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Introduction

For many years, immunotherapy for cancer was a sleepy backwater primarily

populated by a few die-hard immunologists who did not accept the concept that

relatively nonspecific cytotoxic or radiotherapeutic approaches were the optimal

modalities to treat cancer. While there is no denying the beneficial and even

curative effects of some chemotherapeutic, radiotherapeutic, and surgical

approaches, the pessimism that has surrounded attempts at immunotherapy for

cancer is no longer justified.

A colleague advised me about 10 years ago that if I ever cured even one of my

cancer patients with immunotherapy, he would buy me a steak dinner. After I

updated him on recent developments in cancer immunotherapy about 6 years ago,

he upped the ante. Odds of curative cancer immunotherapy were so remote he

informed me, that now he would buy me “the whole steak house” if I ever cured

anyone with it.

Results of most cancer immunotherapy trials to date have been generally modest

at best. However, until recently the majority of these trials focused on inducing

antitumor immunity with little or no regard for reducing concomitant tumor-

induced immune dysregulation and immune suppression1. For example, on April

29, 2010, the Food and Drug Agency approved sipuleucel-T (Provenge) from

Dendreon to treat advanced-stage prostate cancer, which was hailed as a major

breakthrough for cancer immunotherapy. While we applauded this addition to the

armamentarium, many of us developing cancer immunotherapies nonetheless

regarded this agent as an exemplar from the older paradigm (using adoptive transfer

of an antigen presenting cell to present a tumor-specific antigen and thereby boost

tumor-specific immunity). Thus, its efficacy could be limited by underlying tumor-

mediated immune dysfunction not addressed by sipuleucel-T itself.

On March 25, 2011, the Food and Drug Administration approved the anti-

CTLA-4 antibody, ipilimumab (Yervoy) from Bristol Myers Squibb. Ipilimumab

makes antitumor T cells resist immune suppression by regulatory T cells and could

impede the suppressive activity of regulatory T cells directly. Thus, it can help

correct tumor-associated immune suppression and represents the first drug

approved in the new paradigm, which addresses how to mitigate tumor-mediated

vii



immune dysfunctions. Means to capitalize on the best properties of the immune

activating sipuleucel-T approach with the immune dysfunction-reducing

ipilimumab approach will move us closer to that ideal of highly effective anticancer

immunotherapy.

In this regard, our understanding of tumor immunology and the

immunopathogenesis of cancer is progressing at a rapidly accelerating rate. This

knowledge is leading to a much better theoretical grasp of the essential elements

required for successful anticancer immunotherapy, and thus to more effective

treatment strategies. For example, the concept of tumor immune surveillance, the

immune mechanisms that eliminate nascent clusters of malignant cells before they

become clinically apparent2 is no longer seriously questioned, laying a foundation

for development of more effective anticancer immunotherapies3. Our understand-

ing of tumor immune surveillance has been amplified by elegant work from Bob

Schreiber’s group showing that tumor immune surveillance is part of the larger

problem of tumor immunoediting, in which the tumor becomes less immunogenic

over time as it continually evades host tumor immune surveillance4. There is now

excellent experimental evidence that tumor antigens contribute to immunoediting5, 6.

Strategies to mitigate this important issue will be a significant component of future

cancer immunotherapy development.

Equally formidable are the challenges in understanding how to optimize indi-

vidual approaches, and how to combine them successfully and ideally7, 8. Many

regulatory and logistical issues must be addressed regarding the safety of individual

agents and appropriate means to test them for clinical use. There are challenges in

understanding appropriate patient populations most likely to respond to immuno-

therapeutic interventions, in developing clinical trials capable of detecting useful

strategies, in developing appropriate immune monitoring tools for these trials, in

using appropriate clinical response criteria for clinical trials and in analyzing

clinical data, all of which areas have seen significant progress in recent years,

including the introduction of clinical response data specifically for patients in

immunotherapy trials9.

Traditional cytotoxic and radiotherapeutic approaches have been associated with

significant morbidities due to their relative lack of tumor-specific targeting. The

exquisite specificity of the immune system could help address these toxicity issues.

Micrometastatic and residual disease contribute to late relapses after apparently

successful conventional treatments. The exquisite sensitivity of immune

interventions could help solve this problem as well. Cancer is primarily a disease

of aging, as age is the single biggest cancer risk factor. Despite a decline in specific

immune effector functions with age, and changes in other functions, it is possible to

develop immunotherapy that potentially could be effective in the aged, who are

least able to tolerate the toxic effects of many treatment approaches.

We are entering what promises to be a golden age in cancer immunotherapy10

where we can identify successful treatments that can be applied widely to patients

most at risk, with reduced toxicities, tractable logistics, and reasonable costs. It is

now possible to sequence entire tumor genomes to understand the specific

mutations underlying classes of tumors, and to understand the specific issues related
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to tumors in individuals. Targeted small molecule drugs are the immediate

beneficiaries of such technological advances, but these and related developments

are amenable to applications in cancer immunotherapy as well to help personalize

an optimal regimen for each individual11. Nonetheless, significant hurdles remain,

although it is now possible to see how they might be overcome12.

This text introduces the fundamentals of tumor immunology, major causes of

tumor-associated immune dysfunctions, major treatment modalities that are

approved by regulatory agencies, and covers promising preclinical and early clini-

cal leads. Each chapter addresses the major issues in the field, current strategies to

address them, and also speculates on the future and where the technology and new

insights can take us.

We hope that the information here is useful to our colleagues in this rapidly

evolving field, and to those who consider entering it.
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Overview



Chapter 1

Historical Perspectives and Current Trends

in Cancer Immunotherapy

Tyler J. Curiel

Abstract The immune system is exquisitely able to identify trace antigens and

eliminate cells expressing them. Tumors are quintessentially antigenic tissues as a

result of their many genetic mutations. This antigenicity, however, does not gener-

ally translate into useful immunogenicity as spontaneous rejection of clinically

apparent tumors is rare. Early work in tumor immunology identified tumor-specific

and tumor-associated antigens and formulated strategies to bolster antitumor immu-

nity using paradigms arising from prior successes in understanding anti-pathogen

immunity. It is now clear that the inability of endogenous immune mechanisms to

eradicate clinically evident cancers owes in part to tumor-driven immune dysfunc-

tion, in part to the coevolution of antitumor immunity with the ever-changing

antigens of the ever-mutating tumors (immunoediting) and to the fact that antitumor

immunity is a form of autoimmunity. These newer understandings caused thinking

to evolve and advance. Our rapidly increasing understanding of antitumor immunity

and how it can be thwarted has led to new approaches to tumor immunotherapy with

great promise to bemuchmore successful than prior generations of approaches. This

chapter discusses the evolution in thinking about tumor immunity, why endogenous

antitumor immunity often fails after tumors become clinically apparent and why

prior tumor immunotherapy approaches have generally had only modest success at

best. New paradigms leading the field and the novel therapeutic approaches based on

recent insights will be introduced.

T.J. Curiel (*)
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1.1 Historical Perspective

1.1.1 The History of Immunology Is Rooted in the History
of Understanding Resistance to Infections

Until recent times in the developed world, and in many parts of the modern world,

infections were and are major causes of morbidity and mortality. It is thus hardly

surprising that much knowledge of immunology and research into it was based on

an understanding of resistance to infectious diseases. Resistance to a specific insult

was first recorded in 430 B.C.E. by the Greek historian Thucydides, reflecting on

the plague of Athens (a devastating infection whose identity is not known with

certainty), being himself a survivor, when he remarked “The same man was never

attacked twice. . ..” The first treatise on immunology was a study of resistance to

smallpox and measles by the great Persian physician Abu Bakr Mohammed ibn

Zakariya al-Razi (880–932 A.D.) known as Rhazes. The first immunotherapy trial

was conducted in Newgate Prison, London, on August 9, 1721. The Prince and

Princess of Wales, fearing that smallpox infection could affect their children and

having heard of resistance following deliberate or accidental exposure to smallpox,

had six condemned prisoners and orphans infected with pus from individuals

afflicted with smallpox and then exposed them to an active case. All the exposed

prisoners survived and were released one month later.

In 1796, the British physician Jenner demonstrated that deliberate infection with

vaccinia virus, which caused cowpox, an infection akin to smallpox, but much

milder, was protective against smallpox. The first formal demonstration that immu-

nity to one condition rendered protection against a reexposure to the same condition,

without affording protection to an unrelated condition, was by Pasteur in the 1880s,

experimenting with anthrax and chicken cholera in animals. These experiments also

showed for the first time that artificially attenuated pathogens (in contrast to Jenner’s

use of naturally attenuated cowpox) could be effective agents to protect from

disease. Pasteur named these protective agents “vaccines” in honor of Jenner’s

work with vaccinia virus. Jenner’s work saved vast numbers of human lives.

Pasteur’s findings were of considerable economic benefit to farmers and together

with Jenner’s demonstrations in smallpox raised enthusiasm that vaccination and

actively induced immunity could solve a great number of public health problems.

The reader is referred to the marvelous book “The History of Immunology” by

Arthur Silverstein1 for many additional historical details.

1.1.2 Investigations in Infectious Disease Greatly Influenced
Work in Tumor Immunology

The paradigm that shaped development of most cancer immunotherapies until

relatively recently was grounded in observations based on infectious disease

4 T.J. Curiel



experience. Although immunity to tumors and pathogens shares many similar

mechanisms such as priming of antigen-specific T cells, they also differ consider-

ably in important regards to be explained. Failure to appreciate these differences

fully (among other factors) contributed to delay in development of highly effective

cancer immunotherapy. It is thus useful to understand the history of thinking in

tumor immunology as a prelude to understanding recent conceptual evolutions

driving new treatment paradigms. As our understanding of the specifics of tumor

immunology improves, we should ultimately be able to capitalize on the exquisite

sensitivity and specificity of the immune system to treat cancer in highly targeted

ways with a minimum of unwanted side effects.

In 1866 Wilhelm Busch in Germany noted that some patients with sarcomas had

tumor regressions after surviving postoperative wound erysipelas, an infection with

bacterial species of Streptococcus. In 1868 he deliberately infected a postoperative

sarcoma patient with pus from another active case of wound erysipelas in a

deliberate attempt to induce tumor regression, in what must have been one of the

earliest attempts at tumor immunotherapy. Between 1892 and 1896, the surgeon

William Coley in Manhattan also noted spontaneous tumor regressions after post-

surgical wound erysipelas. Coley also attempted to induce remissions in some

patients by deliberately infecting their wounds with pus from patients that became

infected naturally after surgery and later by using cultures of Streptococcus derived
from these wounds. He is credited with being the first to attempt systematic, large-

scale trials of induced inflammation to treat cancer and reported some clinical

successes, but his patients, like those of Dr. Busch, also experienced substantial

morbidity and mortality from the infection2 as these experiments predated the

antibiotic era. In retrospect, endotoxin from Gram-negative bacteria in wounds or

cultures likely induced endogenous tumor necrosis factor-a that contributed to

clinical efficacy, among other factors. In 1899, Parke Davis licensed the rights to

this treatment (using a cocktail called Coley Fluid) and marketed it as cancer

therapy through the 1950s until the license was revoked for unclear reasons. Dr.

Coley’s work with these approaches at the Memorial Hospital in Manhattan,

notably in soft tissue sarcomas, led to medical and philanthropic attention that

were in part responsible for the success and development of what became known as

the Memorial Sloan-Kettering Cancer Center.

By the 1950s, inbred, genetically homogeneous mice became widely available,

allowing important studies of antigen-specific immunity principally in influenza

that quickly led to the development of effective human influenza vaccines3. An

important result of these early studies was the demonstration that antigen-specific

CD8+ T cells (cytotoxic T lymphocytes, CTL) could kill antigen expressing target

cells and that CTLs were important mediators of protective antiviral immunity,

along with virus-specific antibodies. The concept of protective CTLs quickly

became incorporated into paradigms employed by tumor immunologists. Studies

of how CTLs were primed in an antigen-specific manner led to the elucidation of

the fundamental role for dendritic cells in this process, including the generation

of influenza-specific CTLs4. By the 1940s and 1950s, the public health implications

of cancer were apparent to forward-thinking investigators. Based on the extensive

1 Historical Perspectives and Current Trends in Cancer Immunotherapy 5



record of successful development of vaccines against infectious agents that literally

spanned centuries, testing similar approaches in cancer was an entirely reasonable

strategy.

Tumor immunologists around this time developed translational goals that

followed leads from research in infectious diseases: demonstrate that like

pathogen-specific immunity, tumor-specific immunity also existed; identify spe-

cific rejection antigens expressed by tumors; understand if tumor rejection antigens

were common or specific to given tumors; and then present appropriate tumor

rejection antigens on relevant antigen presenting cells (dendritic cells in particular)

to generate tumor antigen-specific CD8+ CTLs that effected beneficial clinical

results. Pursuing these lines of thought well over a half century ago, Prehn et al.
used the relatively novel concept of studying tumor immunity in genetically

identical inbred mice. These investigators used chemical carcinogens to induce

distinct tumors in inbred mice and showed that immunity to one tumor did not

necessarily protect against challenge with a different tumor from the same genetic

background5. This was a clear demonstration of tumor-specific immunity. Within

the next several decades, specific tumor antigens were identified6 that could be used

to generate antigen-specific CD8+ CTLs that rejected tumors7. A major role for

dendritic cells in priming tumor-specific immunity followed8. As these discoveries

were reported and became widely known, they reinforced the notion that insights

and principles derived from infectious diseases models would be sufficient to drive

development of effective cancer immunotherapy. The success of the current vac-

cine for protection against hepatitis B virus infection, based on the generation of an

immune response against a single antigen9, furthered the concept.

1.2 The Older Paradigm

In the paradigm that prevailed until recently, tumors expressed tumor-associated

antigens that were captured, processed, and presented to professional antigen

presenting cells, particularly dendritic cells. Dendritic cells express immune co-

signaling molecules such as CD40, CD80, CD86, and those of the major histo-

compatibility complex and produce soluble factors such as IL-12 that drive

specific T cell Th polarization and other immune cell-activating programs. The

net result of all these co-signaling and activating events is to prime tumor antigen-

specific T cells, notably CD8+ CTLs. These CTLs, when generated in sufficient

numbers and directed against the appropriate tumor antigens, would then eliminate

tumor (see Fig. 9.1 in Chap. 9 for a graphic illustration). Following this logical

construct, the best steps to develop effective anticancer immunotherapy would be

to identify the appropriate antigens; load antigen presenting cells with those

antigens; appropriately activate the relevant antigen presenting cells; generate

sufficient quantities of tumor antigen-specific effector cells, particularly CD8+

CTLs; or apply various combinations of these approaches. In other words, the

primal defect to be corrected was that there was not enough of a good thing

6 T.J. Curiel
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(tumor-specific antigen(s), T cell priming, appropriate antigen presenting cells,

activation of effector cells, or numbers of antitumor effector cells). If sufficient

missing elements (the good things) could be reinfused or generated through

interventions in the relevant pathways, then tumor immunotherapy could elicit

clinically relevant antitumor immunity as had so successfully been done with a

number of vaccines for infectious agents.

Based on the essentials of this paradigm, earlier trials of cancer

immunotherapies attempted to augment or replace the missing good things. Such

approaches included identifying and challenging with tumor antigens, pulsing these

antigens onto dendritic cells, and attempting to identify optimal antigen presenting

cells or means to activate them10–14; extracting tumor-infiltrating T cells (TIL),

growing them ex vivo and reinfusing them alone,15 reinfusing them in conjunction

with T cell growth and activation factors such as IL-2,16 activating cultured tumor-

infiltrating lymphocytes with cytokines ex vivo prior to reinfusion (LAK cells),17 or

engineering T cells to express receptors for specific tumor-associated antigens18;

augmenting immune co-signaling pathways for greater T cell activation and infus-

ing immune activating cytokines; identifying additional tumor-associated or tumor-

specific antigens19; and generating transient leucopenia to foster rapid proliferation

of antitumor T cells18.

These approaches have generally been meticulously executed and well thought

out. Nonetheless, they have generally delivered only modest clinical benefits at

best. In considering the lack of significant clinical benefits in this paradigm, it is

important to recognize that many patients receiving these treatments already

express a variety of tumor-specific antigens, have large numbers of dendritic cells

and other antigen presenting cells, and elicited significant numbers of tumor

antigen-specific effector cells even as they fail to control, let alone eliminate their

tumors immunologically20, 21. Thus, while increasing these good elements is likely

to be necessary for effective immune control of tumors, it appears unlikely to be a

sufficient stand-alone strategy. Nonetheless, recent reports identify that the effec-

tiveness of some stand-alone therapies can be relatively good. For example, Steve

Rosenberg’s group engineered the T cell receptor from a patient who responded to a

melanoma vaccine into the T cells of additional patients using gene therapy and

were able to elicit meaningful clinical responses in new vaccinees18. Carl June’s

group engineered a chimeric T cell receptor to redirect the antigen specificity of

T cells in patients with chronic lymphocytic leukemia with significant clinical

responses22.

Despite some successes, these latter two reports18, 22 illustrate the fact that many

of these approaches have significant logistical issues; require significant

investments of capital, personnel effort, and time; and raise difficult regulatory

and safety issues as has been noted23. Many of these approaches, by virtue of their

utility against only a given antigen or in the context of a selected genetic (major

histocompatibility complex) background, can be used in only a restricted subset of

patients, aside from the issue of their modest clinical efficacy23. It has thus become

evident that the increase-the-good-things cancer immunotherapy approaches

require substantial adjustments if they are to be clinically effective, practical, and

cost effective.

1 Historical Perspectives and Current Trends in Cancer Immunotherapy 7



1.3 Shortcomings of the Older Paradigm

Insights into the immunopathology and immune defenses operative in infections

have yielded impressively successful vaccines. These infections are pathologic

processes resulting from rapid proliferation of dividing cells (or virions) of exter-

nal origin. By contrast, cancers arise from abnormal proliferation of cells of

internal (self) origin. The self-origin of cancers provides the crux of the funda-

mental difference between infectious diseases and cancer. No matter how abnor-

mal a malignant cell is as a result of its oncogenic mutations, it is nonetheless of

self-origin, and consequently any anticancer immune attack is an autoimmune

attack.

Our immune system has evolved over millennia to monitor autoimmunity and

utilizes a multitude of self-tolerance mechanisms to help prevent it24. However, not

every tumor antigen is a normal self-antigen. Examples include the viral gene

products in human papilloma virus-driven cancers and the mutated p53 self-antigen

in many epithelial carcinomas25, 26. Nonetheless, mechanisms to promote self-

tolerance represent significant obstacles to mounting clinically effective antitumor

immunity. Mouse models for infection such as the powerful influenza model have

helped elucidate important mediators of protective immunity including dendritic

cells, protective antigens, and antigen-specific CD8+ CTLs. Breaking self-

tolerance, which is required to mount effective antitumor immunity, was simply

not a major consideration in these infectious disease studies. Fortunately, the

significance of the requirement to break self-tolerance to promote optimal

antitumor immunotherapy is now garnering the consideration and attention it

merits27, 28.

It is now also clear that inefficient immune-mediated tumor eradication is not

just a passive process due to lack of sufficient numbers of the good elements20, 29.

Important work in the past 15 years has highlighted the active mechanisms

deployed by tumors to thwart effective antitumor immunity such as the elaboration

of immunosuppressive factors including IL-10,30–32 transforming growth factor-

b,20, 33–35 and vascular endothelial growth factor36. These immunosuppressive

factors and other tumor-driven mechanisms likely arise in part as antitumor immu-

nity simultaneously elicits peripheral tolerance mechanisms defending against

autoimmunity, although there are additional reasons to be discussed below. Such

findings underscore the concept that not enough of a good thing is not the funda-

mental problem in tumor immunity, but that additional factors contribute to inef-

fective immune-mediated tumor rejection, including the fact that there is too much
of a bad thing. It further turns out that these bad things fall into several major

categories including dysfunctional T cells, antigen presenting cells, and immune

regulation; immunosuppressive factors; pathologic inflammation; abnormal cell

trafficking; and immune editing, which are discussed in detail in various chapters

in this text.

8 T.J. Curiel



1.4 Examples of the Too Much of a Bad Thing Paradigm

in Ovarian Cancer

Our group has studied patients with ovarian cancer to help understand why

immune-mediated tumor rejection fails in these patients, despite ample evidence

that their tumors are immunogenic and elicit tumor-specific immunity37–39. Ovarian

cancer patients are excellent subjects for studies of human tumor immunology as

their malignant ascites contains significant quantities of tumor antigens, soluble

microenvironmental factors, immune cells, and tumor cells. Tumors from malig-

nant ascites can often be cultivated ex vivo to study effects of autologous tumor-

specific immunity40, 41 that are usually difficult to perform with human subjects.

In these ovarian cancer patients, we found abundant numbers of plasmacytoid

dendritic cells, at the time generally associated with beneficial antiviral immunity,

in contrast to the expected myeloid dendritic cells considered prime inducers of

antitumor immunity. Further, these plasmacytoid dendritic cells were detrimental to

antitumor immunity through induction of immunosuppressive IL-10 that inhibited

tumor-specific immunity rather than inducing beneficial interferon-g, consistent
with a dysfunctional regulatory T cell phenotype41 (see Chap. 9 for more details).

We later identified myeloid dendritic cells in the tumor draining lymph nodes,

thought to be beneficial to antitumor immunity based on their significant record of

use in adoptive transfer strategies for cancer vaccines12. However, instead of being

beneficial, we demonstrated that local tumor microenvironmental factors induced

these myeloid dendritic cells to express dysfunctional B7-H1 immune co-signaling

molecules that generated T cell IL-10 and inhibited tumor-specific immunity40.

We also found that local tumor microenvironmental factors actively recruited

dysfunctional regulatory T cells through the CCR4/CCL22 chemokine signaling

axis. These regulatory T cells inhibited the tumor-specific cytotoxicity of CD8+

CTL and their production of IL-2 and interferon-g. As the number of regulatory

T cells in the solid tumor mass increased, patient survival was reduced38.

1.5 Immunoediting: Another Formidable Hurdle to Successful

Tumor Immunotherapy

The concept of tumor immune surveillance, the active policing and rapid elimination

of cells undergoing malignant degeneration to prevent clinically apparent cancer, has

moved from theory to generally accepted reality. Major mediators of cancer immune

surveillance include T cells, interferon-g, and antigen-specific immunity42, 43.

A profound discovery was the observation by Bob Schreiber’s group that tumor

immune surveillance was the first phase of a much bigger process that he termed

immunoediting,44 with its characteristic three E’s45. The first “E” is elimination of

newly formed malignant cells. This phase most closely approximates what had

previously been referred to as immune surveillance. The second “E” is equilibrium.
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In the equilibrium phase, the outgrowth of malignant cells that escape immune

elimination is balanced by an immune response that evolves to keep pace with the

ever-mutating tumor clones in their efforts to escape immune elimination. This

evolution of tumor antigenicity to evade destruction under immune pressure is called

immunoediting. The end result of immunoediting is the third “E,” escape. Eventually,

the tumor will present antigens no longer sufficiently recognized by remaining

antigen-specific immune cells, and the tumor becomes clinically apparent. Evidence

for immune equilibriumhas been clearly demonstrated inmousemodels43. Supporting

evidence in humans comes from unfortunate natural experiments in which organ

recipients from a common donor all get the same cancer that originated from donors

with unsuspected cancers, most notably melanoma46, 47. Formal demonstration that

tumor antigens drive immunoediting has recently been reported48, 49.

1.6 Resistance to Immune Rejection Is a Fundamental

Hallmark of Cancers

The basis for cancer immunotherapy rests on the immunogenicity of tumor cells.

Recent work described above has led to the understanding that lack of tumor

rejection is not simply due to lack of tumor immunogenicity, although

immunoediting and other related tumor features demonstrate that this can be a

significant barrier44, 45, 48, 49. In 2000, Hanahan and Weinberg reported on six

fundamental hallmarks of cancer: resistance to cell death, replicative immortality,

ability to invade tissues and metastasize, ability to develop new vasculature, ability

to generate proliferative signals, and evasion of growth-suppressing signals50. This

framework has proven useful to understand cancer behavior and to develop drugs

targeted at cancer-specific properties. Nonetheless, these properties only included

those of the tumor cells themselves, with little regard to the hosts in which the

cancers grow and to which they will react, including with antitumor immunity.

Lack of tumor rejection despite their striking antigenicity was summarized and

reviewed in 2006–200721, 51. In response to this growing awareness, Hanahan and

Weinberg returned in 2011 with an updated eight fundamental hallmarks of cancer

that included the original six, but now with an acknowledgement that lack of

immune rejection (along with deranged metabolic features52) was emerging as a

potentially general hallmark of cancer53.

Aside from lack of immunogenicity, the chronic state of generalized inflamma-

tion fostered by cancers was emphasized by work from the Karin lab and others54, 55

and is suggested as a fundamental hallmark of cancer,56 along with genomic

instability,57 abnormal vasculature,58 and age-dependent stem cell features59. Rec-

ognition that the host response to the tumor is critical in its pathogenesis will help

generate novel treatment approaches, including novel immunotherapy approaches.

10 T.J. Curiel



1.7 Novel Clinical Approaches Based on the Newer Paradigm

Armed with these new immunological insights, investigators are developing and

testing novel treatment approaches to cancer immunotherapy. Eliminating dys-

functional immune regulation, such as through managing regulatory T cells

(Chap. 9), is an approach being tested in several cancers including melanoma,

ovarian cancer, breast cancer, and renal cell carcinoma, either as a stand-alone

strategy or combined with active vaccinations60–63. Immunopathologic

contributions of other regulatory cell populations such as CD8+ regulatory T

cells,64, 65 NKT cells,66 myeloid-derived suppressor cells,67, 68 and other

populations69 remain to be fully established. There is considerable interest in

further evaluating the immunopathologic role for myeloid-derived suppressor

cells in human cancers (see Chap. 10). Given that FDA-approved agents such as

5-fluorouracil and gemcitabine are reported to deplete these cells, clinical trials

to evaluate their management are being planned. Although a trial aimed to

deplete myeloid-derived suppressor cells specifically has not been reported to

my knowledge, their levels correlated inversely with clinical responses in a trial

of the experimental agent NOV-002 (disodium glutathione disulfide) plus stan-

dard cytotoxic drugs in patients with early-stage breast cancer70. Investigators

using adoptive T cell (Chap. 3) or dendritic cell transfers (Chap. 4) or active

vaccinations (Chap. 5) now are incorporating features into their trials that can

counter the immune dysfunction that must also be overcome for optimal treat-

ment outcomes. Details are addressed in the relevant chapters.

1.8 Challenges in Developing Newer Tumor Immunotherapies

A better understanding of the immunopathology of specific tumors will help develop

more specific approaches. Significant issues include understanding what immune

dysfunctional mechanisms should be targeted in given tumors, with which agents and

at what stage. Optimal means to combine various treatments remain largely unknown

including which agents are best for combinations and in what temporal sequence. The

issue of the potential efficacy of immunotherapy given the extensive immunoediting

that has occurred in many tumors suggests that mechanisms aimed solely at boosting

endogenous immunity could fail in certain patients and that these patients could

benefit from a gene therapy or adoptive cell transfer approach. The logistical issues of

such approaches remain formidable with current technologies, and wemust somehow

find ways to make them cost effective and practical to apply to large populations. The

ideal approaches will generate relevant antigens (such as through cytotoxic agents

that make tumors immunogenic71), mobilize adequate numbers of relevant antigen

presenting cells (such as granulocyte colony-stimulating factor), use agents to boost

effector T cell function (such as IL-7 or IL-15), and use agents to mitigate immune

dysfunction, such as managing Tregs. These concepts suggest that cancer
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immunotherapy must become more multimodal analogous to the traditional multi-

modal approaches of combining cytotoxic agents, radiotherapy, and surgery.

1.9 Conclusions and Summary

Immune-based therapy has potential to be the best approach to cure many types of

cancer. Antigen-specific immunity is simply as or more potent and targeted as any

approach known thus far. The not enough of a good thing paradigm helped identify

and test important principles in development of cancer immunotherapy. However,

addressing immune dysfunction (the bad things) must also be done for optimal

therapeutic outcomes.

Lack of immune rejection is a fundamental cancer hallmark. Additional tumor-

mediated mechanisms that degrade host immunity include generation of local

inflammation and possibly the immunosuppressive effects of cancer initiating

cells. As we understand these impediments to successful immune eradication of

cancers, cancer immunotherapy could be greatly improved. Just as a careful general

sends troops into battle only after first ensuring that all possible impediments have

first been removed from the battlefield to optimize chances for victory, the too much
of a bad thing paradigm predicts that tumor-driven impediments must also be

eliminated for optimal treatment success.
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Chapter 2

T Cell and Antigen-Presenting Cell Subsets

in the Tumor Microenvironment

Cailin Moira Wilke, Shuang Wei, Lin Wang, Ilona Kryczek, Jingyuan Fang,

Guobin Wang, and Weiping Zou

Abstract The development of successful antitumor immunity depends upon cross

talk and collaboration between multiple T cell and antigen-presenting cell subsets.

In this chapter, we review and summarize current knowledge regarding the func-

tion, interactions, and prognostic significance of each of these populations, as well

as their dependence upon one another within the tumor microenvironment.

2.1 Cytotoxic T Lymphocytes

Cytotoxic T lymphocytes (CTLs) have long been the focus of antitumor immune

study. The first evidence that T cells could in fact kill tumor cells came from

L.R. Freedman and colleagues in 19721. Nearly two decades later, investigators
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observed that high numbers of tumor-infiltrating CD8+ T cells correlated with

increased cancer patient survival2. Since that time, studies of colorectal cancer3,

hepatocellular carcinoma4, 5, ovarian cancer6, esophageal carcinoma7, leukemia8,

and various other cancers have all indicated similar prognostic value of CD8+ T cell

infiltration9. Interestingly, this seems to be specific to tumor tissue as circulating

tumor-antigen-specific CD8+ T cells have no prognostic significance in melanoma

patients10.

CD8+ T cells use multiple mechanisms to kill tumor cells. They express

granzymes, perforin, and ligands of the tumor necrosis factor (TNF) superfamily,

including Fas ligand. CTLs use their surface-expressed TNF family members to

bind corresponding receptors on the surfaces of tumor cells, engaging an intrinsic

death program11. Granzymes are formed in the CD8+ T cell only after

antigen-specific activation of the cell12–14. Once the enzymes have been delivered

to the target tumor cell, killing can occur in as few as 20 minutes15. The signature

cytokines expressed by CD8+ T cells are also important—secretion of interferon-

gamma (IFN-g) and TNF alpha (TNF-a) mediate many antitumor effects. It is not

yet clear, however, if these effects occur directly within the tumor cells, or whether

they influence other mechanisms that aid in antitumor immunity. IFN-g is well

known for its antiangiogenic properties16–18 and its stimulatory effects upon

macrophages19, 20. It is also possible that this cytokine could prompt tumor cells

to upregulate antigen-presentation machinery, increase their antigenic properties,

and/or induce the expression of Fas21–26. Whereas CTL secretion of IFN-g is

directional (toward the immunological synapse and thus the target cell), TNF-a
release is not27. TNF-a can therefore nonspecifically affect other nearby immune

cells or vasculature28. There is also evidence for IFN-g- and TNF-a-mediated

destruction of tumor stroma29. To be sure, directed studies are required further to

elucidate the antitumor effects of TNF-a. However, there are obstacles to efficient
CTL and other T cell subset trafficking into tumor tissues30, 31. One of the major

problems is the lack of a mature, properly developed vascular system within the

malignancy. Recent imaging studies have contributed to our knowledge of

CTL trafficking and the kinetics of killing in the tumor microenvironment32, 33.

A discussion of tumor-infiltrating CD8+ T cells cannot exclude the seminal

work of Dr. Stephen Rosenberg, who was the first to harvest patients’ own

tumor-infiltrating lymphocytes (TILs), expand them in culture with IL-2, and

reinfuse them to take advantage of their capacity for specific lysis34, 35. Although

some patients experienced clinically measurable improvement, many did not. To

evaluate why induced antitumor responses do not necessarily correlate with clinical

responses, we must keep in mind both the immune-manipulating properties of the

tumor microenvironment (see the antigen-presentation cell section below) and the

simple property that tumor cells less susceptible to specific lysis will live and divide

longer than those easily killed by TILs36. Any surviving tumor will likely be more

resistant to such CTL mechanisms of elimination.
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2.2 T-Helper-1 Th1

The Th1/Th2 paradigm was first demonstrated in 1986 by Mosmann and Coffman37.

In their experimental conditions, T-helper-1 (Th1) and T-helper-2 (Th2) cells could

be polarized with IFN-g and IL-4, respectively. The key transcription factors to

control Th1 and Th2 polarization are T-bet and GATA3, respectively. The involve-

ment of helper T cells in the development of anticancer immunity was initially

thought to include only the priming and support, through CD40/CD154 interactions

with antigen-presenting cells (APCs)38–40 and secretion of IFN-g and interleukin (IL)-
2, of a fully activated CD8+ T cell response41, 42. However, subsequent experiments

have shown that the importance of both Th1 and Th2 subsets does not end with CD8+

CTL activation. An elegant mouse study from 1998 demonstrated that both Th1 and

Th2 cytokines play essential roles in antitumor immunity. Cytokines secreted by Th1

cells are capable of recruiting and activating macrophages41. Macrophage-derived

nitric oxide has multiple antitumor properties, including control of macrophage

killing of tumor cells43–45. A key function of Th1-polarized T cells in tumor-bearing

hosts is the secretion of IFN-g, which can substantially increase the level of IL-12

production by stimulated dendritic cells (DCs)46. DC-derived IL-12 serves to polarize

naı̈ve T cells to the Th1 phenotype. In this way, Th1 cells can contribute to their own

population growth and maintenance. Additionally, an interesting recent paper from

the Corthay laboratory has suggested that Th1-derived IFN-g in the tumor microen-

vironment elicits both in vivo macrophage killing of cancer cells and macrophage

elaboration of the angiostatic chemokines CXCL9/MIG and CXCL10/IP-1047.

Whether this holds true in human patients remains to be determined.

Patients with Kaposi sarcoma have what appears to be a Th1-like predominance in

their TIL and blood, characterized by a high secretion of IFN-g. These patients also
had higher CD8+ T cell numbers. Kaposi sarcoma is often accompanied by a

concomitant infection with herpesvirus, so it is possible that this Th1-like phenotype

is elicited in reaction to the virus48. Kusuda et al. found that a higher proportion of

IFN-g to Th2-type cytokines was strongly associated with better prognosis in patients
with ovarian cancer49. Intriguingly, a study from the same year found that a high Th1:

Th2 ratio in the peripheral blood mononuclear cells of patients with non-small cell

lung cancer was actually predictive of shorter survival50. IFN-g and chemokines

associated with a Th1 response, including monokine induced by IFN-g (MIG) and

IFN-g-inducible T cell a chemoattractant, identified renal cell carcinomas that did not

recur after surgical resection. In addition, higher expression of MIG was correlated

with a favorable prognosis51, suggesting that the induction of a Th1-type response in

kidney cancer patients is beneficial. A very recent report examining gastric cancer

showed that higher initial Th1:Th2 ratio (as defined by expression of IFN-g and IL-4)
and higher Th1:Th2 ratio 14 days after surgery indicated better patient prognosis52.

Tosolini and colleagues recently demonstrated that colorectal patients with high

levels of Th1-associated gene expression (T-bet, IRF1, IL12Rb2, and STAT4) in

their tumor tissue had longer disease-free survival. When the investigators paired

some Th1 information with the expression of genes involved in cytotoxicity
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(GNLY, GZMB, and PRF1) and Th17-related genes (RORC and IL17A), they could

classify patients into four groups. Those with high Th1/cytotoxicity gene expression

and low Th17-associated gene expression had the best 5-year disease-free survival.

2.3 Th2

Th2 cells are well known for their involvement in allergy and the response to

helminths and other extracellular pathogens. The development of Th2 cells is

controlled by the transcription factor GATA-3 and by exposure to IL-453–56.

Many laboratories have investigated the function of Th2 cells in the context of

tumor immunity and explored how these cells impact disease development and

patient survival. Th2 cells are crucial in recruiting eosinophils to the tumor site41.

Although a definitive effect of this population on the tumor is still controversial, it

has been observed that eosinophils are capable of killing tumor cells via secretion of

their cytotoxic protein products57, 58.

Myriad early reports documented an “unbalanced” or “decreased” Th1:Th2 ratio

in malignancy42, 59. Some studies have found a predominantly Th2 phenotype in TIL

populations of certain cancers60, where they are skewed by tumor cell expression of

IL-10 and serve to counteract the IFN-g-driven Th1 and CTL antitumor response.

Huang et al. demonstrated the Th2 cytokine-expressing capacity of non-small cell

lung cancers in 199561. Maeurer and colleagues found a similar cytokine signature in

renal cell cancer62. A very recent report showed that Th2-type cytokines in the

microenvironment of colorectal cancer had no prognostic significance for patient

survival63, which correlates well with a previous study64. Although early reports

suggested that Th2 cells might contribute to antitumor immunity65, it now seems that

these cells fail to protect the host66. There is some evidence in mice, however, that the

Th2-associated cytokine IL-4 serves to prime Th1-associated, tumor-specific CTL67.

Melanoma patients who develop Th2 responses usually experience disease progres-

sion68, 69. Interestingly, some cancer patients do have tumor-antigen-specific Th2

cells in their blood. Melanoma70–72 and renal cell carcinoma73 patients have both

been examined in this regard. The Rocken laboratory found that in mice, the human

tumor-associated antigen EpCAM could induce Th2 skewing even under heavily

Th1-polarizing conditions. Although human patient studies are required, it is possible

that tumor cell EpCAM could drive a Th2 response while downregulating Th1

development. This combination of Th1/Th2 skewing could help tumors avoid the

host immune response.

Pancreatic cancer, one of the most aggressive malignancies, has an intriguing

relationship with Th2. Tumor stroma is typically characterized by a heavy Th2

infiltrate74. A recent, elegant study demonstrated that the ratio of Th2:Th1 cells in

pancreatic tumors could serve as an independent prognostic marker of patient

survival75. This study also identified cancer-associated fibroblast-derived thymic

stromal lymphopoietin as capable of conditioning myeloid DC. These conditioned

myeloid DCs could then produce Th2-attracting chemokines and polarize T cells to
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a Th2 phenotype. It seems that Th2 cells in the tumor microenvironment can be

induced by multiple tumor-derived factors and that they serve to impede or co-opt

the development of antitumor responses.

2.4 Th17

Since their identification within the last half decade, Th17 cells have risen to

prominence in studies of nearly every human pathology. While their role in many

conditions is rather well understood, their function(s) in the context of tumor

immunology remains contentious. Th17 cell effects in the tumor microenvironment

are often grouped or confused with those of IL-17, IL-23, and other Th17 “signature

cytokines.” Data from mouse studies and chemically induced tumorigenesis have

further complicated the issue. However, here we will focus exclusively on Th17

studies in the human tumor environment.

Th17 cells are defined as CD4+ T-helper cells whose developmental program is

controlled by the transcription factor RAR-related orphan receptor gamma T and

multiple cytokines76. Human tumor-associated Th17 cells express minimal levels

of HLA-DR, CD25, granzyme B, programmed cell death 1 (PD-1), or forkhead box

P3 (FoxP3), suggesting that they are not a conventional effector or immune-

suppressive cell population. Th17 cells in cancer patients produce high levels of

granulocyte-macrophage colony-stimulating factor (GM-CSF), TNF-a, IL-2, and
IFN-g, but no IL-1077, 78. Tumor-associated Th17 cytokine products mimic those

found in some instances of viral infection79, 80. These cytokines may be the primary

mediators by which Th17 from cancer patients influence local immune responses.

Interestingly, Th17 cells expanded in vitro from TIL populations in melanoma,

breast, and colon cancers secrete IL-8 and TNF-a, but no IL-281. Because Th17

cells isolated from both healthy donors82 and patients with autoimmune diseases83

produce the same cytokines, it is possible the phenotypes of freshly isolated Th17

cells and those induced in vitro from tumor-associated populations differ.

Tumor-associated Th17 express large amounts of the homing molecules CXCR4

and CCR6, c-type lectin receptor CD161, and the CD49 integrin isoforms c, d,

and e, but no CCR2, CCR5, or CCR777. As CCR6 and CD161 have been observed

on both Th17 cells from healthy donors and on various cells in inflammatory

environments84–86, they may not serve as Th17-specific molecules.

Many laboratories have studied Th17 populations in the blood and (occasionally)

tissues of patients with various cancers (Box 1). Throughout our work with ovarian

cancer patients, we have made several key observations in regard to Th17 distribu-

tion and function. Th17 cell numbers in the tumor-draining lymph nodes and blood

of these patients is comparable to that of healthy donors. Th17 cells constitute a

numerically small but proportionally high population within the tumor microenvi-

ronment in comparison to other immune cell subsets. Within the tumor environ-

ment, Th17 levels correlate positively with Th1 cells, cytotoxic CD8+ T cells, and

NK cells. Perhaps not surprisingly, their numbers are inversely related to those of
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regulatory T (Treg) cells77, 87. In vitro expansion data from Su et al. corroborates

our findings of higher numbers of Th17 cells in TIL populations than in lymphocyte

populations from non-tumor tissue81. IL-17 derived solely from Th17 cells in

ovarian cancer ascites fluid correlated positively with patient survival and served

as a negative predictor of death hazard. The average survival of patients with greater

than 220 pg/ml IL-17 in ascites was 78 months, while patients with less IL-17

survived for only 27 months. IL-17 in the tumor microenvironment synergized with

IFN-g to induce the Th1-type chemokines CXCL9 and CXCL10. Ascites levels of

CXCL9 and CXCL10 correlated directly with tumor-infiltrating NK and CD8+ T

cells, suggesting that these chemokines recruited effector cell populations to the

tumor77. In agreement with our finding that Th17 cells are protective, Sfanos et al.

found an inverse correlation between Th17 cell differentiation stage in the tumormass

in prostate cancer patients and their tumor progression88. Malignant pleural effusion

from patients with lung adenocarcinoma or squamous cell carcinoma was chemotac-

tic for Th17 cells, and this activity was partially abrogated by chemokine ligand 20

(CCL20) and/or CCL22 blockade. Interestingly, higher accumulation of Th17 cells in

malignant pleural effusions predicted improved patient survival89.

Intriguingly, Derhovanessian et al. demonstrated an inverse correlation between

pretreatment circulating levels of Th17 cells in patients with hormone-resistant

prostate cancer and time to disease progression90. The levels of Th17 cells are usually

limited in cancer patients77, 87. Increased Th17 in the blood could indicate an

underlying infection or other inflammatory state. IL-17 would certainly have an

impact on the efficacy of immunotherapy and tumor development speed. IL-17-

producing cells are enriched predominantly in the peritumoral stroma of hepatocel-

lular carcinoma tissues, where their levels correlated with monocyte/macrophage

density. Consistent with our observations77, Kuang et al. found that tumor-activated

monocytes were better than tumor-associated macrophages (TAMs) in inducing

in vitro expansion and proliferation of Th17 from circulating memory T cells91.

However, not all studies of Th17 in malignancy demonstrate a clear relation to

disease progression: a recent study showed no correlation of Th17 numbers with

nasopharyngeal patient clinicopathological characteristics or survival92.

Patients with chronic inflammation have a greatly increased risk of cancer in the

affected organs93, 94. Because inflammation resulting from infections can often

contribute to the development of malignancy, it is necessary to understand the

kinetics and targets of inflammation in a discussion of cancer. Our laboratory found

that Th1-derived IFN-g could rapidly induce B7-H1 expression on APCs and

stimulate their production of IL-1 and IL-23. B7-H1 signaling abrogated the Th1-

polarizing capacity of the APC, while IL-1 and IL-23 directed them toward a

memory Th17-expanding phenotype95. In the course of inflammation, the acute

Th1-mediated response is attenuated by IFN-g-induced B7-H1 on APCs and is

subsequently evolved toward chronic inflammation mediated by Th17 cells. Not

only does this data challenge the dogma of Th17 suppression by IFN-g, it also
reinforces the notion that Th17 population kinetics depend strongly on the ongoing

immune response and constituents of the cytokine milieu. Disease progression

influences both of these factors.
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2.5 Treg

T regulatory cells, originally termed suppressive T cells, were first described in the

early 1970s as thymus-derived lymphocytes that tolerized bone marrow-derived

lymphocytes to antigenic challenge96, 97. Subsequent research demonstrated that

T cells expressing CD4 and CD25 from tumor-bearing mice abrogated tumor

rejection98–100. After more than a decade of intense skepticism, Sakaguchi and

colleagues ascertained that the IL-2 receptor a-chain (CD25) could be used to

identify these suppressive cells101. Later studies in the same laboratory and others

established the transcription factor FoxP3 as both a key intracellular marker of

CD4+CD25+ Tregs and was a necessary factor for development and proper function

of these cells102–104. Beginning with these reports, the field of Tregs has expanded

and progressed rapidly. In fact, several distinct regulatory T cell populations have

been proposed, including CD8+ subsets. These include CD8+CD25+ T cells from

the thymus that utilize TGF-b and cytotoxic T-lymphocyte-associated antigen-4

(CTLA-4) to suppress cell activation and proliferation105, as well as a peripheral

CD8+CD28- T cell population that targets DC immunoglobulin-like transcripts 3

and 4106. We have identified IL-10-secreting CD8+ T cells107, 108 in human ovarian

cancer. A FoxP3-CD4+ population (termed TR1 cells) identified by Groux et al. can

also suppress through IL-10 in vitro109. Weiner et al. characterized a peripherally

derived CD4+TGF-b+ population (TH3) that exerts suppressive action in vivo

through TGF-b110. CD4+CD25+FoxP3+ T cells, termed “classical T regulatory

cells” or TRegs, differentiate in the thymus and then migrate to the periphery111, 112.

TRegs constitutively express glucocorticoid-induced tumor necrosis factor receptor-

related protein, leukocyte common antigen isoform RO (CD45RO), and CTLA-

4113–117. Recent data presents the possibility of further categorizing naturally

occurring TRegs into three subgroups: CD45RA+FoxP3lo resting TReg, termed

“rTreg,” CD45RA-FoxP3hi activated Treg (aTreg) cells, and cytokine-secreting

CD45RA-FoxP3lo non-suppressive T cells118. Ongoing investigations into phenotype

and function will likely contribute to the appreciation of an even wider range of

regulatory T cell populations in the future.

In humans, TReg cells are found primarily in the thymus, peripheral blood,

lymph nodes, and spleen, where they constitute 5–10% of the resident CD4+

T cells119–121. In bone marrow, however, they make up a remarkable 25% of

CD4+ T cells122. Bone marrow is the preferential site of metastasis for some cancers

(such as breast, lung, and prostate), suggesting that the suppressive environment

here is conducive to malignancy. In tumors themselves, however, there are a

number of ways that TReg cells accumulate: trafficking under the influence of

CCL22123, differentiation89, 96, 107, 108, 124, 125 or expansion126–128 within the

stroma, and conversion from other T cell populations129–132. Many types of tumors

express tumor-associated antigens—molecules found on tumor cells and certain

populations of normal cells. Multiple mechanisms of suppression enacted by

tumor-associated antigen-specific TReg cells have been identified. These include

the induction of IL-10 and TGF-b, which can drastically suppress APC, natural
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killer (NK), and T cell function133, 134; competitive consumption of the T cell

survival factor IL-2119, 135, 136; perforin and granzyme-dependent killing of

APCs and T cells137, 138; CTLA-4 induction of indolamine 2,3-dioxygenase

(IDO)-expression, which promotes tolerance139–141; and finally induction of B7-

H4 expression on APCs, which renders them immunosuppressive142. In these ways,

TReg cells target both T cells and APCs to create a generally tolerant tumor

microenvironment.

Increased numbers of TReg cells have been observed in patients with many types of

cancer, including pancreatic and breast cancer143, colorectal cancer144, 145, gastric

and esophageal cancer146, 147, leukemia and lymphoma148, 149, melanoma150, 151,

lung and ovarian cancer145, 152, and hepatocellular carcinoma153.

Many studies have examined the prognostic significance of TReg cells in the

tumor microenvironment, and these are reviewed in detail154. Briefly, higher TReg

numbers in and around ovarian cancer negatively impact disease progression and

patient survival6, 87, 155. Work from our laboratory has demonstrated that B7-H4

expression on TAMs and tumor cells correlated with intratumoral TReg presence
142.

Higher numbers of TRegs in pancreatic cancer also predict more advanced disease

and shorter survival156. Melanoma is similar: TReg populations were larger in

patients who experienced recurrence than in those who did not. Interestingly,

TRegs were often found in proximity with TAMs, the presence of which is

associated with poor prognosis157, 158. Breast cancer patients with higher TReg

numbers have increased chance of relapse and shorter overall survival159. Finally,

more liver cancer-associated TRegs correlate with poorer disease-free and overall

patient survival4, 160.

TRegs in other cancers are not so easy to define. Increased TRegs in head or neck

squamous cell carcinoma indicate better regional tumor control161. Studies in gastric

cancer point to TReg location, rather than number, as an important prognostic factor in

that patients with peritumoral TRegs had better overall survival than those with a

diffuse TReg pattern162. Another study found that larger Treg populations in the

stroma of gastric cancer patients correlated positively with longer survival163. Colo-

rectal cancer studies parallel gastric cancer: various studies have found associations

of higher TReg numbers with poorly differentiated tumors or earlier stage and better

patient overall survival164–166. In lymphoma, fewer TRegs and more CTLs in the

reactive background serve as an independent prognostic factor suggesting shorter

patient disease-free survival167. It is possible that in these cancers, TReg cells pre-

dominantly function to minimize inflammation rather than curb the antitumor

response. More careful mechanistic studies will shed light on this hypothesis.

2.6 Myeloid Dendritic Cells

Myeloid DCs are the most frequently studied of the APC subsets. They stimulate

the adaptive arm of the immune system by activating naı̈ve T cells168. Pulsing of

DCs with killed ovarian tumor cells can stimulate tumor-specific blood-derived

24 C.M. Wilke et al.



T cells, which can produce IFN-g upon autologous tumor cell encounter169. Various

other studies demonstrate the potential of tumor-antigen-pulsed DCs to stimulate

CTL responses in vitro170, 171. The antitumor protection observed upon adoptive

transfer of appropriately primed myeloid DCs to tumor patients172, 173 is rarely seen

in the natural development of human tumors174. The tumor and its environment

produces factors that suppress the development and normal function of DCs107, 175,

which compromises antitumor immunity. In 2003, our laboratory demonstrated

low expression levels of the inhibitory molecule B7-H1 on blood- and lymph

node-derived myeloid DCs in healthy individuals but observed much higher expres-

sion of the molecule on myeloid DCs from tumor-draining lymph nodes and

tumors176 from patients with ovarian cancer. B7-H1 expression on these cells was

controlled by IL-10, previously shown to decrease co-stimulatory molecules on

DCs177, and vascular endothelial growth factor, known to inhibit DC differentiation

from hematopoietic precursors175. Abrogation of B7-H1 signaling enhanced mye-

loid DC-mediated T cell activation, which correlated with a decrease in T cell-

derived IL-10 and an increase in T cell-derived IL-2 and IFN-g. Interestingly, this
treatment also downregulated IL-10 expression and stimulated increased IL-12

expression on myeloid DCs. T cells conditioned with myeloid DCs in which

B7-H1 had been blocked could inhibit autologous human ovarian carcinoma

growth better than unconditioned T cells when xenotransplanted into nonobese

diabetic�severe combined immunodeficient mice. A recent report from the

Knustson laboratory showed that in addition to expressing B7-H1, murine ovarian

tumor-associated myeloid DCs acquire higher levels of programmed death

receptor-1 (PD-1) over time. PD-1 ligation on these cells impeded NF-kB activa-

tion, elaboration of numerous cytokines (IL-10, IL-6, IL-12, TNF-a, and GM-CSF)

and co-stimulatory molecule upregulation178.

Hepatocyte growth factor could stimulate papillary thyroid carcinoma cells to

secrete MIP-3a (CCL20) and other chemokines to recruit immature myeloid CD1a++

DCs to the tumor periphery179, 180. By contrast, mature DCs have been documented

in colon cancer, albeit at a lower density than in normal colon tissue181. Tumor

expression of VEGF and TIL expression of TNF-a were associated with higher

intratumoral DC infiltration. Interestingly, DC infiltration in metastases was approxi-

mately sixfold lower than in the primary colorectal tumors. Studies in breast cancer

have revealed that immature DCs infiltrate tumor beds, while mature DCs remain in

peritumoral areas182, 183. It seems that breast cancer tumor cells prompt intratumoral

myeloid DCs to polarize local naı̈ve T cells to an IL-13 (Th2-type cytokine)-secreting

phenotype, which facilitated the progression of human tumor growth in a mouse

xenograft model184. Culture of human multiple myeloma cell lines and primary

multiple myeloma cells with myeloid DCs leads to improved survival, proliferation,

and enhanced clonogenicity of the tumor cells. These effects can be abrogated by

blockade of RANK ligand and APRIL185. In primary multiple myeloma samples,

myeloid DCs are found to co-localize with tumor cells, suggesting that these

interactions may occur in vivo186.

A few years ago, Huarte et al. demonstrated that CD11c+DEC205+ DCs

co-expressing a-smooth muscle actin and VE-cadherin played an essential role in
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tumor vasculature maintenance187. Decelerated tumor growth after depletion of

myeloid DCs was associated with vascular apoptosis. Our laboratory’s more recent

studies demonstrated that both myeloid DCs and macrophages (but not

plasmacytoid DCs) from normal donors were capable of inducing Th17 cells

from memory but not naı̈ve CD4+ T cells, and myeloid DCs and macrophages in

the ovarian tumor microenvironment were similarly capable77. The relevance of

Th17 induction is discussed in the next section. Altogether, myeloid DCs are

thought to be the major functional DC subsets in the malignant microenvironment.

Myeloid DC vaccination has been utilized in clinical trials to treat cancer patients,

albeit with generally modest results at best. Functional mature myeloid DCs exist in

limited numbers within the tumor, and many if not all are phenotypically and

functionally altered. Myeloid DCs that are dysfunctional or mediate immune

suppression are likely a reason for these thus far unsatisfying clinical observations.

2.7 Macrophages

TAMs form the major APC subset (by number) in solid human epithelial cancers.

Several years ago, our group discovered that both tumor cells and microenvironmen-

tal macrophages in ovarian cancer expressed CCL22, a chemokine instrumental in

attracting Tregs to the tumor environment87. Interestingly, because the presence of

Tregs predicts poorer survival and is associated with a high death hazard in ovarian

cancer patients, TAMs may contribute to their prognoses. Indeed, we subsequently

demonstrated that although they are highly B7-H4 positive, ovarian cancer cells do

not directly mediate antitumor T cell suppression. However, B7-H4+ macrophages

from the human ovarian tumor microenvironment are powerful suppressors of

tumor-associated antigen-specific T cell immunity142. B7-H4 blockade restored

the stimulatory capacity of macrophages and mediated ovarian tumor regression

in vivo in NOD/SCIDmice. Both IL-10 and IL-6, often found in high concentrations

in the tumor environment, can induce B7-H4 expression on macrophages. Contrast-

ingly, two cytokines minimally expressed in the same environment—GM-CSF and

IL-4—inhibit B7-H4 expression. Interestingly, forced expression of B7-H4 in

macrophages from healthy donors conferred a suppressive phenotype on the cells.

As for the prognostic significance of B7-H4+ macrophages in ovarian cancer, we

documented an inverse relationship between the intensity of B7-H4 expression on

macrophages and patient survival. Importantly, Tregs, typically predictors of poor

prognoses in cancer patients154, could induce B7-H4 expression on myeloid APCs

(including macrophages) and were positively associated with B7-H4+ macrophage

presence in ovarian tumors188. A later observation of Wan and colleagues showed

that the mean density of TAMs is significantly higher in ovarian cancer than in

benign ovarian lesions and that the average 5-year survival rate in patients with

low densities of TAM was significantly higher than in patients with larger

TAM populations, agreeing well with our observations. Multivariate analysis

demonstrated that TAM infiltration status serves as an independent negative
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predictor for overall survival of patients with ovarian cancer189. The presence of

CCL17+ or CCL22+ cells in CD14+ monocytes and macrophages within gastric

tumors correlated directly with Treg cell presence. Tregs were also shown to migrate

toward CCL17 and CCL22162. A study by Haas et al. demonstrated that a higher

ratio of stromal CD68+ (a monocyte/macrophage glycoprotein) cells to FoxP3+ cells

in intestinal-type gastric cancer patients correlated with shorter median survival

time163. Another study from our laboratory examined B7-H1 expression on Kupffer

cells in hepatocellular carcinoma and found that it was increased in comparison to

normal tissue. This expression correlated with poor survival. Not surprisingly,

B7-H1+ Kupffer cells impaired the proliferation and effector function of CD8+PD-

1+ T cells from the tumor tissue that was reversed upon B7-H1/PD-1 blockade157.

Finally, a report from Miracco in 2007 showed that Tregs and TAMs were co-

localized in melanoma tumors in human patients157. TAM presence in advanced

melanoma has also been correlated with poor patient prognosis158.

As for function within the tumor microenvironment, macrophages display a

number of pro-tumor activities. They can modify the extracellular matrix; secrete

proangiogenic chemokines such as fibroblast growth factor, monocyte/macrophage

chemoattractant protein-1 (MCP-1), and VEGF; and produce the immunosuppres-

sive cytokine IL-10190–193. MCP-1 expression in breast tumors and TAMs

correlated significantly with the presence of other angiogenic factors and with

macrophage infiltration of the tumor. Higher levels of TAMs indicated patients

with a higher risk of early relapse194. Higher MCP-1 levels in urine correlated with

more advanced bladder cancer stage195. MCP-1 positive invasive ductal breast

carcinomas were poorly differentiated, suggesting a correlation of MCP-1 expres-

sion and tumor grade196. However, a subsequent study showed that MCP-1 levels

did not correlate with TAM infiltration in breast carcinoma197. It is therefore likely

that MCP-1 is not the only chemokine responsible for attracting macrophages into

the tumor microenvironment.

The function(s) and prognostic significance of Th17 cells in human cancer are still

under discussion198, 199. Although few human studies on the subject are published, it

seems that Th17 in established epithelial cancers (like ovarian) act to recruit other

effector T cell subsets and in doing so, support antitumor immunity77. As discussed,

both ovarian cancer-derived myeloid DCs and macrophages are capable of Th17

induction. TAMs are more potent Th17 cell inducers than either tumor-derived

myeloid DCs or blood macrophages from healthy volunteers. Th17 cell induction

is additionally dependent upon TAM expression of IL-1b and IL-23. Blockade of

either cytokine significantly decreases the resultant Th17 population, while concom-

itant blockade of both further diminishes final numbers. In the tumor microenviron-

ment, Th17 induction is also suppressed by Treg cells77. In summary, macrophages

are the largest APC subset in ovarian and quite possibly other types of cancer, where

they may suppress antitumor immunity through multiple modes of action, including

the expression of inhibitory B7 family members, the elaboration of proangiogenic

chemokines, and the recruitment of Tregs.
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2.8 Plasmacytoid Dendritic Cells

Our laboratory was responsible for some of the first studies of plasmacytoid DCs in

the tumor environment. A decade ago, we found that human ovarian cancer cells

express extremely high levels of stromal-derived factor-1 (SDF-1), which induced

plasmacytoid DC trafficking to the tumor via signaling through CXC chemokine

receptor-4 (CXCR4)107, 200. Additionally, SDF-1 induced plasmacytoid DC expres-

sion of very late antigen-5, which interacted with VCAM-1 to mediate cell adhesion

and migration through vessel walls. SDF-1 also protected plasmacytoid DCs from

apoptosis induced by IL-10 from TAM. Tumor-associated plasmacytoid DCs could

induce interleukin-10 production from nearby T cells, which impeded T cell activa-

tion by local myeloid DC. This is evidence that plasmacytoid DCs can undermine

antitumor immunity and contribute to a suppressive tumor environment. We have

also demonstrated a role for plasmacytoid DCs in promoting angiogenesis in ovarian

tumors201. SDF-1 attracted plasmacytoid DCs into the tumor, where they induced

angiogenesis through the production of proangiogenic mediators including TNF-a
and IL-8. Conversely, functional myeloid DCs, although numerically restricted in the

tumor microenvironment, could suppress angiogenesis in vivo via elaboration of

IL-12. These data suggest that malignant cells attract plasmacytoid DCs through

expression of SDF-1 to augment vessel formation while excluding the presence of

angiogenesis-inhibiting myeloid DCs. We subsequently observed that plasmacytoid

DCs from malignant ascites could induce CD8+ regulatory T cell populations202, in

contrast to macrophage-derived DCs203 which induced tumor-associated antigen-

specific CD8+ T cells with effector functions. CD8+ suppressor cells induced by

plasmacytoid DCs were IL-10+CCR7+CD45RO+, and could suppress myeloid

DC-mediated tumor-associated antigen-specific T cell effector functions via IL-10.

Plasmacytoid DC CCR7 was functional, as they migrated efficiently under the

influence of the lymphoid homing chemokine MIP-3b. Suppressive populations of

CCR7+CD45RO+CD8+ T cells are found in the tumor environment of ovarian cancer

patients, suggesting the in vivo functionality of tumor-associated plasmacytoid DC.

Ovarian cancer-associated plasmacytoid DCs can thus induce CD8+ Treg cells and

promote tumor angiogenesis, inhibiting antitumor immunity.

Plasmacytoid DC detection (which occurs in approximately one-tenth of breast

carcinoma samples) is correlated with poor prognosis204. This phenomenon may be

attributed to the fact that cells of at least one type of human cancer (head and neck

squamous cell carcinoma) negatively impact the ability of plasmacytoid DCs to

elaborate IFN-a upon toll-like receptor stimulation110. Fascinatingly, investigators

found that treatment of basal cell carcinoma with Imiquimod (a toll-like receptor

7 agonist) could induce myeloid DCs to express perforin and granzyme and

plasmacytoid DCs to express TRAIL. Imiquimod-treated myeloid DCs and

plasmacytoid DCs could kill human tumor cell lines and MHC I-expressing Jurkat

cells, respectively, suggesting a new functionality of DCs in immune (and possibly

antitumor) responses203. Plasmacytoid DCs have also been seen to accumulate in

the peritumoral area of primary cutaneous melanomas, likely as a result of
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melanoma cell production of SDF-1. Peritumoral plasmacytoid DCs could produce

type I IFNs, but their expression of MxA (myxovirus resistance protein A, an IFN-a-
inducible protein) was extremely varied and typically minimal. Intratumoral

plasmacytoid DCs have an immature phenotype, suggesting incomplete develop-

ment, possibly influenced by the tumor itself205. Salio and colleagues observed that

plasmacytoid DCs from human blood could efficiently prime naı̈ve melanoma tumor-

antigen (melan-A)-specific CD8+ lymphocytes to become IFN-g-producing cells

in vitro206. Plasmacytoid DCs stimulated with CD40L induced cutaneous lymphocyte

antigen and L-selectin (CD62L) expression on primed tumor-associated antigen-

specific T cells. These homing receptors could allow effector cell migration to

diseased skin. This study also confirmed the presence of plasmacytoid DCs in the

peritumoral area of most primary cutaneous melanomas in vivo. Plasmacytoid DC

type I IFN-containing supernatant induced upregulation of CD95 and MHC class I

and class II molecules on melanoma cells in vitro. Thus, tissue-infiltrating

plasmacytoid DCs could have a previously unknown immune-modulating capacity.

2.9 B Cells

As noted above, tumor-infiltrating CD8+ T lymphocytes typically correlate positively

with improved survival of cancer patients. B cells have been observed to co-localize

with T cells and are known to provide various support functions. However, the

association of B cell presence or function with patient prognoses in cancer has not

been well studied207. Milne and colleagues recently demonstrated that CD20+ tumor-

infiltrating B cells could be found in more than two-fifths of high-grade serous

ovarian cancer samples208. B cell presence here was strongly associated with CD4+

and CD8+ T cells, the activation markers CD25 and CD45RO, and markers of T cell

effector function including expression of tumor infiltrating B cells (TIA-1) and

granzyme B. Intriguingly, B cells were also associated with T cell expression of

FoxP3, a marker that could indicate either activated or regulatory T cells209, 210.

Intraepithelial B cell numbers correlated positively with improved patient disease-

specific survival, while fascinatingly, the combination ofCD8+ andCD20+ TILs in the

same tumor indicated significantly increased disease-specific survival over tumors

that contained one or the other type of TIL. CD20+ cells could support the actions of

tumor-associated effector T cells through various mechanisms. In mice, B cells can

produce autoantibodies directed against tumor targets211. It is possible that tumor-

infiltratingB cells can raise the concentration of antitumor autoantibodies in the tumor

microenvironment to physiologically relevant levels. Tumor-infiltrating B cells can

also secrete granzymeB212 and TRAIL213 and induce tumor cell death through both of

these mechanisms. New evidence of B cell killer potential is coming to light and will

no doubt inform future studies of these cells in the context of malignancy214.

B cell infiltration of tumors has been examined in multiple tumor settings. They

are detected in approximately one-quarter of breast cancers, where they can make

up nearly 40% of the TIL populations215–217. B cells are early infiltrators of breast
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cancer218. Tumor-infiltrating B cell phenotypes appear driven by affinity matura-

tion219–222 and can also be found in tertiary lymphoid structures, where they

co-localize with CD4+ T cells, CD8+ T cells, and/or DCs223–225. The expression

of B cell signature genes in node-negative breast cancer was shown to have positive

prognostic significance226. In medullary breast cancer, the presence of B cells and T

cell subsets appears to be beneficial for patient survival217, 227, 228. A very recent

study utilizing the 4T1 mouse model of breast cancer identified a subset of activated

B2 cells (CD19+CD25hiCD69hi) that proliferated poorly. Interestingly, these cells

expressed B7-H1 and their principal function within the tumor environment

appeared to be mediating the conversion of CD4+ T cells to Treg cells via produc-

tion of TGF-b229. Whether this conversion occurs in human cancer remains to be

seen. B cells have also been examined in non-small cell lung cancer, where their

presence in epithelium, tumor stroma, and tumor lysis syndrome (TLS) correlate

strongly with better survival230–232. B cells in lung cancer are specific for antigens

that include the tumor suppressor gene p53 and other molecules typically

overexpressed in tumor tissue233. Finally, in cervical cancer, peritumoral B cell

presence is associated with decreased patient relapse234.

Interestingly, an earlier study examined CD19+ cell presence in post-

chemotherapy effusions from advanced ovarian cancer and found that it was

predictive of poorer survival235. How then, can B cells be prognostically good in

one investigation of ovarian carcinoma while detrimental in another? First, patients

in the latter study were subjected to chemotherapy (which can profoundly affect the

numbers and functionality of immune cell subsets), while those in the former study

were not. Second, the populations delineated by CD19 and CD20 are not precisely

the same: while CD20 is present on the surface of all mature B cells236–238 and

CD19 is predominantly expressed on B cells239, these surface markers have slightly

different expression profiles. Finally, the activation state of B cells contributes to

their effector or suppressor functions in various pathologies: resting B cells inhibit

the antitumor response240, while activated B cells can aid T cell responses241.

The roles for B cells in the malignant microenvironment are many. B cells can

effect regulatory functions. They can be polarized by Th subsets into subpopulations

that produce IFN-g, IL-12, and TNF-a and promote Th1 skewing, or they can be

producers of IL-2, IL-4, TNF-a, and IL-6 that support Th2 development. B cell

production of these groups of cytokines feeds back into the maintenance and

expansion of the Th populations that initially stimulated their cytokine expression,

thereby maintaining and propagating a Th1 or Th2-type cytokine milieu242, 243. B

cells can also influence T cell memory, survival, and proliferation244, 245, as well as

present antigen to both T cells241, 246. In advanced tumors, where DCs may have

become suppressive or rare, B cells could serve a greater antigen-presentation

role207. This, however, could act as a double-edged sword: presentation to helper

or cytotoxic T cells might support antitumor immunity, while antigen presentation

to Tregs could undermine the antitumor response. B cells can additionally mediate

immunosuppressive functions via their cytokine products. The immunoregulators

IL-10 and TGF-b can both be produced by B cells246 and foster downregulation of

antigen presentation, suppression of T cell activation, and maintenance of Treg
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suppressor function247–249. However, we have recently demonstrated several new

roles for IL-10 in support of antitumor immunity, including the moderation of

tumor-associated suppressive cellular networks including regulatory T cells and

myeloid-derived suppressor cells250. Further research is warranted to determine

whether B cell-derived IL-10 acts solely to suppress or support antitumor immu-

nity, or whether these cells’ functions are context-dependent, like so many other

immune factors. B cells themselves may serve beneficial or detrimental roles to

antitumor immunity depending on their intratumoral phenotype.

2.10 Conclusions

It is evident that different subsets of immune cells infiltrate tumors in different

degrees. The detailed molecular and cellular mechanisms controlling the quantity

and quality of immune infiltration remain to be fully dissected. It is clear that

immune infiltration is different from tumor to tumor and from different clinical

stages. Therefore, the pathological relevance of each immune subset tumor infiltra-

tion may be generalized and need to be analyzed in a specific situation. It is

expected that manipulation of tumor immune cell infiltration should be therapeuti-

cally important in treating patients with cancer.
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Chapter 3

Adoptive T Cell Transfer

Donald R. Shaffer, Conrad Russell Y. Cruz, and Cliona M. Rooney

Abstract The clinical use of adoptively-transferred T or NK lymphocytes with

anti-tumor activity is gaining in popularity as reports of success accumulate. High

specific activity with minimal off target effects contribute to a class of therapy with

minimal toxicity that is transformative for cancer patients, who with their

physicians have come to accept severe short and long term toxicities as the cost

of a frequently small hope of cure or extension of life. However, the successes of

cell therapies are as yet in the minority and scientists are developing and testing

strategies to improve the function and persistence of adoptively transferred

lymphocytes in the face of multiple, potent immune evasion strategies used by

tumors and their accessory cells to coexist with an intact immune response. These

strategies include combination with chemotherapies and/or radiation and genetic

modifications that improve T cell function and tumor targeting. However many of

these strategies come with a price and re-introduce toxicities including death in rare

cases. This chapter will outline the development of tumor-specific lymphocyte

therapies, highlighting successes and difficulties and discussing potential ways

forward in this exciting field.

3.1 Introduction

Potent cytotoxicity with exquisite specificity is the sine qua non of novel cancer

therapeutics. Nowhere in nature are these two qualities better exemplified than in

the cytotoxic T lymphocyte (CTL).

Humans possess a diverse T cell repertoire with approximately 2.5 � 107 distinct

T cell receptors (TCRs) recognizing unique peptide sequences or antigens1. Each
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T cell is capable of massive clonal expansion and potent cytotoxic activity after

pathogen recognition, yet the T cell response to infection is coordinated and controlled.

Infected cells are efficiently destroyed with minimal damage to surrounding healthy

tissues, and T cell numbers rapidly return to homeostatic levels once the infection is

resolved. Tumor immunotherapy attempts to harness the power and specificity of the

cellular immune response and direct or amplify it against malignant cells. Indeed,

the stimulation of tumor-specific T cells is the end goal of cancer vaccines, while the

ability to recruit natural killer (NK) cells is an important component of anticancer

antibodies. Perhaps the most direct way to confer antitumor cellular immunity to

patients is by adoptive T cell transfer, which refers to the ex vivo culture and

subsequent infusion of autologous or donor-derived T lymphocytes. Not far behind,

the use ofNKcells asmediators of antitumor responses in an adoptive immunotherapy

setting is gaining increased attention over the last few years owing to improvements in

the understanding of their function, activation and ex vivo expansion.

In this chapter, we will discuss the three major adoptive T cell transfer platforms

that have been used clinically, (1) Epstein–Barr virus (EBV)-specific T cells

for EBV-associated malignancies, (2) tumor-infiltrating lymphocytes (TIL) for

metastatic melanoma and ovarian cancer, and (3) genetically modified T cells

directed against various solid and hematological malignancies, and conclude with

a brief discussion focused on NK cells as an immunotherapy platform.

3.2 EBV-Associated Malignancies

One of the first challenges to adoptive T cell transfer for tumor immunotherapy is the

identification of antigens that are uniquely expressed bymalignant cells and can serve

as suitable targets for T cells. Antigens for T cell targeting should meet several

requirements. They should (1) be presented on the cell surface by human leukocyte

antigen (HLA) major histocompatibility complex (MHC) antigens, (2) be expressed

on malignant cells but absent or expressed at low levels on normal cells, (3) have no

expression on vital organs, and (4) ideally have some essential role in supporting

tumor growth or maintenance. Malignancies associated with viruses are optimal

targets for T cell therapy as many viral antigens fulfill all of these requirements.

Several viruses are known to be associated with cancer, but in this section, we will

focus on Epstein-Barr virus (EBV)-associated malignancies as there has been exten-

sive experience using adoptive T cell transfer as immunotherapy for EBV-expressing

tumors.

3.2.1 EBV-Associated Posttransplant Lymphoproliferative
Disorder

Hematopoietic stem cell transplantation and solid organ transplantation recipients

receive intensive and/or prolonged immunosuppression putting them at increased

risk for developing lymphoma2. At least 90% of these “lymphomas” express EBV
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antigens, implicating the virus as a causative agent3. Today this condition is

referred to as posttransplant lymphoproliferative disease, reflecting the fact that

this is a heterogeneous malignancy that could present as a polyclonal hyperplasia or

a monoclonal, aggressive non-Hodgkin’s lymphoma4. EBV-associated lymphopro-

liferative disease has also been documented in patients with acquired immunodefi-

ciency syndrome and congenital immunodeficiency, further supporting the

hypothesis that a deficient cellular immune response to EBV is a major contributor

in its development5.

One strategy to combat this complication in hematopoietic stem cell transplant

recipients is the infusion of unmanipulated donor-derived leukocytes. If the stem cell

donor is EBV seropositive then donor lymphocyte infusions should have protective

cellular immunity against the virus, which can be transferred to the recipient by T cell

infusion. This strategy proved effective, resulting in complete responses in 17 of

30 patients6. Unfortunately, a significant fraction of unmanipulated donor T cells are

alloreactive, putting patients at significant risk for developing graft versus host

disease (GVHD). In the previous study, it was reported that 17% of patients receiving

donor lymphocyte infusions developed GVHD.

3.2.2 EBV-Specific CTL for Prophylaxis and Treatment of
EBV-Associated Posttransplant Lymphoproliferative
Disease

To reduce the incidence of GVHD associated with donor lymphocyte infusions,

ex vivo expanded, EBV-specific T cells for the prevention and treatment of

posttransplant lymphoproliferative disease have been evaluated. Posttransplant

lymphoproliferative disease provides an excellent model in which to evaluate the

efficacy of adoptively transferred EBV-specific CTL because the tumor cells

express all latent-cycle virus-encoded antigens (EBNAs 1, 2, 3A, 3B, 3C and LP,

BHRF1, BARF1 and LMP1, 2A and 2B), most of which are targets for virus-

specific immune responses7–10. Furthermore, immortalized lymphoblastoid cell

lines, that express the same viral antigens, can readily be generated from essentially

any donor by infecting B cells with a laboratory strain of EBV. Lymphoblastoid cell

lines function as superb antigen-presenting cells, expressing lytic and latent-cycle

EBV antigens as well as costimulatory molecules that facilitate CTL generation.

The ex vivo stimulation of peripheral blood mononuclear cells for several weeks

with lymphoblastoid cell lines and interleukin (IL)-2 produces a highly enriched

population of polyclonal EBV-specific CTL (Fig. 3.1).

Our group has treated 101 hematopoietic stem cell transplant recipients prophy-

lactically with EBV-specific CTL. None developed EBV-related posttransplant

lymphoproliferative disorder with up to 17 years of follow-up, compared with

5 of 42 (11%) patients enrolled on the same transplantation protocol who did not

receive EBV-specific CTL14. Of 13 patients who received CTLs as treatment for

biopsy proven or probable EBV-related posttransplant lymphoproliferative
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disorder, 11 (85%) achieved complete remission with no recurrence. Importantly,

CTL infusions were safe and not associated with de novo GVHD. Gene-marking

studies also showed that the infused CTL could expand by several logs10 in vivo,
contribute to the memory pool (persisting for up to 9 years), and traffic to tumor

sites11–14. The safety and efficacy of donor-derived EBV-specific CTL for the

prophylaxis and treatment of EBV-related posttransplant lymphoproliferative dis-

order has been subsequently confirmed by other investigators15,16.

While EBV-specific CTLs reconstitute immunity to EBV and prevent

EBV-related posttransplant lymphoproliferative disorder after hematopoietic stem

cell transplant, their use as therapy is limited by the time required (~3 months) for

production, in addition to logistical and cost issues. Two different avenues of

research are being pursued to overcome the time limitation. The first involves the

use of banked, allogeneic EBV-specific CTLs, which are readily available as an

“off-the-shelf” therapy. In one multicenter clinical trial, 31 solid organ transplant

and 2 hematopoietic stem cell transplant recipients with EBV-related posttransplant

lymphoproliferative disorder who had failed conventional therapies received

allogeneic EBV-specific CTL. These infusions were well tolerated and the overall

IL-2

PBMC

PBMC

EBV

EBV-specific
Th1 and CTL

LCL

Lytic EBV proteins

EBNAs 3a, 3b, 3c

LMP2
EBNA2
LP
LMP1
EBNA1

Fig. 3.1 Generation of EBV-specific cytotoxic T lymphocytes (CTLs). In the first step, EBV-

transformed B lymphoblastoid cell lines (EBV-LCLs) are generated from the patient or stem cell

donor for use as antigen-presenting cells (APCs). Peripheral blood mononuclear cells (PBMCs)

are infected with the B95-8 strain of EBV in the presence of cyclosporin A to inhibit EBV-specific

T cells. A permanently growing cell line can be established from most healthy donors within 4 to 6

weeks, but is frequently slower from patient blood. In the second step, the EBV-LCL is irradiated

and used to stimulate PBMCs from the same donor to activate EBV-specific T cells. The responder

T cells are restimulated weekly with the irradiated EBV-LCL from day 9 and IL-2 is added twice

weekly from day 14 until sufficient T cells have been expanded. These T cell lines comprise CD4+

and CD8+ T cells specific for a range of EBV lytic cycle and latency-associated antigens. In

clinical productions, the virus is drawn from a clinical grade, working virus bank and the EBV-

LCLs are cultured for at least 2 weeks in ganciclovir to prevent the release of infectious virus.
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response rate was 52% at 6 months including 14 patients with a complete

response17. Other strategies aimed at shortening the production time of

EBV-specific CTLs include the use of (1) EBV-specific peptides for overnight

stimulation of donor peripheral blood mononuclear cells that can then be selected

based on their secretion of interferon (IFN)-g18,19, (2) HLA–peptide multimers that

can directly select viral peptide-specific T cells from peripheral blood mononuclear

cells20, or (3) dendritic cells nucleofected with DNA plasmids encoding

immunodominant EBV antigens to expand EBV-specific CTL rapidly over

7–10 days19,21. Only the first strategy has been evaluated clinically for EBV. For

example, Moosmann et al. treated 6 patients with EBV-specific CTL activated with

peptides derived from 11 EBV antigens. They observed three complete responses in

patients with early EBV-related posttransplant lymphoproliferative disease,

whereas three patients with late-stage disease progressed after therapy19. While

these results are encouraging, all responding patients in this study received addi-

tional therapies making it difficult to ascribe the anti-EBV-related posttransplant

lymphoproliferative disease effects to CTL alone. The clinical safety and efficacy

both of tetramers and of selection based on IFN-g secretion have been evaluated for
cytomegalovirus22,23. However, further studies are necessary to evaluate the effi-

cacy and safety of rapidly generated T cells specific for EBV.

3.2.3 EBV-Associated Lymphoma and Nasopharyngeal
Carcinoma

The success of EBV-specific CTL adoptive transfer to treat EBV-related

posttransplant lymphoproliferative disease led to the extension of this therapy to

other EBV-associated malignancies. Nearly 100% of undifferentiated nasopharyn-

geal carcinoma as well as 40% of Hodgkin’s and about 20% of non-Hodgkin’s

lymphomas tumors express EBV antigens24,25. However, in contrast to

EBV-related posttransplant lymphoproliferative disease, EBV-associated nasopha-

ryngeal carcinoma and lymphomas develop in seemingly immunocompetent hosts

and display a restricted expression pattern of EBV antigens. Whereas EBV-related

posttransplant lymphoproliferative disease expresses all ten EBV proteins that are

associated with the virus latent cycle (type III latency), the malignant cells of

Hodgkin’s lymphoma and nasopharyngeal carcinoma are typically characterized by

a type II latency pattern, expressing only LMP1, LMP2, EBNA1, and BARF126,27. Of

these viral antigens, only LMP1, LMP2, and BARF1 are efficiently processed and

presented by HLA class I molecules and thus targets for CTL therapy28. Although

EBNA1 is rarely presented on HLA class I molecules29, it is frequently presented

on class II molecules and may also be of value29,30.

Our group used EBV-LCL-activated EBV-specific CTL to treat 14 patients with

relapsed Hodgkin’s disease. Of 11 patients with clearly measurable disease at the

time of CTL infusion, 2 experienced complete remissions, 1 had a partial response,
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5 had stable disease, and 3 had no response to CTL therapy30. Chua et al.31 used

EBV-specific CTL to treat four patients with advanced nasopharyngeal carcinoma.

These investigators found the treatment to be well tolerated, and they observed an

increase in EBV-specific immunity for 2–3 weeks after CTL infusion. Unfortu-

nately, the patients treated had very advanced stage disease, and the authors could

not clearly evaluate an antitumor effect. Our group has also administered EBV-

specific CTL to 23 nasopharyngeal carcinoma patients with relapsed or refractory

disease. At the time of CTL infusion, 8 patients with relapsed nasopharyngeal

carcinoma were in remission and 15 had active disease. Of those treated in

remission, 62% (5/8) remain disease-free (17–75 months), while 48.7% (7/15)

patients with active disease achieved a complete (33.3%) or partial response

(15.4%) to therapy31,32. Collectively, these results were encouraging and showed

that in some cases EBV-specific CTLs were therapeutically beneficial for patients

with Hodgkin’s lymphoma or nasopharyngeal carcinoma. Still, the clinical

responses were relatively limited when compared with the responses observed in

EBV-related posttransplant lymphoproliferative disorder patients.

3.2.4 Improving EBV-Specific CTL Therapy for EBV-Related
Lymphoma and Nasopharyngeal Carcinoma

Work being conducted in our laboratory and others led to the hypothesis that at least

two important differences between EBV-related posttransplant lymphoproliferative

disorder and lymphoma/nasopharyngeal carcinoma patients might contribute to the

lower clinical responses seen in the latter group. First, only a minor component of

our EBV-specific CTL lines recognizes the EBV antigens expressed on lymphoma

and nasopharyngeal carcinoma tumors (EBNA1, LMP1, LMP2 and BARF1).

Second, in the stem cell transplant setting of EBV-related posttransplant

lymphoproliferative disorder, EBV-specific CTLs are generated from healthy

donors and infused into a lymphopenic environment created by the pre-transplant

conditioning regimen. This provides the transferred cells immunologic space and

access to antigen, homeostatic cytokines, and growth factors. In nasopharyngeal

carcinoma and most lymphoma patients, the T cells are derived from the patient and

T cells specific for the viral tumor antigens could be anergized within the tumor

sites. Thus, EBV-specific CTL therapy for lymphoma and nasopharyngeal carci-

noma patients might be improved by increasing the frequency of T cells specific for

the EBV-specific LMP1 or LMP2 antigens, increasing the potency of antigen-

presenting cells for T cell activation and infusing the cells after lymphodepletion

of the host.

We evaluated a combination strategy of lymphodepletion prior to transfer

of EBV-specific CTL in patients with refractory or relapsed nasopharyngeal

carcinoma33. Administration of an anti-CD45 monoclonal antibody (mAb) resulted

in a transient lymphopenia in all patients and an increase in serum concentrations of

IL-15, an important T cell survival cytokine, in six out of eight patients. At the time

52 D.R. Shaffer et al.



of lymphopenia, patients were infused with EBV-specific CTL, and all showed an

increase in the frequency of these EBV-specific CTLs in their peripheral blood

that was not seen in patients who received EBV-specific CTLs without lympho-

depletion. Encouragingly, the three patients with greatest and longest lasting rise in

their EBV-specific immunity had clinical benefit (one complete response and two

stable disease), suggesting that continued investigation into the strategy of using

lymphodepletion before CTL transfer is warranted.

We also tested the hypothesis that EBV-specific CTL enriched for LMP2 and/or

LMP1 could mediate superior antitumor activity in lymphoma patients. Protocols

were developed to generate LMP2 or LMP1 and LMP2-enriched EBV-specific CTL

and used to treat patients with EBV-positive Hodgkin’s or non-Hodgkin’s

lymphoma34. Sixteen patients received LMP2-specific CTLs and 33 received

LMP1/2-specific CTLs without toxicity. The number of LMP-specific T cells in

peripheral blood rose 2–70-fold and persisted for up to 3 months. Lymph node

biopsies from three patients taken 3–6 months post CTL infusion showed selective

accumulation of LMP-specific T cells in lymph nodes compared to peripheral blood.

Preliminary results in patients who received LMP2 or LMP1 plus LMP2-specific T

cells show tumor responses in about 70% of patients and complete responses in over

60%35.

These studies suggest that the in vivo antitumor activity of EBV-specific CTL can

improved by increasing the frequency of cells with specificity for the appropriate

latency antigen(s). Other strategies to improve EBV-specific CTL for patients with

EBV-associated lymphoma and nasopharyngeal carcinoma involve genetic

modifications aimed at making CTL resistant to the immunosuppressive mechanisms

of the tumor and grafting CTL with chimeric receptors to allow recognition of

nonviral antigens expressed on tumor cells. These strategies will be discussed in

more detail later in this chapter.

3.2.5 Summary of EBV-Associated Malignancies

EBV-associated malignancies provide an excellent platform for evaluating the

feasibility and safety of adoptive T cell transfer. As prophylaxis and treatment of

EBV-related posttransplant lymphoproliferative disorder, EBV-specific CTLs have

proven safe and highly effective. The extension of EBV-specific CTL therapy to

EBV-associated malignancies developing in immune competent hosts has been

more challenging. EBV-specific CTL therapy has produced complete tumor

regressions in some patients with EBV-associated lymphoma and in nasopharyn-

geal carcinoma, but in other cases certain limitations must be overcome to increase

the overall effectiveness of adoptive T cell transfer in this patient population.

Strategies to increase the antitumor activity of EBV-specific CTL therapy include

lymphodepletion of the host, enriching for CTL with specificity toward particular

EBV latency antigens, and genetic modifications of the CTL to improve their

survival in the tumor microenvironment and to enhance tumor recognition.
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3.3 Tumor-Infiltrating Lymphocytes

While EBV-specific CTLs have shown promise for the treatment of several

EBV-associated malignancies, most tumors are not associated with known viruses

and thus not targets for antiviral CTL therapy. Therefore, alternative strategies

must be employed to generate tumor-specific T cells. In patients with melanoma,

colorectal, and ovarian cancer, the presence of TIL is associated with better clinical

outcomes36–38. Thus, investigators have attempted to use ex vivo expanded TIL as a

source of tumor-specific T cells for adoptive T cell transfer. This strategy has been

pioneered by Rosenberg et al., at the National Cancer Institute, who have been

using TILs to treat patients with metastatic melanoma. Thus, we will focus much of

our attention in this section on their results.

3.3.1 Generating TILs for Adoptive T Cell Transfer
of Metastatic Melanoma Patients

The first major hurdle in developing TIL-based adoptive T cell transfer was cleared

in 1987 when Muul et al. reported that TIL extracted from surgically resected

metastases from patients with malignant melanoma could be expanded ex vivo in

medium containing IL-239. Responsive lymphocytes were cytotoxic to autologous

melanoma cells and could be expanded >90,000-fold in culture while retaining

tumor specificity. Shortly thereafter, a clinical trial was initiated using large doses

of ex vivo expanded TIL (>1011 cells) plus high-dose IL-2 to treat patients

with metastatic melanoma. A cohort of patients was also given low-dose cyclo-

phosphamide 36 hours prior to infusion for immunomodulation. Overall, an objec-

tive clinical response rate of 34% was reported with no significant difference in

response between patients treated with TIL plus IL-2 (31%) and those given

cyclophosphamide (35%) prior to infusion of TIL40. Unfortunately, most of the

clinical responses were transient and few complete responses were observed;

however, several critical findings were made that would improve TIL therapy in

future studies. The investigators found that patients who responded to treatment

were significantly more likely to have received TIL which (1) were from younger

cultures, (2) had shorter doubling times, and (3) exhibited higher lysis against

autologous tumor targets. Furthermore, patients receiving TIL expanded from

subcutaneous tumor deposits had higher response rates (49%) compared with

those receiving TIL from lymph nodes (17%).

3.3.2 Improving TIL Therapy: Modified Culture and Increased
Lymphodepletion

In the previous study, TILs were isolated by digestion of melanoma tumors, to form

a single-cell suspension, which was expanded in a single culture. A modified
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protocol for growing TIL was adopted that involved mincing tumors into tiny

fragments and establishing multiple cultures. Interestingly, this method generally

succeeded in expanding several different TIL cultures from the same tumor speci-

men, often with qualitative and quantitative differences in antigen-specific reactiv-

ity. Those cultures with the highest reactivity against autologous tumor cells

underwent rapid expansion using the T cell stimulating antibody OKT3 plus IL-2.

Using this method, a total of 1010–1011 T cells could be obtained in as little as

5 weeks41. Three subsequent clinical protocols were initiated utilizing this method

of TIL preparation and focused on increasing amounts of lymphodepletion prior to

cell infusion. In the first trial, 43 patients received a non-myeloablative chemother-

apy regimen of cyclophosphamide (60 mg/kg) for two consecutive days followed

by fludarabine (25 mg/m2) for an additional 5 days. In the second trial, 25 patients

were given the same chemotherapy regimen followed by 200 cGy whole-body

irradiation the day before cell infusion. In a third trial of 25 patients, the total body

irradiation was intensified by giving 200 cGy twice a day for 3 consecutive days for

a total of 1,200 cGy. Hematopoietic stem cell rescue was performed by administra-

tion of autologous CD34+ cells one day after TIL infusion in both trials where total

body irradiation was used42.

Overall, objective clinical responses were 49%, 52%, and 72% for the 3 trials,

respectively. Of the responding patients, 12 experienced complete responses (3 in

trial 1, 2 in trial 2, and 7 in trial 3) that are ongoing from 18 to 75 months42.

Importantly, cancer regressions were observed at distant metastatic sites including

the lung, liver, lymph nodes, subcutaneous tissues, and brain, suggesting that T cells

migrate across the blood–brain barrier. Interestingly, the data also suggests that

more aggressive lymphodepletion prior to TIL infusion could lead to an improve-

ment in overall survival, though that conclusion can only be definitively drawn after

a randomized trial. Still, preclinical data supports the assertion that, at least in

melanoma, increasing amounts of total body irradiation are directly correlated with

increased treatment efficacy. Moreover, the ratio of tumor-specific CD8+ T cells to

endogenous host cells with inhibitory potential was increased in animals receiving

the highest doses of total body irradiation, suggesting that a severely

lymphodepleted host provides the optimal environment for transferred T cells43

as previously observed for EBV-specific T cells in the stem cell transplant setting.

However, lymphodepleting regimens come with a significant risk of toxicity, and

therefore, the potential benefits must be appropriately weighed against the risks.

3.3.3 TIL Therapy for Ovarian Cancer

While much of the pioneering work with TIL therapy has been performed in

patients with metastatic melanoma, TILs can also be found in ovarian tumors and

have been expanded ex vivo for adoptive T cell transfer of ovarian cancer patients.

An early study conducted in 1994 used ex vivo expanded TILs, isolated from solid

metastases or malignant effusions, to treat eight patients with advanced epithelial
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ovarian carcinoma44. The generated lines were primarily CD4+ T cells and these

were infused into patients who also received recombinant IL-2. Unfortunately, no

objective antitumor responses were observed in this trial, though the investigators

reported some signs of clinical activity including ascites regression in two patients.

In a study by Fujita et al., 13 ovarian cancer patients treated with surgical resection

and cisplatin-containing chemotherapy who showed no detectable disease after

treatment were given TIL to prevent relapse45. A similar control group was

established who did not receive TIL. With an average of 3 years of follow-up

(36 months in TIL group and 33 months in the control group), the estimated 3-year

disease-free survival rate was significantly (p < 0.05) higher in the TIL group

(82.1%) versus the control group (54.5%). Thus, this study concluded that in ovarian

cancer patients with minimal residual disease after surgery and chemotherapy, TIL

could significantly extend disease-free survival.

Current work suggests a critical factor affecting patient outcome is the ratio of

CD8+ effector T cells to CD4+ regulatory T cells46. However, the factors that affect

these ratios from one patient to the next are largely unknown. A better understanding

of the immune response in patients with a high effector to regulatory T cell ratio

might help to improve future adoptive T cell transfer strategies for ovarian cancer.

3.3.4 Summary of TIL Studies

Where available, ex vivo expanded TILs provide an excellent source of tumor-

specific T cells for use in adoptive T cell transfer. TILs have proven particularly

successful in the treatment of patients with metastatic melanoma, and preliminary

evidence suggests that an intensive lymphodepleting regimen of chemotherapy and

total body irradiation with stem cell rescue could enhance the antitumor activity of

the transferred cells. Ovarian and colon carcinomas have also been treated with

TILs (TILs), though the clinical experience with adoptive T cell transfer for these

cancers is limited. While TILs were found to be successful in extending disease-

free survival in ovarian cancer patients with minimal residual disease, they did not

produce objective clinical responses in patients with advanced stage disease. Still,

patients with ovarian cancer who have a high effector to regulatory T cell ratio have

significantly better outcomes, suggesting further investigation into T cell-based

immunotherapy is warranted.

3.4 Genetically Modified T Cells

While TILs have produced antitumor responses in melanoma patients, the broader

application of this strategy is limited by the fact that TILs are not available or

difficult to isolate from most tumors, and even when TILs are available, it is not

always possible to expand a large number of tumor-specific CTLs47. However,
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advances in immunology and vector biology have allowed the development of

tools, including the genetic modification of T cells to redirect their specificity

toward tumor antigens, or increase their resistance to inhibitory ligands produced

by tumors and their stroma, which might overcome some of the limitations of TIL

and EBV-specific CTL therapy. In this section, we will discuss two strategies being

used to redirect T cell specificity, TCR transfer, and chimeric antigen receptors

(CARs), with a particular emphasis on those studies that have entered phase I

clinical trials.

3.4.1 T Cell Receptor Transfer

Over 25 years ago, it was discovered that T cells derive antigen specificity from a

heterodimeric complex of two immunoglobulin-like proteins that form part of the

TCR complex48,49. From early on, investigators recognized that cloning and trans-

ferring these TCR genes into T cells offered the potential to redirect T cell

specificity toward any antigen of interest. However, it was not until several years

later that advances in vector technology have made redirecting T cell specificity

through TCR gene transfer possible.

Retroviruses, in particular the Moloney murine leukemia virus, have

revolutionized gene therapy approaches by allowing for high transduction effi-

ciency of primary cells and a relatively high and stable expression of the trans-

gene50. However, even with this technology, the transfer of TCR genes has proved

difficult. Since a functional TCR requires both the a and b TCR chains, these genes

must be transferred into T cells either by two different retroviral vectors, requiring

two separate transductions, or on a single vector containing an internal ribosomal

entry site or a viral 2A sequence capable of producing high-level expression of both

chains. Further, mispairing between transgenic and endogenous TCRs can create

unwanted specificities and reduce expression of the transgenic pair resulting in

T cells with low avidity for tumors.

3.4.2 Adoptive T Cell Transfer for Metastatic Melanoma Using
TCR Transfer

The first clinical trial to use TCR transfer was conducted in patients with metastatic

melanoma51. The genes for a MART-1-specific TCR were cloned from TIL with

proven antitumor activity and transferred into peripheral blood T cells of the study

patients. While this study was the first to demonstrate the feasibility of this strategy

in man, only 4 of 31 patients (13%) experienced any clinical response and none

achieved a complete response, despite the fact that these MART-1-specific T cells

engrafted and persisted for several months after infusion51,52. The investigators
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noted that none of their patients receiving genetically modified T cells experienced

side effects such as skin rash or melanocyte toxicity in the eye or ear, which had

previously been associated with robust antitumor responses in TIL studies.

After extensive in vitro study, they concluded that a TCR with a higher avidity

for the target antigen might be necessary to achieve clinical response rates similar to

those achieved with naturally occurring TIL. In a follow-up study, Johnson et al.
cloned a high-affinity TCR from a human T cell that recognized an HLA-A2-

restricted MART-1 epitope52. Using HLA-A2 transgenic mice, they also cloned a

high-affinity murine TCR recognizing the gp100 154–162 epitope, which is the

most highly presented peptide from the gp100 protein in the context of HLA-A2.

Six of 20 (30%) patients receiving the high-affinity MART-1 TCR achieved clinical

regression of melanoma. While the numbers were low, it appeared that the high-

affinity TCR was associated with better clinical response rates than the low-affinity

TCR. When the high-affinity murine TCR to gp100 was transferred into patient

T cells, they observed clinical responses in 3 of 16 patients (19%). While encour-

aging, these response rates are still well below the >50% response rate observed

when using naturally occurring TIL to treat metastatic melanoma; further, high-

affinity TCRs destroyed normal melanocytes in the skin, eye, and ear requiring

local steroid treatment to treat uveitis and hearing loss52. More recently, severe off-

target effects associated with the use of enhanced, high affinity TCRs specific for

MAGE-A3 have been reported to the Recombinant DNA Advisory committee

(RAC).

Another problem brought to light in the wake of these clinical studies is the

frequent mispairing of introduced a and b TCR chains with the endogenous a and b
chains53,54. This mispairing can result in two major problems: the cloned TCR

failing to achieve wild-type expression levels, thus lowering the overall avidity of

transgenic T cells and inhibiting their effector functions, and the generation of a

novel TCR with autoreactive potential. Strategies currently being investigated to

decrease mispairing of introduced a and b chains include modifying the constant

regions with disulfide bonds, using hybrid TCRs that consist of murine constant

regions fused to human variable regions, and silencing of the endogenous TCR55–57.

While the problem of TCR mispairing may be solvable, the use of cloned TCR

genes means that tumor killing is HLA restricted, thus limiting this strategy to

patients with common HLA types for which a high-affinity TCR has been cloned.

Additionally, tumors have been found to downregulate class I MHC molecules as

means of escaping TCR recognition58. Many of these limitations may be overcome

with another technology that utilizes a hybrid TCR known as the CAR (chimeric

antigen receptor).

3.4.3 Chimeric Antigen Receptors

First-generation CARs consist of an extracellular antigen recognition domain, a short

hinge, a transmembrane domain, and an intracellular signaling domain derived from

the TCR CD3-z chain59 (Fig. 3.2). The extracellular antigen recognition domain is
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typically composed of a single-chain variable fragment from a mAb. When the

single-chain variable fragment binds its cognate ligand, a signal is transmitted

through the CD3-z chain resulting in T cell activation60. Since antigen recognition

is through an antibody–ligand interaction, CARs can be used for any patient

regardless of HLA type. Additionally, CARs can recognize tumors which have

downregulated class I MHC, and they can be generated against virtually any tumor-

associated antigen that is expressed on the cell surface, including carbohydrates and

glycolipids57, and that is minimally expressed on essential normal tissues.

Owing to the many advantages that CARs offer over traditional TCRs, substan-

tial interest has surrounded their use in adoptive immunotherapy with several

phase I trials currently underway to assess the safety and efficacy of this approach.

To date, five phase I clinical trials have been completed using CARs to treat cancer,

and the results have been published (Table 3.1). Unfortunately, in most of the

initial studies, clinical responses have been modest, and limited persistence of the

CAR-expressing T cells is hypothesized to be one of the major obstacles to

antitumor efficacy.
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Fig. 3.2 Enhancing the activity of chimeric antigen receptor (CARs). First generation CARs

linked the single chain variable fragment of an antibody to the intracellular signaling domain of the

TCR CD3-ζ chain, via a hinge region and a transmembrane region of various origins. When

expressed on T cells, this molecule mediates killing of tumor cells recognized by the antibody

domain, but unless the tumor cell expresses costimulatory molecules, it does not mediate prolifer-

ation. Since most tumors do not express costimulatory domains, second generation CARs intro-

duce the intracellular signaling domain of CD28 to provide second tier costimulation and added to

that in third generation CARs are costimulatory domains from third tier costimulatory molecules

such as OX40 or 4-1BB.
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3.4.4 Costimulatory Domains to Improve CAR Function

When T cells are activated by professional antigen-presenting cells, they not only

receive stimulation through the TCR but also receive essential costimulatory

signals through CD28 and tumor necrosis factor receptors like CD27, 4-1BB, and

OX4062–64. See chapter 8 for details of T cell co-signaling. Since T cells expressing

a first-generation CAR receive only CD3-z stimulation in the absence of a

costimulatory signal, their activation is incomplete, and this is thought to be one

of the major reasons for their limited persistence in vivo since most tumors do not

express costimulatory molecules and inhibit the activation of local professional

antigen-presenting cells that do. Therefore, several investigators have made

improvements to the original CAR by including a CD28 signaling domain in

addition to the CD3-z chain, now known as the second-generation CAR65–68.

T cells expressing second-generation CARs show increased proliferation and

important cytokine secretion (e.g., IFN-g, IL-2, and TNF-a), after stimulation

with target cells expressing the cognate antigen, compared to T cells expressing a

first-generation CAR. Furthermore, T cells with second-generation CARs persist

longer in vivo when used in immunodeficient (SCID) mouse xenograft tumor

experiments and displayed superior in vivo antitumor activity when compared

with first-generation CAR-expressing T cells67,68. A clinical study describing an

intrapatient comparison of activated T cells expressing first- and second-generation

CD19-specific CARs also demonstrated increased persistence of the CD28-

containing CAR69, but clinical responses were not produced.

Researchers have therefore added even more costimulatory domains into CARs.

Thus, the third-generation CAR was developed, which contained an additional

signaling domain (OX40 or 4-1BB) sandwiched between the CD28 and CD3-z
domains. Several preclinical studies have now shown that third-generation CARs

mediate superior in vivo tumor regression because of their enhanced cytokine

secretion, expansion, and persistence70–72. Recently three complete tumor

remissions were obtained in response to T cells expressing a CD19-specific CAR

expressing the 4-1BB endodomain when infused after lymphodepletion into

Table 3.1 Completed phase I clinical trials using first generations CARs for cancer

Tumor-associated

antigen

Targeted

malignancy

Clinical response

(# of pts.) Ref.

a-Folate receptor Ovarian cancer NR (14) Kershaw et al. 101

Carbonic anhydrase

(CAIX)

Renal cell

carcinoma

NR (3) Lamers et al. 102

CD20 Lymphoma PR (1); SD (4); NED (2) Till et al. 103

CD171 Neuroblastoma PR (1); NR (5) Park et al. 104

GD2 Neuroblastoma CR (3); PR (1); SD (1); PD (4);

TN (2)

Pule et al. 61

CR, complete response; PR, partial response; NR, no response; SD, stable disease; PD, progressive

disease; TN, tumor necrosis by biopsy
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patients with chronic lymphocytic leukemia. However, severe toxicity associated

with cytokine storm was also reported73,74. Thus, increasing the number of

costimulatory domains is not without risk, and two deaths have recently been

reported in patients receiving T cells genetically modified with second- or third-

generation CAR61,75. While it is unclear exactly what caused the deaths of these

two patients, there is concern that second- and third-generation CARs could be

easily triggered, such that even low avidity off-target binding could cause potent

activation, again leading to cytokine storm76. Thus, while adoptive T cell transfer

has an excellent safety record overall, these two cases highlight the need to tread

cautiously when testing new-generation CARs in humans.

3.4.5 Expressing CARs on Virus-Specific CTL

Another strategy to increase the persistence of CAR-expressing T cells is to modify

virus-specific CTL with CARs, rather than using T cells nonspecifically activated

with anti-CD28 and/or anti-CD3 antibodies (that activate the TCR)75,77,78.

As discussed earlier, EBV-specific T cells persist for up to 9 years in some

patients, and we hypothesized that EBV-specific CTL expressing CARs could be

stimulated through their native EBV-specific TCRs in vivo after transfer into

EBV-seropositive hosts, thus allowing CAR-expressing T cell to persist longer

and expand to greater numbers thereby increasing their potential for antitumor

activity.

We recently infused neuroblastoma patients with both EBV-specific CTL and

anti-CD3-stimulated T cells, each expressing a GD2-specific CAR (distinguished

only by a unique DNA barcode in each vector that allowed for PCR detection of

transgenic EBV-specific CTL or transgenic CD3+ T cells). Indeed, tenfold more

GD2-CAR EBV-specific CTLs than CD3+ T cells were detected in the peripheral

blood of infused patients. Furthermore, GD2-CAR EBV-specific CTL could be

detected for more than 6 weeks after infusion, whereas GD2-CAR CD3+ T cells

could only be detected for 2–3 weeks post infusion61. The latest clinical data from

this study show that of 11 patients with detectable disease at the time of CTL

infusion, 3 achieved complete responses, 1 had a partial response, 1 had stable

disease, 4 had progressive disease, and 2 had detectable tumor necrosis. This was

the first study to report complete clinical regression of solid tumors after treatment

with CAR-expressing T cells and suggests that the increased expansion and persis-

tence of GD2-CAR EBV-specific CTL could contribute to more robust antitumor

activity in patients.

3.4.6 Overcoming Tumor Immune Evasion Strategies

T cells expressing CARs are an effective way to redirect T cell specificity to

tumors as well as overcome the downregulation of class I MHC molecules. Still,
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tumors have a plethora of other immune evasion strategies to avoid recognition and

destruction by T cells, including secretion of inhibitory cytokines (e.g., TGF-b and

IL-10), upregulation of the inhibitory ligand PD-L1, and the recruitment of regu-

latory T cells79. Additional genetic modifications of T cells to overcome immune

evasion are in preclinical and clinical development. These strategies include

modifying T cells with chemokine receptors for increased tumor homing80,81,

transgenic expression of cytokines/receptors that support T cell proliferation and

effector function82,83, constitutive activation of Akt in T cells to resist regulatory

T cells84, as well as the expression of mutant proteins allowing T cell function in

the presence of TGF-b and the therapeutic drug rapamycin85. Finally, combining

T cell transfer with DNA demethylating agents or histone deacetylase inhibitors to

modify the tumor microenvironment and increase antigen presentation on tumor

cells might improve clinical outcomes in patients86.

3.4.7 Summary of TCR Transfer and CARs

The ability to redirect T cell specificity using TCR transfer or CARs is a powerful

tool that makes it possible to target virtually any tumor with T cell immunotherapy.

Thus far, the only clinical trial to use TCR transfer has been in patients with

metastatic melanoma. Clinical tumor regression was observed, though the response

rate was lower than in patients receiving unmodified, expanded TILs. While a

potentially useful strategy, the use of TCRs means that tumor killing is HLA

restricted and thus only available to patients with common HLA types. This

limitation can be overcome by redirecting T cell specificity with a CAR. CARs

use monoclonal antibodies to recognize surface molecules in an HLA-unrestricted

fashion and can therefore be used to treat any patient whose tumor expresses the

appropriate antigen. Although first-generation CARs were largely unsuccessful in

phase I studies, strategies to improve the persistence of CAR-expressing T cells,

including the addition of costimulatory domains and expressing CARs on virus-

specific T cells, should improve the clinical efficacy of CAR-expressing T cells.

Further genetic modifications to overcome elements of the immunosuppressive

tumor microenvironment should also lead to more effective T cell therapies.

3.5 Adoptive Therapy Using Natural Killer Cells

Our discussion throughout this chapter has focused on T cells because they are

widely used in clinical adoptive transfer studies. However, NK cells represent

another important population of cells with potent antitumor potential. Indeed,

interest in NK cells to treat cancer grew substantially after the discovery that IL-2

activation of NK cells could result in cytotoxic activity against previously

NK-resistant tumors87. Various protocols have been developed for isolating NK
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cells from peripheral blood, and more recently new methods have been described

for expanding NK cells ex vivo88. While a detailed review of clinical adoptive NK

cell transfers is beyond the scope of this chapter, we will conclude with a brief

discussion of the current progress and challenges in the field of NK cell transfer89.

3.5.1 Adoptive Transfer of Allogeneic NK Cells

In retrospect, the use of NK cells in adoptive immunotherapy should have been

evident from the outset. After all, the existence of NK cells in immunodeficient

SCID mice all but resurrected the theory of tumor immune surveillance, after

apparently receiving a significant blow following the findings that immunocompro-

mised mice are no more at risk of getting spontaneous tumors90 (although that view

has been updated now to demonstrate the importance of T cells and IFN-g in cancer
immune surveillance; please see chapter 1 for details). As their name implies,

NK cells have an innate ability to mediate target cell destruction without any

previous priming event (as required by T cells)91. While most of the conceivable

applications of tumor immunotherapy with these cells center on this particular

effector function, their ability to mediate immunoregulatory effects between the

adaptive and innate immune systems also lends them increased applicability in the

clinical setting92.

NK cells recognize self from nonself through a system of activating and inhibi-

tory ligands, as well as receptors that mediate antibody-dependent cytotoxicity. The

balance of the corresponding ligands on the target cells determine whether the NK

cells choose to exert their cytolytic function or to retreat into immune tolerance93.

Results from different groups all seem to suggest that NK cell transfer is more

effectively accomplished in the allogeneic setting, where the presence of KIR

mismatches (among other things) allows for unimpeded NK cell activity against

the tumor. A retrospective study by Ruggeri et al.94 has shown the positive effects

of allogeneic NK cell transfer in a haplotype-mismatched hematopoietic stem cell

transplant setting. Miller et al. reported complete remissions in cancer patients

given haploidentical NK cells95, an observation they did not find when they

previously infused autologous NK cells96.

To date, several studies demonstrate the feasibility of using allogeneic NK cells

in such a therapeutic approach. Shi et al.97 infused KIR–ligand mismatched

NK cells depleted of T cells in patients with advanced multiple myeloma. Besides

demonstrating that the therapy is safe and well tolerated, the authors reported an

encouraging (near) complete remission rate of 50%.

On the other hand, Dillman et al.98 utilized autologous NK cells as part of a

population of cells termed lymphokine-activated killer cells that are comprised

of approximately 77% T cells and 23%NK cells. These lymphokine-activated killer

cells were a leukapheresis product and injected intralesionally during surgery.

A median survival of 20.5 months from diagnosis was observed following the use

of this therapy as an adjunct in glioblastoma multiforme, higher than the 15-month
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median survival seen in standard temozolomide therapy98 and the 12-month sur-

vival associated with the disease.

3.5.2 Hurdles in the Use of NK Cells for Immunotherapy

Despite these and many other promising results, several significant hurdles are

actively being addressed to improve the chances further of using NK cells as cancer

immune therapy.

Their poor number has been a constant concern, since NK cells represent only

3–20% of circulating lymphocytes. To expand NK cells, several new approaches

have been proposed, among them the use of feeder K562 cells genetically modified

to express 41BBL and IL-1599.

Related to their limited numbers is the need for IL-2 coadministration in vivo.

Because IL-2 administration is associated with a host of adverse events, several

investigators are looking at the possibility of delivering IL-2 locally—along with

the NK cells—using genetic modification93. NK cells were engineered to express

IL-2 via retroviral transduction. In vitro studies using the NK cell line NK-92

showed that expression of IL-2 increased cytotoxicity against tumor lines and

IL-2 independence100.

Not all the functions of NK cells are currently understood, most of their

activating ligands are unknown, and it is not clear how they might be induced to

persist in vivo. A more comprehensive review of their functions is required to

harness better the potential of this therapy in combating malignancy.

3.5.3 Summary on NK Cell Transfers

Adoptive transfer of NK cells is an emerging immunotherapy for patients with

malignant disease. While it has long been known that NK cells possess an innate

ability to recognize and kill tumor cells, their use has been limited by difficulties in

expanding large number of cells needed for adoptive transfer and the ability of these

cells to persist in vivo. Recently discovered methods for expanding NK cells in

culture and genetic modifications that improve NK cell persistence and function

in vivo will undoubtedly increase the use of these cells in future clinical adoptive

transfer studies.

3.6 Conclusions

Adoptive transfer of antigen-specific T cells presents a highly specific means to

eliminate tumors with minimal toxicity. The efficacy of adoptively transferred T

cells has been linked to their ability to proliferate massively after infusion to
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numbers able to eliminate large tumors. Unfortunately, most tumors have low

immunogenicity, poorly present weak tumor antigens, and have multiple ways to

inhibit every stage of T cell activation, proliferation, and effector functions. They

also inhibit local antigen-presenting cells that might otherwise cross present tumor

antigens, so that infused T cells rarely proliferate sufficiently, except under

conditions of extreme lymphopenia. These characteristics of tumors likely explain

the disappointing clinical effects of tumor vaccines. Fortunately, T cells are readily

modified with immunomodulatory transgenes that can redirect their specificity and

alter their migration and response to tumor-derived inhibitory ligands. These

modifications will likely be required to ensure the optimal antitumor activity of T

cells that can be further improved by combination with small molecules that change

the tumor microenvironment in favor of T cells and increase tumor antigen presen-

tation. The problems of NK cells may also be solved by genetic modulation and

combination with small molecules.
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Chapter 4

Dendritic Cell-Based Cancer Immunotherapy:

Achievements and Novel Concepts

K.F. Bol, G. Schreibelt, E.H.J.G. Aarntzen, I.J.M. de Vries,

and C.G. Figdor

Abstract Dendritic cells (DCs) are the most potent professional antigen-

presenting cells of the immune system. They acquire and process antigen and

migrate to the lymphoid organs where they present the antigen and control the

activation of B and T cells, the mediators of specific immunity. DC-based immu-

notherapy is explored worldwide in clinical vaccination trials with cancer patients

aiming to induce or augment an antitumor immune response. The majority of

clinical trials up to the present have vaccinated patients with ex vivo-generated

monocyte-derived DCs, matured using cytokines and loaded with tumor antigen via

peptides, protein, or lysates.

Thus far, DC-based immunotherapy has proven to be feasible, safe, and potently

able to induce immunological responses, particularly if the DCs have been appro-

priately matured. Nevertheless, only a limited number of clinical responses have

been observed. Although the evidence on clinical responses is still scarce,

expectations are high because the clinical responses that are induced are often

long lasting. To improve clinical responses of DC vaccination further, a number

of variables are already being tested in clinical trials, including DC maturation via

toll-like receptors, mRNA transfection to load antigen, and the use of naturally

occurring DC subsets instead of monocyte-derived DCs. Future aspects of DC

vaccination that are being explored include combination treatment to counteract

tumor escape mechanisms and in vivo targeting of DCs. The full potential of

DC-based immunotherapy has not yet been fully exploited, which in combination

with data to date supports a promising role for DC-based immunotherapy.
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4.1 Introduction

As professional antigen-presenting cells, dendritic cells (DCs) are the central

players of the adaptive immune response. They acquire and process antigen and

migrate to the lymphoid organs where they present the antigen to the specific arm of

the immune system, resulting in the induction of primary T and B cell responses.

Because of these unique qualities, they represent an interesting tool in cancer

immunotherapy.

It has been proposed that when a tumor reaches a certain size and causes damage

to the surrounding tissues with release of products into the microenvironment, local

DCs become activated and subsequently the immune system is alerted1. Depending

on the size of the tumor and its immunomodulatory characteristics, the immune

system might be able to eradicate the cancer. Often, however, malignant growth is a

slow and silent process that fails to elicit a “danger signal” necessary for the

activation of the immune system. The goal of DC vaccination is to mend this

inattention of the immune system by providing it with ex vivo “educated” DCs,

that is, DCs appropriately activated and loaded with tumor antigen.

The first clinical study of a dendritic cell vaccine was reported in Nature
Medicine in 19962. At present, DC-based immunotherapy is explored worldwide

in clinical vaccination trials with cancer patients aiming to induce or augment an

anticancer immune response.

4.1.1 Dendritic Cell Immunobiology

Dendritic cells are the most potent professional antigen-presenting cells of the

immune system. They instruct and control the activation of B and T cells, the

mediators of specific immunity. DCs are derived from hematopoietic bone marrow

progenitor cells. From bone marrow, they migrate into the peripheral tissues where

they reside as resting immature DCs, mainly in parts of the body that are in close

contact with the outside world, such as skin and mucosal tissue. They act as

the sentinels of the immune system, continuously patrolling the environment in

search of antigen. At this stage, they possess an immature phenotype that is mainly

characterized by a low surface expression of major histocompatibility complex

(MHC) class I and II molecules and co-stimulatory molecules3. These immature

DCs are very efficient at antigen uptake and processing, mediated by high endocy-

totic activity and expression of an array of cell surface receptors capable of

capturing antigens that could harm the host4, 5.

Exogenous antigens, derived from extracellular pathogens such as bacteria and

yeasts, are internalized and processed by DCs, and the antigenic peptides are

presented in the MHC class II complexes on the cell surface. Endogenous antigens,

either self proteins or viral proteins, are cleaved into peptides by proteasomes
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and assembled into stable MHC class I–peptide complexes in the endoplasmic

reticulum, which are subsequently transported to the cell surface. Of importance

for DC-based vaccines in cancer immunotherapy is the finding that internalized

antigens from exogenous sources, such as apoptotic or necrotic tumor cells, may

also be present in MHC class I molecules. This process, called cross presentation,

by which exogenous tumor antigens can be presented to CD8+ T cells, is a unique

feature of DCs6. The immunological outcome of this entire process strongly

depends on the activation state of DCs. Resting DCs or immature DCs receiving

inhibitory signals, such as interleukin-10 (IL-10) or corticosteroids, induce immune

tolerance via T cell deletion or induction of regulatory T cells (Tregs), whereas

mature DCs induce active immunity.

To convert the DC into a cell that is exceptionally well equipped for antigen

presentation and T cell activation, a maturation step, a tightly controlled series

of events, is necessary. For maturation to begin, a “danger signal”, derived from

tissue damage or microbial products, is required7. The maturation process includes

down-modulation of endocytic and phagocytic receptors and upregulation of

chemokine receptors CCR7 and CD62L, which leads to DC migration to secondary

lymphoid organs. Furthermore, surface expression of MHC class I and II and

co-stimulatory molecules such as CD40, CD58, CD80, CD83, and CD86 are

upregulated, and changes in morphology of the DC lysosomal compartment occur3.

In lymphoid tissues, DCs present pathogen-derived peptides to resting T cells via

MHC molecules. This interaction between the MHC–peptide complex and the T cell

receptor (signal 1), stimulation via co-stimulatory molecules from the DC to the

T cell (signal 2) and cytokines in the microenvironment (signal 3) together lead to the

activation of T cells. The activated T cells subsequently proliferate, leave the lymph

nodes, and circulate through the body in search of cells that express antigen.

In addition, DCs are also able to activate natural killer (NK) cells directly8

and can produce large amounts of interferon (IFN) upon encounter with viral

pathogens9, thus providing a link between the adaptive and innate immune system.

The unique capacity of DCs to initiate and modulate immune responses is currently

exploited by many investigative groups to fight infectious diseases and cancer.

4.1.2 Dendritic Cell Subsets

DCs comprise a heterogeneous population of cells. In human peripheral blood, two

main populations of DCs can be distinguished: myeloid DCs (mDCs) and

plasmacytoid DCs (pDCs)10. These DC subtypes differ in function, localization,

and phenotype. mDCs mainly migrate to or reside in the marginal zone of the lymph

nodes (a primary entry point for blood-borne antigens), whereas pDCs mainly

reside in the T cell areas of lymph nodes3, 11. Both subsets express distinct toll-

like receptors (TLRs; Fig. 4.1) and therefore respond differently to pathogenic
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stimuli, suggesting that each subset has a specialized function in directing immune

responses12. A large body of data suggest that mDCs mainly recognize and respond

to bacterial and fungal antigens, whereas pDCs seem specialized for viral antigen

recognition. More recent observations suggest that both pDCs and mDCs might be

of importance for the induction of antitumor responses with and without DC-based

immunotherapy.

Since natural DCs constitute only about 0.2 % of peripheral blood leukocytes,

several ways to generate DCs from precursors have been investigated for DC

vaccination purposes. In 1994 this resulted in the discovery that DCs can be

generated from monocytes or CD34+ progenitors by culture in the presence of

IL-4 and granulocyte–macrophage colony-stimulating factor (GM-CSF), allowing

the procurement of these otherwise scarce cells in the considerable numbers

essential to conduct clinical trials13.

CD8 CD8
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Fig. 4.1 Toll-like receptor (TLR)-activation of human DC subsets can enhance antitumor responses

in vivo (Reproduced with permission from G. Schreibelt et al.12). DC subsets express a wide

repertoire of TLRs, which upon triggering induce DC activation. Whereas pDCs predominantly

express TLRs in endosomal compartments, mDCs have a broader TLR expression pattern, both at

endosomal and extracellular membranes. By cross talk between mDCs and pDCs, either by cell–cell

contact or soluble factors such as type I interferons, TLR-induced activation of one subset can lead to

the activation of the other subset. Type I interferons appear to yield more potent mDCs in terms of

IL-12 secretion, induction of tumor-specific cytotoxic T cells, and T helper 1 responses in vitro.

Upon direct TLR activation, mDCs gain the ability to secrete large quantities of IL-12, which is

beneficial for the polarization of a T helper 1 response. Both mDCs and pDCs have the capacity to

evoke T helper cell responses. Moreover, pDCs can promote the ability of mDCs to cross prime

CD8+ T cells. Consequently, TLR activation of mDCs and pDCs and the cross talk between those

two subsets can strongly enhance antitumor responses in vivo.
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4.1.2.1 Plasmacytoid Dendritic Cells

Human pDCs are a rare subpopulation of cells. pDCs are devoid of lineage markers

and myeloid antigens and do not express CD11c. They express BDCA2 and

BDCA410. In the steady state, they are round, nondendritic, and relatively

long-lived cells. After receiving inflammatory stimuli, pDCs develop a dendritic

cell morphology and function. They express TLR7, which recognizes single

stranded RNA, and TLR9, which recognizes unmethylated CpG DNA. Both are

intracellular TLRs that are located in the endosomal compartments (Fig. 4.1). Most

notably, pDCs produce large amounts of type I IFNs in response to viruses and are

therefore thought to be crucial to antiviral immunity14.

Initially, pDCs were thought to be of lymphoid origin15. However, several

human and mouse studies pointed out that the cytokine FMS-like tyrosine kinase

3 ligand (Flt3L) is of importance for pDC development and that pDCs can develop

from myeloid precursors under the influence of Flt3L14, 16, 17. pDCs reside in blood

as well as in several lymphoid organs and some recent studies suggest functional

differentiation between different tissue-residing pDCs18.

4.1.2.2 Myeloid Dendritic Cells

mDCs found in peripheral blood are defined by the expression of myeloid markers,

such as CD13 and CD33. They lack lineage-specific markers (CD3, CD14, CD19,

and CD56), but express MHC class II and CD11c. The mDC population can be

further subdivided into three classes based on differential surface expression of

BDCA1/CD1c, BDCA3/CD141, and CD1612. The mDC subsets differ in their

expression of cell surface markers and potency to stimulate T cells19–21. For

instance, the recently identified C-type lectin receptor (CLR) CLEC9a is expressed

only by BDCA3-expressing mDCs22. mDCs express two extracellular TLRs on the

cell surface that recognize exterior components of bacteria and fungi, for example,

cell wall components such as lipopolysaccharide (TLR4) and peptidoglycan

(TLR2; Fig. 4.1). TLR 3 and 8 are expressed intracellularly to respond to viral

RNA. Upon activation, mDCs mainly produce IL-12 to regulate the differentiation

of naive T cells into T helper 1 cells to augment a cellular immune response. One

interesting possibility is to combine mDC together with pDC as it has been

suggested that pDCs and mDCs cooperate and act synergistically23, 24. Future

studies will address whether mDC–pDC cross talk can indeed improve antitumor

responses in cancer patients.

4.1.2.3 Ex Vivo-Generated Dendritic Cells

As discussed above, most clinical studies carried out to date have been used

ex vivo-generated monocyte-derived dendritic cells5. Monocytes are pre-DCs that
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originate from myeloid progenitor cells and are easily obtained by leukapheresis. In

vivo, monocytes are capable of transforming into DCs after sensing inflammatory

signals and are important for the replenishment of DCs in the host. Ex vivo, a

cocktail of GM-CSF and IL-4 differentiates monocytes into immature moDCs over

a period of 3–5 days5, 13. Subsequent maturation can be achieved by addition of

cytokines such as tumor necrosis factor-a (TNF-a), prostaglandin E2, IL-1b, and
IL-6 or monocyte-conditioned medium, the supernatant of activated autologous

monocytes25, 26. This allows the generation of large quantities (>500 � 106) of

clinical grade DCs from a single leukapheresis5, 13. Although ex vivo-generated

monocyte-derived DCs share many phenotypic and functional characteristics with

circulating mDCs, it remains unclear to what extent they resemble natural blood

DCs.

In addition to monocytes, CD34+ progenitors in blood are also used to generate

DCs for vaccination of cancer patients. CD34+ progenitors are cultured in the

presence of GM-CSF, Flt3L, and TNF-a for about a week27. They consist of two

populations: one with Langerhans cell-like properties and another called interstitial/

dermal DCs with properties resembling monocyte-derived DCs. Yields from

leukapheresis after in vivo Flt3L expansion and negative selection ex vivo are

much lower than from monocytes28.

To date most clinical DC vaccination studies use monocytes to generate DCs

ex vivo. However, immunological and clinical responses have been observed in

cancer patients vaccinated with monocyte-derived DCs as well as with CD34+

progenitor-derived DCs27, 29, 30.

4.2 Dendritic Cell Maturation

The term “mature” DC has generally been used to describe T cell-stimulatory DCs.

Immature DCs are considered to be primarily involved in the recognition and

uptake of antigen. Upon receiving maturation signals, these immature DCs then

change their chemokine receptor repertoire, down-modulate endocytic and phago-

cytic receptors, and upregulate their co-stimulatory molecules, thus acquiring the

phenotype and functionality of mature DCs that are capable of migration to the

lymph nodes and activation of T cells. In the absence of maturation signals, DCs

will not upregulate their co-stimulatory molecules and thus remain anergy- or

tolerance-inducing antigen-presenting cells.

Besides taking up, processing, and presenting antigens, DCs need proper activa-

tion by adjuvants to elicit a productive immune response. DC maturation is highly

complex and should be regarded as a flexible process of which the outcome depends

on the type of signals the DC receives in the periphery. While these maturation

signals primarily come from contact with pathogens or tissue injury in vivo31, 32,
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ex vivo maturation can be achieved by coculturing DCs with several stimuli such as

cytokines33, pathogen-associated triggers7, or endogenous danger signals such as

heat shock proteins34.

In the majority of clinical studies, immature or semimature monocyte-derived

DCs have been used30. Studies that have compared the immunogenicity of imma-

ture versus mature DCs show that maturation is essential for the induction of

immunological responses in cancer patients35, 36. Moreover, the use of mature

DCs appears to be associated with a better clinical outcome compared to immature

DCs36, 37. This difference may partly be explained by the better migratory capacity

to the draining lymph nodes of mature DCs compared to immature DCs after

intradermal or subcutaneous injection. Also within the lymph node, mature DCs

show a pronounced migration into the T cell areas where antigen presentation takes

place, whereas immature DCs remain at the periphery38. Besides their enhanced

migratory capacity, mature DCs also have a higher expression of MHC and

co-stimulatory molecules. Together this leads to superiority of mature DCs in

antigen presentation and therefore in inducing T cell responses.

4.2.1 Tolerogenic Dendritic Cells

While clinical DC vaccination studies in the field of cancer immunotherapy are

aimed at stimulating immune responses, the finding that immature DCs play a

critical role in the continuous induction of peripheral tolerance and thereby

preventing both autoimmunity and hyperreactivity39 suggests a potential role for

clinical DC applications in management of transplantation, allergy, autoimmunity,

and chronic inflammatory diseases. Several factors such as IL-10, vitamin D3, and

corticosteroids can skew the DC into a more suppressive T cell type of inducer40.

Indeed, a number of trials have been initiated aimed at silencing the immune system

in diseases like rheumatoid arthritis and Crohn disease.

4.2.2 Cytokine Maturation Cocktails

Maturation of DCs can be induced by proinflammatory cytokines such as IL-1b or

IL-6. Several maturation methods have been applied with maturation being defined

by a high expression of mature DC-specific surface markers such as CD80, CD83,

CD86, and MHC molecules. Since the maturation stage of DCs cannot be fully

characterized by the expression of co-stimulatory molecules and surface MHC,

it is therefore critical that the phenotypic and functional characteristics of the used
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DCs be carefully described when reporting clinical DC vaccination trials30. For

example, functionality of DCs can be measured by the production of IL-12, a

proinflammatory cytokine that plays an essential role in the differentiation of

T cells in T helper 1 cells. The most widely used method to mature immature

DCs is a cytokine cocktail that includes TNF-a, with any of the following cytokines
in any combination: IL-1b, IL-6, prostaglandin E2, or monocyte-conditioned

medium that was used in early clinical studies25, 26, 33, 41, 42. There is some evidence

that culturing DC with IL-15 may lead to a type of mature DC that induces stronger

T helper 1 type of immune responses43. However, no comparative studies have yet

been reported. Lastly, CD40 ligation has also been used as a method of activation of

DCs in a clinical setting44, 45.

In addition, another level of complexity is added by the timing and duration

of the maturation signal. Different cytokine cocktails require different lengths of

maturation periods and can induce some differences in expression of co-stimulatory

molecules and cytokine production of the DCs46, 47. None of these different

maturation methods has shown to be clearly superior, which is mainly due to the

fact that there are no direct comparative studies, although the use of prostaglandin

E2 for maturation may negatively affect DC function because of reduced IL-12

production48, 49.

4.2.3 Maturation via Toll-Like Receptors

More recently, TLR ligands that trigger TLRs on DCs are being explored to mature

DCs. TLRs are part of the pattern recognition receptors by which DCs can detect

pathogens50. Triggering of these TLRs might be a more natural route to induce

DC maturation.

During evolution, the immune system has acquired various receptor families

that recognize several crucial molecular components of pathogens. This set of

pathogen-associated molecular patterns (PAMPs) recognized by the immune

system is limited and constituted mostly of general molecular patterns that

are absent on host cells and are essential for survival of the microbe. On DC

membranes, two main pattern recognition receptor families are present, C-type

lectins and TLRs, of which the TLR family is best characterized and recognizes

the most diverse group of PAMPs. Fifteen mammalian TLRs are now known

(TLR1-15), of which ten are found in humans51, 52.

The better-described TLR1-9 can be divided in two main groups: extracellular

TLRs that are found on the cell surface (TLR1, TLR2, TLR4, TLR5, and TLR6) and

the intracellular TLRs that are located in endosomal compartments (TLR3, TLR7,

TLR8, and TLR9). In general, intracellular TLRs recognize nucleotide-containing

structures. For example, RNA molecules are recognized by TLR3, TLR7, and TLR8,

and unmethylated CpG DNA originating from viruses and bacteria is recognized
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by TLR9. Extracellular TLRs recognize exterior components of bacteria and fungi,

for example, cell wall components. Besides PAMPs derived from pathogens, TLRs

have been proposed to recognize endogenous ligands such as heat shock proteins or

necrotic cells53, 54. The signaling pathways associated with ligation of the different

TLRs are not identical, and therefore, distinct biological responses are initiated.

Ligand binding of TLRs recruits one or more adaptor molecules. The difference in

signaling outcome (e.g., variation in cytokine production) can be explained in part by

the use of different adaptor molecules by the TLRs. The binding partners of the

recently discovered TLR10-15 are less well known.

Recently it became apparent that subsets of DCs naturally circulating in the

blood express different TLRs and respond distinctly to TLR ligands. Human

monocyte-derived DCs and mDCs show very similar TLR expression profiles.

These DC subsets express the extracellular TLRs TLR1, TLR2, TLR4, TLR5,

and TLR6 and the endosomal TLRs TLR3 and TLR8. In addition, both

monocyte-derived DCs and mDCs respond to specific ligands of these TLRs,

leading to a mature phenotype and production of proinflammatory cytokines55–63.

However, some significant differences between monocyte-derived DCs and mDCs

in TLR expression and ligand reactivity were found. Most notably, monocyte-

derived DCs show negligible TLR10 expression, whereas blood mDCs do express

TLR10. Unfortunately, the ligands and functionality of TLR10 are still unknown.

Through the formation of heterodimers with TLR1 or TLR6, TLR2 gains the

capacity to bind a wide variety of bacterial and yeast-derived ligands. Conse-

quently, this plays a central function in pathogen recognition by DCs. TLR1/2/6

activation leads to DC maturation and secretion of several cytokines important in

immune system activation, especially IL-6, IL-8, IL-10, IL-12, and TNF-a. Human

monocyte-derived DCs and mDCs do not express TLR9 and do not respond to

TLR9 ligands55, 58. TLR9 is only expressed by pDCs in the human setting and is

responsible for the very high type I IFN response64. In summary, both monocyte-

derived DCs and mDCs express TLR1-8 and not TLR9, and only mDCs express

TLR10. The mRNA expression of these receptors was confirmed by DC reactivity

studies using TLR ligands.

pDCs show a more distinct pattern of TLRs compared to monocyte-derived DCs

and mDCs. They abundantly express TLR7 and TLR9 in their endosomal

compartments. In addition, triggering of TLR7 and TLR9 on pDCs leads to high

type I IFN secretion and a typical mature DC phenotype. Interestingly, it has been

suggested that in human pDCs, TLR9 exhibits a unique feature not shared by the

other described TLRs: depending on the stimulus, activation of TLR9 on human

pDCs can have different outcomes. The dual function of TLR9 is attributed to the

distinct intracellular locations where TLR9 can be triggered. They can either

activate an innate immune response via IFN-a secretion after encountering nucleic

acids via early endosomes or activate an adaptive immune response through IL-6

and TNF-a secretion in late endosomes65.

Both the timing of the activation signal and the exposure to antigen are of crucial

importance for optimal antigen presentation; only the simultaneous presence of

apoptotic cells and TLR ligands to DCs results in efficient antigen presentation and

subsequent T cell activation66. With respect to the type of TLR ligands, it has been
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shown that combinations of different TLR ligands can have a synergistic effect on

the immunogenic potential of DC ex vivo67 and in vivo68.

The combination of clinical grade TLR ligands and prostaglandin E2 resulted in

the generation of mature DCs that secrete high levels of IL-12, IFN-g, and TNF-a69.
With the discovery of those promising ex vivo data, the potency of these TLR

ligand-activated monocyte-derived and naturally occurring blood DCs is being

explored in clinical trials. Despite the low number of naturally occurring blood

DCs, preliminary data indicate that these cells are extremely potent in initiating

immune responses in cancer patients12.

4.3 Dendritic Cell Antigen Loading

To induce an immune response in cancer patients, the MHC molecules of a mature

DC must be loaded with relevant tumor antigens. Preferably, tumor antigens are

presented by DCs to both CD4+ T helper cells (via MHC class II) and CD8+

cytotoxic T cells (via MHC class I), since there is convincing preclinical evidence

that targeting both cytotoxic T cells and T helper cells is of crucial importance for

the induction of a strong and sustained antitumor T cell response. Several methods

of loading DC with relevant tumor epitopes have been examined, of which the most

widely used will be discussed in the following paragraphs.

4.3.1 Peptide- or Protein-Pulsed Dendritic Cells

Several techniques have been developed to load human DCs with tumor-associated

antigens, the most widely used being incubation of DCs with human leukocyte

antigen (HLA) class I-binding peptides that can bind directly to MHC molecules on

the cell surface27, 33, 36, 70–83. In some clinical vaccination studies, HLA class

I-binding peptides are combined with class II-binding peptides to also allow the

activation of CD4+ T helper cells41, 84. Please also see Chaps. 5–6 for additional

details on peptides and DC targeting strategies.

Tumor antigen-derived peptides have the advantage that many peptides are

commercially available, but the antigens have to be known for each specific

tumor and the peptides are restricted to a given HLA type. Unfortunately, the

half-life of MHC–peptide complexes is relatively short due to low affinity and

MHC turnover. Further immune response, if any, is restricted to the epitope(s) used.

On the other hand, a phenomenon known as antigen spreading can occur. In antigen

(or epitope) spreading, killing of tumor cells after vaccination against a single

epitope results in release of tumor antigens from killed tumor cells. These antigens

can subsequently be taken up by DCs and presented to T cells, resulting in T cell

responses against antigens that were not included in the vaccine76.
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Aside from HLA-binding peptides, peptides can be endogenously loaded onto

MHCmolecules after proteolytic processing of recombinant protein or endocytosed

tumor lysates. The DC processes the protein into peptides, which has the advantage

that multiple epitopes are presented in both MHC class I and II and that it is not

limited to the HLA restriction of smaller peptides. Unfortunately, only a few

clinical grade recombinant proteins are available85.

Autologous72, 86–91 or allogeneic44, 92–94 tumor cell lysates have also been

applied as a source of antigens. This has several advantages: the antigen expression

by the tumor does not need to be defined, and a wide array of both MHC classes I

and II epitopes are presented including tumor-specific antigens. Possible drawbacks

of this approach are the presentation of autoantigens, the requirement of a sufficient

volume of tumor tissue for preparation of the lysate and difficulties in monitoring

tumor-specific T cell responses since the antigens relevant to T cell responses are

not known.

Very novel thoughts also include sequencing of the tumor and to focus on those

mutated proteins that contain MHC-binding peptides, thus increasing the number of

potentially immunogenic tumor-specific antigens95.

4.3.2 mRNA-Transfected Dendritic Cells

Transfection of DCs with RNA comprises an alternative antigen loading tech-

nique96, with either tumor-derived RNA97, 98 or synthetic RNA encoding full-

length tumor antigens being used99. The most widely used technique to transfect

DCs with RNA is RNA electroporation, the transient permeabilization of the

plasma membrane during application of an electric field at which point the RNA

can enter the cell. A benefit of this technique lies in the presentation of several

MHC class I epitopes and sometimes also MHC class II epitopes, depending on the

presence of an endosomal targeting sequence100. It could also lead to a more

prolonged presentation of the antigen as compared to peptide loading, which

appears to be short lived101. Disadvantages of RNA transfection include a variable

expression and a low yield of viable cells after transfection, although without loss of

phenotype and maturation potential of the viable cells. mRNA electroporation is

more efficient compared to plasmid DNA electroporation, and since it is a nonviral

method of transfection, the RNA lacks the potential to integrate into the host

genome, thereby obviating the safety concerns associated with clinical gene therapy

trials.

Although tumor-derived RNA potentially harbors tumor-specific epitopes of

mutated genes, it has the additional disadvantage that an unknown number of

autoantigens will also be presented. However, several studies have shown that

this technique is feasible and results in highly efficient DC transfection99, 102–105.
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Furthermore, antitumor T cell responses and some evidence for clinical activity

have been reported in patients vaccinated using DCs electroporated with tumor-

derived RNA106, 107.

Another technique consists of using DC–tumor cell fusion hybrids. Inactivated

tumor cells are fused with mature DCs. Ex vivo, this method has shown to be

feasible and results in effective antigen presentation108. As with tumor lysates, the

advantages of this technique are that the antigens expressed by the tumor do not

need to be defined and a wide array of epitopes are presented. On the other hand,

cultured tumor cells are needed and the inactivated tumor cells might still exhibit

tumorigenicity in vivo109.

Furthermore, RNA technology can be exploited not only to improve antigen

presentation but also to improve DC maturation and T cell stimulation. For exam-

ple, it has been shown that the T cell-stimulatory capacity of peptide-pulsed DCs

can be greatly enhanced by providing them with three different molecular adjuvants

through electroporation with mRNA encoding a so-called TriMix of CD40 ligand

(CD40L), CD70, and a constitutively active form of TLR4. The combination of

CD40L and TLR4 electroporation would mimic CD40 ligation and TLR4 signaling

of the DC and generates phenotypically mature, cytokine-secreting DCs. Further,

the introduction of CD70 into the DC provides a co-stimulatory signal to CD27+

naive T cells by inhibiting activated T cell apoptosis and by supporting T cell

proliferation110.

At present, all of the above DC-loading methods have been tested in preclinical

models or already used in DC vaccination trials. All have their advantages and

disadvantages, but the optimal method for antigen loading with any strategy

remains unknown.

4.4 Dendritic Cell Vaccination Trials

During the past decade, DC-based immunotherapy is explored worldwide in clini-

cal vaccination trials, predominantly in cancer patients111. Most clinical studies use

autologous ex vivo-cultured, antigen-loaded monocyte-derived DCs or CD34+

progenitor-derived DCs that are administered to patients with the aim of inducing

tumor-specific effector T cells that can reduce the tumor mass specifically and that

can induce immunological memory to control tumor relapse (Fig. 4.2).

In recent years, over 100 clinical studies have been or are being carried out in

cancer patients. Most studies carried out were small exploratory studies aimed at

optimizing vaccines and measuring immune responses. In short, we can conclude

that DC immunotherapy has been introduced into the clinic and has proven to be

feasible and safe and potently induces immunological responses, particularly if the

DCs have been appropriately matured. Nevertheless, thus far, only a very limited

number of long-term clinical responses have been observed.
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4.4.1 DC Maturation Status and Antigen Loading

The majority of the initial vaccines used immature or semimature rather than

mature DCs, which might have affected the immunological and clinical

outcomes30. Studies that compared the immunogenicity of immature versus mature

DCs showed that maturation is essential for the induction of immunological

responses in cancer patients35, 36. Moreover, the use of mature DCs appeared to

be associated with a better clinical outcome compared to immature DCs36, 37.

Vaccination with immature DCs might even promote antigen-specific tolerance112.

This superiority of mature DCs in inducing T cell responses is probably not only

related to their high expression of MHC and co-stimulatory molecules but also to

their enhanced migratory capacity. Compared with immature DCs, mature DCs
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Fig. 4.2 The induction of tumor antigen-specific T cells via ex vivo or in vivo dendritic cell

vaccination. DCs cultured from monocytes or CD34+ progenitor cells can be loaded with tumor

antigen ex vivo and administered to cancer patients via different routes, after culture in the

presence of maturation stimuli such as proinflammatory cytokines. Within the lymph node, DCs

present antigens to T cells, in combination with a co-stimulatory signal to initiate an immune

response. The activated tumor antigen-specific T cells proliferate and migrate out of the lymph

node toward the site of the antigen, the tumor site. At the tumor site, MDSCs and Tregs are able to

create an immunosuppressive microenvironment, inducing peripheral tolerance and complicating

tumor clearance by T cells. Exploiting natural DC subsets can be performed either by isolating

pDCs or mDCs and stimulating them ex vivo with adjuvant and antigen (not shown) or by

targeting them in vivo exploiting nanoparticles that carry antigen and adjuvant and are coated

with antibodies against DC-specific surface receptors. Both pDCs and mDCs can stimulate T cells.

Cross-talk between both DC subsets can also stimulate other immune cells such as NK cells.

Im-moDC, immature monocyte-derived dendritic cell; mo-DC, mature monocyte-derived den-

dritic cell; i.d., intradermal; s.c., subcutaneous; i.v., intravenous; i.n., intranodal; mDC, myeloid

dendritic cell; pDC, plasmacytoid dendritic cell; CD4, CD4+ T helper cell; CD8, CD8+ cytotoxic
T cell; NK, natural killer cell; MDSC, myeloid-derived suppressor cell; Treg, regulatory T cell.
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migrate much better to draining lymph nodes after intradermal or subcutaneous

injection, although this migration process is still rather inefficient. Within the

lymph node, mature DCs show a pronounced migration into the T cell areas

where antigen presentation takes place, whereas immature DCs remain at the

periphery38.

To date, the optimal mode of DC maturation for clinical use has still not been

established completely. Although a wide range of cytokine maturation cocktails

have been tested in clinical studies, DC maturation via triggering of TLRs has been

explored in great detail only recently. This not only holds for monocyte-derived DC

and CD34+ progenitor-derived DCs but also for naturally circulating DC subsets,

which are now also being considered for therapy.

Besides the optimal maturation method, mature DCs have not been used in

clinical studies comparing different antigen loading techniques. Most of the early

vaccine studies focused on MHC class I-restricted antigens as targets for cancer-

specific CD8+ T cells. Identification of MHC class II-restricted antigens as targets

for CD4+ T cell responses allowed concurrent immunization with class I and class II

epitopes to generate more potent immune responses. In addition, exploitation of

mRNA transfection even led to presentation of multiple MHC class I and II

epitopes on the cell surface and prevented the need for HLA selection of patients.

There is consensus that mRNA is preferred over peptide loading because of the

multiple epitopes presented, although mRNA application is not always possible.

For instance, because of the rather fragile nature of natural DCs, mRNA transfec-

tion is not possible with them, and peptide loading is preferred. Also the number of

RNAs that can be applied is limited.

4.4.2 Clinical Trial Overview

Clinical trials with DC vaccines are being carried out in a wide variety of human

cancers. In theory, DC-based immunotherapy should be applicable to all cancer

types, although several practical limitations mean that it is mostly investigated

in certain types of tumors. Limitations include the lack of appropriate tumor-

associated antigens or the absence of sufficient tumor material when tumor lysates

are used for loading of DC. In general, two types of antigens have been used:

(1) tumor cell-associated antigens, which are also expressed by their nonmalignant

counterpart, and (2) tumor-specific antigens including the MAGE antigens, which

are only expressed at immune privileged sites or only during embryogenesis.

Nowadays, genomic and proteomic approaches are also used to identify

tumor-specific antigens that are derived from mutated genes.

Of all cancer types, melanoma is by far the most studied cancer type in DC

immunotherapy. This is mainly because in melanoma a large variety of tumor-

associated antigens have been characterized, consisting of tumor differentiation

antigens such as gp100 and tyrosinase and tumor-specific antigens such as

MAGE-3113. Other reasons are that melanoma is considered of one of the most
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immunogenic tumors and that no first-line treatment is available which improves

overall survival in the case of metastatic disease114–116.

Hematological malignancies form another group of cancer types that are studied

more extensively, mainly the lymphomas and myelomas. For example,

malignancies of B cell origin express monoclonal immunoglobulins carrying

unique tumor-specific antigenic determinants in the variable regions, called

idiotypes117. These idiotypes can be isolated from B cell malignancies and subse-

quently be used as DC-loading antigens for the induction of specific CD4+ and

CD8+ T cells. In contrast to the antigens used in solid tumors, these antigens are

thus not only tumor specific but also patient specific.

Other tumor types that have been investigated using DC vaccines include

colon cancer, renal cell carcinoma, breast cancer, ovarian cancer, nasopharyngeal

carcinoma, hepatocellular carcinoma, pancreatic tumors, adrenal carcinoma,

cholangiocarcinoma, parathyroid carcinoma, non-small cell lung cancer, head and

neck cancer, sarcoma, bladder cancer, glioma, and pediatric malignancies118–125. In

most of these studies, DCs were cultured without maturation stimuli. In colorectal

cancer, the most widely used antigen for loading on DCs is carcinoembryonic

antigen (CEA)126. Patients with CEA-expressing malignancies have also been

treated with Flt3L expanded DCs pulsed with a modified CEA peptide or with

monocyte-derived DCs transfected with RNA encoding CEA.

Because a new vaccine has to be prepared for each patient, this has hampered

the development of DC vaccines by the pharmaceutical industry. The first dendritic

cell-based vaccine that has been brought to the market by a private company is

sipuleucel-T (Provenge; Dendreon), a vaccine used in men with metastatic

castration-resistant prostate cancer. Despite the discussion about the DC character-

istics of this vaccine, the impact of this first FDA-approved cancer vaccine has been

significant and certainly boosted the field. Furthermore, because of the highly

individual DC vaccines, there is also a large interest in developing strategies to

target DCs in vivo instead.

4.4.3 Immunological Monitoring Methods and Results

The ability to measure the expected immune response of a given immunotherapy

reliably, including in DC vaccination, is of major importance. Further, correlation

with clinical outcome remains notoriously difficult and laborious. Although there

is an abundance of different assays that are being used to measure tumor

antigen-specific T cell responses27, 41, 127, many of these assays have not shown

consistent results, and none have been validated in prospective clinical trials.

A major reason is the extremely low frequencies of high-affinity tumor antigen-

specific T cells in the peripheral blood. These frequencies can be as low as 1 in

40,000 T cells128. These low responses are often not detected by the most frequently

used techniques such as enzyme-linked immunosorbent spot analysis or direct

MHC tetramer staining of peripheral blood lymphocytes.
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Further, the general immune status of a patient is not necessarily indicative of the

clinical outcome. For example, control antigens such as the foreign protein keyhole

limpet hemocyanin are frequently used to assist monitoring for immune monitoring

purposes. While reactivity against keyhole limpet hemocyanin is often seen

after vaccination, no correlation between the reactivity against keyhole limpet

hemocyanin and the clinical outcome has been observed. Also, cloning of the

antigen-specific T cells and subsequent T cell receptor sequence analysis of the

clones has only been limited successful128. A correlation between clinical outcome

and circulating antigen-specific T cell response is found in only a minority of

studies.

Another approach is analyzing T cell responses from biopsies of delayed-type

hypersensitivity reactions in patients vaccinated with antigen-loaded DCs127, 129.

The rationale for biopsying the skin comes from the observation that measuring

induration upon delayed-type hypersensitivity challenge is not predictive of

vaccine-related T cell responses127. By contrast, the presence of antigen-specific

and functional T cells present in biopsies from delayed-type hypersensitivity was

significantly correlated with a prolonged progression-free survival in metastatic

cancer patients127. One argument for why this assay correlates better with survival

is the fact that in this case, antigen-specific T cells have been identified that were

able to extravasate and migrate into the tissues, similar to what is expected from

effector T cell infiltration into the tumor. Perhaps only a fraction of the antigen-

specific T cells are capable of that function.

Although correlations between tumor regression and T cell responses are some-

times observed79, the use of immune responses as a surrogate end point in clinical

trials still remains limited. Furthermore, the immunological studies performed so

far are unfortunately too diverse in their setup to allow for a meta-analysis130.

Nevertheless, some lessons can be drawn from these studies. For example, an intact

and proper functioning immune system seems to have a higher potential to react to

immune therapy, and tumor antigen-specific T cells are less frequently induced in

patients with distant metastatic disease compared to patients with solely local (non-

metastatic) disease131. In addition, more emphasis should be put on monitoring

immune responses at the effector site, or at surrogate effector sites as discussed

above, given that T cell responses in peripheral blood and the tumor microenviron-

ment can show markedly different patterns132. Please see Chap. 15 for additional

details on immune monitoring issues.

4.4.4 Clinical Results

The first proof of principle studies exploring DC vaccination were performed in the

late 1990s, showing the feasibility and the potential efficacy of DC vaccination in

cancer patients2, 33, 72. DC vaccines have proven to be safe with only minimal side

effects in multiple phase I and/or II trials in adults27, 35, 36, 41, 71, 133–135 as well as in

children136. Side effects seen with the majority of DC vaccination protocols were
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mostly limited to transient chills, fever, fatigue, nausea, and headache. Although

immunological responses are often reported using several immune monitoring

methods and different culture protocols, objective clinical responses remain

anecdotal with objective response rates not exceeding 5–15 %, with disease stabili-

zation and mixed responses being observed more often29. Interestingly, however, in

cases where clinical responses were induced, these were often long lasting137.

Several of the early studies published were inadequate in their design and

interpretation. Indeed, quality control of the DC vaccines and information on

phenotypic differences between DCs of individual patients have been largely

lacking in many studies. Rather, the miraculous cure of a single patient is

highlighted without proper discussion of the potential reasons for treatment failure

in other patients.

To date, only very few phase III trials have been performed with DC-based

immunotherapy, mainly because it is thought that the current vaccines have not yet

reached their full potential and also because financial support is hard to obtain as

most companies are not interested in producing laborious patient-specific vaccines.

However, less than 2 years after one of the first publications on dendritic cell

therapy was published72, a prospective phase III trial was initiated in 2000 that

compared standard dacarbazine chemotherapy with a dendritic cell vaccine as first-

line treatment of patients with metastatic melanoma84. The trial was prematurely

discontinued at the first interim analysis after the inclusion of 103 patients owing to

lack of efficacy. The authors identified several possible negative contributing

factors, including a variable quality of the dendritic cell vaccine among

participating centers and a suboptimal maturation state, dose, and route of adminis-

tration of the DCs. In retrospect, this trial was carried out too soon and was

performed at a time when DC vaccination was too early in its development.

Although this trial could be interpreted as a negative trial for DC vaccination in

melanoma patients, equality with the standard therapy for the last 30 years is

perhaps not a bad starting point, given the fact that there are many parameters

regarding DC vaccination that have been optimized over the last decade and still

can be optimized in the following years.

More recently sipuleucel-T, a DC-based vaccine used in men with metastatic

castration-resistant prostate cancer, a patient population without any other available

effective treatment options, has been brought to the market by a private company.

This cell-based vaccine consists of autologous peripheral blood mononuclear cells

obtained by leukapheresis, which include professional antigen-presenting cells that

have been activated with a fusion protein (PA2024) of the prostate antigen prostatic

acid phosphatase and the immunostimulant GM-CSF. Sipuleucel-T was approved

based on results from two placebo-controlled phase III randomized trials. No signifi-

cant difference in time to biochemical failure, defined as serum prostate-specific

antigen �3.0 ng/ml138, or improvement in progression-free survival could be

shown139, 140. However, median overall survival was prolonged by approximately
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4 months compared with the placebo group, from 21.4 to 25.9 months139 and 21.7 to

25.8 months140. A relative reduction of 22 % in the risk of death was also shown140.

The finding of a discrepancy between lack of benefit in progression-free survival

and an advantage in overall survival could possibly be explained by the measuring

technique. The classic World Health Organization (WHO)141 and Response

Evaluation Criteria In Solid Tumors (RECIST)142, 143 criteria that are applied to

measure the efficacy of cytotoxic chemotherapy depend on tumor shrinkage, and

any increase in tumor size beyond a certain level as well as the appearance of new

lesions is considered as a treatment failure. However, there is now ample evidence

that these criteria do not apply to immunotherapy. Immunotherapy-induced tumor

regressions have been well documented after initial progression and even after the

appearance of new lesions, which are presumably caused by the infiltration of

lymphocytes into tumors144.

These observations have led to the proposal of novel immune-related response

criteria, as response evaluation according to conventional response criteria (such as

WHO and RECIST) can lead to unwanted early cessation of treatment owing to

initial tumor growth145. These observations reflect the different dynamics of the

immune response compared with the direct effects of cytotoxic drugs on cancer

cells146. Please see chapter 14 for additional details of these issues in clinical

immunotherapy trials.

At present, the majority of studies have investigated the therapeutic effects

of DC vaccines in late-stage cancer patients with metastases, despite the finding

that more potent immune responses are induced in patients without end-stage

disease131. Part of the use of late-stage patients can be attributed to the notion

that immunotherapy is less effective in patients with a large tumor burden, owing to

the presumed correlation of immune suppression and tumor burden, and the delay

in time taken to translate immune responses into a survival benefit, which is not

possible in most patients with advanced disease. We thus might take better

advantage of the unique capacity of DCs to direct the immune response by

exploiting DC-based cellular therapy earlier in the disease course.

It has been demonstrated that melanoma-specific T cells are present together

with antigen-presenting cells in sentinel nodes at initial evaluations of melanoma

patients without known metastases. In this window between primary tumor and

metastasis, immunological processes can be crucial. It might be at this turning point

in the development of metastatic disease that ex vivo-generated DCs can best assist

the immune system, such as in prophylactic studies in patients suffering from ocular

melanoma where the primary tumor is removed have been initiated, as well as

studies in high-risk patients for developing cancer because of familial genetic

predisposition. A further interesting observation was made in advanced melanoma

patients vaccinated with monocyte-derived DC that were pulsed with a single

melanoma peptide. The only clinically responding patient showed evidence of

spreading of T cell reactivity against other antigens as well, suggesting that

determinant spreading is of importance for the induction of clinical responses76.
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4.5 Novel Concepts and Future Perspectives

4.5.1 General Considerations

The immunological and clinical responses in clinical trials thus far support the

concept of using DC-based immunotherapy successfully to treat cancer. Neverthe-

less, a number of variables need to be evaluated and controlled to improve clinical

outcomes further in DC vaccination in more patients. Among these are optimization

of the ex vivo generation of DCs; the use of different, naturally circulating DC

subsets; route of DC administration; maturation stimuli for DCs69; and antigen

loading of DCs30. These variables still provoke an ongoing debate, but one can

clearly conclude that the full potential of DC-based immunotherapy has not yet

been fully realized or exploited.

Second, upon induction of tumor antigen-specific T cells, the next hurdle to

overcome is the local immune suppressive environment created by the tumor. No

matter how effective a DC vaccine is, an immunosuppressive tumor microenviron-

ment can inhibit its efficacy. In particular in end-stage cancer patients, this misbal-

ance is already in favor of the metastasizing tumor. It is reported that in some

patients, tumor antigen-specific T cells are present after DC vaccination, but they

still experience disease progression. It became clear that these tumor antigen-

specific T cells did not produce relevant cytokines nor exhibit cytotoxic activity

upon tumor challenge131. Apparently, these effector cells were not capable of

overcoming the local suppressive tumor environment. To circumvent or tackle

these hurdles, novel concepts are under development to further improve DC-

based immunotherapy. These concepts are extensively addressed in other chapters

in this textbook.

4.5.2 Natural Dendritic Cell Subsets

Whether DCs differentiated ex vivo from precursor cells are the optimal source of

DCs for the induction of potent immune responses remains unclear. The extensive

culture period (7–9 days) of ex vivo-generated DCs and compounds required

to differentiate them into DCs might negatively affect DC function, especially their

capacity to migrate toward the site of T cell interaction by exhaustion of the cells147,

148. Therefore, it is attractive to consider alternative DC sources, such as natural blood

DCs: mDCs and pDCs. While natural blood DCs might not require extensive culture,

to be effective, they must be activated through molecularly defined triggers of DC

activation, such as TLRs or CD40 ligand, prior to reinfusion58. This is of particular

importance as nonactivated or improperly activated DCs might result in T cell

tolerance rather than productive T cell immunity39. Also, since the frequency of

naturally occurring circulating blood DCs is very low, it was thought that multiple

leukapheresis would be needed to obtain sufficient numbers of DCs. However, it has
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proven feasible to obtain more than 10 million pDCs and even higher numbers of

mDCs after a single leukapheresis. Furthermore, to collect even more DCs, Flt3L is a

potential candidate for expanding human DCs in vivo without activating them149, 150.

Recently, a first clinical trial with tumor antigen-loaded, TLR ligand-matured

pDCs in stage IV melanoma patients was completed, which appeared feasible

and safe. In the majority of patients vaccinated with pDCs, responses against the

monitoring protein were found, demonstrating that even small numbers of naturally

occurring DCs can induce immunological responses. Although this phase I study

was primarily aimed at determining potential toxicity, the clinical results were

extremely promising with significantly extended survival in the majority of the

patients.

Several ex vivo and preclinical studies suggest that pDCs and mDCs might

cooperate and act synergistically. Human mDCs and pDCs activate each other after

specific stimulation of only one of the DC subsets with appropriate TLR ligands

ex vivo24. Importantly, when mDCs and pDCs are used in combination, both DC

subsets will need stimulation with carefully selected TLR ligands, due the fact that

they express different repertoires of TLRs (Fig. 4.1). Since TLRs act in synergy151,

the combination of different TLR ligands might even be more potent. Therefore, it

is of crucial importance to find TLR ligand combinations that either induce optimal

maturation of both mDCs and pDCs or at least do not interfere with maturation of

either DC subtype. Ex vivo findings with human cells suggest that in a clinical

setting, vaccination with both pDCs and mDCs might also generate stronger

antitumor responses than vaccination with monocyte-derived DCs alone.

4.5.3 Targeting Dendritic Cells In Vivo

Another recent approach to exploit natural DCs for cancer immunotherapy is to

target DC subsets in vivo. To this end, instead of isolating the various subsets,

laborious culturing, and antigen loading ex vivo, antibodies are used to target DCs

with activating agents and antigens directly in vivo152. Early studies have shown

that when antigen is bound to antibodies directed against surface receptors of

DCs that are implicated in endocytosis, that this leads to uptake of antigen.

Antigens loaded through these receptors are efficiently channeled into endocytic

compartments for loading of MHC class I and II molecules and the subsequent

induction of immune responses153. However, if the antibody–antigen conjugates are

not accompanied by adjuvant to stimulate the immune system, tolerance rather than

immunity might occur152, 153.

Therefore, several investigators have embarked on the development of

nanoparticles154 that are coated with antibodies to target natural DC subsets and

that are loaded with both antigen and adjuvant (Fig. 4.2)155, 156. The advantage of

this approach is that adjuvants only activate those DCs that are targeted by the

antibodies, thereby preventing systemic activation and toxicity. Co-targeting of

TLR ligands in nanoparticles as an adjuvant has shown substantially enhanced
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DC maturation and production of immune-stimulatory cytokines. In addition,

corresponding antigen-specific activation of CD8+ T cells in mice was observed,

without a so-called cytokine storm and related toxicity that may be associated with

the administration of soluble TLR ligands156.

Another major advantage of in vivo targeting strategies is that they can be

produced in bulk quantities, whereas vaccines based on DCs loaded with antigens

ex vivo require extensive tailor-made procedures for each individual. However,

ex vivo culture conditions allow careful control of maturation and activation, while

due to lack of direct control in in vivo targeting strategies, the duration and stability

of the vaccine following administration will be difficult to determine152.

Many of the receptors that are studied in targeting strategies belong to the

CLR family. These CLRs comprise a family of calcium-dependent lectins that

share primary structural homology in their carbohydrate domain. Through this

domain, CLRs bind to specific self or nonself sugar residues and are implicated

in antigen capture and endocytosis. For example, the CLR DC-SIGN is pre-

dominantly expressed on immature DCs and at lower levels on mature DCs and

macrophages157–160. Anti-DC-SIGN antibodies efficiently target mDCs in vivo

and reach saturation with one single dose. The binding of a humanized antibody

to DC-SIGN showed high-affinity and facilitated endocytosis.

Furthermore, targeted human monocyte-derived DCs with delivery of antigen

conjugated to the humanized DC-SIGN-specific antibody leads to presentation of

the antigen by both MHC class I and II molecules and elicits both naive and

memory T cell responses ex vivo160. DEC205 (CD205) is another CLR that is

widely explored as a potential targeting antibody in mice. DEC205 expression

levels in human are highest in mature DCs, but it is also expressed by B cells,

T cells, monocytes, macrophages, and natural killer cells161. In mice, DEC205

seems to be more potent in mediating cross presentation ex vivo compared to the

other CLRs. Several studies are ongoing to compare and determine the efficacy of

different targeting receptors.

To conclude, although it will probably still take several years before direct

targeting of antigens via nanoparticles to DC surface receptors in vivo will be

applied in clinical trials in cancer patients, it might replace laborious and expensive

ex vivo culturing in time and facilitate large-scale application of DC-based

vaccination therapies. Please see Chap. 6 for additional DC targeting strategies.

4.5.4 Combating Tumor Escape Mechanisms

The immune system has several ways to tune down immune responses in order to

prevent autoimmunity or excessively long or vigorous inflammatory reactions.

In addition, tumors have evolved various mechanisms to evade immunological

surveillance or to counterattack the immune response to facilitate their own

progression, so-called tumor escape mechanisms162. The immunosuppressive

strategies used by tumors interfere with multiple steps and pathways in the
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generation of an effective immune response. They include the evasion of immune

recognition, the secretion of immunosuppressive cytokines, the expansion and

recruitment of Tregs, and the activation of negative regulatory pathways. The

degree to which the immune system is compromised by the tumor presence is

variable, the most aggressive tumors appear to be more successful in creating an

optimal microenvironment suppressing antitumor immune responses to favor tumor

progression. It is evident that when developing novel vaccines, we must deal with

and revert local immune suppression.

4.5.4.1 Overcoming Reduced Tumor Immunogenicity

To evade immune recognition, tumor cells frequently modify, downregulate, or

even lose expression of tumor antigens on their cell surface. Modification of tumor

antigens can result in peptides that do not fit into the MHC class I groove or form a

MHC class I–peptide complex that cannot be recognized by T cells. Besides altered

antigen expression, downregulation or loss of MHC class I expression can occur

independently and is frequently seen in various cancer types, particularly in

metastatic lesions133, 163–165. Both processes allow tumor cells to avoid recognition

by CD8+ cytotoxic T cells166. For example, in melanoma it has been shown

that downregulation of both antigen and MHC class I has a negative effect on

prognosis167, 168.

Besides alterations in MHC class I and antigen expression, another aberration

frequently seen in tumor cells involves downregulation of the expression of

co-stimulatory molecules on the tumor cell surface169. This leads to an insufficient

co-stimulatory signal (signal 2) that is necessary for the induction of an effective

T cell response in combination with MHC class I antigen presentation. In

its absence, T cells are rendered anergic170. Evidently, novel vaccines cannot

compensate for this deficiency, but one could attempt to design vaccines that also

boost natural killer cell activity besides stimulating T cell-mediated immunity.

4.5.4.2 Soluble Factors Influencing the Immune System

Tumor cells produce a variety of cytokines and small molecules to promote tumor

progression, mainly by increasing tumor invasiveness and angiogenesis. Some of

these cytokines also possess immunosuppressive properties that, together with the

lack of immunostimulating cytokines, create a cytokine imbalance responsible for

immune deviation seen at the tumor site and distantly. The best characterized

immunosuppressive factors to date involved in the tumor microenvironment

and/or systemic immunosuppression are transforming growth factor b (TGF-b),
vascular endothelial growth factor (VEGF), IL-10, and prostaglandin E2171–177.

It has been shown that TGF-b induces IL-10 secretion that negatively affects the

maturation and activation of DCs and causes a shifts toward T helper 2 responses178.
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The immunosuppressive function of VEGF is mainly dependent on the alteration of

the function of DCs by blocking DC maturation179.

The expression of the small molecule prostaglandin E2 is correlated with

impaired DC and T cell function180.

4.5.4.3 Regulatory T Cells and Myeloid Suppressor Cells

The accumulation of immunosuppressive cells at the tumor site is another mecha-

nism contributing to tumor escape (Fig. 4.2). The most well-known type of cell that

can suppress the immune system and plays a key factor in peripheral tolerance is the

Treg. Tregs are not only capable of infiltrating a site of infection; it is also a well-

known phenomenon that they can infiltrate tumors181–188. Besides Tregs, myeloid-

derived suppressor cells also have a suppressive effect on host immunity and

consist of a group of cells including macrophages, granulocytes, and DCs189, 190.

For further information on these immunosuppressive cell types, please see Chap. 9

on Tregs and Chap. 10 on myeloid-derived suppressor cells. It is evident that new

vaccines should also be aimed at reverting the T regulatory/T effector cell balance,

for instance by inducing strong T helper 1 type of cytokines.

4.5.4.4 Therapeutic Options to Counteract the Tumor Escape Mechanisms

It is clear that the most fantastic vaccines can be developed, but if we are not able

to manipulate immunosuppression at the site of the tumor at the same time, DC

vaccinations will have little or no long-term effect. Approaches to tilt the balance

toward more effective DC-based immunotherapy involve ways to counteract the

tumor escape mechanisms discussed above, either by optimizing the DC vaccine or

by combining treatment modalities.

To counteract the evasion of immune recognition, one can think of several

strategies. Vaccines containing multiple tumor antigens can partly bypass the

emergence of antigen loss; however, this solution will probably not be effective

enough since multiple tumor antigens can be downregulated simultaneously.

Instead of using standardized tumor peptides, proteins, or RNA to load DCs with

tumor-specific antigen for vaccination purposes, the development of RNA sequenc-

ing technologies allows the determination of the complete range of mutated

antigens from the primary tumor and metastases of a patient, thereby possibly

enabling tailor-made therapeutic vaccines to the patient’s tumor in the near

future191. Furthermore, novel vaccines might also be directed at activating innate

cells such as natural killer cells that can recognize tumor cells that have

downregulated MHC expression, in addition to stimulating the adaptive immune

response. Finally, it is suggested that histone deacetylase inhibitors are able to

upregulate MHC class I expression on tumor cells by increasing the expression of

many components of the antigen-processing machinery192 and thus enhance their

susceptibility to killing by cytotoxic T cells. However, there are also studies
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showing an immunosuppressive effect of histone deacetylase inhibitors that

necessitates further research before clinical application in combination with DC

vaccination.

Soluble factors secreted by the tumor create a suppressive environment, includ-

ing preventing differentiation and maturation of natural infiltrating DCs193, 194.

Several studies have now demonstrated that a topical TLR7 agonist (imiquimod)

led to enhanced pDC recruitment and type I IFN production by resident pDCs at the

tumor site, which then generated an inflammatory environment resulting in tumor

regression195, 196. Furthermore, activation of tumor-resident pDCs can also be

achieved by intratumoral injection of CpG motifs inducing TLR9 triggering. This

strategy has therapeutic potential in patients with basal cell carcinoma and mela-

noma skin metastases197. Since TLR9 is thought to be expressed only by pDCs,

CpG injection will not directly activate mDCs. TGF-b inhibitors, anti-VEGF

antibodies, and selective inhibitors of cyclooxygenase 2, an enzyme involved in

prostaglandin E2 synthesis, also have potential to counteract tumor escape by

blocking the suppressive effects of secreted soluble factors198–201.

Reducing the negative effects of cytokines produced by tumor cells or creating

an immunostimulatory microenvironment by adding cytokines that stimulate the

immune system to DC vaccination is being applied in the clinic but has shown little

clinical benefit thus far.

Breaking peripheral tolerance mediated by Tregs theoretically potentiates the

naturally occurring antitumor immune response or the induced effects of immuno-

therapy. In line with this concept, depletion of Tregs by anti-CD25 antibodies,

targeting the a-chain of the IL-2 receptor, in murine models demonstrated an

improved immune-mediated tumor rejection202–205. Furthermore, it resulted in

enhanced therapeutic efficacy of immune-based therapy206, 207, including DC

vaccination208–211. Also other treatments to counteract tumor escape, such as anti-

PD-L1 antibodies or indoleamine-2,3-dioxygenase inhibitors, might enhance the

efficacy of various immunotherapies, including DC-based immunotherapy212, 213.

Further research is needed, also to combine these approaches with DC vaccination.

4.5.5 Toward Combination Treatment

4.5.5.1 Tumor-Debulking Therapies

Given that immunotherapy is considered to be less effective in patients with a large

tumor burden, owing to the presumed correlation of immune suppression and tumor

burden, it is tempting to speculate on the possibility of tumor debulking as one

treatment modality, combined with immune surveillance and immune memory

induction by DC-based immunotherapy to clear small residues and to prevent

relapses.

Tumor debulking, depending on the tumor type, could, for example, be accom-

plished with chemotherapy, targeted therapy, radiotherapy, or surgery214. Beside a
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positive effect on the immune system when tumor burden decreases, local tumor-

destructing therapies induce tumor cells to undergo apoptosis, with release of tumor

antigens, which might elicit additional tumor-specific immune responses via in vivo

loading of DCs215. However, since these modalities in themselves rarely induce a

potent antitumor immune response, the immunogenicity of these methods need

further enhancement by the local delivery of DC-activating signals216, 217.

4.5.5.2 Adoptive T Cell Transfer

Adoptive T cell therapies (detailed in Chap. 3) are based on the infusion of large

numbers of tumor-specific T cells218, 219. It is currently under investigation whether

DC vaccination can enhance the graft-versus-tumor effect of stem cell transplanta-

tion and donor lymphocyte infusions in hematological malignancies220. Adoptive

T cell transfer generates a high but short peak of antigen-specific T cells, whereas

DC vaccination induces T cell responses more gradually that endure longer221,

providing a rationale to combine the two treatment modalities. In preclinical

models, DC vaccination indeed boosted and sustained antitumor T cell responses

after adoptive T cell transfer221, 222.

4.5.5.3 Concomitant Cytokine Therapy

In contrast to the above-discussed immunosuppressive cytokines involved in the

tumor escape mechanisms, immunostimulatory cytokines play a key role in regula-

tion of lymphocyte survival223 (and detailed in Chap. 7). It is thought that DC

vaccination, among other immunotherapies, is likely to favor concomitant cytokine

therapy with the goals of protecting effector CD8+ T cells from tumor-mediated

dysfunction or death and of restoration of normal lymphocyte homeostasis. Most

experience with combined cytokine treatments is obtained with IL-2, which not

only prolongs survival of transferred CD8+ T cells but also enhances their antitumor

activity224. Along with IL-2, GM-CSF and IL-12 are also being explored in

preclinical models and in the clinical setting as well, either alone or in combination

with other treatment modalities225. Thus far, clinical successes are limited,

partly due to the restricted systemic administration because of toxic effects or

due to unwanted immunosuppressive side effects. Type I IFNs have been well

documented to suppress growth of tumor cells through inducing apoptosis and cell

cycle arrest and have been clinically applied for treatment of certain tumor types,

although various adverse effects impede optimal clinical application. Results of the

combination of IFN-a with DC vaccination shows that it is safe, but it only elicits

limited immune responses70.
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4.5.5.4 Chemotherapy

For a long time, the dogma has been that the myelosuppressive effects of chemo-

therapy would prevent its combined use with immunotherapy. However, in recent

years more evidence is accumulating that some forms of chemotherapy may not

harm T cell responses226 and may in fact have a synergistic effect together with

immunotherapeutic approaches227–233. More recently, this notion of a possible

synergistic effect of chemo- and immunotherapy has been supported through

studies showing that treatment of tumor-bearing mice with gemcitabine results in

enhanced cross presentation and T cell activation229. Subsequent studies have

demonstrated that chemotherapy-induced cell death can indeed invoke an immune

response, depending on the biochemical cell death cascade that is induced by the

drug230. These data clearly show that chemotherapeutic agents can have a beneficial

effect on the antitumor immune response and may even imply that at least part of

the clinical effect of chemotherapy depends on its immunological effects. In

addition, recent data from clinical studies in patients with cancer have shown that

T cell induction is not hampered by chemotherapy treatment234, 235.

The optimal sequences of immunotherapy–chemotherapy combination

treatments remain to be established. As different cytotoxic drugs have different

immunological effects, it is conceivable that optimal treatment strategies will differ

depending on both the cytotoxic compound chosen and the immunotherapeutic

approach. Clinical data are lacking; however, trials combining chemotherapy and

DC vaccination are in progress.

4.5.5.5 Anti-CTLA4 Antibodies

Considering that CTLA-4 is constitutively expressed on Tregs, blockade of

CTLA-4 was thought to deplete Tregs. However, data indicate that CTLA-4-

blocking antibodies did not result in depletion or decreased suppressive activity

of Tregs, but execute their immune-stimulatory effect by preventing normal

downregulation of activated T cells by blocking the CTLA-4/B7 interaction236–239.

Since treatment with anti-CTLA-4 is antigen nonspecific, the combination with a

vaccine could potentially direct the T cell response in a more specific manner,

thereby diminishing autoimmune side effects. There is anecdotal information that

anti-CTLA-4 treatment after DC vaccination may indeed enhance DC vaccine-

induced T cell responses240. Further, the combination of anti-CTLA-4 plus DC

vaccination could be synergistic rather than additive. However, clinical trials that

are specifically designed to answer this question have not yet been published.

To conclude, one can speculate of countless currently available and combined

treatment modalities which may have a positive effect on the immune system.

Trials in the near future will have to answer the question of whether DC vaccination

can elicit sustainable clinical responses in a substantial percentage of treated

patients or can add to the clinical efficacy of other anticancer treatment modalities.
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With the wealth of information currently available on the molecular mechanisms

that control the immune system, there is no doubt that these are exciting times for

immunotherapy.

4.6 Summary and Conclusions

In conclusion, DC vaccination has proven to be safe in multiple phase I(/II) trials. In

the early days, trials were mainly performed with immature or semimature DCs

which is now known to have a negative effect on immunological and clinical

responses. The first phase III trial in melanoma patients showed no survival

advantages of DC vaccination over first-line chemotherapy, but also suffered

from the early stage of the DC vaccination field. Thus far, sipuleucel-T is the

only DC vaccine tested in phase III trials and proven to induce a survival benefit.

To date many different mature DC vaccination studies in patients with various types

of cancer are in progress, continuing to optimize the vaccines before starting a

meaningful phase III trial. Naturally circulating DC subsets are now also being

clinically explored as are the first studies on in vivo targeting of DCs. Although

observations of meaningful clinical responses are still scarce, expectations remain

high, because when clinical responses have been induced, they are often long

lasting. Thus, DC vaccination research has now entered a stage somewhere between

“proof of principle” and “proof of efficacy” trials. Crucial questions to answer at

this moment are why clinical responses generally remain limited and what can be

done to improve the efficacy of vaccination. The answers to these questions

probably lie in the preparation and administration of the DC vaccines. While DC

vaccines have made significant advances over the last decade, multiple hurdles still

remain. Within the next decade, the field will have to demonstrate maturity and not

only yield a higher percentage of clinically responding patients but preferentially

also develop means to predict at an early stage which patients will likely benefit and

which not (please also see Chap. 14 on patient selection). The implementation of

DC vaccination as the preferred form of standard therapy for cancer cannot become

a reality until all these issues are fully addressed. We will not only have to improve

our vaccines but also our clinical and immune monitoring tools. The latter will not

only be beneficial for DC vaccination but also for other forms of immunotherapy

such as antibody therapies against immune checkpoint molecules such as CTLA-4

and PD-1.
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Chapter 5

Peptide and Protein-Based Cancer Vaccines

Marion Braun, Rachel Perret, Godehard Scholz, and Pedro Romero

Abstract Vaccination has become one of the most successful public health

achievements, yet its efficacy remains limited to prophylactic vaccination for

infections and early mobilization of the immune system. In cancer, tumor cells

have evolved to overcome immune surveillance or grow in the presence of exhausted

immune cells. However, the identification of tumor-infiltrating lymphocytes as good

prognostic indicator of increased survival in cancer disease1–2 has profoundly

encouraged the design of immunotherapeutic strategies aiming at the induction of

tumor-specific T cell responses. Numerous past and present studies therefore focus on

the re-education of a tumor-controlling immune system via therapeutic vaccination.

In particular, the high numbers of T cell-defined tumor antigens identified thus far3–7

form the basis for the design of therapeutic cancer vaccines. In this chapter, we

review current knowledge on the promise and pitfalls of defined antigen vaccination

strategies for cancer based on synthetic peptides and proteins and discuss novel

approaches for combination treatments with novel immunomodulatory agents.

5.1 Antigenicity and Immunogenicity of Tumors:

Tumor-Associated Antigens

Most tumors, both experimentally induced and naturally occurring, are antigenic.

Results from decades of research have conclusively shown that the immune system

can recognize and prevent tumor development. The main mediators of these two

key processes are T cells, in particular the subset of cytolytic T lymphocytes (CTL)
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which express cell surface-associated ab T cell receptors (TCR) and the co-receptor

CD8. This subset of CD8+ T cells is also crucial in recognition of, and protective

immunity against, intracellular parasites such as viruses. To recognize their targets,

CTL use clonotypically distributed TCR which are specific for short antigenic

peptides. Unlike antibodies, TCR cannot directly recognize antigenic peptides in

solution. Instead, these peptides must be presented to T cells in non-covalent

association with major histocompatibility complex (MHC) class I molecules on

the surface of antigen-presenting cells. The extremely polymorphic nature of MHC

class I molecules allows capturing of a large variety of cytosolic peptides for

presentation to T cells. In turn, TCR are generated by the somatic recombination

of gene segments in the TCR alpha and beta loci during the late stages of fetal life

and the neonatal period. The very large diversity of TCR provides a T cell repertoire

able to recognize virtually any given antigen present in nature. However, in order to

exclude autoreactive T cells in the periphery and prevent autoimmunity, T cell

selection in the neonatal thymus deletes approximately 95 % of TCR rearranged

thymocytes displaying too high an affinity for self-MHC-peptide complexes.

Despite this stringent selection, a considerable fraction of self-antigen reactive

T cells escape thymic tolerance and are a stable component of the mature T cell

repertoire in adult individuals. It is this pool of CD8+ T cells that forms the

repertoire of T cells that can recognize self-antigens expressed by tumor cells. At

the same time, thymic selection generates a relatively small subset of MHC class II-

restricted CD4+ T cells with the ability to control T cell reactivity of both CD4+ and

CD8+ T cells. These cells, known as natural regulatory T cells (Tregs), are thought

to be selected in the thymus based on their high affinity for self-MHC class II-

peptide complexes.

Thus, T cell selection processes in the thymus have a profound influence

on tumor immune surveillance because tumor-associated antigens are mostly self-

antigens. On the one hand, CD8+ T cells available in the mature T cell repertoire

bear TCR of intermediate or low affinity, and only rarely of high affinity, for tumor

antigens. On the other hand, dominant tolerance mediated by Tregs limits antitumor

immunity to a great extent.

In comparison to healthy tissues, the expression levels of many proteins are

deregulated in tumor cells (over- or under-expressed, or lost). A relatively large

proportion of tumor antigens derive from tissue-restricted proteins (differentiation

antigens) and/or from gene re-expression (cancer-testis antigens). They may also

arise from alternative open reading frames, frameshifts, or isoforms from alterna-

tively spliced genes. Recent genomic studies of tumors in humans have shown that

each tumor can contain a few hundred non-synonymous somatic mutations

resulting in altered proteins (mutated antigens). In theory, these would be an

excellent source of nonself tumor antigens for which it is reasonable to expect the

existence of T cells with high-affinity, specific TCR that could be exploited for

immunotherapy8. However, they are not only tumor-specific but often individual-

specific and therefore not applicable for vaccination of large patient cohorts.
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Nonself tumor antigens also include oncoproteins expressed after viral infection of

persistent viruses (oncoviral proteins). They are more immunogenic and have

recently proved to be a promising target for prophylactic vaccination to protect

from human papilloma virus infection, thereby preventing the virus-associated

development of cervical cancer.

5.1.1 Identification of T Cell Epitopes

The first T cell-defined tumor antigens were identified with the aid of T cell clones

isolated from cancer patients capable of reacting to tumor cells in assays of antigen

recognition. One source of such clones was the mixed lymphocyte-tumor cell

culture setting9 involving the coculture of blood-derived lymphocytes with cells

from the autologous tumor established in in vitro culture. This experimental system

eventually led to the first antigen to be identified, the so-called MAGE-A1 antigen

using molecular cloning of genomic DNA fragments from a melanoma patient10.

The other source of tumor-reactive T cells has been the tumor-infiltrating lympho-

cyte (TIL) populations themselves. Historically, melanoma has been the tumor type

that has lent itself for frequent TIL isolation and detailed characterisation. These

TIL populations contain a relatively large number of CD8+ T cells directed against

a multitude of tumor antigens. In fact, many of the tumor antigens defined at the

molecular level to date have been the result of analysis of the specificity of CD8+ T

cell clones isolated from melanoma TIL11, 12.

While many of the tumor antigens were identified following molecular cloning

techniques and monitoring of tumor antigen expression by specific CTL clones,

another approach consisted in the direct biochemical isolation and sequencing of

the antigenic peptide. In this case, the process was also monitored by functional

assays of antigen recognition with the tumor-reactive CTL13. Such techniques have

been refined and combined with genomics techniques for fast high-throughput

tumor antigen identification14. The latter has led to the identification of panels of

antigenic peptides from tumors such as renal cell carcinoma, colorectal carcinoma

and glioblastomas15, 16.

Another widely applied strategy to identify antigenic tumor-derived peptides is

the so-called “reverse immunology” approach. This approach uses the knowledge

accumulated on the structural details of antigen peptide–MHC interactions. Struc-

tural studies of peptide–MHC interactions identified the peptide side chains that

confer the major binding energy, and specificity, to the peptide-binding groove

in about 60 different peptide-MHC (pMHC) complexes. The amino acids in these

peptide side chains have been called peptide anchor residues. There are generally

two anchor residues for any given MHC class I allele. They are highly conserved in

what are identifiable as distinct structural peptide-binding motifs. For instance,

HLA-A*0201 molecules, expressed by 20–40% of humans of different ethnic
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groups, generally bind nona- or decapeptides with a Leu, Met or Ile residue at

the second position relative to the peptide N-terminus and a Val residue at the

C-terminus17. A few other amino acid residues in the antigenic peptide can also

provide binding energy and are identified as secondary anchor residues. Tyr or Phe

residues at the N-terminus form part of the extended HLA-A*0201-binding motif18.

Thus, the MHC allele-specific peptide-binding motifs have been incorporated in

algorithms for in silico predictions of the binding affinity of peptides. Instead of

using T cell clones from patients, the “reverse immunology” approach relies on the

use of algorithms to scan protein sequences for the presence of peptides that could

specifically bind to a given MHC molecule. Following verification of peptide

binding to the MHC molecule by classical biochemical methods, the high-affinity

binder peptides are tested for their ability to trigger the expansion of specific CD8+ T

cells in the blood lymphocytes of healthy individuals. The ability of specific CD8+ T

cells to recognize and kill appropriately selected tumor cells provides the ultimate

validation of the predicted peptide as a bona fide tumor antigen19. This method

has been expanded and used widely for the prediction and eventual identification

of tumor antigens for vaccine development. Various web-based platforms and

databases have been generated20–22. Importantly, the natural processing and presen-

tation of identified epitopes needs to be confirmed, preferably on HLA-matched

tumor cell lines, before the peptides are eligible as vaccine candidates.

5.1.2 Tumor Peptide Analogues and Heteroclitic T Cell Responses

Since tumor peptides are mostly self-peptides that form pMHC complexes with

rather low affinity for T cells, manipulations to enhance the affinity of the tripartite

interaction between MHC molecule, peptide and TCR have been the focus of many

studies. Amino acid exchanges at antigenic peptide positions that either increase

binding to MHC or directly increase the strength of the interaction with the TCR

have been generally pursued. The MHC allele-specific peptide-binding motifs help

in guiding the choice of amino acid replacements.

Even though there are conserved positions within peptides that are responsible

for MHC anchor residue binding and others for TCR interaction, mutations of

anchor positions can still alter TCR recognition23. This is most likely due to

conformational changes of the peptide backbone and minor displacements of

TCR-interacting residues. It has been demonstrated for the Melan-A26–35 A27L

peptide analogue that anchor residue modification does not impede peptide recog-

nition of T cell clones specific to the native peptide. However, functional studies

revealed that vaccination with this peptide analogue generates a T cell pool with

a smaller TCR repertoire and a more differentiated T cell phenotype24,25. Other

peptide analogues with mutated MHC anchor residues have even been shown to

increase T cell recognition significantly, generating a heteroclitic T cell response26.

Such improved TCR-binding qualities are usually sought when mutating those
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amino acids known to represent direct TCR interaction residues. These peptide

analogues have also been termed variants or mimotopes, since they only mimic the

protein against which they induce a T cell response. Even though such heteroclitic

peptides increase TCR affinity or T cell avidity very efficiently, they harbour the

dangerous potential to induce cross-reactive T cell responses27, or to behave like

superagonists that could promote autoimmune responses28.

5.1.3 Adjuvants: Conferring Immunogenicity to Pure
Polypeptides

Since peptides or proteins by themselves are poorly immunogenic, the initiation of

adaptive immune responses largely depends on the danger context under which the

peptides are displayed. The discovery of pathogen-recognition receptors (PRRs)

expressed on a variety of innate immune cells formed a basis for the understanding

of themolecular signals involved in recognition of nonself or “danger” contexts. PRRs

represent evolutionarily conserved membrane-bound receptors, some at the cell

surface, some in endosomes that recognize pathogen-associated molecular patterns

(PAMPs) commonly found on bacteria, viruses and fungi29. PRR family members

include Toll-like receptors (TLRs), C-type lectins, as well as the intracellularly

expressed RNA-sensing RIG-like helicases and the DNA sensors DAI and AIM2.

Cytoplasmic nucleotide-binding domain and leucine-rich repeat-containing receptors

build another family of receptors that add to the group of cytoplasmic PRRs.

“Danger” signals originating from injured cells that have been exposed to

pathogens, mechanical stress or toxins, can also lead to the efficient activation of

antigen-presenting cells and the initiation of immune responses30. The mediators

involved have been collectively termed danger-associated molecular patterns

(DAMPs). Three nucleotide-binding domain and leucine-rich repeat-containing

receptors, namely Nucleotide Oligomerization Domain (NOD)-like receptor fam-

ily, pyrin domain containing 1 (NLRP1), NOD-like receptor family, pyrin domain

containing 3 (NLRP3) and INOD-like receptor family, CARD domain containing 4

(IPAF) as well as AIM2 are able to sense host-derived “danger” signals resulting in

the assembly of the molecular platforms inflammasomes and the initiation of potent

inflammatory responses via the production of IL-1b31.
Activation of antigen-presenting cells via PAMPs and DAMPs induces a signal-

ling network that results in the maturation of the antigen-presenting cells, the

expression of co-stimulatory receptors such as CD80 and CD86, and the release of

key cytokines such as type I interferon IFN, IL-12 or IL-23. Fully mature dendritic

cells are pivotal for the optimal activation of T cells recognising their cognate antigen

and the initiation or priming of immune responses. The design of potent vaccines

therefore includes adjuvants, which are substances that trigger PAMP and/or DAMP

signals in order to expose the vaccine antigen in a defined natural danger context.
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While specificity is imparted by the target antigen, adjuvants are compounds that

potentiate their immunogenicity nonspecifically. They can be composed of microbial

products, mineral salts, emulsions, microparticles and liposomes32. Recent reviews

on adjuvants in cancer immunotherapy have been published33,34.

5.1.4 Adjuvant Emulsions

One of the oldest adjuvants, incomplete Freund’s adjuvant (IFA), is in principle

independent of direct TLR stimulation and consists of an oil-in-water emulsion.

Currently used emulsions in vaccine formulations include Montanide, adjuvant 65,

MF59 and lipovant. Such emulsions are thought to provide a tissue depot effect that

results in prolonged availability of antigen by slow release35. Moreover, this class of

adjuvants highly potentiate immunogenicity of subunit vaccine antigens by tissue

disruption and stress. Factors released upon tissue damage include ATP, uric acid

and high mobility group box 1 (HMGB1), which are DAMPs that are implicated in

innate immune sensing via the inflammasome and can induce dendritic cell activa-

tion. It is still unclear the extent to which both mechanisms of adjuvanticity are

required or whether one of them is enough to confer strong immunogenicity.

5.1.5 Alum

The most widely used adjuvants currently in human vaccines are aluminium

derivates. In particular, aluminium hydroxide makes part of the formulation of

a large spectrum of vaccines including tetanus, diphtheria, hepatitis A and pertussis.

They induce important danger signals that are sensed by the NLRP3 inflammasome

that initiates potent inflammatory responses36. Protection is associated with the

induction of humoral immunity and priming of cellular immune responses that

consist mostly of Th2 helper cells37,38. This goes in line with the recruitment of

eosinophils, which are an early source of IL-439,40, indicating the priming of

Th1- and CTL-antagonizing responses. Such Th2-polarized responses could run

counter to effective antitumor immunity.

5.1.6 TLR Agonists

Microbial products have potent immunostimulatory capacity and perform their

adjuvant effect via activation of TLRs. Numerous studies make use of a broad

spectrum of TLR ligands with increasing success for cancer immunotherapy. The

mycobacterium bacillus Calmette–Guérin contains multiple ligands for innate

immunoreceptors, including TLR2, TLR4 and NLR241. Other adjuvants based on

TLR4 stimulation are lipopolysaccharide derivatives. The lipid A compound in
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lipopolysaccharide mediates its adjuvant effect but is itself too toxic for clinical use.

Hydrolised monophosphoryl lipid A is a lipopolysaccharide derivative that contains

the structural element for TLR4 stimulation but has reduced toxicity and has been

successfully used in several vaccine formulations including in some prophylactic

vaccine formulations against hepatitis B virus and human papilloma virus42,43.

Since their mechanism of protection is antibody mediated, this adjuvant is useful

to induce powerful humoral immune responses. Monophosphoryl lipid A is also

included in cancer vaccines targeting tumor-associated antigens, but mostly in

combination with other adjuvants. Vaccination with a synthetic Melan-A peptide

in a mixture of monophosphoryl lipid A and a component of the saponin Quil-A

(QS-21) or in IFA showed poor induction of peptide-specific CD8+ T cell responses

of the monophosphoryl lipid A adjuvant formulation in comparison to Montanide

ISA5144. However, the same combination of monophosphoryl lipid A and QS-21 in

an oil-in-water emulsion resulted in prolonged disease-free survival and led to the

development of a phase III clinical trial in non-small cell lung cancer patients

vaccinated with a recombinant MAGE-A3 fusion protein45. The final adjuvant

formulation to be used in the phase III trials with this fusion protein in metastatic

melanoma (DERMA) and in non-small cell lung carcinoma (MAGRIT) included

yet another TLR agonist, CpG-oligodeoxynucleotides that specifically signal

through TLR9.

Other TLR ligands eligible as adjuvants are synthetic analogues of viral double-

stranded RNA that stimulate TLR3. TLR3 agonists induce high levels of type I

IFNs and have shown promising results in preclinical and clinical trials for cancer

treatment46–49. A recent phase I trial in patients with glioblastoma combined

synthetic peptide antigens loaded onto alpha type 1 polarized dendritic cells and

the TLR3 agonist poly(I:C) stabilised by lysine and carboxymethylcellulose50.

TLR7/8 ligands have also been considered as adjuvants in the treatment of cancer.

Imiquimod as a TLR7 agonist has been approved for the topical treatment of basal

cell skin cancer, and its application in a peptide-based vaccine trial resulted in an

elevation of peptide-specific T cells51.

One of the most promising targets for the mobilization of cellular immunity

in cancer patients is TLR9. Ligands for TLR9 are unmethylated oligodeoxynu-

cleotide stretches of cytosine and guanine (CpG-oligodeoxynucleotides), which

are commonly found in bacterial and viral DNA. TLR9 is expressed in endosomes

of human plasmacytoid dendritic cells, macrophages and B cells. It was recently

shown that plasmacytoid dendritic cells are essential for the initiation of inflamma-

tion, and, via type I IFN signalling, for the induction of CD8+ T cell responses and

immune rejection of tumors52–54. The fact that TLR9 stimulation in plasmacytoid

dendritic cells leads to production of significant levels of type I IFNs might hence

explain its potential as an adjuvant in cancer immunotherapy. Interestingly,

a combination of Montanide and CpG-oligodeoxynucleotides has shown superior

potential in the generation of antigen-specific CD8+ T cell responses in melanoma

patients than vaccines using Montanide alone55. Similarly, a randomized open-label

phase II study using a recombinant MAGE-A3 fusion protein and two adjuvant

systems clearly revealed enhanced vaccine efficacy for the adjuvant formulation
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that contained CpG-oligodeoxynucleotides, suggesting superiority of added TLR9

stimulation in the induction of antitumor immune responses56.

An intriguing possibility in polypeptide vaccine formulation is the combination

of two ormore TLR agonists which would be expected to enhance the accompanying

innate immune cell activation and hence the immunogenicity of the vaccine. A

rationale for combination of TLR agonists stems from the obvious fact that most

pathogens bear several TLR agonists, although such a rationale has less meaning

in cancer vaccine development. Moreover, different TLR-triggered signalling

pathways engaging MyD88 or TIR domain-containing adapter molecule 1 (TRIF)

might synergise. Indeed, it was reported that in both human and mouse dendritic

cells, TLR3 and TLR4 did synergise with TLR7, TLR8 and TLR9 in inducing the

transcription of selected sets of genes and production of cytokines such as IL-12 and

IL-23 leading to enhanced and sustained Th1 immune responses57. Using a human

immunodeficiency virus envelope peptide vaccine, it has been shown that the triple

combination of TLR2/6, TLR3 and TLR9 led to induction of protective immunity

which correlated not with increased frequency of specific CD8+ T cells but with

increased avidity for antigen reactivity and increased IL-15 production by activated

dendritic cells58. However, not all combinations are synergistic for immunogenicity

and can actually lead to enhanced immunoregulation59. Thus, TLR agonist

combinations must be carefully designed and tested. Another strategy to marry

antigen and TLR ligands for potent vaccination is the covalent linking of antigenic

peptides to TLR ligands. Such conjugates, particularly to TLR7 agonists, have

shown promise in various preclinical models of peptide or protein vaccination60–62.

5.1.7 Cytokines and Chemokines

An important adjuvant effect of those PRR-targeting adjuvants is the induction of

immune stimulatory cytokines. Therefore, more direct approaches to enhance

immunogenicity of peptide vaccines could be the use of recombinant cytokines as

adjuvants63. Studies testing combinations of cytokines with tumor-associated

antigens to booster antigen-specific immunity revealed that IL-2 improved vacci-

nation outcomes and led to objective cancer regressions64–66. In contrast to IL-2,

systemic administration of granulocyte-macrophage colony-stimulating factor

(GM-CSF) or IL-12 did not induce clinical responses in the same clinical center65.

However, IL-12 should not be administered locally due to its instability and serious

systemic toxicity, and different delivery strategies have been tested67. In different

phase I clinical trials in patients with metastatic melanoma, the direct delivery of

IL-12 to the tumor resulted in lymphocytic infiltrates, marked tumor necrosis and a

decrease of the treated lesion up to complete regression of all metastases68,69. It is

therefore likely that the route of administration is critical for the outcome of the

adjuvant efficacy and requires optimization in order to evaluate the potential of

each adjuvant to break immune tolerance. Finally, GM-CSF has the potential to

recruit dendritic cells, and clinical data argue for the continued development of

these cancer vaccines70.
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The use of high-dose IFN-a2b also been approved for the adjuvant therapy of

melanoma. The efficacy of the treatment remained controversial until more detailed

analysis revealed a survival benefit in patients with ulcerative melanoma71.

5.1.8 Tensoactive Adjuvants

Saponins are secondary metabolites particularly found in plants. They are

tensoactive (meaning that they can change surface tension) and can enhance the

induction of strong antibody and CTL responses72. Quil-A saponins extracted from

the Quillaja saponaria tree induce strong cellular responses but have significant

toxicity. Therefore, derivatives with less toxic properties have been isolated and

include QS-21 and ISCOMATRIX. The latter are immunostimulating complexes of

cholesterol, phospholipids and Quil-A fractions that assemble into nanospheres of

around 40 nm, and can be combined with non-hydrophobic antigens for slow and

constant release. They are being used in NY-ESO-1 cancer vaccines in phase II

clinical trials73,74.

In contrast to infectious or cancer diseases, many autoimmune diseases or allergies

are characterized by an over reactive set of immune cells. Major efforts to induce

tolerant immune responses by vaccination have been made, and those results repre-

sent an equally important source of knowledge for the design of vaccines that could

induce immune surveillance. For example, successful conversion of naı̈ve CD4+ T

cells into Tregs is achieved via suboptimal activation of dendritic cells during

continuous exposure to sub-immunogenic levels of antigen75,76. TGF-b exposure

during stimulation further decreased T cell proliferation, correlating with an

increased Treg conversion rate and absence of autocrine IL-2 signalling.

In peptide vaccination for cancer immunotherapy, it is therefore essential to

achieve full dendritic cell activation by choosing a powerful adjuvant and by

applying optimal antigen dose with the right timing to achieve full T cell prolifera-

tion and differentiation into effector T cells. Many peptide vaccination trials have

aimed at inducing such T cell responses in the past, and the subsequent section will

discuss the promises and pitfalls from those studies in order to highlight improve-

ment strategies to be investigated in the future.

5.2 Clinical Experience from Molecularly Defined

Peptide/Protein Vaccines

5.2.1 Antigen Dosage and Vaccination Schedule

The success of vaccination depends on the choice of the target antigen, the right

combination of the adjuvant(s), and the regimen of immunization77. Since the

exploration of newly available and molecularly defined adjuvants has only begun
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recently, many past clinical trials were based on the formulation of the target

antigen in mineral oil solutions. In addition, most of those studies were done in

patients suffering from metastatic melanoma due to the lack, until recently, of

therapeutic options for this aggressive cancer. Additionally, melanoma is one of the

most immunogenic tumors, and immunotherapy represents a promising strategy for

its treatment. This now allows a fairly good comparison of previous clinical trials to

evaluate factors that contribute to successful immunization. Many early vaccination

trials have used an analogue gp100 (amino acids 209–217) immunodominant CD8+

T cell epitope designed for better binding to HLA-A2 molecules for peptide

vaccination. Those studies have shown that an increase of the antigen dosage

directly correlated with higher immunological response rates and higher frequency

of circulating, peptide-specific CD8+ T cells. Comparisons with other studies using

the Melan-A 26–35 27L peptide analogue revealed a plateau for such a dose

response at around 0.1 mg peptides per cycle64. Concerning the vaccination regi-

men, trials comparing a 2- and 3-week injection cycle gave similar results78.

5.2.2 Recombinant Proteins and Synthetic Peptides

Successful induction of T cell responses requires stable presentation of T cell

epitopes on MHC complexes. The antigen of interest can be introduced by vacci-

nation with the whole protein, or with short or long synthetic peptides derived from

this protein. Figure 5.1 illustrates the possible outcome of an immune response

using either of those formulations. The advantage of vaccination with whole tumor

proteins is not only that they could provide peptides for binding to a large array of

MHC allelic products therefore available to virtually all patients but also that no

prior knowledge of T cell epitopes is required (Figure 5.1a). Whole protein vaccines

have been successfully applied to generate immune responses leading to the

induction of neutralizing antibodies, for instance, against the tetanus, pertussis

and diphtheria toxoids79. Protein antigens have also shown promise when used in

cellular-based vaccines. A recent clinical trial in hormone refractory prostate

carcinoma patients receiving autologous blood lymphocytes enriched in antigen-

presenting cells loaded with a fusion protein of recombinant prostatic acid phos-

phatase and human GM-CSF (called sipuleucel-T) resulted in an increased survival

of the patients80. Its efficacy in reducing the risk of death in men with metastatic

castration-resistant prostate carcinoma was confirmed in a second randomized

phase III trial, IMPACT81. These studies led to the approval of the first therapeutic

cancer vaccine by the US Food and Drug Administration in 2010.

However, a shortcoming with the use of protein-based therapeutic vaccines is

that they mainly induce responses to dominant epitopes, resulting in a rather narrow

T cell response. Analysis of T cell responses to protein-derived tumor antigens can

give important information on the dominance of certain epitopes. Processed

peptides with higher affinity for the MHC molecule might be preferentially loaded

onto MHC molecules and persist as long-lived complexes on the cell surface due to

120 M. Braun et al.



their higher stability and thus give rise to immunodominant T cell responses.

However, T cells specific to subdominant epitopes have also been shown to

participate in antitumor immune responses82. For CD4+ T cells, immunodominance

is thought to be due, at least in part, to early loading of the preliminarily processed,

only partially unfolded protein to the MHC class II complex, followed by an

extensive proteolytic trimming. If the peptide binding at this point remains stable,

Fig. 5.1 Differential outcomes in epitope-specific CD8
+
and CD4

+
T cell responses to thera-

peutic vaccination either with whole proteins, long synthetic peptides or short synthetic

peptides. (a) Tumor proteins include numerous CD8+ (blue) and CD4+ (red) T cell epitopes.

Vaccination with a whole protein induces a weak antigen-specific CD8+ T cell response, and

a larger CD4+ T cell response. Even though proteins induce mainly immunodominant responses,

they have the capacity to induce CD4+ T cells with specificity for multiple epitopes. The poor

efficiency of antigen uptake, processing and MHC-loading by the antigen presenting cells limits

the magnitude of the resulting immune response. (b) Long synthetic peptides of a defined sequence

within the protein may already contain several CD8+ and CD4+ epitopes. These peptides also require

optimal uptake, processing and MHC-loading of the appropriate T cell epitopes in order for an

effective immune response to be generated. The adjuvants and formulations that are currently used in

long synthetic peptide vaccines often result in a good CD4+ T cell response but in a poor CD8+ T cell

response, suggesting a failure to induce efficient processing and cross-presentation of CD8+

T cell epitopes. (c) Short synthetic peptides generally contain a single immunodominant CD8+ T

cell epitope, which can bind directly to MHC-I on the antigen presenting cell surface, without

requiring phagocytosis and entry into the cross-presentation pathway. Short peptide vaccines thus

trigger robust specific CD8+ T cell responses but generally lack the ability to generate a CD4+ T

helper cell response. The process of antigen uptake into intracellular vesicles by antigen-presenting

cells, followed by processing and loading on to MHC-I and MHC-II versus direct antigen loading on

to MHC molecules on the cell surface is depicted in the middle section of the figure.
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the MHC complex remains loaded, and presentation of late processed peptides

becomes less prominent83.

Induction of CD8+ T cell responses to soluble proteins may be variable and

generally weak. A reason for this is the requirement for efficient uptake and cross-

presentation by dendritic cells. Generally, only particulate antigen (e.g. dying cells or

proteins adsorbed to inert particles) is efficiently taken up by phagocytosis or

macropinocytosis and cross-presented on MHC class I molecules84,85. Therefore,

vaccination of soluble proteins without any protein-carrier system is likely subopti-

mal for induction of CTL responses. The capability of cross-presentation further

varies among different dendritic cell types, and recent studies provide evidence

that only the CD141+ conventional dendritic cell subset is superior in cross-

presenting soluble protein antigen in comparison to the other CD1c+ conventional

dendritic cells, CD16+ conventional dendritic cells and CD304+ plasmacytoid den-

dritic cell subsets86,87. Despite these difficulties, there are promising protein vaccines

currently being tested in advanced phase III clinical trials, such as the recombinant

MAGE-A3 vaccine in combination with a liposomal formulation containing

monophosphoryl lipid A, QS21 and CpG77. Vaccination of recombinant NY-ESO-

1 with ISCOMatrix adjuvant has also proven to induce potent concomitant CD4+ and

CD8+ T cell responses73. In addition, approaches are being tested to increase protein

translocation directly to the cytoplasm. Membrane-traversing peptides or toxin

subunits are eligible as vehicles with such shuttling properties. Covalently linked

proteins would thereby directly be guided into the MHC class I-processing compart-

ment and would circumvent the cross-presentation pathway88,89.

Most early peptide vaccines tested in the clinic were composed of synthetic

peptides covering exact epitopes recognized by CD8+ T cells. They have the

advantage that they do not require further processing by antigen-presenting cells

and can be efficiently presented to CD8+ T cells (Figure 5.1c). Numerous clinical

trials using melanoma-derived antigens led to the induction of peptide-specific

T cell responses that correlated with local skin reactions but improved the

clinical outcome in only a small fraction of patients90. Higher immunogenicity

and correlation between immune responses and clinical outcome was observed

when melanoma patients were vaccinated with a peptide pool containing 12

peptides from melanocytic differentiation proteins and cancer-testis antigens91.

This approach would further prevent the selection of escape variants through

antigen loss. Higher response rates were also achieved by using peptide analogues

with improved MHC class I-binding properties. For example, the A27L substitution

in the Melan-A peptide 26–35 leads to one log10 improved binding affinity to HLA-

A2, and two to three log10 gain in relative antigenic activity92. However, a recent

study reported on the expansion of a more restricted T cell pool with a more

terminally differentiated phenotype when vaccination was performed with the

peptide analogue. Most important, only about half the induced T cells recognized

tumor cells efficiently. In comparison, vaccination with the native peptide only

recruited CD8+ T cells with fully tumor-reactive TCRs. These CD8+ T cells also

exerted stronger effector functions and displayed a more polyfunctional pheno-

type24. Therefore, higher T cell responses might not necessarily confer better
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antitumor functions. Nevertheless, the first clinical trial that reported on a survival

benefit for melanoma patients was performed using a gp-100 peptide analogue

in combination with high-dose IL-2. Progression-free survival was significantly

higher in comparison to treatment with high-dose IL-2 alone93.

Even though these results encourage the use of peptides defined by minimal

T cell epitopes, those short synthetic peptides may have important drawbacks.

Because they do not require processing by antigen-presenting cells, they can

associate with MHC class I complexes on the surface of all nucleated cells in the

body94. However, only properly activated dendritic cells express the necessary

co-stimulatory receptors to activate naı̈ve T cells. For those reasons, exogenously

loaded minimal peptides have repeatedly been shown to confer immunological

tolerance rather than immunity95,96 if they are displayed in the wrong immunologi-

cal setting. The injection of minimal epitope peptides in IFA or Montanide without

other immunostimulatory adjuvants might further tolerize peptide-specific T cells

over a long period of time due to the depot effect of those emulsions97. However,

addition of strong adjuvants like CpG-oligodeoxynucleotides has been shown to

increase immunogenicity significantly55. Another study compared vaccination of a

minimal HPV16-derived CD8+ T cell epitope with a longer peptide containing the

same epitope. Higher immunogenicity of the longer peptide was observed even in

MHC class II�/� and CD40�/� mice, precluding that more robust CTL responses

are due to induction of T cell help from additional helper epitopes in the long

peptide. These studies proposed that longer peptides induce better CTL responses,

presumably because they are preferentially endocytosed, processed and presented

by professional antigen-presenting cells98.

Because of the self-antigenic nature of most tumor peptides, it was soon

recognized that concomitant induction of T cell help potentially improves the

differentiation and function of vaccine-primed CD8 T cells. Studies in mice have

shown that inclusion of helper T cell epitopes increased CD8+ T cell responses, but

most importantly, coupling of the helper peptide with the minimal CD8+ T cell

epitope led to even stronger responses99. Such results not only encouraged the

inclusion of CD4+ T cell epitopes but at the same time the use of longer peptides

that encompass both CD4+ and CD8+ T cell epitopes (Figure 5.1b). The advantage

of using long synthetic peptides is that they have the capacity to induce immune

responses to subdominant epitopes, which are not induced when vaccinating with

short peptides covering exact epitopes or with proteins97. However, studies have

shown that T cells specific to subdominant epitopes also contribute in anti-tumor

immune responses82. Therefore, the broadest variety of T cell specificities and the

best anti-tumor immunity should be generated when vaccinating with a pool of long

synthetic peptides covering the entire protein sequence. Several studies in clinical

trials have confirmed those conclusions. Vaccination of melanoma patients with six

previously described helper peptides from MAGE and melanocytic differentiation

antigens encouraged the use of CD4+ T cell epitopes, since a phase I/II trial has

shown early evidence of clinical activity100. Several other studies using long

peptides harboring both CD4+ and CD8+ T cell epitopes reported promising immu-

nological and clinical results. We also refer to an excellent review on the

advantages of such long peptides for vaccination97.
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Vaccination of ovarian carcinoma patients with a NY-ESO-1 14-mer peptide

containing both CD4+ and CD8+ T cell epitopes and vaccination of both ovarian

and colorectal carcinoma patients with a set of 10 overlapping peptides spanning

amino acids 70–248 of the p53 peptide resulted in long-lasting T cell responses

between 6 and 12 months after vaccination101–103, in line with the paradigm that

CD4+ T cell help is important during CD8+ T cell priming and memory forma-

tion104,105. Even though these trials did not report on a clinical benefit, other trials

that induced comparable long-term circulating T cells could show a direct correlation

with a survival benefit for the patients. For example, inoperable stage III non-small

cell lung cancer patients were vaccinated after chemoradiotherapy with a 16 amino

acid long peptide derived from telomerase reverse transcriptase, which binds several

MHC class II molecules and contains nested putative HLA class I epitopes. In an early

phase I/II clinical trial, 13/24 patients developed an immune response against

the peptide, andmedian survival of those responders was 19months versus 3.5months

in immune nonresponders. Two patients showed complete regression. All long-

term survivors displayed durable T cell responses with a polyfunctional cytokine

profile that was IFN-g dominated. A subsequent phase II clinical trial confirmed

those response rates106. Other encouraging results are reported from a phase IIB

randomized, multicenter, open-label trial with stage IIIB or IV non-small cell lung

cancer patients receiving a 25 amino acid long MUC-1-derived peptide-liposome

vaccine. The median survival time was increased 4.2 months in comparison to non-

vaccinated patients. A subgroup of those patients with stage IIIB locoregional disease

benefitted most from the treatment, since their median survival time was 17.3 months

longer107. The pivotal phase III clinical trial with this vaccine is underway108.

Other studies have used long overlapping peptides that cover the entire target

protein. This approach not only ensures maximal MHC class I and II epitope

content but also provides the same advantage of recombinant proteins that can be

administered to all patients independent of their MHC haplotype. This was explored

in a peptide vaccination study in women with premalignant vulvar lesions using a

30-mer peptide pool covering the entire HPV16 E6 and E7 oncoproteins. Broad

immune responses were observed in 19/20 patients, and excellent immune memory

was confirmed during 2 years of follow-up. Vaccination-induced complete regres-

sion in half of the patients 109 and detailed analysis revealed that those regressions

were mostly observed in patients with smaller lesions. These patients displayed

stronger and broader T cell responses and lower induction of HPV16-specific Tregs.

Interestingly, those correlations are only valid when the size of the lesion, but not

the duration of disease, was considered110.

These results indicate that intervention via peptide vaccination at early stages

of disease leads to best clinical results. Once a tumor accumulates escape

mechanisms and disease progresses, peptide vaccination alone might not be suffi-

cient to break immune tolerance and reconstitute tumor control. Additional

approaches for targeting and neutralizing an immune-hostile tumor microenviron-

ment and depleting tumor-tolerating immune cells might be necessary to allow

vaccine-induced T cells to re-establish immune surveillance. Combination

strategies for immunotherapy are addressed in more detail in chapters 13 and 14.
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5.3 Future Directions for Peptide Vaccination Approaches

5.3.1 Prime-Boost Vaccines

Peptide analogues have proven to have strong potential in the induction of more

robust T cell responses. However, one of their drawbacks is that cross-reaction

with the native peptide and therefore tumor recognition can be significantly

reduced24,111. Since T cells induced upon vaccination with native peptides retain

the ability to cross-react with their peptide analogue counterparts, a possibility

would be to prime and boost with different peptides. During priming with the native

peptide, a large pool of high-affinity TCRs would be selected, and boosting with the

peptide analogue would drive the efficient expansion and differentiation of already

primed, tumor-reactive T cells. Moreover, short synthetic peptides mimicking

strong MHC class I-restricted CD8+ T cell antigens could be used to prime

responses that could then be subsequently boosted by immunization with the

parental recombinant protein.

5.3.2 Dendritic Cell Targeting

Approaches to ensure loading of peptides exclusively on antigen-presenting cells

might rely on the coupling to antibodies that target receptors selectively expressed

by dendritic cells. Several members of the C-type lectin receptor family fulfil these

criteria. For example, targeting of DC-SIGN via antibodies specific to its neck

region led to clathrin-independent internalisation, routing into early endosomes and

delayed lysosomal degradation. Cross-presentation of protein antigens conjugated

to those antibodies was approximately three orders of magnitude higher112. Similar

results were obtained via targeting of DEC205, a dendritic cell-restricted endocytic

receptor. However, both methods require additional dendritic cell activation to

circumvent tolerance induction. CD40 ligation of targeted dendritic cells induced

prolonged T cell activation and immunity113, showing that dendritic cell targeting is

a promising tool for using short peptides in combination with helper peptides and

strong adjuvants. Dendritic cell targeting by viral vectors is extensively addressed

in chapter 6.

A different approach to ensure uptake of peptide antigens by professional

antigen-presenting cells is their linkage to small particles, such as virus-like

particles that represent another delivery system for vaccine antigens and can

incorporate adjuvant properties. The adjuvant effect of virus-like particles is

derived from the geometrical configuration of the particle, ensuring that the antigen

is displayed in a highly ordered structure, thereby facilitating the efficient activation

of B cells through cross-linking to the B cell receptor114. Great success with virus-

like particles as delivery forms for vaccine antigen was achieved with the recently

approved human papilloma virus vaccines, in which the recombinant HPV L1
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capsid proteins themselves assemble into virus-like particles. However, virus-like

particles not formed by the vaccine antigen are themselves antigenic and can confer

immunity against themselves. However, studies suggested that induction of virus-

like particle-specific CD4+ T cells equally provide help to tumor-specific CD8+

T cells during priming and thereby enhance CD8+ memory formation115. In line

with this concept, tumor-unrelated CD4+ helper peptides have been shown to be as

efficient as strong, tumor-related CD4+ helper peptides in improving vaccine-

induced immune responses in mice116. In randomized clinical trials, vaccination

with a tetanus helper peptide or a mixture of six tumor-associated helper peptides

concomitant to tumor-related CD8 peptides showed higher immunogenicity of the

tetanus peptide combination117. Virus-like particles should also be considered as

powerful antigenic carriers because vaccine antigens displayed on their surface are

of similar immunogenicity than the virus-like particles themselves118. Virus-like

particles are therefore capable of inducing immune responses against self-peptides

even in the absence of common adjuvants119–121. Besides inducing potent antibody

responses, recent data provides evidence that virus-like particles in conjugation

with A-type CpG-oligodeoxynucleotides are capable of inducing robust Th1 biased

CD4+ T cell responses, as well as priming of central memory CD8+ T cells115,122.

5.3.3 Induction of T Cell Help

Vaccination with long peptides in the absence of T cell help provides evidence that

longer peptides are more efficiently endocytosed and selectively presented by

professional antigen-presenting cells, thereby precluding induction of tolerance98.

By providing MHC class I and class II epitopes in the same peptide, antigen-

presenting cells recruit CD4+ and CD8+ T cells at their surface. T cell help is

then provided to CTLs via distinct pathways. First, interaction via CD40–CD40L

ensures full activation of the dendritic cells which is necessary for optimal CD8+

T cell priming123. Second, activated CD4+ T cells release the chemokines CCL3

and CCL4, which play important roles in the recruitment of naı̈ve CD8+ T cells to

the antigen priming site, and contribute to enhanced expression of IL-6Ra and IL-

7Ra, thereby enhancing T cell survival and promoting memory formation124,125. As

a consequence, the three cell interaction model in which an antigen-presenting cell

interacts with CD4+ and CD8+ T cells at the same time becomes more probable.

Third, in this way, CD4+ T cells can further provide IL-2 to neighboring CD8+

T cells, which further enhances their effector function. Besides their role in priming

and memory formation of CD8+ T cells104,105, CD4+ T helper cells were also

recently shown to be implicated in CTL homing to the tissue of interest126,127.

Importantly, this was even true for low-avidity CD8+ T cells that are commonly

found among tumor-specific CTLs128. The mechanism of action for this recruitment

was dependent on IFN-g secretion by activated Th1 cells entering the tissue, which
in turn induced the production and secretion of various CTL-attracting chemokines,

including CXCL9 and CXCL10, by resident epithelial cells. It is therefore highly
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recommended to include strong tumor-specific CD4+ T cell epitopes in future

vaccination strategies in order to endow T cells with the capacity to home to the

tumor where they need to execute their effector function. Long synthetic peptides

have already shown to harbour such potential.

5.3.4 Peptide-Adjuvant Fusion Constructs

Another factor that is crucial for induction of potent T cell responses is the optimal

formulation with adjuvants in order to trigger dendritic cell activation and display

the low immunogenic tumor antigen with a strong danger signal. A clever

innovation in the design of peptides for vaccination was the coupling of the peptide

directly to the adjuvant to ensure activation of those antigen-presenting cells that

process and present the vaccine peptide. Studies in mice have demonstrated that

peptides coupled to TLR ligands, to CpG or bacterial lipopeptides, are not only

efficiently taken up by professional antigen-presenting cells but that induction of

CTL responses was comparable to live vaccines129–131. Combinations of such

fusion constructs with peptides or proteins that contain additional T helper

epitopes further supported the cytolytic activity of primed CTLs132. This is consis-

tent with the fact that antigen-presenting cell activation via TLR triggering and

CD40 ligation act synergistically57. Interestingly, the recently FDA-approved

sipuleucel-T treatment of prostate cancer patients support the combination of

such constructs. The vaccine consists of the tumor antigen prostatic acid phospha-

tase physically linked to GM-CSF and is administered after ex vivo loading onto

autologous peripheral blood mononuclear cells133.

5.3.5 Lymphodepletion and Regulatory T Cell Targeting

Even though the inclusion of CD4+ T cell epitopes in peptide vaccines seems

promising for many reasons, the concomitant induction of Treg responses during

later stages of disease110 emphasises the requirement of strategies to prevent priming

of Tregs. Cyclophosphamide is a chemotherapeutic agent that is commonly used in

combination with other drugs to treat lymphomas, leukaemias and some solid tumors

by inhibiting tumor cell growth134,135. At high doses, it is linked to cytotoxicity of

rapidly dividing cells and can thus result in immunosuppression. Low-dose continu-

ous or metronomic administration of cyclophosphamide, in contrast, has immunosti-

mulatory properties136. Some clinical observations might reflect this property. The use

of a single dose of cyclophosphamide before MUC-1 vaccination resulted in successful

clinical outcomes107, and its use in combination with p53-SLP vaccination in recurrent

ovarian cancer led to enhanced IFN-g-producing p53-specific T cells in comparison to

the same immunization without cyclophosphamide treatment137. The mechanisms

behind the immune-enhancing effects of cyclophosphamide are not fully

5 Peptide and Protein-Based Cancer Vaccines 127



understood, but it has been shown that treatment with repeated low doses of

cyclophosphamide selectively depletes Tregs138–140 and leads to improved matura-

tion of dendritic cells and proliferation of effector T cells141,142. In a mouse model of

therapeutic lentivector immunization against tumor self-antigens combined

with cyclophosphamide treatment, it was shown that combination therapy led

to improved tumor protection and to an increase in the presence of TILs with

enhanced survival and function compared to the effect of vaccination alone. This

outcome was similar to that achieved by combining immunization with antibody

blockade of the PD-L1/PD-1 inhibitory pathway143. Cyclophosphamide used in

combination with exosome-based dendritic cell vaccines was able to overcome

suppression by CD4+CD25+Foxp3+ Tregs, as well as enhancing the memory

response induced by vaccination, leading to increased tumor protection in a thera-

peutic mouse model144. Additionally, repeated, low-dose cyclophosphamide ther-

apy was shown to deplete CD4+CD25+ Tregs selectively and reduce their

suppressive function in end-stage cancer patients, leading to recovery of function

by effector T cells and NK cells138.

These data support the role of cyclophosphamide in reducing tumor immuno-

suppression mediated by Tregs and thus contributing to the enhancement of

the vaccination-induced antitumor effects of CTL. However, no differences in

clinical response rates to secondary chemotherapy or in disease-specific survival

were observed between immunized patients and historical controls when cyclo-

phosphamide was used in combination with therapeutic cancer vaccination117,145,

and other strategies are therefore needed to improve the efficacy of cancer vaccines

in the clinic.

5.4 Modulating the T Effector/Regulatory T Cell Ratio Through

Vaccination with Molecularly Defined Adjuvants

Cancer vaccines can concomitantly induce the expansion of Tregs146, as well as

activating effector T cells. Indeed, as described earlier, the promise held by the

inclusion of CD4+ T cell epitopes and the fusion of adjuvants to peptide vaccines is

dampened by the concomitant induction of Treg responses during later stages of

disease110. This emphasizes the requirement for strategies to prevent priming or

expansion of Tregs. One way to address this problem might be to take a more

focused approach aimed at optimizing the use of molecularly defined adjuvants in

the vaccine formulation. Dendritic cells matured with the yeast Saccharomyces
cerevisiae, followed by coculture with naı̈ve CD4+ T cells, result in a reduction in

the number and function of Tregs and enhance the ratio of antigen-specific effector

to Tregs. The ensuing effector T cell population produces increased levels of

Th1-associated cytokines and proliferates more vigorously in response to the

tumor antigen CEA147. This supports the concept that given the right inflammatory

stimulus or “danger signal”, the balance of effector and regulatory cells can be

regulated. More precise and well-defined adjuvants, including TLR ligands,
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have been shown to enhance the effects of vaccination by stimulating murine

dendritic cells to produce inflammatory cytokines and enhancing Th1 and CTL

responses148–150.

More important, clinical data in support of the role of TLR ligands in controlling

the tumor antigen-specific T effector to Treg balance also exist from the study of

advanced metastatic melanoma patients vaccinated with Melan-A peptide in com-

bination with Montanide and CpG-oligodeoxynucleotides151. The proportion of

Foxp3+ Tregs among the total CD4+ T cell pool was comparable to that of healthy

donors and remained unchanged following vaccination. In contrast, analysis of the

Melan-A25-36-specific CD4+ T cells in these patients revealed that the proportion

of Foxp3+ cells within this population was extremely high before treatment

(20–75%). However, following multiple rounds of vaccination, the percentage

dropped to ~10 %. A concurrent rise in the frequency of CD8+ effector T cells

meant that the antigen-specific effector T cell to Treg ratio was dramatically

increased. The proliferative potential and effector function of both the vaccination

antigen-specific CD8+ and CD4+ T cells was also enhanced. Additionally, a study

of the antigen specificity of effector and Tregs in colorectal carcinoma patients

showed that Tregs were specific for only a small set of tumor antigens and that there

was a degree of cross-over with the antigen specificity of the effector T cell

population. This provided further evidence that Tregs suppress effector T cells in

an antigen-specific manner. This was confirmed by the in vitro stimulation of

patient T cells with autologous dendritic cells loaded with long synthetic peptides

derived from tumor antigen. The outcome of Treg depletion in this system was that

proliferation of tumor-specific memory T cells was only enhanced when the

stimulating dendritic cells were loaded with peptides for which there was shared

specificity between effector and Tregs152.

These observations have prompted the suggestion that the balance of Tregs to

effector T cells might not only dictate the success or failure of antitumor immu-

nity153,154 but that it might also be a useful predictive biomarker of the clinical

efficacy of cancer vaccines. Experimental and clinical data have already shown a

link between the natural effector to Treg ratio and disease outcome. In a chemically

induced mouse tumor model, high proportions of proliferating Foxp3+ Tregs found

in certain tumors were shown to correlate with tumor progression, despite the

presence of activated CD8+ effector T cells. Nonprogressing tumors also developed

in the same system contained equivalent numbers of CD8+ T cells but were

characterized by the presence of fewer Tregs, and consequently the antitumor

immune response could be predicted to have a successful outcome197. In several

different types of human cancer, increased numbers of CD4+Foxp3+ TILs have also

been associated with poor prognosis155–161. Conversely, it was reported that

patients with a higher tumor-infiltrating CD8+ to CD4+Foxp3+ T cell ratio in tumors

such as cervical cancer, ovarian cancer, cutaneous T cell lymphoma and lung

cancer displayed an improved prognosis162–166. In fact, the balance between

tumor-infiltrating CD8+ and CD4+Foxp3+ T cells has been proposed as an indepen-

dent prognostic factor in hepatic carcinoma167,168, Hodgkin lymphoma169 and

cervical cancer163.
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Experimental data from mouse disease models also supports the importance of

the antigen-specific effector to Treg ratio in controlling the functional outcome of

immune responses. In a model of OVA-specific T cell-mediated skin-graft rejec-

tion, immunotherapy with anti-CD154 (CD40L) blocking antibodies induced the

development of OVA-specific Foxp3+ Tregs and delayed the activation of multi-

cytokine-producing CD8+ and CD4+ effector T cells resulting in graft tolerance170.

In a mouse model of multiple sclerosis (experimental allergic encephalomyelitis),

immunization with myelin oligodendrocyte glycopeptide (MOG35-55) induces cen-

tral nervous system disease. This type of immunization has been shown to induce

MOG-specific Foxp3+ Tregs as well as the CD4+ effector T cells that mediate

disease. At the peak of the disease phase, MOG-specific effector cells greatly

outnumbered Foxp3+ Tregs and developed polyfunctional effector activity. How-

ever, after the peak of the response, effector cells were reduced in number and

function, while Treg numbers remained stable. This resulted in a marked reduction

in the effector to Treg ratio and was accompanied by increased IL-10 production

and disease recovery171.

Controlling the presence and/or function of Tregs has therefore become a key

goal in the advancement of cancer immunotherapy strategies. It has been clearly

demonstrated that the ratio of effector to Tregs is a strong prognostic indicator of

cancer progression in many different types of cancer. Additional experimental

evidence exists supporting a link between positive regulation of the effector to

Treg balance, the enhancement of polyfunctional effector T cell responses and

disease outcome following the immunotherapy of other diseases. Further research

is necessary to confirm that this will also be a reliable biomarker to use for

monitoring the clinical efficacy of new and existing cancer vaccines, targeted at

controlling the balance between the tumor-specific effector and regulatory

subsets, which has emerged as being a critical factor in the success of antitumor

immunity. See chapter 9 for additional Treg details including strategies to control

them therapeutically in cancer.

5.4.1 Manipulation of T Cell Memory

Besides the induction of neutralizing antibodies, a powerful vaccine has to evoke a

strong T cell response. The latter is obtained by generating long-lived memory

CD8+ T cells with enhanced antitumor activity. Therefore efforts must be made to

develop vaccines which raise the quantity as well as the functional quality of

memory CD8+ T cells172. For this purpose, the inhibition of mTOR by rapamycin

seems to be a promising strategy. Rapamycin is a drug used to avoid transplant

rejection and in cancer therapy, and was initially considered strictly immunosup-

pressive. Paradoxically, rapamycin has been shown to increase the quantity and

functional qualities—like proliferative ability, protective power and longevity—of

virus-specific memory CD8+ T cells in mice and rhesus macaques. Rapamycin

increased the number of memory precursor T cells in the expansion phase and
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advanced memory CD8+ T cell differentiation in the contraction phase during

primary and secondary T cell responses173.

These findings suggest the use of rapamycin as an innovative vaccine adjuvant.

In contrast to currently used adjuvants, rapamycin acts by inhibition of the intracel-

lular kinase mTOR in antigen-specific CD8+ T cells. Synergistic effects might be

achieved by the combination of rapamycin and adjuvants that stimulate dendritic

cells and act through TLRs. A further advantage of rapamycin is its oral application

form which would not interfere with vaccine formulations. Future issues regarding

the use of rapamycin as a vaccine adjuvant will have to address the optimal dose to

achieve maximum immunostimulatory and minimum immunosuppressive effects.

Furthermore, efforts will have to be made to identify other signalling pathways in

memory CD8+ T cell differentiation that could function as additional pharmacolog-

ical targets to improve vaccine efficacy172,174.

5.4.2 Combinatorial Therapies Using Small Molecules
and Antibodies

Each tumor accumulates oncogenic mutations during carcinogenesis, some of

which can be specifically targeted with small molecules or blocking antibodies.

Several compounds have been FDA approved recently, and combination with

peptide vaccination seems promising to enhance the antitumor response. Sunitinib

is a small molecule that targets multiple receptor tyrosine kinases, including those

for platelet-derived growth factors and vascular endothelial growth factors that are

implicated in tumor angiogenesis and proliferation. Indications include metastatic

renal cell carcinoma and gastrointestinal stromal tumors. Recent studies suggest

that sunitinib can decrease myeloid-derived suppressor cells and Tregs175,176,

thereby decreasing local suppressive mechanisms at the tumor site. Disruption of

such tumor-driven dysfunctional immune responses might be necessary for paving

the way for tumor-specific T cell therapies, since T cells develop exhausted

phenotypes in such suppressive microenvironments177.

The protein kinase B-RAF is one of the most frequently found mutated kinases

in human cancers. About 50% of melanoma tumors harbour a V600E oncogenic

mutation. Treatment with a specific inhibitor, PLX4032 (vemurafenib), improved

rates of overall and progression-free survival of metastatic melanoma patients178.

Treatment results in fast shrinkage of melanoma tumor masses in approximately

half of the patients, but relapses occur frequently because of rapid establishment of

tumor resistance. Therefore, combinations with other treatment approaches become

necessary. Concomitant peptide vaccination would have the advantage of

generating tumor-specific T cells that could infiltrate the tumor and eliminate

residual tumor cells that cannot be targeted with the drug. Because inhibition of

mutated B-RAF leads to rapid tumor destruction, major changes in the tumor
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microenvironment are likely to occur, and local suppressive mechanisms would be

disturbed. Massive tumor cell death possibly also leads to exposure of new tumor

proteins and epitope spreading. Therefore, the reinforcement of T cell responses

with vaccines during and after B-RAF treatment could have a great potential to re-

establish tumor immune control.

Recent studies have shown that functional T cells are not only dependent on cell

intrinsic, but also extrinsic factors. A most efficient anti-tumor immune response is

likely achieved by targeting multiple factors in a deregulated tumor-microenviron-

ment, as illustrated in Figure 5.2.

CTLA-4 is a receptor expressed on recently activated T cells that mediate

inhibitory signals, and CTLA-4 in Tregs is important for their function. Mouse

models have suggested that the enhancement of specific CD8+ T cell responses

upon anti-CTLA-4 blockade generates tumor protection in combination with vac-

cination179. Thus a major focus has been the design of anti-CTLA-4 blocking

antibodies for human use. The humanized antibody ipilimumab has successfully

passed clinical development where it showed improvement of overall survival in

metastatic melanoma180 and is now FDA approved as second line treatment of

advanced metastatic melanoma. Treatment with anti-CTLA-4 antibody generates

nonspecific activation of immune stimulatory mechanisms that modify the function

of a large set of immune cells. It therefore also has potential to disrupt established

tumor microenvironments, and peptide vaccination approaches might have

enhanced potential in re-establishing protective immunity. A limited number of

recent clinical studies have started to explore the effect of CTLA-4 blockade on the

formation of effector and memory T cells upon vaccination181–183. The results,

although encouraging, suggest the need to define the timing of CTLA-4 blockade

carefully relative to immunization schedules and to monitor many parameters of the

immune response.

PD-1 is another co-inhibitory receptor that is expressed upon T lymphocyte

activation. Studies in mouse and human clinical settings of chronic viral infection

have revealed its association with functionally exhausted T cells184,185. Significant

evidence has accumulated that PD-1 blockade can reverse T cell dysfunction not

only in established chronic viral infections such as in acquired immunodeficiency

syndrome and chronic hepatitis due to hepatitis C virus infection but also in

metastatic tumors186,187. A humanized blocking anti-PD-1 antibody has already

been tested in phase I clinical trials in cancer patients, and encouraging results in

terms of clinical responses in cancer patients as well as tolerability and safety have

been reported188. Thus, the stage may be set for future studies of combination of

cancer vaccines and PD-1 blockade. Preclinical studies certainly suggest the power

of this combination143,189,190. Finally, other co-inhibitory receptors could also

be therapeutically relevant targets for cancer immunotherapy and amenable to

combinations with vaccination. These include Tim-3191, Lag-3192,193 and possibly

BTLA194–196. Please see chapter 8 for many additional details on co-signalling

blockade in cancer immunotherapy.
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5.5 Conclusion

The immune system actively participates in sculpting tumor immunogenicity

during cancerogenesis. Once a tumor has been established, it progresses in the

presence of an immune system that has largely failed to control tumor growth. Since

Fig. 5.2 T cell extrinsic and intrinsic immune regulatory factors in the tumor microenvi-

ronment. Regulatory mechanisms present in the tumor microenvironment oppose the activity of

tumor-specific T cells in anti-cancer immune responses. Several regulatory cell types are present in

the tumor microenvironment. One of these is the regulatory T cell (Treg) population, which can

suppress by direct contact with effector T cells or through IL-10 production. Myeloid-derived

suppressor cells (MDSC) are also enriched at the tumor site. They express the inducible nitric

oxide synthase (iNOS) allowing them to produce high amounts of nitric oxide (NO), which inhibits

T cell migration as well as T cell receptor (TCR) and cytokine signalling. Degradation of essential

amino acids is another mechanism of tumor suppression employed by MDSCs as well as

plasmacytoid dendritic cells (pDC) at the tumor site. MDSCs produce arginase, which degrades

arginine (#Arg). pDC can be induced by the suppressive tumor environment to produce IDO,

which degrades tryptophan (#Trp). This leads to an impairment of T cell proliferation and survival

through metabolic starvation. In addition to the immune regulatory populations present in the

tumor microenvironment, tumor cells themselves contribute to immunosuppression by producing

cyclooxygenase-2 (COX-2) and its enzymatic product prostaglandin-E2 (PGE2), which inhibits

antigen presenting cell maturation and T cell activation, and promotes angiogenesis and metasta-

sis. Tumor cells also directly inhibit T cell activation and function through the expression of

costimulatory/inhibitory molecules, which are recognized by corresponding inhibitory receptors

present on the surface of highly activated effector T cells. Such inhibitory ligand-receptor pairs

include B7.1/2-CTLA-4, PD-L1-PD-1, HVEM-BTLA, Galectin-9-Tim-3 and MHC-II-Lag-3.

These regulatory cell types and inhibitory molecules are promising therapeutic targets for the

treatment of cancer. Therapies targeting some of these factors are already approved for clinical

use, while many others are in early or pre-clinical development.
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clinically detectable tumors have already reached considerable sizes, immune

tolerance needs to be overcome in order to reinvigorate immune surveillance.

Peptide/protein therapeutic vaccination approaches have undergone considerable

improvement through numerous early phase clinical trials in patients with various

tumor types. Minimal epitopes still remain the most powerful peptides to induce

large numbers of CD8+ T cells, but approaches are needed to ensure their presenta-

tion solely on professional antigen-presenting cells. These in turn are only able to

mobilize antitumor immune responses when they have been properly activated, and

the combination of the most potent adjuvants and strong CD4+ T cell epitopes in the

vaccine formulation is crucial in this process. T cell help is also implicated in the

formation of CTL memory, which is important for establishing long-lasting tumor

control that has been shown to correlate with increased patient survival. Tumor-

specific CD8+ T cells further need to infiltrate into the tumor to execute their

destructive mission. CD4+ T cells can help CD8+ T cells home to the tumor,

which underscores the importance of considering strong MHC class II epitopes

(that promote CD4+ T cell help) during peptide/protein vaccine design. However,

once CTLs enter into tumor tissue, they are confronted with an immune-hostile

tumor suppressive microenvironment, which impedes their proper function and

renders them hypofunctional. Therefore, the future of peptide vaccinations lie in

their combination with other approaches. In this regard, the massive destruction of

tumor masses with drugs specifically targeting tumor-specific mutations has the

potential to disrupt established microenvironments. At the same time, the targeting

of Tregs and myeloid-derived suppressor cells using depleting agents such as

cyclophosphamide and sunitinib holds great promise. On the other hand, treatments

that enhance immune functions such as with ipilimumab have already proven

successful. Combination therapies using improved peptide/protein vaccination

protocols in parallel with such immunomodulators represent promising strategies

to induce protective immunity and provide new avenues for the treatment of cancer.
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Chapter 6

Antigen Targeting to Dendritic Cells

for Cancer Immunotherapy

Dinja Oosterhoff, David T. Curiel, and Tanja D. de Gruijl

Abstract Dendritic cells (DC) are antigen presenting cells that play a crucial role

in initiating anti-tumor immunity. DC capture antigens, process them, and migrate

to the draining lymph nodes where they can induce an antigen-specific T cell

response. A promising strategy to induce a potent, specific, and lasting anti-tumor

response is to target tumor antigens to DC in vivo. This represents a clinically

generally applicable and cost-effective approach to DC-based vaccination against

cancer. Here, an overview is provided of the different delivery vehicles (e.g.,

viruses, proteins, liposomes, and nanobodies) that are currently being explored

for the development of therapeutic cancer vaccines and considerations for their

successful application as well as future developments.

6.1 Introduction: The Case for DC-Targeted Vaccines

Dendritic cells (DC) are generally regarded as the most powerful antigen-

presenting cells (APC) with a singular ability to prime naive T cells and thus

initiate adaptive immunity. They form a crucial link between the innate and the

adaptive arms of the immune system and are central regulators in numerous

immune processes. They stem from a common CD34+ bone marrow (BM)-derived

precursor and can differentiate into various subsets, which can be myeloid

(conventional DC) or more lymphoid in nature (plasmacytoid DC). From the blood,

DC precursors home to peripheral tissues where they develop into immature DC.
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Immature DC patrol all tissues of the body and carry specialized receptors to

bind and detect pathogen- or danger-associated molecular patterns (PAMP and

DAMP, respectively). Upon their activation through these infectious and/or

pro-inflammatory stimuli, they reach end-stage maturation, at which point they

acquire the ability to migrate to secondary lymphoid organs and activate (naı̈ve)

T cells in an antigen-specific manner, thus starting an adaptive immune response1, 2.

Numerous clinical trials have been carried out and are currently underway to

study the efficacy of DC vaccines. A common strategy in the DC-based immuno-

therapy of cancer is the ex vivo generation of autologous DC from blood-derived

DC precursors, which are then loaded with proteins or peptides that carry known

T cell epitopes from tumor-associated antigens (TAA). Such DC vaccines are

subsequently readministered to the patient. Alternatively, TAA-encoding genes

can be transferred to DC. Genetic modification of DC for immunotherapy has

distinct advantages. In contrast to the use of proteins, a genetic TAA vaccine

provides a long-lived and continuous source of antigen, facilitating durable presen-

tation of TAA-derived epitopes to both cytotoxic T lymphocytes (CTL) and helper

T cells (Th). Endogenous TAA expression resulting from gene transfer ensures

access to the MHC class I processing pathway, which is essential for subsequent

activation of specific CTL, the proposed main effector cells of anti-tumor immunity.

Although vaccination with ex vivo generated autologous DC has led to some

clinical successes, its wide-scale implementation is hindered by limitations with

respect to logistics, costs, and standardization. Indeed, there is a general consensus

that this methodology requires optimization to improve therapeutic efficacy and

alternative tumor vaccination approaches are actively being pursued3.

An ever expanding knowledge of DC biology has led to a new generation of

genetically modified vaccines that can specifically target DC in vivo. By simulta-

neously ensuring proper DC activation these generally applicable DC-targeted

vaccines may ultimately render the ex vivo generation and loading of DC redundant.

Indeed, vaccines based on the targeting and triggering of tissue-resident DC can be

designed to exploit the physiological processes already in place to facilitate DC

activation, migration, lymph node homing, and subsequent T cell activation. Addi-

tionally, the presence of different DC subsets in peripheral tissues allows the

targeting of specific DC subsets that have been demonstrated to hold potent

immunostimulatory capacities. For example, for anti-tumor immunization it may

prove beneficial to target Langerhans cells specifically, i.e., the DC subset residing

in the epidermis and other epithelial surfaces, as these have been implicated in the

selective generation of cell-mediated immunity1, 3.

6.2 DC Targeting Motifs

In mouse studies, in vivo immunotargeting of protein antigens to DC-restricted

markers, such as DEC-205, was shown to induce strong immune responses4, 5.

However, for effective CTL-mediated anti-tumor immunity, DC targeting alone
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may not be enough; additional activation is required. For instance, it has been shown

by Steinman and colleagues that targeting of model tumor-, or HIV-derived antigens

to the DEC-205 receptor (or other DC-associated C-type lectin receptors [CLR],

like Langerin and Clec9A) on DC led to specific T cell unresponsiveness within

7 days after immunization6, 7. This unresponsiveness was only overcome after the

co-injection of a CD40 agonistic antibody or activating ligands of toll-like receptors

(TLR), like CpG oligodeoxynucleotides. Therefore, in selecting DC targeting motifs

two important factors should be considered: selectivity and activation.

The choice of molecules to target for DC-specific gene transfer is closely related

to the subset, the maturation state, and the anatomical location of the DC in question.

The most attractive targets should (a) be only expressed on DC, (b) be rapidly

internalized upon binding, (c) route internalized antigens into MHC class I and II

processing pathways, and (d) induce DC maturation and migration upon binding, to

allow for optimal CTL and other immune cell activation. DC express many different

antigen-capture and PAMP or DAMP-binding molecules at their surface, collec-

tively referred to as pattern recognition receptors (PRR). PRR are by definition

attractive targets, because it is their natural function to internalize antigens and

mediate their routing to antigen processing pathways in order to facilitate generation

of a T cell response (reviewed in reference 8). PRR include CLR, TLR, scavenger

receptors (SR) and NOD-like receptors. Upon infection and/or tissue damage, DC

bind PAMPs and/or DAMPs, leading to endocytosis, processing, and presentation of

associated antigens. Their ability to capture and process antigens for subsequent

T cell activation, coupled to the capacity of some to also induce DC maturation,

make PRR attractive candidate targeting motifs for in vivo DC vaccination.

In addition, their differential expression on DC subsets may allow for targeting of

specific subsets with specialized functions: for example, Langerin for Langerhans

cells (CTL activation); MR, TLR2, and DC-SIGN for dermal or interstitial DC

(B- and T cell activation); or CD141 and Clec9A for enhanced cross-priming in

specific DC subsets3. Upon binding of their ligand(s), some PRR (e.g., TLR) can

activate DC, whereas others do not (e.g., most CLR), necessitating the incorporation

of DC-activating signals in the vaccine formulation. Alternatively, DC-activating

receptors that are (relatively) over-expressed on DC might be directly targeted to

achieve simultaneous DC targeting and activation. Members of the family of TNF

receptors are attractive candidates in this respect. For instance, we found that CD40-

targeted adenovirus-mediated TAA gene transfer resulted in selective DC transduc-

tion in human skin explants and skin-draining lymph nodes and simultaneously

induced their activation, leading to the high-efficiency priming and activation of

tumor-reactive CTL9, 10.

6.3 Targeting DC In Vivo: Delivery Vehicles

DC-targeted vaccines generally consist of antigenic proteins or genetic material

encoding antigenic sequences (Fig. 6.1). Immunogenic DC targeting of either

modality has to adhere to a separate and specific set of requirements. For protein
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targeting it is essential that upon binding to the DC surface motif, the protein is

efficiently endocytosed and routed to MHC processing pathways for subsequent

presentation to T cells. In contrast, for viral transduction, binding to a DC-specific

docking molecule per se might be sufficient, as most viruses have co-receptors

(e.g., integrins) and other mechanisms in place for the induction of subsequent

uptake and release from endosomes into the cytoplasm. Various vehicles are now

available for targeted in vivo gene and/or protein transfer to DC, both viral and

nonviral (see Fig. 6.1). An overview is given below.

Fig. 6.1 Representation of the different mechanisms to target dendritic cells (DC). Tumor

associated antigens can be targeted to DC residing in the skin via several mechanisms. The antigen

itself can be coupled to an antibody specific for DC. Another option is to inject DNA or RNA

encoding the antigen of choice directly into the skin or incorporate the DNA/RNA in a viral vector,

liposome, or a nanobody manipulated in such a way that it will only bind to DC (such as through

specific glycosylation motifs or antibodies). A last option is to use synthetic long peptides that will

be taken up and processed by the DC. Upon capture, the DC will start to mature and migrate

towards the draining lymph nodes where the mature DC can induce an antigen specific T cell

response against antigen-derived epitopes.
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6.4 Viruses

There are some major advantages to the use of viral vectors for gene delivery to DC:

(1) Many viruses exhibit a natural tropism for DC (e.g., lentiviruses) that might be

utilized for DC-targeted vaccination.

(2) Viruses have a natural ability to infect target cells, e.g., to be efficiently

endocytosed by DC.

(3) Viruses have developed mechanisms to transfer their genetic cargo efficiently

to the host cytoplasm and/or nucleus to take over the host replication and/or

transcription machinery and thus ensure high-level expression of the transgenes

they carry.

These characteristics make viruses extremely attractive vaccine vehicles, despite

regulatory restrictions that complicate their clinical implementation and concerns

about preexisting or induced neutralizing antibody responses. Nonviral vehicles

often need to be chemically altered to achieve the above listed advantageous traits

for DC-targeted vaccination that viruses often possess naturally.

6.5 DNA Viruses

6.5.1 Adenovirus

One of the most commonly used gene transfer vectors for DC is the adenovirus

serotype 5 (Ad5). Advantages of adenoviruses over other delivery vehicles, such

as retroviral vectors, are that Ad vectors can efficiently infect both dividing and

nondividing cells, that they can be produced at high titers, and that they are

relatively safe, since they do not integrate into the host cell genome. Importantly,

the perceived unsuitability of Ad5 vectors as vaccine vehicles, due to preexistent or

rapidly induced neutralizing antibody responses that would prohibit their use in

prime/boost set-ups, can now be overcome by specific ablation of antibody binding

sites in the hexon protein of the Ad capsid11.

In 1997, Wan et al. described the ex vivo transduction of DC with a replication

deficient adenoviral vector encoding the polyoma middle T antigen12. A single

injection of DC transduced with the Ad vector expressing polyoma middle T

provided complete and specific protection against tumor cell challenge in 100%

of vaccinated animals. A comparable study was performed by Song et al. with a

replication deficient adenovirus expressing the reporter gene beta-galactosidase13.

Using a murine metastatic lung tumor model with syngeneic colon carcinoma

cells expressing beta-galactosidase, it was shown that immunization of mice with

a genetically modified DC line or bone marrow-derived DC confers potent protec-

tion against a lethal tumor challenge, as well as suppression of pre-established

tumors, resulting in a significant survival advantage. Since then, many similar
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tumor vaccination studies with Ad vectors encoding a myriad of TAA for various

tumor types have been performed3–23. All these studies demonstrated that adenoviral

transduction of DC resulted in high expression levels of the TAA of interest and

efficient generation of immune responses directed against the tumor. A more

general approach to treat different types of cancer is to transduce DC with Ad

vectors encoding wild type p53. The tumor suppressor protein p53 is an attractive

candidate for DC-based immunotherapy, because this protein is found abundantly

in 50% of human malignancies but not in normal tissues. Several reports

demonstrated that treatment with Ad-p53-transduced DC generated CTL directed

to p53 and significantly slowed the growth of established tumors14, 15. Thus,

transducing DC with wild-type p53 may be a promising new tool for the immuno-

therapy of cancer.

In all the studies listed above, DC were ex vivo transduced with Ad vectors.

Although more attractive, direct in vivo administration of Ad-based vaccines to

patients is complicated by the fact that DC are relatively resistant to Ad infection.

The infection of host cells by Ad5 is a two-step process. The first step is a high-

affinity interaction of the knob domain of the Ad fiber with the cell surface receptor

coxsackie and adenovirus receptor (CAR)16, 17. Subsequent internalization, via

receptor-mediated endocytosis, involves interactions between the Arg-Gly-Asp

(RGD) sequences of the adenovirus penton base proteins with cellular avb3 and

avb5 integrin receptors. Unfortunately, DC lack surface CAR expression, whereas

CAR is abundantly expressed on many other cell types. In vitro the resistance to Ad

infection of DC can be overcome by the use of high virus titers (at multiplicities of

infection [MOI] exceeding 1,000). In vivo, however, this would lead to preferential

bystander (non-DC) infection and unwanted cytopathic side effects. A logical

approach to circumvent inefficient CAR-mediated Ad5 transduction is redirecting

Ad5 entry (targeting) via alternative cell surface molecules abundantly expressed

on DC. Several strategies have been explored in this regard (see Fig. 6.2). First of

all, it proved possible to replace the tropism-determining fiber knob domain of Ad5

with that of a different Ad serotype. Replacement of the Ad5 fiber knob with the

Ad35 fiber knob resulted in a dramatic increase in gene transfer efficiency to DC

and their high-efficiency in situ transduction in human skin explants18, 19. Similarly,

it was recently demonstrated by Stone et al. that the use of the Ad11 led to an

increased transduction efficiency of human immature DC as compared to Ad520.

We have also shown that replacement of the Ad5 fiber knob with that of Ad3

resulted in increased transduction efficiencies of human DC and that this Ad5/3 was

more specific for mature CD1a+CD83+ DC than Ad5/35, selectively targeting DC

in the context of skin and melanoma-draining lymph nodes through binding to

CD80/CD8621. Obviously, the utility of pseudotyping is limited by the natural

diversity of Ad receptor recognition. More precise targeting of DC specific surface

molecules requires synthetic design of targeted adenoviruses. For this, single- and

two-component systems are being explored.

The design of single-component targeted Ad vectors by incorporating targeting

ligands into adenovirus capsid proteins has been widely explored in the context of

tumor targeting. For DC targeting, the RGD sequence has been incorporated in the
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fiber knob22–24. RGD targeting greatly enhanced DC transduction efficiency. This

modification, however, does not abrogate binding to CAR and thus expands rather

than targets Ad entry. However, it should be possible to combine such

modifications with capsid protein mutations known to abolish native tropism25.

Belousova et al. constructed a chimeric Ad containing the CAR-binding mutated

wild-type fiber and a bacteriophage T4 fibritin fiber in which CD40L was

incorporated26. Intradermal injection of this vector in human skin explants resulted

in targeted, enhanced gene transfer to migrating DC, as well as in their phenotypic

maturation27. Production of a virus containing only the CD40 targeted fibritin fiber

unfortunately proved suboptimal, and thereby unsuitable for clinical application.

Complex binding ligands including antibodies have been successfully employed

in two-component targeting strategies, where they were bound to the Ad fiber

indirectly via a second protein moiety. We and others have demonstrated that

using this approach to target Ad5 to CD40 expressing cells, the transduction

efficiency increased to 95% at MOI 10010, 28–30. Indeed, immune conjugate-

mediated targeting of Ad5 vectors to CD40 resulted in the selective and enhanced

transduction of DC in human skin explants and in lymph node suspensions and

facilitated the efficient priming of high-avidity melanoma-reactive CTL9, 10. More-

over, in vivo delivery of an Ad5 vector carrying tumor antigens and retargeted to

CD40 through a CD40L-sCAR adapter protein resulted in efficient DC transduction

Fig. 6.2 Schematic representation of different approaches to target adenoviruses to DC. During

native infection, adenovirus serotype 5 (Ad5) enters the cell following high-affinity binding to the

cellular receptor CAR, which is not expressed by DC. Replacing the tropism-determining fiber

knob domain of Ad5 with that of a different adenovirus serotype results in a virus with a modified

tropism, potentially leading to improved transduction of DC. Examples are Ad5/3 and Ad5/35 that

can bind to CD80 and CD46 on the DC. Targeting Ad5 to DC has also been established by

inserting peptide motifs, like the binding domain of CD40L, in the virus capsid that can bind to

receptors on DC. Furthermore, bispecific targeting moieties have been used to target Ad5 to DC.

These molecules can bind on one side to the adenoviral fiber and on the other side to a receptor on

the DC. An example is the fusion protein sCAR-CD40L which can bind to the knob domain of Ad5

(thereby neutralizing its natural receptor binding) and to DC expressing CD40.
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in lymph nodes and resulted in superior tumor protection in the B16 melanoma

model31. Indeed, we envisage the clinical use of such a recombinant CD40 adapter

protein (consisting of the TNF-like domain of CD40L fused to soluble CAR), which

represents a highly defined product that is clinically applicable with Ad5 as a highly

flexible two-component DC-targeted Ad vector configuration, ultimately allowing

vaccination with different TAA-encoding Ad vectors simultaneously, depending on

the TAA expression profiles of the targeted primary or metastatic tumors.

6.5.2 Adeno-Associated Virus

Adeno-associated virus (AAV) are small, nonpathogenic parvoviruses that are

dependent on larger helper viruses, such as adenoviruses, for their replication.

AAV has established its position as one of the most popular gene delivery systems.

This is mainly because of the long-term and efficient transgene expression in

various cell types in many tissues including liver, muscle, retina, and the central

nervous system32. However, there are some disadvantages associated with the

application of AAV. The packaging capacity is relatively restricted and the large-

scale production inefficient. Furthermore, the integration into the host genome is

random, which can lead to unexpected activation or inhibition of endogenous

gene expression (a major obstacle to in vivo clinical application). Different

AAV serotypes have shown remarkably different expression patterns because of

differences in cell entry and intracellular activities. For example, Ponnazhagan

et al. demonstrated that at an MOI of 100 of AAV serotype 2, the efficiency of

transduction among DC cultures derived from different normal blood donors,

varied between 2 and 55%33. Nevertheless, transduction of DC with an AAV

containing the cDNA encoding the HPV-16 E7 antigen generated CTL that showed

MHC class I-restricted killing of cervical cancer cells34. Flow cytometric analysis

of the DC populations revealed that AAV/E6 vector-pulsed DC had higher levels of

CD80 and lower levels of CD86 than protein-pulsed DC35. Importantly, trans-

ducing DC with AAV encoding self-antigens resulted in the generation of func-

tional CTL, thus suggesting that AAV-loading of DC is a good approach for

generating CTL against TAA with low immunogenicity36, 37.

6.5.3 Vaccinia Virus

Vaccinia virus is a double-stranded DNA virus of which the entire life cycle takes

place within the cytoplasm of host cells. It has a wide host range and is capable of

infecting almost all human cell types with high efficiency. This represents a clear

disadvantage for DC targeting. An advantage of Vaccinia virus is its capacity for

efficient infection and gene expression. A number of viral promoters can be chosen

to control the timing and the level of transgene expression. Furthermore, the
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Vaccinia virus genome can accommodate at least 25 kb of foreign DNA sequence38

and its replication occurs exclusively in the cytoplasm, eliminating the possibility

of chromosomal integration. An important potential disadvantage for clinical

application of Vaccinia virus-based vaccines may be preexistent immunity in

older patients vaccinated for smallpox. This may limit vaccination efficacy.

In 1998, Di Nicola et al. described that mature monocyte-derived DC were

transducible with Vaccinia virus39. Since then, various studies have been performed

demonstrating Vaccinia virus-mediated transduction of genes encoding the TAA

EBNA-3A40, gp10041, MUC142, 43, CEA43, or HPV16-E7. In general, all these

studies showed the induction of antigen-specific Th and CTL responses, resulting in

in vivo tumor rejection. However, it has been demonstrated that Vaccinia virus

transduction hampers proper DC maturation44, 45 making it necessary to induce DC

maturation prior to transduction with this virus. Furthermore, transduction with

Vaccinia virus inhibited expression of HLA-DR and reduced the secretion of

cytokines important for DC migration, like RANTES, MIP-1a, and TNF-a46.
Two phase I clinical trials with Vaccinia virus-based melanoma vaccines have

been performed47, 48. In the first study, 6 patients were injected intravenously and

subcutaneously with DC transduced in vitro with a modified Vaccinia virus

encoding the human tyrosinase gene47. Treatment was well tolerated, except for

low-grade fever (in 3/6 patients), mild erythema at the injection site (in 5/6

patients), and vitiligo (in 2/6 patients). A partial response, involving shrinkage of

a subcutaneous nodule, later surgically removed, was observed in 1 patient, who

then remained disease-free (>850 days). In 4 of 5 patients, significant and often

long-lasting increases in frequency of T cells directed to tyrosinase were

documented. In another study a comparable vaccine was directly injected in 20

patients three times at 4-week intervals (5� 108 IU/injection)48. This did not elicit a

measurable immune response to its transgene product in patients with stage II

melanoma after repeated combined intradermal and subcutaneous vaccination,

probably because DC maturation was hampered.

Another clinically tested Vaccinia virus-based vaccine is PROSTVAC-VF

(Tricom). It consists of two vectors, both encoding the prostate tumor antigen

prostate specific antigen (PSA) and three co-stimulatory molecules: ICAM-1,

LFA-3, and B7.1 (CD80). A Vaccinia virus is used for the priming vaccination,

followed by boost vaccinations with fowlpox vectors. The viruses are subcutane-

ously injected together with GM-CSF. In a randomized controlled phase II trial of

125 patients with castration resistant prostate cancer it was demonstrated that

patients receiving PROSTVAC-VF had a longer median overall survival

(25.1 months versus 16.6 months for patients receiving an empty control vector)49.

A large phase III trial is now planned to confirm these promising results.

6.5.4 Herpes Simplex Virus

Herpes simplex virus (HSV) is a large DNA virus of which type I can infect DC

with intermediate to high efficiency. DC infected with replication deficient HSV
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fail to become activated, downregulate a number of surface markers, and fail

to produce a number of cytokines in response to activation stimuli, such that their

T cell-activating capabilities are minimal50, 51. To overcome this immune problem,

the viral gene encoding virion host shut-off protein has been deleted52. This protein

destabilizes mRNA in infected cells so that host protein synthesis is reduced in

favor of translation from more rapidly produced viral mRNA. The resulting virus

transduced DC as efficiently as the parental virus, but induced both expression of

CD86 and an enhanced specific T cell-proliferative response. Transduction of DC

with HSV–OVA (ovalbumin) or HSV–PSA and co-culture with CTL hybridomas

resulted in specific activation of the CTL, indicating that transduced DC express

these transgenes and process the tumor antigens for MHC-I mediated presentation

to CTL. Mice immunized with HSV–PSA-transduced DC generated a specific CTL

response that could be detected in vitro by a classic chromium release assay and

these mice were protected from challenge with tumors that expressed PSA53. Thus

far, HSV vectors have not been clinically used for in vivo vaccination or DC

targeting.

6.6 RNA Viruses

6.6.1 Retrovirus

The idea of using retroviruses as gene delivery tools was introduced by Mann

et al.54. The retrovirus family consists of single-stranded RNA viruses that measure

80–120 nm in diameter. These single-stranded RNA viruses replicate through a

double-stranded DNA intermediate, which is integrated in the host genome. The

most commonly used retroviral vectors are based on Moloney murine leukemia

virus, in which the gag, pol, and env genes are replaced with an expression cassette.
The major advantage of retroviral vectors is the lack of immunogenicity due to the

removal of the genes encoding viral proteins. However, limitations of this vector

are the instability of the viral particle, low viral titers, and the inability to transduce

nondividing cells. DC residing in tissues and secondary lymphoid organs have lost

their proliferative capacity, rendering retroviruses useless in terms of in vivo DC

targeting.

6.6.2 Lentivirus

In contrast to oncoretroviral vectors, lentiviral vectors are capable of transducing

nondividing cells, such as DC, at high transduction efficiencies. Importantly, like

oncoretroviral vectors, lentiviral vectors do not encode viral proteins, thereby

minimizing the potential for interfering with the function of the transduced DC55.
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Third-generation lentiviral vectors with enhanced safety profiles have been devel-

oped and used to transduce murine and human DC efficiently. These improved

vectors contain a chimeric Rous sarcoma virus/HIV 50 long terminal repeat (50LTR)
enhancer and promoter to initiate the transcription of genomic viral RNA56. The

stronger chimeric promoter does not require HIV Tat protein, a transactivator of

the transcription of HIV genomic RNA, to generate vector transcripts. In addition,

the vectors have been made self-inactivating by deleting the majority of the U3

region in 30LTR so that viral RNA cannot be produced in target cells57. These

additional safety modifications further prevent the generation of replication-

competent recombinants and should feasibilize clinical implementation.

It has been shown that immature DC are efficiently transduced with increasing

doses of lentivirus without affecting cell viability. Transduction at low MOI did not

result in phenotypical or functional maturation. Higher doses of lentivirus, how-

ever, resulted in upregulation of adhesion, costimulatory, and HLA molecules, as

well as in increased allostimulatory capacity and secretion of interleukin (IL)-6,

IL-8, and tumor necrosis factor-alpha57. Li et al. described that a single injection of

murine bone marrow-derived DC transduced with a lentiviral vector encoding a

truncated form of Neu protein stimulated the induction of CD4+ and CD8+ T cells

in vivo and suppressed the growth of Her2/Neu overexpressing tumors58.

Recently, two papers were published describing the construction of lentiviral

vectors in which expression of the transgene was targeted to DC. Lopes et al. used

the mouse dectin-2 promoter to target expression of GFP to dectin-2 positive cells.

This lentivector effected transgene expression in mouse bone marrow-derived DC

and in human skin-derived Langerhans cells and dermal DC. In mice, transgene

expression was detected in splenic dectin-2+ cells after intravenous injection and in

CD11c+ DC in the draining lymph node after subcutaneous injection. A dectin-2

targeted lentivector encoding the human cancer antigen NY-ESO-1 primed an NY-

ESO-1-specific CD8+ T cell response in HLA-A2 transgenic mice and stimulated a

CD4+ T cell response59. Furthermore, a transcriptionally DC-targeted vector was

constructed using the DC-STAMP promoter region to induce tolerance by trans-

ducing hematopoietic stem cells. This should result in tolerance because the DC

that generated from these stem cells are not activated by the vaccine and thus

remain in a steady-state immature condition. This vector induced long-term and

cell-selective transgene expression in vivo. As expected, these transcriptionally

targeted DC induced functional, antigen-specific CD4+ and CD8+ T cell tolerance

in vivo, which could not be broken by subsequent immunization60.

Recently, a DC-SIGN targeted lentiviral vector was constructed by incorpo-

ration of an engineered glycoprotein derived from Sindbis virus. This targeted

lentivector transduced DC in vitro with high specificity. Direct subcutaneous

administration of the targeted lentivector in DC-SIGN transgenic mice induced a

strong antigen-specific T cell and antibody response61.

Thus, there is a growing body of evidence to show that it is indeed possible to use

lentiviral vectors for in vivo DC targeting applications.
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6.7 Nonviral Gene Vehicles

6.7.1 Naked DNA and RNA

6.7.1.1 DNA

An elegant approach to circumvent (mostly safety-related) disadvantages associated

with viral vectors is to transfect DC directly with plasmid DNA encoding full-length

TAA. Advantages of DNA transfection include the easy construction and high

stability of plasmid DNA and the possibility to include sequences that lead to better

antigen presentation or DC activation. Furthermore, DNA vaccines are relatively

safe, because there is no risk for recombination with wild-type viruses and the risk for

insertional mutagenesis is low. Finally, it has been demonstrated that cutaneously

applied plasmids can remain present in the skin for up to 5 months62. DNA-based

vaccines thus direct antigen expression for extended periods, supporting persistent

anti-tumor immune responses that could theoretically protect a patient from relapse.

Major hurdles to the use of DNA as immunotherapeutic tools are the low efficiency

with which DC are transfected and the general weakness of elicited immune

responses. Possible ways of administration include the modification of target cells

with the DNA ex vivo and the direct delivery of the DNA plasmid into the patient, for

example, with the gene gun method, by tattooing into skin, or simply by intradermal

or intramuscular injection. The gene gun methodology entails delivery of the DNA

following its precipitation onto gold microparticles that are delivered to the skin

under pressure by a ballistic delivery device63. This process does not induce traumatic

injury and requires much less DNA to achieve comparable humoral immune

responses as compared to intramuscular administration64. More recently, Bins et al.

pioneered a tattoo approach whereby antigen-encoding DNA can be delivered to the

epidermis65. In mice and primates this was shown to induce immunity to tumor and

HIV antigens, respectively66. The resulting trauma to the epidermis also ensured DC

activation and migration. The exact mechanism for induction of the immune response

is still not entirely clear, but appears to involve processing of the antigen through both

endogenous and exogenous pathways, leading to presentation of the antigen in the

context of both MHC class I and II. The disadvantage of direct administration of

DNA to patients is that any cell encountering the plasmid could be transfected with it.

It was demonstrated by Raz et al. that after intradermal injection of plasmid DNA,

cells resembling macrophages and DC, but also keratinocytes and fibroblasts, were

transfected62. Other studies, however, demonstrated direct transfection only of skin

DC following gene gun administration67, 68. In contrast to this, Corr et al. published

that the elicited immune response was the result of expression of the antigen by

non-lymphoid tissues and transfer to APC69. After DNA vaccination DC appear to

acquire antigen both by direct transfection and by cross priming. A study by Condon

et al. furthermore revealed that gene gun immunization resulted in the migration of

transfected skin-derived DC to the draining lymph nodes67. Recently, a way to target

the expression of the gene to DC was described by Ni et al. who used a DC specific
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promoter based on a short sequence of the CD11c promoter to target expression of

lacZ or EpCAM to DC in mice70.

A number of features can influence the nature and the potency of the DNA-

elicited immune response. The composition of the DNA is a first important consid-

eration for plasmid vaccines. For instance, hypomethylated CpG dinucleotide

sequences that are relatively underrepresented in eukaryotic DNA serve as a

PAMP and in man bind to TLR9 in plasmacytoid DC, increasing the immunoge-

nicity of DNA vaccines71. Secondly, to increase the level of transgene expression, a

strong promoter, like the CMV promoter, is required. Finally, the antigenicity of the

encoded protein is of considerable importance in generating an effective immune

response. Although DNA vaccines have shown promise in eliciting effective CTL

responses to neoantigens, the fact that most TAA are self-antigens and thus weakly

immunogenic requires DNA vaccines to be very potent to be clinically useful.

Many studies have therefore focused on enhancing the immune response that is

raised by DNA vaccines. Different approaches have tried to improve the delivery of

the vaccine72, modification of the encoded antigen to increase its immunogenicity

and DC targeting potential, for example, by fusion of the antigen to CD40L73 or

FLT3L74, or modification of the microenvironment by addition of (DNA encoding)

cytokines or chemokines75.

Only a few clinical studies with plasmid DNA in cancer patients have been

published. In general, DNA vaccines were well tolerated, but had mixed results in

raising cellular immunity. Tagawa et al. conducted a phase I trial in patients with

stage IV melanoma76. Patients received intranodal injections of a DNA vaccine

encoding tyrosinase epitopes. The vaccine was tolerated well, with only five

patients demonstrating grade I–II toxicity. Immune responses by peptide-tetramer

assay to tyrosinase were detected in 11 of 26 patients. However, no clinical

responses were seen. In a study by Rosenberg et al., 22 patients with metastatic

melanoma were injected intradermally or intramuscularly with plasmid DNA

encoding gp100 melanoma–melanocyte differentiation antigen77. One patient

exhibited a partial response of several subcentimeter cutaneous nodules, whereas

all other patients had progressive disease. Of 13 patients with cells available before

and after immunization, none exhibited evidence of the development of anti-gp100

T cell responses. A significant clinical or immunological response to plasmid DNA

encoding the gp100 tumor antigen was thus not demonstrated. Recently, Miller

et al. published the results of a phase I trial in which 6 patients with hormone-

refractory prostate cancer were monitored for their ability to mount PSA-specific

cellular responses with recombinant GM-CSF and IL-12 as immunoadjuvants after

receiving a PSA DNA vaccine78. After vaccination, T cells recognized both PSA

peptides and the naturally processed PSA protein. Several trials of DNA vaccines

against human papillomavirus (HPV) related malignancies have been performed.

HPV-related malignancies have the advantage that foreign HPV antigens are

expressed and serve as TAA, rather than self antigens. Plasmid DNA encoding

HLA-A2 epitopes from HPV16 E7 protein was incorporated in polymer micro-

particles and delivered intramuscularly. In a trial for anal dysplasia, increased

T cell responses were reported in 10 of 12 patients79. In another study, the same
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plasmid was delivered to women with cervical intraepithelial neoplasia and most

patients mounted a detectable immune response to HPV16-E7. More importantly, in

33% of the participating women, complete histological responses were documented.

Although definitive clinical evidence of the efficacy of DNA vaccines remains to

be demonstrated, DNA vaccines do have several advantages and have proven to be

safe in clinical applications. Further clinical investigations to improve their efficacy

are therefore warranted.

6.7.1.2 RNA

Transfection of DC with specific or whole cell lysate-derived ribonucleic acid

(RNA) has been demonstrated to be very effective in inducing potent TAA-specific

cytotoxic T-lymphocytes80, 81. Using whole cell lysates has the advantage that it

does not require the definition of specific TAA and that it therefore might have

broad clinical applicability. On the other hand, a potential drawback is the increased

risk of inducing autoimmunity. The first preclinical data using RNA-loaded DC

in vivo were presented by Boczkowski et al.80. This study showed that DC pulsed

with mRNA from ovalbumin-expressing tumor cells were as effective in inducing

CTL responses as DC pulsed with ovalbumin peptide. Since then, the effectiveness

of this approach has been demonstrated in many in vitro studies using RNA coding

for different TAA, like PSA82, 83, the human papillomavirus proteins E6 and E784,

human telomerase reverse transcriptase (hTERT)85 and human immunodeficiency

virus capsid proteins86. Recently, Grunebach et al. demonstrated that transfection of

monocyte derived DC with the RNA encoding Her-2/Neu and 4-IBBL resulted in

an increased specific lysis of target cells by induced CTL lines87 compared to

untransfected monocyte derived DC. More importantly, vaccination with mRNA

loaded DC has been shown to induce protective and therapeutic anti-tumor

responses in mice88, 89. Several RNA delivery strategies have been explored, like

electroporation90, lipofection85, or transfer through receptor-mediated endocytosis.

Strobel et al. demonstrated that the use of liposomes was more effective than

electroporation90 whereas Van Tendeloo et al. found that electroporation was

more potent compared to lipofection or CD71 based endocytosis91.

RNA transfection thus represents a promising approach to engineer DC to present

the whole and unique antigenic spectrum of a patient’s tumor and therefore several

clinical trials have been performed to assess the efficacy of this approach in patients.

The first vaccination study using RNA-transfected DC was a phase I trial designed

to evaluate the safety, feasibility, and efficacy to induce T cell responses in patients

with metastatic prostate cancer92. Immature monocyte-derived DC were transfected

with in vitro transcribed PSARNA. Increasing doses (1–5� 107) of themodifiedDC

were administered intravenously every 2 weeks and additionally 1 � 107 cells

were administered intradermally at each vaccination. No major toxicity was

observed and in general vaccination was well tolerated. After vaccination,

all analyzed patients had PSA-reactive, IFN-g secreting T cells, whereas in the

pre-therapy samples no IFN-g secreting T cells were detected. Furthermore, in a
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chromium release assay it was demonstrated that after vaccination there was a

significant increase in PSA-specific killing of target cells90. In a phase II trial for

the same disease, hTERTmRNA-transfectedDCwere administered to 20 patients93.

Eleven of the patients received DC transfected with hTERT-encoding mRNA,

whereas 9 patients received DC transfected with the mRNA encoding a chimeric

lysosome-associated membrane (LAMP)-hTERT fusion protein to direct hTERT

antigen processing into the class II pathway94. It was demonstrated that patients

receiving the fusion protein mRNA construct exhibited more pronounced delayed

type hypersensitivity reactions, enhanced CD4+ T cell responses, increased antigen-

specific proliferative responses and improved CTL-mediated lytic activity when

compared with immunization with the unmodified hTERT construct.

Several subsequent trials demonstrated safety, feasibility, immunogenicity, and

moderate clinical efficacy of DC vaccines pulsed in vitro with TAA RNA95–97. It is,

however, also possible to inject mRNA directly into skin. Intradermal application

of naked mRNA in mice resulted in protein expression and the development of an

immune response98. The same approach was used to vaccinate 15 melanoma

patients99. For each patient a growing metastasis was removed and copy mRNA

was produced. Autologous preparations were applied intradermally in combination

with GM-CSF as adjuvant. This treatment proved to be feasible and safe. Further-

more, an increase in anti-tumor humoral immune responses was seen in some

patients. However, a demonstration of clinical efficacy of direct injection of

mRNA for anti-tumor immunotherapy was not shown in this study and must be

evaluated in subsequent trials. Further strategies to stabilize naked RNA for in vivo

applications should prove instrumental in this regard.

6.8 Nanoparticles and Liposomes

Nanotechnology is a relatively new focus of anti-cancer research and is used as a

general term for the manufacture, manipulation and application of structures in the

nanometer range. The ultimate goal of nanomedicine is to create medically useful

nanodevices that can function inside the body. It is envisioned that nanodevices will

be hybrids of biological molecules and synthetic polymers that can enter the cell

and can interact with the DNA and proteins. In this regard, it should be possible to

incorporate TAA into nanodevices and target them specifically to DC.

One of the first studies using this technology for immunotherapy described the

construction of 100 nm cationic nanoparticles from warm oil-in-water micro-

emulsion precursors. Plasmid DNA was coated on the surface of these cationic

nanoparticles and the DC-targeting ligand mannan was incorporated in or deposited

on the particles100. This approach significantly increased both IgG titer and Th1

cytokines upon immunization as compared to naked DNA transfection.

Fifis et al. coupled ovalbumin to smaller solid-core nanobeads of 40–50 nm,

which, upon in vivo delivery, allowed them to localize to DC in the draining lymph

nodes101. This resulted in the induction of two- to tenfold stronger immune
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responses as compared to larger bead sizes, indicating that the size of the

nanodevice is important. A single dose of these beads protected the mice from

tumors in two different models. Since then, many more studies were performed in

mice, although it is difficult to compare all these, because all the nanoparticles used

have different compositions and sizes and were tested in different mouse models.

In human skin, particles with a size of 40 nm were efficiently taken up by

epidermal Langerhans cells after transcutaneous vaccination, whereas larger par-

ticles were only taken up by Langerhans cells around hair follicles102. The same

group recently published a paper in which influenza protein-based nanoparticles

were transcutaneously injected and compared to intramuscular vaccination in

humans. In a study on 11 healthy volunteers, it was found that transcutaneous

vaccination induced both effector CD4+ and CD8+ T cell responses, whereas

intramuscular injection induced effector CD4+ T cells in the absence of CD8+

T cells103. An interesting paper by Prasad et al. was recently published that

described the construction of nanoparticles containing whole tumor lysates from

human solid tumors. Compared to conventional tumor lysates the nanoparticles

containing tumor lysates were more efficient in inducing IFN-g production in vitro

while reducing the production of potentially immunosuppressive IL-10, although

the amount of administered lysate was five times lower in the nanoparticle

containing lysate as compared to conventional tumor lysate104. An explanation

for this could be that nanoparticles can function as a Th1 adjuvant, because the

particles can bind and activate TLR-2105, thereby inducing DC maturation.

The surface of nanoparticles can be modified to improve stability, but also to

conjugate ligands to target the particles specifically to target cells (see Fig. 6.1).

Ghotbi et al. described the construction of nanoparticles into which mannan was

incorporated. These targeted nanoparticles were more efficiently taken up by

murine bone marrow-derived DC than untargeted particles106. Cruz et al. recently

reported on antibody-modified nanoparticles targeting DC through DC-SIGN and

DEC-20595, 107, resulting in T cell activation. Clearly such particles are attractive

candidates for clinical translation as DC-targeted nanoparticle-based vaccines.

Liposomes can be regarded as a subtype of nanoparticles. Liposomes, bilayered

phospholipid spheres of �100 nm, are excellent carriers of drugs or antigens that

are currently used in a number of immunotherapeutic applications. They can

accommodate almost any molecule of interest, whether it be peptides, proteins, or

DNA, for the purpose of targeting, sustained release, and protection from degrada-

tion. The components of the lipids may vary, with neutral liposomes containing

neutral lipids, and cationic and anionic liposomes containing lipids that are either

positively or negatively charged. Depending on their lipid composition, liposomes

can exhibit potent adjuvant-like properties96. Like nanoparticles, many liposomes

with different composition and sizes have been tested for their capacity to target

DC. The delivery of antigen-containing liposomes to DC can be facilitated by

introduction of agents into the bilayer that bind selectively to molecular structures

on the surface of the DC, such as antibodies, nanobodies or glycosylated motifs that

can bind to specific CLR (see Fig. 6.1).
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Targeting liposomes containing antigen or DNA to DC enhanced their capacity

to induce humoral and CTL responses in vivo97, 108, 109. Moreover, specialized

liposomes can be designed to enhance delivery of their payload to the cytosol, such

as by using bilayer compositions which are pH-sensitive (pH-sensitive liposomes).

This should facilitate subsequent processing for MHC-I mediated activation of

specific CTL. Studies in mice have shown that the glycan modification of liposomes

for APC targeting is a promising approach for the treatment of cancer. These

glycoliposomes can also incorporate TLR-L motifs as well as DNA, since cationic

lipids will spontaneously complex with DNA to form lamellar structures, so-called

lipoplexes. A recent paper described the construction of antigen-containing

liposomes that were engrafted with peptides from the TLR-5-ligand flagellin110.

These DC targeted liposomes were efficiently taken up by murine bone marrow-

derived DC and induced their maturation. Vaccination of mice with ovalbumin

containing TLR-5 targeted liposomes increased the number of antigen specific

CD8+ T cells, indicating that this is a promising approach to target liposomes to DC.

A novel subtype of nanoparticles are nano-engineered exosomes. Exosomes are

small vesicles released by tumor cells and/or DC. Exosomes released by DC

express high levels of costimulatory molecules including MHC class I and II, and

because of this observation DC exosomes (dexosomes) are considered to represent

an alternative pathway of antigen delivery and presentation. DC-derived exosomes

can modulate immune responses by activating T cells. Exosomes can be engineered

ex vivo and are an interesting new field in immunotherapy111. Artificial exosomes

can be 30–100 nm in diameter and were developed by coating liposomes with

peptide-MHC class I complexes. These artificial exosomes could activate and

expand functional antigen specific T cells111.

6.9 Proteins, Antibodies, and Nanobodies

Antigenic proteins can be targeted to DC by coupling them to DC-specific anti-

bodies. After uptake of the antigen-antibody complex by DC, the antigen will be

presented and antigen-specific T cell responses can be raised. This has been

successfully demonstrated using antigen targeted to DEC-205 and Langerin in

murine models4, 5, 112, 113. This approach also worked using DEC-205 or CD11c

specific scFv antibodies coupled to gp100 and Her2-Neu, respectively114, 115. Of

note, antigen-antibody complexes were recently reported to be stored in specialized

subcellular compartments in DC, ensuring prolonged presentation to, and activation

of CTL116. Although these studies demonstrated that antigen targeting to DC

induces specific immune responses, translation of these results to humans is diffi-

cult, because of different target expression patterns on DC in humans and mice, as is

the case, for example, with many CLR. Kretz-Rommel et al. therefore used a mouse

model with a humanized immune system to study DC-SIGN targeting. Targeting

antigens to DC-SIGN in this model induced antigen-specific T cell responses117.

Recently, Flacher et al. published a paper describing targeting of DC using
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antibodies in human skin118. Antibodies directed to DEC-205 or Langerin were

injected intradermally and interestingly, efficient targeting of LC was observed,

indicating that the antibodies can diffuse from the dermis towards the epidermis.

The LC thus targeted through Langerin were not capable of priming T cell

responses, however118.

Nanobodies are single-domain antigen-binding fragments of camelid (from

camels or llamas)-specific heavy chain-only antibodies. These nanobodies bind

antigen without requiring domain pairing and have a therapeutic advantage over

classic antibody fragments because of their smaller size, robustness, and preference

to target unique epitopes. Nanobodies have been successfully used to target toxic

enzymes or to block specific molecular interactions. Cortez-Retamozo et al. used a

nanobody directed to CEA to target the prodrug converting enzyme b-lactamase

specifically to tumor cells, resulting in tumor specific toxicity after injection of the

prodrug119. Another approach described the construction of nanobodies directed to

EGFR to block the binding of the growth factor EGF specifically to its receptor120.

Currently, two nanobodies for the treatment of thrombosis are being tested in

clinical trials. Thus far, no literature is available describing the use of nanobodies

to activate the immune system. In theory, however, coupling of TAA to a DC-

specific nanobody should result in effective targeting. Indeed, a recent paper by de

Groeve et al. does describe the construction of a DC-specific nanobody121.

Finally, synthetic long peptides should be mentioned as a DC-targeting strategy.

Preclinical studies showed increased vaccination efficacy of synthetic long peptides

over short peptides which was attributable to selective uptake by DC and prolonged

antigen presentation to CD4+ T cells and CTL122. Several clinical trials with synthetic

long peptides tumor vaccines emulsified in Montanide have since been carried out. In

a phase II trial in which women with stage III vulval intraepithelial neoplasia received

3–4 vaccines of an HPV16 E6/E7 SLP vaccine in incomplete Freund’s adjuvant,

clinical responses were observed in 15/19 patients, with complete regressions in

9 patients123. Responses were associated with the strength and breadth of induced

CD4+ and CD8+ IFN-g effector T cell responses. A next generation of synthetic long

peptides vaccines is now under development, in which they are coupled to TLR

ligands to ensure simultaneous DC targeting and activation124.

6.10 Conclusions and Future Developments

A wide variety of vehicles and targeting motifs are now identified and available for

use in the design of DC-targeted vaccines. Although some targets are more

DC-restricted than others, their selection is mostly predicated by the DC subset to

be targeted and, importantly, the vaccine delivery route: some targets may be

relatively specific for DC in one tissue microenvironment, but not necessarily in

another. Further translational studies are urgently needed to explore the best

(combination of) DC targeting motifs and the preferred DC subset(s) to be targeted,

as well as the most optimal route of in vivo delivery to achieve efficacious
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DC-mediated immunization. When potentially immunosuppressive B cells, macro-

phages or other bystander APC are co-targeted as a collateral consequence of poor

DC selectivity, this could lead to T cell tolerance rather than anti-tumor immunity.

Also, care must be taken when selecting a DC-targeted vaccine formulation in

terms of modulatory effects on the DC activation state and functionality. For tumor

vaccination in particular it is of vital importance to ensure optimal DC activation

upon vaccine delivery with preferential Th1 skewing and CTL activation, and to

increase or decrease other arms of immunity as their relative importance in specific

cancers becomes better known. In cancer patients where immunosuppressive

conditions often prevail this may sometimes be a tall order, but it is nevertheless

of the essence. Although DC-targeted vaccine approaches receive considerable

attention and are becoming a major focus of attention in the tumor immunology

field, clinical translation is seriously lagging with very few vaccines set to be tested

in patients within the foreseeable future. Nevertheless, there is a general consensus

in the field that in vivo DC targeting vaccines are a most promising way forward.

Newly identified promising targeting motifs and advances in the fields of virology

and nanotechnology should prove instrumental in developing effective new agents.
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Chapter 7

Cytokines in the Treatment of Cancer

Kim Margolin, Mark Lazarus, and Howard L. Kaufman

Abstract Cytokines are molecular mediators of intercellular signaling that

function to regulate homeostasis of the immune system. There are five families of

cytokines classified by their receptor usage. The effects of individual cytokines on

immunity depend on several factors, including the local cytokine concentration, the

pattern of cytokine receptor expression, and the integration of multiple signaling

pathways in responding immune cells. Cytokines have shown therapeutic potential

for the initiation and potentiation of antitumor immunity. Interferon-a and

interleukin-2 (IL-2) have been approved as single agents for the treatment of

metastatic melanoma and renal cell carcinoma, and several other cytokines have

shown promise in preclinical tumor models. New strategies for improving the

therapeutic benefit of cytokines are in development and include cytokine-antibody

fusion molecules, delivery in recombinant viral vectors, expression by irradiated

whole tumor cells, PEGylation, DNA vaccination, and ex vivo exposure to immune

effector cells.

7.1 Introduction

Cytokines are molecular mediators of intercellular communication that signal

through a series of shared receptors to regulate the function and homeostasis of

the immune system. Using the immune system to prevent cancer and eradicate

established tumors are major goals of tumor immunotherapy. The generation of

potent, specific, and durable antitumor immunity requires a variety of cytokines that

regulate important functions related to the balance between tumor recognition and
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rejection by antigen-specific effector cells on the one hand, and suppressive

mechanisms that allow tumors to escape immunologic detection on the other. The

significance of cytokines in tumor immunosurveillance has been demonstrated in

mice genetically deficient in Type I or II interferon (IFN) receptors or elements of

downstream IFN receptor signal transduction. These mice exhibit a higher

frequency of spontaneous cancers compared to control mice1–4. The past decade

has seen a growing understanding of the molecular and cellular basis of tumor

immunosurveillance and antitumor immunity, with many tumor-specific and

tumor-associated antigens being defined and a major focus on the importance of

T cells in mediating tumor recognition and rejection. Since cytokines play a major

role in regulating antigen presentation and all aspects of T cell activity, they have

been widely investigated for their potential to enhance tumor immunotherapy.

The most extensively studied cytokines for cancer treatment are members of the

IFN and interleukin families. Two cytokines (interferon-a and interleukin-2) have

been approved as single agents for the treatment of metastatic renal cell carcinoma

and melanoma. Interleukin-2 (IL-2), as well as other members of the IL-2-related

family of T cell growth factors (e.g., IL-4, IL-7, IL-9, IL-15, and IL-21), utilize a

common receptor signaling system that results in the activation and expansion of

CD4+ and CD8+ T cells. More recently, the regulatory nature of IL-2 has been

demonstrated by experiments showing similar activation kinetics for regulatory

CD4+FoxP3+ T cells (Tregs) in response to IL-2-mediated signaling resulting in

suppression of antigen-specific effector T cell function. The potential dominance of

this regulatory function for IL-2 has been demonstrated in mice genetically lacking

IL-2 or functional IL-2 receptor, which exhibit a phenotype characterized by loss of

self-tolerance and development of autoimmunity5. This counter-regulatory role of

IL-2 suggests its dual role in the homeostasis of T cells and their functions and has

implications for the role of IL-2 treatment of cancer patients. These observations

have also resulted in new cytokine-based therapeutic strategies designed to

stimulate effector T cells while blocking suppressive/regulatory T cells but with

the need to avoid dangerous autoimmune consequences.

The goal of this chapter is to review in brief the major cytokines involved in

cancer treatment and discuss their basic biology and clinical applications. The

chapter also describes new cytokines in preclinical development and discuss several

novel approaches for cytokines in the treatment of cancer and potential new

directions for future investigation using cytokines or combinations of biological

agents for cancer therapy. An effort has been made to include cytokines that have

already advanced into clinical use or have a strong preclinical basis for

demonstrating therapeutic benefit in cancer patients.

7.2 Classification of Cytokines and Cytokine Receptors

Cytokines are secreted proteins that have pleiotropic effects on adaptive immunity,

regulation of innate immunity, and hematopoiesis (Table 7.1). In the immune

system, cytokines function in cascades and with some degree of redundancy.
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Table 7.1 General features of cytokines

Cytokine Primary cell source Primary target cell Biologic activity

GM-CSF T cells Bone marrow

progenitor cells

Promotes antigen

presentationMacrophages

Endothelial cells DC T cell homeostasis

Fibroblasts Macrophages Hematopoetic cell growth

factorMast cells

IL-1 Monocytes T cells Co-stimulation

Macrophages B cells Cell activation

Fibroblasts Endothelial cells Inflammation

Epithelial Cells Hypothalamus Fever

Endothelial Cells Liver Acute phase reactant

Astrocytes

IL-2 T cells T cells Cell growth/activation

NK cells NK cells

B cells

Monocytes

IL-3 T cells Bone marrow

progenitor cells

Cell growth and

differentiation

IL-4 T cells T cells Th2 differentiation

B cells Cell growth/activation

IgE isotype switching

IL-5 T cells B cells Cell growth/activation

Eosinophils

IL-6 T cells T cells Co-stimulation

Macrophages B cells Cell growth/activation

Fibroblasts Liver Acute phase reactant

IL-8 Macrophages Neutrophils Activation

Epithelial Cells Chemotaxis

Platelets

IL-10 Th2 cells Macrophages Inhibits antigen-

presenting cellsT cells

Inhibits cytokine

production

IL-12 Macrophages T cells Th1 differentiation

NK cells

IL-15 Monocytes T cells Cell growth/activation

NK cells NK cell development

Blocks apoptosis

IL-18 Macrophages T cells Cell growth/activation

NK cells Inflammation

B cells

IL-21 CD4+ T cells NK cells Cell growth/activation

NKT cells T cells Control of allergic

responses

and viral infections
B cells

IL-23 Antigen-presenting

cells

T cells Chronic inflammation

NK cells Promotes Th17 cells

DC

(continued)
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IFNs were the first cytokines identified and named for their ability to “interfere”

with viral replication. Subsequent cytokines were referred to as interleukins

because they were produced by and acted on leukocytes. The cytokines generally

utilize a series of common and shared receptors, which have proven useful for

a more functional classification of cytokines (Fig. 7.1). To date, there are seven

cytokine receptor families (see Table 7.2): receptors for Type I cytokines, Type II

cytokines, immunoglobulin superfamily members, tumor necrosis factors (TNF),

transforming growth factor b (TGF-b), receptors coupled with cell membrane-

based G-proteins, and the recently described IL-17 receptors. This chapter focuses

on cytokines that signal through the Type I and II cytokine receptor families,

as these have the most immediate clinical potential.

Type I cytokine receptors are expressed as transmembrane proteins on the

surface of effector cells and respond to cytokines containing four a-helical strands.
These receptors share a common amino acid motif (WSXWS) located in the

extracellular portion of the receptor. The Type I receptors assemble as heteromeric

chains made up of subunits that contribute to cytokine binding or signal transduc-

tion. The Type I cytokine receptors, which include receptors for IL-2, IL-4, IL-7,

IL-9, IL-15, and IL-21, share a common signaling subunit, the common g chain

(gc), that complexes with a cytokine-specific moiety to initiate intracellular signals

Table 7.1 (continued)

Cytokine Primary cell source Primary target cell Biologic activity

IFN-a Plasmacytoid DC Macrophages Antiviral

NK cells

Macrophages

Fibroblasts

Endothelial cells

Osteoblasts

NK cells

T cells

Enhances MHC

expression

Activates and promotes

survival of T cells

Activates NK cells,

macrophages

IFN-g T cells Monocytes Cell growth/activation

NK cells Macrophages Enhances MHC

expressionEndothelial Cells

Tissue cells

TGF-b T cells T cells Inhibits cell growth/

activationMacrophages

TNF-a Macrophages T cells Co-stimulation

T cells B cells Cell activation

Endothelial cells Inflammation

Hypothalamus Fever

Liver Acute phase reactant

DC dendritic cell; GM-CSF granulocyte-macrophage colony stimulating factor; IL interleukin;

IFN interferon; TNF tumor necrosis factor; TGF transforming growth factor
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Table 7.2 Classification of cytokine receptor families

Receptor family Ligands Structure/function

Type I cytokine

receptors

IL-2 Composed of multimeric chains

IL-3 Responds to four a-helical cytokines
Il-4 Contains WSXWS amino acid motif

IL-5 Signals through JAK-STAT pathway using common

signaling chainIL-6

IL-7 Contains cytokine-binding chains

IL-9

IL-11

IL-12

IL-13

IL-15

IL-21

IL-23

IL-27

Erythropoietin

GM-CSF

G-CSF

Growth hormone

Prolactin

Oncostatin M

Leukemia

inhibitory

factor

Type II cytokine

receptors

Interferon-a/b Immunoglobulin-like domains

Interferon-g Uses heterodimer and multimeric chains

IL-10 No WSXWS motif

IL-20 Signals through JAK-STAT

IL-22

IL-28

Immunoglobulin

superfamily

receptors

IL-1 Shares homology with immunoglobulin structures

CSF1

c-kit

IL-18

IL-17 receptor IL-17A Contain four highly conserved cysteine residues

IL-17B

IL-17C

IL-17D

IL-17E

IL-17F

G protein-coupled

receptors (GPCR)

IL-8 Contains a seven transmembrane helix

CC chemokines Functions to mediate cell activation and migration

CXC chemokine

(continued)
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through the coordinated activity of Janus kinases (JAK) 1 and 3, and signal

transducers and activators of transcription (STAT) molecules (Fig. 7.1)5. Additional

Type I cytokine receptor subgroups include the granulocyte/macrophage colony-

stimulating factor (GM-CSF) and IL-6 receptor families, which share a common

gp130 receptor subunit that mediates complex multi-pathway signal transduction in

its target cells6–9. The gp130 signal transduction component is utilized by several

receptor complexes, including IL-6, IL-11, leukemia inhibitory factor (LIF),

oncostatin M, cardiotrophin-1, and ciliary neurotrophic factor, that have redundant

and pleiotropic effects on the immune, hematopoietic, and nervous systems10. Like-

wise, IL-3, IL-5, and GM-CSF are also recognized by receptors in a separate

GM-CSF receptor subfamily that shares a common b chain that complexes with

the cytokine-specific a chain11.

The effects of IFN-a, IFN-b, IFN-g, and IL-10 are mediated by Type II cytokine

receptors, which are composed of a signaling chain and a ligand-binding chain.

The sequences of the Type II cytokine receptors resemble tandem Ig-like domains

and the intracellular segments are typically associated with a tyrosine kinase of the

JAK family12. The immunoglobulin superfamily receptors contain extracellular

immunoglobulin domains and include the receptors for IL-1, IL-18, stem cell

factor, and monocyte CSF13.

Cytokines are responsible for the induction of active immune responses against

tumors as well as the negative regulation of immune responses in maintaining

homeostasis and self-tolerance. Self-tolerance is mediated by two major classes

of CD4+FoxP3+ Tregs (see chapter 9 for details). Understanding how cytokines

regulate the generation and maintenance of Tregs—and how to break this compo-

nent of tolerance to achieve and maintain successful antitumor immunity—is

an important area of current investigation14. CD4+FOXP3+ Tregs can arise

in the periphery in a tolerogenic environment and mediate immune suppression.

Table 7.2 (continued)

Receptor family Ligands Structure/function

TGF-b receptors 1/2 TGF-b Contains serine/threonine kinase activity Signaling

modulated by co-receptors Cytokine binding is

sequential and cooperative

Signals through Smad 2 and 3, and other pathways

(e.g., MAPK)

Regulates cell proliferation, differentiation,

apoptosis, development, and tissue homeostasis

Tumor necrosis factor

receptors (TNFR)

CD27 Contains cysteine-rich extracellular domains

CD30 Functions as co-stimulatory and co-inhibitory

receptorsCD40

CD120

Lymphotoxin-b

CD cluster of differentiation; c-kit mast/stem cell growth factor receptor; CSF colony-stimulating

factor; G-CSF granulocyte-colony stimulating factor; GM-CSF granulocyte-macrophage colony

stimulating factor; IL interleukin; JAK janus kinase; STAT signal transducer and activator of

transcription; TGF transforming growth factor
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In contrast, a naturally occurring CD4+FOXP3+ T cell population (nTreg) mediates

immune suppression in a contact-dependent, cytokine-independent manner15.

Throughout the process cytokines regulate the number and functionality of these

cells as well as the effector cells that fight pathogens and tumors. It is this delicate

balance between effector cells and Tregs that is critical for influencing the rejection

or progression of tumors. IL-2, TGF-b, and IL-10 (and probably other cytokines)

have been shown to modulate the generation of Tregs and may be involved in the

fine balance between effector and regulatory populations16, 17.

7.3 Structural Physiology and Functional Role of Cytokines

7.3.1 General Features of Cytokine Structure and Function

Cytokines play critical roles in the development of the immune system, host

defense, and tumor immunobiology. Thus, understanding the biological activities

and mechanism of action of these elements is central to developing cytokine-based

immunotherapy in cancer treatment. Cytokines directly stimulate immune effector

cells and stroma cells at the tumor site and enhance tumor cell recognition by

cytotoxic effector T cells. When they become impaired at the tumor site, effector

cells can then present an important obstacle to both spontaneous and deliberately

induced T cell immunity against cancer. Numerous animal tumor model studies

have demonstrated that cytokines have broad antitumor activity and this has been

translated into a number of cytokine-based approaches for cancer therapy. To date,

two cytokines have achieved FDA approval for cancer treatment: high-dose, bolus

IL-2 for metastatic melanoma and renal cell carcinoma and IFN-a for the adjuvant

therapy of Stage III melanoma (IFN-a is also used with bevacizumab for renal

carcinoma and was formerly used for several hematologic malignancies until it was

supplanted by agents with superior therapeutic indices, as detailed below). Other

cytokines, including GM-CSF, IL-7, IL-12, IL-15, IL-18, and IL-21, have entered

into clinical trials for patients with advanced cancers of various types. There is also

preclinical data supporting the neutralization of suppressive or inflammatory

cytokines, such as IL-6, IL-10, and TGF-b, in promoting antitumor immunity.

7.3.2 Interferons

The IFNs can be classified by their ability to bind to specific receptors termed Type I

and Type II IFN receptors, which are a subset of the Type II cytokine receptors18.

IFN-a and IFN-b are predominantly involved in cellular immune responses against

viral infections19, 20. The IFN-a and IFN-b family actually represent over 20 distinct

molecules that are classified according to their ability to activate Type I IFN receptors

180 K. Margolin et al.



(and are collectively referred to as Type I IFNs)18–21. The Type I IFNs all share the

same receptor complex (INF-aR1 and INF-aR2), whereas Type II IFN-g binds to a

distinct receptor complex (IFNgR1 and IFNgR2)22. IFN-g is the only Type II IFN and

is also important in cell-mediated immunity and activates the Type II IFN receptor23.

While the therapeutic potential for IFN-g has been limited (see below), its secretion

or the expression of its gene in effector lymphocytes is used commonly as a readout in

laboratory assays for antigen-specific effector cell function.

Although numerous murine studies originally suggested an important role for

IFN-g in tumor immunity, the Type I IFNs have emerged as the most clinically

useful IFNs for the treatment of cancer. These IFNs induce expression of major

histocompatibility complex (MHC) class I molecules on tumor cells and mediate

the maturation of a subset of dendritic cells (DCs)24–27. Type I IFNs can also

activate cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, and

macrophages28, 29. In addition to their immunologic effects, the Type I IFNs can

also exert a cytostatic effect on tumor cells and may also promote tumor cell

apoptosis30. When administered at lower doses, they also have anti-angiogenic

effects on tumor neovasculature31. Mice with targeted deletion of the Type I IFN

receptor have a higher rate of carcinogen-induced cancer and increased tumor

growth in transplantable tumor models supporting the hypothesis that the Type I

IFNs are important in tumor immunosurveillance32, 33.

IFN-a comprises a group of at least 12 distinct proteins. Recombinant IFNa-2a,
IFNa-2b, and IFNa-2c differ by one or two amino acids and are the isoforms most

commonly used in the clinic18. Since IFN-a and IFN-b signal through the same

receptor, they would be expected to have similar biologic effects and have

overlapping indications. This prediction has not, however, been confirmed clini-

cally and the mechanism of antitumor activity in vivo is not completely defined for

this group of IFNs. IFNs activate the JAK-STAT signaling pathway. IFN-g
phosphorylates JAK1 and JAK2 proteins which produces a recruitment site for

STAT1 while Type I IFNs (IFNa or IFNb) stimulate the activity of JAK1 and

TYK2 proteins, leading to STAT2 tyrosine phosphorylation, and induce IL-4

secretion and subsequent activation of B cells34. IFN-a also induces direct apopto-

sis of tumor cells in a caspase-dependent manner, which may contribute to the well-

known properties of Type 1 and 2 IFNs to enhance tumor cell antigen expression as

well as co-stimulatory and co-inhibitory receptors that are essential to the type of

immune reaction resulting between tumor and effector cells35. At low doses, IFN-a
also acts as an anti-angiogenic agent36. While the specific mechanisms of

IFN-mediated tumor rejection in animal models have not been fully elucidated,

IFN-a has been the most widely investigated cytokine for human cancer treatment

and may prove to be a valuable component of combinatorial strategies for immu-

notherapy of solid tumors.

IFN-g is secreted by NK cells, NKT cells, CD4+ T cells, CD8+ T cells, antigen-

presenting cells (APCs) and B cells37–39. IFN-g activates macrophages and induces

the expression of MHC class I, MHC class II, and co-stimulatory molecules on

APCs40–42. Additionally, IFN-g induces changes in the proteasome leading to

enhanced antigen presentation43, 44. IFN-g also promotes Th1 differentiation of
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CD4+ T cells and blocks IL-4 dependent isotype switching in B cells40, 45. Mice

with targeted deletion of IFN-g or the Type II IFN receptor have an increased risk

of spontaneous and chemically induced tumors compared to controls1, 3, 33, 44.

IFN-g is cytotoxic to somemalignant cells and hasmodest anti-angiogenic activity46–49.

While the antitumor effects of IFN-g in murine models suggested it would be

effective against a wide spectrum of tumors, IFN-g has demonstrated very limited

clinical utility in cancer therapy, in part because of a narrow therapeutic index. IFN-g
may be an important regulator of antitumor activity mediated by other cytokines, in

particular IL-12 and probably IL-250, 51.

7.3.3 Interleukin-2 Family

The biological effects of IL-2, a 15.5 kDa variably glycosylated protein comprises

four antiparallel a-helices, are mediated by the IL-2 receptor, a trimeric complex

composed of an a (CD25), b (CD122), and g (CD132) chain. The b and g chain are
involved in signaling, while the ligand-specific a chain is only involved in cytokine

binding. These subunits form a high (abg), intermediate (bg), or low (a) affinity
receptor depending on which of the chains are in the cell surface complex52, 53.

Although the b and g chains are expressed on T cells, B cells, and NK cells54, the a
chain is inducible and is expressed only by T cells but is present on several

phenotypically and functionally distinct classes of T lymphocytes. The predomi-

nant cellular source of IL-2 is the CD4+ T cell, predominantly the Th1 subset, and

the major physiologic role of IL-2 is to promote the activation and proliferation of

T and NK cells in an autocrine and paracrine manner55. In contrast to T cells,

NK cells express the intermediate affinity IL-2 receptor (no a subunit). Exposure of

NK cells to IL-2 results in proliferation, enhanced cytolytic activity, and secretion

of other cytokines. B cells also express intermediate affinity IL-2 receptors and can

secrete IL-2 in cooperation with other cytokines, resulting in B cell proliferation

and differentiation54.

IL-2 also plays a critical role in suppressing T cell responses. A subpopulation of

CD4+ T cells, characterized by high levels of CD25 and the forkhead/winged helix

transcription factor FoxP3, function to suppress self-reactive T cells56. These Tregs

maintain tolerance and prevent autoimmunity after activation of effector T cell

responses. This is supported by data demonstrating that depletion of CD4+FoxP3+

Tregs breaks tolerance to self-antigens and can lead to increased autoimmunity57.

Furthermore, in murine models, depletion of CD4+FoxP3+ Tregs enhanced tumor

rejection and improved therapeutic responses to cancer vaccines by promoting the

function of CD8+ CTLs58. The mechanisms by which Tregs inhibit the function of

CD8+ CTLs are incompletely understood (see chapter 9 for more Treg details).

Interestingly, the immunologic consequences of loss of IL-2 signaling, as

demonstrated in mice with targeted deletion of IL-2 or the IL-2 receptor that

develop a generalized inflammatory syndrome and often die of autoimmune

colitis56–59, are further evidence of the importance of IL-2 not only as an activator
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of immune responses but also as an important element of immune tolerance. This

view of IL-2 as a regulatory cytokine, rather than a purely stimulatory T cell growth

factor, suggests that the use of IL-2 in the clinical setting needs to be re-evaluated.

In support, IL-2 can increase Tregs and alter their trafficking patterns in humans

(see discussion below, and chapter 9 for details). An important area of further

investigation will be a more careful analysis of the dosing, schedule, and kinetics of

IL-2 administration on specific T cell subsets.

7.3.4 Interleukin-12 Family

Interleukin-12 (IL-12) is a heterodimeric cytokine containing a 35 kD and a 40 kD

subunit that signals through a receptor of the Type I family of cytokine receptors.

IL-12 is produced mainly by phagocytic cells in response to antigenic stimulation,

leading to cytokine production, primarily IFN-g, from NK and T cells60. IL-12 also

acts as a growth factor for activated NK and T cells, promotes CD4+ T cell

differentiation into Th1 CD4+ T cells and enhances the activity of CD8+ CTLs61.

IL-12 has demonstrated antitumor activity in murine models of melanoma, colon

carcinoma, mammary carcinoma, and sarcoma62–72. Experimental investigation of

the mechanism of IL-12 activity using mice with molecularly targeted defects

suggests that the effector cells involved in the antitumor immune response to

IL-12 differ by species, by tumor model and by dose and schedule of IL-12 as

well as other cytokines and elements of the immune microenvironment. For exam-

ple, in the B16 murine melanoma model, a significant role for NK cells has been

demonstrated in mediating antitumor immunity with high doses of IL-1220. In

contrast, antitumor responses at low doses of IL-12 appear to be mediated by

NKT cells70. IL-12 also elicits anti-angiogenic effects that require IFN-g and are

mediated by IFN-g-inducible protein 10 (IP-10), a chemokine induced in a variety

of cells in response to IFN-g and lipopolysaccharide71.

7.3.5 GM-CSF Family

GM-CSF, a heterogeneously glycosylated 14–35 kD polypeptide, was initially

identified as a mediator of hematopoiesis and monocyte-macrophage differentia-

tion73. GM-CSF is also a highly pleiotropic cytokine and is closely related to IL-3,

which also stimulates multi-lineage myelopoiesis, and IL-5, the predominant

growth factor for eosinophils, by way of a common b chain on the GM-CSF

receptor74. The receptors for GM-CSF, like those for IL-3 and IL-5, are composed

of two subunits, a ligand-specific a chain and a common b chain. GM-CSF is

produced by monocytic cells and T cells and promotes the maturation of DC. The
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potential for GM-CSF to stimulate immune responses has been shown in many

tumor models, including a murine melanoma in which transgenic expression of

GM-CSF provided protection to subsequent tumor challenge in over 90 % of the

animals75, and promising results have been observed in other tumors when used

alone and in combination with other immunomodulators such as checkpoint-

blocking antibodies76, 77. The antitumor activity of GM-CSF appears to be related

to its ability to activate macrophages and DC78, 79. GM-CSF also matures DCs

leading to upregulation of co-stimulatory molecules and CD1d receptors80. Initial

studies suggested that CD4+ and CD8+ T cells mediated GM-CSF-stimulated

antitumor immunity, but recent models using CD1d-deficient mice support a

critical role for NKT cells in GM-CSF antitumor immune responses81. More

recently, it has been suggested that GM-CSF may serve a more regulatory role in

the induction of DC-mediated T cell immunity through complex interactions with

milk fat globule-8 (MFG-8), a glycoprotein on APCs that contributes to the control,

under various biologic conditions, of immunologic responses resulting from their

interactions with T cell subsets82.

7.3.6 Interleukin-10

Interleukin-10 (IL-10) is a homodimeric 17–20 kDa glycoprotein with an a-helical
tertiary structure that signals through a JAK–STAT complex, the specific

components of which vary with the target cell type. The IL-10 receptor is a member

of the IFN receptor family and has two subunits, an a subunit that is primarily

expressed on immune cells, with the highest density on monocytes and

macrophages, and a b subunit that is found ubiquitously. IL-10 is produced by

many different cells of the immune system, including T and B lymphocytes,

monocytes, DC, and NK cells83. While IL-10 generally functions as an immuno-

suppressive cytokine, polarizing T cell responses towards the Th2 phenotype

associated with other suppressive cytokines like IL-4, IL-13, and TGF-b, IL-10
can also have stimulatory effects in certain circumstances, including the stimulation

of macrophage phagocytosis and NK cytotoxicity while suppressing inflammatory

cytokines, antigen-presentation, and T cell response84–87. IL-10 can act as a growth

factor for malignant B cells such as the plasma cell clone of myeloma and other

B cell lymphoproliferative diseases88. There are also preclinical data suggesting

that one mechanism of antitumor activity induced by CTLA-4 blockade (covered in

chapter 8) might be through a decrease in IL-10 secretion89.

Various tumor cells can produce IL-10, including cells from non-small cell lung

cancers, melanomas, gliomas, leukemias, and lymphomas90–94. Furthermore,

increased IL-10 production has been observed in tumor-infiltrating lymphocytes

(TIL) from patients with aggressive malignancies such as advanced non-small cell

lung cancer and in peritoneal monocytes from patients with malignant ascites from

advanced ovarian cancer95, 96. Constitutional IL-10 promoter polymorphisms have
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been associated with susceptibility to certain malignancies, suggesting that this

cytokine may play a critical role in some aspect of tumor immunosurveillance97– 99.

7.4 Cytokine Therapy in Clinical Practice

Two cytokines, IFN-a and IL-2, have been approved by the FDA for the treatment

of cancer. Both cytokines are approved as single agents and have been widely

explored as components of various combination regimens. This section focuses on

these approved agents.

7.4.1 Interferon-a

IFN-a has been approved for the adjuvant treatment of high-risk melanomas well as

for hairy cell leukemia and AIDS-related Kaposi’s sarcoma. It is also a component of

approved anti-angiogenic therapy in combination with bevacizumab for advanced

renal cancer. IFN-a has been particularly effective as therapy for hematologic

malignancies including hairy cell leukemia and chronic myelogenous leukemia.

For the treatment of hairy cell leukemia, IFNa-2b given at 2 million units/m2

subcutaneously three times a week for 1 year resulted in an overall response rate of

77 % with a complete response rate of 5 %. This relatively low dose is well-tolerated.

Patients with an intact spleen appear to achieve an even greater complete response

rate of 25–35 % in follow-up studies, suggesting the importance of early initiation of

cytokine therapy in this disease. While relapses are common in hairy cell leukemia

following IFN-a therapy, retreatment provides remissions in most patients100, 101.

Nevertheless, the advent of nucleoside analogs, with a complete response rate close to

90 % and durable remissions in most patients, has relegated IFN-a therapy to second-

line treatment in patients with refractory disease or in those with contraindications to

nucleoside analog drugs102.

IFN-a is the only currently approved adjuvant therapy for patients with high-risk

stage II or stage III melanoma based on data from a cooperative group, multi-

institutional clinical trial. In this trial, patients with primary lesions greater than

4 mm or those with regional lymph node involvement were treated following lymph

node dissectionwith 1 year of IFN-a2b. The regimen consisted of 20million units/m2/

day intravenously 5 days per week for 4 weeks followed by 10 million units/m2/day

subcutaneously three times a week for an additional 48 weeks. An overall improve-

ment in median relapse-free survival from 1 to 1.7 years and median overall survival

from 2.8 to 3.8 years was reported103. A follow-up intergroup clinical trial that also

included a low-dose IFN-a cohort and did not require surgical staging for clinically

node-negative patients also reported an improvement in median and overall relapse-

free survival for high-dose IFN-a over observation (no benefit for low-dose therapy)

but failed to demonstrate any improvement in overall survival104. The reason for these

disparate outcomes is not clear but has been attributed to the subsequent off-protocol
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use of IFN-a following nodal relapse in the observation group. A subsequent large

cooperative group trial compared a novel ganglioside GM2 vaccine to the same one-

year high-dose IFN-a therapy and was halted early when patients receiving IFN-a
alone demonstrated a significant increase in both relapse-free and overall survival

over those who were randomized to receive vaccine105. Although questions have been

raised as to the possibility that the vaccine actually worsened the outcome, its inferior

performance compared with IFN-a provided continued support for the use of IFN-a
routinely in the adjuvant setting.

Subsequent long-term follow-up data regarding patients in the cooperative group

trials detailed above revealed that the tails of the curves for relapse-free and

particularly overall survival no longer demonstrate significant benefits for IFN-a
over the comparators106. In a more recent meta-analysis of 14 randomized clinical

trials enrolling 8,122 patients over an 18-year period, IFN-a was associated with a

significant improvement in disease-free survival in 10 of 17 comparisons and

improved overall survival in 4 of 14 comparisons107. A long-acting form of

IFN-a that is chemically modified with a polyethylene glycol moiety (PEG-IFN)

to increase its serum half-life was recently approved for the adjuvant therapy of

high-risk melanoma. While PEG-IFN showed a favorable effect on relapse-free

but not on overall survival108, there was a significant survival benefit for patients

with an ulcerated primary and microscopic nodal metastasis, a finding which led

to the current trial of PEG-IFN for this cohort of patients. Recent data

demonstrating the antitumor activity and survival benefit of the CTLA4 immuno-

logic checkpoint blocking agent ipilimumab (see chapter 8) also provided the basis

for the ongoing US intergroup trial comparing unmodified IFN-a (using the regi-

men detailed above) with two different doses of ipilimumab for patients with high-

risk stage III and resected stage IV melanoma (http://clinicaltrials.gov/ct2/

show/NCT01274338?term¼interferonþandþipilimumabþandþadjuvantþand

þmelanoma&rank¼1). The proof of concept associating favorable outcomes

between IFN-a adjuvant therapy and the development of selected immune-

related outcomes such as thyroid dysfunction, vitiligo, and serologic evidence

of connective tissue diseases was provided by a report from the Hellenic

Oncology Group in 2006109. Although subsequent analyses from the USA and

European studies did not find this association110, the ongoing study of IFN-a vs.

ipilimumab will attempt to identify these and/or other correlates of autoimmu-

nity as evidence of benefit and will study pretreatment host and tumor factors to

look for predictive biomarkers in all three cohorts.

Experience with IFN-a administration has resulted in established guidelines for

recognition and management of toxicities and side effects. The toxicity profile of

IFN-a is usually dose-related, and most side effects can be managed without

discontinuation of treatment. Constitutional symptoms including fever, fatigue,

headaches, gastrointestinal symptoms, and myalgias are quite common and will

likely occur in 80 % or more of patients. IFN-a also produces increases in blood

levels of hepatic enzymes in some patients, particularly during the high-dose

intravenous period when patients should be monitored frequently. Therapy should

be held and dosing decreased for those with hepatic enzyme elevations during

therapy. Thrombocytopenia, leukopenia, and neutropenia are common and can also
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be readily managed with dose reductions although rarely transfusion may

be required111, 112. More serious are the neuropsychiatric issues, which include

depression (45 %), confusion (10 %), and mania (<1 %)111–113. In some studies of

IFN-a, depression was highly significant and rare suicides were reported113.

Permanent alterations of the immune system have also been reported, including

common development of vitiligo and hypothyroidism and rare occurrence of

sarcoidosis, lupus, rheumatoid arthritis, polymyalgia rheumatica, and psoria-

sis114–116. In view of these observations and those detailed above, it is likely that

the mechanisms of IFN-a in melanoma and the possible association with selected

parameters of altered immune control suggest that it may be possible to identify

underlying tumor or patient factors predictive of benefit prior to initiating therapy

and to avoid the toxicities of IFN-a in those predicted to have no benefit. To date,

attempts to find such predictors among the polymorphisms in the HLA system and

single nucleotide polymorphisms of the checkpoint protein CTLA-4 have not been

fruitful.117, 118

7.4.2 Interleukin-2

IL-2 plays a pivotal role in the treatment of patients with metastatic melanoma and

renal cell carcinoma. Malignant melanoma is a tumor of melanocytes. Many primary

cutaneous melanomas exhibit histologic regression coincident with infiltration of

T cells and NK cells at the time of clinical detection119–121. In general, melanoma

has not been responsive to cytotoxic chemotherapy. Thus, early work focused on the

generation of effective immune responses in melanoma patients. Early work in the

Surgery Branch of the National Cancer Institute found that adoptively transferred

IL-2-activated peripheral blood mononuclear cells with the phenotype and functional

characteristics of activated NK cells, supported with concomitant administration of

IL-2 in high doses, resulted in significant tumor regression in patients selected for

normal organ function and good performance status122. Further investigation of these

encouraging results suggested that therapeutic benefit could be seen in a subset of

patients treated with high doses of IL-2 alone.

High-dose IL-2 induces objective clinical responses in 15–20 % of patients with

advanced melanoma and durable complete responses in 5–7% of these patients123, 124.

In order to reduce IL-2-related side effects, a variety of modifications to high-dose

IL-2 regimens have been tested in patients with melanoma, including alterations of

dose, schedule, and route as well as chemical alterations of IL-2 molecular structure

that alter its cellular targets. Other modulations, including the addition of toxicity

modulators such as drugs with anti-inflammatory properties or anti-angiogenic

agents, have also been tested. Unfortunately, none of these modifications has led

to an improved therapeutic index, and current strategies are revisiting the concept of

investigating host and tumor biologic and immunologic properties that might

predict benefit and allow for selection of patients with an improved therapeutic

index. Additional efforts are underway to develop combinations of
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immunomodulators that combine cytokines with other agents to enhance antitumor

immunity. IL-2 continues to play an important role as a T cell growth factor in

adoptive T cell therapies (as a component of the T cell expansion procedure and

administered following cell infusions) but is likely to be supplanted or augmented

by other cytokines such as IL-15, IL-21, or IL-7 as their advantages and possible

synergies become better understood.

Metastatic renal cancer, particularly the clear-cell histology that comprises the

majority of cases, is another tumor that is inherently resistant to cytotoxic agents

and has shown responsiveness to immune modulators such as IFN-a and IL-2. The

response rate with high-dose intravenous bolus IL-2 is around 20–25 % for meta-

static renal cell carcinoma patients, similar to that seen in melanoma patients and

with a similar rate of durable complete response in the 7 % range. In renal cell

carcinoma, it has been possible to demonstrate activity with lower doses of IL-2 as

well as combination with IFN-a, although durable complete responses appear to be

more likely with the high-dose intravenous regimen. Two large trials have directly

compared high-dose IL-2 with the combination of IL-2 plus IFN-a. One of these

trials also had an IFN-a alone cohort and demonstrated that while the combination

had superior activity, its toxicities outweighed any enhancement of activity. The

other trial compared high-dose intravenous bolus IL-2 with an outpatient regimen

of subcutaneous IL-2 plus IFN-a and showed similar overall response rates but

superiority in response and survival for patients in the most unfavorable groups

(liver metastasis, bone metastasis, and primary tumor in place)125. Further evidence

of benefit for high-dose IL-2 was provided by another randomized trial comparing

two intravenous bolus regimens of IL-2 (high-dose and low-dose) and one low-dose

subcutaneous IL-2 regimen in patients with metastatic renal cell carcinoma.

The objective response rate in the high-dose intravenous arm was twice that of

both low-dose arms (21 % vs. 11 % and 10 %)126. The overall clinical responses

with high-dose IL-2 have been relatively durable, with median response durations

of 24–54 months and with over 80 % of complete responders being long-term

survivors127. Thus, high-dose intravenous bolus IL-2 should remain in the arma-

mentarium of the experienced clinical oncologist for advanced renal cell carci-

noma. Interactions and optimal sequencing of IL-2 with tyrosine kinase inhibitors,

now widely used for the frontline and subsequent treatment of advanced renal

cancer, need to be better understood to provide the optimal therapy for all patients

with this disease.

The toxicity profile of IL-2 is largely associated with a capillary leak syndrome,

which is characterized by hypotension, tachycardia, and peripheral edema secondary

to third space fluid accumulation. In addition, IL-2 can cause constitutional symptoms

such as fever, chills, and fatigue, gastrointestinal side effects such as nausea, vomiting,

anorexia, and diarrhea, and transaminase elevation and cholestasis128. In addition to

hypotension, IL-2 can also induce pulmonary edema, cardiac arrhythmias, myocarditis,

reversible renal and hepatic dysfunction, pruritus, electrolyte abnormalities, throm-

bocytopenia, anemia, and coagulopathy. Rarely IL-2 can also induce confusion,

disorientation, or visual hallucinations. Although early studies with IL-2 reported

a 2 % mortality rate, generally related to gram-positive sepsis, current IL-2 centers
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that routinely use prophylactic antibiotics report no mortality129, 130. In experienced

centers, IL-2-related toxicity can usually be easily managed and all side effects are

reversible upon cessation of treatment.

7.5 Cytokine Therapy in Clinical Development

7.5.1 Interferon-a and Related Cytokines

Though not approved as a single agent for renal cell carcinoma, numerous clinical

trials have evaluated the effects of single agent IFN-a in patients with metastatic

disease. While response rates in the range of 10–15 % were reported in the older

literature, recent randomized trials have shown lower activity at tolerable doses

(see below), and only a modest suggestion of a dose–response relationship up to 10

million units/m2/day, but at the expense of reduced quality of life131. Older trials

combining IFN-a with chemotherapy and/or other cytokines reported promising

activity that has not been corroborated in phase III trials, but two large randomized

trials were recently reported that showed dramatic increases in the progression-free

survival for a combination of bevacizumab (blockade of vascular endothelial

growth factor) with IFN-a compared with IFN-a alone. Further evidence of the

role for as-yet unidentified factors in the immune and angiogenic milieu was

provided by the demonstration that cytoreductive nephrectomy increased survival

in patients presenting with metastatic renal cancer treated with IFN-a alone or

following surgery, although the objective responses to IFN-a were under 10 % in

these trials132, 133.

With the advent of a series of well-tolerated and active molecularly targeted

agents for advanced renal cancer, the use of this expensive and somewhat toxic

regimen that requires parenteral administration has waned.

IFN-a has also been investigated in patients with metastatic melanoma. Although

single agent response rates have been low, IFN-a has also been tested in combination

with chemotherapy and IL-2 in various biochemotherapy regimens134–137. In studies

combining cisplatinum, vinblastine, and dacarbazine with IFN-a and low-dose IL-2,

inconsistent clinical benefit has been reported134. A phase III randomized trial,

however, failed to show an improvement in overall survival for this biochemotherapy

regimen when compared to chemotherapy alone135, and other comparisons of com-

plex, toxic regimens containing chemotherapy and one or both cytokines (IL-2 and/or

IFN-a) have also failed to demonstrate a survival benefit in advanced melanoma.

Because of their high initial regression rates, these regimens are sometimes used for

otherwise robust patients with rapidly progressive melanoma to achieve control of

symptomatic disease but are not recommended for routine use. The US cooperative

groups recently completed a large trial of adjuvant therapy for high-risk, resected

stage III melanoma comparing a similar 5-drug biochemotherapy regimen with the

1-year regimen of adjuvant IFN-a (http://clinicaltrials.gov/ct2/show/NCT00006237?

term¼S0008&rank¼2), but the study results have not yet matured, and it is likely that
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regardless of the outcome, both therapies will have been replaced by regimens

selected for patient- and tumor-specific factors, some of which are already under

investigation or development for study in the adjuvant setting.

7.5.2 Interleukin-2 Combination Regimens

To improve the clinical effectiveness and therapeutic index of IL-2, studies combin-

ing IL-2 with other immunomodulatory agents have been widely evaluated in

melanoma. Based on the expectation that cytotoxic T cell responses to selected

immunodominant peptides from melanoma antigens could be enhanced by exoge-

nous cytokine, a study of high-dose IL-2 plus an HLA-A2-restricted gp-100 peptide

was performed in HLA-A2-positive patients with metastatic melanoma. The encour-

aging results (objective response rate of 42 % among 31 patients in this small phase

II trial138) led to a confirmatory phase III clinical trial was designed to compare the

combination of the modified gp100 peptide vaccine and high-dose IL-2 to IL-2

alone. While the results of this trial showed an improvement in progression-free

survival and a small benefit in overall survival for the combination139, its confirma-

tion would require a larger trial. Furthermore, a randomized phase II trial testing

different schedules of IL-2 and peptide was completed in parallel with the phase III

trial and did not demonstrate sufficient activity in any of the schedules to justify

further development140. Current therapies that appear to have a superior therapeutic

index and to be more widely available (not requiring a specific HLA type as peptide

vaccines do) are likely to temper enthusiasm for this approach.

7.5.3 IL-2 Predictive Factors and Patient Selection

There has been intense interest in the discovery of predictive biomarkers for better

selection of patients likely to respond to IL-2 therapy for both renal cell carcinoma

and melanoma. A defined polymorphism in the CCR5 gene (CCR5D32) was

associated with decreased survival following IL-2 administration in patients with

stage IV melanoma compared to patients not carrying the deletion.141 Increased

pretreatment serum vascular endothelial growth factor and fibronectin levels were

associated with a poor response to IL-2 and a decreased overall survival142.

Preliminary studies suggested that elevated levels of carbonic anhydrase IX in

renal cell carcinoma patients conferred a better response to IL-2 therapy compared

to patients with tumors demonstrating normal or low levels143, 144, but larger trials

that included additional characteristics raised the possibility of more discriminating

markers that remain under active investigation. Other studies have focused

on assessing the number, phenotypic characteristics, and functional status of
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CD4+FoxP3+ Tregs in melanoma and renal cell carcinoma patients undergoing

standard high-dose IL-2 administration. While the number of Tregs increased after

exposure to IL-2 and remained elevated in patients with disease progression,

patients who responded to IL-2 demonstrated a decrease in Tregs to normal levels

within 4 weeks of completing IL-2 treatment145. Ultimately, it will be essential

to identify predictive factors (specific for the intervention and not simply

prognosticators for the natural history of the disease) in sufficient numbers to be

validated in large patient cohorts.

7.5.4 Investigational Cytokines for Treatment of Malignancy

IL-15: IL-15, a member of the small four a-helix bundle family of cytokines, is one

of the several IL-2-related cytokines that signal through the gc receptor subunit and
have recently entered clinical investigation for cancer and hematologic

malignancies146. While both IL-2 and IL-15 provide early stimulation for T cell

proliferation and activation, IL-15 acts to block IL-2-induced apoptosis147, 148.

IL-15 also supports the persistence of memory CD8+ T cells, which may be

important for maintaining long-term antitumor immunity149–152. IL-15 has

demonstrated significant therapeutic activity in several preclinical murine models

of cancer.153 These effects are mediated through direct activation of CD8+ effector

T cells in an antigen-independent manner151. Importantly, IL-15 must be presented

by a cell-bound a-receptor (see Fig. 7.2) to CD8+ T cells and NK cells expressing

the common b- and g receptors154. Recombinant IL-15 has just entered phase I trials

in human subjects and is expected to have value in a variety of immunotherapeutic

strategies both in vivo and in ex vivo strategies for adoptive cell therapies.

IL-18: IL-18, a 24 kDa, non-glycosylated polypeptide, was initially identified as
IFN-g-inducing factor and is structurally related to IL-1b155–157. IL-18 stimulates

IFN-g secretion by NK and CD8+ T cells and enhances their cytotoxicity158–160.

Other functions of IL-18 include macrophage activation, development of Th1

helper CD4+ T cells, increased expression of FasL on lymphocytes, and promotion

of angiogenesis161, 162. Phase I clinical trials documented the safety of IL-18 and

found increased levels of serum IFN-g and GM-CSF in patients after receiving

intravenous IL-18. The clinical responses have been modest with only 2 objective

responses in 26 patients in one trial and three stable disease patients in another

study163, 164. Additional investigation will be required to discover a niche for IL-18

in cancer immunotherapy strategies.

IL-12: IL-21 is a Type I cytokine with close homology to IL-2, IL-4, and IL-15

that shares with these cytokines plus IL-7 and IL-9 the gc receptor subunit and a

cytokine-specific a-receptor. IL-21 is produced primarily by activated CD4+ T cells.

IL-21 signaling is distinguished from that of other gc cytokines by activating primar-

ily STAT1 and STAT3165. IL-21 is produced by activated CD4+ T cells and has

pleiotropic effects, including the promotion of CD4+ and CD8+ T cell proliferation
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and enhancement of CD8+ T cell and NK cell cytotoxicity without promoting

activation-induced cell death166–168. Although the role of IL-21 in Th1/Th2 differen-

tiation is unclear, it is required for normal humoral responses169. IL-21 has

demonstrated therapeutic activity in murine tumor models of melanoma and has

recently entered phase I clinical trials with modest preliminary results170–172. Like the

other gc cytokines, IL-21 may find an important role in ex vivo strategies for adoptive

T cell therapies and/or in conjunction with other elements of multicomponent

immunotherapy strategies.

IL-12: IL-12 has been studied as a therapeutic cytokine for cancer in extensive

preclinical investigations and a variety of clinical settings. It also exhibits

anti-angiogenic effects mediated by IFNs, particularly IFN-g, and by the chemo-

kine IP-1072. Based on these provocative preclinical studies, IL-12 was evaluated in

patients with metastatic melanoma or renal cancer. In a phase I clinical trial, the

objective response rate was less than 5 %. Although the response rates were low,

patients who did respond had sustained serum levels of IFN-g, IL-15, and IL-18,
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Fig. 7.2 The complex of IL-15 bound to its unique a receptor on the surface of antigen-presenting

cells ligates the shared IL-2/IL-15 b receptor and common g chain to form the IL-15 signaling

complex on T and NK cells.
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suggesting that sustained IFN-g production might result in better responses173, 174.

In a phase I trial combining IL-12 with low doses of IL-2, sustained levels of IFN-g
and expansion of NK cells were observed, although only one patient achieved a

partial response175. IL-12 appears to have the potent ability to induce counter-

regulatory cytokines such as IL-10 that may abrogate its immunostimulatory

properties, depending on the dose and schedule of administration, but it could

have promise as a component of the immune adjuvant in certain tumor vaccine

strategies as well as in locoregional delivery vehicles such as plasmid

electroporation176.

7.5.5 GM-CSF and Related Cytokines

Recombinant GM-CSF was approved by the FDA to shorten the time to neutrophil

recovery and reduce the incidence of bacterial infections following induction

chemotherapy in patients with acute myelogenous leukemia. GM-CSF has also

been used to mobilize hematopoietic progenitor cells into the peripheral blood for

leukapheresis collection and enhance engraftment and myeloid reconstitution after

autologous and allogeneic bone marrow transplantation. Based on extensive pre-

clinical work demonstrating a variety of immunostimulatory properties for this

molecule, in particular through its transgenic expression in tumor cells to create a

promising tumor vaccine177, this cytokine has undergone extensive testing in a

variety of immunotherapeutic strategies. Single agent GM-CSF has antitumor

activity in melanoma when injected directly into metastatic lesions178, 179. Recom-

binant GM-CSF has also been used as a subcutaneous injection in patients with

resected stage III and IV melanoma based on a nonrandomized historical compari-

son suggesting a prolongation of disease-free and overall survival in patients who

received GM-CSF for 2–3 years following surgery180. However, a recently

completed randomized, placebo-controlled study of recombinant GM-CSF in

patients with limited stage IV and bulky stage III melanoma following resection

of all detectable lesions failed to show a clinical benefit either alone or when

combined with a melanoma peptide vaccine in those patients whose HLA type

permitted study of the vaccine181. Among many strategies currently under evalua-

tion with this cytokine, GM-CSF has also been expressed in recombinant viral

vectors for intratumoral administration and has shown sufficient promise in Phase II

trials to justify the design of a randomized trial that is described below182.

7.5.6 Interferon-b

IFN-b is a Type I IFN produced not only by leukocytes but also by some tumors183.

Nevertheless, its therapeutic potential in immunomodulatory strategies has been

demonstrated both for suppression of autoimmune reactivity (four different

formulations of the drug are approved for multiple sclerosis) as well as for

immunostimulation in the treatment of malignancy in a number of preclinical
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models. In comparative analyses of the antitumor effects of the Type I IFNs, IFN-b
is more potent than IFN-a in inducing antiproliferative effects in preclinical cancer

models184–186. In spite of its higher antiproliferative potential compared to IFN-a,
the clinical use of IFN-b in cancer therapy has been limited by its low bioavailabil-

ity and sustained side effects that may be overcome by delivery in different routes

and schedules.

7.5.7 Alternative Strategies for Cytokine Delivery

A variety of innovative strategies for delivery of therapeutic cytokines have been

promising in the treatment of malignancy. These include a variety of cytokine-

antibody fusion molecules (immunocytokines), recombinant viral vectors to deliver

cytokine genes, DNA plasmid vaccines encoding a cytokine molecule, transgenic

expression of cytokines in whole tumor cells, chemical conjugation to polyethylene

glycol (PEGylation) to improve the kinetics of the cytokine, and the use of single

or combination cytokines to promote the ex vivo development of cell-based

immunotherapy.

7.5.8 Cytokine-Antibody Fusion Molecules

A cytokine-antibody fusion molecule is a genetically engineered fusion protein

consisting of a chimeric antibody with a functional cytokine and an antigen-binding

site designed to deliver cytokines to the tumor microenvironment. The prototype

fusion molecule has utilized various antigen-binding moieties fused to recombinant

human IL-2187. The therapeutic potential of this approach has been demonstrated

using a fusion construct encoding the anti-GD2 ganglioside-binding site and IL-2

against a human neuroblastoma tumor in an SCID mouse model. In this system,

local IL-2 delivery through the fusion molecule resulted in enhanced effector T cell

responses and increased tumor cell lysis compared to systemic IL-2 delivery. The
fusion molecule was also more potent than equivalent doses of recombinant human

IL-2 in prolonging survival, and in another study, supported proliferation of

lymphokine-activated killer cells. Treatment also resulted in the accumulation of

the fusion molecule in the tumor, which slowed tumor growth and induced a

significant immune response. This effect was more pronounced when the bifunc-

tional molecule was injected directly into the tumor, highlighting the importance of

local delivery188, 189. Phase I and II clinical trials of this recombinant fusion

molecule in both adult melanoma and pediatric neuroblastoma patients have

demonstrated its safety in patients at doses and schedules that are able to induce

immune activation190, 191. Other novel immunocytokines entering clinical trials

include a molecule containing an antigen-specific T cell receptor fused to two

functional molecules of IL-2 (http://clinicaltrials.gov/ct2/show/NCT01029873?

term¼altor+and+melanoma&rank¼).
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7.5.9 Recombinant Viruses as Delivery Systems for Tumor
Immunotherapy

The expression of cytokines by recombinant viruses provides another strategy for

increasing the immunogenicity of antigen-specific vaccines and for local delivery

of cytokines to the tumor microenvironment (see chapter 6 for many additional

details). An attenuated oncolytic herpes simplex virus Type 1 encoding GM-CSF

was shown to replicate selectively in tumor cells, leading to the production of local

GM-CSF with the potential to augment tumor-specific immunity. The virus was

attenuated by deletion of pathogenic viral genes, leading to enhanced replication of

the virus in tumor cells through increased expression of the herpes US11 promoter

and to increased antigen presentation in HSV-infected cells. Local GM-CSF

enhances dendritic cell maturation and uptake of necrotic tumor cells, and induction

of T cell immunity. Phase I studies demonstrated an acceptable safety profile with

low-grade fever as the major side effect192. A phase II multi-institutional clinical

trial tested the vector by direct injection into accessible melanoma lesions in

patients with unresectable stage IIIc or IV melanoma193. Fifty patients were treated,

and a 26 % overall objective response rate (that included some regressions outside

of the injected metastases) was reported. There was a correlation between clinical

regression and increased tumor MART-1-specific CD8+ T cells and a decrease in

CD4+FoxP3+ Tregs at the tumor site194. Based on these results, a prospective,

randomized phase III clinical trial of the virally encoded cytokine injected interale-

sionally compared with subcutaneous administration of GM-CSF in patients with

metastatic melanoma is currently underway182.

Recombinant vaccinia viruses have also shown promise against a variety of

tumors using in vivo murine tumor models. When tumors were injected directly

with the oncolytic vector vaccinia virus, there was significant local cytokine produc-

tion by DC and T cells195. Vaccinia virus-induced inhibition of T cell proliferation

was seen but could be reversed by adding IL-2 and IL-12 to the vaccinia constructs,

and the vaccinia-cytokine strategy led to profound local tumor regression196. This

suggests that intratumoral vaccinia-cytokine gene constructs can retard tumor growth

by targeting the immune system through tumor-infiltrating DC and T cells.

In contrast to the oncolytic effects of vaccinia virus, the vectors can also be used

to encode tumor-associated antigens. A vaccinia virus encoding human prostate-

specific antigen (rV-PSA) was administered intradermally with or without subcuta-

neous GM-CSF in a phase I trial to 33 men who had failed standard therapy.

Vaccinia was shown to be safe and efficacious at inducing PSA-specific T cell

responses and lowered or stabilized the PSA level in about half of the patients for 6

to greater than 21 months197. In another trial, seven patients with unresectable

cutaneous melanoma received twice-weekly intradermal and/or subcutaneous

injections of a recombinant vaccinia-GM-CSF virus into tumor metastases. The

vaccinia-GM-CSF virus was safe and led to tumor regression in a few patients191.

Recombinant vaccinia-GM-CSF virotherapy delivered intratumorally remains

promising and may lend itself to further immunomodulatory strategies using other
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interventions like the delivery of other genes and/or the addition of immune check-

point blockers. Details of viruses in tumor immunotherapy are found in chapter 6.

7.5.10 Cell Engineering Approaches

Genetic engineering of tumor cells, APCs and effector lymphocytes is being devel-

oped as a way of delivering cytokines into the tumor microenvironment in an

optimally defined space and time to prime host antitumor immunity against natural

tumor antigens that have been processed and presented in immunogenic fashion199.

Improvements in in vitro technology have facilitated the identification of tumor

antigens and the isolation and expansion of antigen-reactive T cells. In these

approaches, whole irradiated autologous or allogeneic tumor cells have been

shown to secrete cytokines for sufficient periods of time to prime effective immune

responses, and the possibility of introducing genes encoding accessorymolecules not

ordinarily expressed by the tumor has also been explored. Cytokines secreted locally

in this fashion can also provide proliferative and survival signals to antigen-

presenting and effector cells that further promote immune responses200. It has

been shown that irradiated tumor cells in a vaccine expressing murine GM-CSF

stimulate potent, long-lasting, and specific antitumor immunity, requiring both CD4+

and CD8+ cells201. Clinical trials of allogeneic-irradiated whole cell tumor vaccines

encoding GM-CSF have been reported, with the theoretical potential that an alloge-

neic source of such an engineered tumor cell vaccine could provide an “off the shelf”

consistent and well-characterized source of the therapeutic agent, but the best overall

choice of genetically engineered tumor cell vaccine remains to be determined.

7.5.11 DNA Vaccination

The use of DNA vaccines encoding tumor antigens and/or cytokines has been

extensively studied in animal tumor models with promising results. A DNA

vaccine encoding human tyrosinase has been approved for the treatment of canine

melanoma202. There are also many murine studies supporting the potential thera-

peutic benefit of DNA vaccines encoding cytokines alone, in combination with

other cytokines, or in combination with tumor antigens203, 204, and these strategies

are in development for testing in human cancer.

7.5.12 Cytokine PEGylation

Conjugation of the polymer polyethylene glycol (PEG) to proteins is termed

PEGylation. This process can significantly decrease protein clearance from plasma

and increase the in vivo half-life, providing a method for enhancing exposure to
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specific proteins and potentially avoiding toxicities associated with high peak

concentrations of the unmanipulated protein205. To date, PEGylation has been

successfully applied to two cytokines: PEG-interferona-2a (PEG-IFN-a2a) and

PEG-granulocyte colony-stimulating factor (PEG-G-CSF). IFN-a2a and PEG-

IFN-a2a are virtually indistinguishable clinically, and both formulations elicit

IFN response genes with equal efficiency while inhibiting tumor development

with equal potency206. While PEG-IFN-a2a has similar activity to that of unmodi-

fied IFN-a2a in the adjuvant therapy of melanoma as well as in other diseases and

the greater convenience associated with less frequent dosing and avoidance of

the intravenous period of dosing, its use has been limited for the most part to

European centers. In the USA, PEG-IFN is now rarely used for chronic myeloge-

nous leukemia due to the superior therapeutic index of tyrosine kinase inhibitors;

PEG-IFN is approved in combinations with antiviral agents for the treatment of

chronic viral hepatitis207.

7.5.13 Ex vivo Cytokines for the Immunotherapy of Cancer

Cytokines are important for the ex vivo generation of cell populations used in the

vaccination and/or adoptive therapy of cancer. This is an important area of current

investigation, as new combinations of cytokines are being tested for their impact on

subsequent therapeutic responses. The two most widely evaluated approaches thus

far have been in the generation of antigen-loaded dendritic cell vaccines and the

generation of antigen-specific T cells for adoptive cellular therapy.

Dendritic cell (DC)-based vaccination therapy for cancer is a very promising

strategy, since DCs are the most potent agents to prime T cells. Cytokines are used

in several aspects of DC-based vaccine strategies, including their generation from

peripheral blood monocytes obtained by leukapheresis (most commonly with IL-4

plus GM-CSF) and their maturation to potent APCs (for example, with TNF-a and

IL-1b27). The safety of using autologous DC vaccines has been reported in clinical

trials enrolling over 1,000 cancer patients exposed to a wide variety of types of DC

products, route, and schedule of administration208. While pooled results suggest

modest activity with simpler regimens, current strategies are focused on optimizing

DC-based vaccines by exposing them to defined and precisely timed stimulants as

well as different methods of introducing antigens and co-stimulatory molecules,

including via RNA encoding these elements209–211.

In addition to melanoma, DC vaccines stimulated with cytokines have shown

promise in the treatment of prostate cancer. Using an autologous DC pulsed with a

fusion protein containing prostate acid phosphatase as the antigen and GM-CSF to

stimulate DC antigen-presentation, a recent double-blind, placebo-controlled

multi-institutional phase III clinical trial was carried out in 512 men with

castration-resistant prostate cancer who were randomized 2:1 to vaccine or placebo

(autologous DC not loaded with the antigen-cytokine construct). The results of this

trial included a 22 % reduction in the risk of death for vaccinated patients compared

to placebo, representing a 4.1 month improvement in median survival (25.8 vs.
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21.7 months). In this trial, over 60 % of the vaccinated patients exhibited antibody

titers against the prostate acid phosphatase compared to only 2 % in the placebo

group212. The results of his trial led to the FDA approval of this vaccine (sipuleucel-T)

for prostate cancer in 2010, consistent with other data from trials performed during

the same time interval showing encouraging results for similar immunomodulatory

therapies for advanced prostate cancer213. Other malignancies with the potential for

treatment based on promising preliminary data include lymphoma and renal cancer,

but the optimal strategies remain to be identified.

The demonstration that TIL from metastatic lesions in patients with melanoma

could be grown ex vivo with IL-2 and that these cells could mediate HLA-restricted

tumor recognition suggested that adoptive transfer of TIL might be a powerful

therapeutic strategy214. The generation of T cells for transfer generally utilizes

ex vivo cytokines, most commonly IL-2, which is also commonly administered to

patients following cell infusions to provide proliferative and survival signals to the

adoptively transferred cells. In early studies at the NCI Surgery Branch, 86 patients

with metastatic melanoma were treated with autologous TIL and high-dose IL-2215.

Fifty-eight patients also received a preparative dose of cyclophosphamide (25 mg/kg)

prior to T cell transfer. An objective clinical response was seen in 31 % in the TIL

only group and 35 % in the cyclophosphamide-treated group. Following the

recognition that T cell survival may be prolonged in the lymphopenic host, a series

of clinical trials utilizing more profound lymphodepleting regimens were tested. In

one study of 43 melanoma patients, a non-myeloablative chemotherapy regimen

consisting of cyclophosphamide (60 mg/kg) given on 2 consecutive days followed

by fludarabine (25 mg/m2) for 5 days was used prior to T cell infusion. In this study

an objective clinical response rate of 49 % was reported216. Another trial utilized an

additional preparative treatment of whole body irradiation (200 cGy total) and an

objective response rate of 52 % was reported217. A third trial intensified the total

radiation dose to 1,200 cGy and a response rate of 72 % was seen218.

The role of cytokines in supporting the adoptive transfer of T lymphocytes has

been recognized in murine models and is widely utilized in clinical protocols.

While high-dose IL-2 has generally been utilized to maintain persistence of adop-

tively transferred T cells, low doses may be sufficient to maintain the persistence of

antigen-specific CD8 cells219. There is also evidence that IL-15 may be superior to

IL-2 due to its superior profile in maintaining memory CD4+ and CD8+ T cells and

its lack of promotion of CD4+CD25+Foxp3+ regulatory T cells or activation-

induced cell death, in contrast with IL-2220. Further studies are needed to under-

stand better the optimal use of these cytokines in T cell persistence, migration, and

homeostatic repopulation to improve therapeutic effectiveness of adoptive T cell

approaches. Adoptive T cell transfers are discussed in detail in chapter 3.

7.5.14 Conclusions and Future Directions

The cytokines represent a large, diverse family of intercellular mediators that regulate

and influence the immune system to maintain homeostasis, defend against pathogenic
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organisms and mediate other important immune functions. The cytokines are also

critical for tumor immunosurveillance and have demonstrated therapeutic antitumor

activity in murine models and in the clinical treatment of several human cancers.

A better understanding of the molecular signaling pathways used by cytokine

receptors and the temporal and kinetic pattern of receptor expression have led to

the therapeutic application of cytokines in a variety of settings. Single agent IFN-a
and high-dose IL-2 have been approved for the adjuvant therapy of melanoma and the

treatment of metastatic renal cell carcinoma and melanoma, respectively. Other

members of the IL-2-related cytokine family are under intense scrutiny for additional

antitumor activity based on encouraging murine tumor models. In addition, several

innovative strategies have been developed that utilize cytokines to promote effective

antitumor immunity, including bifunctional molecules such as antibody-cytokine

fusions, expression of cytokines in recombinant viral vectors, DNA or irradiated

whole tumor cells as vaccines, by PEGylation to enhance the kinetics and for ex vivo

manipulation of cells, such as DC and adoptively transferred T cells.

There is little doubt that future studies will evolve at both the basic and clinical

levels. A better understanding of how cytokines mediate tumor regression vs.

progression by impacting effector and regulatory cell populations is an important

area for development. The potential to block immunosuppressive cytokines has

been demonstrated in preclinical studies but has not yet been translated into clinical

trials. A major effort to identify predictive biomarkers will also be important as

better patient selection might be one way to increase the clinical benefit of cytokine

therapy while identifying new strategies for individual patients. The combination of

cytokines with other treatment modalities is also expected to yield important

insights. The cytokines have already proven to be useful in the treatment of cancer

and will likely continue to play a major role in the development of immunotherapy

for the treatment of cancer.
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Chapter 8

Immune Co-signaling to Treat Cancer

Margaret K. Callahan, Jedd D. Wolchok, James P. Allison,

and Padmanee Sharma

Abstract The past two decades have been marked by a growing understanding of

the co-stimulatory and co-inhibitory pathways that are critical to the generation of

an effective, well-regulated immune response. Capitalizing on an increasingly

nuanced appreciation for the role that these molecules play in anti-tumor immune

responses, a diversity of novel therapies to treat human cancers are being explored.

The ground-breaking success of anti-CTLA-4 therapy in the treatment of advanced

melanoma has set the stage for the clinical development of agents targeting a

diversity of co-stimulatory and co-inhibitory molecules. Herein, we review the
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co-signaling molecules that regulate T cell activation with a focus on their potential

role(s) in anti-tumor immune responses. Where available, pre-clinical and clinical

studies evaluating the anti-tumor activity of agents targeting these molecules are

presented.

8.1 Introduction

Induction of an antigen-specific T cell response is a complex, highly regulated

process. Studies performed in the 1970s and 1980s led to the development of the

“two signal” model of T cell activation1–4. In this model, T cell activation requires

both antigen-specific stimulation via the T cell receptor (TCR) (signal 1) as well as

a co-stimulatory signal (signal 2). TCR signaling in the absence of co-stimulation

leads to T cell anergy rather than activation2. Research over the subsequent decades

has largely validated the two signal model, and has added layers of complexity to

this framework. It is now clear that a variety of co-signaling molecules, both

co-stimulatory and co-inhibitory, are required to orchestrate an antigen-specific

immune response, governing both the activation and regulation of this process.

Cancer immunotherapy seeks to harness the immune system to treat cancer.

Based upon the two signal model of immune activation, proposed immunotherapies

have focused on enhancing antigen-specific (signal 1) and co-stimulatory (signal

2) pathways involved in anti-tumor immune responses. Characterization of the

“signal 1” necessary for anti-tumor immune responses led to the identification of

a variety of tumor antigens, including many with exquisite specificity for their

tumor of origin5. Co-signaling molecules play several roles in modulating anti-

tumor immunity. First, co-stimulatory molecules are the requisite “signal 2” neces-

sary for productive anti-tumor immunity. Initial studies of co-stimulatory

molecules like B7-1 (CD80) and CD28 demonstrated the potential for co-signaling

to enhance anti-tumor immunity. Immunotherapies that augment “signal 2” are

presently under clinical investigation. Secondly, co-inhibitory molecules have

proven to be important checkpoints that limit anti-tumor immunity. Thus,

approaches to block co-inhibitory molecules like cytotoxic T lymphocyte-associated

antigen (CTLA-4) and programmed death (PD)-1 have shown great promise in

enhancing anti-tumor responses. Underscoring the translational potential in devel-

oping novel anti-tumor agents by targeting co-signaling molecules, a human

CTLA-4 blocking antibody, ipilimumab, has recently been approved by the Food

and Drug Administration (FDA) for the treatment of advanced melanoma.

In this chapter, we will briefly review the co-stimulatory and co-inhibitory

molecules presently defined. We will then review each co-signaling molecule

individually, highlighting its role in anti-tumor immunity and its potential as a

target for clinical development. Given the scope of this subject, and its rapid

expansion in the last few years, we will focus most heavily on the agents in the

most advanced stages of clinical development, those targeting CTLA-4 and PD-1.
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8.2 Co-signaling Molecules

Co-signaling molecules expressed on T cells fall broadly into two categories: co-

stimulatory molecules that enhance T cell activation or co-inhibitory molecules that

constrain T cell activation. More than a dozen unique co-signaling molecules have

been characterized to date (Table 8.1). Each of these molecules has its own pattern

of expression, defined affinity for a ligand or ligands, and specific patterns of

downstream signaling. Some of the ligands for co-signaling molecules have their

own signaling capacity, and this bidirectional communication adds yet another

layer of intricacy to an already complex web of interactions.

Most co-stimulatory molecules fall into two major families. The tumor necrosis

factor (TNF) receptor superfamily includes co-stimulatory molecules OX40

(CD134), CD27, 4-1BB (CD137), CD30, GITR, HVEM, and CD40. The immuno-

globulin superfamily (IGSF) includes co-stimulatory molecules CD28 and ICOS.

One recently identified co-stimulatory molecule, TLT-2 (TREM-like transcript 2)

breaks this mold as a member of the triggering receptor expressed on myeloid

(TREM) cells receptor family6. All of the co-inhibitory molecules defined thus far

are members of the IGSF, including CTLA-4, PD-1 (CD279), BTLA, and LAG-3.

8.3 CD28/CTLA-4/CD80/CD86

CD28, CTLA-4 (CD152), B7-1 (CD80), and B7-2 (CD86) are the canonical co-

signaling molecules regulating T cell activation and inhibition. The first evidence

that co-signaling could be manipulated as an effective cancer therapy came out of

initial studies of these molecules7, 8. Subsequent studies led to the development of

novel immunotherapies like the CTLA-4 blocking antibody ipilimumab, which has

demonstrated a benefit in overall survival for patients with metastatic melanoma9.

8.3.1 Biology

CD28 is the original and defining member of the immunoglobulin family of

co-stimulatory receptors, first identified on T cells in 198010, 11. Ligands for

CD28, B7-1 (CD80), and B7-2 (CD86) were cloned in 1991 and 1993 respec-

tively12–15. These molecules are expressed on most antigen presenting cells (APCs).

B7-2 is expressed constitutively at low levels and rapidly upregulated during APC

activation, whereas B7-1 is inducibly expressed later on15–17. Ligation of CD28 by

B7-1 or B7-2, in concert with TCR engagement, provides the co-stimulation

necessary for naı̈ve T cell activation resulting in cytokine production, proliferation,

and inhibition of activation-induced cell death (AICD)18, 19. CD28�/� knockout
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and B7-1�/�B7-2�/� double knockout mice have markedly compromised T cell

responses, underlining the indispensable role that CD28 plays in vivo20–22.

CTLA-4 was cloned in 1987 and its similarity to CD28, also a member of

the immunoglobulin gene family, was recognized early on23. However, it took

several years to appreciate the unique role of CTLA-4 in attentuating T cell

activation24–26. Like CD28, CTLA-4 binds to B7-1 and B7-2, albeit with higher

afinity27. Experiments using cross-linking antibodies to ligate TCR, CD28, and

CTLA-4 suggested that CTLA-4 acts as a negative regulator of CD28-mediated

co-stimulation24, 28. CTLA-4 engagement on activated T cells inhibits cytokine

synthesis and restricts cell proliferation24, 26, 29–31. Characterization of CTLA-4�/�

knockout mice established a critical negative regulatory function for CTLA-4

in vivo. These mice develop a profound, hyperproliferative lymphocyte expansion,

which is lethal within 3 weeks after birth32–34.

8.3.2 CTLA-4 Mechanisms of Inhibition

On a cellular level, CTLA-4-mediated inhibition of T cell activation relies on

several overlapping mechanisms. First, CTLA-4 competes with CD28 for interac-

tion with the co-stimulatory molecules B7-1 and B7-2. The orchestration of this

competition is temporospatially controlled by differences in both the subcellular

localization and patterns of expression of CD28 and CTLA-4. CD28 is constitu-

tively expressed, whereas CTLA-4 expression is up-regulated after T cell activa-

tion, reaching a maximal level after 2–3 days26. Upon TCR engagement and

the formation of an immunologic synapse between T cell and APC, a complex

pattern of subcellular trafficking of CD28 and CTLA-4 ensues35–39. CD28, already

present on the cell surface, is rapidly recruited to the synapse and provides a

co-stimulatory signal upon engagement of B7. CTLA-4 is expressed at low levels

on resting T cells and is sequestered in intracellular vesicles. Upon T cell activation,

CTLA-4 is mobilized to the cell surface and is subsequently recruited to the

synapse35, 36, 38, 40. Once in the synapse, CTLA-4 out-competes CD28 to bind

B7, forms a lattice-like network in association with B7-1, and effectively excludes

CD28 from the immunological synapse39, 41, 42. Secondly, CTLA-4 engagement

impacts multiple intracellular pathways. Inhibitory signaling is thought to be

mediated by (1) association with intracellular phosphatases like Src homology

2 (SH2) domain-containing phosphatase-1 (SHP-1), SHP-2, and protein phospha-

tase 2A (PP2A), (2) blockade of lipid-raft expression, and (3) disruption of

microcluster formation (reviewed by Rudd et al.19). Downstream sequelae include

inhibition of protein tyrosine kinases Lck, Fyn, and ZAP-70 and reduced expression

of transcription factors like nuclear factor-kB (NF-kB) and activator protein-1

(AP-1)43–50.

Adding layers of complexity to the CTLA-4/B7 interaction, CTLA-4 also

transmits suppressive signals via B7 to the APC. This “reverse” signaling results

in the induction of indoleamine 2,3-dioxygenase (IDO), an enzyme that degrades
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tryptophan into byproducts that inhibit T cell proliferation51, 52. Additionally, B7

molecules expressed on T cells provide another target for regulation via T cell to

T cell interaction between CTLA-4 and B753, 54.

8.3.3 CTLA-4 on Regulatory T Cells

CTLA-4 is constitutively expressed by natural and inducible Foxp3+ regulatory

T cells (Tregs)55. Moreover, CTLA-4 appears to be necessary for Treg function

in some, but not all, experimental systems56–61. Evidence supporting a role for

CTLA-4 in Treg function comes from mice that have a conditional deletion of

CTLA-4 in the Treg compartment. These mice develop a spontaneous lymphopro-

liferative disorder and die 10 weeks after birth, a phenotype similar to, but less

severe than CTLA-4�/� knockout mice62.

Understanding the precise mechanism(s) of CTLA-4 activity in vivo is an area

of active investigation. Two distinct, but not mutually exclusive, hypotheses to

explain CTLA-4 activity have gained experimental support: a cell intrinsic and a

cell extrinsic mechanism. In the cell intrinsic model, CTLA-4 acts in cis on

activated T cells to oppose the co-stimulatory signal provided by CD28 and B7

interaction, as described above. In support of this model, conventional CD4+ and

CD8+ T cells that do not express CTLA-4 have a higher proliferative capacity

in vitro and in vivo31, 34, 63–66. The cell extrinsic activity of CTLA-4, focusing on a

role for Tregs, has been more challenging to define. Early experiments

demonstrating that CTLA-4�/� T cells transferred into RAG1/2�/� hosts could be

inhibited by concomitant transfer of wild-type (wt) T cells suggested trans-regulation
by CTLA-4-sufficient wt cells56, 67, later defined as CD4+CD25+ Tregs68. Addi-

tionally, comparing the phenotypes of CTLA-4�/� knockout mice with the condi-

tional Treg CTLA-4�/� knockout mice implied that both conventional T cells and

Tregs contribute to this phenotype62.

8.4 Applications for Tumor Immunotherapy

The co-signaling pathways involving CD28, B7-1, B7-2, and CTLA-4 have proven

fruitful ground for enhancing our understanding of the role of co-stimulatory and

co-inhibitory molecules in anti-tumor immunity. These observations have served as

a platform for the development of novel immunotherapies, several of which show

great promise in their clinical application (Table 8.2).

8 Immune Co-signaling to Treat Cancer 217



8.4.1 B7-1/B7-2

The first successful modification of T cell co-signaling to treat cancer was accom-

plished through overexpression of B7-1 on tumor cells. In initial experiments,

melanoma cell lines transfected with B7-1 were found to regress spontaneously in

a CD8+ T cell-dependent process7, 8, 69, 70. Animals previously challenged with

these B7-1-overexpressing tumors were found to be immune to subsequent chal-

lenge with B7-1 negative tumors. A similar pattern was later seen with B7-2-

expressing tumors71. This work was subsequently expanded to murine lymphoma,

hepatoma, and prostate cancer tumor cell lines70, 72, 73.

8.4.2 Clinical Trials

Studies in mice paved the way for several clinical trials using autologous or alloge-

neic tumor cell lines transfected with B7-1 as a vaccine strategy. Phase I and II

studies in renal cell carcinoma, and phase I studies in melanoma, breast carcinoma,

and non-small cell lung cancer have been completed74–79. These studies

demonstrated an increase in tumor-associated immune responses, but limited

clinical benefit. As an alternative approach, B7-1 molecules have been included in

strategies for DNA vaccination, often in combination with tumor antigens or other

Table 8.2 Targeting co-stimulatory and co-inhibitory molecules in the development of novel

anti-cancer therapies

Target Agent(s) in clinical development Stage

CTLA-4 Blocking Ab Ipilimumab (MDX-010)

(BMS)

FDA approved

Blocking Ab tremelimumab (Pfizer) Phase III

PD-1 Blocking Ab MDX-1106/BMS-936558

(BMS)

Phase III

Blocking Ab CT-011 (CureTech) Phase II

Blocking Ab MK-3475 (Merck) Phase I

Fc-fusion protein of PD-L2 AMP-224

(Amplimmune)

Phase I

PD-L1 Blocking Ab MDX-1105/BMS-936559

(BMS)

Phase I

Blocking Ab MPDL3280A (Genentech) Phase I

LAG-3 Soluble LAG-3 IMP321 (immutep SA) Phase I

GITR Agonist Ab TRX518 (Tolerex) Phase I

CD40 Recombinant CD40L Phase I

Agonist Ab CP-870,893 (Pfizer) Phase I

Agonist Ab SGN-40 (Seattle Genetics) Phase II

Agonist Ab HCD122 (Novartis) Phase I

4-1BB Agonist Ab BMS-663513 (BMS) Phase II
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co-stimulatory molecules. Two phase I studies treating patients with metastatic

colon cancer with a vaccine incorporating human carcinoembryonic antigen

(CEA) and B7-1 in a recombinant canarypox virus vaccine demonstrated generation

of tumor antigen-specific immune responses, but showedmodest clinical benefit80, 81.

Using a similar approach, the B7-1 gene has been combined with genes for cell

adhesion molecules ICAM-1 and LFA-3 called TRiad of Co-stimulatory Molecules

(TRICOM) and this combination has been tested in several studies82–91. One phase I

study combining TRICOM with CEA in patients with adenocarcinoma expressing

CEA demonstrated the strategy to be safe and reported a complete response in one

patient of the 58 treated90. A second phase I study combining TRICOM with two

tumor antigens, CEA and MUC-1, demonstrated evidence of induced immune

responses, and a partial response in one patient of the 25 treated on the study84. In

an alternative approach, intralesional delivery of a B7-1 expressing virus has been

evaluated78, 92, 93. In a study of 13 patients with metastatic melanoma, local delivery

of a recombinant vaccinia virus expressing TRICOM (rvTRICOM) demonstrated

clinical benefit, with 5/13 (38.5 %) patients showing an objective response of the

treated lesion by Response Evaluation Criteria in Solid Tumors (RECIST) criteria.

Additionally, there was evidence of systemic response in two patients with one

partial response and one complete response94.

8.4.3 CTLA-4

Based upon the evidence that CTLA-4 functions to attenuate immune responses,

it was proposed that blockade of CTLA-4 could enhance immune responses

against tumors by inhibiting this “checkpoint”95. This hypothesis was initially

validated using transplantable murine tumor lines of colon carcinoma and fibrosar-

coma96–100. These experiments demonstrated that established tumors could be

rejected by administration of a CTLA-4 blocking antibody. This observation has

since been validated for transplantable tumors of many types including prostate

carcinoma, breast carcinoma, melanoma, ovarian carcinoma, lymphoma, and

others (Table 8.3)96–100. In some poorly immunogenic tumors, such as the B16

melanoma and the SM1 mammary tumor, CTLA-4 monotherapy was not effective,

but combination therapy with GM-CSF-expressing tumor cells, peptide, or

DNA vaccines had synergistic activity102, 103, 108. CTLA-4 blockade has since

shown activity in combination with conventional cancer therapies including sur-

gery109, radiation105, 110, chemotherapy101 cryoablation, and radiofrequency abla-

tion111. CTLA-4 has also been combined successfully with a diversity of

immunotherapies102–104, 106–108, 112–116.

Experience with CTLA-4 blockade in mouse models of transplantable tumors

demonstrated that enhancing co-signaling could stimulate anti-tumor immunity

to eradicate established tumors. Treated mice were resistant to subsequent tumor

challenge, confirming the generation of a memory response. Side effects of CTLA-4

blockade, such as skin depigmentation and prostatitis were seen in mouse models of
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Table 8.3 Treatment with anti-CTLA-4 antibodies in mouse tumor models

Treatment Tumor Response(s) Reference

Antibody alone Colon carcinoma

(51 BLiml 0)

Reduced growth or rejection of

established tumors.

Generation of tumor-specific

memory

Leach

et al.96

Fibrosarcoma

(Sa1N)

Antibody alone Prostate carcinoma

(TRAMPC1)

Reduced growth or rejection of

established tumors

Kwon

et al.97

Antibody alone Fibrosarcoma

(CSA1M)

Reduced growth or rejection of

established tumors.

Generation of tumor-specific

memory

Yang et al.98

Ovarian carcinoma

(OV-HM )

Antibody plus GM-CSF

secreting cellular

vaccine

Mammary

carcinoma

(SM1)

Rejection of established, poorly

immunogenic tumors.

Generation of tumor specific

memory. Tumor rejection

dependent upon CD4+ and

CD8+ T cells

Hurwitz

et al.112

Antibody plus

chemotherapy

(melphalan)

Plasmocytoma

(MOPC-315 )

Rejection of established, poorly

immunogenic tumors

Mokyr

et al.101

Antibody plus GM-CSF

secreting cellular

vaccine

Melanoma (B16) Rejection of established, poorly

immunogenic tumors.

Generation of tumor specific

memory. Tumor rejection

dependent upon CD8+ and

NK1.1+ cells

Van Elsas

et al.108

Antibody alone or

Antibody plus surgery

Prostate carcinoma

(C2)

Reduced growth or rejection of

established tumors. Increased

survival and decrease

metastatic burden in mice

treated in adjuvant setting

Kwon

et al.109

Antibody alone Lymphoma (A20)

expressing

model

antigen HA

Enhanced antigen-specific T cell

priming

Sotomayor

et al.100

Antibody alone Thymoma (EL-4)

expressing

model antigen

ovalbumin

Reduced tumor growth. Enhanced

expansion of antigen specific

CD8+ T cells, dependent upon

CD4+ cells and IL-2

Shrikant

et al.99

Antibody plus GM-CSF

secreting cellular

vaccine

Spontaneous

prostate tumor

(TRAMP)

Reduced tumor incidence.

Development of

autoimmunity (prostatitis)

Hurwitz

et al.114

Antibody plus DC

vaccine and anti-

VEGFR antibody

Colon cancer

(CT-26)

Increased tumor rejection alone

and in combination with other

therapies

Pedersen

et al.583

Antibody plus GM-CSF

secreting cellular

vaccine plus depletion

of Tregs

Melanoma (B16) Reduced growth or rejection

of established tumors.

Development of

autoimmunity

(depigmentation). Enhanced

Sutmuller

et al.584

(continued)
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Table 8.3 (continued)

Treatment Tumor Response(s) Reference

generation of tumor specific

T cells

Antibody plus peptide

plus CpG adjuvant

Melanoma (B16) Delayed tumor growth and

increase survival. Survival

dependent upon CD4+ and

CD8+ T cells

Davila

et al.102

Antibody plus xenogenic

DNA vaccination

Melanoma (B16) Reduced growth or rejection of

established tumors. Enhanced

tumor-antigen specific T cell

responses

Gregor

et al.103

Antibody plus p53

expressing viral

vaccine

Fibrosarcoma

(MethA)

Reduced growth or rejection of

established tumors. Anti-

tumor effect dependent upon

CD8+ T cells and IFN-gamma

Espenschied

et al.585

Antibody plus p53

expressing viral

vaccine

Mammary

carcinoma

(11A-1)

Reduced growth or rejection of

established tumors.

Daftarian

et al.104

Colon carcinoma

(MC-38)

Antibody plus local

radiation

Mammary

carcinoma

(4T1)

Increased overall survival.

Decreased lung metastasis.

Anti-tumor effect dependent

upon CD8+ T cells

Demaria

et al.105

Antibody plus GM-CSF

secreting cellular

vaccine

Melanoma (B16) Increased ratio of effector/Treg

within tumor

Quezada

et al.117

Antibody plus peptide

pulsed dendritic cells

vaccine

Thymoma (EL-4)

expressing

model antigen

ovalbumin

Reduced growth or rejection of

established tumors.

Generation of specific

memory response against

model antigen and with

evidence of epitope spread

to additional tumor antigens.

Met et al.106

Antibody plus GM-CSF

secreting cellular

vaccine

Melanoma (B16) Maximal anti-tumor response

requires synergist effects on

effector and Treg populations

Peggs

et al.118

Antibody plus Flt-3

secreting cellular

vaccine

Melanoma (B16) Reduced growth or rejection of

established tumors. Enhanced

tumor infiltration of CD8+

T cells

Curran

et al.116Prostate carcinoma

(C2)

Antibody plus Her2/neu

expressing viral

vaccine

Mammary

carcinoma

(D2F2/E2)

Rejection of established tumors.

Anti-tumor effect dependent

upon CD4+ and CD8+ T cells

Gao et al.107
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melanoma and prostate cancer respectively, and prefigured some of the immune-

related side effects of CTLA-4 blockade later seen in humans108, 113, 114.

8.5 Mechanism of Activity: CTLA-4 Blockade

and Tumor Immunity

Defining the mechanism(s) of CTLA-4 activity in vivo, and by extension, the

mechanism of anti-tumor immune activity mediated by CTLA-4 blockade, is an

area of active investigation. The relative contributions of cell intrinsic versus cell

extrinsic effects of CTLA-4 have been a matter of debate. In several mouse models,

anti-tumor immunity generated by CTLA-4 blockade relies most heavily upon the

effector T cell compartment, arguing in support of the cell intrinsic model113, 117, 118.

Utilizing a transgenic mouse expressing human CTLA-4, Peggs et al. were able to

assess the relative contributions of CTLA-4 expression independently on effector

T cells versus Tregs. These studies demonstrated an absolute requirement for effector

T cells, but not Tregs in anti-CTLA-4-mediated tumor immunity. However, concom-

itant blockade of both effector T cells and Tregs was required for maximal anti-tumor

effects118. Thus, the cell intrinsic effects of CTLA-4 blockade predominate, but cell

extrinsic effects also contribute to anti-tumor immunity.

8.5.1 Clinical Trials

CTLA-4 blocking antibodies for use in humans were developed based on the

preclinical activity seen in mouse models. Both ipilimumab (formerly MDX-010,

Bristol-Myers Squibb, Princeton, NJ) and tremelimumab (formerly CP-675, 206 or

ticilimumab, Pfizer, New York, NY) are fully human antibodies against CTLA-

4119–121. Ipilimumab is an IgG1 with a plasma half-life of 12–14 days.

Tremelimumab is an IgG2 with a plasma half-life of approximately 22 days. Both

of these agents have been most widely tested in patients with metastatic melanoma,

where durable clinical responses have been well documented. On March 25, 2011,

the US FDA approved ipilimumab for the treatment of patients with unresectable or

metastatic melanoma.

8.5.2 Ipilimumab in the Treatment of Melanoma

In a pilot study of ipilimumab reported in 2002, 17 patients with unresectable

melanoma were treated with single dose of 3 mg/kg. There were two partial

responses, which were durable. The treatment was tolerated well, with only a

mild rash noted122. A second pilot study of single-dose ipilimumab enrolled
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seven patients with melanoma and two patients with ovarian cancer. All patients

had previously been treated with tumor vaccines; five patients were previously

treated with a GM-CSF secreting tumor vaccine and four patients were previously

treated with a melanoma antigen vaccine. Evidence of treatment efficacy was seen

in patients who had received ipilimumab after receiving the GM-CSF tumor

vaccine. Tumor necrosis was demonstrated in three patients with melanoma and

reduction or stabilization of the tumor marker CA-125 was seen in three patients

with ovarian cancer. The treatment was well tolerated, and, again, a rash was

noted123. Next, ipilimumab was tested in combination with a gp100 peptide vaccine

in a phase I study of melanoma. An initial 14 patients were treated with ipilimumab

at a dose of 3 mg/kg given every 3 weeks for 4 doses. Three objective responses,

two complete responses and one partial response, were reported. However, six

patients developed grade III/IV toxicities which included colitis, dermatitis,

hypophysitis, and hepatitis. Subsequently, a similar study enrolling 56 patients

with stage IV melanoma previously vaccinated with gp100 peptide compared two

different dosing schedules of ipilimumab: 3 mg/kg every 3 weeks versus a 3 mg/kg

initial dose followed by 1 mg/kg on subsequent doses. There was no difference

in response rate or toxicity between these two groups, and the dosing regimen of

3 mg/kg every 3 weeks for four doses was adopted in several subsequent studies.

The overall response was 12.5 % including two complete responses. Grade III

toxicities were seen in 25 %, with a similar pattern including colitis (7), dermatitis

(4), uveitis (1), enterocolitis (1), hepatitis (1), and hypophysitis (1). All toxicities

were considered to be related to immune activation, a clustering of side effects later

labeled immune-related adverse events (irAEs). A positive correlation between

irAEs and response to therapy was noted with 36 % of patients with irAEs

experiencing a clinical response compared with only 5 % of patients without

irAEs124. A similar phase I trial in melanoma combining ipilimumab with peptide

vaccine against gp100, MART-1, and tyrosinase demonstrated similar toxicities

and detected antigen-specific immune responses125. Maker et al. combined IL-

2 with ipilimumab in a phase I/II trial enrolling 36 patients. There was a response

rate of 22 %, interpreted as an additive effect between the two agents126.

Subsequent studies further explored the question of dosing for ipilimumab.

Weber et al. treated 88 patients with unresectable stage III/IV melanoma with

ipilimumab over a dose range of 2.8–20 mg/kg comparing single versus multiple

dose schedules. The overall response rate was 4.5 % and an additional 16 % of

patients had prolonged stable disease (median 194 days)121. Downey et al. reported

a response rate of 17 % for a phase II trial of 139 patients treated with ipilimumab

at doses of 3–9 mg/kg. Sixty-two percent of patients had an irAE of any grade

and having an irAE was associated with objective response (P ¼ 0.0004)127.

A dose–response relationship was clearly defined in a double-blind phase II study

comparing ipilimumab at doses of 0.3, 3, and 10 mg/kg every 3 weeks, followed

by maintenance doses administered every 12 weeks. The highest dose cohort,

10 mg/kg, had the greatest response rate (11 %), followed by 3 mg/kg (4.2 %),

and 0.3 mg/kg (0 %). The irAEs followed a similar pattern128. Lastly, a randomized

phase II study comparing ipilimumab at a dose of 3 mg/kg with or without

dacarbazine demonstrated a trend favoring combination therapy. There was a
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14.3 % response rate for the 35 patients treated with the combination compared with

a 5.3 % response rate for the 37 patients treated with ipilimumab alone. The

combination had only a slightly higher incidence of irAEs (65.7 % versus

53.8 %)129.

A randomized, double-blind, phase III study examining 676 patients treated with

ipilimumab at a dose of 3 mg/kg every 3 weeks for four doses compared with

patients treated with peptide vaccine alone or peptide vaccine plus ipilimumab

demonstrated a best overall response rate of 10.9 % among patients treated with

ipilimumab alone and a benefit in overall survival (10.0 months for ipilimumab plus

peptide vaccine versus 10.1 months for ipilimumab alone versus 6.4 months for

peptide vaccine alone) favoring ipilimumab treatment9. In this trial, survival rates

for ipilimumab-treated patients were 45.6 % at 1-year and 23.5 % at the 2-year

mark. A second randomized, placebo-controlled, phase III clinical trial comparing

dacarbazine plus ipilimumab at a dose of 10 mg/kg every 3 weeks for four doses,

followed by maintenance ipilimumab versus dacarbazine combined with placebo in

treatment naı̈ve patients with metastatic melanoma also reported a benefit in overall

survival130. In this trial, survival rates for ipilimumab-treated patients were higher

than patients treated with dacarbazine alone at 1 year (47.3 % versus 36.3 %),

2 years (28.5 % versus 17.9 %), and 3 years (20.8 % versus 12.2 %).

8.5.3 Ipilimumab in Cancers Other Than Melanoma

Outside of melanoma, the largest clinical trial experience with ipilimumab is in the

treatment of metastatic prostate cancer. In a pilot study, 14 patients with castrate-

resistant metastatic prostate cancer received a single dose of 3 mg/kg131. Two

patients had a biochemical response according to consensus criteria (>50 %

decrease in PSA). An additional eight patients had a decline in PSA that was

<50 %. A phase II study expanding to multiple doses of ipilimumab randomized

43 patients with castrate-resistant metastatic prostate cancer to receive ipilimumab

3 mg/kg every 4 weeks for four doses alone or in combination with a single dose of

docetaxel132. Six patients, three in each arm, had a biochemical response; there

were no radiographic responses and five patients had grade III/IV irAEs. Several

additional studies combining ipilimumab with GM-CSF, radiation, and a DNA

vaccine (PSA-TRICOM) have reported promising results133–135. A phase II study

comparing hormone therapy with or without ipilimumab in the treatment of

advanced prostate cancer has completed accrual (NCT00170157). At present, two

phase III trials of ipilimumab in prostate cancer are ongoing. The first study targets

patients who have received prior chemotherapy treatment with docetaxel. This

study is a randomized, double-blind study comparing ipilimumab with placebo in

patients who have received radiotherapy (NCT00861614). A second study includes

only patients with castrate-resistant prostate cancer who are chemotherapy naı̈ve.

This phase III double-blind study randomizes patients to receive ipilimumab or

placebo (NCT01057810).
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Ipilimumab has also been tested in several additional malignancies including

non-small cell lung cancer, renal cell carcinoma, pancreatic cancer, and hemato-

logic malignancies. The largest of these so far is a phase II study combining

ipilimumab with chemotherapy in patients with stage IIIb/IV non-small cell lung

cancer. The study accrued 203 patients with chemotherapy-naı̈ve non-small cell

lung cancer who were randomized 1:1:1 to receive either chemotherapy alone or

ipilimumab combined with chemotherapy in two different schedules. There was a

statistically significant (P ¼ 0.024), but very modest (<1 month) delay in

progression-free survival between the arm receiving chemotherapy alone and one

of the combination arms, and a nonsignificant trend toward improved overall

survival for the ipilimumab arm136. Small studies treating patients with non-

Hodgkin lymphoma relapsed hematological malignancies after allogeneic bone

marrow transplant, and renal cell carcinoma have shown some promise137–139.

A phase II study of 27 patients with metastatic pancreatic cancer demonstrated

minimal activity140.

8.5.4 Ipilimumab in the Adjuvant Setting

Experience with ipilimumab in the adjuvant setting has been limited. Sanderson

et al. reported the results of the phase I study of 19 patients with high risk, resected

stage III or IV melanoma treated with ipilimumab in combination with a vaccine of

peptides from gp100, MART-1, and tyrosinase. Within this study, eight patients

experienced irAEs, with four grade III/IV irAEs. For the 8 patients who experi-

enced irAEs, 3/8 (37.5 %) developed relapse of disease, whereas 9/11 (81.8 %)

patients without irAE experienced relapse125. Ipilimumab has also been

administered preoperatively in the adjuvant setting to patients with localized

bladder cancer. In a study of six patients with localized urothelial cancer of the

bladder, Liahou et al. demonstrated the feasibility and tolerability of an ipilimumab

regimen of a single 3 mg/kg dose given prior to radical cystoprostatectomy141. This

approach, later expanded to an additional six patient treated with ipilimumab at a

10 mg/kg dose, has allowed the investigation of surgically resected tumor tissue

after ipilimumab therapy, facilitating immune monitoring of the tumor micro-

environment141–143. A phase II study of ipilimumab in combination with hormone

therapy administered in the neoadjuvant setting for patients with early stage

prostate cancer prior to radical prostatectomy is presently open for accrual

(NCT01194271). A randomized, double-blind study comparing ipilimumab to

placebo in the adjuvant setting for patients with stage IIIB or IIIC melanoma is

also presently accruing (NCT00636168).
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8.5.4.1 Tremelimumab

Clinical testing for tremelimumab began in 2002 with a phase I dose escalation

study. This study accrued 39 patients with metastatic solid tumors (34 with mela-

noma) and treated over a dose range of 0.01–15 mg/kg. Objective responses for

patients with melanoma were observed in four patients; all objective responses

were at doses of 3 mg/kg or above120. A pattern of irAEs comparable to those seen

in patients treated with ipilimumab was reported. A phase I study compared a

schedule of 10 mg/kg given monthly to 15 mg/kg given every 3 months, and

reported an overall response rate of 16.7 % (5/30)144. A phase II dose-finding

study also compared the 10 and 15 mg/kg regimens145. This study, reporting a

10 % overall response rate, identified the regimen of 15 mg/kg every 3 months as

superior, based upon comparable response rates and a lower rate of irAEs. A larger

phase II study, enrolling 251 patients treated with the preferred 15 mg/kg regimen,

reported an overall response rate of 6.6 %146. On the basis of these results, a

randomized, open-label phase III trial comparing tremelimumab with the standard

of care (dacarbazine or temozolomide) was opened. The study was halted after an

interim analysis failed to demonstrate a benefit (overall survival 10.7 months versus

11.7 months)147. Recently updated interim results from the study demonstrate a

nonsignificant trend favoring tremelimumab for overall survival (P ¼ 0.14)148.

8.5.4.2 Tremelimumab in Cancers Other Than Melanoma

Several small studies of tremelimumab in solid malignancies outside of melanoma

have now been reported, with primarily disappointing results. In a phase I study,

26 patients with advanced, hormone-responsive breast cancer received

tremelimumab in combination with exemestane149. The regimen was tolerated,

but the best overall response was stable disease for 12+ weeks, seen in 11/24

patients. The utility of tremelimumab in non-small cell lung cancer was evaluated

in a randomized, open-label, phase II study which accrued 87 patients150. Patients

were randomized to receive either tremelimumab or best supportive care after a

course of standard chemotherapy. There was no significant difference in relapse

rate at current follow-up. A phase I study combining tremelimumab with sunitinib

for the treatment of renal cell carcinoma encountered unexpected renal toxicities as

the dose-limiting toxicity151. A phase II study of tremelimumab in hepatocellular

carcinoma is ongoing (NCT01008358).

8.5.4.3 Lessons Learned from Clinical Trials of CTLA-4 Blockade

To date, more than 10,000 patients have been treated with CTLA-4 blockade. As a

monotherapy, CTLA-4 blockade is capable of inducing objective responses in

approximately 5–15 % of patients with metastatic melanoma. CTLA-4 blockade
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has also shown activity in several other malignancies including prostate cancer,

renal cell carcinoma, and non-small cell lung carcinoma. For ipilimumab, two

phase III clinical trials demonstrated an improved overall survival for patients

with metastatic melanoma. Additional phase III studies in melanoma and prostate

cancer are outstanding. Observations from clinical trials to date have consistently

highlighted two areas where anti-CTLA-4 blockade is unique when compared to

conventional chemotherapies: (1) side effects related to treatment and (2) kinetics

of response to treatment.

8.5.4.4 Immune-Related Adverse Events

For some patients, the potent ability of CTLA-4 blockade to activate the immune

system results in inflammatory manifestations characterized as irAEs. The most

clinically significant irAE is enterocolitis which can range in severity; grade III/IV

enterocolitis is seen in ~15 % of patients treated with ipilimumab at 10 mg/kg128.

Pathological evaluation is consistent with a panenteritis that resembles an autoim-

mune enteropathy152. With vigilance and early intervention with corticosteroids

and/or anti-TNF therapy, colitis symptoms are readily treatable and rarely result in

life-threatening complications153. Notably, colitis treatments do not appear to

compromise the anti-tumor activity or duration of response to ipilimumab127.

Additional irAEs occur with variable frequency. At a dose of 10 mg/kg, observed

rates of irAEs (any grade, grade III/IV) are as follows: rash/pruritus (47–68 %,

0–4 %), hepatitis (3–9 %, 3–7 %), hypophysitis (4–6 %, 1–5 %), uveitis (<1 %),

pancreatitis (1–3 %), and cytopenias (<2 %)125, 153–157. Hepatitis, pancreatitis,

uveitis, and cytopenias respond well to steroid treatment. Hypophysitis, if detected

early, may respond to steroids, although hormone supplementation is often

necessary157.

Overlap between patients who develop irAEs and those who derive clinical

benefit from CTLA-4 blockade was noticed in early studies. For example, in a

phase I study of 14 patients with metastatic melanoma, Phan et al. reported that 3/3

responding patients (1 complete response, 2 partial responses) had grade III/IV

toxicities, whereas only 3/11 (27 %) of non-responders had similar toxicities158.

The correlation between grade III/IV irAEs and clinical response has since been

substantiated in several larger analyses121, 124, 127, 154, 156, 159. The presence of

grade III/IV irAEs correlates with higher rates of clinical response. Conversely,

irAEs are more frequent among clinical responders. It should be emphasized,

however, that high-grade irAEs are not required for clinical response; nor does a

high-grade irAE guarantee a clinical response. The factors that determine the focus

(anti-tumor, autoimmune, or both) of immune responses activated by CTLA-4 are

an area of active investigation.
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8.5.4.5 Kinetics of Response: Immune-Related Response Criteria

Standard criteria for evaluating responses to chemotherapeutic agents under inves-

tigation, such as the RECIST and WHO criteria were developed to promote

objectivity in clinical trials reporting and facilitate comparisons between studies.

These guidelines are based upon patterns of responses to chemotherapeutic agents

that correlate with clinical outcomes. Following RECIST guidelines, any increase

in tumor size and/or development of new lesions is defined as progressive disease.

Early observations from phase I and II clinical trials with CTLA-4 blockade

suggested that the patterns of responses to immunotherapy may differ significantly

from standard responses to chemotherapies. In an analysis of 487 patients treated on

three multicenter phase II clinical trials of ipilimumab, Wolchok et al. identified

four patterns of response to treatment of ipilimumab, all associated with favorable

survival160. These patterns include (1) Decreased baseline lesions without evidence

of new lesions, (2) Durable stable disease, (3) Response after an initial increase in

total tumor burden, and (4) Response in the presence of new lesions. Based upon

these observations, new guidelines for monitoring responses to immune therapy,

immune-related response criteria (irRC) were proposed. The major distinguishing

feature of the irRC guidelines is that new lesions are incorporated into a “total

tumor burden”; thus a new lesion in the context of an overall decrease in tumor

burden would not be defined as progressive disease. These criteria may better

reflect the underlying biology of immune-mediated anti-tumor activity. Prospective

validation of irRC is ongoing.

8.5.4.6 Biomarkers for CTLA-4 Blockade

Immunological monitoring has been an integral part of the completed and ongoing

clinical trials of ipilimumab and tremelimumab. To date, immune monitoring has

identified several endpoints that may correlate with a variety of clinical parameters

(Table 8.5). Most of these biomarkers have been identified in small, retrospective

analyses and larger, prospective studies are needed.

In the largest evaluation of biomarkers in patients treated with ipilimumab

reported to date, the rate of rise in absolute lymphocyte count (ALC) was found

to correlate with clinical benefit161. This analysis was performed in two parts. In the

first part, pooled data from three studies of patients with unresectable stage III/IV

melanoma (379 patients) was analyzed retrospectively. For the 55 patients (15.8 %)

with evidence of clinical activity, there was a positive correlation with mean rate of

ALC change (P = 0.0013). This correlation was then tested and confirmed in a

prospective fashion in 64 additional patients (P = 0.00042). The significance of the

ALC was highlighted in a second, independent study of 51 patients159. Patients with

an ALC �1000 after the second dose of ipilimumab had a higher rate of clinical

benefit (complete response þ partial response þ stable disease) at week 24 (52 %

versus 0 %; P = 0.01). Likewise, the high absolute lymphocyte count group had
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higher rates of 6-month (75 % versus 0 %) and 12-month (47 % versus 0 %) overall

survival. Further characterization of ALC as a biomarker points to CD8+ T cells as

the pertinent lymphocyte subset162.

The correlation between CTLA-4 blockade and inducible co-stimulator (ICOS)

was first described in an analysis of six bladder cancer patients receiving

ipilimumab in the preoperative setting141. The design of this study permitted

analysis of both peripheral blood cells and tumor tissue. Analysis of multiple

parameters identified a positive correlation between ipilimumab treatment and

frequency of CD4+ cells expressing high levels of ICOS in both peripheral blood

and tumor samples. Subsequently, in the same patient population, prostate tissue

removed during radical cystoprostatectomy was analyzed142. In both normal pros-

tate tissue and prostate adenocarcinoma, the same pattern of increased frequency of

CD4+ICOShi cells after ipilimumab treatment was observed. This association was

also reported in a recent phase I study of tremelimumab given in combination with

exemestane in hormone responsive metastatic breast cancer149. Lastly, retrospec-

tive analysis of peripheral blood mononuclear cells in 14 patients with metastatic

melanoma patients treated with ipilimumab identified increased frequency of

CD4+ICOShi T cells, sustained over a period of 12 weeks, as a correlate of overall

survival143.

Characterization of antigen-specific immune responses during CTLA-4 block-

ade has been performed for several cancer-related antigens including NY-ESO-1,

MAGE, Melan-A, MART-1, gp-100, tyrosinase, PSA, PAP, and PSMA. Antigen-

specific immune responses to NY-ESO-1 have been the most extensively

characterized and may be correlated with clinical activity. The largest study

thus far to specifically characterize NY-ESO-1 responses in the setting of

CTLA-4 blockade examined 15 patients with metastatic melanoma treated with

ipilimumab163. Within this group, 5/8 (62.5 %) clinical responders demonstrated

antibody, or CD4+ or CD8+ T cell responses to NY-ESO-1. By comparison, only

1/7 (14.3 %) non-responders developed a CD4+ T cell response. Among patients

who had antibody responses, NY-ESO-1 specific antibody titer increased with

ipilimumab treatment. Similarly, patients who developed NY-ESO-1 specific

T cell responses after CTLA-4 blockade demonstrated a more robust,

polyfunctional T cell response after treatment. These findings implicate the devel-

opment of polyfunctional NY-ESO-1 specific T cells as a surrogate of a broader

anti-tumor immune compartment and/or as direct mediators of anti-tumor

immunity.

8.5.5 PD-1/PD-L1/PD-L2

8.5.5.1 Biology

Programmed death-1 (PD-1, CD279) is a member of the IGSF of molecules

involved in regulation of T cell activation. PD-1 acquired its name “programmed
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death” when it was identified in 1992 as a gene upregulated in a T cell hybridoma

undergoing cell death164. PD-1 is expressed more broadly than other IGSF

members. It is not expressed on naive or resting lymphocytes, but is expressed on

activated CD4+ and CD8+ T cells, B cells, monocytes, NKT cells and DCs165, 166.

The structure of PD-1 is composed of one IGSF domain, a transmembrane domain,

and in intracellular domain containing a immunoreceptor tyrosine-based inhibitory

motif (ITIM) and a immunoreceptor tyrosine-based switch motif (ITSM)167–169.

PD-1 has two binding partners: PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC,

CD273), distant relatives of the B7-1 and B7-2 molecules. PD-L1, discovered in

1999, is expressed quite broadly, on both hematopoietic and non-hematopoietic

lineages170, 171. It is found on T cells, B cells, macrophages, NK cells, DCs, and

mast cells. It has also been described on peripheral tissues including cardiac

endothelium, lung, small intestine, keratinocytes, islet cells of the pancreas, and

syncytiotrophoblasts in the placenta as well as a variety of tumor cell types172–186.

PD-L1 is constitutively expressed on many hematopoietic cells, but may be

upregulated in hematopoietic and non-hematopoietic cells. Regulation of PD-L1

is mediated in part by type I and type II interferons172, 173, 178, 187, 188. PD-L2 was

identified in 2001189, 190. Its expression is far more restricted and is confined to

hematopoietic cells. PD-L2 is inducibly expressed on dendritic cells, macrophages,

mast cells, and the B1 subset of B cells172, 174, 191, 192. PD-L1 and PD-L2 have

distinct patterns of induction; under some circumstances, Th2 cytokines preferen-

tially upregulate PD-L2 while Th1 cytokines upregulate PD-L1193.

8.5.5.2 Inhibitory Signaling Mediated by PD-1/PD-L

Engagement of PD-1 on T cells inhibits activation with downstream effects on

cytokine production, proliferation, cell survival, and transcription factors

associated with effector T cell function171, 194–198. Inhibitory signaling by PD-1 is

thought to depend upon the cytosolic ITSM domain, which associates with

phosphatases SHP-1 and SHP-2199, 200. While CTLA-4 and PD-1 are both inhibi-

tory receptors, they fulfill distinct roles and mediate their effects through distinct

mechanisms201. For example, PD-1 inhibits activation of the serine threonine

kinase Akt via its effect on the phosphoinositide 3-kinase (PI3K) pathway, whereas

CTLA-4 inhibits Akt in a PI3K independent manner194, 200, 202. Additionally,

“reverse signaling” via PD-L1and PD-L2 molecules expressed on dendritic cells

can enhance or inhibit dendritic cell activation as measured by dendritic cell

maturation and cytokine production203–208. Adding another layer of complexity to

the PD-1/PD-L pathway, B7-1 has recently been identified as a ligand for PD-L1,

but not PD-L2209. The B7-1:PD-L1 interaction delivers an inhibitory signal to B7-1

or PD-L1 expressing T cells. Some apparent contradictions between studies of

PD-1/PD-L interaction may be resolved by factoring in the bidirectional signaling

between these molecules186.

Studies of PD-1�/� knockout and PD-L�/� knockout mice support unique roles

for PD-1:PD-L1 interactions in mediating peripheral tolerance and preventing
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autoimmunity186. The phenotype of the PD-1�/� knockout mouse depends upon the

genetic background, but manifestations of spontaneous autoimmunity have been

reported including dilated cardiomyopathy and glomerulonephritis210, 211. Further-

more, PD-1- and PD-L1-deficient mice are more prone to autoimmunity in several

mouse models212–216.

8.5.5.3 PD-1/PD-L in Human Cancers

PD-L1 and PD-L2 are expressed on many human tumors including urothelial,

ovarian, breast, cervical, colon, pancreatic, gastric cancers as well as melanoma

glioblastoma, and non-small cell lung cancer175, 177, 180–185, 217–220. In addition,

PD-L1 and PD-L2 have been detected on hematologic malignancies including

Hodgkin lymphoma, primary mediastinal B cell lymphoma, angioimmunoblastic

T cell lymphoma, multiple myeloma, acute myeloid leukemia chronic lymphocytic

leukemia, and adult T cell leukemia/lymphoma178, 221–224. Expression of PD-L has

been correlated with prognosis in many these malignancies, fueling the hypothesis

that PD-L expression is a mechanism for tumor immune evasion217, 218, 225, 226.

Additionally, PD-1 is highly expressed on lymphocytes infiltrating human tumors

and circulating tumor-specific T cells, a phenotype correlated with impaired T cell

function227–230. Together these findings suggest that interrupting PD-1:PD-L inter-

action could be an effective anti-cancer therapy.

8.5.5.4 Preclinical Anti-tumor Activity

In mice, PD-L1 overexpression on murine squamous cell carcinoma and

mastocytoma cells diminished anti-tumor immune response and enhanced tumor

growth, an effect that was reversible with PD-L1 blocking antibody225, 231. Con-

versely, in a model utilizing TCR transgenic T cells specific for a model tumor

antigen, PD-1�/� T cells demonstrated enhanced anti-tumor activity232. Additional

preclinical studies of PD-1:PD-L blockade in murine tumor models have yielded

promising results in several tumor models including ovarian carcinoma, squamous

cell carcinoma, melanoma, mastocytoma, hepatoma, and acute myeloid leuke-

mia225, 231, 233–239. Strategies for blockade of PD-1:PD-L interaction include

blocking antibodies against PD-1, PD-L1, PD-L2, as well as soluble PD-1. PD-1

blocking antibodies have been combined to good effect with several immunother-

apy strategies including CpG, 4-1BB agonist antibody, CTLA-4 blocking antibody,

irradiated tumor cells, GM-CSF secreting tumor cells and adoptive T cell ther-

apy115, 233, 240–243. For example, in a mouse model of melanoma, combination of

CTLA-4 blockade and PD-1 blockade demonstrated synergistic anti-tumor

activity240.
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8.5.5.5 Clinical Trials

Several anti-PD-1 and anti-PD-L1 antibodies have been developed (see Table 8.2).

The anti-PD-1 antibody BMS-936558 is a fully human IgG4 antibody, which has

demonstrated activity in vitro, and a serum half-life of 20 days at the highest doses

tested227, 248. In a first-in-human dose escalation phase I trial of BMS-936558, 39

patients with advanced solid tumors were treated with escalating doses of 0.3, 1, 3,

or 10 mg/kg, with a dose expansion cohort at 10 mg/kg248. The treatment was well

tolerated with a single serious adverse event of grade III inflammatory colitis in a

patient treated with five doses of 1 mg/kg. One patient developed a grade II

hypothyroidism, and two patients developed arthropathies. There was a response

rate of 7.7 % overall with one complete response (colorectal cancer, 3 mg/kg)

and two partial responses (melanoma and renal cell carcinoma, both 10 mg/kg).

A second phase I study investigating a different schedule of biweekly dosing

of BMS-936558 demonstrated a higher response rate of 37.5 % (6/16 patients).

Patients with advanced solid tumors were treated with BMS-936558 at doses of 1,

3, or 10 mg/kg biweekly for up to 48 doses. Responses included five partial

responses (melanoma, renal cell carcinoma, non-small cell carcinoma) and one

complete response (renal cell carcinoma). One possible significant adverse event

was reported: myelodysplastic syndrome in a patient previously treated with cyto-

toxic chemotherapy. Most side effects were grade I/II and included: fatigue

(56.3 %), nausea (25 %), diarrhea (18.8 %), pruritus (18.8 %) and xerostomia

(18.8 %). The results of a second large Phase I study of BMS-936558 were recently

reported.589 In this study, a total of 296 patients with advanced melanoma,

colorectal cancer, renal-cell cancer (RCC), prostate cancer or non-small-cell lung

cancer (NSCLC) were enrolled. The profile of toxicities were similar to those

previously reported. Notable clinical activity was observed in patients with mela-

noma, NSCLC, and RCC. For melanoma and RCC, objective response rates of 28%

and 27% respectively were observed. For NSCLC, an overall response rate of 18%

was observed with a 33% response rate in those with squamous histology and a 12%

response rate in those with nonsquamous histology. A subset of 42 patients were

tested for pre-treatment tumor expression of PD-L1 by immunohistochemistry and

a positive correlation between PD-L1 expression and objective response was

observed.

BMS-936558 appears to have promising activity in multiple solid tumor and

additional studies are ongoing249.

These include a phase I study in advanced solid tumors being conducted in Japan

(NCT00730639), a dose escalation study combining ipilimumab with BMS-936558

for patients with metastatic melanoma (NCT01024231), a study combining peptide

vaccine with BMS-936558 in unresectable melanoma (NCT01176461), phase II

and phase III studies in RCC (NCT01354431 and NCT01668784), and several

studies in NSCLC including soon to open phase III studies (NCT01673867 and

NCT01642004).
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BMS-936559 is a fully human PD-L1-specific igG4 monoclonal antibody with a

mutated hinge region (S228P). The results of a phase I, dose-ranging study of BMS-

936559 were recently published (Brahmer J et al. Safety and Activity of Anti-PD-

L1 Antibody in Patients with Advanced Cancer). In this study, 207 patients with

advanced solid tumors were treated with BMS-936559 at doses of 0.3 to 10 mg/kg.

Activity in patients with advanced melanoma, NSCLC, ovarian cancer, and RCC

was documented with objective response rates of up to 17 % and (in melanoma).

CT-011 is a humanized IgG1 antibody with a half-life in the range of 9–17 days

based on the initial pharmacokinetic study244. CT-011 has demonstrated anti-tumor

activity in preclinical models of hematological and solid malignancies245–247. In a

pilot study of 17 patients with hematological malignancies, patients were treated

with a single dose of CP-011 ranging from 0.2 to 6 mg/kg. The maximal tolerated

dose was not achieved and the doses tested were safe and well tolerated. The most

frequent adverse event was diarrhea (11.8 %). Clinical benefit was reported for

33 % of the study population with one patient with follicular B cell lymphoma

achieving a clinical response. Based on these results, a phase II study combining

CP-011 (3 mg/kg) with rituximab for the treatment of patients with relapsed

follicular lymphoma is presently recruiting patients (NCT00904722). A second

phase II study treating patients with relapsed diffuse large B cell lymphoma with

adjuvant CT-011 (1.5 mg/kg) after autologous stem cell transplant is also under-

way. CP-011 has also shown promising activity for the treatment of multiple

myeloma. In a preclinical study of primary NK cells and multiple myeloma cells

derived from patients with multiple myeloma, Benson et al. observed expression on

PD-1 (on NK cells) and PD-1L (on multiple myeloma cells) ex vivo. Furthermore,

they found that in vitro, CP-011 enhanced NK-mediated cytotoxicity against

autologous multiple myeloma cells. This effect was further augmented by the addi-

tion of lenolidomide, which caused downregulation of PD-L1 on primary multiple

myeloma cells. A phase II study of CP-011 combined with a dendritic cell vaccine

following autologous stem cell transplant for patients with multiple myeloma is

ongoing (NCT01067287). Additional studies in colon cancer (NCT00890305),

hepatocellular carcinoma (NCT00966251), and acute myelogenous leukemia

(NCT01096602) are active.

While clinical experience with PD-1 or PD-L1 blocking antibodies is limited,

some tentative patterns appear to be emerging. First, unsurprisingly, PD-1 blockade

appears to be associated with irAEs similar to those described in CTLA-4 blockade:

colitis/diarrhea, endocrinopathies, and dermatitis/pruritus. The irAE of arthro-

pathies seen in two patients treated with PD-1 blockade have not been frequently

reported in patients treated with CTLA-4 blockade. Notably, both patients treated

with PD-1 blockade who developed arthropathies had potentially predisposing risk

factors: history of Lyme arthritis and polymyalgia rheumatica and preexisting

antinuclear antibody titer. While the maximally tolerated dose for PD-1 blocking

antibodies has not yet been reached, doses that confer clinical benefit have been

achieved. At these doses, the frequency and/or severity of irAEs appear to be less

than for CTLA-4 blockade. However, there has been no formal comparison

between CTLA-4 blockade and PD-1 blockade and many fewer patients have
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been treated with PD-1 blockade. PD-1 blockade as a monotherapy or in combina-

tion is a particularly promising strategy and larger studies are merited.

8.5.6 BTLA/HVEM/CD160/LIGHT

8.5.6.1 Biology

B and T lymphocyte attenuator (BTLA, CD272) is another recently discovered co-

inhibitory molecule of the IGSF, both structurally and functionally related to

CTLA-4 and PD-1. BTLA was independently identified as an expressed sequence

tag (EST) in a Th1 polarized TCR transgenic T cell population and as a transcript

expressed in activated thymocytes250, 251. BTLA is expressed constitutively on

T cells, B cells, and dendritic cells. Naı̈ve T cells express low levels of BTLA,

which may be increased upon activation or induction of anergy252. BTLA expres-

sion on dendritic cells is upregulated upon stimulation with lipopolysaccharide251.

Unlike CTLA-4 or PD-1, BTLA does not appear to be expressed on CD4+CD25+

Tregs252. Initial reports suggested that BTLA is preferentially expressed on Th1

but not Th2 cells. However, later studies described BTLA expression on both

populations252–254. The cytoplasmic domain of BTLA contains two ITIM domains

that associate with the phosphatases SHP-1 and SHP-2, consistent with the

described inhibitory function of BTLA signaling255.

Herpesvirus entry mediator (HVEM, TNFRSF14) serves as a shared ligand for

inhibitory receptors BTLA and CD160 as well as TNF superfamily members

LIGHT and lymphotoxin-alpha250, 256, 257. HVEM was discovered in a screen for

proteins that allowed entry of herpes simplex virus-1 (HSV-1) into CHO cells and

its first defined binding partner was the viral gD protein258–261. HVEM is expressed

widely on hematopoietic and nonhematopoietic cells including T cells, B cells, NK

cells, dendritic cells, and monocytes. HVEM levels are higher on resting cells and

decrease with B or T cell activation262, 263. Whereas HVEM signaling via BTLA

transmits an inhibitory signal, engagement of HVEM expressed on T cells by its

alternative ligand LIGHT enhances T cell proliferation and cytokine produc-

tion264–268. HVEM transmits an activating signal via recruitment of the cytosolic

TNFR-associated factor (TRAF) 2 and 5 molecules that activate downstream

signaling through the NF-kB and AP-1 pathways259, 260.

LIGHT (LT-g, CD258) is an acronym for “homologous to lymphotoxins,

exhibits inducible expression, and competes with HSV glycoprotein D for

HVEM, a receptor expressed by T lymphocytes”257. LIGHT belongs to a family

of TNF ligands, and is closely linked with related molecules CD70 and 41BBL on

human chromosome 19. LIGHT interacts with HVEM, lymphotoxin-b, and a decoy
receptor, DcR3/TR6. LIGHT expression is tightly regulated. It is expressed on

T cells, dendritic cells, NK cells, and B cells at specific stages of cell differentiation.

LIGHT is rapidly and highly induced on activated T cells, especially CD8+

T cells257, 262. Conversely, naı̈ve dendritic cells express high levels of LIGHT
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which is downregulated upon dendritic cell maturation269. LIGHT exhibits a

reciprocal pattern of expression with its binding partner HVEM262. It functions to

enhance T cell activation both directly through engagement of HVEM on T cells

and indirectly by engagement of HVEM on dendritic cells, which stimulates their

maturation257, 260, 265, 266, 269–272.

CD160 was identified and later cloned based on its recognition by a monoclonal

antibody raised against a human NK leukemia cell line273, 274. CD160 was first

recognized as a weak binding partner for classical and non-classical MHC I

molecules275–278. Later, HVEM was identified as a ligand for the CD160 receptor.

CD160 expression is limited to cytotoxic lymphocytes including NK cells, NKT

cells, and subsets of CD8+ and CD4+ T cells. CD160 is upregulated upon activation

and particularly enriched among CD8+ T cells in the late stages of chronic viral

infection279. The consequences of CD160 ligation are still being dissected. In

cultured human CD4+ and CD8+ T cells, cross-linking of CD160 with monoclonal

antibodies (5D.10A11 and 5D.8E10) inhibits T cell activation280–282. Inhibitory

signaling via CD160 depends upon HVEM engagement280. In apparent contra-

diction, engagement of CD160 by MHC I multimers or the anti-CD160 Ab

(BY55) enhances NK and CD8+ T cell cytotoxic activity and cytokine produc-

tion277, 278, 283. CD160 is a GPI-anchored protein; the downstream signaling

employed by CD160 to deliver inhibitory or activating signals is an area of ongoing

investigation.

For this grouping of molecules, there are a number of potential pairings each

with potentially unique outcomes. For example, HVEM signaling through BTLA

delivers an inhibitory message whereas LIGHT engagement of HVEM delivers a

co-stimulatory signal. Broadly, an axis of inhibitory signaling (BLTA/CD160/

HVEM) and an axis of stimulatory signaling (LIGHT/HVEM) have been defined.

The inhibitory effects of BTLA engagement were initially characterized using

cultured T cells, with CD4+ T cells demonstrating greater sensitivity to inhibition

by anti-BTLA antibodies251, 254, 256, 273, 280, 281, 284, 285. The phenotype of

BTLA�/� knockout mice is consistent with an inhibitory role for BTLA. Aged

mice develop a spontaneous autoimmune hepatitis and increased levels of anti-

nuclear antibodies286. Additionally, studies of BTLA-deficient mice support a role

for BTLA in peripheral tolerance and regulation of inflammation and autoimmu-

nity250, 286–289. LIGHT-deficient mice have reduced T cell activation and expan-

sion, in agreement with the co-stimulatory function of LIGHT266, 290–292.

Conversely, mice with transgenic expression of LIGHT on T cells develop sponta-

neous autoimmunity267, 293, 294. Interestingly, the phenotype of HVEM knockout

mice most closely resembles the BTLA-deficient mice, not the LIGHT-deficient

mice. HVEM-deficient mice have increased susceptibility to autoimmunity in

several mouse models including EAE and autoimmune hepatitis295. This finding

suggests that in vivo the HVEM:BTLA interaction may be more functionally

important than the HVEM:LIGHT interaction.
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8.5.6.2 Relevance in Human Tumors

The areas of overlap between BTLA/CD160/HVEM/LIGHT and human malig-

nancy are still being defined and a clear and cohesive picture has yet to emerge.

Early studies described that engagement of LIGHT by tumors expressing HVEM

can deliver a pro-apoptotic signal that suppresses tumor growth296. In some lym-

phoma cells, stimulation with LIGHT via HVEM increased sensitivity to Fas-

mediated apoptosis297. For patients with follicular lymphoma, acquired mutations

in HVEM have been correlated with worse prognosis298. On the other hand, in

chronic lymphocytic leukemia, CD160 expression has been identified as a pro-

survival factor299. Recently, in a study of patients with melanoma, persistent

expression of BTLA was identified as a unique marker of tumor-specific CD8+

T cells in vivo300, 301. BTLA expression was associated with compromised T cell

activity. Furthermore, vaccination with CpG led to downregulation of BTLA

expression on tumor-specific T cells and restoration of their function.

8.5.6.3 Preclinical Studies

With a myriad of possible interactions and outcomes, the exploitation of therapies

that enhance anti-tumor immunity are in early stages of development for these

molecules. Potential reagents that block inhibitory signals or enhance activating

signals will have to be tested carefully to identify any unintended or unanticipated

interactions. Two strategies that have been tested preclinically in mice are the

ectopic expression of LIGHT as a stimulator of enhanced anti-tumor activity, and

administration of soluble BTLA as a blockade of inhibitory signaling. In mouse

models of fibrosarcoma and mastocytoma, overexpression of LIGHT in tumor cells

leads to T cell-dependent tumor rejection, an effect mediated in part by the changes

in the tumor stroma268, 302–305. Additional studies of ectopic LIGHT expression

have shown activity in mouse models of melanoma, colon cancer, and breast

cancer306. In a murine model of mammary carcinoma adenoviral expression of

LIGHT in the primary tumor generated anti-tumor immunity that controlled meta-

static disease306. One study has tested the effect of BTLA blockade on tumor

immunity. In a mouse model of cervical carcinoma, expression of soluble BTLA

enhanced the anti-tumor activity of an hsp70 cancer vaccine307.

8.5.7 LAG-3/MHC II

8.5.7.1 Biology

LAG-3 (CD223) is a member of the IGSF initially identified as a molecule

expressed on an NK cell line, F5308. LAG-3 is expressed on activated CD4+ and
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CD8+ T cells, NK cells, and activated B cells309, 310. The LAG-3 gene is located on

human chromosome 12, adjacent to the CD4 coding region. LAG-3 shares a

common structure and common ligand, MHC II, with CD4. LAG-3 has an affinity

for MHC II that is several-fold higher than CD4 for MHC II311, 311. LAG-3 contains

4 IgG domains: a small area in the D1 domain is necessary for binding to MHC

II313. LAG-3 has a short intracellular tail containing a unique motif (KIEELE)

responsible for its inhibitory functions314.

The significance of LAG-3:MHC II engagement is still an area of active investi-

gation. LAG-3 has been described as a negative regulator of T cell activation. LAG-

3-blocking antibodies enhance murine and human T cell proliferation and cytokine

production in vitro229, 312, 315. Cross-linking of an agonist LAG-3 antibody inhibits

T cell proliferation and cytokine production in vitro316. The immunologic pheno-

type of LAG-3�/� knockout mice is subtle and initially only a deficiency in NK

cell-mediated killing was reported317. Later studies demonstrated that TCR trans-

genic LAG-3-deficient T cells have reduced expansion upon antigen exposure314.

This phenotype was abrogated by disruption of the intracellular KIEELE sequence,

the motif responsible for inhibitory signaling. Additionally, closer analysis of

LAG�/� knockout mice revealed that aged mice have double the number of

CD4+ and CD8+ T cells of their wild-type counterparts, supporting a role for

LAG-3 in homeostatic proliferation318. LAG-3 may play a special role in anergic

and/or Treg populations. Using microarray analysis, Huang et al. identified LAG-3

as a gene highly expressed in population of TCR transgenic CD4+ T cells that

develop anergic/regulatory features upon transfer into an antigen-bearing host.

They further reported that LAG-3 blocking antibodies inhibit the regulatory

capacity of this population of cells in vitro and in vivo and ectopic expression of

LAG-3 confers regulatory function in vitro319. It is unclear how this population of

LAG-3 expressing cells with regulatory activities relates to classically defined

CD4+CD25+Foxp3+ Tregs. A subsequent study postulated that LAG-3 expression

defines a subset of CD4+CD25hiFoxp3+ Tregs that have potent inhibitory activity

and are enriched in patients with melanoma or colorectal carcinoma, both in

peripheral blood, and within the tumor320. In a separate report of patients with

tuberculosis, an antigen-specific population of CD8+LAG-3+CD25+Foxp3+ cells

had potent suppressive activity321. The effect of “reverse” signaling via LAG-3 to

APCs expressing MHC II has been challenging to define. Initial studies found that

engagement of MHC II on APCs by a soluble LAG-3-Ig fusion protein enhanced

dendritic cell maturation, upregulated co-stimulatory molecules, and increased

cytokine production, leading to the description of LAG-3 as a dendritic cell

activator322, 323. Subsequent studies using co-culture of dendritic cells with

CD4+CD25+Foxp3+ Tregs found that they inhibit dendritic cell activation by

expressing membrane-bound LAG-3, suggesting disparate effects for membrane-

bound LAG-3 compared with the soluble LAG-3-Ig fusion protein324, 325.
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8.5.7.2 Preclinical Studies

The approaches to manipulating LAG-3:MHC II interaction for enhanced anti-

tumor immune activity fall in to two categories. First, blockade of inhibitory T cell

signaling mediated by LAG-3 engagement of MHC II enhances T cell activation

and anti-tumor activity. This has been demonstrated in a mouse model of sponta-

neous prostate cancer, TRAMP, where LAG-3 blocking antibodies alone enhanced

intratumoral accumulation and effector function of tumor-specific CD8+ T cells326.

In this study, a combination of LAG-3 blocking antibody and a tumor vaccine led to

a reduction in tumor grade and an increase in activated intratumoral CD8+ T cells,

consistent with the generation of an anti-tumor immune response. In a second

approach, administration of a soluble LAG-3-Ig fusion protein can enhance T cell

activation and anti-tumor immunity. For example, CD8+ T cell responses to a

model antigen, ovalbumin, are enhanced in vivo by the administration of LAG-3-

Ig327. In a study of three murine tumor cells lines (kidney, sarcoma, and mammary),

Prigent et al. found that LAG-3-Ig, either transduced into the tumor cells or

administered by injection, reduced tumor growth in vivo328. Additionally, and in

apparent contradiction to studies of LAG-3 blockade, transfection of transmem-

brane human or mouse LAG-3 gene into the same tumors slowed tumor growth and

enhanced tumor rejection. This effect was more marked for the human LAG-3,

which might have represented a novel rejection antigen. Lastly, in a mouse model

of spontaneous HER-2/neu+ mammary carcinoma, co-administration of LAG-3-Ig

with a DNA vaccine prevented carcinogenesis329.

8.5.7.3 Clinical Trials

The clinical development of agents targeting LAG-3 has thus far been limited to a

single reagent, IMP321 (Immutep, Paris, France), a soluble LAG-3-Ig fusion

protein consisting of the human LAG-3 proteins fused to human IgG1 Fc.

IMP321 has been described as a dendritic cell adjuvant330. The first two phase I

studies of IMP321 tested its safety when administered with commercially available

vaccines against influenza and hepatitis B331–333. These studies demonstrated

IMP321 to be safe and to enhance responses to vaccine antigens. The first study

of IMP321 in cancer patients was a phase I dose escalation study in patients with

metastatic renal cell carcinoma. In a study of 21 patients treated with doses of

0.05–30 mg IMP321 given biweekly, the treatment was well tolerated, but there

were no objective responses334. There was, however, some indication of activity

with an improvement in progression-free survival seen among patients who

received a dose above 6 mg. At 3 months after treatment, 7/8 patients treated

with the higher dose had stable disease whereas 3/11 patients treated with the

lower dose had stable disease (P ¼ 0.015). A second phase I study of IMP321

combined with standard chemotherapy as a first line agent for metastatic breast

cancer reported promising preliminary results335. Thirty patients were treated in

8 Immune Co-signaling to Treat Cancer 241



three cohorts of 0.25, 1.25, or 6.25 mg of IMP321 in combination with paclitaxel.

The therapy was again well tolerated and a response rate of 50 % compares

favorably with historical controls of paclitaxel alone.

While LAG-3 appears to be a promising molecule for anti-cancer therapy,

studies to date highlight several areas where our understanding of this molecule is

incomplete. Thus far, LAG-Ig, a dendritic cell adjuvant, is one approach for the

treatment of cancer that is under clinical development. Preclinical studies suggest

that LAG-3 blocking antibodies may warrant further exploration.

8.5.8 B7-H3/TRT-2/B7-H4

8.5.8.1 Biology

B7-H3 (CD276) was identified in 2001 as a B7 homolog sharing 20–27 % identity

with other B7 family members336. Low levels of B7-H3 expression can be detected

in peripheral tissues including liver, lung, bladder, testes, prostate, uterus, intestine,

kidney, pancreas, and breast336, 337. Higher levels of B7-H3 expression may be

induced on T cells, NK cells, dendritic cells, and macrophages336, 338, 339. B7-H3

has been described as having both co-stimulatory and co-inhibitory effects on T cell

responses. The co-stimulatory properties of this molecule were first described when

a B7-H3-Ig fusion protein was found to increase T cell proliferation and cytokine

production in vitro336. The co-stimulatory receptor for B7-H3 was identified in

2008 as TLT-2 (TREM-like transcript 2) a member of the TREM (Triggering

Receptor Expressed on Monocyte) receptor family6. TLT-2 is expressed constitu-

tively on CD8+ T cells and is induced on activated CD4+ T cells6. Additionally,

TRT-2 has been detected on B cells, monocytes, and macrophages340, 341. Consis-

tent with TLT-2’s function as a co-stimulatory receptor, overexpression of TLT-

2 on T cells leads to enhanced cytokine production upon stimulation with B7-H36.

Alternatively, experimental evidence also has identified co-inhibitory functions of

B7-H3. For example, recombinant B7-H3 protein inhibits anti-CD3 antibody-

induced T cell proliferation and cytokine production in vitro. This effect is

associated with inhibited activation of transcription factors NFAT, NF-kB, and

AP-1338, 342, 343. This duality in B7-H3 function suggests that another, as yet

undiscovered counter-receptor for B7-H3 may exist. The phenotype of B7-H3�/�

knockout mice provides support for both co-stimulatory and co-inhibitory functions

of B7-H3 in vivo. In models of induced airway hypersensitivity and induced EAE,

B7-H3-deficient mice had more severe symptoms, supporting a co-inhibitory role

for B7-H3338. On the other hand, B7-H3�/� knockout mice have increased survival

of cardiac and islet allografts, supporting a co-stimulatory role for B7-H3344.

B7-H4 (B7�, B7S1) was discovered in 2003 and thus far has been described

solely as a co-inhibitory molecule343, 345, 346. Its partnering receptor has not yet

been identified. Expression of B7-H4 is more restricted than B7-H3, and in non-

malignant tissue protein expression has been detected only in epithelial cells of the
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female genital tract, kidney, lung, and pancreas347. B7-H4 expression has also been

described on activated T cells, B cells, monocytes, macrophages, and myeloid

dendritic cells343, 345, 346, 348–350. In vitro, B7-H4 acts to inhibit CD4+ and CD8+

T cell proliferation and cytokine production and blockade of B7-H4 in vivo

enhances T cell responses343, 345, 346. B7-H4�/� knockout mice have a subtle

phenotype; on the BALB/c background they have modestly enhanced Th1

responses and lower burdens of Leishmania major upon infection351.

8.5.8.2 Relevance in Human Tumors

Both B7-H3 and B7-H4 have been detected in human cancers, where they provide

useful prognostic information. Their expression in most, but not all cases, is a poor

prognostic feature. B7-H3 and B7-H4 have been detected in non-small cell lung

cancer and correlated with reduced numbers of tumor infiltrating lymphocytes and

increased likelihood of metastases352. In renal cell carcinoma, B7-H3 and B7-H4

may be expressed on tumor cells or tumor vasculature and, in either case, expres-

sion correlates with poorer prognosis353, 354. Furthermore, higher levels of soluble

B7-H4 detected in the serum of patients with renal cell carcinoma is associated with

advanced stage of disease355. For patients with prostate cancer, expression of B7-

H3 or B7-H4 is associated with metastatic spread, increased risk of recurrence, and

increased risk of death356, 357. Soluble and membrane-bound forms of B7-H3 have

also been detected in patients with colorectal cancer, where they are associated with

lower levels of tumor infiltrating lymphocytes and higher tumor grade358. B7-H4

has also been detected several additional tumor types including ovarian, breast,

endometrioid, and pancreatic cancers359–362. In all cases reported, B7-H4 expres-

sion is associated with reduced tumor infiltrating lymphocytes and poorer

outcomes. Curiously, in one study of 102 patients, expression of B7-H3 in gastric

cancer was noted as a positive prognostic factor associated with increased

survival363.

8.5.8.3 Preclinical Studies

Preclinical studies of anti-tumor therapies based upon targeting B7-H3 or B7-H4

are in early stages of development and a defined strategy for targeting these

molecules has yet to emerge. The data thus far does support a role of B7-H3 in

modulating anti-tumor immunity. In several mouse models, including lymphoma,

mastocytoma, hepatocellular, and colon cancer, overexpression of B7-H3 leads to

slowed tumor growth or enhanced tumor rejection. The anti-tumor immunity

generated by ectopic B7-H3 expression depends upon CD8+ T cells and NK cells,

but not CD4+ T cells364–367. These findings stand in apparent contradiction to most

human studies where higher levels of B7-H3 expression correlate with poorer

prognosis, highlighting the areas of uncertainty regarding the role of B7-H3 as

both and positive and negative regulator of T cell responses.
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8.5.9 CD40/CD40L(CD154)

8.5.9.1 Biology

CD40 is a member of the TNFR superfamily that acts as a modulator of humoral

and cell-mediated immunity. It was initially detected on a panel of transformed

B cell lines and bladder cancers368. CD40 expression has since been described in

B cells, macrophages, dendritic cells, endothelial cells, thymic epithelial cells,

hematopoietic progenitors, and activated T cells369–371. CD40 has also been

detected in hematologic malignancies including non-Hodgkin lymphoma, Hodgkin

lymphoma, and multiple myeloma, and in solid tumors including bladder, renal,

pancreatic, nasopharageal, cervical, breast, prostate and lung cancers372–378. Its

ligand, CD40 ligand (CD40L, CD154), is expressed on activated T cells, B cells,

and platelets379–382. During an inflammatory response, additional cell types also

may express CD40L including monocytes, vascular endothelial cells, and smooth

muscles cells383–386.

Binding of CD40 with its counter-receptor CD40L results in bidirectional

signaling. The signal transduction pathways employed upon CD40 ligation depend,

in part, on the cell expressing CD40. For example, in dendritic cells, recruitment of

TRAF6 to the cytoplasmic tail of CD40 is necessary for activation of p38 MAPK

and JNK, and ultimately the production of inflammatory cytokines like IL-12387.

On the other hand, in B cells, TRAF2,3 binding is necessary for phosphorylation of

p38 MAPK and JNK.

CD40 participates in a diversity of immune functions in vivo including immu-

noglobulin class switching, B cell memory generation, germinal center formation,

and cytokine production by endothelial cells, monocytes, B cells, and dendritic

cells. CD40 plays a major role in “licensing” dendritic cells, allowing for matura-

tion, upregulation of co-stimulatory molecules, cytokine production, and conse-

quently enhanced priming and expansion of T cell responses388. Patients with germ

line mutations in either CD40 or CD40L define a subclass of hyper-IgM syndrome,

a combined immunodeficiency syndrome, and have increased susceptibility to

opportunistic infections389–391.

8.5.9.2 CD40 Expression on Human Tumors

CD40 expression has been detected on human tumor cells including many hemato-

logic malignancies and solid tumors. CD40 has been detected on most B cell

malignancies including chronic lymphocytic leukemia, non-Hodgkin lymphoma,

Hodgkin lymphoma, and multiple myeloma392, 393. CD40 may be expressed in solid

tumors and has been described in bladder, renal, pancreatic, prostate, colon, lung,

breast, and cervical cancers. In melanoma, CD40 expression is relatively common.

In a study of 97 short-term metastatic melanoma cell cultures, CD40 expression

was detected on 42 % of melanomas. In a study of hepatoma specimens and derived
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cell lines, CD40 expression was detected in 40 % of hepatomas, but not in normal

hepatocytes394. Lastly, in a study of ovarian cancer, CD40 expression was detected

in 60 % of paraffin embedded samples and 73 % of fresh ovarian cancer samples,

but not on normal ovarian tissue. Additionally, CD40 expression correlated signifi-

cantly with ovarian cancer staging395.

8.5.9.3 Preclinical Studies

The activities of anti-CD40 antibodies have been tested both in vitro and in vivo.

For some tumors, anti-CD40 antibodies have direct anti-tumor activity, potentiating

cell death, and inhibiting cell growth396. A direct anti-tumor effect has been

observed in B cell malignancies, and breast and ovarian carcinomas395, 397–399.

For some CD40-expressing cancers like melanoma, CD40 engagement has no

direct effect386. Numerous studies utilizing murine tumor models have charac-

terized the immunologically mediated anti-tumor effects of targeting CD40. In

one early study, transgenic expression of CD40L in a poorly immunogenic neuro-

blastoma cell line, neruo-2a, led to reduced tumor growth, enhanced survival and

protection against subsequent tumor challenge400. These effects were dependent

upon CD8+ T cells and supported a role for CD40 ligation in generating anti-tumor

immunity. In several subsequent studies, overexpression of CD40L in several tumor

types including melanoma, myeloma, and lung, colon, and mammary carcinoma

have confirmed and expanded this initial observation400–404. As an alternative

approach to CD40 ligation, anti-CD40 agonist antibodies have been tested in

several transplantable murine tumor models including renal carcinoma, lymphoma,

mesothelioma, and fibrosarcoma405–413. Collectively, these studies have elucidated

the importance CD40 ligation in overcoming tolerance via effects on CD4+ and

CD8+ cytotoxic T cells407–409. Additionally, the activity of anti-CD40 agonist

antibodies has been demonstrated in a mouse model of spontaneous pancreatic

carcinoma414. In this model, the activity of the anti-CD40 agonist antibody was

dependent upon macrophages. Further preclinical studies of anti-CD40 antibodies

have demonstrated synergy in combination with chemotherapy, radiation, peptide

vaccination, IL-2, CTLA-4 blocking antibody, or DR5 agonist antibody plus 41BB

agonist antibody405, 406, 410–413.

8.5.9.4 Clinical Trials

Several approaches to targeting CD40 have undergone phase I evaluation for the

treatment of patients with advanced cancers373, 415, 416. The first therapy to be

developed was a trimer of recombinant human CD40L (rhuCD40L)417. In a phase

I study of 32 patients with advanced solid tumors or non-Hodgkin lymphoma, two

partial responses were reported, one in a patient with non-Hodgkin lymphoma and

one with laryngeal cancer. The patient with laryngeal cancer later achieved a

complete response. The dose-limiting toxicity, grade III/IV transaminitis, was seen

in 57 % of patients treated at the highest dose. Three agonist anti-CD40 antibodies
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have since been developed: CP-870,893 (Pfizer, New London, CT), SGN-40 (Seattle

Genetics, Bothell, WA), and HCD122 (Novartis/XOMA, Berkeley, CA).

CP-870,893 is a fully human IgG2 antibody. In a phase I, single dose, dose

escalation study, CP-870,893 was administered to 29 patients with advanced solid

tumors418. At the highest dose, three dose-limiting toxicities were observed, venous

thromboembolism and grade III headache. The most common adverse event was

grade I–II cytokine release syndrome, seen in 55 % of patients. There were four

partial responses (14 %) reported, all in patients with metastatic melanoma. In a

second phase I study, CP-870,893 was administered in weekly doses to 27 patients

with advanced solid tumors419. Again, cytokine release syndrome was the most

common adverse event, and dose-limiting toxicities included grade III cytokine

release syndrome and grade III urticaria. There were no responses reported in the

study; seven patients (26 %) had stable disease. Correlative immune studies

demonstrated T cell depletion in 50 % of the patients treated at the maximum

tolerated dose, perhaps suggesting one explanation for the lack of observed

responses. In a third phase I study, 21 patients with unresectable pancreatic cancer

were treated with CP-870,893 in combination with gemcitabine, and four partial

responses (19 %) were reported414. Additional studies with CP-870,893 are ongoing

(NCT01103635, NCT01008527).

The remaining two antibodies are in earlier stages of clinical testing and testing

has been confined to hematologic malignancies. SGN-40 (dacetuzumab) is a fully

humanized IgG1 antibody. It has been tested in three phase I studies in patients with

non-Hodgkin lymphoma, chronic lymphocytic leukemia, or multiple myeloma,

respectively420. In the first study, 50 patients with refractory or recurrent non-

Hodgkin lymphoma were treated with escalating doses of SGN-40 administered

weekly420–422. No dose-dependent adverse events were reported and a maximum

tolerated dose was not established. One complete response and five partial

responses were reported. In the subsequent phase I studies in chronic lymphocytic

leukemia and multiple myeloma, SGN-40 was similarly tolerated, but no objective

responses were observed421, 422. Presently, ongoing studies are testing SGN-40

in combination with chemotherapies or immunotherapies (NCT00664898,

NCT00529503, NCT00655837, NCT00556699). HCD122 is a fully humanized

IgG1 antibody. Data available from a phase I study of HCD122 in advanced

B cell malignancies suggests that it is well tolerated and has potential, with two

partial responses (8 %) reported out of 24 evaluable patients with chronic lympho-

cytic leukemia or multiple myeloma416.

8.5.10 GITR/GITRL

8.5.10.1 Biology

Glucocorticoid-induced TNFR family-related gene (GITR) was originally

identified in a dexamethasone-treated murine T cell hybridoma423. It shows
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significant homology with other co-stimulatory TNFR family members including

OX40, 4-1BB, CD40, and CD27423, 424. GITR is expressed at low levels on naı̈ve

CD4+ and CD8+ T cells, but is upregulated upon T cell activation425, 426.

In addition, it is expressed constitutively at high levels on Tregs, and further

upregulated upon activation426–428. Its binding partner, GITR ligand (GITR-L),

is expressed in an inducible fashion on macrophages, dendritic cells, and

B cells426, 429–431. The cytoplasmic tail of GITR contains several TRAF domains,

and downstream signaling appears to be mediated via interaction with TRAF 1, 2,

and 3432, 433. Stimulation of GITR may result in the activation of downstream

targets including NF-kB, p38 MAPK, JNK, and ERK423, 425, 434. GITR has also

been shown to interact with Siva, a death domain containing protein that can induce

apoptosis in some cells435.

In CD4+ and CD8+ effector T cell populations, ligation of GITR, by GITR-L or

agonist antibodies, during TCR-mediated activation enhances proliferation and

effector function425, 426, 436, 437. This effect is especially pronounced under

conditions of suboptimal stimulation. The co-stimulatory effects of GITR and

CD28 are synergistic, suggesting non-overlapping functions of these two

molecules437. Conversely, blocking GITR activation with anti-GITR-L antibodies

inhibits T cell proliferation438. In Tregs, engagement of GITR abrogates suppressor

activities, but enhances proliferation in vitro426–428, 439. In vivo, GITR agonist

antibodies have been shown to exacerbate autoimmunity and inflammation in

several mouse models including models of colitis, diabetes, experimental autoim-

mune encephalomyelitis, and graft versus host disease427, 436, 440–442. Unexpect-

edly, GITR�/� knockout mice show enhanced T cell proliferation and sensitivity to

AICD, suggesting a more complicated role of GITR in lymphocyte proliferation

and survival439.

8.5.10.2 Preclinical Studies

The immune potentiating effects of GITR ligation have been tested in several

mouse models and provided preclinical support for the development of an agonist

antibody presently being tested in a Phase I clinical trial. GITR agonist antibodies

were first tested in mice and shown to be potent stimulators of anti-tumor immunity.

Mice treated with the GITR agonist antibody DTA-1 were able to eradicate

established MethA fibrosarcoma or CT26 colon carcinoma tumors. This effect

was dependent upon IFN-g, CD4+, and CD8+ T cells443. In another transplantable

tumor model, the poorly immunogenic B16 melanoma, treatment with DTA-1 was

able to induce concomitant immunity that allowed rejection of distal sites of

disease444. In the B16 model, tumor rejection was dependent upon CD4+, CD8+,

and NK1.1+ cells as well as IFN-g and Fas ligand, but independent of perforin and

CD25+ cells445. Additionally, DTA-1 treatment results in a reduced ratio of

intratumoral Treg/effector T cells in tumor bearing mice446, 447. Lastly, GITR

agonist antibodies have been tested and proven to have synergistic T cell activating

and anti-tumor effects when combined with vaccines448, 449.
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8.5.10.3 Clinical Development

On the basis of this preclinical activity, GITR was identified as a promising area for

research by the National Cancer Institute450. A humanized, Fc-disabled, anti-human

GITR monoclonal antibody, TRX518 has been developed by Tolerx (Cambridge,

MA, USA) and is presently being tested in a phase I clinical study for patients with

previously treated metastatic melanoma (NCT01239134).

8.5.11 4-1BB (CD137)/4-1BBL

8.5.11.1 Biology

A member of the TNF-receptor superfamily, 4-1BB (CD137) was originally ident-

ified as an RNA transcript selectively upregulated in activated T lymphocytes451, 452.

4-1BB is also detected on dendritic cells, NK cells, smooth muscle, and vascular

endothelium in tumors453–455. 4-1BB functions as a co-stimulatory molecule that

enhances proliferation, cytokine production, survival, and effector function partic-

ularly in the CD8+ T cell population453, 456–461. Its binding partner, 4-1BB ligand

(4-1BB-L), is expressed on activated macrophages, dendritic cells, and B cells as

well as on myeloid progenitors and hematopoietic stem cells459, 462–464. Expression

levels of 4-1BB are regulated and are low in resting cells, but are upregulated under

conditions of inflammation465–467. Upon engagement of its ligand, 4-1BB recruits

adaptor molecules TRAF1 and TRAF2 to a cytoplasmic domain, initiating several

activating, pro-survival signal transduction cascades. Downstream activation

events include enhanced activation of members of MAPK pathways and NF-kB

pathway, upregulation of Bcl-2 family members, and downregulation of the

pro-apoptotic molecule Bim468–475.

Early studies demonstrated that 4-1BB engagement both in vitro and in vivo

provides co-stimulatory signals to both CD4+ and CD8+ T cells, with an especially

potent effect on CD8+ T cell proliferation and survival460, 461, 476, 477.

Mice deficient in 4-1BB or 4-1BB-L have a fairly subtle immunological phenotype,

suggesting that 4-1BB ligation is not an absolute requirement for the normal

development of lymphocytes, or for the generation of several types of immune

responses. However, in some settings, such as response to influenza virus, a lack of

4-1BB stimulation results in a suboptimal anti-viral immune response478. More-

over, regardless of the necessity for 4-1BB, augmented 4-1BB signaling during

antigenic stimulation enhances the magnitude of the subsequent antigen-specific

immune response479. Unexpectedly, 4-1BB agonist antibodies have been observed

to diminish the severity of autoimmunity in several mouse models including

experimental autoimmune encephalomyelitis, rheumatoid arthritis, and systemic

lupus erythematosus480–482. An explanation for this apparent paradox is presently
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under investigation, and the diminished generation of T cell-dependent humoral

responses after treatment with anti-4-1BB antibody may offer an explanation483.

8.5.11.2 Preclinical Studies

Increased signaling through 4-1BB can enhance anti-tumor immune responses. The

potential of an agonist anti-4-1BB antibody to stimulate anti-tumor immunity was

first tested in the treatment of two transplantable murine tumors: the sarcoma

Ag104A, and the mastocytoma P815. Antibody-induced regression of established

tumors required CD4+ and CD8+ T cells as well as NK1.1+ cells455, 484. Subsequent

studies using either 4-1BB agonist antibodies, 4-1BB-L, or transfection of the

4-1BB gene, demonstrated enhanced anti-tumor immune responses in a variety of

transplantable tumor types including melanoma, fibrosarcoma, lymphoma, and

colon carcinoma485–494. In a study of the mouse fibrosarcoma B10.2, anti-4-1BB-

mediated tumor rejection depended upon CD8+ T cells, CD40 and IFN-g487.
Promising activity for anti-4-1BB antibodies has been demonstrated in combination

with dendritic cell vaccines, adoptive T cell therapy, chemotherapy, or antibodies

against CTLA-4, PD-1, or CD40412, 495–500. Notable toxicities observed in the

preclinical testing of 4-1BB agonist antibodies in mice include hepatotoxicity,

skin toxicities, and hematopoietic toxicities500, 501. The hepatotoxicity observed

in mice was an elevation in blood levels of liver transaminases associated with

liver-infiltrating CD8+ T cells. The phenomenon was transient, resolved with

cessation of treatment, and was dependent upon CD8+ T cells and TNF-a. In
contrast to mice, preclinical studies in monkeys treated with the fully human anti-

4-1BB IgG4 antibody, BMS-663513, showed no evidence of toxicities, hepatic or

otherwise501, 502. Hematologic toxicities included lymphopenia, thrombocytopenia,

and anemia500.

8.5.11.3 Clinical Development

BMS-663513 is a fully human IgG4 agonist antibody against human 4-1BB. It was

initially tested in a Phase I-II multidose, dose escalation study of 115 patients with

advanced or metastatic solid tumors503. The most common toxicity reported was

transaminitis seen in 15 % of patients. Other common toxicities included leukope-

nia, neutropenia, and thrombocytopenia. Clinical activity, including partial

responses and sustained stable disease, was reported in all dose levels. Based on

these findings, a randomized, open-label, phase II study of patients with previously

treated stage IV melanoma was initiated. This study was terminated early due to an

unusually high incidence of grade IV hepatitis501, 504. A second antibody targeting

4-1BB, PF-05082566 (Pfizer, Groton, CT, USA), a fully human IgG2 antibody, is

presently under investigation.590

8 Immune Co-signaling to Treat Cancer 249



8.5.12 OX40/OX40-L

8.5.12.1 Biology

OX40 (CD134) is another co-stimulatory member of the TNF receptor superfamily.

It was initially characterized as a determinant expressed on CD4+ T cell blasts505. It

is expressed on activated, but not resting or naı̈ve T cells, and may be expressed on

both CD4+ and CD8+ lymphocytes505–510. OX40 is expressed on CD4+CD25+

Tregs in both humans and mice511, 512. Additionally, OX40 may also be detected

on neutrophils and NKT cells513, 514. The ligand for OX40 (OX40-L, CD252) was

initially identified as a 34-kDa glycoprotein expressed on human T cell leukemia

virus type-1 transformed cells, and consequently named GP34. It was adopted into

the TNF superfamily based on sequence homology to other family members515–517.

Subsequently, GP34 was identified as a ligand for OX40 and renamedOX40-L518, 519.

OX40-L is expressed on APCs including dendritic cells, B cells, and macro-

phages520, 521. Its expression may be upregulated by inflammatory stimuli521.

Expression of OX40-L has also been detected on activated T cells, vascular

endothelial cells, and airway-smooth muscle cells522, 523, 524.

For effector CD4+ and CD8+ T cells, OX40 engagement appears to play an

important co-stimulatory role in the later stages of T cell activation, enhancing

proliferation and survival. The interaction of OX40 with OX40-L leads to the

recruitment of TRAF molecules to the cytoplasmic domain of OX40 and activates

pro-survival signals through NF-kB, BCL-2, BCL-xL, and survivin. OX-40 signal-

ing also enhances cytokine production by activated CD4+ T cells. The phenotype of

OX40- and OX40-L-deficient mice support a role for OX40 signaling in T cell

proliferation and survival, resulting in enhanced clonal expansion of effector and

memory populations, especially for CD4+ T cells525–528.

For Tregs, which constitutively express OX40, OX40 engagement has been

shown to block suppressor function in vitro. OX40 appears to play several roles

in Treg function in vivo, perhaps reflecting differences in the two major Treg

subpopulations: natural Tregs (nTregs) that develop in the thymus and inducible

Tregs (iTregs) that develop in the periphery. In mouse models of inflammatory

bowel disease, graft-versus-host disease, and skin transplant, OX40 ligation has

been described as blocking the suppressive function of nTregs511, 529, 530. Further-

more, OX40 ligation appears to antagonize the generation of new iTregs529, 531, 532.

However, OX40 can convey both positive and negative signals to Tregs, depending

upon the context. In mouse models of experimental autoimmune encephalomyelitis

and colitis, OX40 was found to play an important role in Treg expansion, accumu-

lation in inflamed tissue, and in controlling autoimmunity533, 534.

8.5.12.2 Preclinical Studies

In mouse models of transplantable tumors, strategies to augment OX40 signaling to

enhance anti-tumor immunity have shown promise. Treatment of tumor-bearing
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mice with either agonist antibodies to OX40 or soluble OX40-L has shown activity

in mouse models of sarcoma, melanoma, glioma, lymphoma, mammary, renal

prostate, and colon cancer535–542. Mice that survived tumor challenge after OX40

treatment developed protective tumor-specific memory535. The efficacy of OX40

ligation depends upon the inherent immunogenicity of the tumor, with poorly

immunogenic tumors showing an inferior response536. The anti-tumor activity

elicited by OX40 ligation appears to primarily reflect enhanced CD4+ T cell

function, which indirectly promotes CD8+ T cell activity by augmenting CD4+

T cell help543. OX40 engagement for anti-tumor therapy also may impact Tregs.

In a model where intratumoral injection of OX40 agonist antibody led to tumor

rejection, OX40 expression was required on both Treg and effector T cells544. In a

second model, combination therapy with OX40 antibody plus chemotherapy led to

intratumoral depletion of Tregs via induction of apoptosis. Lastly, OX40 agonist

therapy has also shown promise in combination with GM-CSF, IL-2, chemother-

apy, surgery, radiation, and adoptive immunotherapy537, 545–548.

8.5.12.3 Clinical Studies

OX40 targeted therapy for the treatment of humanmalignancies is in the early stages

of testing. A mouse monoclonal antibody agonist to human OX40 was developed

and initially tested in non-human primates549. Subsequently, this antibody was

tested in a first-in-humans, phase I, single-dose, dose escalation study including 30

patients with advanced malignancies. Toxicities were mild and included fatigue and

transient lymphopenia550. A humanized anti-OX40 antibody and a human OX40-L-

immunoglobulin fusion protein are also presently in development550, 551.

8.5.13 ICOS/ICOS-L

Inducible co-stimulator (ICOS, CD278), a member of the IGSF, is structurally

related to CD28 and CTLA-4. ICOS was initially identified in 1999 as a molecule

expressed by activated human T cells with 39 % sequence similarity to CD28552.

As its name suggests, ICOS is co-stimulatory molecule rapidly upregulated upon

TCR engagement and CD28 co-stimulation553. ICOS may play an especially

important role in T cell survival, proliferation, and generation of memory554.

ICOS partners exclusively with ICOS ligand (ICOS-L, B7h, B7RP-1, CD275), a

molecule initially identified in a screen of genes induced by NF-kappaB/Rel

transcription factors555–557. ICOS-L is expressed constitutively on B cells,

macrophages and dendritic cells and can be induced on non-lymphoid cells exposed

to inflammatory cytokines556, 557. When compared to CD28 signaling, engagement

of ICOS appears to activate similar downstream events. Both CD28 and ICOS

function as activators of PI3K and MAP kinases, and PI3K is necessary for some

aspects of ICOS-mediated activation including cytokine secretion558–561. However,
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the intracellular domains of CD28 and ICOS have several distinctive features that

may explain subtle differences in signaling. For example, a unique YMFM motif in

ICOS recruits a particular variant of PI3K which is an especially potent stimulator

of Akt, an important T cell survival factor562, 563.

Genetically deficient mice and transgenic mice have defined important roles for

ICOS in vivo555, 557, 564. ICOS is an important factor in T cell-dependent B cell

responses via its indispensible role in the development of follicular T helper

cells565–571. ICOS also plays an important role in the development and effector

functions of Th1, Th2, and Th17 cells and in development of a robust memory

T cell compartment554, 571–577. ICOS is also constitutively expressed on Tregs and

plays an important role in their development and in stimulating production of IL-10,

a key regulatory cytokine578, 579.

8.5.13.1 ICOS—A Clinical Connection?

The first studies correlating ICOS expression with clinical activity came from the

monitoring of six patients with bladder cancer who were treated with ipilimumab in

the neoadjuvant setting. Patients treated with ipilimumab prior to surgical resection

for advanced bladder cancer. In this setting, ICOS was identified as a biomarker

upregulated on peripheral and tumor infiltrating T cells141. This correlation was

subsequently observed in tumor samples from patients with prostate, and breast

cancer as well143, 149. Furthermore, in a retrospective analysis of melanoma patients

treated with ipilimumab, increased frequency of CD4+ICOShi T cells, sustained

over a period of 12 weeks, correlated positively with increased overall survival143.

Several additional studies are beginning to suggest that ICOS expression and

activation may be a relevant to understanding immune cell functions in human

tumors in the absence of CTLA-4 blockade. For example, in a study examining

tumor infiltrating Tregs in human melanomas, the authors observed high ICOS

expression on tumor infiltrating Tregs when compared to Tregs found in the

peripheral blood of healthy donors580. In this study, high ICOS expression on

Tregs corresponded to high levels of suppressor activity in vitro. In contrast, in a

study of genes expressed in metastatic lesions of patients with melanoma, expres-

sion of ICOS had a positive correlation with survival581. Lastly, in a study by Paulos

et al., cultured human cells activated with ICOS co-stimulation had increased

production of IL-17 and IFN-g and increased anti-tumor activity when adoptively

transferred into mice bearing human tumors582. Thus, it seems likely that ICOSmay

play multiple roles in the interaction between immune cells and tumors, reflecting

its diverse expression pattern in multiple immune cell subtypes.

8.5.13.2 Closing Remarks

The past two decades have been marked by a growing understanding of the

co-stimulatory and co-inhibitory pathways that are critical to the generation of
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an effective, well-regulated immune response. Capitalizing on an increasingly

nuanced appreciation for the role that these molecules play in anti-tumor immune

responses, novel therapies to treat human cancers have been developed. A number

of these molecules are currently being targeted in early-stage clinical trials, and

some, like anti-CTLA-4 therapy, have been granted clinical approval. Given the

complexity of the generation and regulation of anti-tumor immune responses,

combining therapies that target co-signaling molecules with conventional therapies

like chemotherapy or radiation or experimental therapies like vaccination and

adoptive T cell therapy, are already showing promise. Combinations of therapies

that augment anti-tumor immunity via distinct mechanisms are most likely to

shown synergy.
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Chapter 9

Managing Regulatory T Cells to Improve

Cancer Immunotherapy

Tyler J. Curiel

Abstract Regulatory T cells (Tregs) are increased in peripherally circulating blood

cells and in the solid tumor masses of patients afflicted with many different cancer

histologies. Cancer Tregs not only are capable of impeding endogenous protective

anti-tumor immunity from optimal functioning but are also capable of impeding

the efficacy of anti-cancer immunotherapy. Tumor-associated Tregs represent

heterogeneous populations, differing by their origins and in their mechanisms

used to impede anti-tumor immunity. Their properties can differ compared to

those in peripheral circulation. Most studies now report that Treg content in the

tumor inversely correlates with survival or therapeutic response, but a few reports

suggest that Tregs are beneficial to patients with certain types of cancers. Thera-

peutic strategies to manage Treg capacity to mediate immune dysfunction

include depletion, regulatory functional blockade, differentiation blockade, altering

trafficking, differentiation diversion, or raising the threshold of anti-cancer effector

cells for Treg-mediated regulation. Several clinical trials have shown the feasibility

and relative safety of managing Tregs in human cancer, although treatment effects

are modest. This chapter will review contemporary knowledge of Tregs in cancers,

including origins, mechanisms of action, interactions with other immune cells and

strategies for therapeutic management, addresses the major questions facing the

field and suggests additional important areas for future research. The focus is on

CD4+CD25+Foxp3+ Tregs, but other cancer-associated regulatory cells will be

addressed in brief.

T.J. Curiel (*)

Cancer Therapy & Research Center, University of Texas Health Science Center, Adult Cancer

Program, STRF MC8252, 8403 Floyd Curl Drive, San Antonio, TX 78229-3904, USA

e-mail: curielt@uthscsa.edu

T.J. Curiel (ed.), Cancer Immunotherapy, DOI 10.1007/978-1-4614-4732-0_9,
# Springer Science+Business Media New York 2013

281

mailto:curielt@uthscsa.edu


9.1 Introduction

Malignancies post significant immunologic challenges for the host. On the one

hand, they are antigenic and pathological, and should thus be amenable to immune

destruction. On the other hand, irrespective of how abnormal the malignant cells

have become, they nonetheless derive from self-tissues. Thus, the powerful host

machinery of peripheral tolerance intervenes to prevent autoimmune (anti-tumor)

attack indistinguishable from pathologic autoimmunity, consequently impeding

what could otherwise be clinically protective anti-tumor immunity. Tumors also

employ a devastating array of other immune escape features, discussed below and

in detail in other chapters (see especially Chaps. 2, 4, 8, and 10).

Many potentially self-reactive T cells are deleted in the fetal thymus in central

tolerance. However, imperfections in central tolerance prevent removal of all poten-

tially self-reactive T cells, some of which enter peripheral tissues including blood,

lymph nodes and gut, posing life-long risks for development of autoimmune

problems. Those self-reactive T cells not eliminated through central tolerance must

thus be dealt with using additional strategies, including peripheral immune tolerance.

In peripheral immune tolerance, a potentially autoimmune attack in progress is

sensed and inhibited typically before clinically apparent pathologic consequences

arise. Sakaguchi and others elegantly showed that a subset of T cells within the

CD4+CD25+ population were key mediators of peripheral tolerance1.

Nonetheless, activated T cells, including anti-tumor effector T cells can

also express the identical CD4+CD25+ phenotype. Thus, Tregs cannot usually be

identified by flow cytometric phenotype alone. We now know that the forkhead/

winged helix nuclear transcription factor Foxp3 regulates Treg differentiation and

function2–4. Thus, Tregs usually express high Foxp3, although not all Foxp3+

T cells are Tregs5. Additional phenotypic features of Tregs (mouse and human)

include high expression of CTLA-4 and GITR, and expression of additional

markers including CD62L, CCR7, LAG3, CD103, and others, and low expression

of CD127, IL-2, IL-17, and interferon (IFN)-g6. Nonetheless, these features are also
common to many activated non-Treg CD4+ T cells. Appropriate Treg identification

with confirmatory functional studies continues to confound interpretations of

clinical and preclinical data on potential immunopathogenic functions of Tregs in

various settings.

Data derived from small animal models and from human patients have

established that Tregs are numerically increased in peripheral blood and the solid

tumor masses of epithelial carcinomas, lymphomas and sarcomas, and in lymph

nodes draining these tumors7–24. Initial Treg work focused on cells in blood

circulation as they were easy and safe to access. Tregs circulate in increased

numbers in the blood of patients during the blood phase of their hematologic

malignancies, such as in acute myelogenous leukemia25. CD4+CD25+FOXP3+

T cells are found in brain metastases in human melanoma and non-small cell
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carcinoma, and in metastatic brain lesions in mouse models for breast and colon

cancer, and metastatic melanoma26, suggesting that Treg management strategies

could also be effective in tumors in the central nervous system. It is now clear that

the numbers, phenotypes, and functions of Tregs determined from studies of

peripherally circulating cells might not reflect accurately local events in the

tumor microenvironment. Immunological and clinical implications of these

compartment-specific differences are still incompletely understood.

9.1.1 Categorizing Tregs

Although Tregs have been categorized in different schemes, a useful and durable

concept was proposed by Jeff Bluestone27. In this scheme, Tregs arising in the

thymus through homeostatic processes are defined as natural Tregs (nTregs), and

are thought primarily to function as mediators of peripheral tolerance against

autoimmune attack. Adaptive or induced Treg (iTregs) are induced extrathymically

during inflammation or extrathymic T cell activation (including antigen encounter)

under tolerizing conditions, likely to help control inflammation, among other

functions (Fig. 9.1). nTregs appear to regulate immune processes through direct

cell-to-cell contact despite producing IL-10 and TGF-b. iTregs regulate immunity

through a variety of mechanisms including both cell-to-cell contact as well as

soluble factors, reflecting their heterogeneous origins. nTregs and iTregs are

phenotypically indistinguishable despite differences in in vivo function and

mechanisms of action, although recently the nuclear transcription factor Helios

was reported to identify nTregs relatively exclusively in both mice and humans28.

It is not yet clear whether Helios will be useful to distinguish nTregs versus iTregs

in inflammatory conditions, such as in cancer. This inability to distinguish nTregs

from iTregs has impeded progress in understanding contributions to normal and

pathologic process from each. A recent, pivotal study from the Rudensky lab29

describes a mouse deficient in iTreg generation owing to experimental deletion of

the CNS1 region of the foxp3 gene that his group showed to be critical for iTreg

generation30. These studies confirmed a role for iTregs in regulating inflammation

and for nTregs in mediating autoimmune protection, although much additional

work is required for a fuller understanding of their physiologic roles in a variety

of contexts.

Remarkably, yet predictably, additional Treg subsets have been identified based

on functional attributes, including subsets specialized to inhibit specific immune

functions such as Th2 or Th17 CD4+ T cell function. An exhaustive review of Treg

differentiation pathways and factors was recently published6, which is an excellent

reference for additional reading.
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Fig. 9.1 Differentiation and phenotypes of nTregs and iTregs. (a) An uncommitted thymocyte in

the thymus receives many instructions regarding its differentiation fate including from T cell

receptor (TCR) engagement by antigen, cytokines binding the gc chain (such as IL-2), and other

signals to be fully determined such as neighboring thymocytes or stromal cells, or host genetic

factors. “X” represents signals yet to be discovered. (b) Early thymic signals begin a differentia-

tion pathway. If the integration of signals induces Foxp3, cells start to differentiate into the Treg

pathway and begin to express phenotypic features such as high-level CD25 and CTLA-4. These

cells may still express Th2 cytokines such as IL-4, Th17 cytokines such as IL-17 or Tr1 cytokines

such as IL-10 but are not suppressive. These cells resemble the TFN cells or Tregs from FILIG

mice. (c) Foxp3 expression reinforces its own expression, and in conjunction with continuing and

new signals develops the fully developed Treg phenotype with higher CD25 and CTLA-4

expression than in b, suppressive function, reduced Th cytokines, and reduced phosphodiesterase

(PDE) 3b. This is now a natural Treg, developing in the thymus and suppressing through contact-

dependent mechanisms. It can exit the thymus to circulate or migrate to peripheral lymphoid

organs such as lymph nodes and spleen. (d) A Foxp3� thymocyte exiting the thymus can encounter

local conditions that induce Foxp3 (such as vascular endothelial growth factor in a tumor) and lead

to extrathymic Treg development from this Foxp3� cell, producing adaptive Tregs (ITregs) that

can suppress through soluble or contact-dependent mechanisms depending on speficics of their

generation. The natural Foxp3+ Treg (nTreg) exiting the thymus (upper right part of lower panels)
can encounter additional factors that change its properties as an iTreg. (e) Foxp3 can regulate gene

expression either through binding to the forkhead domain (top), induction of regulatory mi-R155

(middle) or in cooperation with NFAT (lower). Additional levels of regulation occur when induced
genes then mediate downstream effects. Reproduced from T. Curiel Nature Medicine 13:250–253
2007. Graphic: Katie Ris.
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9.2 Properties of Tumor-Associated Tregs

9.2.1 General Properties

Tumor-associated Tregs are a heterogeneous mix of cells that have developed

in distinct developmental pathways from cells arising in various anatomic

compartments. They mediate disparate functions through diverse mechanisms as a

result, which was the subject of an excellent review31. No definitive reports thus far

document the relative contributions of various developmental pathways (such as

iTreg versus nTreg) in the various Treg populations of a given tumor. Nonetheless,

in amousemodel for cancer, nTregs and iTregs each contribute to tumor tolerance32.

The recent generation of iTreg-deficient mice29 will greatly aid further studies.

Tumor-associated Tregs are not typically distinguishable phenotypically from

Tregs in other pathologic conditions. That is, tumor Tregs are CD3+ T cells

expressing CD4, CD25, GITR, and CTLA-4 among other features common to

most Tregs identified to date.

9.2.2 Tumor-Specific Properties of Tregs

Tumor-associated Tregs also have specific and unique characteristics as a

consequence of tumor microenvironment influences. For instance, blood

CD4+CD25+FOXP3+ Tregs in prostate cancer patients are more suppressive than

comparable cells in blood from control subjects, despite similar total numbers33.

Tregs in tumors of some human cancers could be more likely to induce CD8+

effector T cell apoptosis through FasL-mediated interactions34. Tumor-associated

TGF-b production promotes local Treg generation from naı̈ve T cells35. A novel

population of CD4+CD25�CD69+ Tregs suppressing T cell function through

membrane-bound TGF-b was reported in mouse cancer models including

melanoma, hepatocellular carcinoma, and lung cancer36. Lack of expression of

CD127 (IL-7 receptor a chain) is a feature of functional Tregs in human blood from

normal subjects37. CD127 expression in relationship to function is relatively

unstudied in tumor Tregs. We found that CD4+CD25+FOXP3+CD127+ and

CD4+CD25+FOXP3+CD127� T cells in blood and ascites of ovarian carcinoma

patients both contained highly suppressive Tregs (manuscript submitted).

Neuropilin-1 expression defines functional Tregs in mice38. A similarly function-

ally suppressive Neuropilin-1+ population has been described in human cervical

cancer39. These cells resided preferentially in lymph nodes draining the tumor and

were reduced by cytotoxic chemotherapy in direction relationship to reduction of

the tumor mass. Additional differences between homeostatic and tumor-associated

Tregs are likely to be described.

Apparent malignancies deriving from Tregs appear to occur, which is not

altogether surprising, as hematologic neoplasms derived from essentially all
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hematopoietic elements have been described. FOXP3 expression is reported in

subsets of cutaneous T cell lymphomas. The malignant FOXP3+ T cells have

suppressive function in in vitro assays akin to typical CD4+Foxp3+ Tregs40.

Mycosis fungoides cells undergoing large cell transformation express FOXP3

along with their clinically aggressive behavior41. In a study of lymphoma patients,

FOXP3+ and FOXP3� leukemia/lymphoma cases did not differ by major prognostic

factors including tumor stage, patient age, tumor distribution, and concentrations

of serum lactate dehydrogenase or serum calcium, and there was no difference in

overall survival42.

Recent observations of tumor Tregs suggest that they can promote metastasis in

breast cancer through RANK/RANK ligand signals from RANK ligand produced

by Tregs interacting with tumor RANK43. Tumor hypoxia can contribute to tumor

Treg accumulation through hypoxia-driven CCL28 production44.

9.3 Issues in Identifying Bona Fide Functional Tumor Tregs

9.3.1 Functional Testing Issues

As discussed further below, testing the function of putative Treg populations

remains the gold standard to confirm Treg identity in specific settings. Further,

it is now recognized that tests of Treg function are still limited. A useful

distinguishing feature between Tregs and other activated CD4+ T cells is the

relative in vitro anergy of the former, despite significant proliferative potential

in vivo45. The classic Shevach assay16 tests the ability of a candidate Treg popula-

tion to suppress proliferation of naı̈ve T cells in vitro. Although useful, the assay is

incomplete as it might not fully or accurately reflect the regulatory properties of

that particular Treg population in vivo. For example, Tregs also suppress T cell IL-2

production which can be a major in vivo suppressive mechanism46. Aside from

regulating T cell function, Tregs also affect antigen presenting cell function and the

effects of various other immune cells (reviewed in 31, 46).

Even with relatively standardized tests, specific aspects of the functional tests

can alter findings, leading to differing results and conclusions. For example, T cell

receptor signaling strength partly determines the susceptibility of the responder

T cells whose proliferative suppression is used to gauge Treg effects in standard

in vitro Treg functional tests. Tregs can also exert effects on a specific T cell subset

not tested in vitro, among other considerations. We have used Richard Flavell’s

FIR mice, in which viable Tregs can be flow cytometrically sorted based on red

fluorescence protein expression under foxp3 promoter control47. Bona fide
Tregs from FIR mice can be transferred into tumor-bearing mice for specific tests

of in vivo effects on tumor growth, tumor-specific immunity, and de novo Treg

generation48.
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Because human samples are generally limiting, some investigators have tested

T cell proliferation in mixed cell populations before and after CD25+ cell depletion

as a surrogate for specific Treg testing49. Testing suppression of T cell activation

markers in vitro either with Treg addition or CD25+ T cell depletion can give

some information about the existence of functional Treg populations while using

relatively small quantities of blood. We have shown that malignant human ascites is

a good source of functional tumor-associated Tregs8.

9.3.2 Surrogates for Functional Testing

As numbers of Treg are usually limiting in human tissues, additional techniques

that can corroborate Treg identity in human tumors have been investigated. For

example, FOXP3 expression identifies functional Tregs in selected human

carcinomas50. FOXP3 methylation has been suggested as a way to identify func-

tional Tregs when only small specimen quantities are available51. CD39 expression

might distinguish functional Tregs from other T cells expressing the CD4+CD25hi

phenotype, including in patients with cancer52. Additional work is required to

determine which nonfunctional surrogate tests are adequate for Treg identification

in specific conditions. This issue is especially important following immune-based

interventions, because treatments can have unexpected and unstudied effects on

T cell phenotype that require additional study. Our lab policy is to confirm the

functional identity of a potential Treg population in a setting for which such

function has not previously been specifically established. We also continue to

perform confirmatory functional testing in each experimental animal or human

subject to the extent possible to continue to understand how reliable the phenotypic

descriptors of potentially functional cell populations are. For example, we have

found that interferon-a increased the prevalence of Foxp3+ T cells in mice and

humans with ovarian cancer, although these induced Foxp3+ T cells do not neces-

sarily have Treg function (manuscript submitted).

9.4 Significant Issues in Understanding a Role for Tregs

in Tumor Immunopathology

Important questions to address include: (1) What mechanisms induce tumor-

associated Tregs? (2) Why are Tregs increased in most cancers? (3) What are the

specific roles for specific Treg subsets in tumor immunopathology? (4) What

mechanisms do tumor-associated Tregs use to mediate cancer immunopathology?

Answering these overarching questions helps understand cancer immunopathology

and helps generate tools to develop novel and effective anti-tumor immuno-

therapies, a goal that has proven relatively elusive thus far.
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9.4.1 Origins of Tumor Tregs

Tregs accumulate in tumors and the patients with them for various reasons

including: (i) control of autoimmunity, (ii) control of inflammation, (iii) de novo
local differentiation (which means iTreg generation), (iv) recruitment from distant

compartments, (v) local proliferation, and (vi) decreased death. Details of these

potential mechanisms will be addressed in turn. Specific mechanisms for Treg

actions, however, could nonetheless differ by tumor type and perhaps stage,

and also could differ based on the anatomic compartment for any given tumor.

Figure 9.2 illustrates how many factors generate Tregs at the same time that

anti-tumor immunity is generated.

Innate immunity
(not antigen specific)

Adaptive immunity
(antigen specific)

CD4+

TH1 cell 

Fig. 9.2 Critical elements of tumor-associated immune dysfunction. Although anti-tumor immu-

nity is elicited as shown in the top half of this figure, active tumor-driven immune dysfunction (red
box in bottom half of the figure) thwarts immune cancer elimination. Antigen presenting cells,

which in the top half can activate tumor-specific immunity, can also elicit dysfunctional immune

cells that turn anti-tumor immunity off, or inhibit it through subversion by tumor factors. Factors

responsible for this dysfunction can derive from the tumor itself, or from local stroma or immune

cells. These agents include immune suppressive vascular endothelial growth factor (VEGF),

transforming growth factor (TGF)-b, and interleukin (IL)-10. These molecules can directly inhibit

immunity, such as the ability of TGF-b, IL-10, or VEGF to inhibit T cell activation, or can

indirectly elicit other dysfunctional cells. In this latter instance, tumor IL-10 or VEGF can promote

antigen presenting cells to express B7-H1, an immune molecule that can directly inhibit T cells, or

promote generation of regulatory T cells (Tregs) that inhibit anti-tumor immunity. Tumors can

attract Tregs through CCL22, CCL28, and other factors. Novel strategies to overcome these

complex and potent tumor-driven active defenses against anti-tumor immunity represent major

new opportunities to improve the efficacy of anti-tumor immunotherapy. Figure adapted from

Curiel, TJ. Drug Resistance Updates 2012;15(1–2):106–13.
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9.4.1.1 Control of Autoimmunity

The identification of increased Tregs specific for self-antigens is consistent with

dysfunctional attempts to control autoimmunity as the basis for their increased

numbers. Such normal self-antigen-specific Tregs in cancers have been described

for a subset of self-antigens that are also tumor-associated antigens. As an example

in humans, Tregs specific for the autoantigens gp100, TRP, NY-ESO-1, and

survivin have been described in melanoma53.

9.4.1.2 Control of Inflammation

Inflammation is a dual-edged sword in cancer. Chronic inflammation

contributes to development of some cancers, and cancers generally promote a

pro-inflammatory environment54. Thus, it is plausible that some tumor-associated

Tregs are iTregs generated or attracted to help control the tumor microenviron-

mental inflammation. Thus far, described normal Tregs including those isolated

from the tumor microenvironment can inhibit production of inflammatory

cytokines in vitro. Nonetheless, to my knowledge, Treg accumulation specifically

to control tumor-associated inflammation has not yet been formally demonstrated.

However, consistent with the concept that Treg-mediated reductions in chronic

inflammation can help prevent cancer, in a mouse model for chronic inflammation

in the colon, Tregs lowered colorectal cancer incidence by inhibiting local

inflammation55. Further, it is now clear that specific Treg subsets have defects

in controlling certain types of inflammation29,56,57, suggesting that some

cancer-driven inflammation could be from reduced iTreg-mediated control, and

suggesting possible means for novel therapeutic attack.

9.4.1.3 Enhanced de Novo Local Differentiation

Some experimental data support the notion that tumor environmental factors can

facilitate Treg differentiation locally. Tumor cells can promote Treg differentiation

by direct action on T cells, or indirectly by altering local antigen presenting cells,

particularly dendritic cells31 and likely other cells as well. Soluble as well as

contact-dependent tumor mechanisms that promote local Treg generation have

been described. Soluble mediators include cyclooxygenase-2, which is associated

with (although not proven to mediate) increased Treg numbers in patients with head

and neck cancers58. TGF-b produced by tumor cells differentiates naı̈ve

CD4+CD25� T cells into Tregs (iTregs) in mouse models of renal cell carcinoma

and prostate cancer35. The human SK-OVCAR3 cell line produces TGF-b that

differentiates naı̈ve CD4+CD25� human T cells into Tregs (iTregs) in vitro59.
Indoleamine 2,3-dioxygenase produced by human leukemia cells (and from other

sources) induces Tregs in vitro and in vivo60. B cell CD70 signals in non-Hodgkin

9 Managing Regulatory T Cells to Improve Cancer Immunotherapy 289



lymphoma can boost FOXP3 expression in naı̈ve human CD4+CD25� T cells

in vitro61. Gal1 from Reed-Sternberg cells in classic Hodgkin lymphoma can

facilitate immune suppression directly and also indirectly by helping generate

Tregs62. We found that tumor B7-H1 signals contribute to iTreg generation in

mice with B16 melanoma48, including sexually dimorphic effects discussed further

in Chap. 13. Additional, tumor-associated factors whose identity remains unknown

or poorly understood also contribute to tumor Treg generation63,64.

The tumor can render local cells dysfunctional by promoting generation of

iTregs or enhancing their function. For example, plasmacytoid dendritic cells in

tumor draining lymph nodes in a mouse cancer model directly activated

preexisting Tregs through indoleamine 2,3-dioxygenase production. The suppres-

sive mechanism in this case (B7-H1/PD-1 signaling) is distinct from Tregs

activated without indoleamine 2,3-dioxygenase65. Ovarian cancer-derived IL-10

and vascular endothelial growth factor induce dendritic cell B7-H1 expression that

generates IL-10 producing Tregs in human ovarian cancer66. Tumor-conditioned

human plasmacytoid dendritic cells also can redirect T cell differentiation to either

FOXP3+ Tregs or to IL-10+ Tregs67.

The relative importance of individual mechanisms for local cancer Treg

generation remains poorly defined and likely will differ by tumor and by anatomic

compartment.

9.4.1.4 Enhanced Recruitment

Different types of tumors produce factors preferentially recruiting local Tregs.

The best studied axis is via CCR4 expressed on Tregs and the chemokines

CCL17 or CCL22 in the tumor microenvironment (reviewed in 31). Specific

examples include Treg attraction in ovarian8 or gastric68 carcinoma via CCL17 or

CCL22 signaling. CXCR4+ Tregs might also be attracted to the tumor microenvi-

ronment through local CXCL12 production, as preliminarily suggested in malig-

nant mesothelioma69. The cytokine IL-2 is FDA-approved to treat specific cancers

including malignant melanoma. However, it is now recognized that therapeutic

IL-2 can increase CXCR4 expression on Tregs, increasing their accumulation in

ovarian cancer patients70. Whether CXCR4/CXCL12 signaling boosts Treg accu-

mulation in ovarian cancer patients not treated with IL-2 remains to be established.

Elements in tumor stroma also might help attract Tregs locally to the tumor

microenvironment. For example, tumor-associated macrophages in ovarian cancer

secrete the chemokine CCL22 that can attract Tregs locally through a CCR4

interaction8. Local tumor hypoxia can generate CCL28 that attracts Tregs44.

9.4.1.5 Enhanced Local Proliferation

TGF-b from certain tumors can impede local, myeloid dendritic cell maturation,

contributing to local Treg proliferation71. Additional work supports the concept that
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tumors produce soluble factors and surface-expressed molecules that can promote

local Treg proliferation32. Other factors that impede dendritic cell maturation and

thus Treg generation, such as vascular endothelial growth factor72, can induce

Tregs, but specific effects on Treg proliferation are not reported.

9.4.1.6 Reduced Local Treg Death

Increased death could be a mechanism to augment Treg accumulation in the tumor

microenvironment, but such a mechanism remains to be demonstrated experimen-

tally. There are therapeutic strategies known to increase Treg death locally in the

tumor environment73.

9.4.1.7 Miscellaneous Host Factors

Several models using genetically defined conditions have identified host factors that

could alter tumor surveillance or anti-tumor immunity through Treg effects. As an

example, IRAK-M�/� mice (lacking IRAK-M, a negative regulator of innate

immunity) exhibit increased anti-tumor T cell immunity and reduced Tregs74.

B7-H1 T cell cosignaling can generate IL-10+ Tregs in human ovarian cancer66

and female B7-H1�/� mice have reduced Treg function compared to wild-type

females75 that is a sexually dimorphic B7-H1 effect on Tregs48. We have recently

demonstrated that estrogen regulates B7-H1 T cell co-signaling effects in Treg

generation (manuscript submitted) that is further discussed in Chap. 13.

9.5 Clinical Relevance of Tumor Treg Content

9.5.1 Treg Content and Prognosis

FOXP3 expression in immune cells in the tumor has been proposed as a prognostic

biomarker76. Nonetheless, FOXP3 expression can be transient and/or reversible,

thus altering the function of T cells in which it is expressed77,78. Foxp3+ T cell

differentiation is now also known to be highly plastic79. For example, in human

ulcerative colitis and colon cancers developing in that setting, FOXP3+ Treg are

functionally suppressive, but also produce cytokines not produced by homeostatic

Tregs, including TNF-a, IFN-g, and IL-1780. It is thus unlikely that simple analysis

of immune cell or tumor cell Foxp3 content alone will be a highly specific

predictive tool without additional information including functional data from

FOXP3-expressing cells, the content of other local immune cells, and the anatomic

relationships of immune cells to each other and to the tumor, among many

additional considerations.
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Tumor Treg numbers correlate negatively with survival or treatment response

in several studies, including in ovarian cancer8, R0 (fully resected) gastric

carcinoma81 and hepatocellular carcinoma82,83. Intratumoral Foxp3+ T cells

positively correlated with local recurrence in the vertical phase of melanoma84.

By contrast, a few studies, notably in hematologic malignancies85, suggest that

increased Tregs are beneficial to survival or prognosis. In colorectal cancer, tumor

FOXP3+ cell number was positively correlated with survival whereas FOXP3+ cell

number in unaffected tissue in the same patients was negatively associated with

survival86. In head and neck cancer, tumor Treg positively correlated with regional

cancer control87. Studies in experimental animal cancer models provide at least one

plausible mechanism by which Tregs function could benefit anti-tumor immunity. In

a mouse melanoma model, Tregs augmented anti-tumor immunity, potentially by

inhibiting complete tumor eradication. Residual tumor could potentially generate

sufficient tumor antigen to stimulate anti-tumor immunity without clinical

detrimental effects88. Functionally suppressive FOXP3+ Treg in ulcerative colitis

produce TNF-a, IFN-g, and IL-17 as noted above80 that could promote anti-tumor

immunity.

Finally, a few studies show that Treg content conveys no prognostic value

including the finding that tumor-infiltrating FOXP3+CD4+CD25+ T cells had no

predictive power in renal cell carcinoma89. In anal cancer, Treg cell content was not

prognostic90, but patients were studied following radio-chemotherapy treatments,

potentially confounding results. The differing conclusions and results in these

various studies could owe to a number of factors, including issues discussed

above, and those to be addressed below. A recent review of Tregs and prognosis

is available76 for additional reading.

9.5.2 Tregs and Treatment Response

Levels of blood Tregs (CD4+CD25hi T cells) in human cancer patients prior to

therapy predicted overall survival after treatment with a dendritic cell vaccine in

which some patients were also simultaneously treated with activated T cells91.

Reduction of tumor-infiltrating FOXP3+ cells with simultaneous increase in tumor-

infiltrating CD8+ cells correlated positively with pathologic complete response after

neoadjuvant therapy in human breast cancer92. In prostate cancer patients receiving

anti-cancer vaccination plus androgen deprivation, Treg did not predict clinical

efficacy93,94. In head and neck cancer patients with squamous cell carcinomas and

no evident disease after conventional treatment, increased peripherally circulating

Tregs were more suppressive than in patients not getting similar treatments95,

suggesting that therapy boosted numbers and function of suppressive Tregs even

while affording a net clinical benefit. If results such as these are confirmed,

especially by demonstrating the identity of putative Tregs with functional tests,

these data could be useful to help develop algorithms predictive of long-term

treatment efficacy, help identify individuals most likely to respond, or help screen

out individuals unlikely to benefit from treatments.
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9.5.3 Additional Sources of Confusion in Studies
of the Prognostic Significance of Tumor Tregs

Demonstrating Treg function can be difficult, particularly in human tissues

as sample size is usually limiting. Consequently, prognostic studies often use

FOXP3 expression as a surrogate for functional Tregs, but without doing confirma-

tory functional testing. Some studies use immunohistochemistry to detect Foxp3+

cells but do not demonstrate that Foxp3+ cells are CD3+ T cells. Such approaches

could lead to confusion because FOXP3 expression is not an absolute or specific

marker for functional Tregs5. In this regard, it was recently suggested that FOXP3

expression plus cytokine profiling could help distinguish FOXP3+ Tregs from

FOXP3+ activated effector cells in certain epithelial carcinomas50. Another

potential source of conflicting results is that patient populations and factors

known to confound survival estimates or treatment response data are not fully

defined or identified in some studies.

Absolute numbers and/or functional status of Tregs are prognostic indicators

as discussed, but Tregs also appear to have prognostic importance based on

their specific anatomic location, or distribution within this anatomic location. For

example, in gastric carcinoma, survival was affected by Treg distribution in the

tumor but not on total FOXP3+ tumor Treg numbers96. The ratio of Tregs to various

immune cells, including anti-tumor effector cells also predicts survival in some

studies. For example, a low ratio of CD8+ T cells to Tregs predicted a poor

prognosis in patients with cervical cancer97. The ratio of FOXP3+ cells to granzyme

B+ cells predicted survival in Hodgkin lymphoma patients98. The timing of these

changes can also be important. For example, the simultaneous reduction of FOXP3+

cells with increased infiltration into breast carcinoma tissue of CD8+ cells was the

best predictor of pathologic complete response following cytotoxic breast cancer

chemotherapy92. As we understand specific aspects of tumor-associated Tregs

better, it is likely that better algorithms to predict treatment responses (including

to surgery, radiation and cytotoxic agents) and survival will be produced. These

advances will also be further facilitated as we better understand how to identify

tumor Tregs with logistically tractable tests.

9.6 Tregs and Cancer Prevention

Efforts to understand the immunopathologic role of cancer Tregs have focused on

their immunopathologic influences on clinically apparent cancer. Nonetheless,

because Tregs dampen anti-tumor immunity it is plausible that they could also

affect the degeneration of a premalignant lesion to a frank malignancy, or could

affect the immunoediting that occurs after malignant degeneration but before the
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tumor is clinically apparent (the immune equilibrium phase). A significant finding in

this regard is that Tregs mediate loss of concomitant immunity99, making it biologi-

cally plausible that they could inhibit anti-tumor immunity early in preclinical cancer

progression. Tregs inhibit tumor immune surveillance in skin and connective tissues

in a mouse model for carcinogen-induced sarcoma100. It has been proposed that a

mechanism for ultraviolet radiation-induced skin cancer could include the induction

of dermal Tregs101 and that Tregs could contribute to malignant progression in

cervical cancer19. As many cancers, including cervical carcinomas are

virus-associated, Tregs could contribute to malignant progression by suppressing

immunity to virus-associated antigens in addition to any effects on nonviral antigen

immunity102, also supported by the finding of human papilloma virus antigen-specific

Tregs in human cervical cancer103, a cancer in which human papilloma virus is a

key etiologic agent. In a chronic inflammation model for colorectal cancer in mice,

Tregs decreased colorectal cancer development by blunting microbe-driven local

inflammation55. Managing Tregs in cancer prevention remains little explored yet

merits additional attention. Significant issues with clinical application of this concept

include the many obvious difficulties of their pharmacologic manipulations (and

possible side effects) when there is no clinical malignancy.

9.7 Tumor Treg Effects of Anti-Cancer Therapies

Increased attention to the immunopathologic effects of cancer Treg effects has

demonstrated some surprising findings regarding Treg effects on treatment out-

comes for some cancers. At present, detailed mechanisms of how Tregs affect

clinical outcomes in cancer patients remain unknown, with studies generally

describing correlations. Future work is likely to shed considerable light on

mechanistic details.

9.7.1 Vaccine Effects on Tregs

While it has long been known that active vaccinations generate vaccine antigen-

specific effector T and B cells, recent work now establishes that such vaccines

can also generate antigen-specific Tregs in mouse cancer models104. In humans, a

vaccine for cervical cancer-induced CD4+CD25+FOXP3+ cells105, but Treg functional

capacity and vaccine antigen specificity, remain to be demonstrated. Conversely, in a

human anti-tumor vaccination trial to treat B cell chronic lymphocytic leukemia,

vaccination reduced CD4+CD25+FOXP3+ T cells suggesting Treg reduction106,

although Treg function of these cells was not tested. A MAGE-A3 peptide vaccine-

induced MAGE-A3-specific CD4+CD25+FOXP3+ T cells with regulatory properties
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detected in peripheral blood of melanoma patients107 and a dendritic cell vaccine

expanded functionally suppressive blood CD4+CD25+FOXP3+ Tregs in multiple mye-

loma patients108. Thus, active vaccination in cancer patients clearly appears to have

potential to induce vaccine antigen-specific Tregs, along with any beneficial cells that

might concurrently be generated.

In recognition of the issue of vaccine-induced Tregs, development of vaccines

that foster generation of antigen-specific anti-tumor effector cells over generation

of antigen-specific Tregs has been proposed109. Approaches include combining a

CD40 agonist with Toll-like receptor activation110 and a DOTAP (N-[1-(2,3-

dioleoyloxy)propyl]-N,N,N-trimethylammonium methyl-sulfate) vaccine against

human papilloma virus E7 antigen that generates CD8+ T cells with concurrent

Foxp3+ T cell reductions in a mouse cancer vaccine model111. Challenge of mice

with tumors engineered to express ectopic CD137 single chain antibody generates

better anti-tumor immunity and simultaneously generates lower numbers of Tregs

than challenge with wild-type tumor cells112. Dendritic cells from multiple mye-

loma patients inhibited T cell activation, and tumor cell lysates from multiple

myeloma or anti-myeloma idiotype antibodies-induced CD4+CD25+FOXP3+ cells

in vitro113. In this study, forced calnexin expression in these dendritic cells with a

lentivirus vector boosted tumor antigen-specific effector T cell generation without

increasing the generation of FOXP3+ T cells.

9.7.2 Cytokine Treatment Effects on Tregs

IL-2 is FDA-approved to treat renal cell carcinoma and malignant melanoma. Its

clinical development was based on its activating and proliferation-inducing effects

on T cells generally, and anti-tumor effector T cells specifically. However, more

recent work demonstrates that a key physiologic function of IL-2 in vivo is

maintenance of peripheral tolerance through critical growth and differentiation

effects on Tregs114,115 (see also Chap. 7). In light of this new understanding,

therapeutic consequences of IL-2 in relationship to its effects on Tregs were

undertaken. IL-2 given systemically in patients with ovarian cancer altered

molecules involved in Treg trafficking and boosted numbers of Tregs70. Adminis-

tration of IL-2 (combined with gp100 peptide vaccination) in three phase II

melanoma clinical trials had variable effects on circulating CD4+CD25+FOXP3+

T cells (suggesting Tregs) in circulation, with increases and decreases that bore no

clear relationship to clinical outcomes116. Other cytokines can also alter numbers of

Tregs, and their differentiation, function or migration. As an example, gene therapy

with IL-12 reduced Treg generation in a mouse model for hepatocellular

carcinoma117.
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9.7.3 Additional Agents That Alter Tregs

9.7.3.1 Drugs That Reduce Treg Numbers or Function

Relatively low doses of the anti-cancer cytotoxic alkylating agent cyclophosphamide

(Cytoxan) can reduce Treg numbers in mice and humans118. Addition of cyclophos-

phamide can boost the efficacy of dendritic cell vaccines efficacy in mouse models

for melanoma or colon carcinoma, association with reduced phenotypic Treg

numbers that is thought to a mechanism119. At the high doses used in standard cancer

treatment protocols, it is unlikely that Treg depletion alone is a significant immune

mechanism for the anti-cancer effects of cyclophosphamide. The aromatase inhibitor

letrozole can reduce Tregs in breast cancer120. Low dose metronomic temozolomide

is reported to reduce phenotypic Tregs in a rat model for glioma, but function of the

phenotypic Tregs was not tested121. The kinase inhibitor imatinib mesylate (Gleevec)

enhances vaccine-induced anti-tumor immunity in mice, thought at least in part

by reducing Treg numbers and function122. Imatinib mesylate actions on Tregs

appear to be partly through reducing T cell receptor signaling, including reduced

expression of the ZAP70 component of the T cell receptor signaling complex122.

Cyclooxygenase-2 inhibitors have been proposed to reduce colorectal cancer risk in

part by reducing Treg function, based on suggestive but not definitive evidence123,

including the finding that cyclooxygenase-2 inhibitors can reduce FOXP3+ cell

content in human colorectal cancers124.

9.7.3.2 Drugs That can Increase Treg Numbers or Function

Histone deacetylase inhibitors are another class of drug gaining much research

attention for direct effects on tumor cell proliferation, but they can also increase

Treg suppressive functions and numbers125,126. IL-2 can further boost this effect of

histone deacetylase inhibitors on Tregs127. Retinoids, including all-trans retinoic

acid used in specific acute leukemias can promote generation of Tregs that prefer-

entially home to gut128. The mTOR inhibitor rapamycin is in cancer clinical trials as

an anti-proliferative agent. It is widely considered to be immunosuppressive and

thought to increase Treg numbers based on the finding that mTOR suppression is

required for optimal Treg function129. In our studies of normal mice given chronic

oral rapamycin based on its longevity extension effects130, we found no increase in

Treg numbers or function and no evidence for immune suppression when given for

up to 19 consecutive months (manuscript submitted). The thalidomide congeners

lenalidomide and pamolidomide reduce Treg numbers and function131 possibly by

reducing Foxp3 expression in CD4+ T cells rather than by altering their production

of IL-10 or TGF-b. Trastuzumab (Herceptin), an anti-Her2/neu antibody, effected a

decrease in peripheral blood Treg numbers while simultaneously increasing IL-17-

producing Th17 T cells in patients being treated for breast cancer, suggesting that

the Th17/Treg Th differentiation pathway had been skewed132. Additional effects

of other drugs for other indications have been identified133,134.
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Given the significant Treg effects of these agents, and additional immune effects

of these and other agents that are being discovered, it is worthwhile to reassess the

mechanisms of action of certain anti-cancer drugs, including active vaccines,

passive adoptive cell transfers, tyrosine kinase and/or growth factor signaling

inhibitors, anti-angiogenesis agents, and a variety of others. Such studies might

suggest new insights into mechanisms of action or help identify subsets of patients

that could benefit from, or be harmed by, certain treatment strategies. The dual

effect of IL-2 on promoting proliferation of anti-cancer effector T cells and

inducing dysfunctional Tregs in cancer is an excellent example discussed above.

The National Cancer Institute’s Provocative Questions Program in 2011 addressed

the issue of novel uses for well-known agents in its provocative question 5 (http://

provocativequestions.nci.nih.gov/rfa).

9.8 Strategies to Manage Tregs

Cancer-associated Tregs appear to reduce the efficacy of endogenous and therapeu-

tically induced anti-cancer immunity in most cancers so studied, reviewed in 31.

The concept that reducing cancer Treg function will be therapeutically beneficial is

thus a logical supposition133. In support of such thinking, experimental Treg

depletion improves de novo anti-tumor immunity14, and increases tumor-specific

immunity135 including shared tumor antigens136. Experimental Treg depletion also

improves the immune and clinical activity of other therapeutic approaches includ-

ing active vaccination137,138. Our increasing understandings of mechanisms

governing tumor Treg function and local accumulation31,139, suggest distinct

categories of strategies to approach reducing tumor Treg function: depletion;

blocking differentiation, trafficking or effector functions; raising effector cell

suppression threshold, or diversion into alternate Th differentiation pathways133,134.

Outright depletion is the best studied strategy thus far in preclinical cancer models

and in human trials133,140–144. However, the clinical and immunologic effects of

Treg depletion alone are usually limited by Treg regeneration that in some cases

yields Treg numbers that exceed pre-depletion levels145,146. Thus, managing Tregs

in conceptually a better approach to frame strategic thinking. The following

sections outline Treg management strategies that have been or could be tested.

9.8.1 Nonspecific Treg Depletion

A basic feature of most Tregs studied thus far is the uniformly high expression of

IL-2 receptor alpha chain (CD25). Targeting anti-CD25 through antibodies (usually

clone PC61) is the most commonly employed approach in preclinical mouse cancer

models1. We and others have demonstrated that denileukin diftitox (ONTAK), a

recombinant fusion protein of the majority of human IL-2 plus the toxin moiety of
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diphtheria toxin147 that targets cells expressing IL-2 receptor148, has been used to

deplete Tregs in renal cell carcinoma149, melanoma141,142,150, and ovarian

cancer148. We have also depleted Tregs with denileukin diftitox in patients with

breast, pancreatic, bladder, and lung cancer in addition to melanoma (manuscript

submitted). One group failed to demonstrate that denileukin diftitox could deplete

Tregs in melanoma143. The basis for this discrepant result is unknown at present,

but does not appear due to differences in doses or schedule, or prior treatments

with IL-2. We recently reported that aged mice have increased numbers of CD25lo

but Foxp3+ functional Tregs151. Denileukin diftitox depleted these Tregs, but

consequences for tumor immunotherapy remain to be fully established.

The alkylating agent cyclophosphamide118 (Cytoxan), improves the clinical

efficacy of dendritic cell vaccines in preclinical mouse models for colon carcinoma

and melanoma in association with reducing Treg numbers119. ICOS+ and TNFR2+

Tregs are reportedly more suppressive than the total CD4+CD25hi T cell population

that includes Tregs; cyclophosphamide appears selectively to deplete numbers of

these highly suppressive Tregs152. Metronomic low dose schedules of cyclophos-

phamide can deplete functional Tregs in peripheral blood of cancer patients118.

Fludarabine can deplete Tregs, although it is toxic to most T cells153. Paclitaxel-

based chemotherapy in non-small cell lung cancer patients reduced Treg numbers

in peripheral blood, which in vitro tests suggested was specifically due to the

paclitaxel154.

Immunity generated against Foxp3-expressing cells (including Tregs) increased

tumor immunity in a mouse model for renal cell carcinoma155. However,

mechanisms of action of this approach could include attack against Foxp3

expression reported in some non-hematologic cancers156.

LMB-2 is a Pseudomonas immunotoxin conjugated to the Fv moiety of an

anti-CD25 antibody targeting the toxin to CD25+ cells and depletes Tregs in

human cancer patients157. Although depleting CD25+ T cells from hematopoietic

stem cell transplant in a mouse cancer model boosted anti-tumor immunity158,

depleting CD25+ cells (including, but not exclusively Tregs) in an autologous cell

adoptive cell transfer protocol in combination with high-dose IL-2 in vivo did not

affect prolonged Treg reduction in a clinical trial159.

The anti-CD25 monoclonal antibody daclizumab was recently demonstrated

to deplete human Tregs in breast cancer patients, and reprogram their Tregs as

evidenced by increased IFN-g production140.

CpG treatment in melanoma patients can reduce lymph node FOXP3+ T cell

numbers160, but functional status of FOXP3+ cells was not reported in this study.

The small-molecule STAT3 inhibitor JSI-124 augmented activated effector T cell

infiltration into tumor and reduced cells with a Treg function in a mouse melanoma

model when combined with CpG treatment161. Adding cyclophosphamide to OX40

ligation enhances anti-tumor immunity and promotes tumor rejection in a mouse

melanoma model, thought in part due to increasing local Treg apoptosis73. Many

more examples similar to these have also been described. Foxp3DTR mice are

engineered for diphtheria toxin expression under control of the Foxp3 promoter162.

Using these mice, it is definitively established that depleting just Tregs alone can
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significantly enhance anti-tumor immunity and clinical tumor rejection163. Due to the

technical challenges inherent in human Treg work, the clinical and immunologic

effects exclusively attributable to depleting Tregs has not been definitively

demonstrated in any human cancer. Chesney, et al., showed that denileukin diftitox

improved clinical and immune outcomes in advanced-stage human melanoma,

including with cerebral metastases, but attributed effects to transient T cell depletion

of the immunotoxin141. A follow-up study by the same group confirmed the efficacy

of the immunotoxin and its ability to deplete humanTregs inmetastaticmelanoma142.

9.8.2 Antigen-Specific Treg Targeting

Tumor antigen-specific Tregs have now been described as occurring de novo, with
no prior vaccinations or other interventions53,164, although they are also described

as increasing in response to active cancer vaccination104. Significant pathologic

autoimmunity from Treg depletion in human cancer patients has yet to be reported,

contrasting with many reports of significant autoimmune complications of

anti-CTLA-4 antibody treatment165 (and see Chap. 8). Lack of significant autoim-

munity with current attempts to deplete Tregs no doubt is partly due to the relatively

inefficiency of the approaches evaluated, as total Treg depletion can induce signifi-

cant autoimmunity even in naive mice162. Nonetheless, if tumor antigen-specific

Tregs could be specifically targeted for destruction, it could be possible to improve

anti-tumor immunity with minimal induction of unwanted pathologic auto-

immunity from Treg depletion. No technique that manages human antigen-specific

Treg function uniquely has yet been described. In some cancers, folate receptor

4-expressing tumor Tregs includes a population of tumor antigen-specific Tregs the

reduction of which augments clinically significant anti-tumor immunity in a mouse

cancer model166.

9.8.3 Raising the Effector Cell Suppression Threshold

The anti-CTLA-4 antibody ipilimumab was FDA-approved to treat metastatic

melanoma in March 2011. It can increase the proliferation of Tregs in human

subjects despite its clinically proven efficacy167. It was initially thought perhaps to

work by reducing Treg numbers, but that is probably not a significant mechanism,

and if anything Treg numbers can increase after anti-CTLA-4168–170. Mechanisms

for its clinical effects include reducing Treg function and increasing the threshold

for Treg-mediated suppression of effector cells by action on the latter. The relative

contributions of each mechanism of action is incompletely understood and might
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depend on tumor type and anatomic compartment, although increasing the Treg

suppression threshold appears generally to be more important. Anti-CTLA-4

antibody treatment reduced CD3+CD4+FOXP3+ T cells in blood that phenotypically

appeared to be Tregs in a human trial. Nonetheless, CD8+ cytotoxic T cell numbers

in blood did not change significantly. Further, CD3+CD4+FOXP3+ T cells quickly

returned to baseline numbers, and their function as Tregs was not confirmed171.

Please see Chap. 8 for many additional details on anti-CTLA-4 effects.

In an alternative approach to raising effector T cell suppression threshold, A20

(a zinc finger protein) was genetically silenced in dendritic cells. In a mouse cancer

model, tumor-infiltrating T cells previously activated with A20-silenced dendritic

cells resisted Treg-mediated suppression172. The cytokine IL-7 raises effector T cell

threshold for Treg-mediated suppression in mouse models of autoimmunity173, but

IL-7 effects in this regard in tumors have not been reported. Notch signaling in

effector T cells appears important in modulating Treg-mediated suppression

when the suppression involves membrane-bound TGF-b174, but Notch effects on

resistance to human Tregs have not yet been reported.

9.8.4 Altering Treg Trafficking

Specifically impeding the trafficking of Treg ingress into areas where anti-tumor

immunity is primed8 or executing its effector functions is likely to be a beneficial

treatment strategy. Improving effector T cell trafficking over Treg trafficking into

tumor could be a useful treatment strategy, as was demonstrated using cyclophos-

phamide plus anti-OX40 antibody in a mouse model for melanoma73. We showed

that anti-CL22 antibody prevented Tregs from infiltrating into human ovarian cancer

cells xenografted into immunodeficient mice, promoting immune-mediated rejec-

tion by adoptively transferred autologous CD8+ T cells (T. Curiel, W. Zou, et al.,

unpublished data). CCL22 also attracts Tregs in human breast cancer175. However,

CCL22 may also facilitate trafficking of effector T cells. Therefore, any potential

benefit of CCL22 blockade or of interrupting other trafficking signals requires

further study as to potential therapeutic utility. Selective in silico studies identified

small-molecule chemokine receptor antagonists or monoclonal antibodies able to

block in vitro CCL22-mediated recruitment of human Treg and Th2 cells176 and

have gone into phase I clinical trials177. Therapeutic utility may be limited by the

binding promiscuity of chemokine receptors, the redundancy of chemokine/ligand

pairs, or the role of chemokines in normal tissue homeostasis or anti-tumor

immunity. These additional effects of chemokine/receptor antagonism must be

taken into account in strategies to block chemokines and their receptors.

Therapeutic IL-2 administration can alter Treg trafficking, and increase numbers

of circulating Tregs70,178 even if their functionality could be reduced178.
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9.8.5 Inhibiting Treg Suppressive Functions

Tumor Tregs use a variety of mechanisms to exert suppression of anti-tumor

immunity31. Mitigating or preventing these mechanisms could be therapeutically

beneficial133,134. Inoculation of Escherichia coli engineered to express the

Listeriolysin-O gene promoted generation of specific cytotoxic T lymphocytes,

but also simultaneously made local Tregs nonfunctional179. Inhibiting STAT3

reduces Treg suppressive function180, and specific ablation of STAT3 signaling

reduces the capacity of Tregs to restrain Th17-polarized T cells56, which was also

recently suggested in endogenous Tregs in aged mice181. As detailed in Chap. 2,

IL-17-producing cells and Th17-polarized immunity have incompletely understood

roles in anti-tumor immunity80,182. Thus, how these findings will translate into

specific anti-cancer therapies remains unclear. Agonizing OX40 expressed on

tumor-infiltrating Tregs with a specific antibody blunts their capacity to inhibit

anti-tumor effector T cell activity and thus promotes improved immune-mediated

tumor rejection146. Agonizing GITR signals in vitro with monoclonal antibodies

reduces the suppressive capacity of Tregs in mice183,184, but whether the approach

will work with human Tregs remains unclear185. Toll-like receptor signaling in

virus-based anti-tumor vaccines can reduce Treg-mediated immunosuppression.

Because dendritic cell-based vaccines do not induce Toll-like receptor signaling

in the absence of some additional manipulations, they could be maximally effective

in promoting the efficacy of anti-tumor CD8+ T cells either by reducing Treg

function or by coadministration of a Toll-like receptor agonist186. There is much

interest in reducing Treg function using Toll-like receptor ligation (e.g., TLR9
ligation with CpG oligonucleotides) as an effective way to improve the efficacy of

some cancer vaccines. Sendai virus reduced Treg function in a mouse model for

colorectal cancer in which virus-induced IL-6 was suggested as a mechanism187.

Additional considerations to block Treg function include interrupting Foxp3

interactions with NFAT, which is required for Treg suppressive function188, and

blocking Treg effector molecules such as IL-10, TGF-b, or IL-35 among other

strategies. Most of these strategies have not yet been assessed in human trials.

9.8.6 Blocking Treg Differentiation

The nuclear transcription factor Foxp3 controls Treg differentiation through

mechanisms that are increasingly understood30,189,190 that could be used in thera-

peutic applications. For example, the CNS1 region of Foxp3 controls induced Treg

generation29,30 that could be silenced to reduce tumor-driven Treg generation.

Tumor environmental products such as vascular endothelial growth factor retard

maturation of local dendritic cells191. These tumor-associated immature dendritic

cells can contribute to defective T cell activation, and to generation of Tregs. Thus,

preventing dysfunctional dendritic cell activation of T cells could help reduce Treg
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generation in tumors. We showed that interferon-a improves dendritic cell matura-

tion in a mouse model for ovarian cancer associated with reduced Treg generation

and function and that adding it to denileukin diftitox improved clinical responses in

ovarian cancer in mice and in human patients (manuscript submitted).

9.8.7 Subverting Treg Differentiation

Tumor-associated Tregs include those that are tumor antigen-specific53,164. If these

antigen-specific T cells could be reprogrammed into a clinically useful pathway, for

example, a Th1-polarized or polarizing pathway, these counterproductive tumor-

specific Tregs could be induced to become tumor-specific effector T cells. Using

the common aryl hydrocarbon receptor to redirect T cells into a Th17 differentia-

tion pathway over Treg differentiation192 is an example of a means to subverting

Treg differentiation, assuming that the resulting Th17 cells are not detrimental and

that a safe common aryl hydrocarbon receptor targeting molecule is identified.

Th17 immunity is beneficial in some tumors182,193 (and see Chap. 2 for details). For

example inhibiting indoleamine 2,3-dioxygenase in a B16 mouse melanoma model

skews Tregs towards the Th17 pathway that could promote anti-tumor immunity194.

In this same melanoma model, treating dendritic cells ex vivo with an anti-B7-DC

antibody facilitated the conversion of antigen-specific Tregs into tumor antigen-

specific Th17 effector cells that mediated anti-tumor immunity195. A recent report

demonstrated that the anti-CD25 monoclonal antibody daclizumab depleted Tregs

and also reprogrammed them towards a Th1 phenotype as evidenced by IFN-g
production in a clinical trial of an hTERT vaccine in metastatic breast cancer140.

9.8.8 Combining Treg Management with Other Treatment
Modalities

The timing of treatment modalities for anti-cancer immunotherapy can have signifi-

cant influences on immunologic and clinical efficacy, including the timing of Treg

depletion in relationship to other treatments196. Our understanding of how best to

combine various Treg management strategies with other treatments remains limited.

Transient lymphodepletion to foster homeostatic effector T cell expansion combined

with Treg depletion is a testable concept, and could help explain some of the

treatment effects of denileukin diftitox141. Another approach worth additional

exploration is combining radiation, or selected doses of certain cytotoxic197 or

hormonal agents94 that can increase tumor immunogenicity (such as by generating

release of, or improving the immunogenicity of, tumor antigens as an endogenous

vaccination) with Treg management. Further, the timing of chemotherapy can slow

Treg re-accumulation after other approaches198.
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9.8.9 Additional Treg Management Considerations

Even when Treg management itself is highly effective in reducing functional

Tregs, clinical efficacy can nonetheless be hampered by poor intrinsic effector

cell function, low effector cell trafficking into the correct compartment or

immunoediting199,200, among many other factors. For example, the efficacy of

depleting Tregs in a mouse melanoma model was hampered due to relatively poor

effector cell trafficking to appropriate sites. Combining Treg depletion with endo-

thelial damage from external beam irradiation significantly improved appropriate

effector cell trafficking and immune and clinical efficacy of Treg depletion167.

Relatively little has been studied regarding age or gender effects on tumor

immunity generally, the effects of Tregs specifically and responses to tumor

immunotherapy. Lack of age-specific studies is particularly striking as age is the

biggest risk factor for cancer201. The effects of aging on Treg function in naı̈ve mice

and humans have led to contradictory results181. In our BL6 mice, there is little

age-associated decline in Treg function in naı̈ve and tumor-bearing hosts163,181.

Nonetheless, depleting Tregs is ineffective in improving anti-tumor immunity and

clinical effects in B16 melanoma in aged mice, whereas it is highly effective in

young mice. Lack of efficacy was found due to a compensating increase in myeloid-

derived suppressor cells in aged, but not young B16-bearing hosts following Treg

depletion. Combining Treg plus myeloid-derived suppressor cell depletion was thus

effective in aged mice, whereas adding myeloid cell depletion to young B16-

bearing mice provided no additional benefit. By contrast, Treg depletion was

effective in aged hosts in a model of MC-38 colorectal cancer because myeloid-

derived suppressor cells did not increase after denileukin diftitox-mediated Treg

depletion163.

Regarding gender differences, we showed that estrogen and B7-H1 immune co-

improve anti-tumor immunity and clinical responses in females better than males in

a mouse B16 melanoma model. Differences owed in part to greater Treg functional

reduction with B7-H1 blockade or deficiency in females, whereas Treg depletion

was equally efficacious in either sex48. Please see Chap. 13 for many additional

miscellaneous strategies and details.

9.9 Other Regulatory Cells

In some mouse models for cancer, Tregs might not be the significant mediators of

immune dysfunction, and in such cancers, managing Tregs might not be the optimal

therapeutic approach. As one example, immune suppression is reportedly mediated

principally by CD4+ NKT cells, not CD4+ Tregs in a mouse model for lung

metastasis due to CT26 colon cancer202. Nonetheless the role of Tregs in lung

metastasis, and their role for affecting tumor growth in other anatomic

compartments was not specifically reported. In the TRAMP mouse model for

prostate cancer, Treg depletion with the anti-CD25 antibody PC61 did not improve
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tumor-specific tolerance or increase tumor rejection203. In humans, Tregs do not

always correlate negatively with clinical responses to treatment or to survival as

discussed above in the Section 5. Thus, it is likely that other regulatory cells are also

immunopathologically relevant to clinical cancer outcomes.

In this regard, CD8+ T cells, certain myeloid cells and NKT cells have also

been reported as mediating dysfunctional immune suppression in cancer204.

CD8+FOXP3+ T cells in prostate cancer can suppress in a contact-dependent

manner, which effects are blunted by TLR8 agonists205. CD8+CD25+Foxp3+

suppressive T cells have been reported in peripheral blood and the solid tumor

mass in patients with colorectal cancer. These CD8+ Tregs expressed high CTLA-4

and GITR and suppressed the proliferation of, and cytokine secretion from

CD4+CD25� T cells in vitro, similar to conventional CD4+CD25hiFoxp3+

Tregs206. In a mouse leukemia model of allograft rejection, anti-CD3 antibody

treatment induced CD8+FOXP3+ suppressor T cells mitigating graft versus host,

but not graft versus leukemia responses207. In a mouse colon cancer model a

specific subpopulation of NKT cells and IL-13 were implicated in immune sup-

pression208. This immune suppression was specifically suggested not to be Treg-

dependent202. How these various suppressive and immune dysfunctional mediators

contribute to tumor immunopathology, and how their management will contribute

to novel anti-cancer immunotherapy strategies remain fully to be defined, and are

interesting and important areas for additional investigation. For example, we

recently identified how Treg depletion affects myeloid-derived suppressor cells,

and how their combined management was superior to management of either alone

in aged mice with B16 melanoma163.

9.10 Summary and Challenges

Recent detailed studies make plain that not all types of malignancies, or at all

pathological stages, and not all hosts will benefit from specific Treg management

strategies proposed here. For example, Tregs could contribute to immunopathology

in specific lymphomas. Nonetheless, steroids that are used in some treatment

strategies could blunt clinically meaningful activation of effector T cells. Alterna-

tively, if Tregs are beneficial in some lymphomas as suggested, reducing their

function could be detrimental. Understanding which agents are most useful in Treg

management, and in what combination and in which order are important details

generally not known at present. Treg-specific agents are not currently available for

use in humans, but with our rapid understanding of Treg biology, development of a

specific management agent in the near term is a realistic expectation.

Practically applicable, accurate immune assays that predict Treg function and

clinical outcomes following Treg management interventions must be developed and

validated to assess clinical and immune consequences of proposed interventions. As

an example, to understand the effects of Treg-mediated T cell suppression, methods

to isolate large numbers of viable immune cells at high purity must be developed that
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do not compromise patient safety. Clinical trial design must address appropriate

proof-of-concept issues that account for the unique, specific challenges inherent in

understanding effects of these novel approaches. For example, assays to link Treg

management strategies with alterations in tumor-specific immunity will be important

to develop, to show conclusively that Treg function (however defined) is accom-

plished with a specific intervention, and that this reduction is a mechanism for any

improved clinical and immune outcomes observed. Developing tests of local tumor

microenvironmental changes is challenging in human subjects where patient safety

and limiting tissue amounts are major considerations. Thus, developing a blood test

or relatively non-invasive test that will convey the relevant data needed to come to

meaningful conclusions regarding mechanisms of Treg management strategies

would be a significant advance.

Despite our current state of relatively incomplete understandings, there is reason

for much optimism given the rapid and useful advances made in the past 5 years

alone. Developing clinically useful and logistically tractable Treg management

strategies to treat cancer is a reasonable and realistic goal for the near term.
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Chapter 10

Myeloid-Derived Suppressor Cells in Cancer:

Mechanisms and Therapeutic Perspectives

Paulo C. Rodrı́guez and Augusto C. Ochoa

Abstract Malignant cells create a chronic inflammatory microenvironment that

facilitates their proliferation, promotes migration and invasion, and blunts any

antitumor response by the innate and adaptive immune systems. This state of

immunologic tolerance has been well characterized and is in part responsible for

impairing the potential therapeutic benefits of immunotherapy approaches such as

cancer vaccines and the adoptive transfer of T cells. One major mechanism by

which tumor cells induce a chronic inflammatory microenvironment is through the

recruitment of myeloid-derived suppressor cells (MDSC). MDSC are potent

inhibitors of the immune response through the expression of arginase I which

depletes L-arginine from the tumor microenvironment or by the production of

various intermediates such as reactive nitrogen species and reactive oxygen species

that can suppress T cell function. Here, we review recent concepts on how MDSC

can regulate T cell function in cancer and other chronic inflammatory diseases and

suggest possible therapeutic interventions to overcome this inhibitory effect.
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10.1 Introduction

Malignant transformation can lead to the expression of viral proteins, mutated

oncoproteins, and the overexpression of normal proteins in the cancer cell. This finding

supports the possibility that a strong innate immune response or the induction of potent

antigen-specific immune responses can prevent the development of cancer or control

tumor growth once it is established. In fact, viral vaccines against the human papilloma

virus are highly effective at preventing the development of cervical cancer. However,

three decades of clinical trials in cancer immunotherapy have also made evident that

once established, tumors have sophisticated mechanisms to impair and evade

antitumor-specific immune responses. Among the most prominent mechanisms by

which tumors impair antitumor immunity is by hijacking the initial immune response

converting it instead into a chronic inflammatory process that inhibits tumor-specific T

cells. Amajor cellular component of this chronic inflammatory process is the accumu-

lation of myeloid-derived suppressor cells (MDSC). MDSC have been shown to

modulate different T cell functions by depleting the amino acid L-arginine, by

nitrosylating the T cell receptor, by impairing recognition of antigens and cytotoxic

functions, or by inducing T cell apoptosis through the release of reactive oxygen

species. MDSC not only inhibit the antitumor immune response, but also appear to

protect tumor cells from the effects of certain chemotherapeutic agents. Therefore,

understanding the molecular and cellular mechanisms used by MDSC to suppress

antitumor responses has been a matter of extensive research and these have become

important to develop therapeutic targets. Here we will review some of the most recent

concepts on howMDSC could regulate T cell function in disease and suggest possible

therapeutic applications to inhibit their suppressive activity.

10.2 Alterations of the Immune Response in Cancer

A dysfunctional immune response in cancer patients manifested by the loss of

delayed type hypersensitivity to bacterial or chemical agents was demonstrated

several decades ago1–4. Initial explanations included the development of blocking

antibodies, the production of suppressor factors, and the generation of suppressor

macrophages5–7. However, their significance for the progression and outcome of

the disease was unknown. Although cancer patients generally do not develop the

characteristic opportunistic infections seen in patients receiving high doses of

corticosteroids or chemotherapy, they nonetheless show impaired T cell responses

against bacterial and/or chemical antigens1–4 and tumor-associated antigens. In

fact, immunotherapy models in mice and immunotherapy clinical trials have

demonstrated a decreased therapeutic response in advanced tumors as a result of

the loss of T cell responses (reviewed in 8). In addition, several vaccine trials have

demonstrated the progression of tumors in spite of a robust T cell response9. Most

studies agree that tumor cells trigger the multiple mechanisms that suppress the
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antitumor immune responses, including the recruitment of immune cells that act as

mediators of this effect. Cellular and molecular models of T cell tolerance have

identified various mechanisms by which tumors inhibit T cell function including the

upregulation of immunological checkpoints on antigen-presenting cells and/or

tumor cells,10–13 the induction of regulatory T cells14, 15, and the generation of

MDSC16–19.

MDSC range in morphology from immature myeloid cells to mature

macrophages and granulocytes. Their production in the bone marrow is induced

by factors such as granulocyte-macrophage colony-stimulating factor (GM-CSF)

produced by tumor cells. Young and colleagues first demonstrated that bone

marrow-derived suppressor macrophages blocked T cell responses by producing

IL-10, TGF-b, and prostaglandin E2 (PGE2)
20. In the early 1990s, Gabrilovich

et al.21 demonstrated that vascular endothelial growth factor produced by the

tumor cells arrested the differentiation of dendritic cells, resulting in immature

dendritic cells that caused T cell dysfunction. These cells were increased in patients

with breast, head and neck, and lung cancer22, 23. Since then multiple groups have

described the presence of myeloid cells that were able to suppress T cell responses.

These cells range from immature myeloid cells to mature macrophages or

granulocytes. In 2007 a group of leading investigators proposed the name

myeloid-derived suppressor cells (MDSC) to identify this heterogeneous popula-

tion of myeloid cells24. The mechanisms used by these cells to suppress T cell

function include the production of reactive oxygen and nitrogen species, and

arginase I, an enzyme that depletes the amino acid L-arginine25. In addition,

although technically not considered to be part of the MDSC mechanisms, immature

dendritic cells can also express the enzyme indoleamine 2,3-dioxygenase, which

depletes tryptophan causing T cell dysfunction26, 27.

10.3 Mechanisms of T Cell Anergy in Cancer

Although T cell dysfunctions in patients with cancer had been described since the

1960s, it was not until the early 1990s that investigators described the molecular

basis for these functional changes. Several investigators described multiple changes

in the expression of signal transduction proteins in the T and NK cells from cancer

patients and tumor-bearing mice, including a decreased expression of the T cell

receptor z chain (CD3z), a diminished expression of tyrosine kinases p56lck and

p59fyn, and an inability to upregulate Jak-3 kinase and to translocate NF-kBp65 into

the nucleus28. These changes resulted in diminished T cell responses to antigen

stimulation as shown by a decreased ability to mobilize Ca++, a diminished proli-

feration, and a decreased production of interferon (IFN)-g28–30. These initial

findings made in tumor-bearing mice were confirmed in patients with renal cell

carcinoma, melanoma, Hodgkin disease, ovarian cancer, colon carcinoma, and

cervical cancer among others31–33. Preliminary studies also showed that patients

with melanoma or head and neck tumors had a decreased survival time if expressing
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low levels of CD3z33, 34. However, the mechanism(s) to explain these changes was

unknown.

10.4 Mechanisms Leading to a Decreased CD3z Chain
in Disease

Otsuji et al.35 and Kono et al.32, 36 demonstrated that the co-incubation of activated

murine peritoneal macrophages with T cells induced the loss of CD3z chain. This
phenomenon could be blocked by the oxygen radical scavenger catalase and was

therefore thought to be mediated by H2O2
37. Similarly, Schmielau et al. described an

increased number of activated neutrophils in peripheral blood of patients pancreatic

and breast cancer who had a diminished expression of CD3z chain38. Another

mechanism suggested that the loss of CD3z chain was a consequence of Fas-FasL

induced T cell apoptosis39, 40. In addition, Baniyash and colleagues proposed that

chronic stimulation of T cells by specific antigens led to the decreased expression of

CD3z chain leading to the induction of anergy41–43. These changes however were

not unique to cancer patients and were observed in T cells from patients with chronic

or acute inflammatory events. Zea et al.44, 45 described that patients with leproma-

tous leprosy or active pulmonary tuberculosis presented similar alterations in T cells.

In addition, mice with severe trauma were shown to have a decreased CD3z and a

diminished T cell function46. Additional studies in trauma patients also showed that

they underwent a rapid depletion of L-arginine levels within a few hours of the

traumatic event, which was paralleled by the loss of T cell function. Furthermore,

replenishment of L-arginine reestablished normal T cell function and increased the

number of CD4+ T cells47–49, suggesting that amino acid depletion might play a role

in the induction of T cell anergy in these disease models.

10.5 L-Arginine and the Immune Response

The association of L-arginine metabolism and the immune system was initially

reported in experiments showing that the thymic involution and decrease in

T function seen in trauma models in mice was reversed by the injection of L-argi-

nine50, which was also essential for the process of wound healing16, 51. The deple-

tion of L-arginine was also prominently shown in liver transplant and trauma patients

in whom the rapid depletion of plasma levels of L-arginine was accompanied by

markedly decreased T cell function47–49.

Our initial experiments demonstrated that Jurkat T cells cultured in medium

containing L-arginine levels <50 mM lost the expression of CD3z and had decreased

proliferation52–54. Experiments using primary T cells showed that L-arginine depletion

caused the same functional (decreased proliferation and IFN-g production) and
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molecular (decreasedCD3z, inability to upregulate Jak-3, and decreased translocation
of NF-kBp65) alterations found in cancer patients. These changes were selective since

other functions, including the production of IL-2 and the upregulation and expression

of the IL-2 receptor chains (CD25, CD122, CD132), were similar to cells cultured in

medium with L-arginine. These results suggested a potential role for L-arginine

depletion as a mechanism for the induction of T cell dysfunction in vivo.

In healthy adults, L-arginine is a nonessential amino acid whose levels are

maintained through dietary intake and the de novo endogenous synthesis from

citrulline produced by epithelial cells of the small intestine (Reviewed in55). Normal

levels of L-arginine in serum range between 50 and 150 mM. L-Arginine is also

classified as a conditional essential amino acid in certain conditions such as trauma

and cancer where changes in its systemic levels cause major alterations in the immune

response56. L-Arginine is the substrate for seven enzymes that exist as multiple

isoforms: nitric oxide synthase (NOS1, NOS2, and NOS3), arginase (arginases I and

II), arginine:glycine amidinotransferase, and L-arginine decarboxylase (Fig. 10.1).

Dietary L-arginine is taken up by intestinal epithelial cells and traverses the plasma

membrane via the cationic amino acid transporters57. L-Arginine is metabolized in

endothelial cells or macrophages by nitric oxide synthase to produce citrulline and

nitric oxide, the latter of which plays an important role in cytotoxic mechanisms and

vasodilatation58, 59. Alternatively, arginase I and arginase II metabolize L-arginine to

L-ornithine and urea, the first being the precursor for the production of polyamines

essential for cell proliferation and the second an important mechanism for detoxifica-

tion of protein degradation60. Of the remaining two enzymes, L-arginine decarboxyl-

ase converts L-arginine to agmatine, which in turn is converted to putrescine and urea

by agmatinase. L-Arginine decarboxylase and arginine:glycine amidinotransferase are

not prominently expressed in immune cells. Instead L-arginine decarboxylase is highly

expressed in the brain61, 62, and arginine:glycine amidinotransferase is expressed in

the brain and the heart63, 64.

Arginase I and NOS2 play important roles in the immune response. The expression

of arginase I and NOS2 in murine macrophages is differentially regulated by Th1 and

Th2 cytokines65, 66. Stimulation of murine macrophages with IFN-g upregulates

NOS2 exclusively, while IL-4, IL-10, and IL-13 induce arginase I67, 68. The

L-Arginine NOS Arginase 

ADC AGAT 
CO2 

Agmatine 

Polyamines 
Urea 

Ornithine 
Guanidinoacetate 

Polyamines 
Proline 

Urea + 
Ornithine 

NO + 
Citrulline 

Creatine 

Glycine

Fig. 10.1 Intracellular metabolism of L-arginine. L-arginine is internalized by MDSC through

the cationic amino acid transporter CAT-2B. It is then metabolized by one of the 4 enzymatic

pathways shown in this figure.
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mitochondrial isoform arginase II is not significantly modulated by Th1 or Th2

cytokines69. The inhibition of arginase I leads to an increased NOS2 expression and

consequently promotes nitric oxide (NO) production70. Conversely, upregulation of

arginase I inhibits NOS activity and contributes to the pathophysiology of several

disease processes, including vascular dysfunction and asthma71. The mechanisms of

inhibition of NOS2 expression by arginase I appear to be mediated by L-arginine

depletion that blocks the induction of NOS2 expression and the subsequent NO

production in macrophages72. In addition, low levels of NOS induce nitrosylation of

cysteine residues of arginase I, which increases the biological activity of arginase I and

reduces L-arginine73.

Activation of peritoneal macrophages with Th1 or Th2 cytokines also has different

effects on the extracellular levels of L-arginine. Peritoneal macrophages stimulated

with IL-4 plus IL-13 increase the expression of arginase I and the cationic amino acid

transporter CAT-2B, which results in a rapid increase in the uptake of extracellular

L-arginine with the consequent reduction of L-arginine in the microenvironment.

In contrast, macrophages stimulated with IFN-g preferentially express NOS2, do

not increase CAT-2B, and do not deplete L-arginine from the microenvironment69.

Recent data from arginase I and arginase II knockout mice confirm that only arginase

I is able to deplete serum levels of L-arginine74, 75. Furthermore, conditional knock-

down of arginase I in myeloid cells impaired their ability to deplete extracellular

L-arginine (our unpublished data). Both arginase I and nitric oxide play an important

role in suppressing T cell function. In vitro coculture experiments (using transwells

separating macrophages and T cells by a semipermeable membrane) showed that

macrophages producing arginase I, but not macrophages expressing NOS2, were able

to cause the prolonged loss of CD3z in T cells and inhibit T cell proliferation and

IFNg production. This effect was reversed with the addition of arginase inhibitors N-
hydroxy-nor-L-arginine or N-hydroxy-L-arginine or exogenous L-arginine69. These

results were confirmed with macrophages from arginase I conditional knockout mice

(manuscript in preparation).

MDSC can also cause T cell tolerance through cell-cell contact. This mechanism

appears to require the co-expression of arginase I and NOS216. The addition of

arginine or arginase inhibitors to cocultures of MDSC and activated T cells

completely reestablishes T cell function76. It is possible that T cell suppression is

in part mediated by the production of peroxinitrites. Under limiting amounts of

L-arginine, NOS2 produces peroxinitrites (ONOO2), a highly reactive oxidizing

agent that nitrosylates proteins and induces T cell apoptosis77. This appears to affect

the conformational flexibility of the T cell antigen receptor (TCR) and its interac-

tion with major histocompatibility complex (MHC) by inducing nitration of TCR

proteins in CD8+ T cells. Thus, MDSC directly disrupt the binding of specific

peptides on MHC by CD8+ T cells78. In addition, TCR nitration prevents the

recognition of target cells by cytotoxic T cells. MDSC co-expressing arginase

I and NOS2 primarily impair CD8+ T cell function77, 79–81 by blocking their ability

to secrete IFN-g when stimulated with specific antigens82, 83 and inducing

apoptosis77. This suppression requires the production of IL-13 and IFN-g80, 84, 85

and signaling through the STAT1 transcription factor77. In addition, MDSC have

320 P.C. Rodrı́guez and A.C. Ochoa



been shown to produce high levels of stem cell factor when stimulated by IFN-g and
IL1086. Blocking of stem cell factor signaling in MDSC significantly impairs their

ability to generate regulatory T cells87.

10.6 Molecular Effects of L-Arginine Starvation on T Cells

The molecular and functional changes that occur in T cells cultured in the absence

of L-arginine are not associated with the induction of apoptosis and are fully

reversed by the simple replenishment of L-arginine at physiologic (50–150 mM)

concentrations52–54, 69. Rodriguez et al. showed that activated T cells cultured in

the absence of L-arginine were arrested at the G0-G1 phase of the cell cycle, while

cells cultured with L-arginine progressed into S and G2-M phases88. Arginine

starvation impaired the ability of T cells to upregulate cyclin D3 and cdk4, but

not cdk688 which are essential for the progression from G1 into the S phase of the

cell cycle89. Additional results showed that the decreased expression of cyclin D3

and cdk4 occurred through posttranscriptional and translational mechanisms88.

In eukaryotes, amino acid deprivation activates mechanisms that inhibit transla-

tion. The accumulation of empty aminoacyl tRNAs caused by amino acid starvation

activates GCN2 (general control nonrepressed 2) kinase which phosphorylates the

translation initiation factor eIF2a. The phosphorylated form of eIF2a binds with

high affinity to eIF2Β, blocking its ability to exchange GDP for GTP, which inhibits

the binding of the eIF2 complex to methionine aminoacyl tRNA which in turn

blocks the initiation of protein translation. In T cells cultured in arginine starvation

conditions, we have identified some of the similar mechanisms. The absence of

L-arginine triggers the activation of GCN2 kinase which in turn leads an to increase

in phosphorylated eIF2a, triggering an overall arrest in protein translation

(Fig. 10.2). In fact, T cells from GCN2 kinase knockout mice do not undergo cell

cycle arrest or decreased proliferation when cultured in medium without

L-arginine88.

The decreased translation is at least in part responsible for the diminished

stability of cyclin D3 mRNA. Cyclin D3 mRNA is characterized by a long 30

untranslated region containing an 11-nucleotide AU-rich element which forms a

complex with the DNA-binding protein HuR, resulting in stable mRNA. The global

decrease in translation caused by arginine starvation decreases the synthesis of

HuR, which in turn decreases the stability of cyclin D3 mRNA90 (Fig. 10.2).

10.7 Arginase Expression in Tumors

Some tumors, including non-small lung carcinoma and breast carcinoma, have been

shown to express arginase91–93. This was thought to be a mechanism for the

production of polyamines needed to sustain the rapid proliferation of tumor cells.
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However, most tumors do not express arginase I, but instead attract an influx of

arginase I-expressing myeloid cells that infiltrate the tumor or accumulate in the

peri- and intra-tumoral area and could represent a mechanism of tumor evasion79.

Myeloid suppressor cells express the common marker CD11b, but vary in their

nuclear morphology and maturation markers (e.g., Gr1). This variability in

expressed markers resulted in multiple names being used to describe these cells

including tumor-associated macrophages, tumor-infiltrating macrophages, and

immature myeloid cells. In an effort to standardize the name used to describe

these myeloid suppressor cells, a group of leading investigators agreed in

2007 to use the common term “myeloid-derived suppressor cells” (MDSC)24.

In mice, MDSC can be divided into two subsets, granulocytic MDSC are

CD11b+LY6G+LY6Clo, whereas monocytic MDSC are CD11b+LY6G� LY6Chi94.

Granulocytic and monocytic MDSC are present in the bone marrow of healthy mice

and accumulate in the spleen and tumors of tumor-bearing mice80, 83, 95. Depletion

of MDSC using anti-Gr-1 antibodies induced an antitumor effect mediated by CD8+

T cells18, 19, 96. Similarly, the injection of the arginase I inhibitor N-hydroxy-nor-

L-arginine into tumor-bearing mice, or the use of nitro-aspirin which inhibits both

arginase and NOS2, prevents the loss of T cell function and results in a dose-

dependent immune-mediated antitumor response. The inhibition in tumor growth

caused by N-hydroxy-nor-L-arginine does not happen in tumor-bearing scid mice

(lacking T and B lymphocytes), strongly suggesting that the antitumor effect caused

arginase inhibition is dependent on lymphocyte function79. These results were
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Fig. 10.2 Arginine depletion inhibits protein translation in T cells. Low levels of L-arginine

activate GCN2 kinase which phosphorylates eIF2 alpha. In turn p-eIF2 alpha binds the translation

initiation complex and inhibits translation of selected proteins including HuR. The absence of HuR

results in a decrease of selected mRNA, compounding the detrimental effect of arginine depletion

on T cells.

322 P.C. Rodrı́guez and A.C. Ochoa



recently confirmed by data showing a significant inhibition of tumor growth in

arginase I conditional knockout mice (unpublished results).

Human MDSC phenotypes vary significantly ranging from immature myeloid

cells97, 98 to activated granulocytes99. They have been reported to express a wide

range of markers including CD11b, CD14, CD15, CD33, vascular endothelial growth

factor receptor, and CD66b (reviewed in100). A study of patients with metastatic renal

cell carcinoma demonstrated a six- to tenfold increase in arginase activity in their

peripheral blood mononuclear cells, as compared to normal controls101. Separation of

MDSC from peripheral blood showed that the cells containing all arginase activity

were activated granulocytes that separated with the peripheral blood mononuclear

cells99. Patients with high numbers ofMDSC had a significantly decreased expression

of T cell CD3z chain. Depletion of the MDSC from patient samples in vitro

reestablished T cell proliferation and IFN-g production. A similar subpopulation of

activated granulocytes had been described by Schmielau and Finn38 in patients with

pancreatic cancer, where they also demonstrated a correlation between these cells and

reduced T cell CD3z expression and decreased cytokine production38. Furthermore,

clinical trials with IL-2 in patients with renal cell carcinoma and melanoma have

shown an association between a poor clinical response and an increased numbers of

granulocytes in peripheral blood of these patients102.

Fig. 10.3 Mechanisms of arginine depletion by murine and humanMDSC.Mouse and human

MDSC differ in the mechanism for depleting L-arginine. MurineMDSC actively take up L-arginine

from the microenvironment, while humanMDSC (which are primarily represented by granulocytic

cells) degranulate, releasing large quantities of arginase I into the microenvironment. Both

mechanisms deplete arginine from the tumor microenvironment.
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Although human MDSC also express high levels of arginase I, this does not

appear to be upregulated by cytokines or other signals once these cells are in

circulation. Furthermore, human MDSC do not take up L-arginine. Instead, arginase

I stored in primary103 or gelatinase granules104 is released into the microenviron-

ment inducing a significant decrease in local L-arginine levels, which impairs T cell

function and CD3z chain expression101, 105, 106 (Fig. 10.3). In fact, the release of

arginase I into the blood of renal cell carcinoma patients induced a decrease in

plasma of L-arginine levels to <50 mM and an increase in ornithine levels

demonstrating that arginase I not only had a metabolic effect (L-arginine depletion),

but also had a negative effect on the T cell response101. Therefore, MDSC appear

to be a major contributor to the induction of T cell dysfunction or tolerance in

patients with cancer.

10.8 Regulation and Activation of MDSC in Cancer

MDSC are recruited from the bone marrow by vascular endothelial growth factor

and GM-CSF produced by tumors107. In fact, serum levels of vascular endothelial

growth factor directly correlated with numbers of MDSC in the blood and spleen108

and have been associated with poor prognosis in cancer patients. Tumor-derived

vascular endothelial growth factor has been previously associated with an arrest in

dendritic cell maturation109, 110 through the inhibition in NF-kB signaling. Treat-

ment of MDSC with all-trans retinoic acid appears to counter this inhibition and

promotes MDSC differentiation into mature antigen-presenting cells111. Increased

levels of GM-CSF have also been associated with MDSC-dependent immune

suppression that was reversed by the use of neutralizing antibodies to GM-CSF95.

Similar effects on MDSC have been suggested with other growth factors including

Fms-like tyrosine kinase 3 (Flt3) ligand112, stem cell factor (SCF),87 and S100A9

protein113. Furthermore, blocking of MDSC accumulation in tumor-bearing hosts

with antibodies against Gr-1, CD11b, or CSF1 (colony-stimulating factor 1), using

the inhibitor of CSFR1/c-kit, sunitinib, or using the antimetabolites gemcitabine

and 5-fluorouracil, has been shown to restore T cell function partially in tumor-

bearing hosts25, 87, 114–119.

Using the 3LL murine lung carcinoma, we studied which tumor-derived factors

might contribute to the expression of arginase I in MDSC. Supernatants from

3LL tumor cells maintained arginase I expression of MDSC isolated from tumors,

while MDSC cultured in regular tissue culture media rapidly lost arginase

I expression. Cytokines such as IL-4, IL-13, TGF-b, and others were not detected

in the supernatants of the 3LL single-cell suspensions. Instead, we found high

cyclooxygenase-2 (COX-2) expression and an increased production of prostanoids

including prostaglandin E2. The addition of COX-2 inhibitors or silencing of

COX-2 blocked the ability of 3LL cells to induce arginase I in MDSC120. This

effect was mediated through the E-prostanoid receptor (EP4) on MDSC and was

associated with increased cAMP levels (Fig. 10.3). Consequently, treatment of
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tumor-bearing mice with the COX-2 inhibitor SC-58125 decreased the expression

of arginase I in MDSC infiltrating the tumor and induced an immune-mediated

antitumor effect. Similar results have been reported in mice bearing the 4T1 breast

carcinoma where the treatment with the COX-2 inhibitor SC-58236 reduced the

accumulation of MDSC in the spleen in an EP2-dependent manner121. In addition,

celecoxib, a selective COX-2 inhibitor was able to inhibit the induction of colon

tumors in Swiss mice treated with 1,2-dimethylhydrazine diHCl122. Other factors

could also play a role in the induction of arginase in MDSC including hypoxia-

inducible factors 1 and 2 (reviewed in123), IL-4, IL-13, and IFN-g84. In conclusion,
although the mechanisms of induction of arginase I in MDSC have been partially

identified in mice, the factors inducing the activation of MDSC in patients are

still unclear. A recent publication by Rotondo et al. suggests the possible role of

tumor-derived IL-8 in the release of arginase from human MDSC124.

10.9 MDSC: Lessons from Other Diseases

and Future Applications

MDSC are not unique to cancer. Trauma patients and patients with chronic

infections including leprosy and active pulmonary tuberculosis also have increased

numbers of MDSC-expressing arginase I that inhibit T cell function. This data

suggests that MDSC could be increased by a chronic inflammatory process as a

response to tissue damage (danger signal). A demonstration of this mechanism was

described by Albina et al.51 studying the healing of surgical wounds. They found

that surgical wounds were initially infiltrated by cells expressing inducible NO

synthase which could represent an initial effort to eliminate any agents

contaminating the wound. This was followed by infiltration by cells expressing

arginase I that would metabolize L-arginine to ornithine and to proline. The latter

triggers the activation of fibroblasts and the synthesis of collagen, ultimately

leading to the healing of the surgical wound. The local depletion of L-arginine

would also prevent T cells from infiltrating healing tissue. In cancer or chronic

infections, tissue damage would also trigger a similar response with the prolifera-

tion of fibroblasts-producing collagen aimed at isolating and healing the damaged

tissue (i.e., the malignant growth). As a matter of fact, many tumors are surrounded

by dense fibrous tissue that makes its surgical excision difficult. The major differ-

ence between both disease processes (surgical wound versus malignant tumor)

would be that the surgical wounds eventually heal, ending the role for arginase-

producing MDSC, while malignant tumors do not stop growing and destroying

tissue (i.e., do not “heal”) instead promoting a chronic inflammatory process

mediated by MDSC. The continuous production of arginase I would ultimately

lead to the depletion of L-arginine from the microenvironment and the development

of T cell anergy. Therefore, it is our hypothesis that tumors hijack the normal

healing process making it instead a vicious cycle that results in the inhibition of a

10 Myeloid-Derived Suppressor Cells in Cancer: Mechanisms and Therapeutic. . . 325



potentially protective T cell antitumor response. Although this is surely to be an

oversimplified version of the complex mechanisms triggered in vivo, it provides a

model with which to understand a complex event in the development of cancer and

could help with the design of new therapeutic approaches that might interrupt this

dysfunctional response.

MDSC are not only present in cancer and trauma; data from hosts infected with

tuberculosis also shows the existence of MDSC125, suggesting that these cells play a

central role in chronic inflammation. In addition, MDSC-expressing arginase I have

been shown to be central in the maintenance of fetal tolerance and are found in

abundance in the placenta105.

Much has been learned about the role ofMDSC in the progression of tumors in the

last ten years. Multiple approaches have been taken to block MDSC suppression

including the use of all-trans retinoic acid111; inhibiting nitric oxide function with

nitro-aspirin126; inhibiting phosphodiesterase-5127; blocking arginase activity with

specific arginase inhibitors79; blockingMDSC accumulation using antibodies against

Gr-1, CD11b, or CSF; or using the chemotherapy agents sunitinib, gemcitabine, or

5-fluorouracil25, 87, 114–119. It is likely that the appropriate combination of inhibitors

blockingMDSC function and stimuli protecting T cells could overcome this powerful

tumor-derived mechanism that impairs the promise of cancer immunotherapy.
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Chapter 11

Antibodies as Cancer Immunotherapy

Devalingam Mahalingam and Tyler J. Curiel

Abstract Infused antibodies are the most successful immune-based agents to treat

certain cancers. However, their modes of action are not always dependent on

immune mechanisms aside from antigen-specific targeting. Immune mechanisms

include direct and indirect cytotoxicity while nonimmune mechanisms include the

targeting of toxins, such as drugs or irradiation sources, directly to the tumor, the

subject of Chap. 12. Therapeutic antibodies can be chimeric or humanized (part

human and part animal, usually mouse), but fully human antibodies are in trials or

have been FDA approved. This chapter will summarize the current FDA-approved

antibodies to treat cancer, and highlight promising antibodies in development.

11.1 Introduction

Paul Ehrlich is credited with conceiving the use of therapies that are targeted to

specific cells or tissues over 100 years ago. He coined the term “magic bullet” to

refer to targeted agents that he envisioned would kill microorganisms specifically or

target cancer cells specifically1,2. In the past few decades, Dr. Ehrlich’s vision is

being realized using targeted therapies that are practical, successful and Food and

Drug Administration (FDA)-approved to treat cancer3,4.

The first targeted anti-cancer agents were monoclonal antibodies that selectively

targeted and killed cancer cells. Examples of these drugs include rituximab5, a

chimeric, humanized anti-CD20 monoclonal antibody approved by the FDA in

1997 to treat B-cell lymphoma, and alemtuzumab, a humanized anti-CD52 mono-

clonal antibody approved in 2001 to treat chronic lymphocytic leukemia6.
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Although naturally-occurring defenses against cancer depend on T lymphocytes7,

and there appears to be little role for humoral immunity in normal defenses against

cancer, some of the more successful cancer immunotherapies approved for human

use are antibodies. These clinical results owe in part to the various mechanisms of

action ascribed to these agents, and also to their inherent ability to direct cytotoxic

agents specifically to tumors.

11.2 Overview of Antibodies

Although there are five major classes of antibodies (IgA, IgD, IgE, IgG, and IgM),

all successful and FDA-approved agents are of the IgG class. These antibodies,

generally derived from animal sources (notably mice), can be chimeric, where

significant portions are of nonhuman origin; humanized, where the antigen recog-

nition site (usually from a mouse antibody) has been genetically engineered into a

human antibody backbone; or they can be completely human in origin. The more

humanized an antibody is, the less likely it will be to generate a host immune

response, which would increase side effects and reduce antibody treatment efficacy.

See references 8,9 for recent, excellent reviews.

From a treatment perspective, the two major antibody moieties are the antigen

recognition site or Fab region and the constant moiety or Fc region. The Fab region

defines the targeting specificity of the antibody while the Fc portion affects immune

function, such as binding complement or initiating antibody-dependent cell-

mediated cytotoxicity (ADCC). The IgG class of antibodies can be subdivided

into the IgG1-4 subclasses, the functional relevance being that IgG1 and IgG3

antibodies activate complement. The Fc region of IgG activates complement

component C1q, which results in production of complement components C3a and

C5a, which are chemotactic, activating factors for innate immune cells including

granulocytes and macrophages. Cells interact with the Fc region of the antibody

through three classes of Fcg receptors (FcgR), which can be inhibitory or stimula-

tory. FcgII receptors include those that mediate inhibitory signals, whereas FcgI
and FcgIII receptors include those that transduce immune activating signals10. The

ADCC that results from Fc–FcR binding on immune cells can be beneficial in two

ways. First, innate effector cells or molecules will be activated with potential to kill

tumor cells directly. Second, antigens released by killed tumor cells can help prime

antigen-specific anti-tumor immunity. In this latter regard, monoclonal antibodies

appear to improve immune cross presentation11, presentation of exogenous tumor

antigens in the MHC class I pathway that is required to develop CD8+ cytotoxic T

lymphocytes, and as such benefit anti-tumor immunity. Finally FcR expressed by

lymphatic endothelial cells can increase the serum half life of immunoglobulins

through their Fc interactions. There is much interest, therefore, in not only

identifying antibodies of specific antigenic binding capacities, but also in the

engineering of specific immunoglobulin subclass and Fc features which would

improve immune activation, reduce immune inhibition, prevent immune response
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activation, and prolong antibody half-life. These issues are discussed extensively in

excellent recent reviews12–16.

Although immunoglobulins have immune modulating properties, most of the

successful and FDA-approved anti-cancer antibody treatments target an essential

cancer growth or survival pathway. Examples include cetuximab, which targets

the epidermal growth factor receptor (EGFR) which is discussed further in

Sect. 5.5. Other anti-cancer antibody-based strategies include immunoconjugates,

antibodies that carry toxic payloads. Such conjugates can be radioactive, such as

90Y-ibritumomab tiuxetan that targets CD20 in hematologic malignancies, or toxic

to specific cellular components, such as brentuximab vedotin17 which targets a

microtubule toxin to CD30-expressing lymphoma cells. Immunoconjugates are

detailed in Chap. 12.

In 1986, the FDA-approved the first therapeutic monoclonal antibody OKT3

(muromonab, Orthoclone), a CD3-specific murine IgG2a monoclonal antibody

used to deplete T cells in organ allograft recipients18. The list of approved mono-

clonal antibodies now stands at 20, a dozen of which are routinely used in cancer

applications, and many more are being tested alone and in a myriad of combinations

with other agents. The field is old enough that one previously approved agent

(gemtuzumab ogozamicin) has already been withdrawn, and another has had an

indication withdrawn (bevacizumab in metastatic breast cancer). Both topics are

discussed in the relevant sections below. The field continues to evolve rapidly.

11.3 Development of Monoclonal Antibodies

The initial discovery of monoclonal antibodies in 1975 by Kohler and Milstein,

through fusion of murine myeloma cells with murine antibody-secreting

lymphocytes, opened the field to the development of therapeutic monoclonal

antibodies19. Murine myeloma cells are immortalized B lymphocytes capable of

secreting homogenous antibodies. These cells lack the enzyme hypoxanthine gua-

nosine phosphoribosyl transferase (HGPRT) and, therefore, are unable to grow in

hypoxanthine–aminopterin–thymidine (HAT) cell culture medium. However, when

myeloma cells are fused with murine spleen B lymphocytes that possess and

express the HGPRT gene, the hybrid cells, or hybridoma, survive in HAT media.

The myeloma cell imparts immortality, allowing indefinite cultivation.

Subculturing of a particular hybridoma ensures clonal expansion and the continued

production of single antibody with identical antigen-binding specificity, hence the

term monoclonal. Large-scale production of such monoclonal antibodies is made

possible through generation of ascites tumors in mice or in vitro mammalian cell

culture fermentation using bioreactors and continuous perfusion culture systems.

Purification of monoclonal antibodies is accomplished by chromatography, frag-

mentation, conjugation with chelating agents, ultrafiltration and controlled precipi-

tation20,21. More novel methods used to generate antibodies or antibody-like

molecules, include phage display libraries, transgenic mice models and genetically

engineered plants 22–24.
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One major concern with murine monoclonal antibodies use in the clinical setting

is the development of a human anti-mouse antibody (HAMA) response in patients

given antibodies as treatment. Such a response can lead to the development of

allergic or immune complex hypersensitivities, rapid clearance of the antibody and

reduced therapeutic efficacy25,26. To overcome the clinical limitations of murine

monoclonal antibodies recombinant antibodies or chimeras were generated. Chi-

mera generation involves the fusion of rearranged murine variable gene segments

of mouse monoclonal antibodies with human constant domains, or production of

recombinant Fab fusion proteins by replacing the Fc region of the mouse monoclo-

nal antibodies with an enzyme moiety27. Because the Fc region has little influence

on the structure of the variable region, the affinity and specificity of these chimeras

are effectively unchanged. Murine and chimeric monoclonal antibodies will, there-

fore, have equal capacity to induce apoptosis in vitro, however, chimeric monoclo-

nal antibodies have the capacity to induce ADCC on human cancer cell targets and/

or activate the complement cascade26,28.

Despite chimeric monoclonal antibodies significantly reducing the HAMA

response, such antibodies still show immunogenicity in humans due to the murine

portion of these constructs. In an effort to reduce further the immunogenicity of

murine antibodies, a functional human-like antibody or “humanized” mAb was

designed. These were produced by grafting segments encoding the

complementarity-determining regions (CDR) in the variable domains of the murine

antibody into human variable domains. These humanized monoclonal antibodies

demonstrate considerably less HAMA response although limitations still exist in the

efficient construction of these antibodies25,29,30. Further optimization of these

humanized monoclonal antibodies is often required to re-establish the required

specificity and affinity of the original murine antibodies or to reduce their immuno-

genicity. Several novel strategies have been designed for constructing humanized

monoclonal antibodies and are discussed elsewhere31–33.

11.4 Antibody Nomenclature

Antibodies used in humans, or in development for such use, are named based on the

animal from which the antigen binding specificity was derived and on whether it is

rodent, chimeric, humanized, or fully human. A newer trend is also to add a specifica-

tion for the tumor type intended. These harmonized generic names are not capitalized.

In contrast to the capitalized trade names used bymanufacturers, fully humanmAbs are

identified with “-tumu-”. The two FDA-approved agents in this class are ofatumumab

(Arzerra, HuMax-CD20) and panitumumab (Vectibix). Investigational agents in

this class include, adecatumumab, cixutumumab, conatumumab, daratumumab,

drozitumab, figitumumab, ganitumab, glembatumumab vedotin, intetumumab,

iratumumab, lexatumumab, lucatumumab, mapatumumab, narnatumab, necitumumab,

olaratumab, pritumumab, radretumab, rilotumumab, robatumumab, teprotumumab,

votumumab, and zalutumumab. “- Melu-” designates an agent in this class intended

for use in melanoma.
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Chimeric mouse/human monoclonal antibodies are identified with “-tuxi-”. The

two FDA-approved agents in this class are cetuximab (Erbitux) and rituximab

(Rituxin). Investigational agents in this class include, amatuximab, bavituximab,

brentuximab vedotin, ensituximab, girentuximab, indatuximab ravtansine,

siltuximab, and ublituximab. “-Mexi-” refers to an agent in this class meant to

treat melanoma (e.g., the investigational agent ecromeximab).

“-Tuzu-” refers to mouse/human humanized antibodies. The four FDA-approved

agents in this class are alemtuzumab (Campath), bevacizumab (Avastin; named

prior to harmonization of nomenclature), gemtuzumab ozogamicin (Myelotarg) and

trastuzumab (Herceptin). Gemtuzumab ozogamicin has since been voluntarily

withdrawn by the manufacturer (see Chap. 12 for details). Investigational agents

in this class include afutuzumab, bivatuzumab mertansine, cantuzumab mertansine,

cantuzumab ravtansine, citatuzumab bogatox, clivatuzumab tetraxetan,

dacetuzumab, dalotuzumab, elotuzumab (showing some success in combination

regimens34,35), etaracizumab, farletuzumab, ficlatuzumab, inotuzumab

ozogamicin, labetuzumab, lintuzumab, lorvotuzumab mertansine, matuzumab,

milatuzumab, nimotuzumab, ocaratuzumab, onartuzumab, oportuzumab monatox,

pertuzumab, sibrotuzumab, tacatuzumab tetraxetan, tigatuzumab, tucotuzumab

celmoleukin, and veltuzumab.

Murine monoclonal antibodies are designated with “-tumo-”. The antibody–

radioisotope conjugate ibritumomab tiuxetan (Zevalin) and muromonab (Orthoclone)

are the two FDA-approved agents in this class. Investigational agents include

altumomab pentetate, anatumomab mafenatox, arcitumomab, bectumomab,

blinatumomab, detumomab, ibritumomab tiuxetan, minretumomab, mitumomab,

moxetumomab pasudotox, naptumomab estafenatox, nofetumomab merpentan,

pemtumomab (currently in phase III trials; www.clinicaltrials.gov), pintumomab,

racotumomab, satumomab pendetide, taplitumomab paptox, tenatumomab, and

tositumomab. Subdesignations include “govo-” (ovarian cancer; e.g. abagovomab,

igovomab, oregovomab), “-pro-” (prostate cancer; e.g. capromab pendetide) and

“-colo-” (colorectal cancer; e.g. edrecolomab, nacolomab tafenatox). Oregovomab

failed its phase III clinical trials and now faces an uncertain future, see Sect. 6.4 for

details.

A final note on nomenclature: companies often use a different trade name of the

same drug when used for different indications. For example, the anti-CD20 mono-

clonal antibody rituximab is marketed as Rituxan to treat hematologic

malignancies, and as MabThera when used to treat autoimmune diseases.

11.5 Specific Antibody Agents Approved by the FDA

and European Agencies

These agents are summarized in Table 11.1.
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11.5.1 Rituximab

Rituximab is a monoclonal chimeric mouse/human IgG1 antibody from Roche

recognizing the CD20 antigen expressed by most mature B cells, but notably not

plasma cells or bone marrow B cell precursor cells. In 1997 rituximab became the

first antibody approved by the FDA to treat cancer. It is composed of a human kappa

constant region, an IgG1 Fc moiety and a murine variable region that recognizes

CD2036. It is used to treat CD20+ follicular non-Hodgkin lymphoma as first-line,

maintenance and salvage therapy, and to treat CD20+ chronic lymphocytic leuke-

mia. Its European indications are similar. Rituximab is under investigation for, and

also used in off-label treatments for a variety of hematologic malignancies.

Owing to its IgG1 antibody properties, the clinical activity of this antibody

appears dependent, in part, on its capacity to induce cellular cytotoxicity37 as

evidenced by its loss of activity in C1q-null mice38 a finding disputed for CD20+

cell depletion in another study39. The requirement for complement-mediated cyto-

toxicity in humans is suggested indirectly by the finding thatC1QA (the gene coding

for C1q in humans) genetic polymorphisms predict clinical activity in follicular

lymphoma patients receiving rituximab treatments40. Clinical activity also requires

complement for optimal effects as rituximab efficacy in mice xenografted with

human B cell lymphoma was reduced by complement depletion41. A human require-

ment for complement in rituximab effects was shown indirectly by the observation

that patients with chronic lymphocytic leukemia undergoing rituximab treatment

had rapid and significant reductions in serum complement component levels with

treatment42. Strikingly, polymorphisms in FcgR in patients with non-Hodgkin

lymphoma also predicted rituximab clinical efficacy43,44.

Rituximab has additional potential mechanisms of action that remain to be fully

established. For example, the onset of clinical efficacy in rituximab therapy can be

delayed until several months after treatment is initiated. This delay is consistent

with activation of tumor-specific immunity as a mechanism of action45 as has also

been noted with other tumor antigen-specific antibody therapies46. Anti-idiotype

antibody generation reacting against the tumor has also been suggested as a

mechanism of action47. In patients with chronic lymphocytic leukemia, rituximab

induces tumor cell caspase activation and apoptosis48. This could be an additional

mechanism of action, or could be a result of direct tumor toxicity or the indirect

consequences of immune mechanisms.

Aside from stand-alone efficacy, rituximab can improve the clinical activity of

standard CHOP treatment for patients with diffuse large B cell lymphoma49. It may

also improve clinical response when combined with fludarabine, cyclophosphamide

and mitoxantrone therapy, compared to these cytotoxic agents alone, in patients

with relapsed and refractory follicular lymphoma or mantle cell lymphoma50.

Rituximab has also demonstrated efficacy in AIDS-related malignancies51.

Because rituximab has mechanisms of clinical action that involve direct effects

on tumor cells and indirect effects on immune defenses, it is reasonable to expect

that tumor cell intrinsic and extrinsic effects could contribute to rituximab
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resistance52. Mechanisms for resistance are not fully understood, but include

downregulation of surface expressed CD20 on malignant B cells52. In a phase II

trial of patients with rituximab-refractory indolent non-Hodgkin lymphoma, adding

IL-2 increased the number of FcR+ cells in vivo, which improved their antibody-

dependent cell-mediated cytotoxicity tested in vitro53. A recent report suggested

that preferential depletion of non-B regulatory cells (Bregs) by rituximab left a

majority of dysfunctional Bregs in circulation after treatment that could contribute

to treatment resistance54.

11.5.2 Ofatumumab

Ofatumumab (Arzerra, Glaxo SmithKline) is a fully human anti-CD20 IgG1 kappa

monoclonal antibody that binds to an epitope of CD20 distinct from that targeted by

rituximab55. The original phase 1/2 trial of ofatumumab demonstrated clinical

activity in non-Hodgkin lymphoma (CD20 positive follicular lymphoma)56. Nota-

bly in this trial, there was a 64% clinical response rate in patients previously treated

with rituximab. Ofatumumab has since evinced clinical activity in patients with

chronic lymphocytic leukemia and in patients with many types of non-Hodgkin

lymphoma. It was approved by the FDA in October 2009 to treat patients with

chronic lymphocytic leukemia who failed therapy with standard fludarabine and

alemtuzumab. Its European indications are similar. Ofatumumab has demonstrated

clinical tolerability and efficacy in a phase 1/2 clinical trial of B cell leukemia57, but

is not yet approved for that indication.

Like rituximab, its mechanisms of action appear to include complement-

dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity.

Because of differences in cell binding of ofatumumab vs. rituximab (the former

can bind CD20 closer to the cell membrane) ofatumumab might induce comple-

ment dependent cytotoxicity to a greater extent than rituximab58, although the

clinical significance of this is uncertain. Unlike rituximab, ofatumumab did not

induce apoptosis in cultured lymphoma cell lines in vitro59, although the clinical

significance is again uncertain.

A number of additional anti-CD20 antibodies are in various stages of clinical

development, not only for treating B-cell malignancies but also to treat certain

autoimmune disorders, some showing evidence for clinical efficacy. These anti-

CD20 antibodies under clinical development include PRO131921 (Genentech) and

others60.

11.5.3 Trastuzumab

Trastuzumab is a recombinant, humanized IgG1 anti–HER-2 monoclonal antibody

from Genentech that exhibits high-affinity binding to the extracellular domain of

HER-2. It is the first FDA-approved agent to target this molecule61. For FDA-

approved indications, tumors typically have to have confirmed HER2 gene
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amplification (over-expression, not simple positivity) by an approved, validated

method (fluorescence in situ hybridization or immunohistochemistry) performed in

a certified laboratory. Its European indications are similar.

The human epidermal growth factor receptor (HER) family of proteins

consisting of EGFR, HER2, HER3, and HER4 are type I transmembrane growth

factor receptors that activate intracellular signaling pathways in response to extra-

cellular signals. These receptors activate numerous downstream pathways in

response to extracellular ligands, and regulate diverse processes including differen-

tiation, migration, proliferation, and survival62,63 .

A distinguishing characteristic of familymembers is their complementary function

and dependence on each other. HER2 overexpression results in increased formation of

HER2-containing heterodimers and interaction with the HER family of receptors.

Increased HER2-EGFR heterodimers drive proliferative and invasive functions.

Increased HER2 homodimers disrupt cell polarity. Of these, HER2 and HER3 are

particularly interdependent, as on their own they are functionally incomplete

receptors. HER2 has an extracellular domain, but appears to lack ligand-binding

activity, while HER3 has a nonfunctional kinase domain meaning it has no catalytic

activity64,65. Together the HER2–HER3 heterodimer is a highly functional signaling

unit and constitutes the most active signaling dimer in this family, exemplifying the

role of complementary functions in this complex receptor family66.

11.5.3.1 Breast Cancers

Trastuzumab was originally approved by the FDA in September 1998 for treatment

of HER2 overexpressing metastatic breast cancer. Follow-up studies demonstrated

that trastuzumab improved overall survival in metastatic breast cancer when com-

bined with cytotoxic chemotherapy67. In November 2006 the FDA granted

expanded approval for trastuzumab in HER2 overexpressing breast cancer for use

in early stage patients with involvement of breast or regional lymph nodes to be

used after surgical treatment (lumpectomy or mastectomy), of which 20–25 % of

patients with invasive breast cancers could be eligible68. Trastuzumab yielded an

estimated 3 year disease-free survival rate of 87 % in combination with chemother-

apy vs. 75 % with chemotherapy alone in this setting. A recent long-term follow up

study confirmed the disease-free survival benefit and showed a clear overall sur-

vival benefit of trastuzumab plus chemotherapy over chemotherapy alone in locally

invasive (and non-metastatic) breast cancers68.

Trastuzumab can mediate significant cardiotoxicity especially if combined with

anthracycline-containing or cyclophosphamide-containing chemotherapy

regimens69. Nonetheless, it can be used with these agents for clinical benefit with

appropriate patient selection and careful monitoring of cardiac function67. As with

most therapies, breast cancer patients with an initial positive treatment response to

trastuzumab can become resistant. Potential mechanisms of resistance include

reduced HER2 expression, altered downstream HER2 signals, and preferential or

new activation of non-HER2 growth factor pathways70. The relative importance of
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these potential mechanisms remains to be established clinically. Addition of other

agents to trastuzumab to block HER2 signaling for additional clinical benefit is an

area of active investigation71. For example, adding the HER-2-targeted monoclonal

antibody pertuzumab to trastuzumab72 or using multiple anti-EGFR agents has been

assessed with some potentially beneficial results71. Pertuzumab was FDA approved

in combination with trastuzumab plus docetaxel for breast cancer on June 8, 2012,

detailed below in Sect. 5.10. European breast cancer indications for trastuzumab are

similar to FDA indications.

11.5.3.2 Gastrointestinal Cancers

In October 2010, the FDA granted approval for trastuzumab to treat HER2-

overexpressing metastatic gastric or gastroesophageal junction adenocarcinoma

as first-line therapy in combination with cisplatinum and a fluoropyrimidine

(capecitabine or 5-fluorouracil). The approval was based on the ToGA trial of

594 patients with HER2-overexpressing metastatic adenocarcinoma of the stomach

or gastroesophageal junction, (3 % of patients had locally advanced disease)73,74.

Median survival was increased to 13.5 months vs. 11.0 months by addition of

trastuzumab. Survival improvement was maintained at a later follow-up.

In both breast and gastric cancers, HER2 overexpression and gene amplification

should be determined using tests done in certified laboratories. Interpretation of the

test results depends on tumor histopathology and the expression levels of HER-2 in

these tumors (breast, gastric or gastroesophageal junction cancer)75. European

gastrointestinal tumor indications for trastuzumab are similar to FDA indications.

11.5.4 Alemtuzumab

Alemtuzumab (Campath, MabCampath, Campath-1H; Genzyme Corporation) is a

humanized IgG1 monoclonal antibody (originating from a rat anti-CD52 antibody)

targeting the adhesion molecule CD52. Initial studies of this antibody were done in

the pathology department at Cambridge University, England leading to “Campath”

as its name. The CD52 binding domain was later engineered into a human antibody

backbone76 providing the basis for alemtuzumab.

It received initial FDA approval in 2001 for treatment of chronic lymphocytic

leukemia failing treatment with an alkylating agent (chlorambucil or melphalan) or

fludarabine. The FDA expanded the label and granted regular approval on Septem-

ber 19, 2007, to use alemtuzumab as a single agent to treat B cell chronic lympho-

cytic leukemia77. In the pivotal study78 supporting this new indication, 297 patients

were randomized to receive alemtuzumab alone or combined with chlorambucil.

Adding alemtuzumab increased progression-free survival, reduced progression or

death and increased the development of minimal residual disease or disease-

negative remissions compared with chlorambucil, without undue increases in

toxicity. Its European indications are similar.
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Alemtuzumab has been tested in cutaneous T cell leukemia/lymphoma with

minimal clinical efficacy and significant toxicity79. In another phase II study,

alemtuzumab was tested in 22 patients with advanced mycosis fungoides/Sezary

syndrome where it demonstrated potential efficacy with manageable toxicities in

the subset of patients who had not been heavily pretreated80. Current practice

guidelines (The National Comprehensive Cancer Network Drug and Biologics

Compendium, 2010) supports alemtuzumab as a second-line therapy for selected

patients with stage III mycosis fungoides or Sezary syndrome. This Compendium

also supports alemtuzumab as first-line therapy for stage II–IV chronic lymphocytic

leukemia or small lymphocytic lymphoma. It also supports first-line or second-line

alemtuzumab treatment alone or in combination with fludarabine or rituximab in

specific subsets of patients with chronic lymphocytic leukemia. Alemtuzumab is

currently being tested in multiple sclerosis under the trade name Lemtrada.

11.5.5 Cetuximab

Cetuximab (Erbitux; Eli Lilly and Bristol Myers Squibb) is a mouse/human chime-

ric IgG1 antibody that targets the epidermal growth factor receptor (EGFR), an

important regulator of cancer cell growth and survival81. It was approved by the

FDA for use in metastatic colorectal cancer on February 12, 2004, when combined

with irinotecan, or as a single agent if irinotecan cannot be tolerated. It received

FDA approval to treat squamous cell carcinoma of the head and neck in March

2006, and European Commission approval in November 2008.

The EGFR or ErbB1 is a member of the HER family of receptors as discussed in

Section 5.3. At least six different ligands, known as EGF-like ligands, bind to the

EGFR. EGF, transforming growth factor alpha (TGF-a), and amphiregulin bind

only to EGFR while heparin binding EGF (HB-EGF), betacellulin, and epiregulin

bind both EGFR and HER4/ErbB482,83. EGF-like ligands induce formation of

EGFR homodimers and EGFR/HER-2 heterodimers, with EGFR/HER-3 and

EGFR/HER-4 heterodimers detected occasionally. Following receptor dimeriza-

tion, intrinsic protein tyrosine kinase activation and tyrosine autophosphorylation

occur. These downstream signaling events lead to recruitment and phosphorylation

of several important intracellular substrates. Ras-Raf-MAP kinase and phosphati-

dylinositol-3 kinase (PI3K)-Akt-mTOR are major signaling cascades activated

which lead to mitogenic signaling and cellular activities. The discovery of the

EGFR by Cohen and colleagues84, and the observation that EGFR is markedly

overexpressed in a large variety of epithelial cancers, led to the production and

characterization of anti-EGFR monoclonal antibodies to deprive tumor cells of

EGF-mediated growth signaling85–87.
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11.5.5.1 Colorectal Cancer

For several decades, 5-fluorouracil plus leucovorin (5-FU/LV) was the only effec-

tive treatment regimen for patients with advanced colorectal cancer (CRC),

associated with a median overall survival of approximately 12 months. The intro-

duction of the cytotoxic agents irinotecan and oxaliplatin further improved median

overall survival. More recently, a new class of targeted agents, namely the mono-

clonal antibodies that bind to the ligand or the extracellular domain of the EGFR

(cetuximab or panitumumab) or VEGF (bevacizumab) has provided further benefit

when combined with irinotecan/5FU/LV (FOLFIRI) or oxaliplatin/5FU/LV

(FOLFOX) with median overall survival now approaching 2 years.

The two anti-EGFR monoclonal antibodies are currently available for the treat-

ment of metastatic colorectal cancer. Cetuximab is a chimeric immunoglobulin G1

antibody, and panitumumab is a fully human immunoglobulin G2 antibody. It was

soon clear however that not all advanced colorectal cancer patients respond to anti-

EGFR therapy similarly. The response to anti-EGFR antibody therapy in patients

has been reported to be independent of EGFR expression in tumor tissue. Factors

that have been reported to be associated with resistance to anti-EGFR therapy

include increased EGFR ligand expression, alterations in downstream signaling

pathways, and cross-talk between different members of the HER or ErbB receptor

family88. Data from the OPUS study that combined cetuximab plus FOLFIRI, and

the CRYSTAL study that combined cetuximab plus FOLFOX demonstrated that

response to cetuximab is limited to patients without a mutation in the KRAS
oncogene89,90. KRAS mutations are observed in ~38 % of colorectal tumors91. A

mutation in KRAS results in constitutive activation of the Ras/Raf/MAPK signaling

pathway, which is independent of EGFR activation by ligand binding92. Within the

subgroup of patients with KRAS wild type tumors, the efficacy of anti-EGFR

therapy appears to be further limited to patients with BRAF wild type tumors,

although it is still not clear if presence of BRAF mutations is a prognostic rather

than a predictive marker93.

In the CRYSTAL clinical study, the most common grade 3 or 4 adverse events

reported in the cetuximab plus FOLFIRI compared to FOLFIRI alone cohorts

included skin reactions (19.7 % vs. 0.2 %), infusion-related reactions (2.5 % vs.

0 %), and diarrhea (15.7 % vs. 10.5 %)89. In the OPUS study the most common

grade 3 or 4 adverse events were neutropenia (30 % vs. 34 %), rash (11 % vs.

0.6 %), and diarrhea (8 % vs. 7 %) respectively, in the cetuximab plus FOLFOX vs.

the FOLFOX alone group90.

Efforts to incorporate cetuximab treatment into earlier-stage colorectal cancer

have not yet yielded conclusive evidence for efficacy over standard chemother-

apy regimens94. Combination of small molecule EGFR inhibitors, such as

erlotinib, show promising efficacy when combined with cetuximab in preclinical

and early clinical studies95 but additional clinical studies are required to confirm

its efficacy.
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11.5.5.2 Head and Neck Cancers

Cetuximab is the first targeted therapy to show a significant benefit in head and neck

cancer and received FDA regulatory approval for use in patients with head and neck

cancers. Approval of this agent for locally advanced squamous cell carcinoma of

the head and neck was based on a landmark trial, that showed the combination of

cetuximab and radiotherapy compared to radiotherapy alone led to a significant

improvement in median overall survival (49 vs. 29.3 months; hazard ratio for death

0.74, p ¼ 0.03) and locoregional control (24.4 vs. 14.9 months; hazard ratio for

locoregional progression or death 0.68, p ¼ 0.005). In addition to demonstrating

the efficacy of cetuximab in this setting, the trial confirmed that the administration

of cetuximab does not compromise the delivery of scheduled doses of radiotherapy

and the combination of cetuximab-radiotherapy was well tolerated96.

Burtness et al. provided the first evidence for the activity of cetuximab in the

first-line treatment of recurrent and/or metastatic squamous cell carcinoma of the

head and neck whereby 117 patients with previously untreated disease were

randomized to receive either cisplatin plus cetuximab or cisplatin plus placebo.

There was a significant increase in response rate in the cetuximab arm compared

with the placebo arm (26 % vs. 10 %, p ¼ 0.03). Although the study was not

adequately powered to detect significant differences in survival a trend towards an

increase in median progression-free survival (4.2 vs. 2.7 months) and median

overall survival (9.2 vs. 8.0 months) was shown in the combination therapy 97.

Based on this early clinical evidence of activity, the rationale was that cetiximab

was more effective with combination chemotherapy regimen (cisplatin or

carboplatin plus 5-FU) rather than single agent cisplatin led to the EXTEME

study where patients with head and neck cancer were randomized to one of two

arms: cetuximab plus either carboplatin (AUC 5, day 1) or cisplatin (100 mg/m2,

day 1) plus 5-FU (1,000 mg/m2, days 1–4; n ¼ 222); or carboplatin or cisplatin

plus 5-FU alone (n ¼ 220). A maximum of six 3-weekly chemotherapy cycles

were administered, after which patients received either cetuximab or no treatment.

Among the 442 patients, overall survival was significantly prolonged in the

cetuximab arm, with a median overall survival of 10.1 vs. 7.4 months. The hazard

ratio for survival was 0.797 in favor of cetuximab (p ¼ 0.036)98. EXTREME is

notable as the first Phase III trial in three decades to demonstrate a survival benefit

in recurrent or metastatic squamous cell head and neck cancer, but also

underscored inadequacies in predicting treatment benefit based on tumor EGFR

status in head and neck cancers98,99.

The cetuximab serum half-life is ~114 h. Infusions are relatively well-tolerated

but infusion reactions can occur. Photosensitivity and pulmonary and cardiac

toxicity also occur, but are not common. Hypomagnesemia can occur in 15–20 %

of patients100. As is true with other receptor tyrosine kinase inhibitors, skin rash is

relatively common with continual use. It resembles acne, is generally well-tolerated

and is usually reversible with discontinuation treatment101,102.
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11.5.6 Panitumumab

Panitumumab (ABX-EGF, Vectibix, Amgen) is a fully human IgG2 monoclonal

antibody with high affinity for EGFR and a mean half-life of ~7.5 days in humans

(range 3.6–10.9 days), therefore, administered every 2 weeks, compared to the

weekly cetuximab dosing103. It was approved in September 2006 by the FDA for

use in patients with metastatic colorectal that express the epidermal growth factor

receptor and who have progressed after receiving standard therapies. It was

approved by the European Medicines Agency in 2007, and by Health Canada in

2008 for similar indications in metastatic colon cancer with the further stipulation

that tumors had to express wild type KRAS. Following suit, the FDA updated the

panitumumab indication to include a statement in the package insert that use of

panitumumab was not recommended in patients whose tumors demonstrated KRAS

mutations, and included a similar revision and package insert update for the other

anti-extracellular growth factor receptor antibody, cetuximab.

There are no trials directly comparing panitumumab vs. cetuximab. When

compared across clinical studies, cetuximab and panitumumab appear to have

comparable efficacy when used for single agents for salvage therapy in patients

with chemotherapy-refractory metastatic colorectal cancer, and when used for first-

line and second-line therapy of metastatic colorectal cancer in conjunction with a

chemotherapy regimen104,105. For unclear reasons, panitumumab adds benefit to a

first-line oxaliplatin-based regimen based on the PRIME clinical study, while

results are mixed on the benefit of adding cetuximab to first-line oxaliplatin-

based therapy106.

Similar to the anti-epidermal growth factor receptor antibody cetuximab,

panitumumab also binds the epidermal growth factor receptor extracellular domain,

which reduces receptor-mediated activation of downstream signaling events.

Because IgG2 subclass antibodies do not activate complement, antibody-dependent

cellular cytotoxicity might not be a mechanism of action as seen in the anti-

extracellular growth factor receptor antibody cetuximab. From a pharmacologic

standpoint, cetuximab is a chimeric monoclonal antibody, while panitumumab is a

completely human monoclonal antibody, and thus the incidence of hypersensitivity

reactions with panitumumab is much lower, eliminating the need for routine

premedication before treatments.

11.5.6.1 Resistance to EGFR Monoclonal Antibodies

In 2004, a series of landmark papers identified EGFR mutations in the tyrosine

kinase domain in non-small cell lung cancer patients that predicted response to the

EGFR tyrosine kinase inhibitors erlotinib and gefitinib107–109. These mutations

included in-frame deletion of amino acids 746–750 in exon 19, and a point mutation

in exon 21 (L858R). Notably, these mutations led to gain-of-function and conferred

dependence of the tumor cell on the mutated kinase. These mutations in EGFR
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rendered tumors dramatically more sensitive to the effects of erlotinib and gefitinib

than tumors without these mutations. However, no mutations in EGFR have been

identified to date that are reliably predictive for response to antibody-based anti-

EGFR therapies. This finding suggests that other molecular mechanisms exist that

modulate intrinsic (primary) or acquired (secondary) resistance to EGFR antibody-

based therapies.

One of the prevalent biological themes underlying intrinsic or acquired resis-

tance involves oncogenic shift, which occurs when other membrane-bound receptor

tyrosine kinase signaling pathways are involved in resistance. Chronic therapy with

cetuximab results in dysregulation of EGFR processing and subsequent activation

of HER2, HER3, cMET, MAPK, and AKT88. Acquired resistance to cetuximab

therefore could result from the activation of receptor tyrosine kinases, such as

HER2 and HER3, which share overlapping proliferative and survival signaling

pathways.

As discussed in the section above, one of the most reliable predictive biomarkers

to emerge in the clinic has been that of KRAS mutation status in metastatic

colorectal cancer. Based on extensive clinical data, it is now recommended that

all patients with metastatic colorectal cancer who are candidates for anti-EGFR

antibody therapy should have their tumor tested for KRAS mutations in a CLIA-

accredited laboratory. If codon 12 or 13 of KRAS is mutated then patients with

metastatic colorectal cancer should not receive anti-EGFR antibody therapy as part

of their treatment, as they have a high likelihood of de novo resistance110. Reported
rates of KRAS mutations in non-small cell lung cancer and squamous cell

carcinomas of the head and neck range between 8–20 % and 3–7 % respectively.

The role of KRAS mutations in these tumor types has yet to be determined111,112.

Other molecular determinants of antibody resistance include mutations in PI3K.

Mutations in the catalytic subunit of PI3K, p110alpha, have been reported in

metastatic colorectal cancer and are significantly associated with resistance to

cetuximab and panitumumab therapy113. It also has been reported that the

overexpression of EGFR ligands amphiregulin and epiregulin in KRAS wild type

metastatic colorectal cancer tumors correlates with enhanced response to cetuximab

therapy, and, therefore, could serve as biomarkers for selection of in the future may

patients for cetuximab therapy although this concept needs to be further

validated114.

Cetuximab has also been shown to have antitumor effects through mediating

antibody-dependent cell-mediated cytotoxicity in which antibody Fc portion

interacts with Fc-receptors expressed by immune cells, with the antibody-

dependent cell-mediated cytotoxicity response influenced by Fc-RIIa-H131R and

Fc-RIIIa-V158F polymorphisms115. Results show that polymorphisms in the FC-

receptor IIa and FC receptor IIIa correlate with the lack of clinical response in

metastatic renal cell carcinoma patients treated with cetuximab.

Preclinical studies have shown tumors that are resistant to EGFR therapy have a

dramatic increase in phosphorylated MAPK, and an increase in protein expression

of COX-2 and VEGF, suggesting that EGFR inhibitors can alter VEGF production

and highlights neoangiogenesis as a potential mechanism of EGFR inhibitor
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escape116. This is further supported by Bianco et al. reporting that VEGFR1 was

overexpressed in cells with resistance to cetuximab. Experiments silencing

VEGFR1 in cetuximab-resistant cells restored sensitivity to cetuximab, whereas

exogenous overexpression of VEGFR1 in cetuximab-sensitive cells conferred

resistance to cetuximab117. It therefore would seem reasonable to combine EGFR

and VEGFR inhibitors, although further clinical studies assessing efficacy and

safety of the combination are still required.

Although no point mutations are known to be associated with resistance to

cetuximab or panitumumab, preclinical models analyzing the EGFR variant III

(EGFRvIII), which lacks the ligand-binding domain, expressed in 42 % of squa-

mous cell head and neck tumors correlated with increased proliferation in vitro and
increased tumor growth in vivo. Furthermore, head and neck squamous cell carci-

noma cells engineered to overexpress EGFRvIII showed decreased proliferation in

response to cetuximab compared to vector-only controls, implicating that a per-

centage of these tumors could express EGFRvIII contributing to cetuximab resis-

tance118. These reviews provide a further insight into the resistance to EGFR

monoclonal antibody119–122.

11.5.7 Bevacizumab

Vascular endothelial growth factor (VEGF) is the most potent angiogenic factor

identified to date, and consist of 6 VEGF family members, of which VEGF-A has

been the most extensively studied. The production of VEGF-A is stimulated by

hypoxia-inducible factor-1a (HIF-1a) and epidermal growth factor (EGF) 123.

Members of the VEGF family exert their effect through binding to one of three

VEGF receptors (VEGFR), which are localized predominantly on endothelial cells

and angioblasts. Binding of VEGF to its receptor leads to activation of several

intracellular signal transduction pathways124. In neoangiogenesis, the release of

VEGF-A and other pro-angiogenic factors promotes degradation of the extracellu-

lar matrix allowing proliferation and migration of endothelial cells. The depen-

dency of malignant tumors on neoangiogenesis suggests VEGF and the VEGF

receptor as potential therapeutic targets. These agents may function to normalize

the tumor vasculature, which in turn may improve delivery of concurrently

administered chemotherapeutic drugs likely enhancing the sensitivity of the

tumor to cytotoxic therapies through improved oxygen delivery125. Other possible

mechanisms of action include inhibition of essential tumor blood supply or disrup-

tion of the perivascular-tumor stem cell niche.

Bevacizumab (Avastin, Genentech/Roche) is a humanized IgG1 anti-VEGF

antibody whose presumed mechanism of anti-cancer action is thought to be by

inhibiting blood vessel formation in growing cancers. By binding to VEGF, it

prevents this ligand from binding to the VEGF receptor, preventing subsequent

stimulation of downstream intracellular signal transduction pathways.

Bevacizumab is approved, in combination with intravenous 5-FU chemotherapy,
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for first- or second-line treatment of patients with metastatic carcinoma of the colon

or rectum; in combination with carboplatin and paclitaxel for the first-line treatment

of patients with unresectable, locally advanced, recurrent or metastatic non-

squamous non-small cell lung cancer; and to treat metastatic renal cell carcinoma

when combined with interferon-a.

11.5.7.1 Colorectal Cancer

Hurwitz, et al., conducted the first Phase III study of the effect of adding

bevacizumab (5 mg/kg every 2 weeks) to irinotecan (125 mg/m2) plus 5-FU

bolus (500 mg/m2) plus luecovorin (20 mg/m2) s first-line treatment for metastatic

colorectal cancer. The primary end point was median overall survival. The addition

of bevacizumab was associated with an absolute benefit on median overall survival

of 4.7 months compared with no added bevacizumab (20.3 vs. 15.6 months,

respectively; p < 0.001)126. This was the pivotal trial that led to the FDA approval

of bevacizumab in 2004 for use in combination with chemotherapy as first-line

treatment for metastatic colorectal cancer. Since then, benefit for adding

bevacizumab to a variety of irinotecan and oxaliplatin-containing regimens used

for first and second-line therapy for metastatic colorectal cancer has been shown in

large clinical studies127–129. The most common grade 3–4 adverse events reported

with the use of bevacizumab in the clinical studies include hypertension

(~11–16.4 %), bleeding (~2–5 %), gastrointestinal perforation (~1–2 %), venous

thromboembolic events (~4–19.4 %) and rarely proteinuria (~1 %).

In the US, based on the significant difference in outcome favoring FOLFOX

over bolus irinotecan/5-FU/leucovorin reported shortly after approval of

bevacizumab by the US Intergroup N9741 trial130, many US oncologists choose

FOLFOX as the chemotherapy backbone for the addition of bevacizumab.

Bevacizumab also appears to provide a survival benefit even in the absence of an

objective response to therapy. In the pivotal trial by Hurwitz, et al., the benefit of
the addition of bevacizumab to irinotecan/5-FU/leucovorin had a more profound

impact on progression-free survival and overall survival compared to its effect on

response rates. Further analysis of data from clinical studies that utilize

bevacizumab show that patients who were thought to be non-responders benefited

as much from the addition of bevacizumab as did those who had an objective

response131. This phenomenon has been shown across other clinical studies in

different tumor types that utilize agents that inhibit the VEGF pathway and it serves

to underscore the relative lack of importance of objective response rate as a

predictor of treatment benefit in patients undergoing palliative treatment in partic-

ular with VEGF-targeted agents132–134.

11.5.7.2 Lung Cancer

In non-small cell lung cancer, high levels of VEGF expression are associated with a

poor prognosis, suggesting that treatment targeted toward this pathway might be

11 Antibodies as Cancer Immunotherapy 353



useful therapeutically. In 2006, the FDA-approved bevacizumab for use in first-line

advanced non-squamous non-small cell lung cancer in combination with

carboplatin plus paclitaxel. A driving factor was results of a phase III trial

demonstrating that median survival was significantly increased to 12.3 months in

patients treated with standard carboplatin plus paclitaxel chemotherapy combined

with bevacizumab at 15 mg/kg dose every 3 weeks vs. 10.3 months with chemo-

therapy alone (death hazard ratio, 0.79; p ¼ 0.003). Bevacizumab was associated

with significantly more bleeding (4.4 % vs. 0.7 % with chemotherapy alone;

p < 0.001)135. Similarly, the AVAiL trial assessed bevacizumab at 7.5 mg/kg vs.

15 mg/kg every 3 weeks vs. placebo in combination with cisplatin and

gemcitabine136. Progression-free survival or response rates were better with both

doses of bevacizumab compared to placebo, but there was no demonstration of

improved overall survival for the use of bevacizumab in combination with the

chemotherapy. Both trials were limited to patients with non-squamous non-small

cell lung cancer, with ECOG performance status zero or one, and excluded patients

with brain metastases or a history of hemoptysis. In regards to the exclusion of brain

metastasis patients, recent data have demonstrated the safety of utilizing

bevacizumab in patients with previously treated brain metastases137, although its

cautious use in the elderly patients must be considered in view of the increase

toxicity noted in this population138.

11.5.7.3 Breast Cancer

The first large clinical study to show the benefit of bevacizumab in breast cancer

was the E2100 study that enrolled 722 women (mostly HER2-negative) without

prior treatment for metastatic breast cancer to receive bevacizumab (10 mg/kg on

days 1 and 15) and paclitaxel (90 mg/m2 days 1, 8, and 15 of every 28-day cycle) or

paclitaxel alone139. The combination of bevacizumab and paclitaxel significantly

increased the response rate (37 vs. 21%) and progression-free survival (the primary

endpoint, 11.8 vs. 5.9 months), but there was no significant increase in median

overall survival (26.7 vs. 25.2 months). Likewise, progression-free survival was

increased when bevacizumab was combined with docetaxel (AVADO trial) and

investigator-selected chemotherapy (either capecitabine, or a taxane-based, or an

anthracycline-based chemotherapy) in the RIBBON-1 (first-line) and RIBBON-

2 (second-line) trials, without improvement in overall survival140–142. As regards to

safety, a pooled analysis of phase 3 studies showed that utilization of bevacizumab

in metastatic breast cancer patients led to an increase the risk of left ventricular

dysfunction and hemorrhagic events. The addition of bevacizumab to chemother-

apy in patients with metastatic breast cancer however was not associated with a

significant increase in grade �3 arterial or venous thromboembolic events, gastro-

intestinal perforation, or fatal events143.

Preliminary FDA approval was granted for the combination of first line pacli-

taxel and bevacizumab in metastatic breast cancer based on the E2100 trial.

However, in November 2011, the FDA revoked this approval because no study
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has shown an improved overall survival advantage when bevacizumab was com-

bined with chemotherapy. Despite this FDA decision, there is still evidence to

support the use of the combination of bevacizumab and weekly paclitaxel in HER2-

negative metastatic breast cancer given the improvement in progression-free sur-

vival and a trend towards improved overall survival benefit. Currently there are no

predictive markers for response to bevacizumab, although potential predictive role

of proteins involved in the angiogenic pathway such for high plasma VEGF-A

levels are currently being explored144 .

11.5.7.4 Glioblastoma Multiforme

In May 2009 the FDA granted approval for bevacizumab to treat recurrent glio-

blastoma multiforme under its accelerated approval authority. It shows activity

over conventional treatments vs. historical controls and could mitigate clinical

effects of radiation necrosis, possibly through inhibiting blood vessel formation

and hence consequent edema formation. A phase I clinical trial suggested that

direct intra-arterial bevacizumab injection after selective blood brain barrier dis-

ruption with mannitol followed by systemic bevacizumab could be superior to

systemic administration alone or with chemotherapy in 14 patients with glioblas-

toma multiforme recurring following temozolamide plus cranial irradiation145. In a

further non-comparative phase II study of 167 patients with recurrent glioblastoma

multiforme that were randomly assigned to bevacizumab (10 mg/kg), either as a

single agent or at this dose in conjunction with irinotecan. Treatment cycles were

repeated every 2 weeks. All patients had received prior chemotherapy with

temozolomide which was standard of care. The objective response rates with

bevacizumab alone or in combination with irinotecan were 28% and 38%, respec-

tively, and the 6-month progression-free survival rates and overall survival were

43% and 50%, and 9.2 months and 8.7 months, respectively146. Treatment with

bevacizumab or bevacizumab plus irinotecan was generally well tolerated, and

toxicity was limited to that expected with these agents. A more comprehensive

review of the clinical use of bevacizumab in glioblastoma multiforme was recently

reviewed147.

11.5.7.5 Renal Cell Carcinoma

The European Union approved bevacizumab to treat renal cell carcinoma in 2007.

In 2009, bevacizumab received an FDA indication for treatment of metastatic renal

cell carcinoma based on its ability to extend progression-free survival. Approval

was based on two large phase 3 studies. In the AVOREN trial, 649 previously

untreated patients were randomly assigned to interferon-a, nine million units three

times per week for 1 year plus either bevacizumab (10 mg/kg every 2 weeks) or

placebo. The bevacizumab or placebo was continued until there was evidence of

progressive disease148. In this study the combination therapy resulted in a
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significant prolongation of median progression-free survival (10.2 vs. 5.5 months),

a significantly increased objective response rate (31 vs. 13%) and a statistically

nonsignificant trend toward improved survival (median survival 23.3 vs.

21.3 months). Approximately 60% of patients went on to receive second-line

therapy, potentially obscuring a survival difference between the two treatment

arms. In the Cancer and Leukemia Group B (CALGB) trial 90206, 732 previously

untreated patients with metastatic renal cell carcinoma were randomly assigned to

either interferon-a plus bevacizumab or interferon-a plus placebo on schedules

similar to that used in the AVOREN trial149. Again the median progression-free

survival was significantly increased in patients treated with the bevacizumab plus

interferon-a regimen (8.5 vs. 5.2 months), and again as the AVOREN study a trend

toward improved overall survival (median 18.3 vs. 17.4 months) which would have

been significant and difficult to analyze fully by the fact that more than one-half of

patients on both arms received second-line therapy, including VEGF-targeted

therapy in 46% of those originally treated with interferon-a alone.

11.5.7.6 Investigational and Other Potential Uses

Bevacizumab is among the most studied immunologic agents for cancer. It has

shown potential clinical efficacy in selected neuroendocrine tumors150 and

advanced epithelial ovarian cancers151 but not in pancreatic cancer152. A large

variety of other drug combinations in other settings have also been tested, with

mixed results. Since VEGF can hinder dendritic cell maturation and promote

regulatory T cell generation, anti-VEGF agents, including have been tested as

immune modulators in cancer, discussed in more detail in Chaps. 9 and 13.

11.5.7.7 Resistance to Anti-VEGF Therapy

Despite the initial benefit seen in some patients treated with VEGF pathway

inhibitors, complete responses have not generally been documented and most

patients will progress and succumb to their disease. The initial or eventual failure

of VEGF-targeted therapy suggests that mechanisms of inherent and acquired
resistance play a role in the progression of disease in patients treated with these

agents. There is some activity with the VEGF tyrosine kinase inhibitors as a

monotherapy in renal cell carcinoma and hepatocellular carcinoma where resis-

tance is thought to be primarily related to the VEGF pathway. In colorectal cancer,

non-small cell lung cancer, and breast cancer, VEGF-targeted therapy with

bevacizumab where administration is with various cytotoxic regimens, resistance

is likely to be more complex.

Resistance to bevacizumab can include use utilization of alternative or compen-

satory angiogenesis mechanisms. The fibroblast growth factor family of ligands

was the first resistance mechanism identified. Hanahan and colleagues showed that

treatment with an anti-VEGF R2 monoclonal antibody was associated with a
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decrease in vascular density after 10 days of therapy. However, these investigators

noted an angiogenic rebound in tumors at 4 weeks that was associated with an

increase in expression of redundant angiogenic factors, including members of the

fibroblast growth factor family. By using a fibroblast growth factor-trap, these

investigators showed that blocking fibroblast growth factor signaling minimized

the acquired resistance to VEGF-targeted therapy and decreased tumor burden153.

These studies were supported clinically showing an increase in the circulating

levels of basic fibroblast growth factor when tumors progressed on VEGF-targeted

therapy154.

More recently, the cell membrane bound notch ligand/receptor system has been

proposed as a resistance pathway for anti-VEGF therapy155. The activation of notch

signaling by one of the five notch ligands can complement VEGF signaling by

contributing to a more mature tumor vasculature network. Inhibition of notch

signaling with an anti-DLL4 antibody can block notch signaling, which paradoxi-

cally leads to an increase in vessel count. However as the function of these newly

developed vessels is poor, the overall result is a paradoxical decrease in tumor

tissue perfusion.

In both preclinical studies and clinical trials, placenta growth factor is increased

in plasma following blockade of VEGF signaling. Inhibition of placenta growth

factor using monoclonal antibodies showed that both VEGF-sensitive and VEGF-

resistant tumors respond to placenta growth factor neutralization156. One interesting

aspect of this study was the fact that antibodies to placenta growth factor can inhibit

recruitment of macrophages that are thought to play an important role in

contributing to the angiogenesis or possibly have an indirect effect in the tumor

microenvironment. Anti-placenta growth factor therapy also results in a reduced

hypoxic response with less induction of compensatory angiogenic mediators.

Pericytes play an important role in providing survival signals to endothelial cells

and mediate blood flow and endothelial cell permeability157. In addition, pericytes

secrete paracrine factors that mediate endothelial cell survival signaling via Akt

activation158. The migration and proliferation of pericytes is predominantly

mediated by platelet derived growth factor (PDGF)-BB secreted primarily by

endothelial cells, interacting with the PDGF-b receptor on pericytes158. Targeting

both pericytes and endothelial cells (e.g., with PDGF-R and VEGFR inhibitors)

leads to greater efficacy than either agent alone159. Due to the homology between

VEGFRs and PDGFRs, many kinase inhibitors targeting VEGFRs also inhibit

PDGFR signaling. Finally, it has been recently shown that tumor-derived PDGF

can stimulate secretion of fibroblast growth factors from cancer-associated

fibroblasts, leading to further angiogenic support, again highlighting the importance

of the microenvironment in regulating tumor angiogenesis, and providing addi-

tional targets in attempts to abrogate inherent or acquired resistance160. The clinical

benefit of multiple targeting of the vasculature (PDGFR, VEGFR, or fibroblast

growth factor inhibition) remains to be determined. Some investigators are

attempting to use anti-angiogenesis agents that target multiple angiogenic pathways

simultaneously161. It is too early to know how effective such strategies will be.
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11.5.8 Natalizumab

Natalizumab (Tysabri, Biogen IDEC and Elan) is a humanized monoclonal IgG4

a4-integrin antibody. This integrin is important in lymphocyte trafficking, and a

purported mechanism of action is prevention of activated immune cells from

reaching target organs in autoimmune diseases. Its mechanisms of action in cancer

are less clear. It was approved in 2004 by the FDA to treat multiple sclerosis and

Crohn’s disease. It was withdrawn by the manufacturer following reports that when

combined with interferon-b for multiple sclerosis it could cause progressive multi-

focal leukoencephalopathy, a usually exceedingly rare neurological disorder that

can be fatal. It returned to the market in the United States in 2006 for treatment of

autoimmune disorders following additional safety evaluations and the determina-

tion that the clinical benefits in some cases outweighed the risk for progressive

multifocal leukoencephalopathy. In the European Union, natalizumab is approved

for as monotherapy for multiple sclerosis. It has preclinical efficacy in some

hematologic malignancies or their management162,163, and is currently in clinical

trials by Biogen as treatment for certain T cell leukemias/lymphomas.

11.5.9 Denosumab

Denosumab (Prolia, Xgeva; Amgen) is a fully human IgG2 anti-RANK ligand

monoclonal antibody.

It received FDA approval in June 2010 to reduce post-menopausal osteoporosis

risk (under the trade name Prolia) and thus became the first FDA-approved anti-

RANL ligand agent. It received FDA approval to reduce the risk of skeleton-related

events (fractures and pain) in patients with solid cancers and bone metastases in

November 2010 under the trade name Xgeva.

Danosumab binds to RANK (receptor activator of nuclear factor-kappa B)

ligand on osteoblasts in bone, and prevents their maturation and activation from

RANK interactions on local osteoblasts. Reduced osteoclast activation reduces

their capacity to degrade bone and helps preserve bone integrity, by tipping bone

remodeling in favor of net new bone deposition164,165. It is currently in clinical

trials to treat giant cell tumors, multiple myeloma with bone metastases, and

hypercalcemia of malignancy. It could have anti-cancer activity in breast

cancer164,165.

11.5.10 Pertuzumab

The concept of combining two HER2-targeted agent to overcome possible resis-

tance to trastuzumab led to a trial in patients with HER2-positive metastatic breast
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cancer who had never gotten anti-HER2 therapy or chemotherapy previously.

Pertuzumab (Perjeta, Hoffmann-La Roche/Genentech) is a recombinant humanized

monoclonal antibody targeting the extracellular dimerization domain of HER2,

thereby blocking ligand-dependent HER2 heterodimerization with other HER

family members. manized that can prolong survival in metastatic breast cancer

when combined with trastuzumab plus docetaxel166. 808 patients were treated with

either pertuzumab or placebo in combination with trastuzumab plus docetaxel.

Pertuzumab significantly increased median progression-free survival vs. placebo

by 6.1 months (hazard ratio 0.62, p < 0.0001). Median progression-free and overall

survival was also increased (p ¼ 0.0053 for overall survival). Common side effects

of pertuzumab in combination with trastuzumab plus docetaxel were diarrhea,

alopecia, neutropenia, nausea, fatigue, rash, and peripheral neuropathy. Data were

presented at the 2012 American Society for Clinical OncologyMeeting followed by

FDA approval on June 8, 2012.

11.5.11 Ipilimumab

This anti-CTLA-4 blocking monoclonal antibody, and other antibodies directed

against immune co-signaling molecules are discussed in great detail in chap. 8.

11.6 Promising Antibodies in Clinical Trials

The following are examples of promising approaches to antibody-mediated

strategies to treat cancer that have progressed to human clinical trials. These agents

are summarized in Table 11.2.

11.6.1 Anti-Chemokine Receptor and Anti-Chemokine Antibodies

11.6.1.1 Mogamulizumab (Anti-CCR4)

We previously demonstrated that regulatory T cells can migrate to the tumor

microenvironment in ovarian cancer through their CCR4 expression in conjunction

with microenvironmental CCL22167. Because some T cell leukemia/lymphoma

cells behave like regulatory T cells and express CCR4, an anti-CCR4 monoclonal

antibody was developed that could potentially directly kill CCR4+ malignant cells,

and reduce CCR4+ regulatory T cell trafficking in T cell malignancies168. The novel,

humanized anti-CCR4 IgG1 antibody KW-0761 is defucosylated to augment its

potential to mediate antibody-dependent cellular cytotoxicity. In a phase I study of

KW-0761 in 16 patients with relapsed CCR4+ adult T-cell leukemia-lymphoma or
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peripheral T cell lymphoma, it was found to be well-tolerated, and a phase II dose

was identified169. Initial clinical efficacy was subsequently demonstrated in early

human clinical trials, and development was furthered by Amgen where KW-0761

was renamed AMG-761 or mogamulizumab170. In a phase II trial of 28 patients with

relapsed CCR4+ adult T cell leukemia, KW-0761 produced objective responses in

13 of 26 evaluable patients, including eight complete responses, an overall response

rate of 50 %. The toxicity profile was acceptable and has led to further clinical

development in adult T cell leukemia and other T cell neoplasms171.

11.6.1.2 Anti-CCL2 (preclinical)

The chemokine CCL2 is also under active investigation in novel anti-cancer

treatment strategies. Anti-CCL2 or anti-CCR2 (CCL2 receptor) antibodies have

been studied in preclinical models in prostate cancer. In one study, anti-CCL2

antibody treatments reduced tumor burden, bone loss, and vascular endothelial

growth factor concentration172. In another preclinical prostate cancer model, anti-

CCL2 antibody treatments improved the efficacy of docetaxel chemotherapy to

reduce bone metastases173. CCL2 produced by breast cancer cells and associated

stroma recruits CCR2-expressing monocytes that facilitate the metastatic process.

Neutralizing CCL2 with anti-CC2 antibody reduced metastases and prolonged

survival in a preclinical model of breast cancer metastases174. Based on supporting

data such as these, anti-CCL2 antibodies have entered human clinical trials in

prostate cancer and ovarian cancer175.

11.6.1.3 Anti-CCL22 (preclinical)

We identified the chemokine CCL22 as important to attraction of regulatory T cells

into the tumor microenvironment167 and demonstrated that anti-CCR4 antibody

(blocking the CCL22 receptor) reduced regulatory T cell trafficking into human

ovarian cancer xenografts, improving adoptively T cell transfer therapy (W. Zou, T.

Curiel, unpublished data). Further studies are needed in this regard. Please see

Chap. 12 for additional anti-chemokine/chemokine receptor strategies.

11.6.2 Anti-CA-125

The tumor-associated antigen CA-125 is used to monitor treatment responses in

patients with ovarian cancer. CA-125 was targeted in vivo by the murine monoclo-

nal antibody oregovomab. This antigen–antibody complex could prime dendritic

cells176 thereby activating T cells177 and underwent a phase III clinical trial178. In a

pivotal phase III study of 373 ovarian cancer patients, oregovomab maintenance

was used after front-line therapy to test if time to progression could be extended,
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where no difference in clinical outcome was identified, although treatment was well

tolerated. The future for this monoclonal antibody is uncertain, but because of its

potential to induce anti-tumor immunity, it could be tested in an immune-boosting

strategy in combination with other agents179.

11.6.3 Farletuzumab

Folate receptor-a is a membrane marker for ovarian cancer and is frequently

overexpressed in other major epithelial cancers. It is not well expressed in normal

tissue, making it an attractive drug development target in cancer. Farletuzumab

(MORAb-003) is a humanized monoclonal anti-folate receptor antibody in clinical

trials180. A phase I trial demonstrated pharmacokinetics and tolerability. Another

phase I trial showed that farletuzumab plus carboplatin was safe and tolerable in

ovarian cancer patients with platinum-sensitive disease in first or second relapse. A

phase II study of farletuzumab combined with carboplatin plus a taxane to treat

ovarian cancer patients with platinum-sensitive disease in first relapse demonstrated

improved clinical responses and time to progression vs. historical controls. Two

randomized, double-blind, placebo-controlled phase III trials are testing farletuzumab

plus either paclitaxel in one trial or carboplatin plus a taxane in the other, both in

patients with platinum-sensitive ovarian cancer181. Results are pending.

11.6.4 AS1402 (Formerly R1550)

MUC1 is a cell-surface glycoprotein. A 20-amino-acid tandem repeat in the MUC1

core protein is overexpressed and abnormally glycosylated in most epithelial

malignancies. These alterations in its glycosylation can affect cell growth, differenti-

ation, transformation, adhesion, invasion, and immune surveillance and are

associated with development of cancer182,183. In a phase III trial of yttrium-90-labeled

murine HMFG1 ((90)Y-muHMFG1) to treat ovarian cancer, development of IgG

anti-MUC1 antibodies correlated with improved survival, suggesting that immuno-

therapy against MUC1 could be useful to treat epithelial ovarian cancer and perhaps

other cancers184.

AS1402 is a humanized IgG1 monoclonal antibody that targets PDTR sequences

in the MUC1 core tandem repeat not generally expressed in normal cells. AS1402

induces antibody-dependent cellular cytotoxicity that is specific for MUC1-

expressing tumors. In a phase I trial of 26 women with locally advanced or

metastatic MUC1+ breast cancer that failed first-line therapy, AS1402 was gener-

ally well tolerated and led to an ongoing phase II trial182.

MUC1 is overexpressed in ~90 % of breast tumors and modulates estrogen

receptor activity that contributes to the estrogen-mediated growth and survival of

breast cancer cells in vitro. Aromatase inhibitors can enhance antibody-dependent
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cell-mediated cytotoxicity in in vitro studies. A phase II trial tested 110 patients

with locally advanced or metastatic breast cancer with hormone receptor-positive

tumors randomized for treatment with the hormonal agent letrozole alone or

combined with AS1402 treatment. The trial was halted early due to evidence for

worse responses and faster progression with AS1402 plus letrozole. The final trial

data analysis showed no significant efficacy differences, so additional trials could

be possible185.

In a trial of 31 early stage breast cancer patients, oxidized mannan-MUC1 was

tested in stage II breast cancer patients without evident disease. They were treated

with subcutaneous injections of either placebo or oxidized mannan-MUC1 to

immunize against MUC1 and prevent cancer reoccurrence, including metastases.

In 5.5 years or more of follow up, recurrence in the placebo group was 27 % vs. 0 of

16 in the treated group (P ¼ 0.03). In treated patients, 9 of 13 patients developed

anti-MUC1 antibodies and 4 of 10 developed MUC1-specific T cell responses vs.

none for either measure in the placebo group. The authors concluded that a phase III

should be undertaken based on these results186.

11.6.5 Volociximab

Volociximab is a chimeric anti-AAB1 (a component of a5b1 integrin) IgG4

monoclonal antibody under development by PDL Biopharma, Inc., and Biogen

Idec Inc. Volociximab inhibits tumor neoangiogenesis in mouse cancer models by

interrupting a5b1/fibronectin interactions and has proven relatively safe and toler-

able in phase I trials.

A phase II trial tested single-agent efficacy in 16 patients with platinum-resistant,

advanced stage epithelial ovarian cancers and primary peritoneal cancinomatosis.

Clinical efficacy was not established, but tolerability was confirmed187. Despite

uncertainties regarding efficacy, a phase III trial has begun188. Currently active trials

are ongoing to test efficacy alone or combined with cytotoxic chemotherapy in

different solid tumors, where earlier phase trials found promising activity189.

Incidentally, volociximab is also undergoing phase II clinical trials for age-

related macular degeneration190.

11.6.6 Mapatumumab

Mapatumumab (HGS-ETR1, TRM-1) is a fully human anti-tumor necrosis factor-

related apoptosis-inducing ligand receptor-1 (TRAIL-R1) agonist monoclonal anti-

body. In a phase I trial, 49 patients with advanced solid malignancies were treated

in whom TRAIL-R1 expression was documented in 68 % of tumors. Nineteen

patients experienced stable disease, and two of these lasted 9 months191.
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Another phase I study tested mapatumumab combined with paclitaxel plus

carboplatin in 21 patients with advanced stage solid cancers. Mapatumumab was

well-tolerated with no apparent pharmacokinetic effects on cytotoxic drugs. Anti-

cancer effects were seen in most patients192.

A phase 1b/2 trial evaluated mapatumumab in 40 patients with relapsed non-

Hodgkin lymphoma. Treatment was well tolerated. Three patients with follicular

lymphoma had clinical responses, including two with complete responses. Strong

tumor staining for (TRAIL-R1) (the mapatumumab target) did not correlate with

clinical activity193.

A phase II trial evaluated single-agent mapatumumab in 38 colorectal cancer

patients failing standard cytotoxic chemotherapy. No meaningful clinical responses

were noted, but 12 patients experienced stable disease (median 2.6 months).

Despite lack of demonstrable clinical activity, further evaluations were considered

useful to be tested in combination with other agents194.

11.6.7 Etaracizumab

avb3 integrin helps regulate intracellular signaling, cell proliferation, migration,

differentiation, and tumor-mediated angiogenesis195. Etaracizumab (Abegrin) is an

IgG1 humanized anti-avb3 integrin monoclonal antibody. In a phase I trial, 16

patients with advanced solid malignancies received escalating etaracizumab doses.

There were no objective clinical tumor reductions, but five patients had disease

stabilization lasting over 6 months. Etaracizumab was well-tolerated with no

evidence for immunogenicity196.

Etaracizumab was tested in 112 patients with previously untreated metastatic

melanoma alone or with the cytotoxic agent dacarbazine. Survival was similar in

both treatment arms suggesting that further pursuit of this combination was not

likely to be beneficial195. Additional phase I and phase II trials are ongoing196.

11.6.8 Anti-CEA (Carcinoembryonic Antigen)

3 H1 is a monoclonal anti-idiotype antibody whose antigen recognition site

mimics carcinoembryonic antigen. In a phase III trial of 630 patients with

previously untreated metastatic colorectal cancer, standard 5-flourouracil plus

leucovorin was tested alone or in combination with 3H1. Anti-CEA antibodies

were generated in 70 % of patients receiving 3H1. Treatment was well tolerated,

and appeared to extend life in responders (median survival 8.3 months in non-

responders vs. median survival not reached in responders; P < 0.001). Further

studies of this antibody are planned197. Several phase I trials have tested

radiolabeled anti-CEA antibodies198,199. Lametuzumab is an anti-CEA antibody

conjugated to a toxin200.
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11.6.9 Adecatumumab

Adecatumumab is a human IgG1 anti-EpCAM (an epithelial cell adhesion mole-

cule) antibody. It was tested in an open-label phase IB dose-escalation trial in breast

cancer patients in combination with docetaxel. In 31 evaluable patients, clinical

responses were seen in 44 % overall and in 63 % of patients whose tumors

expressed high-level EpCAM, suggesting potential utility201.

11.6.10 Anti-Mesothelin

Mesothelin is a tumor differentiation antigen over-expressed in a variety of cancers

including those of pancreas, ovary and mesothelium202. MORAb-009 is a chimeric

anti-mesothelin monoclonal antibody used in a phase I trial of 24 patients with

mesothelin-expressing tumors of pancreas, mesothelium or ovaries. Eleven subjects

experienced stable disease prompting an ongoing phase II trial203.

11.6.11 Sibrotuzumab

Fibroblast activation protein is an immunopathogenic protein in cancer204.

Sibrotuzumab is a humanized anti-against human fibroblast activation protein. A

Phase I trial tested 26 patients (20 with colorectal carcinoma and 6 patients with

non-small cell lung cancer), all likely to be FAP positive. There were no objective

tumor responses but two patients had disease stabilization205.

11.6.12 Antibodies Developed for Other Indications

Infliximab is an anti-TNF-a antibody FDA-approved to treat certain autoimmune

disorders. It has been used in clinical trials in cancer where it stabilized disease in

some patients with advanced cancers progressing on conventional treatments. An

anti-IL-6 antibody was tested in prostate cancer and ovarian cancer without clear

evidence for clinical efficacy although immune modulation was observed

(reviewed in 206). Anakinra is an IL-1 receptor antagonist. It reduced disease

progression in smoldering multiple myeloma207. A number of anti-inflammatory

approaches, including celecoxib, anti-TNFa and anti-IL-6 have been used to try to

treat cancer cachexia, but with limited success thus far208, including in two

recently-completed phase III clinical trials209,210. Daclizumab is an anti-CD25

antibody FDA-approved in organ transplantation. It was used in a clinical of a

breast cancer vaccine to deplete regulatory T cells211. Clinical efficacy was not
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reported, but it did reduce and alter the phenotype of the regulatory T cells.

Etanercept is a soluble TNFR2 fusion protein that neutralizes TNF-a by direct

binding to it. It stabilized disease in a minority of patients in an early stage clinical

trial (reviewed in 212).

11.7 Summary

Therapeutic antibodies are the most successful class of anti-cancer immune-based

therapeutic agents to date. These agents as a class are generally well tolerated with a

good side effect and safety profile. A very large variety of additional agents are in

phase I trials against a range of targets, including those expressed by the tumor, its

stroma and immune cells. The technology has advanced to the point where a

number of highly humanized or fully human antibodies are being produced and

tested, reducing issues related to unwanted immunogenicity. Some antibodies work

through inducing complement or antibody-dependent tumor cytotoxicity. Current

technology allows engineering this functionality into some antibodies. Antibodies

are also useful in immunoconjugates to deliver toxins or for diagnostic purposes

(discussed in Chap. 12).
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Chapter 12

Targeted Toxins in Cancer Immunotherapy

Devalingam Mahalingam, Michael J. Brumlik, Reinhard Waehler,

David T. Curiel, and Tyler J. Curiel

Abstract Many anticancer agents are toxic to normal tissues. Thus, the potential to

target treatments specifically to tumors would minimize the effects on normal tissues

and afford a better safety profile compared to nontargeted treatments. Harnessing

immune specificity has allowed the successful development of targeted anticancer

agents. Successful targeting strategies include antibodies and derivatives, cytokines,

peptides, and recombinant viruses. This chapter will summarize the current agents

and strategies that exploit immune principles and reagents to develop targeting

specificity to treat cancers with maximum sparing of normal tissues.

12.1 Therapeutic Immunoconjugates

12.1.1 Introduction

An optimal therapeutic agent will target a specific molecule expressed only on the

surface of cancer cells. This unique expression rarely exists, and thus, there must be a

trade-off in specificity of binding versus agent efficacy. Therapeutic immuno-

conjugates deliver toxic cargoes specifically to tumor cells via their targeting moiety.

The prototype for such an agent is an antibody conjugated to a moiety toxic to the
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target cell (Fig. 12.1a). Such toxic moieties include recombinant cytotoxic proteins1–4,

cytotoxic drugs,5–8, ribonucleases9, small inhibitory RNAs10, 11, or radionuclides12

(Fig. 12.1a, b).

Some immunoconjugates employ whole antibody or single-chain antibody

fragments rather than the intact antibody. One immunoconjugate class of this

type employs the disulfide-bond-stabilized Fv moiety of an antibody conjugated

Fig. 12.1 Schematic showing novel targeting mechanisms of immunoconjugates and ligand-

receptor based agents. Antibody and ligand-based agents are shown on the left side while viral

delivery vehicles are shown on the right side of the figure. Ligands, receptors, and antibodies with

identical color schemes indicate that they could theoretically be derived from the same molecule.

Black lines represent linker regions.
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to the toxic cargo1 (Fig. 12.1c). A variation of this approach uses an unmodified

single-chain antibody fragment13 (scFv), that is, a linear configuration of the

variable antibody heavy and light chains fused by a short peptide linker, conjugated

to the toxic cargo (Fig. 12.1d).

Many immunoconjugates have been designed using rationally selected

alternatives to antibodies or antibody derivatives. These newer molecules target

tissues using a cell surface receptor-specific binding ligand (Fig. 12.1e). Such

binding ligands use immune system molecules with known binding specificities

such as interleukins but, in addition, employ novel binding agents identified experi-

mentally through screening of phage display libraries14 (Fig. 12.1f, g). Virus and

virus-based delivery vehicles have also been tested that use immunoconjugate-

based concepts to target toxic agents to specific cells or tissues15 (Fig. 12.1h–k).

12.2 Targeting Toxins to Cancer Cells via Specific Cell

Surface Antigens

12.2.1 Immunoconjugates Targeting CD22

One of the earliest and successful uses of immunoconjugates was in the treatment of

non-Hodgkin lymphoma. A CD22-targeted monoclonal antibody chemically fused to

deglycosylated ricin toxin A16 induced cell death by ricin-mediated ribosomal RNA

cleavage and inhibition of protein synthesis17, 18. This approach was clinically

effective with complete responses in 2 and partial responses in 10 of 41 patients.19, 20

However, toxicity of vascular leak limited further clinical development. To attempt to

reduce vascular leak, the ricin toxin moiety was modified by converting asparagine-

97 to alanine in its A-chain. This modification significantly reduced toxicity but also

reduced antitumor activity21.

The next approach using anti-CD22 immunoconjugates is exemplified by BL22.

BL22 is a genetic fusion of the disulfide-bond-stabilized Fv (dsFv) moiety of anti-

CD22 antibody and the catalytic and translocation domains of Pseudomonas
aeruginosa exotoxin A. This conjugate effectively redirected the cytotoxic moiety

to CD22-expressing cells. The exotoxin ADP-ribosylates histidine-699 on elongation

factor-2, leading to cell death22. Individual plasmids expressing the two distinct dsFv

chains, one of which is fused to the exotoxin, are co-expressed in E. coli. They are

then purified and covalently conjugated to BL22 to form the full immunoconjugate

(see Fig. 12.1c). BL22 was shown to be efficacious in patients with hematologic

malignancies (leukemias and lymphomas), effecting complete responses in 19 of 46

patients and partial responses in 7 additional patients23–25.

Using peptides identified from screening an antibody phage display library,

BL22 was further modified to produce an immunoconjugate with CD22 affinity

that was ten times more potent than the parent compound26. This modified BL22

immunoconjugate is currently undergoing a phase I clinical trial, while the original

drug is the subject of a phase II clinical trial25. Their immunoconjugates using
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distinct CD22-targeting epitopes have been conjugated to saponin, a toxin that

inactivates ribosomes27, but these agents have not been clinically developed.

Inotuzumab ozogamicin is a humanized anti-CD22 monoclonal antibody (clone

CMC-544) covalently conjugated to the DNA-damaging agent calicheamicin. This

immunoconjugate has shown significant potential for treatment of acute lympho-

blastic leukemia and specific B cell lymphomas28, 29 and has been tested in

combination with the anti-CD20 antibody rituximab30. A recently completed

phase II clinical trial continues to demonstrate the clinical efficacy of this

immunoconjugate in refractory and relapsed acute lymphocytic leukemia31.

Epratuzumab-SN-28, a humanized anti-CD22 antibody, has successfully been

conjugated with the topoisomerase I inhibitor SN-28. This immunoconjugate

employs a novel linker that allows 50 % of the IgG-bound SN-38 to dissociate in

serum every 24 h and has shown encouraging preclinical results32.

12.2.2 Immunoconjugates Targeting CD19

Many phase I clinical trials using CD19-targeting agents for CD19-expressing

tumors have achieved modest to poor clinical efficacy. It is difficult to judge the

efficacy of anti-CD19 agents as these studies used different monoclonal antibodies

conjugated to distinct toxic moieties. The B4 anti-CD19 antibody clone chemically

conjugated to a blocked ricin toxin, where the ricin oligosaccharide-binding sites

were modified with glycopeptides comprised of specific N-linked oligosac-

charides33, effected no clinical response in 16 patients in a phase II trial for

non-Hodgkin lymphoma34. The HD37 anti-CD19 antibody clone was chemically

conjugated to blocked ricin and tested in a phase I clinical trial. There were only

2 partial responses in 22 subjects, with vascular leak, seen with previous related

agents, noted19, 20, 35. The B43 anti-CD19 antibody clone was chemically conju-

gated to pokeweed antiviral protein, a toxin that inactivates ribosomes. This

immunoconjugate failed to elicit significant clinical response36. Similarly, in severe

combined immunodeficient mice xenografted with human B cell precursor acute

lymphoblastic leukemia cells, this immunoconjugate failed as a single agent,

but showed efficacy when combined with vincristine, methylprednisolone, and

L-asparaginase36, cytotoxic drugs used to treat this malignancy.

12.2.3 Immunoconjugates Targeting CD30

Brentuximab vedotin (SGN-35; Adcetris) is a chimeric IgG1 anti-CD30 antibody

conjugated to the antimicrotubule agent, monomethyl auristatin E37. In phase I

studies, this immunoconjugate demonstrated significant clinical activity in patients

with relapsed or refractory CD30-expressing lymphomas with tolerable toxicities38.

In a phase II study of 102 patients with relapsed or refractory Hodgkin lymphoma

who failed prior treatments, the overall response rate was 75 %. Impressively, 34 %

of these patients, considered to be highly refractory, achieved complete remission39.
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Based on such results, brentuximab vedotin was approved by the FDA in August

2011. This compound is now used for the treatment of Hodgkin lymphoma in patients

with failed autologous stem cell transplant, at least two failed multiagent chemother-

apy treatments, for transplant-ineligible patients and in the treatment of systemic

anaplastic large cell lymphoma patients that failed multiagent chemotherapy40, 41.

In a phase I clinical trial, anti-CD30 monoclonal antibody conjugated to blocked

ricin elicited a partial clinical response in 1 of 15 patients and was not pursued

further42. A different anti-CD30 monoclonal antibody clone, Ber-H2, conjugated to

saponin was tested but was also found to be ineffective43.

12.2.4 The Case of the Anti-CD33 Immunoconjugate
Gemtuzumab Ozogamicin

Gemtuzumab ozogamicin was produced by chemically conjugating the DNA-

damaging agent calicheamicin to a humanized anti-CD33 antibody44, 45. This

immunoconjugate (Mylotarg; Wyeth) received approval through the FDA

accelerated approval program on May 17, 2000, for treatment of older patients

with acute myeloid leukemia in relapse and those unsuitable for chemotherapy8.

This was the first antibody-toxin immunoconjugate to gain FDA approval. In June

2010, Wyeth voluntarily withdrew this agent from the market following analysis of

results from SWOG S0106, a phase III clinical trial that demonstrated increased

treatment-related deaths with no clear benefit over conventional treatments46, 47.

This withdrawal caused a reevaluation at postmarketing evaluations of new drugs

that continues to the present.

A different anti-CD33 monoclonal antibody chemically conjugated to blocked

ricin toxin did not elicit significant clinical efficacy48. Further preclinical and

clinical investigations into novel immunoconjugates to CD33 are therefore required

in an effort to develop meaningful antitumor efficacy.

12.3 Antimicrotubule Agents and Immunoconjugates

12.3.1 Auristatins

Auristatins are cytotoxic agents that induce apoptosis by promoting G2-M cell

cycle arrest and microtubule disruption. Auristatin, or its analogues, has been

chemically conjugated to monoclonal antibodies against a variety of antigens

including CD2049, CD3050, CD7051, prostate-specific membrane antigen52, p9753,

E-selectin54, glycoprotein NMB55, and Lewis Y antigen56. Aside from the great

success of brentuximab vedotin41 (see section 12.2.3), efficacy of the treatments is

still unclear as most agents are still in early clinical development.
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12.3.2 Maytansine and Derivatives

CanAg is a novel carbohydrate epitope of the tumor antigen Muc1. It is

overexpressed in cancers of the pancreas, biliary system, and colon. huC242 is a

humanized anti-CanAg monoclonal antibody that has been chemically conjugated to

DM1 [N20-deacetyl-N20-(3-mercapto-1-oxopropyl) maytansine], a potent antimicro-

tubule agent. The resultant immunoconjugate, cantuzumab mertansine, has produced

clinical responses in patients with a variety of cancers including pancreatic, colorectal,

and non-small cell lung cancer57, as well as solid tumors.

Maytansine derivatives have also been tested in other immunoconjugates,

trastuzumab-DM1 (anti-HER2/neu)58, 59, AVE9633 (anti-CD33)58, 60, HuN901-

DM1(anti-CD56)61, and B-B4-DM1 (anti-CD138)62, currently in clinical trials.

Results of the phase 3 EMILIA clinical study of trastuzumab-DM1 in women with

trastuzumab-refractory, advanced HER-2 positive breast cancer were recently

reported at the 2012 American Society for Clinical Oncology. Median progression-

free survival was 9.6 months in the trastuzumab-DM1 arm versus 6.4 months in the

capecitabine plus lapatinib (small molecule inhibitor of HER-2) arm.63 Furthermore,

grade 3 or higher severe adverse events were less frequent in the trastuzumab-DM1

group (40.8 %) versus capecitabine/lapatinib (57.0 %), as was the rate of adverse

events necessitating treatment discontinuation (5.9 % versus 10.7 %). The EMILIA

study provides convincing evidence that an immunoconjugate-targeting HER2 has

potent antitumor activity, and provides some realization of Paul Ehrlich’s concept of

a “magic bullet” developed over 100 years ago. Its merits are continuing to be

evaluated64.

12.3.3 Early-Stage Antibody-Based Immunoconjugates Targeting
Solid Tumors

In the interest of completeness, the following agents have been included and briefly

discussed. However, many have failed in clinical trials or are still too early in their

development to make judgments on their efficacy.

An anti-HER2/neu single-chain antibody genetically conjugated to PE38 (Erb-

38; scFv(FRP5)-ETA) failed a phase I clinical trial due to liver toxicity and poor

clinical efficacy in breast cancer patients65. However, in other studies, this drug

showed potential in 11 patients with metastatic breast cancer, colorectal cancers,

and melanoma. Patients receiving injections into dermal tumors showed partial and

in some cases complete tumor regression66. However, in 18 breast cancer patients

treated in a follow-up trial, there were no objective responses67. It is likely that

further studies are required before any conclusions can be drawn on the clinical

efficacy of this approach.

Mesothelin is a tumor differentiation antigen overexpressed in a variety of cancers

including those of pancreas, ovary, and mesothelium68. An immunoconjugate-

targeting mesothelin, SS1(dsFv)PE38, has been developed. SS1(dsFv)PE38 is
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comprised of a modified scFv genetically fused to PE38 and has since been

designated SS1P. One phase I clinical trial was initiated in 20071 involving combined

therapy for mesothelioma patients using SS1P, pemetrexed, and cisplatin was

undertaken. A second phase I trial is ongoing, involving treatment of unresectable

non-small cell lung adenocarcinoma with SS1P, paclitaxel, carboplatin, and

bevacizumab.

A phase I trial of SS1P tested continuous infusion in 24 patients with mesothelin-

expressing mesothelioma, ovarian, or pancreatic cancer. SS1P was given by contin-

uous infusion for 10 days, and cycles could be repeated at 4-week intervals in

the absence of neutralizing antibodies or progressive disease. Immunogenicity

and modest clinical activity (e.g., reduced ascites) were noted in some subjects,

but results were not better than results of bolus infusions, which are the subject of

ongoing studies in conjunction with chemotherapy69. Results of early and pre-

clinical developments of mesothelin-targeted treatment strategies were recently

reviewed70.

A phase I/II clinical trial testing an anticarcinoembryonic antigen monoclonal

antibody chemically conjugated to blocked ricin toxin in colorectal cancer patients

failed to show clinical efficacy71. In a phase I clinical trial of colon cancer patients,

a 72-kDa glycoprotein expressed in colon cancer cells was targeted by chemically

conjugating a specific monoclonal antibody to recombinant ricin toxin A-chain.

Data from this trial showed that there was no significant clinical response72, 73. In a

phase I clinical trial of breast cancer patients, an immunoconjugate composed of a

specific monoclonal antibody directed against a 55-kDa antigen expressed in breast

cancers chemically conjugated to recombinant ricin toxin was used. This trial was

halted due to neuropathic toxicities74, 75. A trial using murine monoclonal antibody

chemically conjugated to blocked ricin in patients with small cell lung carcinoma

was halted due to toxicities76, 77. A murine monoclonal antibody targeting the

OVB3 epitope expressed in ovarian cancers was chemically conjugated to full

length Pseudomonas aeruginosa exotoxin A. This immunoconjugate was toxic to

the central nervous system78.

A variety of immunoconjugates have been designed in which distinct anti-Lewis

Y antibodies, or fragments of the antibody, are conjugated to truncated Pseudomo-
nas exotoxin. These immunoconjugates have generally shown little or no efficacy

in patients with adenocarcinomas79, 80.

12.3.4 Radioimmunoconjugates

Radionuclides used in therapy emit shorter-penetrating energy compared to those

used in diagnostics where energy emitted must be sufficient for detection by

external devices.

Short-range therapeutic radionuclides, for example, 211At (t½ ¼ 7.2 h; 6.0 MeV)

and 213Bi (t½ ¼ 46 min; 6.0 MeV), emit alpha particles which typically penetrate

only several cell diameters81. Such short-length emitters can be used in
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radioimmunoconjugates, useful for the treatment of localized cancers or small malig-

nant cell clusters. FDA-approved radioimmunoconjugates for treatment of B cell

lymphomas include ibritumomab tiuxetan (Zevalin), a murine anti-CD20monoclonal

antibody fused to the 90Y-labeled chelator tiuxetan, and [131I]-tositumomab (Bexxar),

a murine [131I]-anti-CD20 monoclonal antibody82. [90Y]-epratuzumab, a humanized

[90Y]-anti-CD22 antibody, is in human phase III trials for non-Hodgkin lymphoma

with encouraging results83, while ibritumomab tiuxetan shows promise in primary

central nervous system lymphomas84, a disease with a poor prognosis.

A disadvantage for the use of radiolabeled antibodies is their distribution to the liver,

spleen, and bone marrow58. Pretreatment with unlabeled (cold) immunoconjugates can

help mitigate such off-target toxicities. An example of this is the use of tositumomab

for the treatment of non-Hodgkin lymphoma. Prior to treatment, rituximab is used to

deplete CD20+ B lymphocytes85. This pretreatment enhances the clinical efficacy of

tositumomab while simultaneously reducing injury to noncancerous tissue58.

12.3.5 Cytokine-Based Immunoconjugates

An alternative to antibody-mediated targeting are immunoconjugates containing

cytokines (Fig. 12.1e) or peptides that target cytotoxins (Fig. 12.1f) or radionuclides

(Fig. 12.1g) to specific cancer cells.

12.3.5.1 Denileukin Diftitox and the Treatment of Hematological

Malignancies

Denileukin diftitox (DAB389IL-2, ONTAK; Eisai, Fig. 12.2a) is an

immunoconjugate that employs the catalytic and translocation domains of diphthe-

ria toxin (DT1-389) genetically fused to human interleukin (IL)-286. Genetic deletion

of 146 amino acids at the C-terminus of the diphtheria toxin (DT1-389) removes

the wild-type binding domain which is replaced with the entire secreted form of

human IL-2 (Fig. 12.2a). The IL-2 moiety preserves IL-2 binding affinity and

redirects the toxin to IL-2 receptor (IL-2R)-expressing cells87, which includes

malignant T cells of human cutaneous T cell leukemia/lymphoma88, 89. Following

binding to IL-2R, and cellular internalization by receptor-mediated endocytosis, the

DT1-389 toxin catalyzes ADP-ribosylation of elongation factor-2 at his-699 and

inhibits protein translation to induce cell death90.

After its clinical efficacy was established in several clinical trials, denileukin

diftitox (Fig. 12.2a) was approved by the FDA in 1999 to treat CD25+ cutaneous T

cell leukemia/lymphoma91, 92. It was later found to have clinical activity in other

IL-2R-expressing hematological malignancies of both T lymphocytes and

B lymphocytes91, including panniculitic lymphoma93, chronic lymphocytic leuke-

mia94, and B cell non-Hodgkin lymphomas95. Denileukin diftitox efficacy in hema-

tological malignancies was augmented by coadministration of arginine butyrate96
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or RXR rexinoids97, 98, which was considered to cause increased expression of the

IL-2R alpha (CD25, IL-2Ra) and beta subunits (CD122, IL-2Rb)99, 100. These data
suggest that immunoconjugate efficacy can be enhanced by altering cognate receptor

expression, a strategy which has not yet been used to maximum advantage.

12.3.5.2 Denileukin Diftitox to Deplete Nonmalignant Regulatory

T Cells as Immunotherapy

Regulatory T cells (Tregs) are a subset of CD4+ T cells which express CD25, the

nuclear transcription factor Foxp3, and other molecules, reviewed in detail in Chap. 9.

Tregs are elevated in patients with a variety of cancers and are significant contributors

to cancer-driven immune dysfunction101, 102. Animal models have shown that Treg

depletion enhances endogenous antitumor immunity and increases efficacy of cancer

Fig. 12.2 Examples of cytotoxins targeting IL-2R, with emphasis on the modular organization of

each molecule. Two types of targeted cytotoxins are shown, one based on diphtheria toxin (DT;

panel a) and the other based on Pseudomonas aeruginosa Exotoxin A (PE; panel b). The variable

heavy (VH), light (VL) and constant kappa chain (Cκ) chains of the anti-CD25 antibody linked to

deglycosylated ricin A-chain (dgA) are also shown in panel b for comparison. Disulfide bonds

critical to the internalization of particular cytotoxins are also shown (S—S). The relative contri-

bution of the CD25 (a-chain), CD122 (b-chain), and/or CD132 (g-chain) of IL-2R to the binding

affinity of each targeted toxin is indicated by the number of “þ” signs. The presence of a “�” sign

indicates no contribution by a particular subunit.
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immunotherapy in several distinct models102. Since Tregs express CD25, the a
subunit of IL-2R, it was hypothesized, and later confirmed in clinical trials, that

denileukin diftitox would target and kill these cells in cancer patients, which has been

demonstrated in melanoma, renal cell carcinoma, and ovarian cancer103–105 (and

cancers of bladder, breast, lung, and pancreas; manuscript submitted). Anti-CD25

scFv coupled to Pseudomonas aeruginosa exotoxin A also depletes Tregs in vitro106

and in vivo in melanoma patients107.

12.3.5.3 Additional IL-2R-Targeting Strategies

RFT5-dgA is an immunoconjugate comprised of the Fc portion of the anti-CD25

antibody RFT5, which is specific for the IL-2R a subunit, and conjugated to a

deglycosylated ricin A-chain that targets and binds CD25+ cells (Fig. 12.2b). This

immunoconjugate demonstrated some clinical efficacy in Hodgkin disease in a

phase II clinical trial108. It produced some meaningful clinical responses in

CD25+ lymphomas109 and leukemias110 and can penetrate into solid tumors111;

fever and liver damage were important toxicities observed109, 110, 112. Efforts to

engineer out moieties that cause these side effects without compromising clinical

efficacy are in development113.

12.3.5.4 IL-2R Targeting Using Conjugated Peptides

The immense diversity of T and B cell receptors is due to random recombination of

genetic material in their antigen recognition receptor sites by specific recombinase

and related gene products114, 115. Because the process is random, an almost infinite

number of receptors with almost infinite recognition capabilities is generated. This

strategy has been exploited in vitro to develop libraries of binding molecules

capable of binding a vast array of ligands. The naturally occurring shuffling strategy

has been applied to making libraries of single-chain antibody fragments, combina-

torial chemicals, and peptides from phage. As an example of the immense diversity

of these strategies, commercial phage display libraries have a diversity of up to a

theoretical limit of 4 � 1015 unique 12-mer peptides14.

We have used such a phage display strategy to identify small 12-mer peptides to

target and deliver immunogenic antigens to dendritic cells in a mouse model116.

A similar strategy was applied in an attempt to identify a Treg-binding motif. IL-2R

is highly expressed on Tregs. The a chain of the IL-2R (CD25) has been exploited

in denileukin diftitox and Pseudomonas aeruginosa exotoxin targeting strategies to
deplete Tregs (discussed above), but these strategies lack cell specificity. CD122

(IL-2Rb) was tested as an alternative Treg-targeting molecule. CD122 is less

broadly expressed by non-Treg immune cells compared to CD25 and is expressed

by some epithelial carcinomas. We identified CD122-binding peptides that

performed well in vitro (Fig. 12.1f, g). Three of these candidate peptides were

genetically fused to DT1-389, but we failed to confirm significant Treg-depleting

capacity or treatment efficacy in vivo in mouse cancer models.
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12.3.5.5 Additional Cytokine-Based Immunoconjugates

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) was conju-

gated to a truncated diphtheria toxin moiety (DT388) to treat acute myeloid leukemia

expressing the GM-CSF receptor117. This strategy was limited by hepatotoxicity and

further clinical study was not pursued118. GM-CSF fused to a single-chain human

antibody fragment targeting the extracellular domain of fibronectin B, a tumor

angiogenesis marker, has been studied as a vascular disrupting agent119. An alterna-

tive vascular disrupting strategy was recently reported by incorporating TNF-a and

vandetanib, a tyrosine kinase inhibitor that inhibits angiogenesis, into the immuno-

conjugate in a xenograft model for esophageal carcinoma120.

IL-3 has been fused to the C-terminus of the truncated diphtheria toxin moiety

DT388 to target IL-3R-expressing hematologic malignancies121. A phase I clinical

trial to treat acute myeloid leukemia was planned but, to our knowledge, has not been

reported yet. IL-4 was conjugated to the Pseudomonas aeruginosa toxin moiety

(PE38) to treat IL-4R-expressing glioblastoma, but liver toxicity halted clinical

development122. IL-13 targeting in cancer, especially brain tumors, has received

much recent attention123. An immunoconjugate using IL-13 conjugated to PE38

demonstrated some clinical efficacy in glioma, and side effects have been tolerable

thus far124, leading to an ongoing phase III clinical trial125. A more recent finding is

that local tumor-associated hypoxia reduces IL-13 immunoconjugate efficacy126, and

thus, efforts to attenuate local hypoxia could augment therapeutic benefits.

An immunoconjugate fusing TGF-b to PE38 was tested in a trial of intravesical

instillation in superficial bladder cancer. Eight out of 43 patients experienced a

positive clinical response in a phase I clinical trial127. Pseudomonas aeruginosa
exotoxin was conjugated to an anti-epithelial cell adhesion molecule single-chain

antibody fragment and is now in phase II and III clinical trials to treat head and neck

squamous cell carcinomas by direct tumor injection, as in phase II clinical trials to

treat superficial transitional cell bladder carcinomas by intravesical instillation128.

The same immunoconjugate was used in a trial of intracerebral injection for

recurrent glioblastoma. Three of 15 patients in a phase I clinical trial experienced

radiographic responses, including one with complete remission who was cancer

free for 83 weeks at the time clinical trial results were reported129. Further studies of

this immunoconjugate have not been reported to our knowledge.

Several recent reviews have authoritatively covered the developing literature on

immunoconjugates utilizing cytokine moieties in detail4, 130.

12.3.6 Targeting Tumor-Associated Antigens to Dendritic Cells

The murine monoclonal anti-CA-125 antibody oregovomab is thought to complex

CA-125 antigen, deliver this antigen to dendritic cells131, and thereby activate

T cells132. It failed a pivotal phase III study in 373 ovarian cancer patients133.

Please see Chap. 11 for additional oregovomab details and Chap. 6 for many

additional dendritic cell targeting strategies.
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12.3.7 Viral Immunoconjugates

Frequently, viral tropism of given vectors for target cells is not optimal. A viral-

based immunoconjugate could help retarget a given viral vector for clinical use

using a variety of strategies including bispecific antibodies, monoclonal antibodies,

single-chain antibodies, peptides, cytokines, and other techniques.

Bispecific antibodies are comprised of two distinct antibody recognition sites

conjugated together, one typically targeted to the vector and the other targeting the

cell of interest (Fig. 12.1h). Bispecific antibodies allow using vectors without having

to make a genetic targeting modification to that vector itself, greatly facilitating and

speeding the use of available vectors. An example is a bispecific antibody targeting

the adenovirus vector to pulmonary endothelium, a tissue ordinarily refractory to

adenovirus infection. An example of a bispecific viral immunoconjugate is a mono-

clonal antibody targeting membrane-bound angiotensin-converting enzyme (highly

expressed on pulmonary endothelium) conjugated to the Fab moiety of an

antiadenovirus vector-specific monoclonal antibody. This immunoconjugate

produces 20-fold greater lung transduction compared to an unmodified control vector.

Liver transduction, a common problem with adenovirus vectors134, 135, was simulta-

neously reduced consistent with the altered natural adenovirus vector tropism and

potentially allowing increased treatment efficacy and reduced hepatic toxicity.

A distinct strategy to conjugate antibody to vector is by genetic vector modifica-

tion. An example is to engineer an immunoglobulin (Ig)-binding domain into the

vector (Fig. 12.1i). Unlike in the bispecific antibody approach, the viral vector has

now been genetically modified specifically to recognize the Fc domain of the

antibody. The Staphylococcus aureus protein A Z-domain, which efficiently binds

Fc, has been inserted into viral attachment proteins of several distinct vectors

successfully136–139. Introducing an immunoglobulin binding domain into a lentiviral

envelope protein allows conjugation to an anti-P-glycoprotein monoclonal antibody,

targeting the P-glycoprotein expressed on several cancers, including melanoma. This

strategy allowed targeting to human melanoma cells xenografted into immunode-

ficient SCID mice140. An advantage to this approach is the wide variety of monoclo-

nal antibodies available, allowing relatively easy and rapid screening of a variety of

targeting moieties. The disadvantage is that normally circulating antibodies could

compete with coupled antibody in vivo and reduce efficacy.

Engineering a single-chain antibody fragment into a viral vector can be useful in a

variety of strategies (Fig. 12.1j). For example, a single-chain antibody fragment

against the tumor antigen CEA was genetically conjugated with a matrix metall-

oproteinase cleavage site and the envelope gene of the viral vector. This

immunoconjugate facilitated vector tumor binding via the single-chain antibody

fragment, followed by cleavage of the tumor-targeting single-chain fragment by

matrix metalloproteinases in the tumor141. Removing the single-chain moiety from

the vector envelope prior to target cell transduction is important because (a) the

single-chain on the envelope can change its conformation that could then reduce

transduction efficiency and (b) removal of the single-chain moiety exposes the
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receptor envelope binding domain, enhancing interaction with its Pit-2 receptor on

the tumor cell. This strategy demonstrated in vivo tumor transduction selectivity141.

Removal of an attachment to virus envelope is not required for adenovirus vectors,

as adenovirus entry into target cells does not require these complex conformational

changes for appropriate interaction of target cell and adenovirus attachment protein.

Nonetheless, adenovirus vectors present different hurdles to be overcome to fuse

single-chain antibody moieties to their capsids. Adenovirus proteins are synthesized

in cell cytosol, whereas single-chain antibody fragments require the formation of

important disulfide bridges that is accomplished in the rough endoplasmic reticulum.

To address this issue, cytosolically stabilized single-chain fragments (intrabodies)

were employed that could be coupled to an artificial adenovirus fiber protein142.

Further placing a pair of cysteine residues in specific positions within the VL and VH

domains produced a disulfide-bond-stabilized single-chain moiety that exhibited

greatly increased half-life and stability143.

In an alternate approach, antibodies are conjugated to adenovirus through the

natural adenovirus receptor (coxsackie and adenovirus receptor, Fig. 12.1k). The

ectodomain of this natural receptor can be conjugated to single-chain antibody

fragments. An immunoconjugate of anti-CEA antibody effected specific hepatic

tumor graft transduction with simultaneous reduction of liver tropism,

demonstrating potential for augmented efficacy with reduced toxicity144.

Many other strategies for virus vector targeting, including strategies aside from

immunoconjugates, have been reviewed15, 145–147 (and see Chap. 6).

12.4 Diagnostic Immunoconjugates

Diagnostic immunoconjugates target detection agents to specific cells. Detection

agents typically are radionuclides, chemicals, or fluorophores. Radionuclides are

selected to ensure that their energy emissions can reach the detector during

radioimmunoscintigraphy. High-energy beta-particle emitters such as 90Y (t½ ¼ 64 h;

2.3 MeV) or 188Re (t½ ¼ 17 h; 2.1 MeV) are often conjugated to antibodies in

diagnostic immunoconjugates, although they can also be used to treat tumors with

large (>11 mm) diameters148. An example of an FDA-approved radioimmunoscin-

tigraphic imaging agent is capromab pendetide, a prostate-specific membrane

antigen-specific monoclonal antibody conjugated to 111In used in prostate cancer

patients149. By contrast, therapeutic radiolabeled antibodies tend to emit particles

with shorter ranges, to maximize energy delivered to the tumor mass and minimize

potentially harmful energy delivery to surrounding normal cells and tissues as

discussed above in the antibody section.

Techniques for nonradioactive diagnostic tumor imaging using immuno-

conjugates have evolved quickly in recent years. As an example, antibodies conju-

gated to fluorophores emitting in the near-infrared spectrum150 enhance visualization

of tumor margins with essentially no interfering background emission from

autofluorescence that is generally not in this spectral region. Diagnostic
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immunoconjugates are also now employed in ultrasonography using intravenous

injection of microbubble-conjugated antibodies151 that can be detected by an ultraso-

nographic detector. For example, microbubble-conjugated antivascular endothelial

growth factor-specific antibodies can identify tumor margins by ultrasonography151

as vascular endothelial growth factor is produced at high levels in many tumors.

12.5 Conclusions

Immunoconjugates capitalize on immune system specificity to target anticancer drugs

to the tumor while helping minimize damage to bystander normal tissue. Technologi-

cal advances have helped develop many novel classes of immunoconjugates, some

now showing promising clinical results but few have received FDA approvals. Toxins

conjugated to antibodies have been the most successful class to date, and hematologic

malignancies have been the diseases most successfully treated to date, but the

landscape continues to evolve rapidly. A significant current limitation of most

immunoconjugates remains suboptimal tumor tissue penetration. The immunogenic-

ity of some immunoconjugates, notably virus-based conjugates, can limit efficacy

with repetitive dosing. Engineering out removes immunodominant vector epitopes or

using vectors of distinct antigenicity in serial dosing can help with these issues.

Strategies to improve targeting and selectivity of agents continue to evolve, helping

improve specificity and reduce undesirable side effects, including antigenicity.
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Chapter 13

Miscellaneous Approaches and Considerations:

TLR Agonists and Other Inflammatory Agents,

Anti-Chemokine Agents, Infectious Agents,

Tumor Stroma Targeting, Age and Sex Effects,

and Miscellaneous Small Molecules

Robert S. Svatek and Tyler J. Curiel

Abstract The field of tumor immunotherapy is evolving rapidly. Many promising

areas are discussed in depth in various chapters in this book. This chapter provides a

broad overview of additional approaches not covered in specific book chapters.

Some areas are nonetheless quite advanced, such as the use of TLR agonists in

clinical trials, and some have received FDA approvals such as BCG to treat bladder

cancer and the IMiD lenalidomide to treat multiple myeloma. Other areas are of

great interest but lack sufficient information to require a dedicated chapter. These

miscellaneous areas hold great promise to further the development of effective

cancer immunotherapies.

13.1 Strategies to Mitigate Immune Dysfunction

and the Influence of Age on Anti-Tumor Immunity

Age is the leading factor risk for development of cancer1 and thus most cancer

patients are elderly. For example, in the United States, 60% of cancers occur in

individuals aged 65 years or more where they account for 70% of cancer-related

mortality2. Nonetheless, most preclinical evaluations of tumor immunology and

responses to immunotherapy are done in young subjects, often to save on animal

purchase and care costs and due to reduced availability of older study animals.

Although anti-tumor immunity and other immune effector functions can decline

with age3, 4, the functional capacity of T cells and other immune effector arms can
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sometimes be therapeutically improved in aged hosts5. Thus, if any tumor-

associated immune dysfunctions in aged hosts can be mitigated, it could be possible

to generate clinically important anti-tumor immunity.

Age-dependent immune changes include reduced effector T cell function that

could reduce anti-tumor immunity. Naive T cells in aged hosts exhibit functional

defects including reduced capacity to proliferate, secrete cytokines, and undergo

effector T cell differentiation6–8. Thus, effective immunotherapies in young hosts

could be less effective in aged hosts. For example, CD134 (OX40)-dependent

tumor immune rejection in a mouse model decreases with age8. Despite these

potential functional reductions, clinically efficacious cancer immunotherapy for

aged hosts is a potentially realistic goal given that some age-associated immune

functional decrements can be reduced or reversed. As an example, in a mouse

model for cancer, tumor immunity was improved with specific and sufficient

immune co-signaling9, and age-associated reductions in T cell priming can be

improved by activating the CD137 (4-1BB) immune co-signaling pathway10.

Regulatory T cells are key mediators of tumor immune dysfunction, and their

management is under investigation as a rational approach to boosting the efficacy

of cancer immunotherapy11–14. (See also Chap. 9). Studies of regulatory T cells

in relationship to age-related reductions in anti-tumor immunity, or immune responses

in nontumor settings are contradictory, including studies demonstrating increases in the

prevalence and/or function of regulatory T cells with age in mice and humans6, 7, 15, 16

and other studies demonstrating either no effects or reduced numbers or effects of

regulatory T cells with advancing age17, 18. There are few studies of the effects of

regulatory T cell management as cancer therapy in aged hosts19, 20.

Suppressive and potentially dysfunctional myeloid derived suppressor cells also

increase in tumors21–24 where they suppress anti-tumor immunity25. Myeloid

derived suppressor cells appear to mediate increased immunopathology in aged

versus young cancer-bearing hosts26, 27. See also Chap. 10.

We recently studied regulatory T cell and myeloid derived suppressor cell

effects in cancer immunotherapy in aged mice, and identified a strategy for

generating effective anti-cancer immunotherapy in a B16 melanoma model that

worked well in aged, but not young hosts, by identifying and then mitigating

age-related tumor-associated immune dysfunction28. We showed that regulatory

T cells in young and aged mice exhibited equivalent in vitro T cell suppression and

were increased equivalently after tumor challenge, but regulatory T cell depletion

using the fusion toxin denileukin diftitox (see Sect. 9.1) improved tumor-specific

immunity and clinically controlled tumor growth only in young mice. Aged mice

had higher basal and post-tumor challenge numbers of CD11b+Gr-1+ myeloid

derived suppressor cells that were also more suppressive than those in young

mice. Myeloid derived suppressor cell depletion thus improved tumor-specific

immunity and reduced tumor growth significantly better in aged mice. Surprisingly,

we found that denileukin diftitox treatment to reduce regulatory T cell numbers also

simultaneously and significantly increased numbers of myeloid derived suppressor

cells in aged but not young hosts.
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Based on this finding, we tested the combination of anti-Gr-1 antibody to deplete

myeloid derived suppressor cells plus denileukin diftitox to deplete regulatory

T cells in aged mice. Denileukin diftitox plus anti-Gr-1 antibody produced superior

immune and clinical benefits over anti-Gr-1 antibody alone in aged B16-bearing

mice, with clinical efficacy comparable to depleting regulatory T cells in young

hosts, who did not benefit from additional anti-Gr-1 antibody treatment. By

contrast, in an MC-38 colon carcinoma model, denileukin diftitox treatment

generated increased numbers of myeloid derived suppressor cells in young and

aged mice, although effects were greater in the aged hosts, but nonetheless effected

immune benefits (including boosted tumor-specific immunity) and improved

clinical responses in both young and aged hosts. These studies demonstrate the

intrinsic competence of aged anti-tumor immune effector cells. By identifying

age-specific immune dysfunction and then targeting immunotherapy against these

age-related tumor-associated immune dysfunctions, cancer immunotherapy for

aged hosts can be improved significantly. These studies also demonstrate that

effects of various immunotherapy approaches can differ by cancer histology.

13.2 Strategies Using Infectious Agents

13.2.1 Background

The idea that an infection could alter the natural history of cancer was introduced in

1866 by Wilhelm Busch in Germany who observed tumor regressions in sarcoma

patients surviving postoperative wound erysipelas, a streptococcal bacterial infection.

William Coley in Manhattan likewise observed spontaneous tumor regressions after

postsurgical wound erysipelas between 1892 and 1896 and used deliberate infections

to attempt to treat cancer. Please see Chap. 1 for additional historical details. These

bacterial infections worked by generating cytokines that are discussed in Chap. 7 and

by ligating Toll-like receptors discussed in Sect. 4 below. The principal infectious

agent used in cancer immunotherapy today and newer approaches are discussed

below.

13.2.2 Bacille Calmette–Guérin

13.2.2.1 Bladder Cancer

Mycobacteria have long been known as potent stimulators of the immune response.

Bacille Calmette–Guérin (BCG, also known as Bacillus Calmette–Guérin) is an

attenuated strain ofMycobacterium bovis that activates macrophages, natural killer

cells, B cells, and CD4+, CD8+, and gd T cells29, 30. Intravesical instillation of BCG
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was FDA-approved on August 4, 1998 for the primary or secondary treatment of

carcinoma in situ of the bladder. On August 21, 1998 the FDA expanded the

indication for the adjunct treatment of stage Ta or T1 papillary tumors following

resection. The efficacy of intravesical BCG was highlighted in a meta-analysis that

included over 20 randomized trials, demonstrating a 56% reduction in the tumor

recurrence hazard attributable to BCG with tumor resection compared to tumor

resection alone31. Although its precise mechanisms of action in bladder cancer

remains incompletely understood, it is thought to work through cell-mediated

immunity. BCG enters bladder cancer cells, the Mycobacterium is broken down

and its peptides are combined with histocompatibility antigens and displayed on the

cell surface. Thus, infected cells could be killed through anti-BCG immunity30.

Recent work suggests that BCG immunotherapy induces IL-17+ T cells that recruit

helpful granulocytes in bladder cancer that contribute to anti-tumor activity32.

Another recent report demonstrated that BCG vaccination in an animal model

improved the anti-cancer effect of intravesical BCG, presumably by increasing

anti-tumor T cells in the tumor microenvironment33. Immune correlates of

BCG failure and poor survival are becoming better understood and include local

expression of dysfunctional immune co-signaling molecules including PD-1 and

B7-H134–36. These recent insights into the mechanisms of BCG activity and

immune correlates of BCG failure suggest means to improve its activity in bladder

cancer and provide guidance for how it could be applied to additional tumors.

13.2.2.2 Melanoma

Early BCG immunotherapy for melanoma consistently suggested trends for better

clinical outcomes over best supportive care. The Malignant Melanoma Active

Immunotherapy trials in patients with stage III and stage IV disease (tested in

separate trials) showed that overall survival in the BCG treatment group was better

than expected versus the placebo group in both stage III and stage IV patients,

suggesting that adjuvant BCG could improve surgical results. Additional studies

and trials are ongoing37.

Melanoma enjoys a reputation as a tumor potentially responsive to various types

of immunotherapy, and has the additional advantage that many of its tumors and

metastases are accessible for direct intratumoral injections. Thus, a large variety of

additional attempts at melanoma immunotherapy have tested agents that include

microbial products other than BCG, cytokines, cytotoxic agents, adoptive immuno-

therapy with cells or antibodies and other approaches. Some successes have been

seen with in-transit and cutaneous metastases whereas subcutaneous metastases

have proven more refractory to treatments. These approaches were all recently

reviewed38.
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13.2.3 Viral Vectors

13.2.3.1 Poxviruses

Poxviral vaccines used to prevent smallpox have been given to over one billion

individuals with relative safety. Engineered, recombinant poxviruses are now in late

stages of clinical trials testing their efficacy as cancer immunotherapy for cancer. The

back bone of the vectors in trials is TRI-COM, which is a poxvirus engineered to

express the immune co-signaling molecules B7-1 (CD80), ICAM-1, and LFA-3. As

most tumors lack these co-signaling molecules, the virus can improve antigen

presentation by the tumor and infected cells. TRI-COM can improve T cell immunity

to tumor-associated antigens better than is achieved with any one or two of these

individual co-signaling molecules39. To enhance efficacy further, TRI-COM vectors

have beenmodified to express specific tumor-associated antigens. The most clinically

advanced of these derivative vectors is a TRI-COM expressing prostate specific

antigens (PROSTVAC-VF-TRI-COM, National Cancer Institute/BN Immuno

Therapeutics, Inc.). It is now undergoing a phase III randomized, placebo-controlled

clinical trial to treat metastatic castration-resistant prostate cancer40. Optimal means

to combine poxvirus vaccines with radiation therapy, cytotoxic chemotherapy,

targeted small molecules, hormonal therapy, and other immune-based strategies are

under investigation due to its promise.

13.2.3.2 Adenovirus

Adenovirus gene therapy and its use to target dendritic cells is discussed in Chap. 6

and in immunoconjugates in Chap. 12. Several adenovirus-based approaches based

on immune principles are also being tested. For example, adenovirus expressing

IL-24 (Ad.mda-7 (INGN-241)) was recently shown to elicit a 40% clinical response

rate in phase I studies41. The mechanisms of action could include induced cell cycle

arrest, and IL-24 could also be a radiosensitizing agent.

An adenoviral vector encoding human interferon-a (Ad.IFN-alpha2b) was tested

in a human clinical trial of malignant mesothelioma. Disease stability or tumor

regression was seen in several patients, including one partial tumor regression at

sites non-contiguous with vector injection42.

13.3 Strategies Aimed at Reducing Tumor Inflammation

Numerous cells contribute to tumor-associated inflammation, notably tumor-

associated macrophages43, 44, cells that alter tumor macrophage properties such

as neutrophils45 and fibroblasts46, and other cells (recently reviewed44). These

data suggest that altering macrophage properties or the properties of other
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tumor-associated cells could improve anti-tumor immunity. Inflammation in cancer

was recently reviewed in depth47, 48.

Altering macrophage phenotype with an agonist anti-CD40 antibody showed

some evidence for efficacy in humans with pancreatic cancer49. In this study, the

CD40 agonist antibody CP-870,893 was combined with the cytotoxic agent

gemcitabine. Greater than 50% reduction of tumor size was noted in 4 of 21 treated

patients. In two patients, tumor biopsies showed infiltration of cell populations

lacking lymphocytes. In a corroborative mouse model, macrophages, not T cells,

were found to be important targets of the agonist anti-CD40 antibody.

Tumor microenvironmental cytokines, notably IL-1b, IL-6, and TNF-a can

contribute to immune dysfunction and angiogenesis50, 51. These findings suggest

that inhibiting the concentrations or functions of these cytokines could be beneficial

as cancer treatment. In the case of TNF-a, human clinical trials bear out this thesis

using infliximab (an anti-TNF-a antibody) to stabilize disease in patients with

advanced cancers progressing on conventional treatments in one trial52, and to

demonstrate partial response or disease stability in two phase II trials in renal cell

carcinoma using standard and high-dose infliximab53. In a trial in ovarian cancer,

etanercept (a soluble TNFR2 fusion protein that neutralizes TNF-a by direct

binding to it) stabilized disease in a minority of patients (reviewed in 50). An

anti-IL-6 antibody was tested in prostate cancer and ovarian cancer without clear

evidence for clinical efficacy although immune modulation was observed

(reviewed in 54). Anakinra (an IL-1 receptor antagonist) reduced disease progres-

sion in smoldering multiple myeloma55. Colony-stimulating factor 1 receptor (CSF-

1R) appears to regulate myeloid cell proliferation and pro-inflammatory cytokine

secretion. Agents to inhibit myeloid cell CSF-1R are now in clinical trials to reduce

cancer-related inflammation56.

Anti-inflammatory agents could also be used to prevent cancer, as evidenced by

a recent review of a collective cohort of 25,570 patients on long-term aspirin in

several separate clinical trials to prevent cardiovascular events57. Aspirin reduced

cancer death in the entire cohort (pooled odds ratio 0.79, p ¼ 0.003) with effects that

lasted throughout the 20-year observation period, and applied to a variety of cancers.

A number of anti-inflammatory approaches, including celecoxib, anti-TNFa, and
anti-IL-6 have been used to try to treat cancer cachexia, but with limited success thus

far58, including in two recently completed phase III clinical trials59, 60.

13.4 Strategies Targeting Toll-Like Receptor Agonists

Toll-like receptors (TLRs) are single, membrane-spanning, receptors that recognize

molecules derived from microbes. The TLRs activate key immune responses after

engaging these microbes which have breached physical barriers such as the gastro-

intestinal tract mucosa or skin. TLRs have significant immune modulating effects,

and have demonstrated utility in some cancer immunotherapy61.
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13.4.1 Imidazoquinolines Including Imiquimod

Imiquimod (3-(2-methylpropyl)-3,5,8-triazatricyclo[7.4.0.02, 6]trideca-1(9),2(6),

4,7,10,12-hexaen-7-amine, Aldara, Zyclara, Beselna; Medicis Pharmaceutical Cor-

poration) is an imidazoquinoline TLR-7/8 agonist that is FDA-approved to treat

superficial basal cell carcinoma (and actinic keratosis and external genital warts).

It also has activity against other cutaneous neoplasms including dermal

metastases of epithelial carcinomas. Imiquimod, its congerers, and other

TLR7/8 agonists activate NF-kB that induces pro-inflammatory cytokine and

chemokine production among other immune mediators. These effects are primar-

ily thought to be through activation of dendritic cells. Additional mechanisms

include inducing tumor cell apoptosis through bcl-2 and caspase-dependent

mechanisms (reviewed in 62–64).

852A is an immune response modifier structurally related to the imidazoquinolines

that include imiquimod. In a phase II trial of cancer patients it generated immune

activation and some disease stabilizations but was associated with significant cardiac

toxicity65.

13.4.2 CpG Oligodeoxynucleotides and Other TLR9 Agonists

Synthetic short single-stranded CpG oligodeoxynucleotides (CpG ODN) mediate

strong immunostimulating activity through agonizing TLR9 which is constitutively

expressed in B cells and plasmacytoid dendritic cells in humans. These molecules

contain a cytosine “C” and a guanine “G” and a phosphodiester “p” backbone

although some have a modified phosphorothioate backbone. CpG ODNs can

generate Th1 polarized immunity dominated by interferon-g production considered
beneficial to anti-tumor immunity. These CpGODNs have demonstrated impressive

efficacy in preclinical models, although efficacy is best following direct injection

into tumors.

A phase 1 trial of CpG-28, a phosphorothioatemodifiedCpG oligodeoxynucleotide,

in glioblastoma multiforme demonstrated tolerability and modest clinical effects in

several of the 24 patients treated66. A phase I trial of CPG 7909 (PF-3512676) in 23

patientswith non-Hodgkin lymphoma demonstrated tolerability and some immunomo-

dulation as evidenced by increased natural killer cell activity and increased antibody-

dependent cellular cytotoxicity67. In a second trial of 23 patients with melanoma,

PF-3512676 demonstrated tolerability, altered inflammation, and favorable changes

in dendritic cell subsets68.

In another trial, 15 patients with low-grade B-cell lymphoma received

intralesional injections of PF-3512676 that generated tumor-reactive memory CD8+

T cells. Of the 15 patients from the trial, 1 experienced a complete clinical response,

3 experienced partial responses, and 2 patients had prolonged stable disease with

therapy. The utility of this approach is that it does not require patient-specific custom
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vaccine products or ex vivo cell manipulations69. A whole tumor cell vaccine

produced by incubating lymphoma tumor cells with a CpG ODN TLR9 ligand

effected significant clinical and immune responses in adoptive T cellular vaccination

in a mouse lymphoma model and is now in a clinical trial of adoptive immunotherapy

for mantle-cell lymphoma70. In a phase 2 trial in 184 patients with unresectable

stage IIIB/C or stage IV malignant melanoma, PF-3512676 was tested alone or in

combination with the cytotoxic agent dacarbazine. Objective responses were modest

and did not warrant a follow up trial71.

The TLR-9 agonist 1018 ISS was combined with rituximab in 23 patients with

relapsed/refractory follicular lymphoma. No significant adverse events from treat-

ment were noted and the clinical response rate was 48%. Immune changes included

increased antibody-dependent cellular cytotoxicity and blood CD3+ T cells in

approximately one-third of patients. Treatment also induced increased tumor-

infiltrating dendritic cells, CD8+ T cells and macrophages, demonstrating that

immune events in the tumor microenvironment could be improved72.

13.4.3 Other TLR Agonists

The TLR2 agonists PAM2CSK4, PAM3CSK4, and FSL-1 reduced Treg suppressive

functions in vitro. Proposed mechanisms for this effect include down-regulation

of p27Kip1 and increased Akt phosphorylation73. TLR2 agonists can also make

anti-tumor effector T cells more resistant to regulatory T cell-mediated suppression

by augmenting their proliferation and IL-2 secretion74. TLR1/2 agonists mediate

tumor regression through reducing Treg suppression and boosting CD8+ cytotoxic

T lymphocyte function in murine tumors models of melanoma, lung carcinoma,

and leukemia75. Regulatory T cell-mediated suppression of T cell function can

be inhibited by TLR8-derived signals76 that could include functions of the

imidazoquinoline drug class.

In two phase I studies, patients with advanced epithelial malignancies

received a vaccine using human chorionic gonadotropin b-chain combined

with granulocyte-macrophage colony-stimulating factor and the TLR3 agonist

polyinosinic–polycytidylic acid plus the TLR7/8 agonist resiquimod to increase

antigen presenting cell activation. Evidenced for enhanced immunogenicity of

the dual TLR agonist combination was noted77. Other strategies to increase

antigen presenting cell performance with TLR agonists have also been assessed

in human calls78.

Additional mechanisms of action of TLR agonists could include control of

ubiquitination and micro RNA regulation. The field of TLR agonists and

antagonists was recently comprehensively reviewed79.
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13.5 Strategies Targeting Chemokines

As chemokines instruct cell trafficking, including important roles in cancer cell

metastasis80, and can alter their functional properties, there is considerable interest

in using chemokine agonists or antagonists as general immune modulators, and

specifically as novel anti-cancer therapies81. The therapeutic utility of chemokine-

targeted treatment approaches could ultimately be affected by the binding promiscuity

of chemokine receptors, the chemokine/ligand pair redundancies, or chemokine

effects in normal tissue homeostasis or anti-tumor immunity82. For example, CCR7

expression on tumor cells can augment lymph node metastases83, but a recent report

demonstrates that CCR7 expression on tumor-infiltrating CD8+ T cells correlates with

improved prognosis in advanced colorectal cancers84.

13.5.1 CXCR4 Antagonists

CXCR4 is the most studied chemokine receptor in cancer as it is among the most

widely expressed. Hypoxia and inflammatory mediators including TNF-a increase

CXCR4 expression, which likely contributes to high CXCR4 expression in many

cancers. Aside from trafficking effects, CXCR4 affects tumor and immune cell

proliferation and survival, and contributes to tumor metastases85, 86. Many

strategies have been developed to inhibit CXCR4 signaling. The best studied of

these is the small molecule bicyclam antagonist AMD3100 (plerixafor, Mozobil).

Plerixafor, manufactured by Genzyme Corporation, is the only FDA-approved anti-

chemokine agent. It is used in combination with granulocyte colony-stimulating

factor to mobilize hematopoietic stem cells for autologous bone marrow stem cell

transplantation to support high-dose chemotherapy for non-Hodgkin lymphoma or

multiple myeloma87. Plerixafor and other small molecule CXCR4 antagonists are

also being investigated to reduce or prevent metastases in animal models of

melanoma, osteosarcoma, and breast and prostate tumors88, 89. We showed that

the CXCR4 axis helps control regulatory T cell trafficking from bone marrow90 (in

conjunction with granulocyte colony-stimulating factor) suggesting that CXCR4

antagonists could be used to reduce immune dysregulation in cancers. In this

regard, CXCL12/CXCR4 signal interruption improved several aspects of tumor

immunity in a mouse ovarian cancer model and improved survival91.

Tumor–stromal cell interactions can reduce the efficacy of chemotherapy.

Blocking the chemokine receptor CXCR4 in tumor stroma can improve the clinical

efficacy of some cancer treatments as demonstrated in multiple myeloma92

and other cancers. We recently demonstrated that the small molecule CXCR4

antagonist plerixafor reduces breast cancer metastases and improves endocrine

therapy for breast cancer in a mouse xenograft model93.
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13.5.2 CCR4 Antagonists

The novel, humanized anti-CCR4 IgG1 antibody KW-0761 (AMG-761, mogamuli-

zumab; Amgen) is defucosylated to augment its potential to mediate antibody-

dependent cellular cytotoxicity94, 95. In a phase II trial of 28 patients with relapsed

CCR4+ adult T cell leukemia, KW-0761 produced objective responses in 13 of 26

evaluable patients, including 8 complete responses96. Additional details are in

Chap. 11.

13.5.3 CCL2 Antagonists

Anti-CCL2 or anti-CCR2 (CCL2 receptor) antibodies have been studied in preclinical

models in prostate cancerwith encouraging results97–99 that have led to human clinical

trials of anti-CCL2 antibodies in prostate cancer and ovarian cancer100. Additional

details are in Chap. 11.

13.5.4 CCL22 Antagonists

We identified the chemokine CCL22 as important to attraction of regulatory T cells

into the tumormicroenvironment13. In silico studies found small-molecule chemokine

receptor antagonists that could block CCL22-dependent human regulatory T cell

recruitment in vitro (and Th2 cell recruitment)101. Some of these agents have entered

phase I clinical trials94. CCL22 also regulates effector T cell trafficking that

could reduce the utility of anti-CCL22 to treat cancer. Further studies are needed in

this regard.

13.5.5 CXCR7 Antagonists

CXCR7 is the other chemokine receptor along with CXCR4 known to bind the

chemokine CXCL12. Its expression is associated with pathogenesis and cancer

progression in several important cancers including bladder, pancreatic, hepatocel-

lular, breast and others, prompting much research into its use in cancer

treatments102. A number of small molecule CXCR7 antagonists have been

generated103, but clinical trials of these agents have not yet been reported.
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13.6 Vaccines

Viruses could account for ~12% of human cancers. Of these most are due to to

infections by human papillomavirus, hepatitis B virus, hepatitis C virus,

Epstein–Barr virus, and Kaposi sarcoma-associated herpesvirus104. Thus immune

strategies (especially vaccines) to prevent infections could be used to reduce cancer

rates. Vaccines against two agents (hepatitis B virus and human papilloma virus)

are already approved and appear to reduce cancer rates, whereas vaccines for the

other infections are in development.

13.6.1 Hepatitis B Virus

Chronic hepatitis B virus infection causes ~55% of hepatocellular carcinoma

worldwide and of these ~80% occur in the Asia Pacific and sub-Saharan African

regions where hepatitis B virus infection rates are high. Immunization of infants

against hepatitis B virus has markedly reduced chronic infection rates which has

been associated with a ~70% reduction in hepatocellular carcinoma cases in

immunized individuals105.

13.6.2 Human Papilloma Virus

There are two quadrivalent human papilloma virus vaccines expressing antigens of

the four most important human papilloma virus types related to cervical cancer

(types 6, 11, 16, 18) and marketed under the trade names Gardasil and Silgard. The

vaccines are composed of virus-like particles made from recombinant human

papilloma virus capsid proteins. These virus-like particles are highly immunogenic

and generate high titer type-specific neutralizing antibodies that prevent infection,

and can also generate some degree of cross-protective antibodies against other

human papilloma virus types. Unlike hepatitis B virus vaccines which can be

given to infants, it is not recommended to vaccinate children against human

papilloma virus before 9 years of age. Also, unlike hepatitis B virus vaccine,

antibody levels do not correlate with protection from infections. Economic

modeling suggests that these vaccines will be a cost-effective means to reduce

the health care burden of human papilloma virus-related precancerous lesions (such

as anogenital warts) and cancers, particularly cervical cancer106, 107. It is not clear

if these vaccines will protect against human papilloma virus-related squamous cell

carcinomas of the head and neck, but this is an area of investigation.
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13.6.3 Other Oncogenic Viruses

Vaccines for hepatitis C virus and Epstein–Barr virus infection are in active

development, but few have undergone clinical trials, and none have been found

sufficiently effective to merit follow up trials. Kaposi sarcoma herpes virus

vaccines have lagged104.

13.7 Strategies to Alter the Microbiome

The Human Microbiome Project has identified many aspects of the human

microbiome that could help understand their contributions to health and disease108.

It is now recognized that the microbiome can contribute to cancer risk109 and

that microbiota, especially colonic flora, can greatly affect immunity and inflam-

mation110, 111 and can specifically be involved in inflammation-associated cancers,

notably colon cancers112, 113. Specific contributions of colonic microbial effects on

colon cancer rates are under investigation114, 115. Important findings include the

observation that enterotoxigenic Bacteroides fragilis, a major human commensal

bacterium, can induce colon cancer in mouse models and has been implicated in

human colon cancer116. Understanding which bacteria drive inflammation or

immune dysregulation and how that contributes to carcinogenesis could help

develop novel cancer prevention and treatment approaches.

13.8 Altering Metabolic Effects in Tumors and Immune Cells

Attempts to capitalize on unique metabolic features have figured into novel anti-

cancer strategies for decades117. Recently, efforts have been made to capitalize on

metabolic features of the local tumor environment or immune cells themselves to

develop novel anti-tumor immunotherapies. For example, tumor lactic acid induces

vascular endothelial growth factor in a HIF1a-dependent manner in tumor cells and

induces dysfunctional M2 macrophage polarization in bone marrow derived

macrophages118, similar to the phenotype of tumor-associated macrophages. This

lactate production, along with other acids conspires to lower tumor microenviron-

mental pH. Low pH was recently demonstrated to induce T cell anergy119

suggesting that strategies to increase tumor pH could improve effector T cell

functions and anti-tumor immunity.

Indoleamine-2030-dioxygenase is well known to alter tryptophan metabolism,

thereby diverting T cell differentiation into the dysfunctional regulatory T cell

pathway in cancers, but now also appears to have effects on glucose metabolism

that affect T cell differentiation120. Glut-1 levels in renal cell carcinoma tissue

inversely correlated with CD8+ T cell infiltration121, suggesting a link between

tumor metabolic effects and anti-tumor immunity. Regulatory T cells and effector

410 R.S. Svatek and T.J. Curiel



T cells differ metabolically in that the former preferentially use fats and the latter

use glucose as their primary energy source122. As tumors also preferentially use fats

over glucose117, means to target tumors and dysfunctional regulatory T cells with

the same metabolic inhibitors could be possible.

CD73 is an ecto-enzyme that regulates adenosine metabolism and can thereby

hinder T cell activation. We showed that CD73 expressed by both tumor and

immune cells hinders anti-tumor immunity. We blocked CD73 enzymatic activity

and improved immune and clinical outcomes in models for ovarian cancer and

other tumors123, 124.

13.9 Immune Modulating Effects of Drugs Initially Developed

for Other Indications

In the last several years, it has become better appreciated that many agents

developed for other purposes, including many anti-cancer agents have immune

modulating effects. As we understand the immune modulating effects of these

agents not developed as immune modulators, their use in treatment of cancer

could be modified.

13.9.1 Anti-Regulatory T Cell Effects

The IL-2/diphtheria toxin fusion protein denileukin diftitox, the anti-CD25 mono-

clonal antibody daclizumab and the cytotoxic agent cyclophosphamide relatively

selectively deplete regulatory T cells in human cancer patients, and a host of other

agents reportedly also reduce regulatory T cell numbers in cancer patients or in

preclinical models12. These agents are undergoing clinical trials as regulatory T cell

depletion agents alone and combined with vaccines and other agents. Please see

Chap. 9 for additional details.

Vascular endothelial growth factor125, prostaglandins126, estrogen127, and tyrosine

kinases128 contribute to regulatory T cell differentiation and/or function in some

tumors. Agents blocking these signals have demonstrated potential for regulatory

T cell depletion in addition to their known mechanisms. For instance, blocking

vascular endothelial growth factor reduced the number of intratumoral regulatory

T cells in mouse models of colon cancer and melanoma125, and cyclophosphamide,

a standard cytotoxic chemotherapeutic129, has long been known to inhibit suppressor

T cells130, now recognized as due to regulatory T cell depletion131, and the multi-

tyrosine kinase inhibitor sorafenib reduces regulatory T cells in patients with renal

cell carcinomas128 as a few examples.
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13.9.2 Anti-Myeloid Derived Suppressor Cell Effects

5-fluorouracil132 and gemcitabine133 are cytotoxic chemotherapeutic agents now

also known to deplete myeloid derived suppressor cells in mouse models for cancer.

Both drugs are associated with good clinical outcomes. Liposomes selectively kill

myeloid derived suppressor cells because they are phagocytosed and then are cell

toxic134. In 23 patients with renal cell carcinoma, 4 weeks of oral sunitinib (a multi-

tyrosine kinase inhibitor) reduced blood myeloid derived suppressor cells by

~50%135. These data suggest that these agents (and capecitabine, a 5-fluorouracil

pro-drug), could be useful to deplete dysfunctional myeloid derived suppressor

cells and thus become part of novel anti-cancer immunotherapy.

13.9.3 Other Effects

Some chemotherapeutic agents can themselves elicit tumor immunogenicity

through the calreticulin pathway136, 137. Statins, histone deacetylase inhibitors

and PPAR agonists, have anti-cytokine properties that are under investigation as

cancer treatment or prevention agents138.

13.10 Sex and Hormonal Effects

Immunity in men and women differ in important regards such as the observation that,

compared to males, females generally exhibit better anti-infectious agent immu-

nity139, have more pronounced allograft rejection140 and have a generally higher

rate of many autoimmune diseases141. We recently reported that in a mouse model of

B16 melanoma, females resisted tumor challenge better and developed better anti-

tumor immunity than males if the immune co-signaling molecule B7-H1 was geneti-

cally deleted, or blocked in wild types with an antibody142. Recent work from us

demonstrates that the defect is due to differential B7-H1-dependent estrogen effects

on regulatory T cells143. Given the considerable attention to immune co-signaling

blockade as novel anti-cancer immunotherapy (see Chap. 8 for details), it will be

important to understand these hormonally driven differences and to understand what

other sexual dimorphisms could be operative in other strategies. For example, males

and females respond significantly differently to inflammatory pathways such as

through TLRs144, 145, which are also under intense investigations as cancer treatment

or prevention agents (see Sect. 4 above).
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13.11 Tumor Stroma

It is now clear that tumor stroma plays a critical role in tumor growth and tumor

immune evasion. Stromal elements include immune cells recruited to the tumor

microenvironment. The importance of these cells, including macrophages, dendritic

cells, B cells, natural killer cells, and other cells has all been extensively reviewed

recently in excellent global reviews146, 147. The relevance of myeloid cells to tumor

inflammation is discussed above in Sect. 3 above, and myeloid cells are further

addressed in Chap. 10.

B cells can contribute to tumor immunopathology in numerous ways. For

example, they block macrophages from making the chemokines CCL3 and CCL5

to recruit protective CD8+ T cells and from making the anti-angiogenic chemokine

CXCL10. B cells can contribute to cancer metastases148–150. Non-regulatory T cells

can be cancer-promoting151 and platelets can promote tumorigenesis including

metastatic spread152. Relationships between cancer stromal leukocyte populations

and treatment outcomes with cytotoxic and immune agents have been reported153.

Thus, there are many avenues for development of novel therapeutic attack based on

altering immune cell trafficking into tumor stroma, or altering their interactions in

stroma, that remain to be explored.

Non-hematopoietic cells have also received considerable attention as agents

of cancer pathology and immunopathology. For example, cancer-associated

fibroblasts protect tumor cells and dysfunctional immune cells from necrosis,

induce vascularization and promote tumor growth. They contribute to immunopa-

thology directly by producing pro-inflammatory cytokines and indirectly by

attracting and/or altering tumor-associated stromal cells such as macrophages

through NF-kB-dependent mechanisms154, 155. The role of stromal fibroblasts in

tumor immunopathology is becoming better established46.

Tumor stroma can be targeted directly by stromal-specific immunotherapy that does

not recognize tumor and nonetheless mediate significant tumor regressions156–158.

Tumor-stromal cell interactions that protect from chemotherapy were noted in

Sect. 5.1 above. Tumor stroma can increase multidrug resistance gene expression

that can reduce the efficacy of chemotherapy159. Additional investigations of tumor

stroma effects on multidrug resistance gene expression and how that affects immuno-

therapeutic (and other) treatment approaches are warranted. Cell senescence in the

tumor stroma, and its relationship to inflammation and immunopathology has been the

subject of several excellent reviews recently160–162.

13.12 Epigenetic Approaches

Targeting epigenetic changes in tumors has proven a successful strategy, with

the FDA approval of the epigenetic modifiers 5-azacitadine (Vidaza;

Celgene Corporation), decitabine (5-aza-20-deoxycytidine, Dacogen; Eisai
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Pharmaceuticals) and suberoylanilide hydroxamic acid (SAHA, vorinostat, Zolinza;

Merck Pharmaceuticals). Recently, epigenetic modifiers, including 5-azacytidine and

others have been demonstrated to alter immune functions, including driving Th1 or

Th17 polarization of CD4+ T cells163, 164. Azacitidine and 5-aza-20-deoxycytidine
appear to affect natural killer cells differentially165. Investigators are now attempting

to understand if epigenetic alterations in immune cells will improve anti-tumor

immunity.

13.13 Cancer Stem Cells

Cancer stem cells resemble non-malignant stem cells in self-renewal and variable

differentiation fates, relative replicative quiescence and high resistance to common

cytotoxic agents166. Originally identified in acute myeloid leukemia, cancer stem

cells have now been tentatively identified in several epithelial carcinomas including

the common cancers of colon, breast, and lung167 and also in relatively less

common, but nonetheless important cancers including melanoma, ovarian cancer,

gastric cancer, and others168.

Anti-vascular endothelial growth factor antibody plus cyclophosphamide syner-

gistically reduced cancer stem cell like cells in a xenotransplant glioma model169.

Various labs are testing a variety of strategies to treat cancer stem cells170. As

cancer stem cells express antigens distinct from more differentiated cells, they

could be amenable to specific immune approaches. Evidence that anti-cancer

stem cell immunity can be generated171 supports optimism for this approach that

is still in its infancy.

13.14 Miscellaneous Small Molecules and Approaches

13.14.1 Mitogen-Activated Protein Kinase Inhibitors

p38 mitogen-activated kinases regulate many cellular processes including inflam-

mation172. A small molecule p38 mitogen-activated kinase inhibitor improved

dendritic cell function and reduced pro-inflammatory cytokine secretion in human

myeloid cells in vitro173. Several p38 mitogen-activated protein kinase inhibitors

are in clinical trials, including for reducing cancer cachexia. Clinical uses of these

agents were recently reviewed174. A vast number of multi-tyrosine kinase inhibitors

are in development and in clinical trials, many of which have potential immune

effects that remain little studied thus far. These agents represent an excellent farm

team from which to select promising drugs to develop for direct effects on tumors as

well as for their immune modulating effects.
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13.14.2 Custom Anti-Idiotype Vaccines

BiovaxID is a personalized vaccine to treat non-Hodgkin B-cell lymphomas in

combination with GM–CSF. It targets malignant B cells by generating tumor-

specific anti-immunoglobulin idiotype antibodies. Its development is through

Biovest International, Inc. (a subsidiary of Accentia BioPharmaceuticals, Inc.),

under license from Stanford University. Phase I and II clinical trials have

established immunogenicity, safety and clinical efficacy, leading to ongoing

phase III clinical trials in non-Hodgkin B cell lymphomas175. Updated clinical

trial results remain encouraging and were recently discussed176.

13.14.3 Thalidomide Congeners and Derivatives

Thalidomide has been used to treat multiple myeloma because of anti-angiogenic

properties and ability to inhibit the production of pro-inflammatory cytokines

including IL-6. Thalidomide analogs have been developed that have significantly

greater potency in inhibiting pro-inflammatory cytokine production, preventing

angiogenesis and with potential direct tumor toxicities, collectively known as

IMiDs (immunomodulating drugs)177. The IMiD lenalidomide is FDA-approved

to treat multiple myeloma. Its congeners, including pomalidomide (under review by

the FDA for approval), are being evaluated to treat additional hematologic

malignancies178 and epithelial carcinomas such as prostate cancer179.

13.14.4 Targeting Adenosine Metabolism

Extracellular adenosine can be increased in the tumor microenvironment where it

can be immunologically suppressive or dysfunctional180, 181. CD73 is an ecto-50-
nucleotidase that generates adenosine from local adenosine monophosphate182, 183.

CD39 is an ecto-ATPase that generates adenosine from local adenosine triphos-

phate. Adenosine generated either by CD39 or CD73, but generally by both

working in concert has pleiotropic effects in the tumor microenvironment by

augmenting angiogenesis, and the properties of the tumor or local immune cells

including invasion, growth, cellular adhesion, and chemotaxis184. We and others

have shown that anti-CD73 antibodies or small molecule CD73 antagonists can

boost tumor immunity or the efficacy of adoptive T cell therapy for cancer in mouse

preclinical models (reviewed in185).
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13.14.5 Levamisole

Levamisole in combination with 5-fluorouracil was FDA-approved in 1990 for

adjuvant treatment of Duke’s stage C colon cancer. The approval was based on

results from two randomized, controlled trials in colorectal cancer patients with

resected tumor. Levamisole as a single agent was not effective in the bigger of the

two studies, but levamisole plus 5-fluorouracil reduced tumor recurrence by 41%

(p < 0.0001) and deaths by 33% (p ¼ 0.006) versus no treatment with a minimum

2-year follow-up. However, the levamisole effect on 5-fluorouracil was not clearly

established. Levamisole is not a regular treatment option for colorectal cancer in

current practice guidelines and is mentioned largely for historical purposes.

In melanoma treatment, a meta-analysis of four levamisole trials did not find a

significant survival benefit as a result of levamisole versus no treatment and no

survival benefit in randomized controlled trials of combinations of levamisole with

vaccines (nine trials) or chemotherapy (ten trials)186. Nonetheless, levamisole and

other anti-parasitics have important immunomodulatory effects187 that suggest that

further investigations into their potential as anti-cancer agents could be warranted.

13.15 Summary and Future Directions

This chapter on miscellaneous approaches makes plain that the field of tumor

immunotherapy is rapidly growing and testing ever-increasing numbers of treat-

ment approaches as our understanding of cancer immunopathogenesis increases. It

is also easy to see that many approaches defy simple pigeon holing and could well

be described under several distinct sections. For example, approaches targeting

tumor-stromal fibroblasts could be described as anti-stroma, anti-inflammation

through reduced fibroblast-driven inflammatory mediator production, or anti-

angiogenic through reduced angiogenesis factor production among other potential

labels. Many additional strategies are also under development. For example, CD47

is an anti-phagocytic molecule expressed on many cancers. Blocking CD47

improves tumor phagocytosis in vitro and slows tumor growth in vivo in mouse

xenograft models188, 189. We recently described how immunotherapy not only

could be used as an adjunct to treat multidrug-resistant tumors, but also pointed

out that features of mdr gene expression driving resistance have already been

exploited in specific immunotherapeutic approches159. Much additional work lies

ahead to understand which of these various approaches merit follow up and

translation, and how best to combine them optimally with each other, and with

additional strategies. We anticipate many novel approaches to be tested in the next

several years, with potential to make significant improvements in clinical outcomes

of anti-cancer immunotherapy.
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Chapter 14

Monitoring Antigen-Specific Responses

in Clinical Trials of Cancer Immunotherapy

Aude G. Chapuis and Cassian Yee

Abstract Immune-based therapies are designed to generate or augment anti-tumor

immune responses to achieve clinical benefit. Monitoring quantitative and qualitative

parameters of immune function affords the opportunity to identify endpoints that

correlate with, or predict clinical benefit and define the requirements for effective

therapy. This chapter discusses structural and functional methods to assess both

monoclonal and polyclonal antigen-specific T cell responses in vivo in humans.

The most adequate methods to detect responses in blood and tumor tissue are

examined with a focus on the information provided by evaluating the phenotype of

tumor-specific cells. Because considerable variability in the type and performance of

immune-monitoring assays exists, harmonization is required to render meaningful

comparisons among the increasing number and complexity of immune-based

clinical trials.

14.1 Structural Assessment of Monoclonal T Cells Responses

Structural assessment of cellular immune responses represents an important requi-

site in defining responses after intervention (active vaccination, adoptive cell

transfer) and involves calculating the frequency or absolute number of T cells in

blood or tissue that recognize specific antigens on the basis of a structural compo-

nent (i.e., T cell receptor (TCR) sequence) (see Table 14.1).
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14.1.1 Structural Assessment of Specific CD8+ T Cells Using
Peptide-MHC Complexes

During development in the thymus, CD8+ T cells commit to the expression of one

specific, productive TCR. The sequence that ultimately determines the TCR

expressed by a CD8+ T cell is determined by somatic rearrangement of TCRa
and TCRb loci during T cell development. With an estimated 1015 possible unique

TCR sequences, the potential TCR repertoire is larger than an individual’s total

T cell compartment estimated at 5 � 1011 cells1. However, more than one CD8+

T cell (and TCR) can recognize a given peptide ligand presented by a specific major

histocompatibility complex (MHC) molecule. With the exception of immune

privileged sites such as the testis2, 3, MHC class I molecules are expressed on the

surface of all nucleated cells. Thus CD8+ T cells can survey the body for intracel-

lular infections or tumor cells that perturb the MHC-associated peptide pool.

In the late 1990s fluorescence-labeled multivalent recombinant peptide-MHC

complexes were developed that have now become an essential tool in monitoring

and characterizing immune responses4. Peptide-MHC (pMHC) class I complexes

are produced by refolding a defined MHC allele with b2-microglobulin and a

peptide of interest, to generate large quantities of complexes, or refolded protein5.

To counter the inherent low affinity and high off-rates of a T cell receptor for its

specific pMHC, multiple purified pMHC complexes are linked to a backbone

scaffold (e.g., streptavidin, dextran, coiled coil domains) and conjugated to a

fluorochrome for fluorescence-based detection. Structures with increasing amounts

of complexed MHCs (tetramers, pentamers6, dextramers7, or Q-dot conjugated

multimers8) have been used to increase the mean fluorescence intensity and sepa-

ration of the detected CD8+ T cell population from non-binding populations9.

Although efforts are being made to establish manufacturing standards, large

variability exists between locally produced constructs10. Because this technique

can be used both to detect and sort for antigen-specific CD8+ T cell populations, in

some cases, at frequencies as low as 1 in 10,000 total CD8+ T cells, pMHC

constructs have become an invaluable tool to track CD8+ T cell responses over

time and allow a multiparametric characterization (see Phenotype of Antigen-
Specific T cells in vivo section).

Cross-linking of the TCR by pMHC at physiological temperatures can lead to

prolonged signaling, alteration of CTL function, and induction of apoptosis which

is problematic if CTL are sorted for downstream applications11, 12. To circumvent

this alteration in peptide complexes, methods have been developed that enable the

TCR to bind reversibly to pMHC allowing for selection followed by disengage-

ment, thereby preserving T cell function10, 13.

As pMHC binding defines a specific T cell population that represents a single

fluorescent signal and a unique HLA-peptide combination, this method provides

detailed but restricted information on a specific CD8+ T cell response while

neglecting other potential responses elicited by other epitopes for the same antigen.

Unless the immunodominant response is defined by one or more known pMHC
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epitopes, the use of multimer-peptide MHC complexes to characterize comprehen-

sive responses towards antigen lack power in providing an overview of the breadth

of the immune response. Detection of multiple CD8+ T cell responses using pMHC

have been developed in recent years in an attempt to expand the breadth of

detection. PMHC (peptide MHC) combinatorial encoding analysis of T cell

responses uses pMHC complexes bound to multiple fluorochromes14, 15. Two-

dimensional (2 color) coding and a total of 8 different flurochromes allow for the

potential testing of a total of 28 different pMHC in a single patient sample. With

additional recombinant MHC molecules available for folding and the continued

characterization of new pMHC combinations, standard “cocktails” of pMHC for

patients with different HLA types could presumably allow the tracking of multiple

antigen-specific T cell populations.

Overall, the use of multimers remains dependent on the ability to generate function-

ing pMHC complexes for specific haplotypes and previously characterized peptide-

MHC combinations. For a more comprehensive approach of the immune response

directed towards a specific protein/antigen without the restriction imposed by the

ability to generate pMHC complexes, other techniques are available (see Sect. 14.3).

14.1.2 Structural Assessment of Specific CD4+ T Cells Using
Peptide-MHC Complexes

Technical difficulties associated with the generation of class II pMHC multimers to

detect antigen-specific CD4+ T cells have rendered their widespread use more

challenging when compared to class I multimers. As deletion of the transmembrane

domains of class II MHC results in the dissociation of the a and b chains, expression

ofMHC class II in bacterial systems can be inefficient. Furthermore, the pMHC class

II chains bind with lower affinity to each other than class I and in most cases the

addition of peptide is not sufficient to stabilize the MHC-peptide complex. Thus,

more elaborate recombinant expression systems such as insect cells, which lack

antigen processing and loading machinery, have been used to generate peptide-free

MHC class II molecules, which are in turn loaded with the desired immunogenic

peptides in vitro (e.g., HLA DRB1*0101 or DRB1*0401)16, 17. Alternative methods

pairing the C-termini of the subunits with a “coiled coil” domain or leucine zipper to

promote assembly of the native a-b heterodimer have also been developed and

produce complexes which are of limited stability16–18.

Biological differences betweenMHC class I and II multimers further contribute to

the observed low frequencies and low mean fluorescence intensities of antigen-

specific CD4+ T cells within peripheral blood mononuclear cells. Class II multimer

binding might detect a limited fraction of all CD4+ T cells specific for a given cognate

antigen, and the CD4 molecule, unlike CD8, does not strengthen the MHC-peptide

interaction on the surface of the cell19, 20. Lastly, MHC class II-peptide complexes

obtained by peptide loading of empty MHC class II complexes are not as homoge-

neous as class I-peptide complexes obtained by refolding21. These differences
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negatively impact MHC class II multimer staining and may explain, in part, the

discrepancy observed between MHC class II-peptide multimer staining and func-

tional responses as measured by intracellular cytokine staining or ELISpot22.

Despite these difficulties, antigen-specific CD4+ T cells have been detected in

peripheral blood mononuclear cells23, 24 allowing valuable direct phenotypic anal-

ysis of CD4+ T cell responses. Increasing detection thresholds by magnetically

sorting CD4+ T cells, stimulating specific CD4+ T cells with peptide prior to

staining25, 26 and/or coupling functional assays in combination with MHC class II

staining experiments offer additional information beyond T cell frequency and can

be equally applied to monitoring clinical trials as class I MHC peptide reagents.

14.1.3 Structural Assessment of T Cell Frequencies Using
TCR-Tracking

The nucleotide sequence encoding the TCRb chain is determined by somatic

rearrangement of V, D, and J segments and the complete VDJ junction region or

CDR3 region is unique to each TCR. Quantitative amplification of the CDR3 region

can be used to track the frequency of a defined clonal T cell population27–29. Using a

monoclonal T cell population (for example, an adoptively transferred T cell clone)

as template, primers flanking the constant region and the specific TCR Vb region,

as well as a probe encompassing the unique TCR CDR3 are designed and used in

Taqman assays. Although a primer/Taqman probe set must be configured for each

tracked clonotype, TCR tracking not only allows for a very sensitive detection of

clonal cells (up to 1/100,000 total cells) in RNA/DNA isolated from peripheral

blood mononuclear cells but also allows detection of T cells in scarce or restricted

tissue samples. To normalize the number of specific TCR copies, two different

approaches have yielded comparable results. In the first RNA-based approach,

cDNA derived from whole peripheral blood mononuclear cell RNA is used a

template for the quantitative TCR-specific PCR. A concurrent quantitative Taqman

assay for the CD8b chain (for CD8+ T cells) is used. Based on the assumption that

each CD8+ T cell yields proportionally the same relative number of copies of CD8b
and TCR, TCR copies are quantified as a percent of total CD8b chain detected.

Alternatively, genomic DNA isolated from mononuclear cells can also be used as a

template for a quantitative real-time PCR assay. The frequency of the specific T

cells in peripheral blood mononuclear cells is normalized, for example, to the

house-keeping gene b-actin. Both methods were validated in patients in whom T

cells could also be tracked by pMHC complexes and results are nearly identical30.

This method is exquisitely sensitive, has a lower detection threshold compared to

pMHC multimers and can conveniently be used with T cells for which a pMHC

complex is unavailable. However, in contrast to T cells detected by pMHC

multimers, no further phenotypic characterization can be performed as cells are

lysed in the process of detection.
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14.2 Functional Assessment of T Cell Responses in Vivo

Functional assessment of cellular immune responses provides information on the

ability of antigen-specific cells to deliver a functional feature (e.g., cytotoxicity,

cytokine secretion) that is associated with tumor recognition and can also be used to

assess T cell frequency, but on the basis of functional and not structural features

(see Table 14.2). T cell activation is a consequence of direct cell contact based on

the target cell’s surface expression of MHC-peptide complexes and co-stimulatory

ligands. Whereas the term “affinity” is used define the strength of binding of the

TCR with its peptide-MHC ligand, the term “avidity” reflects the binding between

the effector and target populations involving multiple receptors/ligands. Because

the circulating peripheral T cell pool consists of T cells with a sufficiently low

avidity for self-antigens to have avoided negative thymic selection and deletion31,

high-avidity T cells reactive against tumor-associated self-antigens are less fre-

quent than high-avidity T cells reactive to viral associated antigens. In these cases,

functional assessment will often underestimate the total number of antigen-specific

T cells, but could more accurately represent T cell activity. The concept is discussed

in detail in Chapter 3.

14.2.1 Direct Cytotoxicity Assays

To assess the specific cell-mediated cytotoxicity or killing potential of a T cell

population towards a target population of cells, the 51chromium-release assay has

remained the gold standard since it’s inception in 196832, 33. Target cells are labeled

with radioactive 51Cr and incubated with an effector cell population, and 51Cr

released from the killed target cells within the culture medium is measured within

4–5 h by a g-ray emission counter. Although several alternatives have been

developed to measure direct cytotoxicity based on the release of non-radioactive

compounds34, 35, these alternatives have not been widely adopted by the scientific

community in part due to the superior ability of 51Cr to label a wide variety of target

cells reproducibly (for e.g., B lymphoblastoid cells lines, CD40-L activated B cells,

monocytes, adherent cells, and fibroblasts), low rates of spontaneous release, and its

easy applicability. This assay also offers the possibility to determine the avidity of

the effector population to limiting amounts of antigen for direct comparison. The

major limitation to the 51Cr release assay remains the use of radioactive material

requiring adequate disposal and dedicated facilities. This assay also demands

significant amounts of pure effector and target cell populations (clonal T cells or

purified T cell lines) and provides no information on the behavior, the type of

cytotoxicity or the phenotype of effector cells within the assay. Furthermore,

autologous tumor cells that would constitute the most accurate measure of cytotox-

icity are notoriously troublesome to load with 51Cr and have a high rate of

spontaneous release35. An emerging alternative to directly quantify killing activity

of tumor cells is the caspase cleavage assay, which detects caspase enzyme activa-

tion indicative of early stage apoptosis either by direct measurement of caspase
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catalytic activity, cleavage of their substrates or labeling using conformation-

sensitive antibodies followed by flow cytometric detection36.

14.2.2 ELISpot Assays

The enzyme-linked immunosorbent assay as applied to cell functional detection

(ELISpot) involves stimulation of antigen-specific T cells on immunosorbent mem-

brane micro-well plates coated with anti-cytokine capture antibodies. After removal

of the cells, localized cytokine production by individual cells can be detected by a

second anti-cytokine antibody that is conjugated to a colorimetric reagent, appearing

as individual spots on the membrane. T cell frequencies can then be calculated as the

number of spots per input number of cells (for example, peripheral blood mononu-

clear cells) in each micro-well37. ELISpots are highly reproducible, sensitive

(~1/100,000 events), ideal for detecting low-frequency antigen-specific T cells, and

require approximately tenfold lessmaterial than intra-cellular cytokine assays (see the

following sect. 5). ELISpots are suited for measuring T cell reactivity to peptide pools

or peptide libraries requiringmultiple parallel testing. A semi-quantitative measure of

the avidity of antigen-specific T cells within peripheral blood mononuclear cells can

be determined by serial dilutions of cognate antigen. Unlike intracellular cytokine

secretion, cells are unaltered by the assay and can be further isolated38, 39. Histori-

cally, the detection of interferon (IFN)-g was used as a surrogate to detect all pro-

inflammatory T cells capable of cytotoxicity in vivo40. However, the induction of

IFN-g- producing T cells has been shown in vaccine trials not necessarily to correlate

with tumor regression or viral immune protection41, 42, and detecting additional

effector cytokines such as IL-2, granzyme and perforin (discussed below) could

represent a more comprehensive evaluation43. Although newer fluorescent ELISpot

reagents allow for the assessment of up to 3 simultaneous cytokines, these are not yet

available for widespread application and other techniques, such as intracellular

cytokine secretion offer a more comprehensive assessment44, 45.

14.2.3 Intracellular Cytokine Secretion Assays

Intracellular cytokine secretion assays allows the simultaneous detection of several

cytokines secreted by a single cell in response to cognate antigen to provide

comprehensive information about the in vivo killing potential (most commonly

for CD8+ T cells) and cytokine expression profile (for example CD4+ T cells) of

antigen-specific T cells. Briefly, effector CD8+ T cells function in multiple ways to

cause tumor rejection either by directly killing tumor cells or by changing the

micro-environment of the tumor to inhibit further growth. Amongst other

mechanisms, cell to cell contact and recognition of peptides presented by MHC

class I leads to the exocytosis of lytic granules containing perforin, a toxin that
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forms pores in the target cell plasma membrane, serine proteases such as granzymes

(particularly granzyme B) and chemokines such as MIP-1a, MIP-1b, and RANTES
which promote the recruitment of additional cells to the site of the inflammatory

response. Granzymes enter the target cells through the newly formed pores and

cleave aspartate residues, which in turn activate the caspase cascade and lead to

apoptosis of the target cell. Effector cells can also secrete TNF-a family members

(TNF-a, FasL, TRAIL) which induce multimerization of their cognate receptors on

target cells resulting in the induction of apoptosis46. The most defined role for IFN-

g is enhancement of MHC class I and Fas levels on target/tumor cells that increases

their sensitivity to CD8+ T cell killing47. Although IL-2 does not have a direct

cytolytic effect, antigen-specific CD8+ T cells that secrete IL-2 can use it as an

autocrine growth factor promoting their survival and further proliferation after

secondary antigenic encounter48.

Whereas perforin and granzyme are produced constitutively in effector cells

delivering immediate cytotoxic effect, cytokines are produced upon relevant stim-

ulation within 4–5 h49. Intracellular cytokine staining relies upon the stimulation of

T cells in the presence of an inhibitor of protein transport thus retaining the

produced cytokines inside the cell. While it remains clear that CD8+ T cells and

their cytotoxic capacity are a critical component of the cellular immune response

against tumors, precise correlates of tumor lysis remain to be defined43.

Polyfunctional T cells capable of multiple functions including the production of

IL-2, TNF-a, IFN-g, the chemokine MIP-1b, along with the expression of the

surface degranulation marker CD107a, have shown to be generated in broadly

protective vaccines such against vaccinia virus50. These have also been shown to

correlate more reliably with the control of human immunodeficiency virus replica-

tion than human immunodeficiency virus-specific T cells with a more limited range

of capabilities and might also be necessary for tumor regression9, 51.

CD4+ T cells likely play a critical role in orchestrating the adaptive immune

response to tumors9. CD4+ T cells capable of secreting multiple cytokines/

chemokines including TNF-a, IFN-g, and MIP-1b have been generated following

tumor vaccination and adoptive transfer23, 27, 52. However, a substantial heteroge-

neity and plasticity exists within CD4+ T cell responses in humans. CD4+ T cells

have the potential to differentiate in at least four functionally divergent T cell

subsets defined by their cytokine profile: Th1 (producing IL-12 and IFN-g), Th2
(producing IL-4, IL-5, IL-6, IL-10, and IL-25), Th17 (producing IL-17 and IL22)

and regulatory T cells (Tregs, producing TGF-b and IL-10) which may have

opposing tumor rejection or tolerant effects. These Th subsets variably have the

capacity to convert from one subset to another53. See chapter 2 for details of T cell

subsets in the tumor micro-environment. Overall, this heterogeneity and differenti-

ation plasticity has limited the ability to define protective immune correlates of

CD4+ T cells both after preventive and therapeutic vaccination. Comprehensive

analysis of the multifactorial functional parameters engendered after vaccination

and/or adoptive transfer in both CD8+ and CD4+ T cell will be necessary to identify

factors that correlate with the success or failure of an anti-tumor immunologic

intervention.
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14.2.4 Assessment of Proliferative Responses

A hallmark of an effective protective T cell response is the ability of antigen-

specific cells to proliferate rapidly and robustly in response to re-encounter with

antigen, which entails the capacity to produce new effector daughter cells54, 55. (3H)

Thymidine incorporation assays have been used to evaluate the proliferative func-

tion of antigen-specific T cells to cognate antigen56. DNA incorporation of (3H)

Thymidine during the S-phase of cell division is determined after 16–18 h of

exposure by adsorbing the cells to a membrane. In addition to the disadvantages

associated with the use of radioactivity, (3H)thymidine incorporation assays are

limited due to the inability to differentiate between dividing CD4+ and CD8+ T cells

and regulatory CD4+ T cells which have a broad dampening effect (see Sect. 15.5).

Non-radioactive, nontoxic compounds such as Resazurin (Alamar Blue®), which is

reduced in living cells to the fluorescent compound resofurin offers an attractive

alternative to (3H)thymidine incorporation as this allows further characterization of

fluorescent cells by multiparameter flow cytometry57. Carboxyfluorescein

succinimidyl ester can also label lymphocytes without affecting their function

and track their ex vivo mitotic activity by the progressive twofold reduction in

fluorescence intensity with each cell division. Staining with carboxyfluorescein

succinimidyl ester allows simultaneous characterization of dividing cells by flow

cytometry based on their T cell subset (CD4+ or CD8+), binding to multimer or

expression of surface markers. Results for CD4+ T cells are comparable to (3H)

thymidine incorporation assays58. Ex vivo carboxyfluorescein succinimidyl ester

dilution is also particularly instructive to assess CD8+ proliferative responses after

5–7 days to cognate antigen in the absence of exogenous cytokines (such as IL-2)

both in anti-viral and anti-tumor responses, and the results have correlated with

persistent transferred cells that had acquired a phenotype of long-lived memory

cells in vivo30, 59. Alternatively, antigen-specific cells that can be identified by

binding to a multimer can be directly assessed in vivo for evidence of division by

measuring Ki-67 expression. Ki-67 is an intra-nuclear protein tightly associated

with cell replication expressed in all active phases of the cell cycle (G1, S, G2, and

mitosis), but absent from resting cells (G0)60. Ki-67 expression in multimer+ cells

provides a discrete snapshot of the cells’ proliferative state without firm knowledge

of specific antigen encounter, compared to a 5–7 day retrospective of proliferative

history in the presence of controlled quantities of specific antigen provided by the

ex vivo carboxyfluorescein succinimidyl ester dilution assay.

14.2.5 Monitoring Extracellular Cytokines

Technologies capable of quantifying multiple cytokines in a limited amount of

sample such as serum or plasma, have rendered possible longitudinal quantification

of cytokines in response to immune interventions. Although tissues such as whole
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blood, plasma, and serum might not reflect events of the tumor micro-environment

or identify the cell responsible for the secretion of cytokines61, these are accessible,

and variations in the cytokine levels can be easily detected62, 63.

Two technologies are available to quantify released cytokines reliably in liquid

samples: ELISA and multiplex cytokine bead arrays. Both are excellent screening

tools due to their sensitivity and the amount of cytokines they can detect (>30).

Cytokine bead assays, although more expensive at this time, allow a rapid flow

cytometry-based analysis in very small volumes of specimen by coating polysterene

microspheres with antibodies designed to capture the cytokines of interest62. Of note,

gene expression platforms also support the simultaneous quantification of mRNA of

multiple cytokines in cell subsets. However, due to posttranscription modifications

and variability in the assays, these may not reflect actual cytokine expression64.

Although some studies have been able to associate serum/plasma cytokine patterns

with favorable/unfavorable responses in Hodgkin lymphoma or dendritic cell-based

vaccines in colorectal cancer65, 66, most studies have failed to establish a correlation

of extracellular cytokine patterns obtained by multiple cytokine analysis, with the

immunogenicity of candidate vaccines or with therapeutic benefit61–63, 65–69. This

likely reflects the complexity, nuance, and plasticity of cytokine networks and

cytokine feed-back loops within the tumor micro-environment70, 71. Nonetheless,

studies examining responses to protective infectious disease vaccine have shown that

the amount and diversity of cytokine produced in response to cognate antigen may be

more relevant to assess than the type of cytokine secreted72. Recent studies showing

that “cytokine storms” with the release of multiple cytokines correlate with lym-

phoma eradication after the adoptive transfer the gene-modified cells73, 74 may point

to new hope in our ability to identify global cytokine signatures of prognostic

importance.

Furthermore, evaluating cytokine levels is subject to a broad variability which

may further confound the results obtained. For example, basal cytokine levels vary

for most individuals and within individuals over time, large fluctuations occur and

positive values may not be sustained65, different cut-offs for positive versus negative

values have been used for the same cytokines between different studies, and different

control populations have been used for comparisons. Efforts aimed at harmonizing

results and standards (e.g., The Cancer Immunotherapy Consortium75 and Minimal

Information about T cell Assays project [www.miataproject.org]) are underway to

extract the full potential of this powerful technology. Broad-based standardized serial

monitoring of the cytokine milieu could become an integral part of future immuno-

therapy to provide valuable insights into relevant biomarkers76.

14.3 Assessment of Polyclonal/Polyvalent T Cell Responses

As adoptive transfer studies are evolving towards generating polyclonal T cell

products as opposed to monoclonal products requiring shorter ex vivo manipulation

time, evaluating the presence and frequencies of polyclonal (same T cell specificity,
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different T cell clone) antigen-specific T cells in vivo requires alternate methods of

detection and enumeration. Furthermore, these methods can also be applied to

polyvalent (different T cell specificity, different T cell clone) T cell responses

generated, for example, after vaccination.

14.3.1 Tracking Polyclonal T Cells Using Multimers

Peptide-MHCmultimers can be used to quantify the frequency of polyclonal T cells

of a defined specificity (for example HLA A*0201-restricted MART1-specific

CD8+ T cells) as these will bind to the multimer regardless of their clonality.

However, TCRs specific for an array of pMHCs can be elicited following vaccina-

tion and, without prior knowledge of the response, multimers are of lesser value.

Alternatively, mapping of antigenic epitopes by function-based assays can offer a

more exhaustive evaluation of the response elicited (see Sect. 14.3.4).

14.3.2 Tracking Polyclonal T Cells Using Vb Arrays
(Spectratyping)

Somatic rearrangement of V, D, and J segments of the TCRb chain results in CDR3

segments of variable nucleotide length. Spectratype (or Immunoscope) analysis

involves polymerase chain reaction (PCR) amplification of the rearranged CDR3

segments present in complex populations of cells. The PCR products are resolved

on polyacrylamide sequencing gels to reveal the array of CDR3 sizes, which may

vary in length by 30–60 nucleotides in a Gaussian distribution, within each of the

24 Vb families77. The TCR repertoire of polyclonal T cell products destined for

infusion can be assessed and compared to peripheral blood mononuclear cells

collected after infusions. A skewing of the repertoire towards a specific Vb length

present within the infusion product is suggestive of the presence of infused T cells.

Spectratyping is useful in cases where very large changes to the immune repertoire

are likely to be observed, for example, following TIL infusions after near myelo-

ablative conditioning regimens78. This technique allows for rapid throughput anal-

ysis of multiple samples. However, because the identity of the TCR is based on the

CDR3 length and not direct sequencing, spectratyping cannot be used to identify a

specific TCR as more than one TCR can have the same length. It also provides

limited information when few, but diverse T cells are generated such as after

vaccination79.
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14.3.3 Tracking Polyclonal T Cells Using High-Throughput TCR
DNA Sequencing

With the advent of high-throughput DNA sequencing technology, methods for

sequencing millions of TCRb chains are available based on multiplex PCRmethods

and can potentially be applied to track polyclonal/polyvalent T cell responses

quantitatively after adoptive T cell therapy or vaccination80. A pool of primers to

all V and J pairs specifically designed to amplify the complete VDJ junction region

such that only the minimal region (60 nucleotides) containing the clone-specific

nucleotide information for each TCRb CDR3 could be amplified and sequenced for

several million T cells comprising an individual’s immune repertoire81, 82. Using

genomic DNA as a template, this method has the potential to capture the frequency

of individual TCRs in biologic samples with accurate reproducibility and a sensi-

tivity of 1/100,000 TCR-containing lymphocytes. This method also yields nearly

identical quantitative results compared to pMHC multimers (also a structure-based

assay) as demonstrated by direct assays of infused T cell clones in vivo83, and has the

potential to quantify and follow the expansion/contraction of a polyclonal T cell

repertoire over time. As someVDJ rearrangements contain non-templated insertions

and deletions at the junctions between the V and D segments, and the D and J

segments, current methodologies allow for the identification of 75–90 % of unique

CDR3s. If one of the primers falls in a deleted section, the sequence is not amplified

and the unique sequence is not identified. Refining and improving this powerful

technology has the potential to allow multiparameter tracking in large-scale clinical

trials.

14.3.4 Assessment of Polyclonal/Polyvalent T Cell Responses
by Screening for Antigenic Epitopes

To evaluate antigen-specific T cell responses elicited after vaccination or adoptive

transfer without the constraints imposed by HLA restriction, identification of

epitopes recognized by CD4+ or CD8+ T cells in study patients can be performed

by testing the reactivity of T cells against pools of overlapping peptides spanning

target proteins84. Peptides 15–20 amino acids in length offset by 1–5 amino acids

bases and spanning target proteins offer the prospect of detecting both CD8-binding

(9–11 amino acids) and CD4-binding (12–16 amino acids) epitopes. Longer

peptides with a short offset length offer a higher likelihood of multiple epitope

hits. Peptide pools are used to stimulate T cells which are then enumerated on the

basis of cytokine secretion by ELISpot assay or intracellular cytokine staining (see

relevant sections above). To map individual recognized peptides efficiently in each

pool, whole peripheral blood mononuclear cells or selected CD8+ T cells (in the

case of MHC class I determination) can be performed by screening against smaller

sub-pools aligned in a grid, in such a way that every peptide is contained in exactly
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2 sub-pools and the intersection between the 2 sub-pools on the grid reveals the

responding peptide85. MHC restriction can further be determined by HLA typing of

subjects, testing responsiveness to HLA-restricted cells lines, epitope prediction

algorithms (SYFPEITHI), or comparison to previously identified sequences86.

Although overlapping peptide screens remain the most efficient tool for large-

scale clinical trials, a considerable amount of blood is necessary to screen multiple

peptide libraries. This large blood volume requirement in addition to the assay cost

are generally considered limiting factors. Furthermore, in situations where the

frequency of responding T cells is low, testing the reactivity to individual peptides

could require using previously expanded T cells thus adding a supplementary

modifying step to the detection process.

14.3.5 Epitope Spreading

Epitope spreading is an extension of the T cell response from one dominant

antigenic peptide to include secondary epitopes distinct from and non-cross reactive

with the dominant peptide. Epitope spreading is a recognized immune phenomenon

in autoimmune diseases mediated by CD4+-induced T cell damage87. Tissue debris

is taken up by antigen presenting cells that have upregulated expression of MHC

class I, class II, and co-stimulatory molecules in response to inflammatory

cytokines. The activated antigen presenting cells can in turn prime de novo T

cells against other target tissue epitopes88, 89. Although this phenomenon has

been triggered by CD8+ T cells binding to MHC class I in mice, MHC class II

TCR ligation, CD40-CD40L interactions, and CD28-mediated co-stimulation are

required for epitope spreading to occur with CD4+ T cells90, 91. In humans, epitope

spreading has been demonstrated after vaccination with peptide-pulsed immature

dendritic cells as well as after the infusion of a monoclonal CD4+ T cell clone, and

has been correlated with tumor regression27, 68. To assess the breadth of epitope

spreading, autologous antigen presenting cells transfected with cDNA encoding the

sequence of target proteins (for example MART-1, Tyrosinase, gp100, NY-ESO-1,

and Mage1-3 in the case of melanoma) and co-cultured with peripheral blood

mononuclear cells have been used to assess CD8+ and CD4+ T cell responses27, 92.

Alternatively, overlapping peptides spanning target proteins can be used to assess

responses in a semi-quantitive manner.

14.4 Assessing Antigen-Specific Immune Responses

in Target Sites

Clinical efficacy is dependent on the ability of antigen-specific cells to reach tumor

tissue93. As the characteristics of T cells present in the peripheral blood might not

reflect the characteristics of T cells present at the local tumor level94, 95, efforts to
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assess the responses elicited by vaccination or adoptive T cell therapy in the tumor

micro-environment must be pursued. The scarcity of, and sometimes invasive

procedures necessary to obtain human tumor tissue, particularly in solid tumor

malignancies, remain major barriers to routine sampling of potential T cell target

sites. When such tissues are available, standard approaches described above could

be applied. However, these approaches require some degree of ex vivo manipula-

tion and represent the immune response at a single time point (see Sect. 14.1).

Dynamic, non-invasive approaches that provide whole body imaging allow for

repeated in vivo assessment without the requirement for tumor sampling (discussed

in non-invasive approaches).

14.4.1 Ex Vivo Evaluation of Immune Responses at Target Sites

Some of the standard approaches described in the previous sections that apply to

assays to detect antigen-specific T cells in the peripheral blood can also be applied

to disaggregated tumor or tissue samples, once lymphocytes are rendered into

single cell suspension. Flow cytometry for example can identify tumor- or tissue-

associated antigen-specific T cells by staining with peptide-MHC multimers.

Multiparametric flow cytometry can be used to determine the phenotype of cells

isolated from fresh tumor preparations and represents the most accurate method to

determine the quantitative and qualitative nature of the immune response at the

local tumor level. Caveats include the need for large amounts of fresh, unprocessed

tumor tissue (in some cases, large quantities of tumor is needed to isolate a few T

cells); some tumors require extensive manipulation to disaggregate the embedded T

cells such that the phenotype of the isolated cells is altered (for example shedding of

CD62L96); and the inability to assess the histologic location of the T cells in relation

to tumor tissue which can be instructive in assessing immune responses. In some

examples, memory T cells penetrating intratumoral regions can be predictive of

good prognosis97.

Functional assays including ELISpot represent an attractive semi-quantitative

alternative to flow cytometry to determine both the presence and the function of T

cells within tumor tissue. Although provisions similar to those relevant to flow

cytometry also apply, the amount of tissue required for performing the assay is

significantly less. When considering even smaller samples, for which disaggregation

is not feasible or desirable, the presence of T cells in peripheral tissue and at tumor

sites can be determined in cases where the CDR3/TCR sequence is known before-

hand. In the case of adoptive therapy, the clonotype(s) of the infused T cells have

already been defined. DNA can be extracted from fresh or formalin-fixed paraffin

embedded tissue, and a quantitative or semi-quantitative amplification of the clone-

specific CDR3 DNA can be performed. Laser capture microdissection can provide

additional information as to the histologic location of DNA-extracted T cells. While

this method can be highly sensitive for small amounts of tissue, function and further

characterization of infiltrating T cells is limited.
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The use of in situ immunofluorescence stains on tissue specimens allows an

assessment of the histologic location of the infiltrating T cells, regulatory cells in

relation to other immune cells as well as tumor and nontumor stromal components.

This highly informative approach was initially limited by the relatively faint stain

produced by fluorochrome-conjugated multimers and the relative low frequencies

of pMHC-specific T cells in peripheral tissues or tumor. Quantum dot (Qdot)-

labeled multimers exhibit similar specificity but have higher signal intensities for

fluorescence imaging than multimers labeled with conventional photophores98, 99.

pMHCs can be formed in vitro and conjugated to Qdots4, 100. Tissue sections

stained for CD8, the corresponding tumor-specific Qdot multimer, and

counterstained with the nuclear dye DAPI produce semi-quantifiable evaluation

of specific CD8+ T cells in tissue biopsies by confocal or fluorescence micros-

copy100, 101. This method also has the ability to detect antigen-specific T cells in

three-dimensional tissue due to the intense brightness of the signal. When combined

with other cell-specific stains (e.g., for tumor, stroma, vascular cells, this yields an

information-rich rendering of the tumor micronenvironment). Due to the technol-

ogy validation and extensive operator expertise, this approach is more suited to

smaller well-defined studies than to large-scale clinical trials.

14.4.2 Non-Invasive Cell Tracking

As the use of adoptive immunotherapy becomes more sophisticated and widespread,

tools to study the fate of transferred cells non-invasively and longitudinally in vivo

in humans will become an essential component of immunologic monitoring93.

Optical imaging techniques using fluorescence of bioluminescence are widely

used in small animal models, and due to the virtual absence of background labeling,

bioluminescence allows for semi-quantitative data acquisition. However, this tech-

nology is not currently applicable to human studies due to the limited penetration of

the light wavelengths102, 103. Before pMHCs were widely available, several groups

labeled melanoma-specific TIL or CTL with 111Indium (111I) and tracking was

performed with computerized gamma ray imaging. Localization of transferred

cells to the tumor site was demonstrated to peak 48 h after an initial accumulation

to the lung, liver and/or spleen104–107. The use of 111I as radioactive tracking agent is

restricted by exposure limits in humans, a short half-life, nonspecific uptake by

adjacent tissue, and slow biological clearance. Magnetic resonance imaging is an

attractive alternative as it offers a concurrent high-resolution imaging. Superpar-

amagnetic iron oxide nanoparticles consist of suspended colloids of iron oxide

nanoparticles that can be detected by magnetic resonance imaging based on their

property to reduce the T2 signal such that transferred cells appear dark on T2

weighted images. This contrasts with the widely used Gadolinium-based agents

which exhibit poor intracellular uptake108. Superparamagnetic iron oxide

nanoparticles were initially approved by the FDA for liver imaging because of the

preferential uptake by naturally phagocytic Küpfer cells, and lack of toxicity due to

the complete biodegradation within 2–4 weeks109, 110. For non-phagocytic cells,
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complexing superparamagnetic iron oxide nanoparticles with cationic transfection

agents such as protamine ensure successful intracellular magnetic labeling111. Pilot

clinical studies have used similar agents to label dendritic cells112, neural stem cells

infected near an area of brain injury113, CD34+ cells injected in cerebrospinal

fluid114, and cadaveric pancreatic islet cells transferred intraportally to diabetic

patients115. All cells could be identified by magnetic resonance imaging and in

one case, for up to 6 weeks in vivo. Limitations of this method include the inability

to discriminate live from dead cells as superparamagnetic iron oxide nanoparticles

remain in dead cells until they are cleared by macrophages, and dilution of these

particles to undetectable levels in the case of rapid division of transferred cells.

Perfluorocarbons represent a promising alternative to superparamagnetic iron oxide

nanoparticles and constitute a group of fluorine (19F)-containing compounds derived

from hydrocarbons by complete substitution of 1H with 19F. 19F possesses compara-

ble magnetic resonance sensitivity to currently used protons (1H) but exhibits no

tissue background signal, allowing specific and selective assessment of transferred
19F-containing compounds in vivo in mice93. Perfluorocarbons are nontoxic, bio-

logically stable and are cleared through respiration after in vivo administration116.

Overall, the use of such compounds in clinical trials has the potential to expand our

understanding of cell trafficking to tissues in humans substantially.

The ability to manipulate, and now, genetically engineer T cells ex vivo using

recombinant vectors provide means to label T cells indirectly with a reporter gene

construct. In one embodiment, this could be a vector expressing the herpes simplex

virus 1 thymidine kinase (HSV1-tk) gene which is not expressed in human tissues.

When administered following transfer of these engineered T cells, an 18F-based

reporter probe (e.g., 4-fluoro-3-[hydroxymethyl]butyl)guanine is taken up by the

infused thymidine kinase-expressing T cells and phosphorylated by their HSV1-tk

thereby retaining the probe in the cell where it can be detected by positron emission

tomography117. In contrast to direct labels (described above), there is little to no

dilution of signal with cell division since the integrated transgene is transmitted to

all progeny. Limitations to this system are that nucleoside-based probes such as (4-

fluoro-3-[hydroxymethyl]butyl)guanine do not normally cross the blood–brain

barrier and the reporter gene HSV-tk, is immunogenic. In this latter instance,

HSV-tk-expressing T cells will be eliminated relatively quickly by the endogenous

immune response. However, T cells engineered to express the dopamine receptor,

somatostatin receptor, sodium symporter or norepinephrine transporter, would be

less likely to be rejected since these are all naturally occurring receptors with

available pharmaceutical grade probes118–120.

14.5 Characterization of Antigen-Specific T Cells in Vivo

Combining multimer stains with polychromatic flow cytometry allows simulta-

neous enumeration and detection of either surface and/or intracellular components

expressed by antigen-specific cells within peripheral blood mononuclear cells or
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tissue. Table 14.3 lists T cell-associated markers that have been correlated alone or

in combination with functional anti-tumor immune responses and the category to

which they pertain. Although the characteristics of cells that mediate tumor eradi-

cation have not yet been clearly determined, each category of markers carries

characteristics of tumor-specific T cells that play important roles in tumor-control.

This list however, is not exhaustive and needs continual update and incorporation

into the evolving knowledge of immunological assessment.

14.5.1 Characteristics Associated with Tumor Eradication
or Protective Immunity

The ultimate goal of immune therapies is to establish a long-lived resident popula-

tion of cells that have the potential to eliminate preexisting tumors and ultimately

prevent tumor recurrence. Central memory T cells (Tcm) are largely responsible for

maintaining long-term memory, and in comparison to more differentiated effector

memory T cells (Tem), exhibit enhanced survival, the ability to proliferate rapidly

and robustly in response to re-encounter with antigen, and the capacity both to self-

renew and to produce daughter cells that can differentiate to become effector

cells54,55. In mouse models, the enhanced protective immunity provided by Tcm

appeared to result from the more robust proliferation of Tcm than Tem after in vivo

challenge, which likely reflects in part the distinct ability of Tcm to secrete IL-2 in

response to antigen and use it as an autocrine growth factor121.

Analysis of the cellular immune responses generated after vaccination with

successful protective vaccines or naturally controlled infections (e.g., yellow

fever, hepatitis B, EBV, CMV) have demonstrated that, in addition to protective

antibodies, Tcm are formed122, 123, 124, 125. The precise phenotype of Tcm cells

remains controversial. However, it is generally agreed that antigen-experienced

T cell populations that persist after an acute infection is resolved, that express

Table 14.3 T cell-associated markers

Aspect of T cells Markers

Memory phenotype CD45RA/RO, CD27, CD28, CD127(IL-7Ra), CD62L, CCR7
Cytokine production IFN-g, TNF-a, IL-2, IL-4,IL-5, IL-6,IL-9, IL10, IL-12, IL-17, IL-22
Cytotoxicity Perforin, granzymes A/B/K, FasL, TRAIL

Degranulation CD107a

Inflammatory response

recruitment

MIP-1a/b, RANTES

Activation status HLA-DR, Ki-67, 4-1BB, CD38, CD69, CD57, members of the TNF

receptor super family

Exhaustion PD-1, TIM-3, CD160, Lag3, 2B4, CTLA-4, BTLA-4

Tissue trafficking a4b7, CCR9, CLA, CCR10, CCR5, CXCR4
Regulatory function CD25, FOXP3, CD127 (IL-7Ra)
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CD28, CD27, CD127, CCR7, and CD62L, that proliferate extensively upon antigen

re-encounter, and that secrete IL-2 in addition to effector cytokines, contain

Tcm126. Studies in patients with metastatic melanoma who experienced clinical

responses after adoptive transfer of antigen-specific cells, have shown that the

persistent cells acquire characteristics of Tcm127,128,151. Thus, a systematic analysis

of the phenotype of tumor-specific T cells in patients who experience clinical

responses to immune interventions has a high likelihood of establishing correlates

of immune protection.

14.5.2 Characteristics Associated with T Cell Activation

Markers reflecting the activation status of transferred T cells or cells generated after

vaccination for example, could potentially indicate whether cells are successfully

encountering antigen and/or expanding as a result of the encounter. However,

classically used indicators of T cell activation such as HLA DR, CD38, and

CD69 are nonspecific and rarely expressed on antigen-specific T cells in vivo129.

Members of the TNF receptor superfamily including 4-1BB, as well as CD57 are

induced on activated T cells but it is unclear if their overall expression is associated

with cell proliferation and survival or signifies the cells are entering a state of

senescence130, 131. Ki-67 is also rarely detected on antigen-specific populations

found in the peripheral blood41. Therefore, the expression of activation markers

reflecting the real activation status of cells needs further validation.

14.5.3 Characteristics Associated with T Cell Exhaustion/
Inhibitory Regulation

Inhibitory receptors suppress the cytolytic activity of T cell targeting cancer.

CTLA-4 and PD-1 are expressed on naturally occurring tumor antigen-specific T

cells. Blocking antibodies against these molecules have already been shown to

benefit cancer patients132, 133, discussed extensively in chapter 8. Exhausted CD8+

T cells were shown to express up to seven inhibitory receptors in a chronic

lymphocytic choriomeningitis virus murine infectious model including PD-1, Lag

3, CD160, and 2B4. Increased expression of the inhibitory receptors on the cell

surface was associated with a cumulative inhibitory effect on antigen-specific

secretion of IFN-g that could further be reversed with inhibitory receptor block-

ade134. Elegant studies of human peripheral blood melanoma-specific CD8+ T cells

showed that a majority of cells simultaneously expressed four or more of the

inhibitory receptors BTLA, TIM-3, LAG-3, KRLG-1, 2B4, CD160, PD-1, and

CTLA-4. However, although gene expression profiling showed differences in

gene expression, flow cytometric evaluation of CMV- and/or EBV-specific
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populations that retain full functional capabilities did not significantly differ from

the exhausted melanoma-specific cells. Furthermore, expression patterns were very

different depending on anatomical localization as melanoma-specific T cells

isolated for the tumor micro-environment expressed significantly higher levels of

exhaustion markers than the ones isolated from the periphery135, 136. Systematic

assessment of exhaustion markers on adoptively transferred tumor-specific cells

in vivo or cells generated after vaccination and correlation with clinical outcome

will contribute to determine the requirements for the generation of successful

tumor-specific cells.

14.5.4 Homing Characteristics of T Cells

Assessing the trafficking potential of T cells could provide information on the

inherent ability of the cells to reach the tumor-containing tissue. For example, the

expression of a4b7 on antigen-specific T cells suggests the ability to traffic to gut-

associated lymphoid tissue. Expression of the chemokine receptor CXCR4 confers

the potential to traffic to the bone marrow; CCR5, the ability to migrate to sites of

inflammation; and cutaneous lymphocyte-associated antigen and/or CCR10 the

potential to reach cutaneous tissue137–140. However, the absence of expression of

these markers in the periphery cannot be interpreted as a trafficking deficiency if

these cells have migrated to the tumor/tissue. Alternatively, the presence of these

markers on peripheral cells in the absence of their trafficking could be interpreted as

failure of trafficking ability. Although technically difficult in human clinical stud-

ies, directly examining peripheral tissue could address these issues. An understand-

ing of which receptors measured in the peripheral blood correlate with trafficking to

tumor will be important to determining if forced expression of such chemokine and

counter-receptors would benefit future immunotherapy studies141.

14.5.5 Characteristics Associated with Regulatory T Cells

CD4+ regulatory T cells (Tregs) are mediators of peripheral tolerance and although

their purpose is to operate to prevent autoimmune disease and inhibit inflammation,

evidence suggests they are involved in the suppression of effective immune

responses to autologous tumor cells142. Under normal homeostasis, Tregs constitute

approximately 10 % of total blood CD4+ T cells and have suppressor functions on

other immune cell populations. Most CD4+ Tregs can be identified by the surface

expression of CD25 and the intra-nuclear expression of forkhead box P3 transcrip-

tion factor (FoxP3). Although FoxP3 at present remains the most specific functional

and phenotypic marker for Tregs, characterization by flow-cytometry of T cells that

express the CD3+CD4+CD25+ phenotype and lack CD127 (IL-7Ra) identifies the
majority of FoxP3 expressing CD4+T cells within peripheral blood mononuclear
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cells143, 144. The use of surface stains to identify Tregs without having to resort to a

terminal intranuclear stain allows the cells to be further isolated and characterized.

Because not all FoxP3+ CD4+ T cells mediate suppressive functions, assays directly

assessing the suppressive function of Tregs are more pertinent145.

Ex vivo assays to measure the suppressive function of Tregs have involved co-

culturing a constant number of stimulated responding CD4+CD25- cells with

increasing numbers of CD4+CD25+ Tregs for 3–5 days. Suppression of responder

T cell activity/proliferation has previously been measured either by (3H)thymidine

incorporation, dye dilution, or cytokine production146, 147. These labor-intensive

assays are poorly suited for monitoring Treg suppressive activity in immunotherapy

clinical trials, and novel methods based on the suppression of the activation markers

CD69 and CD154 on responding effectors after antiCD3/CD28 stimulation could

prove to be less technically challenging148. Additionally, a few studies have

identified Tregs that are specific for tumor antigens149, and some studies have

been able to quantify the responses with MHC class II multimers and track the

responses in vivo150. Please see chapter 9 for additional details on Tregs.

14.6 Conclusion

Cellular immune responses generated after immune interventions can be assessed

by a multitude of structure- and function-based assays that are continuously being

adapted and refined. No definitive parameters have yet been established to predict

firmly the correlates of tumor regression or immune protection. However, the rapid

expansion of knowledge adding to our understanding of the function of the different

players of the immune system alongside the continuous discovery of new

biomarkers indicates these correlates might be close at hand. Harmonizing and

streamlining the performance of immune monitoring to facilitate comparison of

human immunotherapy trials and the systematic accumulation of comprehensive

observational data, especially in patients who demonstrate clinical responses, will

further promote defining the requirements of immune-mediated tumor regression.
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Chapter 15

Issues in Pre-clinical Models, Clinical Trial

Design and Analytical Considerations in

Developing and Evaluating Novel Cancer

Immunotherapies

Marijo Bilusic, Ravi A. Madan, and James L. Gulley

Abstract The role of the immune system in detecting and killing cancer cells has

been understood for decades1–3. The human immune system has an innate ability to

arrest carcinogenesis; however, in some cases, this system fails due to a series of

mechanisms that tumor cells use to escape immune surveillance, such as mimicking

normal cells, producing immunosuppressive growth factors and cytokines, or

forming complex immunological interactions4. Differences in clinical responses

to immunotherapy differ sufficiently from responses to cytotoxic agents that many

aspects of clinical trial design must be re-thought, the subject of this chapter.

15.1 Introduction

The role of the immune system in detecting and killing cancer cells has been

understood for decades1–3. The human immune system has an innate ability to

arrest carcinogenesis; however, in some cases, this system fails due to a series of

mechanisms that tumor cells use to escape immune surveillance, such as mimicking

normal cells, producing immunosuppressive growth factors and cytokines, or

forming complex immunological interactions4.

The goal of therapeutic cancer vaccines is to induce an antitumor immune

response that targets specific tumor-associated antigens (TAAs) through T cell

stimulation. The ideal target TAA is unique to, or overexpressed on, the surface

of cancer cells. Cytotoxic T cells are able to recognize 9- to 14-mer antigenic

peptides expressed within the major histocompatibility complex (MHC) on the

surface of all cells. When appropriately activated, T cells can then detect specific

TAAs and initiate targeted, immune-mediated cell killing5, 6.
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Therapeutic cancer vaccines and other novel cancer immunotherapies have as

their goal to induce targeted immune responses against cancer cells7. They may not

produce immediate cancer cell death that decreases tumor volume, but may stabi-

lize disease and delay tumor growth, which may translate into prolonged survival.

To be effective, a cancer immunotherapy agent must achieve two major goals: it

must stimulate specific immune responses against an appropriate target, and the

immune responses must be sufficient to overcome immunosuppressive mechanisms

employed by tumors8.

Standard cytotoxic chemotherapies have immediate effects and may initially

reduce tumor size, but after several months or years, the disease will inevitably

progress. In contrast, immunotherapy may delay tumor growth by altering host/

tumor interface through an active antitumor immune response. Thus, with a cancer

vaccine, there may initially be no significant reduction in tumor size, and immuno-

logical processes may even induce tumor growth. This phenomenon could explain

why several phase III vaccine trials have demonstrated no significant change in

disease progression (disease-free survival), while the long-term endpoint of overall

survival (OS) has significantly improved9–11. Unlike cytoreductive chemotherapy,

cancer vaccines require sufficient time to generate an immune response, and

evidence of clinical benefit may therefore be delayed12.

This new paradigm of long-term benefit without immediate and significant

reduction in tumor size makes biological sense in terms of immune response, but

represents a significant departure from the standard practice of treating patients

with cytotoxic drugs and assessing radiographic response every 2–3 cycles.

Evaluating the benefit of immunotherapy will require altering the current practice

of relying largely on radiographic response and will be more efficiently accom-

plished if the appropriate patient population can be evaluated12.

15.2 Patient Selection

Identifying the ideal population for a clinical trial is particularly important in

vaccine trials, where only a select group of patients may benefit from treatment.

Throughout this chapter "cancer vaccine" is the model for discussion, but the

concepts here refer to any cancer immunotherapy. In the current clinical trial

model, new vaccines are usually tested in patients with late- or end-stage disease

who have been heavily pretreated and have exhausted other treatment options.

However, numerous vaccine studies have shown that immunotherapy is less effec-

tive in patients with heavy disease burden. Such studies include the GVAX13, 14

and prostate-specific antigen (PSA) vaccine trials15 in prostate cancer, the idiotype

vaccine trials in follicular lymphoma16, monoclonal antibody treatment in colorec-

tal cancer17, and adjuvant immunotherapy trials in melanoma18.

It is well known that greater tumor burden leads to a proportional increase in

regulatory T cells (Tregs)19, 20, as well as increased levels of indoleamine-2,3-

dioxygenase, transforming growth factor (TGF)-b, and IL-10, all of which can
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inhibit T cell activation21, 22. In addition, patients with very aggressive cancer may

not have enough time to develop a significant immune response and thus benefit

from treatment. The number of previous chemotherapy regimens also negatively

affects response to a cancer vaccine. For example, in trials evaluating a vaccine

targeting carcinoembryonic antigen, patients who had been treated with several

chemotherapeutic regimens were less likely to have a measurable immune response

(P ¼ 0.032) than patients who had less prior exposure to chemotherapy23.

Taking several factors into consideration, the ideal patient for treatment with a

therapeutic cancer vaccine has slow-growing and/or low-volume disease, with

minimal prior exposure to chemotherapy24. In clinical trial design, appropriate

patient selection is thus key to accurately assessing the clinical efficacy of thera-

peutic cancer vaccines.

15.3 Response Evaluation Criteria in Solid Tumors

Versus Immune-Related Response Criteria

In addition to patient selection, a crucial factor in clinical trial design is the selection of

an appropriate and realistic primary endpoint. The Response Evaluation Criteria in

Solid Tumors (RECIST) were developed in 2000 through a collaboration of the

European Organisation for Research and Treatment of Cancer, the National Cancer

Institute of Canada, and the National Cancer Institute (NCI) of the United States25, 26.

The vast majority of clinical trials rely on RECIST, evaluating clinical benefit strictly

in terms of reduction in size of soft tissue tumors and defining progressive disease as a

20% increase in the cumulative size of target lesions or development of any new

lesions25, 26. The value of RECIST depends on the type and chemosensitivity of the

tumor and on treatment goals. For acute leukemias and highly curable tumors such as

testicular cancer, RECIST criteria are irrelevant.

The value of RECIST in immunotherapy trials is questionable in light of the

biology of immune response after vaccination. A significant and potentially bene-

ficial immune response may cause transient increases in the size of lymph nodes,

which could be identified as progressive disease based on RECIST criteria27–29.

Indeed, immunotherapy trials in melanoma have suggested that the disease may

initially flare in some areas before more clinically beneficial results are seen30.

New response criteria based onWorld Health Organization (WHO) and RECIST

were evaluated in a few recent studies with ipilimumab31, 32. Four distinct response

patterns were described: immediate response, durable stable disease, response after

tumor burden increase, and response in the presence of new lesions. All patterns

appear to be associated with favorable survival compared to patients with progres-

sive disease by WHO criteria.

To evaluate all observed response patterns, Wolchok et al. recently proposed a

new set of immune-related response criteria (irRC) for tumor immunotherapy32, 33.

Response categories defined as immune-related complete response (irCR),
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immune-related partial response (irPR), immune-related stable disease (irSD), and

immune-related progressive disease (irPD) are considered clinically meaningful

because they appear to be associated with favorable survival. As with irPR and

irCR, the response category irPD should be confirmed at two consecutive time

points. At baseline tumor assessment, the sum of the products of the two largest

perpendicular diameters (SPD) of all index lesions (five lesions per organ; up to ten

visceral lesions and five cutaneous index lesions) is calculated. At each subsequent

tumor assessment, the SPD of the index lesions and of new, measurable lesions

(�5 � 5 mm; up to five new lesions per organ; five new cutaneous lesions and ten

visceral lesions) are added together to calculate total tumor burden. By irRC, new

lesions alone do not constitute irPD if they do not increase tumor burden by �25%.

Appearance of new lesions accompanied by an overall decrease in tumor burden of

�50% is defined as irPR, while a <50% decrease to �25% increase in tumor

burden is defined as irSD. Importantly, an early increase in the size of lesions,

which may be attributable to inflammation, does not mean that irCR, irPR, or irSD

may not be achieved at the next consecutive time point.

If a patient is classified as having irPD, confirmation by a second scan in the

absence of rapid clinical deterioration is required. Thus, disease progression is

confirmed by an increase in tumor burden of �25% over baseline at two consecu-

tive time points �4 weeks apart33–35. For complete details of the new irRC, see

Table 15.1, adapted from Wolchok et al.33.

15.4 Progression-Free Survival Versus Overall Survival

Progression free survival (PFS) versus overall survival (OS) as an appropriate

endpoint in clinical trials has been debated in the literature for several years36.

PFS is measured as the time elapsed between initiation of treatment and tumor

progression or death from any cause, with censoring of patients who are lost to

follow-up. PFS is often seen as a more attractive endpoint for clinical trials than OS,

as well as a surrogate marker for OS, because it can be determined earlier, is less

Table 15.1 Description of immune-related response criteria (irRC) (adapted from Wolchok

et al.33)

Measurable response

by tumor volume

Nonmeasurable response (non-index

lesions; new, nonmeasurable lesions)

Overall response

by irRC

100 % decrease Absent irCR

�50 % decrease Any irPR

<50 % decrease to �25 % increase Any irSD

>25 % increase Any irPD

irCR ¼ complete disappearance of all indexed and new, measurable lesions

irPR ¼ �50 % decrease in tumor volume from baseline

irSD ¼ does not meet criteria for irCR or irPR, in absence of irPD

irPD ¼ >25 % increase in tumor volume from nadir
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influenced by competing causes of death, and is not influenced by second-line

treatments. Unlike OS, which is a definitive measurement, disease progression

may be subject to measurement errors. Accurate determination of the starting

point of disease progression can be problematic, and the quality of PFSmeasurement

can vary among centers and investigators. In addition, the date of progression is in

fact a proxy for the true time of progression, which occurs at an unknown point

between two successive radiological assessments37. Finally, while RECIST is a

useful tool for determining antitumor activity, improving survival or quality of life

should be the ultimate goal of all cancer therapeutics26. While improved PFS

without the benefit of improved OS has led to approval by the US Food and Drug

Administration of several drugs, including bevacizumab for metastatic breast can-

cer38, evidence of the unreliability of PFS as an endpoint in clinical trials is seen in

the fleeting effects of bevacizumab in the adjuvant treatment of colon cancer39. Over

2,500 men with stages II and III colon cancer were treated with adjuvant chemother-

apy with or without bevacizumab administered for either 6 or 12 months. Initially,

there was a suggestion that patients on bevacizumab for 12 months had a higher rate

of PFS after 1 year; however, the superior PFS result was no longer significant at a

later follow-up.

Data from numerous trials of vaccine monotherapy, as well as data from

clinical trials combining chemotherapy and cancer vaccines, suggest that in trials

involving vaccines, PFS and time to progression (TTP) may not be appropriate

endpoints10, 32, 40, 41. We have recently seen that cancer vaccines can improve

OS without significant changes in PFS. A randomized placebo-controlled phase

III trial of sipuleucel-T and a phase II study of the vector-based vaccine PSA-

TRICOM are good examples of the importance of appropriate endpoints. The

sipuleucel-T trial initially failed to meet its primary endpoint of PFS; however, it did

provide evidence of longer OS (25.8 months vs. 21.7 months; P ¼ 0.032)9, 42–44.

This advantage was confirmed in a larger OS endpoint study40. Likewise, the PSA-

TRICOM study failed to meet its primary endpoint of improved TTP determined by

new or enlarging soft tissue tumors or bone metastasis (TTP), but a survival analysis

indicated a clear clinical benefit for the vaccine. The median OS was 8.5 months

longer in the vaccine arm compared to the control arm (P ¼ 0.016), suggesting that

in spite of a lack of improved TTP, there was a long-term survival advantage for

patients treated with PSA-TRICOM10. A confirmatory OS endpoint study opened in

2011 with final results pending.

Finally, similar data were recently demonstrated with another immunotherapy.

Ipilimumab is a humanized monoclonal antibody targeting CTLA-4, a cell-surface

marker upregulated on T cells following activation. Ipilimumab blocks the negative

signaling through CTLA-4 that leads to a turning off of the immune response. In a

randomized controlled phase III trial in metastatic melanoma, use of ipilimumab

led to improved OS without an improvement in median TTP45.

Growing public concern about the cost of health care may make it harder to

justify the use of agents that improve PFS but do not improve OS. Thus, appropriate

endpoints in clinical studies are vital to understanding the benefits of emerging

immunotherapeutic agents used alone or in combination with cytoreductive

therapies.
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15.5 Effect of Immunotherapy on Kinetics of Tumor Growth

A review of several prostate cancer clinical trials conducted at the NCI in the last

decade revealed interesting findings on PSA kinetics. For patients treated with

chemotherapy, there was a very close relationship between time on treatment and

survival. After treatment was discontinued, pretreatment PSA kinetics resumed,

and time to death was predictable based on similar pre- and posttreatment PSA

trajectories. For patients treated with PSA-TRICOM vaccine, PSA kinetics did not

immediately change while on treatment, but time of death was well beyond what

was predicted by the models (Fig. 15.1).

Although immune responses can be initiated within 3 months of receiving a

vaccine, it appears that these responses are not sufficient to significantly reduce

tumor size, but may eventually decrease tumor growth velocity. Moreover, it is

possible that the immune response most relevant to antitumor therapy may not be

the one targeted by the vaccine, but a new immune response to other tumor antigens

in a phenomenon known as antigen cascade or antigen spreading46, 47. For instance,

the initial immune response to a vaccine can lead to T cell-mediated killing of

tumor cells, causing antigen-presenting cells (APCs) to take up dying tumor cells

and present other more relevant antigens to the immune system. This broader

antitumor immune response may be more clinically relevant and may lead to a

Fig. 15.1 Tumor growth is a dynamic biologic process that is the combined result of cells dividing

and other cells dying. Chemotherapy (red line) affects the tumor growth rate only while it is being

administered, which may result in a dramatic but transient response. When chemotherapy is

discontinued, the growth rate returns to its pretreatment slope, driven by the underlying tumor

biology. Immunotherapy (blue line), on the other hand, can alter host biology by inducing an active

antitumor immune response, including a memory response. This may not cause an immediate or

dramatic change in tumor burden, but continued, cumulative pressure that slows tumor growth

rate, especially if started early in the disease course, may lead to substantially longer overall

survival. Arrow indicates initiation of treatment; cross indicates time of death from cancer.

(Adapted from Madan et al.41).
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slower tumor growth rate. Furthermore, this immune response can be maintained or

even augmented following subsequent therapies48.

Unlike chemotherapy, which acts directly on the tumor, cancer immunotherapies

demonstrate new kinetics that involve building a cellular immune response,

delaying tumor progression, and potentially resulting in improved survival. Several

mechanisms have been proposed for this phenomenon12, 41, 48. Subsequent

therapies may alter the expression of TAAs on tumor cells, making them more

susceptible to immune-mediated cell killing, or may enhance the immune response

by depleting immune regulatory mechanisms. Chemotherapy-induced cytolysis

may expose an activated immune response to additional antigens that can then be

targeted in a broader immune response or may trigger a molecular “danger signal”

that leads to an enhanced immune response49, 50. As seen in the IMPACT trial of

sipuleucel-T, the separation of Kaplan-Meier curves occurs approximately 8months

after randomization (Fig. 15.2)40.

15.6 Immunotherapy and Statistical Concept of Relevance

There has been a significant effort to define pathways and harmonize methods for

translational cancer immunotherapy. The Translational Research Working Group

published a recommended pathway incorporating various milestones in a flowchart

algorithm for translating potential immunologic therapies from the bench to use in

clinical trials51. A proposed guide to therapeutic cancer vaccine development was

recently published by the Cancer Vaccine Clinical Trial Working Group52.

Fig. 15.2 IMPACT trial: Kaplan–Meier estimates of overall survival. Yellow line represents

sipuleucel-T group (n ¼ 341) and gray line placebo group (n ¼ 171) (hazard ratio for death in the

sipuleucel-T group, 0.78; 95% confidence interval [CI], 0.61 to 0.98; P ¼ 0.03). Separation of

Kaplan–Meier curves occurs approximately 8 months after randomization. (Figure reprinted by

permission from Kantoff et al., NEJM, 201040).
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Proof-of-principle trials are exploratory and share aspects of conventional phase I

and II trials. They should be conducted in well-defined and selected patient

populations and should investigate disease-specific biologic parameters. Objectives

should be to initiate a safety database, determine dose and schedule, and demonstrate

biologic activity, defined as any effect of the vaccine on the target disease or host

immune system, using biologic markers such as clinical, molecular, or immune

response as study endpoints. Immune response is confirmed if demonstrated in two

separate, established, and reproducible assays at two consecutive follow-up time

points after the baseline assessment. If proof-of-principle trials show such an immune

response or other biologic or clinical activity, efficacy trials may be initiated.

A noncomparative phase II trial may use a single group with a historical control.

Statistical power to compare outcomes is limited due to small sample sizes, which

may not allow definitive conclusions about the superiority of either arm. A phase II

trial may also be comparative, powered to show a statistically significant difference

between two arms in a well-defined patient population using a well-defined measure

of primary outcome. If positive and well conducted, comparative randomized phase

II trials can provide evidence of efficacy.

A comparative randomized phase II trial with adaptive component is the phase II

component of a phase II/III trial aiming to demonstrate the efficacy of a novel

product. It has the stringency, prospective design, and planned conduct of a

conventional phase III trial. The phase II component has a specific finish at a

prospectively defined trigger point of efficacy. If a prospectively defined efficacy

goal is achieved, it will trigger activation of a full phase III trial. If the prospectively

defined efficacy goal is not achieved, the study will be terminated.

Defining the trigger point and the parameters to measure is crucial. A trigger

point is prospectively defined and may be relatively complex. For example, a trial

may use a less definitive endpoint in the first phase (e.g., molecular response),

which triggers expansion of the study and a more definitive endpoint (e.g., OS) in

the second phase, demonstrating efficacy in the expanded study. Trigger points

may not be fully statistically powered to demonstrate superiority and may be

independent of the primary efficacy endpoint. Independence of endpoints may

avoid paying a statistical penalty.

Adaptation of such a trial may entail not only adjusting sample size but also

modifying eligibility criteria to focus on a specific population. Depending on the

developmental path of the product under study and findings from earlier trials,

more than one efficacy trial may be needed. The concept of efficacy trials allows

for early assessment of vaccine efficacy and more rapid and informed development

of cancer vaccines.

15.7 Biological Markers as Intermediate Endpoints

Current knowledge suggests that immune protection against cancer is likely a

balanced interaction of cellular and humoral immune responses. If a vaccine targets

a specific TAA and a subsequent immune response results in a vigorous attack on a
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separate TAA via antigen cascade, it may be difficult to know which TAA the

immune system is attacking and therefore which to assess. As previously

demonstrated, an antigen cascade following a vaccine-mediated immune response

may result in the targeting of multiple antigens not specified by that particular

vaccine46. In addition, the most relevant TAAmay vary among patients treated with

the same therapeutic cancer vaccine. Thus, if only the response to a specific TAA is

assessed, the actual benefit of the vaccine may be underestimated.

Identifying intermediate (surrogate) endpoint biomarkers is absolutely essential

to accelerating development of novel treatments for all cancers, but is particularly

crucial for cancer vaccines. Intermediate endpoint biomarkers have been pivotal in

the approval of drugs for diabetes and chronic myeloid leukemia (CML). The rapid

development of ABL inhibitors and their expedited regulatory approval was also

due, at least in part, to the availability of highly specific and sensitive biomarkers of

response and clinical outcome. Unfortunately, unlike CML, most malignancies do

not yet have such easily measurable biomarkers53.

It is naturally difficult for patients and clinicians to observe tumor progression

while waiting for a delayed, long-term therapeutic benefit. And since therapeutic

cancer vaccines may never cause an immediate, easily measurable antitumor

response, there is an urgent need to develop standardized biomarkers to predict

who will likely go on to develop clinical benefit in the absence of an immediate

clinical response. Many immunoassays and biomarkers (Table 15.2) have been

described in the literature, but none has yet been prospectively validated to

correspond with clinical outcomes.

In summary, improved biomarkers that can serve as generalized markers of

immune response or as intermediate and surrogate endpoints are urgently needed.

These biomarkers would help to identify patient benefit earlier in treatment, guide

decisions to discontinue ineffective strategies, and identify active anticancer drugs

more efficiently. It would be particularly advantageous if such biomarkers could be

measured easily, rapidly, and frequently. See chapter 14 for many additional

details.

15.8 Preclinical Models in the Development

of Immunotherapeutic Drugs

The challenge in developing a cancer vaccine is effective antigen presentation

that elicits antitumor immune responses without triggering autoimmunity. Murine

cancer models have been extremely useful for analyzing the biology of pathways

involved in cancer initiation, promotion, and progression. However, they do not

always adequately represent the many features that define cancer in humans,

including long periods of latency, genomic instability, and the heterogeneity of

tumor cells and their microenvironment. Most importantly, the complex biology of

cancer recurrence and metastasis, integral to outcomes in human patients, is not
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adequately reproduced in conventional mouse models used in cancer drug develop-

ment. The process of developing and approving novel cancer drugs is lengthy and

expensive, making animal models that better represent human disease an urgent

necessity68.

Several characteristics of transplantable tumors limit their applicability in immu-

notherapy trials. Most transplantable tumors were derived many years ago, andmouse

strains that were once syngeneic with these tumors may no longer be so. In addition,

some transplantable tumors have picked up endogenous viruses and express viral

antigens not expressed by their mouse hosts. Therefore, many transplantable tumors

may be partially histoincompatible with their “syngeneic” mouse host and/or contain

Table 15.2 Commonly used immune assays and biomarkers54

Assay Description Disadvantages

Chromium

release assay

Determines ability of CD8+ cells to

lyse target cells

Labor-intensive, can use only fresh

PBMCs

Tetramers Measure absolute number of cells

that can recognize a particular

epitope55

Cannot provide information about

functionality

The exact epitope and MHC class I

molecule must be known

ELISPOT Measures IFN-g response to antigens

(functional information). Has low

limits of detection56

Significant variability among

institutions and readers, restricted

to certain HLA types

TAA-specific, not useful for

immunotherapy with whole tumor

vaccines, cytokines, or

antibodies57–59

CFC (cytokine

flow

cytometry)

Cytokines produced by T cells and

trapped in the cell can be analyzed

by flow cytometry

Nonspecific background staining

Limit of detection is one antigen-

specific T cell:10000 PBMCs

Tregs Develop in the thymus, do not

produce IL-260
FoxP3 is most accepted marker61

Presence of small populations of

FoxP3– TregsMajor role is to suppress other

immune cells62

Myeloid-derived

suppressor

cells

(MDSCs)

CD14–CD11b+ cells Not clear whether MDSCs mediate

antigen-specific or antigen-

nonspecific suppression of T cell

responses63

MDSCs correlate with more

aggressive disease and a poor

prognosis64

Cytokine

measurement

Evaluates cytokine production by

measuring mRNA (RT-PCR)

Requires destruction of the immune

cell, which prevents determination

of T cell specificity65

T cell

proliferation

assay

Enhanced T cell proliferation appears

to be associated with improved

outcomes40

Poor sensitivity; thus remains unclear

if absence of such responses

precludes benefit

CD54 (APC

activation)

CD54 expression after treatment

could be used to assess APC

engagement and vaccine

efficacy66, 67

Needs additional evaluation
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viral epitopes that make them significantly more immunogenic than naturally arising

human tumors. Second, transplanted tumors are typically inoculated subcutaneously

or intravenously and therefore do not grow in the anatomically appropriate site. As a

result, the animal model does not mimic the organ-specific physiology characteristic

of the tumor, and the animal immune system is not exposed to the tumor in a manner

comparable to that of naturally occurring malignancies in patients. Third,

transplantable tumors generally progress very rapidly following inoculation, whereas

spontaneous human tumors usually develop more slowly through a gradual series

of cellular changes from premalignant to malignant pathologies. Therefore, the

human immune system slowly acclimates to tumors, whereas the immune system of

experimental animals is abruptly exposed to transplanted tumors. Fourth, for patients

with solid tumors, disseminated metastatic disease is frequently the predominant

cause of death, and many cancer vaccines and immunotherapies are aimed at reducing

and/or preventing metastasis. Most transplantable mouse tumors, however, are not

spontaneously metastatic, so vaccine efficacy studies using these models are not

particularly relevant for human metastatic disease.

Discovery of the nude mouse in 1962 was a major breakthrough for cancer

research because it allowed human tumors to be studied in another animal. Nude

mice are immunodeficient due to lack of a thymus, which is essential for the

production of T cells. Thus, they do not reject tumor transplantation from other

species. Transplanting a human tumor into a nude mouse allows for study of the

tumor in a whole animal system. Unfortunately, this model system cannot be used

to study therapeutic cancer vaccines, as they require an intact immune system.

Thus, many well-established models of human tumors in mice used for traditional

tumor-directed therapies are irrelevant in therapies directed at generating an

antitumor immune response.

The most clinically relevant studies are in spontaneous tumor models where

tumors arise in an appropriate tissue background, in a host conditioned by the

physiological events of neoplastic progression and tumorigenesis, and in the

context of a viable immune system. Major drawbacks to the spontaneous tumor

models are the amount of time needed to obtain results and the very real possibility

of not attaining a complete remission. Paradoxically, the value of this approach is

that complete remissions are as elusive in humans as they are in laboratory animals.

Solid tumors escape the immune system through many mechanisms, such as

downregulation of costimulatory molecules (CD80 and CD86) or MHC class I,

secretion of immunosuppressive proteins such as TGF-b and IL-10, failure of

immune cells to access the tumors, development of immune cell anergy, failure

to respond to antigenic stimulation, or failure to overcome immune tolerance.

Learning how to counteract some of these escape mechanisms in spontaneous

murine tumors would be valuable in the treatment of human tumors.

Unfortunately, many of these tumor models are not predictive of results in

human clinical trials, as numerous therapies that look promising in experimental

animals have turned out to be ineffective in humans.
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15.9 Combination Therapies

Although therapeutic cancer vaccines hold great promise, their ultimate utility may

be in combining them with other standard therapeutic interventions. Increasing data

suggest that immune-mediated tumor killing induced by cancer vaccines can be

enhanced and promoted by conventional anticancer therapies. Standard treatments

may upregulate MHC molecules and TAA expression or may induce apoptosis

by increasing the expression of death receptors (such as Fas, TNF receptor, and

TNF-related ligand receptors)48, 69. Currently, many treatment modalities are being

investigated in combination with vaccines, including radiation, chemotherapy,

hormonal therapy, and targeted molecular inhibitors (Table 15.3).

The combination of radiation and vaccine has been investigated in several

clinical trials86. In a clinical study in men with localized prostate cancer, a

vector-based vaccine plus standard radiation generated an immune response. In

this small study, 11 patients received radiation alone and 19 patients received the

combination regimen of vaccine and radiation. Of the 17 patients who completed all

8 scheduled vaccinations, 13 showed increases of �threefold in PSA-specific

CTLs, which was superior to responses induced by radiation alone46. In another

phase I clinical trial, patients with advanced hepatoma were administered 8 Gy

of radiation, followed 2 days later by an intratumoral injection of autologous

immature dendritic cells. Of the 14 patients enrolled, 4 had minor responses and

2 had partial responses, including a patient whose a-fetoprotein (AFP) levels

decreased from 128 to 1.6 ng/ml. Evaluation of immune response in 10 patients

showed 6 with increased natural killer (NK)-cell activity, 8 with increased AFP-

specific immune responses as measured by cytokine-release assay, and 7 with

increased AFP-specific immune responses by ELISPOT87.

Mercader et al. studied 33 patients with biopsy-proven clinical stages T1 to T2b

prostate adenocarcinoma without prior hormone therapy or a history of immuno-

suppressive medications or disease79. Seven patients were randomized to a control

group that received no treatment. The remaining 26 patients were randomized to

Table 15.3 How standard therapies may enhance therapeutic cancer vaccines

Modality Proposed mechanism of action

Radiation

therapy

Postirradiation-induced upregulated genes: Fas, MHC class I, and

ICAM-170–72

Chemotherapy Upregulation of MHC class I and TAAs on the surface of tumor cells,73–75

depletion of regulatory T cells (Tregs) (cyclophosphamide)76, increase in

macrophage antitumor activity and apoptosis (doxorubicin) 77, increase in

proinflammatory cytokine production (docetaxel)78

Hormonal

therapy

Induction of T cell infiltration in human prostate79, enhancement of T cell

repertoire, abrogation of immune tolerance80–82, increase in

proinflammatory cytokines, and enhancement of CTL stimulation by

reducing the number of Tregs83

Targeted

therapeutics

Alteration of balance between effector T cells and Tregs/decrease in Treg

function (sunitinib, pan-BCL-2 inhibitor GX15-070)84, 85
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receive preoperative androgen-ablative therapy for 7 (n ¼ 7), 14 (n ¼ 7), 21

(n ¼ 5), or 28 (n ¼ 7) days. Mean CD3+ T cell levels within prostate tissues in

patients treated with androgen ablation for 7 or 14 days were twofold greater than

the control value of T cells within untreated prostate tissues (P ¼ 0.027). At day 21

of therapy, mean T cell numbers within the prostate exceeded the mean control

value by nearly fivefold (P ¼ 0.0013). At day 28 of therapy, T cell levels appeared

to decline slightly from the 21-day value, but remained well above the control value

(P ¼ 0.035).

Cytotoxic chemotherapy currently plays an important role in the conventional

treatment of solid tumors. While the primary benefit of chemotherapy derives from

its cytotoxic properties, it may also alter tumors phenotypically, enhancing TAA

andMHC class I expression, both of which can make cancer cells more amenable to

vaccine-induced CTL activity73–75, 88, 89. Exposure and subsequent immune

response to such an antigen cascade could broaden antitumor immune responses

and enhance clinical benefit46, 90. There has long been concern that chemotherapy

may limit an immune response. However, a phase II clinical trial in metastatic

prostate cancer demonstrated that this was not the case. Patients were randomized

to receive vaccine alone or vaccine with weekly docetaxel. The results of this study

showed an equal increase in PSA-specific CTLs in both arms following 3 months of

therapy. Furthermore, immune responses to other prostate cancer-associated TAAs

were also detected postvaccination91.

Administering vaccine prior to chemotherapy may take advantage of the

dynamic immune response to TAAs initiated by the vaccine. Subsequent chemo-

therapy may yield the benefits of cytotoxicity in combination with an ongoing

(and perhaps potentiated) immune response. Studies in murine models have

indicated that vaccine in combination with docetaxel has a greater antitumor effect

than either agent alone90.

There is a common perception that because many patients treated with a vaccine

receive chemotherapy after progression, the chemotherapy alone is actually improv-

ing survival, not the antitumor immune response generated by the vaccine. Yet

strong preclinical and emerging clinical data suggest that this perception is inaccu-

rate. Several follow-up studies in vaccine trials have also indicated that patients

treated with a vaccine do better than expected on subsequent chemotherapy92, 93. It is

unclear whether this secondary response is due to the cytotoxic therapy’s depletion

of Tregs that hinder an immune response or that an immune response is enhancing

the effect of subsequent hormonal therapy or chemotherapy. Clinical trials are being

planned to prospectively validate the benefits of vaccine followed by chemotherapy.

One such trial is ECOG E1809, a multicenter randomized phase II trial of docetaxel

with or without PSA-TRICOM vaccine in patients with metastatic castration-

resistant prostate cancer. Eligible patients have a life expectancy of �18 months

by the Halabi nomogram94. Patients are randomized to 3 months of PSA-TRICOM

vaccine followed by docetaxel and prednisone versus docetaxel and prednisone up

front, with median OS as the primary endpoint. Secondary endpoints are time to

radiographic progression, objective response, PSA response, immune response, and

association between PSA-specific immune responses, TTP, and OS. This trial was

initiated in late 2010 and will enroll 135 patients95.
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15.10 Pitfalls of Translating Preclinical Research into the Clinic

Development of anticancer drugs requires translating information gained from

basic research into improved clinical practice by way of clinical trials. Successful

drug development starts by identifying targets that cancer cells are absolutely

reliant on, so that when these functions are blocked, there is a lethal or cytostatic

effect. Once a target has been established, the issue of in vivo validation arises.

Traditionally, this has involved treating mice xenotransplanted with human cancer

cell lines. Although these models are useful in defining an agent’s potential

pharmacological properties, in general, they have limited value in defining the

potential efficacy of an agent in treating human cancer53. There are a number of

challenges to be met before new agents can be used in clinical trials. Preclinical

studies must demonstrate safety and efficacy, but as mentioned previously, animal

models do not always predict how humans will respond to the same intervention.

One example of this challenge is TGN1412 (TeGenero AG; Wurzburg, Germany).

TGN1412 is a humanized superagonist that works by overriding the body’s natural

two-step immune signaling system, required for activating naive T cells, by binding

to CD28 (T cell coreceptor) cells and triggering a direct T cell immune response.

It was developed as a treatment for rheumatoid arthritis, leukemia, and multiple

sclerosis, and was supposed to be a new class of monoclonal antibody (mAb)

designed to stimulate rather than dampen the immune system.

A phase I clinical trial of TGN1412 was initiated in healthy volunteers in March

200696. Six individuals were infused simultaneously at a dose of 0.1 mg/kg. All of

them rapidly became critically ill, developing life-threatening multiorgan failure

attributable to massive cytokine release. Investigations have excluded contamina-

tion and suggested that the adverse events were true biological effects of the agent.

This catastrophic phase I clinical trial has raised serious concerns about the

adequacy of the preclinical tests routinely used during the development of novel

biologic drugs. The toxicity of TGN1412 is reminiscent of that seen with anti-CD3

mAbs, such as OKT3, which also bypass the need for antigenic stimulation97.

The agent had not caused serious toxicity in cynomolgus monkeys, even at doses

500-fold greater than those given to human volunteers. Moreover, in vitro effects of

TGN1412 on human and primate T cells appeared to be equivalent98. There is

no explanation for why the dramatic toxicity seen in humans was not seen in

preclinical primate studies. Although human and cynomolgus CD28 cells share

identical TGN1412-binding epitopes, there are probably small but potentially

significant amino acid differences in other domains of the molecules96.

It is standard practice to introduce new anticancer agents to one or two patients at

a time. However, there is growing concern that new agents in first-in-human trials

should be administered to patients sequentially, with an appropriate period of

observation between dosing of individuals. New rules for testing investigational

drugs in humans allow for phase 0 or exploratory trials. These are brief trials lasting

several days in which human subjects are given very low doses of experimental

drugs before standard in vitro and animal tests are completed. Phase 0 studies do not
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examine safety or efficacy, but gather data on the targeting, action, and metabolism

of a drug in the body. The goal is twofold: to identify and select potential candidates

early on and to generate data that will aid in the design of smarter phase I studies of

promising compounds. Phase 0 trials would benefit pharmaceutical manufacturers,

who are frequently forced to rely on animal data alone to choose one drug from a

panel of candidates to advance to phase I trials. It could also alter the manner in

which such drugs are tested on human volunteers in early-stage trials.

There is clearly an urgent need to accelerate translation of preclinical research

into improved therapeutic strategies. Critical to future progress will be an increased

understanding of tumor biology, identification of key molecular targets, and the

discovery and clinical development of rationally designed anticancer drugs. Proper

patient selection and establishment of proof of concept could minimize the risk of

late and costly drug attrition due to disease heterogeneity, accelerate patient benefit,

improve drug approval registration strategies, and result in more frequent and less

costly anticancer drug approvals. Disasters such as the TGN1412 trial should be

occasions for learning, but should not inhibit efforts to explore new therapies for

cancer patients.

15.11 Conclusion

Therapeutic cancer vaccines have been in development for several decades, initially

with disappointing results. Recent trials in prostate cancer have renewed hope that

initiating an active immune response with a therapeutic cancer vaccine can have

long-term clinical benefit for cancer patients. The generally indolent nature of

prostate cancer, and a dearth of effective systemic treatments for metastatic disease,

may explain why vaccines have been more successful in prostate cancer than in

other types of cancer. A broader application of vaccines in prostate cancer, plus

experience with many more patients, may propel the development of appropriate

biomarkers to assess immune response and lead to the effective use of vaccines in

other cancers.

Cancer vaccines generate a cellular immune response that results in altered

tumor growth curves and prolonged survival. They have thus changed our under-

standing of the kinetics of immune response. However, much work remains to be

done. First, cellular immune response assays must be standardized and validated as

reproducible biomarkers that can be correlated with clinical outcomes. Second, the

new irRC, which are able to capture more complex response patterns, should

replace RECIST. irRC assess tumor burden as a continuous variable, accounting

for index lesions identified at baseline and new lesions that occur after initiation

of treatment, based on bidimensional measurements of each lesion. Third, new

statistical models describing hazard ratios as a function of time and recognizing

differences before and after the separation of Kaplan-Meier curves should be

developed to evaluate phase III trials.
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It is hoped that the initial successes in prostate cancer will spur investigators to

employ vaccines in the treatment of other cancers as well. The use of vaccines in

combination with standard therapies may lead to greater benefit than with either

treatment alone. Additional clinical trials are required to answer many of these

questions, but immune-mediated antitumor treatment may one day be as common

as treatment with mAbs and targeted molecular agents, which were also relegated at

one time to the realm of mere scientific curiosity. Therapeutic cancer vaccines,

which have few side effects and the potential to generate long-term immune

responses that add clinical benefit to subsequent therapies, have already transformed

cancer care and hold the promise of revolutionizing future cancer treatments.

References

1. Oliver RT, Nouri AM (1992) T cell immune response to cancer in humans and its relevance for

immunodiagnosis and therapy. Cancer Surv 13:173–204

2. Hellstrom IE, Hellstrom KE, Pierce GE, Bill AH (1968) Demonstration of cell-bound and

humoral immunity against neuroblastoma cells. Proc Natl Acad Sci USA 60(4):1231–1238

3. Vose BM, Moore M (1985) Human tumor-infiltrating lymphocytes: a marker of host response.

Semin Hematol 22(1):27–40

4. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from

T-cell recognition: molecular mechanisms and functional significance. Adv Immunol

74:181–273

5. Tanaka K, Tanahashi N, Tsurumi C, Yokota KY, Shimbara N (1997) Proteasomes and antigen

processing. Adv Immunol 64:1–38

6. Hammer GE, Kanaseki T, Shastri N (2007) The final touches make perfect the peptide-MHC

class I repertoire. Immunity 26(4):397–406

7. Chomarat P, Banchereau J (1998) Interleukin-4 and interleukin-13: their similarities and

discrepancies. Int Rev Immunol 17(1–4):1–52

8. Parmiani G, Russo V, Marrari A et al (2007) Universal and stemness-related tumor antigens:

potential use in cancer immunotherapy. Clin Cancer Res 13(19):5675–5679

9. Small EJ, Schellhammer PF, Higano CS et al (2006) Placebo-controlled phase III trial of

immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic

hormone refractory prostate cancer. J Clin Oncol 24(19):3089–3094

10. Kantoff PW, Schuetz TJ, Blumenstein BA et al (2010) Overall survival analysis of a phase II

randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic

castration-resistant prostate cancer. J Clin Oncol 28(7):1099–1105

11. Schellhammer P, Higano C, Berger E, et al. A randomized, double-blind, placebo-controlled,

multi-center, phase III trial of sipuleucel-T in men with metastatic, androgen independent

prostatic adenocarcinoma (AIPC) [abstract]. Available from: http://www.aua2009.org/program/

lbsciforum.asp

12. Schlom J, Arlen PM, Gulley JL (2007) Cancer vaccines: moving beyond current paradigms.

Clin Cancer Res 13(13):3776–3782

13. Eaton JD, Perry MJ, Nicholson S et al (2002) Allogeneic whole-cell vaccine: a phase I/II study

in men with hormone-refractory prostate cancer. BJU Int 89(1):19–26

14. Ward JE, McNeel DG (2007) GVAX: an allogeneic, whole-cell, GM-CSF-secreting cellular

immunotherapy for the treatment of prostate cancer. Expert Opin Biol Ther 7(12):1893–1902

15. Madan RA, Gulley JL, Schlom J et al (2008) Analysis of overall survival in patients

with nonmetastatic castration-resistant prostate cancer treated with vaccine, nilutamide, and

combination therapy. Clin Cancer Res 14(14):4526–4531

470 M. Bilusic et al.



16. Hsu FJ, Caspar CB, Czerwinski D et al (1997) Tumor-specific idiotype vaccines in the

treatment of patients with B-cell lymphoma–long-term results of a clinical trial. Blood

89(9):3129–3135

17. Riethmuller G, Holz E, Schlimok G et al (1998) Monoclonal antibody therapy for resected

Dukes’ C colorectal cancer: seven-year outcome of a multicenter randomized trial. J Clin

Oncol 16(5):1788–1794

18. Morton DL, Ollila DW, Hsueh EC, Essner R, Gupta RK (1999) Cytoreductive surgery and

adjuvant immunotherapy: a new management paradigm for metastatic melanoma. CA Cancer

J Clin 49(2):101–116, 65

19. Fu T, Shen Y, Fujimoto S (2000) Tumor-specific CD4(+) suppressor T-cell clone capable of

inhibiting rejection of syngeneic sarcoma in A/J mice. Int J Cancer 87(5):680–687

20. Ghiringhelli F, Larmonier N, Schmitt E et al (2004) CD4+CD25+ regulatory T cells suppress

tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of

established tumors to be curative. Eur J Immunol 34(2):336–344

21. Teicher BA (2007) Transforming growth factor-beta and the immune response to malignant

disease. Clin Cancer Res 13(21):6247–6251

22. Muller AJ, Prendergast GC (2007) Indoleamine 2,3-dioxygenase in immune suppression and

cancer. Curr Cancer Drug Targets 7(1):31–40

23. von Mehren M, Arlen P, Gulley J et al (2001) he influence of granulocyte macrophage colony-

stimulating factor and prior chemotherapy on the immunological response to a vaccine

(ALVAC-CEA B7.1) in patients with metastatic carcinoma. Clin Cancer Res 7(5):1181–1191

24. Madan RA, Mohebtash M, Schlom J, Gulley JL (2010) Therapeutic vaccines in metastatic

castration-resistant prostate cancer: principles in clinical trial design. Expert Opin Biol Ther 10

(1):19–28

25. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to

treatment in solid tumors. European Organization for Research and Treatment of Cancer,

National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl

Cancer Inst 92(3):205–216

26. Therasse P, Eisenhauer EA, Verweij J (2006) RECIST revisited: a review of validation studies

on tumour assessment. Eur J Cancer 42(8):1031–1039

27. Gulley JL, Arlen PM, Tsang KY et al (2008) Pilot study of vaccination with recombinant

CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin

Cancer Res 14(10):3060–3069

28. Jones RL, Cunningham D, Cook G, Ell PJ (2004) Tumour vaccine associated lymphadenopa-

thy and false positive positron emission tomography scan changes. Br J Radiol 77(913):74–75

29. Loveland BE, Zhao A, White S et al (2006) Mannan-MUC1-pulsed dendritic cell immuno-

therapy: a phase I trial in patients with adenocarcinoma. Clin Cancer Res 12(3 Pt 1):869–877

30. Saenger YM, Wolchok JD (2008) The heterogeneity of the kinetics of response to ipilimumab

in metastatic melanoma: patient cases. Cancer Immun 8:1

31. Weber J, Thompson JA, Hamid O et al (2009) A randomized, double-blind, placebo-

controlled, phase II study comparing the tolerability and efficacy of ipilimumab administered

with or without prophylactic budesonide in patients with unresectable stage III or IV

melanoma. Clin Cancer Res 15(17):5591–5598

32. Wolchok JD, Neyns B, Linette G et al (2010) Ipilimumab monotherapy in patients with

pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-

ranging study. Lancet Oncol 11(2):155–164

33. Wolchok JD, Hoos A, O’Day S et al (2009) Guidelines for the evaluation of immune therapy

activity in solid tumors: immune-related response criteria. Clin Cancer Res 15(23):7412–7420

34. Hoos A, Eggermont AM, Janetzki S et al (2010) Improved endpoints for cancer immunotherapy

trials. J Natl Cancer Inst 102(18):1388–1397

35. Finke LH, Wentworth K, Blumenstein B, Rudolph NS, Levitsky H, Hoos A (2007) Lessons

from randomized phase III studies with active cancer immunotherapies–outcomes from the

2006 meeting of the Cancer Vaccine Consortium (CVC). Vaccine 25(suppl 2):B97–B109

15 Issues in Pre-clinical Models, Clinical Trial Design and Analytical. . . 471



36. Tang PA, Bentzen SM, Chen EX, Siu LL (2007) Surrogate end points for median overall

survival in metastatic colorectal cancer: literature-based analysis from 39 randomized controlled

trials of first-line chemotherapy. J Clin Oncol 25(29):4562–4568

37. Panageas KS, Ben-Porat L, Dickler MN, Chapman PB, Schrag D (2007) When you look

matters: the effect of assessment schedule on progression-free survival. J Natl Cancer Inst

99(6):428–432

38. Miller K, Wang M, Gralow J et al (2007) Paclitaxel plus bevacizumab versus paclitaxel alone

for metastatic breast cancer. N Engl J Med 357(26):2666–2676

39. Wolmark N, Yothers G, O’Connell M et al (2009) A phase III trial comparing mFOLFOX6 to

mFOLFOX6 plus bevacizumab in stage II or III carcinoma of the colon: results of NSABP

Protocol C-08 [abstract]. J Clin Oncol 27:18s, LBA4

40. Kantoff PW, Higano CS, Shore ND et al (2010) Sipuleucel-T immunotherapy for castration-

resistant prostate cancer. N Engl J Med 363(5):411–422

41. Madan RA, Gulley JL, Fojo T, Dahut WL (2010) Therapeutic cancer vaccines in prostate

cancer: the paradox of improved survival without changes in time to progression. Oncologist

15(9):969–975

42. Burch PA, Breen JK, Buckner JC et al (2000) Priming tissue-specific cellular immunity in a

phase I trial of autologous dendritic cells for prostate cancer. Clin Cancer Res 6(6):2175–2182

43. Burch PA, Croghan GA, Gastineau DA et al (2004) Immunotherapy (APC8015, Provenge)

targeting prostatic acid phosphatase can induce durable remission of metastatic androgen-

independent prostate cancer: a Phase 2 trial. Prostate 60(3):197–204

44. Small EJ, Fratesi P, Reese DM et al (2000) Immunotherapy of hormone-refractory prostate

cancer with antigen-loaded dendritic cells. J Clin Oncol 18(23):3894–3903

45. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients

with metastatic melanoma. N Engl J Med 363(8):711–723

46. Gulley JL, Arlen PM, Bastian A et al (2005) Combining a recombinant cancer vaccine with

standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res

11(9):3353–3362

47. Kudo-Saito C, Schlom J, Hodge JW (2005) Induction of an antigen cascade by diversified

subcutaneous/intratumoral vaccination is associated with antitumor responses. Clin Cancer

Res 11(6):2416–2426

48. Gulley JL, Madan RA, Arlen PM (2007) Enhancing efficacy of therapeutic vaccinations by

combination with other modalities. Vaccine 25(suppl 2):B89–B96

49. Ma Y, Kepp O, Ghiringhelli F et al (2010) Chemotherapy and radiotherapy: cryptic anticancer

vaccines. Semin Immunol 22(3):113–124

50. Zitvogel L, Apetoh L, Ghiringhelli F, Andre F, Tesniere A, Kroemer G (2008) The anticancer

immune response: indispensable for therapeutic success? J Clin Invest 118(6):1991–2001

51. Cheever MA, Schlom J, Weiner LM et al (2008) Translational Research Working Group

developmental pathway for immune response modifiers. Clin Cancer Res 14(18):5692–5699

52. Hoos A, Parmiani G, Hege K et al (2007) A clinical development paradigm for cancer vaccines

and related biologics. J Immunother 30(1):1–15

53. de Bono JS, Ashworth A (2010) Translating cancer research into targeted therapeutics. Nature

467(7315):543–549

54. Keilholz U, Martus P, Scheibenbogen C (2006) Immune monitoring of T-cell responses in

cancer vaccine development. Clin Cancer Res 12(7 Pt 2):2346s–2352s

55. Altman JD, Moss PA, Goulder PJ et al (1996) Phenotypic analysis of antigen-specific T

lymphocytes. Science 274(5284):94–96

56. Czerkinsky C, Andersson G, Ekre HP, Nilsson LA, Klareskog L, Ouchterlony O (1988)

Reverse ELISPOT assay for clonal analysis of cytokine production. I. Enumeration of

gamma-interferon-secreting cells. J Immunol Methods 110(1):29–36

57. Ryan JE, Ovsyannikova IG, Dhiman N et al (2005) Inter-operator variation in ELISPOT

analysis of measles virus-specific IFN-gamma-secreting T cells. Scand J Clin Lab Invest

65(8):681–689

472 M. Bilusic et al.



58. Cox JH, Ferrari G, Kalams SA, Lopaczynski W, Oden N, D’Souza MP (2005) Results of an

ELISPOT proficiency panel conducted in 11 laboratories participating in international human

immunodeficiency virus type 1 vaccine trials. AIDS Res Hum Retroviruses 21(1):68–81

59. Britten CM, Meyer RG, Kreer T, Drexler I, Wolfel T, Herr W (2002) The use of HLA-A*0201-

transfected K562 as standard antigen-presenting cells for CD8(+) T lymphocytes in

IFN-gamma ELISPOT assays. J Immunol Methods 259(1–2):95–110

60. Graca L (2005) New tools to identify regulatory T cells. Eur J Immunol 35(6):1678–1680

61. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the

transcription factor Foxp3. Science 299(5609):1057–1061

62. Wieczorek G, Asemissen A, Model F et al (2009) Quantitative DNA methylation analysis of

FOXP3 as a new method for counting regulatory T cells in peripheral blood and solid tissue.

Cancer Res 69(2):599–608

63. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the

immune system. Nat Rev Immunol 9(3):162–174

64. Lechner MG, Liebertz DJ, Epstein AL (2010) Characterization of cytokine-induced myeloid-

derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol

185(4):2273–2284

65. Hernandez-Fuentes MP, Warrens AN, Lechler RI (2003) Immunologic monitoring. Immunol

Rev 196:247–264

66. Sheikh NA, Jones LA (2008) CD54 is a surrogate marker of antigen presenting cell activation.

Cancer Immunol Immunother 57(9):1381–1390

67. Higano CS, Schellhammer PF, Small EJ et al (2009) Integrated data from 2 randomized,

double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with

sipuleucel-T in advanced prostate cancer. Cancer 115(16):3670–3679

68. Simon R (2008) Lost in translation: problems and pitfalls in translating laboratory observations

to clinical utility. Eur J Cancer 44(18):2707–2713

69. Ozoren N, El-Deiry WS (2003) Cell surface Death Receptor signaling in normal and cancer

cells. Semin Cancer Biol 13(2):135–147

70. Quarmby S, Hunter RD, Kumar S (2000) Irradiation induced expression of CD31, ICAM-1

and VCAM-1 in human microvascular endothelial cells. Anticancer Res 20(5B):3375–3381

71. Friedman EJ (2002) Immune modulation by ionizing radiation and its implications for cancer

immunotherapy. Curr Pharm Des 8(19):1765–1780

72. Chakraborty M, Abrams SI, Camphausen K et al (2003) Irradiation of tumor cells up-regulates

Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol

170(12):6338–6347

73. Aquino A, Prete SP, Greiner JW et al (1998) Effect of the combined treatment with

5-fluorouracil, gamma-interferon or folinic acid on carcinoembryonic antigen expression in

colon cancer cells. Clin Cancer Res 4(10):2473–2481

74. AbdAlla EE, Blair GE, Jones RA, Sue-Ling HM, Johnston D (1995) Mechanism of synergy of

levamisole and fluorouracil: induction of human leukocyte antigen class I in a colorectal

cancer cell line. J Natl Cancer Inst 87(7):489–496

75. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G (2008) Immunological aspects of cancer

chemotherapy. Nat Rev Immunol 8(1):59–73

76. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005)

Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response

by low-dose cyclophosphamide. Blood 105(7):2862–2868

77. Maccubbin DL, Wing KR, Mace KF, Ho RL, Ehrke MJ, Mihich E (1992) Adriamycin-induced

modulation of host defenses in tumor-bearing mice. Cancer Res 52(13):3572–3576

78. Chan OT, Yang LX (2000) The immunological effects of taxanes. Cancer Immunol

Immunother 49(4–5):181–185

79. Mercader M, Bodner BK, Moser MT et al (2001) T cell infiltration of the prostate induced

by androgen withdrawal in patients with prostate cancer. Proc Natl Acad Sci USA

98(25):14565–14570

15 Issues in Pre-clinical Models, Clinical Trial Design and Analytical. . . 473



80. Aragon-Ching JB, Williams KM, Gulley JL (2007) Impact of androgen-deprivation therapy on

the immune system: implications for combination therapy of prostate cancer. Front Biosci

12:4957–4971

81. Drake CG, Doody AD, Mihalyo MA et al (2005) Androgen ablation mitigates tolerance to a

prostate/prostate cancer-restricted antigen. Cancer Cell 7(3):239–249

82. Sutherland JS, Goldberg GL, Hammett MV et al (2005) Activation of thymic regeneration in

mice and humans following androgen blockade. J Immunol 175(4):2741–2753

83. Wang J, Zhang Q, Jin S et al (2009) Immoderate inhibition of estrogen by anastrozole

enhances the severity of experimental polyarthritis. Exp Gerontol 44(6–7):398–405

84. Lenahan C, Cho D, Bissonnette A et al (2008) Immunologic effects of sunitinib in renal cell

carcinoma [abstract]. J Clin Oncol 26(15S):14551

85. Farsaci B, Sabzevari H, Higgins JP et al (2010) Effect of a small molecule BCL-2 inhibitor on

immune function and use with a recombinant vaccine. Int J Cancer 127(7):1603–1613

86. Ferrara TA, Hodge JW, Gulley JL (2009) Combining radiation and immunotherapy for

synergistic antitumor therapy. Curr Opin Mol Ther 11(1):37–42

87. Chi KH, Liu SJ, Li CP et al (2005) Combination of conformal radiotherapy and intratumoral

injection of adoptive dendritic cell immunotherapy in refractory hepatoma. J Immunother

28(2):129–135

88. Fisk B, Ioannides CG (1998) Increased sensitivity of adriamycin-selected tumor lines to

CTL-mediated lysis results in enhanced drug sensitivity. Cancer Res 58(21):4790–4793

89. Matsuzaki I, Suzuki H, Kitamura M, Minamiya Y, Kawai H, Ogawa J (2000) Cisplatin induces

fas expression in esophageal cancer cell lines and enhanced cytotoxicity in combination with

LAK cells. Oncology 59(4):336–343

90. Garnett CT, Schlom J, Hodge JW (2008) Combination of docetaxel and recombinant vaccine

enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement.

Clin Cancer Res 14(11):3536–3544

91. Arlen PM, Gulley JL, Parker C et al (2006) A randomized phase II study of concurrent

docetaxel plus vaccine versus vaccine alone in metastatic androgen-independent prostate

cancer. Clin Cancer Res 12(4):1260–1269

92. Gribben JG, Ryan DP, Boyajian R et al (2005) Unexpected association between induction of

immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer

Res 11(12):4430–4436

93. Antonia SJ, Mirza N, Fricke I et al (2006) Combination of p53 cancer vaccine with chemother-

apy in patients with extensive stage small cell lung cancer. Clin Cancer Res 12(3 Pt 1):878–887

94. Halabi S, Small EJ, Kantoff PW et al (2003) Prognostic model for predicting survival in men

with hormone-refractory metastatic prostate cancer. J Clin Oncol 21(7):1232–1237

95. Docetaxel and Prednisone With or Without Vaccine Therapy in Treating Patients With

Metastatic Hormone-Resistant Prostate Cancer. Available from: http://clinicaltrials.gov/ct2/

show/NCT01145508

96. Bhogal N, Combes R (2006) TGN1412: time to change the paradigm for the testing of new

pharmaceuticals. Altern Lab Anim 34(2):225–239

97. Renders L, Valerius T (2003) Engineered CD3 antibodies for immunosuppression. Clin Exp

Immunol 133(3):307–309

98. Sheridan C (2006) TeGenero fiasco prompts regulatory rethink. Nat Biotechnol 24(5):475–476

474 M. Bilusic et al.



Abbreviations

51Cr Radioactive 51chromium

5-FU 5-Fluorouracil

AAV Adeno-associated virus

ADCC Antibody dependent cellular cytotoxicity

APC Antigen presenting cell

APRIL A proliferation-inducing ligand

CAR Coxsackie and adenovirus receptor

CR Complete response

CTL Cytotoxic T lymphocyte

CTLA-4 Cytotoxic T-lymphocyte-associated antigen-4

DAMP Danger-associated molecular patterns

DC Dendritic cell

DFS Disease-free

dsFv Disulfide-bond stabilized Fv (single chain antibody fragment)

EBV Epstein-Barr virus

FDA U.S. Food and Drug Administration

FGF Fibroblast growth factor

FOLFIRI Chemothertapy for colorectal cancer with irinotecan plus

5-fluorouracil plus leucovorin

FOLFOX Chemotherapy for colorectal cancer with oxaliplatin plus

5-fluorouracil plus leucovorin

Foxp3 A nuclear transcription factor governing regulatory T cell

differentiation and function

GITR Glucocorticoid-induced tumour-necrosis factor receptor-related

protein

GM-CSF Granulocyte-macrophage colony stimulating factor

GVHD Graft versus host disease

HAMA Human anti-mouse antibody

HLA Human leukocyte antigen

hTERT Human telomerase reverse transcriptase
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IDO Indolamine 2,3-dioxygenase

IFA Incomplete Freund’s adjuvant

IFN Interferon

IL Interleukin

L-Arg L-arginine

LV Leucovorin

mAb Monoclonal antibody

MCP-1 Monocyte/Macrophage chemoattractant protein-1

MDC Myeloid dendritic cell

MDSC Myeloid-derived suppressor cell

MHC Major histocompatibility complex

MoDC Monocyte-derived dendritic cell

MOI Multiplicity of infection

mRNA Messenger ribonucleic acid (RNA)

mTOR Mammalian target of rapamycin

NCI National Cancer Institute

NK Natural killer

NO Nitric oxide

OS Overall survival

PAMP Pattern-associated molecular patterns

PCR Polymerase chain reaction

PD-1 Programmed death receptor-1

PDC Plasmacytoid dendritic cell

PFS Progression free survival

pMHC Peptide-MHC complex

PR Partial response

PRR Pattern recognition receptors (such as DAMPs and PAMPs)

PSA Prostate specific antigen

RANK ligand Receptor activator of nuclear factor-kappa B

RNA Ribonucleic acid

scFv Single chain antibody fragment

TAA Tumor-associated antigens

Tcm Central memory T cells

TCR T cell receptor

TDLN Tumor draining lymph node

Tem Effector memory T cells

TGF Transforming growth factor

Th T helper cell (a type of CD4+ T lymphocyte)

TIL Tumor infiltrating lymphocyte

TLR Toll like receptor

TNF Tumor necrosis factor

Treg Regulatory T cell

VEGF Vascular endothelial growth factor
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A

ADCC. See Antibody-dependent cell-mediated

cytotoxicity (ADCC)

Adecatumumab, 368

Adeno-associated virus (AAV), 156

Adenovirus vector, 407

Adoptive T cell transfer

CARs (see Chimeric antigen receptors

(CARs))

dendritic cell, 95

lymphoma and nasopharyngeal carcinoma

CTL therapy, 52–53

HLA class I molecules, 51

metastatic melanoma, 57–58

natural killer cells

allogeneic, 63–64

immunotherapy, 64

posttransplant lymphoproliferative disorder

CTL, treatment of, 49–51

hematopoietic stem cell transplant, 49

retroviruses, 57

tumor immune evasion strategies, 61–62

tumor-infiltrating lymphocytes

culture and lymphodepletion, 54–55

metastatic melanoma patients, 54

ovarian cancer, 55–56

Alemtuzumab, 348–349

Antibodies

ADCC, 338

classes of, 338

clinical trial

adecatumumab, 368

anti-CA-125, 364–365

anti-CEA, 367

anti-chemokine antibody and receptor,

361, 364

anti-mesothelin, 368

anti-TNFa 368–369

AS1402, 365–366

etaracizumab, 367

farletuzumab, 365

mapatumumab, 366–367

sibrotuzumab, 368

therapeutic, 362–363

volociximab, 366

Fab and Fc region, 338

FDA and European agencies

alemtuzumab, 348–349

bevacizumab (see Bevacizumab)

cetuximab (see Cetuximab)

denosumab, 360

ipilimumab, 361

natalizumab, 360

ofatumumab, 346

panitumumab (see Panitumumab)

pertuzumab, 360–361

rituximab, 345–346

therapeutic, 342–344

trastuzumab (see trastuzumab)

immunoconjugates, 339

infliximab, 368–369

magic bullet, 337

monoclonal antibody

HAMA, 340

production and purification, 339

nomenclature, 340–341

Antibody-dependent cell-mediated

cytotoxicity (ADCC), 338

Anti-cancer therapies

cytokine treatment effects, 297

treg numbers/function, 298–299

vaccine effects, 296–297

Antigenic epitopes, 441–442

Antigen-presenting cells (APCs), 18, 149, 215
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Antigen-specific T cell responses

direct cytotoxicity assay, 434

ELISpot assay, 436

epitope spreading, 442

extracellular cytokine, 438–439

function-based assay, 434, 435

intracellular cytokine secretion assay,

436–437

monoclonal

cellular immune response, 429

peptide-MHC complex, 431–433

structure-based assay, 429–430

TCR-tracking, 433

polyclonal/polyvalent

adoptive transfer studies, 439–440

antigenic epitopes, 441–442

proliferative response, 438

target site

clinical efficacy, 442–443

ex vivo evaluation, 443–444

non-invasive cell tracking, 444–445

tracking polyclonal (see Tracking
polyclonal T cell)

in vivo characterization

activation, 447

exhaustion/inhibitory regulation,

447–448

homing, 448

regulatory, 448–449

T cell-associated marker, 445–446

tumor eradication/protective immunity,

446–447

Anti-mesothelin, 368

AS1402, 365–366

Auristatins, 385

B

Bacille Calmette-Guérin (BCG)

bladder cancer, 405–406

melanoma, 406

B and T lymphocyte attenuator (BTLA), 238

B cells, 29–31

BCG. See Bacille Calmette-Guérin (BCG)

Bevacizumab

anti-VEGF therapy, 358–359

breast cancer, 356–357

colorectal cancer, 355

glioblastoma multiforme, 357

investigational uses, 358

lung cancer, 355–356

renal cell carcinoma, 357–358

VEGF, 354

Biological marker, 466–468

Bladder cancer

BCG, 405–406

Breast cancers

bevacizumab, 356–357

trastuzumab, 347–348

C

Cancer stem cell, 418

Carcinoembryonic antigen, 367

CCL2 antagonists, 412

CCL22 antagonists, 412

CCR4 antagonist, 412

Cetuximab

colorectal cancer, 350

head and neck cancer, 351

target, 349

Chemotherapy, 96

Chimeric antigen receptors (CARs)

CD3-z chain, 59
first generations, 59, 60

intracellular signaling domain, 59

second-generation, 60

third-generation, 60–61

virus-specific CTL, 61

Colorectal cancer

bevacizumab, 355

cetuximab, 350

Concomitant cytokine therapy, 95

Co-signaling molecules

B7-1/B7-2, 219

4-1BB (CD137)/4-1BBL

biology, 249–250

clinical development, 250–251

preclinical studies, 250

B7-H3/TRT-2/B7-H4

biology, 243–244

human tumors, 244

preclinical studies, 244–245

biology, 215

BTLA/HVEM/CD160/LIGHT

biology, 238–240

human tumors, 240

preclinical studies, 240

CD40/CD40L(CD154)

clinical trials, 247–248

human tumors, 245–246

preclinical studies, 246

clinical trials, 219–220

CTLA-4

clinical application, 220, 221

clinical trials, 224
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inhibition, 218

ipilimumab (see Ipilimumab)

mouse tumor models, 221–223

regulatory T cells, 218–219

D28/CTLA-4/CD80/CD86, 215

GITR/GITRL

biology, 248

clinical development, 249

preclinical studies, 248–249

ICOS/ICOS-L, 253–254

LAG-3/MHC II

biology, 241–242

clinical trials, 242–243

preclinical studies, 242

OX40/OX40-L

biology, 251–252

clinical studies, 252

preclinical studies, 252

PD-1/PD-L1/PD-L2

biology, 234

clinical trials, 236–238

human cancers, 235

inhibition, 235

preclinical anti-tumor activity, 236

CpG ODN. See CpG oligodeoxynucleotides

(CpG ODN)

CpG oligodeoxynucleotides (CpG ODN),

409–410

CXCR4 antagonists, 411

CXCR7 antagonists, 412

Cyclooxygenase-2 (COX-2), 132

Cytokine-based immunoconjugate

antibody-mediated targeting, 388, 389

GM-CSF, 391

hematological malignancies, 388–389

IL-2R targeting

additional, 390

conjugated peptides, 390

immunotherapy, 389–390

TGF-b fusion, 391

Cytokine maturation cocktails, 77–78

Cytokines

cell engineering approaches, 198

cytokine-antibody fusion molecules, 196

DNA vaccination, 198

extracellular, 438–439

ex vivo cytokines, 199–200

GM-CSF, 195

GM-CSF family, 185–186

interferon-a, 191
high-risk melanomas, 187, 188

immune system, 189

neuropsychiatric issues, 188

interferon-b, 195
interferons, 182–184

interleukin-2, 189–190, 192

interleukin-10, 186

interleukin-2 family, 184–185

interleukin-12 family, 185

intracellular cytokine secretion assay,

436–437

malignancy treatment, 193–195

PEGylation, 198–199

predictive factors and patient selection,

192–193

strategies, 196

structure and function, 182

T cell function, 176

treatment effects, 297

tumor immunosurveillance, 201

tumor immunotherapy, 175, 196–197

Cytotoxic chemotherapy, 471

Cytotoxic T lymphocyte-associated antigen

4 (CTLA-4)

clinical application, 220, 221

clinical trials, 224

inhibition, 218

ipilimumab (see Ipilimumab)

mouse tumor models, 221–223

regulatory T cells, 218–219

Cytotoxic T lymphocytes (CTLs), 17–18, 50,

112, 150

D

Danger-associated molecular patterns

(DAMPs), 115

Dendritic cell-based cancer immunotherapy

adoptive T cell transfer, 95

anti-CTLA4 antibodies, 96–97

bone marrow, 72

chemotherapy, 96

concomitant cytokine therapy, 95

cytokine maturation cocktails, 77–78

ex vivo-generated dendritic cells, 75–76

lymphoid tissues, 73

maturation via toll-like receptors, 78–80

MHC class I and II, 72–73

mRNA-transfected dendritic cells, 81–82

myeloid dendritic cells, 75

natural subsets, 89–90

pDCs and mDCs, 74

peptide/protein-pulsed dendritic cells,

80–81

plasmacytoid dendritic cells, 75

targeting in vivo, 90–91
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Dendritic cell-based cancer immunotherapy

(cont.)
TLR activation, 73, 74

tolerogenic dendritic cells, 77

tumor antigen-specific T cells, 89

tumor-debulking therapies, 94–95

tumor escape mechanisms

downregulate, tumor antigens, 92

regulatory T cells and myeloid

suppressor cells, 93

soluble factors, 92–93

therapeutic options, 93–94

vaccination trials

clinical trials, 84–85

immunological monitoring methods

and results, 85–86

maturation status and antigen loading,

83–84

metastatic melanoma, 87

sipuleucel-T, 87–88

T cell reactivation, 88

Dendritic cells (DC)

antibodies, 165–166

DNA/RNA, 150

DNA viruses

AAV, 156

adenovirus, 153–156

HSV, 157–158

vaccinia virus, 156–157

maturation state and anatomical

location, 151

nanobodies, 165–166

nanoparticles and liposomes, 163–165

nonviral gene vehicles

DNA, 160–162

RNA, 162–163

proteins, 165–166

PRR, 151

RNA viruses

lentivirus, 158–159

retrovirus, 158

TAA-encoding genes, 150

viruses, advantages of, 153

in vivo, delivery vehicles, 151–152

Dendritic cell targeting, 125–126

Denosumab, 360

Diagnostic immunoconjugates, 393–394

Direct cytotoxicity assay, 434

DNA viruses

AAV, 156

adenovirus

Ad5 fiber knob, 154–155

beta-galactosidas, 153

B16 melanoma model, 156

protein p53, 154

HSV, 157–158

vaccinia virus, 156–157

E

ELISpot assay, 436

Epitope spreading, 442

Etaracizumab, 367

F

Farletuzumab, 365

G

Gastrointestinal cancers

trastuzumab, 348

Gemtuzumab ozogamicin, 385

Glioblastoma multiforme

bevacizumab, 357

H

Hematological malignancies, 388–389

Herpes simplex virus (HSV), 157–158

Herpes simplex virus-1 (HSV-1), 238

Human anti-mouse antibody (HAMA), 340

Human leukocyte antigen (HLA), 80

I

Immune-related response criteria (irRC), 462

Immunoglobulin superfamily (IGSF), 215

Induced Treg (iTregs), 285

Infliximab, 368–369

Interferon-a, 191
high-risk melanomas, 187, 188

immune system, 189

neuropsychiatric issues, 188

Interferon-b, 195
Interferon (IFN)-g, 51
Interleukin (IL)-10, 290

Intracellular cytokine secretion assay, 436–437

Ipilimumab, 361

biomarkers, 232–234

clinical trials, 230

grade III/IV irAEs, 230–231

irRC, 231

melanoma treatment, 224, 227, 228

tremelimumab, 229–230

irRC. See Immune-related response

criteria (irRC)
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L

Levamisole, 420

Lung cancer

bevacizumab, 355–356

VEGF expression, 355

M

Macrophages, 26–27

Major histocompatibility complex

(MHC), 72, 112

Maytansine, 386

MDSC. See Myeloid-derived suppressor

cells (MDSC)

Melanoma, Bacille Calmette-Guérin, 406

Microbiome, 414

Mogamulizumab, 361, 364

Monoclonal antibody. See also Antibodies

HAMA, 340

production and purification, 339

Myeloid dendritic cells, 24–26, 75

Myeloid-derived suppressor cells

(MDSC), 132

arginase expression

arginine depletion, 325, 326

granulocytic and monocytic, 324

phenotypes, 325

polyamine production, 323

CD3z chain, 320
immune response

GM-CSF, 319

T cell, 318–319

L-arginine

depletion, 320–321

immune response, 321–322

intracellular metabolism, 321

macrophages activation, 322

molecular effects, 323, 324

T cell tolerance, 322–323

modulation, 318

regulation and activation

expression and induction of arginase I,

326–327

GM-CSF, 326

surgical wounds, 327

T cell anergy, 319–320

tumors progression, 328

N

Natalizumab, 360

Natural killer (NK) cells

allogeneic, 63–64

immunotherapy, 64

O

Ofatumumab, 346

Ovarian cancer, 9, 55–56

P

Panitumumab

features, 352

resistance, 352–354

Pathogen-recognition receptors (PRRs), 115

Peptide and protein-based cancer vaccines

antigen dosage and vaccination

schedule, 120

dendritic cell targeting, 125–126

lymphodepletion and regulatory T cell

targeting, 128

peptide-adjuvant fusion constructs,

127–128

prime-boost vaccines, 125

recombinant proteins and synthetic

peptides

antigen-presenting cells, 123

CD8+ and CD4+ T cell, 120, 121

high-dose IL-2, 123

MHC molecule, 122

ovarian carcinoma patients, 124

T cell help, 126–127

T effector/regulatory T cell ratio

CD8+ and CD4+Foxp3+ T cells, 130

CTLA-4, 133

PD-1 blockade, 133–134

small molecules/blocking

antibodies, 131

T cell memory, 131

tumour-associated antigens

adjuvant emulsions, 116

alum, 116

cytokines and chemokines, 118–119

MHC molecule, 114

PAMPs and DAMPs, 115–116

T cell epitopes, 113–114

TCR interaction, 114–115

tensoactive adjuvants, 119

TLR agonists, 117

Peptide-MHC complex

CD4+, 432–433

CD8+, 431–432

Pertuzumab, 360–361

Phosphodiesterase (PDE), 286

Plasmacytoid dendritic cells (pDC),

28–29, 75, 132

Poxviruses vector, 407

Prostaglandin-E2 (PGE2), 132
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Prostate-specific antigen (PSA), 460, 464

PSA. See Prostate-specific antigen (PSA)

R

Radioimmunoconjugate, 387–388

RECIST. See Response Evaluation Criteria

in Solid Tumors (RECIST)

Regulatory T cells (Tregs)

anti-cancer therapies

cytokine treatment effects, 297

treg numbers/function, 298–299

vaccine effects, 296–297

antigen-specific treg targeting, 301

autoimmunity, 291

blocking treg differentiation, 303–304

Bona Fide functional tumor tregs

CD25+ T cell depletion, 289

Foxp3+ T cells, 289

Treg populations, 288

cancer prevention, 295–296

CD8+FOXP3+ T cells, 306

CD3+ T cells, 287

cell suppression threshold, 301–302

clinical relevance

treg content and prognosis, 293–295

tregs and treatment response, 294

de Novo local differentiation, 291–292

inflammation, 291

inhibiting, 303

local proliferation, 292–293

management considerations, 305

miscellaneous host factors, 293

nonspecific treg depletion, 299–301

nTregs and iTregs, 285, 286

recruitment, 292

reduced local treg death, 293

subverting treg differentiation, 304

trafficking, 302

TRAMP mouse model, 305

treatment modalities, 304

tumor-specific properties, 287–288

Renal cell carcinoma

bevacizumab, 357–358

DC vaccines, 85

Response Evaluation Criteria in Solid

Tumors (RECIST), 220, 461

Rituximab, 345–346

RNA viruses

lentivirus, 158–159

retrovirus, 158

S

Sibrotuzumab, 368

T

Targeted toxins, immunoconjugates

antimicrotubule agent

antibody-based, 386–387

auristatins, 385

cytokine-based (see Cytokine-based
immunoconjugate)

diagnostic, 393–394

maytansine and derivatives, 386

murine monoclonal anti-CA-125

antibody oregovomab, 391

radioimmunoconjugate, 387–388

viral, 382, 392–393

gemtuzumab ozogamicin, 385

immunoconjugates targeting

CD19, 384

CD22, 383–384

CD30, 384–385

therapeutic, 381–383

T cell receptors (TCR), 112, 213, 286

Thalidomide, 419

Th2 cells, 20–21

Th17 cells, 21–22

T-Helper-1, 19–20

Therapeutic vaccines

biological marker, 466–468

clinical research

anticancer drug development, 472

phase 0 trial, 472–473

TGN1412, 472

combination therapies

cancer vaccine, 470

cytotoxic chemotherapy, 471

drug development

cancer vaccine, 467

spontaneous tumor model, 469

transplantable tumor, 468–469

goal of, 459

novel cancer therapies, 459–460

patient selection, 460–461

progression-free survival vs. overall
survival, 462–463

RECIST vs. irRC, 461–462
standard cytotoxic chemotherapies, 460

statistics and immunotherapy, 465–466

tumor growth kinetics

chemotherapy, 465

IMPACT trial, 465

PSA, 464

TLRs. See Toll-like receptors (TLRs)
Tolerogenic dendritic cells, 77

Toll-like receptors (TLRs), 78–80

CpG ODN, 409–410

imiquimod, 409

immunogenicity of, 410
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significance, 408

Tracking polyclonal T cell

high-throughput TCR DNA sequencing, 441

multimers, 440

Vb array, 440

Transforming growth factor b (TGF-b),
92, 290

Trastuzumab

breast cancers, 347–348

gastrointestinal cancers, 348

HER, 346–347

T regulatory cells, 23–24

TRiad of Co-stimulatory Molecules

(TRICOM), 220

Tumor-associated antigens (TAA), 150

Tumor-associated macrophages (TAMs), 22

Tumor growth kinetics

chemotherapy, 465

IMPACT trial, 465

PSA, 464

Tumor immunotherapy

adenosine metabolism, 419

altering metabolic effects, 414–415

anti-tumor immunity

age risk factor, 403

anti-Gr-1 antibody, 405

myeloid derived suppressor cell, 404

regulatory T cell, 404

cancer stem cell, 418

chemokine, 411–412

CTLs, 5–6

custom anti-idiotype vaccine, 419

dendritic cells, 6

gene therapy/adoptive cell transfer

approach, 11–12

Gram-negative bacteria, 5

history, 4

immune modulating effect

anti-myeloid derived suppressor

cell, 416

anti-regulatory T cell, 415

chemotherapeutic agent, 416

immune rejection, 10

immunoediting, 9–10

immunosuppressive factors, 8

infectious agents

background, 405

BCG, 405–406

viral vector, 407

infectious disease, 4

levamisole, 420

mdr gene expression, 420
microbiome, 414

mitogen-activated protein kinase

inhibitor, 418

ovarian cancer, 9

reducing tumor inflammation, 407–408

sex and hormonal effect, 416

targeting epigenetic changes, 417–418

T cell activation, 7

thalidomide, 419

TLR

CpG ODN, 409–410

imiquimod, 409

immunogenicity of, 410

significance, 408

treatment approaches, 11

tumor stroma, 417

vaccine, 413–414

Tumor-infiltrating lymphocytes (TILs), 18, 113

cultures and lymphodepletion, 54–55

metastatic melanoma patients, 54

ovarian cancer, 55–56

Tumor necrosis factor (TNF), 18, 214

Tumor stroma, 417

V

Vaccination

dendritic cell

clinical trials, 84–85

immunological monitoring methods

and results, 85–86
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