 
2 

IMAGE f o r m a t .  Used w i t h  PRINT USING o r  DlSP USING s ta temen ts  to  

s p e c i f y  t h e  f o r m a t  o f  t h e  o u t p u t .  

The  f o l l o w i n g  can b e  s p e c i f i e d :  

n (  .....) r e p e a t s  t h e  o p e r a t i o n  in p a r e n t h e s i s  n 
t imes  
A s t r i n g  c h a r a c t e r  
Z L.H. d ig i t  p o s i t i o n  o r  l e a d i n g  z e r o  
D L.H. d i g i t  p o s i t i o n  o r  l e a d i n g  b l a n k  . dec ima l  p o i n t  p o s i t i o n  
S s i g n  (+ o r  - )  
M m i n u s  o r  blank 
E e x p o n e n t i a l  f o r m  ESDDD 
X b l a n k  
/ c a r r i a g e  r e t u r n  
I s  I' l i t e r a l  
e.g. IMAGE 2D.DDD,PXZDD 

INPUT v a r i a b l e  name [ ,  v a r i a b l e  name ...I V a r i a b l e s  a r e  a s s i g n e d  
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v a l u e s  o n  the  k e y b o a r d  when a p r o m p t  'I?" 

a p p e a r s  o n  t h e  sc reen  

INTEGER v a r i a b l e  [ s u b s c r i p t s ]  . . . . Spec i f i es  v a r i a b l e s  a s  i n t e g e r s  

and d imens ions  them 

KEY LABEL D i s p l a y s  l a b e l s  assoc ia ted  w i t h  ON KEY s ta te -  

ments 

LOAD B I N  " f i l ename" .  L o a d s  a b i n a r y  coded f i l e  f r o m  t a p e  i n t o  

memory 

NEXT c o u n t e r .  R e t u r n s  c o n t r o l  t o  a FOR statement  

ON ERROR GOTO s ta temen t  number .  T r a n s f e r s  t o  d e s i g n a t e d  s tatement  

i f  a r e c o v e r a b l e  e x e c u t i o n  e r r o r  i s  encoun te red  

ON e x p r e s s i o n  GOTO l i s t .  T r a n s f e r s  c o n t r o l  t o  t h e  s ta temen t  no. 

in the  I i s t  c o r r e s p o n d i n g  to  e x p r e s s i o n  

b e i n g  1 ,  2 ,  3 e tc .  

PAUSE H a l t s  e x e c u t i o n  u n t i l  CONT i s  encoun te red  

PRINT [USING statement  n u m b e r ] [ l i s t ] .  P r i n t s  t h e  l i s t  o n  p a p e r  

u s i n g  t h e  f o r m a t  in t h e  s p e c i f i e d  s tatement  

n u m b e r  o r  in  f r e e  f o r m a t .  I tems in  t h e  

l i s t  must  b e  s e p a r a t e d  b y  commas o r  semicolons, 

e.g. PRINT USING 100;A,B(5) ,  " I S  THE ANSWER'' 

PRINTER I S  code number .  Rede f ines  t h e  p r i n t e r .  l =sc reen ,  2=paper  

PURGE f i l e  name. E l i m i n a t e s  t h e  d e s i g n a t e d  f i l e  f r o m  t a p e  

RAD Sets radian mode f o r  t r i g  f u n c t i o n s  

RANDOMIZE [ e x p r e s s i o n ] .  Generates a r a n d o m  n u m b e r  seed. B y  

s p e c i f y i n g  an e x p r e s s i o n  t h e  r a n d o m  number  

sequence c a n  b e  r e p e a t e d  

READ [ b u f f e r  n o . ]  name,[,name2 ...]. Reads a s t r i n g  o f  v a r i a b l e s  

f r o m  DATA s ta temen ts  o r  f r o m  a b u f f e r  

[ ( s u b s c r i p t s ) ]  . . . Dec la res  v a r i a b l e s  r e a l  and 

d imens ions  them 

r e m a r k  s ta temen t ,  n o t  f o r  execu t ion ,  same a s  ! 

RENAME o ldname TO newname. F i l e  i s  renamed  

RESTORE [s ta temen t  n o , ] .  Resets d a t a  p r i n t e r  t o  the  s p e c i f i e d  

s ta temen t  o r  to t h e  b e g i n n i n g  o f  t h e  d a t a  f i l e  

RETURN T r a n s f e r s  c o n t r o l  f r o m  t h e  l a s t  l i n e  o f  a 

s u b r o u t i n e  back t o  t h e  o r i g i n a l  p r o g r a m  l i n e  

REAL v a r i a b l e  

REM [ a n y t h i n g  
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f o l l o w i n g  a GOSUB statement  

SHORT v a r i a b l e  [ ( s u b s c r i p t ) ]  ... Dec la res  v a r i a b l e s  s h o r t  a n d  

d imens i o n s  them 

STOP Term ina tes  e x e c u t i o n  and r e t u r n s  p o i n t e r  to f i r s t  

s ta tement  

STORE B I N  "name". Stores t h e  f i l e  named on  t a p e  

TRACE Used t o  f o l l o w  s ta temen ts  executed.  NORMAL w i l l  

cance l  t h e  TRACE o p e r a t i o n  

GRAPH I CS STATEMENTS 

The HP s e r i e s  80 mic rocompu te r  e n a b l e s  g r a p h s  to b e  p l o t t e d  on  the  

screen and on  p a p e r  u s i n g  t h e  f o l l o w i n g  s i m p l e  s tatements.  

ALPHA Sets d i s p l a y  to a l p h a n u m e r i c  mode 

BPLOT s t r i n g ,  n u m b e r  o f  c h a r a c t e r s  p e r  l i n e .  P l o t s  a g r o u p  of dots  

a s  s p e c i f i e d  b y  t h e  s t r i n g  

DRAW x -co -o rd ina te ,  y -co -o rd ina te .  D r a w s  a l i n e  f r o m  c u r r e n t  pen 

p o s i t i o n  to s p e c i f i e d  ( x , y )  

GCLEAR [ y ]  c l e a r s  screen be low s p e c i f i e d  y v a l u e  

GRAPH Sets d i s p l a y  to  g r a p h i c  mode 

IDRAW x - inc remen t ,  y - i nc remen t .  D r a w s  a l i n e  f r o m  c u r r e n t  pen 

p o s i t i o n  to p o s i t i o n  d e t e r m i n e d  b y  the  x and y 

i nc remen ts  

IMOVE x - inc remen t ,  y - i nc remen t .  Moves the  pen  b y  t h e  s p e c i f i e d  

i nc remen ts ,  w i t h o u t  d r a w i n g  a l i n e  

LABEL s t r i n g .  Wr i tes  t h e  s t r i n g  s t a r t i n g  a t  t h e  c u r r e n t  pen  

p o s i t  i on  

L D l R  ang le .  Spec i f i es  d i r e c t i o n  o f  abe l  (angle=O o r  90°) 

MOVE x-co-ord i  na te, y-co-ord i na te. Moves pen  f rom c u r r e n t  pos i  

to ( x , y )  w i t h o u t  d r a w  ng a l i n e  

PEN number .  Spec i f i es  whe the r  do ts  a r e  b l a c k  ( n e g a t i v e  

n u m b e r )  o r  w h i t e  ( p o s i t i v e  n u m b e r )  

PENUP L i f t s  pen  up 

PLOT x -co -o rd ina te ,  y-co-ord inate.  Makes  a do t  a t  ( x , y )  

SCALE x -m in ,  x -max ,  y-min,  y-max.  Sets t h e  x and y s c a l e  on  

screen between t h e  l i m i t s  sDec i f i ed  

i o n  

t h e  
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X A X l S  y in te rcept  [ , t i c  spac ing  [xrnin, xrnax]] .  Draws a hor izon ta l  

a x i s  w i t h  t i c  marks  and  w i t h i n  l i m i t s  speci f ied.  

Negat ive t i cs  speci fy the r i g h t  s ide  as reference 

Y A X I S  x i n te rcept  [ , t i c  spac ing  [yrnin,  yrnax]] .  Draws a ve r t i ca l  

a x i s  

(By  c o u r t e s y  o f  t h e  H e w l e t t  P a c k a r d  company.)  
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