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Preface 

Selection guides the evolution of bone in directions determined by pre-adaptation 
and adaptation to environments. As a pre-adaptive characteristic, bone could have 
evolved more than 500 million years ago in the Cambian period, with the parting 
of evolutional pathways between arthropods and chordates. 

Recently, governmental agencies in the USA, Europe and Australia have 
approved the use of bone morphogenetic protein-7 (BMP-7/0P-l) and bone mor
phogenetic protein-2 (BMP-2) in humans for the treatment of long bone non-unions 
and spinal fusions. The BMP is the first recombinant protein to be used in orthope
dic practice worldwide. Not since the discovery of vitamin D and PTH has bio
medical research in the field of mineralized tissues led to knowledge as fundamen
tal as that on the role of BMPs in nature. 

Since the original description of the potential of demineralized bone matrix to 
induce bone by Marshall Urist in 1965, it has taken more than 30 years to bring 
BMP-gene products to clinical medicine. Those three decades have been filled with 
important discoveries from many researchers that contributed to several break
through findings and led to advanced understanding of bone repair mechanisms. 

The clinical application of BMP, an ancient gene, nicely overlaps with the decade 
of bones and joints, as designated by the World Health Organization (WHO). As 
our civilization is aging and newly discovered medicines are continuously extending 
our lives, it is evident that living without a proper function of our locomotive sys
tem is impossible. 

At the beginning of the 21st Biotech century, bone is the first human organ to be 
biologically regenerated by BMPs when normal physiological repair mechanisms 
fail. We dedicate this book to the late Marshall Urist, who made the initial discov
ery and gave the name BMPs in 1965 to the activity of demineralized bone matrix 
(DBM) to induce bone at an ectopic site in mammals. 

The book covers the biochemistry, molecular and cell biology of BMPs, recep
tors and their nuclear effectors in bone formation. A detailed discussion on deci
phering the binding code of BMP-receptor interaction is presented. We have includ
ed a detailed description of preclinical models of orthopedic, periodontal and max-
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Preface 

illofacial defects treated by BMPs. Two chapters cover the use of BMPs in human 
bone defects, fractures and spinal fusion. The role of BMPs in the development of 
joints and their role in segmentation of articular cartilage is discussed in detail. We 
have also included a chapter on the recently discovered function of BMPs in kidney 
development and postnatal models af acute and chronic renal failure. The final 
chapter describes major advances in our understanding of effects of BMPs on neur
al tissues. 

Our sincere appreciation is due the authors of the chapters for their profound 
dedication in making this project a reality. We acknowledge the help of Mr. Branko 
Simat and Mrs. Morana Simat for their technical support throughout the project. 
We also thank Dr. Hans Detlef Klueber and Ms Karin Neidhart of the publisher 
Birkhauser Verlag for their patience in collecting the manuscripts and for the final 
editing of the book. 

January 2002 
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Slobodan Vukicevic 
Kuber T. Sampath 



Biochemistry of bone morphogenetic proteins 

David C. Rueger 

Stryker Biotech, Research Department, 35 South Street, Hopkinton, MA 01748, USA 

Introduction 

Bone has a remarkable ability for regeneration and repair. The cellular events asso
ciated with this repair process mimic closely those events associated with embryon
ic bone development. In 1965, Dr. Marshall Urist showed that new bone formation 
could be induced using demineralized bone matrix [1]. By implanting demineralized 
bone particles intramuscularly in animals, he observed the formation of new bone. 
With these studies, Dr. Urist pioneered the concept that there is some substance nat
urally present in bone, which is responsible for the regeneration and repair activity. 
He called this substance bone morphogenetic protein (BMP) and initiated a search 
for these molecules. 

In 1981, Sampath and Reddi made the observation that the bone formation 
induced by demineralized bone powder could be inactivated by extraction with 
denaturants and that this activity could be restored by reconstitution of the extract 
with the inactivated bone powder [2-4]. This observation supported the existence 
of BMP molecules and led to the development of an assay for the purification of 
these proteins. This assay, which is commonly referred to as the rat subcutaneous 
assay, measures bone formation in an ectopic site in the thorax region of the rat. 
Sampath and Reddi have shown that the cellular events which are produced sequen
tially in implants of extracts of demineralized bone in combination with the resid
ual bone collagenous matrix in this assay are the same as those cellular events 
observed in embryonic bone development or in adult fracture repair. 

Discovery 

In the late 1980s, using the rat assay of Sampath and Reddi along with advanced 
techniques of molecular biology and protein chemistry, the first genes believed to 
code for bone inductive proteins were identified [5-13]. They were named bone 
morphogenetic protein (BMP) or osteogenic protein (OP). In order to achieve this 

Bone Morphogenetic Proteins, edited by Siobodan Vukicevic and Kuber T. Sam path 
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feat, bone inductive preparations were purified from bovine bone in sufficient quan
tity and purity to provide amino acid sequence data. Using these sequences, nucleic 
acid probes were generated and used for the identification and characterization of 
DNA sequences encoding these proteins. Eventually the complete human genes were 
identified. A list of the first BMP genes identified is presented in Table 1 along with 
alternative names shown in parentheses. A gene named BMP-1 was also described 
in these initial studies, but was unrelated to the other genes and eventually deter
mined not to be a BMP. BMP-1 has since been identified as gene coding for a pro
collagen-C-proteinase; this protein is related to Drosophila tolloid and may be 
involved in the proteolysis of BMP binding proteins such as noggin and chordin 
[14]. 

Identification of BMPs was difficult due to the fact that such small amounts were 
present in bone and because of their limited solubility. As a result the development 
of laborious purification protocols in the presence of dissociating agents was neces
sary. In addition, the only assays known at that time were in vivo assays, principal
ly the rat subcutaneous assay, and each step in the development process needed to 
be evaluated by these 2-3 week assays. However, given enough time and tenacity, 
some bone inductive preparations were purified from bovine bone in sufficient 
amounts to characterize. 

As an example, osteoinductive preparations used for the discovery of OP-1 were 
extensively purified [9]. These preparations were highly active in vivo and composed 
of disulfide-linked dimers that migrated on sodium dodecyl sulfate gels as a diffuse 
band with an apparent molecular weight of 30-36 kDa. Upon reduction, the dimers 
yielded two subunits that migrated with molecular weights of about 18 kDa and 
16 kDa, both of which were glycosylated. After chemical or enzymatic deglycosyla
tion, the dimers migrated as a diffuse 27-kDa band that upon reduction yields two 
polypeptides that migrate at 16 kDa and 14 kDa, respectively. Analysis of the 
dimers revealed that they existed primarily, if not totally, as homodimers although 
the presence of a small amounts heterodimer could not be ruled out. The carbohy
drate moiety did not appear to be essential for biological activity since the deglyco
sylated protein remained capable of inducing bone formation in vivo. 

Protein sequence characterization was the primary goal in the early discovery 
research. Since only microgram amounts were available, success was achieved with 
much difficulty. Multiple proteases were used to cleave the osteoinductive prepara
tions and micromethods were necessary for isolation of the peptides. Oligonu
cleotide probes based on peptide sequences from these preparations were construct
ed and used to screen human cDNA libraries [7]. Several genes were identified, 
including one named that was named OP-1 and another that had been named BMP-
2. Using these data, as well as published data on other BMPs the 18-kDa subunit 
from the bovine osteoinductive preparations was identified as the bovine equivalent 
of mature human OP-1, whereas the 16-kDa subunit was the bovine equivalent of 
mature BMP-2. 

2 



Table 1 - The initial bone morphogenetic proteins 

BMP-2 (BMP-2A) 

BMP-3 (osteogenin) 

BMP-4 (BMP-2B) 

BMP-5 

BMP-6 (Vgr-1) 

BMP-7 (OP-1) 

Biochemistry of bone morphogenetic proteins 

Data from the natural bovine protein preparations did not prove that any of the 
initial BMP genes were indeed osteoinductive; impurities in these preparations could 
have been responsible for the activity. In fact during development of the purification 
procedure, other proteins were originally thought to be the active factors. Howev
er, the production of the subunits by recombinant DNA methods provided a means 
to clearly prove that these proteins were indeed BMPs. The use of separate recom
binant proteins would also be necessary to determine if multiple BMPs were neces
sary for the observed activity. During the discovery research for OP-l, recombinant 
OP-l and BMP-2 were individually produced in Chinese hamster ovary (CHO) cells 
[10, 12]. In order to achieve this, the full length cDNAs were inserted into mam
malian expression vectors and transfected into CHO cells. After gene amplification, 
the selected clones were grown in flasks and the media collected. The recombinant 
proteins were found to be secreted into the culture media and thus were purified 
from those solutions and characterized. Purified OP-l was produced as dimers of 
34-38 kDa that, upon reduction, migrate as 23, 19 or 17 kDa monomers. This form 
of OP-l which is referred to as the mature domain corresponded to the OP-l 
sequence obtained from the bovine osteoinductive preparations. Digestion of the 
monomers with N-Glycanase reduced the 23, 19 and 17 kDa monomers to a single 
14 kDa species indicating that the apparent molecular weight differences in recom
binant OP-l was due to glycosylation. 

Using the rat subcutaneous assay, the purified OP-l protein, by itself, was shown 
to be osteoinductive, capable of switching on the cascade of cellular events required 
for bone formation activity. This activity was dose dependent and similar to that 
observed for demineralized bone powder or purified preparations of bovine osteoin
ductive protein. Of the original bone-derived BMPs, BMP-2, -3, -4, -5, and -6 have 
also been expressed in CHO cells and the recombinant proteins purified [15]. All 
except BMP-3 have demonstrated osteoinductive activity in the rat subcutaneous 
assay. BMP-3 is now believed to be an inhibitor of osteoinductive BMP activity [16]. 
It is interesting in this respect that BMP-3 is the most abundant BMP in bone [17]. 

Continued discovery research has yielded additional related mammalian pro
teins, described under a variety of names, including BMPs, cartilage derived mor-
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Table 2 - BMP family 

BMP number 

BMP-2 
BMP-3 
BMP-3B 
BMP-4 
BMP-5 
BMP-6 
BMP-7 
BMP-8 
BMP-8B 
BMP-9 
BMP-10 
BMP-11 
BMP-12 
BMP-13 
BMP-14 
BMP-15 
BMP-16 

Other names 

BMP-2A 
Osteogenin 
GDF-10 
BMP-2B 

Vgr-1 
OP-1 
OP-2 
OP-3 

GDF-11 
GDF-7, CDMP-3 
GDF-6, CDMP-2 
GDF-5, CDMP-1, MP-52 

phogenetic proteins (CDMPs), and growth and differentiation factors (GDFs) 
[18-21]. These are listed in Table 2. It should be noted that most of these proteins 
have multiple names, including some with three names. Fifteen mammalian BMP 
family members have been described. 

TGF-~ superfamily 

All of the BMPs are members of the TGF-~ superfamily of genes [21-23]. This 
superfamily is quite large and currently includes approximately 45 genes. Members 
have been identified in most species including human and mouse, as well as 
Drosophila, Xenopus, zebrafish and Caenorhabditis elegans. The structure of the 
proteins of this superfamily is shown in Figure 1. Each of the proteins is produced 
as a N-terminal signal sequence, a pro domain and a mature domain at the carboxy
terminus. The structural hallmark of this superfamily is a highly conserved 7 cys
teine motif in the mature domain. This domain also contains a relatively short 
amino terminal extension that exhibits considerably more evolutionary divergence. 
The BMP family is the largest subgroup in the TGF-~ superfamily of molecules. The 
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PRE PRO Mature domain 

Amino-terminal C CC CC CC Carboxy-terminal 

C CCCCCC 

C = cysteines 
RXXR = Arg-X-X-Arg processing site 

Figure 1 

Schematic of TGF-fJ superfamily protein strudure. 

original characteristic of this family was the ability of its members to induce new 
bone formation. However, not all members in this family have demonstrated this 
activity. Moreover, this capability of forming new bone is shared by no non-BMP 
factors including the TGF-~s, themselves. 

Alignment of protein sequences in the cysteine domains reveals striking sequence 
similarities and differences amongst the superfamily members. Table 3 shows the 
alignment calculated as percent of identical amino acid residues and compares OP
I/BMP-7 to the other members [24]. The comparison demonstrates the different 
family groupings, including, the BMP (generally those having 50% or more homol
ogy with OP-l), the activin (inhibin) and the TGF-~ families. When compared to 
other BMPs, OP-1/BMP-7 is most closely related by sequence to BMP-5 and BMP-
6 with 88% and 87% amino acid sequence identity, respectively, in the cysteine rich 
C-terminus. OP-l is more distantly related to BMP-2 and BMP-4, having 60 and 
58% identity, respectively. GDF-5, another BMP that has been extensively evaluat
ed, has even less similarity, showing 51 % identity. As discussed above, BMP-3 is not 
osteoinductive and, in fact, is more distant having 42% identity. The TGF-~s, them
selves, are quite distant from most BMPs and do not exhibit bone inductive activi
ty. Many of the newer proteins in the list have not yet been expressed as recombi
nant proteins and thus it is not known if they possess osteoinductive activity. Species 
comparisons show a strong evolutionary conservation. For example, there is a 98% 
identity in amino acid sequences in OP-l between the human and mouse genes in 
the conserved mature domain [25]. 
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Table 3 - Comparison of representative TGF-~ superfamily members: percent identity in 7-

cysteine region 

Family member Percent Family member Percent 

OP-1/BMP-7 100 GDF-1 45 

BMP-5 88 SCREW 47 

BMP-6 87 BMP-3B 42 

BMP-8 74 BMP-3 42 

BMP-8B 67 NODAL 41 

60A 69 Inhibin~A 43 

UNIVIN 63 Inhibin~B 38 

BMP-2 60 Inhibin~C 39 

BMP-4 58 TGF-~4 38 

dpp 58 TGF-~5 37 

Vg-1 57 TGF-~1 35 

GDF-6 53 TGF-~3 37 

GDF-7 53 TGF-~2 36 

GDF-5 51 BMP-11 36 

BMP-9 51 GDF-9 30 

DORSALIN 49 MIS 26 

BMP-10 47 GDNF 22 

GDF-3 49 

The members of the TGF-~ superfamily are signaling molecules that are respon
sible for specific morphogenetic events involved in tissue and organ development. A 
number of the members of this superfamily have been identified based on tissue-spe
cific functional assays and molecular cloning approaches in various developmental 
systems. The decapentaplegic gene, DPP, and the 60-A gene are responsible for 
proper development of Drosphila melanogaster embryos. In Xenopus laevis, vege
tal pole-derived transcripts, V gr-l, and activins have been demonstrated to playa 
critical role in mesoderm induction. In addition, other members of the TGF-~ super
family include: Mullerian inhibiting substance (MIS), which causes regression of the 
Mullerian duct in the development of the male reproductive tract; inhibins and 
activins, which act together to regulate the release of follicle-stimulating hormone in 
the pituitary gland; and growth and differentiation factors (GDFs), which are 
thought to be involved in many aspects of tissue morphogenesis. 
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Expression systems 

Expression of recombinant forms of the early BMPs was accomplished using mam
malian cell lines, most particularly CHO cells [10, 12]. With this expression system, 
the BMPs are produced and properly refolded inside the cells and then secreted into 
the media in an active form. The BMPs are then purified from the media and char
acterized. Preparations of both OP-l and BMP-2 used in clinical testing and cur
rently in various stages of the regulatory approval process were produced by this 
methodology. However, more recently, several BMPs have been produced in bacte
rial cells. Recombinant preparations of GDF-5, 6 and 7 have been produced in 
active form from Escherichia coli [19, 26]. With this expression system, the BMPs 
are produced in a randomly folded state inside the cells and after lysing the cells, the 
BMPs are purified and refolded into the proper conformation. BMP-2 has also been 
reported to be successfully produced in E. coli [28]. On the other hand OP-l has 
been extensively evaluated in E. coli expression systems but appears to be a more 
formidable refolding challenge and only small amounts of active protein have been 
produced. Other expression systems such as yeast, plants and transgenic animals 
have not been reported for expression of BMPs. 

Protein structure 

As first described for TGF-~, members of the BMP family of proteins are synthe
sized as large precursors that are approximately three times larger than the mature 
protein and are eventually proteolytically processed to yield mature disulfide-linked 
dimers [27]. The expression and processing has been extensively examined for OP
lIBMP-7. The OP-1 gene predicts a polypeptide of 431 amino acids with a 29 
amino acid signal sequence. Residues 293 through 431 comprise the mature 
domain and residues 29 through 292 comprise the pro domain. OP-l is initially 
synthesized in the cell as a monomeric 50 kDa pro-protein that is dimerized, gly
cosylated, and then proteolytically cleaved at the Arg-Xaa-Xaa-Arg maturation site 
in an acidic cellular compartment before secretion into the medium. Of the four 
potential N-linked glycosylation sites two are used, one in the mature domain and 
one in the pro-domain. Secreted OP-l demonstrates an apparent molecular weight 
of 110-120 k, indicating that after proteolytic processing the two pro-domains 
remain non-covalently associated with the disulfide linked mature. During the 
purification procedure for mature OP-lIBMP-7, the pro domain is normally sepa
rated from the complex by the use of dissociating conditions. However, the intact 
complex can be purified in the absence of these agents and has been characterized. 
This purified complex is termed soluble or proOP-l and is significantly more solu
ble in physiological buffers than the mature OP-1. The function or functions of the 
pro domain has not been elucidated. However, in addition to its presumed role in 
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protein folding and transport, the pro domain may participate in tissue targeting or 
receptor specificity. 

The crystal structure has now been reported for the mature dimers of OP
lIBMP-7 and BMP-2. The structure to 2.8 A resolution has shown that OP-lIBMP-
7 like TGF-~, itself, is in a "hand" structure consisting of two fingers of antiparal
lel beta strands and an alpha helical region at the heel of the palm [24]. The central 
core of the hand or palm is the site of a threaded ring structure created by the inter
nal disulfide bonds also known as the cysteine knot. An intermolecular disulfide 
bond in this "palm" region forms the dimer. Envisioning a handshake provides a 
conceptual picture of this dimer interaction. The three-dimensional structure to 
2.7 A has recently been published for the BMP-2 molecule and shown to be very 
similar to that of OP-1 [28]. Most recently, the crystal structure of a BMP-2: BMPR-
1A receptor ectodomain complex was solved [29]. This data revealed a hydropho
bic area of the type 1 receptor that fit into a hydrophobic pocket composed of 
residues of both BMP-2 monomers. 

Signaling pathways 

Bone morphogenetic proteins (BMPs) exert their effects through complex formation 
with a heteromeric receptor complex [30-34]. The complex consists of two type I 
and two type II polypeptides which are transmembrane serine/threonine kinases. At 
present, 12 type I receptors have been identified for the TFG-~ superfamily. Three 
of these type I receptors (ActR-1, BMPR-IA and BMPR-IB) have been shown to 

bind to one or more members of the BMP family. Seven type II receptors have been 
identified for the TGF-~ superfamily. Of the Type II receptors, ActR-II and -lIB, and 
BMPR-II can bind different members of the BMP subfamily. Table 4 lists the type I 
and type II receptors that are known to be present in mammalian tissues. The aster
isks in the table refer to the receptors that bind BMPs. 

The current consensus is that BMPs can bind to type I or II receptors alone, but 
with a weak affinity. Both types of receptors are required to be present for high 
affinity binding and signaling. Different BMPs recognize different type I and type II 
receptors with different affinities. The BMP ligand also appears to enforce specifici
ty of receptor pairing and thus determining in part the nature of the resulting sig
naling. It is also known that molecules such as noggin, chordin and DAN bind to 

BMPs with high affinity and prevent their interaction with the receptors. Further
more, the binding of BMPs to extracellular matrix components such as collagen and 
heparin sulfate probably influence their ability to interact with the receptors. 

The intracellular signaling pathways that are induced by the serine/threonine 
kinase receptors involve a family of signaling molecules called Smad proteins. Cur
rently, eight different Smad proteins have been identified in mammals. They can be 
divided into three subclasses: R-Smads (receptor-activated Smads), Co-Smads 
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Table 4 - Mammalian members of the TFG-f3 superfamily receptors 

Type I receptors 

ALK-1 

ActR-1 (ALK-2)* 

BMPR-IA (ALK-3)* 

ActR-IB (ALK-4) 

TBR-I (ALK-5) 

BMPR-IB (ALK-6)* 

Type II receptors 

BMPR-II* 

TBR-II 

ActR-IIB* 

ActR-II* 

(common partner Smads), and anti-Smads (inhibitory Smads). Smads 1,2,3,5 and 
8 are R-Smads. Smad 4 is a Co-Smad. Smads 6 and 7 are anti-Smads. The R-Smads 
are phosphorylated by specific type I receptors. ALK-1 and the BMP type I recep
tors interact with Smads 1,5 and 8 and the TGF-~ and activin type I receptors bind 
to Smads 2 and 3. Following phosphorylation, R-Smads dissociate from the recep
tor, bind to Smad 4 and enter the nucleus. Inside the nucleus heteromeric complexes 
of Smads regulate transcription of the BMP genes by utilizing DNA-binding pro
teins to target specific genes. Smads bind DNA alone but with low affinity and 
specificity. 

Chromosomal localization 

Several members of the BMP gene family have been mapped to their human chro
mosome locations [18]. These results demonstrate that these genes are widely dis
persed in the human genome similar to the other members of the TGF-~ superfam
ily. Chromosomal dispersion may have facilitated the development of tissue specif
ic functions for the various family members. The following genes have been 
localized to specific chromosomes: BMP-2 (chromosome 20), BMP-3 (chromosome 
4), BMP-3B (chromosome 10), BMP-4 (chromosome 14), BMP-S (chromosome 6), 
BMP-6 (chromosome 6) and OP-1 (chromosome 20), BMP-8 (chromosome 1), 
GDF-S (chromosome 22), GDF-6 (chromosome 8), GDF-7 (chromosome 2) and 
BMP-1S (chromosome X). It is not known whether the genes occupying the same 
chromosome are clustered or are nonlinked. 

BMP localization 

Although BMPs were originally isolated and identified from bone, it was soon dis
covered by a variety of studies that BMPs are expressed in most other tissues of the 
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human body. The expression has been found in many adult tissues, but also, sur
prisingly, throughout embryonic development [21,35]. During embryogenesis BMPs 
serve as important inductive signals for tissue development and have been shown to 
have a pivotal role in development of the musculoskeletal system, the nervous sys
tem, the heart, kidney, skin, eyes, and teeth. After birth, the BMPs play roles in tis
sue repair and regeneration. As an example, numerous analytical procedures have 
been utilized to localize OP-l. The first indication that OP-1 had a more wide
spread localization than bone occurred when OP-1 eDNA was found in a eDNA 
library generated from hippocampus [7]. Subsequently, the mRNA was extracted 
from a variety of adult mouse tissues and evaluated for the presence of OP-1 mRNA 
[8, 25]. Large amounts of OP-1 mRNA were found in the kidney and significant 
amounts were found in the bladder, adrenal tissue, brain and calvaria. No detectable 
OP-1 mRNA was found in the heart and liver. Mouse embryos were also evaluated 
and found to contain OP-1 mRNA in multiple organs at levels that varied depend
ing upon the time after conception. In gene knockout studies, mice lacking the OP-
1 gene displayed severe defects in the developing kidney and eye and appeared poly
dactyl [36]. These studies clearly demonstrated that the absence of OP-1 disrupts the 
cellular interactions required for the growth and development of these organs. Final
ly immunolocalization studies have demonstrated that the OP-1 protein is also pre
sent in multiple tissues in both adult animals and during embryonic development. 
Detailed histological analyses have been done with bone and cartilage, brain and 
kidney tissues. 

Biological activities 

The biological activities of BMPs have been evaluated in vivo using a variety of ani
mal models and in vitro using a variety of cell lines [37-43]. Because of their dis
covery in bone, most of these studies have been done using bone cells and bone 
defect animal models. To a lesser extent, related tissues such as cartilage and other 
hard tissues such as dentin have also been examined. More recently the biological 
activities are being evaluated in soft tissues, particularly brain, kidney and muscle. 

The rat subcutaneous bone formation assay has been the standard method used 
to evaluate the osteoinductive potential of BMPs. Implantation of purified recombi
nant BMP with bone collagen matrix in subcutaneous sites in rats induces a 
sequence of cellular events that leads to the formation of new bone complete with 
bone marrow elements [44]. Only osteoinductive BMPs have this activity. During 
this process the first step is the recruitment by the BMP of nearby mesenchymal stem 
cells into the collagen matrix. The BMP stimulates the stem cells to proliferate and 
then triggers their differentiation into chondrocytes in 5 to 7 days. Cartilage is 
formed and on capillary invasion, the chondrocytes hypertrophy, become calcified, 
and osteoblasts appear in the implant site. Newly formed bone is present in 9 to 12 
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days. Subsequently, the bone is remodeled extensively and becomes occupied by 
ossicles filled with bone marrow elements in 14 to 21 days. This cellular process is 
referred to as "endochondral bone formation". Osteoinductive BMPs are also 
observed to form bone by "intramembraneous bone formation" whereby the BMP 
triggers the mesenchymal cells to differentiate directly to osteoblasts and thus 
bypass the cartilage stage. Little is known about how one route is chosen over the 
other. 

The critical activity of implanted BMPs during the bone formation process 
occurs at the beginning of the biological cascade. These activities involve the inter
actions with the mesenchymal cells including chymotaxis, proliferation and differ
entiation into bone and/or cartilage cells. The subsequent steps appear to rely on the 
local induction of a range of factors, including other BMPs. For instance, OP-l has 
recently been shown to induce numerous growth factors and multiple BMPs, includ
ing itself, during the bone induction process [45]. Additional support for the action 
of OP-l throughout the bone formation process is also provided by in vitro studies 
[46-52]. These data have demonstrated that OP-l has multiple chondrogenic 
effects; the protein can (1) induce the chondrogenic phenotype in chondrocyte pre
cursor cells, (2) induce chondrogenesis in non-cartilage stem cells, (3) promote re
expression of chondrocyte phenotype by dedifferentiated articular chondrocytes and 
(4) enhance mature chondrocyte characteristics in normal articular chondrocytes. 
Similarly, OP-l also interacts with bone cells; the protein can (1) induce osteoblast 
phenotype expression by osteoprogenitor cells, (2) induce osteogenesis in non-bone 
stem cells and 3) enhance the osteoblastic characteristics of normal osteoblast cells. 

To date many studies have been published evaluating the efficacy of BMPs in 
conjunction with matrix materials for local repair of bone defects [53]. These 
include most long bones, various cranialfacial bones and the spinal column. For the 
most part these studies have utilized either OP-l or BMP-2 but recent studies have 
also examined GDF-5 [26]. In general the BMPs have been shown to be highly effi
cacious in repairing bones in many animal species, including rat, rabbit, dog, sheep, 
goat, monkey and baboon. More recently OP-l and BMP-2 have also been shown 
to be efficacious in initial testing in humans [54-57]. 

Cartilage is observed as an intermediate step during the BMP-induced bone 
induction process. Furthermore in vitro studies have demonstrated that BMPs can 
promote chondrogenic differentiation, maturation and maintenance of chondrocyte 
phenotype and BMPs have been localized to cartilage [58]. These observations sug
gested that BMPs might be useful for healing cartilage. Studies have been reported 
evaluating BMPs in in vivo models of both osteochondral and chondral defects. 
Both OP-l and BMP-2 formulated with collagen have been evaluated in osteochon
dral defects and shown to be efficacious [38, 59-60]. These studies have demon
strated that the BMPs can improve both the bone and cartilage healing in the 
defects, but the repair appears to be variable amongst species and the specific type 
and stability of the cartilage has not fully been evaluated. In one sheep study using 
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a chondral defect, OP-1 was shown to induce substantial healing [61]. In this model 
which used mini-osmotic pumps to slowly deliver the OP-1 into the articular joint, 
no healing was observed in the control defects. Although in an early stage of devel
opment, the data suggest that BMPs have an exciting potential to heal cartilage, a 
tissue that unlike bone is not known to repair itself. 

Brain tissue has been one of the first non-bone tissues investigated for the bio
logical activities of BMPs [62]. In vitro studies using OP-1 have demonstrated that 
this BMP increased expression of the adrenergic phenotype in neural crest cells and 
OP-1 regulated expression of L1 and neural cell adhesion molecules in a neural cell 
line. In further studies it was discovered that OP-1 selectively induces dendritic 
growth in cultured rat neurons and the dendrites correctly segregate, modify 
cytoskeletal and membrane proteins, and form synaptic contacts of appropriate 
polarity [63]. Based on these observations OP-1 was evaluated in vivo for the repair 
of nerve tissue in stroke models. In rat models of cerebral hypoxial ischemia OP-1 
was injected intracisternally into the brain and shown to protect against damage, 
as well as to facilitate the recovery from damage caused by experimental stroke 
[64]. 

The biological activities of BMPs have also been evaluated using the kidney [65]. 
This organ has been identified as the major site for synthesis of OP-1 during embry
onic development as well as in adulthood. In addition, numerous in vitro studies 
have suggested that OP-1 is required for metanephric mesenchyme differentiation 
and can effect kidney cells in culture. The results from both chronic and acute dis
ease models in rats have demonstrated that systemic (IV) administration of OP-1 
can protect against damage as well as facilitate recovery from this damage [66]. 

Delivery materials 

The study of BMPs has required a large amount of support research into the means 
to deliver these proteins [29, 37 ,67]. However, BMP delivery research has never 
been given the priority that has been given to the BMPs, themselves. Hopefully, the 
increased availability and the ever expanding therapeutic potential in bone as well 
as other tissues will give impetus to this important area. Most studies have focused 
on biomaterials to deliver BMPs for use in the original therapeutic indication, local 
implantation of an osteoinductive device for repair of bony defects. This use has 
required a solid-phase matrix that must function as an appropriate cellular scaffold 
during the bone formation cascade. More recently, studies have been reported exam
ining BMP delivery in soluble formulations without these matrixes. The goal of 
these studies has been to locally inject the proteins into bone or cartilage defects. 
Finally, in studies being done in soft tissues, delivery is being evaluated in much 
more complex systems, such as systemic delivery and intracistermal delivery into the 
brain. 
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The initial delivery discovery work utilized particles of guanidine-extracted, 
demineralized bone powder as the carrier for BMPs. This material is primarily 
Type I collagen and has served as the "gold standard" by which all other materials 
have been compared. The sequential cellular response at the interface of the BMP 
matrix implants includes a multistep cascade: binding of fibrin to implanted matrix, 
chemotaxis of cells, proliferation of progenitor cells, differentiation into chondrob
lasts, cartilage calcification, vascular invasion, bone formation, remodeling and 
bone marrow differentiation. Ideally the carrier needs to perform several important 
functions: provide a substrate for the recruitment and attachment of progenitor 
cells, bind the BMP, accommodate each step of the cellular response during bone 
formation, and protect the BMP from non-specific proteolysis. In addition, selected 
materials must be biocompatible and preferably biodegradable; the carrier should 
act as a temporary scaffold until replaced completely by new bone. In some cases, 
slow degrading materials may be useful where solid, load-bearing characteristics are 
required. 

A variety of biocompatible biomaterials have been evaluated for local delivery of 
BMPs for new bone formation. These include various extracellular matrix compo
nents, alone and in combination (different collagens, fibrin, fibronectin, hyaluronic 
acids, glycosaminoglycans), ceramics (hydroxyapatites, tricalcium phosphates, 
cements), synthetic polymers (particularly polylactic and polyglycollic acid poly
mers) and bone graft materials (both autograft and allograft). Most of these mate
rials, have been shown to support bone formation. However, in general, none have 
produced comparable results to that achieved with Type I collagen. For instance, 
calcium phosphates are slow to resorb and synthetic polymer degradation products 
can be inhibitory. It is also clear that different defect sites in the body have different 
environments and will need specially designed materials for many of these sites. 
However, for the present, type I collagen is the material of choice for clinical devel
opment of BMPs. The initial BMP product (OP-l Implant) to receive regulatory 
approval for sale uses highly purified bone-derived type I collagen as the delivery 
matrix. In addition, the only other BMP that has been extensively evaluated and is 
in the late-stage regulatory approval process also used type I collagen for delivery; 
BMP-2 utilizes a skin-derived collagen in a sponge formation. 

In recent years several studies have been reported using formulations without 
solid-phase matrices for local delivery of BMPs into bone defects [68,69]. These 
studies have demonstrated that injectable BMPs can be used to speed the rate of 
fracture repair in various animal studies. Both OP-l and BMP-2 have been injected 
into defects in buffer solutions and remain in the defect area long enough to stimu
late the bone formation process. Possibly the BMPs are able to use the natural frac
ture callous as a scaffold and their limited solubility under physiological conditions 
may involve a precipitation event at the site. Nevertheless the data appear to be 
quite promising and a wide variety of materials to facilitate this type of delivery 
needs to be developed. 
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Conclusion 

It has been over a decade since the first BMP genes were reported. Over this time 
recombinant BMPs have been produced from these genes and extensively charac
terized biochemically and biologically. A large variety of animal efficacy models has 
been utilized to evaluate the therapeutic potential, particularly using two of the early 
BMPs, BMP-2 and OP-1 (BMP-7). More recently the efficacy of these BMPs to 
repair bone has been demonstrated in humans. Finally, in 2001, the first BMP, OP-
1 (BMP-7) received regulatory approval for marketing and sales. However, this is 
only the beginning. Many more BMPs or BMP-like molecules have been discovered 
and are being produced in recombinant form for evaluation. Although most knowl
edge has been gained in the bone field, these proteins are also important in most if 
not all tissues and little is known about most of them. BMPs have proven to be an 
important new area of developmental biology and have clearly become an impor
tant new tool in the field of tissue engineering. 
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Introduction 

The transforming growth factor-~ (TGF-~) superfamily is a large group of struc
turally related proteins that play various important roles during embryonic devel
opment, as well as in adult life. This superfamily in addition to TGF-~s also con
tains the inhibins, activins, Mullerian inhibiting substance, and bone morphogenet
ic proteins (BMPs), as well as the various growth and differentiation factors (GDFs). 
Members of the TGF-~ superfamily are highly conserved, secreted molecules whose 
biologically active C-terminal domains playa variety of roles in embryonic pattern 
formation, body plan establishment and organogenesis in numerous species from 
Drosophila and C. elegans through humans [1-3]. Animals and humans lacking or 
having mutations in various TGF-~ family members exhibit a wide variety of phe
notypes, ranging from early embryonic death due to lack of mesodermal develop
ment to viable, but severely compromised animals with a variety of skeletal defects, 
to human diseases such as fibrodysplasia ossificans progressiva and dentinogenesis 
imperfecta. Among the TGF-~ family members, the BMPs form a large subgroup of 
proteins, which were originally named on the basis of their ability as components of 
demineralized bone matrix to induce ectopic bone formation. Subsequently, classi
cal protein chemistry in conjunction with molecular biology resulted in the cloning 
and expression of a number of BMPs. Their extensive homology to each other, in 
addition to highly conserved structural features, places them in the TGF-~ super
family [4]. Conversely, BMPs have been shown to be involved in bone and cartilage 
repair in animals and humans and have been demonstrated to lessen the severity of 
damage in animal models of kidney failure and stroke [5]. Following the identifica
tion and cloning of the various BMPs and TGF-~s, Lee and co-workers used degen
erate oligonucleotides made against sequences that were conserved among various 
members of the TGF-~ superfamily to identify new members of the family. These 
newly identified members have been named growth and differentiation factors 
(GDFs) [6]. At present, extensive work is underway to identify additional BMP fam
ily members, to further characterize their secondary signaling pathways and to 
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explore additional clinical applications for these proteins. Such an approach in our 
laboratory resulted in the cloning and characterization of another member of the 
superfamily, which we designated as prostate-derived factor (PDF) [7]. This name 
was based on the high expression of this protein in the prostate. Extensive work has 
been done on TGF-~ and its family members such as the BMPs and they have been 
the subjects of numerous reviews. However, very little is known about some of the 
newly identified members of the TGF-~ superfamily. This chapter will focus on two 
interesting but relatively newly identified members of the TGF-~ superfamily, name
ly, PDF and GOF-8/myostatin [8]. As stated earlier, members of the TGF-~ super
family have been implicated in organogenesis (based on localization studies and 
gene deletion experiments). Although a role for PDF in other organs cannot be ruled 
out, this review will focus on its role and expression in the prostate and its regula
tion by androgens. Current literature shows that myostatin is involved in regulation 
of skeletal muscle growth, and this review will summarize the current data on myo
statin and its role in the skeletal muscle. 

Prostate-derived factor (PDF) 

Members of the TGF-~ superfamily have been shown to play important roles in 
embryonic development and epithelial-mesenchymal interactions during embryon
ic tissue differentiation. We were interested in identifying novel members of the 
TGF-~ superfamily, which via their pattern of expression might give us clues 
regarding their role in tissue differentiation and or embryonic development. This 
work resulted in the cloning and characterization of PDF [7]. The name PDF was 
based on its high expression in the prostate and a large body of literature indicat
ing the importance of members of the TGF-~/BMP superfamily in prostate cancer. 
Others have also identified and cloned this molecule simultaneously and named it 
placental bone morphogenetic protein (PLAB), macrophage inhibitory cytokine-1 
(MIC-1) and growth and differentiation factor-14 (GOF-14) based on its structur
al similarity to the TGF-~ superfamily [9-11]. Given the high expression of PDF in 
the prostate, the known role of TGF-~ in regulating growth of normal prostate 
cells, and the lack of growth inhibition of cancerous prostate cells when treated 
with TGF-~ we were interested in characterizing the role of PDF in the normal 
prostate and in prostate cancer. Northern blot analysis of PDF expression revealed 
that the two organs with the highest levels of expression were the placenta and the 
prostate. In the prostate, PDF expression was localized to the epithelium of the 
main prostatic glands by immunohistochemistry using affinity-purified polyclonal 
antisera. The expression was similar in the hypertrophic prostate and again was 
restricted to the epithelial cells with a lack of expression in the fibromuscular stro
ma. Within the male urogenital tract, the specificity of PDF expression in the 
prostate was determined by immunolocalization in other accessory male genital 
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Figure 1 
Immunolocalization of PDF in prostate. (A) Control sedion of the normal prostate from the 

area of main glands incubated with the anti-PDF primary antibody alone. (B) Serial sedion 

from the main prostatic gland showed intense PDF staining. (C) Sedion from a prostate can

cer sample showing a lack of PDF staining. (D) Staining for PDF in the hypertrophic prostate 

removed from a 57-year-old patient. 

glands. These data showed that PDP was expressed only in the epithelial cells of 
the main prostatic glands but not in the seminal vesicles or the bulbourethral 
glands. However, much to our surprise when we tried to localize PDP in samples 
from primary prostate tumors, we could not detect any protein expression by 
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Expression of PDF in prostate cancer. RT-PCR analysis was used to confirm that PDF expres

sion was not detectable in prostate cancer. Lanes 1-4 show data from the normal prostate 

the single band obtained by PCR corresponds to PDF. Lanes 5, 7, 9, and 11 contained RNA 

from prostate cancer. Lanes 6, 8, 12 contained RNA from hypertrophic prostate, whereas 

lane 10 contained RNA from normal prostate and lane 13 was empty. Corresponding PCR 

done for 185 ribosomal RNA showed no difference (data not shown). 

immunohistochemistry (Fig. 1). Previous data had shown that TGF-~ expression 
increases in prostate cancer (for review see [12]). We had expected similar results 
with PDP, but after repeated attempts, we could not detect any PDP protein expres
sion in samples of prostate cancer unresponsive to androgens. To confirm these 
data, we obtained additional prostate tumor samples and used RT-PCR to detect 
PDF mRNA in these samples. As it can be seen from Figure 2, even by RT-PCR 
analysis we could not detect the presence of PDP in prostate tumors, confirming 
our earlier data which showed a lack of expression of the protein. The data on 10 
prostate cancer samples so far shows a complete lack of expression of PDF protein 
or mRNA in prostate tumors unresponsive to androgens. Further evidence for lack 
of expression of PDF was obtained by examining its expression in prostate cancer
derived cell lines, where it was observed that with the exception of LNCaP cells, no 
other cell line examined expressed PDF (Fig. 3A). This result was also of interest 
since we had shown earlier that in vivo, PDF is regulated by androgens [7]. In 
LNCaP cells, dihydrotestosterone (DHT) increased PDF expression about two-fold 
over a 72-h treatment period, a magnitude of increase similar to that seen in vivo 
(Fig. 3B). This suggests that the androgen regulation of PDF in the prostate is not 
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Figure 3 

Expression of PDF in vitro. (A) RNA was prepared from various prostate cancer cell lines. 

Northern blot analysis showed that only cells expressing androgen receptor. namely LNCaP 

and H660 express PDF, whereas all other cell lines switched off PDF expression where it 

fundions to regulate gene expression. (B) Confluent LNCaP were treated for the indicated 

times with vehicle (0.1 % ethanol) or DHT at a final concentration of 10-7 M in serum-free 

medium. After treatment, cells were scraped, frozen in liquid nitrogen and RNA prepared. 

Northern blot analysis was performed for PDF and 185 ribosomal RNA and the data 

expressed as fold increase in PDF expression as compared to vehicle following normalization 

to the 185 signal. 
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a direct transcriptional effect. These data make us believe that PDF has an impor
tant role in prostate development and perhaps in the development of prostate can
cer. Since TGF-~ has been shown to inhibit the growth of normal prostate cells, 
data-showing overexpression of TGF-~ in prostate cancer was a paradox. Howev
er, this was explained by the observations that prostate cancer cells were less sensi
tive to TGF-~ than their normal counterparts. Our data, showing a lack of expres
sion of PDF in prostate cancer unresponsive to androgens suggest that in addition 
to a reduced sensitivity of prostate cancer to TGF-~ itself, in at least some cases 
prostate cancers may also down-regulate expression of other members of the TGF
~ superfamily, thereby enhancing the potential for proliferation and subsequent 
metastases of prostate cancer cells. 

Growth and differentiation factor-8 (GOF-8) 

Various GDFs have been cloned by using degenerate oligonucleotides made against 
conserved sequences among known members of the TGF-~ family. GDF-8 is one of 
the many GDFs cloned and identified using this approach, and based on its amino 
acid sequence it belongs to the TGF-~ superfamily [8]. However, like PDF, GDF-8 
does not fall into any of the known sub-families such as the BMPs or the TGF-~ sub
family. Northern blot analysis and in situ hybridization in developing embryos 
showed that GDF-8 expression was localized to developing somites in early stages, 
while in later stages of embryogenesis and in adults it is found in most muscles. 
GDF-8 was originally thought to be expressed specifically in skeletal muscle, but it 
has since been detected in mammary tissue [20] and cardiac muscle using RT-PCR 
[21]. GDF-8 null mice are larger than wild type mice and individual muscles are 
nearly 200% heavier than those of wild type littermates [8]. This identifies GDF-8 
as a negative regulator of skeletal muscle growth during development. Support for 
the murine data came from historical studies showing that natural mutations of the 
GDF-8 gene in certain breeds of cattle result in the double muscling phenotype sim
ilar to that of the GDF-8 null mouse [13]. In the Belgian Blue, an 11 base pair dele
tion in the active C-terminus occurs; in Piedmontese there is a G~A substitution in 
the active region [21]. Other inactivating mutations have been identified demon
strating allelic heterogeneity at this locus. Thus, the role of GDF-8 in skeletal mus
cle growth during embryogenesis is very well documented and it most likely plays a 
role during normal growth and differentiation. 

What is not well understood is the mechanism by which GDF-8 regulates mus
cle growth. The increase in muscle weight in the GDF-8 null mouse is a result of 
both skeletal muscle hyperplasia (increase in the number of cells) and skeletal mus
cle hypertrophy (increase in the size of skeletal muscle cells). Does GDF-8 inhibit 
growth of muscle cells at all stages of differentiation during development? Does it 
reduce the number of muscle cells by inducing apoptosis? Another possible mecha-
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nism would be that GDF-8 plays a role in regulating skeletal muscle size. In this 
case, GDF-8 would only be a negative regulator when skeletal muscle has reached a 
certain size, which is proportional to the rest of the body during development. Other 
questions that are equally interesting are: What is the role of GDF-8 in the adult? Is 
it expressed in all muscle types and fibers or is it preferentially expressed in certain 
muscle subtypes? What happens to GDF-8 expression and what is its role in dis
eases, which lead to skeletal muscle atrophy? Researchers around the world are 
beginning to answer some of these questions. The role of GDF-8 in the adult and in 
diseases that lead to skeletal muscle atrophy is important from a clinical viewpoint 
because only these data will determine clinical applications of GDF-8, if any. To 
study the role of GDF-8, various researchers have examined its expression in murine 
or rat model systems of injury or atrophy. Typical atrophy models include hindlimb 
unloading, de nervation by sciatic neurectomy, microgravity and immobilization. 
The most common method of inducing injury/regeneration is bupivicaine injection. 
In hindlimb unloading, the animals' rear limbs are suspended and thus rendered 
unusable, whereas in sciatic neurectomy the lower limb muscles are unable to con
tract. Using hindlimb unloading in mice, Carlson et al. [14] found a 67% increase 
in GDF-8 mRNA expression at day 1 of unloading in the gastrocnemius/plantaris 
complex (fast twitch muscle). By day 7, GDF-8 levels were still elevated, but to a 
lesser extent (33%). No GDF-8 expression was detected in the soleus (slow muscle) 
[14]. Using the same atrophy model and a 10-day time point in Wistar rats, Wehling 
et al. [15] not only demonstrated an increase in plantaris GDF-8 mRNA; a con
comitant 37% increase in protein was also found. With bupivicaine injection in 
Wistar rats, Sakuma et al. [16] and Yamanouchi et al. [17] have reported conflict
ing results in fast muscle. Using unilateral sciatic neurectomy Sakuma's data is in 
agreement with the emerging picture for fast muscle, that is, an increase in GDF-8 
mRNA expression in response to atrophy. 

Conflicting results have been reported for slow fiber types such as the soleus. 
Since it seems to be a consensus that expression in the soleus is low at best, perhaps 
using more sensitive techniques such as kinetic PCR additional data will yield a 
clearer pattern of GDF-8 expression. It must be pointed out that different studies 
have encompassed different time points (1 day-28 days), different fast muscles, and 
different models. If GDF-8 is acting as both a negative and positive regulator as pro
posed by Lee and Mc Pherron [30], it would be expected that levels would fluctu
ate over time. In addition, since atrophy increases over time in disuse models, the 
degree of regulation observed must be correlated with the amount of atrophy. Addi
tional data is clearly needed to sort out this interesting picture. To truly understand 
the mechanism by which this molecule works, it will be necessary to demonstrate 
whether changes in GDF-8 levels precede or follow the observed changes in indi
vidual muscle weights. Although it is very difficult to conclude from these data any 
definitive role of GDF-8, it seems to be preferentially expressed in fast or mixed 
fiber types rather than in slow muscle fibers. 
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The expression of GDF-8 in diseases that lead to muscle wasting in humans such 
as HIV has been recently studied [18]. These researchers tested the hypothesis that 
if GDF-8 plays a negative role in skeletal muscle mass, then under conditions that 
lead to muscle wasting, its expression would be upregulated. This study was done 
by obtaining muscle biopsies and serum from healthy and HIV-infected men, and 
examining GDF-8 expression in the biopsies by Western blot analysis and in the 
serum by a RIA. Their findings agree with their hypothesis that GDF-8 levels are 
higher in HIV patients with muscle wasting than in healthy individuals. However, it 
should be noted that the antibody developed by these researchers recognizes a pro
tein band of 26 kDa even under stringent reducing conditions. Based on GDF-8 
amino acid sequence, the size of the active C-terminal GDF-8 monomer should be 
about half of what these researchers found. Although it is possible that glycosyla
tion could account for some of the size difference, it seems unlikely that it alone 
would account for the size of the band seen in this paper. It is also possible that in 
spite of their best efforts, GDF-8 obtained from skeletal muscle samples might be 
extremely difficult to reduce and the researchers are actually detecting the GDF-8 
dimer. To explain the size discrepancies the paper calls the protein 
myostatin-immunoreactive protein instead of myostastin. Although there are ques
tions about these data, it is an extremely encouraging study that has attempted to 
truly characterize the role of GDF-8 in adult humans under conditions of muscle 
degeneration. Once the immunoreactive band seen by these researchers is identified 
or as more tools are generated such studies characterizing the role of GDF-8 in other 
patients with muscle atrophy will shed more light on the role of GDF-8 in the adult, 
and more specifically in muscle degeneration/atrophy. 

Recent observations suggest that myostatin functions partially by inhibiting 
myoblast proliferation via p21 upregulation and G1 arrest [22-24]. To delineate 
other potential actions of myostatin, such as regulation of apoptosis, more data are 
needed. The growing body of literature on this topic is encouraging, but suggests a 
complex picture. 

Cell surface receptors and intracellular signaling by GDF-8 and PDF 

Members of the TGF-~ superfamily initiate intracellular effects by binding to and 
activating specific cell surface transmembrane receptors. These receptors, designat
ed as type I and type II, possess intrinsic serine-threonine kinase activity. The recep
tors transmit signals to a family of transducers known as Smads [25]. Nuclear local
ization of Smads and subsequent activation of activation of target genes can be 
attributed to different response elements in the TGF-~ and BMP subfamilies. The 
Smad binding element CAGA activates TGF-~ signaling [26, 27], and GCCG 
appears to be specific to BMP signaling [28]. Based on our data showing the abili
ty of PDF to activate the p3TP-Lux promoter reporter construct, PDF seems to uti-
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Table 1 - Putative cell surface receptor for TGF-~ superfamily members 

Ligands 

BMP-7 
GDF-8 
PDF 

Type II receptor 

ActRlI, BMPR-II 
ActR-lib 
Unknown 

Type I receptor 

ActRl, BMPR-1A, BMPR-1 B 
TGF-~R-I 
Unknown 

lize a signaling pathway similar to other members of the TGF-~ superfamily [7]. 
Similarly, GDF-8 also activates p3TP-Lux and other TGF-~ stimulated promoter 
reporter constructs (unpublished observations). The data of Celeste et aI. point to 
the usage of ActR-IIb (Tab. 1) as a receptor combination for GDF-8 (Celeste et aI., 
personal communication). To date, the exact receptors utilized by PDF remain 
unknown, as does the potential use of additional receptor subtype combinations by 
GDF-8. This would not be unexpected as BMP-7 can utilize combinations of three 
of the six different type I and three of the four different type II receptors for the 
TGF-~ superfamily. GDF-S, a member of the BMP subfamily, has been shown to use 
combinatorial signaling to mediate digit formation. The outcome of signaling 
through BMPRlb is initiation of chondrogenesis, and apoptosis is effected through 
an alternative receptor [29]. The BMPs, unlike other superfamily members such as 
TGF-~, have the ability to bind to either the type I or the type II receptors. Howev
er, their binding to the type I receptor is of low affinity and high affinity binding is 
only observed in the presence of both types I and types II receptors. Whether such 
binding or combinatorial signaling is also utilized by PDF or GDF-8 remains to be 
determined. 

Potential clinical applications 

One of the most advanced clinical applications of TGF-~ superfamily members is 
the use of BMPs in osteoinduction during fracture repair or during bone recon
structive surgery. The expression of GDF-8 has been shown to negatively regulate 
skeletal muscle mass during development, it is thus interesting to speculate clinical 
application for a GDF-8 inhibitor in diseases which lead to muscle wasting such as 
cancer or AIDS, or for the treatment of loss of muscle mass due to aging. Similarly, 
a potential application for PDF in prostate cancer also seems plausible since the 
expression of PDF is androgen-regulated and PDF appears to be absent in prostate 
cancer. It must be pointed out that the data on PDF and prostate cancer is very pre
liminary at this point. It is also possible that future work will show a potential for 
either PDF or GDF-8 as a therapeutic agent in tissues other than muscle or prostate. 
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Conclusion 

Members of the highly conserved TGF-p superfamily play many roles both during 
development and in the adult animal. These molecules are synthesized and secreted 
by cells within a wide variety of tissues and affect gene expression by signaling 
through combinations of type I and type II transmembrane receptors and intracel
lular effector proteins known as Smads. The current elucidation of the mechanism 
of action of PDF and GDF-8 may lead to the development of therapeutic uses for 
these molecules. Prostate cancer is the most common cancer to strike men. Prostat
ic disease in general accompanies aging as do a variety of other elements that lead 
to muscular atrophy. The role of TGF-p superfamily members in the aged are very 
poorly understood and have not yet been the focus of many laboratories. Although 
the role of GDF-8 in embryonic muscle development is apparent, very little is 
known about GDF-8 expression during aging or during cancer-induced cachexia. 
The data so far in various models of skeletal muscle injury and GDF-8 expression 
are unclear and it is difficult to identify an in vivo role for GDF-8 in stages beyond 
embryogenesis. From a clinical application it is going to be extremely critical to 
characterize the function of these proteins in the aged. This will help in the possible 
clinical development of PDF, GDF-8, or other members of the TGF-p family. 
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Introduction 

Pioneering studies on the ability of extracts from decalcified bone matrix to promote 
ectopic bone and cartilage formation [1] led to searches for the identity of these 
morphogens which define skeletal patterning. With the advent of powerful methods 
for protein purification, capability to determine amino acid sequences on small 
amounts of protein and DNA cloning, bone morphogenetic proteins (BMPs) were 
discovered [2-4]. The amino acid sequences predicted from their cDNA sequences 
revealed that BMP-2, BMP-3 and BMP-4 (BMP-1 is a member of the astacin fami
ly of metalloproteases) are members of the TGF-~ superfamily, which also includes 
the TGF-~s and activins [5]. Mainly through their sequence homology with other 
BMPs approximately 20 members in the BMP subgroup have now been identified 
and can be divided in multiple groups of structurally related proteins, e.g. BMP2 
and BMP-4 are highly related, BMP-6, BMP-7 and BMP-8 form another subgroup, 
and growth and differentiation factor (GDF)-5 (also termed cartilage-derived mor
phogenetic protein (CDMP)-l, GDF-7 (also termed CDGF-2) and GDF-6 are simi
lar to each other. In vitro BMPs were found to have potent effects on various cells 
implicated in cartilage and bone formation, e.g. induce proteoglycan synthesis in 
chondroblasts and stimulate alkaline phosphatase activity and type I collagen syn
thesis in osteoblasts [4]. When injected into muscle of rats, BMPs can induce a bio
logical cascade of cellular events leading to ectopic bone formation [3, 4]. GDF-5, 
GDF-6 and GDF-7 induce more efficiently tendon and cartilage-like structures [6, 
7]. Preclinical studies of certain BMPs in primates and other mammals have demon
strated their effectiveness in restoring large segmental bone defects [8, 9]. 

Like other members of the TGF-~ family, BMPs are multifunctional proteins 
with effects on cell types not related to bone formation, e.g. epithelial cells, mono
cytes and neuronal cells [10, 11]. In addition, BMPs were found to be expressed not 
only in skeletal tissues, but also in many soft tissues. Consistent with these results, 
phenotypes of mice with mutated BMP genes revealed that they are multifunction
al proteins that possess distinct roles in bone formation and many other mor-
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phogenic processes (Tab. 1) [12]. Interestingly, several different mouse and human 
skeletal disorders have been linked to genetic alterations in BMP genes. The mouse 
skeletal disorders short ear and brachipodism are caused by a null mutations in 
BMP-5 [13] and GDF-5 [14], respectively. Double muscle cattle were found to have 
mutations in GDF-S (also called myostatin) [15]. Hunter-Thompson type chon
drodysplasia has been linked to mutations in human cartilage-derived morpho
genetic protein [16]. 

Here we review the BMP signal transduction pathways leading to bone forma
tion. In particular, we will discuss the latest advances towards our understanding of 
the function of BMP receptors and their nuclear effector proteins, termed Smads, in 
controlling target gene expression. 

Identification and structure of BMP receptors 

TGF-~ family members, which include BMPs, elicit their cellular effects by inducing 
specific heteromeric complexes of two related serinelthreonine kinase receptors, i.e. 
type I receptor and type II receptors [17, 1S]. Among the TGF-~ family of receptors, 
the cDNAs encoding mouse activin and human TGF-~ type II receptor were isolat
ed first by an expression cloning strategy [19, 20]. Subsequently, other mammalian 
type II and type I receptors, including those for BMPs, were isolated based upon 
their sequence similarity with other serine/threonine kinase receptors [21-30, 
30-32]. Both receptor types contain glycosylated cysteine-rich extracellular ligand
~inding domains, short transmembrane domains and intracellular serine-threonine 
kinase domains (Fig. 1) [17, 1S]. A shared feature for type I receptors is that they 
have a glycine/serine residue-rich stretch in the juxtamembrane region, which is 
essential for type I receptor activation [17, 1S, 32]. Three mammalian BMPR-Is 
have been described to date [24, 29], i.e. activin receptor-like kinase (ALK)2, 
BMPR-IA (also termed ALK3) and BMPR-IB (also termed ALK6). Initially, ALK2 
has been referred to as a type I receptor for TGF-~ [33] or activin (ActR-I) [22], but 
recent studies suggest that ALK2 is most important in BMP signaling [24, 29, 34, 
35]. Different BMPs bind with different affinity to the type I receptors. For exam
ple, BMP-4 binds preferentially to BMPR-A and -IB [24], BMP-7 binds with higher 
affinity to ALK2 and BMPR-IB than to BMPR-IA [24], and GDF-5 binds preferen
tially to BMPR-IB, when compared with other type I receptors [36]. Functional 
importance of BMPR-Is in bone formation was shown by the induction of chon
droblast and osteoblast differentiation upon ectopic expression of mutant constitu
tively active BMPR-Is in mesenchymal precursor cells, and by observations that 
overexpression of dominant negative BMPR-Is interfered with BMP-induced 
osteoblast differentiation [37-40]. Surprisingly, BMP-3, which is one of the most 
abundant BMPs in adult bone, functions as an antagonist of BMP signaling, and is 
claimed to signal via the activin type IB receptor (ActR-IB)/ALK4 [41]. 

32 



Bone morphogenetic protein receptors and their nuclear effectors in bone formation 

Table 1 - Phenotypes of organisms with disruption of genes for BMPs, their receptors or their 

downstream Smads' 

Mutated gene 

BMP 

BMP-2 

BMP-3 

BMP-4 

BMP-5 

BMP-6 

BMP-7/0P-1 

BMP5/7 

BMP-8B 

BMP-15 (GDF9B) 

GDF-5 

GDF-8 

Receptors 

ActR-IA/ ALK-2 

BMPR-IAI ALK3 

BMPR-IB/ ALK6 

BMPR-II 

ActR-IiA & 

ActR-IiB 

Smads 

Smad1 

Smad4 

Smad5 

Phenotype 

Embryonic death (E7.5-E10.5). Defects in amnion/chorion 

formation and cardiac development. 

Viable. Increased bone mass. 

Embryonic death (E7.5-E9.5). Block of mesoderm formation. 

Viable. Skeletal abnormalities, short ear, brachypodism. 

Viable. Delay in developing sternum ossification. 

Perinatal lethality. Severe defects in kidney and eyes. 

Abnormalities of rib cage, skull and hindlimbs. 

Embryonic death (E10.5). Retarded heart development. 

Viable. Defects in spermatogenesis. 

Viable. Increased ovulation rate leading to twins and triple 

births in heterozygotes and infertility in homozygotes. 

Viable. Skeletal abnormalities, short ear, brachypodism. 

Viable. Increased skeletal muscle mass and body size. 

Embryonic death (E9.5). Block of mesoderm formation. 

Embryonic death (E7.5-E9.5). Block of mesoderm 

formation. 

Viable. Defects in limb development. 

Embryonic death (E9.5). Block of mesoderm formation. 

Embryonic death (E9.5). Arrest at the egg cylinder stage 

and block of mesoderm formation. 

Reference 

[169] 

[41] 

[58] 

[13] 

[170] 

[171 ] 

[172] 

[173] 

[174] 

[175] 

[14] 

[15] 

[42] 

[57] 

[46] 

[49] 

[60] 

Embryonic death (E9.5). Defects in allantois formation. Lechleider et aI., 

pers. comm. 
Embryonic death (E6.5-E8.5). Block of mesoderm formation. [176] 

Embryonic death (E9.5-E10.5). Defects in angiogenesis. [177] 

• All gene mutations are in mice except for sheep BMP-15 and bovine GOF-8. 

Three distinct type II receptors have been implicated in BMP signaling: BMPR
II, activin type II receptor (ActR-II) and ActR-IIB [26, 27, 30]. However, binding 
affinities of ActR-II and ActR-IIB for BMPs are lower than those for activins [30]. 
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BMP TGF-~ 

! 
Cytoplasm 

BMPR-I 

/ ! 
Cytoplasm 

Cytoplasm 

Figure 1 

Adivation of BMP and TGF-f3 receptors_ BMPs bind with weak affinity to type I or type 1/ 

receptors alone, but with high affinity to type I/type 1/ heteromeric complex_ Upon BMP

induced heteromeric complex formation, the constitutively adive type 1/ serine/threonine 

kinase of type 1/ receptor phosphorylates type I receptor in its GS-domain. TGF-f3 binds first 

to TGF-f3 type 1/ receptor, and subsequently recruits TGF-f3 type I receptor and initiates sig

naling in a similar fashion as described for BMP receptor adivation. 
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Type II receptors, but not type I receptors, have extensions rich in serine and threo
nine residues distal from the kinase domains. In particular, BMPR-II has a very long 
extension of which the function is unknown. 

Expression of BMP type I and type II receptors 

During mouse embryogenesis ALK2 is expressed primarily in the extraembryonic 
visceral endoderm before gastrulation and it is widely expressed in midgestation 
embryos [42, 43]. BMPR-IA was also found broadly expressed, but it is absent in 
the liver during embryogenesis [44]. Among the three BMPR-Is, BMPR-IB expres
sion is the one that is most tissue or developmental stage restricted in its expression 
pattern [44,45]; BMPR-IB is predominantly expressed in mesenchymal cells repre
senting the primordia of long bones and later in development it is widely expressed 
in skeleton components [46]. During chicken limb development BMPR-IB is strong
ly expressed in undifferentiated mesechymal cells condensations prefiguring the 
future cartilage primordium. Expression of chicken BMPR-IA, however, is restrict
ed to the prehypertrophic chondrocytes [45]. 

All three type II receptors (BMPR-II, ActR-II and ActR-IIB) are differentially 
expressed during mouse embryogenesis [47-49]. BMPR-II mRNA is detected in 
one-cell, two-cell and blastocyst stage embryos [50] and it is present in both embry
onic and extraembryonic regions [49]. ActR-II and ActR-IIB, however, are mainly 
expressed in extraembryonic ectoderm [47]. All three BMP type II receptors are 
expressed in hypertrophic cartilage and ossified tissue [51, 52]. Interesting, BMP 
receptor expression is enhanced at sites of fracture repair [53]. Furthermore, during 
pathological ossification in the spinal ligaments, hypertrophic chondrocytes were 
found to express high levels of BMP receptors, and these sites colocalized with high 
levels of BMP expression [51, 54, 55]. Aberrant expression of BMPs and their recep
tors, possibly induced by mechanical stress, may be involved in the pathogenesis of 
orthotopic ossification [56]. 

Determination of in vivo function of BMP type I and type II receptors 
through gene targeting approaches 

BMP type I and type II receptors were found to be critically important for embryo
genesis (Tab. 1) [12]. Mice lacking ALK3 and BMPR-II are lethal due to absence of 
mesodermal development [49, 57] and have a phenotype similar to BMP-4 knock
out mice [58]. ALK2-deficient embryos are much smaller than their normal litter
mates, and lack a morphologically discernible primitive streak and die prior to or 
during early gastrulation [42]. ALK6-deficient mice are viable and exhibit mainly 
appendicular skeleton defects [46]. Mice lacking ActR-II or ActR-IIB are viable and 
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were found to have a milder phenotype compared to a deficiency of one of their lig
ands. Some of ActR-II-deficient animals had mandibular hypoplasia and other 
skeletal and facial abnormalities [48]. ActR-IIB knockout mice showed cardiac 
defects, abnormal anteroposterior and left-right body axis patterning [59]. Howev
er, ActR-II and ActR-IIB double-knockout homozygous showed strong lethal 
embryonic abnormalities; these mice were growth arrested at the egg cylinder stage 
and did not form mesoderm [60]. The stronger phenotype in the double knock-out 
versus the single knock-outs suggests a functional redundancy for ActR-II and ActR
lIB in the mouse. 

Mechanism of BMP receptor activation 

Like other TGF-~ family members, both type I and type II receptors are required for 
BMP signaling [17, 18]. BMPs bind with weak affinity to type II or type I receptors 
alone and with high affinity to a heteromeric complex of the two receptor types [24, 
26-30] (Fig. 1). The affinity of BMPR-I for ligand binding is higher that of BMPR
II and it is thus plausible that BMPR-I binds ligand initially and recruits then 
BMPR-II into the ligand-receptor complex [61]. This is in contrast to TGF-~ and 
activin, which first bind to type II receptors and subsequently recruit type I recep
tors [21-23, 62] (Fig. 1). The mechanism of receptor activation has been best char
acterized for TGF-~ [32], but it is likely to occur in an analogous fashion for BMPs 
[17, 18]. Upon BMP-induced heteromeric complex formation, the constitutively 
active type II receptor kinase phosphorylates type I receptor predominantly in its GS 
domain. The type I receptor acts thus downstream of type II, and consistent with 
this notion has been shown to confer signaling specificity to the type I1type II het
eromeric complex [63] (Fig. 1). The activated type I receptor initiates intracellular 
signaling by phosphorylating downstream components, including the nuclear effec
tor proteins known as Smads. The L45 loop regions in the kinase domain of type I 
receptors were found to be important determinants for signaling specificity [64-66]. 

BMPR-II is distinct from the other type II receptors in that it has a long carboxy
terminal (C-) tail extension [26, 27]. Functional importance of this tail is not 
known; BMPR-II lacking this C-tail is fully functional in transactivating BMPR-I 
[28]. However, patients with familial primary pulmonary hypertension syndrome 
have been genetically linked to mutations in BMPR-II, and certain of these muta
tions result in a partial truncation of the C-tail [67-70]. 

Identification and structure of Smad proteins 

Our understanding of BMP intracellular signaling has dramatically increased 
through genetic studies in Drosophila and Caenorhabditis (C.) elegans, in which 
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Figure 2 

Strudure of Smad proteins. Receptor-regulated Smads (R-Smads) and common partner Smads 

(Co-Smads) consist of two highly conserved MH1 and MH2 domains that are separated by a 
proline-rich linker region. The amino-terminal region of inhibitory Smads (I-Smads) has only 

weak similarity to MH1 domains of R- and Co-Smads. The U-Ioop in R-Smads interacts with 

adivated type / receptors. Adivated BMPR-/ phosphorylates R-Smads in their C-terminal SXS 

motif, which is not present in Co-Smads and /-Smads. Nuclear localization signal (NLS) and 

DNA binding motif (fJ-hairpin) are conserved in the MH1 domains of R-Smads and Co-Smad. 

The PY motif is important for interadion with WW-containing HECT E3 ligases. 

Mothers against DPP (MAD) [71] and small body size (SMA) genes [72], respec
tively, were identified. MAD and SMA proteins were found to possess a critical role 
downstream of BMP-like proteins in these organisms. Thus far nine mammalian 
MAD and SMA related (Smad) proteins have been identified, which perform a piv
otal function in TGF-~ family intracellular signaling [17, 18]. Based upon their func
tional properties, Smads can be divided into three distinct subclasses: signal trans
ducing receptor-regulated Smads (R-Smads) and common-mediator Smads (Co
Smads, i.e. Smad4) and inhibitory Smads (I-Smads, i.e. Smad6 and Smad7) which 
inhibit the activation of R- and Co-Smads [73-75] (Fig. 2). R- and Co-Smads have 
conserved amino and carboxy regions, known as MAD homology (MHl) domain 
and MH2 domains, respectively. Both domains are separated by a variable proline
rich linker region. Whereas the I-Smads have an MH2 domain, their amino-terminal 
regions show only weak sequence similarity to the MHI domains (Fig. 2) [17, 18]. 

Activation and function of Smad proteins 

R-Smads interact transiently with and become phosphorylated by the activated type 
I receptor (Fig. 3); whereas Smadl, Smad5 and Smad8 act in the BMP pathway and 
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Figure 3 
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Signaling from activated BMP receptors to nucleus by Smad proteins. Upon BMP receptor 

activation R-Smads are phosphorylated by the activated BMP type I receptor. Activated R

Smads can form a heteromeric complex with Co-Smad and translocate into the nucleus 

where they can directly or through their transcriptional partners bind to specific sequences 

in the promoters of BMP target genes and activate transcription of those genes. /-Smads 

block BMP signaling. Phosphorylation of Smads by ErklMAPK into linker region inhibits 

nuclear translocation of Smads. 
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Smad2 and Smad3 are activated by TGF-~ and activin type I receptors [17, 18]. The 
L3 loop of R-Smad was shown to interact with the L45 loop in TGF-~ and BMP 
type I receptors, a region which determines signaling specificity among different 
type I receptors [76]. Smad2 and Smad3 have been shown to be presented to TGF
~ receptor complex through phospholipid binding FYVE-domain containing pro
teins, termed Smad anchor for receptor activation (SARA) [77] and Hrs [78]. How
ever, SARAlHrs-like proteins that facilitate BMP type I receptor-mediated activation 
of R-Smads remain to be identified. R-Smad phosphorylation by the activated type 
I receptor occurs at the two most carboxy-terminal serine residues in a SSXS motif 
[79-82]. In osteoblasts, BMP was found to induce the C-terminal phosphorylation 
of Smad5, and to a lesser extent Smad1 [83-85]. 

Upon BMP receptor activation BMP R-Smads form heteromeric complexes with 
Co-Smad4, i.e. Smad4 [86]. Preferentially trimeric Smad complexes are formed 
[87-89] (of which the exact stoichiometry needs further investigation) that effi
ciently translocate to the nucleus (Fig. 3) [17, 18]. Nuclear accumulation of BMP R
Smads and Smad4 was observed in osteoblasts after stimulation with BMP [83, 84]. 
The osteoblast-induced differentiation of mesenchymal precursor cell lines by 
ectopic expression of Smad1 or Smad5 became more pronounced when co
expressed with Smad4 and greatly enhanced by addition of BMP, which strongly 
promotes R-Smad/Co-Smad nuclear accumulation [40]. 

A nuclear localization signal (NLS)-like sequence in the MH1 domain of Smad3 
that is conserved among all R- and Co-Smads was shown to be required for TGF
~-induced nuclear import [90, 91]. In Smad4 a functional leucine-rich nuclear 
export sequence (NES) was identified that ensures cytoplasmic location of Smad4 in 
unstimulated cells. TGF-~-induced complex formation of Smad4 with R-Smads was 
found to inactivate the NES [92,93]. Nuclear entry of the Smad4IR-Smad complex 
may be stimulated upon unmasking of the NLS on the R-Smad and/or Co-Smad 
upon heteromeric complex formation. Within the nucleus, R-Smad/Co-Smad com
plexes act directly and/or in cooperation with other transcription factors, to regu
late the transcription of target genes (see below) [94, 95]. 

Gene disruption of Smad genes in mice has begun to reveal specific and devel
opmental functions of Smads that are implicated in BMP signaling. Whereas mice 
lacking Smad1, Smad4 or Smad5 are developmentally arrested, Smad6 mice make 
it to term (Tab. 1) [12]. To study the role of Smads in cartilage and bone formation, 
conditional knock-outs in, for example, mesenchymal precursor cells and 
osteoblasts are eagerly awaited. 

Expression and stability of Smad proteins 

In a recent study the expression of Smad1 to Smad6 was examined in the 15th day 
of gestation of the mouse embryo. All tissues were found to express Smad4 and at 
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least one of the R-Smads. Among the Smads, Smad6 expression was found most 
restricted [96]. At sites of endochondral ossification expression patterns of BMPs 
and their receptors were found to overlap with Smad1, Smad5 and Smad4 expres
sion in proliferating chondrocytes and in the maturing chondrocytes [52, 96]. High
est expression of inhibitory Smads was shown in zones of mature chondrocytes. 
These findings suggest that Smad expression is an important determinant in regulat
ing BMP signaling during the different phases of the bone forming process [52, 96]. 

The stability of Smad proteins appears also to be carefully regulated. Smad ubiq
uitination regulatory factor 1 (Smurf-1) was identified as a HECT domain contain
ing E3 ubiquitin ligase for BMP R-Smads [97]. The WW motifs in Smurfl interact 
with the PY motif (PPXY) in the linker regions of Smad1 and Smad5. Increased 
expression of Smurflleads to a selective decrease in BMP R-Smads thereby decreas
ing the cellular competence to BMP-mediated responses [97]. The proteasome-medi
ated degradation of Smadl/5 by Smurfl is independent from their activation by lig
ands. Whether Smads can also be modified in order to make them more stable is an 
interesting area for future research; e.g. the conjugation of ubiquitin to lysine 
residues in Smads may be blocked by acetylation of those same residues, and liga
tion of small ubiquitin-related and modifier (SUMO) to Smads may inhibit their 
ubiquitin-mediated degradation. 

Smads are transcription factors 

R-Smads (except for Smad2) and Smad4 were found to recognize specific sequences 
via their MH1 domains in the promoters of Smad target genes [98-100]. The affin
ity of Smad3 and Smad4 to DNA is much higher than BMP R-Smads. An in vitro 
screen of random DNA oligonucleotides that specifically bound to MH1-linker 
domain subdomains of Smad3 and Smad4 revealed that these Smads bind with high
est affinity to sequences containing GTCT sequence (called also Smad-binding ele
ment, SBE) [101]. Multimers of SBE when placed in front of a minimal promoter 
reporter construct provide a strong enhancer function for TGF-~ family members 
[98, 99, 101]. SBE-like sequences have been shown to be critically important for 
TGF-~-inducibility of multiple TGF-~ responsive genes [94, 95]. TGF-~ induced 
activation of several TGF-~-induced genes, including Smad7 [102-106], plasmino
gen activator inhibitor-1 [98, 107], a,2(I) collagen [108] and type VII collagen [109] 
is critically dependent on SBE sequences, which have been found in multiple copies 
in promoters of these genes. The Smad1 MH1 domain was shown to bind SBE [110] 
and a reporter construct containing a multimerized SBE present in JunB promoter is 
activated by BMP [110]. BMP R-Smads (and also Smad3 and Smad4) also have 
been shown to bind to GCAT motifs [111] or to GC-rich sequences present in pro
moters of different BMP target genes [112, 113]. Mutation of these sequences sig
nificantly decreased BMP-induced response [112, 114]. BMP-inducibility of 
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reporter constructs containing multimerized GC-rich sequences is very low [112, 
114, 115] and requires high levels of Smad overexpression [112, 114]. The true 
physiological significance of the low affinity interaction of BMP R-Smads with GC
rich sequences or GCAT motifs remains to be shown. 

The DNA affinity of Smads, and in particular BMP R-Smads, is weak. Smads 
thus need to cooperate with other DNA binding factors in order to bind efficiently 
to the promoters of target genes [94, 95, 116]. The 30-zinc finger nuclear protein 
OAZ was the first identified DNA-binding factor that associates with BMP R
Smads in response to BMP [116, 117]. OAZ interacts with the MH2 domains of 
Smadl and also Smad4. Expression of OAZ is tissue and cell type-specific and OAZ 
cannot be detected in different cells, including mesenchymal precursors [117]. Inter
estingly, a member of core binding factor (CBF) family of transcriptional factors 
Cbfal (also called osteoblast-specific factor (Osf) 2, Runt-related gene 2 (RUNX2) 
acute myeloid leukemia (AML) protein 3 (AML3) or polyomavirus enhancer core
binding protein-2aA (PEBPa2A) and its homologues Cbfa2 and Cbfa3 were shown 
to interact directly with Smad1/5 (as well as Smad2 and Smad3) [118, 119]. Cbfal 
precedes the appearance of osteoblasts and mice deficient in Cbfal lack osteoblasts 
and the bone ossification is completely blocked [120]. Cbfal is also critically impor
tant for already differentiated osteoblasts and acts as a maintenance factor for 
mature osteoblasts by regulating the rate of bone matrix deposition [121]. The 
Cbfal genetic locus has been linked to one of most frequent human skeletal disor
ders termed cleidocranial dysplasia (CCD) syndrome [122]. CCD patients express 
truncated mutant Cbfal proteins that retain the ability to bind DNA by their runt 
domains, but fail to interact with Smads. These data suggest that Cbfal and Smad 
cooperate in BMP-induced osteoblast differentiation [123]. 

Initially the MH2 domains of R- and Co-Smads were found to have transactiva
tion properties when fused to a GAL4-DNA binding domain [124, 125]. Subsequent 
studies have provided a mechanistic explanation for this; Smadl as well as Smad2 
and Smad4 were found to interact with transcriptional co-activators CBP/p300 
which possess intrinsic acetyltransferase activity [126]. P300 and CBP facilitate 
transcription by decreasing the chromosome condensation through histone acetyla
tion and by increasing the accessibility of Smad with components of the basal tran
scriptional machinery. CBP/p300 interact with many different transcription factors. 
The synergy between BMP and leukemia inhibitory factor (LIF) in the induction of 
differentiation of neuronal progenitors into astrocytes was shown to be mediated by 
cooperative binding of Smadl and STAT3 to CBP/p300 [127]. 

Negative regulation of BMP/Smad pathway 

Negative regulation occurs at nearly every step in the BMP/Smad pathway. Several 
extracellular proteins, e.g. noggin and chord in, can bind to BMPs and inhibit their 
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interaction with BMP receptors [128]. Bambi (for BMP and activin membrane
bound inhibitor was found to act as pseudo type I receptor and inhibits signaling 
possibly by preventing type I receptor homomeric complex formation [129, 130]. At 
the intracellular level activation of extracellular signal-regulated kinase (ERK) can 
lead to inhibition of BMP signaling; ERK MAPkinase mediated phosphorylation of 
Smadl in its linker region was found to inhibit BMP-induced Smadl nuclear accu
mulation [131]. I-Smads, i.e Smad6 and Smad7, potently interfere with TGF-~ fam
ily intracellular signaling [73-75], whereas Smad7 functions as a general inhibitor of 
TGF-~, activin and BMP pathways, Smad6 specifically inhibits the BMP signaling 
[132]. Overexpression of I-Smads in mesenchymal precursor cells potently inter
fered with BMP-induced osteoblast differentiation [40]. I-Smads interact efficiently 
with activated type I receptors, and the initial mechanism described for I-Smad 
antagonism was by competing with R-Smads for type I receptor interaction [73-75]. 
However, other mechanisms by which I-Smads antagonize TGF-~ family/Smad 
pathways have now been described. Smad7 has been found to constitutively inter
act with HECT-domain ubiquitin ligase, Smurf2 [133] and more recently with 
Smurfl as well [134]. Binding of Smad7 to Smurf induces the export of 
Smad7/Smurf complex from the nucleus. Upon recruitment of the complex to the 
activated TGF-~ receptor, Smurfl or Smurf2 induces TGF-~ receptor degradation 
through proteosomal and lysosomal pathways. Smad7 may thus function as an 
adapter protein to mediate degradation of TGF-~ receptor complex [133, 134]. 
Smurf2 has also been reported to bind Smad6 and target the BMP receptor for 
degradation [133]. Other mechanisms for Smad6-inhibition of BMP signaling have 
been proposed: (i) by competing with Smad4 for heteromeric complex formation 
with activated R-Smads [135], (ii) by acting as a direct transcriptional corepressor 
[136], and (iii) by inhibiting the action of TAK1, a MAPKKK implicated down
stream of BMP receptor signaling to apoptosis [137]. Further studies are needed to 
determine the physiological importance of these inhibitory mechanisms for I-Smads. 

Tob, a member of an emerging family of antiproliferative proteins, was shown 
to bind R-Smads and to negatively regulate osteoblast proliferation and differentia
tion by suppressing the BMP R-Smads' transcriptional activity [115]. Mice deficient 
in Tob showed increased bone mass due to increased numbers of osteoblasts. Anoth
er negative regulator is the transcriptional corepressor Ski, which can interact with 
Smad4 [138] and Smadl or Smad5 through their MH2 domains [139]. Ectopic 
expression of Ski was found to inhibit BMP-2-induced osteoblast differentiation of 
murine W-20-17 cells [139]. 

BMP receptor-initiated Signaling distinct from Smad activation 

Ectopic expression of BMP R-Smads can recapitulate osteoblast differentiation, but 
not chondrogenic differentiation [40]. Thus, BMP-induced osteoblast differentiation 
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BMP signaling through Smad-dependent and Smad-independent pathways. BMP activates 
the Smad pathway as well as other signaling pathways. Abbreviations: JNK, c-Jun N-termi

nal kinase; TAB, TAK-1 binding protein; TAK, TGF-f3 activated kinase; XIA?, X-linked 

inhibitor of apoptosis protein. 

appears to occur mainly via the Smad pathway, whereas BMP-induced chondro
genic differentiation is mediated via Smad-dependent and Smad-independent path
ways [40]. Other pathways distinct from Smad pathway that are initiated down
stream of ligand-induced activation of BMP receptor complex have been identified 
(Fig. 4). TGF-B-activated kinase 1 (TAK1), a MAP kinase kinase kinase (MKKK), 
can be activated by TAK1 binding protein (TAB1) in response to BMP and activate 
both SAPK and p38 pathways [140, 141]. X-chromosome-linked inhibitor of apop
tosis (XIAP) may provide the direct link between TAB1 and type I receptor as it was 
shown to interact with both proteins [141]. p38 MAP kinase activation induces the 
phosphorylation of transcriptional factor ATF-2, and both ATF-2 and Smads were 
shown to act synergistically in transcriptional regulation [142]. BMP-induced apop-
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tosis was shown to be mediated by TAKl-p38 kinase pathway [137]. In ATDC5 
cells activation of p38 kinase by GDF-5 contributes to chondrogenesis [143]. Fur
ther studies are needed to demonstrate the physiological and general importance of 
Smad independent pathways in BMP signal transduction. 

BMP target genes 

A number of extracellular matrix proteins, including osteocalcin, collagen type a., 
bone sialoprotein and decorin are potently induced by BMP [144-146]. Some of 
them may be direct targets for BMPs (such as collagen), whereas others (such as 
osteocalcin) are indirect and are only induced after prolonged exposure to BMPs 
(Tab. 2). The BMP-induced expression of alkaline phosphatase, a late BMP target 
gene, is often used as a read-out for BMP-induced osteoblast differentiation [40, 
144-147]. BMPs were shown to activate osteopontin gene expression by preventing 
the binding of transcriptional repressor Hoxc-8 to the osteopontin promoter. Acti
vated Smads can bind to Hoxc-8 and dislodge the inhibitory Hoxc-8 from the DNA 
[148, 149]. In addition, a Smad binding region was identified in osteopontin pro
moter, and shown to be involved in BMP-mediated activation of this promoter 
[150]. BMP-induces expression of osteoprotegrin (OPG), an osteoblast-secreted 
decoy receptor, which specifically binds to the osteoclast differentiation factor and 
inhibits osteoclast maturation [151]. Interestingly, characterization of the OPG pro
moter revealed two homeodomain transcriptional factor Hoxc-8 binding sites that 
are essential for OPG promoter activation by BMP [151]. 

Connective tissue growth factor (CTGF), an important regulator of extracellu
lar matrix formation, is also induced by BMP [152]. In the rat long bone growth 
plate the CTGF expression in chondroblasts is restricted to hypertrophic region 
[152], which overlaps with the expression of BMP signaling components [52]. 
Recombinant CTGF promotes the proliferation and differentiation of chondrocytes 
and induces the expression of osteoblast-specific genes and bone mineralization 
[153]. 

In many cell types (including osteoblasts) the expression of inhibitory Smads 
(Smad6 and Smad7) are potently induced by BMPs [75, 154, 155]. In the Smad6 
promoter a BMP responsive GC-rich elements has been identified [112]. BMP
responsive elements in Smad7 promoter remain to be elucidated. The BMP-induced 
I-Smads may serve a role in a negative feedback loop in Smad signaling to control 
the intensity and duration of BMP signaling response [75, 154, 155]. 

BMPs have also been found to induce many transcription factors (Tab. 2). JunB 
was shown in osteoblast precursor cells as a direct early BMP-2 target gene involved 
in the inhibition of myogenic differentiation [156]. Investigation of JunB promoter 
revealed the importance of multiple Smad binding elements through which this gene 
can be activated by ectopic BMP R-Smad expression [99]. BMPs induce the expres-
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Table 2 - Genes induced by BMPs in osteoblasts or their precursors 

BMP target gene 

Components of ECM 

Ostecalcin [145] 

Ostepontin [144] 

Collagen la1 & a2 [146] 

Bone sialoprotein [182] 

Decoy receptor 

Osteoprotegrin [148,150] 

Enzymes 

Defects resulting from gene inactivation 

Viable. Osteopetrosis [178]. 

Viable. Altered collagen fibrillogenesis and wound healing 
[179]. 

Resistant to to ovariectomy-induced osteoporosis [180]. 

Viable. Osteogenesis imperiecta [181]. 

Not determined. 

Not determined. 

Alkaline phosphatase [145] Metabolic and skeletal defects. Infantile hypophosphatasia 

[183]. 

Growth fadors 
CTGF* [152] 

Inhibitors of BMP fundion 

Smad6* [75, 112, 155] 

Smad7* [74, 155] 

Transcriptional regulators 
Msx-2* [157, 164] 

Dlx-5* [162, 165] 

Id1*, Id2*, Id3* [157, 158] 

JunB* [99, 156] 

Cbfa1 [39,147,187] 

Not determined. 

Cardiovascular abnormalities. Defects in endocardial cushion 

transformation [184]. 

Not determined. 

Viable. Defects in craniafacial bone ossification and endo

chondral bone formation. Tooth, mammary gland, cerebellum 

defects. Mutated in cranysynostosis patients. Haploinsufticiency 

causes parietal foramina [165]. 

Viable. Delayed membraneous ossification [163]. 
Id1-1- Idr/- and Id2-1- Id3-1- are not viable [185]. 

Haematopoietic and neural abnormalities (Storm, Huynh et aI., 

1994, 74 lid). 
Embryonic death (E8.5-E10). Multiple defects in placental 

neovascularisation [186]. 

Death after birth. No ossification. Skeleton made from chondro

cytes only [120]. Mutated in CCD patiens [122]. 

*For this gene it has been demonstrated that it is a dired BMP target. 
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sion of helix-loop-helix proteins inhibitors of differentiation (Id) in osteoblasts and 
their precursors in part via transcriptional and post-transcriptional events [157, 
158]. The induction of Id proteins by BMPs may indirectly support osteoblast dif
ferentiation of mesenchymal precursor cells by blocking their adipocyte [159] and 
myoblast differentiation [160, 161]. 

Mammalian homologs of the Drosophila distalles (dll) Dlx5 and Dlx6 are direct 
gene targets for BMP [162]. Overexpression of Dlx5 in cells induces their osteoblast 
differentiation while disruption of Dlx5 exhibits defects in the ossification of the 
membranous bones [163]. BMPs can directly induce the Msx-l and Msx-2 home
obox genes. Mice deficient in Msx-2 [164] or Msx-l have defects in the skull bones 
and show an overall decrease in bone mass [165]. Albeit not a direct BMP target, 
Cbfal induction by BMP is critical for BMP-induced osteogenesis [147]. Cbfal can 
induce extracellular matrix proteins, but Cbfal is not sufficient to induce the whole 
onset of osteoblastic differentiation without cooperation with Smad5 [147]. Many 
new (in)direct target genes for BMP are likely to be reported as a result of cDNA 
micro array studies that are currently ongoing in many laboratories 

Perspectives 

Recent studies have demonstrated the pivotal role of BMP type I and type II recep
tors and their downstream Smad effectors in BMP-induced osteoblast differentia
tion. However, the molecular mechanisms that govern BMP-induced osteogenic dif
ferentiation need further study. In particular, physiological interactions between 
BMP family members with their receptors and Smads, and downstream gene targets 
in osteoblasts remain to be validated by comparing the phenotypes of mice deficient 
in a particular BMP ligand, receptor, Smad or target gene. In many cases a null 
mutation of a particular BMP signaling component leads to an embryonal lethal 
phenotype. Conditional knock-out approaches will therefore be required to study 
the role of these molecules in bone formation. The repertoire of BMP Smad inter
acting proteins in different osteoblast (precursor) cell types or at different states of 
their differentiation need to be elucidated. In addition, the genetic programs that are 
initiated in mesenchymal precursor cells, chondroblasts and osteoblasts upon BMP 
stimulation via the various BMP intracellular pathways need to be determined. To 
analyze this efficiently functional genomics technologies will be useful. This 
approach should provide an answer to the question of why different BMP type I 
receptors, although activating the same set of Smad proteins, can induce distinct 
biological responses. Stimulating mesenchymal precursor cells with a constitutively 
active (ca) BMPR-IA induces adipocyte differentiation, whereas (ca) BMPR-IB 
induces osteoblast differentiation and apoptosis [39]. During limb bud morphogen
esis in the chick, BMPR-IA was found to mediate osteogenesis whereas BMPR-IB 
induced preferentially chondrocyte differentiation [45]. 
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BMPs in animal models have shown to be very effective in bone repair [8, 9, 
166]. Adenoviral BMP7 gene transfer [167] and BMP4 plasmid implantation into 
bone [168] have been succesfully used in mouse models of osteogenic induction. 
However, clinical use of BMPs as regenerative agents in humans has thus far been 
limited; there is a need of using high doses of BMPs to get specific effects, if any. 
With the elucidation of the BMP/Smad pathway numerous inhibitors of BMP sig
naling have been identified. An interesting possibility, which remains to be explored, 
is that by inhibiting the action of antagonists, like extracellular noggin and the intra
cellular I-Smad, BMP signaling can be potentiated, thereby making BMPs more 
effective therapeutic agents. 
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Introduction 

BMPs and other members of the TGF-~ superfamily are powerful secreted signalling 
proteins that determine development and homo eo stasis of many organs and tissues 
[1, 2]. These comprise bone, cartilage and teeth as well as heart, kidney, muscle, 
skin, hair, reproductive tract, and several others. Despite the diversity of the biolog
ical functions, all ligands and receptors in this superfamily show on a molecular 
level many similarities in structure and function [3, 4]. 

The three-dimensional structure even of distantly related factors reveals an 
astonishingly similar backbone fold in most parts of the protein [5-9], although the 
amino acid sequences of the mature parts show only 30% identity among the most 
distant members and 70-90% only within special subgroups. Generally, type I and 
type II receptors with a cytoplasmic serine/threonine kinase domain are necessary 
for transmembrane signalling. SMAD proteins are special cytoplasmic signalling 
proteins for the TGF-~-like factors and their receptors [10]. 

More than 30 different TGF-~-like proteins known today in men and mice com
prise BMPs, GDFs, TGF-~s, activinslinhibins, and others. The designation bone 
morphogenetic protein, "BMP," originally indicated that the protein induces ectopic 
bone or cartilage formation when analyzed in a Reddi-Sampath assay in vivo [11]. 
But many, especially the recently discovered so-called BMPs, most likely do not 
function during physiological bone formation or repair. Probably, the few type I and 
type II receptors (BRIA, -IB, ARI, -IB, BRII, ARII) established or discussed to par
ticipate in BMP signalling are promiscuous and can interact with more than one or 
multiple BMPs in experimental setups. The specificity and the affinities of these 
interactions, however, remain to be defined and quantified. It seems also important 
to explore if combinations of BMPs or BMP heterodimers are more efficient than 
homodimers and individual factors. 

BMP-2 and other BMPs and TGF-~-like factors are notorious for interacting 
with a variety of proteins and molecules in addition to the type I and II receptor 
chains [12]. These additional proteins inhibit or modify the activity of the BMPs 
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[12]. Some of these proteins interact specifically with one BMP or with a BMP sub
group, whereas others show a broader specificity. Several of these proteins, like nog
gin, chordin and bambi have been shown to block receptor binding. Only the BMP-
2 epitope for glycosaminoglycan binding (heparin-binding epitope) has been studied 
in some detail [13]. 

The present review describes data on established three-dimensional structures of 
TGF-~-like proteins as well as on the structures of the receptor ectodomain of ARII 
[14] and of BRIA in complex with BMP-2 [15]. The structural data provide the 
framework to characterize the functional binding epitopes of BMPs and TGF-~ like 
proteins for the type I and type II receptor chains as well as for heparinic sites. 

Subfamilies of TGF-~-like factors according to similarities of amino acid 
sequences 

Sequences of 34 mammalian TGF-~-like factors are compiled in Figure 1. The 
mature proteins comprise (1) the "cystine-knot" domain [16, 17] starting with the 
first conserved cysteine and (2) a N-terminal segment upstream of that first con
served cysteine (arrow in Fig. 1). The "cystine-knot" domain is the functionally 
most important part, since it constitutes the binding epitopes for the type I and II 
receptors. The N-terminal segment, as detailed in the next section, seems to exert 
various functions in different proteins. 

All TGF-~-like factors are dimers, usually homodimers (but see e.g. the het
erodimeric inhibin). Six cysteines of the mature monomers form a typical pattern of 
three disulfide bonds (DSB) called "cystine knot". The seventh cysteine at position 
78 (see Fig. 1) forms a disulfide bond between the monomers of nearly all the pro
teins. The most distant members, GDNF (glial derived neurotrophic factor), Mis 
(Mullerian duct inhibiting substance) and inhibin A share amino acid sequence iden
tities in only 16-24%, 18-31 % and 22-29% of their positions with the BMPs. Sub
groups comprising one to three related factors can be discriminated. About 92% 
identical sequence positions occur between the closely related BMP-2s (BMP-2 and 
BMP-4), or GDF-8s (BMP-ll/GDF-8). Identities of 75-80% exist among the TGF
~s (~1, ~2 , and ~3). TGF-~s and BMP-2s or BMP-7s share 30-35% identical posi
tions (BMP-17 and BMP-18 are considered to be the same gene product in the 
SwissProt data bank). 

Some subgroups are characterized by additional common properties (Fig. 2). An 
extra DSB exists in the activins, GDF-8s, GDF-15s and TGF-~s fixing the N-termi
nal segment to the cystine-knot. An interchain DSB linking the two monomers 
occurs in all known factors with the exception of GDF-3 and the BMP-15s. A typ
ical pair of tryptophane residues is localized in the first finger loop of all TGF-~-like 
factors with the exception of the most distant members GDNF and MIS. These tryp
tophanes are separated by one residue (WxW group) in the GDF-8s and the TGF-
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~s and by two residues (WxxW group) in all other factors. Members of the same 
subgroup have usually the same inters paced residues. Finally, N-Glycosylation as 
deduced from the occurrence of the Nxsrr sequence is also subgroup specific. A sin
gle Nxsrr potential N-glycosylation site is located in the central a-helix of the BMP-
2s, BMP-Ss, and GDF-3. Two additional NxSrr sites exist in the N-terminal peptide 
of the BMP-7s. Many of the proteins cannot be N-glycosylated in the mature part. 
It is unclear if TGF-~-like factors can become O-glycosylated. 

N-terminal segment 

The sequence preceding the cystine-knot domain is highly variable both in length 
and in amino acid composition (see Fig. 1). The length varies between six to seven 
residues in the BMP-l0s and 37 residues in the BMP-7s and BMP-Ss. (The report
ed N-terminal sequence of mGDF-7 is unusual in containing an uninterrupted 
stretch of 20 glycines.) Similarities in the sequence and size of these peptides exist, 
if at all, among members of the same subgroup. Nevertheless, the N-terminal seg
ment is of functional importance. The additional DSB fixing this segment to the cys
tine-knot domain (CiS in Fig. 1) in several subgroups has been mentioned above 
and may be important for receptor binding of these proteins (see below). In the pro
teins that do not contain this additional DSB the N-terminal segment probably 
floats around freely and can interact with other proteins or molecules. 

The BMP-2 provides a heparin-binding site in the N-terminal sequence. Binding 
of BMPs to the extracellular matrix and heparinic sites of glycosaminoglycans has 
already been inferred from cell culture experiments and the strong binding of BMP-
2 and other BMPs to heparin-sepharose. Proteolytic cleavage abolishes binding to 
the extracellular matrix [is]. Substitution of the N-terminal segment of BMP-2 by 
a dummy sequence of the same size results in a BMP-2 variant that no longer binds 
to heparin at 150 mM NaC!. This variant has, however, a 5-10-fold higher biolog
ical activity in an embryonic chicken limb bud assay and a decreased activity in vivo 
in an ectopic bone formation assay [13]. 

A conspicuous feature of the N-terminal BMP-2 segment are two triplets of basic 
residues providing a high density of positive charges in their side chains (see Fig. 1). 
In total, 7 basic residues are present and no acidic negatively charged ones. These 
basic triplets are also present in BMP-4. BMP-2 variants containing one or two 
additional basic triplets in their N-terminal segment have been generated. They bind 
to higher levels and with a decreased dissociation rate to heparin (= higher affinity) 
(Fig. 3). This leads to a reduced biological activity in cell culture were heparinic sites 
compete with the receptors for the ligand. However, it seems to have a positive effect 
on ectopic bone formation in vivo, were it may stay longer to the application site 
and, therefore, may be effective at lower concentration and lead to a denser bone of 
higher quality (second generation BMPs). 
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--FASQGAPAGLGBPQLBLITLDLGDYGAQGDCDPBAPMTBGi}CCR-QB 
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LYVDFS-DVGW-HDWIVAPPGYBAPYCBGBCPFPLADRLH----STHHAI 
LYVDFS-DVGW.HDWIVAPPGYQAFYCBGDCPFPLADBLM----ST RAI 
LYVSFR-DLGW.QDWIIAPBGYAAPYCDGBCSFPLHABMM----AT BAI 
LYVSPQ-DLGW.QDWIIAPKGYAAHYCDGECSFPLHABMH----AT HAl 
LYVSFR-DLGW.QDWIIAPBGYAAYYCBGECAFPLNSYKN----AT HAl 
LYVSWQ-DLGW.LDWVIAPQGYSAYYCBGBCSFPLDSCMN----AT BAI 
LYVSFR-DLGW.LDSVIAPQGYSAYYCAGECIYPLHSCMH----ST BAT 
LBVHPK-DNGW.DDWIIAPLBYBAPBCBGLCBFPLRSBLB. PT BAV 
LHVNPK-BLGW.DDWIIAPLBYBAYBCBGVCDFPLRSBLE PT HAl 
LBVDFK-BLGW.DDWIIAPLDYBAYBCBGVCDFPLRSBLB ... PT HAl 
LFINFQ-DLGW.BKWVIAPKGPMAHYCBGBCPFSMTTYLH .... SS YAF 
LYVSPR-BVGW.BRWVIAPRGFLAHYCQGQCALPVALSGSGGPPAL HAV 
LYIDPK-BIGW.DSWIIAPPGYBATBCRGVCHYPLABBLT----PT BAI 
LRVNFB-DIGW.DSWIIAPKBYBAYBCKGGCFPPLADDVT----PTKBAI 
LKVDFA-DIGW.SBWIISPKSFDAYYCSGACQFPMPKSLK----PSBBAT 
LKVDPA-DIGW.HBWIISPKSFDAYYCAGACBFPMPKIVR----PSBBAT 
FRLSrS-QLKW.DBWIVAPBRyHPRyCKGDCPRAVGHRyG----SPVBTM 
FQISFR-QLGW.DBWIIAPPPYTPHyCKG~CLRVLRDGLR----SPHBAI 

FQVDFH-LIGW.GSWIIYPKQYNAYRCBGBCPHPVGZEFB .... P!HBAY 
FFVSFK-DIGW.HDWIIAPSGYBAHYCBGECPSHIAGTSGSSL.SFBSTV 
FFIDFR-LIGW.HDWIIAPTGYYGHYCBGSCPAYLAGVPGSAS.SFBTAV 
7FVDFR-EIGW.BDWIIQPBGYAMRFCIGQCPLBIAGMPGIAA.SFBTAV 
VRASLE-DLGW.ADWVLSPRBVQVTMCIGACPSQFRA ....... AHMBAQ 
VRASLB-DLGW.ADWVLSPREVQVTMCIGACPSQFRA ....... AHMBAQ 
LTVDFB-APGW--DWIIAPKRyKAHYCSGQCEyMFH---Q----KyPBTR 
LTVDFB-AFGW--DWIIAPKRyKAHYCSGBCBFVFL---Q----KYPBTB 
LYIDFRKDLGW--KWIBBPKGyBAHFCLGPCPyIWS---L----DTQYSK 
LYIDFKRDLGW--KWIBBPKGyHAHFCAGACPyLWS---S----DTQBSR 
LYIDFRQDLGW--KWVBBPKGYYAHFCSGPCPyLRS---A----DTTBS~ 

LSVDLR---A--BRSVLIPETYQABHCQGVCGWPQBDRHP----RyGHRV 
LHISFQ-BLGW-ERWIVYPPSFIFRYCBGGCGLBIPPHLSL-PVPGAPPT 
MYIDLQ-GMKWABHWVLBPPGFLAYECVGTCR.QPPBALAF--------
MYIDLQ-GMKWAKNWVLBPPGFLAYBCVGTCQ.QPPBALAF--------
IBLHVT-DLGL--GY-BTKEBLIFRYCSGSCDAAET--------TYDKIL 

Amino acid sequence alignment of the mature proteins of the TGF-f3 superfamily. Sequences 

from SwissProt and GenBank data bases were aligned first with the MultAlin program and 

then manually adiusted on the basis of a structure-based sequence alignment [9] using the 
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63 70 110 90 100 107 
I I I I I I 

VQ'I'LV 8V-BSK-IPKACCVP'I'&L8AIBKLYLD •• JCVVL ---.rODMV 
VO~LV 8V-H88-IPKACCVP'I'.L8AI8HLYLD&Y KVVL ---11'1' MV 
VO'l'LV LK-FPDBVPKPCCAP'l'KLWAI8VLYFDD8 HVllo - - - It Y MV 
VO'l'LV LN-H •• rVPKPCCAP'I'KLBAI8VLYFDDH .VII. ---K1' MV 
VO~LV FI- ••• 'I'VPKPCCAP'l'QLBAI8VLYFDDS KVII. - .... It 'I' MV 
L08LV LK-KPHAVPKACCAP'l'KL8A'l'8VL'I''I'D88 KVIL - - - II B MV 
MOALV LH-KPDIIPKVCCVP'l'.L8AI8LLrrDRR .VII. - - - R. MV 
IO~LM BK-DP&S'l'PP'l'CCVP'I'RL8 ISILrIDSA RVV'I' - - - 0 Y MV 
IO~LM 8N-DPGB'I'PPBCCVP'l'KL'l' IBIL!'IDAG BVV1' ---OY MV 
IO~LL SK-APDAA.PABCCVPARLS 18ILYIDAA BVV1' ---OY MV 
MOALM KA-DPK-VPKAYCVP'l'KLB ISMLYODSD _VIL - - - BY MV 
LRALII AA-APGAADLPCCVPAaLB 18VLrl'DHSDHVVL - - - 0 Y MV 
IOALVHLx-aSOXASXACCVP~XLB 18ILYI.DK- VV'l'Y --rXY MA 
VQ'l'LVRLK-rp'l'KVGKACCVP'l'KL8 I8VL'I'KDDKC;VP'l'L --YRY GMS 
IOSIVRAVGVVPGIPBPCCVPBXMS L8ILI'I'D •• XBVVL ---y1' II~ 

IQ8IVRAVGIIPGIP&.CCVPDXNW LGVLI'LD&.awvvL ---VY liS 
VORIIY&X-LD88VPRP8CVPAKY8 L8VLlfI&PDG8IAY - - - I: Y III 
IoaLIaOL-VD08VPRP8CVPYXYV ISVLMIBAaGSILY - - - B Y Gill 
IOSLLXRY-OPBaVPS~CCAPVX~X L8KLYVDRGR-VLL ---BBKDKI 
IRBYRHaGBSPI'ARLKSCCVPTKLa KSNLYYDDGORIIK ---DIO·III 
VRoyaKRGLRP-GTVRSCCIPTXLSlfN8KLYPDDBYRIVK ---DV aMI 
L.LLXAR~AAGTTGGGSCCVPTAaRPLSLLYYDaDSRIVK - - - D I DMV 
IK~SLBRL-XPDTVPAPCCVPASY.PKVLIQKTDTGVSLQ - - - - Y DLL 
IX~8LBRL-XPD~BPAPCCVPASyaPMVLIOX~D~GVSLO - - - - Y DLL 
---LVOOA-apaG8AGPCC~P~XMSPIaIlLyp.DXOOIIY - - - X I GIIV 
---LVBQA-RPRG8AGPCCT.TXN8PIRNLyrWGXaOIIY - - - II I AMV 
VLALYRQB-RPGA8AAPCCVPQAL.PLPIVYYVGRXPKV& - - - Q L IIMI 
VLSLY."I-HP&ASABPCCVSQDLBPLTILYYIGXlfPKI& - - - 0 L aliI 
VLGLYW"L-WPBA8ABPCCVPQDL&PL"ILYYVGRTPXV& - - - 0 L allv 
VLLLKNQARGAALARPPCCVPTAYAGKLLISLSB.RISAB ---BV allv 
PAQPYSLLPGA----QPCCAALPGTHRPLBVRTT8DGGY8 KYB'I'V aLL 
---------KWPI'LGPRQCIASB'I'ASLPHIVBIKBGGRTaPQvvsL alia 
---------WWprLGPRQclASBTA8LPHIVSIXBGGRlfRPQVVSL 
KRLSRRRRLVSDKVGQACCRPIAI'DDDL8I'LDDRLVYBILR-----

UII 110 114 
I I I 
VaGCGCR-----------
VaGCGCR-----------
VRSCGCB-----------
VRACGCB-----------
VRACGCB------------
VKACGCB------------
VOACGCB-----------
VBSCGCR-----------
VaSCGCR------------
VaACGCR------------
VDBCGCG-----------
VDBCGCR-----------
VS&CQClt-----------
VABCGCR-----------
vasCAcR-----------
VD'I'CAClt-----------
A'1'XC'1'CR-----------
A.BSCTCR-----------
va I: C Q C L - - - - - - - - - - -
VBBCGCS-----------
VBaCQCA-----------
va .I.e Q C 8 - - - - - - - - - - -
AII:DC8CI-----------
AII:DC8CI------------
VDRCQCS------------
VD BC G C 8 - - - - - - - - - - -
VBSCKCS-----------
VK8CKCS-----------
VKSCKC8-----------
A~BCGCR-----------
~OBCACI-----------
VOXCSCA8DGALVPRRLOP 
VOXCSCASDGALVPRRLOP 
AK8C&Cl------------

alia 
XRS 

Jalview program. The cystine-knot part ot the proteins starts after the arrow with the cys

teine at position 14. The basic residues (R, K, H) in the N-terminalsegment are represented 

by white letters on a black background. Numbering is according to the BMP-2 sequence. 

Usually, the mature proteins are postulated to start after a RXXR turin cleavage site. 
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Deciphering the binding code of BMP-receptor interaction 

The GDF-5s also contain four to five basic residues and no acidic ones, but only 
GDF-6 contains a basic triplet. The long N-terminal segments of the BMP-5s and 
BMP-8s all contain three negatively charged side chains and between five and nine 
basic ones. The first 14 residues show similarities to the BMP-2 N-terminal segment. 
Thus, these factors potentially bind also to the negatively charged heparinic sites of 
the extracellular matrix. But this has not been analyzed in detail so far. Corre
sponding charge patterns cannot be seen in other TGF-~-like factors with the possi
ble exception of GDNF. Thus, it seems that these proteins have no heparin-binding 
epitopes in their N-terminal segment. Discontinuous heparin binding epitopes may 
be present in the folded proteins. For example, the TGF-~s expose patches of six to 
seven basic amino acid side chains on the surface of the native dimer. 

Collagen-binding epitopes have been fused to the N-terminus of TGF-~2 and 
collagen-binding could be established for the fusion protein but not for the wild type 
TGF-~2 [19]. 

Primary sequences of type I and type II receptors extracellular domains 

The extracellular domains of the TGF-~/Act/BMP receptors are likewise small in 
containing only between 96 (Alk-1) and 143 (TRII) amino acid residues. The bind
ing domain established by crystal structure analysis [14,20] shows 95 residues for 
the type II activin receptor ARII and 89 for the type I BMP receptor BRIA. A struc
ture-based sequence alignment of the binding domains of known human type I and 
type II receptors is presented in Figure 4. The alignment does not include the C-ter
minal peptide connecting the binding domain to the membrane spanning segment of 
the receptor. These short connecting peptides consist of six to 15 residues in the type 
lor II receptors (Fig. 5). 

Only a few positions are occupied by identical residues (C38, C59, C77, C102 
and N108) in all proteins. The location of two DSBs seems to be diagnostic for spec-

Figure 2 

Similarities and typical features of TGF-{3/ike proteins. The average distance sequence tree 

of the cystine-knot domain was construded by the lalview program. The abbreviations are: 

bone morphogenetiC protein (BMP), growth and differentiation fadors (GOF), osteogenic 

protein (OP), chondrocyte derived morphogenetiC protein (COMP), adivin (Ad), transform

ing growth factor (TGF), macrophage inhibitory cytokine (MIC), prostate factor (PF), pla

cental TGF-{3 (PLAB), Muellerian dud inhibiting substance (MIS), Antimuellerian hormone 

(AMH), inhibin (/nh). The N-terminal disulfide bond (OSB) involves C15 (see Fig. 1). The 

inter-subunit disulfide bond (SU OSB) is probably missing, since C78 is absent. The finger 1 

loop is the large L 1 loop (see Fig. 6). Putative N-glycosylation sites are numbered according 

to the BMP-2 sequence in Figure 1. 
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Heparin-binding variants of BMP-2 

RU 
Biosensor analysis 

600 BMP protein Puffer - ~ ~ 

500 
c: 
'iii 

t 400 
N 

ci.. 
~ 300 
-c 
c: 
::J 

..8 200 
i: 
.~ 

a. 
~ 100 

0 
EHBMP-2 

0 50 100 150 200 250 300 
Time 

Figure 3 

The N-terminal segment of BMP-2 determines binding of BMP-2 to heparinic sites. Heparin 

was covalently attached to a biosensor matrix and binding of BMP-2 proteins was analyzed 

by plasmon resonance as described [13]. EHBMP-2 is a BMP-2 variant where the N-termi

nal segment has been exchanged by a peptide of the same size but without basic triplets. T3 

and T4 are BMP-2 variants with insertions of one, respectively two additional triplets of 

basic residues. 

ifying a type I (DSB2) or a type II (DSB5) receptor. The first half-cystine in DSB3 
and DSB4 is located at different positions in type I and type II receptors. A trypto
phane residue is found in all type II receptors at position 63. 

The average distance tree in Figure 5 demonstrates subgroups within the type I 
and the type II branches. The subgroup comprising BRIA and BRIB shows 47/89 = 
53% identical positions in the binding domain, ARII and ARIIB 61196 = 64%. BRII 
exhibits 33196 = 34% sequence identities with ARIIB and 24/96 = 25% with ARII. 
The type I receptors have a low 25% sequence identity between the BRIA and BRIB 
or the ARI and ARIB binding domains. 

The identity is even lower between pairs of type I and type II proteins, e.g. 15/96 
or 15/89 = 16-17% between the binding domains of BRIA or BRIB and AR-II. But 
nevertheless, the backbone fold of these proteins is comparable for the core of the 
structure (see below). Therefore, the whole group of binding proteins have been 
assigned to one structural group containing the "three-finger-toxin" fold. 
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Deciphering the binding code of BMP-receptor interaction 

The putative N-glycosylation sites tend to be conserved. Type I as well as type II 
receptors contain the Nll0 site. The segment around 13-strand 132 (N4S, N50, N54, 
N56) might be also a prefered glycosylation site in both receptor types. BMP recep
tor BRIE is probably not N-glycosylated in the extracellular binding domain. 

Three-dimensional structures of TGF-~-like factors 

The backbone fold of the BMPs, as exemplified by BMP-7 [S] and BMP-2 [9], is 
very similar to that of the TGF-13s [5-7]. This is strikingly documented by the fact 
that the three-dimensional structure of BMP-2 could be solved by molecular replace
ment of the TGF-132 crystal structure. Interestingly, even GDNF [21], a most distant 
member of the TGF-13 family using even a different type of receptors, exhibits a 
comparable monomer fold and dimer assembly as the TGF-13s and BMPs. 

A "left-hand" model of BMP-2 is depicted in Figure 6. Two 13-sheets each com
posed of two interrupted 13-strands represent two "fingers". Finger 1 has at its tip a 
large loop Ll. Finger 2 has in the middle a crossing of the two strands. The central 
a-helix a3 represents the "palm" and is inserted between strands 135 and 136. The 
cystine-knot is formed by DSB1, 2, and 3 at the base of the fingers. (In the TGF-13s, 
the N-terminal peptide folds as a helix and is disulfid-bonded to a cysteine at the 
start of strand 131 from the same monomer.) The dimeric protein is assembled from 
the two monomers in such a way that the left hand is rotated around a two-fold axis 
perpendicular to the 13-strands and in plane of the 13-sheets, so that the N-terminal 
ends are oriented to the same side of the protein. In most members of the TGF-13 
family, there is an extra disulfide bond (DSB4) connecting the two monomers (see 
Fig. 2). 

Differences between the backbone fold of the BMPs and TGF-13s exist especially 
in finger loops L1 and L4, in the orientation of the central a3 helix, and most pro
nouncedly in the pre-helix loop L2 and in the N-terminal segment. As described 
below the finger loops L1 and L4 of BMP-2 are only peripherally involved in recep
tor binding. However, the a3 helix and the pre-helix loop L2 occur at the center of 
the epitope for type I receptor interaction. The a-helical N-terminus of the TGF-13s 
is disulfide-bonded to the cystine-knot via a special cysteine at the start of strand 131 
and may be important for receptor binding in this group of ligands. 

The crystal structures of both BMP-2 and TGF-133 show a bound organic mole
cule located in the hydrophobic finger-helix cavity. The pentandiol in BMP-2 estab
lishes also a hydrogen bond to N59. The tetrahydrofuran in TGF-133 forms a hydro
gen bond to W2S. Remarkably, in the BMP-2/BRIAec complex the phenyl ring of 
receptor FS5 occupies these cavities. 

In the three-dimensional structures of BMP-2 and BMP-7, high temperature fac
tors are found for the backbone atoms of finger loops L1 and L4 suggesting a high 
mobility of these segments. The pre-helix loop L2 seems to be mobile in the free 
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Diagram of the "hand-like " BMP-2 structure. The folding of monomer A of BMP-2 is drawn 

with shaded f3-strands f31 to f39 and helix a3. Monomer B is drawn with broken lines. N- and 

(-terminal ends are indicated for monomers A and B. Loops L 1 to L4, disulfide bonds DSB1 

to DSB4 (white numbers in black circles), amino acid positions, and fingers 1 and 2 are 

marked for monomer A only. One of the "wrist " epitopes for BR1Aec binding (comprising the 

"finger-helix cavities ") and one of the "knuckle" epitopes for BRllec binding are also indi

cated. 

BMP-2, but not in the BMP-2IBRIAec complex (see below). Whereas L2 is involved 
in receptor binding, this mobility most likely influences the binding affinity and pos
sibly determines specificity for different BMP ligands. 

Three-dimensional structure of ARII and BRIA 

To date, a crystal structure of the free ectodomain of the ARII receptor ARlIec [14] 
and the complex between the ectodomain of the BRIA receptor BRIAec and BMP-2 
[15] have been elucidated. ARlIec has been expressed in P. pastoris and enzymati
cally deglycosylated. The BRIAec protein was expressed in E. coli. 

The ARlIec protein consists of seven ~-strands, that form a two-stranded (~1 and 
~2), a three-stranded (~4, ~3 and ~6), and another two-stranded (~s and ~7) ~-sheet 
as depicted in the diagram in Figure 7. Strands ~1/~2, ~3/~4 as well as ~s/~6 and 
their interconnecting loops <xl/Ll, L3, Ls represent three finger-like structures, sim
ilar as the three-finger-toxin fold of neuro- and cardiotoxins and fasciculin. The pro-
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Diagram of the BRIAec fold and the ARllec fold ("three-finger-toxin" fold). The {3-strands {31 
to {35 of BRIA and {31 to {37 of ARI/, the a helix, the loops L 1 to L6, as well as numbers indi

cating amino acid positions are shown for both receptor proteins. Disulfide bonds DSB1, 2, 

3,4, and 6 for BRIAec and DSB1, 3, 4, 5, and 6 for ARllec are depicted as white numbers in 

black circles. 

tein is stabilized by five DSBs that are conserved in all type II receptors. Three DSBs 
(DSB1, 3 and 6) are present at comparable positions in BR1Aec (see Fig. 4). The 
binding epitope of ARIIec is not completely known. Mutational analysis indicates 
that binding affinity for activin A and inhibin A is disrupted after substituting F42, 
W60 or F83 by alanine [22]. 

The three-dimensional structure of the ectodomain of the type I receptor BRIA 
(BRIAec) was deduced from the crystal structure of the BR1Aec IBMP-2 complex. 
The BR1Aec fold shows five ~-strands that form a two-stranded (~1 and ~2) and a 
three-stranded (~4, ~3, and ~5) sheet. The DSB 1, 3 and 6 and the backbone of the 
two ~-sheets are similar to the corresponding regions of the type II receptor ARII. 
These elements of BRIAec can be superimposed to those of ARIIec [15]. 

The discriminating element between the type I and type II ectodomain is (1) the 
long over-hand segment connecting strands ~4 and ~5, (2) the attachment of the C
terminal peptide, and (3) the orientation and structure of loop L1. In BRIAec the 
long loop adopts an a.-helical structure that is fixed by DSB4 to ~5 at the border of 
the concave side of the protein (the finger 3 is not present); the C-terminal segment 
forms an extended peptide that runs from top to bottom over the convex back of 
the protein; The ~1/~2 loop L1 is linked by a type I specific DSB to the sheet. In 
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ARIIec the long over-hand segment between loops L4 and L5 forms a new ~5 strand 
that together with a C-terminal ~7 strand forms a small ~-sheet. A reorientation of 
DSB4 and a new DSB5 fasten this two-stranded ~-sheet at the back of the protein. 
The loop Ll forms a short a helix. 

The BRIAec fold exits probably also in other type I ectodomains, since the type I 
specific DSBs and other sequence features are found in all subtypes. The three-fin
ger-toxin fold of ARlIec seems to occur in further type II receptors, as deduced from 
the common DSB pattern and sequence similarities. Thus it is tempting to discuss 
the binding epitopes established for BRIAec and ARIIec in the context of the recep
tor subtype families. 

The ligand-binding epitope of BRIA 

The 24 contact residues of BRIA for the BMP-2 ligand are located on the concave 
or "palm" side of the hand-like receptor protein (Fig. 8). These residues constitute 
three binding clusters: (1) a "groove", (2) a "block" and (3) a "knob". The hydro
phobic bottom of the groove is constituted by side chains and backbone elements of 
strands ~4 (C77, M78), ~3 (F60, 162), and ~5 (199). The left wall of the groove 
formed by loop L1 (D46, P45, H43) and the right wall formed by ~2 (T55), loop 
L4 (K79, E81) and helix al (Q86) are assembled predominantly by polar and 
charged side chains. The groove is open at the upper end but closed at the lower end 
by a block formed by the side chains of loop L3 (E64) and of loop L5 (R97, D89, 
Q94, A93, S90, and K92). In the middle of the right wall the hydrophobic side chain 
of F85 from the al helix protrudes like a knob. It is encircled by the charged or 
polar side chains of Q86, E81, D84, K88, and D89, derived from helix al and the 
adjoining loop regions. 

In the complex with BMP-2, the percentualloss of accessible surface area (Fig. 
9A) is above 80% for the central "groove" residues T55, F60, 162, C77, and M78, 
as well as for "knob" residues F85, Q86, and S90. Among these residues hydropho
bic side chains predominate. More than 50% of the accessible surface is buried in 
the complex for the more peripheral residues H43, P45, K79, G82, D84, D89, R97 
and 199. These residues to the most part have charged side chains. 

The BMP-2 epitope 1 for BRIAec binding ("wrist epitope") 

The complementary epitope of BMP-2 for BRIA binding comprises 24 residues. This 
so-called "wrist epitope" is constituted by both monomers [23]. Monomers A and 
B contribute 16, and 8 residues to this epitope respectively (see Fig. 6). Three bind
ing clusters can be discriminated, (1) a hydrophobic "hole" (corresponding to the 
"finger-helix cavity" in [9]), (2) a "rim", and (3) an extended "pre-helix loop". The 
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Figure 8 

BRIA residues buried in the BMP-2 contad and ARII side chains involved in adivinlinhibin 

binding. Space-filling models of both proteins were drawn with RasMol. The 24 residues of 

BR1Aec that bury more than 15% of their accessible surface area in the complex with BMP-

2 are indicated. The three fundional residues of ARllec were identified by mutational analy

sis. Both proteins are shown in roughly the same orientation as indicated by the two ribbon 

models in the upper part. Recently, alanine scanning mutational analysis of BRIAec has 

demonstrated [32] that binding affinity for BMP-4 was reduced about 15-fold in receptor 

F85A and 162A variants. 

hydrophobic hole contains at its bottom M89B (B7), MI06B (B8) and V63A (0.3). 
The walls of the hole are formed by W28B and W3I B in loop Ll, KIOI B and YI03B 

in B8 as well as NS9 A, 162A and L66A in helix 0.3. The extended pre-helix loop (U) 
comprises residues P48A, F49A, PSOA, LSI A, AS2A, DS3 A, HS4A and NS6A
(3) Peripheral receptor contacts are also established at the lower rim of BMP-2 by 
residues V26B and G27B in loop Ll as well as 569A and V70A in loop L3 (KIS A in 
BI forms an ion pair with D46 in receptor Ll). 

Many residues of BMP-2 bury more than 80% of their accessible surface in the 
contact with BR1Aec- Among these are constituents of the hydrophobic hole (W28, 
W31, NS9, 162, V63, L66, M89, YI03, and MI06), as well as residues of the 
extended pre-helix loop (F49, PSO, LSI, AS2, and DS3). The "rim" residues V26, 
G27, 569, and V70 bury 60 to 80% of their surface area in the complex. 
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Figure 9 

The contad residues of BR1Aec and BMP-2. The accessible surface areas buried in the com

plex were calculated as percent of the accessible surface areas of the free proteins. 

Hydrogen bonds in the BMP-2/BR1Aec contact 

In the BMP2/BRIAec contact 11 hydrogen bonds can be identified (Fig. 10). Four 
hydrogen bonds encircle the "knob-into the hole" element. These are formed 
between BMP-2 N59 and recE81, Y103 and rec084, W28 and rec089 as well as 
L51and recQ86. Remarkably, the receptor provides all acceptor atoms and BMP-2 
all donator atoms for these hydrogen bonds (see table in Fig. 10). Four bonds occur 
in the "groove-loop" contact between BMP-2 053 and recT55, 053 and recC77, 
053 and recK79, as well as H54 and recH43. Three bonds are found in the "block
rim" cluster between BMP-2 V26 and recS90, S69 and recQ94, as well as S69 and 
recR97. Four main chain atoms of BRIAec and four of BMP-2 are engaged in these 
hydrogen bonds. Two of them are main chain/main chain bonds (recC77ID53 and 
recS90N26). An ionic interaction exits only for recK79 and 053. 

Mutational analysis of the BMP-2 epitope 1 ("wrist epitope rr ) 

A systematic mutational analysis of BMP-2 employing alanine and charged side
chain substitutions yielded a functional epitope for BRIAec binding [23]. The loca
tion of this functional epitope is in agreement with the structural epitope identified 
by X-ray analysis described above. Pre-helix loop side chains of F49, P50, A52 and 
H54 were identified as binding determinants, as well as side chains of W31, 162, 
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recQ86 (OE1) / L51 (N) 
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recH43 (0) I H54 (NE2) 
recT55 (OG1) I 053 (002) 
recC77 (0 ) I 053 (N) 
recK79 (NZ) I 053(001) 

rec590 (OG) / V26(0) 
recQ94 (N) I 569 (0) 
recR97 (NH1) I 569 (OG) 

K15 

The BMP-2IBRIAec complex: contad residues and hydrogen bonds. The open-book view of 

the space-filling models depicts the location of the contad residues in BRIAec and BMP-2 
(only one half of the BMP-2 molecule is shown). The hydrogen bonds in the "knoblhole"
, the "peptidelgroove"-, and the "banklrim"-cluster are drawn around the model, with first 

the receptor atom and after the diagonal stroke the BMP-2 atom. 

L66, KIOI and YI03 from the hydrophobic hole. 569 and V26 when substituted 
also yielded BMP-2 variants with reduced binding affinity. Thus, all three binding 
clusters of interacting residues contribute to the binding affinity. 

A more detailed inspection, however, shows several interesting and unexpected 
properties of the mutant BMP-2s. (1) No hot spot of binding energy, i.e. no main 
binding determinants leading to a massive decrease in affinity after substitution, 
could be identified. The decrease in binding affinity was at most lO-fold after ala
nine substitutions and at most 30-fold after charged side chain substitutions. This 
could simply indicate that the most informative mutants were not analyzed; for 
example, the W28A BMP-2 could not be refolded and isolated. It is a distinct pos
sibility, however, that hydrogen bonds involving main chain atoms are of function
al importance. The contribution of such interactions to the binding free energy can
not be directly addressed by a mutational analysis. The small increase of affinity, 
however, in the BMP-2 D53A mutant protein might be caused by a stabilization of 
the recC77(0)1D53(N) hydrogen bond. (2) The mutant BMP-2s affected at V26, 
F49, P50, and H53 (and also at KIOI and YI03) exhibit a slow-down of the asso-
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ciation rate constant for the complex formation with BRIAec. This property is high
ly unusual, since in many mutant proteins studied so far the dissociation rate con
stant has been found to be increased. The on-rate effect may be related to the obser
vation, that the pre-helix loop where several of these proteins are altered shows high 
temperature factors of the backbone atoms. This suggests an increased structural 
flexibility of this segment already in the wild type protein that may influence the 
probability of a productive complex formation. Amino acid substitutions in or near 
to this segment might further enhance the flexibility. 

The BMP-2 mutants altered in side chains of the BRIAec contact exhibited 
altered biological activity. They showed increased ED50 values during a C2C12 
cell-based alkaline phophatase induction assay. Mutant proteins with decreased 
affinity for the BRIAec were active only at higher concentrations. As described 
below, several mutant BMP-2s substituted in the epitope for type II receptor bind
ing (BRlIw ARlIec) showed a different phenotype. They were BMP-2 antagonists 
with partial or no agonist activities and competed with wild type BMP-2 for BRI
Aec binding. 

BMP-2 epitope 2 for type II receptor binding ("knuckle epitope rr ) 

BMP-2 contains a second epitope for type II receptor binding [23]. Epitope 2 has a 
low affinity for receptor interaction. With immobilized BRlIec equilibrium binding 
of BMP-2 with a dissociation constant Kd of 100 nM is measured on a Biacore sys
tem. All BMP-2 mutants with a specific alteration in BRIIec binding have substitu
tions in side-chains clustering together at the back of fingers 1 and 2 of one 
monomer ("knuckle" epitope). The BMP-2 mutant A34D showed the highest 
decrease in BRIIec binding (50-fold) and in parallel undetectable levels (more than 
100-fold reduction) of biological activity in the C2C12 ALP induction assay. The 
A34D mutant inhibited the activity of wild type BMP-2 with an ICso (20-50 nM) 
similar to the EDso (10-20 nM) of BMP-2 in this assay. This indicates that A34D 
represents a complete high-affinity antagonist. Other substitutions in epitope 2 
yielded partial agonistic/antagonistic proteins. This finding supports the view that 
BMP-2 binds in situ with high affinity to the type I receptor (BRIA), and that the 
type II receptor chain (BRII or ARII) subsequently associates with the low affinity 
site of the bound BMP-2 in the membrane. 

Cooperation of multiple binding epitopes and receptor chains 

Each of the BMP-2 knuckle epitopes is localized close to one of the wrist epitopes. 
Thus, trans-activation of the cytoplasmic parts of the receptor chains should be pos
sible. Another symmetry-related pair of the two epitopes is localized some distance 
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apart at the other pole of BMP-2, and it is unknown in how far the multiple epi
topes cooperate_ This is especially interesting since homodimeric type I and homod
imeric type II receptor chains have been identified in whole cells [24]. Possibly, two 
BMP-2 proteins are cross-linked by one homodimeric receptor chain. This could 
lead to higher aggregates of BMP-2-activated receptor complexes. It is also unclear 
how multiple binding sites might influence the affinity of the receptor for BMP-2; 
we do not know if the affinity measured between BMP-2 and the receptor 
ectodomain on the biosensor results from a 1: 1 or a 1:2 interaction. This question 
is relevant for in situ ligand binding, since cooperation of two low-affinity sites 
could result in a high affinity binding. 

Topology of the BMP-2 receptor complex in the membrane 

The ectodomain BRIAec of type I receptor BRIA is small. The binding domain con
sists of only 89 amino acid residues and it is connected to the transmembrane 
domain by a short 9-residue peptide segment. The ectodomain of the type II recep
tor BRII is slightly larger than BRIAec. The binding domain of BRIIec> according to 
the sequence alignment in Figure 4, has 105 residues and the connecting segment 
has 15 residues. The result is that the binding domains of both type I and type II 
receptors are located near to the membrane surface with the connecting peptides 
allowing some freedom of mobility. Considering the three-dimensional structure of 
the BMP-2/BRIAec complex as well as the topology of the two pairs of binding epi
topes, the BMP-2 ligand seems to be bound to the receptor chains with the twofold 
axis of rotation perpendicular to the plane of the membrane, as depicted in Fig
urel1. 

If four receptor chains are attached to the BMP-2 protein, it is likely that the 
cytoplasmic domains of the type I and type II receptors interact due to the juxtapo
sition of the extracellular binding epitopes. An interaction of the cytoplasmic 
domains of chains from different pairs seems to be topologically possible only for 
heterotypic interaction, but not simultaneously for the two possible homodimers. 
These considerations are intriguing considering that the TGF-~ receptors exist in the 
membrane as stable homodimers [25-27]. 

Affinity and topology of type I and type II receptor binding 

We would like to propose that in all TGF-~ like proteins epitope 1 ("wrist" epitope) 
binds only type I receptors irrespective of whether it is a high-affinity BMP/GDF 
(BRIA, BRIB) receptor or a low-affinity TGF-Wactivin receptor chain (TRI, ARI, 
ARIB). This implicates that epitope 2 ("knuckle" epitope) binds only type II recep
tor chains irrespective of whether this is a low-affinity BMP/GDF receptor chain 
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Membrane BRIA 

Figure 11 

The topology of the BMP-2IBRIAec complex in relation to the membrane. The ribbon dia

gram of the complex on the left side is drawn with the two-fold axis perpendicular to the 

membrane. On the right side the top view of the complex is shown. The N-terminal ends of 

both monomers of BMP-2 and the (-terminal end of BR1Aec are indicated. The probable 

location of two BRllec as deduced form mutational analysis of the "knuckle" epitope is 

depicted as rectangles. 

(BRII, ARII, ARIIB) or a high-affinity TGF-Wactivin receptor chain (TRII, ARII, 
ARIIB)_ This hypothesis rests on the following observations: 

The binding of BMP-2 to the BRIA receptor seems to be critically dependent on 
the presence of the receptor helix al with the protruding F85 knob fitting into the 
hole of epitope 1 of BMP-2_ This helix including the knob motif is not present in the 
type II receptor ARII as discussed above_ An al helix with a phenylalanine or anoth
er large hydrophobic side chain, however, seems to be present at the knob position 
in all type I receptors (with the exception of Alk-l). 

TGF-~ like proteins: similarities in the binding epitopes 

The wrist epitope (epitope 1) shows a remarkable high similarity of side chains in 
the "hydrophobic-hole" motif in many subgroups of the TGF-~ family (Fig. 12). 
The two tryptophanes in the large finger 1 loop are a hallmark of the whole family 
with the exception of the most distant members GDNF and MIS. At the positions 
corresponding to BMP-2 V63, M89 and MI06, large hydrophobic side chains (V, 
L, I, M) always occur. Other relevant positions are occupied by identical or iso
functional side chains in most members. Exceptions in the TGF-~s are the positions 
62, 101, 103. Nevertheless, this binding motif seems to be functioning throughout 
the TGF-~ family. 
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Position 15 26 27 28 31 48 49 50 51 52 53 54 56 57 59 62 63 66 69 70 89 101 103 106 

Monomer A B B B B A A A A A A A A A A A A A A A B B B B 

Cluster nd r r h h p p p p p p p p p p h h h r r h h h h 

WBB X X X X X X X X 

0 N£2 N N NE2 N02 0 OH 

001 OG 

002 

hBMP-2 K V G W W P F P L A D H N S N I V L S V M K Y M 

hBMP-4 R V G W W P F P L A D H N S N I V L S V M K Y M 

hBMP-5 K L G W W S F P L N A H N A N I V L L M V K Y M 

hBMP-6 R L G W W S F P L N A H N A N I V L L M V K Y M 

hBMP-7 K L G W W A F P L N S Y N A N I V L F I V K Y M 

hGDF-5 5 M G W W E F P L R 5 H E P N V I L 5 M I K Y M 

mGDF-6 5 L G W W D F P L R S H E P N I I L S M I K Y M 

mGDF-7 5 L G W W S F P L R S H E P N I I L S M I K Y M 

hTGF-~ 1 C L G W W P Y I W S L D Q K V L Q H I Q L M 

hTGF-~2 C L G W W P Y L W 5 5 D Q R V L T I I Q L M 

hTGF-~3 C L G W W P Y L R 5 A D T T V L T L I Q L M 

Figure 12 

Alignment of putative contact residues for type I receptor binding in the BMP-2s, BMP-7s, 

GDF-5s and TGF-f3s. The positions of the 24 residues identified in BMP-2 as well as their 

occurrence in monomers A and B, in "hole"-, "peptide"-, or "rim"-clusters, as well as con

tributions to hydrogen bonds are shown in the upper part. Shaded areas indicate positions 

occupied by non-identical or non-isofunctional residues. 

The second binding element, the "pre-helix loop," varies considerably in length 
between the subfamilies_ In addition, differences in charge, polarity or size are found 
at six out of eight positions. Remarkably, the residues at positions 53 and 54 of 
BMP-2 that form hydrogen bonds to the receptor seem to be deleted in the TGF-~s. 
Only the positions corresponding to BMP-2 F49 and P50 show similarities. This 
suggests that the "pre-helix loop" and, possibly, also the "rim" element determine 
the specificity and affinity of interaction with the type I receptor. It remains to be 
established if these elements contribute to binding in the postulated low-affinity 
interaction between, for example TGF-~2 and TRI. 

On the putative receptor epitopes, BRIA F85 has an identical counterpart at the 
corresponding positions of BRIB, ARIB and TRIor residues with a large hydropho
bic side chain (V, M) in ARI and Alk-7. Thus, a "hydrophobic knob" seems to be 
present in these type I receptors. No helix and, accordingly, no knob-motif can be 
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discriminated at the type II receptor ARII and probably not on other type II recep
tor proteins (see Figs. 7 and 8). Other side chains of the contact are not clearly sim
ilar among all the type I proteins. However, in the BRIAIBRIB subgroup the epitopes 
are occupied by identical or isofunctional residues at 83% (20/24) of the positions. 
This is higher than in the rest of the protein (63.6% = 56/88), indicating the promis
cuity of the BMP receptors in BMP-2 ligand binding. Differences at some positions 
(see, for example, G/K79, HlQ94) may be related to the observations that BMP-2 
binds to BRIAec with a ca 10-fold higher affinity than to BRIBw and that BMP-7 
and GDF-5 bind preferentially to BRIB. 

Remarkably, cross-linking experiments in transfected COS cells have shown that 
BMP-7 binds to ARI and BRIB, whereas GDF-5 binds preferentially BRIB and BMP-
2s bind preferentially BRIA [28-31]. ARI has a putative epitope containing only 
33% (8/24) identical or isofunctional positions compared to those of BRIA or BRIB. 
The ligand-receptor specificities identified by cross-linking experiments, however, 
have not always been demonstrated to be functionally relevant. How such a low 
similarity of binding epitopes could be compatible with the reported binding of a 
common ligand represents an intriguing problem. 

Type II receptor ectodomains represent a separate group of proteins whose bind
ing domains seem to be slightly larger (95-106 residues) than the ectodomain of the 
type I receptors (79-89 residues). For none of the type II receptors a ligand contact 
has been structurally defined. For ARII functional residues F42, W60 and F83 have 
been established by mutational analysis [22], corresponding to BRIA positions of 
F60, M78 and 199. As seen in the contact alignment (Fig. 13) identical or isofunc
tiona I residues occur at the corresponding positions of ARIIB and BRII, but not 
those of TRII and AMHRII. In line with these similarities all three type II receptors, 
BRII, ARII and ARIIB, have been found to function as low-affinity chains" for BMP-
2s, BMP-7s and GDF-5s. Interestingly, the ARII and ARIIB receptors function addi
tionally as high-affinity chains for the activins. 

Reading the binding code 

The final goal of the structural and functional analysis of ligand-receptor interac
tions in the TGF-~ family is the understanding of specificity and affinity of binding. 
In principle, it might be feasible to read the binding code for these interactions. 
Toward this end more three-dimensional structures of ligand-receptor complexes 
(structural epitopes) as well as a mutationaVinteraction analysis of more epitopes 
(functional epitopes) have to be executed. 

Of special interest is the question of how and where the high affinity epitope of 
the TGF-~s, activins, GDF-8s and others is assembled. In light of our present knowl
edge it seems possible that the knuckle epitope is converted into a high-affinity epi
tope by the acquisition of binding residues at the N-terminal helix immobilized via 
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Position 43 45 46 55 60 62 64 77 78 79 81 82 84 85 86 88 89 90 91 92 93 94 97 99 

Cluster g g g g g g b g g g K K K K K/g K K b b b b b b g 

WBB X X X X X X X X X X X 

0 OG1 0 NZ OE1 002 OE1 0 OG N NH1 

Alk-1 H G T V V C G N L R E L R G R P T E V H 

TR-I L T F S T C I A R D P F V A P S S K T G T T 

AR-IB S T M S F C I P A G P F Y L S S E R T 

Alk-7 L T W S M C V S L N Q V F H S S N T T 

AR-I S G F S S C F Q E Q K M T K T P P S p Q V 

BR-IB H P E T F M E C L G E G D F Q R D T P I P H R I 

BR-IA H P D T F I E C M K E G D F Q K D S P K A Q R I 

AR-II N E K C f T K C W L D I C Y D C V E K K D S V F 

AR-IIB N E L C Y S A C W L D F C Y D C V A T E E N V F 

BR-II Y Q D E Y L E C W G P Q C H C V V T T T P Y F 

AMHR-II P V R D F I N C R S E P C E C D P S P A H L T 

TR-II R S T C V V R C H Y D F L E D C I M K E K K F M 

Figure 13 

Alignment of putative contad residues for ligand binding in type I and type II receptor 

edodomains. The positions of the 24 contad residues for BMP-2 identified in BR1Aec as well 

as their occurrence in the "groove"-, "knob"-, or "block"-cluster. and their participation in 

hydrogen bonds are shown in the upper part. The strudure based sequence alignment of the 

sequences of BR1Aec and ARllec was performed as in Figure 4. 

a specific DSB at the border of the knuckle epitope. The wrist epitope can be visu
alized as converted into a low-affinity epitope by a decrease in binding affinity of 
the highly divergent pre-helix loop segment. 

Finally, it has to be established to what extent the multiple binding epitopes at 
the BMP surface cooperate, or if they are independent. 
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TGF-~ superfamily of proteins 

Morphogens are signaling molecules that provide positional information to devel
oping tissues and control conformation and histologic architecture of tissues by reg
ulating specific gene expression. The morphogenic feature of BMPs was first 
described by Marshall Urist in 1965, when he discovered that demineralized bone 
matrix induced bone formation at extraskeletal sites [1] (see the chapter by Rueger). 
Since then, the molecules responsible for this phenomenon were isolated, cloned and 
identified as members of the TGF-~ superfamily [2-9]. These signaling molecules 
were identified in many species, suggesting that they evolved from a group of ances
tral genes with their functions refined to meet the needs of particular species. 
Among 17 proteins so far identified as BMPs, eight have been found to be involved 
in regulating bone formation and repair. The process of ectopic bone formation is 
similar to the endochondral bone formation seen during embryonic skeletal devel
opment, and the capability of forming new bone is shared by no other growth fac
tor. BMPs are pleiotropic regulators that act at all the important steps in the cascade 
of events that form new bone: chemotaxis of progenitor cells, mitosis, differentia
tion and proliferation of chondrocytes and osteoblasts [9, 10]. BMPs also stimulate 
extracellular matrix formation [9, 11-16] and bind to specific matrix molecules [8, 
17-19,20-22] affecting bone remodeling. Many studies on the cellular activities of 
BMPs indicate that, as expected from their activities in animal systems, they essen
tially act as differentiation factors, causing induction and increased expression of 
multiple differentiated phenotypes in mesenchymal cells [23-30]. Besides skeleton, 
BMPs playa role in the development of other organ and tissue systems that form 
via mesenchymal-epithelial interactions and possibly function to deliver or interpret 
positional information in a wide variety of organisms [31-33]. 

The fundamental importance of BMPs can be inferred from the broad spectrum 
of species from which very similar BMP molecules have been isolated. The 
Drosophila BMP homologue, decapentalegic (dpp) protein [34], responsible for 
proper dorsal-ventral patterning of the early embryo is closely related to mam-
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mali an BMP-2 and BMP-4 (75% homogeneity). Indeed, Drosophila dpp protein can 
induce cartilage and bone when implanted in mammals 700 million years distant 
[35], and mammalian BMP-4 can rescue defects caused by dpp mutations [36]. The 
function of Vgl, the factor whose messenger RNA is found in the vegetal hemi
sphere of the Xenopus oocyte, is less certain, although it is indicated it may also be 
involved in embryonic development [37]. Another subgroup represented by BMP-5, 
BMP-6, BMP-7 and the last discovered member of this subgroup, BMP-8 [38], is 
closely related to 60A, a protein expressed in the early Drosophila embryo and 
responsible for the development of the gastrointestinal tract [39, 40]. BMP-3 itself 
represents another subgroup, although separated from the above mentioned two 
groups of proteins, it is the next most closely related TGF-~ superfamily member. 
TGF-~s are clearly separated from the BMP family, namely TGF-~I, ~2 and ~3 in 
humans, TGF-~4 in chicken, and TGF-~5 in Xenopus show an average of only 
about 37% amino acid identity in the seven-cysteine region to BMP family mem
bers. Mullerian inhibiting substance and inhibin a are the most distantly related 
members of the TGF-~ superfamily (see also the chapter by Paralkar et al.). 

BMPs in development 

Xenopus laevis: a model for exploring the developmental role of BMPs 
and BMP antagonists 

Several critical observations regarding the role of BMPs and their secreted antago
nists in early vertebrate embryogenesis have been made in the South African clawed 
frog, Xenopus laevis [31]. Xenopus BMP family members identified at early blastu
lae/gastrulae stage with different expression pattern are ADMP, BMP-2, BMP-4, 
BMP-7, Vgl and GDF6 [41,42]. BMP-4 has been shown as the major ventralizing 
and potent mesoderm-inducing signal during the gastrulation phase of Xenopus 
development [31, 43]. Prior to the onset of overt gastrulation, the molecular signals 
from the Spemann organizer including BMP-4 specify the dorso-ventral pattern of 
the early embryo in a very precise and dose-dependent manner. 

Target genes that are transcriptionally regulated in response to BMP signaling in 
early Xenopus embryos are numerous and include transcription factors xventl, 
xvent2, xmsxl, mixl, xhox3, xfdl' and xmyf5, signaling molecules xSmadB and 
xwntB, as well as xbmp4 itself [44-49]. Mostly, the expression of these genes is 
stimulated by BMP-4 and inhibited by BMP-4 inhibitors. Current evidence suggests 
that BMP-related molecules are required in organizer patterning, mesoderm induc
tion in the marginal zone during blastula stages and subsequently, in specifying dor
sal-ventral fates, repressing the development of dorsal tissues such as the neural 
tube, notochord and muscle [41,47,50]. The Xenopus embryo expresses a number 
of genes encoding BMP inhibitors, like chordin [51], noggin [52] and follistatin 
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[53], which act as dorsal de-repressors and also regulate cell fate during normal 
early development. These BMP antagonists are able to directly bind potent ventral
izing factors, like BMP-2 and BMP-4, with high affinity and BMP-7 with low affin
ity, preventing association with their respective receptors, thereby rendering them 
inactive and establishing a morphogen gradient of BMP activity [54]. 

Overexpression studies in the early zebrafish embryo demonstrate that chordin 
and noggin have the same dorsalizing properties as their Xenopus homologues [55]. 
The null mutation in the zebrafish chordin gene disrupts the development of dorsal 
tissues, but noggin and follistatin are excluded from the zebrafish organizer [56]. 
Follistatin was originally identified because of its high affinity for activin, but it also 
has affinity for BMP-4 and BMP-7 [53, 57, 58]. Most recently, additional related 
proteins named cerberus, DAN, Gremlin and BAMBI have been shown to antago
nize BMP signaling in Xenopus embryos [59, 60]. In striking contrast to noggin or 
chordin [51, 61], BAMBI is strictly coexpressed with BMP-4 during early Xenopus 
embryogenesis [60], thus being a member of the BMP-4 synexpression group. 
Besides Xenopus, the existence of an evolutionarily conserved BMP-4 synexpression 
group has been documented in mammals [62]. 

Overlapping expression and continuous presence of BMPs and their inhibitory 
proteins throughout Xenopus development suggest that similar mechanisms may 
exists at later developmental stages of Xenopus embryo. The existence of multiple 
inhibitory binding proteins in regulating BMP signaling has not been understood 
yet, but they can serve different functions within the BMP signaling pathway. For 
example, chordin may function as storage for BMP-4 since the proteolitically 
cleaved chordin has a low affinity for BMP-4, releasing the active BMP-4 [63]. On 
the other hand, follistatin may target BMP molecules for degradation, regulating 
their availability in cellular microenvironment [64], and may be required to clear 
activins and BMPs from the cellular environment. Interaction between BMPs and 
their binding proteins enables the inhibition of BMP signaling which has proved to 
be an important mechanism regulating cell fate decisions in early development. 
Because of the high conservation during evolution, these mechanisms probably 
influence the development of many other organisms. However, recent investigations 
suggest the possible involvement of new binding proteins providing a permissive 
signal that allows high BMP signaling in the embryo [65]. 

BMPs as Signals in organ development 

During the development of multicellular organisms the formation of complex pat
terns relies on specific cell-cell signaling events. For tissues to become spatially orga
nized and cells to become committed to specialized fates it is absolutely crucial for 
proper development that the underlying signaling systems receive and route infor
mation correctly. Recently, a wealth of genetic and biochemical experimental data 
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has been collected about evolutionary conserved signaling families, such as the 
Dpp/BMPs, Wnts and hedgehogs, in flies, worms, and vertebrates. These signaling 
molecules form a crucial group of regulators of induction and patterning of embry
onic germ layers in metazoa. 

The BMP expression pattern as well as the analysis of spontaneously mutated or 
genetically depleted animals have demonstrated a much broader range of their func
tion (see Chromosomal localization and developmental function in this chapter). 
These activities are mainly localized at sites of epithelial-mesenchymal interactions, 
including but not restricted to the skeleton [20, 66-74]. BMPs also influence the 
craniofacial development and initiation of tooth buds [75-80] and playa role in 
maintenance of vascular smooth muscle cells as well as in specification of cardio
genic mesoderm and early development of the heart [81-84]. They are essential for 
migration and/or fusion of the heart primordial and cardiomyocyte differentiation 
[85], even contributing to the left-right asymmetry of the heart [86]. Other signals 
taking part in those events, like activin or TGF-~, seem to be regulated both spa
tially and temporally by interplay between BMPs and their antagonists [83, 87]. 

The existence of the functional BMP system in the rat ovary, replete with ligand, 
receptor, and novel cellular functions suggests their involvement in morphogenesis 
of the reproductive system. It has been shown that BMPs differentially regulate 
FSH-dependent steroidogenesis during the normal rat estrous cycle [88]. Moreover, 
PDF, another member of the BMP family, could be regulated by androgens in the 
prostate [89], thus emphasizing the role of BMP family members in the reproduc
tive system [89, 90] (see the chapter by Paralkar et al). 

Evolutionary relationships between the amphibian, avian, and mammalian 
digestive systems revealed a common embryonic expression of BMPs, suggesting 
their prime importance as mesenchymal signals involved in the formation of stom
ach glands [91, 92] with possible protective role in maintenance of the adult intesti
nal epithelium [93]. 

BMPs: Chromosomal localization and developmental function using 
gene disruption and overexpression 

Little is known about the structure of BMP genes. BMP-2 and BMP-4 genes, for 
example, show high similarity to the Drosophila dpp gene, with conserved position 
of a single intron within the coding region [94], and the BMP-7 gene is structurally 
related to murine Vgr-l gene [4]. BMP genes have been linked to specific chromo
somes in mouse as well as in the human genome (Tab. 1). The chromosomal local
ization of BMPs suggests close linkage to several morphogenetic developmental 
anomalies [95, 96]. The roles of individual BMPs have been studied through identi
fication of mutated genes in classic mouse mutants or through conventional gene
targeting approaches, gene disruption and overexpression of genes encoding mem-
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Table 1 - Chromosomal localizations of the BMPs 

Human chromosome/ Mouse chromosome/ References 
disease mutation 

BMP-2 20p12/ Holt-Oram 2 / tight skin syndrome (tsk) [94,95, 102-

syndrome 106, 111, 115] 

BMP-3 4p14.8-q21 / Dentinogenesis 5 / increased bone volume [95, 105, 107, 

imperfecta II 108] 

BMP-3B 10 

BMP-4 14q22-23/ Holt-Oram 14/ pugnose (pn), no [94, 109-112, 

syndrom mesoderm formation 114,115,137] 

BMP-5 6 9 / Short-ear (se) [116-119, 

125,138] 

BMP-6 6 13 / congenital [119-121] 

hydrocephalus 

BMP-7 20 / Holt-Oram syndrome 2 / impaired kidney and [4, 69, 98, 99 

eye development 115,119,137, 

138] 

BMP-8A 4 / germ-cell deficiency [122] 

BMP-8B 4 / germ-cell deficiency [123] 

CDMP-1 20 / Grebe syndrome, 2 / brachypodism [124-131] 

(GDF-5, Hunter-Thompson disease 

BMP-14) 2 [131] 

CDMP-2 

(GDF-6, 

BMP-13) 3 - / improper development [131,132] 
CDMP-3 of dorsal spinal cord 
(GDF-7, 

BMP-15) 

GDF-8 - / increased skeletal [133] 

muscle mass 

GDF-9 - / infertility, impaired [134, 135] 

folliculogenesis 

GDF-10 14/ none 136 

bers of the BMP family, BMP receptors and SMAD proteins (see also the chapter by 
Korchynsky and ten Dijke, and the chapter by Luyten et al.). Collectively, these 
studies confirmed that BMPs have significant roles in the development of the skele
ton, nervous system, eye, kidney and heart [68-70, 97-99]. 
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However, gene disruption experiments did not always deduct the total extent of 
the BMP function. Namely, some homozygous knock-out animals were embryonic 
lethal, which prevented the disclosure of the true impact of the disruption. In TGF
~ knock-out mice the function was also masked by the fact that the maternal pro
tein in heterozygous mothers crossed the placental barrier at early stages of devel
opment, resulting in the maternal rescue of offspring [100]. Whether BMPs circu
lating in biological fluids [101] of heterozygous mice can also cross the placental 
barrier and mask the true developmental role will be discussed in the chapter by 
Borovecki et al. This merely indicates that gene disruption will not necessarily result 
in a protein deficiency. 

Disruption of the gene encoding BMP-2 expresses the most highly malformed 
phenotype. Homozygous mice are embryonic lethal between E7.0 and El0.5 [102]. 
This is caused by the persistence of the proamniotic canal, a transient embryonic 
structure, the preservation of which leads to malformation of the amnion and the 
chorion. In mutant embryos the heart develops in the exocoelomic cavity or does 
not develop at all. Delay in allantois development, open neural tubes and overall 
slower growth of these embryos is also observed. The defects are consistent with 
previously detected patterns of expression of BMP-2 in mouse extraembryonic 
mesoderm and promyocardium [103]. The mutation of BMP-2 gene localized on 
mouse chromosome 2 showed that it is a candidate gene for the tight skin (tsk) 
mutant (Tab. 1). These animals show increased bone, cartilage and tendon growth 
with excessive collagen deposition in the subcutaneous connective tissue. On the 
contrary, overexpression of BMP-2 in the developing embryo of Xenopus laevis 
leads to ventralization, through inhibition of dorsalizing factors, such as ~-tubulin 
and a-actin [104]. In chick embryos, BMP-2 is expressed in mesenchyme surround
ing early cartilage condensations in the developing limb. 

In humans, BMP-2 gene is assigned to chromosome 20 and it is positively linked 
to Holt-Oram syndrome [105, 106], characterized by defects in cardiac and skele
tal development resulting in septal and upper limb deformities. 

The mouse BMP-3 gene is localized on chromosome 5, but the human homo
logue has been assigned to chromosome 4 (between p14 and q21). Interestingly, 
dentinogenesis imperfecta type II, a disease of tooth development has been associ
ated with human chromosome 4 (Tab. 1). BMP-3, also called osteogenin, is the most 
ample member of the BMP family in demineralized bone, accounting for more than 
60% of the total amount of BMPs [3], suggesting an important role in the skeletal 
homeostasis [68]. A recent study on homozygous BMP-3 deficient mice showed that 
mutants (Fig. 1B), although possessing a normal skeletal phenotype, have increased 
bone density with total trabecular bone volume twice that of the wild-type animals 
[107]. The increased bone density is not a consequence of the reduced osteoclast 
number or increased number of osteoblasts. As a negative regulator of bone densi
ty in vivo, BMP-3 might effect the regulation of osteoclast function and osteoblast 
proliferation and/or differentiation [107]. Experiments using bone loading cham-
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bers in rats have shown that mechanical stimuli decrease expression of BMP-3 
allowing the formation of cartilage and bone [108], which is in line with its role as 
a negative regulator of osteogenesis. 

The BMP-4 gene is localized to chromosome 14 both in mouse and human 
genome. It may be a candidate for the pugnose mutation (pn) in mice, characterized 
by abnormalities in skull bone development, and has a possible association with 
Holt-Oram syndrome described in humans (Tab. 1). Another BMP-4-related gene 
has been assigned to mouse X chromosome, but as human homologue of this gene 
has not been found, the mouse sequence might be a pseudogene. Inactivation by 
homologous recombination of the BMP-4 gene leads to anomalies in extra skeletal 
tissues and embryonic lethality between E6.5 and E9.5, and a variable phenotype in 
homozygous animals. A majority of mutant embryos show highly impaired meso
dermal differentiation [109]. Some homozygous mutants develop to the head fold 
or beating heart/early somite stage, or beyond, and are developmentally retarded 
with disorganized posterior structures and a reduction in the extraembryonic meso
derm, including blood islands. Heterozygous BMP-4 mutant mice exhibit craniofa
cial malformation, microphthalmia and preaxial polydactyly. The plethora and 
diversity of abnormalities observed indicate that BMP-4 is crucial for normal gas
trulation and mesoderm formation. This is also corroborated by previous findings 
that BMP-4 is needed for differentiation and proliferation of the posterior meso
derm, from which the extraembryonic mesoderm of the amnion, allantois and yolk
sack, as well as the ventral-lateral mesoderm develops [110]. BMP-4 is normally 
expressed in the perichondrium of the developing cartilage elements. Overexpres
sion of BMP-2 and BMP-4 produced by using retroviral vectors caused enlarged and 
malformed cartilage elements and joint fusions by increasing the matrix production 
and number of chondrocytes [111]. The formation of the periosteum was consider
ably delayed. An overexpression of BMP-4 has been found in lymphocytes and 
fibroblast-like cells derived from fibroproliferative lesions in patients with fibrodys
plasia ossificans progress iva (FOP), a rare human autosomal-dominant disorder 
characterized by progressive heterotopic ossification and congenital malformation 
of the big toes [112]. Given the osteogenic capability of BMPs, any of BMP genes 
could be a candidate for FOP. But, overexpression of the BMP-4 gene has been 
found in lymphocytes of patients with FOP, suggesting the disease could result from 
an error in the regulation of this gene [112]. Normal lymphocytes do not produce 
BMPs, but express ALK-3, a BMP specific receptor [113]. Therefore, in patients 
with FOP, lymphocytes capable of expressing BMP-4 are presumably recruited to 
the connective tissue from the bloodstream after soft tissue injury. Increased doses 
of BMP-4 in the connective tissue may lead to fibroproliferative lesions. Gastric can
cer cells also show increased expression of BMP-4 mRNA. These cells can be clas
sified as poorly and well differentiated. Poorly differentiated types show greater ten
dency towards bone metastasis and patients with this type of cancer have a 
decreased life expectancy. Expression of BMP mRNA has been examined in seven 
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different gastric cancer cell lines and results have shown increased expression of 
BMP-4 [114]. 

Salivary pleomorphic adenomas, which are often associated with ectopic carti
laginous tissue formation, have also been examined in regards to expression of dif
ferent members of the BMP family. A marked increase in expression of BMP-2, 
BMP-4 and BMP-7 mRNA has been found. However, chondroid formation and 
expression of the type II collagen was most frequently observed in pleomorphic ade
nomas overexpressing BMP-2 mRNA. BMP-2 was also detected in modified myoep
ithelia cells around the chondroid tissue and basement membranes [115]. 

The BMP-S gene is localized on human chromosome 6, and the phenotype 
resulted from its mutation in mouse has been studied for over 40 years [116, 117]. 
The mutation of the BMP-S gene alters size, shape and number of many different 
skeletal elements with greatly reduced size of the external ear, named a short ear 
mutation. The short ear mouse displays numerous skeletal abnormalities (Fig. 1 C), 
such as reduction in body size, absence of the xyphoid process, reduction of ven
tral processes of the cervical vertebrae, deletion of one pair of ribs and, the most 
prominent change of all, a reduced size of the auricle [118]. Mutant adult animals 
also have a reduced capacity to repair rib fractures. Short ear mice also develop a 
number of other extra skeletal abnormalities, like hydronephrosis, as well as mis
placement of gonads, lung cysts, liver granulomas and neuromuscular tail kinks. 
BMP-5 is expressed in the mesenchyme of the affected skeleton elements and in the 
periosteum. It is also expressed in liver, lung, bladder and intestine [116]. The 
expression pattern corresponds to the localization of the affected tissues and 
organs. 

The BMP-6 gene is present on human chromosome 6 with no reported disease 
association, and on mouse chromosome 13, possibly near the congenital hydro
cephalus (ch) locus, which is associated with abnormalities in the growth and dif
ferentiation of the skeletal system and kidney [119]. However, mice with targeted 
null mutation at the BMP-6 locus are viable and fertile, and show no obvious dif
ference in the skeleton to the wild-type animals. Upon closer examination of skele
togenesis in late pregnancy, delayed ossification of the developing sternum is 
observed [120]. As other members of the BMP family overlap with the BMP-6 
expression, especially BMP-2, this apparent lack of defects in mutant mice could be 
the result of the functional redundancy. BMP-6 is expressed during the development 
of the epidermis, coinciding with the commencement of stratification. It declines 1 
week after the birth. To study the effects of increased expression of BMP-6 in the 
epidermis, transgenic mice with inherent overexpression of BMP-6 in suprabasal 
layers of the intrafollicular epidermis were created [121]. The pattern of transgene 
expression influences the effects on proliferation and differentiation to a large 
extent. Consistent and strong expression of BMP-6 leads to lessened cell prolifera
tion in the embryonic and perinatal epidermis, but had hardly any effect on differ
entiation. Weaker and irregular expression induces hyperproliferation and paraker-
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atosis in the adult epidermis and disturbed differentiation. Histologically, the later 
findings show high similarity to psoriasis. 

The gene for BMP-7 is localized to chromosome 2 in mouse and chromosome 20 
in human genome. In humans, both chromosomes 2 and 20 have been implicated in 
Holt-Oram syndrome, so that BMP-2, BMP-4 or BMP-7 might be involved. Dele
tion in the mature domain of the BMP-7 coding gene produced no apparent mal
formations in heterozygous animals. However, crosses between these heterozygotes 
produce a very distinctive phenotype in a quarter of neonates. Mice are smaller in 
size, have polydactyly in the hindlimbs, exhibit abnormally formed thoracic skele
ton and have either anophthalmia or microphthalmia (Tab. 1). Most importantly, 
these animals die of uremia within 24 h of birth due to small dysgenic kidneys with 
hydroureters (Fig. 1D). The kidneys have no identifiable metanephric mesenchyme 
and no evidence of glomeruli formation in the cortical region [98, 99]. 

Mice lacking BMP-8A exert normal phenotype throughout embryonic and post
natal development. However, in 47% of homozygous mutants, germ-cell degenera
tion occurs. A small proportion of homozygous mutants also show degeneration of 
the epididymal epithelium. BMP-8A thus plays a pivotal role in spermatogenesis and 
regulation of epididymal function [122]. Targeted mutation of the BMP-8B gene 
also leads to germ-cell deficiency and sterility. This occurs because of impaired pro
liferation and differentiation of germ cells as well as premature apoptosis of sper
matocytes [123]. 

GDFs: Chromosomal localization and developmental function 

Genes encoding cartilage derived morphogenetic proteins, CDMP-1 (GDF-5), 
CDMP-2 (GDF-6) and CDMP-3 (GDF-7) are localized on human chromosomes 20, 
2 and 3, respectively. However, the brachypodism mouse phenotype has been stud
ied long before the discovery of BMPs/CDMPs (GDFs). The most prominent feature 
of these animals is reduction in length of the appendicular skeleton. The axial skele
ton is largely unaffected. The defects in the limbs affect metacarpals and 
metatarsals, along with altered patterning segments in the digits of the limbs. 
Brachypodism is a direct result of three independent mutations in the GDF-5 gene 
[124, 125]. GDF-5 is expressed during joint formation in vivo [126, 127] and mal
formations in brachypodism mouse could be due to impaired chondrogenesis. How
ever, ear, sternum, rib or vertebral morphology is not affected (Fig. 1E). The only 
known human mutation in a gene encoding a member of the TGF-~ superfamily 
described is the mutation of CDMP-1 gene (cdmp-l), a human homologue of GDF-
5 [128]. Cdmp-l mutations have been implicated in two recessive chondrodys
plasias: the Hunter-Thompson chondrodysplasia [129] and the chondrodysplasia 
Grebe type [130]. The Hunter-Thompson chondrodysplasia is caused by insertion 
of 22 bp in the mature region of the cdmp-l gene, while the cause of the chon-
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drodysplasia Grebe type seems to be a single replacement of cysteine by tyrosine in 
a mature TGF-~ domain of the cdmp-l gene. In both cases, the appendicular skele
ton is severely shortened, while the axial skeleton remains largely intact (see the 
chapter by Luyten et al.). It has been shown that recombinant GDF-5, 6 and 7 pro
teins implanted subcutaneously in a bone collagen carrier induce tendon and liga
ment structures in the subcutaneous bone induction assay in rats [131]. 

GDF-7 is selectively expressed in the cells of the roof plate in the developing cen
tral nervous system [132]. GDF-7 null mutant embryos lack a specific class of neu
rons, which are important for dorsal spinal cord development. GDF-7 could playa 
crucial role in the assignment of neuronal identity within the mammalian eNS (see 
the chapter by Lein et al.). 

GDF-8 deficient animals with induced mutation in mice and spontaneous muta
tion in double-muscled Belgian blue and Piedmontese cattle exert an extensive 
increase in skeletal muscle mass (see the chapter by Paralkar et all. The weight of 
individual muscles in mutants is increased two- or three-fold when compared to 
wild-type animals. This suggests a role of GDF-8 as a negative regulator of the skele
tal muscle growth [133]. 

GDF-9 is a member of the BMP family important in the development and main
tenance of the reproductive system in mice. It is expressed at high levels in the mam
malian oocyte and mice lacking GDF-9 are infertile. This occurs because of impaired 
folliculogenesis [134, 135]. 

GDF-I0 is expressed during development in the craniofacial region and the ver
tebral column of the skeleton. During adult life it is highly expressed in the brain 
and in the uterus [136]. Mice carrying null mutation for the GDF-I0 gene, howev
er, do not show any obvious abnormality in the development, confirming that gene 
knock-out experiments do not necessarily have functional consequences. 

Double deficiencies in genes encoding BMPs 

Absence of malformations observed in some mutants lacking functional BMP 
encoding genes, and simultaneous expression of several BMP members in different 
tissues have pointed to a possible functional redundancy in the role of these pro
teins. Therefore, several phenotypes have been investigated in which the function of 
two genes encoding different members of the BMP family has been disrupted. 

Doubly heterozygous BMP-4 and BMP-7 mice develop defects in the rib cage 
and distal part of the limbs [137]. These two morphogens seem to act in coopera
tion in the mesenchymal condensations of the affected skeletal regions, possibly 
through regulation of apoptosis. 

BMP-5/-6 double mutants show sternal defects similar to those found in BMP-6 
single mutants. However, these defects tend to be slightly exacerbated in the double 
mutant. 
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Mice with simultaneous deficiency in BMP-S and BMP-7 show the most 
severe phenotype. Coexpression of both morpho gens seems to be pivotal for 
development of allantois, heart, branchial arches, somites and the forebrain since 
mutant embryos die at El0.S with extensive defects of the aforementioned tissues 
[138]. 

Null mutants with simultaneous deficiency in BMP-S and GDF-S/CDMP-l 
exert defects, which cannot be observed in either of the single mutants. Disruption 
of the sternebrae within the sternum and abnormal formation of fibrocartilaginous 
joints between the sternebrae and the ribs are the most prominent of those defects 
[125]. 

Disruptions in the genes encoding BMP antagonists 

Heterozygous noggin deficient mice possess normal phenotypes. Skeletal structures 
in homozygous animals however exhibit abnormalities. The defects are especially 
striking in the vertebrae, ribs and limbs, with the severity of axial defects increasing 
caudally [139]. The skull and cervical vertebrae are basically normal, but thoracic 
vertebrae are fused. They also fail to close dorsally. Ribs are reduced in number and 
have abnormal morphology. The appendicular skeleton in mutant animals is also 
shortened. All these processes seem to arise from a lack of noggin leading to 
increased BMP activity after the chondrogenesis has started. A majority of the joints 
is also fused. Elbows and digits are fused and have cartilaginous spurs as a result of 
a failure to specify the joint. Unregulated expression of GDF-S/CDMP-l in the joint 
regions seems to playa pivotal role in those processes. Absence of local regulation 
of BMP members, especially BMP-6, which is expressed in the hypertrophic zone of 
cartilage in the joints, most probably also plays a role in impaired articular devel
opment (see the chapter by Luyten et al.). 

Malformations, as described, both skeletal and extraskeletal, are numerous, but 
studies of localization of different BMPs imply that deficient phenotypes should be 
more severe. This apparent discrepancy is, most likely, caused by mechanisms, 
which are still not fully understood. Firstly, BMPs overlap, both in localization and 
function. Only at localizations in which one BMP is predominant, like BMP-7 in 
the kidney mesenchyme, will the deficiency of that morphogen lead to impaired 
development and function. Secondly, maternal morphogens might also play an 
important role in early embryonic development, disguising or totally eliminating 
deficiencies, which might lead to irregular or impaired development. This has been 
shown to be the case in TGF-~ deficient mice, and is probably in the root of vari
ations of phenotypes in BMP-4 deficient animals. Early mesenchyme induction in 
BMP-7 deficient animals could also be linked to the maternal BMP-7 circulating in 
the bloodstream of BMP-7 deficient embryos [101] (see the chapter by Borovecki 
et al.). This indicates that genetic and functional evidence, when determining the 
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role of a certain morphogen, often differs greatly. The genetic findings, which main
ly derive from studies in cell cultures and on gene deficient animals, although valu
able, are not always confirmed when put to a test in a physiological surrounding. 
It is only through the combination of genetic and functional data that one can 
reveal the complex web of interactions, which weave the delicate balance of a gene 
function. 

Appendicular skeleton 

BMPs have multiple functions in development of the appendicular skeleton, specif
ically in the establishment of the anteroposterior axis and morphogenesis of the 
limb, and formation of articular joints [32, 1401 (see the chapter by Luyten et al.). 
Anteroposterior patterning of the vertebrate limb is achieved by sequential long
range and short-range sonic hedgehog signaling (Shh), allowing continued proxi
modistal specification of limb elements [141, 142]. Those signals act initially long 
range to prime the region of the limb competent to form digits and thus control digit 
number. Later, Shh acts short range to induce expression of BMPs, whose morpho
genetic action specifies digit identity. In the final stages of limb morphogenesis the 
undifferentiated cells of the distal growing tip of the limb can follow two distinct 
fates, chondrogenesis and apoptotic cell death, forming the digits and the interdigi
tal regions. It seems that both processes are controlled by BMPs in an interactive 
loop with noggin, GDFs, TGF-~s, FGFs and hedgehog signaling [143-146]. More
over, patterning along the dorso-ventral axis of the embryo is regulated by a gradi
ent of secreted morphogens of the BMP-4/Dpp family. This gradient is formed by 
the opposing activities of BMP-sequestering proteins and BMP-releasing metallo
proteases. Coordinated regulation of the activities of BMPs and their inhibitors is 
essential for skeletal development since loss-of-function experiments show that both 
BMPs and BMP inhibitory signals, such as noggin, are required to establish proper 
formation of skeletal tissues [147-149]. At early embryonic stages, BMP-2 and 4 
can be detected at the apical ectodermal ridge and posterior mesenchymal conden
sations of limb buds [150]. BMP-7 appears to have a more diffuse distribution [72, 
151]. Later, numerous BMPs are expressed in the perichondrium surrounding long 
bones, ribs, vertebrae, and craniofacial bones. BMP-6 seems to be expressed at a 
later stage of embryonic bone development when chondrocytes undergo hyper
trophic maturation [152, 153]. 

Besides antero-posterior and dorso-ventral patterning of the embryo, it has 
recently been shown that BMP-4, its ligand and downstream Smadl protein are 
transiently expressed on the right side of the Hensen's node of the chick embryo 
when left-right polarity is being established [154]. Furthermore, a key role for 
BMP-4 in this process is suggested by maintaining sonic hedgehog asymmetry 
[155]. 
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Joints 

Several studies indicate that members of the bone morphogenetic protein family 
promote cartilage formation, and it seems that they are required at two steps of limb 
chondrogenesis: formation of prechondrogenic condensations and their differentia
tion into chondrocytes [28]. 

Development of the joints is also influenced by several BMPs [127]. BMP-2 and 
BMP-4 induce apoptosis in the undifferentiated limb mesenchyme. Perichondrial 
expression of BMP-7 follows a proximal-to-distal sequence and is characterized by 
interruptions in the regions of joint formation, so that BMP-7 may inhibit joint 
formation while stimulating radial growth and differentiation of developing limb 
cartilage. BMP-2 may be involved in determining the joint shape. Cartilage
derived morphogenetic proteins (CDMP-1/GDF-5/BMP-14 and CDMP-2/GDF-6/ 
BMP-13) show strong expression at the sites of joint development and weak 
expression in the perichondrium (see the chapter by Luyten et al.). CDMP-l in 
combination with Wnt-14 is crucial for joint positioning and early events in joint 
formation [156]. 

Axial skeleton 

Besides complex activities of BMPs in the morphogenesis of the appendicular skele
ton, there are also reports on their roles in early somitogenesis and proper develop
ment of the axial skeletal elements, such as vertebrae, ribs and scapula. These struc
tures develop from the embryonic somatic mesoderm through interactions with 
neural tube/notochord and skin ectoderm. BMPs seem to play important roles in 
these tissue interactions, since perturbation of BMP signaling in somitogenesis 
resulted in vertebral and rib malformations [147]. Again, they act in concert with 
other growth factors involved in the formation of the sclerotome, in particular the 
secreted sonic hedgehog (Shh). Shh signals are required only transiently and act to 
change the competence of target cells to respond to BMPs. The later stages of this 
process specifically depend on BMP signaling, which acts to trigger the chondro
genic differentiation [157]. 

Teeth 

The expression of six different BMPs have been described in developing teeth sug
gesting roles during several stages of morphogenesis, including initiation of tooth 
development [75, 78, 158], morphogenesis of the epithelium and mandibular mes
enchyme [79, 159], differentiation of dentin and enamel forming cells, and deposi
tion of extracellular matrices. BMPs have also been expressed during closure of the 
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Figure 2 

BMP-7 transcripts are found in several craniofacialstrudures of a developing rat embryo. (A) 

Brightfield image of the sagital cranialsedion of a 17.5-day rat embryo. (B) A correspond

ing darkfield sedion indicating transcripts in calvarial bone (c), chorioid plexus (p), meninges 

(m), nasal epithelium (ne), molar and incisor teeth (t), skin (s), hair follicles (hf), salivary 

gland (g). Bar, 350 J.U17. 

sutures of calvarial bones suggesting roles in the calvarial bone development and 
confirming their role in regulating cell communication during the craniofacial devel
opment [160-162] (Fig. 2). 
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Bone and bone marrow, cartilage and muscle differentiation 

Functions of individual BMPs have been extensively studied in vitro using a number 
of different cultured cell lines, with results generally indicating complex effects that 
depend on the cell type and culture conditions [163]. For example, in a line of 
mouse mesodermal progenitor cells, low doses of BMP-2 induced differentiation 
into adipocytes and high concentrations produced chondrocytes and bone cells [24]. 
Multipotent cell types respond to different BMPs by increasing either differentiation 
or proliferation, and similar effects were found in osteoblastic cell lines. The effect 
of BMPs on cell proliferation is different: proliferation of osteosarcoma cells is stim
ulated by BMP-2 and BMP-7, while proliferation of osteoblasts is stimulated by 
BMP-7, but inhibited by BMP-2 and BMP-3 [66, 164-166]. BMP-7 also promotes 
growth and maturation of chick sternal chondrocytes [167] (Fig. 3) via binding to 
type X collagen promotor [168], but primary mammalian articular chondrocytes do 
not undergo hypertrophy in similar culturing conditions [169]. Differentiation of 
osteoblastic and pre osteoblastic cells is stimulated by the addition of BMP-3 [170], 
although they express mRNA and protein for other BMPs during differentiation 
process in vitro [171]. The expression of BMPs could be modulated by exogenous
ly added growth factors like dexametasone or estradiol. The data suggest that only 
one BMP is required and sufficient for differentiation of osteoprogenitor cells 
towards a more mature phenotype, and that the function of BMP-4 can be replaced 
by BMP-7, another member of this family [171] (Fig. 4). 

Moreover, the important role for BMPs was observed in the maintenance of the 
vascular smooth muscle cell phenotype, hence vascularization is a prerequisite in the 
development and homeostasis of normal cartilaginous and bone tissue [172]. 
Besides stimulation of genes specific for the smooth muscle cell phenotype, the 
strong anti proliferative effect of BMP-7 on primary human aortic smooth muscle 
cells in vitro was observed suggesting that BMP-7 could prevent vascular prolifera
tive disorders [81]. BMP-7 is also able to inhibit inflammatory cytokine-mediated 
ICAM production in smooth muscle cells in vitro as well as in peritubular renal cap
pilaries in vivo [81, 173], thus confirming the important role in the maintenance of 
vascular integrity. The expression of BMP-2 has also been reported in various 
human blood vessels and vascular cell types, and direct effect on migration of 
human aortic vascular smooth muscle cells has been shown [174]. 

There is also accumulating evidence that BMPs are candidates for regulators of 
hemopoietic differentiation and function of mature blood cells in the adult life. The 
regulation of hemopoiesis is a complex process, which requires signaling between 
stromal cells, stem cells and progenitor cells. Recent studies have confirmed the 
effect of BMPs on highly primitive as well as highly differentiated hemopoietic cells 
in vitro [175, 176], but their involvement in the adipocytic differentiation pathway 
has also been suggested [177]. Primitive CD34+CD38- cells could respond to exoge
nously added BMP-2, -4, and -7, which regulated their proliferation and differenti-

102 



Biology of bone morphogenetic proteins 

x CO BMP-7 TGF-~ 

kDa 

200 

97 

69 

46 

30 

D 

Figure 3 

BMP-l induces clonal proliferation and maturation of day 15 chick sternal chondrocyte 

agarose cultures in serum-free medium. Cells were grown in agarose for 3 weeks in chemi

cally defined medium at a density of 1 x 105 cells/well. Left panel, photomicrographs of liv

ing cultures treated with: (A) control; (B) TGF-{31 (10 ng/ml; (C) BMP-l (50 ng/m/). Bar, 

25 J1f11. Right panel, collagen biosynthesis gel, first lane shows the molecular mass standard; 

lane X, type X collagen (positive contro/); lane CO, control cells; lane BMP-7, cells treated 

with 50 ng/ml of BMP-l; lane TGF-{3 (10 ng/m/). 

ation with a direct effect on stem cell survival [175]. Another study confirmed the 
expectation that normal adult hemopoietic cell lines express BMP genes (BMP-2, 
-4, -6, -7) as well as other members of the TGF-~ superfamily, with lineage-restrict
ed patterns of expression [176, 178]. It has also been found that BMP-9 acts as a 
hemopoietic hormone [179]. The expression and presence of BMP molecules have 
also been reported in a normal adult tissue, which represents the absolute prerequi-
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site for maintenance of hemopoiesis in vitro. Normal human bone marrow stromal 
cells synthesize and produce BMP-3, BMP-4 and BMP-7 (Fig. 5) as well as type I 
receptors and receptor-related and common mediator Smad molecules, thus, impli
cating important roles in autocrine/paracrine mechanism regulating hemopoiesis 
[113] (Fig. 4). 

BMP applications: bone and beyond bone 

BMPs are capable of restoring lost bone in the post-fetal life by recapitulating the 
cellular events that are involved in the formation of bone during the embryonic 
development [10]. The recently completed prospective randomized clinical study for 
the restoration of tibial non unions in humans by recombinant BMP-7 containing 
collagenous devices [180] (see the chapter by Giltaij et al.) offers significant promise 
in the demonstration that the events responsible for tissue formation in the embryo 
can form strategies for therapeutic development in man. Clinical results on the use 
of recombinant human BMPs in orthopedic reconstruction and craniofacial repair 
strongly support their use in bone regeneration in humans (see the chapters by 
Blockhuis et al. and Terheyden et al.). 

Identification and characterization of BMP-specific type I and II receptor com
plex and subsequent intracellular signaling via BMP-specific Smad intracellular pro
teins and identification of BMP responding elements in tissue specific target genes, 
provide a basis for endogenous up-regulation of BMPs in individuals with osteo
porosis and various metabolic bone diseases [173] (see the chapter by Korchynsky 
and ten Dijke). 

The demonstration that the application of recombinant BMPs is capable of 
regenerating a variety of tissues, like bone, cartilage, tendon, ligament, peridontium 
and dentin, kidney or central nervous system in various animal models suggests that 
the specific biological action of BMPs is determined by responding cells and the 

Figure 4 

Expression of BMPs and osteoblast differentiation markers in osteoblastic cells during dif

ferentiation pracess in vitro. MC3T3-E1 cells were grawn for 17 days in DMEM with 1 % 

FCS; [3-glyceraphosphate (5 mM) and ascorbic acid (50 pg/ml). RNA was isolated at desig

nated times and semi-quantitative RT-PCR performed using specific primers for BMP-2 to 
BMP-7, ALP (alkaline phosphatase), Coil (collagen type I), OP (osteopontin) and OC (osteo

ca/cin). (A) Contral cultures expressed BMP-4 mRNA and differentiation markers. (B) BMP-

7 treated cells (20 ng/ml) expressed differentiation markers regardless complete inhibition 

of BMP expression, suggesting BMP-7 can replace the function of endogenous BMP-4. 

GAPDH, house-keeping gene; p, positive contrallane; n, negative contrallane. 
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Figure 5 

BMP expression in stromal cells from human bone marrow long-term culture. Stromal cells 

were obtained from healthy donors by standard biopsy procedure and cultivated up to 8 
weeks in appropriate conditions. Total RNA was extracted from freshly isolated (BM) or cul

tivated bone marrow samples (1, 3, 5, 8 weeks), and semi-quantitative RT-PCR performed 

using specific primers for BMP-2 to BMP-7. Stromal cells expressed mRNA for BMP-3, BMP-

4 and BMP-7 throughout entire investigation period. GAPDH, house-keeping gene; Ly, per

iferal lymphocytes; pc, positive control. 

microenvironment available at the site of injury [173, 181, 182]. Studies on gain 
and loss of function indicate that in addition to their morphogenic role in the mus
culoskeletal system, BMPs serve as inductive signals for overall tissue development 
during embryogenesis, and suggest that they may have therapeutic utility in nervous, 
urogenital, cardiovascular, pulmonary and reproductive organ systems in the adult 
life. The role of BMPs in several other systems will be extensively discussed in other 
chapters of this book. 

Conclusion 

Apart from the unique bone-inductive ability of BMPs, the last decade has brought 
a wealth of morphological, genetic and biochemical data emphasizing their essential 
function in developmental processes and overall morphogenesis of many distant 
species. Besides their profound role in bone tissue regeneration and maintenance, 
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BMPs act as differentiation factors, as well as physiological regulators in home
ostasis of different tissues. Multiple therapeutic uses in a variety of clinical indica
tions are foreseeable. 

References 

1 Urist MR (1965) Bone: formation by autoinduction. Science 150: 893-899 
2 Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, 

Wang EA (1988) Novel regulators of bone formation: molecular clones and activities. 
Science 242: 1528-1534 

3 Luyten FP, Cunningham NS, Vukicevic S, Paralkar V, Ripamonti U, Reddi AH (1992) 
Advances in osteogenin and related bone morphogenetic proteins in bone induction and 
repair. Acta Orthop Belg 58 (Suppl1): 263-267 

4 Ozkaynak E, Rueger DC, Drier EA, Corbett C, Ridge RJ, Sampath TK, Oppermann H 
(1990) OP-1 cDNA encodes an osteogenic protein in the TGF-beta family. EMBO J 9: 
2085-2093 

5 Sampath TK, Maliakal JC, Hauschka PV, Jones WK, Sasak H, Tucker RF, White KH, 
Coughlin JE, Tucker MM, Pang RH et al (1992) Recombinant human osteogenic pro
tein-1 (hOP-1) induces new bone formation in vivo with a specific activity comparable 
with natural bovine osteogenic protein and stimulates osteoblast proliferation and dif
ferentiation in vitro. J Bioi Chern 267: 20352-20362 

6 Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, Wozney JM 
(1990) Identification of transforming growth factor beta family members present in 
bone-inductive protein purified from bovine bone. Proc Natl Acad Sci USA 87: 
9843-9847 

7 Luyten FP, Cunningham NS, Ma S, Muthukumaran N, Hammonds RG, Nevins WB, 
Woods WI, Reddi AH (1989) Purification and partial amino acid sequence of 
osteogenin, a protein initiating bone differentiation. J Bioi Chern 264: 13377-13380 

8 Vukicevic S, Paralkar VM, Reddi AH (1993) Extracellular matrix and bone morpho
genetic proteins in cartilage and bone development and repair. Adv Mol Cell Bioi 6: 
207-224 

9 Reddi AH (1994) Bone and cartilage differentiation. Curr Opin Genet Dev 4: 737-744 
10 Reddi AH, Huggins C (1972) Biochemical sequences in the transformation of normal 

fibroblasts in adolescent rats. Proc Natl Acad Sci USA 69: 1601-1605 
11 Reddi AH (1995) Cartilage morphogenesis: role of bone and cartilage morphogenetic 

proteins, homeobox genes and extracellular matrix. Matrix Bioi 14: 599-606 
12 Reddi AH (1998) Role of morphogenetic proteins in skeletal tissue engineering and 

regeneration. Nat Biotechno/16: 247-252 

13 Reddi AH (2000) Morphogenetic messages are in the extracellular matrix: biotechnolo
gy from bench to bedside. Biochem Soc Trans 28: 345-349 

14 Franceschi RT (1999) The developmental control of osteoblast-specific gene expression: 

107 



Snjezana Martinovic et al. 

role of specific transcription factors and the extracellular matrix environment. Crit Rev 
Oral BioI Med 10: 40-57 

15 Nishida Y, Knudson CB, Eger W, Kuettner KE, Knudson W (2000) Osteogenic protein 
1 stimulates cells-associated matrix assembly by normal human articular chondrocytes: 
up-regulation of hyaluronan synthase, CD44, and aggrecan. Arthritis Rheum 43: 

206-214 
16 Nishida Y, Knudson CB, Kuettner KE, Knudson W (2000) Osteogenic protein-1 pro

motes the synthesis and retention of extracellular matrix within bovine articular carti
lage and chondrocyte cultures. Osteoarthritis Cartilage 8: 127-136 

17 Paralkar VM, Nandedkar AK, Pointer RH, Kleinman HK, Reddi AH (1990) Interaction 
of osteogenin, a heparin binding bone morphogenetic protein, with type IV collagen. J 
BioI Chem 265: 17281-4 

18 Paralkar VM, Vukicevic S, Reddi AH (1991) Transforming growth factor beta type 1 
binds to collagen IV of basement membrane matrix: implications for development. Dev 
BioI 143: 303-308 

19 Paralkar VM, Weeks BS, Yu YM, Kleinman HK, Reddi AH (1992) Recombinant human 
bone morphogenetic protein 2B stimulates PC12 cell differentiation: potentiation and 
binding to type IV collagen. J Cell BioI 119: 1721-1728 

20 Vukicevic S, Latin V, Chen P, Batorsky R, Reddi AH, Sampath TK (1994) Localization 
of osteogenic protein-1 (bone morphogenetic protein-7) during human embryonic devel
opment: high affinity binding to basement membranes. Biochem Biophys Res Commun 
198:693-700 

21 Zhu Y, Oganesian A, Keene DR, Sandell LJ (1999) Type IIA procollagen containing the 
cysteine-rich amino propeptide is deposited in the extracellular matrix of prechondro
genic tissue and binds to TGF-beta1 and BMP-2. J Cell BioI 144: 1069-1080 

22 Suzawa M, Takeuchi Y, Fukumoto S, Kato S, Veno N, Miyazono K, Matsumoto T, Fuji
ta T (1999) Extracellular matrix-associated bone morphogenetic proteins are essential 
for differentiation of murine osteoblastic cells in vitro. Endocrinology 140: 2125-2133 

23 Katagiri T, Yamaguchi A, Ikeda T, Yoshiki S, Wozney JM, Rosen V, Wang EA, Tanaka 
H, Omura S, Suda T (1990) The non-osteogenic mouse pluripotent cell line, 
C3H10T1/2, is induced to differentiate into osteoblastic cells by recombinant human 

bone morphogenetic protein-2. Biochem Biophys Res Commun 172: 295-299 
24 Wang EA, Israel DI, Kelly S, Luxenberg DP (1993) Bone morphogenetic protein-2 caus

es commitment and differentiation in C3H10T1I2 and 3T3 cells. Growth Factors 9: 

57-71 
25 Puleo DA (1997) Dependence of mesenchymal cell responses on duration of exposure to 

bone morphogenetic protein-2 in vitro. J Cell Physiol173: 93-101 

26 Ji X, Chen D, Xu C, Harris SE, Mundy GR, Yoneda T (2000) Patterns of gene expres
sion associated with BMP-2-induced osteoblast and adipocyte differentiation of mes
enchymal progenitor cell 3T3-F442A. J Bone Miner Metab 18: 132-139 

27 Gazit D, Turgeman G, Kelley P, Wang E, Jalenak M, Zilberman Y, Moutsatsos I (1999) 

108 



Biology of bone morphogenetic proteins 

Engineered pluripotent mesenchymal cells integrate and differentiate in regenerating 
bone: a novel cell-mediated gene therapy. J Gene Med 1: 121-133 

28 Pizette 5, Niswander L (2000) BMPs are required at two steps of limb chondrogenesis: 
formation of prechondrogenic condensations and their differentiation into chondro
cytes. Dev Bioi 219: 237-249 

29 Reddi AH (1995) Bone morphogenetic proteins, bone marrow stromal cells, and mes
enchymal stem cells. Maureen Owen revisited. Clin Orthop 313: 115-119 

30 Reddi AH (2000) Morphogenesis and tissue engineering of bone and cartilage: induc
tive signals, stem cells, and biomimetic biomaterials. Tissue Eng 6: 351-359 

31 Hogan BLM (1996) Bone morphogenetic proteins: multifunctional regulators of verte
brate development. Genes Dev 10: 1580-1594 

32 Hogan BLM (1996) Bone morphogenetic proteins in development. Curr Opin Gen Dev 

6:432-438 
33 Reddi AH (2000) Bone morphogenetic proteins and skeletal development: the kidney

bone connection. Pediatr Nephrol14: 598-601 
34 Padget RW, St Johnston RD, Gelbart WM (1987) A transcript from a Drosophila pat

tern gene predicts a protein homologous to the transforming growth factor-p family. 
Nature (London) 325: 81-84 

35 Sampath TK, Rashka EK, Doctor JS, Tucker RF, Hoffmann FM (1993) Drosophila 
transforming growth factor superfamily proteins induce endochondral bone formation 
in mammals. Proc Natl Acad Sci USA 90: 6004-6008 

36 Padget RW, Wozney JM, Gelbart WM (1993) Human BMP sequences can confer nor
mal dorsal-ventral patterning in the Drosophila embryo. Proc Natl Acad Sci USA 90: 
2905-2909 

37 Weeks DL, Melton DA (1987) A maternal mRNA localized to the vegetal hemisphere in 
Xenopus eggs codes for a growth factor related to TGF-p. Cell 51: 861-867 

38 Ozkaynak E, Schnegelsberg PN, Jin DF, Clifford GM, Warren FD, Drier EA, Opper
mann H (1992) Osteogenic protein-2. A new member of the transforming growth fac
tor-beta superfamily expressed early in embryogenesis. J Bioi Chem 267: 25220-25227 

39 Wharton KA, Thomsen GH, Gelbart WM (1991) Drosophila 60A gene, another trans
forming growth factor P family member, is closely related to human bone morpho
genetic proteins. Proc Natl Acad Sci USA 88: 9214-9218 

40 Doctor JS, Jackson PD, Rashka KE, Visalli M, Hoffmann FM (1992) Sequence, bio
chemical characterization and developmental expression of a new member of the TGF
P superfamily in Drosophila melanogaster. Dev Bioi 151: 491-505 

41 Dale L, Jones MC (1999) BMP signalling in early Xenopus development. Bioesseys 21: 
751-760 

42 Chang C, Hemmati-Brivanlou A (1999) Xenopus GDF6, a new antagonist of noggin 
and a partner of BMPs. Development 126: 3347-3357 

43 Hemmati-Brivanlou A, Thomsen GH (1995) Ventral mesodermal patterning in Xenopus 

embryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet 17: 78-89 

109 



Snjezana Martinovic et al. 

44 Lahder R, Mohun RJ, Smith JC, Snape AM (1996) Xom: a Xenopus homeobox gene 
that mediates the early effects of BMP-4. Development 122: 2385-2394 

45 Suzuki A, Ueno N, Hemmati-Brivanlou A (1997) Xenopus msx1 mediates epidermal 
induction and neural inhibition by BMP-4. Development 124: 3037-3044 

46 Kaufmann E, Paul H, Friedle H, Metz A, Scheucher M, Clement JH, Knochel W (1996) 
Antagonistic actions of activin A and BMP-2/4 control dorsal lip-specific activation of 
the early response gene XFD-1' in Xenopus laevis embryos. EMBO J 15: 6739-6749 

47 Dosch R, Gawantka V, Delius H, Blumenstock C, Niehrs C (1997) BMP-4 acts as a mor
phogen in dorsoventral mesoderm patterning in Xenopus. Development 124: 

2325-2334 
48 Jones CM, Lyons KM, Lapan PM, Wright CVE, Hogan BLM (1992) DVR-4 (bone mor

phogenetic protein-4) as a posterior-ventralizing factor in Xenopus mesoderm induction. 
Development 115: 639-647 

49 Jones CM, Smith JC (1998) Establishment of a BMP-4 morphogen gradient by long
range inhibition. Dev Bioi 194: 12-17 

50 Dosch R, Niehrs C (2000) Requirement for anti-dorsalizing morphogenetic protein in 
organizer patterning. Mech Dev 90: 195-203 

51 Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: 

inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589-598 
52 Zimmerman LB, De Jesus-Escobar JM, Harland RM (1996) The Spemann organizer sig

nal noggin binds and inactivates bone morphogenetic protein 4. Cell 86: 599-606 
53 lemura S, Yamamoto TS, Takagi C, Uchiyama H, Natsume T, Shimasaki S, Sugino H, 

Ueno N (1998) Direct binding of follistatin to a complex of bone-morphogenetic pro
tein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. 
Proc Natl Acad Sci USA 95: 9337-9342 

54 Capdevila J, Johnson RL (1998) Endogenous and ectopic expression of noggin suggests 
a conserved mechanism force regulation of BMP function during limb and somite pat
terning. Dev Bioi 197: 205-217 

55 Furthauer M, Thisse B, Thisse C (1999) Three different noggin genes antagonize the 
activity of bone morphogenetic proteins in the zebrafish embryo. Dev Bioi 214: 

181-196 
56 Bauer H, Meier A, Hild M, Stachel S, Economides A, Hazelett D, Harland RM, Ham

merschmidt M (1998) Follistatin and noggin are excluded from the zebrafish organizer. 

Dev Bioi 204: 488-507 
57 Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of 

activin, is expressed in the Spemann organizer and displays direct neuralizing activity. 

Cell 77: 283-295 
58 Fainsod A, Deissler K, Xelin R, Marom K, Epstein M, Pillemer G, Steinberisser H, Blum 

M (1997) The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-
4. Mech Dev 63: 39-50 

59 Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM (1998) The Xenopus dor-

110 



Biology of bone morphogenetic proteins 

salizing factor Gremlin identifies a novel family of secreted proteins that antagonize 
BMP activities. Mol Cell 1: 673-683 

60 Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massague }, Niehrs C 
(1999) Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 401: 
480-485 

61 Holley SA, Neul }L, Attisano L, Wrana }L, Sasai Y, O'Connor MB, De Robertis EM, 
Ferguson EL (1996) The Xenopus dorsalizing factor noggin ventralizes Drosophila 
embryos by preventing DPP from activating its receptor. Cell 86: 607-617 

62 Grotewold L, Plum M, Dildrop R, Peters T, Ruther U (2001) Bambi is coexpressed with 
Bmp-4 during mouse embryogenesis. Mech Dev 100: 327-330 

63 Piccolo S, Agius E, Lu B, Goodman S, Dale L, De Robertis EM (1997) Cleavage of 
chordin by the Xolloid metalloprotease suggests a role for proteolytic processing in the 
regulation of Spemann organizer activity. Cell 91: 407-416 

64 Hashimoto 0, Nakamura T, Shohi H, Shimasaki S, Hayashi Y, Sugino H (1997) A novel 
role of follistatin, an activin-binding protein, in the inhibition of activin action in rat 
pituitary cells. Endocytotic degradation of activin and its acceleration by follistatin asso
ciated with cell-surface heparan sulfate. J Bioi Chem 272: 13835-13842 

65 Oelgeschlager M, Larrain}, Geissert D, De Robertis EM (2000) The evolutionarily con
served BMP-binding protein twisted gastrulation promotes BMP signalling. Nature 405: 
757-763 

66 Vukicevic S, Luyten FP, Reddi AH (1990) Osteogenin inhibits proliferation and stimu
lates differentiation in mouse osteoblast-like cells (MC3T3-El). Biochem Biophys Res 
Commun 166: 750-756 

67 Vukicevic S, Paralkar VM, Cunningham NS, Gutkind IS, Reddi AH (1990) Autoradi
ographic localization of osteogenin binding sites in cartilage and bone during rat embry
onic development. Dev Bioi 40: 209-214 

68 Vukicevic S, Helder MN, Luyten FP (1994) Developing human lung and kidney are 
major sites for synthesis of bone morphogenetic protein-3 (osteogenin). J Histochem 
Cytochem 42: 869-875 

69 Vukicevic S, Kopp }B, Luyten FP, Sampath TK (1996) Induction of nephrogenic mes
enchyme by osteogenic protein 1 (bone morphogenetic protein 7). Proc Natl Acad Sci 
USA 93: 9021-9026 

70 Helder MN, Ozkaynak E, Sampath KT, Luyten FP, Latin V, Oppermann H, Vukicevic S 
(1995) Expression pattern of osteogenic protein-l (bone morphogenetic protein-7) in 
human and mouse development. J Histochem Cytochem 43: 1035-1044 

71 Takahashi H, Ikeda T (1996) Transcripts for two members of the transforming growth 
factor-beta superfamily BMP-3 and BMP-7 are expressed in developing rat embryos. 
Dev Dyn 207: 439-449 

72 Lyons KM, Hogan BL, Robertson E} (1995) Colocalization of BMP7 and BMP2 RNAs 
suggest that these factors cooperatively mediate tissue interactions during murine devel
opment. Mech Dev 50: 71-83 

73 Lyons KM, Pelton RW, Hogan BLM (1989) Patterns of expression of murine Vgr-l and 

111 



Snjezana Martinovic et al. 

BMP 2a suggest that transforming growth factor-~-like genes coordinately regulate 

aspects of embryonic development. Gen Development 3: 1657-1668 

74 Martinovic S, Latin V, Suchanek E, Stavljenic-Rukavina A, Sampath TK, Vukicevic S 

(1996) Osteogenic protein-1 is produced by human fetal trophoblasts in vivo and regu

lates the synthesis of chorionic gonadotropin and progesterone by trophoblasts in vitro. 
Eur J Clin Chem Clin Biochem 34: 103-109 

75 Vainio S, Karavanova I, Jowett A, Thesleff I (1993) Identification of BMP-4 as a signal 

mediating secondary induction between epithelial and mesenchymal tissues during early 

tooth development. Cell 75: 45-58 

76 Thesleff I (1995a) Homeobox genes and growth factors in regulation of craniofacial and 

tooth morphogenesis. Acta Odontol Scand 53: 129-134 

77 Thesleff I, Vaahtokari A, Kettunen P, Aberg T (1995b) Epithelial-mesenchymal signal

ing during tooth development. Connect Tissue Res 32: 9-15 

78 Aberg T, Wozney J, Thesleff I (1997) Expression patterns of bone morphogenetic pro

teins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell dif

ferentiation. Dev Dyn 210: 383-396 

79 Helder MN, Karg H, Bervoets TJM, Vukicevic S, Burger EH, D'Souza RN, Woltgens 

JHM, Karsenty G, Bronckers ALJJ (1998) Bone morphogenetic protein-7 (osteogenic 

protein-1, OP-1) and tooth development. J Dent Res 77: 545-554 
80 Peters H, Balling R (1999) Teeth: where and how to make them. Trends Genet 15: 

59-65 

81 Dorai H, Vukicevic S, Sampath TK (2000) Bone morphogenetic protein-7 (osteogenic 

protein-1) inhibits smooth muscle cell proliferation and stimulates the expression of 

markers that are characteristic of SMC phenotype in vitro. J Cell Physiol184: 37-45 
82 Schultheiss TM, Burch JB, Lassar AB (1997) A role for bone morphogenetic proteins in 

the induction of cardiac myogenesis. Genes Dev 11: 451-462 

83 Ladd AN, Yatskievych TA, Antin PB (1998) Regulation of avian cardiac myogenesis by 

activinffGFbeta and bone morphogenetic proteins. Dev BioI 204: 407-419 
84 Yamada M, Revelli JP, Eichele G, Barron M, Schwartz RJ (2000) Expression of chick 

Tbx-2, Tbx-3, and Tbx-5 genes during early heart development: evidence for BMP2 

induction of Tbx2. Dev BioI 228: 95-105 

85 Walters MJ, Wayman GA, Christian JL (2001) Bone morphogenetic protein function is 

required for terminal differentiation of the heart but not for early expression of cardiac 

marker genes. Mech Dev 100: 263-273 

86 Branford WW, Essner n, Yost HJ (2000) Regulation of gut and heart left-right asym

metry by context-dependent interactions between xenopus lefty and BMP4 signaling. 

Dev BioI 223: 291-306 

87 Yamagishi T, Nakajima Y, Miyazono K, Nakamura H (1999) Bone morphogenetic pro

tein-2 acts synergistically with transforming growth factor-beta3 during endothelial

mesenchymal transformation in the developing chick heart. J Cell Physiol180: 35-45 
88 Shimasaki S, Zachow RJ, Li D, Kim H, Iemura S, Ueno N, Sampath K, Chang RJ, Erick-

112 



Biology of bone morphogenetic proteins 

son GF (1999) A functional bone morphogenetic protein system in the ovary. Proc Natl 
Acad Sci USA 96: 7282-7287 

89 Paralkar VM, Vail AL, Grasser WA, Brown TA, Xu H, Vukicevic S, Ke HZ, Qi H, Owen 
TA, Thompson DD (1998) Cloning and characterization of a novel member of the trans
forming growth factor-beta/bone morphogenetic protein family. J Bioi Chem 273: 
13760-13767 

90 Harris SE, Harris MA, Mahy P, Wozney J, Feng JQ, Mundy GR (1994) Expression of 
bone morphogenetic protein messenger RNAs by normal rat and human prostate can
cer cells. Prostate 24: 204-211 

91 Smith DM, Grasty RC, Theodosiou NA, Tabin q, Nascone-Yoder NM (2000) Evolu
tionary relationships between the amphibian, avian, and mammalian stomachs. Evol 
Dev 2: 348-359 

92 Narita T, Saitoh K, Kameda T, Kuroiwa A, Mizutani M, Koike C, Iba H, Yasugi S 
(2000) BMPs are necessary for stomach gland formation in the chicken embryo: a study 
using virally induced BMP-2 and noggin expression. Development 127: 981-988 

93 Maric I, Poljak L, Zoricic S, Bobinac D, Sampath TK, Maliakal J, Vukicevic S (2001) 
Systemic administration of BMP-7 accelerates healing of inflammatory bowel disease in 
rat (unpublished observations) 

94 Feng JQ, Harris MA, Ghosh-Choudhury N, Feng M, Mundy GR, Harris SE (1994) 
Structure and sequence of mouse bone morphogenetic protein-2 gene (BMP-2): com
parison of the structures and promoter regions of BMP-2 and BMP-4 genes. Biochim 
Biophys Acta 1218: 221-224 

95 Dickinson ME, Kobrin MS, Silan CM, Kingsley DM, Justice MJ, Miller DA, Ceci JD; 
Lock LF, Lee A, Buchberg AM et al (1990) Chromosomal localization of seven members 
of the murine TGF-b superfamily suggest close linkage to several morphogenetic mutant 
loci. Genomics 6: 505-520 

96 Ceci JD, Kingsley DM, Silan CM, Copeland NG, Jenkins NA (1990) An interspecific 
backcross linkage map of the proximal half of mouse chromosome 14. Genomics 87: 
9843-9847 

97 Ducy P, Karsenty G (2000) The family of bone morphogenetic proteins. Kidney Int 57: 
2207-2214 

98 Dudley AT, Lyons K, Robertson EJ (1995) A requirement for bone morphogenetic pro
tein-7 during development of the mammalian kidney and eye. Genes Dev 9: 2795-2807 

99 Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 
is an inducer of nephrogenesis, and is also required for eye development and skeletal 
patterning. Genes Dev 9: 2808-2820 

100 Letterio 11, Geiser AG, Kulkarni AB, Roche NS, Sporn MB, Roberts AB (1994) Mater
nal rescue of transforming growth factor-~l null mice. Science 264: 1936-1938 

101 Borovecki F, Jelic M, Bosukonda D, Sampath K, Vukicevic S. Osteogenic protein-l 
(bone morphogenetic protein-7) is available to the fetus through placental transfer dur
ing early stages of development. Kidney Int; in press 

113 



Snjezana Martinovic et al. 

102 Hongbin Z, Bradley A (1996) Mice deficient for BMP-2 are nonviable and have defects 
in amnion/chorion and cardiac development. Development 122: 2977-2986 

103 Lyons KM, Pelton RW, Hogan BLM (1990) Organogenesis and pattern formation in the 
mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A 
(BMP-2A). Development 109: 833-844 

104 Clement JH, Fettes P, Knochel S, Lef J, Knochel W (1995) Bone morphogenetic protein 
2 in early development of Xenopus laevis. Mech Dev 52: 357-370 

105 Tabas JA, Zasloff M, Wasmuth 11, Emanuel BS, Altherr MR, McPherson JD, Wozney 
JM, Kaplan FS (1991) Bone morphogenetic protein: chromosomal localization of 
human genes for BMP1, BMP2A, and BMP3. Genomics 9: 283-289 

106 Rao VV, Loffler C, Wozney JM, Hansmann I (1992) The gene for bone morphogenetic 
protein 2A (BMP2A) is localized to human chromosome 20p12 by radioactive and non
radioactive in situ hybridization. Hum Genet 90: 299-302 

107 Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E, Stevenson SL, Cox K, 
Rosen V, Lyons KM (2001) Bone morphogenetic protein-3 is a negative regulator of 
bone density. Nat Genet 27: 84-88 

108 Aspenberg P, Basic N, Tagil M, Vukicevic S (2000) Reduced expression of BMP-3 due 
to mechanical loading: a link between mechanical stimuli and tissue differentiation. Acta 
Orthop Scand 71: 558-562 

109 Winnier G, Blessing M, Labosky PA, Hogan BLM (1995) Bone morphogenetic protein-
4 is required for mesoderm formation and patterning in the mouse. Gen Dev 9: 
2105-2116 

110 Lawson KA, Pedersen RA (1992) Clonal analysis of cell fate during gastrulation and 
early neurulation in the mouse. Postimplantation development in the mouse. ClBA 

Found 165: 3-26 
111 Duprez D, Bell EJ, Richardson MK, Archer CW, Wolpert L, Bricker PM, Francis-West 

PH (1996) Overexpression of BMP-2 and BMP-4 alters the size and shape of develop
ing skeletal elements in the chick limb. Mech Dev 57: 145-157 

112 Shafritz AB, Shore EM, Gannon FH, Zasloff MA, Taub R, Muenke M, Kaplan FS 
(1996) Overexpression of an osteogenic morphogen in fybrodysplasia ossificans pro

gressiva. N EnglJ Med 335: 555-561 
113 Martinovic S, Kisic V, Mazic S, Basic N, Jakic-Razumovic J, Batinic D, Labar B, Vukice

vic S (2001) Expression of bone morphogenetic proteins in stromal cells from human 
bone marrow long-term culture (unpublished observations) 

114 Katoh M, Terada M (1996) Overexpression of bone morphogenetic protein (BMP)-4 
mRNA in gastric cancer cel lines of poorly differentiated type. ] Gastroenterol 31: 
137-139 

115 Kusafuka K, Yamaguchi A, Kayano T, Fujiwara M, Takemura T (1998) Expression of 
bone morphogenetic proteins in salivary pleomorphic adenomas. Virchows Arch 432: 
247-253 

116 King JA, Marker PC, Seung KJ, Kingsley DM (1994) BMP5 and the molecular, skeletal, 
and soft-tissue alterations in short ear mice. Dev BioI 166: 112-122 

114 



Biology of bone morphogenetic proteins 

117 Green MC (1968) Mechanism of the pleiotropic effects of the short-ear mutant gene in 
the mouse. J Exp Zoo/167: 129-150 

118 Kingsley DM, Bland AE, Grubber JM, Marker PC, Russell LB, Copeland NG, Jenkins 
NA (1992) The mouse short ear skeletal morphogenesis locus is associated with defects 
in a bone morphogenetic member of the TGF~ superfamily. Cell 71: 399-410 

119 Hahn GV, Cohen RB, Wozney JM, Levitz CL, Shore EM, Zasloff MA, Kaplan FS (1992) 
A bone morphogenetic protein subfamily: chromosomal localization of human genes for 
BMP5, BMP6, and BMP7. Genomics 14: 759-762 

120 Solloway MJ, Dudley AT, Bikoff EK, Lyons KM, Hogan BL, Robertson EJ (1998) Mice 
lacking Bmp6 function. Dev Genet 22: 321-339 

121 Blessing M, Schrimacher P, Kaiser S (1996) Overexpression of bone morphogenetic pro
tein-6 (BMP-6) in the epidermis of transgenic mice: inhibition or stimulation of prolif
eration depending on the pattern of transgene expression and formation of psoriatic 
lesions. J Cell Bioi 135: 227-239 

122 Zhao GQ, Deng K, Labosky PA, Liaw L, Hogan BL (1996) The gene encoding bone 
morphogenetic protein 8B is required for the initiation and maintenance of spermato
genesis in the mouse. Genes Dev 10: 1657-1669 

123 Zhao GQ, Liaw L, Hogan BL (1998) Bone morphogenetic protein 8A plays a role in the 
maintenance of spermatogenesis and the integrity of the epididymis. Development 125: 
1103-1112 

124 Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ (1994) Limb 
alterations in brachypodism mice due to mutations in a new member of the TGF~-super
family. Nature 368: 639-643 

125 Storm EE, Kingsley DM (1996) Joint patterning defects caused by single and double 
mutations in members of the bone morphogenetic protein (BMP) family. Development 
122: 3969-3979 

126 Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPher
son S, Luyten FP, Archer CW (1999) Mechanisms of GDF-5 action during skeletal devel
opment. Development 126: 1305-1315 

127 Francis-West PH, Parish J, Lee K, Archer CW (1999) BMP/GDF-signalling interactions 
during synovial joint development. Cell Tissue Res 296: 111-119 

128 Chang SC, Hoang B, Thomas JT, Vukicevic S, Luyten FP, Ryba NJ, Kozak CA, Reddi 
AH, Moos M Jr (1994) Cartilage-derived morphogenetic proteins. New members of the 
transforming growth factor-beta superfamily predominantly expressed in long bones 
during human embryonic development. J Bioi Chem 269: 28227-28234 

129 Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten FP (1996) A human 
chondrodysplasia due to a mutation in a TGF-~ superfamily member. Nat Gen 12: 
315-8 

130 Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, Costa T, Tsipouras P, Luyten 
FP (1997) Disruption of human limb morphogenesis by a dominant negative mutation 
in CDMPl. Nat Genet 17: 58-64 

131 Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBla-

115 



Snjezana Martinovic et ac::.I. ________________________ _ 

sio-Smith E, Nove J, Song JJ et al (1997) Ectopic induction of tendon and ligament in 
rats by growth and differentiation factors 5, 6 and 7, members of the TGF-beta gene 
family. J Clin Invest 100: 321-330 

132 Lee KJ, Mendelsohn M, Jessell TM (1998) Neuronal patterning by BMPs: a requirement 
fir GDF7 in the generation of a discrete class of commissural interneurons in the mouse 
spinal cord. Genes Dev 12: 3394-3407 

133 McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice 
by a new TGF-beta superfamily member. Nature 387: 83-90 

134 Elvin JA, Changning Y, Wang P, Nishimori K, Matzuk MM (1999) Molecular charac
terization of the follicle defects in the growth differentiation factor 9-deficient ovary. 
Mol Endocrin 6: 1018-1035 

135 Elvin JA, Yan C, Matzuk MM (2000) Oocyte-expressed TGF-~ superfamily members in 
female fertility. Mol Cell Endocrin 159: 1-5 

136 Zhao R, Lawler AM, Lee SJ (1999) Characterization of GDF-10 expression patterns and 
null mice. Dev Bioi 212: 68-79 

137 Katagiri T, Boorla S, Frendo JL, Hogan BL, Karsenty G (1998) Skeletal abnormalities in 
doubly heterozygous Bmp4 and Bmp7 mice. Dev Genet 22: 340-348 

138 Solloway M], Robertson EJ (1999) Early embryonic lethality in Bmp5;Bmp7 double 
mutant mice suggests functional redundancy within the 60A subgroup. Development 

126: 1753-1768 
139 Brunet LJ, McMahon JA, McMahon AP, Harland RM. (1998) Noggin, cartilage mor

phogenesis, and joint formation in the mammalian skeleton. Science 280: 1455-1457 
140 Lemaire P, Yasuo H (1998) Developmental signalling: A careful balancing act. Curr Bioi 

8: R228-R231 
141 Drossopoulou G, Lewis KE, Sanz-Ezquerro Jj, Nikbakht N, McMahon AP, Hofmann C, 

Tickle C (2000) A model for anteroposterior patterning of the vertebrate limb based on 
sequential long- and short-range Shh signalling and BMP signalling. Development 127: 
1337-1348 

142 Dahn RD, Fallon JF (1999) Limbiting outgrowth: BMPs as negative regulators in limb 
development. Bioessays 21: 721-725 

143 Hurle]M (1999) Role of BMPs in digit morphogenesis. First European Conference on 

BMPs, Zagreb, 1998, A70. Bone 24: 426 
144 Enomoto-Iwamoto M, Nakamura T, Aikawa T, Higuchi Y, Yuasa T, Yamaguchi A, 

Nohno T, Noji S, Matsuya T, Kurisu K et al (2000) Hedgehog proteins stimulate chon
drogenic cell differentiation and cartilage formation. J Bone Miner Res 15: 1659-1668 

145 Merino R, Gana Y, Macias D, Economides AN, Sampath TK, Hurle]M (1998) Mor
phogenesis of digits in the avian limb is controlled by FGFs, TGFbetas, and noggin 
through BMP signaling. Dev Bioi 200: 35-45 

146 Capdevila], Tsukui T, Rodriquez Esteban C, Zappavigna V, Izpisua Beimonte]C (1999) 
Control of vertebrate limb outgrowth by the proximal factor Meis2 and distal antago

nism of BMPs by Gremlin. Mol Cell 4: 839-849 
147 Nifuji A, Kellermann 0, Kuboki Y, Wozney ]M, Noda M (1997) Perturbation of BMP 

116 



Biology of bone morphogenetic proteins 

signaling in somitogenesis resulted in vertebral and rib malformations in the axial skele
tal formation. J Bone Miner Res 12: 332-342 

148 Nifuji A, Kellermann 0, Noda M (1999) Noggin expression in a mesodermal pluripo
tent cell line C1 and its regulation by BMP. J Cell Biochem 73: 437-444 

149 Nifuji A, Noda M (1999) Coordinated expression of noggin and bone morphogenetic 
proteins (BMPs) during early skeletogenesis and induction of noggin expression by 
BMP-7. J Bone Miner Res 14: 2057-2066 

150 Pizette S, Niswander L (1999) BMPs negatively regulate structure and function of the 
limb apical ectodermal ridge. Development 126: 883-894 

151 Merino R, Rodriguez-Leon J, Macias D, Ganan Y, Economides AN, Hurle JM (1999) 
The BMP antagonist Gremlin regulates outgrowth, chondrogenesis and programmed 
cell death in the developing limb. Development 126: 5515-5522 

152 Grimsrud CD, Romano PR, D'Souza M, Puzas JE, Reynolds PR, Rosier RN, O'Keefe 
RJ (1999) BMP-6 is an autocrine stimulator of chondrocyte differentiation. J Bone 

Miner Res 14: 475-482 
153 Ito H, Akiyama H, Shigeno C, Nakamura T (1999) Bone morphogenetic protein-6 and 

parathyroid hormone-related protein coordinately regulate the hypertrophic conversion 
in mouse clonal chondrogenic EC cells, ATDC5. Biochim Biophys Acta 1451: 263-270 

154 Monsoro-Burq A, Le Douarin N (2000) Left-right asymmetry in BMP4 signalling path
way during chick gastrulation. Mech Dev 97: 105-108 

155 Monsoro-Burq A, Le Douarin (2001) BMP4 plays a key role in left-right patterning in 
chick embryos by maintaining sonic hedgehog asymmetry. Molecular Cell 7: 789-799 

156 Hartmann C, Tabin CJ (2001)Wnt-14 plays a pivotal role in inducing synovial joint for
mation in the developing appendicular skeleton. Cell 104: 341-351 

157 Murtaugh LC, Chyung JH, Lassar AB (1999) Sonic hedgehog promotes somitic chon
drogenesis by altering the cellular response to BMP signaling. Genes Dev 13: 225-237 

158 Zhang Y, Zhang Z, Zhao X, Yu X, Hu Y, Geronimo B, Fromm SH, Chen YP (2000) A 
new function of BMP4: dual role for BMP4 in regulation of Sonic hedgehog expression 
in the mouse tooth germ. Development 127: 1431-1433 

159 Wang YH, Rutherford B, Upholt WB, Mina M (1999) Effects of BMP-7 on mouse tooth 
mesenchyme and chick mandibular mesenchyme. Dev Dyn 216: 320-335 

160 Rice DP, Kim HJ, Thesleff 1(1999) Apoptosis in murine calvarial bone and suture devel
opment. Eur J Oral Sci 107: 265-275 

161 Thesleff I (1999) The role of BMPs in craniofacial and tooth development. First Euro
pean Conference on BMPs. Zagreb, 1998, A69. Bone 24: 426 

162 Thesleff I, Aberg T (1999) Molecular regulation of tooth development. Bone 25: 
123-125 

163 Rosen V, Cox K, Hattersley G (1996) Bone morphogenetic proteins. In: JP Bilezikian, 
LG Raisz, GA Rodan (eds): Principles of bone biology. Academic Press, San Diego, 
661-671 

164 Knutsen R, WergedalJE, Sampath TK, Baylink DJ, Mohan S (1993) Osteogenic protein-

117 



Snjezana Martinovic et al. 

1 stimulates proliferation and differentiation of human bone cells in vitro. Biochem Bio

phys Res Commun 194: 1352-1358 

165 Kim GY, Lee HH, Cho SW (1994) Differential effects of transforming growth factor

beta 1 and bone morphogenetic proteins in cultured rat osteogenic sarcoma and mink 
lung epithelial cells. Biochem Mol BioI Int 33: 253-261 

166 Iwasaki M, Nakahara H, Nakase T, Kimura T, Takaoka K, Caplan AI, Ono K (1994) 
Bone morphogenetic protein 2 stimulates osteogenesis but does not affect chondrogen

esis in osteochondrogenic differentiation of periosteum-derived cells. J Bone Miner Res 

9: 1195-1204 

167 Chen P, Vukicevic S, Sampath TK, Luyten FP (1995) Osteogenic protein-1 promotes 

growth of chick sternal chondrocytes in serum-free cultures. J Cell Sci 108: 105-114 

168 Harada S, Sampath TK, Aubin JE, Rodan GA (1997) Osteogenic protein-1 up-regula

tion of the collagen X promoter activity is mediated by a MEF-2-like sequence and 

requires an adjacent AP-1 sequence. Mol Endocrino/11: 1832-1845 

169 Chen P, Vukicevic S, Sampath TK, Luyten FP (1993) Bovine articular chondrocytes do 

not undergo hypertrophy when cultured in the presence of serum and osteogenic pro
tein-I. Biochem Biophys Res Commun 197: 1253-1259 

170 Vukicevic S, Luyten FP, Reddi AH (1989) Stimulation of the expression of osteogenic 

and chondrogenic phenotypes in vitro by osteogenin. Proc Natl Acad Sci USA 86: 

8793-8797 

171 Martinovic S, Basic N, Dorai H, Sampath TK, Vukicevic S (2001) The requirement of 

bone morphogenetic protein for maintenance and stimulation of osteoblastic differenti

ation in mouse osteoblastic MC3T3-E1 cells (unpublished observations) 
172 Dorai H, Sampath TK (2001) Bone morphogenetic protein-7 modulates genes that 

maintain the vascular smooth muscle cell phenotype in culture. J Bone Joint Surg Am 

83-A (Suppl1): S70-S78 

173 Vukicevic S, Basic V, Rogic D, Basic N, Shih MS, Shepard A, Jin D, Dattatreyamurty B, 
Jones W, Dorai H, Ryan S, Griffiths D, Maliakal J, Jelic M, Pastorcic M, Stavljenic A, 
Sampath TK (1998) Osteogenic protein-1 (bone morphogenetic protein-7) reduces 
severity of injury after ischemic acute renal failure in rat. J Clin Invest 102: 202-214 

174 Willette RN, Gu JL, Lysko PG, Anderson KM, Minehart H, Yue T (1999) BMP-2 gene 

expression and effects on human vascular smooth muscle cells. J Vasc Res 36: 120-125 

175 Bhatia M, Bonnet D, Wu D, Murdoch B, Wrana J, Gallacher L, Dick JE (1999) Bone 

morphogenetic proteins regulate the developmental program of human hematopoietic 

stem cells. J Exp Med 189: 1139-1147 

176 Detmer K, Steele TA, Shoop MA, Dannawi H (1999) Lineage-restricted expression of 

bone morphogenetic protein genes in human hematopoietic cell lines. Blood Cells Mol 

Dis 25: 310-323 
177 Church VL, Harvey B, Ashton BA (1998) Differential bone morphogenetic expression 

by pluripotent bone marrow stromal stem cells. Biochem Soc Transactions 26: S25 

178 Kaplan FS, Glaser DL, Shlomchik W, Emerson SG, Cannon FH, Shore EM (1998) 

Osteogenic morphogens in hematopoietic cells: rare genetic insights into the origin of 

118 



Biology of bone morphogenetic proteins 

heterotopic bone and marrow. First European Conference on BMPs, Zagreb, 1998, 
A27. Bone 24: 415 

179 Ploemacher RE, Engels L], Mayer AE, Thies S, Neben S (1999) Bone morphogenetic 

protein 9 is a potent synergistic factor for murine hemopoietic progenitor cell genera
tion and colony formation in serum-free cultures. Leukemia 13: 428-437 

180 Friedlaender GE, Perry CR, Cole ]D, Cook SD, Cierry G, Muschler GF, Zych GA, Cal

houn ]H, LaForte A], Yin S (2001) Osteogenic protein-l (bone morphogenetic protein-

7) in the treatment of tibial nonunions. J Bone Joint Surg (Am) 83: 151-158 

181 Vukicevic S, Stavljenic A, Pecina M (1995) Discovery and clinical applications of bone 

morphogenetic proteins. Eur J Clin Chem Clin Biochem 33: 661-671 

182 Katie V, Majstorovic L, Maticic D, Pirkic B, Yin S, Kos], Martinovic S, McCartney]E, 

Vukicevic S (2000) Biological repair of thyroid cartilage defects by osteogenic protein-l 
(bone morphogenetic protein-7) in dog. Growth Factors 17: 221-232 

119 



Preclinical models of recombinant BMP induced healing of 
orthopedic defects 

Stephen D. Cook1 and David C. Ruegefl 

1Tulane University School of Medicine, Department of Orthopaedic Surgery, 1430 Tulane 

Avenue - SL32, New Orleans, LA 70112, USA; 2Stryker Biotech, Research Department, 

35 South Street, Hopkinton, MA 01748, USA 

Introduction 

Segmental bone loss and nonunion, whether after reconstructive surgery, lesion exci
sion, or fracture, can present complex orthopedic problems. An important part of 
the therapeutic approach to bone defects is the implantation of materials that sup
port new bone formation. Such implants may hasten healing by three mechanisms: 
osteoconduction, osteogenesis, and os teo induction [1-4]. In osteoconduction, the 
implanted material serves as an inert scaffold, or trellis, for the ingrowth of host 
bone. This includes the differentiation and maturation within the implant of host 
osteoprogenitor cells, with ingrowth of vascular elements. Ideally, "creeping substi
tution" then replaces the implant with new bone to form a functional skeletal ele
ment. Osteogenesis is the synthesis of new bone by surviving pre-osteoblasts and 
osteoblasts within a bone autograft. These cells proliferate and mature into centers 
of new bone formation. Osteoinduction is the formation of new bone by the active 
recruitment of host pluripotent cells that differentiate into chondroblasts and 
osteoblasts. This review focuses on the osteoinduction process produced as a result 
of the biological activity of certain members of the family of proteins called bone 
morphogenetic proteins (BMPs). 

In recent years, the search for an acceptable substitute for autogenous and allo
graft bone has involved proteins that induce bone formation in vivo. It is now well 
accepted that osteoinduction is controlled, at least in part, by bone matrix proteins 
referred to as BMPs or OPs (osteogenic proteins) [5-7]. These proteins have been 
isolated from the bones of a variety of mammalian species, including mouse, rat, 
bovine, monkey, and man [8-15] as well as from clonal osteogenic sarcoma cell lines 
[16, 17]. In addtion, the genes for BMPs have been identified and the proteins pro
duced by recombinant DNA methods [18-21]. 

The BMPs comprise a subgrouping of the TGF-~ superfamily of proteins [6, 7, 
22, 23] and number about 15 members. Not all BMPs have been shown to be 
osteoinductive; those that have been demonstrated to have such biological activity 
are BMP-2, 4, 5, 6, 7 (OP-1) and GDF5 (CDMP-1 or MP52). Other BMP members 
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are either inactive in osteoinductive assays or have not yet been evaluated. Com
parison of the amino acid sequences of the osteoinductive BMPs within their high
ly conserved seven cysteine domain to those of OP-l (BMP-7) reveals that OP-l 
(BMP-7) is most closely related to the BMP-516 gene products (88%187%), to a less
er extent BMP 2/4 (60%158%), and to a much lesser extent GDF-5 (51 %). In regard 
to the TGF-~'s themselves, OP-l shows 35-78% homology [24]. 

The biological activity of BMPs was initially evaluated by implantation of the 
BMPs with a collagen carrier in subcutaneous sites in rats. Osteoinductive BMPs 
induce a sequence of cellular events which leads to the formation of fully function
al new bone [24]. The BMP containing implants recruit nearby mesenchymal stem 
cells and trigger their differentiation into chondrocytes within 5 to 7 days. Upon 
capillary invasion, the chondrocytes become calcified, hypertrophied and are subse
quently replaced by newly formed bone within 9 to 12 days. The mineralized bone 
is extensively remodeled, and becomes occupied by ossicles filled with functional 
bone marrow elements by 14 to 21 days. 

Several recombinant BMPs have also been tested in bony defect models to eval
uate their ability to induce bone to accomplish repair. OP-l (BMP-7) and BMP-2 
have been tested in a variety of animal species including rats, rabbits, dogs, goats, 
sheep and non-human primates. These BMPs were observed to induce new bone 
successfully in each of these species. More recently, a third member of the BMP fam
ily, GDF-5, has also been shown to repair defects in bony models. This chapter 
reviews the highlights from these studies which include repair of large segmental 
gaps, acceleration of fracture healing, enhancement of bone graft incorporation, 
improvement of osseo integration of metal prostheses, acceleration of the distraction 
osteogenesis process, and promotion of spinal fusion. 

Restoration of large diaphyseal segmental bone defects 

The evaluation of the inductive properties of recombinant BMPs in bony sites was 
first done in surgically created large critical size diaphyseal segmental defects. 
Implantation of BMPs with carrier matrices in these defects led to the regeneration 
of new bone which is fully functional both biologically and biomechanically. These 
results have been demonstrated in rats, rabbits, dogs, sheep and nonhuman primates 
[25-36]. Table 1 describes the large animal studies that have been published; these 
include studies with OP-l, BMP-2 or GDF-5 and either collagen or polylactic 
acidlpolyglycolic acid polymers as delivery materials. 

OP-l studies primarily used highly purified bone-derived collagen particles as the 
carrier material (Fig. 1). The large animal models included both ulna and tibia seg
mental defect. The dog has been the species used for most investigations although 
the healing in non-human primates has also been evaluated. The study results 
demonstrated that both the rate and quality of the osseous union were better than 
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c 

Figure 1 
Application of the OP-1/Collagen Implant into a segmental defed in the primate ulna. 

(A) shows the fresh defed of 2 cm. (B) shows the defed filled with the OP-lIcollagen 

implant. (C) shows the defed filled with morselized autograft. 
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that achieved by autogenous bone graft controls. There was a dose dependence 
relating the amount of OP-1 to the amount of bone formed in the range of 0.25 to 
2.0 mg OP-1 per defect. Implantation of the carrier material alone, or no implant 
material in the defects resulted in fibrous unions in all cases. In the primate ulna 
defect model, OP-1 was shown to be capable of healing defects which did not heal 
with autogenous bone [32]. In addition to the bone derived Type 1 collagen matrix 
carrier, other carriers such as polylacticlpolyglycolic polymers and calcium phos
phate materials have been evaluated in the segmental defect models although with 
less acceptable healing rates and characteristics [37]. Finally, OP-1 alone without a 
carrier material has been implanted in critical size defects and shown to result in 
healing similar to that obtained with the collagen carrier material [38]. 

Radiographically, bone formation first appears in segmental defects implanted 
with OP-1 as calcifications with a diffuse pattern resembling fracture callus at 2 to 
3 weeks postoperative. This occurs at similar times in rabbits, dogs and primates 
(Fig. 2). The island of newly formed calcified tissue then coalesces and remodels to 
form normal appearing bone which bridges and fills the defect. By 4 to 8 weeks, the 
new bone is sufficiently remodeled such that the beginning of new cortices have 
formed. The mass of bridging new bone continues to remodel with the new cortices 
being fully integrated and continuous with the cortices of the ulna or tibia at later 
time periods. The quantity and rate of bone formation is dependent upon the 
amount of OP-1 implanted; although the end result is equivalent above a threshold 
concentration which is both species and carrier dependent [26, 30, 32]. 

The explanted ulna and tibia have contours and appearance similar to that of the 
intact limb. Mechanically, when tested in torsion, the OP-1 treated defects restore a 
high degree of mechanical strength. In all animal models, close to 100% of the 
intact limb strength is achieved in OP-1 treated defects which is significantly greater 
than that achieved in equivalent defects treated with autogenous bone. 

Histologically, at 2 to 3 weeks in OP-1 treated sites, cell proliferation is evident 
and phenotype differentiation is observed. At later time periods, calcifying tissue 
and plump chondrocytes, as well as osteoblasts are present. By 12 weeks, healed 
OP-1 treated defects reveal dense lamellar bone with some areas of woven bone pre
sent. Bone continuity is observed at the original cortex-new bone interface. From 12 
to 20 weeks, well remodeled new cortices with a medullary canal are observed. The 
medullary canal is filled with fully functional marrow elements (Fig. 3). 

Several large animal studies were published using BMP-2 in sheep and dog mod
els [29, 31, 33-35]. These involved critical sized defects in the femur, ulna or radius 
and used a variety of carrier materials. The results suggested that BMP-2 is similar 
to OP-1 (BMP-7) in being able to achieve union across the defect, both by radi
ographic analysis and by mechanical strength testing. In addition, a similar dose of 
BMP-2 was used to achieve union, that being 1-2 mg per defect. In one study, the 
healing process was followed for 12 months using the sheep model. The results 
demonstrated that the bone healing process initiated by BMP-2 resulted in stable 
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Figure 2 

Bone formation is rapid with the OP-1 device. The top radiograph shows a primate ulna crit

ical size defect model immediately postop after implantation of the OP-1/collagen implant. 

By 6 weeks, new bone completely fills the defect space and the cast is removed (middle 

radiograph). The new bone continues to remodel until sacrifice at 20 weeks (bottom radio

graph). 
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Figure 3 

Histological analysis shows that the newly formed bone remodels into new cortices with a 
well developed medullary cavity. Functional marrow elements are present in the primate 
ulna critical site defect model at 20 weeks. 

bone that was physiologically normal at 12 months with no adverse responses 
observed. This study also demonstrated that although the remodeling achieved was 
extensive, it did not yet appear to be complete. Finally, comparisons of carrier mate
rials such as polylacticlpolyglycolic acid (PLlPG) polymers and a bovine collagen 
sponge demonstrated the ability of these materials to serve as delivery materials for 
BMP. However, an early inflammatory response was observed for the PLlPG poly
mers and cyst-like void formation was reported in defects treated with higher doses 
of BMP-2 using the collagen sponge; these were not observed in the studies using 
demineralized, guanidine-extracted sheep bone collagen. 

GDF-S has also been reported to be successfully used to achieve union across a 
critical size long bone defect [36]. Although reported to be less active than other 
BMPs in subcutaneous or intramuscular sites, GDF-S in combination with a min-
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eralized bovine collagen matrix induced bone formation and union in a baboon 
fibula defect using a dose range similar to that employed in the OP-l and BMP-2 
studies. 

Acceleration of healing in a noncritical size defect 

The use of BMPs in the repair of noncritical size defects has been shown to acceler
ate the repair process. Studies have evaluated injectable formulations of BMPs using 
both diaphyseal segmental defect models and closed fracture models. In both mod
els new bone formed significantly faster and restored strength and stiffness earlier 
than nontreated controls [38-44]. This data suggests a clinical potential for BMPs 
to be used for injecting into acute fractures to speed the bone healing process. 

OP-l has been evaluated in both the noncritical size segmental and fracture mod
els [38-40]. Most studies have been done using the segmental defect [38]. Bilateral 
3.0 mm noncritical size defects were surgically created in the mid-ulna of adult male 
dogs. After soft tissue closure, the defects were injected with 0.35 mg of OP-l in an 
acetate buffer solution on one side while the contralateral defect received a control 
acetate buffer solution or received no injection. Radiographically, new bone forma
tion was evident at 2 weeks postoperative in OP-l treated defects. By 4 weeks, new 
bone had bridged the defect end and continued to increase in density to 8 weeks. By 
12 weeks, new radiodense bone filled and bridged the defects and began to remod
el. Nontreated and vehicle controls showed little bone activity at 2 and 4 weeks. At 
8 weeks, periosteal new bone formed from the host bone ends although bony bridg
ing was not complete until 12 weeks. Torsional strengths of defects treated with OP-
1 were significantly greater than controls and approached the strength of the intact 
ulnae between 4 and 8 weeks (Fig. 4). Histologic findings correlated with radi
ographic and mechanical testing results. In OP-l treated defects, maturing bone was 
well incorporated with the host bone at early time periods. At later time periods, 
dense bone filled and bridged the defects. In controls, similar repair was not 
observed until 12 to 16 weeks. 

OP-l has also been evaluated in closed fractures created in the tibia of goats [40]. 
Using external fixators for stabilization, a single injection of 1 mg OP-l was intro
duced into the fracture gap immediately after the fracture occurred. The results 
demonstrated that OP-l accelerated the healing by means of stimulation of the nor
mal fracture healing process observed at 2 weeks. 

The use of BMP-2 has also been studied in closed fracture models [41-44]. Data 
have been reported using rat, rabbit and goat models using either implantable or 
injectable formulations. In general, the data support the use of BMP-2 to accelerate 
the rate of fracture repair. However, the data also indicated that the method of 
application can affect the outcome. The data from a rabbit tibia study suggested 
that solid carriers inhibit callus formation by acting as a mechanical barrier to the 
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Figure 4 

Torsional mechanical strength of OP-1 treated and controls using a canine non-critical size 

defect model. (Percent of intact ulna strength.) 

migration of cells into the defect site, but when BMP-2 is injected into the fracture 
site without these carriers the callus develops more rapidly so that the rate of union 
is accelerated. However, studies using a goat tibia model demonstrated increased 
callus associated with BMP-2 treatment using an implantable collagen sponge. It is 
clear that more studies are necessary to fully evaluate the effect of delivery formu
lations in these models. 

Enhancement of autograft and allograft incorporation 

Most of the studies conducted to date utilized collagen or a variety of other carrier 
materials that provide no initial biomechanical structure or stability. In order to pro
vide such support, the use of BMPs in conjunction with autograft and allograft bone 
has been investigated [45-48]. This type of application may be especially useful in 
large defects associated with trauma or in revision total joint procedures. In studies 
with OP-l there was observed a dramatic improvement of the biological activity of 
both autograft and allograft bone resulting in greater new bone formation and ear
lier graft incorporation [45, 46]. This activity has been observed with both 
morselized and strut grafts. 

Morselized graft studies have been done using a bilateral 2.5 cm critical size 
osteoperiosteal segmental defect model created in the mid-ulna of dogs. Defects 
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Figure 5 

Torsional mechanical strength of canine critical size segmental defects treated with OP·1 and 

autogenous or allograft bone. 

were treated with the OP-lIcollagen implant alone; 113 OP-lIcollagen implant and 
2/3 freeze dried cancellous autograft or allograft; 2/3 OP-1/Collagen implant and 113 
autograft or allograft bone; 100% allograft or 100% autograft bone. The healing 
was studied radiographically until sacrifice at 12 weeks. After sacrifice, mechanical 
testing and a histological assessment was conducted. Radiographically, as early as 
2-4 weeks significant bone formation was observed in all sites containing OP-1, 
whereas defects filled with 100% graft material showed no new bone formation 
until 6 weeks. Defects treated with any amount of OP-1 combined with allograft or 
autograft demonstrated earlier and greater volume of new bone formation com
pared to bone graft alone. The amount of new bone formed was proportional to the 
amount of OP-1 implanted. OP-1 enhanced graft incorporation with the new bone 
and remodeling of the graft. Only 22 % of allograft alone and 67% of autograft 
alone defects were completely healed at 12 weeks. Defects treated with bone graft 
and OP-1 or the OP-1 device alone healed in 83% to 100% of cases. Defects treat
ed with any amount of OP-1 were stronger in torsion than the 100% bone graft 
defects (Fig. 5). Histologically, the amount of new bone, degree of remodeling, and 
graft incorporation were proportional to the amount of OP-1 implanted. Segmental 
defects treated with 113 bone graft and 2/3 OP-1 demonstrated the most advanced 
graft incorporation, remodeling and greatest strength compared to the other treat
ment groups. 
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Strut graft studies have been done using an allograft strut onlayed to the mid
femur in adult dogs. Each defect received the OP-l/Collagen Implant interposed 
between the graft and host bone and the graft secured using stainless steel cables. 
The results demonstrated that the healing of the struts to the femur was dramati
cally enhanced by the addition of the OP-1. The OP-l treated sites had significant
ly greater radiographic and histologic scores at all time period (4, 6 or 8 weeks). 
Strut healing with the OP-lICollagen Implant at 4 weeks was superior to control 
sites at 8 weeks. 

Studies have also been reported evaluating the use of BMPs in conjunction with 
impacted allograft in unloaded bone chamber models in rat and goat tibia [47,48]. 
Solutions of BMP-2 or OP-l were added to freeze dried allograft morsels prior to 
implantation. The results suggested that the addition of either BMP produced a 
strong stimulatory effect on bone graft incorporation by increasing bone ingrowth. 

Improvement of osseointegration of prosthetic devices 

The use of BMPs may provide a means to obtain both early and long-term prosthe
sis stabilization due to increased amounts of bone apposition and/or ingrowth to the 
implant. BMPs have been investigated both as a coating on implants and in con
junction with a carrier material using porous and smooth surfaced metal implants 
[49-54]. The results of these studies have indicated that BMPs can promote 
enhanced osseo integration of metal implants by inducing significant new bone for
mation in implant-bone interface gap spaces. 

Initial OP-l studies evaluated treated and untreated porous 6.0 mm cobalt
chromium alloy implants after placement transcortically through the femoral dia
physis of adult dogs bilaterally [49]. The OP-l was deposited on the surface and 
internal pores of the metal implant. At 3 and 6 weeks post-sacrifice, the implants 
were subjected to axial push out testing and quantitative histologic analysis of bone 
ingrowth. The porous metal implants treated with OP-l demonstrated greater sur
face bone ingrowth and apposition compared to control implants although little dif
ference was observed in mechanical attachment strength. Bone ingrowth was found 
to be present throughout the porous structure in implants treated with OP-l rather 
than only at or near the surface as observed in nontreated specimens. 

In several studies OP-l formulated with collagen carrier was evaluated [50,51]. 
In one study the right and left mandibular premolars of adult dogs were extracted 
and HA coated and uncoated dental implants were placed into the fresh extraction 
sites [50]. This model creates 1 to 3 mm gaps around the top of the implant. The 
left side implants were placed with the OP-l collagen implant packed into the inter
face gap spaces. All animals were sacrificed at 12 weeks post-operative and evalu
ated histologically. The use of the OP-l collagen implant resulted in increased new 
bone formation in close apposition to the implant surface. In both smooth and 
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grooved surfaced implants greater bone apposltlon and filling of interface gap 
spaces was observed in sites treated with OP-l compared to sites in which the device 
was not present. A similar study has been done using unloaded cylindrical titanium 
alloy implants surrounded by a 3-mm gap in the femoral condyles of dogs [51]. This 
study also demonstrated that the OP-l/collagen implant is capable of enhancing 
mechanical fixation and peri-implant bone formation. More recently a similar 3-
mm gap model in the dog humerus was used to evaluate a mixture of the OP-l/col
lagen implant and impacted allograft [52]. The data demonstrated that the com
posite containing the low dose of the OP-l/ collagen had some effect on peri
implant bone formation, but no effect on implant fixation, and suggested that more 
model development is necessary since access to a blood supply and stem cells was 
limited in this model. 

OP-l has also been evaluated using a natural mineral material (BioOss) as carri
er. In this study in the miniature pig, the OP-l/BioOss implant was evaluated in a 
sinus floor augmentation model that included simultaneous placement of titanium 
dental implants [53]. It was concluded that the application of OP-l produced a 
more rapid and enhanced osseointegration of the implants when compared to the 
BioOss alone. 

Studies have also been reported evaluating the use of BMP-2 to enhance osseoin
tegration of metal implants [54,55]. In monkey or dog models the BMP-2/Collagen 
sponge material was used in conjunction with titanium dental implants in mandibu
lar defects. The data from these studies showed that the BMP-2 stimulated bone for
mation and osseo integration of the implant. 

Acceleration of distraction osteogenesis 

A new area of investigation is the use of BMPs in conjunction with distraction osteo
genesis. The process of limb lengthening is an extremely long and painful procedure 
and thus a procedure that could accelerate the bone formation process would be of 
tremendous therapeutic value. Preliminary reports have been described using both 
OP-l and BMP-2 [56-58]. Formulations have been injected at various times during 
the process, including prior to distraction and during the bone consolidation phase. 
Models are being evaluated in the tibia or femur of rat, rabbit or sheep. The pre
liminary results in each of these models support the use of BMPs for increasing the 
rate of bone formation and shortening the treatment period. 

Promotion of spinal fusions 

Although the evaluation of the inductive properties of recombinant BMPs has been 
done in a variety of bony sites, no one area has received as much attention as the 
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spinal column. Implantation of BMPs with carrier matrices in a variety of models 
leads to the generation of new bone which has been observed to effectively promote 
both intertransverse process and interbody fusions [59, 60]. These results have been 
demonstrated in many different animal species, including rabbits, dogs, goats, 
sheep, and non-human primates [61-87]. Table 2 describes the large animal studies 
that have been published; these include investigations with OP-l, BMP-2 or GDF-5 
using primarily collagen as the delivery vehicle. However, some studies also describe 
the use of synthetic polymers, ceramics or autograft bone itself, as alternative mate
rials to deliver BMPs. 

Spinal fusions are one of the most common clinical indications where bone graft
ing is utilized. Thus the spinal column was an appropriate site to evaluate the use of 
BMPs to replace autolograft bone. Numerous studies have been done in animals to 
define the dose and delivery material, to determine the long-term outcome of the 
fusion site and to evaluate the safety in sites that can be exposed to the spinal cord. 
Most of these studies have been done using intertransverse process fusion models, 
although, more recently the use of BMPs to achieve interbody fusions has also been 
evaluated. 

The first studies with recombinant BMPs were done using posterolateral inter
transverse process fusions in dog models with OP-l or BMP-2 [61-66]. This type of 
spinal fusion is a commonly performed procedure and generally utilizes onlay graft
ing of autogenous corticocancellous bone after decortication of the bony surfaces of 
the vertebral elements. In the earliest OP-l study, OP-l delivered with bone-derived 
collagen particles was evaluated in a canine posterior spinal fusion model and the 
results compared to those obtained with autograft bone as well as carrier alone and 
no implant controls at different levels on the same spine [61]. No instrumentation 
was used in this model. Radiographic analysis, including computed tomography 
(CT) and magnetic resonance imaging (MRI), demonstrated a marked difference in 
the rate in which spinal fusion was obtained. The OP-l treated fusion segments 
attained a stable fusion by 6 weeks and were completely fused by 12 weeks post
implantation. The autograft treated sites did not demonstrate complete fusion until 
26 weeks post-implantation. The carrier alone and no implant control displayed 
minimal evidence of new bone formation and did not promote fusion. Mechanical
ly, the OP-l fusion sites demonstrated excellent torsional stability as early as 6 
weeks, which continued to increase with time in situ. Autograft sites demonstrated 
less mechanical stability compared to OP-l at all time periods. The carrier alone and 
no implant controls exhibited minimal mechanical stability at all time periods. His
tologically, extensive new bone formation was present at 6 weeks in OP-l sites. A 
well organized network and complete trabecular incorporation of the spinous 
process and facets were observed at the 12- and 26-week time periods. In contrast, 
the autograft bone treated sites did not demonstrate complete graft incorporation or 
fusion until 26 weeks postoperative. At 6 weeks, some new bone formation was evi
dent with increased amounts present at 12 weeks. The autogenous bone graft treat-
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ed sites did not attain the degree of remodeling observed in OP-l sites at 26 weeks. 
The study results demonstrated that OP-l is an effective bone graft substitute for 
achieving stable spine fusion in a significantly more rapid fashion than could be 
achieved with autogenous bone graft. 

In the earliest study with BMP-2, efficacy was also demonstrated in a dog pos
terolateral intertransverse process fusion model r66]. However, the difference in this 
model with that described above with OP-l was that each fusion site was internal
ly fixed with plates and the carrier material was a polylacticlpolyglycolic acid 
(PLGA) polymer. The BMP-2IPLGA polymer was compared to autogenous cancel
lous bone and carrier alone. The results showed equivalency between the autoge
nous bone and the BMP-2 implant, while the carrier alone was clearly inferior. In 
this model, a site effect was observed with the BMP-2 that was not evident with 
autograft bone; it was suggested that the LI-L2 site produced lower union sites than 
the L3-L4 and L5-L6 sites. 

Since the original two studies numerous laboratories have confirmed the ability 
of recombinant BMPs to promote successful intertransverse process fusions [62, 64, 
67-75, 78-80, 82, 83, 85-87]. OP-l, BMP-2 and GDF-5 have been investigated 
with BMP-2 the most extensively studied of the group. BMP-2 has been evaluated 
in a variety of delivery materials, including collagen sponges, biodegradable poly
mers, calcium phosphate materials and autograft bone. Although differences are 
observed with the carriers, the data demonstrate that BMP-2 is effective at achiev
ing fusions at different intertransverse process sites and, for the most part, results in 
more rapid and reliable healing than seen using autogenous bone. However, the 
long-term outcome of the fusion masses with different carriers has not been suffi
ciently evaluated and it needs to be determined whether slow resorbing ceramic 
materials and voids remaining in polylacticlpolyglycolic acid polymer implants are 
significant. In regard to the dose effects of BMP-2, such studies are highly depen
dent upon the experimental model and additional studies need to be done to further 
evaluate whether milligram doses are required. 

More recently, the use of OP-l or BMP-2 to promote interbody fusions has been 
investigated [63, 65, 76, 77, 81, 84]. One such study assessed OP-l delivered with 
bone-derived collagen particles as an autograft substitute for thoracic inter body 
spinal fusion in a sheep model [63]. Twelve sheep underwent a multi-level thoracic 
spinal decompression via a video-assisted thoracoscopic approach. Three noncon
tiguous destabilization sites (T5-6, T7-8, T9-10) were prepared and randomly 
assigned to either a control or treatment group. Control groups were either disk 
destabilization alone, an empty BAK cage or no surgical intervention at all. The 
treatment groups were either autograft alone, BAK cage packed with autograft or a 
BAK cage packed with OP-l device. Four months postoperatively, the animals were 
euthanized, and the interbody fusion sites were analyzed using biomechanical test
ing, computed tomography, microradiography and histomorphometry. Biomechan
ical testing demonstrated higher segmental stiffness levels when comparing the 
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experimental groups to the control groups (p < 0.05). There were no quantifiable 
differences when comparing functional unit stability within the three experimental 
techniques or the three control groups (p > 0.05). Fusion was assessed by comput
ed tomography and microradiography. In the control groups, destabilization alone 
had a 16% fusion rate and the empty BAK cage had a 33% fusion rate. In the treat
ment groups, the autograft treated group had a fusion rate of 50%, the BAK cage 
with autograft had a fusion rate of 63 % and the BAK cage with the OP-1 Collagen 
Implant had a fusion rate of 75%. In all the treatment groups, the histological char
acterization of the fusion sites was in agreement with the radiographic findings. In 
the fused sections treated with the OP-1 collagen implant in the BAK cage, the bone 
present in the cage was a dense, well organized, woven trabecular bone. None of the 
original collagen matrix was present. Overall, the autograft sites did not demon
strate the same degree of bone remodeling and incorporation that was observed in 
the OP-1 treated group. Histomorphometric analysis showed significantly more tra
becular bone formation at the fusion site for the experimental groups when com
pared to the controls (p < 0.05). The results of this study demonstrated that the use 
of the OP-1 collagen implant with an interbody fusion cage could promote vertebral 
interbody fusion. The OP-1 Collagen performed as well as the conventional autol
ogous iliac crest bone. 

Cervical and lumbar inter body fusion models have also been investigated with 
BMPs [65, 76, 77, 81, 84]. For the most part, these studies have utilized BMP-col
lagen materials placed inside titanium inter body cages. In one study, the BMP mate
rial was placed inside a freeze-dried cortical allograft cylinder. With each of the 
models the results have demonstrated that the BMP materials can be effective in 
promoting fusion. However, these models are more complex than the intertrans
verse process models and it is apparent that some fusion sites may be more difficult 
to fuse than others. Additional evaluation need to be done using different cages and 
instrumentation and different BMP delivery materials. 

Conclusion 

Recombinantly produced osteoinductive BMPs, when implanted locally at subcu
taneous or bony sites, initiate the recruitment, attachment, proliferation and dif
ferentiation of mesenchymal cells leading to new bone formation containing fully 
functional bone marrow components. Implantable formulations containing these 
BMPs have demonstrated an exciting therapeutic potential to replace convention
ally employed autogenous bone grafts in the repair of a variety of defects, includ
ing large gaps, nonunions and bone fractures, and to promote spinal fusions and 
the osseointegration of metallic implant devices. Most data in the field have 
resulted from research on two members of the BMP family, OP-1 (BMP-7) and 
BMP-2. 
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Numerous studies have now been published demonstrating that BMPs can repro
ducibly repair large critical size defects in long bones in many different animal 
species. These preclinical studies suggest that BMPs not only can repair bone simi
lar to autograft, but in fact can speed the process significantly. Studies have also 
demonstrated that BMPs are also very effective when combined with autograft or 
allograft bone to increase the rate and extent of graft incorporation. However, it is 
clear that important areas for future investigation involve delivery materials that 
provide containment for the BMP and structural support for the defect site. 

The majority of preclinical studies that have been published involve the use of 
BMPs to replace autogenous bone graft for spinal fusions. Important variables, such 
as dose, delivery material and site effects have been examined in both intertransverse 
process and inter body fusion models. These studies have demonstrated that BMP
containing materials can be very effective in promoting spinal fusions although 
interbody fusion models are clearly more complex and need additional studies. 

The results of preclinical studies with injectable formulations of BMPs demon
strate a potential application in accelerating fracture repair. The ability to speed 
repair with an earlier return to function is an attractive benefit. Similar formulations 
of BMPs are also being evaluated in conjunction with accelerating the process of dis
traction osteogenesis (limb lengthening). However, many variables including the 
optimal time for injection and the delivery formulations need to be evaluated. 

The use of BMPs in conjunction with metal prostheses has been an area of inves
tigation that suggests a potential application for improving and speeding up osseoin
tegration. However, development of preclinical models involving impacted graft 
materials as well as metal implants is challenging, and much work is needed to 
determine the clinical relevance of this indication. 

Taken together, preclinical testing has demonstrated that BMPs can induce bone 
in a variety of orthopedic defects. None of these studies has reported any adverse 
effects from the BMPs that would diminish the clinical potential. The efficacy of the 
BMPs is related to a number of factors, including bony location, BMPs dose and 
carrier material. Based upon preclinical studies to date, the potential therapeutic 
applications of BMPs appear to be large and diverse and most importantly, the ini
tial experience in human studies has confirmed the usefulness of the animal experi
ence. Additional animal studies will need to be done to optimize delivery to specif
ic defect sites and to investigate new applications. 
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Introduction 

Fracture healing is a time-consuming process, especially in fractures of the lower 
extremity in humans. These fractures are known to heal twice as slowly as fractures 
located in other places in the human body. Fractures of the lower extremity often 
occur due to high-energy trauma such as motor vehicle accidents. Consequently, the 
average age of the patients is generally low, with a high incidence at the age of 30 
years. Therefore, most patients are employed and involved in social activities. This 
means that the long period of healing and recuperation that follows a fracture of the 
lower extremity is expensive, for both patient and society [1]. Apart from this fact, 
5 to 10 per cent of all fracture patients encounter disturbances in the healing process 
[2], resulting in delayed unions or even nonunion. A stimulation of the fracture heal
ing process would be beneficial for this group of patients as well. 

Since the first description of bone morphogenetic proteins (BMP's) in 1965 by 
Marshal Urist [3], extensive research on the effectiveness of these proteins in the 
stimulation of bone healing has been performed. Most mechanisms through which 
these proteins exert their osteoinductive activity have been elucidated [4-7]. Also, 
the stimulating effect on bone healing of most of these proteins has been well estab
lished in animal experiments [8]. The efficacy of BMP's has been demonstrated in 
the healing of various large bone defects and in spinal fusion [9-17]. Osteogenic 
protein-1 (OP-1) is a powerful bone morphogenetic protein with a strong osteoin
ductive capacity [4]. The effectiveness of recombinant human (rh)OP-l in the treat
ment of bone defects has been well documented in several animal experiments [4, 
10, 18, 19]. The first clinical randomized study describing its effectiveness in a 
human fibular defect was described by Geesink et al. [13], and its effectiveness in 
treatment of tibial nonunions was published recently [20]. 

Bone morphogenetic proteins playa fundamental role during embryogenesis. As 
the fracture repair process resembles embryogenetic bone formation, BMP's are 
expected to play an important role during fracture repair. In fact, several BMP's and 
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receptors for BMP's have already been demonstrated to show an elevated expression 
during fracture repair [21-24]. The stimulation and acceleration of fresh fracture 
healing by local application of exogenous OP-l seems to be a promising new devel
opment in treatment of fractures [25, 26]. 

Direct, single injection of BMP's into the fracture gap in closed fractures would 
be an ideal application manner for BMP's in fracture repair, as the fracture 
hematoma is left intact and the risk of infection is minimized. Stimulation of frac
ture repair with BMP's and the influence of specific carrier materials, such as the fre
quently used bovine type I collagen, were recently investigated in a closed fracture 
model in goats, using a single injection of OP-l [27]. 

Experimental studies 

All procedures were performed after approval of the animal ethics committee was 
obtained. With a custom made three-point bending device, a closed midshaft frac
ture was created under general anesthesia in the left tibia of 40 adult female goats, 
weighing between 50 and 70 kg. An increasing force was applied by means of a 
pneumatic device in a mediolateral direction perpendicular to the bone axis until 
breakage occurred. As the fracture type could not be standardized, oblique and 
transverse fractures occurred, but comparison of the mean angle of the fractures 
showed no differences between either of the four treatment groups (data not 
shown). 

The fractures were stabilized with an AO external fixation device (West Meditec, 
Bilthoven, the Netherlands) with radiolucent bars, which was placed at the lateral 
side of the tibia. The animals were randomly assigned to four different treatment 
groups; group I, n = 10: no injection; group II, n = 10: injection of 1 mg recombi
nant human osteogenic protein-l (rhOP-l, Stryker Biotech, Hopkinton, MA, fur
ther referred to as OP-l) dissolved in 0.63 ml sodium acetate buffer to create a liq
uid solution; group III, n = 11: injection of 1 mg OP-l with 400 mg bovine type I 
collagen matrix in combination with carboxymethylcellulose (CMC) to give a vis
cous putty consistency; group IV, n = 9: injection of 400 mg bovine type I collagen 
matrix with CMC alone. All injections were given under aseptic conditions and 
under fluoroscopic control. 

Animals were sacrificed either 2 weeks (n = 21) or 4 weeks (n = 19) post injec
tion. After sacrifice both tibiae were explanted, all soft tissues of the right and left 
tibia were removed, and all tibiae were kept in alcohol 70% for a standardized peri
od of 14 days until mechanical testing was performed. Fracture healing was evalu
ated using computed tomography (CT), mechanical testing, and histology. 

Axial spiral CT scans were performed using a Somatom Plus CT Scanner 
(Siemens, Erlangen, Germany), with a slide thickness of 1 mm. With image analysis 
software (Voxel Q, Picker International, Cleveland, OH), the images were analyzed 

146 



Osteogenic protein-1 (OP-1. BMP-7l for stimulation of healing of closed fractures 

after three-dimensional reconstructions were made. Using a manual marking 
approach, the new bone callus was outlined on every CT and the callus volume was 
calculated. To ensure that the entire callus was included in the analysis, 1 cm adja
cent normal bone proximal and distal to the callus was scanned in all animals. 

Nondestructive biomechanical evaluation was performed, utilizing a standard
ized four-point nondestructive bending test [28]. The stiffness of each tibia was mea
sured in twenty-four directions. The twenty-four stiffness values of both tibiae of 
each animal were then plotted in polar coordinates, and by regression two ellipses 
were obtained. From these ellipses, area ratio and stiffness index were calculated. 
The area ratio is the ratio of the ellipses of the left and right tibia, providing a para
meter for the total stiffness of the operated bone in comparison with the intact tibia. 
The stiffness index is the ratio of the stiffness of the operated and the intact tibia in 
the direction where this ratio is minimal, thereby providing a comparison at the 
weakest point. 

After the nondestructive bending test, a torsional test to failure was performed 
to determine torsional stiffness and torsional strength. The outcome values of the 
torsional test were expressed as a percentage of the intact, contralateral bone to 
account for variability between animals. All specimens were kept moist during test
ing, since drying could influence the outcome of mechanical tests [29, 30]. 

After the CT scans and mechanical tests were performed, four longitudinal 2 mm 
thick slices of the fracture area were prepared from the anterior, posterior, lateral, 
and medial side. After dehydration in ascending grades of ethanol, they were embed
ded in polymethylmetacrylate (PMMA). Using a motor-driven microtome (Jung K, 
Heidelberg, Germany), 5 /lm sections were cut and stained with Goldner's trichrome 
and toluidin blue 0.2%. All sections were examined by two reviewers who were 
blinded to treatment and survival period of the animals (2 or 4 weeks). In case of 
any disagreement between the two investigators, the final score for the histology 
was obtained by discussion with a third investigator. 

Several histological aspects were scored: bony bridging of the fracture gap, 
amount of woven bone in the callus, presence and amount of cartilage in the callus, 
and inflammatory reactions. If remnants of collagen particles were seen, the incor
poration of these particles in a newly formed bone, the interface between these rem
nants and the newly formed bone, especially any encapsulation by fibrous tissue, 
and presence and severity of inflammatory reactions aimed at these particles were 
scored as well. The definitions of all histological parameters are given in Table 1. 

Statistics 

For comparing the outcome of both CT and biomechanical testing, comparisons 
between the groups were made with the Mann-Whitney test. Since the Mann-Whit
ney test does not correct for multiple comparisons, a restricted number of compar-
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Table 1 - Definition of the histological parameters 

Parameter 

Bony bridging of the 

fracture gap 

Amount of woven bone 

in the callus 

Presence of cartilage 

General inflammatory 

reactions 

Presence of particles 

Inflammatory reactions 

aimed at the particles 

Incorporation of the 

particles 

Resorption of the particles 

Definition 

A continuous field of woven bone 

between the old cortices, bridging the 

fracture gap 

No woven bone, small, moderate, 

or large amount of woven bone 

No cartilage, cartilage in the center of 

the fracture gap, of cartilage throughout 

the fracture gap 

No reaction, or a general inflammatory 

reaction consisting of granulocytes 

and/or lymphocytes 

No remnants found, small amount, 

or large amount of remnants found 

No reaction, mild inflammatory reaction, 

or abundant inflammatory reaction 

No incorporation or incorporation in 

woven bone 

No resorption, some resorption, or 

active resorption by a large amount of 

resorbing cells 

Value" 

° (no bridging) -
4 (four sides of the 

fracture) 

0,1,2,or3 

0, 1, or 2 

° or 1 

0,1,or2 

0,1,or2 

° or 1 

0, 1, or 2 

'The given order of values corresponds with the given order of definitions, e.g. for amount 

of woven bone: 0 = no woven bone, 1 = small amount, 2 = moderate amount, 3 = large 
amount of woven bone 

isons considered to be clinically relevant were chosen: group I vs. group II, III, and 
IV, and group III vs. IV. All histological parameters were examined using the same 
comparisons. Significance was set at p < 0.05. All calculations were performed using 
the statistical package SPSS version 9.0 (SPSS Inc., Chicago). 

Results of experimental studies 

Computed tomography 

After 2 weeks, a larger callus volume was seen in both groups treated with OP-1 
compared to no injection (p = 0.009 for OP-l and p = 0.002 for OP-1 + collagen 
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Table 2 - Results of the computed tomography, mechanical tests, number of sides with bony 

bridging, and amount of woven bone at two weeks 

Parameter No injection OP-1 alone OP-1 + Matrix Matrix alone 
(group I) (group II) (group III) (group IV) 

Callus volume 5.54 ± 1.0 12.65±1.5 13.57 ± 2.9 9.70±1.4 

Stiffness index 0.03 ± 0.01 0.17 ± 0.04 0.06 ± 0.01 0.07 ± 0.01 

Area ratio 0.002 ± 0.001 0.05 ± 0.01 0.007 ± 0.002 0.009 ± 0.002 

Torsional strength (%) 9.2 ± 4.5 9.6 ± 1.4 10.8 ± 3.5 7.5 ± 1.1 

Torsional stiffness (%) 7.6 ± 2.5 21.8±3.3 11.8 ± 1.6 8.7 ± 1.6 

Total number 

of sides with 15 5 
bony bridging 

Amount of 1.20 ± 0.15 2.18 ± 0.24 1.68 ± 0.16 1.50 ± 0.05 
woven bone 

carrier). The difference between collagen alone and no injection was also significant 
(p = 0.03). The values of callus volume after 2 weeks, expressed as means ± stan
dard error of the mean (SEM) are shown in Table 2. After 4 weeks, the callus vol
ume in the group treated with OP-l + collagen carrier (35.7 ml ± 4.6) was signifi
cantly higher than the volume in the group treated with collagen alone (12.9 ml ± 

2.7, p = 0.01) and no injection (17.7 ml ± 2.6, p = 0.02). 

Mechanical testing 

The results of the mechanical tests at 2 weeks are also summarized in Table 2. The 
data are given as means ± SEM. At 2 weeks, group II (OP-l alone) showed the high
est mean stiffness index and area ratio (0.17 ± 0.04 and 0.05 ± 0.01, respectively). 
These values were significantly higher in comparison with no injection (group I, 
0.03 ± 0.01 and 0.002 ± 0.001, respectively, p = 0.009 for both). Other comparisons 
for stiffness index and area ratio were not significant. The highest mean value for 
torsional stiffness, 21.8 ± 4.0, was observed in group II. The difference of group I 
(torsional stiffness 7.6 ± 2.5) was significant (p = 0.03). The outcome of the tor
sional strength showed no differences between groups. At 4 weeks, there were no 
differences for any mechanical parameter (data not shown). 
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Histology 

Bridging of the fracture gap and bone formation 
The results of the two parameters after 2 weeks associated with stimulation of bone 
healing, bony bridging of the fracture gap and amount of woven bone, are summa
rized in Table 2. Also, the frequency of bridging of the fracture gap after 2 and 4 
weeks is shown in Table 3. Group II showed bony bridging of the fracture gap sig
nificantly more frequently (15 sides with bony bridging) in comparison with group 
I (1 side, p = 0.007). The mean score (:!: SEM) for the amount of woven bone in the 
callus was 2.18 :!: 0.24 in group II, which was higher than the score in group 1(1.20 
:!: 0.15, P = 0.008). In the matrix + OP-l group (group III), the callus contained more 
woven bone (1.68 :!: 0.16) compared to group I (p = 0.01). Bridging of the fracture 
gap was seen more often in group III (five sides with bony bridging) compared to 
group I, but this difference was not significant. After four weeks, no differences 
between groups were observed. In general, all animals showed normally healed frac
tures. 

Mechanisms of bone healing 
At 2 weeks newly formed woven bone was observed in all animals. Also, lamellar 
bone was seen in most animals. Lamellar bone appeared to be present more often 
in the animals stimulated with OP-1. There were no specific patterns in the sites of 
the fracture where woven bone was being formed, as suggested by others in bone 
defects [13]. Cartilage was observed in all groups, indicating the occurrence of 
enchondral ossification in all treatment groups. Cartilage was usually confined to 
small fields in the middle of the fracture gap. The only significant difference in car
tilage formation was found between group III (OP-l + matrix) and group IV (matrix 
alone), the latter having formed less cartilage (p = 0.02). At 4 weeks, remodeling 
was seen frequently. Occasionally, small fields of cartilage were present. No differ
ences were seen between the groups. 

Behavior of collagen particles 
After 2 weeks remnants of particles were present in a majority of the animals treat
ed with OP-l + matrix (group III) and matrix alone (group IV). In both groups, mild 
inflammatory reactions, consisting of a combination of granulocytes and lympho
cytes, were seen around these remnants. These reactions, if any, were confined to the 
areas where the remnants of collagenous matrix were seen. Incorporation of the par
ticles in woven bone was seen in both groups, although it was more often observed 
in group III (p = 0.02). Direct contact between the collagenous material and the 
newly formed bone could be seen in all animals that showed incorporation of the 
particles in woven bone, without any fibrous encapsulation of the particles. Also, 
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Table 3 - Frequencies of bony bridging of the fracture gap per treatment group at two weeks 

Sides No injection OP-1 alone OP-1 + Matrix Matrix alone 
(group I) (group II) (group III) (group IV) 

0 4 0 2 4 
1 1 0 3 1 
2 0 2 1 0 
3 0 1 0 0 
4 0 2 0 0 

cell-mediated resorption of the particles was frequently observed, as indicated by the 
presence of large multinuclear cells adjacent to the remnants. After four weeks, the 
collagenous particles were mostly phagocytized. Occasionally, small remnants, usu
ally incorporated in the newly formed bone were observed. 

Discussion 

Since fractures of the lower extremity are known to heal slowly, and impaired heal
ing occurs in 5 to 10 per cent of all fractures [2], an agent that would assist in frac
ture healing could result in obvious benefits for patients. Acceleration of the frac
ture healing process could result in earlier resumption of weight bearing, which has 
been demonstrated to reduce post-injury bone loss [31]. Theoretically, the rate of 
impaired healing could also be decreased by stimulation of fracture healing, though 
this was not specifically explored in this study. Acceleration of fracture healing was 
observed by administering a single minimally invasive percutaneous injection of OP-
1 in the fracture gap immediately after the fracture occurred, as measured by callus 
volume, biomechanical evaluation, and histology. 

After 2 weeks, the amount of woven bone in the callus increased after an injec
tion of OP-1 in the fracture gap. Also, bony bridging of the fracture gap was 
observed more frequently. The mechanisms of fracture healing appear physiological 
and undisturbed in all treatment groups, since a combination of direct ossification 
and enchondral ossification was observed at both timepoints. This indicates that 
fracture healing can be stimulated with a single injection of OP-1 and that the result
ing fracture healing process is normal. As fracture healing was stimulated at such an 
early timepoint, the question arises what mechanism leads to the acceleration of the 
healing process. The first step in the healing process is an increase in angiogenesis 
[32,33], and evidence is accumulating for a potential role of OP-1 in angiogenesis 
through a stimulation of vascular endothelial growth factor, a potent angiogenic 
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protein [34-36]. Thus, in conjunction with the differentiation of mesenchymal stem 
cells, acceleration of the fracture healing cascade may be due to a stimulation of 
angiogenesis. Further research in this direction is needed before any conclusions can 
be drawn. 

No clear pattern in the localization of bone formation could be distinguished, 
since fields of woven bone were found throughout the callus in all groups, as well 
as small fields of cartilage. It therefore seems that bone formation in healing frac
tures takes place throughout the callus, and no indications were found for a pattern 
that was described in bone defects [13]. In their study, Geesink et al. described a pat
tern of bone formation at the outer edges of bone defects, when OP-1 was implant
ed. This pattern was observed radiographically at an early stage of bone healing. In 
some cases, abundant bone formation was seen, resulting in irritation of surround
ing soft tissues. In our study, no such pattern of bone formation could be observed 
histologically. 

Direct contact between newly formed bone and remnants of the collagenous 
matrix particles was seen frequently. No fibrous interposition between the bone and 
the collagenous particles or fibrous encapsulation as the result of a foreign body 
reaction against the particles was observed in either group treated with the matrix. 
Therefore, the collagenous carrier material neither led to any adverse effects nor 
appeared to inhibit the effect of OP-1, even though the callus volume of the group 
treated with OP-1 + matrix was significantly elevated after 4 weeks, compared to 
no injection and OP-1 alone. The increase in volume, measured with CT, may have 
been caused by an inflammatory response, but neither clinical nor histological signs 
were present, and therefore the presence of an inflammatory reaction is merely spec
ulative. 

In the group treated with OP-1 + matrix, incorporation of the particles was seen 
more often, indicating an acceleration of the incorporation by a rapid, stimulated, 
bone formation. Mild inflammatory reactions were seen in the immediate vicinity of 
the remnants of the particles, indicating a mild reaction aimed at the particles. As 
described above, this reaction was not present at 4 weeks, and therefore any reac
tion will have been transient and mild, but as the immunological behavior of goats 
may differ from that in humans, this has to be taken into account and any reaction 
should be monitored carefully. 

Conclusions 

Osteogenic protein 1 (OP-1, BMP-7) accelerates the healing of closed fractures in 
animals by stimulation of the natural fracture healing processes. At this point, it still 
remains unclear what mechanism is exactly responsible for this acceleration, but 
angiogenesis contributes significantly to this acceleration of the fracture healing 
process. Except for a mild inflammatory response, no adverse effects of either OP-
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1 or the collagenous carrier material have been reported. This support the conclu
sion that a minimally invasive procedure to obtain a fracture healing by a single 
injection of OP-l in the fracture gap is an appropriate method to accelerate fracture 
healing. 
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Introduction 

Reconstructive surgery in of the maxillofacial skeleton comprises a large variety of 
indications which range from dental alveolar surgery to interdisciplinary cranial 
base interventions, from congenital malformations to acquired traumatic or tumor 
related defects. In most applications the autogenous bone graft is the clinical gold 
standard. These grafts range from small intraorally harvested bone particles to large 
composite vascularized bone flaps. In the face always reconstruction has functional 
and esthetic aspects. In both aspects the shape of the reconstructed bone segment is 
very important. Regarding dental occlusion a correct intermaxillary relation has to 
be achieved, especially if prosthetic rehabilitation with dental implants is intended. 
Due to the thin skin coverage shape irregularities will end with a bad esthetic result. 
Furthermore the regenerated mandibular segment has to resist an occlusal load up 
to 600 N on a single molar tooth. 

From a biomechanical point of view it is useful to distinguish between filling of 
bone gaps and augmentations above the existing anatomical bone level. As long as 
the osteoinductive components are used to fill preexisting defects like bone cysts or 
some kinds of small mandibular continuity defects the stability and space keeping 
effect of the carrier material is not so important. This changes in all kinds of aug
mentations or in large defects where the bone inducing implant has to resist soft tis
sue pressure which occurs during mastication, during movements of the tongue or 
the mimic muscles. These facts are especially important in alveolar ridge augmenta
tion. 

This review will focus on mandibular reconstruction and augmentations in den
tal implant surgery. These indications are standard situations of maxillofacial recon
struction, which frequently occur in clinical routine. 

Bone Morphogenetic Proteins, edited by Siobodan Vukicevic and Kuber T. Sampath 
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Mandibular reconstruction 

Direct application of BMP in mandibular continuity defects 

The key study on mandibular reconstruction with bone morphogenetic proteins was 
performed by Toriumi and coworkers [1]. In dogs a predictable and load bearing 
bridging of the defect occurred using rhBMP-2 and a collagen sponge carrier. How
ever some narrowing an reduction of height of the regenerated bone was noticed 
due to soft tissue pressure on the soft carrier material. A subsequent study with sim
ilar long-term results was later reported by the same group using rhBMP-2 and a 
biodegradable particular polylactide carrier [2]. Complete bridging as well and 
osseointegration of dental implants was observed in a monkey study by Boyne and 
coworkers using rhBMP-2 on a collagen sponge carrier [3]. In the latter study a 
wound dehiscence problem and impairment of bone formation occurred with the 
intraoral approach which is also typical for clinical work. Although the authors of 
these studies tried, it is practically impossible to strip all periosteum especially in the 
alveolar parts in this kind of defect. Thus, the studies resemble clinically more a sub
periosteal resection of a benign tumor. The prerequisites of bone healing are good 
because of a very good receptor bed for bone inducing substances including differ
entiated cells. 

In conclusion, treatment of such defects with rhBMP leads to a predictable bone 
bridging. Improvements are required regarding the shape of the reconstructed seg
ment, which showed some irregularities in all studies. Clinically such irregularities 
are not desired since the tolerance of intermaxillary relation of the ridges for pros
thetic treatment is not more than a few millimeter and for esthetic reasons. The 
intraoral approach is a clinical standard for autologous bone grafting. In this case 
bacterial contamination through the saliva is an additional factor. For application 
of the recombinant osteoinductive technology supplementation of the carrier mate
rial with antibiotic drugs may be a future field of research and development. 

Prefabrication of vascularized bone grafts 

Clinically most mandibular defects occur after ablative surgery on malignant 
tumors. In this case the usually combined intraoraUextraoral approaches are used. 
Microbiological contamination, extended operative time and extensive scar forma
tion may decrease the success of primary reconstructive procedures. In most cases 
additional radiotherapy will result in a poor recipient bed for bone grafts and BMP 
[4]. Clinically, in these cases a revascularized autogenous bone graft is applied. Usu
ally a fibular or iliac bone graft is harvested with a vascular pedicle (and sometimes 
with additional soft tissue flaps). These vessels are microsurgically connected with 
facial vessels and blood perfusion of the graft is restored. The disadvantage of such 
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I. Prefabrication 

Figure 1 

Prefabrication of a bone graft: an osteocondudive scaffold (xenogenic bone blocks) was 

loaded with 600 pg rhOP-1 and placed in the Latissimus dorsi muscle. After 6 weeks the 

bone was harvested with a vascular pedicle and grafted to the mandibular defed. Perfusion 

was restored by microsurgical anastomosis with facial blood vessels. 

technique is that harvesting of a vascularized bone graft is an operative burden and 
therefore not suitable for every patient. Secondly, problems can occur with donor 
site morbidity, anatomical limitations of the donor sites and the shape of naturally 
occurring grafts. 

The prefabrication technique allows to create a bone graft in an easily accessible 
soft tissue area which can be custom shaped according to the requirements of the 
individual defect. Khouri and coworkers were the first who used BMP for custom 
prefabrication of a small artificial femur head in a rat [5]. Several authors followed 
with prefabricated bone flaps in small animals without using them as a graft for 
reconstruction [6-11] . A prefabrication and transplantation in a large animal model 
was performed by our group in minipigs [12] (Fig. 1). In 10 minipigs an osteocon
ductive scaffold was placed in a soft tissue pouch inside the Latissimus dorsi muscle 
[13]. The scaffold consisted of single blocks of xenogenic bone (BioOss®, Geistlich, 
Wolhusen, Switzerland) which were connected with resorbable threads forming an 
implant of 4.5 x 2 x 1 cm size. Prior to surgery 600 flg of rhOP-1 in 1.2 ml acetate
mannitol buffer solution was poured over the scaffold and soaked by the material. 
Bone growth in the blocks was studied by computed tomography (Fig. 2) and histol
ogy (Fig. 3). It was found that 6 weeks of prefabrication time are sufficient (Fig. 4). 
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Figure 2 

Computed tomography of the thoracic wall with the prefabricated bone graft in the shape 

of an BioOss® block. There is no fusion with the ribs and only minimal bone overgrowth 

(arrow). Bone overgrowth was planimetrically assessed in subsequent CT sections 0 .4% of 

the total graft volume). 

Figure 3 

Prefabricated vascularized bone graft: Histology 12 weeks after implantation of the newly 

formed bone which formed a thin continuous layer on the scaffold of the BioOss® trabecu

lae (b). Between the bone trabeculae in the interconnecting spaces usually a central arteri

ole and a complete bone marrow cell population was observed (arrows) (non decalcified, 

ground and polished section, Toluidine blue x 60). 
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Figure 4 

Prefabricated vascularized bone graft: A prefabrication time of 6 weeks is sufficient. No 

increase of bone density after 6 weeks. 

Vascularisation in the grafts was studied by macro- and micro angiography indicating 
a good vascularization on the microscopic level in areas of bone growth (Figs. 5, 6). 

In a subsequent study in mini pigs a dose dependency of the parameters blood 
vessel density and bone density was observed (Figs. 7, 8). The highest best values 
were obtained with the dosage of 1000 Ilg rhOP-l in a gram of carrier (xenogenic 
bone particles) [14]. In a subsequent study such prefabricated grafts of 4.5 x 2 x 
1 cm size were used to treat mandibular defects in minipigs [15]. The grafts were 
harvested and grafted to a mandibular defect at the angle of the mandible in Got
tingen miniature pigs. The defect was created in the mandibular angle using an 
epiperiosteal preparation and resection of the periosteum (Figs. 9, 10). The newly 
formed bone was stable enough to be fixed in the defects with conventional titani
um miniplates and screws (Fig. 11). Graft perfusion was restored by anastomosis 
with the facial vessels using a microsurgical technique. An identical defect of the 
contralateral side served as a control group and was treated by directly applied 
xenogenic bone scaffold and 600 Ilg rhOP-I. The first result of the study was that 
grafted prefabricated vascularized bone stayed viable. The continuous viability of 
large parts of the bone marrow was demonstrated by tracer uptake in bone scintig
raphy (Fig. 12) and secondly shown in histology. Bone apposition in several areas 
was not interrupted by the transplantation process as proved by continuous poly
chromatic fluorescent labeling. 

As a second result it was possible to restore the mandible with a prefabricated 
bone graft which was designed to fit into a certain mandibular defect (Fig. 13). His-
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Figure 5 

Prefabricated vascularized bone graft: Angiography of the latissimus dorsi flap containing the 

prefabricated bone graft (x). The thoracodorsal artery and vein (a, v) continuously branch in 

to the graft. 

Figure 6 
Prefabricated vascularized bone graft: Microangiography of the regenerated bone within the 

BioOss block. The white BioOss trabeculae are lined by newly formed bone (gray, less min

eralized). Usually one newly formed artery (arrows) is found in every pore between the tra

beculae of the BioOss (microradiographylmicroangiography, bar equals 100 J.l.fT1). 
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Maxillofacial reconstruction 

Prefabricated vascularized bone graft: The density of blood vessel in the prefabricated graft 

depends on rhOP-1 dosage. 
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Prefabricated vascularized bone graft: The bone density of the prefabricated graft depends 

on rhOP-1 dosage. 
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Figure 9 

Test side: the defect in the mandibular angle of an miniature pig according to Schmelzeisen 

et al. {52], modified by Shirota et al. {53], was treated by a vascularized prefabricated bone 

graft fixed with miniplates. 

Figure 10 

Control side: an identical defect on the contralateral side of the same animal treated with 4 

blocks of xenogenic bone and directly applied 600 JIg rhOP-1. The 8ioOss blocks were fixed 

with resorbable sutures to the residual bone. 
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Figure 11 

Prefabricated vascularized bone graft: Plain radiograph of the prefabricated bone flap fixed 

with titanium miniplates in the defect (arrows) . 

Fig. 12 

Prefabricated vascularized bone graft: Planar Tc99m-bone scintigraphy 7 days after trans

plantation demonstrates vitality and perfusion of the graft (arrow). The remaining spots of 

tracer accumulation are, clockwise, the contralateral side (DirOP-1), the ear vein with the 

site of iniection and both thyroid lobes. 
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Figure 13 

Prefabricated vascularized bone graft: Computed tomography 3 months after surgery. The 

transversal data reconstruction of the mandibular arch shows the reconstructed area and the 

residual mandible. The regenerated bone on the test side (prefabricated graft = p) matches 

the contour of the resected mandible. On the control side after direct application of rhOP-

1 (= d) the volume is deficient and bone has grown less control/ed. 
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Figure 14 

Prefabricated vascularized bone graft: Vertical 

histological section through the graft with 

residual mandible (R), fusion zone (F) and 

BioOss block (B) . Bone has developed in every 

quadrant of the xenogenic bone mineral scaf

fold and minimal bone overgrowth is present 

(Microradiography, digital slide composition, 

non decalcified, bar equals 3 mm). 
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Figure 15 

Quantification of the quality of the skeletal reconstruction after computed tomographic 

examination by independent examiners using a numerical score (median and first and third 
quartile, U- Test, a = 0.05). The reconstruction with the prefabricated graft received higher 

scores. 

tologically it was observed that the growth of the newly formed bone was controlled 
by the osteoconductive scaffold which was filled with viable bone (Fig. 14). Bone 
overgrowth was noted in only 2.3 % of the volume. In CT scans 3 months postop
eratively a good restoration of the mandibular contour was observed and the regen
erated bone showed good volume constancy, suitable for instance for the insertion 
of dental impants. An independent rating of CT scans with a numerical score sys
tem revealed a significantly better reconstructive result than with the directly 
applied material on the contralateral side (Fig. 15). 

In conclusion the prefabrication technique is likely to open new possibilities in 
reconstructive surgery. The technology seems ready for clinical use once recombi
nant BMP are approved for the clinical use. Further studies have to focus on tech
nologies for custom shaping of individual parts for skeletal reconstruction. 

Implantology 

Aims for the use of BMP in implantology 

It has been shown that long-term success of any implant under function depends on 
the achievement of direct bony anchorage [16]. Thus, the two basic aims of the use 
of growth factors and BMP in implant dentistry are to increase bone implant con-
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Figure 16 

Sinus lift with rhOP-1: Axial CT-scan of miniature pig. Two implants are inserted from a lat

erocaudal direction into the augmented maxillary sinus area (¢). 

tact (BIC) and to achieve a faster osseous integration, compared to standard clinical 
healing times of 3 to 6 months today. Furthermore, there is increasing evidence that 
in the near future BMP will support or even replace autogenous bone grafting in 
augmentation of bone deficient sites. A future prospective for the use of BMP may 
be to increase the quality of bone surrounding the implant and to reosseointegrate 
an implant after bone loss through periimplant infection (perimplantitis). 

Growths factors in implantology 

A mixture of growth factors (PDGFIIGF-1) in a carboxymethylcellulose gel as a car
rier was used in a few studies in implantology [17, 18] with some success. Howev
er, these studies have not been pursued later. A natural source of PDGF, platelet rich 
plasma (PRP), has been in demonstrated to be useful to support the healing of bone 
grafts [19]. This method has been recognized by many dental practitioners. How
ever, no relevant data concerning PRP have been published in implant dentistry yet. 

Enhancement and acceleration of BIC 

Bone morphogenetic proteins (BMP) have been reported to enhance osseous contact 
of dental implants. Some of these studies used naturally-sourced bovine BMP prepa-
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Figure 17 

Sinus lift with rhOP-1 : Histology, frontal section of right maxillary sinus, augmented with 

rhOP-1 and BioOss with previous (<:;» and new sinus floor (rhOP-1 group) (microradiogra

phy in composite slides technique, bar equals 1000 pm). 

Figure 18 

Sinus lift with rhOP-1: Frontal section of a maxillary sinus augmented with BioOss alone 

with previous (<:;» and new sinus floor (control group) (microradiography in composite slides 

technique, bar equals 1000 pm). 

rations in a canine mandibular site using a descriptive evaluation [20-22] . RhBMP-
2 was used in an in vitro assay demonstrating a stimulation of osteoblastic cells on 
a titanium surface [23]. In a canine study rhOP-1 induced new bone and enhanced 
osseous contact of HA-coated implants (BIC 80%) in combination with bone 
derived type I collagen in fresh extraction sites in the mandible [24]. Our group 
observed 80% BIC with rhOP-1 and BioOss® compared to 32% with BioOss® 
alone in regenerated bone in a sinus augmentation study [25] (Figs. 16-18). Eighty 
percent BIC is a noticeable value since a 60% BIC in mandibular bone is a repre
sentative value for a titanium implant [26]. Attempts have also been made to 
increase BIC by modifying the surface structure of the implants [27-29] or using HA 
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Figure 19 

Sinus lift with rhOP-1 : Frontal section of the maxillary sinus (rhOP-1 group) with previous 

(¢) and new sinus floor. Fluorescent calcified material on the implant surface after poly

chromatic intravital labelling (fluorescence microscopy in composite slides technique, bar 

equals 1000 J1fT1) . 

Figure 20 

Sinus lift with rhOP-1 : Frontal section of maxillary sinus (control group) with previous (¢) 

and new sinus floor. No fluorescent layer on the implant surface (fluorescence microscopy in 

composite slides technique, bar equals 1000 J1fT1). 
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coatings [30]. Although the studies are not easily compared due to different animal 
models, experimental periods and surface characteristics, it has to be emphasized, 
that none of the studies achieved an osseous integration as high as the 80%. It can 
be concluded that rhOP-1 enhanced BIe. 

BMP have also been reported to accelerate bone formation around the implant 
in naturally derived [31] and recombinant form. In a minipig sinus augmentation 
study of our group, deposition of calcified material occurred on the implant surface 
after 2-3 weeks on the rhOP-1 side and after 8-9 weeks in the controls as moni
tored by polychromatic labelling [24] (Figs. 19, 20). In conclusion, BMP can accel
erate BIC formation. Clincal studies will have to elucidate whether clinically this 
may lead to earlier loading of implants and reduced recommendations for healing 
time which actually is 6 months in regenerated bone. Further research and develop
ment studies are required on biological improvement of dental implants especially 
on BMP coating. 

Sinus augmentation 

From a biomechanical point of view it is useful to distinguish between inlay and 
onlay augmentations. Maxillary sinus augmentation is an inlay type of augmenta
tion where the augmentation material is put relatively protected into a cavity with 
excellent contact to residual bone. The procedure is required when implants are 
planned in the edentulous parts of the lateral upper jaw where protrusion of the 
maxillary sinus led to an internal reduction of the height of alveolar bone. Sinus 
augmentation is a clinically very frequently used procedure. 

BMP have been applied successfully in preclinical studies on sinus augmentation. 
In a study utilizing rhBMP-2 and collagen sponges for a maxillary sinus floor aug
mentation in goats [32] bone growth was observed in the sinus floors. In a primate 
study rhOP-1 on collagen carrier induced bone, but augmentation with BioOss 
resulted in a better augmentative effect [33, 34]. Implants were not installed in those 
studies. In a sinus augmentation study in miniature pigs (Figs. 21-23) using 420 Ilg 
rhOP-1 in 1 ml acetate-mannitol buffer solution with 3 ml xenogenic bone mineral 
(BioOss) as a carrier with simultaneous insertion of dental implants our group 
reported a successful augmentation over the top of the simultaneously installed 
implants on the rhOP-1 side and on the control side after 6 months (Figs. 20, 21). 
In a subsequent study of our group in the same animal model, less BIC and aug
mentation height were observed with collagen carrier, compared to xenogenic bone 
or beta-tricalciumphosphate (Cerasorb®, Curasan, Kleinostheim, Germany) (Figs. 
24,25) [35]. The results confirmed the results of Margolin and coworkers [32] and 
support the view that for augmentation in the sinus the osteoconductive carrier 
alone was better than soft collagen carrier and rhOP-1. However, osteoconduction 
takes time (6 months or more) and the role of the BMP in this situation can be the 
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Figure 21 

Sinus lift with rhOP-1 : Newly formed bone covers the implant surface in the augmented area 

(rhOP-1 group) (toluidine blue, bar equals 1000 j1In). 

acceleration and predictability of ossification. This was confirmed in our study by 
polychromatic labeling which revealed ossification on the implant surface as early 
as 3 weeks after implantation in contrast to the osteoconductive control where ossi
fication on the implant occurred after 9 weeks (Figs. 19, 20). As mentioned above, 
a predictable and significant increase in BIC was observed with simultaneous instal
lation of the dental implant. The fact that implants should be placed simultaneous
ly with the osteoinductive proteins should be emphasized. In a site containing bone 
morphogenetic proteins the implant is placed into the osteoinductive environment 
of the developing osteoprogenitor cells. Those cells interact with extracellular 
matrix and surfaces in their environment [36] and it is well known that the struc
ture of the newly formed bone is influenced by the geometry of the environment 
[37]. Thus it may be hypothesized, that in implants placed secondarily to bone aug
mentation with BMP the BIC rates would not be enhanced. In fact in a second stage 
implantation study using rhBMP-2 on a collagen carrier in sinus augmentation in 
primates the bone to implant contact was with 41.4% not enhanced compared to 
the controls [38]. 

Human studies, as far as they are available, show inconsistent results. A small 
series of three human patient cases of sinus augmentation with rhOP-1 is reported 
in the literature [39-41]. The results range from good bone growth in one patient 
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Figure 22 

Sinus lift with rhOP-1: Compared to rhOP-1 side sparse bone contad of the implant surface 

in the augmented sinus area (control group) (toluidine blue, bar equals 1000 J.U71). 

to absence of bone and persistent swelling in another patient. It was discussed that 
these inconsistent results may be attributed to the type of carrier used in the study 
(bone collagen). In a larger series [42] using rhBMP-2 and collagen sponge carrier 
grossly good augmentative results but not always predictable augmentation height 
was reported. 

In conclusion from animal and human studies for augmentative sinus procedures 
a mineral osteoconductive carrier seems to be more suitable than soft collagen prod
ucts and the role of BMP seems to be improving the predictability and speed of ossi
fication and to enhance BIe in cases of primary implant installation. 

Ridge augmentation 

Alveolar ridge augmentation in implant dentistry is indicated when an edentulous 
part of the alveolar ridge has partially lost height and/or width due to ridge atro
phy following tooth extraction. Ridge augmentation is an onlay type augmenta
tion where the augmentation material is placed on top of the bone surface or into 
very shallow defects, where it has only limited contact to the residual bone. In this 
situation mechanical load (occlusal load and soft tissue pressure) acts towards the 
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Figure 23 

Sinus lift with rhOP-1 : Bone implant contact (BIC) in the augmented area of rhOP-1 and 

control side (mean value and SO, t-test). 

graft and the suture line. Furthermore the augmentation is situated just below the 
suture line and is in higher risk of bacterial contamination and wound healing 
problems. This is more pronounced in vertical than in horizontal ridge augmenta
tion. 

Several studies dealt with BMP in ridge augmentation. In a basic study of our 
group using seven different carrier materials in mandibular augmentation in the rat 
it was confirmed that mineralized calciumphosphate carriers result in a more pre
dictable bone augmentation than collagens and that the different ostoconductivity 
of carrier materials influences structure of the newly formed bone (Figs. 26,27) [37, 
43]. In a canine study comparing periimplant defects in the mandible treated with 
and without rhBMP-2 on collagen sponge carrier significant differences to the con
trols were noted after 12 weeks, but not after 4 weeks by radiographic evaluation 
[44]. In another canine study with rhBMP-2 and collagen sponge a bone augmenta
tion was observed. However, a low BIC of only 29.1 % was reported after 16 weeks 
in regenerated bone [45]. A subsequent study could demonstrate that using a mix
ture of the collagen carrier with hydroxyapatite the results significantly improved. 
Thus, the conclusions of sinus augmentation have to be repeated. All data support 
the use of a mineralized osteoconductive carriers in augmentations. 

Clinical studies on ridge augmentation are sparse and of preliminary character 
[46]. 

174 



Maxillofacial reconstruction 

Bone implant contact ('Yo) 
100 

80 
p" 0.1586 

60 

40 

20 

p" 0.0056 

* 

ANOVAp < 0.019 
Scheffe tests p < 0.05 
Collagen < X-mineral , ~-TCP 

p" 0.0149 

* 

O~--~~--~~----~~-L~------~L-~~ 

BioOss ~-TCP Collagen 

n,,5 = Test (rhOP- 1) D" Control (placebo) 

Figure 24 

Comparison of three carrier materials in sinus lift with rhOP-1 : Xenogenic bone (slow 

resorption by osteoclasts within years), beta-tricalciumphosphate (spontaneous solubility 
within months under body conditions) and bone collagen (fast enzymatic resorption in the 

body within weeks). Better BIC (bone implant contad) in rhOP-1 sites compared to carrier 
alone. Better BIC for the mineralised carriers compared to collagen on the rhOP-1 sides 

(mean value and SD, ANOVA and Scheffe-test). 

Reosseointegration and improvement of bone quality 

An investigation on the use of a growth- or differentiation factors for improvement 
of the local bone quality for example in type IV bone has not been reported yet. 
Reosseointegration after infection was observed with rhBMP-2 in a primate study 
[47] . This field remains to be an open question, although hypothetically this seems 
to be a reasonable field of research. 

Other fields of maxillofacial reconstruction 

There are plenty of indications for bone grafting in the craniomaxillofacial field. 
Cranial defects were successfully restored with Osteogenin as it is required in pedi
atric and adult craniofacial surgery [48]. RhBMP-2 was successfully applied with a 
collagen sponge carrier in a cleft palate defect in a monkey study [49] and with poly
lac tide beads carrier in a dogs study [50]. 
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Comparison of three carrier materials in Sinus lift with rhOP-1: Xenogenic bone (slow 

resorption by osteoclasts within years), beta-tricalciumphosphate (spontaneous solubility 

within months under body conditions) and bone collagen (fast enzymatic resorption in the 

body within weeks). Better augmentation height in rhOP-1 sites compared to carrier alone. 

Better augmentation height for the mineralised carriers compared to collagen on the rhOP-

1 sides (mean value and SO, ANOVA and Scheffe-test). 

Conclusion 

The question of carrier materials for rhBMP may be more important in craniofacial 
surgery than in other fields of reconstructive surgery. Volume and shape of the 
regenerated bone is important either in continuity reconstruction as in augmenta
tions. A proven way to control the osteoinductive process is to use an osteoconduc
tive scaffold for the induced bone cells [51] . The induced osteoprogenitors will 
adhere along the surface of this substratum and start matrix production in a con
trolled fashion. This theoretical principle has proven in many of the reviewed stud
ies. Porous hydroxyapatite as well as porous beta-tricalciumphosphate has been 
demonstrated to be suitable as delivery agent, as space-keeping material, as well as 
osteoconductive scaffold for the bone cells. Further studies are required in the field 
of delivery materials. 

As far as preclinical evaluation in animal studies can predict clinical conditions, 
recombinant BMP may have the ability to replace autogenous bone in most max
illofacial applications. 
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Maxillofacial reconstruction 

Mandibular augmentation in the rat using seven different carrier materials for 50 J1l5 rhOP-

1. The achieved height of augmentation differs significantly with the carrier materials (mean 

value and SO, ANOVA, Scheffe-test). 
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Figure 27 

Mandibular augmentation in the rat using seven different carrier materials for 50 J1l5 rhOP-

1. The strudure and particle contad of the bone differs significantly with the carrier mate

rials. The natural bone mineral demonstrates almost 100% coverage with newly formed 

bone and has the highest osteocondudivity in this model (mean value and S0, ANOVA, 

Scheffe-test). 

177 



Hendrik Terheyden and Sf1Jren Jepsen 

References 

1 Toriumi DM, Kotler HS, Luxemberg DP, Holtrop ME, Wang EA (1991) Mandibular 

reconstruction with an recombinant bone-inducing factor. Arch Otolaryngol Head Neck 

Surg 117: 1101-1112 

2 Toriumi DM, O'Grady K, Horlbeck DM, Desai D, Turek TJ, Wozney J (1999) 

Mandibular reconstruction using bone morphogenetic protein 2: long-term follow-up in 
a canine model. Laryngoscope 109: 1481-1489 

3 Boyne PJ (1996) Animal studies of application of rhBMP-2 in maxillofacial reconstruc
tion. Bone 19 (Suppl) 1: 83-92 

4 Khouri RK, Brown DM, Koudsi B, Deune EG, Gilula LA, Cooley BC, Reddi AH (1996) 

Repair of calvarial defects with flap tissue: role of bone morphogenetic proteins and 

competent responding tissues. Plast Reconstr Surg 98: 103-109 

5 Khouri RK, Koudsi B, Reddi H (1991) Tissue transformation into bone in vivo. A poten

tial practical application. JAMA 266: 1953-1955 

6 Viljanen VV, Gao TJ, Lindholm TS (1997) Producing vascularized bone by heterotopic 

bone induction and guided tissue regeneration: a silicone membrane-isolated latissimus 

dorsi island flap in a rat model. Reconstr Microsurg 13: 207-214 

7 Mizumoto S, Inada Y, Weiland AJ (1993) Fabrication of vascularized bone grafts using 
ceramic chambers. J Reconstr Microsurg 1993: 441-449 

8 Cavadas PC, Bonanad E, Baena-Montilla P, Vera-Sempere FJ (1996) Prefabrication of a 

free flap for tracheal reconstruction: an experimental study. Preliminary report. Plast 

Reconstr Surg 98: 1052-1062 
9 Casabona F, Martin I, Muraglia A, Berrino P, Santi P, Cancedda R, Quarto R (1998) Pre

fabricated engineered bone flaps: an experimental model of tissue reconstruction in plas

tic surgery. Plast Reconstr Surg 101: 577-581 

10 Levine J P, Bradley J, Turk AE, Ricci JL, Benedict J], Steiner G, Longaker MT, McCarthy 
JG (1997) Bone morphogenetic protein promotes vascularization and osteoinduction in 
preformed hydroxyapatite in the rabbit. Ann Plast Surg 39: 158-168 

11 Kusumoto K, Bessho K, Fujimura K, Akioka J, Ogawa Y, Iizuka T (1998) Prefabricated 

muscle flap including bone induced by recombinant human bone morphogenetic pro

tein-2: an experimental study of ectopic osteoinduction in a rat latissimus dorsi muscle 

flap. Br J Plast Surg 51: 275-280 

12 Terheyden H, Jepsen S, Rueger D (1999) Mandibular reconstruction with prefabricated 

vascularized bone grafts using recombinant human osteogenic protein-1 - a preliminary 

study. Int J Oral Maxillofac Surg 28: 461-463 

13 Terheyden H, Knak Ch, Jepsen S, Palmie S, Rueger D (2001) Prefabrication of vascu

larized bone grafts using recombinant human osteogenic protein-I. Pt. 1 Prefabrication. 

Int J Oral Maxillofac Surg 30: 373-379 
14 Terheyden H, Dunsche A, Jepsen S, Menzel C, Rueger D (2000) Prefabrication and 

microvascular anastomosis of a vascularized bone flap using rhOP-1 - new aspects. J 
Craniomaxillofac Surg (SuppI3) 28: 22 

178 



Maxillofacial reconstruction 

15 Terheyden H, Warncke P, Jepsen S, Dunsche A, Brenner W, Toth C, Rueger D (2001) 
Prefabrication of vascularized bone grafts using recombinant human osteogenic protein-
1. Pt. 2 Transplantation. Int J Oral Maxillofac Surg 30: 469-478 

16 Branemark PI (1983) Osseointegration and its experimental background. J Prosth Dent 
50: 399-410 

17 Lynch SE, Buser D, Hernandez RA, Weber HP, Stich H, Fox CH, Williams RC (1991) 
Effects of the platelet-derived growth factor/insulin-like growth factor-I combination on 
bone regeneration around titanium dental implants. Results of a pilot study in beagle 

dogs. J Periodontol 62: 710-716 
18 Becker W, Lynch SE, Lekholm U, Becker BE, Caffesse R, Donath K, Sanchez R (1992) 

A comparison of ePTFE membranes alone or in combination with platelet-derived 
growth factors and insulin-like growth factor-lor demineralized freeze-dried bone in 
promoting bone formation around immediate extraction socket implants. J Periodontol 
63: 929-940 

19 Marx RE, Carlson ER, Eichstaedt RM, Schimmele AR, Strauss JE, Georgeff KR (1998) 
Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med 
Oral Pathol Oral Radiol Endod 85: 638-646 

20 Yan J, Xiang W, Baolin L, White FH (1994) Early histologic response to titanium 
implants complexed with bovine bone morphogenetic protein. J Prosth Dent 71: 
289-294 

21 Wang X, Jin Y, Liu B, Zhou S, Yang L, Yang X, White FH (1994) Tissue reactions to 
titanium implants containing bovine bone morphogenetic protein: a scanning electron 
microscopic investigation. Int J Oral Maxillofac Surg 23: 115-199 

22 Wang X, Liu B, Jin Y, Yang X (1993) The effect of bone morphogenetic protein on 
osseointegration of titanium implants. J Oral Maxillofac Surg 51: 647-651 

23 Ong JL, Cardenas HL, Cavin R, Carnes DL Jr (1997) Osteoblast responses to BMP-2-
treated titanium in vitro. Int J Oral Maxillofac Implants 12: 649-654 

24 Cook SD, Salkeld SL, Rueger DC (1995) Evaluation of recombinant human osteogenic 
protein-1 (rhOP-1) placed with dental implants in fresh extraction sites. J Oral Implan
to121: 281-289 

25 Terheyden H, Jepsen S, Moller B, Tucker MM, Rueger DC (1999) Sinus floor augmen
tation with simultaneous placement of dental implants using a combination of depro
teinized bone xenografts and recombinant human osteogenic protein-I. A histometric 
study in miniature pigs. Clin Oral Impl Res 10: 510-521 

26 Arvidson K, Bystedt H, Ericsson I (1990) Histometric and ultrastructural studies of tis
sues surrounding Astra dental implants in dogs. Int J Oral Maxillofac Impl 5: 127-134 

27 Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H (1991) Influence of 
surface characteristics on bone integration of titanium implants. A histomorphometric 
study in miniature pigs. J Biomed Mater Res 25: 889-902 

28 Ericsson I, Johansson CB, Bystedt H, Norton MR (1994) A histomorphometric evalua
tion of bone-to-implant contact on machine-prepared and roughened titanium dental 
implants. A pilot study in the dog. Clin Oral Implants Res 5: 202-206 

179 



Hendrik Terheyden and Sl!Jren Jepsen 

29 Gotfredsen K, Wennerberg A, Johansson C, Skovgaard LT, Hj0rting-Hansen E (1995) 
Anchorage of Ti02-blasted, HA-coated, and machined implants: an experimental study 
with rabbits. ] Biomed Mater Res 29: 1223-1231 

30 Weinlaender M, Kenney EB, Lekovic V, Beumer J 3rd, Moy PK, Lewis S (1992) Histo
morphometry of bone apposition around three types of endosseous dental implants. Int 
] Oral Maxillofac Implants 7: 491-496 

31 Rutherford RB, Sampath TK, Rueger DC, Taylor TD (1992) Use of bovine osteogenic 
protein to promote rapid osseointegration of endosseous dental implants. Int ] Oral 
Maxillofac Implants 7: 297-301 

32 Kirker-Head CA, Nevins M, Palmer R, Nevins ML, Schelling SH (1997) A new animal 
model for maxillary sinus floor augmentation: evaluation parameters. Int ] Oral Max
illofac Implants 12: 403-411 

33 Margolin MD, Cogan AG, Taylor M, Buck D, McAllister TN, Toth C, McAllister B 
(1998) Maxillary sinus Augmenation in the non human primate. A comparative radi
ographic and histologic study between recombinant human osteogenic protein-1 and 
natural bone mineral. ] Periodontol69: 911-919 

34 McAllister BS, Margolin MD, Cogan AG, Taylor M, Wollins J (1998) Residual lateral 
wall defects following sinus grafting with recombinant human osteogenic protein-lor 
Bio-Oss in the chimpanzee. IntJ Periodontics Restorative Dent 18: 227-239 

35 Terheyden H, Mueller H, Schulz-Walz JE, Jepsen S, Rueger D (2000) Comparison of 
three carrier materials for rhOP-1 in sinus augmentation. ] Dent Res 79: 512 

36 Ripamonti U, Reddi AH (1994) Periodontal regeneration: potential role of bone mor
phogenetic proteins. ] Periodont Res 29: 225-235 

37 Terheyden H, Jepsen S, Vogler S, Tucker MM, Rueger DC (1997) Recombinant human 
osteogenic protein-1 (rhBMP-7) in the rat mandibular augmenation model: differences 
in bone mophology are dependent on the type of carrier. Mund Kiefer Gesichtschir 1: 
272-275 

38 Hanisch 0, Tatakis DN, Rohrer MD, Wohrle PS, Wozney JM, Wikesjo UME (1997) 
Bone formation and osseointegration stimulated by rhBMP-2 following subantral aug
mentation procedures in nonhuman primates. Int ] Oral Maxillofac Implants 12: 

785-792 
39 GroeneveidEH, van-den-Bergh JP, Holzmann P, ten-Bruggenkate CM, Tuinzing DB, 

Burger EH (1999) Histomorphometrical analysis of bone formed in human maxillary 
sinus floor elevations grafted with rhOP-1 device, demineralized bone matrix or auto
genous bone. Comparison with non-grafted sites in a series of case reports. Clin Oral 

Implants Res 10: 499-509 
40 Groenveld HH, van-den-Bergh JP, Holzmann P, ten-Bruggenkate CM, Tuinzing-DB, 

Burger-EH (1999) Histological observations of a bilateral maxillary sinus floor elevation 
6 and 12 months after grafting with osteogenic protein-1 device. ] Clin Periodontol26: 

841-846 
41 van den Bergh JP, ten Bruggenkate CM, Groeneveld EH, Burger EH, Tuinzing DB 

(2000) Recombinant human bone morphogenetic protein-7 in maxillary sinus floor ele-

180 



Maxillofacial reconstruction 

vation suregry in 3 patients compared to autogenous bone grafts. A. clinical pilot study. 

] Clin Periodontol27: 627-636 
42 Boyne P, Marx RE, Nevins M, Triplett G, Lazaro E, Lilly LC, Adler M, Nummikowski 

P (1997) A feasibility study evaluating rhBMP-2/absorbable collagen sponge for maxil

lary sinus floor augmentation. IntJ Periodont Rest Dent 17: 11-25 

43 Terheyden H, Jepsen S, Vogler S, Tucker M, Rueger DC (1996) Recombinant human 
osteogenic protein 1 (rhBMP-7) in the rat mandibular augmentation model using dif

ferent carrier materials. ] Cran Maxillofac Surg (Suppl1) 24: 114 

44 Cochran D, Nummikoski PV, jones AA, Makins SR, Turek Tj, Buser D (1997) Radi

ographic analysis of regenerated bone around endosseous implants in the canine using 

recombinant human bone morphogenetic protein-2. IntJ Oral Maxillofac Implants 12: 

739-748 

45 Sigurdsson Tj, Fu E, Takakis D, Rohrer M, Wikesjo UME (1997) Bone morphogenetic 

protein-2 for peri-implant bone regeneration and osseointegration. Clin Oral Impl Res 

8:375-385 

46 Howell TH, Fiorellini j, jones A, Alder M, Nummikoski P, Lazaro M, Lilly L, Cochran 

D (1997) A feasibility study evaluating rhBMP-2/absorbable collagen sponge device for 

local alveolar ridge preservation or augmentation. IntJ Periodontics Restorative Dent 

17: 124-139 
47 Hanisch 0, Tatakis DN, Boskovic MM, Rohrer MD, Wikesjo UME (1997) Bone for

mation and reosseointegration in peri-implantitis defects following surgical implanta

tion of rhBMP-2. IntJ Oral Maxillofac Implants 12: 604-610 
48 Ripamonti U. Ma SS. Cunningham NS, Yeates L, Reddi AH (1993) Reconstruction of 

the bone -bone marrow organ by osteogenin, a bone morphogenetic protein, and dem

ineralized bone matrix in calvarial defects of adult primates. Plast Reconstr Surg 91: 

27-36 

49 Boyne Pj, Nath R, Nakamura A (1998) Human recombinant BMP-2 in osseous recon
struction of simulated cleft palate defects. Br ] Oral Maxillofac Surg 36: 84-90 

50 Mayer M, Hollinger j, Ron E, Wozney j (1996) Maxillary alveolar cleft repair in dogs 
using recombinant human bone morphogenetic protein-2 and a polymer carrier. Plast 
Reconstr Surg 98: 247-59 

51 Ripamonti U, Ma S, Reddi AH (1992) The critical role of geometry of porous hydrox

yapatite delivery system in induction of bone by osteogenin, a bone morphogenetic pro

tein. Matrix 12: 202-212 

52 Schmelzeisen R, Boetel C, Schuberth Hj, Pohlmeyer K (1991) Experimental transplan

tation of vascularized autologous and allogenic bone grafts for mandibular defects. 

Anatomical, immunological and surgical basis for vascularized bone transfer in the Got

tingen minipig. IntJ Oral Maxillofac Surg 20: 239-244 

53 Shirota T, Schmelzeisen R, Ohno K, Michi KI (1995) Experimental reconstruction of 

mandibular defects with vascularized iliac bone grafts. ] Oral Maxillofac Surg 53: 

566-571 

181 



Bone morphogenetic proteins in periodontal regeneration 

SflJren Jepsen 1 and Hendrik Terheyden2 

1 Department of Restorative Dentistry and Periodontology, University of Kiel, Arnold Heller 

Str. 16,24105 Kiel, Germany; 2Department of Oral and Maxillofacial Surgery, University of 

Kiel, Arnold Heller Str. 16,24105 Kiel, Germany 

Introduction 

Periodontitis is a chronic inflammatory disease causing breakdown of the peri
odontal tissues eventually resulting in tooth loss. Successful periodontal reconstruc
tion includes regeneration of a variety of tissues including cementum, periodontal 
ligament, alveolar bone and gingiva. Wound healing is thought to be regulated by 
various growth and differentiation factors, such as bone morphogenetic proteins 
(BMPs), and cytokines. The expression of these biologic mediators following bone 
and soft tisue injury is thought to regulate the process of repair and/or regeneration. 
For example, BMPs are known to be expressed during bone repair following frac
ture [1] and during periodontal wound healing [2]. The rationale for growth factor 
administration in periodontics is to enhance and/or accelerate the physiological 
wound healing capacity that may be insufficient to promote a complete healing of 
the affected structures. Over the past decade numerous in vitro and in vivo studies 
have been performed to elucidate the role of growth and differentiation factors in 
periodontal wound healing. Several of these factors are now available in recombi
nant form and can be produced in a highly pure form in a large scale production. 

This review will describe the effects of bone morphogenetic proteins on peri
odontalligament fibroblasts and hard tissue structures cementum and alveolar bone 
based on available in vitro and in vivo studies. 

Effects of BMPs on periodontal ligament cells 

Factors that possess stimulating effects on the proliferation, migration and collagen 
matrix synthesis of periodontal ligament (PDL) cells may have the potential to pro
mote new attachment formation. However, at present there is only limited informa
tion available regarding effects on PDL cell activity for BMPs. BMP-7 (osteogenic 
protein-l = OP-l) was not mitogenic for PDL cells [3], however changed their phe
notype by stimulating their alkaline phosphatase activity in a dose- and time-depen
dent manner. OP-l failed to induce bone sialoprotein mRNA in PDL cell culture [4]. 
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Likewise, BMP-2 and -12 did not show a mitogenic effect on PDL cells [5]. Recom
binant human BMP-2 stimulated osteoblast differentiation in human periodontal 
ligament cells [6]. Inflammatory cytokines such as TNF-a and interleukin-1~ dif
ferentially modulated this stimulatory effect [6]. BMP-2 application to EDTA dem
ineralized dentin surfaces and promoted a significant increase of alkaline phos
phatase activity in human PDL cells but no increase in cell number [7]. Future stud
ies exploring the effects of other BMPs on PDL cells would be of great interest. 

Effects of BMPs on bone cells 

The main effects of BMPs are to commit undifferentiated pluripotential cells to dif
ferentiate into cartilage and bone-forming cells [8-13]. Also, BMPs were shown to 
regulate growth factor gene expression [14]. They may act synergistically with IGF-
1 to stimulate osteoblastic cell differentiation and proliferation [15]. 

Even though the role of polypeptide growth and differentiation factors on bone 
formation has been studied extensively, there is insufficient information specifically 
on alveolar bone. 

Preclinical and clinical studies on periodontal regeneration 

Demineralized freeze dried bone allograft (DFDBA) 

The implantation of demineralized freeze dried bone allograft (DFDBA) has a long 
tradition in periodontics. Since the early publications by Urist [16, 17] periodontists 
have tried to utilize the osteoinductive factors presumably present in the graft for 
the stimulation of periodontal bone regeneration. Indeed, BMP-2, -4 und -7 were 
found in commercially available bone preparations of different bone banks [18]. 
However, in contrast to fresh preparations the biological activity appeared to be 
reduced [18] and the ostoinductive properties of different preparations showed a 
high variability [19]. Moreover, Becker et al. [20], following their investigations on 
the osteoinductive properties of DFDBA, questioned the rationale for commercially 
available demineralized bone in periodontics. Instead, they demanded the loading of 
a carrier matrix with recombinant BMPs of known quality and quantity. 

Natural BMP 

Osteogenin 
Bowers et al. [21], in the first and to our knowledge only published clinical trial 
using BMP for periodontal regeneration in humans evaluated the effect of osteogenin 
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(BMP-3) extracted from human bone for the healing of intrabony periodontal 
defects. Osteogenin was delivered in a DFDBA carrier matrix. In 36 defects in eight 
patients healing proceeded following removal of the crown in a submerged environ
ment and in 50 defects in an additional six patients in a transgingival fashion. 
Defects treated with either carrier matrix or with non-osseous collagen served as 
controls. Block biopsies were obtained after 6 months and healing was histological
ly evaluated. Whereas in the submerged environment the combination of 
osteogeninIDFDBA was significantly superior to DFDBA the observed differences 
did not reach statistical significance in the transgingival model, the clinically relevant 
situation. The least favorable results were obtained with the collagen matrix, with or 
without the osteogenin. No immunological reactions due to osteogenin were found. 

BMP-2IBMP-3 
Ripamonti et al. [22] in a pilot study in four monkeys tested the effect of a BMP
extract (bovine bone extracts, containing mostly BMP-2 and BMP-3) in an insolu
ble collagenous bone matrix (ICBM) for healing of eight surgically created deep 
mandibular class II furcation defects. Eight contralateral defects treated with the 
carrier material served as controls. After 2 months there was a significantly 
enhanced regeneration of cementum, periodontal ligament and bone in BMPIICBM 
treated furcations. 

Using partially purified bovine BMP incorporated in a fibrous collagen mem
brane, Kuboki et al. [23] demonstrated periodontal regeneration in class II furcation 
defects in three monkeys after 12 weeks. 

Recombinant BMPs 

rhBMP-2 
Sigurdsson et al. [24] applied recombinant human BMP-2 (rhBMP-2) in a carrier 
consisting of resorbable PLGA-microparticles using the supra alveolar defect model 
in six beagle dogs. Reconstructive surgery included application of test substance on 
the test side and of the carrier on the control side. To facilitate protected healing 
crowns were cut and flaps were sutured above the teeth (submerged model). After 
2 months a substantial regeneration of bone (and cementum) was observed in test 
defects that was significantly superior to control treatment. The incidence of root 
resorption was less in test sites, the incidence of ankylosis was similar to control 
treatment. 

In a subsequent study by the same group substantial BMP-induced periodontal 
regeneration could also be observed in the transgingival model [25]. Healing results 
were significantly influenced by the kind of carrier material (six different carriers for 
BMP-2 evaluated) that was used. 
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Kinoshita et al. [26] performed periodontal reconstructive surgery with BMP-2 
in a gelatin and polylactic acid polyglycolide acid copolymer carrier in ligature 
induced circumferential periodontal defects in six beagle dogs. Histometric evalua
tion after 3 months demonstrated significantly more new bone and cementum for
mation with no signs of ankylosis as compared to carrier alone. 

King et al. [27] studied the effects of rhBMP-2 in a rat fenestration defect model. 
Following 10 days of healing significant bone formation and 100% more cementum 
formation was noted as compared to controls. However, after 38 days complete 
healing was found on both sides, leading the authors to the conclusion that in this 
model BMP-2 would accelerate bone and cementum formation during early wound 
healing. 

In a subsequent study using the same model King and Hughes [28] investigated 
the influence of occlusal loading on rhBMP-2 induced bone and cementum forma
tion. Hypofunction and BMP-2 increased the development of transient ankylosis. 
Occlusal loading enhanced BMP-2 induced cementogenesis. 

Wikesjo et al. (1999) [29] evaluated the effect of rhBMP-2 concentration on peri
odontal regeneration and associated root resorption and ankylosis in supraalveolar 
defects in eight beagle dogs. Alveolar bone regeneration amounted to 86-96% and 
cementum to 6-8% of defect height, respectively. Root resorption and ankylosis was 
seen in all rhBMP-2 treated teeth. They concluded that within the selected concen
trations there appeared to be no meaningful differences in regeneration of bone and 
cementum and no significant differences in the incidence of root resorption and 
ankylosis. 

rhBMP-7/0P-l 
Ripamonti et al. [30] evaluated the effects of rhBMP-7 (OP-l) on healing of class II 
mandibular furcation defects. A total of six defects in three baboons received BMP-
7 at a concentration of either 0.1 or 0.5 ~g1mg collagen matrix carrier. No bone for
mation was observed, however substantial new cementum formation was observed. 
The authors concluded that BMP-7 at the given concentrations stimulated the 
cementoblast phenotype. 

Jepsen et al. [31] demonstrated the possibility of substantial bone regeneration 
and new cementum formation in class II furcations of four non-human primates 
(Macaca fascicularis) by using higher concentrations of rhBMP-7 (2.5 ~g1mg). Bone 
fill, as determined histologically and volumetrically during surgical reentry, amount
ed to 84 and 83%, respectively. 

Giannobile et al. [32] evaluated different concentrations of rhBMP-710P-l in a 
dose study in 18 beagle dogs. At a dose of 7.5 ~g1mg collagen carrier a significant 
stimulation for all wound healing parameters was found that was statistically dif
ferent from either vehicle or surgery-alone sites. No significant increase in root 
ankylosis was found. 
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The formation of not only bone but also of a new attachment apparatus follow
ing administration of BMPs is difficult to explain. It can be speculated that follow
ing the initiation of the wound healing cascade by BMPs, other cytokines and/or 
growth factors stimulate the differentiation of cells to other non-osseous periodon
tal phenotypes, since direct mitogenic effects of BMP on periodontal ligament cells 
appear unlikely. Future research, including BMP receptor studies in periodontal tis
sues, will hopefully help to better understand the molecular mechanisms of BMP 
modulated periodontal wound healing. 

In summary, there is strong evidence from different preclinical models that 
rhBMP-2 and -7 can stimulate periodontal regeneration. Human clinical trials are 
in progress to determine the safety and efficacy of recombinant morphogenetic pro
teins for periodontal reconstruction with the first results being anticipated in the 
year 2002. 

Open questions and future perspectives 

The success of tissue regeneration by bone morphogenetic proteins depends on the 
development of suitable delivery systems for these factors to their target cells. Much 
research has been performed to find optimal carriers for BMP application. The 
development of suitable delivery systems presents an important step for clinical 
growth factor therapy. Although a carrier matrix is not a prerequisite for BMP 
induced bone formation [33] it presents multiple advantages [34] by immobilizing 
the protein in the target area. The carrier matrix not only defines the shape of the 
resulting bone, but allows smaller amounts of BMP to be active by retaining it until 
induction has occurred. An ideal carrier should bind the active protein and protect 
it against unspecific proteolysis. It should be biocompatible, non-immunogenic and 
biodegradable and not interfere with the wound healing process [35, 36]. It should 
facilitate rapid vascular invasion [37] to enable contact between progenitor cells and 
the rhBMP bound to the carrier. A bone collagen matrix is the natural carrier for 
BMP, however, when using organic xenogenic materials or bone allografts the risk 
of disease transmission cannot be ruled out [38]. In this regard, resorbable synthet
ic materials such as polymers or calcium phosphate ceramics might be advanta
geous. Such alternative synthetic delivery systems have been evaluated in various 
animal models [24,26,36,39-41]. 

Sigurdsson et al. [25] evaluated different candidate carriers for rhBMP-2 in a 
screening study in the supraalveolar defect model in the beagle dog (among others: 
bovine deproteinized bone mineral, PLGA-microparticles, PLA-granules). They 
found distinct differences in the amount and quality of the induced bone and cemen
tum dependent on the type of carrier that was utilized. None of the materials 
appeared to be ideal in all aspects. 
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In a recent study, Talwar et al. [42] compared the effects of slow and fast degrad
ing gelatin carriers on BMP-2 induced periodontal healing in rats. New cementum 
formation was promoted by slow release of BMP. 

When comparing different carriers for rhBMP-7/0P-1 in the rat mandibular aug
mentation model, statistically significant differences for the carriers were found with 
regard to bone density, height of augmentation, bone quality [43, 44] and the time
course of bone induction [45]. Differences in the release kinetics of rhOP-1 from the 
different biomaterials could partly explain the observed differences [46]. 

These findings indicate that in the future different delivery systems could be used 
for different surgical indications. Whereas a soft material that quickly resorbs might 
be well suited for the fill of periodontal intra osseous or furcation defects, larger cir
cumferential alveolar defects might require a more rigid, slowly resorbable material 
with higher mechanical stability. 

In addition to the question of the ideal delivery system, other problems remain 
to be solved: What is the biological and therapeutic significance of the existence of 
multiple forms of BMPs? What is the optimal therapeutic dose? Future research 
should investigate different doses as well as molecular combinations to develop an 
activity profile for the different members of the BMP-family. Finally and most 
important, to confirm the preclinical data in patients with periodontitis, human 
biopsies as well as the results from randomized controlled clinical studies are need
ed. 

A shortcoming of current delivery methods of growth factors to periodontal 
wounds is the short half-life of factors at the target site. The use of DNA delivery 
systems could become an alternative technique for the application of proteins to the 
wound site. Thus, the goal of gene therapy would be an elevated and sustained 
growth factor supply (of days instead of a few hours) in the healing wound. The 
rationale for this approach is based on the observations that BMPs are expressed up 
to 14 days during tissue injury [1,2]. 

A prerequisite is the successful transduction of appropriate target cells. The effi
cient delivery of genes into cells can either be done in vitro or in vivo. Ex vivo ther
apies require transgene expansion from a tissue specimen. In vivo gene therapy 
resulting in higher but transient gene expression has been performed using plasmid 
DNA to bone wounds [47]. In another approach it was recently reported that 
human gingival fibroblasts after transduction with a recombinant adenovirus con
taining the OP-1 gene produced active BMP-7 resulting in bone formation in vivo 
[48,49]. 

Much research remains to be done to optimize gene expresssion, maximize the 
number of transduced cells and to evaluate whether periodontal wound healing can 
be enhanced by gene transfer. 
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Conclusions 

A large number of studies, performed over the last ten years, has demonstrated the 
possibility of periodontal tissue regeneration by bone morphogenetic proteins. 
There is evidence for the promotion of periodontal wound healing by rhBMP-2 and 
rhBMP-7 from multiple in vitro and preclinical trials. Provided human clinical tri
als confirm these findings and growth factor therapies receive approval by the health 
authorities, the therapeutic use of these potent biologics will certainly add to our 
regenerative clinical strategies. In addition, in the future the development of gene 
therapy may become a novel approach in growth factor therapy for tissue engineer
ing in periodontics. 
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Introduction 

The concept of osteoinductive or bone morphogenetic proteins (BMPs) was first 
introduced by Urist nearly 40 years ago [1], and by the late 1980's the human cDNA 
for OP-l (BMP-7) was cloned [2]. Utilizing recombinant technology, human OP-l 
(rhOP-l) was produced and this molecule has demonstrated its capacity to induce 
bone formation [3, 4]. Subsequently, extensive preclinical and clinical research has 
confirmed the efficacy as well as safety of OP-l in the process of bone repair and 
regeneration [5-8]. This paper will focus on clinical experience with OP-l in the 
treatment of nonunions of the appendicular skeleton. 

Preclinical experience 

Preclinical studies have demonstrated the ability of OP-I to cause repair of critical 
sized defects in numerous animal models, including the long bones of rabbits [9], 
dogs [10] and nonhuman primates [11]. In each circumstance, the resected segmen
tal deficits, implanted with OP-l Implant (3.5 mg recombinant human OP-l in 19 
type I collagen matrix), regenerated a complete bony bridge. This repair was accom
plished with the same or better frequency than observed in the bone autograft con
trols, and with the same capacity to remodel and reestablish a marrow cavity as seen 
with autogenous graft (Figs. 1 and 2). 

Clinical experience 

Fibular defect (The Netherlands; clinical trial) 

A prospective, randomized and double-blinded clinical trial, recently reported by 
Geesink and colleagues [5], demonstrated the ability of OP-l to cause repair of a 
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Figure 1 

Critical sized defed in monkey ulna, treated with the OP-1 implant. Immediately postoper
ative (A) and at 20 weeks (B) . OP-1 implant is radiolucent. 

critical-sized fibular defect in patients undergoing opening wedge high tibial 
osteotomy with fibulectomy. In a preliminary study, it was determined that the fibu
lar defect, approximately 1.5 to 2.0 em in length, would not spontaneously heal. In 
the subsequent investigation, these segmental defects were implanted with either 
OP-l implant or with the matrix alone in a double-blinded fashion. Five of the six 
patients receiving OP-l implant bridged their defects by 4 months, as determined by 
a radiologist blinded to treatment, while none of those patients treated with matrix 
alone bridged their gap (Fig. 3). 

Tibial nonunions (U.S.; clinical trial) 

In a prospective, randomized, controlled clinical study, accomplished under a Unit
ed States Food and Drug Administration (FDA) approved Investigational Device 
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Figure 2 

Critical sized defed in monkey ulna, treated with the OP-1 implant. Non-operated con

tralateral control ulna (A) and the OP-1 implant-treated ulna at 20 weeks (B). Histological 

specimen shows remodeled mature bone with full cortex and bone marrow cavity [11J (B). 

Exemption (IDE), the safety and effectiveness of OP-1 implant in healing a tibial 
nonunion was compared with that achieved with bone autograft [81- The study 
included 122 patients with 124 tibial non unions treated at 17 sites within the Unit
ed States between February, 1992 and August, 1996. The protocol inclusion criteria 
required that the tibial nonunion in these adults be acquired as the result of trauma, 
and that the responsible surgeon had determined that treatment would otherwise 
require intramedullary fixation and bone autograft. Nonunion was defined as the 
failure to heal the fracture over at least 9 months, and that there was no evidence of 
healing or surgical intervention within the 3 months prior to investigational treat
ment_ 

The demographics of the two groups were similar with the exception of some 
established risk factors for fracture healing, suggesting a possible bias in favor of the 
autograft-treated group_ For example, the incidence of atrophic nonunion was 41 % 
in the OP-1 implant group compared to 25% in the autograft-treated patients (p = 
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Figure 3. 

Radiographs showing a fibula defed treated with collagen matrix alone at 6 weeks (A), 10 

weeks (B) and 1 year ((). Radiographs of a fibula defed treated with collagen matrix and 

BMP-7 at 1 week (D), 6 weeks (E), 10 weeks (F), 4 months (G), 6 months (H) and 1 year (I). 
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0.048), and the prevalence of tobacco/nicotine use was 74% in the OP-l implant 
patients and 57% in the autograft-treated group (p = 0.057). In addition, more 
patients in the OP-l implant group had comminuted fractures at the time of injury 
(67% vs. 56%, P = 0.212), experienced prior failed autograft procedures (43% vs. 
31 %, P = 0.177) and previously received intramedullary rods without subsequent 
success (54% vs. 44%, P = 0.280). 

The mean blood loss during the procedure was 345 cc in the autograft-treated 
patients, which was statistically greater than the 254 cc loss experienced by the OP-
1 implant group (p = 0.049). Similarly, hemoglobin and hematocrit levels were sig
nificantly lower in the autograft-treated group 1 month following surgery. Further
more, a significant difference was seen in the incidence of post-operative acute or 
subacute osteomyelitis at the operative site, which occurred in 21 % of the autograft
treated patients and only 3% of those implanted with the OP-l implant (p = 0.002). 

All autograft-treated patients reported post-operative pain at the bone graft 
donor site. Chronic donor site pain at the 6-month follow-up visit was observed in 
more than 20% of patients, and 13% continued to complain of pain 12 months fol
lowing their surgical procedure. Accordingly, the OP-l Implant-treated patients 
required less pain medication. 

Both treatment groups experienced adverse events, usualy mild or moderate in 
nature, and these events occurred with comparable frequency in OP-l implant and 
autograft-treated patients. No serious adverse events were related to the OP-l 
implant or the implanted graft material. 

Patients in this study were assessed by both clinical and radiographic criteria. 
The two groups were compared at 9 months with respect to their ability to fully 
weight-bear with less than severe pain, the lack of a surgical retreatment of their 
nonunion as well as physician satisfaction with the patients' repair (Tab. 1). Using 
these criteria, the outcomes of the two groups were comparable. 

Radiographic analysis at 9 months following surgery, by a panel of three mus
culoskeletal radiologists blinded to treatment, demonstrated bridging of the fracture 
on at least one view in 75% of the OP-l-treated patients and 84% of those receiv
ing autograft (p = 0.218, an insignificant difference between the groups). A more 
strict interpretation, requiring bridging on at least three of four views (determined 
on AP, lateral and two oblique x-rays) demonstrated healing in 62% of the OP-l 
implant and 74% of the autograft-treated patients (p = 0.158) at this same time 
interval (Tab. 1). 

The conclusions supported by this study include that the OP-l implant is a safe 
and effective treatment modality for tibial nonunions, and comparable to the use of 
bone autografts. In addition, the OP-l implant demonstrated a number of safety 
advantages over autograft bone, including a reduction in the amount of operative 
blood loss, decreased incidence of osteomyelitis at the surgical site, the elimination 
of donor site specific complications and pain as well as a decrease in the use of post
operative pain medication. 
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Table 1 - Clinical and radiological outcomes at 9 months following treatment 

Criteria OP-1 implant Autograft p-Value" 

n success n success 

Full weight-bearing with less 56 89% 55 90% 0.817 

than severe pain 

Radiographic bridging 47 75% 51 84% 0.218 
(in at least one view)* 

Radiographic bridging 39 62% 45 74% 0.158 

(in at least three views)* 

No surgical retreatment* 60 95% 55 90% 0.276 

Physician satisfaction * 54 86% 55 90% 0.447 

'based on the number of nonunions rather than the number of patients 

"Chi Square Test where p > 0.05 indicates no significant difference between groups 

Appendicular salvage cases (Australia) 

In Australia, 163 consecutive patients were treated with the OP-1 implant between 
August, 1997 and December, 1999, for a variety of skeletal disorders (Tab. 2). Indi
vidual Patient Usage (IPU) approval for compassionate release was obtained in each 
case from the Therapeutic Goods Administration (TGA) prior to treatment. IPU 
approval was only obtained for patients having previously failed conventional treat
ment or who were deemed unsuitable for other standard treatment option; conse
quently, all of these cases were particularly challenging. Seventy-one surgeons in five 
states of Australia have contributed to this series of cases, with an average follow
up of 15 months. Since May, 1998, the OP-1 implant has been combined with the 
excipient, carboxymethycellulose (CMC), to improve handling properties. Forty
four of these cases have been previously reported [7]. 

Data were collected on standardized forms with clinical outcome being assessed 
by the treating surgeon. Radiological assessment was performed by one of the 
authors (AS) and by the treating surgeon. Nonunions were considered to be radio
logically healed if continuous bridging was clearly present. Outcomes were consid
ered failures if the patient was unable to return to normal or near normal activities 
or if they required additional surgical treatment for the same condition. 

In many cases, the OP-1 implant was combined with autograft or with other 
osteoconductive fillers, such as bone allograft or hydroxyapatite preparations 
(Tab. 3). Forty (35%) of these patients had prior autograft procedures. Most others 
were either considered ineligible for autograft by the treating surgeon, usually due 
to concomitant conditions that result in poor bone stock, or had failed customary 
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Table 2 - Demographics of Australian patient population 

Patients Indications 

113 Nonunions (see Table 5) 

18 Revision arthroplasty 

16 Failed arthrodesis 

9 Bone defects 

3 Peri-prosthetic fracture 

Elective osteotomy 

1 Congenital pseudarthrosis 

2 Osteochondral defects 

163 Total 

Table 3 - Clinical application of OP-1 implant 

Combined with No of cases 

Iliac crest autograft 57 
Local or other autograft 36 

Allograft 20 
Bone marrow aspirate 

Osteoconductive fillers 7 
Combinations of above 6 

OP-1 implant ALONE 36 
Total 163 

treatment by intramedullary reaming at the time of exchange rodding for un united 
femoral and tibial fractures (Fig. 4). 

In 46 cases, there was significant pre-existing pathology or illness known to be 
associated with impaired fracture repair or the biomechanical character of bone, 
including prior or recent infection, chronic osteomyelitis, rheumatoid arthritis 
requiring high-dose steroid treatment, severe osteoporosis, osteogenesis imperfecta, 
fibrous dysplasia and Paget disease (Fig_ 5). 

The outcomes of 76% of these 163 patients were considered successful by clini
cal criteria and 69% were successful by a combination of both clinical (Tab. 4) and 
radiographic criteria. Twelve patients (7%) could not be adequately assessed by 
both clinical and radiographic parameters. Thirty-nine patients, 24% of these chal
lenging cases, were clinically unsuccessful. In 18 of these 39 cases, significant fac-
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A 

Figure 4. 
Radiographs of a 35-year-old male who suffered a comminuted mid-shaft radial fradure in 

a motor bike accident and did not unite due to a large bone de fed. The defed was filled 

with the OP-1 implant alone. The radiographs show a progression of bone formation from 

day 0; 5 and 8 weeks (A, B, C) and 6, 22 and 30 months (0, E, F), respectively. 
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Figure 5 
Twenty-seven-year-old male who sustained an open fradure to the proximal third of his 
femur in a motor vehicle accident 7 years prior to treatment with the OP-1 implant. Subse

quent treatments involved management of infedion and five attempts at achieving union 

which included internal fixation with plates and screws, intramedullary nailing (on four 

occasions) and autografts (on two occasions). Fixation was unaltered at the time of applica
tion of OP-1. Union was achieved in 9 months (left x-ray pre-operative, right x-ray at 4 

months). 

tors were identified which may contribute to failure, including pre-existing or active 
infection, sub-optimal internal fixation, the need for early amputation, inadequate 
local blood supply or severely compromised soft tissue coverage of the fracture site. 
Several cases were associated with unusually challenging circumstances or the appli
cation of unconventional surgical procedures. 

201 



Lex R. Giltaij et al. 

Table 4 - Clinical Results of OP-1 implant application 

Diagnosis Total Failed 

Nonunions 113 28 
Arthrodeses 16 3 
Revision arthroplasties 18 3 
Bone defects 9 3 
Peri-prosthetic fractures 3 0 
Elective osteotomies 0 
Congenital pseudarthroses 0 
Osteochondral defects 2 2 
Total 163 39 

Complications and adverse reactions were uncommon. One patient with a non
union of the ulna developed a local erythematous reaction following surgery. This 
reaction resolved with antihistamine treatment and went on to union. There were 
two cases of deep wound infection (1.4 %) and one reported superficial wound infec
tion follow surgery. In addition, 13 patients had prior treatment for osteomyelitis. 
Reactivation of this infection occurred in seven cases, of which four failed to unite. 

Within this series, were 113 patients who sustained fractures following trauma 
to various long bones and developed nonunions (Tab. 5). These patients had a mean 
and median of two prior surgical procedures for treatment of their nonunions (range 
o to 12), usually involving exchange rodding with intramedullary reaming or change 
of plate and screw fixation. Forty (35%) of these patients also had prior bone auto
graft procedures. This subset of patients was treated with OP-1 an average of 23.3 
months following injury (range 1 to 148 months, median 14 months), and the aver
age time of follow-up was 19 months (range 3 to 28 months). 

Union was achieved, using clinical criteria, in 79 of these 113 patients (70%). In 
6 cases (5%), the patient'S clinical outcome could not be adequately assessed due to 
the presence of reflex sympathetic dystrophy (RSD) or other associated limb frac
tures. Radiographic union was seen in 74 cases (65%). An additional three patients 
(2.5%) demonstrated moderate, but incomplete new bone formation and six 
patients (5%) could not be evaluated radiographically due to obscuring hardware. 

As mentioned above, 40 patients had prior autografts. This group had an aver
age of 3.1 (range 1 to 12, median 3) prior surgical procedures for treatment of their 
nonunions, generally bone grafting, exchange rodding, revision of plate fixation or 
a combination of these procedures. Treatment with the OP-1 implant occurred at an 
average of 28 months (range 5 to 84 months, median 19 months) following initial 
lllJUry. 
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Table 5 - Patients with nonunions treated with OP-1 implant 

Anatomic sites of nonunions 

Femur 35 
TIbia 32 
Humerus 12 
Radius/ulnae/fibula 9 
Clavicle 8 
Scaphoid 6 

Navicular 8 
Pelvis 3 
Total 113 

Clinically, 28 patients (70%) in this subset of appendicular nonunions previous
ly treated with autograft healed following implantation of OP-l; two patients could 
not be assessed (one lost to follow-up and one with RSD). The average time to union 
was 5.6 months (range 3 to 15 months). Ten patients (25%) were considered fail
ures by clinical criteria. 

Radiographically, 28 of these 40 patients went on to union. One additional 
patient was forming new bone that was not yet united, and one patient was lost to 
follow-up. Ten patients failed to unite, three of whom had reactivation of a prior 
infection at the fracture site, one had Paget disease, one had early failure of fixation 
and two requested amputation at 12 weeks. One of these patients had a large seg
mental defect fixed with a cylindrical strut allograft. 

This experience with OP-l in a variety of challenging cases in Australia confirms 
and strengthens the findings of the u.s. tibial nonunion study and expands the scope 
of skeletal sites and conditions that have been successfully treated with this osteoin
ductive molecule. In particular, this study demonstrated that the OP-l implant 
induces new bone formation in humans. It is also clear that a successful outcome 
requires attention to sound surgical principles, including adequate treatment of 
prior infection, good soft tissue coverage of the fracture, an adequate blood supply 
to the fracture site and stable internal fixation. Some of these patients were treated 
with OP-l alone and others with OP-l and a variety of additional commonly 
accepted adjuncts to bone healing, including bone autograft and allograft and osteo
conductive materials. These combinations did not appear to detract from the effi
cacy of OP-1. Finally, OP-l appears safe, with no significant adverse reactions 
attributed to the implant. 
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Discussion 

The nature of bone induction and regeneration is now better understood, and the 
important roles of a variety of molecular factors are becoming clear. Some BMPs, 
including OP-l (BMP-7), have demonstrated their ability in a number of animal 
models to induce new bone formation and favorably influence the process of bone 
regeneration and repair. These growth and differentiation factor are capable of 
causing the recruitment, differentiation and proliferation of osteogenic cell popula
tions. 

Recombinant human osteogenic protein-l has demonstrated both safety and 
efficacy in the treatment of nonunions of various long bones in humans, building 
upon substantial preclinical success in a wide variety of animal models. It is impor
tant, however, to recognize the need to follow established surgical principles pre
requisite to the success of any osteogenic stimulus. This includes the establishment 
of a bacteriologically clean, viable and well-vascularized surgical site with adequate 
stabilization of fractures. The usefulness of OP-l also obviates the need, in many 
cases, for a bone autograft donor site and its associated morbidity [12]. It is likely 
that similar enhancement of spinal arthrodesis [13-16], implant fixation [17] and 
allograft incorporation [18, 19] by implantation of OP-l, as demonstrated in ani
mals, will be confirmed by the growing clinical experience with this evolving tech
nology. 
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Introduction 

Lumbar fusion is a common surgical procedure for which there are multiple 
approaches and techniques. It has recently been estimated that more than 185 thou
sand spinal fusions are performed each year in the United States alone. There are 
different types of lumbar fusion with posterolateral intertransverse fusion using iliac 
crest autograft being the most common. This type of fusion is used in the treatment 
of a wide variety of conditions including spondylolisthesis and discogenic disease. 

Iliac crest autograft is the most common material utilized in fusion; it is, howev
er, associated with certain limitations and morbidity. The amount of donor bone 
may be limited due to poor bone quality or previous graft harvest. As a result 
pseudoarthrosis or nonunion may occur. There has been a reported incidence of 
pseudoarthrosis of up to 26% [1]. In addition, there are many variables that affect 
the results of lumbar fusion. For example, smoking has been shown to increase the 
rate of pseudoarthrosis anywhere from two- to five-fold [2, 3]. 

In addition to pseudoarthrosis, chronic pain at the iliac crest donor site is a fre
quently encountered complication of autograft harvest and in fact chronic donor 
site pain occurs in 25% of all patients undergoing iliac crest harvest [4]. 

To address the problems of pseudoarthrosis, various adjuncts such as instru
mention and electrical stimulation have been suggested as a possible means to 
enhance the outcome of iliac crest autograft fusion. However, neither of these 
modalities alleviates the need for an osteo-conductive and/or osteo-inductive agent 
in order to achieve fusion. For this reason, various bone graft alternatives are being 
investigated. Allograft may serve in either an osteo-conductive or osteo-inductive 
role depending on its method of preservation. However, allograft has been shown to 
have inferior results when compared to autograft in a clinical setting [5]. 

With the advent of new methods of instrumentation as well as the isolation and 
purification of various bone growth factors, the surgeon is faced with many surgi
cal options for the spine. Objective comparison of these many variables is impera-
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tive. Not only must existing fusion modalities be critically evaluated, but novel 
modalities must also be compared to those already in use. And ultimately, the indi
cations for the various modalities must be defined. 

To this end, animal studies are an effective means of addressing the limitations 
of human in vitro and in vivo studies. Outcomes of such studies may be extrapolat
ed to human scenarios. Of significance, the more closely the animal models mirror 
human clinical scenarios, the more confidence that can be placed in such extrapola
tions. As this implies, models must be designed to address specific clinical questions 
[6]. Animal size, cost, and ease of care are also issues to be considered. 

Multiple animal models have been established to study the spine. One mode of 
model validation has been to compare the physiologic motions of animal spines to 
those of human spines. Multi-directional flexibility testing has been used for such 
determinations. For example, Wilke et al. studied the physiologic motions of sheep 
and calf spines [7-9]. The resulting values were compared to baseline human values 
[10]. Wilke et al. concluded that the physiologic motions of the sheep and calf were 
roughly similar to those of a human, and thus, these animals could reasonably 
model human spinal kinematics. 

Boden and colleagues have developed and extensively published about a spine 
model using a smaller animal, the New Zealand white rabbit [11-13]. Methodolo
gy was developed specifically to study the intertransverse process fusion. The surgi
cal technique used by this group is similar to that used clinically. The observed 
pseudoarthrosis rate of 33 % with autograft alone also mirrors human clinical out
comes. Nonetheless, physiologic biomechanical testing was not performed. The bio
mechanical testing performed quantified tensile fusion mass strength, but did not 
evaluate the physiologic effects of local fusion masses. Since its introduction, many 
other research groups have adopted this model [14-17]. Unlike the sheep and calf, 
there are significant anatomic differences between the rabbit and human spines. The 
rabbit has seven lumbar vertebra as compared to human five lumbar vertebra. The 
rabbit's spine has evolved to facilitate ambulation as a quadruped, as opposed to 
humans who evolved to facilitate bipedal ambulation. Furthermore, the rabbit is sig
nificantly smaller than any animal for which physiologic spine motion has been pre
viously studied. Objective physiologic data of the rabbit spine would thus be useful. 
In particular, the lower lumbar spine needs to be characterized to further interpret 
the model of Boden et aI., which focuses on the LS-6 intervertebral level. The first 
portion of this study was performed to evaluate the normal physiologic motion of 
the rabbit's lumbar spine. The data was then compared to human data as well as 
other animal studies previously studied in the lumbar spine. 

Despite the frequency with which posterolateral fusion is performed, limited 
information is available regarding the quantitative biomechanical stabilization pro
vided by this technique. That is to say, the stability that can be expected has not 
been clearly defined. As mentioned above, the posterolateral fusion produced in the 
New Zealand white rabbit model has been described with histologic analysis and 
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with tensile testing. Although this tensile testing has determined the physical 
strength and stiffness of both fusion masses themselves, it has not provided infor
mation regarding the physiologic multi-directional stabilization afforded by inter
transverse process fusion. The hypothesis for the second portion of our study was 
that successful fusion does not eliminate intervertebral motions. Using the norma
tive rabbit data collected in the first portion of the study, the New Zealand white 
rabbit model was used to define the physiologic multi-directional stabilization pro
vided by posterolateral lumbar fusion. 

More recently, several methodologies have been used to enhance autograft 
fusion. Recently, more potent osteoinductive agents have been evaluated as poten
tial bone graft alternatives. These studies began with the evaluation of slurries of 
demineralized bone matrix. Despite encouraging results [18] the content of such 
preparations was poorly defined and not always reproducible. Subsequent work 
has focused on individual, well characterized molecules such as bone morpho
genetic proteins, or BMPs that have been prepared using molecular biologic tech
mques. 

Recombinant human BMP-2 (Genetics Institute, Cambridge, MA) has been stud
ied in a New Zealand white rabbit intertransverse process fusion model. The surgi
cal technique used with this model was similar to that used clinically, as is the 67% 
rate of fusion with autograft. The BMP-2 molecule was found to induce fusion more 
rapidly than autograft bone and with a lower pseudoarthrosis rate [13]. 

Recombinant human BMP-7, also known as osteogenic protein-l (OP-l), is the 
only other BMP currently being commercially developed (Stryker Biotech, Hopkin
ton, MA). Extensively evaluated with demonstrated efficacy in a wide variety of 
applications [19,20], OP-l has not been thoroughly studied in the lumbar spine. 

We hypothesized that OP-l can be used to induce solid intertransverse process 
fusion in the rabbit model and act as a substitute for autograft. The third portion of 
our current study was designed to define the functional radiographic and histolog
ic outcomes of OP-l induced intertransverse process fusion in the established New 
Zealand white rabbit model. 

As stated earlier, there are also a multiplicity of conditions which can increase 
the rate of pseudoarthrosis, such as tobacco use. Smoking interferes with bone 
homeostasis and repair in several ways. It has been demonstrated to decrease bone 
density in the axial skeleton and to increase parathyroid hormone as well as resis
tance to calcitonin. Furthermore, nicotine stimulates sympathetic vasoconstriction, 
which may limit cellular metabolic processes, and there is evidence that nicotine 
decreases neovascularization [21, 22]. 

With the New Zealand white rabbit model, the clinical observation that smok
ing interferes with fusion has been confirmed [23, 24]. Nicotine exposure decreased 
the rate of autograft fusion from 53-56% down to 0% in the two reported studies 
to date. These dramatic results were defined by manual palpation and tensile test
ing. Silcox went on to show that combining autograft with an osteoinductive pro-
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tein extract produced 100% fusion rate in the rabbit model, even in the presence of 
nicotine [25]. This suggested that BMPs might offer a method to overcome the 
inhibitory effects of nicotine on spinal fusion. 

It was hypothesized that OP-1 might be used alone as a graft substitute to over
come the inhibitory effect of nicotine on posterolateral lumbar fusions. The purpose 
of the final portion of our present study was to use the New Zealand white rabbit 
model to study autograft in OP-1 induced fusions in the presence of systemic nico
tine. 

Materials and methods 

Study design 

The present study was divided to address four questions. First, the New Zealand 
white rabbit lumbar spine physiologic biomechanical characteristics were defined 
using multi-directional flexibility testing. Second, the New Zealand white rabbit 
was established as a model for posterolateral lumbar fusion, and the biomechanical 
stability provided by such fusion was defined. Third, OP-1 was evaluated as a sub
stitute for autograft in posterolateral fusion and, finally, the inhibitory effect of 
nicotine on posterolateral fusion was confirmed, and the ability of OP-1 to over
come that inhibitory effect was evaluated. 

For the first part of the study, ten skeletally mature rabbit cadaveric lumbar 
spines were evaluated using biomechanical flexibility testing. For the subsequent 
parts of the study, single level intertransverse process fusions were performed at the 
L5-6 level in 49 New Zealand white rabbits [11]. The rabbits were divided into five 
groups: (1) autograft, (2) OP-1 with its commercially prepared carrier, (3) carrier 
alone, (4) autograft in the presence of nicotine, and (5) OP-1 with its carrier in the 
presence of nicotine. Autograft was harvested from both iliac crests of all animals. 
As such, autograft was discarded for those animals in non-autograft groups. Ani
mals in the nicotine groups were exposed to systemic nicotine via subcutaneous 
mini-osmotic pumps. Animals were sacrificed 5 weeks after surgery and the success 
of the fusion was evaluated by multiple testing modalities including manual palpa
tion, plain radiographs and flexibility testing. This protocol was approved by the 
Yale Animal Care & Use Committee. 

Cadaveric specimens for biomechanic testing 

Ten skeletally mature New Zealand white rabbit cadaveric spines were obtained. As 
noted above, the species has seven lumbar vertebrae. Previous studies have focused 
on the rabbit L5-6 intervertebral level. It was thus determined to be appropriate to 
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study this level as well as one level above and one level below. Osteo-ligamentous 
L4-7 specimens were harvested en bloc. Specimens were dissected of all soft tissues 
except for ligaments and joint capsules. Specimens were stored at -20 0 C wrapped 
in saline moistened gauze and sealed in double plastic bags until testing was per
formed. Such storage conditions have been shown not to affect the outcome of stan
dard biomechanical testing [26]. Biomechanical flexibility testing is described later 
in this section. 

Posterolateral fusions 

Adult New Zealand white rabbits weighing approximately 4.5-5 kg were housed at 
an established animal facility for a minimum of 1 week prior to surgery to allow 
acclimatization. Preoperative radiographs were obtained to rule out underlying 
pathology. 

Surgical anesthesia was achieved with subcutaneous injection of Acepromazine 
(0.75 mglkg) followed by Ketamine (15 mglkg) and Xylazine (2.5 mglkg). The rab
bits were then intubated and isofluorane inhalation was used to maintain anesthe
sia. Enrofloxacin (5-10 mg/kg SCi was given subcutaneously immediately prior to 
surgery. The rabbits were shaved, positioned, and prepped in a standard surgical 
fashion. A dorsal midline incision was made in the lumbar region. The L5 and L6 
transverse processes were identified and exposed through two paramedian fascial 
incisions. These levels were identified intraoperatively by referencing from the 
sacrum with manual palpation. Autograft was recovered from all animals, regard
less of the experimental group to which they would be assigned. This was done to 
expose all animals to the same operative stresses. Both iliac crests were exposed 
through separate fascial incisions and approximately 2-3 cm3 cortico-cancellous 
graft was obtained. The crest sites were then irrigated, packed with gel foam, and 
closed. 

Attention was returned to the fusion beds. After irrigation, the transverse 
processes were decorticated with a power burr. The transverse process shavings pro
duced by decortication were left in the lateral gutters in all cases. One of three graft 
materials was used. The grafting materials were: (1) approximately 1-1.5 cm3 of the 
recovered autograft per side, (2) 0.3 grams of Bovine Type I collagen matrix and 
77 mg of carboxymethylcellulose per side (the commercially developed carrier for 
OP-l), or (3) the above carrier with 1.2 mL of OP-l per side. This quantity of OP-
1 was based upon previous studies [12, 20]. This was considered to be an appro
priate volume for the fusion bed. 

For those rabbits in the nicotine portion of the study, nicotine pumps were then 
implanted subcutaneously in the interscapular region. These mini-osmotic pumps 
(Alzet, Palo Alto, CAl delivered 4.5 J..lgrams/kglmin of nicotine at a rate of 2.5 J..ll/h. 
This dosing was based on earlier rabbit studies which were able to achieve serum 
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nicotine levels in the range of 10-70 Ng/ml [21, 23, 25] which is comparable to 
those of a human smoking 20-30 cigarettes per day [27-29]. 

Once the graft material was placed and the incisions were closed, the rabbit was 
extubated. Postoperative radiographs were taken to confirm the level of fusion. 
Buprenex (0.04 mg/kg bid) and Enrofloxacin (5 mg/kg qd) were given subcuta
neously for 2 days. 

Postoperative animal care 

The rabbits were then individually housed for 5 weeks in cages that were approxi
mately 0.9 x 1.2 m in size. Daily rounds insured that the animals were moving all 
extremities, posturing well, and feeding appropriately. 

Serum levels of nicotine and its primary metabolite, cotinine, were monitored 
initially and with weekly subsequent blood samplings of those animals implanted 
with nicotine pumps. Serum samples were collected, stored at -20De, and later ana
lyzed at an independent commercial laboratory. 

A follow-up of 5 weeks was chosen because fusions have been shown to be dis
tinguishable from nonunions by this time [11]. Rabbits were given calcein 1 and 11 
days prior to sacrifice as a fluorescent marker of mineralization for lateral histolog
ic examination. The rabbits were sacrificed with a sedating dose of subcutaneous 
Ketamine followed by a lethal dose of intravenous Pentobarbital. 

Evaluation of specimens 

The fusion masses of postoperative specimens were characterized and compared 
with manual, radiographic, biomechanical, and histologic evaluations. As stated 
previously, ten non-operated cadaveric specimens were tested using biomechanical 
flexibility testing. 

Manual palpation testing 

Manual palpation has been thought of as an accurate indicator of successful lumbar 
fusion. In the clinical setting, the spine may be evaluated by direct manual palpation 
and surgical exploration to determine whether or not pseudoarthrosis exists. Due to 
clinical limitations of other methodologies, this is widely considered the definitive 
method for determination of fusion in the clinical setting. In an analogous manner, 
two independent observers manually evaluated the rabbit lumbar spines immedi
ately after sacrifice. The L5 and L6 vertebra were manipulated with forces small 
enough not to produce gross trauma, but great enough to evaluate for gross inter-
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vertebral motion. Specimens were determined to be fused when no significant 
motion was noted by either observer. 

Radiologic evaluation 

PA and lateral radiographs were taken to evaluate the fusion masses. Films were 
reviewed in a blinded fashion with fusion defined as calcification bridging from one 
transverse process to the next. 

Specimen preparation 

The superior (L4) and inferior (L7) vertebra were potted in resin mounts with the 
LS-L6 intervertebral discs oriented in the horizontal position. Screws were placed in 
the border vertebra for additional fixation in the resin mounts. Bolts were also 
imbedded in each mount to allow fixation of the lower vertebra to the testing table 
to apply pure moments to the upper vertebra via a headpiece. 

The upper and lower mounts were fitted with Plexiglas motion detection flags 
on the lateral aspect of the specimen. LS and L6 were fitted with similar flags 
attached to the vertebral bodies via pairs of 0.062 inch k-wires. Each flag was 
equipped with three non-eo-linear inferred light emitting diodes designed for detec
tion by an opto-electronic motion measure system (Optotrak, Northern Digital, 
Waterloo, Ontario, Canada). Radiographs were taken of each specimen to insure 
that no underlying abnormalities or injuries were present. 

Three dimensional flexibility testing 

The specimens were kept moist with normal saline throughout the flexibility testing 
as previously established and described in human specimens [30, 31]. Human spec
imens were loaded to a maximum of 10 N-m in the studies referenced earlier. It was, 
however, determined appropriate to decrease the testing moment applied to the rab
bit spines in a body mass proportional fashion. Thus, a maximum moment of 
0.27 N-m was selected for testing. 

Further validation of this selected testing moment was obtained from prelimi
nary reproducibility experiments. The loading protocol involved loading in a step
wise fashion to the maximum load. Each step (0.00, 0.09, 0.18, and 0.27 N-m) was 
sequentially applied for 30 s to allow visco elastic relaxation. A total of three 
load/unload cycles was performed for each motion study and data was gathered 
from the final loading cycle. This protocol had been established to minimize air due 
to the effects of creep. 
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Histologic analysis 

Histologic analysis was then performed to evaluate the maturity of bone induced by 
OP-1 as compared to that induced by autograft or carrier alone. This included an 
assessment of callus constituents: bone, cartilage, and fibrous tissue. Immediately 
after biomechanical testing, the LS-L6 spine segments were isolated and divided 
along the mid-sagittal plane. Each half specimen was prepared for either decalcified 
or undecalcified sectioning. 

Results 

Baseline cadaveric spines 

Using the flexibility testing protocols as previously described we found that a sig
nificant portion of the motion for each direction of applied moment was due to the 
neutral zone with a gradual increase in displacement with subsequent loading up to 
range of motion with the application of 0.27 N-m. Flexion and extension were stud
ied for independent study parameters. Lateral bending and torque were expected to 
be symmetric due to the symmetry of the lumbar spine. The relative differences with 
this parallel data are comparable to that of the reported human data. 

The three levels tested have roughly similar range of motion and neutral zone 
parameters. There is a trend toward increased flexion and decreased lateral bending 
moving caudal through the levels tested. The greatest motion for each level tested was 
in flexion with lesser motion in extension and lateral bending, and the least amount 
of motion with torque. As such, flexion was used as the basis for comparison. 

Surgical complication rates 

Out of the forty-nine rabbits receiving surgical fusion, 10 were excluded (24%): five 
due to subclinical deep infections discovered at the time of sacrifice, four due to 
anesthetic related complications and one due to sciatic nerve decompression from 
the iliac crest harvest site. This complication rate is comparable to previous studies 
using this model (20%) [11]. Of the remaining 39 rabbits, eight each were in the 
autograft, OP-1, carrier alone, and nicotine exposed autograft groups. Seven rabbits 
were in the nicotine exposed OP-1 group. 

Autograft fusion spines 

By manual palpation, five of the eight rabbits had solid fusion. There were no dif
ferences in opinion between the two observers regarding the fusion status of the 
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specimens. Radiographically, fusion masses were clearly visualized. However, as all 
specimens were interpreted to have some trabecular bridging, all radiographs were 
read as fused. In other words, pseudoarthrosis was not noted by radiographic eval
uation at the 5-week timepoint. 

Baseline flexibility data of the L5-6 level of non-operative rabbit spines was 
based on a group of 10 animals of similar age and mass to those of the current study. 
The range of motion of the fused specimens was significantly decreased from that 
of baseline non-operative specimens in flexion (81 %), extension (61 %) and right 
and left lateral bending (67% and 83% respectively). Right and left axial rotations, 
which had significantly smaller baseline values than the other motions, were with
out change. 

The specimens determined to be unfused by manual palpation were similarly 
studied biomechanically. This group consisted of three specimens. In comparison to 
baseline non-operative flexibility data, the unfused specimens had a decrease in flex
ion range of motion of 51 %. In flexion, the range of motion of fused specimens had 
an additional decrease of 63 % from the unfused specimens. Thus, the pseudoarthro
sis specimens represented a distinct intermediate stability between the baseline and 
fused specimens. 

Similar to range of motion, the neutral zone of the fused specimens was signifi
cantly decreased from that of baseline non-operated specimens in flexion (85%), 
extension (65%), and left lateral bending (88%). In comparison to baseline non
operative flexibility data the unfused specimens had a decrease in flexion neutral 
zone of 50%. In flexion, the neutral zone of fused specimens had an additional 
decrease of 71 % from the unfused specimens. 

OP-1 fusion spines 

By manual palpation five of the eight autograft rabbits fused (63%), none of the car
rier alone rabbits fused (0%), and all of the OP-1 rabbits fused (100%). Both auto
graft and OP-1 fusion rates, as determined by manual palpation, were significantly 
different from the carrier alone group, but were not significantly different from each 
other. Radiographically, all of the autograft specimens were thought to be fused 
with three unfused specimens incorrectly assessed by this approach. Some of the 
eight carrier alone specimens were correctly determined to be unfused, but two were 
incorrectly thought to be fused. Seven of the eight OP-1 specimens were correctly 
determined to be fused, but one was incorrectly thought to be fused. Overall, the 
radiographs were 92% sensitive and 55% specific for determining fusion with a 
positive predictive value of 71 % and negative predictive value of 86%. 

The findings of biomechanical testing further characterized the fusion masses. 
Based on findings from cadaveric rabbit spines, flexion was determined to be the 
best indicator for fusion as it was the direction of greatest motion for the rabbit lum-
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bar spine. Of the autograft specimens, the five that were fused by manual palpation 
had 2.3 0 of flexion. Conversely, those that were unfused by manual palpation had 
6.3 0 of flexion. The OP-1 specimens which were fused by manual palpation had 
0.8 0 of flexion. The carrier alone specimens, which were unfused by manual palpa
tion, had 6.3 0 of flexion. The differences in flexion range of motion between the 
three groups was significant using one way ANOVA analysis. Not surprisingly there 
was little difference between the flexion range of motion of the unfused autograft 
specimens and the carrier alone specimens. In addition, the OP-1 specimens had sig
nificantly less flexion than fused autograft specimens. 

Histologic sections were analyzed using several staining preparations. Toluidine 
blue staining highlighted the regions of calcification. Calcified islands were seen in the 
autograft fusion masses corresponding to the original grafting material. Essentially, 
no calcified material was seen in the carrier alone fusion masses. Conversely, bridging 
calcification was clearly seen in the OP-1 fusion masses. Higher magnification tolui
dine blue and hematoxylin used in staining further defined the fusion masses with the 
autograft fusion masses characterized predominantly by cartilaginous tissue and small 
amounts of fibrous tissue between bone graft fragments. The intertransverse region of 
the carrier alone specimens demonstrated moderate fibrous tissue and remnants of the 
reabsorbing collagen-based carrier. Despite endochondral bone formation around the 
decorticated surfaces of the transverse process, no intertransverse callus was seen. 
There was also no significant inflammatory reaction appreciated. 

OP-1 induced fusion masses were characterized by a cortical rim of woven bone 
surrounding trabecular bone. While small amounts of cartilaginous material were 
present, the OP-1 fusion masses were predominantly maturing bone with high mag
nification revealing significant osteoblast activity. Calcein fluorescent staining con
firmed active mineralization fronts in the OP-1 specimens. This was present to a less
er extent in the autograft specimens and was negligible in the carrier alone specimens. 

Nicotine exposed fusion spines 

Weekly nicotine and cotinine levels were determined by gas chromatography. The 
average nicotine value for each timepoint studied was within the target range of 
10-70 Ng/ml. No clinical signs of nicotine toxicity were noted. 

By manual palpation, two of the eight nicotine exposed autograft rabbits fused 
(25%). This is less than the five of eight autograft fusions in rabbits not exposed to 
nicotine (63%). These results were consistent with the inhibitory effect of nicotine 
on fusion. Of note, the two nicotine exposed autograft rabbits that were fused at 5 
weeks had nicotine levels within the range of the other unfused rabbits. 

By manual palpation, all of the nicotine exposed OP-1 rabbits fused (100%). 
This fusion rate is comparable to the 100% fusion rate of OP-1 rabbits not exposed 
to nicotine. In comparing fusion rates of the two nicotine exposed groups, OP-1 
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specimens had a significantly higher fusion rate than autograft speCImens (Chi 
Squared Analysis)_ 

Radiographically, five of seven nicotine exposed OP-l rabbits were determined 
to be fused. Thus, two of the fused nicotine exposed OP-l specimens were misin
terpreted to be unfused. Of the nicotine exposed autograft rabbits three of the six 
unfused specimens were interpreted to be unfused. One of the two nicotine exposed 
autograft specimens that fused was interpreted to be fused. Overall, radiographs 
were 67% sensitive and 50% specific for determining fusion with the 67% positive 
predictive value and 50% negative predictive value. 

The results of biomechanical testing correlated well with those of manual palpa
tion. Of the nicotine exposed autograft specimens the six that were unfused by man
ual palpation had 4.20 of flexion. Conversely, those that were fused by manual pal
pation had significantly less flexion. The seven nicotine exposed OP-l specimens, 
which were all fused by manual palpation, had 0.60 of flexion. 

The differences in flexion range of motion between autograft and OP-l groups 
with and without nicotine were significant using one way ANOVA analysis. In addi
tion, there was little difference between the flexion data of the OP-l group with 
nicotine and the OP-l group without nicotine. 

Histologic sections were analyzed in a similar fashion to that previously 
described. Calcified islands corresponding to the original graft material character
ized the nicotine exposed autograft specimens. Calcified bridging was clearly seen in 
the nicotine exposed OP-l group. The fusion masses of this latter group were 
notable for a bony cortical rim with central trabecular bone. Upon higher magnifi
cation, nicotine exposed autograft fusion masses, particularly in the unfused speci
mens, were characterized by minimal amounts of cartilaginous and fibrous tissue 
between bone graft fragments. The nicotine exposed OP-l fusion masses were char
acterized by a maturing bony callus. Higher magnification of the OP-l fusion mass
es revealed significant osteoblast activity and substantial osteoid formation indica
tive of newly forming bone. Calcein fluorescent staining confirmed active mineral
ization fronts in the OP-l specimens. Fluorescent staining was negligible around the 
islands of bone graft found in the autograft group. 

Discussion 

The New Zealand white rabbit has been used as a spine model in looking at the 
effectiveness of posterolateral lumbar fusions. Although the biomechanical proper
ties of the fusion masses themselves have been studied, the baseline and resulting 
alterations in physiologic motion have not been established. This is important, as 
solid fusion masses do not necessarily eliminate inter-body motion. 

The primary purpose of the first portion of this study was to determine baseline 
biomechanical flexibility parameters of the New Zealand white rabbit lumbar spine. 
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The presented range of motion and neutral zone data can be used as normative val
ues to which future experiments can be compared. 

The secondary purpose of this portion of the study was to determine the physi
ologic motion of the rabbit lumbar spine to that of the human lumbar spine. The 
data from our physiologic range of motion study is remarkably similar between the 
rabbit and the human. In fact, the average difference in range of motion between the 
two species at the three lowest intervertebral levels was only 2.4r. 

The purpose of the second portion of this study was to use the New Zealand 
white rabbit model to perform in vitro characterizations of in vivo fusions using the 
techniques of manual palpation, radiography, and biomechanical multi directional 
flexibility testing. By manual palpation, we found a 35% pseudoarthrosis rate with 
posterolateral fusion using autologous iliac crest bone graft. This approximates the 
previously reported pseudoarthrosis rate of 33 % with this model. 

While radiography revealed fusion masses, the technique was not useful in iden
tifying pseudoarthrosis. This is consistent with previous studies that have found a 
limited role for plain radiographs in defining fusion [32]. 

Physiologic biomechanical flexibility testing offers a precise method to charac
terize the changes in physiologic motion the result from spinal fusion. In the current 
study, posterolateral fusion led to a significant stabilization of the L5-6 motion seg
ment with significant range of motion decreases in flexion, extension, and lateral 
bending of 61-83%. Interestingly, the changes in neutral zone closely mirrored the 
changes in range of motion and remained a relatively constant percentage of the 
range of motion. 

These findings suggest that successful fusion significantly limited, but did not 
eliminate, intervertebral motion at the time of point studied. Certainly, further stud
ies elucidating the contributing factors to fusion flexibility are indicated. Neverthe
less, the findings of this study should remind the clinician that the primary goal of 
fusion surgery is spinal stabilization sufficient to eliminate pain and not necessarily 
to completely eliminate motion. 

Unfortunately, the correlation between biomechanical stabilization and pain 
relief is a difficult one to study. In regards to this question of how much stability is 
adequate, our pseudoarthrosis specimens are of interest. The flexibility of these 
specimens, intermediate between those of fused and baseline non-operative speci
mens was thought to be secondary to scarring produced by surgical exposure. The 
scarring effect is consistent with the findings of previous animal studies [33]. 
Whether this decrease in flexibility would have limited clinical symptoms cannot be 
determined from this animal model. 

To gain further perspective on the decrease in flexibility produced by biologic 
fusions, the present results can be compared to time zero cadaveric instrumentation 
studies of lumbar fusion. Panjabi and colleagues evaluated the kinematic effects of 
several spinal fixation devices in human cadaveric spines using flexibility testing 
similar to that used in the present experiment [33]. Of the posterior fixation con-
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structs tested, hook and rod constructs lead to an approximately 15-70% flexion 
stabilization with pedicle screw constructs leading to an approximately 65-80% 
flexion stabilization. In other words, these posterior constructs lead to a time zero 
stabilization only slightly less than that observed in the present study with biologic 
posterolateral fusion (81 % ). 

Bone morphogenetic proteins are currently being evaluated as potential substi
tutes for iliac crest autograft in a wide variety of clinical situations. The purpose of 
the third portion of this study was to evaluate OP-1 as a bone graft substitute in 
posterolateral fusion using the New Zealand white rabbit model. 

Biomechanical flexibility testing revealed five of eight of the autograft rabbits to be 
fused. This fusion rate was consistent with previous reports and the histologic evalu
ation of these fusion masses showed an immature combination of bone and cartilage. 

OP-1 induced fusion in all eight of the treated rabbits. This is higher than that 
seen with autograft and is consistent with the fusion rate described with BMP-2 
[13]. While the fusion rates with OP-1 as determined by manual testing were not 
significantly different from autograft fusion rates, biomechanical testing revealed 
that OP-1 fusions were more stable than the time matched autograft fusions. His
tologically, the OP-1 induced fusion masses were characterized by predominantly 
remodeling bone that was more mature with that associated with autograft. These 
data suggest that the fusion process was occurring more rapidly with OP-1 than 
with autograft. 

Conversely, the carrier alone did not induce any fusion. The carrier is an impor
tant component of any potential bone graft alternative as it distributes the osteoin
ductive agent while keeping it in the desired location. In this case, the carrier was 
clearly not responsible for the osteogenic response. Of note, the Bovine Type I col
lagen matrixlcarboxymethylceloulose carrier was free of any significant inflamma
tory response. 

OP-1 appears to be an effective bone graft alternative for intertransverse process 
spinal fusion in the New Zealand white rabbit model. 

The final portion of this study was performed to evaluate autograft in OP-1 
induced posterolateral fusions that were exposed to systemic nicotine. It has previ
ously been shown that nicotine inhibits posterolateral autograft lumbar fusion. The 
present study showed a similar decrease in autograft fusion rate from 63% to 25% 
with the introduction of systemic nicotine. As observed in prior studies, nicotine 
appeared to retard or preclude a successful bony healing process at the histologic 
level. 

In the third portion of this study OP-1 had been shown to induce 100% pos
terolateral lumbar fusion in the rabbit model in the absence of nicotine exposure. 
This 100% rate of fusion was shown to persist in the presence of systemic nicotine. 
The ability of OP-1 to induce fusion was demonstrated with manual and biome
chanical testing. Histologically, maturing bony callus with a cortical rim was seen in 
the OP-1 study group despite the presence of nicotine. 
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As only one timepoint was evaluated in the study no significant delay in bony 
repair could be determined for the nicotine exposed OP-I-induced fusion masses. 
However, there may have been an initial delay in healing which was not evident later 
in the healing process. 

Further, it is possible that additional nicotine exposed autograft specimens may 
have gone on to fusion with additional time. We were unable to say if nicotine 
delays or prevents a proportion of posterolateral spine fusion. Nevertheless, it is 
clear that OP-I is able to induce more mature fusion masses more rapidly than auto
graft at the 5 week time point studied in this model. In addition, the success of OP
I to achieve such fusions without the use of autograft implies that the morbidity 
associated with autograft harvest may be avoided in the future. 

Currently, studies are underway to characterize the molecular mechanism of 
action of OP-l. It has been suggested that more than one growth factor may be nec
essary in the human clinical setting to achieve a successful fusion. Studies have been 
undertaken to characterize the influence of an individual bone morphogetic protein 
on the expression of bone morphogenetic proteins that occur in the natural cascade 
of bony healing as well as the expression of various autologous growth factors 
involved in bony healing such as vascular endothelial growth factor, basic fibroblast 
growth factor, etc. 

Overall, OP-I appears able to overcome the inhibitory effects of nicotine on 
spinal fusion. While the role of OP-I in the clinical setting remains to be defined, 
the final portion of the study suggests that OP-I may be beneficial in the smoking 
patient in whom autograft may not provide reliable posterolateral lumbar fusion. 
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Bone morphogenetic proteins and joint development 

Morphological events of jOint formation 

Bone morphogenetic proteins (BMPs) are involved in a broad array of morpho
genetic processes. These span from the specification of the dorso-ventral body axis 
to patterning, organogenesis and differentiation of most tissues. Nevertheless, the 
initial discovery of BMPs as protein preparations that induce ectopically and in vivo 
a cascade of endochondral bone formation in rats, has strongly stimulated the study 
of their role in the development of the skeleton and in the patterning of the synovial 
joints [1-3]. In addition, with their remarkable cartilage and bone morphogenetic 
activity, BMPs represent an attractive therapeutic option for skeletal and joint dis
orders. Indeed, growing scientific evidence supports the concept that tissue repair 
and regeneration recapitulates to a certain extent the process of tissue formation 
during embryonic development. Taking advantage of the expanding knowledge in 
the field of developmental biology to define potential new targeted therapeutic 
approaches, the role of BMPs in the development of the skeleton and in particular 
in the patterning and differentiation of joint tissues becomes increasingly clinically 
relevant. 

Joint development has been extensively studied in a variety of animal species 
including human [4-12], chick [13-18], mouse [19,20], and rat [21]. As the mole
cular cascades driving organogenesis and tissue specification are highly conserved 
across species, with some precaution, one can integrate the data available from 
those different animal species into a common scheme. 

The appendicular skeleton develops from a primitive avascular, densely packed 
cellular mesenchyme derived from the lateral plate mesoderm [22-24]. Limb out
growth is proceeding in a proximal-distal fashion, in the forelimbs earlier than in 
the hindlimbs. The condensation of mesenchymal cells leads to the formation of 
uninterrupted rod-like structures called anlagen. Subsequently, within the conden
sations, cells undergo chondrocytic differentiation to form cartilaginous templates 
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surrounded by a sheath of spindle-shaped cells, the perichondrium. In the middle of 
each skeletal element, chondrocytes mature toward hypertrophy to be replaced by 
bone tissue in a process called endochondral ossification. 

Synovial joints form through a process of segmentation of the skeletal elements. 
In the region of the prospective joint, a narrow zone of mesenchymal cells does not 
undergo cartilage differentiation [19] and forms a so-called joint interzone. Mor
phologically [21], the joint interzone represents the first evidence of joint formation. 
The interzone, at 12 days post coitum (dpc), is constituted by a few layers of a mor
phologically homogeneous elongated cell type. By 15 dpc, the interzone differenti
ates into three distinguishable layers. Two chondrogenic, perichondrium-like dense 
layers covering the articulating surfaces of the cartilage elements contain flattened 
elongated cells at the articular side and rounded, chondrocyte-like cells at the carti
laginous side. One layer of a loose cellular tissue with a sparse cell population and 
enlarged intercellular spaces is in between the two chondrogenic layers. The dense 
zones further differentiate into articular cartilage at both ends of the future joint. 
After a phase of vascular invasion that selectively involves the peripheral part of the 
interzone, the one that will give rise to the capsulo-synovial apparatus, a cavitation 
process takes place in the central loose layer of the interzone. Joint cavitation starts 
with the appearance of small clefts within the interzone, which eventually coalesce 
to form the synovial cavity. In rats, joint cavitation is seen first in proximal joints at 
16 dpc and is completed in distal joints by 20 dpc. Peri- and intra-articular joint 
associated structures such as joint capsule, menisci, and ligaments differentiate from 
the mesenchymal cells surrounding the interzone and from the cells constituting the 
interzone, respectively [21]. In contrast to mammals, in the avian embryo some joint 
interzones form after the entire mesenchymal condensation underwent cartilage dif
ferentiation. This happens presumably by invasion of mesenchymal cells from the 
perichondrium or by de-differentiation of chondrocytes at the site of interzone for
mation [25, 26]. In addition, the avian joint is somewhat different from the mam
malian joint, since the articular surface is covered by a perichondrium-like fibro
cartilage layer, the articular cap, which is absent in mammals [14], with the excep
tion of the temporomandibular joint. 

Molecular signaling in joint formation 

From the molecular point of view, joint development consists of two main critical 
phases: joint patterning, with the specification of the site where a joint will form 
within a mesenchymal condensation, and tissue differentiation. After the joint inter
zone has been established, it further differentiates into three layers: two external lay
ers that will give rise to the articular cartilage, while the middle one will undergo a 
process of cavitation. Subsequently, with an articulated sequence of differentiation 
events, the subchondral bone and the articular cartilage will differentiate fully. 
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There is compelling evidence for a role of BMPs in both specification and tissue dif
ferentiation in joint development. 

The identification of the signal(s) responsible for the determination of the site of 
joint formation is still a challenge. Hints to address this point come from genetic 
studies, transgenic models, and natural mutations in which joint formation is dis
rupted. One of the best documented candidates to playa role in joint determination 
is cartilage derived morphogenetic protein-lIgrowth/differentiation factor-5 
(CDMP-1/GDF-5) [27-30], a bone morphogenetic protein (BMP) family member. In 
developing mouse limbs, cdmpl1gdf5 is expressed in the perichondrium and in every 
interzone 24-36 h before its morphological appearance [28]. In naturally occurring 
loss-of-function mutations in the cdmpllgdf5 gene in mice (brachypodism) [29] and 
in humans (Hunter-Thompson chondrodysplasia) [31] the distal elements of the 
appendicular skeleton develop poorly and a specific subset of joints does not form. 
Although cdmpllgdf5 is expressed in all joint interzones early in limb development, 
only a subset of joints is affected by cdmpllgdf5 null mutations, indicating that 
other molecules, possibly other BMPs, can compensate the cdmpllgdf5 function. 
This hypothesis finds support in the phenotype of another spontaneous mutation of 
the CdmpllGdf5 gene in humans, Grebe chondrodysplasia (OMIM 200700) [32]. 
In contrast to the Hunter-Thompson variant, in which CDMP-1/GDF-5 protein is 
presumably absent as the result of a frame shift mutation in the mature region [31], 
the Grebe chondrodysplasia [33] is associated with a point mutation in the 
CdmpllGdf-5 gene. This mutation results in a protein that is not secreted, is inac
tive in vitro and can form non-functional heterodimers with other BMP family 
members thereby probably preventing their secretion [33]. In vitro studies suggest 
that this mutation generates a molecule that can apparently behave as a dominant 
negative for a number of other BMP family members. Therefore, this phenotype is 
much more severe than the Hunter-Thompson, and proper morphogenesis of the 
entire appendicular skeleton is disrupted, but interestingly still in a proximo-distal 
fashion. These studies provide support to the intriguing hypothesis that the mor
phogenesis of different skeletal elements is regulated by different BMP family mem
bers, as a result of gene duplications within the BMP family, followed by gain and 
loss of specific regulatory elements [1]. This would explain the complexity of the 
skeletal system of evolutionary higher species. 

Disruption of joint formation is obtained in a number of different experimental 
models. Bmp7/0pl is highly expressed in the differentiating perichondrium of chick 
limb cartilages at stages 29-34 HH (HamburgerlHamilton) [34], with characteristic 
interruptions in the zones of future joint formation [35]. Implantation of BMP-
710P-1 soaked beads at these stages in the joint region disrupts joint formation [35]. 
Thus it has been suggested that BMP-710P-1 would act as an inhibitory factor for 
joint formation, preventing joints from forming in non-physiological sites, and that 
the discontinuities in its expression in the perichondrium would have a permissive 
role [35]. In contrast to bmp7/opl, bmp2 transcripts exhibit linear domains of 
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expression in the joint interzones over the same developmental stages [35]. Bmp2 
has been also detected with a similar pattern in mice as early as at stage 13.5 dpc, 
and its expression becomes prominent at stage 15.5 dpc [36]. Overexpression of 
bmp2 and bmp4 by retroviral vectors, also disrupts joint formation [37]. The cor
rect patterning of the appendicular skeleton and the joint formation process is like
ly to require an interplay of different signaling molecules tightly restricted in their 
activity and specific expression domains. A fine balance of BMPs may playa pivotal 
role in joint identity. 

BMP signaling is regulated in many ways: at the extracellular level by several 
binding molecules (e.g. noggin, chordin and DAN/gremlins), at the receptor level by 
alternative expression of different receptors, and at the intracellular level by both 
cytosolic proteins including smads, and nuclear proteins such as smad-interacting 
proteins, and finally by several transcriptional regulators at the DNA level [38-41]. 
Noggin (encoded by the nog gene) is a secreted molecule that physically interacts 
with BMP family members and inhibits their activity [42]. It is expressed in devel
oping murine limbs in the condensing mesenchyme and in immature chondrocytes 
[43]. Its expression pattern and in vitro/in vivo function suggest that its develop
mental role is to establish boundaries of BMP activity. In noggin deficient mice the 
resulting excess of BMP activity leads to enlarged appendicular skeletal elements 
and failure to form joints [43]. This skeletal phenotype closely resembles that of 
cdmpllgdf5 overexpression [44-46]. The absence of joints is likely due to failure of 
joint formation rather than joint fusion, since the cdmpllgdf5 expression domain is 
disrupted in nog-!- mice, while the expression of other BMPs such as bmp2, bmp4, 
bmp5, and bmp6 is unaffected [43]. While heterozygous nog+l- mice appear to be 
normal, dominant missense mutations in a highly conserved region of the Nog gene 
have been identified in five independent families that segregate proximal sympha
langism (SYM1; OMIM 185800) and one dominant missense mutation in a family 
segregating multiple synostoses syndrome (SYNS1; OMIM 186500) [47]. The prin
cipal feature of both syndromes is joint fusion. The mechanism by which these 
mutations alter the noggin function and cause the phenotypes is not known. Func
tional haplo-insufficiency is one potential mechanism, as has previously been sug
gested for cdmpllgdf5 mutations in Brachydactyly C families [48]. Alternatively, 
different mutations may impair the ability of the peptide to bind a subset of TGF-~ 
family members, accounting for the differences in the two syndromes and between 
the families [47]. These data also suggest that the requirement of noggin for joint 
morphogenesis may vary between species. 

At the receptor level, BMP signaling is regulated by the expression of different 
BMP receptors [38, 39, 41]. Alk6/BMPR-IB type I BMP receptor is expressed early 
throughout the prechondrogenic mesenchymal condensations and its expression 
pattern becomes later restricted to a narrow domain flanking both distally and 
proximally that of cdmpllgdf5 in the joint interzones (Fig. 1). Although alk6 is 
expressed in all the skeletal elements, alk6-deficient mice display only limited skele-
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c D 

Figure 1 

Gene expression pattern of selected BMP signal transduction components during ioint mor

phogenesis. Cryosectioned 14.5 dpc mouse forelimbs were stained with toluidine blue (A) 

or analyzed by in situ hybridization with digoxigenin-Iabeled cRNA probes for Col2a1 (B), 

Gdf5/Cdmp1 (C) and Bmpr-lb/Alk6 (D). 

tal deformities, lacking both the first and the second phalanges [49,50]. This phe
notype is overlapping, but not identical to that of cdmpllgdfS deficient mice since, 
in contrast to cdmp lIgdfSbpj- l- mice, the metacarpal elements are of normal length 
and articulate directly to a normal distal phalanx. The double homozygous alk6-1-
cdmpllgdfSbpj- I-, however, resemble more closely the cdmpllgdfSbpj- I-, again with 
subtle differences [49,50]. These genetic data, taken together with in vitro studies 
[51, 52] seem to indicate that they function within the same pathway and that their 
absence can be compensated by other signaling pathways in most skeletal elements. 
The discrete differences between the phenotypes described indicate that cdmpllgdfS 
signals prevalently, but not exclusively, through the alk6 receptor, as well as alk6 
does not transduce only cdmpllgdf5 signaling. 
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Little is known about the molecules upstream of cdmp-lIgdf-5. Possible candi
dates are Hox genes, a family of transcription factors, which are thought to control 
the positional information of skeletal elements [53]. Indeed, mutations of hoxa and 
hoxd genes cause fusion of carpal joints [54-56]. Recently, the characterization of 
regulatory elements of gdf5 has been described [57, 58]. The knowledge and avail
ability of these elements should allow further analysis of signaling pathways criti
cally involved in the joint formation process using genetic approaches. 

The process of joint cavity formation 

Various mechanisms have been proposed to unravel the molecular basis of cavita
tion in synovial joints. To date, the factors considered as being involved in the cav
itation process are fetal movements [59-64], programmed cell death (PCD) [65-67], 
and selective secretion and turnover of ECM components [14, 68]. 

The role of movement in joint cavitation is controversial. The observation that 
synovial joints fail to develop in immobilized chick embryos [59, 61, 62] has led to 
hypothesize that mechanical disruption of intercellular matrix could occur under 
forces generated by muscle activity. However, in myogenin deficient mice, which do 
not develop contracting skeletal muscles, joint cavitation takes place normally [69]. 

During mammalian morphogenesis, PCD is an essential mechanism to eliminate 
selectively cell populations and accomplish histogenesis and organogenesis. In the 
rat embryo, PCD has been observed histologically within the interzone before cavi
tation [21]. It has been suggested that cells with chondrogenic potential would be 
eliminated in this way from the interzone, thus preventing cartilage differentiation 
[18, 65]. Another mechanism envisages synthesis and deposition of large amounts 
of hyaluronic acid (HA) as a mechanical factor to separate the opposing joint sur
faces [14, 68, 70]. This theory is corroborated by the histochemical localization of 
free HA at the chick metatarsophalangeal joint interzones concomitant with the first 
signs of cavitation at stage 37 HH [68], and confirmed by the local increased activ
ity of uridine diphosphoglucose dehydrogenase and HA synthase, enzymes involved 
in HA synthesis [70]. The swelling pressure of the HA is assumed to physically sep
arate the cells thereby inducing joint cavitation, to increase and maintain the cavi
ty, and prevent secondary fusion across the joint space [68, 70]. 

More recently, PCD has been described to occur within joint interzones of devel
oping digits in mouse fetuses between 13 and 14 dpc, thus shortly before cavitation 
starts (14-15 dpc) [67]. These data have been confirmed also in the chick embryo 
at stages 33-35 HH [71]. Cdmpllgdf5 and bmp2, expressed in the joint interzone 
within the same time window, are good candidates in mediating this process, since 
BMPs have been shown to induce apoptosis in mesenchymal cells at certain sites and 
stages during development [35, 72, 73]. In alk6-/- mice, as a secondary event, 
cdmpllgdf5 is overexpressed with an expanded expression domain [49]. This 
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expression domain overlaps with an area of intense cell death [49]. These data seem 
to indicate that cdmpllgdf5 stimulates chondrogenesis and cartilage growth 
through the alk6 receptor, while triggering apoptosis in the absence of alk6, there
fore through a different receptor. Since the alk6 expression domains are flanking the 
narrow stripe of cdmpllgdf5 expression at the joint interzones, a role of cdmpll 
gdf5 in inducing apoptotic events associated with joint cavitation is likely. 

Finally, it is important to mention that the combined genetic and experimental 
evidence clearly establish the existence of a signaling center in the joint interzone, 
directly or indirectly, orchestrating limb growth. For instance, loss of function of 
cdmpllgdf5 results in delayed chondrogenesis and shorter limbs. Overexpression of 
the same polypeptide modulates dose dependently the size of the limbs and epiph
ysis, both in the chick and mouse model [45,46, 74]. 

BMP signaling in postnatal synovial joints 

BMP Signaling in articular cartilage 

In the last decade, our understanding of the molecular events leading to joint for
mation has been rapidly expanding. However, the whole picture is still far from 
being drawn. The set of molecules known to be involved has not been completed 
yet. In addition, information of how these molecules interact with each other and 
orchestrate the processes of skeletal and joint morphogenesis and tissue differentia
tion is limited. 

Even more limited is our knowledge and data about molecular signaling in post
natal joints. There is some evidence that nature may utilize postnatally the same sig
naling pathways for comparable roles and functions during development. In other 
words, the molecular events that regulate tissue differentiation and organogenesis 
during development may also be involved postnatally in tissue homeostasis and 
repair. For example, BMPs and hedgehog proteins, critically involved in the forma
tion of cartilage and bone during embryogenesis, are also expressed in fracture heal
ing and distraction osteogenesis [75, 76]. It is conceivable that at least some of the 
molecules herein discussed in the context of joint development have also a role in 
the maintenance of joint tissues, and in the processes of tissue repair and regenera
tion. 

An example comes from GDF-S/CDMP-l. This molecule, which during devel
opment is strongly associated with the initiation of the joint interzone [3], is also 
present in normal human adult articular cartilage [77]. Its expression, as determined 
by immunohistochemistry, is mostly restricted to the superficial cartilage in normal 
joints, while in osteoarthritic cartilage its expression domain is extending to dam
aged areas [77]. These data suggest a possible role for GDF-S/CDMP-l in the home
ostasis of normal cartilage, as well as in repair processes. Accordingly, recombinant 
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GDF-5ICDMP-l increases proteoglycan biosynthetic activity in adult articular car
tilage that has been partially matrix-depleted by mild trypsin treatment [77]. 

The effects of GDF-5ICDMP-l on articular chondrocytes may not be limited to 
a stimulation of matrix synthesis. A 30-min incubation of adult swine articular 
chondrocytes with recombinant GDF-SICDMP-l at a final concentration of 100 
ng/ml resulted not only in enhanced matrix deposition, but also in an increased cell 
number when injected as a cell suspension intramuscularly in nude mice. The wet 
weight of the implant of hyaline-like cartilage recovered after 3 weeks was two- to 
three-fold higher. In addition, the cartilage tissue stained more intensely with 
safranin 0 as compared with the untreated control (Fig. 2). GDF-5ICDMP-l, there
fore, may be implicated in the proliferation and metabolic activity of articular chon
drocytes. 

A recent study demonstrated the presence of BMP-710P-l in normal adult 
human articular cartilage, as determined by in situ hybridization, Western blotting, 
and immunohistochemistry [78]. BMP-710P-l mRNA was found in the superficial 
and middle layers of the cartilage, whereas in the deep layer levels of expression 
were very low. The topographic distribution of the protein within the tissue was 
quite interesting as revealed by immunostaining performed using two different anti
bodies, one recognizing the active mature form, and the other reacting with the inac
tive pro-form. Mature BMP-710P-l was found predominantly in the superficial and 
middle layers of the tissue, whereas pro-BMP-710P-l was predominantly detected 
in the deep layer of the cartilage [78]. The distinct localization of pro- and mature 
forms of BMP-710P-l suggests that the processing of pro-BMP-710P-l into mature 
BMP-710P-l may occur primarily in the superficial chondrocytes. The detection of 
BMP receptors type IA and IB, and type II in normal human articular cartilage [79], 
further corroborates a possible autocrine/paracrine function for BMPs in the main
tenance and repair of the articular surface. 

Cartilage morphogenesis is critical for both bone and joint morphogenesis. Artic
ular cartilage and growth plate cartilage are biologically distinct. In contrast to the 
articular chondrocytes, the transient chondrocytes in the growth plate determine the 
longitudinal and circumferential growth of the cartilage skeletal elements, which are 
replaced by bone through a process called endochondral ossification. BMP-2/4 and 
BMP-7/0P-l, and BMP receptors (BMPR-IA, BMPR-IB, and BMPR-II), and their 
intracellular signaling transducers Smads have been detected immunohistochemical
ly in the epiphyseal plate of growing rats [80, 81]. Their temporal and spatial 
expression pattern suggests a morphogenic role for BMPs in the multistep cascade 
of endochondral ossification in the epiphyseal growth plate. 

Conversely, articular cartilage is stable throughout life, being resistant to vascu
lar invasion and endochondral ossification. Factors responsible for the maintenance 
of articular cartilage include TGF-~ superfamily signaling molecules. The occur
rence of osteoarthritis in adult mice with tissue specific overexpression of a domi
nant negative TGF-~ type II receptor [82] would support this concept. 
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Treatment with GDF-5/CDMP-1 enhances the capacity of articular chondrocytes to organize 

cartilage tissue in vivo. Swine articular chondrocytes from metatarsal iOints were treated with 

100 ng/ml CDMP1 or with control medium, washed and inieded intramuscularly into nude 

mice. Three weeks later the samples were weighed, and either submitted to histological 

analysis (safranin 0 staining) or digested in 0.2% crude collagenase in DMEM for cell count. 

We have determined by semiquantitative RT-PCR the expression of BMPs and 
related receptors by articular chondrocytes, isolated from normal adult human knee 
cartilage. BMP-2, -4, and -6, as well as GDF-S/CDMPl were expressed by freshly 
isolated cell populations (Fig. 3). We have found a correlation between the BMP 
expression profile and the phenotype of chondrocytes during in vitro expansion. 
While passaging, chondrocytes are known to undergo a derangement/rearrangement 
of their phenotypic traits, a phenomenon commonly called de-differentiation [83]. 
The expression levels of BMP-2 and -6 were downtegulated during passaging in par
allel with cartilage matrix proteins such as collagen type II (Fig. 3) [84]. These find-
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Modulation of the expression of some BMPs during chondrocyte expansion in vitro. 

Human adult articular chondrocytes lose their phenotypic traits during in vitro expansion. 

Bmp2 and Bmp6 mRNA levels decrease throughout passaging, paralleling the downregula· 

tion of both collagen type IIA and type liB mRNAs. 

ings underscore the potential role of BMPs in the maintenance of the chondrocyte 
phenotype. A variety of in vitro models have provided evidence that BMPs promote 
chondrogenesis [85-87], enhance cartilage matrix synthesis [88-90], and support 
re-expression of the cartilage phenotype [91, 92]. 

BMP signaling in postnatal joint associated tissues 

The joint is a complex organ that encompasses different tissues, i.e. cartilage, sub
chondral bone, menisci, and the capsulo-ligamentous apparatus. The synovial mem
brane lines the inner surface of the joint capsule and covers most intra-articular 
structures except for the cartilage. 

Increasing evidence supports the hypothesis that multipotent stem cells are avail
able postnatally in different organs and tissues. These cells could contribute to post
natal growth and participate in tissue homeostasis by replacing differentiated cells 
lost to physiological turnover, injury, and senescence. A hypothetical role for BMPs 
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in adult tissues can be the maintenance and recruitment of a pool of progenitor cells 
for tissue homeostasis and regeneration. Fine balances of BMPs would be required 
for either the maintenance of this cell population in a quiescent phenotype, or their 
activation and commitment to a specific lineage. 

Mesenchymal stem cells (MSCs) have the potential to differentiate into lineages 
of mesenchymal tissues, including cartilage, bone, fat, and muscle. Isolation and 
characterization of MSCs from bone marrow [93] and periosteum [94, 95] have 
been described. We have identified a population of multi potent MSCs derived from 
adult human synovial membrane. These cells possess in vitro high self-renewal 
capacity with limited senescence. Under appropriate culture conditions, expanded 
synovial membrane-derived MSCs can be induced to differentiate in vitro toward 
chondrogenesis, osteogenesis, myogenesis, and adipogenesis [96]. As determined 
by RT-PCR, synovial membrane-derived MSCs express all BMP receptors and 
many BMPs (Tab. 1). In recently described studies, no BMP receptors of any type 
were detected in normal synovial membrane by immunostaining [79]. This appar
ent discrepancy may have different explanations. The cell isolation technique and 
the subsequent expansion of this selected cell subpopulation can enrich in BMP 
receptor expressing cells. In addition, cells in culture are exposed to an environ
ment that is different from the native tissue, and therefore change their molecular 
phenotype. 

Progenitor cells present in the synovial membrane could be responsible for the 
cartilaginous metaplasia observed in synovial chondromatosis, characterized by the 
formation of cartilage nodules within the SM [97, 98]. Although TGF-~l has been 
detected in synovial chondromatosis [99], its role in the pathogenesis of this process 
remains unclear. 

Multiple injections of TGF-~l into normal murine knee joints cause the forma
tion of "osteophytes," which have been described as being of periosteal origin 
[100-102]. The chondro-osteogenic potential of periosteum is known [94, 95, 103]. 
However, progenitor cells present in the SM might contribute to the process of 
osteophyte formation observed in TGF-~l injected joints. 

Repair processes require not only tissue regeneration as a re-creation of 
destroyed cells and extracellular matrix, but also the maintenance of tissue archi
tecture and appropriate relationships between different tissues. TGF-~ superfamily 
members including BMPs/CDMPs are good candidates for the orchestration of these 
regenerative processes. As morphogens, they would be involved in the coordination 
of different events such as positional information, patterning, and they could par
ticipate in the regulation of the proliferation rate and the progress in the differenti
ation cascade and maturation process. GDF-5, -6, or -7 appear to be able to induce 
neotendon/ligament formation when implanted at ectopic sites in vivo [104], sug
gesting that they can influence progenitor cells to differentiate along a tendon/liga
ment pathway. Implantation of GDF-5 or -6 on collagen sponges has been reported 
to enhance tendon healing in rats [105]. The elucidation of the functions of mor-
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Table 1 - Expression of BMPsICDMPs and receptors by human synovial membrane-derived 

mesenchymal stem cells, as determined by RT-PCR. 

Receptors BMPs/CDMPs 

ALK1 + BMP2 + 
ALK2 + BMP3 

ALK3 + BMP4 + 
ALK4 + BMP5 

ALK5 + BMP6 + 
ALK6 + BMP7/0P1 

BMPR2 + GDF5/CDMP1 + 
GDF6/CDMP2 

TGF-~1 + 
TGF-~2 + 
TGF-~3 + 

phogens including the BMPs/CDMPs will lead to the identification of additional 
therapeutic targets and novel tissue engineering protocols to enhance and control 
repaIr processes in joint disorders, thereby possibly delaying or limiting major 
surgery. 

Bone morphogenetic proteins in joint disease 

Very limited data have been reported on the potential role of BMPs in joint disease. 
However, given their well-documented functions in bone and joint development, as 
well as their potential contribution to joint tissue homeostasis, it seems likely that 
these molecules also have a role in different diseases affecting the joint. They may 
influence the disease process itself, or be involved in eventual repair processes tak
ing place as a response to injury. 

As for every "organ," different types of disease can affect the synovial joint: 
degenerative disease, inflammatory and auto-immune disorders, infectious diseases, 
metabolic diseases as well as benign and malignant tumors. 

TGF-~/BMP signaling in degenerative joint diseases 

Osteoarthritis (OA) is a common disorder, occurring mostly in middle and older 
aged persons, characterized by articular cartilage destruction and subchondral 

234 



Bone morphogenetic proteins and the synovial joints 

bone remodeling, leading to loss of joint function, and increasing disability. 
Although several risk factors have been recognized, such as obesity, familial histo
ry, skeletal malformations and trauma, the precise pathological events causing the 
disease and associated with disease progression are not yet clear. The key features 
appear to be subchondral bone sclerosis, potentially changing the weight-bearing 
properties and therefore the internal mechanics and dynamics of the joints, togeth
er with localized articular cartilage damage. However, the complete picture is far 
more complex. The whole joint organ is involved. The presence of new bone for
mation at the joint margins, so-called osteophytes, suggests repair efforts which are 
either insufficient, or poorly coordinated, since they do not result in repair of the 
damaged tissue with preserved function. In OA models several stages of the disease 
have been described each with different characteristics of the cartilage, bone, syn
ovium and their extracellular matrices [106, 107]. The early stage of the degenera
tive process is characterized by hypertrophy of the articular cartilage with a net 
increase in matrix synthesis and content. This phase, occurring before macroscop
ic cartilage damage can be demonstrated, is followed by a phase with net matrix 
loss by depletion of matrix components, resulting in focal damage and loss of func
tion. In the late phase it is suggested that the release of matrix components and par
ticles from the cartilage lead to synovial activation and inflammation, including the 
secretion of inflammatory cytokines such as IL-l and TNFa. The resulting cytokine 
imbalance further enhances protease and matrix metalloproteinase (MMP) synthe
sis, stimulation of cyclo-oxygenase and further damage of joint tissues. The com
plex interactions between these signaling molecules, effector enzymes and different 
cell populations involved, are likely to be influenced by the presence of growth and 
differentiation factors such as BMPs, not only in the hypertrophic phase but also 
in the later stages. 

Some evidence regarding the role of TGF-p superfamily signaling in skeletal and 
joint diseases has been obtained in genetic mouse models. Skeletal tissue-specific 
overexpression of a truncated, kinase deficient TGF-p type II receptor, acting as a 
dominant-negative effectively neutralizing TGF-p signaling, results in skeletal mal
formations. They include progressive skeletal degeneration after birth, leading to 
kyphoscoliosis, and stiff and torqued joints in heterozygous mice by the age of 4 to 
8 months [108]. Strikingly, the histological changes resemble those seen in 
osteoarthritis. The first signs of joint degeneration are seen in 4 weeks: patches of 
the articular surface appear denuded and an increase in hypertrophic chondrocytes 
is seen in the deeper layers of the articular cartilage. In 6-month-old mice, articular 
cartilages are fibrillated and disorganized. Chondrocytes are organized in clusters, 
there is an increased number of hypertrophic chondrocytes and a disruption of the 
tidemark, and bone replaces articular cartilage. Osteophytes can be recognized as 
outgrowths of chondroid tissue in the articular margins undergoing enchondral 
bone formation. Proteoglycan synthesis, as shown by Safranin 0 staining, is 
decreased in "osteoarthritic" transgenic mice. Type X collagen, normally character-
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istic of non-proliferating hypertrophic chondrocytes, is expressed in the joints of 
older transgenic mice, localized to fibrillated articular cartilage, osteophytes and 
cartilage growing in the joint space as can also be seen in human osteoarthritis 
[109]. A similar phenotype is apparently found in mice deficient in Smad3, a TGF
~ receptor smad [110]. Smad3-1- homozygotes (knock out mice) display skeletal 
abnormalities, including inwardly turned paws, kyphosis of the spine, osteopetrosis 
and abnormal ossification of the joints. In 6 months many mutant mice developed 
an osteoarthritis-like disease, characterized by progressive loss of articular cartilage, 
surface fibrillation, formation of large osteophytes, upregulation of type X collagen 
and decreased proteoglycan synthesis. The presence of osteoarthritic changes in a 
model, in which TGF-~ signaling is impaired, suggests that TGF-~ is important for 
the maintenance of tissue integrity, and that the balance between TGF-~ and BMP 
signaling influences joint homeostasis. 

Using joint injections, Van Den Berg et al. have extensively studied the in vivo 
effects of TGF-~s and BMPs on cartilage metabolism, and potential interactions 
with IL-1. BMP2 strongly enhances proteoglycan synthesis after injection in the 
knee joint of normal mice [111]. The effect, however, is short as compared to the 
effect of TGF-~l injection. After TGF-~l injection, proteoglycan synthesis rises 
slower and less high but the response is maintained for 20 days. This is probably 
due to stimulation of endogenous TGF-~ or BMP production and/or upregulation 
of receptors. Remarkably, TGF-~l counteracts the IL-l induced suppression of 
proteoglycan synthesis whereas BMP-2 does not [112, 113]. However, the relative 
dose of TGF-~ used in these experiments (as compared to the amounts used in 
other settings) is higher than that of BMPs. The effect and the counterbalance of 
TGF-~ and IL-l are only seen in articular cartilage, but not at the joint margin 
where osteophytes are formed. TGF-~ probably induces cartilage formation from 
the periost, as has been demonstrated in an in vitro model [95] and this process 
seems not to be influenced by IL-l in the in vivo mouse model. On the other hand, 
mRNA for BMP-2 as well as BMP-7/0P-l has been detected in the growing osteo
phyte ([110, 114] and P.P. Luyten et aI., unpublished observations). CDMP-l and 
CDMP-2 have been detected in osteoarthritic and normal cartilage, and are able to 
promote cartilage matrix recovery after enzymatic depletion in vitro, with restora
tion or maintenance of the normal phenotype thus pointing to a potentially impor
tant repair mechanism [115]. Recent data by Chubinskaya et al. show the presence 
of BMP-7/0Pl in human articular cartilage [116]. The expression patterns in nor
mal and OA cartilage are strikingly different. Protein expression analysis by 
immunohistochemistry and Western blotting shows the presence of mature OPl in 
the superficial layer of normal articular cartilage and non-active pro-peptide in the 
deeper layers. In OA samples where the superficial layer is destroyed, no mature 
OPl is detected, the pro peptide is, however, present. OPl expression by RT-PCR is 
clearly increased in the superficial layer in normal cartilage. However, in OA the 
deeper layers show an increased OPl expression. These results suggest an impor-
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tant role for OP1 in tissue maintenance in the superficial layer. However, in OA the 
chondrocytes of the deeper layer do not seem capable of post-translational modifi
cation of the propeptide into the mature bioactive protein, in spite of the upregu
lation of transcription. Therefore, potential repair mechanisms by OPI may be 
impaired. 

BMPs and inflammatory joint disease 

Although many systemic inflammatory disorders can also involve the synovial 
joints, most forms of chronic arthritis can be categorized into two distinct groups: 
rheumatoid arthritis (RA) and the spondylarthropathies (SpA), the latter consisting 
of ankylosing spondylitis, psoriatic arthropathy, enteropathic SpA, reactive arthri
tis (such as Reiter's syndrome) and undifferentiated SpA. It is remarkable that 
although most of the key inflammatory mediators such as TNF-a and IL-l have 
been found within the synovium and the synovial fluid in both disease groups, and 
at least some of the destructive mechanisms appear to be driven by the same mo
lecular players, the pathological endpoints are strikingly different. RA is mostly 
characterized by periarticular osteoporosis, extensive cartilage and bone destruc
tion and no appreciable repair efforts. The SpAs mostly have no periarticular osteo
porosis, often less destruction and remarkable "repair," not seldom seemingly 
"overdoing" it, and leading to bony bridging of the joint cavity and ankylosis. 
Many of these presumed repair processes morphologically closely resemble bone 
and cartilage formation during development and, therefore, a role of BMPs and 
BMP signaling can be expected. It is noteworthy that Braun et ai. detected by in 
situ hybridization expression of TGF-~2 in biopsies from the sacroiliac joints of 
patients with ankylosing spondylitis [117]. Investigations in this field are relatively 
new and largely unexplored so far. Most data on joint pathology have come from 
samples obtained at joint replacement surgery, and therefore only representing 
severe and end-stage disease. However, the development of needle arthroscopy as a 
diagnostic tool in daily rheumatology practice, and the availability of biopsies at 
distinct stages of the disease, is rapidly increasing our knowledge of the pathology 
and the molecular players involved. 

We have set out to study the potential role of BMPs in inflammatory disorders 
by studying potential effects of BMPs on the immune system, comparing their func
tion with TGF-~s, members of the same superfamily and well-established immune 
regulators. The chemotactic potential of some BMPs has already been demonstrat
ed [118]. By RT-PCR we identified the presence of BMP receptor and signaling mol
ecules mRNA in immune cells, including freshly isolated PBMCs, T-cell and mono
cytic cell lines (R. Lories et aI., unpublished). The presence of these receptors and 
the proposed role of BMPs in hematopoiesis [119] do suggest that BMPs can be 
partners in immune processes in a way that still has to be elucidated. 
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BMPs and infectious arthritis 

Bacterial joint infection is probably the most destructive and rapidly progressive 
pathological process within the organ. Septic arthritis is either caused by a con
tiguous process or by bacteremia in the subsynovial vessels from a distant focus. 
Some bacteria preferentially localize within the joint. Bacterial products such as 
endotoxin, cell fragments, immune complexes, and bacterial opsonisation cause 
an extensive inflammatory reaction from the innate as well as from the acquired 
immune system including the production of TNF-a and IL-l, activation of prote
olytic enzymes and MMPs, antibody production and generation of effector and 
memory T-cells. Moreover, phagocytosis by neutrophils causes autolysis thereby 
releasing lysosymic tissue-destructive enzymes within the joint cavity. Bacterial 
products are also capable of inducing chondrocyte proteinases which often subsist 
even after the bacteria have been cleared by the host immune system. Infection 
also leads to activation of the subsynovial endothelial cells, resulting in thrombo
sis and ischemia. It should therefore not be surprising that BMPs may be involved 
in either modulation of the reaction or in a failing attempt to repair the occurring 
damage. We were able to detect by Western blot BMP-4, CDMP-l and CDMP-2 
in the synovial fluid of patients with septic arthritis (Fig. 4). However, it has not 
been clear yet which cells and tissues are responsible for the BMP release into the 
fluid. BMP release can be caused by upregulation of BMP-production as part of a 
repair effort, but it can also be explained by the release of BMPs previously 
trapped in the articular cartilage matrix. These preliminary observations provide 
sufficient impetus to further investigate the potential role of BMPs in infectious 
joint disease. 

BMPs and skeletal and joint tumors 

Joint tumors are rare disorders. BMPs may be important in growth and differentia
tion of some types, since the embryological and growth cascade are often partially 
recapitulated. It is obvious that in tumors containing bone and chondroid tissue, 
these growth factors could be involved. 

However, few groups have studied BMP biology in these disorders to date and 
the available data are often based on scattered observations. Most research in this 
field has been done by Yoshikawa et al. [119-122]. Osteosarcomas, not necessarily 
joint-associated, were analyzed for ectopic bone formation, as a way to measure the 
BMP activity, by implanting the lyophilized fraction of the tumor in a nude mice 
model. Not only did the BMP-activity containing tumors have some distinct radio
logical and pathological properties, they also showed a higher resistance to dox
orubicin-metothrexate chemotherapy, and a higher tendency to metastasize [119, 
120, 122]. Subsequently, BMP-2 or BMP-4 were demonstrated immunohistochemi-
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Figure 4 
Western blot of BMP-4, BMP-7, COMP-1 and COMP-2 in synovial fluid. Growth factors in 

1 % hyaluronidase treated synovial fluid were concentrated by heparin sepharose binding in 

8 M urea, 10 mM Tris, 150 mM NaCl (pH 7.3), washed with 8 M urea 10 mM Tris 3 M NaCl 

and precipitated with ice cold trichloroacetic acid 30% (wlv); the resulting binding protein 

pellet was redissolved in 8 M urea 0.05 M Tris and subsequently run on reducing 50S-PAGE 

gels. Western blots were performed with polyc/onal anti-BMP-4, anti-BMP-7, anti-COMP-

1 or anti-COMP-2 antibodies [114J, then incubated with biotinylated secondary antibody 
and analyzed with peroxidaselluminolstaining. Lanes (a) 10 ng of human recombinant pro

tein (b) patient with undifferentiated spondylarthropathy (c) patient with chondrocalcinosis 
(d) patient with rheumatoid arthritis (e) patient with mono-arthritis of unknown etiology (f) 

patient with chondrocalcinosis (g) patient with septic arthritis (h) patient with rheumatoid 

arthritis. 

cally in osteosarcomas, except in nine chondroblastic subtypes, in malignant fibrous 
histiocytomas (MFH) and in several sarcomas, but not in synovial, rhabdomyo- and 
fibrosarcoma. However, the sensitivity of the technique can be questioned since no 
BMP has been detected either in any normal human tissue, or in a 16-week-old 
human fetus [121]. 

Guo et al. studied BMP expression in 36 osteosarcomas, six Ewing's sarcoma, 20 
synovial sarcomas and 20 chondrosarcomas by RT-PCR [123] . BMP-2 and BMP-4 
mRNAs were detected in almost all sarcomas, BMP-6 in 22 osteosarcomas and 
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seven chondrosarcomas. BMP type II receptor was found in 25 osteosarcomas, eight 
chondrosarcomas, four Ewing's sarcomas and 15 synovial sarcomas. The expression 
of the type II receptor correlates with metastasis in osteosarcoma and synovial sar
comas. Recently, a new series has been reported [124] in which nine out of 11 
osteosarcomas showed expression of BMPs and BMP-receptors by immunohisto
chemistry. The two negatives were again osteosarcomas of the chondroblastic type; 
eight out of 10 malignant fibrous histiocytomas also showed BMP staining, but no 
receptor staining, thus providing a possible explanation for the non-ossification of 
malignant fibrous histiocytomas. 
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Introduction 

Over the past several decades, in clinical orthopedic work, from open Magnusson 
"housecleaning" arthroplasty to the autologous chondrocyte implantation, much 
has been learned about articular cartilage and its physiological capacity to restore 
itself. To date, no technique has been completely successful in restoring normal 
regenerative articular cartilage. Techniques to treat chondral defects include abra
sion, drilling, microfracture technique, tissue autografts, allografts, and cell trans
plantation [1-12]. Bone marrow stimulation techniques such as abrasion, drilling, 
and microfractures produce only fibrocartilage and therefore do not offer a long
term cure. Subchondral bone plate microfracture (abrasion or drilling) has shown 
to enhance chondral resurfacing by providing a suitable environment for tissue 
regeneration and taking advantage of the body's own healing potential. The forma
tion of a fibrin clot ("super clot") containing desired pluripotential stem cells is 
stimulated [10]. This clot then differentiates and remodels, resulting in a durable 
fibrocartilage repair tissue [1]. Perichondral and periostal interposition grafts pro
duce repair tissue that is similar to hyaline cartilage but also lack the mechanical 
durability. Like bone marrow stimulation techniques, interposition grafts introduce 
precursor cells, which have a tendency to differentiate along lines other than carti
lage [7]. Autologous osteochondral transplant systems have shown encouraging 
results, but graft matching and contouring to the recipient articular surface proved 
to be difficult. Moreover, the donor sites can be a limiting factor, and the fibrocar
tilaginous interface between the donor and recipient site may contribute to break
down in the long run. Autologous chondrocyte implantation is a biological repair 
process with encouraging results. The procedure is expensive and so far it has not 
been demonstrated that autologous chondrocyte implantation can prevent degener
ative cartilage changes [7]. In recent years, much has been learned about the various 
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growth factors that stimulate chondrocyte differentiation and extracellular matrix 
production, but to date, a clinical technique has not been developed. 

Articular cartilage regeneration 

Joint surface repair is still a major challenge in modern medicine, because the fac
tors initiating cartilage formation, maturation, and repair are poorly understood. 
Specific biological challenges include the variable quality and quantity of the carti
lage that is produced, decreasing responsiveness with age, bonding to the adjacent 
cartilage, and restoration of the subchondral bone [13]. Injury to cartilage initiates 
a specific reparative response. In lesions of the articular cartilage with no collagen 
damage, a loss of non-collagenous matrix occurs, leading eventually to complete 
repair of the damaged matrix [14]. In more severe cases, where there is a damage of 
the fibrillar network and cell death, the articular cartilage does not heal [15, 16]. 

Cartilage is a specialized connective tissue with a biomechanical function meant 
to bear compressive load. Over time, cartilage has been classified as hyaline, elastic 
and fibrous, based on histological and morphological appearance and developmen
tal history. Articular cartilage is built only of hyaline cartilage and it does not con
tain nerves or blood vessels. It is made of extracellular matrix that is laid down and 
maintained by chondrocytes. A chondrocyte is a cell embedded in a dense cartilage 
matrix synthesized by chondrocytes themselves. Their differentiation is regulated by 
a number of humoral hormones and factors, and by locally produced cytokines. 

Structurally, different layers formed by cells and matrix build mature cartilage. 
The superficially positioned tangential layer is made of horizontally directed chon
drocytes. Upper radial and lower radial layers are made of hypertrophic chondro
cytes which form columns and, in the bottom, a narrow calcified cartilage zone is 
interposited between the hyaline cartilage tissue and subchondral bone plate. This 
zone has a special meaning in the distinction of osteochondral (full thickness) and 
chondral (partial) defects in animal models of cartilage regeneration studies. 

Two constituents, proteoglycans and collagens are responsible for cartilage 
behavior and metabolism. Collagens are the major component of cartilage extracel
lular matrix. They are specific products of phenotypic expression by differentiated 
cells. The collagen gene family consists of at least 30 genes making up a minimum 
of 18 different collagen types. Four of these collagen types, collagen II, IX, X and 
XI have been considered specific for cartilage. The collagen, principally type II, but 
also type IX and XI, forms a dense fibrillar network that is embedded in a high con
centration of proteoglycans which creates a large osmotic pressure that draws water 
into the tissue and expands the collagen network. The most abundant proteoglycan 
in cartilage is aggrecan. Compressive properties of cartilage result from the balance 
between the osmotic swelling pressure of the proteoglycans and the tension in the 
collagen fibers [17]. 
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Bone morphogenetic proteins stimulate articular chondrocyte metabolism 

50 far there has not been shown any evidence that there is more than a little, if any, 
cell division in healthy adult articular cartilage. However, chondrocytes cultured in 
medium proliferate in response to serum growth factors. The time needed for the 
doubling of chondrocytes depends on the articular cartilage layer the cells were cul
tured from and the cell density. Chondrocyte proliferation is more rapid in low den
sity than in high density cultures. Chondrocytes cultured from the deeper layers of 
tissue double more rapidly than those from the middle and superficial cartilage 
zones [18]. 5ubpopulations of human articular chondrocytes maintained in medium 
containing human adult serum, which has lower concentrations of growth factors 
than fetal serum, show little change in cell number during the culture period, and 
no difference in proliferation between cells from the superficial and deep zones [19]. 

In vitro studies performed through years by investigators in the field have iden
tified bone morphogenetic proteins as modulators of articular cartilage chondrocyte 
metabolism, which is also seen through the fact that structural macromolecules of 
extracellular matrix bind BMPs. It is well known that chondrocytes in tissue culture 
progressively lose their phenotype in monolayer cultures. Dedifferentiation of chon
drocytes is minimized in explant cultures of articular cartilage in which chondro
cytes are encased in their own extracellular matrix [20]. 

In short-term cartilage explant cultures, BMP-4 stimulates dose-dependently 
both the proteoglycan synthesis [21] and the decrease in proteoglycancatabolism. 
BMP-4 also increases the levels of expression of type II collagen and proteoglycan 
aggrecan in short term cultures. This enhancement of cartilage phenotype by BMP-
4 is largely independent of culture conditions. Moreover, BMP-4, besides promoting 
the chondrocyte phenotype, has also a weak mitogenic effect in monolayer and 
micromass cultures [22]. In studies on long-term monolayer articular chondrocyte 
cell cultures up to 28 days, BMP-2 was also found to stimulate proteoglycan syn
thesis [23], while not affecting cell proliferation and expression of type X collagen 
and osteocalcin synthesis. It also enhanced the expression of type II collagen and 
increased the expression of aggrecan [23]. 

When bovine articular chondrocytes are grown up to 5 weeks in the presence of 
0.5% or 10% serum in combination with another BMP, BMP-7, they do not under
go hypertrophy, as determined by cell size, the absence of both type X collagen 
expression and synthesis, and of alkaline phosphatase activity. The presence of 
BMP-7 resulted in increased matrix synthesis. This data suggest that primary mam
malian articular chondrocytes will not undergo hypertrophy in conditions previ
ously shown to be permissive for hypertrophy of both chick sternal and chick artic
ular chondrocytes. BMP-7 is crucial for maintanence of articular chondrocytes phe
notype by preserving collagen II synthesis [24]. 

When extending these studies to chick sternal chondrocytes growth and matura
tion in high-density mono layers, suspension and agarose cultures up to 5 weeks, 

251 



Mislav Jelic et al. 

BMP-7 dose dependently promoted chondrocyte maturation associated with 
enhanced alkaline phosphatase activity and increased mRNA levels and protein syn
thesis of type X collagen in both the presence and absence of serum [25]. The piv
otal role of BMPs in the development and regeneration process of the skeleton sug
gests their role in articular cartilage defect repair. 

In creating chondral defects, an investigation must not damage the calcified car
tilage zone and the underlying subchondral bone. The borderline between hyaline 
articular cartilage and the zone of calcified cartilage is called the "tidemark" and 
represents the mineralization front [26]. 

Studying the healing phenomena of articular cartilage lesions led to a conclusion 
that it is essential to expand the existing cell population in order to increase the total 
pool of healthy cells contributing to the matrix repair. This might be obtained 
through increased cell proliferation and/or chemotaxis of cells from neighboring tis
sues such as the underlying bone andlor synovium [27]. Growth and differentiation 
factors can be used in this regard [28] with bone morphogenetic proteins (BMPs) 
being good candidates [29, 30]. Apart from BMPs, good candidates would also be 
recently discovered cartilage-derived morphogenetic proteins (CDMPs), novel TGF
beta superfamily members, with their cartilage-specific localization pattern that sug
gests their potential role in chondrocyte differentiation ([31, 32]; see the chapter by 
Luyten et al.). 

Cartilage regeneration in models using osteochondral defects 

Regeneration of full-thickness cartilage defects which involves both cartilage and 
subchondral bone and bone marrow was studied by drilling holes in the articular 
cartilage of animal knee joints [27]. These defects undergo repair and a new layer 
of bone and cartilage is formed, but the macromolecular organization and the bio
chemical characteristics of the matrix are imperfect. The persistence of high levels 
of type I collagen and the substitution of the cartilage specific proteoglycans by 
other types, such as derma tan sulphate containing proteoglycans illustrate such 
imperfect healing [16, 33]. This culminates in a repair tissue with fibrillations and 
extensive degenerative changes after about 3 months, and finally a complete loss 
of tissue integrity occurs [34, 35]. Most investigations on articular cartilage heal
ing in vivo have been performed on animal models using osteochondral, or full
thickness cartilage defects. Different BMPs have been tested in osteochondral 
defect models. 

It has been demonstrated that recombinant human BMP-2 (rhBMP-2) with a col
lagen carrier significantly improves new tissue formation in osteochondral defects in 
NZW rabbits 6 months and 1 year following surgical procedure [36-38]. BMP-2 
treated defects had a significantly better histological appearance than the untreated 
defect (those left empty or filled with a collagen sponge). The histological features 
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that showed improvement were integration at the margin, cellular morphology, 
architecture within the defect and reformation of the tidemark. The total score was 
also better for the defects treated with rhBMP-2 than for the untreated defects [36, 
37]. However, even though integration of new and old cartilage in treated animals 
was better in comparison to controls, it is still considered the weakest point of that 
study. 

In another model, BMP-3 (osteogenin) combined with a porous HA in dog car
tilage, full thickness defects significantly enhanced transformation of ingrowing 
fibrous tissue into the hyaline cartilage [39]. However, the integration at the margin 
of newly formed and old tissue was again incomplete. 

Another BMP, BMP-7 can improve regeneration of full-thickness cartilage 
defects in rabbits 3 months following implantation. Histological examination of 20 
osteochondral rabbit knee defects showed significant difference in healing of the 
defects treated with BMP-7 compared to those left empty or treated with a collagen 
gel only. Defects that were not treated with BMP-7 were filled with several tissue 
types 8 weeks following the procedure (data not shown). However, osteochondral 
defects treated with BMP-7 were completely bridged with abundant tissue resem
bling immature cartilage (Figs. 1A and B). New tissue consists of small rounded cells 
organized in columns (Fig. 1 C) and embedded in compact extracellular matrix. 
Rebridgement was complete in superficial layers which protruded above the surface 
of intact chondrocytes (Figs. 1A and B). In some defects, deeper areas were still 
unfused with surrounding cartilage [40]. These results suggest the potential role of 
BMP-7 as an articular cartilage repair inducer, but 8 weeks is too early for conclu
sions on tissue integration and the architecture of newly formed cartilage. 

BMP-7 was also evaluated in another study with NZW rabbits where osteo
chondral defects were made in the femoral patellar grove. Grossly, after 12 weeks it 
has been shown that BMP-7 treated defects showed repair that was continuous with 
the adjacent intact cartilage and was translucent. Maturing cartilage was present 
and it looked similar and was similarly thick when compared to the intact sur
rounding articular cartilage. In comparison, the repair tissue at control sites, that 
were treated either with no implant or matrix only, was filled primarily with fibrous 
tissue or fibrocartilage. That newly formed tissue was discontinuous with the sur
rounding cartilage and was opaque and inhomogenous. Histologically, moderate 
degeneration of the cartilage at the defect interfaces was noted, large clusters of 
chondrocytes were observed at the interface, and fissures were seen separating the 
intact cartilage from the repair tissue ([41]; see the chapter by Cook et al.). The inte
gration of newly formed cartilage with old, intact cartilage was reported to be sat
isfactory. However, the observation time period of 12 weeks postoperatively was 
insufficient to evaluate the quality of integration and duration of the newly formed 
cartilage [41]. 

When osteochondral defects in goat knee joints were treated with rhBMP-7 
implanted on a collagen carrier and studied 4 months after treatment partial or 
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Figure 1 

Healing of osteochondral defects treated with BMP-7 in NZW rabbit knees. 8 weeks fol

lowing surgery the defects are completely filled with tissue resembling immature cartilage, 

which is protruding above the surface of intact cartilage (A and B). Bonding of old and new 

cartilage is observed (A-C). On higher magnification small rounded cartilage cells have 

columnar orientation and are embedded in compact extracellular matrix (C) . 
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complete healing was observed in treated goats while only one of three untreated 
animals showed some cartilage formation [42]. 

Studies on articular cartilage healing using periosteum transplants in rabbits 
show that the periosteum, when transplanted into osteochondral defects, induces 
new cartilage-like tissue formation which contains 90% collagen II and is replaced 
by bone in the subchondral regions [43]. It is hypothesized that periosteum has an 
articular cartilage healing potential because of factors including orientation of the 
cambium layer and postoperative factors such as application of continuous pas
sive motion and the maturity of the experimental animals [44, 45]. Even though 
the underlying molecular mechanism leading to periosteal articular cartilage heal
ing in osteochondral defects is not understood, it has been shown by different 
investigators that periosteum contains chondrocyte precursor cells that form car
tilage during limb development expressing various BMPs during fracture healing 
[44, 46]. 

Cartilage regeneration in models using chondral defects 

Regeneration of articular cartilage chondral defects was studied in sheep through 
damaging a complete chondral layer with a specially designed instrument (Fig. 2A), 
without damaging the subchondral bone, using a continuous application of BMP-7 
that was delivered via an extraarticulary positioned mini-osmotic pump (Fig. 2B) 
[4 7]. Two 10 mm chondral defects were created in each knee; one on the medial 
condyle and the other on the trochlea of the femur, and randomly treated by either 
BMP-7 or by acetate buffer via an extraarticularly positioned mini-osmotic pump 
connected to a joint by a polyethylene tubing (Figs. 2B and C). 

Commercially available mini-osmotic pumps (Alza Pharmaceuticals, Palo Alto, 
USA) were pretested in vitro and proved to be reliable in slow releasing of the pro
tein which was biologically active in a cell-based assay that measures the alkaline 
phosphatase activity in an osteosarcoma cell line (ROS) in vitro [47]. 

In this study, for the first time, the termination time points of 3 and 6 months 
were determined by arthroscopy [48]. At 3 months following surgery defects treat
ed with both low and high doses of BMP-7 were filled with newly formed cartilage, 
precartilagineous tissue and connective tissue at the top of the defect (Figs. 3A and 
B). The cartilage formation initially took place at the bottom progressing towards 
the surface of the defect (data not shown). In control knees there was no sign of cell 
ingrowth into the defect area (Fig. 3C). Defects treated with BMP-7 were filled with 
new cartilage except for areas filled with connective tissue and the new cartilage was 
well fused to the old cartilage (Fig. 3D). None of the control defects showed heal
ing at six months following surgery. In BMP-7 treated knees newly formed cartilage 
was still well fused to the pre-existing one and stained positive for type II collagen 
(data not shown) [47]. 
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Figure 2 

Defects were created by an instrument consisting of an outside positioning ring and an inner 

rotating tube with a locking insert which allowed penetration up to 2 mm deep (A). The 

pump was stapled to the bone above the ioint and connected with a catheter to the ioint 

adiacent to chondral defects created in the sheep knee (B). Arthroscopic imaging of the tub

ing connecting a mini-osmotic pump with the ioint space (C). 
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Figure 3 
(A) Regenerated ioint cartilage filled the chondral defed area (indicated by two arrowheads) 

of a iOint treated with BMP-7, 3 months post surgery (x 5, toluidine blue staining). (B) 

Regeneration of articular cartilage at 6 months following surgery and treatment with BMP-

7. A condylar defed (arrows) treated with a low dose of BMP-7 was filled with newly regen

erated cartilage (x 5, toluidine blue staining). (C) An empty defed treated with an acetate 

buffer vehicle 3 months following surgery (D). The bonding between old (0) and newly 

formed cartilage (N) in a chondral defed treated with BMP-7 is indicated by arrows (x 200, 
toluidine blue staining). 

Continuous presence of BMP-7 throughout a period of 2 to 4 weeks following 
surgery seems to have attracted the surrounding mesenchymal-like cells eventually 
originating from the synovium into the defect area, which then transformed into 
chondrocytes. BMP may, thus, be delivered to a joint space without a carrier in con
centrations under the threshold for initiating ossification of surrounding soft tissues. 

In studies using an osteochondral defect model in rabbits and the recombinant 
human BMP-2 [36-38] or BMP-7 [40] the repair tissue does not fuse well with the 
pre-existing adjacent cartilage neither in treated nor in untreated defects. The rea
son for a different ability of newly synthesized cartilage to fuse in osteochondral ver
sus chondral defects could be based on the fact that in chondral defects the under
lying bone supports the reparative process and that the ingrowing cells come from 
the synovium [49] and not from the bone marrow. Additional evidence supporting 
this concept came from the study of Sellers et al. [36, 37] demonstrating that BMP-
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2 accelerated the rate of repair of subchondral bone with a subsequent improvement 
in the morphological features of cartilage in rabbits with osteochondral defects. 
Although it seems that the tissue integration in adult animals is unrelated to the 
method of treatment or the size of the defect, the majority of studies have used 
osteochondral defects which are lacking the support of the underlying bone result
ing in the biomechanical instability of the regenerative tissue. It is of interest that 
articular cartilage defects undergo spontaneous repair in a fetal lamb joint repair 
model suggesting a different interaction between fetal chondrocytes and extracellu
lar matrices [50]. 

A cytokine-based therapy for damaged cartilage would be clinically more useful 
and efficient than cell-based therapies, which involve removal of autologous cells 
derived from marrow [51] or from cartilage [52], followed by expansion in culture 
and then by a second operation for implantation into the defect. A single operation 
in which a cytokine is used to elicit repair of cartilage would substantially expedite 
the treatment process as well as reduce the costs. It has been recently reported that 
the expression of BMP-7 mRNA in human cartilage samples did not decrease with 
aging and was two-fold upregulated in OA cartilage, suggesting a role for BMPs in 
OA [53]. Apart from BMPs, good candidates in this regard would also be recently 
discovered cartilage-derived morphogenetic proteins (CDMPs), with their cartilage
specific localization pattern that suggests their potential role in chondrocyte differ
entiation ([31]; see the chapter by Luyten). The ability of BMP-7 to accelerate and 
improve cartilage repair in chondral defects emphasizes its importance as a candi
date for cartilage repair in human osteoarthritis. 

Conclusion 

BMPs have an important role in articular cartilage chondrocyte differentiation and 
production, as well as maintenance of the matrix. Animal experiments on articular 
cartilage defect healing have shown that BMPs act as differentiation factors 
depending on environmental conditions, suggesting that cartilage repair using 
BMPs may become an alternative and/or additive procedure for present clinical 
indications. 
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Introduction 

Members of TGF-~ superfamily are secreted glycoproteins and have been shown to 
regulate biological processes as diverse as migration, proliferation and differentia
tion of pluripotent progenitor cells involved in the development of several organ sys
tems during embryogenesis and in adult tissue repair [1, 2]. The kidney has been 
identified as a major site of bone morphogenetic protein-7 (BMP-7) synthesis dur
ing embryonal and post-natal development [1, 3, 4]. Gene knock-out [5, 6] and in 
vitro experiments [4, 7] demonstrated the importance of BMP-7 in kidney develop
ment. Many developmental features are recapitulated during renal injury, and BMPs 
may be important in both preservation of function and resistance to injury [8, 9]. 
BMP-7 has a cytoprotective and anti-inflammatory effect in models of acute and 
chronic renal failure [8, 9]. 

Bone morphogenetic proteins in kidney development 

Mice lacking the BMP-7 gene died of uremia within 24 h following birth. One group 
reported the absence of tubules and immature glomeruli apparatus (5- and comma
shaped bodies) following the ingrowth of the ureteric bud into the metanephric mes
enchyme in E-ll mice, suggesting that BMP-7 is necessary for the induction of the 
E-11 mesenchyme [6]. Another BMP-7 knock-out phenotype suggested that unal
tered kidney development progressed up to E-14 in BMP-7 null mice, which was, 
however, followed by a rapid disappearance of the metanephric mesenchyme result
ing in loss of kidney mass upon birth [5]. While this apparent discrepancy can be 
attributed to variance observed in mouse genetics, the precise role of BMP-7 in 
metanephric differentiation remains unknown. 
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The permanent kidney of mammals, the metanephros, starts to develop when the 
ureteric buds emerge from the Wolffian ducts and enter the metanephric mes
enchyme. The ureteric bud induces condensation of the surrounding metanephric 
mesenchyme, and reciprocally, the metanephric mesenchyme causes elongation and 
branching or the ureteric bud. At the tip of these branches, the ureteric bud induces 
aggregation of the mesenchymal cells. Each aggregate invaginates once to form a 
comma-shaped body and once again to form an S-shaped body. The blood vessels 
invaginate into one of the curves of the S-shaped bodies forming the future 
glomeruli. The epithelial cells begin to differentiate into the specific cell types such 
as podocytes, capsule cells, and proximal and distal tubule cells. The most distal 
part of the nephron and the newly formed tube connect, thereby, enabling passage 
of the materials [10] (Fig. 1). 

The reciprocal induction was documented by in vitro experiments when the 
ureteric bud and the metanephric mesenchyme were cultured separately [11, 12]. 
The ureteric bud does not branch in the absence of the mesenchyme, and the mes
enchyme dies without the ureteric bud. Although certain tissues (such as neural 
tube, spinal cord and salivary glands) enable the metanephric mesenchyme to form 
kidney tubules, the ureteric bud branches only under instructions from the 
metanephric mesenchyme [10]. However, the extrinsic influences, namely growth 
factors and protooncogenes, control the proliferation and differentiation of the 
metanephric cells. They act via the intracellular signalling pathways leading to acti
vation of genes involved in the regulation of the growth processes. Current results 
propose existence of "cascade of events" with "checkpoints" at the beginning of 
each cascade. The cascade of development could not proceed after the checkpoint if 
a critical signal is missing [13]. 

Many genes are proposed to be essential for kidney development. However, a 
candidate gene should fulfill several criteria in order to be explicitly involved in the 
development. It must be expressed in appropriate time and space relative to the 
developing organ, and in the absence of the gene normal organ development should 
fail. So far, several genes satisfy these criteria. Gene knock-out studies enable iden
tification of BMP-7, WT-1, Pax-2, c-ret, foxel, foxc2, GDNF, BF-2, Eya1, Wnt-4, 
Emx2, PDGF B, PDGFRb, a.8~1 and a.3~1 as molecules that are required for kid
ney growth and development [14]. Recently, it has been shown that leukemia 
inhibitory factor (LIF) and members of the IL-6 family, including cardiotrophin, 
oncostatin and CNTF are expressed in the ureter and can induce nephrogenesis in 
culture. This possibly explains why the LIF knock-out has no obvious kidney phe
notype [15]. 

The GDNF/GDNFRaJret receptor-ligand complex is necessary for growth and 
branching of the ureteric bud in the process of reciprocal inductive interaction 
between the epithelium of the Wolffian duct and the adjacent mesenchyme [16-20]. 
Inductive interaction in nephrogenesis is accompanied with elevation in the expres
sion pattern of several factors. The Wilms tumor suppressor gene (WT-1) is already 
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Figure 1 

Schematic drawing of various stages in the development of the nephron. As a result of induc

tive interaction between the ureteric bud and the metanephric mesenchyme (A), a conden

sate is formed (B). It goes through the comma-shape (C) and S-shape body stages (D). This 

is followed by tubule elongation and its connection with the nephric duct (E). When the 

blood vessels invade the distal curve of the S-shaped body, the future mature glomeruli 

begin to form (D, E and F). 
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expressed in the uninduced mesenchyme but its expression is highly upregulated on 
induction. WT-l null-mutant mice failed to develop kidneys because the 
metanephric mesenchyme cannot respond to inductive signals [21]. Using a 
microarray amphiregulin, a member of the epidermal growth factor (EGF) family 
has been characterized as a physiological target of WT-l. It stimulates ureteric 
branching in kidney organ cultures, but amphiregulin knock-out showed no renal 
phenotype [22]. Pax-2 is necessary for the mesenchymal aggregation and mes
enchyme-to-epithelial transition during nephrogenesis, and it disappears after ter
minal differentiation of nephrons [23, 24]. WT-l is a negative regulator of Pax-2 
during kidney development [25]. Its expression is elevated in a variety of renal 
tumors [26]. 

After the initial induction, BMP-7 and Wnt-4 are required for subsequent mes
enchymal differentiation by maintaining the inductive response. Wnt-4 is a cysteine
rich signaling molecule expressed in pretubular cells of the metanephric mes
enchyme at the base of the ureteric bud. Its expression is absolutely necessary for 
kidney development and is lost upon fusion of nephron with the collecting duct 
[27]. As cell proliferation and differentiation proceed, more and more molecules are 
involved in the regulation. BF-2 is the "winged helix" transcription factor expressed 
in stromal cells. It is necessary for regulation of the nephrogenesis in the induced cell 
population that is destined to make epithelium [28]. In mice lacking PDGF B or its 
receptor PDGFR~ mesangial cells are absent thus disabling formation of the 
glomeruli [29]. 

BMP-7 is expressed in several tissues associated with inductive interactions and 
is required for proper nephrogenesis using gene targeting in mice [5, 6]. BMP-7 
mRNA expression is the highest on day 13 of kidney development (Fig. 2) what cor
responds with its proposed role in nephrogenesis. In the normal kidney, the highest 
expression of BMP-7 mRNA could be seen in tubules of the outer medulla, in cells 
at the periphery of the glomerular tuft, adventitia of renal arteries and epithelial 
cells of the renal pelvis and the ureter [7]. During development, BMP-7 transcripts 
are most abundantly present, first, in the epithelium of the branching ureteric buds, 
and later in the glomeruli (Fig. 3) [1]. Most of the homozygous animals die the first 
postnatal day from acute renal failure. Their kidneys failed to develop normally, and 
they also have microopthalmia and various degrees of skeletal deformities. The kid
ney starts to develop, reciprocal interactions occur, but further development ceases 
by approximately 14 days postcoitum accompanied with extensive apoptosis. 
Glomeruli and proximal convoluted tubules are well developed, so it seems that 
BMP-7 is absolutely necessary for the development of distal convoluted tubules and 
maintenance of the kidney structure. Multiple cysts are observed in the kidneys of 
animals that survived for a few days [30]. In the eNS and heart of the mutant ani
mals, expression domains of the BMP family members completely overlap with that 
of BMP-7. It seems that at such places other BMP family members can substitute for 
BMP-7 [31]. 
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BMPs 

2 3 4 5 6 7 

Figure 2 

Expression of bone morphogenetic proteins in developing mouse kidneys. Whole kidney 

RNA was isolated, eDNA was synthesized and analyzed by RT-PCR. GAPDH was used to nor

malize the reaction. At E11 of mouse development, BMPs 2-7 are expressed, with BMP-4 

and BMP-7 being most abundant. BMP-3 and BMP-6 are gradually upregulated, while 

BMP-5 expression declines from E11 towards E19. 

It has been demonstrated that during kidney development, high doses of BMP-7 
inhibit branching morphogenesis, whereas low doses are stimulatory [32]. Another 
study [62] showed that BMP-7 suppresses tubulogenesis and, in synergy with 
FGF-2, increases the cell population of stromal precursor cells in the developing 
kidney (Fig. 4). These results indicate an important function for BMP-7 in the main-
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Figure 3 

BMP-7 mRNA expression in the kidney of a human embryo (9 weeks of gestation). (A) Tolu

idin blue-stained bright field image of a section through the kidney (K) and spinal cord (SC). 

Dark field images of sense (B) and antisense (C) mRNA probes [1] indicate synthesis in kid

ney glomeruli and the spinal cord. 

tenance of blastemal tissue and hence the continuous growth of the kidney during 
development. In cultured embryonic kidneys, BMP-7 mRNA expression was demon
strated in several glomerular cell types, such as mesangial, epithelial and endothelial 
cells. Distal tubule MDCK cells also expressed BMP-7 mRNA, but human proximal 
tubule HK-2 cells did not. Treatment with BMP-7 increased cellular proliferation of 
HK-2 cells, but not of the mesangial cells. These results suggest that BMP-7 is pro-
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Figure 4 

Effect of BMP-7 on whole mouse embryo kidney explant cultures. E13 mouse kidneys were 

isolated and cultured [4J for 5 days in the presence of BMP-7 protein (B; 100 nglml daily) 

and BMP-7 antibody (C; 10 pglml daily). Addition of 100 nglml of BMP-7 induced more 

translucent kidney explants (B left) as a consequence of more pronounced stromal cell pro

liferation (B right). BMP-7 antibody induced atrophy of the mesenchyme and reduced tubu

logenesis mimicking the phenotype of BMP-7 gene knock-out kidneys. 

duced in the renal glomerulus and then travels to the proximal tubule to regulate the 
proliferation of the cells in this region of the nephron [33]. BMP-7 expression in the 
epithelial components of the kidney is not dependent on cell-cell or cell-BMP-7 inter
actions with the metanephric mesenchyme. Disruption of proteoglycan synthesis 
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results in the loss of BMP-7 expression in the mesenchyme. It seems that BMP-7 
expression in the metanephric mesenchyme is dependent on proteoglycans and prop
er protein glycosylation [34]. The current data support a model in which signaling 
from the ureter induces metanephric expression of Pax2 and WT-l. They subse
quently activate the signaling molecules BMP-7 and Wnt-4, which promote tubulo
genesis and expression of stromal precursor cells. Several other BMPs are expressed 
during kidney development and in the postnatal life (Fig. 5) 

BMP-4 is expressed in mesenchymal cells surrounding the Wolffian duct and the 
ureter stalk. It is important in the early morphogenesis of the kidney and urinary 
tract. It inhibits ectopic budding from the Wolffian duct or the ureter stalk by antag
onizing inductive signals from the metanephric mesenchyme to the illegitimate sites 
on the Wolffian duct. Another function is to promote the elongation of the branch
ing ureter within the metanephros. BMP-4 signaling can substitute for the surface 
ectoderm in supporting nephric duct morphogenesis [35]. BMP-4 null-mutant mice 
display abnormalities of the genitourinary tract including hypoplastic kidneys, 
hydroureter, ectopic ureterovesical junction and double collecting system ([36]; see 
the chapter by Martinovic). In the organ culture of the developing kidney, human 
recombinant BMP-4 diminishes the number of ureteric branches and changes the 
branching pattern via interfering with the differentiation of the metanephric mes
enchyme [37]. In BMP-7 null-mutant mice, BMP-4 is expressed in the mesenchyme 
surrounding the ureteric bud in the early stages of development, then in the area of 
nephron development, and finally its expression is limited to the Bowmann capsule 
[30]. Its expression reaches maximal value from day 15 to 17 of embryonal devel
opment suggesting its role in tubulogenesis (Fig. 2). 

BMP-2 and HGF function to control parallel pathways downstream of their 
respective cell surface receptors regulating the collecting duct morphogenesis [38]. 
In mesangial cells, BMP-2 inhibits PDGF-induced DNA synthesis and c-fos gene 
transcription [39]. BMP-2 expression is persistent during intrauterine and postnatal 
kidney development (Fig. 2), while its expression is downregulated in adult kidneys 
(Fig. 2). 

Osteogenin (BMP-3) is mainly synthesized in the developing lung and kidney 
[40]. In normal rat kidneys, BMP-3 mRNA expression is limited to areas of tubule 
development, and is not found in the glomeruli [41]. On the contrary, Dudley and 
Robertson have found BMP-3 mRNA in the glomerular area of the future nephron 
in BMP-7 null-mutant mice [30]. Gradually, BMP-3 mRNA expression is upregu
lated from day 13 to 17 of embryonal development, and then decreases (Fig. 2). 
BMP-3 knock-out mice do not have kidney abnormalities (see the chapter by Mar
tinovic). 

BMP-5 expression is demonstrated in the cell layer adjacent to epithelial cells of 
the ureteric bud and in renal calices of the more mature kidneys in BMP-7 null
mutant mice [30]. In normal mouse embryos, BMP-5 expression is found in mes
enchymal cells surrounding the ureter, but also in the renal calices at later stages of 
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Figure 5 

Expression of bone morphogenetic proteins 2-7 in adult mouse kidneys. Whole kidney RNA 

was isolated, cDNA was synthesized and analyzed by RT-PCR. Reactions without cDNA were 

used as a negative control. GAPDH was used to normalize reactions. After two weeks, 2 and 

6 months following delivery, BMP-7 is strongly expressed, while BMP-2 and BMP-5 appear 

low. 

development. BMP-5 mRNA is expressed in mice embryonal kidneys from day 12 
to day 17 kidney during the postnatal life (Fig. 5). From the beginning of kidney 
development BMP-6 expression is upregulated, and the highest level is found in 
mature, adult kidneys (Figs. 2, 5). 

BMP-7 crosses the placental barrier during development 

It is believed that knock-out studies of genes that transcribe circulating glycopro
teins might give unreliable information as to their developmental function, due to 
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Figure 6 
Autoradiographs of systemically administered 125/_BMP_7 in pregnant rats. 125/_BMP_7 

(0,237 mCilmg) was administered intravenously to pregnant mice at different stages of the 

fetus development. Iodinated BMP-7 passed across the placenta and localized in developing 

fetal organs, the kidneys in particular, up to day 14 of gestation. Panels A and B show accu

mulation of radioadive grains in the fetal kidney tubules and mesenchyme in E12.5 kidneys. 

On E14, the grains accumulate in the fetal part of the placenta (C; arrowheads), but do not 

enter fetal blood vessels. 125/_BMP_7 accumulates in the kidney cortex (c) and the medulla 

(m) of the pregnant mice (0 = toluidine blue stained bright field image; E = dark field image). 

Magnification x 5 in C, 0, and E, and x 250 in A and B. 

their potential cross-over through the placental barrier, as it has been shown for 
TGF-p1 [42]. Among the BMP family of proteins, BMP-7 circulates in the blood
stream of mice and rats [8]. Whether intravenously administered BMP-7 in pregnant 
mice is made available to fetuses and thus masks the "true" developmental role of 
BMP-7 in gene-knock-out mice, was tested by analyzing the distribution of 1251_ 
BMP-7 in fetal and maternal organs [43] (Fig. 6). 

1251-BMP-7 accumulates in fetuses during early pregnancy (days 8-12), while no 
1251-BMP-7 is found after day 14 of pregnancy (Fig. 6). 

On day 13 of gestation 1251-BMP-7 grains were detected in the developing kid
ney structures, localizing mainly above cells belonging to the kidney mesenchyme 
(Fig. 6). At later stages of pregnancy BMP-7 accumulated largely in the blood ves
sels of the mother and in the labyrinth (Fig. 6), which prevented the transport of 
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125I-BMP-7 into the fetal capillaries. No trace of 125I-BMP-7 was found on day 18 
of pregnancy in the blood vessels, which suggests that the placental membrane pre
vents transport of injected BMP-7 into the fetal bloodstream. Accordingly, no spe
cific accumulation of 125I-BMP-7 is detected in any fetal tissue or in blood vessels of 
the umbilical cord [43]. 

The results suggest that BMP-7 from heterozygous mothers might have influ
enced the differentiation of the kidney during the early development of BMP-7 null
mutant fetuses [5, 6]. 

The role of BMPs in acute and chronic kidney failure models 

Acute kidney failure 

The finding that BMP-7 expression remains high in both the fetal and postnatal life, 
and is available in the circulation suggests that BMP-7 may have a systemic function 
and a role in the repair and regeneration of the adult kidney [3, 8]. 

Acute renal failure represents a clinical condition with persistently high mortali
ty (40-80%), despite technical advances in both critical care medicine and dialysis. 
The successful treatment of patients with acute renal failure who require dialysis 
remains one of the greatest challenges facing nephrology today [44]. This condition 
can be fully understood and optimal treatment measures defined, only with knowl
edge of the underlying molecular and structural changes and events. 

The damaged kidney is capable of complete repair and regeneration after acute 
injury and the process recapitulates features that occur during the development. It 
is assumed that regenerating cells take a step back, towards an earlier ontogenic 
stage, which makes the cells sensitive to embryonic stimuli [45,46]. BMP-7 may be 
important in both preservation of function and resistance to injury [8]. 

The mechanisms controlling the cascade of cellular migration, growth and pro
liferation following acute renal failure undoubtedly comprise a number of autocrine 
and paracrine growth factors [47, 48], such as insulin-like growth factors (IGFs), 
epidermal growth factor (EGF), fibroblasts growth factor (FGF), transforming 
growth factors (TGF-a, TGF-~), and hepatocytes growth factor (HGF) [49-52]. 
Animal studies dealing with acute renal failure due to ischemic-reperfusion insult 
have indeed proven that administration of BMP-7 has, for a period of 4 days fol
lowing ischemia, a beneficial effect on the extent of injury and the regeneration of 
kidney function [8]. Bioavailability studies have shown that human BMP-7 has a 
serum half-life of about 30 min, and that significant amounts of 125I-BMP-7 can be 
found in both the kidney cortex and medulla shortly after iv administration [8]. 

Apart from being protective in ischemic acute renal failure, BMP-7 also influ
ences the course of toxic kidney injury in vitro, as well as in acute nephrotoxic ani
mal models utilizing administration of mercuric chloride and cisplatinum [53]. Both 
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prophylactic and therapeutic systemic administration of BMP-7 to rats given mer
curic chloride protected the kidney function and significantly extended the survival 
rate (Fig. 7). Similarly, BMP-7 protected the kidney function in rats treated with a 
high dose of cisplatinum (Fig. 9). 

Mercuric chloride exerts its toxic effects on kidney cells through a variety of 
mechanisms, the principal target being S3 segment of proximal tubules. Intracellu
lar pathways contributing to cell damage by mercury are primarly the consequence 
of its high affinity for sulfhydril groups. These protein groups are of utmost impor
tance for cell function, since they are both located within active centers of various 
vital enzymes and they represent one of the main defense mechanisms against oxida
tive damage [54, 55]. Indeed, increased H20 2 production in mitochondria and heme 
oxygenase induction have been demonstrated both in vitro and in tubular cells iso
lated from rats treated with HgCl2 [56]. Apart from interfering with respiratory 
chain and oxidative phosphorilation enzymes, mercury was shown in numerous 
studies to cause oxidative injury with subsequent lipid peroxidation, DNA damage 
and protein oxidation [57]. Thus, in terms of cytoprotection, since this toxicant may 
activate multiple pathways, multiple pathways may need to be blocked as well. In 
vitro studies show that BMP-7 significantly promotes cell survival and proliferation 
in human primary proximal tubule cells treated with mercury chloride, while it is 
ineffective in intact cells (Fig. 8). In rats with an ischemic-reperfusion kidney dam
age [8], BMP-7 was shown to ameliorate the course of injury through a variety of 
mechanisms, including inhibition of apoptosis, minimizing of infarction and cell 
necrosis and preventing intercellular adhesion molecule-l (ICAM-l) expression, 
thus supressing the inflammatory response [8]. Whether the same mechanisms are 
responsible for its beneficial effects observed in nephrotoxic studies, remains to be 
elucidated. However, the oxidative damage is a principal cause of cell injury and 
death in both mercury-induced and ischemic-reperfusion insult to the kidney. Con
sidering the fact that BMP-7 has a characteristic cystein-rich region in the car
boxy terminal part of the polypeptide chain, it is conceivable that it might function 
as both mercury and/or free radical scavenger. On the other hand, the finding that 
BMP-7 is effective in promoting the proliferation and viability of renal tubular cells 
previously injured by mercury in vitro, while being ineffective in intact cells (Fig. 8), 
points to a difference in sensitivity to external stimuli between regenerating and 
intact cells. Indeed, the experiments dealing with liver regeneration [58] have shown 
that hepatocytes first need to be "primed" with either cytokines or reactive oxygen 
species in order to become fully competent to respond to growth factor stimuli. It is 
well established that kidney cells have a capacity for repair and function recovery 
after injury by recapitulating the molecular and cellular events that take place dur
ing nephrogenesis [50, 51] very similar to regenerating fractured bone [59, 60]. 
Since BMP-7 is a morphogenic protein involved in nephrogenesis during the 
embryogenesis, it may be postulated that injured cells exhibit de novo sensitivity to 
BMP-7 stimulation in vitro. During prenatal development of the mouse kidney, 

274 



The role of bone morphogenetic proteins in kidney development and repair 

120 
~ 100 • . ~ * 
~ 

80 
--OP-1300 

60 ........ OP-1100 
(ij -+- OP-1 30 > 40 --OP-110 .2: 
::J 20 --OP-13 

Vl ....... Control 
A 0 

0 2 3 4 7 
~ 

-' ...... 400 --OP-1300 "0 ........ OP-1 100 E -+-OP-1 30 .:; 300 --OP-1 10 
Q) --OP-1 3 c: .r: 

200 ....... Control 
~ 
~ 
u 100 
E 
::J 

B v 0 Vl 0 2 3 4 7 

120 

~ 100 
Q) 80 
~ 
(ij 60 ........ OP-1100 
> -+-OP-150 .2: 40 --OP-1 10 
::J --Control Vl 20 

C 0 
0 2 3 4 7 

::J' ...... 600 ........OP-1 100 "0 
E 500 

-+-OP-1 50 
.:; * --OP-110 
Q) 400 --Control 
c: .r: 

300 ~ 
~ 200 u 

E 100 
2 

0 Q) 0 Vl 0 2 3 4 7 

Days after mercury chloride injection 

Figure 1 

Prophylactic (A and B) and therapeutic (C and D) effects of BMP-l on the survival rate and 

serum creatinine values in rats sub;ected to acute toxic renal failure. Animals were given 

mercuric chloride (4 mg/kg) in a bolus at the beginning of the experiment. Vehicle (acetate 

buffer, pH 4,5) and BMP-l were administered daily at 24-h intervals beginning on day 0, 

10 min before the insult (data shown as mean ± SEM; p < 0.01, Student's t-test), or begin

ning 8 h following the insult. (Data shown as mean ± SEM; p < 0.01, Student's t-test.) 
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Effect of BMP-7 on proliferation of intact or mercuric chloride (HgC/2) exposed proximal kid

ney tubule cells (REPTEC). 

(A) Human REPTEC cells were plated in serum-free medium for 24 h at a density of 4,000 

cells per well in a 24-well plate. Cells were then incubated with different concentrations of 

BMP-7 for 48 (_) and 72 (w) h. The cells were pulsed with [3HI-thymidine for the last 2 h 

of the culturing period. Data are shown as mean ± SEM. (*p < 0.05; Student's t-test) 

(B) Human REPTEC cells were incubated with 30 pM of mercuric chloride for a period of 3 h. 

After exhaustive washing, the cells were incubated with BMP-7 for a period of 24 hand 

pulsed with [3 HI-thymidine for the last 2 h of the culturing period. BMP-7 dose-dependently 

protected against the toxic in;ury even when applied 3 h following HgC/2 exposure. Data 

shown as mean ± SEM. tp < 0.01; "p < 0.001; Student's t-test.) 

276 



450 

400 
:::J 

350 ...... 
(5 
E 300 .:; 
Q) 

.!: 250 c 
~ 200 ~ 
u 

E 150 
:J 
Qj 

100 Vl 

50 

0 

Figure 9 

3 

The role of bone morphogenetic proteins in kidney development and repair 

4 5 

-+-Vehicle 

....... 10 

........ 30 

...... Prednisolone 

6 7 

Days after cisplatinum treatment 

Protection from kidney iniury by BMP-7 in rats, following the application of 5 mg/kg of cis
platinum. Cisplatinum was administered intraperitoneally (5 mg/kg) to intact animals. Vehi

cle (+, acetate buffer, pH 4,5), BMP-7 (10, ., and 30, .a., j1g/kg) or prednisolone (e) as 

administered immediately before the application of cisplatinum and every 24 h thereafter 

for 4 days. Animals treated with 30 j1g/kg of BMP-7 or with prednisolone showed signifi

cant reduction in serum creatinine values. Data shown as mean ± SEM. (*p < 0.001 on day 

3 and p < 0.005 on day 4 following the application of cisplatinum, Student's t-test.) 

BMP-7 mRNA expression is most abundant on day 12, with a slow decline after day 
15 (Fig. 2). It seems that there is a time frame during nephrogenesis in which the 
presence of BMP-7 is required for normal kidney development. In nephrogenic mes
enchyme tissue explant cultures, BMP-7 was shown to prevent apoptosis [61] and 
the same effect was observed in vivo in ischemic-reperfusion injury [8]. Kidney 
BMP-7 mRNA and protein are selectively downregulated in the medulla after acute 
ischemic renal injury [8], thus BMP-7 modulation may be a key element for kidney 
repair [62]. Whether BMP-7 has a direct growth-promoting function either through 
early genes activation or apoptosis inhibition in damaged tubular cells, or it simply 
serves as a functional free radical scavenger, remains to be determined. Collectively, 
these data suggest that BMP-7 reduces the severity of renal damage associated with 
ischemia/reperfusion and nephrotoxic agents, and, as such, may provide a basis for 
the treatment of acute renal failure. 

277 



Fran Borovecki et al. 

BMP-7 kidney receptors are specific 

Recently, membrane-bound, specific, high-affinity BMP-7 receptors in rat kidney 
tissues mediating BMP-7 actions have been characterized [63]. The major BMP-7-
binding component of the kidney may be a long form of BMP type II receptor with 
a Mr of 100 kDa. In vivo evidence suggests that the cellular target for BMP-7 in the 
kidney are the convoluted tubule epithelium and glomeruli in the cortex, and the 
collecting ducts in the medulla region. Moreover, in situ hybridization and 
immunostaining methods have shown localization of mRNA transcripts and the 
protein for BMP type II receptor in similar areas of the cortex and medulla. 

It is noteworthy that plasma membranes from both the kidney cortex and medul
la show the presence of specific receptors for BMP-7. The relative abundance of 
BMP-7 binding sites in cortex membranes is much higher than in the medulla 
region. Moreover, Scatchard analysis indicates that the receptors in the kidney cor
tex contained a single class of high-affinity BMP-7 binding sites, with a Ka of 
2.26 x 109 mol/L [63]. The calculated binding capacity of receptors per mg mem
brane protein is 1.01 pmol BMP-7. Recently, the presence of both high- and low
affinity binding sites for TGF-13 have been identified in the proximal tubules isolat
ed from the rabbit renal cortex [64]. However, so far there is no evidence of low
affinity BMP-7 binding sites in kidney cortex plasma membranes [63]. It is 
important to note that the endogenous levels of TGF-13 and other related growth 
factors are normally low, and high-affinity and low-capacity receptors for these fac
tors are implicated to mediate their actions. 

The relative uptake of radiolabeled BMP-7 at 10 and 180 min in the cortex is 
270 ng and 80 ng/g tissue, respectively. These values of BMP-7 are not considered 
to be low, since studies with TGF-13 and activin also showed low tissue distribution 
[65, 66]. It has been shown that BMP-7 at these concentrations is effective in cell 
cultures in maintaining the epithelial phenotype of human proximal epithelial cells. 
Interestingly, tissue autoradiography, in situ hybridization, and immunostaining 
with a site-directed receptor antibody all identified the convoluted tubule epitheli
um, glomeruli and the collecting ducts of the medulla as cellular targets for BMP-7 
[8, 63]. Previous studies have shown that the rat kidney is the major source for 
BMP-7 [3,4] and that the major site of BMP-7 production is the epithelium of the 
collecting ducts within the medulla [8]. Taken together, these results suggest that 
BMP-7 might have both paracrine and autocrine roles in the kidney. It is pertinent 
to mention that tissue autoradiography has shown localization of radiolabeled 
BMP-7 in the S3 segment. Moreover, by in situ hybridization, it has been found that 
epithelial cells in the S3 zone synthesize BMP-7 mRNA. Therefore, it is likely that 
in case of an ischemic injury within the S3 zone, exogenously administered BMP-7 
binds to cell receptors and protects from necrosis and infarction, as has been previ
ously demonstrated [8]. When systemically administered, BMP-7 binds to a2-
macroglobulin, which is present at high concentrations in blood. It is important to 
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note that upon activation by protease, <X2-macroglobulin undergoes a conforma
tional change that exposes a previously buried domain close to the carboxyl termi
nus. That domain is then recognized by a cell surface receptor system in the liver, 
which mediates binding and endocytosis of the complex. This is the mechanism by 
which TGF-~ is targeted to the liver by binding to activated <X2-macroglobulin [67]. 

The degree of specificity with which BMP-7 interacts with the kidney receptors 
is high [63]. Other growth factors such as PDGF, TGF-~, IGF and FGF, even at high 
concentrations, fail to inhibit the binding of 1251-labeled BMP-7 to kidney plasma 
membrane receptors. Similarly, other members of the BMP family such as BMP-2 
and CDMP-1 also fail to affect BMP-7 interaction with kidney receptors. Thus, 
BMP-7 does not share receptor-binding properties with other growth factors, and 
its mode of action in the kidney appears to be specific [63]. It is important to note 
that BMP-2 and CDMP-I show only 60 and 51 % homology, respectively, with the 
primary sequence of BMP-7, suggesting that BMP-7 interaction with kidney cortex 
receptors may involve regions in BMP-7 that are not well conserved among these 
growth factors. 

Miyazono and his associates cloned type I and type II receptors for BMPs and 
expressed them in COS cells [68, 69]. BMP-7 was shown to bind to two recombi
nant type I receptors, ALK-2 and ALK-6, and to ALK-3 less efficiently. These ALK 
receptors had Mr values in the range of 50 to 58 kDa (see also the chapter by ten 
Dijke). On the other hand, the recombinant type II receptor is much larger and it 
has two forms, a truncated form with no C-terminus extension [70] and a long form 
with a Mr of approximately 100 kDa [68]. The type II receptor can effectively bind 
BMP-7 on its own, while type I receptors are required to be coexpressed with the 
type II receptor for efficient binding to BMP-7. When plasma membranes isolated 
from the kidney cortex or medulla were analyzed by ligand blotting, each showed 
the presence of a prominent band with an Mr of 100 kDa [63]. Interestingly, the size 
of the BMP-7-binding component of the rat kidney appears to match with Mr of the 
cloned BMP type II receptor. Further analysis by Western blot method using a site
directed receptor antibody identified the 100 kDa component as a BMP type II 
receptor. Consistent with this observation, both in situ hybridization and immunos
taining methods have shown that mRNA transcripts and the protein for the BMP 
type II receptor are localized in glomeruli and adjacent convoluted tubules of the 
cortex, and in the collecting ducts of the medulla. Garcia-Ocana et al. have shown 
that hypertrophy of the proximal tubule is associated with an increased production 
of both TGF-~ and TGF-~ receptors [64]. On the other hand, in experimental mem
branous nephropathy, injury to glomerular epithelial cells is associated with an up
regulation of the TGF-~2 and TGF-~3 isoforms, and an increase in TGF-~3 type I 
and type II receptor expression. Studies by Flyvbjerg et al. have shown that an ini
tial increase in renal size and function in the experimental diabetic kidney is always 
preceded by an increase in renal IGF-I, IGF-binding proteins, and IGF receptor con
centrations [71]. Clearly, those and the present studies signify the importance of 
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BMP-7, BMP-7 receptor, TGF-~, TGF receptors, IGF and IGF receptors as major 
regulators in kidney physiology and renal repair. Whether BMP-7 receptors in renal 
proximal tubules and glomeruli show similar concentration changes to regulate 
tubular cell growth and differentiation after renal injury remains to be elucidated. 
Moreover, these findings provide a molecular basis for the interaction of BMP-7 
with different kidney regions [63]. 

Chronic renal failure 

Progressive and permanent reduction in the glomerular filtration rate (GFR), which 
is associated with the loss of functional nephron units, leads to chronic renal failure 
(CRF). 

The subject progresses to end-stage renal disease when the GFR continues to 
decline to less than 10% of normal values (5-10 m1lmin). At this point, renal fail
ure will rapidly progress to cause death unless the subject receives renal replacement 
therapy, i.e. chronic hemodialysis, continuous peritoneal dialysis or kidney trans
plantation, or therapy that delays the progression of chronic renal disease. 

The effect of systemically administered BMP-7 to delay or halt progression of 
end stage renal failure in a remnant kidney (5/6 nephrectomy) rat model was inves
tigated. Recombinant human BMP-7 at doses of 10 )lg/kg was administered three 
times per week intravenously beginning 2 days following surgery and continuing for 
11 weeks. The effect of BMP-7 was monitored by serum creatinine values (Cr), 
GFR, and the survival rate. The results indicate that 2 weeks after the beginning of 
treatment, BMP-7 considerably decreased serum Cr values as compared to control 
animals. Rats treated with BMP-7 had better GFR and prolonged survival rate 
(Fig. 10). 

The higher GFR observed in BMP-7-treated rats and the hystomorphometric 
analysis suggest that BMP-7 is capable of preventing rapid deterioration of the 
glomerular function in this model. In 18 weeks following nephrectomy the survival 
rate was 88% in BMP-7-treated rats as compared to 32% in controls. The experi
ment was terminated 30 weeks following nephrectomy with 60% survivors in BMP-
7-treated and 15% survivors in control rats, respectively (Fig. 10). This result sug
gests that BMP-7 can delay the progression of the terminal phase of chronic renal 
failure. Since the process of the chronic kidney failure in humans lasts over years, 
delaying the progression is critical for the treatment of chronic kidney diseases. 
BMP-7 might provide a potential therapeutic basis for the treatment of end-stage 
renal failure. 

In another model mimicking chronic renal injury human recombinant BMP-7 
was systemically administered to rats with unilateral ureteral obstruction (DUO) 
and produced nearly complete protection for 5 days against tubulointerstitial fibro
sis [9]. Tubulointerstitial fibrosis is a common final pathway contributing to pro-
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Weeks after 5/6 nephrectomy 

Therapeutic effect of BMP-7 on serum creatinine values and the survival rate in rats follow

ing 5/6 nephrectomy. One week following removal of 5/6 kidney mass, rats were subjected 

to i.v. application of BMP-7 (10 fig/kg) or a vehicle acetate buffer three times a week and 

serum creatinine values were measured throughout 11 weeks. Data are shown as average ± 

SEM; p:::; 0.01 for BMP-7 vs. vehicle treated rats, Student's t-test in (A) and PeW-Wilcoxon 

test (B) was used for the statistical analysis of the survival rate; p < 0.01 for BMP-7 treated 

vs. vehicle treated rats throughout 30 weeks of BMP-7 treatment. 
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gression of many chronic kidney diseases [72-74]. DUO activates a cascade of 
events that produce tubulointerstitial fibrosis [75-77]. An early event in the damage 
cascade is angiotensin II upregulation, which stimulates tumor necrosis factor-a 
(TNF-a) production and TGF-~ expression [78-82]. These cytokines activate 
nuclear factor lCB (NF-lCB), a crucial transcription factor in fibroblasts, macrophages 
and epithelial cells, involved in renal cellular transformation and apoptosis as well 
as interstitial inflammation and subsequent fibrosis. The damage cascade stimulat
ed by DUO closely resembles that produced by several forms of renal injury [78, 
83-85]. Suppression of this damage cascade might prevent fibrogenesis and preserve 
renal function. BMP-7 suppressed UUO-stimulated loss of the tubular epithelium 
due to apoptosis and prevented the transformation of renal cells into interstitial 
myofibroblasts [9]. This suggests that, whereas BMP-7 prevented tubular cell apop
tosis as previously reported [8], it further appears to have maintained the phenotype 
of tubular cells and the interstitial fibroblasts. Both tubular cells and interstitial 
fibroblasts are subjected to phenotypic alterations as a result of DUO [74, 75, 
86-88]. The preponderance of evidence is that phenotypic alteration of epithelial 
and fibroblastic cells to myofibroblasts is detrimental and leads to a progressive loss 
of renal function [75, 87-90]. BMP-7 administration was similar to but greater than 
enalapril in its protective action against tubulointerstitial fibrosis [9]. In addition, 
BMP-7 preserved the tubular epithelial structure and prevented tubular atrophy. In 
comparison, ACE inhibition decreases the activity of the damage cascade by sup
pressing DUO stimulation of TGF-~, TNF-a, and NF-lCB, which are mediated by 
angiotensin II [76, 77]. Approximately 50% of the stimulation of this damage cas
cade, after DUO, is due to angiotensin II [75] and data suggest that more than 50% 
is suppressed by BMP-7. Thus BMP-7 may function as a renal homeostasis signal by 
providing a survival signal to epithelial cells, protecting the tubular epithelial cell 
phenotype, and suppressing gene activation associated with injury. 

Conclusion 

BMPs may have important functions in kidney development and renal diseases. 
BMP-7 regulates kidney mesenchyme differentiation and preserves renal function by 
preventing inflammation and fibrosis following ischemia, nephrectomy and ureter
al obstruction. 
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Introduction 

Bone morphogenetic proteins (BMPs) were originally identified by their ability to 
induce ectopic bone formation [1]. However, it was subsequently found that BMPs 
are expressed in most, if not all, developing organs and that they profoundly alter 
the development of kidney [2], lung [3], blood [4], and heart [5], as well as carti
lage, mesoderm and bone [1]. 

BMPs are also prominently expressed in the central and peripheral nervous sys
tems and they have been implicated in the control of a host of critical developmen
tal phenomena, including: neurulation, dorsal-ventral patterning, specification of 
neural and glial cell lineages, neural cell survival and proliferation, segmentation, 
axonal guidance, determination of neurotransmitter phenotype, regulation of den
dritic growth and synapse formation. In addition, BMPs are neuroprotective in 
mature animals in models of ischemic and excitotoxin-induced injury. In this review, 
we try to summarize the major effects of BMPs, GDFs, and activins on neural devel
opment and function, with the greatest concentration being on the most recent lit
erature. Due to space limitations, we did not consider neural BMP signaling mech
anisms or the actions of TGF-~1, ~2, and ~3. However, these topics have been con
sidered in recent comprehensive reviews [6, 7]. 

Expression of BMPs, BMP receptors, and BMP antagonists 

Expression of BMPs 

The cloning of BMP-7 (OP-1) from a human hippocampal cDNA library [8] pro
vided the first indication that the nervous system expresses BMPs. This initial report 
was quickly followed by evidence of BMP-7 transcriptional and translational prod
ucts in the brain [9-12]. It is now clear that the nervous system expresses multiple 
BMPs from each of the known BMP subgroups. Specific BMPs identified in the ner
vous system thus far include: (1) BMP-5 [13, 14], BMP-6 (vgr) [15, 16] and BMP-7 
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of the 60A subgroup; (2) BMP-2 [12] and BMP-4 [15] of the dpp subgroup; (3) dor
salin [17] and GDF-l [18, 19] of the dorsalin subgroup; and (4) novel BMPs that 
have yet to be assigned to a subgroup such as BMP-9 [20], BMP-ll [21], GDF-I0 
[19,22] and GDF-15 [23]. 

Spatiotemporal localization studies, which have primarily examined BMP 
expression at the mRNA level, indicate persistent and complex regional expression 
patterns at all stages of neural development into maturity. Downregulation of BMP 
expression appears critical to initial formation of the nervous system. Prior to gas
trulation, BMPs -2, -4 and -7 are expressed throughout the blastula [24-27], but 
with the onset of gastrulation, BMP-2 expression is turned off everywhere [26, 28, 
29] and BMP-4 is quickly downregulated in the organizer and the presumptive neur
al plate [29-32]. Following neurulation, BMP expression is upregulated in dorsal 
midline neural tube cells such that the developing roof plate expresses BMPs -4, -5 
and -7 and dorsalin 1 in anterior regions [12, 17,33-35] and BMP-6 in regions pos
terior of the telencephalon/diencephalon boundary [13]. BMP-ll is expressed in the 
dorsal-lateral edges of the neural tube adjacent to the roof plate [21]. 

As development continues, BMP expression continues to increase, generally 
reaching peak levels during the perinatal period. BMPs have been detected in every 
region of the developing nervous system including the forebrain [13, 36-38], mid
brain and hindbrain [39-41], spinal cord (reviewed below, in the section "The role 
of BMPs in spinal cord patterning"), and ganglia of the peripheral nervous system 
[21, 36, 42-44]. Within any given brain structure, multiple BMPs are typically 
expressed in overlapping temporal and spatial patterns. For example, within the 
mouse hippocampus, BMP-2 transcripts reach peak levels at embryonic day 16 
(£16), BMPs -6 and -7, at £18 [19,36], BMP-5 at £18 and again in the adult, and 
BMP-4 at postnatal day 4 (PN4). Spatial patterns also vary between BMPs, e.g., in 
the PN6 hippocampus of mice, transcripts for GDF-l are localized to CAl through 
CA3 while GDF-I0 mRNA is detected in CA3 and dentate gyrus [19]. BMP expres
sion typically declines in the adult nervous system; however, strong signals are still 
detectable in discrete structures of the mature brain. For example, the adult hip
pocampus expresses relatively high levels of BMP-5, BMP-6, GDF-l and GDF-I0; 
the neocortex, BMP-5, BMP-6 and GDF-l; the cerebellum, BMP-5; the striatum, 
BMP-5 and BMP-7; and the brainstem, BMP-5 and BMP-6 [19,45,46]. 

At the cellular level, both neuronal and glial cells have been shown to express 
BMPs. In vitro studies indicate that transcripts for BMP-2 and BMP-7 are preferen
tially localized to microglia, astrocytes, and neurons of the forebrain while BMP-4 
mRNA is associated primarily with bipotent oligodendroglial astroglial progenitor 
cells and oligodendrocytes [37,47]. In vivo, BMP-4 protein is associated with type 
B astrocytes in the subventricular zone of adult mice [48], and BMP-6 protein has 
been localized to radial glia [49], neurons of the neocortex and hippocampus [45], 
and peripheral Schwann cells [50]. Similarly, transcriptional and translational prod
ucts of BMP-6 and BMP-7 have been localized to neuronal and glial cells of perina-
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tal sympathetic ganglia in vivo and in vitro (Chandrasekaran, Lein and Higgins, 
unpublished observations). 

Although the expression of transcripts for BMPs within the nervous system has 
been well documented, there is a paucity of data concerning the localization of BMP 
translational products. However, recent immunohistochemical evidence of BMP 
expression suggests that BMP proteins are more widely distributed than would be 
predicted by in situ hybridization studies of BMP transcript expression [15, 37,48, 
51, 52]. Possibly, this is due to local diffusion from BMP-producing neural cells. 
Additional explanations may include delivery of BMPs via the fetal circulation or 
cerebrospinal fluid (CSF). It has been shown that placental tissue expresses BMPs -
4 and -7 [53-55], but whether these are secreted into the fetal circulation and cross 
into the developing brain has yet to be determined. With respect to BMPs in the CSF, 
BMP-7 protein has been detected in bovine CSF [56] and transcripts for BMPs have 
been demonstrated in the choroid plexus of embryonic mice (BMPs -4, -5, -6 and 
-7; GDF-15) [13,57] and adult rats (BMPs -6 and -7) [52]. These data suggest the 
potentially widespread distribution of BMPs in the developing and mature nervous 
system. In light of this, spatiotemporal expression patterns of BMP receptors and 
BMP antagonists may prove critical to regulation of BMP signaling in the nervous 
system 

Expression of BMP receptors 

BMPs exert their biological effects by binding to type I and type II serine-threonine 
kinase receptors [58, 59]. Specific receptor subunits shown to bind BMPs include 
BMP receptor type IA (BMPR-IA), BMPR-IB, BMPR-II, activin receptor type I 
(ActR-I), and ActR-II [60-62]. BMP ligands can bind to either type I or type II 
receptor subunits independently, but both receptor types are required for high-affin
ity binding and signaling [59]. The combinatorial identity of BMP receptors that 
mediate BMP signaling in the nervous system is not known. Inferences can be made 
based on limited data regarding the ligand specificity of individual type l/type II het
erodimers in non-neuronal cell systems [61-63], and the expression of BMP recep
tor subunits in neural tissue. RT-PCR and RNA blotting demonstrate that both the 
developing and adult nervous system express mRNA for BMPR-IA, BMPR-IB, 
ActR-I, BMPR-II, and ActR-II [60, 62, 64, 65] and localization of these transcripts 
by in situ hybridization studies suggests complex temporal and spatial regulation [6, 
46]. The following is a summary of these findings; for a detailed description of BMP 
receptor expression in the nervous system, the reader is referred to the following ref
erences [42, 52, 66, 67]. 

BMPR-IA, BMPR-IB and BMPR-II are expressed within the CNS neuroepitheli
um as early as Ell in the rat and E12 in the mouse [42, 67]. During late embryon
ic and neonatal stages in the mouse and rat, transcript levels for BMPR-IA, BMPR-
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IB, and BMPR-II increase significantly and ActR-I and ActR-II expression becomes 
apparent. BMPR-IA, ActR-I and BMPR-II mRNA exhibit widespread distribution 
in the brain with prominent expression in the subventricular zone, the hippocampus 
and the neocortex; BMPR-II is also strongly expressed in the substantia nigra and 
Purkinje cell layer of the cerebellum [42, 67]. During the early postnatal period, 
BMPR-IA, ActR-I and BMPR-II transcripts are maintained at high levels in these 
regions and BMPR-IA expression is upregulated in additional brain regions such as 
the thalamus, cerebellar Purkinje cell layer, and brain stem [42]. In contrast to the 
broad expression of BMPR-IA, ActR-I and BMPR-II in the brain, BMPR-IB and 
ActR-II exhibit more limited expression patterns. ActR-II is strongly expressed in 
the dorsal spinal cord and more diffusely in the developing hippocampus and olfac
tory cortex [66, 67]. BMPR-IB is strikingly restricted to the anterior olfactory 
nucleus and olfactory epithelium from late embryonic stages throughout the post
natal period into adulthood [42]. These patterns of expression are suggestive of 
roles for BMPR-IA, ActRI, BMPR-II and ActRII in multiple aspects of neural devel
opment including neurogenesis, neuronal and glial lineage determination, neuronal 
morphogenesis and synaptogenesis while suggesting a unique function for BMPR-IB 
in the development and function of the olfactory system. 

BMP receptors are also detected in the developing PNS. Transcripts for BMPR
lA, BMPR-IB and BMPR-II are expressed in cranial ganglia, sympathetic ganglia, 
and DRG. High levels are evident from E15 throughout development into adult
hood [52, 67, 68]. ActR-I and ActR-II are similarly localized to these ganglia but 
under different temporal regulation: expression is first evident at E21 and is strong
ly downregulated in the adult [67]. These expression patterns are consistent with 
proposed roles for BMPs in regulating cell fate and differentiation of neural crest
derived progenitor cells. 

Transcripts for type I and type II receptors have also been detected in the CNS 
of adult animals, but generally at much lower levels than observed in late embryonic 
and early postnatal development [42, 67]. However, these levels may be upregulat
ed in response to brain injury [52]. In situ hybridization patterns suggest unique pat
terns of regional expression for the different receptor subunits, although there are 
some significant discrepancies between studies. Zhang et al. [42] reported in a com
parative analysis of BMPR-IA, BMPR-IB and BMPR-II expression that BMPR-IA 
was the most abundant with widespread distribution in gray matter and the choroid 
plexus and particularly robust expression within the neocortex, cerebellar Purkinje 
cell layer and brainstem nuclei. BMPR-IA was notably absent from white matter. 
BMPR-II transcripts were seen in the cerebellar Purkinje cell layer, the hippocampus 
and the choroid plexus while BMPR-IB mRNA was restricted to the olfactory nucle
us. In contrast, Soderstrom et al. [67] and Charytoniuk et al. [52] observed mRNA 
for BMPR-II in the cortex, dentate gyrus, hippocampus, substantia nigra and ven
tral horn of the spinal cord. The former study also reported ActR-I and ActR-II 
mRNA in the dentate gyrus. However, in neither study were transcripts for BMPR-
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IA and BMPR-IB detected in adult brain. The reason(s) for these discrepancies are 
not known but may be attributable to differences in the probes used for in situ 
hybridization since Zhang et al. [42] were able to corroborate their positive obser
vations of BMPR-IA and IB using nuclease protection assays and Western blot 
analyses. 

There is a paucity of data concerning BMP receptor expression at the protein 
level. Western blot analyses have detected BMPR-IA and BMPR-II in whole mouse 
brain with peak levels occurring from £13 through P7 followed by significant 
downregulation in the adult [42]. Immunocytochemical analyses revealed diffuse 
staining for BMPR-IA, BMPR-IB and BMPR-II in cultured 02A cells [47]. The lat
ter observation raises questions of cellular and subcellular distribution in vivo. 
Adult brain slices double-labeled with antibodies selective for neurons, astrocytes or 
oligodendrocytes and antisense probe for BMPR mRNA suggest that BMP receptors 
are localized to neurons [42]. The exclusion of BMPR-IA from white matter in the 
adult brain would suggest subcellular localization to the somatodendritic domain of 
mature neurons; however, evidence that BMPs function in axon guidance [69] 
would argue that in some contexts, BMP receptors are also expressed in axons. 

What conclusions can be made on the basis of the available data regarding 
expression patterns of BMP receptors? First, these data support a role for receptor
mediated BMP signaling in both the developing and adult nervous system. Second, 
significant overlap in the expression patterns of BMP receptors and BMP ligands 
raises the possibility of autocrine, paracrine and cooperative signaling loops. Third, 
the incomplete overlap between type I and type II BMP receptors, particularly in the 
adult brain, has interesting implications regarding the combinatorial identity of 
neural BMP receptors. If the current model for BMP signal transduction through 
type I1type II receptor heterodimers is correct, then it is likely that additional sub
types of type I and type II BMP receptors have yet to be identified in neural tissue. 
Relevant to this issue, a novel type I serine/threonine kinase named activin-receptor
like kinase-7 (ALK-7) that is preferentially expressed in the brain was recently 
cloned [70-72]. The ligand(s) and physiologically relevant type II BMP receptor(s) 
that interact with ALK7 have yet to be determined. Alternatively, there is evidence 
that homodimeric BMP receptors transduce BMP signals, albeit with lower efficien
cy than heterodimeric receptors [71]. If this observation is physiologically relevant 
to BMP signaling in the nervous system, then differential expression of het
erodimeric and homodimeric receptors may represent yet another mechanism for 
regulating the efficacy of BMP signaling in the brain. 

Expression of BMP antagonists 

BMP signaling is determined not only by the spatiotemporal expression of BMP lig
ands and receptors, but also by that of soluble BMP antagonists, which directly bind 
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BMPs and prevent functional receptor/ligand interaction [74-76]. It now appears 
that at least four distinct classes of inhibitory BMP binding proteins have evolved 
independently in vertebrates: follistatin, noggin, chordin and the DAN family of 
binding proteins, which includes DAN [77], cerberus [77-80] and DRMlgremlin 
[79]. These BMP antagonists bind to various BMPs and other TGF-~ family mem
bers with differing degrees of specificity. For example, follistatin binds both activin 
and BMP-7 avidly, but does not compete with the type I receptor for BMP-4 bind
ing [81], whereas noggin and chordin bind to BMPs -2 and -4 with greater affinity 
than BMP-7 [74, 75]. Profiling the BMP binding affinities as well as the expression 
patterns of these BMP antagonists will be critical to understanding their role in BMP 
signaling in the nervous system. 

Consistent with their proposed role in neural induction [82, 83], the BMP antag
onists noggin, chordin, follistatin and cerberus are expressed in the Xenopus orga
nizer at the gastrula stage [78, 84-87]. Similarly, transcripts of these antagonists are 
expressed in the organizers of birds, fish and mammals with the following excep
tions: neither noggin nor follistatin is expressed in the zebrafish organizer and fol
listatin is not present in the mouse organizer [88-90]. After neurulation, transcripts 
for follistatin [85] and noggin [91] are detected in the notochord; translation prod
ucts of the former are known to be secreted by mesodermal cell types that flank the 
ventral neural tube [35]. Noggin is also expressed along the longitudinal extent of 
the dorsal neural tube in a gradient of expression that decreases caudorostrally [91-
93]. Gremlin is expressed in the developing neural crest [79] and chordin mRNA is 
localized to the neuroepithelium of the neural tube, hind, mid and forebrain [94]. 
At later stages of development, follistatin is stably expressed in the hindbrain [95] 
and noggin is detected in cortical structures but its spatial pattern is dependent on 
developmental age. In E15 mice, noggin mRNA and protein is present at very low 
levels in the cortex [37,48,96]. In neonatal mice, noggin protein is abundant in the 
developing subcortical white matter and corpus callosum and present at much lower 
levels in the rest of the cortex [37]. 

BMP antagonists have also been found in the adult nervous system. In situ 
hybridization of neural tissue from adult mice revealed noggin transcripts in the 
tufted cells of the olfactory bulb, the piriform cortex, and cerebellar Purkinje cells 
[96]. Transcriptional and translational products of noggin were also detected in the 
subventricular zone of adult mice [48]. In mice, chordin mRNA is expressed in the 
granular layer of the cerebellum, the dentate gyrus, and subfields CAl, CA2 and 
CA3 of the hippocampus [94]; chordin has also been detected in RNA blots of adult 
human cerebellum [97]. In situ hybridization of adult rat brains using probes for 
DRM, the mammalian homologue of gremlin, demonstrated strong expression in 
neurons and glial cells of the cortex and in the molecular and granular layers of the 
cerebellum [98]. The expression of these antagonists at the protein level is largely 
unknown. However, based on patterns of transcript expression, it would appear 
that BMP antagonists are important in not only the developing but also the adult 
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nervous system. Functional studies have provided considerable insight regarding the 
role of BMP antagonists during neural development, but their physiological signifi
cance in the mature brain is largely unknown. 

BMPs and neural induction 

The formation of the vertebrate nervous system is initiated during gastrulation 
when the ectoderm gives rise to the neural plate. Grafting experiments in amphib
ians, fish, birds and mammals have shown that signals from a distinct cluster of 
mesodermal cells, known as the organizer, induce ectoderm to adopt a neural 
rather than an epidermal fate [99, 100]. Surgical or genetic ablation of the orga
nizer does not necessarily preclude the formation of a neural plate [101-107], sug
gesting the existence of additional inductive interactions that promote neuraliza
tion. These observations have stimulated an intensive search for molecules with 
neural inducing activity. Thus far, several candidate molecules have been implicat
ed in the mechanism of neural induction, and all share the property that they inhib
it BMP signaling. 

The first indication that blocking BMP signaling pathways might be important 
in neural induction came from observations that expression of dominant negative 
ActR-II in isolated animal caps causes the generation of neural tissue [108]. Similar 
results were obtained in animal caps treated with follistatin, a potent inhibitor of 
activin [109]. Since Xenopus animal caps (which are ectodermal explants from blas
tula stage embryos) typically form epidermis unless recombined with organizer 
grafts, these data suggested that neural differentiation is the default state of ecto
derm, and signaling by activin or a related TGF-~ ligand promotes epidermal rather 
than neural differentiation. To test this hypothesis directly, researchers exploited an 
earlier observation that dissociation of animal caps causes ectoderm to form neural 
tissue even in the absence of signals from the organizer, presumably because epider
mis-inducing factors are diluted under these conditions [110]. Thus, adding back 
these epidermalizing factors to dissociated ectodermal cells should block neuraliza
tion and cause epidermis to form. Using this bioassay, activin was observed to 
induce mesoderm, not epidermis [111]; however, BMP-4 proved to be a potent epi
dermal inducer and its epidermalizing effects could be blocked by dominant nega
tive ActR-II and by follistatin [112]. It was subsequently shown that BMP-2 and-7 
also induce epidermis in this bioassay [113] and that BMP-2, -4 and -7 are expressed 
in Xenopus gastrula ectoderm [27, 29]. 

Further evidence that BMPs bias ectoderm towards an epidermal fate comes 
from observations that activation of BMP signaling components downstream of the 
ligand also induces epidermis in dissociated ectoderm. Thus, overexpression of con
stitutively active Type I receptors, [82, 113], Smadl or Smad5 [114, 115], or Msxl, 
an immediate early response to BMP signaling [116], effectively inhibits neuraliza-
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tion and promotes epidermalization of ectoderm in dissociated cell cultures. Con
versely, inhibition of BMP signaling promotes neuralization in intact animal caps. 
Injection of mutant BMP-4 or BMP-7 [27], antisense BMP4 [86] or dominant-neg
ative Type I BMP receptors [109, 117] promotes the generation of neural tissue. 
Neural induction also occurs when signaling elements downstream of the BMP 
receptor are blocked. Thus, overexpression of the inhibitory Smads, Smad6 or 
Smad7 [118-120] or dominant negative forms of the early response elements Vent-
1, Vent-2 and Msxl [82, 121] causes animal cap ectoderm to adopt a neural rather 
than epidermal fate. 

Based on these observations, it has been proposed that the organizer and other 
regions of the embryo neuralize ectoderm through inhibition of BMP signaling. 
There are data to support this hypothesis. The BMP antagonists noggin, chordin, 
follistatin, cerberus and Xnr3 are expressed in the Xenopus organizer at the gastru
la stage when neural induction is thought to occur, and ectopic expression of these 
antagonists causes neural development in blastula-stage animal caps [78, 84, 86, 87, 
109]. These effects occur in the absence of mesoderm induction, providing critical 
evidence that BMP antagonists are direct neural inducers. Studies in Drosophila 
have shown that overexpression of noggin antagonizes the epidermalizing activity 
of the Drosophila BMP-4 homologue (dpp), but does not inhibit the epidermis
inducing effects of constitutively active BMP receptors [122], suggesting that these 
BMP antagonists target BMP signaling upstream of the receptor. Additional bio
chemical and genetic studies in Xenopus and Drosophila support the conclusion 
that noggin, chordin, follistatin, cerberus and Xnr3 induce neural fates by directly 
binding BMPs and preventing functional interaction with their receptors [82, 83]. 
Despite notable interspecies differences in gene expression patterns for BMP ligands 
and antagonists [88, 89], there is evidence suggesting that BMP antagonism is a con
served mechanism of neural induction across frogs, fish, birds and mammals, and 
that soluble BMP antagonists constitute an important component of this mechanism 
[82, 83, 90]. 

While BMP antagonists appear sufficient for neural induction, there is no defin
itive evidence yet that the BMP antagonists are necessary for neural induction. Mice 
with targeted deletion of noggin [91], follistatin [91], or cerberus [123] still develop 
a neural plate. Similarly, deletion of chord in in zebra fish does not block neural 
induction, although it does reduce the size of the neural plate [124, 125]. The min
imal effect of single mutations on neural induction is perhaps not surprising, 
because of the overlapping expression and redundant activities of the BMP antago
nists. However, a neural plate still forms in mice doubly mutant for noggin and 
chordin [126], and in mice with genetic deletion of the organizer (the node) that 
effectively eliminates noggin, chordin and other node-derived neural inducing sig
nals [103, 104, 107]. These data suggest the existence of additional families of sig
naling molecules that are not derived from the organizer. Two candidates include 
FGF and Wnt/~-catenin signals [127-130]. 
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There is evidence that both FGF and Wnt signals may induce neuralization by 
suppressing BMP transcription in the prospective neural plate. In explants of chick 
ectoderm, the FGF receptor inhibitor SU5402 inhibits BMP downregulation and 
under these conditions the explants differentiate into epidermis. Application of nog
gin or other BMP antagonists to explants treated with the FGF inhibitor restores 
neural fate [130]. Ectopic activation of Wnt signaling in Xenopus animal caps is suf
ficient to both suppress BMP-4 expression and induce neural differentiation [131]. 
Thus two different signaling pathways cause downregulation of BMP expression 
which is correlated with neural induction. 

In summary, these data suggest that in the developing embryo, ectodermal cells 
exposed to BMPs are fated to become epidermis, while inhibition of BMP signaling 
drives ectoderm towards a neural fate. Prior to gastrulation, FGF and Wnt signal
ing promote neural differentiation by repressing the expression of BMP genes from 
prospective neural plate; during gastrulation the activity of BMP proteins is antag
onized by soluble factors derived from the organizer region [83, 132]. 

BMPs and the specification of neural/glial cell fate 

Development of a functional nervous system requires precise regulation of neuronal 
and glial cell differentiation from a common neural progenitor cell [133-135]. BMP 
signaling influences progenitor cell fate decisions, but the precise effects of BMPs 
vary according to progenitor cell type and/or cell stage [37, 48, 136, 137]. Thus, 
BMPs inhibit neuronal lineage development in the olfactory epithelium [138], but 
promote neuronal cell fate specification in neural crest stem cells [139], in cerebel
lar granule cell precursors [140] and in spinal cord neural precursors [141]. BMPs 
have also been shown to selectively promote astroglial cell development in neural 
cultures from the embryonic midbrain [40] and hindbrain [41]. There is evidence 
that progenitor cell response to BMPs may be influenced by the cellular and 
cytokine context of the local environment [36, 137, 142, 143], and by the relative 
balance of BMPs and BMP antagonists [37,48, 137, 144]. Much of what is known 
about BMPs in neuronal and glial lineage commitment has been derived from stud
ies of cortical development and thus the remainder of this discussion will focus on 
lineage determination in the cortex. 

During early embryogenesis, neurons and glia of the neocortex are generated 
from multi potent progenitors located within the neuroepithelium of the ventricular 
zone (VZ). During the later perinatal period, neurons, astrocytes and oligodendro
cytes are generated from multi potent cells present within the subventricular zone 
(SVZ). In vitro studies of VZ progenitors indicate that BMPs decrease proliferation 
and trigger both neuronal and astroglial differentiation with concurrent suppression 
of oligodendroglia I lineages [37, 137, 144]. Comparative analyses of other TGF-~ 
family members suggest that this activity is unique to BMPs [46]. In the absence of 
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exogenous BMPs, overexpression of dominant negative BMPRI inhibits neurite out
growth and neuronal migration in VZ explants [51] and noggin blocks neuronal lin
eage elaboration in dissociated VZ cultures [144]. These data suggest that endoge
nous BMPs regulate VZ progenitor cell fate, a conclusion supported by spatiotem
poral expression patterns of BMPs in vivo [37,51, 143]. 

The response of cultured SVZ progenitors to BMPs varies in that BMPs promote 
astroglial differentiation while suppressing both neuronal and oligodendroglial dif
ferentiation [36, 37, 39, 137, 143, 145]. BMP-induced astroglial differentiation of 
SVZ progenitors appears to require concurrent signaling by LIF [38,143], and BMP 
suppression of oligodendroglial differentiation appears to be mediated by active 
mechanisms. The latter is based on observations that sonic hedgehog (Shh) [147] 
and noggin [37, 137] promote the generation of oligodendrogliallineages from cul
tured SVZ progenitors, presumably via similar mechanisms since Shh has been 
shown to increase noggin expression [148]. The differential effects of BMPs on 
astroglial and oligodendroglial fate are maintained during later stages of lineage 
specification: exposure of postnatal subcortical bipotent oligodendroglial-astroglial 
(O-2A) progenitor cells to BMPs promotes dose-dependent elaboration of astrocytes 
and inhibition of oligodendroglia I lineage expression [36,47, 136]. In vivo studies 
are consistent with the proposal that BMPs actively suppress oligodendroglial lin
eages. Thus, BMPs are expressed primarily in the dorsal aspect of the neural tube, 
whereas oligodendroglia arise predominantly along the ventral neural axis [14, 
136]. Noggin is predominantly expressed in the developing subcortical white mat
ter, but not in the remainder of the cortex, corresponding to sites enriched with 
oligodendroglia or astroglia, respectively [37]. More convincingly, there is a pauci
ty of oligodendroglia in the noggin knock-out mouse [91]. 

Evidence that neurogenesis persists in the mammalian eNS throughout adult 
life [149] raises the question of whether BMPs influence neuronal versus glial fate 
decisions in the adult nervous system. This question has been addressed by Alvarez
Buylla and colleagues [48] who found that adult SVZ cells express BMPs and their 
cognate receptors, whereas the ependymal cells adjacent to the SVZ express nog
gin. In SVZ cells cultured from adult brains, the addition of exogenous BMPs or 
overexpression of constitutively active type I BMPRs inhibits neurogenesis and 
promotes glial differentiation, similar to observations reported by others [150]. In 
contrast, exogenous noggin promotes neurogenesis and inhibits glial differentia
tion. In vivo, overexpression of BMP7 in the ependyma inhibits neurogenesis while 
stimulating generation of glial cell types and ectopic expression of noggin in the 
striatum promotes neuronal differentiation of SVZ cells grafted to the striatum. 
These data suggest that noggin production in the ependyma creates a neurogenic 
environment in the adjacent SVZ by blocking endogenous BMP signaling. There is 
evidence to suggest that interactions between noggin and BMP may similarly influ
ence neuronal and glial lineage elaboration in the developing cortex [37, 144]. 
Observations that interplay between BMPs and BMP antagonists similarly regulate 
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neuronal versus glial specification in the developing and adult cortex and neuronal 
versus epidermal specification during neural induction suggest a conserved para
digm of BMP signaling that is repeated in various contexts throughout the life of 
the organism. 

The role of BMPs in spinal cord patterning 

BMPs play essential roles in the development of caudal spinal cord character and 
the differentiation of the dorsal-most ventral interneurons as well as dorsal com
missural interneurons [34, 69, 151, 152]. Cooperative signaling from fibroblast 
growth factor, paraxial mesoderm caudalizing activity, retinoids, and BMPs guide 
the rostrocaudal development of the neural tube [152]. For example, BMP-7 
enhances expression of rostral characteristics whereas fibroblast growth factor con
trols the acquisition of caudal traits [153]. The establishment of the rostrocaudal 
axis produces the embryonic midbrain, hindbrain, and spinal cord in the chick 
[154]. Subsequent to the foundation of spinal cord caudal characteristics, BMPs reg
ulate specific aspects of the dorsal-ventral differentiation processes. Expresssion of 
BMP-2, -4, -5 and -7 in the dorsal cord forms a concentration gradient from the 
highly concentrated dorsal region to the less concentrated ventral; therefore, BMPs 
exert their greatest influence on the differentiation of dorsal commissural interneu
rons, as well as the dorsal-most ventral midline cells via inhibition of sonic hedge
hog signaling from the notochord [152]. 

The epidermal ectoderm sets off a BMP-mediated differentiation cascade by 
transiently secreting BMP-4 and BMP-7 [34], promoting the development of the 
dorsal midline from multipotent neuroepithelial cells [155]. Progressive dorsaliza
tion activity is regulated by BMP-4, -5, -6, and -7 in murine and chick tissues, as 
well as BMP-2 in the mouse, which are secreted from the dorsal midline as it forms 
from the closing neural fold [46]. The BMP induction cascade continues with the 
development of the BMP-secreting primitive roof plate from the neural fold and dor
sal midline [34, 69, 151]. GDF-7 is also expressed by the roof plate cells, and is 
required for the differentiation of D1A and D1B sensory interneurons [34, 151]. In 
addition, expression of BMP-7 from the roof plate acts as a chemorepellent to guide 
dorsal commissural axon projections toward the ventral cord [69]. Collectively, the 
roof plate expresses a variety of BMPs at different developmental stages, long after 
the cessation of BMP secretion from the epidermal ectoderm. 

BMP-7 and sonic hedgehog are expressed from the prechordal mesoderm and 
together regulate the differentiation of ventral midline cells [153, 156], whereas 
sonic hedgehog expressed by the notochord independently controls the induction of 
floor plate cells [153]. BMPs diffuse from the dorsal cord and regulate the response 
of ventral cord precursors to sonic hedgehog. Notochord-derived sonic hedgehog 
and BMP-binding proteins, including the BMP antagonists noggin and follistatin, in 
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turn attenuate BMP effects in this region [34, 83, 91, 152, 157, 158]. The role of 
BMPs in dorsoventral regulation in attenuation of ventral neuronal differentiation 
was confirmed by utilizing BMP mutants in zebrafish [159]. The resultant pattern 
of differentiation factors in the ventral and dorsal spinal cord can be described as a 
dual concentration gradient system, with BMPs -2, -4 and -7 concentrated in the 
dorsal region, diffusing out towards the ventral, and sonic hedgehog in the ventral 
diffusing dorsally, away from the notochord and floor plate [35, 152, 160]. 

At each level of the dorsal-ventral gradient, neural precursors at specific locales 
require a certain concentration of differentiation factor to develop into the correct 
neuronal type [46, 152]. For example, neural precursors in the dorsal cord need 
high concentrations of BMPs for maturation, whereas ventral neuronal precursors 
require high levels of sonic hedgehog. In addition, precursor cells require such sig
nals to contact them during specific periods of development, as cells become com
petent to respond appropriately to precise developmental progression. In this way, 
the BMP influence on neuronal precursor cells is temporally and spatially modified, 
resulting in a specific patterning effect throughout the neural tube. 

Effects of BMPs on brain development 

In many regions of the developing brain, BMPs regulate the generation and differ
entiation of neuronal cells during various stages of ontogeny [137]. For example, 
BMPs induce the differentiation of cerebellar granule neurons [140], and striatal 
GABAergic neurons [161]. In addition, BMPs-2, -4, -6, -7, -12 and -13 stimulate 
differentiation [51, 137], and signaling through the BMP receptor promotes migra
tion [51] of cortical neurons from neocortical precursor cells within the VZ. BMP-
2 regulates proliferation in the forebrain [13], and BMP-7 induces serotonergic 
characteristics during the development of hindbrain raphe neural precursors [41]. 

Not unlike the developing spinal cord, the activity of BMPs is counterbalanced 
by antagonistic factors. For instance, BMPs and the BMP antagonist chordin coor
dinately regulate rostrocaudal patterning of ventral midline cells, as chordin inhibits 
BMP support of rostral characteristics and promotes the enhancement of caudal 
properties [153]. BMP-2 and -4 control the number and the properties of develop
ing cortical precursors in conjunction with the inhibitor noggin [37]. In addition to 
these agents, sonic hedgehog modifies the influence of BMPs on the proliferation 
and differentiation of eNS neural precursors, and also induces the expression of 
noggin to elicit a number of its effects [147]. Sonic hedgehog attenuates BMP sig
naling, promoting the acquisition of ventral properties and inhibiting the anti-pro
liferative effects of BMP-2 on neuronal precursor cells [147]. Lastly, during the 
development of the early forebrain, BMP-7, BMP-4 and sonic hedgehog are jointly 
secreted from the prechordal mesoderm to induce the expression of rostral dien
cephalon ventral midline cells [153, 156]. In this way, BMP-7 and BMP-4 alter the 
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effect of sonic hedgehog to induce differentiation of rostral diencephalon cells rather 
than floor plate cells. 

BMPs regulate the survival of developing neurons in both the CNS and the PNS, 
and they exert their effects by both independent means and in conjunction with 
other trophic factors. BMP-2 promotes the survival of striatal GABAergic neurons 
in a manner that does not require additional growth factor signaling [161], and 
GDF-15 also acts directly to increase survival of dopaminergic neurons [57]. In con
trast, BMPs -2 and -6 promote the survival of dopaminergic neurons in an indirect 
manner, most likely through secretion of glial cell growth factors [40]. GDF-5 and 
BMP-2, -4, -7 and -12 have minor survival promoting effects on dorsal root senso
ry neurons, although they exhibit strong synergistic interactions with neurotrophin 
3 and NGF [162, 163]. Synergistic interactions of BMPs with neurotrophins and 
glial cell line-derived neurotrophic factor have also been observed in sympathetic, 
nodose and ciliary ganglia [164, 165]. One of the mechanisms by which BMPs 
increase neuronal survival may be by the stimulation of expression of the neu
rotrophin receptor trkC [42, 166]. 

BMPs also refine brain development by inducing selective apoptotic events. 
While BMPs -2 and -4 have been demonstrated to inhibit cell death in an early cere
bellar cell line [167], these BMPs promote cell death in the dorsal forebrain [13]. 
BMP-4 is expressed in the dorsal r3 and r5 rhombomeres, upregulating the expres
sion of an apoptosis-associated gene, Msx2, and triggering cell death. BMP-4 sub
sequently initiates the formation of discrete paths of neural crest cells migrating out 
of the hindbrain [168]. Finally, BMPs -2 and -4 promote apoptosis in the absence of 
fibroblast growth factor and nerve growth factor in an early sympathoadrenal prog
enitor cell line [169]. 

Effects of BMPs on the neural crest, development of the peripheral 
nervous system and specification of neurotransmitter phenotype in both 
central and peripheral neurons 

The neural crest gives rise to most of the neurons and glia in the peripheral nervous 
system, including those populating sympathetic, parasympathetic, enteric, and dor
sal root ganglia. BMPs critically influence the development of neural crest cells and 
thereby the development of the entire peripheral nervous system. In fact, BMPs reg
ulate several distinct stages in the development of this cell population, and at each 
stage their effect is different. One of their most prominent effects is on the specifi
cation of the neurotransmitter phenotype and this has also been observed in neurons 
derived from the central nervous system. 

In the caudal regions of the neural crest that give rise to the peripheral nervous 
system, BMP-4 and -7 are initially present in the epidermis, and subsequently BMP-
4 and other TGF-~ superfamily members appears in dorsal neural tube [33, 34, 
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151]. BMP-4 and -7 cause neural tube cells to begin expressing genes characteristic 
of neural crest cells [33, 34, 170], such as slug and HNK, and mutations in either 
BMP gene interfere with neural crest development in zebrafish [159]. Neural crest 
abnormalities were not, however, noted in mice lacking the BMP-7 gene [171-173], 
suggesting that other BMPs can substitute for it in some species. 

After the neural crest has formed, it is necessary for the epithelial premigratory 
crest to convert into mesenchyme and begin its dispersal. BMP-4 regulates the ini
tial stages of neural crest migration [93] and one of the ways it does this is by stim
ulating the expression of rhoB [174], a GTP-binding protein that is required for the 
delamination of neural crest cells. In addition, BMP regulates the expression of sev
eral cadherins which might be involved in cell-cell interactions [93, 175, 176]. In all 
of these interactions, the concentration of free BMP is critical, and inappropriate 
levels of BMPs can interfere with rather than promote neural crest development 
[177]. In the neural crest, the level of free BMP4 appears to be determined not only 
by the pattern of expression of its mRNA, but also by dynamic changes in the 
expression of its antagonist, noggin [93]. 

When migrating neural crest cells coalesce to form sympathetic ganglia, they are 
again exposed to BMPs [139, 178] and this interaction is required for normal gan
glionic development [44]. Exposure to BMP-2 induces neurogenesis and suppresses 
gliogenesis in cultures of rat neural crest stem cells, and it acts in an instructive man
ner to induce expression of neural characteristics, rather than by supporting a sub
population of previously committed precursors [139]. BMP-2 also induces expres
sion of the MASH1, a transcription factor required for the development of auto
nomic neurons r139, 146]. Thus BMPs appear to commit neural crest cells to an 
autonomic motor rather than a sensory phenotype [139, 178]. Under most condi
tions, BMP-2, -4 and -7 also promote the initial expression of tyrosine hydroxylase 
and increase the synthesis of catecholamines and thereby determine the neurotrans
mitter phenotype of the sympathetic neuroblasts [44, 178-180]. However, under 
certain conditions in vitro [139, 181], the effects of BMPs on neurogenesis can be 
separated from effects on the adrenergic phenotype, suggesting that they may rep
resent separate and dissociable phenomena. 

The signaling cascade that mediates the effects of BMPs on sympathetic neurob
lasts involves at least three classes of transcription factors: MASHl [139, 182, 146], 
the Phox2 homeodomain proteins [182-184], and dHAND [185]. MASHl and 
Phox2a have also been implicated in the generation of catecholaminergic neurons in 
the central nervous system [186-188], and so it might be expected that the differen
tiation of these neurons would also be affected by BMPs. Consistent with this pos
sibility, it has been found that BMPs are required for the generation of noradrener
gic neurons in zebrafish hindbrain [189] and dopaminergic neurons in C. elegans 
[190] and that BMP-2 and activin stimulate the differentiation of dopaminergic neu
rons in cultures derived from ventral mesencephalon [191] and basal forebrain ven
tricular zone [192], respectively. 
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However, the effects of BMPs are not restricted to catecholaminergic neurons, 
because BMPs also induce expression of GABAergic and cholinergic phenotypes in 
cultures derived from striatum [BMP-2, 161] and septum [BMP-9, 20], respectively. 
In addition, activin and/or BMP-2, -4 and -6 have been found to regulate neu
ropeptide expression in sensory [43], sympathetic [193] and parasympathetic [194] 
neurons. Thus, specification of the neurotransmitter phenotype represents one of 
the most pervasive actions of this family of proteins. 

Effects of BMPs on process growth 

BMPs stimulate the differentiation of neocortical [51, 144], striatal [161], and mes
encephalic dopaminergic [191] neurons and PCll cells [195, 196] and this induc
tive activity is associated with increased growth of unspecified processes, i.e., neu
rites. In addition, BMPs act as roof-plate derived chemorepellents for commissural 
axons [69] and growth cones and stimulate the growth of long, axon-like processes 
from retinal ganglion cells [197]. However, some of the most striking responses to 
BMPs occur in dendrites. 

Cultured sympathetic neurons extend only axons when grown in the presence of 
nerve growth factor. In contrast, subsequent exposure to BMP-2, -4, -6, or -7 caus
es these neurons to begin forming dendrites within 24 h [198]. This represents a spe
cific morphogenic effect of BMPs, because it occurs without changes in either cell 
survival or axonal growth. Moreover, in the presence of BMP-7, sympathetic neu
rons eventually generate an arbor equivalent in size to that observed in vivo, sug
gesting that BMPs are a sufficient stimulus for normal morphological development. 
Stimulation of dendritic growth has also been observed in cultured hippocampal 
[199] and cortical neurons [200] and in spinal motor neurons developing in ocular 
implants [201]. BMP-induced dendritic growth requires Smadl and activity of the 
proteasome [Guo and Higgins, unpublished observations] and is associated with 
expression of MAP-2, a dendrite specific cytoskeletal protein [202]. In addition, in 
hippocampal cultures increased dendritic growth results in an increase in the rate of 
synapse formation. It is not yet known whether BMPs also regulate these critical 
activities in vivo. However, relevant BMPs are expressed in hippocampus [19, 36, 
45,46], cortex [51], spinal cord and sympathetic ganglia ([139, 178]; Lein and Hig
gins, unpublished observations). 

The dendrite-promoting activities of BMPs are antagonized by retinoic acid 
[203], a morphogen that is synthesized in sympathetic ganglia [203, 204] and that 
also interacts with BMPs in regulating the sensitivity of these cells to neurotrophins 
and GDNF [164, 166]. Leukemia inhibitory factor [LIF] and other members of the 
IL-6 cytokine family also block the dendrite-promoting effects of BMPs [205]. In 
addition, they cause retraction of existing dendrites [206]. These activities are of 
interest because axotomy is known to induce both dendritic retraction [207] and 
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the synthesis of LIF [208, 209]. It is, therefore, likely that some of the regressive 
effects of axonal injury are mediated by cytokine-induced changes in the respon
siveness to BMPs. The mechanism by which IL-6 related cytokines block BMP 
action in sympathetic ganglia is unclear. However, Nakashima et al. [143] reported 
that Stat3 and Smad1, which are the respective downstream signaling elements for 
LIF and BMP-2, bind to the p300 transcriptional activator and this tripartite com
plex was implicated in synergistic interactions between BMP-2 and LIF in neuroep
ithelial cultures. 

BMPs in adult brain 

Although BMPs have been extensively studied in developing animals, their potential 
functions in the mature brain have received limited attention. In fact, endogenous 
BMPs have only one known role, the regulation of neurogenesis [48] in the adult 
rodent subventricular zone (reviewed in the section "Neural/glial cell fate"). 

The effects of exogenous BMPs have received more attention because of poten
tial clinical applications. Pretreatment with BMP-7 reduces ischemia induced-injury 
and infarct size in the rat cerebral cortex [210, 211] and, under these conditions, 
expression of the BMPR-II is also increased [52]. BMP-7 also enhances functional 
motor recovery when given up to 3 days after occlusion of the middle cerebral artery 
and the fact that there is such a wide window of opportunity for drug administra
tion has led to the suggestion that BMP-7 might be useful in the treatment of stroke 
[212,213]. In this case, the BMP-7 effect seems to represent a stimulation of regen
eration rather than a change in the size of infarct. Decreased neuronal death was 
also reported in hypoxic infant rats that were treated with activin, but it is not 
known whether this protein also protects mature neurons [214]. 

GDF-15 protects nigrostriatal neurons exposed to 6-hydroxydopamine [57], and 
GDF-5 reduces toxicity in dopaminergic neurons exposed to MPP+ [215]. In addi
tion, GDF-5 and BMP-2 enhance the survival of dopaminergic neurons that have 
been grafted into lesioned striatum [216, 217]. Thus, BMPs have neuroprotective 
effects in animal models of Parkinson's disease. Moreover, activin A has been found 
to protect striatal neurons in a quinolinic lesion model of Huntington's disease [218] 
and to reduce excitotoxin-induced cell death in the hippocampus [219]. 

Concluding remarks 

The first papers on neural effects of BMPs were published in the early 1990s. Since 
that time the field has expanded rapidly, with the greatest growth occurring in the 
last 3 years. There is now compelling evidence for the involvement of BMPs and 
BMP antagonists in many early developmental events, including neurulation, dor-
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sal/ventral patterning, and neural crest development. In addition, there are strong 
indications that BMPs are involved in later aspects of neural development, such den
dritic growth, synapse formation and specification of some glial cell lineages. How
ever, progress in the latter areas of investigation has been hampered by the fact that 
deletion of many of the BMP genes leads to early embryonic lethality in transgenic 
knockout mice. In these areas, conditional BMP mutations may be helpful. Cur
rently, there is also limited knowledge as to the role of BMPs in the mature nervous 
system or their therapeutic potential and this would seem to be an important area 
for future exploration. 
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