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Preface

Bioinformatics can be loosely defined as the collection, classification, storage, and 
analysis of biochemical and biological information using computers and mathematical 
algorithms. Although no single person or group started the field wholly on their own, 
Temple Smith, Ph.D., a professor at Boston University, is generally credited with coin-
ing the term. Bioinformatics represents a combination of biology, medicine, computer 
science, physics, and mathematics, fields of study that have historically existed as mutu-
ally exclusive disciplines.

In the past twenty years we have witnessed an explosion of interest in computer-assisted 
bioinformatics-based analysis of cancer. Although this approach to experimental science 
is not new, it has recently gained traction among a diverse set of academic and business 
professionals from varied backgrounds. Concurrently, bioinformatics has vaulted into 
the public’s eye in newspapers and magazines, most notably in the area of (personal-
ized) DNA sequencing. The combined result is that bioinformatics is being heralded as a 
panacea to the current limitations in the clinical management of cancer. While certainly 
over-optimistic in some regards, this designation is not without promise, particularly in 
the area of cancer diagnosis and prognosis.

The focus of this book is to: (1) provide a historical and technical perspective of 
the analytical techniques, methodologies, and platforms used in bioinformatics experi-
ments, (2) show how a bioinformatics approach has been used to characterize various 
cancer-related processes, and (3) demonstrate how the bioinformatics approach is being 
used as a bridge between basic science and the clinical arena to positively impact patient 
care and management.

Boston, MA Gavin J. Gordon
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   1     The Emergence of Bioinformatics: 
Historical Perspective, Quick Overview 
and Future Trends       

     Christos   A.   Ouzounis       

  ABSTRACT  

We provide a concise overview of the history of bioinformatics, its current status and 
some possible future trends, with a specific emphasis on cancer research.

  Key Words:   Bioinformatics ,  Computational biology ,  Genome research ,  Cancer genom-
ics, historical view ,  Future trends    

  1 INTRODUCTION  

  Attempting to condense the emergence of the field of bioinformatics into a few pages 
can be a huge challenge. Any such endeavor invariably entails the past, present, and 
future: a historical narrative, a status report, and possible future trends, as the very title 
suggests. In the context of this entire book, and the role of bioinformatics in cancer 
research, this undertaking is all the more demanding, because it has to translate achieve-
ments from an abstract field of genome research into applications for human health and 
welfare. These applications are eloquently described further in the following chapters, 
providing a valuable synopsis of the methodologies and platforms used in bioinformat-
ics experiments, the characterization of various cancer-related processes, and the dem-
onstration of how this field has been used to bridge basic science and the clinical arena 
to positively impact patient care and management. The humble role of this introductory 
chapter is thus to provide the historical and practical context in which all these activities 
are being conducted. Citations to previous work will be used sparsely, so that pointers 
to relevant reviews can act more as entry points to subareas of bioinformatics and not 
necessarily to original research, with the exception of few genuine classics. By explor-
ing its past history and providing a quick overview of the present status of this field, it 
is possible to identify certain future trends that are likely to occur, at the fringes of 
 bioinformatics with other disciplines, this time closer to hardware than software.  

G.J. Gordon (ed.), Cancer Drug Discovery and Development: Bioinformatics in Cancer and Cancer Therapy,
DOI: 10.1007/978-1-59745-576-3_1, © Humana Press, a part of Springer Science + Business Media, LLC 2009
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2 Ouzounis

  2 A HISTORICAL PERSPECTIVE: THE THEORY, FUSION 
OF MOLECULAR GENETICS AND COMPUTER SCIENCE  

 Bioinformatics can be narrowly defined as a field at the crossroads of biology and 
computer engineering, responsible for the storage, distribution, and analysis of biological 
information. This field has emerged as an independent discipline during the 1990s, con-
solidating previously dispersed activities across different departments and faculties. The 
formation of graduate programs in bioinformatics, the founding of societies and regional 
groups, the creation of research groups and programs, the targeted calls for proposals by 
funding agencies, substantial investments by private industries, the development of tech-
nological platforms, and finally the publication of specialized journals all contributed 
toward the recognition of this multidisciplinary activity as a stand-alone area (Boguski 
1994). In fact, all of the above contain the hallmarks of a scientific revolution in the 
making, in the sense that this frenetic activity was driven both by research and business 
opportunities in biology, medicine, and engineering in the broadest sense. 

 Arguably, bioinformatics might be one of the most rapidly evolving fields of science 
ever, having gone from a peripheral, almost obscure area o f biological sciences, into a 
most mainstream technology field, often under the limelight. The discovery of this field 
by the media and press less than a decade ago, however, does not necessarily mean that 
this discipline did not have a long, and sometimes highly under-appreciated, history 
(Ouzounis 2000). The development of bioinformatics in the 1990s is a case study of a 
scientific explosion, where the needs and requirements of a field grow suddenly into a 
different direction, heavily influenced by data availability and technology in DNA 
sequencing (Fields 1996). When this happens, there is a social change, with industry 
pressing for more courses in this field, academia instigating coordinated activities, the 
job market experiences a shortage which has to be supplemented by short-term improvi-
sation and medium-term multidisciplinary actions, and finally the funding agencies 
scrabbling for relocation of resources toward the accomplishment of some of the above 
objectives. 

 Now that the dust has settled, it is hard to believe that 15 years ago, publishing com-
putational analyses of biological information was a challenge. Molecular biologists, in 
particular, were not accustomed in computationally derived results, and viewed experi-
mental observations as the only way of making progress. Today, it is almost inconceivable 
that a high-impact research publication in biology does not contain some elements of 
computing, at different levels, from instrumentation to interpretation. Thus, it can be argued 
that there has been a paradigm shift, where biology was transformed from a purely 
experimental science to a hybrid field of computation and experiment (Ouzounis 2002). 

 Yet, 50 years ago  1   , some of the most fundamental problems in molecular biology 
presented some formidable algorithmic issues, including the structure of DNA and the 
encoding of genetic information (Ouzounis and Valencia 2003). A list of classic papers 
during the 1960s on the evolution of genes and proteins, the structural properties of 
polypeptide chains, the informational content of DNA sequences, the origins of the genetic 
code, the construction of phylogenetic trees, and the early theory of sequence alignment 

  1  No references before 1980 are provided in this chapter, with one sole exception. 
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has been provided elsewhere (Ouzounis and Valencia 2003). During the 1970s, the 
availability of data on protein sequences and structures fueled, for instance, the develop-
ment of approaches for the analysis of mutation rates and solvent accessibility, respectively. 
Much effort was being made on the sequence alignment problem (Fitch and Smith 1983), 
hand-in-hand with the string comparison problem in computer science (Hall and Dowling 
1980). The mutual influence of these two fields is a textbook case of multidisciplinary 
activity on the very same problem: Algorithms for the comparison of strings or macromo-
lecular sequences were developed either by theoretically minded biologists or by computer 
scientists with a taste for application in a new field of research (Ouzounis and Valencia 
2003). The latter years of that decade also saw the first data resources, primarily compila-
tions of protein molecules, in anticipation of the first databases that emerged in the following 
years. Consequently, and following developments both in computer hardware and soft-
ware, it had become possible to start storing, distributing, and analyzing data derived from 
biological experimentation that were amenable to computational analysis, the very defini-
tion of bioinformatics. These data were considered extremely valuable not to be shared by 
the entire community, and these were the seeds for the subsequent ethos of open-source 
and open-access principles that permeated this field. The agenda was set: there was a flurry 
of activity in the fields of sequence analysis and similarity searching (Gingeras and Roberts 
1980; Wilbur and Lipman 1983), structure prediction (Richardson 1981; Kabsch and 
Sander 1984), molecular evolution (Doolittle 1981; Bajaj 1984), and molecular biology 
databases (Philipson 1988; Bernstein et al. 1977). A detailed citation list for bioinformatics 
during the 1980s has been published elsewhere (Ouzounis and Valencia 2003). 

 Until then, the primary objects of investigation were macromolecular sequences 
(DNA, RNA, or protein), typically analyzed as strings of symbols or related representa-
tions, and macromolecular structures, usually analyzed as sets of cartesian coordinates 
or by-products of these. More abstractly, it is reasonable to assume that the objects of 
study corresponded to single molecules or sets of molecules and their interconnections, 
in search of regularities at different levels. Such examples might be the identification of 
a promoter region across a handful of sequences from different species or a common 
folding pattern across a set of similarly folded protein structures. These limitations were 
mostly of a technical nature, constrained by the techniques of the day, and less of a 
conceptual nature. Computational biologists, twenty years ago, had to wait for another 
decade until high-throughput biology would help them realize their dream: the deriva-
tion of principles that govern the evolution and development of living organisms across 
multiple cells, tissues, organs, individuals, populations, and species.  

  3 CURRENT STATUS: THE SOFTWARE, DATA-DRIVEN ANALYSES 
OF ALL BIOLOGICAL INFORMATION TYPES  

 In the following decade, a number of key accomplishments include the establish-
ment of rapid database searching using BLAST (Altschul et al. 1990), for example 
(one of the most highly cited biology publications of all time!), the matching of the entire 
protein sequence database (Gonnet et al. 1992), the detection of complex gene structures 
(Guigo et al. 1992), a more accurate homology modeling of protein structures (Levitt 
1992), and sequence threading for proteins without homologs (Bowie et al. 1991). The 
explosion of computational techniques for the analysis of biological information in 
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the 1990s dictates the inclusion of some of the above milestones in this section, about 
the current status of bioinformatics. The techniques for large-scale sequencing and 
other experimental measurements were being developed, and it was only a matter of 
time before bioinformatics took its proper place next to the new field of genomics 
(Benton 1996). 

 The first genome sequence that was profiled in its entirety, but never completed, was 
the genome of  Mycoplasma capricolum  (Bork et al. 1995), quickly followed by the land-
mark publication of the entire genome of  Haemopbilus influenzae  Rd (Pleischmann et al. 
1995). Computational analysis would never be regarded as a nuisance for experimental 
biology again: the flood of sequence data necessitated fast, accurate, and accessible meth-
ods for analysis and interpretation (Andrade and Sander 1997). Very rapidly, and along 
the determination of more genome sequences, research developed toward the prediction 
of protein function from sequence (Bork and Koonin 1998 Wheelan and Boguski 1998 
Andrade et al. 1999), the detection of metabolic pathways from reference genomes (Karp 
et al. 1996), and the comparative genomics of various species (Gogarten and Olendzenski 
1999).  The types of biological information expanded from single genes or proteins to 
entire gene families never observed earlier (Rawlings and Searls 1997), the interpretation 
of biochemical networks (Bono et al. 1998), the locations of genes along chromosomes, 
or annotation elements from free text (Ouzounis et al. 1996). Plenty of opportunities arose 
for the pharmaceutical industry, namely the identification of targets and candidates for the 
development of drugs, vaccines, diagnostic markers, and therapeutic proteins (Andrade 
and Sander 1997)  . Slowly but steadily, academic research topics became the subject of 
more applied research, for example in the field of nutritional research (Dellapenna 1999). 
Finally, two other developments that generated novel types of biological information, data 
with a familiar face but on a larger scale, were structural genomics (Orengo et al. 1999, 
Brenner 2001) and expression profiling (Ferea and Brown 1999). Applications of the 
above, for example modeling expression patterns, were quickly explored by medical 
researchers into aspects of human health and disease (Huang 1999). 

 Breakthroughs in whole-genome analysis were in the horizon, just before the end of the 
century. Methods for the analysis of proteins in cell or tissue samples (the new field of 
“proteomics”) emerged (Chambers et al. 2000), the massive sequencing of entire genomes 
of free-living organisms (Broder and Venter 2000), the contextual detection of protein 
function networks (Eisenberg et al. 2000), e.g., based on gene fusion patterns (Enright 
1999 et al.)  , and frameworks for the analysis of gene expression (Brasma and Vilo 2000)  . 
The field of bioinformatics was experiencing a tidal wave: before its establishment, there 
were already discussions for its future development and its place in biological research 
(Searls 2000) (Tsoka and Ouzounis 2000). Novel data types now included complex gene 
and genome structures of various cell types, including eukaryotes (Rawlings and Searls 
1997)  , predicted functional annotations for a multitude of uncharacterized sequences 
(Bork and Koonin 1998)  , gene expression patterns of sets of genes under variable experi-
mental conditions (Quackenbush 2001), genetic or protein interaction networks inferred 
from genome function and structure analyses, respectively (Pellegrini 2001), and finally 
the fusion of the field of genomics with genetics research for the identification of single-
locus or multifactorial genetic diseases (Pang et al. 2000). Even more daring steps were 
taken, to include spatiotemporal information on expression patterns for entire organisms, 
for instance in embryology (Davidson and Baldock 2001). 
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 With such a frenetic activity, it was then reasonable to proclaim that the impact on 
medicine will be monumental, with information processing holding a central role in the 
simulation of molecular processes in cells and the inference of drug effects in humans 
based on their genetic backgrounds (Sander 2000). More specifically, in clinical (can-
cer) research and future practice, applications of computational approaches include 

discovery (Hondermarck et al. 2001), drug target discovery (Pavelie and Gall-Troselj 
2001), treatment and therapeutic targeting (Schultze and Vonderheide 2001), drug 
development (Basik et al. 2003), clinical drug resistance (Damaraju et al. 2002), as well 
as clinical data management (Haque et al. 2002). Finally, specialized resources such as 
the Cancer Genome Anatomy Project (CGAP) were developed to support cancer 
research (Strausberg et al. 2001). 

 Following the above passage about applications of computational approaches in 

briefly, due to the massive literature that abounds. Inevitably, only research of the last 
few years will be cited in this section, so that an up-to-date view can be provided. 

(Ouzounis and Karp 2002). We argued previously that only community-based annota-
tion can solve the accuracy and update problems that permeate more “generic” sequence 
annotation resources (Tsoka and Ouzounis 2000). From individual genes and proteins 
to their ensuing functional association networks (Valencia and Pazos 2002), we have 
uncovered the new world of “systems” biology (Kirschner 2005). The discovery of 
entire classes of proteins with related structure and function is still in progress, e.g., the 
kinases of the human genome (Manning et al. 2002). This type of classification systems 
for protein structure and function (Ouzounis et al. 2003) will continue to play a signifi-
cant role in the molecular dissection of human health and disease. Other aspects of 
molecular information include not only gene and protein families or classes, but also 
comparative genome analyses at close range (Hardison 2003), metabolic databases 
(Tsoka and Ouzounis 2003), integrated networks for gene/protein interactions (Kanehisa 
and Bork 2003), free-text information to support annotation efforts in genomics (Janssen 
et al. 2005), and more solid microarray data analyses (Allison et al. 2006). Resources 
that capture and distribute information for sets of proteins, e.g., UniProt (Apweiler et al. 
2004), or genomes, e.g., Ensembl (Birney et al. 2004), will continue to support data 
analysis in modern biology. Other computational approaches that will play an increas-
ingly important role include the structure determination of proteins on a genome-wide 
scale (Chandonia and Brenner 2006), the construction of designed proteins (Park et al. 
2004), the detection of “orthologs” across species and larger phylogenetic distances 
(Koonin 2005), the inference of ancestral states for genome content and structure 
(Ouzounis 2005), the comparative genomics of gene expression and annotation patterns 
(Lopez-Bigas et al. 2006), and finally the delineation of genome dynamics, presently 
better understood for bacterial genomes (Ochman and Davalos 2006). 

 Despite the risks of not being an expert in the field of cancer research, it will never-
theless be useful to discuss some cancer-specific, recent bioinformatics work that 
connects to the topics elsewhere in this book. Such examples are not exhaustive and 
include the computational analysis of epigenetic effects in cancer biology (Yang and Lee 
2004), such as DNA methylation patterns and histone modifications (Lee 2003), 

cancer research, it is worth providing a current status report on bioinformatics, albeit 

Currently, the issue of sequence annotation and functional inference is still with us 

genomics-based prognosis (Kallioniemi 2001), early diagnosis and cancer biomarker 
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the contextual simulations of cell cycle in neoplasm development (Alberghina et al. 
2004), the development of formalisms for such simulations (Christopher et al. 2004), the 
analysis of single-nucleotide polymorphisms (SNPs) (Clifford et al. 2004), cancer target 
discovery (Desany and Zhang 2004), cancer biomarker discovery (Rhodes and 
Chinnaiyan 2004), and even bioinformatics training and education (Umar 2004)  . Also, 
resources such as the Mouse Tumor Biology Database (Krupke 2005)   will become 
increasingly important, alongside gene expression experiments (Rhodes and Chinnaiyan 
2005, Segal et al. 2005), novel therapeutics research (Mount and Pandey 2005), targeted 
proteomics technology (Pasadas et al. 2005), and connection to other areas such as 
immunology (Strausberg 2005). Finally, the connection of cancer research to systems 
biology (Khalil and Hill 2005), or the realization that cancer research actually is a 
systems biology disease (Hornberg et al. 2006), is too recent to be assessed at this 
point, but they appear to be very promising avenues for future research. In all, bioin-
formatics is expected to continue its fascinating interplay with the field of genomics 
in cancer research, namely cancer bioinformatics and oncogenomics (Strausberg 
et al. 2004), respectively.  

  4  FUTURE TRENDS: THE HARDWARE, COMPUTING WITH LIVING 
MATTER, AND POTENTIAL APPLICATIONS  

 Evidently, any treatise on future trends must be wrong. It is also invariably the hard-
est section on any such presentation. However, we will attempt here, on the basis of the 
past history and more recent developments, to provide a more personal assessment on 
the future of bioinformatics research and its application to human health and disease. 
Like a weather forecast, some of the predictions will be rather obvious and some rather 
esoteric (and probably wrong). The purpose of this epilogue is not so much to attempt 
some crystal-gazing of an unpredictable future, as to pave the way for a consolidation 
of this field with other disciplines, now themselves experiencing an unparalleled 
explosion. In anticipation of this fusion, we can then foster more interdisciplinary 
actions and collaborations that were proven to be so successful in the development of 
bioinformatics, with mathematics, computer science, physics, chemistry, and biology 
all contributing toward the creation of a truly unique discipline at the crossroads of 
modern science. 

 It should be evident that bioinformatics developed in close association with other 
technological capabilities in biological sciences, primarily data generation and analy-
sis. In the early days, the primary focus of the field was the analysis of molecular 
sequences and structures, followed by entire genomes and transcriptional profiles. As 
more data types are being revealed on a large scale, including supramolecular com-
plexes, cellular compartments, tissue-specific variation, anatomical features and pop-
ulation diversity, the challenges for computational analyses on multiple scales and 
even more complex integration are mounting. Despite more data and faster comput-
ers, the primary driving force as in any intellectual activity will be a host of new ideas 
and approaches that will allow the further development of the field and its future 
establishment at the crown of biological sciences. This was the obvious part of a per-
spective for possible future trends. 
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 The less obvious part might be the total and complete embedding of the field of 
bioinformatics in any aspect of biological research, beyond recognition. There are risks 
and opportunities here: the danger will be that the field might become unrecognizable 
in a few years, when all biomedical and biological research will be heavily relying on 
computational analysis of any biological information type. When computation perme-
ates every nook and cranny of biology, the notion of a separate field might become 
obsolete. 

 The opportunities, however, will come this time from the engineering sciences in 
general, and potentially from microfabrication technology in particular. The next gen-
eration of bioinformatics analyses as applied in biological and biomedical research 
might occur outside the more traditional computing environments we have become 
accustomed to. With recent advances in the biomolecular engineering (Ryu and Nam 
2000), the microengineering of cellular interactions (Folch and Toner 2000), the adapta-
tion of semiconductor tools to spatially organize cellular environments (Bhadriraju and 
Chen 2002), the development of single-cell assay technologies (Lidstrom and Meldrum 
2003), the construction of cell-based biosensors (Park and Shuler 2003), the eagerly 
anticipated minimal genome designs (Werner 2003), the advances in microtissue engi-
neering (Kelm and Fussenegger 2004) and three dimensional tissue fabrication (Tsang 
and Bhatia 2004), the visualization of diffusion-enabled molecular movement in cells 
(Weiss and Nilsson 2004), and the various applications of nanotechnology in biological 
imaging (Fu et al. 2005), we are now facing a brave new world, where computation 
becomes a process that can occur in real time and beyond silicon chips. All this microscale 
technology might possibly provide the platform of bioinformatics of the future. Instead 
of separating measurement science (e.g., sequencing) from analysis (e.g., computing), 
it is conceivable that some of the measuring devices will have substantial computational 
capabilities in such a way that the bulk of biological data analysis might happen  in situ . 
These microdevices would require complex communication, control and sensor 
capabilities, real-time programming capacity, sophisticated interfaces, and “swarming”  2    
tactics. It does not take a leap of imagination to realize the huge potential of this type 
of applications in the field of biological (O’Brien et al. 2003, Montemagno 2004) and 
biomedical (Cavalcanri 2003 Bogunia-Kubik and Sugisaka 2002) research that can 
transform the notion of systems biology toward predictive and preventative medicine 
(Hood et al. 2004).     
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     2 The Statistical Design and 
Interpretation of Microarray 
Experiments       

     Kevin K.   Dobbin    and    Richard M.   Simon     

  ABSTRACT  

 This chapter reviews major issues related to design and interpretation of microarray 
experiments. Important aspects of design covered include identification of experimental 
objectives, treatment of batch effects, selection of replication and pooling levels, deter-
mining sample size for class comparison and class prediction, and optimal allocation of 
samples to arrays and labels in dual label experiments. Aspects of interpretation focus 
on class prediction issues, including case selection, external vs. internal validation, and 
pitfalls in cross-validation. 

  Key Words:   Microarrays ,  Experimental design ,  Sample size ,  Prediction ,  Validation     

  1 EXPERIMENTAL OBJECTIVES OF MICROARRAY STUDIES  

 The objective of a microarray experiment should be to test a specific hypothesis or 
set of hypotheses. The hypothesis will in general be related to overall gene expression 
patterns, and not to the expression of individual genes. For example, the hypothesis 
could be that some genes are differentially expressed in different phenotypes, stages, 
or prognostic groups, of a particular cancer. The purpose of the experiment is to prove 
or disprove the hypothesis and, if it is true, to identify a candidate list of differentially 
expressed genes for further study. Many microarray experiments have objectives that 
fall into one of three broad categories: class comparison, class discovery and class 
prediction. The word “class” appearing in each category indicates that the objectives 
are not merely concerned with drawing conclusions about differences in expression 
between individual RNA samples, but, more broadly, in identifying differences in gene 
expression due to the phenotype of the sample, an exposure to which the samples were 
subjected, or, in cell line experiments, to the conditions in which the cells were grown; 
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hence the “class” of a sample refers, depending on the context, to the phenotype, expo-
sure, or growth conditions. 

 In  class comparison  experiments the objective is to identify genes that are differen-
tially expressed in different classes of samples. The class labels in this type of experi-
ment are known ahead of time and are determined independent of the gene expression 
patterns. In experiments with a  class discovery  objective, the class labels are not known 
ahead of time but are determined from the gene expression data by cluster analysis of 
the samples. The goal in class discovery is to find subgroups of samples that share a 
similar gene expression profile. Cluster analysis is also sometimes applied to the genes, 
in which case the goal is to identify subgroups of genes that share a similar pattern of 
expression over the samples. Finally, in  class prediction  experiments the objective is to 
create a gene expression-based predictor which can be applied to future samples to pre-
dict class membership. The classes will often have some potential utility in making 
clinical decisions, such as a predictor of who will and who will not benefit from adju-
vant chemotherapy (Paik et al.,  2004) .  

  2 QUALITY CONTROL AND CONFOUNDING  

 Gene expression measurement using microarrays is a complex process with many 
steps, and the associated protocols are detailed. Changes in some aspects of a protocol 
can influence the resulting gene expression measurements (see, e.g., Bammler et al., 
 2005) . In order to avoid confusing measurement changes attributable to shifts in techni-
cal aspects of the assay with real changes in gene expression in the samples, an attempt 
should be made to assay all arrays in an experiment in as uniform a manner as possible, 
including common protocols, laboratory personnel, and analysis times to ensure the 
machine settings and other laboratory conditions are uniform. But it is often not possi-
ble to run a large number of arrays at the same time and in identical conditions, so 
microarrays are split up into different batches, with each batch run at the same time 
under the most uniform conditions possible. The batches could represent different labo-
ratories, different personnel in the same laboratory, or the same personnel at different 
times in the same laboratory. Attempts should be made to run different batches in as 
uniform a manner as possible. Uniform protocols and measurement conditions can pro-
duce reproducible results even across different laboratories (Dobbin et al.,  2005) . 

 When multiple batches are involved in an experiment, it is important to avoid confound-
ing the batch effects with the effects of interest. Confounding occurs when it cannot be 
determined to which of two or more causes an observed difference in gene expression is 
attributable. For example, if all tumors are arrayed on one day and all normal tissues on 
another day, then it will be impossible to know if differences between batches are due to 
cancer-specific differences or batch anomalies. For this reason, the design should include 
samples from each class in each batch, ideally an equal number from each class. 

 When data are grouped in batches, preliminary exploratory analyses of the microarrays 
can be used to assess whether there are systematic differences between any of the 
batches. Quality metrics associated with some software analysis tools can be used to 
compare batch quality. But quality metrics will not cover all possible technical prob-
lems. Systematic differences between batches can also be identified by looking at the 
distance between each pair of samples to see if the samples in the same batch tend to be 
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closer together than the samples in different batches, indicating a “batch” effect. Typical 
distance metrics are one minus the correlation or the Euclidean distance between the 
gene expression vectors. Graphical tools are often useful for these types of preliminary 
analyses, and include multidimensional scaling (MDS) plots, principal components 
plots, and cluster analyses. If, in these analyses, samples separate out by batch, or if 
there are one or two batches that separate out from the rest, then this indicates potential 
quality control or consistency problems. An attempt should be made to identify these 
types of quality control issues before the formal data analysis is carried out. Otherwise 
the study can lead to erroneous conclusions. Even if quality control problems are identi-
fied in later downstream data analysis, going back to fix these problems at that point can 
compromise the statistical validity of the entire analysis.  

  3 REPLICATION LEVEL AND POOLING FOR CLASS COMPARISON 
AND CLASS DISCOVERY  

 Currently, most microarray experiments use either dual label or single label arrays. 
In a dual label system, two RNA samples are separately labeled with different fluores-
cent dyes and hybridized to the same array. Then the array is scanned twice, once for 
each color, resulting in two image files and two quantitative measurements for each 
gene or feature represented on the arrays. In single label systems, a single sample is 
hybridized to each array, labeled with a single dye, and the microarray is scanned once. 
There are differences in the data structure between dual label and single label systems 
that have important implications for some aspects of design and data analysis. But there 
are also design considerations that the two share. Here, we will treat aspects of design 
common to both systems, and then treat aspects of design unique to each, separately. 

  3.1 Replication Level 
 The level at which replicates are performed in an experiment will determine the 

scope of the inferences that can be drawn. Replication may be divided into two levels, 
technical replicates and biological replicates. Technical replicates occur when the same 
sample is measured multiple times. When an experiment involves only technical repli-
cates, then valid conclusions can only be made about the differences in gene expression 
of the individual samples in the study. No valid conclusions about the larger populations 
from which the samples have come, or about the effect of an exposure or growth condi-
tion, can be drawn. Biological replicates involve independent replication on different 
samples, or, in the context of cell culture experiments, independent replication of the 
growing and harvesting of the cells. In an experiment that involves multiple biological 
replicates from each of several different classes, inferences apply not just to the samples 
under study but to the populations from which those samples were drawn, or the effect 
of the exposure to which they were subjected or the condition under which they were 
grown. Hence, inferences from experiments with biological replication are much 
stronger than those from studies with only technical replicates. For class comparison, 
class discovery, or class prediction experiments, replication should be done as much as 
possible at the level of biological replication. Although technical replicates can be 
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informative and helpful for quality assurance or process control, they generally come at 
the cost of precision and accuracy due to loss of arrays for biological replication. 

 For example, suppose the goal is class comparison. Let  c  
a
 represent the cost of measur-

ing an aliquot of RNA and  c  
o
  represent the cost of obtaining a sample of RNA from an 

independent biological replicate. Then if there are narrays in an experiment, and m distinct 
biological samples, the total cost of the experiment is c = nc

a
 + mc

o
 . We computed power 

for equal cost experiments (see Appendix) and the results appear in Table   1 . As Table  1  
shows, in general technical replicates result in less power to detect differentially expressed 
genes; only if samples are much more expensive than arrays is the power better when 
technical replicates are performed. For example, if the array assay cost is one twentieth 
the cost of obtaining an independent biological sample (first row of the table), then, per-
forming a single technical replicate per sample will result in slightly improved power. But, 
otherwise, technical replicates result in loss of power, sometimes significant.       

  3.2 Pooling 
 Pooling samples is an option in class comparison experiments. One can pool RNA 

from several sources into the same test tube. The resulting RNA mixture will have a 
gene expression pattern that is a combination of all the contributing samples. It is gener-
ally assumed that an aliquot from this combination RNA mixture will have a gene 
expression profile that is roughly equal to the average profile of all the contributing 
samples, and that this relation will be roughly preserved on the log-transformed data 
(Kendziorski et al.,  2003) . Pooling potentially represents a way to assay the same 
number of samples with fewer microarrays, and thus reduce cost. For example, if one 
wanted to assay 15 samples from one class, one could pool three samples per array, 
requiring only five arrays instead of the usual 15. But it turns out that reducing the 
number of arrays not only reduces the cost, but also reduces the statistical power to 
detect differentially expressed genes (Shih et al.,  2004) . So there is a tradeoff. 

 Perhaps the most important point to make about pooling is that one should never pool 
all the samples from a class together into one pool. The problem with this strategy is 
that it does not allow for any biological replication. When one has a single mixed pool 

 Table 1 
  Equal cost experiments in each row of table, comparing no technical replicates to one 

technical replicate per sample  

 Cost ratio of 
arrays to sam-
ples ( c  

a
 / c  

o
 ) 

 Arrays per group 
( r =1) 

 Arrays per group 
( r =2) 

 Power to detect 
twofold change 
( r =1) (%) 

 Power to detect 
twofold change 
( r =2) (%) 

 0.05  22  42  86  88 
 0.2  21  36  83  79 
 1  21  28  83  59 
 5  22  24  86  46 

 Here  r  is the number of technical replicates per samples. Set the significance level to 0.001. Biological 
variance   d 2 = 4/10   and technical variance   d 2 = 1/10   
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from a class, then all one can perform is technical replication and, as discussed above 
in the section on replication level, no valid conclusions about the effect of class (sample 
type, exposure, growth conditions) on gene expression can be drawn. The fact that the 
pool is a mixture of different RNA samples does not get around the fundamental prob-
lem that there is no way to estimate the biological variation. 

 Under the usual assumptions made about pooling, multiple independent  1   pools from 
each class can produce valid class comparisons. But when pooling is used to reduce the 
number of arrays required and at the same time there is a reduction in the number of 
degrees of freedom for statistical inference, this means increased noise in the comparisons, 
and reduced power to detect differential expression. In order to offset this increased 
noise, it is necessary to assay additional samples to recover the loss of power. There is 
a tradeoff between the number of microarrays required for an experiment and the 
number of samples required. An example of the tradeoff is shown in Fig. 1  , where it can 
be seen that the number of samples required increases faster than the number of arrays 
required decreases, particularly when the number of samples pooled per array is more 
than 2. The result is that pooling will generally make sense only if sample cost is less than 

  Fig. 1.    Number of arrays and samples required for various pooling levels. An independent pool is 
constructed for each array, so that no sample is represented on more than one array. Settings were 
significance level a = 0.001, power 1 − b = 0.95, effect size s = 1 (twofold change in expression), 
biological variance   t 2 = 4/10   and technical variance   s 2 = 1/10         

1 Two pools are independent if they share no samples in common.
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microarray cost (Kendziorski et al.,  2003 ; Shih et al.,  2004 ; Dobbin and Simon,  2005) . 
This is one reason why pooling is rarely performed with valuable human specimens.    

  4 SAMPLE SIZE FOR SINGLE-LABEL CLASS COMPARISON 
EXPERIMENTS  

 We have presented sample size formulae for a variety of common microarray experi-
mental situations (Dobbin and Simon,  2005) . Here we present an example of a formula 
for a class comparison study. In class comparison, each gene is evaluated individually 
to determine whether it is differentially expressed. If a is the probability of a false-posi-
tive result for a particular gene (significance level), 1−b is the power to detect a differ-
ence of size d in gene expression on the log base 2 scale (so that d =1 represents a 
twofold change in expression), and t sg

2
g
2+  (representing a sum of biological and technical 

variation) is the variation in expression for gene g across the different arrays (each with 
a different sample from the same class), then an overall sample size of 
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is required. Here t
n–2, a/2 

is the a/2 percentile of the  t distribution with  n  − 2 degrees of 
freedom. The min ( n :…) notation means that the smallest  n satisfying the inequality 
should be used for the sample size; this can be calculated iteratively by starting with  n =4 
and increasing  n until the inequality is satisfied; alternatively, software such as nQuery 
Advisor ® can be used to do the calculation. 

 The formula can be used to control the number of false-positive findings for a speci-
fied power, or a false discovery rate (FDR) approximation formula used to provide 
approximate control of the FDR. In either case, parameter settings must be chosen to 
obtain a sample size estimate. The significance level a is the probability that a gene is 
determined to be significantly differentially expressed between the classes when, in 
fact, it is not. In many studies the samples are relatively homogeneous, so that it is likely 
that the vast majority of genes are not differentially expressed. Since a is the probability 
of mistakenly concluding that one of these thousands of genes is really differentially 
expressed, a should be small enough to control the number of false positives. For exam-
ple, if arrays have 22,000 genes, then using a=0.001 results in an expected 22 false-
positive genes.  2   The power, 1−b, to detect a differentially expressed gene can be set to 
0.90 or 0.95, so that one expects to detect 90% or 95% of the truly differentially expressed 
genes. Setting d=1 sets the limit of detection of differential expression at twofold. The 
variance parameter t 2  + s 2 represents the within-class variance of expression for a gene; 
this can be best estimated from a previous similar study. In human studies, we have 
found that a common median for these variances is 0.50. Some examples are given in Table  2  . 
Alternative sample size methods to control the FDR based on simulation (Li et al.,  2005)  
or parametric mixture models (Hu et al.,  2005 ; Jung,  2005)  have been presented.   

2 The Bonferroni method for determining a is considered too conservative for gene expression 
studies (Simon and Dobbin, 2003)
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  5 DESIGN AND SAMPLE SIZE FOR DUAL-LABEL CLASS 
COMPARISON EXPERIMENTS  

 Dual-label experiments have unique design issues because individual samples are 
paired together onto arrays. The reason samples are paired together and hybridized to the 
same array is to allow for the mathematical elimination of noise attributable to spot 
effects. Spot effects refer to variation due to the size and location of the spot, and the 
spread of the labeled probe mixture over the surface of the array. Hence, spot effects 
consist of a combination of a number of elements that add up to a significant source of 
variation. Their elimination via a two dye system results in a much less noisy experiment 
and greatly improved estimates of differential expression. Single-label arrays such as the 
Affymetrix GeneChips™ use different technology which reduces the technical noise ele-
ments that contribute to the spot effects to such an extent that there is no longer an 
advantage to mathematically eliminating these effects, so that only one dye is required. 

 The structure of the data in dual-label microarray experiments, with very precise com-
parisons between the two different samples on an array, and very noisy comparisons of 
samples on different arrays, is a common one in statistical literature and is called a block 
structure. The optimal design for class comparison studies in this type of structure is a 
balanced block design. When there are just two classes, a balanced block design pairs 
one sample from each class together on each array, and labels the samples so that half 
the samples from a class are labeled with one dye and the other half with the other dye. 
More than two classes lead to balanced incomplete block designs, and examples of these 
types of designs can be found in introductory textbooks on experimental design.  3   The 
balanced block design will provide greater power and efficiency than other designs that 
use the same number of arrays (Dobbin and Simon,  2002) . For class discovery objec-
tives, where class labels are not known ahead of time, a reference design will almost 
always be the best design choice (Dobbin and Simon,  2002) . A reference design uses a 

  Table 2 
  Ten thousand genes, 50 of which are differentially expressed by d=1, i.e., twofold    

 a  1−b   n  per group  FDR  E[#FD]  E[#TD] 

 0.001  0.95  28  0.17   9.95  47.5 
 0.001  0.90  24  0.18   9.95  45 
 0.005  0.95  22  0.51  49.75  47.5 
 0.005  0.90  19  0.53  49.75  45 
 0.01  0.95  20  0.68  99.5  47.5 
 0.01  0.90  17  0.69  99.5  45 

   Uses within-class variance among samples: t sg
2

g
2+ = 0 50.   

3 One must be careful to adjust these designs for microarray experiments by ensuring that half the 
samples from each class are labeled with each dye.
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single-labeled reference sample, which is split into multiple subsamples and hybridized 
to each array. The nonreference samples are all labeled with the other dye.  4   The reference 
sample serves as a standard for comparing the expression of any pair of nonrefer-
ence samples. The reference design is well suited to class discovery because the 
performance of cluster analysis depends critically on accurately measuring distances 
between all these pairs of samples. For more complex situations, where there are several 
objectives or several potential ways of classifying samples, design considerations 
become more complex (see Dobbin and Simon,  2002 ; Dobbin et al.,  2003  for further 
discussion). 

 Sample size formulae for dual-label class comparison experiments using reference 
designs, block designs, technical replicates and pooled designs appear in the work of 
Dobbin and Simon  (2005) .  

  6 SPECIAL ISSUES RELATED TO DESIGN AND INTERPRETATION 
OF CLASS PREDICTION STUDIES  

 As attempts are made to move gene expression signatures towards clinical applica-
tion, there is a growing emphasis on building predictive models from microarray data. 
Here we discuss issues specifically related to the context of class prediction studies. 

  6.1 Case Selection 
 The cases should, as much as possible, be representative of the population for which 

the predictor is being developed. To this end, it is important to clearly define what clinical 
decisions will be impacted if an effective predictor is discovered. For example, if the 
predictor has the potential to affect the decision of whether or not to add adjuvant 
chemotherapy to surgical treatment for stage II colon cancer patients, but is unlikely to 
impact treatment decisions for stage III colon cancer patients, then the sample should 
consist of stage II colon cancer patients.  

  6.2 Developing a Predictor 
 Once an appropriate case set has been identified, there are many different methods 

for constructing a predictor, including support vector machines, weighted voting methods, 
partial least squares, compound covariate prediction, nearest neighbor, diagonal linear 
discriminant analysis, and empirical Bayes methods. Dudoit et al.  (2002)  compared 
several of these methods, where it was found that simpler methods such as diagonal 
linear discriminant analysis may be as good as more complex alternatives. Almost all 
methods of predictor development for gene expression data involve a dimension 

4 Note that reference designs do not require dye swapping of individual arrays, i.e.,that is, running 
the same two samples a second time with the sample labels reversed, except in special situations 
where the study has a secondary objective of comparing reference to non-reference samples 
(Dobbin et al., 2003).
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reduction step. This dimension reduction can serve two purposes (1) it can reduce the 
random variation caused by the inclusion of large numbers of “noise genes” in the pre-
dictor and (2) if the dimension is reduced by gene selection, then the potential clinical 
utility of the predictor is greatly increased because the predictor can be constructed 
from a smaller subset of genes (Simon,  2005) . Also, the second aspect mentioned above 
is usually biologically plausible because samples will overall be homogeneous. For 
example, Paik et al.  (2005)  used gene expression data to identify a predictor based on a 
subset of 21 genes, which they were able to subsequently verify in expedited fashion 
using multiplex real-time RT-PCR on retrospective paraffin-embedded specimens. 
Because of the practical advantages to the second aspect mentioned above, we will 
assume dimension reduction is achieved by gene selection.  

  6.3 Validating a Predictor 
 Development of a multigene predictor from high dimensional DNA microarray data 

requires a series of studies. A preliminary study that assesses the viability of developing 
a predictor with good performance characteristics is a start – there is, after all, no guar-
antee that a good predictor exists. At the other extreme would be a large, prospective 
confirmation study meant to establish a fully developed predictor’s utility in assisting 
with clinical decision making. What constitutes an adequate validation for a study will 
depend in part on where on this spectrum the study resides. For smaller preliminary 
studies,  internal validation  may be adequate; for larger confirmatory studies,  external 
validation  is required (Simon,  2005) .  Internal validation  occurs in preliminary studies 
when the data is split into a test set and a separate training set, and the predictor is 
developed on the training set and validated on the test set of samples. Internal valida-
tion, if performed properly and if there are no intrinsic biases  5   in the data, can provide 
nearly unbiased estimates of predictor performance.  External validation  occurs when 
the data used to estimate the predictor performance comes from a truly independent 
dataset not used to develop the predictor. External validation is crucial for verifying that 
there are no intrinsic biases in the dataset used to develop the predictor, and to establish 
a realistic assessment of the clinical utility of the predictor (Simon,  2005) . 

 Internal validation can be performed using a single test set and a single training set, 
or in a sequential manner using multiple test set/training set pairs in cross-validation. 
Splitting the data into a single test set and training set allows for the most flexible 
approach to predictor construction, because it only requires that the predictor be con-
structed a single time, on the training set. On the other hand, cross-validation requires 
that the predictor be constructed “from scratch” on each of the training sets. This approach 
will only be feasible if there is an automatic algorithm that allows the predictor to be 
constructed without any human input other than perhaps setting up of the initial input 
parameters prior to data analysis. If this is the type of predictor being developed, 
then cross-validation will be preferable to the single test set and training set approach. 

5 Intrinsic biases can be introduced when technical aspects of the assay or processing vary sys-
tematically with class.
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Hence the method by which the predictor will be developed should determine how the 
internal validation will be performed. 

 If one performs internal validation using crossvalidation methods, then the resulting 
estimates of the performance of the predictor can be severely biased if one preselects 
the set of informative genes to be used (Ambroise and McLachlan,  2002 ; Simon et al., 
 2003) . The bias is due to data reuse because the left-out sample was used to select the 
informative genes, and then reused to evaluate the predictor. The potential severity of 
the resulting bias can be surprisingly large (see, e.g., Simon et al.,  2003 ; Fig. 1 ). For 
example, in Simon et al.  (2003) , microarray data were simulated in which there was no 
true difference between the classes, so that no predictor existed that could perform better 
than chance. Yet, when prediction accuracy was estimated using crossvalidation on 
preselected genes (i.e., incorrectly), the estimated accuracy of the predictor was 100% 
in over 90% of the simulations. When the genes were not preselected (i.e., correct cross-
validation), then the estimated accuracy of the predictor centered around 50%, a coin 
toss, as is correct.  

  6.4 Sample Size 
 There is no widely accepted method for determining the sample size that is adequate 

for developing a gene expression-based classifier from microarray data. Mukherjee 
et al.  (2005)  presented a learning curve method for classifier development and applied 
it to a number of microarray datasets. They found that in general 10–20 samples may 
be adequate for morphological classification problems and 50 or more for treatment 
outcome classification. Dobbin and Simon  (2007)  developed a model-based approach 
which suggested that in many situations 20–30 samples per class may be adequate for 
developing a classifier. More work in this area seems needed as interest in the develop-
ment of predictive markers from microarray data grows.        

  APPENDIX  
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  ABSTRACT 

 With the completion of the human genome project, a multitude of techniques have been 
invented to evaluate large portions of the human genome simultaneously. Investigations are 
typically focused on the genome, transcriptome or proteome to identify unique characteris-
tics that may explain the origin of human disease and potentially predict future outcomes. 
The goal of these investigative pursuits is to eventually individualize treatment for each 
patient based on their unique gene expression patterns.  

  Key Words:   Genome ,  Transcriptome ,  Proteome ,  Functional genomics ,  Microarray , 
 GeneChip ,  Sequencing ,  Cancer     

  1 INTRODUCTION  

 The term “gene” was first used in 1909 to describe a functional unit of inheritance 
(Johannsen,  1909)  and by the early 1920s it was commonly used by German scientists 
(Carlson,  1966) . At that time, a gene was defined by the characteristics that could be 
passed on from generation to generation. Thus, the true definition of a gene is an inher-
ited factor that determines a trait, and the “genome” is defined as the sum total of these 
inherited factors for an organism. More than 30 years after the term “gene” came into 
use, Avery, McCarty, and McCloud first demonstrated that the inherited factor was 
DNA (Avery et al.,  1944) . Thus, a gene is more than a sequence of DNA. It is irrevoca-
bly tied to the measurable activity that it encodes. It is the functional consequences of 
an inherited piece of DNA. 

 Biologists now learn the central dogma of biology at an early age: DNA directs the 
transcription of RNA molecules, which in turn direct the translation of proteins (Fig.  1  ). 
These proteins produce activities that are ultimately observed as functional conse-
quences for the cell or the organism. These phenotypes are the final measures that 
define genes. Therefore, the study of genes, which in recent times is referred to as 
“functional genomics,” involves all aspects of the study of cells and organisms, from the 
DNA itself to the outward characteristics that it encodes. Functional genomics is the 
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study of genes, their encoded proteins, and their associated biological processes. 
The discipline of functional genomics seeks to unravel the secrets of how the genome 
functions over time as well as in different biological states. It seeks to investigate the functional 
importance of all genes. However, rather than investigate those genes one at a time, it 
usually involves techniques that investigate large groups of genes at one time.  

 The complete sequencing of the human genome opened many new avenues of scien-
tific research and new mechanisms for investigation. It pioneered the concept of big 
science in the biological disciplines, where large sums of data were generated and 
advanced computational algorithms were required to process these results. It also 
opened the genome to investigation by multiple new techniques. Some of these new 
techniques required computers rather than traditional laboratory methods to evaluate the 
genome. For example, instead of starting with a phenotype and tracing it back to a 
sequence of DNA in order to discover the genes, it is now possible to start with the 
genome sequence and look for structures indicative of promoters, open reading frames, 
splice junctions, and homology to known sequences in order to discover new genes. 
It is no longer necessary to know a phenotype in order to define a new gene. In fact, 
most genes are now discovered based on their DNA sequence. Comparative genome 
analysis allows one to quickly find a homologous gene in a second organism once it has 
been identified in an evolutionarily-related organism. This technique can also be used 
to quickly identify differences between closely related organisms. It has been used to 
identify pathogenicity factors by comparing pathogenic and nonpathogenic bacterial 
strains (Dobrindt,  2005 ; Dobrindt et al.,  2003 ; Schmidt et al.,  2004 ; Wick et al.,  2005) . 

The Central Dogma of Molecular Biology

Replication Transcription Translation

Ribosome

Protein

ProteomeGenome Transcriptome

mRNADNA

  Fig. 1.    The analysis of whole-genome expression. The analysis of gene expression can occur at any 
stage       
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Very similar concepts have been used for the study of cancer. For example, the compari-
son of tumor genomes relative to normal tissue has been done for years through 
karyotyping. 

 The 3 billion base pairs of the human genome are just beginning to reveal the true 
complexity of the human organism (Schmidt et al.,  2004) . The human genome contains 
approximately 25,000 to 35,000 genetic loci (Ewing and Green,  2000 ; Lander et al., 
 2001) . These regions, from which transcripts arise, make up only 1.5% of the total 
genome sequence. The noncoding regions may one day prove to be important in the 
organization of the functional organism, but currently they are often referred to as 
“junk” DNA (Cawley et al.,  2004 ; Graveley,  2001 ; Kapranov et al.,  2002 ; Lander et al., 
 2001 ; Venter et al.,  2001) . The 35,000 genetic loci give rise to an estimated 120,000 
transcripts due to variations in the start and stopping sites and alternative splicing of the 
transcripts (Camargo et al.,  2001 ; Das et al.,  2001 ; Liang et al.,  2000) . From these tran-
scripts perhaps 1 million uniquely functional proteins could be produced when one 
considers posttranslational changes and these functional proteins can give rise to even 
more observable phenotypes (Anderson,  2005) . Therefore the number of “genes” in a 
human can be numbered as low as 25,000, if one only counts genetic loci encoding 
possible proteins, or enumerated at greater than 1 million if one counts the resultant 
proteins or the phenotypes encoded by these genetic loci. As biologists migrate to a 
systems approach for studying organisms it is clear that high-throughput techniques and 
bioinformatics tools are required to generate, store, and process the information gathered 
from many thousands of genes at once.  

  2 THE GENOME  

 To the current generation of scientists, the genome is thought of as the complete 
DNA sequence of the germ line cells of an organism. Knowledge of this DNA sequence 
can provide valuable information about the functions and malfunctions of genes. 
In organisms such as humans the genome is subdivided into chromosomes, which can 
be visualized in dividing cells. Smaller units, such as chromosomal bands can also be 
observed on a microscopic level. These units have been used for years to study the influ-
ence of the genome on cellular function (Jackson,  1978 ; Martin and Hoehn,  1974 ; 
Pogosianz and Prigogina,  1972) . With the completion of the human genome we can also 
evaluate the genome on the nucleotide level. Whole gene analysis is used to identify 
regions of the genome that might contain genes that influence certain disease processes. 
Single nucleotide changes in, or near, a gene are frequently the causes of inherited or 
spontaneous mutations that lead to the development of cancers (Claus,  1995 ; Den Otter 
et al.,  1990 ; Weinberg,  1983) . Therefore, combinations of whole genomic and focused 
approaches are useful for discovering genetic influences related to cancer. 

 It has been known for years that mutations in oncogenes and tumor suppressors can 
influence the development of cancer. Large-scale sequencing of the genome can be used 
to identify specific mutations in a single tumor or to identify the spectrum of mutations 
found in many cancers (Capella et al.,  1991 ; Casey et al.,  2005 ; Frank et al.,  1999 ; 
Li et al.,  1998) . The promise of these investigations is that a single tumor might be identified 
by the types of mutations it contains and that this knowledge could lead to better choices 
for treatment. It is also known that large genomic rearrangements are associated with 
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cancer. The largest of these changes are observable in the microscope but smaller changes 
can now be resolved with functional genomic techniques (Beheshti et al.,  2003 ; Hoque 
et al.,  2003 ; Mundle and Sokolova,  2004 ; Squire et al.,  2003 ; Weiss et al.,  2003) .  

  3 THE TRANSCRIPTOME  

 The term  transcriptome  was coined to describe the large number of transcripts that 
can result from copying and splicing together portions of the genome (Velculescu et al., 
 1997) . The  transcriptome  represents the multitude of RNA messages that encode the 
various proteins necessary to express the function of a gene. The term is often used to 
describe the sum total of all transcripts in the cell under specific biological conditions 
and is also used to describe all the possible transcripts under all possible conditions. 
Many more transcripts exist than the number of genetic loci that encode them. 

 The study of the transcriptome will define the large picture of the functional cell. 
Differences in the transcriptome lead to differences in the functionality of a cell, tissue, 
or organism. Elements of the transcriptome have been identified, one at a time, for many 
years, but can now be evaluated in large groups because of microarray technology and 
large-scale sequencing projects. Scientists can now get a big picture view of a cell or 
tissue. With bioinformatics techniques one can use the big picture or drill down to the 
differences of individual transcripts (Kapranov et al.,  2002 ; Liu,  2005) . With respect to 
cancer, knowledge of the transcriptome has been used to define subclasses of tumors 
which will aid in treatment decisions (Golub et al.,  1999 ; Perou et al.,  2000 ; Ramaswamy 
et al.,  2001) . Large groups of transcripts might be used for classification, but smaller 
groups, or even a single transcript, might provide insight into the prognosis of the 
patient. For example, knowledge of the expression level of the estrogen receptor (ER) 
aids in determining the clinical course of some breast tumors (Leal et al.,  1995 ; Perin 
et al.,  1996) . Other tumors might have a similar biological marker. The benefit of this 
technology is that screening many transcripts improves the chance of identifying the 
one important transcriptional marker. 

 Another important aspect of the transcriptome is the phenomenon of alternative splicing. 
Over 40% of genes in the human genome are thought to undergo alternative splicing (Brett 
et al.,  2000 ; Mironov et al.,  1999 ; Modrek and Lee,  2003) . Changing the combination of 
the exons joined together and the location of starting and stopping points for the 
transcript produces variation in protein expression. Alterations in the type of transcripts 
produced by splicing can contribute to cancer (Mercatante and Kole,  2000 ; Milani et al., 
 2006) . Alternative splicing can sometimes explain the heterogeneity of tumor response 
to therapy among populations of the same tumor type (Mercatante and Kole,  2000) . 
Gene expression arrays are being used to identify these variants and to potentially correlate 
them to clinical responses (Bracco and Kearsey,  2003 ; Veuger et al.,  2002) .  

  4 PROTEOME  

 To date, the majority of biological investigations have involved the study of proteins, 
protein:protein interactions, and posttranslational modifications. The totality of all 
proteins in an organism is now called the proteome (Kahn,  1995) . In parallel to the 
genome and the transcriptome, the proteome is now investigated with large-scale and 
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high-throughput techniques. Both antibody-based techniques and mass spectrometry 
have proven to be extremely powerful in localizing, quantitating, and structurally char-
acterizing individual proteins or small groups of proteins in an experiment. However, 
the true potential in these methods lies in the ability to elucidate the structure and 
function of large numbers of proteins within one experiment. The large-scale analysis 
of the protein composition of a cell, tissue, or fluid is often referred to as proteomics 
(Petricoin and Liotta,  2004 ; Stults and Arnott,  2005 ; Wulfkuhle et al.,  2003) . High-
throughput mechanisms for studying the proteome include evaluating many proteins in 
a single cell or tissue. Alternatively, one might study a single protein in a multitude of 
tissue samples by techniques such as tissue microarrays or protein microarrays. 

 The proteome changes in many ways due to transcriptional changes and posttransla-
tional modifications. It is perhaps the most revealing arena for understanding how a 
gene functions and how a cell interacts with the local environment. In fact, some cellular 
responses occur completely within the proteome and do not involve changes in the 
genome or transcriptome. Protein modifications and protein:protein interactions mediate 
many of the cellular responses to environmental stimuli. Proteomic experiments aim to 
generate new hypotheses by studying the changes in expression levels or posttransla-
tional modifications of proteins in response to a stimulus. In evaluating the proteome, 
one might look for changes in a single protein or for a panel of candidate biomarkers 
that signify a cellular response to treatment or a difference between groups of samples. 
For the analysis of cancer one might look for differences in the proteome due to the 
mutation of a single gene, following drug treatment, or between groups of patients sepa-
rated by their clinical characteristics (e.g., histology or survival outcome) (Dephoure 
et al.,  2005 ; Soreghan et al.,  2003) . Evaluation of the proteome may give molecular 
insight into mechanisms of drug resistance and might provide markers for the early 
detection of diseases (Alexander et al.,  2004 ; Bhattacharyya et al.,  2004 ; Hondermarck 
et al.,  2001 ; Petricoin et al.,  2005 ; Zhang et al.,  2004) .  

  5 METHODS FOR INVESTIGATING THE-OMES  

  5.1 Sequencing Techniques 
  5.1.1 Expressed Sequence Tags 

 One of the secondary benefits of the human genome project was that high-throughput 
sequencing became available for hypothesis driven science. This has led to a number of 
sequence-based techniques that have expanded our understanding of biology in general 
and problems like cancer, specifically. One of the first uses of high-throughput sequencing 
was to shift from the genome to the transcriptome. Many laboratories combined the 
concept of generating complementary DNA (cDNA) libraries and sequencing to create 
libraries of expressed sequence tags (ESTs) (Kawamoto et al.,  2000 ; Okazaki et al., 
 2002 ; Stapleton et al.,  2002) . ESTs are single sequencing reads of approximately 
300–700 nucleotides taken from cDNA clones. They were first described in 1991 as a 
potential tool to interrogate the human genome for potential variation (Adams et al., 
 1991) . It was not long before this endeavor shifted from simply cataloging sequences 
found in various cell types to comparisons between cell types (Carulli et al.,  1998 ; 
Kawamoto et al.,  2000 ; Lindlof,  2003) . The sequence information from EST sequencing 



30 Enkemann et al.

projects is useful for identifying previously undefined genes and many of the designa-
tions used to catalog the unknown sequences have been maintained in the current gene 
nomenclature. Prefixes, such as FLJ (full-length long Japan), MGC (Mammalian Gene 
Collection), and KIAA, which in Japanese stands for the Kazusa DNA Research 
Institute reference character, are commonly seen in published gene lists. These designa-
tions allow one to bioinformatically track information related to these clones until an 
official gene name is agreed upon. Despite such problems as poor sequence quality, 
chimerism, and vector or intronic contamination, the EST projects have contributed 
immensely to the discovery and cataloging of human gene sequences. The cancer 
phenotype has been studied through the comparison of EST sequence pools (Krizman 
et al.,  1999 ; Reis et al.,  2005) . For example, Asmann et al.  (2002)  used available EST 
databases to electronically profile the differences between normal and malignant pros-
tate tissues and to develop potential molecular markers for the detection of cancer.  

  5.1.2 Serial Analysis of Gene Expression 

 Another sequencing technique that examines the transcriptome is serial analysis of 
gene expression (SAGE) (Velculescu et al.,  1995) . The SAGE technique involves 
enzymatically removing short sequences from cDNA copies of the transcript pool and 
concatenating them together in a large string that is then sequenced. The short 
sequences are markers for specific transcripts. The frequency of the short tags within 
the sequencing data is a measure of the abundance of that transcript within the original 
transcriptome. This technology has been used to compare expressions across experi-
mental conditions (Sengoelge et al.,  2005 ; Zucchi et al.,  2004) . SAGE can be used to 
assess the expression of previously unknown genes, as it does not depend on prior 
sequence knowledge. However, the limitations of SAGE may outweigh its advantages. 
The technology relies on the complexity of cloning and requires high-throughput 
sequencing; so it can be expensive. Sometimes, there is also difficulty in identifying 
specific transcripts due to the short tag size; often 14–21 bp. Some SAGE applications 
also rely on a sequenced genome or a significant cDNA database for interpretation 
(Liu,  2005) . Matsuzaki et al.  (2005)  used the SAGE libraries and EST databases to 
identify unique genes differentially expressed in melanoma cells and melanocytes. 
They were also able to identify subsets of patients that had initiated an immune 
response to uniquely over expressed proteins. This response may eventually explain 
the varied clinical response seen in patients.  

  5.1.3 Massively Parallel Signature Sequencing 

 Massively parallel signature sequencing (MPSS) functions similar to SAGE but uses 
a novel restriction-ligation, bar code identification, and bead-based detection system to 
identify 17–20 bp tags of every transcript in an RNA sample (Brenner et al.,  2000) . 
Similar to SAGE, MPSS is complex and sophisticated and is also limited by the number 
of ambiguously assigned tags. However, MPSS does provide greater sequence coverage 
than SAGE. MPSS can sequence over a million clones in one read making it most useful 
for low frequency transcripts below the detection limits of oligonucleotide microarrays. 
MPSS, like SAGE, does not need knowledge of putative transcripts to be functional and 
therefore can be used to discover unknown genes (Shah et al.,  2006) . Chen et al.  (2005b)  
used MPSS to identify transcript variants in the CT45 gene in testicular cancer. They 
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uncovered specific variants that were highly expressed in germ cell tumors compared to 
normal testicular tissue. 

 Massively parallel sequencing techniques are continuing to improve in their speed 
and accuracy in sequencing the genome. Although it currently costs between $10 and 
$25 million to fully sequence the human genome, initiatives are in place to promote new 
techniques that would significantly decrease the cost. One promising new technology 
appears to have high throughput and high accuracy. Margulies et al.  (2005)  have 
reported a highly parallel sequencing system that can sequence up to 25 million nucle-
otides in 4 h. The speed, accuracy, and price of this system may one day lead to genome 
sequencing as a common laboratory event.  

  5.1.4 Single Nucleotide Polymorphisms 

 Sequencing of diverse human genomes has already led to the development of a public 
database of more than 1 million well-documented common variations in the human 
genome. This HapMap project is continuing to search for genetic variation in the form 
of single nucleotide polymorphisms (SNPs) that accounts for human diversity (Thorisson 
and Stein,  2003) . Counting rare SNPs, more than 2 million differences have been docu-
mented and with more sequenced genomes the total number is estimated to reach >10 
million (Altshuler et al.,  2005 ; Botstein and Risch,  2003 ; Gu et al.,  1998 ; McVean et al., 
 2005 ; Sherry et al.,  2001) . There are a variety of techniques that can make use of this 
information with respect to cancer. Individual SNPs can be used as signposts in the 
genome for linking specific genotypes to diseases. The SNP data can also be used to 
detect the large genomic deletions and insertions that occur in some cancers (Hoque 
et al.,  2003) . Variation found within the coding regions of some genes can affect the 
activity of the proteins they encode and polymorphisms found in the regulatory regions 
can effect the level of gene expression (Marsh,  2005) . There are already instances where 
the amount of protein produced or the specific polymorphism expressed affects the 
patient’s response to chemotherapy (Landi et al.,  2003) . The field of pharmacogenomics 
specifically deals with the relationship between an individual’s response to chemicals 
and the polymorphisms in his genome (Bomgaars and McLeod,  2005 ; Marsh,  2005 ; 
Turesky,  2004) . Sequencing is traditionally used to identify individual point mutations 
and SNPs, but once specific variants are known to exist they can be detected using 
microarray technology.   

  5.2 Microarray Techniques 
 Perhaps the most promising new technique for functional genomics is microarray 

technology. This technology relies on the complementary joining of two nucleic acid 
strands to form a duplex. Because of the sequence specificity of this bonding the tech-
nology can be used to identify specific sequences among a pool of billions of different 
sequences. By multiplexing the hybridization, thousands of sequences can be identified 
at the same time from the sample pool. Microarray technology can be used to screen 
entire transcriptomes or sequence individual nucleotides within the genome. Although 
usually based on prior sequence knowledge, the technique can also be used for gene 
discovery. Typically it is used to probe the transcriptome under directed experimenta-
tion. A thousand to several thousand genes can be analyzed with a relatively small 
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amount of RNA so the technique is widely applicable and relatively inexpensive. 
However, the microarray platforms are limited to those genes chosen for the array so 
there is no guarantee that the gene of interest is represented on the array. A typical 
high-density array may also contain many unknown genes further limiting analysis. 
The signals from microarrays are considered to be less reliable and less accurate than a 
quantitative RT-PCR analysis. But since 12,000–60,000 genes are appraised in one 
experiment a little accuracy is sacrificed for the information-rich output of microarrays. 

  5.2.1 Complementary DNA Gene Expression Microarrays 

 Gene expression arrays are designed to capture information about the transcription 
of as many genes as possible with each experiment. In cDNA arrays the probes used to 
capture this information are generated from transcripts pulled from tissues. Messenger 
RNA from cells is converted to cDNA fragments using reverse transcription and cloned 
into plasmids. The clones are then sequenced and cataloged so different clones will be 
used for each spot. The probes are generated by amplifying the clones using PCR and 
spotting them onto a two-dimensional surface to form the array using either ceramic, 
stainless steel, or titanium spotting pins or ink jets (Bertucci et al.,  1999 ; Chen et al., 
 1998 ; Schena et al.,  1995) . The important feature is that the probes are placed in a 
precise arrangement so the identity of each probe is known. Experimental mRNA 
samples are then evaluated by generating cDNA labeled with either a fluorescent or 
radioactive tag and hybridizing the labeled sample to the array. Transcripts in the experi-
mental sample will hybridize to the appropriate spot and the resultant signal is detected 
using an appropriate scanner. The scanned image of the entire array must then be proc-
essed to generate the appropriate signal intensity for each gene represented on the array. 
The majority of the work associated with a microarray experiment deals with the 
processing and evaluation of the scanned array data (Armstrong and van de Wiel,  2004 ; 
Leung and Cavalieri,  2003 ; Quackenbush,  2001) . 

 More than 10,000 papers have been published using microarray technology. The first 
microarray paper used cDNA arrays (Schena et al.,  1995)  and these arrays have been 
used liberally to evaluate cancer (Bucca et al.,  2004 ; Khan et al.,  1999) . Every aspect of 
tumorigenesis has been investigated and possibly every tumor site has been considered 
(Al Moustafa et al.,  2002 ; Alevizos et al.,  2001 ; Baris et al.,  2005 ; Durkin et al.,  2004 ; 
Elek et al.,  2000 ; Larramendy et al.,  2002 ; Lee et al.,  2004 ; Onda et al.,  2004 ; Rihn 
et al.,  2000 ; Selaru et al.,  2002 ; Sorlie et al.,  2001 ; Wolf et al.,  2000 ; Yang et al.,  2004) . 
Some laboratories have used microarrays to evaluate chromosomal rearrangements that 
occur with the emergence of the disease (Heiskanen et al.,  2001 ; Jiang et al.,  2004 ; 
Pollack et al.,  1999 ; Wrobel et al.,  2005 ; Yi et al.,  2005) . Others have examined the 
transcriptional profile of inherited tumors (Hedenfalk et al.,  2001 ,  2002) . Some have 
looked for markers indicative of the emergence or progression of the disease while other 
laboratories have focused on utilizing the transcriptome to subclassify both distinctly 
different and histologically similar tumors (Bittner et al.,  2000 ; Bull et al.,  2001 ; Cao 
et al.,  2004 ; Eschrich et al.,  2005 ; Halvorsen et al.,  2005 ; Hegde et al.,  2001 ; Hu et al., 
 2005 ; Khanna et al.,  2001 ; Mousses et al.,  2001 ; Ono et al.,  2000) . Many have tried to 
understand or predict the response of a tumor to chemotherapeutic agents or other treat-
ment methods (Akervall et al.,  2004 ; Chang et al.,  2002 ; Kihara et al.,  2001 ; Kudoh 
et al.,  2000 ; Matsuyama et al.,  2006 ; Mousses et al.,  2001 ; Nakeff et al.,  2002 ; Peehl 
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et al.,  2004 ; Samimi et al.,  2005 ; Smith,  2002 ; Takata et al.,  2005) . The goal of most of 
these investigations is to improve the treatment of patients by getting an understanding 
of cancer on a molecular level.  

  5.2.2 Oligonucleotide Microarrays 

 A second basic approach in assessing the whole-genome profile is by using oligonu-
cleotide-based arrays (Lockhart et al.,  1996) . For this style of microarray small DNA 
sequences ranging from 20 to 70 nucleotides in length are synthesized directly on a 
support medium or are robotically spotted as for cDNA arrays. Again, the sequence and 
location of each oligonucleotide is known for the array and the experimental use of 
these arrays is similar to that of the cDNA arrays. 

 Although similar, there are several important differences between cDNA arrays and 
some of the oligonucleotide-based arrays. Typically, cDNA arrays have longer probes, 
which can produce more stable binding and more intense signaling compared to the 
shorter sequence oligonucleotide-based arrays (Stillman and Tonkinson,  2001) . The 
tradeoff is that cDNA probes cannot easily evaluate transcript variants (Castle et al., 
 2003 ; Kampa et al.,  2004) . A gene might be identified but not the specific transcript. 
Most cDNA array methods require the use of two contrasting labeled RNA samples to 
provide experimental information. This is often accomplished by using a reference 
RNA pool to provide the contrasting signal for comparisons (Gadgil et al.,  2005 ; 
Novoradovskaya et al.,  2004) . In contrast, the Affymetrix GeneChip is unique com-
pared to most arrays in that a single-labeled cRNA sample is hybridized to a chip rather 
than having both a reference and test sample (Fig.  2  ) (Lockhart et al.,  1996) . Most 

  Fig. 2.    A portion of the Affymetrix GeneChip U133+ Array. A phycoerythrin fluorescent dye is used 
to stain the arrays, but information is captured in gray scale. Data is interpreted from the gray scale 
measurements. The above gray scale image is a typical computerized picture generated by the com-
puter. It is not necessary to generate color or a picture to interpret the data       
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cDNA arrays are produced from clones held in bacterial stocks. This means that a 
desired clone is readily available for further biological work. However, clone manage-
ment is time consuming and cumbersome and cDNA arrays produce a higher incidence 
of crosshybridization, PCR-generated contamination, and misidentified spots. Oligonucl-
eotide arrays can only be produced once sufficient sequence information in known about 
the genome or transcriptome of an organism and so the organisms available for this tech-
nology are limited. On the other hand, oligonucleotides can be synthesized for any 
portion of a known genome, so they can be used for purposes other than transcrip-
tome analysis.  

 Any sequence information can be used to produce an oligonucleotide-based array. 
There are now tiling arrays that contain probes that completely cover an entire chromo-
some or genome. These arrays are useful for probing the transcriptome to identify all 
potential transcripts from the genome or for high-density mapping of chromosomal 
aberrations (Kapranov et al.,  2005 ; Roversi et al.,  2005) . There are also exon arrays, 
which can be used to identify the splice variants existing in the transcriptome of a 
particular cell (Nagao et al.,  2005) . Individual genes can even be sequenced with micro-
arrays to look for de novo mutations or genetic polymorphisms (Huang et al.,  2005 ; 
Wikman et al.,  2000) . 

 Oligonucleotide-based microarrays have been used to study cancer in many of the 
same ways as cDNA-based arrays. Nearly every organ site has been analyzed and every 
aspect of tumor development and response to therapy has been evaluated with this tech-
nology (Agrawal et al.,  2003 ; Bhattacharjee et al.,  2001 ; Bonome et al.,  2005 ; Dressman 
et al.,  2006 ; Frederiksen et al.,  2003 ; Freije et al.,  2004 ; Ginos et al.,  2004 ; Gyorffy 
et al.,  2006 ; Huang et al.,  2006) . Because, of the overlap between studies performed 
with cDNA arrays and oligonucleotide arrays many laboratories have studied results 
from both technologies with the hope of producing a more robust gene expression signature 
of various cancer types (Bloom et al.,  2004 ; Carter et al.,  2005 ; Kuo et al.,  2002 ; Warnat 
et al.,  2005) . However, some features of the oligonucleotide arrays make them favorable 
for certain applications. For example, Kasamatsu et al.  (2005)  were able to evaluate 
both the genome and transcriptome in the same tumors with high-density oligonucle-
otide arrays and found a correlation between some of the differences in gene expression 
and genomic anomalies in adenoid cystic carcinomas. The commercial arrays are more 
consistent from batch to batch and generally have more features per array. They can also 
be used by any laboratory; with the implications that, results could be replicated in a 
different laboratory. For these reasons investigators are turning to commercial arrays to 
combine results or to directly compare results from multiple institutions (Bammler 
et al.,  2005 ; Dobbin et al.,  2005 ; Irizarry et al.,  2005) . The larger commercial arrays are 
also more frequently used by groups attempting to build gene expression-based classi-
fication schemes for tumor type, stage, or survival chances (Dressman et al.,  2006 ; 
Frederiksen et al.,  2003 ; Freije et al.,  2004 ; Ginos et al.,  2004 ; Gyorffy et al.,  2006 ; 
Huang et al.,  2006) . The array data can provide a deeper understanding of cancer, and 
it is also useful for a deeper understanding of the technology itself. Several cancer data 
sets have been used well by the bioinformatics community to test and compare analytic 
approaches (Bhattacharjee et al.,  2001 ; Golub et al.,  1999) . Because of their commercial 
nature, the oligonucleotide-based arrays are more likely to provide a clinical use for 
microarrays in cancer treatment.  
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  5.2.3 ChIP-on-Chip Technology 

 To understand how the transcriptome is regulated one needs to identify DNA-binding 
sites of transcription factors. The technique known as ChIP-on-chip combines chromatin 
immunoprecipitation with microarray chips. Chromatin immunoprecipitation (ChIP) is 
performed by in situ crosslinking of a specific transcription factor to its DNA-binding 
site. The DNA is sheared and the DNA fragments, with the specific transcription factor 
bound to them, are then immunoprecipitated by a transcription factor-specific antibody. 
The DNA segments are then amplified with PCR, labeled, and hybridized to tiled arrays. 
With this technology the DNA-binding sites for specific transcription factors can be 
assessed over the whole genome (Horak and Snyder,  2002) . Jin et al. used ChIP-on-chip 
to verify in silico predictions of target genes regulated by the ER alpha (Jin et al.,  2004)  
and Jen and Cheung  (2005)  were able to identify new targets of the p53 gene in response 
to ionizing radiation. The technique can also be extended to evaluate other components 
of the genome or associated chromatin. The patterns of DNA methylation related to 
disease status can now be evaluated in a whole-genome approach (Wilson et al.,  2006) .  

  5.2.4 SNP Arrays 

 SNPs are the normal genetic variations that differentiate individuals from each other. 
These single base differences may be the cause of some tumors and the reason many 
tumors do not respond to therapy. Mutations in oncogenes and tumor suppressors are 
part of this genetic variation, but genetic variation in other genes might also be impor-
tant in the tumorigenic process (Turesky,  2004) . For example, Hein  (2002)  demonstrated 
that a polymorphism in the NAT2 gene can have a variable influence in the modification 
of aromatic amine metabolism. If NAT2 is rapidly acetylated, the resulting phenotype 
is a patient at a higher risk for colon cancer, whereas slower acetylation results in a 
higher risk to develop bladder cancer. The study of these polymorphisms usually 
involves sequencing or PCR-based techniques when considered one at a time. But once 
an array of candidates is identified the analysis can be performed with microarray for 
thousands of SNPs at a time. One array already in production evaluates polymor-
phisms in the Cytochrome P450 genes that might influence how individuals detoxify 
chemotherapeutic agents (Jain,  2005) . 

 SNPs can also serve as signposts in the genome. High-density arrays of SNPs can be 
used to look for large-scale deletions and amplifications in the genome (Matsuzaki 
et al.,  2004a , b) . Loss of heterozygosity occurs when a region of a chromosome is 
deleted. This commonly occurs in cancer and SNP arrays can be used to quickly identify 
this phenomenon (Dumur et al.,  2003 ; Huang et al.,  2004) . For example, Zhao et al. 
 (2005)  evaluated 70 patients with small cell and nonsmall cell lung cancer. They were 
able to identify examples of loss of heterozygosity and instances of genomic amplifica-
tion that might explain the increased growth potential of the specific tumors.   

  5.3 Protein Analysis Techniques 
  5.3.1 Tissue Arrays 

 In the investigative push to understand human cancers, attempts were made to assess 
multiple disease processes simultaneously. The original concept of simultaneous evalu-
ation of multiple tissues is credited to Hector Battifora who published in 1986 his 
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technique for a multitumor tissue block known at the time as the “sausage block” 
(Battifora,  1986) . Eventually, a large number of small tissue segments would be 
implanted into a single paraffin block to create an array of as many as one thousand 
tissues. Up to 200 consecutive 5-µm sections could then be taken from these blocks 
allowing for multiple staining and microscopic evaluations of the tumors. Any of the 
microscopic techniques is then available for hundreds of tumors with the same amount 
of time, effort, and reagents normally required for one tissue sample. Kononen et al. first 
described the tissue microarray in 1998 and multiple studies have followed confirming 
the convenience and effectiveness of this new approach (Kononen et al.,  1998 ; Moch 
et al.,  1999 ; Mucci et al.,  2000 ; Richter et al.,  2000 ; Schraml et al.,  1999) . Techniques 
such as H&E staining, immunohistochemistry, fluorescent in situ hybridization (FISH), 
in situ PCR, and others can be performed. Therefore, tissue microarrays can be used to 
evaluate the genome, transcriptome, or proteome. However, the usefulness of the results 
is dependant on the care used to create the array. It is vital that each core sample repre-
sents the original tumor well or bias can result. Arrays produced with larger cores are 
more likely to capture the area of interest while smaller diameter discs allow for more 
selective microdissection of the important tumor components of the tissues in question 
as well as for minimizing the amount of tissue removed from the original specimen 
(Skacel et al.,  2002) . Any subsample of the original tumor may misrepresent the true 
heterogeneity of the tumor and arrays may not contain surrounding tissues which may 
contribute to the tumorigenic process (Liotta and Kohn,  2001) . Despite this, multiple 
studies have shown a similar sensitivity for tissue microarrays relative to the original 
tumor blocks in detecting genetic aberrations (Camp et al.,  2000 ; Sallinen et al.,  2000 ; 
Schraml et al.,  1999) . The benefit of tissue microarrays lies in the ability to perform 
multiple experiments simultaneously on multiple tumors and on serial sections. 

 Tissue microarrays may soon become the first place one tests a new hypothesis 
related to the pathological evaluation of tumors as large numbers of tumors can be 
screened in a short time (Skacel et al.,  2002) . This technique will allow one to quickly 
test and refine new pathological measures of cancer subtypes. For example, Chin-Chen 
et al. used tissue arrays to aid in the immunohistochemical pathologic differentiation of 
hepatocellular carcinoma, renal cell carcinoma, and adrenocorticoid carcinoma (Pan 
et al.,  2005) . These three tumor sites are often difficult to differentiate histologically. 
The tissue array platform offered a quick way to evaluate the overall sensitivity of their 
technique. Tissue arrays also allow different institutions to screen the same samples 
with a new technique and evaluate the effect of the observer bias in reporting staining 
results (Mengel et al.,  2002 ; von Wasielewski et al.,  2002) .  

  5.3.2 Proteomics 

 Proteomics is loosely defined as any study of the proteome, but the term is usually 
used to imply the study of a large population of proteins on the tissue, cellular, or 
subcellular level (Petricoin and Liotta,  2004 ; Somiari et al.,  2005 ; Stults and Arnott, 
 2005 ; Wulfkuhle et al.,  2003) . A complex mixture of proteins, such as serum, plasma, 
tissue, or a cellular extract may be resolved into smaller complexes of protein by liquid 
chromatography (e.g., affinity, ion exchange, or reverse phase separations) or gel-based 
techniques (e.g., isoelectric focusing and SDS-PAGE, commonly known as 2D electro-
phoresis). Each chromatographic fraction or gel spot can then be interrogated with 
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liquid chromatography coupled to tandem mass spectrometry peptide sequencing 
(LC-MS/MS) and database searching to determine its protein constituents (Fig.  3  ). 
Similar fractions from multiple samples can also be compared semiquantitatively with 
mass spectrometry profiling or quantitatively with differential fluorescence techniques or 
isotopic labeling. The analysis by mass spectrometry has been applied to complex mixtures 
such as whole plasma or tissue (Caprioli,  2005 ; Steel et al.,  2003)  or to more purified 
complexes such as individual spots on a two-dimensional gel (Greengauz-Roberts 
et al.,  2005 ; Wulfkuhle et al.,  2003) .  

  Fig. 3.    Proteomic analysis of a biological sample involves the resolution of complex mixtures of 
proteins into individual polypeptides and fragments of polypeptides. ( a ) Picture of a biological sam-
ple following two-dimensional gel electrophoresis. Individual spots can be evaluated for intensity and 
composition. ( b ) Individual mass spectrometry traces can be compared to identify differences 
between samples such as those circled. ( c ) Individual peaks of an ion spectrum can be further fraction-
ated to identify the peptide fragment, and ultimately the protein, responsible for the differences seen 
in a sample       
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 One highly promising arena for proteomic analysis is in the search for clinical 
biomarkers (Alaiya et al.,  2005 ; Bhattacharyya et al.,  2004 ; Chen et al.,  2005a ; 
Hondermarck et al.,  2001 ; Srinivas et al.,  2001 ; Steel et al.,  2003 ; Zhang et al.,  2004) . 
Bhattacharyya et al.  (2004)  were able to detect pancreatic cancer with high accuracy 
using high-throughput proteomics on the serum from patients. On the other hand, Chen 
et al.  (2005a)  used a similar approach to identify many proteins associated with pancreatic 
cancer that might one day be detected by less expensive techniques. Zhang et al.  (2004)  
used proteomics in a multi-institutional study of women with ovarian cancer, benign 
pelvic masses, or no pathology. They uncovered three distinct protein markers unique 
to ovarian cancer that could conceivably be used for early detection tumor markers. The 
combination of these three proteins with CA-125 was much more sensitive in detecting 
ovarian cancer than using CA-125 alone. 

 Proteomics approaches have also been used to subtype tumors for a histological 
diagnosis whether directly from tumor samples or in attempts at early detection 
(Borczuk et al.,  2004 ; Seike et al.,  2005 ; Steel et al.,  2003) . Direct tissue analysis with 
mass spectrometry is feasible at the single cell level (Danna and Nolan,  2006)  and has 
been used on microdissected samples for purer tumor analysis (Greengauz-Roberts 
et al.,  2005 ; Jain,  2002) . The technique has even been used to probe multiple locations 
across microscopic tissue slices (Chaurand et al.,  2004) . This allows one to look at both 
the tumor and the surrounding tissue for changes related to tumor growth or to look for 
microscopic tumors in an otherwise normal looking tissue sample. These kinds of studies 
will probably provide valuable information about the emergence of tumors from micro-
scopic disease sites that cannot be obtained by any other method.    

  6 CLINICAL APPLICATION  

 During the evolution of a cancer cell, the diseased genome undergoes a series of 
genetic changes that drastically alters the cellular metabolism. Many genes lose their 
function or take on new roles to promote cellular growth, invasion, metastasis and ang-
iogenesis. Each tumor follows a different path towards tumorigenesis, so the genetic 
variation between seemingly similar tumors can be significant. These differences may 
be the underlying reason for variability in the way tumors progress and the way they 
respond to attempts at eradication. A full understanding of any tumor will require a 
complete understanding of the functional genomics of that tumor. There is no question 
that the tools used to comprehend the functional genomics of human cells will one day 
be routine techniques for the clinical diagnosis and treatment of cancer (Table  1  ) 
(Mount and Pandey,  2005 ; Yeatman,  2003) .     

 Currently, most cancers are identified based on their pathological appearance under 
the microscope. This microscopic examination also includes a crude analysis of the 
genome for some cancer types. Karyotyping is an important component of the diagnosis 
of many hematological malignancies (Bayani and Squire,  2002 ; Jotterand and Parlier, 
 1996) . Yet other forms of cancer also are known to possess chromosomal anomalies 
(Gronwald et al.,  2005 ; Kimura et al.,  2004 ; Meijer et al.,  1998 ; Micci et al.,  2004) . 
It is likely that they too benefit from genomic evaluation. Current tools allow for 
genomic screening at a higher resolution (Jones et al.,  2005 ; Nakao et al.,  2004) . This 
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resolution could even progress to the level of individual nucleotides, if one knew where 
to look (Jain,  2005 ; Landi et al.,  2003 ; Wikman et al.,  2000) . 

 The transcriptome also reveals useful information about cancer and may one day 
become a clinical tool. Many studies have been published providing evidence for the 
clinical relevance of microarray data. Because microarrays evaluate thousands of genes, 
the focus is on the complex gene expression signature of a tumor and how it might relate 
to clinical outcomes. Several observations are emerging from the transcriptional analy-
sis of cancer. It is easy to distinguish between normal tissue and the cancers that arise 
within these tissues. Recognized histological subtypes of cancer are also visible within 
the gene expression profiles of those tumors. Histologically similar tumor types may 
have distinct subtypes based on the gene expression profiles and these subtypes may 
one day influence the treatment of the tumors. 

 Many groups have been successful at identifying different types of cancer based on 
the gene expression profile of the tumors (Bucca et al.,  2004 ; Cao et al.,  2004 ; Elek et al., 
 2000 ; Halvorsen et al.,  2005 ; Hu et al.,  2005 ; Khan et al.,  1999 ; Lee et al.,  2004 ; Smith, 
 2002 ; Sorlie et al.,  2001 ; Wrobel et al.,  2005 ; Zhang and Ji,  2005) . Some studies have 
tackled more difficult classification problems and can reliably delineate recognized 
subgroups and find others not yet recognized by histology (Bhattacharjee et al.,  2001 ; 
Bloom et al.,  2004 ; Golub et al.,  1999 ; Ramaswamy et al.,  2001) . Specifically, some 
groups have shown that gene expression profiles can be used to identify tumors of 
unknown origin. Ramaswamy et al.  (2001)  had a 78% accuracy in predicting the iden-
tity of tumors of unknown origin; while, Bloom et al.  (2004)  showed an 84% accuracy 
using both cDNA and oligonucleotide microarrays results. The poorly differentiated 

 Table 1 
  Techniques used to analyze gene expression  

 Genome  Karyotyping (including spectral karyotyping) 
 High-throughput sequencing 
 Fluorescent in situ hybridization 
 Microarrays: 
 Comparative genome hybridization 
 Single nucleotide polymorphism arrays 

 Transcriptome  Serial analysis of gene expression 
 Massively parallel signature sequencing 
 Expressed sequence tag library analysis 
 cDNA arrays 
 Oligonucleotide arrays 
 ChIP-on-chip assays 

 Proteome  Mass spectrometry (MS) 
 2D gel electrophoresis plus MS 
 Column/batch chromatography 
 Tissue arrays 
 Protein arrays 
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tumors were the least likely to classify correctly, suggesting that they had dedifferenti-
ated significantly from the tissue of origin. Perou et al. evaluated 65 surgical specimens 
from 42 breast cancer patients (Perou et al.,  2000) . They noted significant gene expres-
sion differences between patients suggesting that several subtypes might exist. 

 Tumor subtypes might explain the differences seen in the therapeutic responses of 
patients. Several authors have identified gene signatures that might predict a positive or 
negative response to therapy (Cheok et al.,  2003 ; Kakiuchi et al.,  2004 ; McLean et al., 
 2004 ; Staunton et al.,  2001) . McLean et al.  (2004)  used oligonucleotide microarrays to 
generate a 31 gene classifiers that differentiated between CML patients who had a 
complete response to imatinib and those with minimal or no response. They then could 
predict response with 93.4% sensitivity and 87.7% positive predictive value. Likewise, 
Kakiuchi et al.  (2004)  evaluated advanced nonsmall cell lung cancer and found 51 genes 
that predicted a response to gefitinib (Iressa). Cheok et al.  (2003)  evaluated over 9,000 
genes expressed in AML and followed the changes in expression before and after 
therapy with methotrexate and mercaptopurine, given alone or in combination. They 
discovered that the gene response varied based on treatment, including whether one 
drug was given or both. The most successful predictors of response seem to track with 
the biological basis of the treatment. The presence or absence of the target for the drug 
is detectable in the gene expression signature and is most predictive of the outcome. As 
more designer drugs come into the clinic the need for transcriptome analysis and 
classification will become more critical (Rhodes and Chinnaiyan,  2005) . 

 Many laboratories are also using microarray data to identify genes that may influence 
tumor progression, metastatic potential, and survival outcomes (Agrawal et al.,  2003 ; 
Henshall et al.,  2003 ; Ramaswamy et al.,  2003 ; Sanchez-Carbayo et al.,  2003 ; van 
‘T Veer et al.,  2002 ; van de Vijver et al.,  2002 ; Vasselli et al.,  2003) . van de Vijver et al. 
 (2002)  used a 70 gene classifier to evaluate 295 patients with stage I or stage II breast 
cancer. The classifier identified 180 patients with a poor-prognosis signature and 115 
with a good prognosis signature. The 10-year survival was 54% in the poor-prognosis 
group and 94% in the good prognosis group. The 10-year probability of remaining distant-
disease free was 50% in the poor-prognosis group and 85% in the good prognosis group. 
Thus, there is hope for the prediction of clinical responses based on gene expression 
patterns in tumors. In a different tumor type, Dave et al.  (2004)  examined specimens 
from patients with follicular lymphoma. Using a gene classifier, they could group 
patients into four survival groups with different mean survival times. The classification 
genes appear to be expressed by nonmalignant immune cells infiltrating the tumor once 
again demonstrating that there may be a biological basis for the differential response.  

  7 SUMMARY  

 Over the past century, the approach to human disease has changed dramatically. 
What was known to early geneticists of the twentieth century was that living beings 
inherited and expressed unique phenotypes. The disease known as cancer was under-
stood to be a unique phenotype of uncontrolled cellular proliferation. Once scientists 
discovered that DNA was the origin of phenotypic expressions, research shifted towards 
understanding the role of gene expression and mutations in the development of cancer. 



Chapter 3 / Whole-Genome Analysis of Cancer 41

With the completion of the human genome project, the focus has again shifted. There 
has been an expansion of the search for factors related to the development and viability 
of cancer cells. A higher resolution view of the genome is now considered and a larger 
view of the transcriptome or proteome of the cancer cell is evaluated for clinical deci-
sions. In the near future it is likely that the scientific approach to cancer will involve an 
examination of a tumor’s entire genome, transcriptome, and proteome to suggest treat-
ment and predict outcomes. 

 Individualized medicine is the next realm for cancer diagnosis and treatment. 
Millions of bits of data will be captured for each individual case of cancer. This data 
will come from high throughput and/or high output techniques such as microarray tech-
nology and proteomics. To capture, store, process, and analyze this data computers are 
required. The most important new player in the fight against cancer is the computer 
scientist. Bioinformatics specialists have joined clinical investigations to process and 
analyze data from the emerging high-throughput technologies. It is their expertise that 
will generate the software necessary to synthesize the massive amount of data into a 
concrete treatment plan for each patient. 

 The use of high-throughput technologies in the study of cancer has just begun. The 
most promising conclusion from the first wave of results is that the technology is likely 
to work. Standardization, such as in the methods of tissue collection or RNA processing, 
is improving the reproducibility of experimental findings. There is also promise in the 
attempts to predict response on the basis of gene expression profiling. When a biological 
basis exists for the treatment mechanism, this biological signal is visible in the gene 
expression profile. The histological subtypes identified by pathologists are also discern-
able by gene expression profiling. Thus biological differences are resolved by an 
informatics analysis of a tumor. But informatics is also revealing that the issues affecting 
cancer are enormous. It is already known that cancer is a wide spectrum of diseases. 
Functional genomics is going to expand the subtypes of cancer even further. This diver-
sity might currently explain the variation seen in response to treatment and the risk of 
recurrence. The variation might also mean that individual tumors get individual treat-
ment in the future. Although most claims still require more follow-up work to verify 
genetic signatures, it is clear that the scientific community has embraced the promise of 
high-throughput sequencing, microarray technology, and other large-scale techniques 
for investigating many questions related to cancer.      
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  ABSTRACT 

 The development of genetically engineered mouse (GEM) models of human disease 
have played an integral role in understanding the mechanisms of action of many classes of 
genes involved in cancer development and progression. Their development has been critical 
in exploring the complexity of interactions of biological processes occurring in the entire 
organism, particularly when combined with recent global genomic approaches and bioinfor-
matics. It has become apparent that breast cancer is a heterogeneous disease and multiple 
GEM models must be incorporated to represent the various forms of the human disease. 
Undoubtedly, these models and methods will be invaluable in the establishment of biomarkers 
and novel therapeutic approaches for patients with various subtypes of breast cancer.  

  Key Words:    Mammary cancer ,  Genetically engineered mouse models ,  Gene expres-
sion profiling ,  Bioinformatics     

  1 RELEVANCE OF ANIMAL MODELS  

 The development of in vivo models of human cancer has been critical to understand-
ing the mechanisms of human disease. Although studies using tissue culture systems in 
vitro are extremely useful for the dissection of molecular pathways at the cellular level, 
in vitro systems do not integrate the complexity of interactions occurring within the 
entire organism, as occurs in vivo in mouse models. Local and distant interactions 
between multiple cell types can be evaluated in the intact organism (Hennighausen, 
 2000 ; Kavanaugh and Green,  2003 ; Barkan,  2004) . Genetically-engineered mouse 
(GEM) models have provided tremendous insights into the mechanisms of action of 
many classes of genes involved in cancer development and progression, including onco-
genes, tumor suppressor genes, cell cycle regulatory genes, and growth factors 
(Kavanaugh et al.,  2002 ; Barkan,  2004) . 
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 The use of animal models in medical research can help overcome several difficulties 
inherent in human studies. The tremendous variation in genetic backgrounds within the 
human population often limits the interpretation of human studies or requires that very 
large numbers of patient samples be evaluated. Since GEM models are developed in 
well-defined genetic backgrounds, differences in genetic heterogeneity can be greatly 
reduced. Alternatively, crossing mice with a particular phenotype into alternative back-
ground strains where the phenotype is changed, is a powerful genetic approach for 
identifying genes that modify biological behaviors (Balmain and Nagase,  1998 ; Hunter 
et al.,  2003 ; Kavanaugh and Green,  2003) . In addition, many genetically engineered 
mice develop tumors after a predictable time period, and therefore the stage-specific 
alterations in oncogenic pathways, as well as responses to therapeutic agents, can be 
assessed and potentially translated into corresponding stages of human cancer progression. 
Such stage-specific studies are generally impossible to perform in human patients, since 
tumors are generally diagnosed at later stages and multiple sampling is not clinically 
justified (Kavanaugh and Green,  2003 ; Barkan,  2004) . In this way, GEM models have 
been important in defining molecular signaling pathways associated with cancer promo-
tion and progression, making GEM models important for use in assessing stage-specific 
responses in preclinical testing and prevention studies. 

 The introduction of specific genetic alterations in mice has led to scores of mouse 
tumor models. Many genes associated with breast cancer in humans can lead to 
mammary tumor formation when dysregulated in mice (Cardiff and Wellings,  1999 ; 
Cardiff,  2001 ,  2003 ; Barkan,  2004) , and importantly, some of these tumors share mor-
phological characteristics that are similar to lesions that occur in humans (Cardiff and 
Wellings,  1999 ; Cardiff,  2001 ,  2003) . Although the use of transgenic mouse models is 
a powerful tool to study similar processes that occur in human cancer, there are still 
many limitations to these models. Truly representative disease models should reflect 
both the genotypic and phenotypic changes present in the human disease. Unfortunately, 
this is not often the case. Animal models of human cancer need to be evaluated based 
upon their similarity with the correlate human disease, and criteria for validation of 
these models need to be based on several comparative components (Fig.  1).   

  Fig. 1.    Criteria for model validation. Relevant models of cancer should recapitulate important aspects 
of the human disease       
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 The advent of new genomic technologies, such as global gene expression profiling 
and comparative genomic hybridization, provides an important means to compare the 
similarities and differences in gene expression and cancer evolution between mouse 
models and the human diseases that they are designed to represent. However, the extent 
to which these GEM models recapitulate the molecular pathways involved in human 
cancers on a global scale is only beginning to be assessed (Ried et al.,  1995 ; Lee et al., 
 2005 ; Sweet-Cordero et al.,  2005) .  

  2 DESIGNING MICE IN OUR OWN MOLECULAR IMAGE  

 A variety of GEM models have been produced to recapitulate specific mutations that 
occur in the progression of human cancer. Importantly, GEM models have been engi-
neered to mimic the human disease through (1) overexpression or activation of genes 
associated with human cancer development (oncogenes), (2) elimination of target (sup-
pressor) genes through gene knock-out strategies, (3) generation of dominant negative 
proteins to disrupt the function of genes (Hutchinson and Muller,  2000 ; Kavanaugh and 
Green,  2003) , and (4) combinations of the above. Many transgenic mouse models have 
been developed by targeting the misexpression of proto-oncogenes, growth factors, sur-
vival and regulatory pathways, and transcription factors (Table  1  ), although other 
mechanistic targets have also been used. In addition to transgenic animals that carry 
single genetic alterations, GEM models have been generated that carry compound 
genetic alterations to examine the interactions between multiple oncogenic pathways. 
The use of knock-out and knock-in strategies and conditional tissue-specific gene tar-
geting has led to the creation of models that are more representative of the human dis-
ease and has further defined the biological functions of hundreds of genes (Hutchinson 
and Muller,  2000 ; Green and Hudson,  2005) .     

 Gene knock-out strategies are used to mutate or eliminate a gene in the germline or 
in targeted somatic cells in order to evaluate the functional role of that gene, which often 
serves as a tumor suppressor in cancer promotion or progression (Hutchinson and 
Muller,  2000) . Simple targeted knock-out models result in germline mutations that often 
result in embryonic lethality (Hutchinson and Muller,  2000 ; Green and Hudson,  2005) . 
To overcome the problem of embryonic lethality and study gene function in a particular 

 Table 1 
  Examples of molecular pathways successfully targeted to generate transgenic 

mouse models of mammary cancer  

   Proto-oncogenes     c-myc, c-neu, c-ha-ras  

  Growth factors     FGF, TGFα, HGF  
  Growth factor receptors     ErbB2 (her2neu), RET-1, ERα  
  Signaling kinases/phosphatases     Ras, PTEN, Akt  
  Cell cycle mediators/DNA repair     p53, Cyclin D1, BRCA  
  Differentiation factors     Notch, Wnt, P-Cadherin   
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tissue, tissue-specific and temporally regulated conditionally induced mutations can be 
employed using  cre —loxP technology, allowing genetic alterations to be introduced in 
specific tissues at particular developmental stages in the animal (Sauer,  1998 ; Hutchinson 
and Muller,  2000 ; Grisendi and Pandolfi,  2004) . 

 In the  cre —loxP system, the germline can be altered to include a pair of specific 
nucleotide sequences (loxP) that flank an engineered internal sequence; the loxP sites 
recombine in the presence of  cre  recombinase, thus excising the intervening internal 
sequence (Sauer,  1998 ; Hutchinson and Muller,  2000) . To turn certain genes or mutations 
on or off in a tissue-specific and temporally controlled manner, variations of this system 
have been developed (Sauer,  1998 ; Gunther et al.,  2002) . In addition, constitutive tissue-
specific gene-targeted models allow targeted deletion or constitutive overexpression of 
a gene in a particular tissue of interest, more reflective of the human disease. 

 Other conditional and targeted alterations in gene expression are designed to induce 
silence or overexpress a target gene in the presence of tetracycline or doxycycline 
(Gossen et al.,  1995 ; Gunther et al.,  2002) . This method provides another powerful way 
of creating mouse models with genetic alterations that can be regulated at specific 
developmental time points or in the context of additional genetic alterations. The recent 
advent of advanced transgenic techniques using bacterial artificial chromosome (BAC) 
recombineering allows for the rapid introduction of targeted mutations into BAC clones 
(bacterial vectors that contain up to 200 kb of genomic DNA) (Copeland et al.,  2001 ; 
Abe et al.,  2004) . New generations of mouse models using this technology will offer 
additional advantages in modeling human cancer in mice, particularly related to mim-
icking endogenous regulation of a genetic locus.  

  3 MODEL VALIDATION  

 Advanced genomic technologies have made possible the creation of mouse models 
that represent human diseases better. The relevance of an animal model for studying 
human disease needs to be based upon biologic validation, histopathologic validation, 
and molecular validation (Fig.  1 ). 

  3.1 Biologic Validation 
 Biologic validation of an animal model is based on how well the pathophysiology of 

the disease process in the mouse mimics that of the human condition. The natural 
history of the disease, including time course of progression, hormone responsiveness, 
metastatic rate, sites of metastasis, and so on, provides an important gauge to compare 
the biologic behavior of an animal model with that of the human disease. For instance, 
overexpression of ErbB2 has been reported in 25–30% of human breast cancers, and is 
associated with a high rate of metastasis. Similarly, in mouse models overexpressing 
her2neu in the mammary epithelium, solid mammary tumors develop that metastasize 
to the lungs (Jolicoeur et al.,  1998 ; Jager et al.,  2005) . As another example, deletion of 
exon 11 of BRCA1 in the mouse results in a clinical progression similar to the human 
disease, where mammary tumors form after a long latency (Xu et al.,  1999 ; Weaver 
et al.,  2002) . However, often there is relatively little information reported about the 
natural course of disease progression in GEM models (Cardiff et al.,  2000) . 
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 Another means of assessing biologic validation is through the use of biomarkers 
(Cardiff,  2001) . Similarities in immunohistochemical staining of comparable biomark-
ers in the mouse mammary gland and the respective human gland should be used to 
provide additional information on the appropriateness of the model for use in compara-
tive research (Cardiff et al.,  2000 ; Cardiff,  2001) . Markers also potentially provide 
important insights into the cellular origins of tumors. 

 However, there are several important biological differences between the species that 
must be considered when using GEM models. For example, while more than half of 
human breast cancer is estrogen receptor (ER) positive, few GEM models develop ER 
positive tumors (Nandi et al.,  1995 ; Cardiff et al.,  2000 ; Cardiff,  2001) . Recently, how-
ever, a model has been generated in which the p53 gene has been deleted, where tumors 
that develop are both ER positive and ER negative, recapitulating a critical aspect of 
human breast cancer biology (Medina et al.,  2001 ; Lin et al.,  2004) . Additionally, 
promoters used to target transgenic expression in mice are not likely to induce levels of 
expression that occur in human cancers. For example, the WAP promoter and MMTV-
LTR are hormonally regulated promoters, which may confound studies of oncogenesis 
in the hormone-responsive mammary gland (Hutchinson and Muller,  2000 ; Cardiff, 
 2001) . Pregnancy enhances tumorigenesis in mice carrying transgenes using these 
promoters, whereas early pregnancy has a protective effect against breast cancer in 
women (Cardiff,  2001 ; Medina et al.,  2001) . 

 Metastatic breast cancer in mouse models is significantly different than what is 
observed in human patients. Although tumors from some GEM models metastasize to 
the lung, breast cancer in humans most often metastasizes to regional lymph nodes, and 
also commonly to the liver, lung, and bone (Cardiff and Wellings,  1999 ; Cardiff et al., 
 2000 ; Cardiff,  2001 ,  2003 ; Green et al.,  2004) . In the mouse, spread to regional lymph 
nodes is infrequent, and no mammary cancer models have yet been developed which 
demonstrate spontaneous metastatic mammary tumor spread to the bone (Cardiff and 
Wellings,  1999 ; Cardiff et al.,  2000 ; Cardiff,  2001 ,  2003 ; Green et al.,  2004) .  

  3.2 Histopathologic Validation 
 The histopathologic characterization of certain types of cancer in GEM models has 

been well characterized and defined. For example, in GEM models of breast cancer, 
the current classification scheme employs a descriptive nomenclature incorporating a 
series of morphologic descriptors modified by biological potential, topographical dis-
tribution, histologic pattern, cytologic grade, inducers (etiology), and clinical contexts, 
when known (Cardiff et al.,  2000) . Similar histopathologic classification schemes have 
been applied for characterization of GEM tumors at various other organ sites as well 
(Weiss et al.,  2002 ; Nikitin et al.,  2004 ; Shappell et al.,  2004) . However, similar to the 
gene expression analysis and results of hierarchical clustering of mouse models in the 
study by Desai et al.  (2002b) , many transgenic mouse mammary tumors can been 
classified based on “signature tumor patterns.” Signature tumor patterns are seen in 
association with transgenes for erbB, myc, ras, and ret-1, and can be differentiated 
from one another based on the particular histologic pattern and cytologic appearance 
(Cardiff et al.,  2000) . Similarly, some signature tumor phenotypes have been seen in 
human breast cancer, such as comedo ductal carcinoma in situ (DCIS), which possesses 
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unique cellular atypia and central necrosis (Barnes et al.,  1993 ; Cardiff et al.,  2000) , 
and also morphologic features that distinguish between BRCA1 and BRCA2 tumors 
(Lakhani et al.,  1998 ; Cardiff et al.,  2000) . Importantly, the unique morphology of 
these tumors indicates that the biological phenotype can be correlated with a particular 
gene expression pattern (Cardiff and Wellings,  1999 ; Cardiff et al.,  2000) . Information 
on classification of mouse mammary tumors and signature tumors in transgenic mouse 
models of breast cancer is available at   http://mammary.nih.gov/atlas/histology/jax-
workshop/index.html    .  

  3.3 Molecular Validation 
 Genomic technologies applied to mouse models of human cancer provide important 

information regarding the cancer transcriptome. This furthers our understanding of 
cancer pathogenesis, oncogene-specific expression signatures, potential molecular tar-
gets for therapies, and reveals valuable information in helping to select appropriate 
mouse models for specific experimental purposes (Kavanaugh et al.,  2002 ; Kavanaugh 
and Green,  2003 ; Green et al.,  2004 ; Ye et al.,  2004) . Gene expression profiling is a 
powerful tool that has advanced the classification and understanding of the molecular 
basis of cancer, and has identified new diagnostic categories not previously available 
through standard histopathologic methods of grading tumors (Perou et al.,  1999 ; Luzzi 
et al.,  2001 ; Liu,  2003 ; Seth et al.,  2003 ; Sorlie et al.,  2003 ; Cleator and Ashworth, 
 2004) . Morphologically similar tumors can be molecularly subtyped, and correlations 
between the natural progression of the disease and the molecular subtype or response to 
therapy can be made (Perou et al.,  1999 ; Sorlie et al.,  2003) . Microarray technology 
utilizing expression profiling will more completely define mouse models based on their 
molecular pathways, providing a more complete picture for comparison to the human 
disease (Fargiano et al.,  2003 ; Ye et al.,  2004) . By comparing gene expression between 
transgenic models through array data analysis, researchers can evaluate each model in 
terms of its genetic relationship to the human disease and determine which model is 
most appropriate for study based on their molecular profile (Kavanaugh et al.,  2002 ; 
Kavanaugh and Green,  2003) . 

 Initial studies from our laboratory revealed that although tumors resulting from 
transgenic manipulation share many molecular characteristics (including induction of 
cell cycle regulators, glycolytic pathways, metabolic regulators, zinc finger proteins 
and protein tyrosine phophatases), distinct patterns of gene expression can be identi-
fied based upon the initiating oncogene. This provides a “signature” gene expression 
pattern that discriminates each model based upon the initiating oncogenic event (Desai 
et al.,  2002b ; Kavanaugh et al.,  2002 ; Kavanaugh and Green,  2003) . For example, 
common and oncogene-specific events associated with mammary carcinogenesis have 
been identified in c-myc, c-neu, c-ha-ras, PyMT, and SV40 transgenic mouse models 
(Desai et al.,  2002b) , and more recently in p53 and BRCA1 knock-out models (A.M. 
Michalowski et al., unpublished data). Models can be separated into several distinct 
groups based on oncogene-specific differential gene expression. All MMTV-myc 
tumors clustered into one group, while all C3(1)-Tag and WAP-Tag tumors clustered 
into a second, and the MMTV-neu, MMTV-ras, and MMTV-PyMT clustered into a 
third (Desai et al.,  2002b) . 
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 Comparative gene expression profiling of oncogene-derived tumors will broaden the 
understanding of oncogene-specific pathways, a study difficult to perform in the human 
disease owing to the potential multiplicity of genetic changes associated with human 
breast cancer (Desai et al.,  2002b) . This data is available at   http://gedp.nci.nih.gov/dc/
index.jsp.     For human patients, some studies have used similar strategies comparing 
multiple gene expression patterns rather than a single gene expression pattern to add 
power in defining characteristics of an individual disease, and predicting clinical out-
comes, in order to resolve biological heterogeneity (Nevins et al.,  2003) . By combining 
multiple gene microarray expression patterns and clinical risk factors, work on these 
strategies can characterize the individual patient profile, leading to the ultimate goal of 
personalized medicine (Nevins et al.,  2003) .   

  4 STATISTICAL CONSIDERATIONS FOR ARRAY DATA ANALYSES  

 Strategies for high-level analysis for genomic data can be broadly categorized into 
unsupervised and supervised approaches (Fig.  2  ). Unsupervised methods are intended 
for the discovery of hidden taxonomies (class discovery) and require only the gene 
expression measurements obtained from the experimental data. A number of statistical 
and computational techniques exist for discovering group patterns in microarray data, 
which are very useful exploratory and visualization methods for identifying molecular 
subtypes of tumors and groups of similarly regulated genes associated with a particular 
state of the transcriptome. In contrast to unsupervised gene expression analyses, 

  Fig. 2.    Major types of statistical approaches used to analyze microarray data       
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supervised methods require a priori information that characterizes a particular class 
from which the expression profiles are derived (such as the designation “normal” or 
“tumor” for the tissue sample, or a particular gene ontology for supervising an analysis 
based upon gene function). Supervised approaches can be utilized to uncover differen-
tial gene expression among prespecified classes of interest (class comparison) or used 
to generate a mathematical model to predict the characteristic of interest in a future 
specimen based solely on its gene expression profile (class prediction).  

 The unsupervised learning approach has been used to obtain a simplifying abstraction 
of high-dimensional microarray data. Various clustering techniques are the most com-
monly applied for this purpose. The analytical goal of clustering is to find homogeneous 
groups of samples or genes that share common expression patterns within the same 
cluster that are more similar to one another than to those contained in different clusters. 
The clustering process involves feature selection and/or transformation for the appropri-
ate pattern representation, considering proximity measure and an algorithm to group the 
samples or genes. Selection of the subset of array features for unsupervised learning is 
supposed to filter out genes that are not meaningful to the clustering, but allow for 
“natural” grouping in the data to emerge. The selection improves the classification 
performance by reducing uninformative noise and dimensionality in the data, but does 
not define any ad hoc classification. This is usually done by excluding those genes whose 
normalized expression is flat across the clustered samples. However, specific computa-
tional algorithms that identify noisy or redundant features in an unsupervised classification 
context have also been developed for this purpose (Roth and Lange,  2004) . 

 Generally, gene expression is median or mean centered across the arrays prior to 
clustering to remove dominant effects from the most highly expressed genes on the 
proximity metric and the clustering result. In a dual channel setting, gene centering 
additionally eliminates the dependence of the ratios on the amount of expression of a 
gene in the reference sample. A concept of distance (or similarity as its inverse) is fun-
damental to clustering and is usually measured by pairwise distances between objects 
in the data. The Euclidean distance or one minus the Pearson correlation is the proxim-
ity metrics usually used for clustering microarray data. As the Euclidean distance meas-
ures the absolute distance, a stringent proximity of two profiles is required for them to 
cluster together. However, with a correlation-based metric, two profiles can be grouped 
together as long as their expression profiles can be approximated by a linear function 
(scalar multiple and shift) even though the absolute distance between the expression 
profiles remains large. The main division of grouping algorithms for producing clusters 
distinguishes partitional clustering resulting in a single partition of the profiles ( K -
means clustering, self-organizing maps) and hierarchical clustering resulting in a set of 
nested partitions (agglomerative or divisive). Further descriptions of the many cluster-
ing methods available are beyond the scope of this chapter and can be found elsewhere 
(Jain,  1999 ; McShane et al.,  2003 ; Simon,  2003) . 

 An example of a class discovery approach to the study of mammary cancer is illus-
trated by the results depicted in the agglomerative hierarchical clustering analysis in 
Fig.  3 a, b. Hierarchical clustering can be presented graphically as a tree structure 
referred to as a dendrogram. Building the dendrogram using hierarchical clustering 
requires, in addition to the proximity distance specified for pairs of profiles, a linkage 
method to find the distance between merging clusters. Single linkage defines the distance 



  Fig. 3.    Example of class discovery approach for microarray data analysis. Dendrogram ( a ) representing 
agglomerative hierarchical cluster analysis (HCA) ( b ) and multidimensional scaling (MDS) ( c ) of 
median centered normalized log 2 expression ratios for 1,073 genes selected by univariate  F  test ( p  > 
0.001) for mammary tumor RNA samples from 38 mice representative of eight different mouse models 
of breast cancer. The Pearson correlation distance metric was used for the HCA and MDS. Average 
linkage was used to construct the dendrogram: ( a ) sample clustering; ( b ) heatmap representation of the 
two-way HCA,  rows  representing genes,  columns  representing tumors;  red/green  indicates overex-
pressed/downexpressed genes in mammary tumor compared to the normal mouse mammary RNA; and 
( c ) MDS display for the same samples. BRB-array tools: http://linus.nci.nih.gor/pilot/index.html       
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between any two clusters as the minimum distance between them; complete linkage is 
the opposite of single linkage in that it defines the distance between any two clusters as 
the maximum distance between them. Average linkage uses the mean distance between 
all possible pairs of members of the two clusters to be merged. The agglomerative algo-
rithm starts with placing each object in its own single cluster and proceeds by merging 
objects or groups of objects in the order of greatest similarity until all objects and clusters 
are merged into a single cluster. Figure  3 a, b depicts the results from hierarchical 
clustering analysis, which identifies distinctions between mammary models attributable 
to oncogene-specific patterns of gene expression.  

 Another method often used to uncover relationships in microarray data is multidi-
mensional scaling (MDS). MDS represents a set of mathematical techniques used to 
visualize graphically the structure of multivariate data projected into low-dimensional 
space. MDS is a method of reducing the dimensionality of data while preserving 
pairwise distances from the original proximity metric between objects. Principal com-
ponents (weighted linear combinations of the original variables that capture maximum 
variance and are independent of each other) may be used to determine the distances 
between the points in the three-dimensional display. Figure  3 c presents an MDS plot for 
the same data used to generate the hierarchical clusters/dendrogram in Fig.  3 a, b. The 
MD representation further confirms the data structure obtained with the sample hierar-
chical dendrogram. 

 GEM models are especially apt for microarray data studies, which aim to uncover 
genes differentially expressed among the experimental groups (class comparison). 
Commonly, univariate parametric or nonparametric statistical tests are performed with 
an account for multiple null hypotheses being tested at a time. As one example Student 
 t  tests or Wilcoxon tests might be used to identify genes differentially expressed 
between the tumor and normal mammary tissue in a transgenic mouse model. The indi-
vidual  p  value measures the probability that the observed difference in gene expression 
arises by chance only and was designed to control for false positive rate of a test (say  
a  = 0.05). When testing multiple hypotheses there is always the possibility that some of 
the tests have appeared significant just by chance. If in our example a univariate  t  statis-
tic was applied separately to  N  = 20,000 genes with  a  = 0.05 (the number of array 
probes often available), 1,000 genes would be expected to be declared differentially 
expressed even if no true differences existed between the mammary tumor and normal 
tissue ( a  N  false positives). Various procedures have been in use to adjust the  p  values 
or to otherwise correct for multiple testing issues to avoid an abundance of spurious find-
ings. Some of them guard against any false positives, like the Bonferroni correction 
(usually too conservative for microarray data) or the multivariate permutation adjust-
ment (Callow et al.,). Most often the expected number or proportion of false discoveries 
among the declared positives is controlled, like in the SAM procedure (Tusher et al., 
 2001) . Multivariate permutation approaches exist that allow for a chosen number or 
proportion of false discoveries to be controlled with high confidence, e.g., to have 95% 
confidence that among the genes identified as significant there is no more than 10% of 
false positives (Korn,  2004) . 

 Microarray technology generates massive amounts of data in terms of the number 
of variables, but with a relatively very small sample size of biological replicates. The 
consequence of this is often low statistical power for detecting genes differentially 
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expressed and high false discovery rates. The standard power calculation for the required 
sample size of an experiment takes into account the desired detectable change in expres-
sion, magnitude of population variability, the chosen power to detect the expression 
change and an acceptable error rate (significance level). Due to genetic background the 
variability in gene expression is typically much lower in animal models and cell lines 
compared to that for human subjects where genetic diversity is quite high. Additionally, 
the variance component alternates across genes and in general low expressers are the 
most variable. Wei et al.  (2004)   showed that the number of subjects needed to gain the 
same power as with inbred animals is much smaller compared to groups of unrelated 
human individuals. Here we present an example of the variability in a few mouse and 
human microarray datasets, each profiling two groups of primary mammary tumors (see 
Table  2  for the data sets description). Figure  4  depicts the cumulative distribution of 
common standard deviation estimated from the analyzed data sets showing the shift 
of variability between the mouse and human profiles. In Table  2 , we present the estimated 
power and sample size required for the mouse and human data to detect differential 
expression in microarray studies for 25, 50, and 75% of the least variable genes with the 
two-sample  t  test. A sample size of only five independent biological replicates per group 
from the mouse ensures very high power (97—98%) to detect twofold differences with 
a 0.001 false positive rate for 50% of the least variable genes, while using five human 

 Table 2 
  Power and sample size calculations to detect twofold change in expression with a given 

false positive rate ( a  = 0.001) for 25, 50, and 75% least variable genes in the mouse 
and human microarray datasets  

 Data set  A  B  C  D 

 Percentile  25th  50th  75th  25th  50th  75th  25th  50th  75th  25th  50th  75th 
  Standard 
deviation  (s) 

 0.12  0.19  0.33  0.14  0.20  0.32  0.27  0.34  0.46  0.22  0.29  0.42 

 Sample size ( n =5)  
  Power  (1 –  b ) 

 0.99  0.98  0.48  0.99  0.97  0.52  0.73  0.45  0.18  0.92  0.65  0.24 

 Power (1 –  b  = 0.95)

 Sample size  ( n ) 

 3  5  9  4  5  8  7  9  14  6  7  12 

 The power and sample calculations were performed using R version 2.1 for two-sample two-tailed  t  test 
and equal number of subjects per group. The expression data were obtained with Affymetrix oligonucle-
otide arrays and in the preprocessing the robust multiarray average (RMA) method (Irizarry et al.,  2003)  
and quantile normalization were applied to each data set to produce normalized log base 2 gene summary 
measures 

  Data set A : mouse model: p53 -  /  - ;transplant (Jerry et al.,  2000) ; classes: metastatic ( n  = 14) and nonmeta-
static ( n  = 10) primary mammary tumors; Affymetrix chip: U74Av2 

  Data set B : mouse model: p53 fp/fp ;WAP cre  (Lin et al.,  2004) ; classes: ERα positive ( n  = 5) and ERα 
negative ( n  = 5) primary mammary tumors; Affymetrix chip: U74Av2 

  Data set C : human data: West et al.  (2001) ; classes: ERα positive ( n  = 25) and ERα negative ( n  = 24) 
primary mammary tumors; Affymetrix chip: HuGeneFL 

  Data set D : human data: Huang et al.  (2003a , b) ; classes: ERα positive ( n  = 73) and ERα negative ( n  = 
14) primary mammary tumors; Affymetrix chip: U95Av2 
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  Fig. 4.    Cumulative distribution of common standard deviation in the mouse and human mammary 
tumor groups. This graph demonstrates the empirical distribution function (cdf) for the common 
standard deviation of log 2 intensity pooled from mammary tumor groups within each of the mouse 
and human datasets. The empirical cdf  F ( x ) is defined as the proportion of  x  values less than or equal 
to  x . The  x -axis is the standard deviation and the  y -axis is the proportion of genes that has the standard 
deviation below the value of  x . The estimated distributions of the standard deviation from the human 
data sets are shifted towards larger values in relation to those from the mouse data sets. For example, 
in the mouse data 75% of the genes have the standard deviation of log 2 intensities no greater than 
0.32–0.33, while in the human data set no greater than 0.42–0.46. Data sets A–D as described in 
Table  2        

samples results in a tremendous loss of statistical power (45 and 65%). Importantly, new 
approaches for calculating the statistical power and sample size for microarray data 
have been developed, which take into account multiple testing and false discovery rates 
(Pawitan et al.,  2005 ; Gadbury,  2004) .        

 Supervised learning with microarray data involves feature selection, class predictor 
design and validation. For building a predictor, usually the subset of differentially 
expressed genes between the classes is selected with the assumption that they are poten-
tially relevant to the class distinction. Sometimes, dimension reduction methods 
(e.g., principal components) are used to identify the predictive genes instead of a 
univariate statistic (Khan et al.,  2001 ; West et al.,  2001)  The next step is to identify an 
algorithm that will correctly associate a gene expression profile with the prespecified 
class label based on a set of samples used for training. Numerous algorithms for 
classifier training have been developed for microarray data (Simon,  2003) , including 
the Fisher linear discriminant analysis, weighted method, compound covariate predictor, 
nearest neighbor classification, support vector machine and neural networks. These 
methods for multivariate classifier discovery were available before the advent of 
microarray technology and designed to model a situation where the number of samples 
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substantially exceeds the number of variables in the classifier. As a consequence, 
genomic classifiers are very prone to biased overestimation of their predictive accuracy 
— they can easily predict class membership extremely well in the training dataset, but 
perform poorly when applied to independent data. To properly estimate the accuracy of 
a predictor for future samples, split-set validation or crossvalidation are most often used 
to separate the process of classifier building and validation of its performance (Simon, 
 2003 ,  2004) . 

 Class prediction methods are widely used in biomedical and clinical studies involving 
human microarray data, where development of prognostic and diagnostic genomic 
classifiers are of great interest. The use of supervised classification of gene expression 
profiles in mouse models is less frequent, yet has been used in cross-species compari-
sons as a tool for validation of the cancer models and the identification of expression 
signatures conserved across species and deregulated in cancer (Lee et al.,  2005 ; Sweet-
Cordero et al.,  2005) . The use of class prediction to forecast the response to drug 
treatment in mouse models is likely to be of increasing importance in the future (Huang 
et al.,  2003b ; Bild et al.,  2006) .  

  5 COMPARING MOUSE AND HUMAN EXPRESSION DATA 
AND NETWORK ANALYSIS  

 In order to accurately compare mouse models of human cancer with the human 
disease they are intended to represent, genomic data from each species has to be 
appropriately translated. This remains an important, but largely unexplored aspect of 
determining whether the molecular changes observed in mouse models actually reflect 
the disease process in humans. Generating mouse models based solely on a genetic 
mutation found in human cancer will not necessarily produce a similar outcome in the 
model. Likewise, although certain mouse models reproduce similar morphological 
disease, it is not clear whether these models fully recapitulate the molecular pathways 
that are altered in human cancer (Callahan and Smith,  2000 ; Lee et al.,  2005 ; Sweet-
Cordero et al.,  2005) . 

 It has been hypothesized that gene expression signatures representing similar 
phenotypes could be conserved in evolutionarily related species (Lee et al.,  2005 ; 
Sweet-Cordero et al.,  2005) . By aligning orthologous genomic sequences from different 
species, evolutionarily conserved sequences have been identified that may represent 
functional regulatory elements (Eddy,  2002 ; Cooper,  2003 ; Ureta-Vidal et al.,  2003 ; Lee 
et al.,  2005) . Similarly, expression profiling can help identify conserved molecular path-
ways operating in the transcriptome during development of cancer in mice and human 
(Lee et al.,  2005) . Interspecies comparison of global gene expression such as this is 
extremely valuable in identifying expression signatures that may be obscured by direct 
analysis of either a human or a mouse tumor data set alone (Sweet-Cordero et al.,  2005) . 
Additionally, such analyses are a fundamental aspect of model validation (Lee et al., 
 2005 ; Sweet-Cordero et al.,  2005) . 

 Following similar principles in which human breast tumors may be subclassified 
based on gene expression patterns into groups corresponding to biologic behavior and 
prognosis (van de Vijver et al.,  2002 ; Sorlie et al.,  2003) , mouse models of mammary 
cancer can be categorized with subgroups of human breast cancer based on gene expres-
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sion data (A.M. Michalowski et al., unpublished data; Herschkowitz et al.,  2007) . 
Patterns of gene expression generated from cDNA microarrays have been found to be 
associated with ER status and tumor grade in humans (Sotiriou et al.,  2003) . For 
example, a group of genes differentially expressed in ER positive and negative tumors 
has the ability to discriminate tumors based on ER status (Gruvberger et al.,  2001 ; 
Sotiriou et al.,  2003) . Similarly, mouse tumors can be clustered with human ER breast 
cancer subgroups; the basal human/mouse ER negative group, luminal type A human/
mouse ER positive group, and luminal type B human ER positive/mouse ER negative 
group (A.M. Michalowski et al., unpublished data). Based on luminal and basal pheno-
type markers, ER+ WAP-cre;p53fp/fp tumors fall into a subgroup representing ER+ 
human luminal type A class of tumors, ER negative mouse tumors with dysfunctional 
p53 cluster in the basal group, and MMTV-oncogene driven tumors cluster with the 
human luminal type B phenotype. This method of classification allows a more accurate 
means of comparing mouse models with subgroups of human breast cancer. This is a 
powerful tool to identify conserved molecular mechanisms of oncogenesis, potential 
therapeutic agents, and useful prognostic profiles (Lee et al.,  2005 ; Sweet-Cordero 
et al.,  2005 ; Herschkowitz et al.,  2007) . 

 Interspecies comparative gene expression analysis is also valuable when using the 
mouse gene expression data sets to identify biologically important gene networks in 
human tumor samples. For example, common expression patterns can be found between 
mouse and human data sets based upon estrogen receptor expression status using a 
supervised analytic approach. The integration of human breast cancer sample data sets 
with that of mouse tumors from a genetically defined background resulted in the identi-
fication of a gene set that distinguishes ER positive from ER negative tumors in humans 
(A.M. Michalowski et al., unpublished data). Interestingly, due to the genetic homoge-
neity of the mouse background, the predictor for ER status generated by combining the 
mouse and human expression data had a 95% accuracy rate of human tumor classifica-
tion and was significantly more robust than the predictors generated from only the 
mouse (55% accuracy) or human (85% accuracy) data, strongly suggesting functionally 
conserved expression pathways related to ER status between the two species. This 
unique cross-species classifier of ER status was 100% accurate for classifying the 
mouse tumors. 

 In addition, the mouse/human classifier generates significantly more robust genetic 
network interactions than does the human classifier. These results demonstrate that 
mouse models of human breast cancer can be classified with subtypes of human breast 
cancer, and that a specific group of genes that distinguishes ER positive and negative 
tumors is conserved between mice and humans. The fact that the mouse/human classifier 
worked best demonstrates the added value of using mouse data from a relevant mouse 
model to help define certain biologic properties.  

  6 USING MOUSE MODELS TO STUDY CANCER EVOLUTION  

 Changes seen in gene expression through tumor progression such as from early 
preinvasive lesions such as ductular carcinoma in situ (DCIS) and atypical ductular 
hyperplasia (ADH) to invasive carcinoma and metastatic disease, have been studied 
with DNA microarray technology in an attempt to characterize the changes that occur 
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throughout the initiation and progression of the disease (Porter et al.,  2001 ; Ye et al., 
 2004) . In this way, researchers can identify important genes and pathways of oncogenesis 
that may result in development of advanced diagnostic and treatment methodologies. 

  6.1 Preinvasive Lesions vs. Primary Breast Cancer 
 Patterns of coexpressed clusters of genes have been identified in breast cancer cell 

lines and tumors that relate to specific features, such as histologic subtype and biological 
behavior (Perou et al.,  1999) . Historically, DCIS lesions have been characterized by 
histopathology, and epidemiologic data is used to estimate prognosis (Aubele et al., 
 2002) . However, gene expression analysis of DCIS lesions identifies differences in gene 
expression compared to normal mammary epithelium, as well as invasive ductal carci-
noma (Aubele et al.,  2002 ; Ma et al.,  2003 ; Seth et al.,  2003) . For example, overexpression 
of the c-erbB2 oncogene has been found in DCIS, but not in ductal hyperplasia or ADH 
(Aubele et al.,  2002) . Interferon inducible genes have also been found to be overex-
pressed in DCIS compared to other stages of development (Seth et al.,  2003) . However, 
although differences in gene expression have been reported for DCIS in comparison to 
other lesions, there do not appear to be genes or gene profiles specific for DCIS (Porter 
et al.,  2001) . 

 Using laser capture microdissection (LCM), T7-based RNA amplification, and 
cDNA microarrays, the gene expression profiles of premalignant (ADH), preinvasive 
(DCIS), and invasive ductal carcinoma (IDC) have been generated in humans as well as 
mouse models of the disease (Fuller et al.,  2003 ; Ma et al.,  2003 ; Ye et al.,  2004) . 
Remarkably, analysis of microarray data obtained in these studies showed that epithelial-
specific expression profiles of all stages of human breast cancer, including preinvasive 
and invasive stages shared significant similarities, suggesting that a majority of the 
genetic alterations contributing to the initiation and progression of breast cancer 
are inherently present at the early stages of the disease, and persist throughout its pro-
gression (Fuller et al.,  2003 ; Ma et al.,  2003 ; Ye et al.,  2004) . Additionally, compared 
to normal breast epithelium, there are significant gene expression changes present in 
early preinvasive ADH lesions as well as later invasive stages of the disease (Sgroi et al., 
 1999 ; Fuller et al.,  2003) . Although the three distinct stages of breast cancer (ADH, 
DCIS, and IDC) are very similar at the level of their gene expression, different tumor 
grades are correlated with specific transcriptional signatures, and tumor grade is linked 
with the DCIS—IDC stage transition (Ma et al.,  2003) .  

  6.2 Metastasis Gene Expression Signatures and Intrinsic Host Factors 
 Important information can be acquired through gene expression arrays comparing 

metastatic lesions to primary breast cancer. Although no genes appear to be specific for 
a metastatic phenotype (Porter et al.,  2001) , it has been shown by gene expression 
profiling that primary breast carcinomas are very similar to their distant metastases 
(Weigelt et al.,  2003 ; Hao et al.,  2004 ; Lahdesmaki et al.,  2004 ; Weigelt and van’t Veer, 
 2004 ; Huang et al.,  2005) . Although a commonly suggested theory on metastasis is that 
metastasis occurs late in tumor progression as a result of accumulation of mutations, the 
expression profile of metastases suggests that inherent mechanisms may already be in 
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place early in the course of the disease to determine whether a tumor exhibits metastatic 
behavior or not (Weigelt and van’t Veer,  2004) . A set of 117 genes has been found to 
predict metastatic potential in breast carcinomas using microarray gene expression pat-
terns (van de Vijver et al.,  2002 ; Hunter et al.,  2003) . More recently, a small set of 17 
genes was reported to predict metastatic potential for a variety of tumors (Hunter et al., 
 2003 ; Ramaswamy et al.,  2003 ; Qiu et al.,  2004) . Therefore, in contrast to the classic 
model of metastasis in which only a small population of tumor cells accumulate the 
required number of mutations for metastasis, these observations suggest that primary 
tumors may harbor a metastasis signature (Hunter et al.,  2003 ; Weigelt et al.,  2003) , and 
that metastatic potential is determined by combinations of early oncogenic alterations 
rather than a predominance of late stage metastasis promoting events (Bernards and 
Weinberg,  2002) . Significantly, differential gene expression patterns may reflect host 
genetic profiles that influence and affect metastatic potential. 

 For example, global expression analysis of tumors from the MMTV-PyMT trans-
genic model was performed comparing parental homozygous FVB strain with F1 
hybrids generated by crossing with several other strains. While all strains expressed the 
transgene and resultant upregulation of genes associated with cell growth and downreg-
ulation of cell adhesion molecules, three classifications of tumors were identified based 
on global gene expression (1) a group with suppressed tumor growth and dissemination, 
(2) a group with very aggressive and highly metastatic biological behavior, and (3) a 
group with intermediate behavior (Hunter et al.,  2003 ; Qiu et al.,  2004) . Additionally, 
the group of tumors classified as highly metastatic tended to show altered expression of 
the same 17 genes previously described as a metastasis predictor in humans. Since all 
of these tumors were initiated by the same oncogenic effect, the difference in metastatic 
potential of these tumors is likely related to host genetic factors that modulate metastatic 
potential (Hunter et al.,  2003 ; Qiu et al.,  2004) . This indicates that the genetic back-
ground of the host can modulate transcriptional profiles, and thus, phenotypic behavior 
of different mammary cancers. This has important implications for the human popula-
tion, since it suggests that there may be subpopulations of people based upon their 
genetic constitution that are more susceptible to metastatic dissemination (Qiu et al., 
 2004) . Thus, carcinogenesis and metastasis are complex phenotypes involving both 
innate genetic responses and extrinsic factors influencing cellular responses. 

 Recently bioluminescence imaging techniques were used to identify the organ-
specific metastasis signatures of human breast cancer cells introduced into immunode-
ficient mice (Barnes et al., 1993). Selection of single-cell-derived progenies (SCPs) in 
vivo from MDA-MB-231 human breast cancer cell line established in culture from the 
pleural effusion of a breast cancer patient (Cailleau et al.,  1974)  showed distinct patterns 
of organ-specific metastasis. SCPs derived from the parental MDA-MB-231 exhibited 
markedly different abilities to metastasize to bone, lung, or adrenal medulla, which sug-
gests that metastases to different organs require different molecular signatures (Kang et 
al.,  2003 ; Minn et al.,  2005a , b) . Transcriptomic profiling analysis revealed that the 
different SCPs derived from MDA-MB-231 similarly express a previously described 
“poor-prognosis” gene signature (van de Vijver et al.,  2002) . Thus, MDA-MB-231 cells 
express a typical poor-prognosis profile. MDS and hierarchical clustering of the unsu-
pervised transcriptomic data from different SCPs supported the hypothesis that 
organ-specific metastasis by breast cancer cells is controlled by metastasis-specific 
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genes and these genes are separate from a general poor-prognosis gene expression 
signature. Furthermore, the 50 bone metastasis genes expressed among the bone-
metastatic SCPs could be used to distinguish the primary breast carcinomas that prefer-
entially metastasized to bone from those preferentially metastasized elsewhere (Minn 
et al.,  2005b) . These results suggest that the bone-specific metastatic phenotypes and 
gene expression signature identified in a mouse model may be clinically relevant. 

 A set of 54 genes that mediates breast cancer metastasis to lung was identified in the 
SCPs derived from MDA-MB-231 by transcriptomic analysis (Minn et al.,  2005a) . 
Several of the lung-organ metastatic genes were functionally verified in vitro through 
stable short hairpin (sh) RNA interference in the lung-metastatic cells, and the knock-
down cell lines were injected through the tail vein to assess lung-metastatic activity. 
Hierarchical clustering of primary breast carcinomas from a cohort of 82 breast patients 
was performed using the 54 lung metastasis signature genes. Tumors from patients who 
developed lung metastasis clustered separately from the tumors that metastasized at 
nonpulmonary sites. This analysis clinically validated that the lung-metastatic signature 
genes could be used as classifiers to predict the outcome of the human primary breast 
cancer (Minn et al.,  2005a) . 

 Bone and lung are the most frequent targets of breast cancer metastasis in humans. 
These results provide evidence that bone and lung impose different requirements for the 
establishment of metastasis by the circulating cancer cells. These findings shed new 
light on the biology of breast metastasis.   

  7 FUTURE DIRECTIONS  

 Gene expression profiling is a powerful tool that promises to aid in the development 
of advanced techniques for improving and individualizing the diagnosis and treatment 
of cancer. Unique gene expression patterns have been reported that predict therapeutic 
response and prognosis (Sorlie et al.,  2003 ; Jeffrey et al.,  2005 ; van der Pouw Kraan 
et al.,  2005) . Breast cancers may be categorized according to molecular classifiers that 
predict clinical outcome (Perou et al.,  1999 ; Desai et al.,  2002a ; Sorlie et al.,  2003) . 

 Many patients with the same apparent stage of disease based upon anatomic location 
and histopathology respond very differently to treatment, and these differences in thera-
peutic response have been ascribed to disease severity and pathogenesis, age and gender, 
as well as the health and nutritional status of the patient (Wajapeyee and Somasundaram, 
 2004) . Gene expression profiling provides a large amount of information regarding 
prognostic and predictive factors (West et al.,  2001 ; Huang et al.,  2003b) . A “poor-
prognosis” gene expression signature has been reported that is strongly predictive of a 
short interval to metastasis in patients with breast cancer without regional lymph node 
involvement (van’t Veer et al.,  2002) . This type of signature would be useful as a strategy 
both to select patients who would benefit from chemotherapy, as well as those who 
would not, thus using chemotherapeutic drugs more appropriately (van’t Veer et al., 
 2002 ; Nevins et al.,  2003 ; Cleator and Ashworth,  2004) . Additionally, a gene expression 
profile has recently been identified in patients with inflammatory breast cancer (IBC), 
a clinically aggressive form of locally advanced breast cancer with a poor prognosis 
(Van Laere et al.,  2005) . Using unsupervised hierarchical clustering, IBC samples were 
accurately identified from non-IBC samples using a set of 50 discriminator genes with 
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an accuracy of 88% (Van Laere et al.,  2005) . These studies show that the correlation of 
gene expression analysis and risk factors will improve clinical prediction of prognosis, 
metastasis, and relapse for individual patients, as well as identify potential molecular 
targets and provide specific tailored treatment, in order to provide more “personalized” 
medicine based on a patient’s individual needs (Huang et al.,  2003a ; Nevins et al.,  2003 ; 
van der Pouw Kraan et al.,  2005 ; Van Laere et al.,  2005) . 

 Mouse models will undoubtedly continue to play a critical role in understanding 
mechanisms of cancer development, especially as genomic technologies and bioinfor-
matics tools are applied to these systems. The combined use of bioinformatics applied 
to GEM models of breast cancer provides great power to the study and intervention of 
this complex disease. These applications will be invaluable in developing advanced 
diagnostic and treatment modalities, including the identification of unique biomarkers 
and therapeutic targets, as well as developing a more personalized diagnostic and 
therapeutic system for individuals with the complex and heterogeneous disease of 
breast cancer.      
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     ABSTRACT 

 Alterations in miRNA genes and other non-coding RNAs play a critical role in the 
pathophysiology of all human cancers: cancer initiation and progression can involve miR-
NAs (miRNAs) – small non-coding RNAs that can regulate gene expression. At present, 
the main mechanism of microRNoma (defined as the full complement of  miRNAs present 
in a genome) alteration in cancer cells seems to be represented by aberrant gene expres-
sion, characterized by abnormal levels of expression for mature and/or precursor miRNA 
sequences in comparison with the corresponding normal tissues. miRNA expression profil-
ing has been exploited to identify miRNAs that are potentially involved in the pathogenesis 
of human cancers. miRNAs and other non-coding RNAs profiling achieved by various 
methods has allowed the identification of signatures associated with diagnosis, staging, 
progression, prognosis, and response to treatment of human tumors.  

  Key Words:   Cancer ,  miRNAs ,  Oncogene ,  Tumor-suppressor    

  1 WHAT miRNAS ARE AND HOW THEY WORK  

  1.1 miRNAs Are Small Non-coding Regulatory RNAs 
 miRNAs were first described in 1993 in  C. elegans  by Ambros group at Harvard 

University (Lee et al.,  1993) . At present , over 6,000 members of a new class of small 
non-coding RNAs (ncRNAs), named miRNAs (miRNAs) (Ambros,  2003 ; Bartel, 
 2004) , have been identified in the last seven years in vertebrates, flies, worms and plants, 
and also in viruses (Griffiths-Jones et al.,  2006) . In humans, according to miRBase 
(  http://miRNA.sanger.ac.uk/cgi-bin/sequences/    ), the miRNoma (defined as the full 
spectrum of miRNAs) contains over 650 experimentally or “in silico” cloned miRNAs and 
the total number is expected to surpass the one thousand mark (Bentwich et al.,  2005) . 
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Compared to the protein-coding genes (PCGs), miRNA genes behave like strangers in 
the genomic galaxy. MiRNAs are less than 1% of the size of usual PCGs, a reason why 
they “escaped” cloning for so long a time. Naturally occurring miRNAs are 19–25 nt 
transcripts cleaved from 70–100 nt hairpin precursor (fold-back) RNA (named pre-miRNA) 
structure that is transcribed from a larger primary transcript (named pri-miRNA) (Ambros, 
 2003) . No open reading frame (ORF) can be identified in the small piece of genome 
codifying for miRNAs. While they can be located both inter- and extragenically, more 
than a half of all known miRNAs are in introns or exons of PCGs or other ncRNAs 
(Rodriguez et al.,  2004) . Functionally, it was shown that miRNAs reduce the levels of 
many of their target transcripts as well as the amount of protein encoded by these tran-
scripts (Lim et al.,  2005) . About one third of the genes are supposed to interact with 
various miRNAs as proved by microarray experiments of miRNA-transfected cells 
(Lim et al.,  2005) . Combinatorial effects of multiple miRNAs on specific target mRNAs 
(Krek et al.,  2005 ; Cimmino et al.,  2005) , as well as redundancy of targets for specific 
miRNAs (Yekta et al.,  2004)  have been described. The effects on targets are mainly 
inhibitory, but positive effects were also identified in the case of  miR-122 , that acts as 
an enhancer of hepatitis C virus replication by binding to the 5  noncoding region of the 
virus (Jopling et al.,  2005) .  

  1.2 Fine-Tuning Gene Regulation by miRNAs 
 The antisense single-stranded miRNAs can bind specific mRNA transcripts through 

sequences that are significantly, though not completely, complementary to the target 
mRNA. This process is also known as post-transcriptional gene regulation (PTGS). 
miRNAs seem to be responsible for fine regulation of gene expression, “tuning” the 
cellular phenotype during delicate processes like development and differentiation in all 
organisms, from plants to mammals (Sevignani et al.,  2006) . Many miRNAs are con-
served in sequence between distantly related organisms, suggesting that these mole-
cules participate in the essential processes (Pasquinelli,  2002 ; Ambros,  2004) . For 
example, the members of a cluster on chromosome 13 involved in human lymphomas, 
 miR-17–92 , are highly conserved in all analyzed primate species (Berezikov et al., 
 2005) . 

 Target identification has been hampered by the fact that in animals, in contrast to 
plants, miRNAs do not bind perfectly to their targets. A few nucleotides typically 
remain unbound, yielding complex secondary structures. Mammalian genes can have 
more than one miRNA target site in their 3′ UTRs and one miRNA can target more than 
one mRNA. Bioinformatics approaches have been developed to search for the most 
thermodynamically favorable miRNA :: mRNA duplex interactions. Several computa-
tional procedures are available to predict miRNA targets, such as TargetScan (  http://
genes.mit.edu/targetscan/    ) (Lewis et al.,  2005) , DianaMicroT (  http://www.diana.pcbi.
upenn.edu    ) (Kiriakidou et al.,  2004) , miRanda (  http://www.miRNA.org/    ) (John 
et al.,  2004)  and PicTar (  http://pictar.bio.nyu.edu/    ) (Krek et al.,  2005) . Limited numbers 
of target mRNAs have been experimentally proven and studied  in vitro , but the number 
of confirmed interactions is expected to increase sharply, as prediction tools become 
more sophisticated and accurate every day. As a proof of the advances in understanding 
the miRNA :: mRNA  interaction , is the recent development of a database named 
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Tarbase, that provides a means of searching through a comprehensive set of experimentally 
supported miRNA targets in various organisms, including humans and mice 
(Sethupathy et al.,  2006) . The present version includes 570 PCG proved as targets for 
128 miRNAs from eight different organisms.   

  2 ABNORMAL EXPRESSION OF miRNAS IS A HALLMARK 
OF HUMAN CANCERS  

  2.1 miRNAs Expression Is Important for Many Cellular Processes 
 The functions of miRNA are ubiquitous, ranging from the control of leaf and flower 

development in plants to the modulation of hematopoietic lineage differentiation in 
mammals (Chen et al.,  2004) . Several groups have uncovered roles for miRNAs in the 
coordination of cell proliferation and cell death during development, and in stress resist-
ance and fat metabolism (Ambros,  2003) . For example, the  Drosophila  miRNA gene 
( miR-14 ) suppresses cell death and is required for normal fat metabolism (Xu et al., 
 2003) , while the  bantam  locus encodes a developmentally regulated miRNA that controls 
cell proliferation and regulates the pro-apoptotic gene  hid  in  Drosophila  (Brennecke et 
al.,  2003) . Other examples of miRNAs participating in essential biological processes 
include  miR-125b  and  let-7  (cell proliferation control),  miR-181  (hematopoietic B-cell 
lineage fate),  miR-15a  and  miR-16–1  (B-cell survival),  miR-430  (brain patterning),  miR-
375  (pancreatic cell insulin secretion) and  miR-143  (adipocyte development) (for reviews 
see Harfe,  (2005) , Miska  (2005) , and Hwang and Mendell  (2006) ).  

  2.2 Deregulation of miRNAs Expression in Cancer Cells 
 Little was known about the expression levels of miRNA genes in normal and neo-

plastic cells until 2002. The assessment of cancer-specific expression levels for hun-
dreds of miRNAs by traditional techniques, is time-consuming, requires a large 
amount of total RNA, and the use of radioactive isotopes. cDNA microarrays are 
useful tools to identify different patterns of expression in a large number of samples. 
The first developed oligonucleotide miRNA microarray chips (Liu et al.,  2004) , con-
taining hundreds of human precursor and mature miRNA probes, identified dis-
tinct patterns of miRNA expression in human and mouse tissues (tissue-specific 
miRNAs expression signatures). In the last few years more than a dozen microarray 
platforms have been developed worldwide to investigate the genome-wide expres-
sion of miRNAs. The reliability of this technique was almost always confirmed by 
other traditional methods for RNA expression quantification such as Northern-blot 
analysis and Real time RT-PCR. Another method to determine miRNA expression 
levels involves the use of a bead-based flow cytometric technique (Lu et al., 2005). 
Since the development of these two methods of assessing global miRNA expression, 
several commercially available platforms have been developed for miRNA gene 
expression profiling (Table  1 ).      

 Global analysis of miRNA gene expression has shown that these profiles can be 
used to classify the developmental lineage and differentiation state of tumors; in addi-
tion, miRNA profiles appear to provide a distinct signature for tumors which is more 
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precise than that provided by protein-coding genes (Lu et al.,  2005) . These findings lead 
to a unique opportunity to use these miRNA profiles for tumor diagnostics. 

 The first report linking miRNAs and cancer (Calin et al.,  2002)  involved chronic lym-
phocytic leukemia (CLL), the most common form of adult leukemia in the Western 
world. Hemizygous and/or homozygous loss at chromosome 13q14 occurs in more than 
half the CLL cases. Loss of chromosome 13q14 is also found in more than 50% of mantle 
cell lymphomas, ~30% of multiple myeloma, and about two-thirds of prostate cancers, 
suggesting that one or more tumor suppressor genes at 13q14 are involved in the patho-
genesis of human tumors. However, detailed genetic analysis, including extensive loss of 
heterozygosity (LOH), mutation, and expression studies have failed to demonstrate the 
consistent involvement of any of the 12 protein-coding genes located in or close to the 
deleted region. A cluster of two miRNAs,  mir-15a  and  mir-16–1 , were found to be 
located in the minimal region of deletion (~30 kb) at 13q14, and to be deleted or down-
regulated in ~70% of CLL samples. Furthermore, these miRNAs play essential roles in 
regulating the apoptotic program in B cells (Cimmino et al.,  2005) , and therefore can be 
considered as the first examples of tumor suppressor miRNAs. After the identification of 
specific miRNA signatures in CLL, miRNAs differentially expressed between tumors 
and normal counterparts were identified for several tumor types like breast cancer, gliob-

 Table 2 
  Examples of cancer specific miRNA fingerprints identified by high-throughput 

methods for miRNA expression  

 Cancer type  Clinical significance of miRNA 
fingerprints 

 Reference 

 Chronic lymphocytic 
leukemia 

 miRNA Signature associated with disease 
prognosis and progression 

 Calin et al.  (2005a)  

 Breast carcinomas  miRNA Fingerprints correlated with 
biopathologic features: estrogen and 
progesterone receptor expression, 
tumor stage, vascular invasion, and 
proliferation index 

 Iorio et al.  (2005)  

 Hepatocellular carcinomas  miRNA Expression levels correlated with 
the degree of HCC diferentiation 

 Murakami et al. 
 (2006)  

 Lung carcinomas  Molecular signatures correlated with tumor 
histology; miRNA expression profiles 
correlated with survival of lung 
adenocarcinomas 

 Yanaihara et al. 
 (2006)  

 Leukemias and carcinomas  miRNA Profiles can differentiate solid 
cancers and miRNA fingerprints better 
classify poorly differentiated tumours as 
messenger RNA profiles 

 Lu et al.  (2005)  

 Human solid cancers  Common miRNA are differentially 
expressed in various solid cancers and 
are targeting cancer specific protein 
coding genes 

 Volinia et al.  (2006)  
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lastoma, hepatocellular carcinoma, colorectal carcinoma, lung cancer, and pituitary 
tumors (Table  2  and included references). Common patterns of miRNA modulation were 
identified, such as  miR-16–1  downregulation in CLL, breast cancer and pituitary tumors 
(Calin et al.,  2004 ; Iorio et al.,  2005 ; Bottoni et al.,  2005) . Deregulated miRNA may be 
considered interesting targets for cancer-specific therapies.       

  3 THE TARGETS OF DEREGULATED miRNAS ARE MAIN PLAYERS 
IN THE MALIGNANT PROCESS  

 The first important interaction of miRNA::mRNA with clear cancer connection was 
elegantly proved by the Slack group at Yale University (Johnson et al.,  2005) . 
It was for a long time known that, in lung cancers, activation of  RAS  genes by point 
mutations represents early events (Malumbres and Barbacid,  2003) . RAS protein is sig-
nificantly higher in lung tumors than in normal lung tissue, while  let-7  expression is 
lower in lung cancer cells. This correlation led to the identification of a direct regulation 
of RAS by the  let-7  miRNA family (Johnson et al.,  2005) . Exogenous delivery of  let-7  
to the lung might either prevent the formation of lung tumors (from premalignant 
lesions) or shrink tumors by activating RAS mutations (Slack and Weidhans,  2006) . 

 Another interesting molecular dissection of a miRNA::mRNA interaction impor-
tant for the cancer phenotype was done by the Mendell group at Johns Hopkins 
University (O’Donnell et al.,  2005)  and by the Hammond group at North Carolina 
University at Chapel Hill (He et al.,  2005b) . The oncogene c-MYC encodes a tran-
scription factor that regulates, via several targets including E2F1 transcription factor, 
cell proliferation and survival (Dang et al.,  2005) . A feedback regulatory loop in 
which MYC directly binds and activates transcription of the cluster  miR-17–92  that 
consequently negatively regulates E2F1 by direct interaction, while c-MYC directly 
induces expression of the E2F1 that in turn induces c-MYC, has been described 
(O’Donnell et al.,  2005) . This fine molecular dissection of an important cellular 
pathway has cancer implications, as it has been shown that  c-MYC  and  miR-17–92  
cooperate and such cooperation accelerates B cell tumorigenesis (He et al.,  2005b) . 
Such results offer a rational basis for targeted therapy, for examples by using anti-
sense miRNAs against the clustered miRNAs, a decision that will overload the regu-
latory loop, with the acceleration of the c-MYC – E2F1 feedback with consequent 
cell death by ARF-p53 pathway (Hammond,  2006) . 

 miRNAs are natural antisense interactors with players in the eukaryotic survival and 
cell cycle programs. The overexpression of antiapoptotic protein BCL2 is a main 
genetic event in human tumorigenesis, including follicular lymphoma, lung cancer and 
B-cell CLL (Cory et al.,  2003) . This activation, except in all cases of follicular lym-
phomas where a translocation t(14;18) is responsible (Tsujimoto et al.,  1984 ,  1985) , 
has an unknown mechanism. Loss of  miR-15a / miR-16–1  in CLL results in BCL2 over-
expression and it was recently proved by our group that restoration of  mir-15/miR-16  
in leukemia cells induces apoptosis by directly interacting with BCL2 mRNA 
(Cimmino et al.,  2005) . These results are encouraging in the light of new promising 
results regarding the therapeutic potential of antisense Bcl2 as chemosensitizer for 
cancer therapy (Kim et al.,  2004) .  
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  4 THE “miRNA CASCADE”: A MODEL OF miRNA INVOLVEMENT 
IN HUMAN CANCERS  

 The classical tumorigenesis model postulates the need of bi-allelic alterations for 
a TSG and cooperation between heterozygous alterations of OGs. Recently haploin-
suficiency, defined as alterations of one allele with loss-of-function, was proposed as 
an important mechanism for TSG inactivation (Fodde and Smits,  2002) . MiRNAs are 
contributors to oncogenesis functioning as tumor suppressors (TS) (as is the case of 
 miR-15a / miR-16–1  cluster) or as oncogenes (OG) (as is the case of  miR-155  or 
 miR17–92 cluster ) (Fig.  1 ) (Calin et al.,  2004 ; Cimmino et al.,  2005 ; Chen,  2005 ; 
Berezikov and Plasterk,  2005 ; Gregory and Shiekhattar,  2005) . We have proved by 

    Fig. 1  . Mechanisms of miRNA activation and inactivation in human tumorigenesis . The main mecha-
nisms common for miRNAs and cancer-specific PCGs are represented by chromosomal transloca-
tion/rearrangement, genomic amplification, biallelic mutations, deletion/promoter methylation plus 
mutation and biallelic deletions/promoter methylations or combination. The effects of oncogenic 
miRNAs activation are the same as of inactivation  of tumor-suppressor PCGs. Conversely, the effects 
of suppressor miRNAs inactivation are the same as of activation  of oncogenic PCGs. For example, 
effects of t (14;18), (q32;q21), or del13q13.4 in leukemic cells are the same – overexpression of the 
antiapoptotic BCL2 protein, in the former case by juxtaposition of oncogene Bcl2 to Ig enhancers, 
while in the latter by downregulation of suppressor  miR-16–1  and  miR-15a  that negatively regulate 
BCL2 production. The promoter regions are presented as  triangles  and the structural genes as  circles  
in miRNAs  or  rectangles  in PCGs       
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our genome-wide miRNA expression profiling that relatively minor variations in the 
levels of expression of a miRNA or mutations that affect moderately the conformation 
of miRNA::mRNA pairing could have disastrous consequences for the cell. The 
explanation is represented by the large number of targets of each miRNA and the rela-
tively large number of altered miRNAs, making it very probable that two or more 
PCGs from the same molecular pathway/interacting pathways are disturbed. It was 
shown that the miRNAs differentially expressed in human solid cancers have as tar-
gets important PCGs such as  RB1  (Retinoblastoma 1) and  TGFBR2  (transforming 
growth factor beta receptor II) (Volinia et al.,  2006) . The downregulation of the sup-
pressor  miR-15a/miR-16–1  induces overexpression of BCL2 and possibly other genes 
that may be important for tumorigenesis, while the overexpression of oncogenic  miR-
17–92  cooperates with  c-MYC  that stimulates proliferation. Therefore, the miRNAs 
may act “in cascade” over several cancer specific PCGs, that in turn could influence 
the transcription or function of several other PCGs and ncRNAs including miRNAs. 
If such alterations occur in the somatic cells, the miRNA alterations initiate or con-
tribute to tumorigenesis, while if present in the germline this could represent cancer 
predisposing events. Furthermore, specific mutations or very rare polymorphisms in 
miRNAs or interacting regions of miRNAs could represent predisposing events for 
cancer initiation (Calin et al.,  2005a ; He et al.,  2005a) .  

 The abnormalities found to influence the activity of miRNAs are the same as those 
described to target PCGs, including chromosomal rearrangements, genomic amplifica-
tions or deletions, and mutations (Fig.  1 ). In a specific tumor both abnormalities in 
PCGs and miRNAs can be identified. Inactivation of tumor suppressor PCGs and activation 
of oncogenic miRNAs have the same molecular consequences – reduced levels of pro-
teins blocking proliferation and activating apoptosis. By contrast, activation of oncogenic 
PCGs and inactivation of suppressor miRNAs is followed by accumulation of proteins 
that stimulates proliferation and decrease apoptosis. A paradigm for this model is 
human B-cell CLL, in which  miR-15a  and  miR-16–1  are located in the most frequently 
deleted genomic region, are down-regulated in the majority of cases, harbor mutations 
in familial cases and induce apoptosis in a leukemia model by targeting the ubiquitous 
over expressed antiapoptotic BCL2 gene.  

  5 THE miRNA STORY FROM SCIENTIST 
BENCH-SIDE TO PATIENT BEDSIDE  

  5.1 miRNAs as a New Class of Biomakers Used 
in Human Cancer Diagnosis 

 If the miRNAs are active players in human oncogenesis, then they will have an impact 
on diagnosis and prognosis of cancer (Table  2 ). In fact the evidence that miRNAs repre-
sent new diagnostic and prognostic factors in human cancers is rapidly accumulating 
(Croce and Calin,  2005 ; Calin et al.,  2005b) . In B-cell CLL, a unique miRNA signature 
is associated with prognostic factors (such as the levels of expression of the 70-kD Zeta-
associated protein (ZAP-70) and the presence or absence of mutations in the immu-
noglobulin heavy-chain variable-region gene ( IgV  

 
H

 
 )) and with the time from diagnosis 

to initiation of therapy in B cell CLL (Calin et al.,  2005a) . In diffuse large B cell lym-
phoma (DLBCL), independent studies revealed that significantly higher levels of  miR-155  are 
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identified in cases with poorer prognosis (an activated B cell phenotype) than with the 
germinal center phenotype (Eis et al.,  2005 ; Kluiver et al.,  2005) . Expression of members 
of  let-7  family correlates with postoperative survival in lung cancer, the group of patients 
with reduced expression showing significantly shorter survival after potentially curative 
resection (Takamizawa et al.,  2004) . In lung adenocarcinomas, high  miR-155  and low 
 let-7a-2  expression correlate with poor survival (Yanaihara et al.,  2006) . 
In breast carcinomas, expression of miRNAs was correlated with specific breast cancer 
bio-pathologic features, such as estrogen and progesterone receptor expression (the 
members of  miR-30  family), tumor stage ( miR-213  and  miR-203 ), vascular invasion 
( miR-9–3  and  miR-10b ) or proliferation index (members of  let-7  family) (Iorio et al., 
 2005) . Comprehensive analysis of miRNA expression patterns in hepatocellular carci-
noma found a set of miRNAs,  miR-92 ,  miR-20 , and  miR-18  that were inversely correlated 
with the degree of differentiation (Murakami et al.,  2006) . Such evidence strongly sug-
gests that quantification of miRNAs may be diagnostically useful for cancer patients.  

  5.2 miRNAs as New Potential Agents for Cancer Therapy 
 If abnormal miRNA expression in cancer cells represents important genetic abnor-

malities, then miRNAs could be used as potential targets for therapeutic intervention. 
One such approach could involve the oncogene c-KIT pathway, targeted by the small 
molecule drug, Gleevec (Imatinib mesylate). C-KIT is overexpressed by activating 
point mutations in gastrointestinal stromal tumors (GIST), adult mastocytosis, small 
cell lung cancer and testicular germ cell cancer. In GIST, the effects of Gleevec are dra-
matic (Sattler and Salgia,  2003) , but as in every type of single drug chemotherapy, 
resistance is a dangerous drawback. It was proved that  miR-221  and  miR-222  directly 
target c-KIT (Felli et al.,  2005) . It would be of interest to device a possible combined 
therapy of Gleevec and  miR-221–miR-222  for refractory GIST cases. 

 The development of modified miRNA molecules with higher in vivo efficiency, such 
as the locked nucleic acid (LNA)-modified oligonucleotides (Orom et al.,  2006) , the 
anti-miRNA oligonucleotides (AMOs) (Weiler et al.,  2005) , or the “antagomirs” 
(Krutzfeldt et al.,  2005)  represent interesting steps for bringing these fundamental 
research advances into medical practice. The development of knockout or transgenic 
miRNA mouse models and the prophylactic or curative studies in case they develop 
cancer will be of help to better understand the therapeutic potential of miRNAs.       
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 6     Proteomic Methods in Cancer 
Research          

Scot Weinberger and    Egisto   Boschetti     

  ABSTRACT 

 Recent advancements and progress in proteomics technologies and research protocols 
have made a demonstrable impact upon clinical investigations, particularly in the area of 
cancer research. This chapter reviews the overall requirements and approaches involved in 
clinical proteomics research with particular emphasis on and review of accomplishments in 
the field of cancer research and therapy. A detailed discussion of the challenges in clinical 
proteomic research is presented along with a valuable review of protein purification and 
protein analytical platforms. Extensive discussion on the use of various clinical proteomic 
mass spectrometric approaches is provided.  

  Key Words:   Translational proteomics ,  Clinical proteomics ,  Proteomics ,  Protein purifi-
cation ,  Mass spectrometry ,  Electrophoresis ,  Protein microarrays    

  1 INTRODUCTION  

 Ever since the term proteome, and its associate, proteomics, was coined (Wasinger 
et al.,  1995 ; Wilkins et al.,  1996a – c ; Williams et al.,  1996) , we have witnessed an explo-
sion of interest and research in the areas formerly referred to as protein or enzyme anal-
ysis and protein biochemistry. Not surprisingly, the evolving enthusiasm and promise of 
modern proteomics techniques and technologies have made a demonstrable impact 
upon cancer research. A recent search of PubMed citations for proteomic based cancer 
research publications has indicated a total of about 1,250 publications from 2001 to 
May of 2006 (see Fig.  1 ). Moreover, the demonstrated growth in proteomics based cancer 
research indicates that in the year 2008, about 800 published works will be released. 
The majority of this work has focused upon applying proteomics technologies to the 
study of cancer in a variety of organ systems (see Fig.  2 ), while only 30% of all noted 
cancer proteomics publications were directed towards the development and testing of 
proteomic technologies.
 

G.J. Gordon (ed.), Cancer Drug Discovery and Development: Bioinformatics in Cancer and Cancer Therapy,
DOI: 10.1007/978-1-59745-576-3_6, © Humana Press, a part of Springer Science + Business Media, LLC 2009

89



90 Weinberger, Boschetti

   Roughly compared to genomics research, clinical proteomics approaches are less 
mature and are far more challenged by the inherent analytical demands placed upon 
them by the study of proteins in authentic systems. Proteomic studies require tackling 
an extensive range of protein abundance. Furthermore, there is no direct or easily 
achievable means by which one can isolate and purify proteins or amplify their abun-
dance when originally present at trace levels. Incompatible practices and methods of 

  Fig.1.     Proteomic cancer publications . This figure depicts the total number of PubMed citations that 
contain the term proteomics and cancer. A growing trend is indicated from 2001 to 2005. 2006 data 
are incomplete, as it represents total publications as of May, 2006. See text for further details       

  Fig. 2.     Proteomic publications by cancer type . This figure illustrates the percentage of proteomic 
studies by cancer type and organ system for all abstracts noted in Fig.  1 . As can be seen, proteomic 
cancer research has been broadly adapted, studying urogenital, integument, nervous, and digestive 
systems almost in unity. It is somewhat surprising that breast cancer studies represented less than 1% 
of all proteomic based cancer abstracts, and are not captured by this figure       
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clinical specimen collection, processing, and storage compound the challenges. In many 
cases, established clinical sample collection protocols duly serve their original assay or 
histological assessment, but introduce unwanted artifacts such as proteolytic cleavage, 
protein fixation or chemical modification, as well as undesirable levels of electrolytes 
or media stabilizing proteins. When one considers these challenges, it is of little surprise 
that proteomic research techniques remain at an early stage of evolution, without a 
clearly dominant approach (see Fig.  3 ).  

 Among today’s most popular clinical proteomic research activities is differential 
protein display or expression monitoring. Differential protein display is a comparative 
technique that contrasts protein profiles between different organisms, individuals, path-
ogenic and/or metabolic conditions, and phenotypic response to environmental or 
chemical challenges. Almost universally, protein phenotypic studies are employed as a 
first approach in generating a phenomenological model that can be correlated with the 
clinical question at hand. In cancer research, these phenomenological studies most fre-
quently attempt to differentiate normal cells from transformed or transitional cells, and 
healthy individuals from afflicted cohorts. 

 Differential expression analysis performed in basic proteomic research and clinical 
proteomic studies differ in terms of their overarching goals and analytical requirements. 
For example, basic research activities often involve studies performed upon pooled bio-
logical samples such as lysates or secretions from harvested cells, lysates or products of 

  Fig. 3.     Proteomic technologies employed in cancer research . The figure describes the employment 
rate of various proteomic research technologies among all citations noted in Fig.  1 . Microarray, Mass 
Spectrometry, and Gel Electrophoresis remain the techniques of choice. Mass Spectrometry values 
represent the composite of all MS technologies, including SELDI, MALDI, ESI, LC-MS, and Fourier 
Transform Ion Cyclotron Resonance MS. Abbreviations: EIA, Enzyme Immuno Assay; ESI, 
Electrospray Ionization; LCM, Laser Capture Micro-dissection; LC, Liquid Chromatography; SELDI, 
Surface Enhanced Laser Desorption/Ionization; MALDI, Matrix-Assisted Laser Desorption/
Ionization; LCMS, Liquid Chromatography Mass Spectrometry; MS, Mass Spectrometry; Gel Elect, 
Gel Electrophoresis       
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cultivated bacteria, or combined pools of biological fluids and tissues from many labo-
ratory animals or human subjects. Under these conditions, basic research studies are not 
hampered by sample limitations, and protein purification often relies on established 
techniques such as low- and high-pressure liquid chromatography, serial chromatogra-
phy, and various electrophoretic approaches. Often, the goal in basic research studies is 
to catalogue and identify every protein associated with a particular sample. In this case, 
proteins are frequently reduced to peptides for the purpose of protein identification and 
characterization typically by electrospray ionization or matrix-assisted laser desorption/
ionization mass spectrometry. 

 In contrast, clinical proteomic studies endeavor to follow the progress of the disease 
in an individual or small population with the ultimate aim of finding biomarkers poten-
tially useful as diagnostic agents or new drug targets. Under such circumstances, sample 
or tissue availability is limited and the dependence upon highly efficient, small-scale 
techniques is high. Typically, protein populations between groups are compared using 
univariate or multivariate analysis schemes with the ultimate aim of elucidating a pro-
tein or groups of proteins whose expression levels correlate with a given clinical condi-
tion (Weinberge et al.,  2002) . 

 This chapter reviews the various proteomic methods and technologies employed in 
modern cancer research. The challenges of proteomic analysis are explored and a 
review of various analytical means is presented.  

  2 PROTEOME COMPLEXITY AND THE NEED 
FOR FRACTIONATION  

 It is well known that the protein composition of tissue extracts and biological fluids 
is extremely complex, not only because of the numerous encoding genes, but also 
because of the extremely large number of possible post-translational modifications. The 
human genome comprises more than 25,000 different genes but proteins are more 
numerous because of splice variants, regulated and dysregulated proteolysis, and of 
course all possible modifications occurring during maturation. Furthermore, proteins 
are diversely expressed. Within clinical samples, some proteins are highly concentrated 
while others are present only as a few copies and only at certain stages of the cell cycle. 
It is acknowledged that serum proteins have a difference in concentration that can reach 
ten or even 12 orders of magnitude (Adkins et al.,  2002 ; Castagna et al.,  2005 ; 
Thadikkaran et al.,  2005) . 

 Because of these factors, a prudently designed clinical proteomic study must begin 
with fractionation of the clinical sample. It is essential that the selected sample collec-
tion and fractionation scheme do not introduce unwanted artifacts, which may be erro-
neously construed as potential biomarkers. If the initial protocol is long or performed at 
room temperature, the unwanted activation of nascent proteases is a true concern, result-
ing in the modification of the initial protein mixture. The latter is particularly trouble-
some for plasma or serum samples. To mitigate unwanted proteolysis, collected samples 
should be cooled to 4°C as soon as it is practical to do so, and sample fractionation is 
best performed under similar conditions. An alternative approach is the immediate addi-
tion of anti-proteases, with the acknowledged risk of modifying the nascent proteome 
and introducing artifacts of different origins.  
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  3 SAMPLE PRE-FRACTIONATION METHODS  

 Beyond initial sample collection and storage challenges, the key to successful sample 
fractionation lies within prudent exploitation of the physicochemical properties of pro-
teins, to separate them under the best conditions. A clinical sample is typically a bio-
logical fluid or tissue that may need to be a solubilized. Techniques for tissue 
fractionation, cell separation and sub-cellular fractionation, as well as solubilization, to 
produce working protein solutions, will not be described in this section. Rather a discus-
sion of separation techniques starting from protein solutions using modern methods of 
fractionation or isolation will be reviewed. 

  3.1 Chromatographic Techniques Applied to Proteomics 
 For years, liquid chromatographic (LC) separation methods have been used for pro-

tein separation and purification. There are few restrictions to the use of LC in the clini-
cal proteomics field, with the possible exception of sample availability and load. The 
scarcity of clinical samples frequently demands the use of small or very small columns 
with potential complications for the collection of numerous small fractions. Further the 
typical goal in proteomic studies is not the isolation of one single protein but rather a 
fractionation, making subsequent protein detection more universal and data analysis 
simpler in its interpretation. LC separations are applied to native proteins, denatured 
proteins, and to protein fragments after total or partial hydrolysis by proteases. 
Chromatographic methods can be implemented using a very large choice of solid phase 
adsorbents. Among those of low specificity are ion exchangers and hydrophobic inter-
action sorbents. Medium specificity sorbents that target groups of proteins sharing a 
common moiety include IMAC sorbents (proteins capable to interact with metal ions), 
boronic acids for glycoproteins, immobilized lectin (for sub-groups of glycoproteins), 
hydroxyapatite, and immobilized enzyme inhibitors (e.g., benzamidine for the capture 
of serine proteases). Highly specific sorbents are also available such as immobilized 
Protein A or Protein G, well-known for the selective extraction and immobilization of 
antibodies or FC fusion products. 

  3.1.1 Ion Exchange Chromatography 

 Ion exchange (IEX) is the most widely used chromatographic method for protein 
separation. It is based on the interaction that occurs between a charged protein at a 
given pH and the complementary charge of a solid phase resin at the same pH. Its 
separation efficiency depends on a number of factors which have been studied in 
depth at theoretical and practical levels ( Fernandez et al.,  1996) . A wide variety of 
functional groups have been described, but the most popular are weak and strong cat-
ion and weak and strong anion exchangers. Resins for different applications, in dif-
ferent particle sizes, different ligand densities and pore sizes are easily available 
(Boschetti,  1994) . 

 Human serum is one of the most widely described protein mixtures fractionated by 
IEX chromatography. For proteomics research, IEX has been extensively described to 
simplify the initial sample and then analyze the fractions with the aim of identifying 
new species (Tirumalai et al.,  2003) . Throughout the available literature, many examples 
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of proteome fractionation methods have been reported based on ion exchange 
chromatography (Link et al.,  1997 ; Lopez,  2000 ; Washburn et al.,  2001 ; Wagner 
et al.,  2002) . Ion exchange chromatography is used in combination with other separation 
methods, such as size exclusion (Opiteck et al.,  1998) , chromatofocusing (Wall et al., 
 2000) , affinity capture (Geng et al.,  2001) , or reverse phase chromatography 
(Tomlinson and Chicz,  2003) . However, multidimensional chromatography as used in 
proteomics fractionation generally does not exceed two dimensions due to the high 
number of fractions to manage (pH-adjustment, desalting, re-injection in following 
dimension) and analyze.  

  3.1.2 Hydrophobic Interaction Chromatography 

 Hydrophobic interaction chromatography (HIC) is another means to fractionate a 
protein mixture. HIC is based on the capability of non-polar residues of proteins (clus-
ters of hydrophobic amino acids) to associate in aqueous solutions with hydrophobic 
chains of the solid phase. The formation of these complexes is characterized by a high 
entropy contribution to the free energy of the whole aggregation and the enthalpy con-
tribution is low or even negative. The association between proteins and hydrophobic 
resins is generally promoted by the presence of high concentrations of salts of strong 
lyotropic effect. Several mechanistic retention models have been described to explain 
retention strength and the capacity factor of a given protein at a particular lyotropic salt 
concentration (Melander et al.,  1984 ; Staby and Mollerup,  1996) . In typical examples, 
HIC pre-fractionation allowed detecting novel proteins from cytosolic soluble fraction 
of  H. influenzae  on a phenyl column. Approximately 150 proteins, bound to the column, 
were identified, but only 30 for the first time (Fountoulakis et al.,  1999) .  

  3.1.3 Affinity Chromatography and Immunoprecipitation 

 Affinity chromatography, in its various forms, provides specific means to extract 
targeted groups of proteins or even a single protein by adsorption onto a specifically 
designed solid phase. It is based on the ability of a protein or another biopolymer to 
recognize a natural or synthetic partner. Affinity chromatography sorbents consist of 
a porous matrix on which a selected ligand (bait molecule) is chemically attached 
directly or by means of a spacer arm. On a mechanistic level, affinity chromatogra-
phy is performed during the use of protein microarrays, where the bait is selectively 
immobilized upon an appropriately conditioned planar surface, and subsequently 
used to pan biological mixtures for proteins of corresponding affinity (often termed 
the prey). 

 Affinity chromatography provides higher selectivity of the bait-prey interaction than 
those existing for ion exchangers and hydrophobic sorbents. The specificity of this 
interaction is basically governed by the law of mass action with the involvement of 
association and dissociation constants. In affinity chromatography, a high association 
rate during loading and washing and a high dissociation rate during elution are needed. 
High dissociation constant rates can be achieved either by addition of chaotropic agents, 
or deforming agents into the elution buffer or even by selective elution such as EDTA, 
for Ca ++  binding proteins. Competition with a free ligand is another mode to force the 
protein to desorb to the benefit of the competing molecule as it is frequently the case 
for lectin-glycorpotein complexes. 
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 In affinity chromatography, high selectivity means that only one protein or one well-
defined category binds to the immobilized ligand with high affinity in the presence of a 
large number of other proteins. Affinity chromatography is a term that embraces a vari-
ety of different types of chromatographic recognition; in some cases single proteins can 
be selectively bound on the solid phase (e.g., immunosorbents), in other cases homoge-
neous groups of proteins are selectively captured. Groups in this case share one or few 
common properties such as the recognition for a sugar, an amino acid, a metal ion, or 
even a dye molecule. 

 Affinity chromatography has been extensively used as a mean to separate proteins. 
In most of the cases this technique is used to separate proteins as groups for further 
analysis. However, well-known applications are used for the removal of high abundance 
protein as described later in this chapter. Lectin affinity chromatography for group pro-
tein binding has been extensively used for the separation of glycoproteins (Geng et al., 
 2001) . As reported, lectin affinity adsorption was used for the separation of glycocon-
jugates from a variety of expressed protein mixtures prior to proteomics analysis 
(Corthals et al.,  2000b ; Lopez et al.,  2000 ; Geng et al.,  2001 ; Brzeski et al.,  2003 ; Ghosh 
et al.,  2004) . 

 Immunoprecipitation uses antibodies that are selective for one or a group of pro-
teins sharing a similar epitope. This approach is commonly used for the separation/
analysis of phosphorylated proteins (Ramamoorthy et al.,  2004)  and protein isoforms 
such as tumor necrosis factor (Watts et al.,  1997) . In practice the selected antibody is 
mixed with the protein extract and incubated for the time that is necessary to form an 
immune-complex. Then the immune-complex is separated using a Protein A column. 
This approach is not largely reported in the literature; however, it deserves attention 
as a pre-fractionation method prior to analysis by two-dimensional electrophoresis or 
mass spectrometry because of its high level of specificity. By using very specific 
antibodies the purities of serine/threonine-phosphorylated proteins were significantly 
enhanced with consequent better specificity of their substrate for kinases (Gronborg 
et al.,  2002) . 

 Immunoprecipitation used alone or in association with other separation methods, was 
also extensively described as a means for analyzing phosphotyrosyl proteins in cerebro-
spinal fluid (Yuan and Desiderio,  2003)  and the mapping of phosphorylation sites from 
human T-cells (Brill et al.,  2004) . Moreover the immunoprecipitation principle is also 
interesting for investigating the formation of protein–protein complexes and therefore 
contributing to the elucidation of some pathways (Figeys et al.,  2001 ; Ren et al.,  2003 ; 
Schulze and Mann,  2004) . Immunoprecipitation methods also embrace immunoadsorp-
tion using solid phases where the antibodies are covalently attached. The benefit found 
in this approach is to prevent the contamination of the captured proteins by the antibody. 
This technology derives directly from immunoadsorption as extensively used in the last 
three decades for preparative protein purification in biopharmaceutical applications.  

  3.1.4 Immobilized Metal Affinity Chromatography 

 Immobilized metal affinity chromatography (IMAC) has been repeatedly reported as 
an effective means to separate histidine-exposed proteins (Ren et al.,  2003 ; Smith et al., 
 2004) . IMAC chromatography has also been applied to calcium binding proteins (Lopez 
et al.,  2000)  and to the separation of phospho-proteins (Ficarro et al.,  2002) . In Surface 
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Enhanced Laser Desorption analysis, IMAC targets have frequently been used in the 
discovery of putative cancer biomarkers (Fung et al.,  2001 ;  Wilson et al.,  2004 ; Zhang 
et al.,  2004a) .   

  3.2 Electrophoresis Based Methods 
 Among the various electrophoretic methods routinely used in clinical proteomic 

analysis, are SDS-polyacrylamide gel electrophoresis, two-dimensional electrophoresis, 
and isoelectric focusing. Mini-preparative gel electrophoresis and continuous electro-
phoresis in free liquid films are two specific versions of these electrophoretic schemes. 
The former has recently been applied to enrich low-abundance brain proteins, by eluting 
dozens of fractions sequentially (Fountoulakis and Juranville,  2003) . 

  3.2.1 Continuous Electrophoresis 

 Continuous electrophoresis in free liquid films (also called free-flow electrophoresis: 
FFE) is based on the continuous flow of an electrolyte in a direction normal to the line 
of forces of the electrical field and the protein mixture to be separated is added contigu-
ously at a small spot in the flowing medium. Components of the initial mixture are 
deflected in diagonal trajectories and thus separated according to their electrophoretic 
mobility and can be collected at the bottom of the chamber as distinct fractions. This 
technique has the advantage that relatively large samples can be processed. FFE suffers 
from its high diffusion coefficients; however, to limit this phenomenon, possible solu-
tions have been reported, such as the micro-fabricated FFE device useful for continuous 
separation of proteins (Kobayashi et al.,  2003) .  

  3.2.2 Isoelectric Point Approaches 

 Applications based on isoelectric point have been reported for protein fractionation. 
Built-in forces inherent to this kind of protein migration prevent entropic peak dissipa-
tion. A significant advantage of this method is immediately evident in the separation of 
proteins of large size that had always been problematic while using standard methods 
of isoelectric focusing. This latter has been proposed as the first dimension of a two-
dimensional map, the eluted fractions being directly analyzed by orthogonal SDS-poly-
acrylamide gel electrophoresis (Hoffman et al.,  2001) . Individual bands from the second 
dimension can then be eluted and analyzed by electrospray ionization, tandem MS 
allowing for the identification of a large number of proteins. 

 Another preparative isoelectric separation method is the Rotofor. The device is 
assembled from 20 sample chambers, separated by liquid-permeable nylon screens, 
except at the extremities, where cation- and anion-exchange membranes are placed. It 
can be used as first dimension in a two-dimensional electrophoresis-like process, in 
which each fraction can be further fractionated using chromatography as reported (Zhu 
and Lubman,  2004) . Modifications to the original principle have been described such as 
miniaturized devices accommodating isoelectric membranes in replacement of carrier 
ampholytes with significant advantages (Zuo and Speicher,  2002 ; Shang et al.,  2003) . 

 Another miniprep electromigration technique for the separation of proteins based on 
their isoelectric point is “Off-gel IEF” (Ros et al.,  2002) . Likewise in a multi-compartment 
separation technique, the system is composed of liquid chambers positioned on top of 
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an IPG continuous gel slab. Upon application of an electric field, perpendicularly to the 
liquid chamber, charged species (those having pI values above and below the pH of the 
IPG gel) are extracted away from the chamber’s electric field. After separation, only the 
globally neutral species (pI = pH of the IPG gel) remain in the solution. A practical 
extension of this initial principle uses a multi-well device, composed of a series of com-
partments of small volumes compatible with current instruments for separation (Michel 
et al.,  2003) . 

 Preparative isoelectric focusing as an electrophoresis-based method for preparative 
protein separation made significant progress when multi-compartment electrolyzers 
using isoelectric membranes was conceived (Wenger et al.,  1987 ; Righetti et al., 
 1990) . The advantages of such a device were immediately apparent. First, it allowed 
separating proteins by groups of well-defined isoelectric points in solution with very 
limited danger of protein precipitation. Second. this approach was directly compatible 
for additional sub-fractionation with the added advantage of enhancing protein 
concentration. 

 Finally, another preparative electrically-driven protein separation is based on the 
use of a thin bed of neutral dextran beads embedded with carrier’s ampholytes 
where proteins move according to their isoelectric point when submitted to an electric 
field (Gorg et al.,  2002) . The focusing process is induced by the presence of carrier 
ampholytes. Dextran beads are used as an anti-convective medium where proteins 
move freely to reach their isoelectric point. Separated proteins are collected with 
the beads and then used for further analysis. However, some down-stream analyses 
are complicated; this is the case of mass spectrometry because ampholyte carriers, 
which are very numerous and not compatible with mass spectrometry, are difficult 
to remove.   

  3.3 Depletion of High Abundance Proteins and Compression of Expression 
Dynamic Range 

  3.3.1 Depletion Technologies 

 Albumin, immunoglobulins, transferrin and a few other very high-abundance pro-
teins in plasma, serum, or even CSF, represent a challenge for the proper detection of 
many low concentration proteins. For instance, albumin is a source of trouble in mass 
spectrometry as it suppresses the detection of numerous other species. Similarly two-
dimensional electrophoresis cannot reveal species that are covered by the signal of 
albumin. To resolve the situation it has been proposed to remove one or more high-
abundance species prior to mass spectrometry and two-dimensional electrophoresis 
analysis. 

 Serum albumin is removed by either using Cibacron Blue dye or anti-albumin anti-
bodies attached to chromatographic beads. Immunoglobulins G are removed by using 
immobilized Protein A or Protein G or even anti-IgG antibodies. Albumin and IgG can 
also be removed simultaneously by mixing two different sorbents. Recently it has been 
proposed to remove several proteins at a time, using a mixture of immunosorbents 
against the major plasma proteins such as albumin, IgG, IgA, transferrin, haptoglobin 
and α1-anti-trypsin (Martosella et al.,  2005 ; Zolotarjova et al.,  2005  ). 
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 While seemingly advantageous, all these depletion methods, including immunoad-
sorption, can be problematic because they remove target proteins that may be closely 
associated with the removed species while simultaneously resulting in unwanted dilu-
tion (Zhou et al.,  2004b ; Zolotarjova et al.,  2005) . It has been recently reported that 
depletion methods may produce artifacts in terms of disease significance (Mehta et al., 
 2003 ; Tirumalai et al.,  2003) .  

  3.3.2 Compression Technologies 

 As previously noted, clinical sample proteomes are highly complex in their diver-
sity and expression levels. The most representative example is the human serum 
where albumin alone represents 60% of the total protein load and the nine most abun-
dant species (albumin, immunoglobulins G, haptoglobin, transferrin, transthyretin, 
a 

1
 -antitrypsin, a 

1
 -acidic glycoprotein, hemopexin and a 

2
 -macroglobulin) constitute 

about 90% of the entire serum proteome. It is commonly admitted that the 50 first 
proteins represent 99% of the protein mass and the remaining 1% comprises more 
than 100,000 other proteins. 

 One possible solution to the abundance challenge is to selectively enrich the abun-
dance of low copy number proteins, by capturing them using a diverse library of 
affinity ligands. The principle of solid phase adsorption would be advantageous since 
it selectively concentrates the target protein instead of diluting it, as it is the case with 
depletion. Based on the principle of over-saturating affinity beads and extending the 
principle to all serum proteins at a time, one could concentrate a large number of low 
abundance species, hence compressing the dynamic range of abundance. This method 
necessitates a very large number of highly selective ligands, each of them attached to 
a distinct bead in a number exceeding the number of target proteins. If such diversity 
of beads is mixed together and a large excess volume of protein mixture (with large 
differences in protein concentration such as in the serum) is loaded, high abundance 
proteins very rapidly saturate the corresponding beads while low abundance species 
continue to adsorb as long as the sample is available. Based on this principle, a novel 
approach has been described using solid phase ligand libraries (Righetti et al.,  2005 ; 
Thulasiraman et al.,  2005) . The library is comprised of discrete beads, each of them 
carrying a relatively large number of copies of the same ligand, and ligands are dif-
ferent from one bead to another. 

 The use of such a highly diverse combinatorial library of affinity ligands in over-
loading conditions results in a large reduction of protein concentration difference. 
High-abundance proteins such as albumin, IgG and others are partially eliminated 
while low abundance proteins are concomitantly and progressively concentrated as 
the solid phase is continuously fed. Retained proteins are then eluted in bulk or 
sequentially from the affinity library using buffer modifiers such as ionic strength, 
pH, chaotropic agents or organic solvents with subsequent analysis by any number of 
analytical methods. 

 When applied to clinical samples with down-stream 2-D Gel and/or MS analysis, this 
compression approach has resulted in the novel discovery of proteins present in biologi-
cal fluids. For example, human urine was analyzed before and after treatment using the 
same ligand library with the discovery of 251 proteins never described before (Castagna 
et al.,  2005) .    
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  4 CLINICAL PROTEOMIC ANALYTICAL METHODS  

 This section describes the most important analytical methods applied in the realm of 
clinical proteomics studies. For the most part, clinical proteomic analysis relies upon 
electrophoretic, liquid chromatographic, mass spectrometric, protein array, and bioin-
formatic technologies and products, many of which are discussed herein. 

  4.1 Top-Down vs. Bottom-Up Approaches 
 In clinical proteomic analysis, basic analytical approaches can be roughly grouped 

into two different schemes: those that directly analyze nascent proteins as they present 
themselves in living systems (Top-Down) and those that directly examine their proteo-
lytic fragments (Bottom-Up). Top-down methodologies include: Surface Enhanced 
Laser Desorption/Ionization (SELDI) analysis (Merchant and Weinberger,  2000) , 2-D 
gel electrophoresis (Jain, 2002 ); differential gel electrophoresis (Friedman et al.,  2004 ; 
Alfonso et al.,  2005) ; virtual 2-D gel electrophoresis (Loo et al.,  1996 ,  2001) ; hyphen-
ated LC combined with mass spectrometry (MS) (Chong et al.,  2001 ; Kachman et al., 
 2002) ; protein arrays (Geho et al.,  2004 ; Alessandro et al.,  2005 ; Clarke and Chan, 
 2005) , and electrospray ionization (ESI) Fourier transform ion cyclotron resonance 
mass spectrometry (FT ICRMS) (Ge et al.,  2002 ; Meng et al.,  2004) . 

 Top-Down approaches benefit from the ability to directly study the protein in ques-
tion. As such, investigators can correlate putative peptide sequence, measured protein 
physical characteristics (such as isoelectric point and hydrophobic index) with 
observed protein molecular weight, providing additional avenues towards protein iden-
tification as well as facile detection of posttranslational modifications. For high 
throughput schemes, such as SELDI MS, Top-Down biomarker discovery protocols 
can be immediately translated into assays for the purpose of diagnostic validation. 
However, the benefits of Top-Down analysis are accompanied by several demands, 
particularly in the area of MS detection. 

 Because proteomic samples are complex solutions that often thwart the generation of 
useful MS signals, MS detection is almost universally hyphenated with at least one sep-
aration scheme. Even so, most protein separation schemes fail to provide sufficient reso-
lution, often creating complex protein sub-populations in each fraction. Ionization 
potentials of intact proteins can be vastly different, making confident qualitative and 
quantitative analysis somewhat problematic. The latter is particularly true for amphipho-
bic and hydrophobic proteins as well as for proteins with post-translational modifica-
tions (PTMs, i.e., glycosylation and phosphorylation). Regardless of ion yield, analysis 
of complex protein fractions often places a high demand upon MS resolving power, 
especially for Top-Down studies using Electrospray Ionization (ESI) as an ionization 
source. For proteins with molecular weights in excess of about 10 kDa, confident 
deductions regarding protein identity and PTMs become increasingly dependent upon 
mass accuracy, often requiring the use of sophisticated MS platforms. 

 Because Bottom-Up studies analyze peptide fragments of nascent proteins, many of 
the previously described challenges encountered in the Top-Down approach are circum-
vented. Most commonly used proteolytic approaches generate protein hydrosylates with 
molecular weights below 5 kDa, reducing mass accuracy demands for determining 
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protein identity or peptide PTMs. Compared to their parent proteins, peptides are more 
uniformly ionized, somewhat mitigating the challenge of qualitative and quantitative 
detection. 

 Most frequently, Bottom-Up MS analysis is hyphenated with at least one on-line 
peptide separation scheme. A typical platform consists of a reverse phase (RP) HPLC 
system and is joined to an ESI MS. When more complete proteome coverage is desired, 
Bottom-Up MS analyses rely upon tandem peptide separation schemes, such as com-
bined ion exchange (IEX) and RP chromatography. Typically 5–10 fractions for the first 
dimension are collected and then subjected to RP HPLC MS analysis. 

 While Bottom-Up approaches are useful in cataloguing protein populations, they 
do not scale well in terms of creating practical assays. Further, the end product of a 
Bottom-Up study is a data base identification of the peptide or peptides detected during 
the purification scheme. Unless 100% peptide coverage of the parent protein is 
obtained, the analyst remains uncertain as to true nature of the biomarker in the living 
system. The detection of important PTM’s may be overlooked, this is particularly 
troublesome when abnormal proteolysis is observed as a direct consequence of patho-
logic or metabolic alterations. Often, the analyst is compelled to search for the nas-
cent protein to address PTM and assay development issues. Clearly in the clinical 
proteomics world, de novo Bottom-Up studies eventually lead to directed Top-Down 
research (see Fig.  4 ).   

  Fig. 4.     Clinical proteomic workflow . ( a ) Top-down proteomics studies; ( b ) Bottom-up proteomics 
studies. Clinical proteomic analysis is often first performed by using a non-directed or de novo protein 
discovery approach. Both top-down and bottom-up methodologies can be applied. Once protein iden-
tification has been established, undirected studies frequently give way to directed analysis, particu-
larly during the phase of assay development or biomarker validation       
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  4.2 Top-Down Methodologies 

  4.2.1 Two-Dimensional Gel Electrophoresis–Mass Spectrometry 

 The most widely used Top-Down protein discovery approach is two-dimensional gel 
electrophoresis/mass spectrometry (2-D MS) (Goerg et al.,  2004) . While 2-D gels do not 
directly study proteins by mass spectrometry, they do provide a means to generate pro-
tein profiles of authentic samples. Briefly, proteins are firstly separated by their isoelec-
tric point via immobilized pH gradients and then further fractionated using sodium 
dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE). PAGE slabs are then 
stained creating a two-dimensional array of spots. Slabs are digitally imaged using an 
optical scanner, and scanned images can be differentially compared, with particular focus 
upon spot location and stain intensity. As such, three-dimensional patterns can be gener-
ated for each sample (protein pI, protein molecular weight, and protein abundance). 

 Early attempts at interpreting 2-D gel profiles were facilitated by using artificial 
intelligence and machine learning programs. One particular program termed MELANIE 
(Medical Electrophoresis Analysis Interactive Expert System) was created to automati-
cally classify 2-D profiles using heuristic clustering analysis and hierarchical classifica-
tion (Appel et al.,  1988 ; Pun et al.,  1988) . The overarching goal of this work was to 
create a means to determine disease-associated patterns with the intent of creating a 
computer based diagnostic regimen. It was successfully applied towards the diagnosis 
of liver cirrhosis and the distinction of a variety of cancer types from cancerous biopsies 
(Appel et al.,  1991) . Later the work was extended towards the comparative analysis of 
plasma/serum obtained from apparently healthy individuals and from patients with a 
few selected, known diseases. Despite their apparent complexity, the patient electroph-
erograms revealed readily detectable modifications of the reference protein profile for 
the selected diseases. Several disease associated spot patterns were elucidated from 
patients with monoclonal gammopathies, hypogammaaglobulinemia, hepatic failure, 
chronic renal failure, and hemolytic anemia (Tissot et al.,  1991) . 

 While initially successful, the 2-D approach failed to translate to the clinic; it was 
inherently troubled in terms of its limited reproducibility, restricted dynamic range of 
detection, and laboriously slow throughput. More recently, a new 2-D approach termed 
Difference Gel Electrophoresis (DIGE) has been introduced as a possible means to 
improve reproducibility and throughput (Unlu et al.,  1997) . DIGE is a modification of 
the classical 2-D approach in which multiple samples can be analyzed within the same 
gel, allowing for the simultaneous analysis of experimental and control cohorts. DIGE 
is performed by fluorescently tagging multiple samples with different amine reactive 
dyes, running them on the same 2-D gel, and then performing post-run fluorescence 
imaging of the gel, allowing for direct superimposition of groups. In this manner, one 
sees a reduction in the number of gels processed and imaged. Further, the affects of 
gel-to-gel irreproducibility are somewhat minimized. DIGE based analysis have been 
successfully performed in the study of colorectal cancer (Friedman et al.,  2004 ; 
Alfonso et al.,  2005) . 

 While 2-D gel patterns can be instructive, ultimately the identity of unique markers 
must be established. Towards this end, 2-D gel analysis has been married with ESI and 
Matrix Assisted Laser Desorption/Ionization (MALDI) mass spectrometry. Protein 
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spots of interest are typically excised from the gel and then de-stained. The excised gel 
plugs are then digested using proteases with specific proteolytic activity, such as trypsin, 
endo-Lys-c, and V-8 protease. Liberated peptides diffuse out of the gel plugs lending 
themselves for subsequent MS analysis. An over-view of this process along with sug-
gested protocols is provided by Corthals et al (Gygi et al.,  2000) . The specific details of 
MS based protein identification are subsequently discussed in this chapter.  

  4.2.2 Virtual 2-D Gel Analysis 

 To address the reproducibility and throughput issues associated with classical 2-D gel 
analysis, several researchers hyphenated the direct analysis of polyacrylamide gels with 
MALDI mass spectrometry, eliminating the step of SDS PAGE (Loo et al.,  1996) . Ultra 
thin (less than 10 µm when dry) gels were soaked in MALDI matrix solution and then 
directly analyzed in a MALDI-TOF mass spectrometer. Initial spectra were acquired 
from isoelectric focusing, native, and SDS gels. Virtual 2-D gels were created by 
MALDI scanning isoelectric gels. Virtual 2-D gels were extended to the study of the  E. 
coli  proteome (Loo et al.,  2001) . When compared to classical 2-D studies of the same 
proteome, virtual 2-D analysis allowed for the postulation of protein identities (< 50 
kDa) based upon improved molecular mass determination and pI (±0.3 pH units). 

 Data reduction and display algorithms were created to allow for facilitated viewing 
and studying of virtual 2-D results (Walker et al.,  2001) . At its most advanced state, 
virtual 2-D gel analysis demonstrated high sensitivity (analogous to silver stain detec-
tion limits) and improved throughput, resolution, and mass accuracy when compared to 
the classical 2-D analysis. However, complications associated with interfacing gels with 
MALDI MS systems fundamentally limited broader adoption of this approach.  

  4.2.3 Surface Enhanced Laser Desorption/Ionization 

 SELDI protein array technology represents a collection of analytical tools and proto-
cols that address the challenges of protein separation, protein purification, and protein 
detection by mass spectrometry (Merchant and Weinberger,  2000 ; Fung et al.,  2001 ; Lin 
et al.,  2003) . SELDI array surfaces function as solid phase extraction media that support 
on-probe isolation and cleanup of analytes prior to mass spectrometric investigation. 
Analytes with physical and chemical properties that are complimentary to the array 
surface functional groups are adsorbed, while others are washed away during the sam-
ple preparation process. 

 After adsorption and purification upon the array surface, retained proteins are subse-
quently desorbed and ionized using matrix assisted laser desorption/ionization and are 
typically detected by a time-of-flight mass spectrometer. To date, there are over of 220 
published studies using SELDI in cancer research. Recently, SELDI technology has 
demonstrated the ability to translate the fundamental discovery of protein biomarkers 
into predictive assays for the purpose of diagnosing the presence of epithelial ovarian 
carcinoma (Zhang et al.,  2004b) . In a related study, researchers used SELDI to uncover 
host specific protein PTMs capable of classifying cancer subtypes (Fung et al.,  2005) . 

 SELDI is one of the most successful top-down approaches to address qualitative, 
quantitative, and throughput challenges of pattern recognition diagnostic test develop-
ment. Significant advancements in automated sample preparation, MS analysis, and sta-
tistical analysis affords the investigator the ability to generate extensive protein profiles for 
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the purpose of de novo biomarker discovery, often using less than 100 uL of the total 
sample. Because proteins are sequestered according to their physico-chemical character-
istics, competitive ion suppression is significantly reduced when compared to MALDI or 
ESI MS analysis, improving assay qualitative and quantitative reliability. Because 
SELDI is a true top-down MS discovery approach, initial protein discovery conditions 
can be leveraged to create protein purification or directed protein discovery schemes. 

 Compared to de novo or directed SELDI protein discovery, SELDI based protein 
identification is far more laborious and pales by comparison to the throughput achieva-
ble in Bottom-Up studies. However, since only statistically meaningful biomarkers need 
be identified, the additional burden of protein identification does not significantly 
impact the entire assay development process, and as such, SELDI based diagnostic test 
development remains one of the most rapid approaches towards the creation of well 
characterized protein clinical assays.  

  4.2.4 Liquid Chromatography: Mass Spectrometry (LC-MS) 

 In a similar vein as virtual 2-D gel analysis, researchers combined protein isoelec-
tric focusing with nonporous silica RP HPLC–ESI Time of Flight (TOF) MS analysis 
to create a liquid phase, three-dimensional protein separation method (Wall et al., 
 2001) . The fast scanning speed, high resolution/mass accuracy, and sensitivity of the 
TOF MS analyzer allowed for the detection of several hundred unique proteins in the 
pI range of 4.8–8.5 from cytosolic fractions of human erythroleukemia cell line 
lysates. Proteins were identified by combining determined pI (±0.5 units) and intact 
molecular weight (±150 ppm error). Using molecular weight and peptide fingerprint-
ing results, PTM’s and sequence modifications were noted. The combination of pI, 
RP elution time and MW was also used to create 2-D pI-MS protein maps, where 
proteins are displayed as bands, whose gray scale was proportional to the intensity of 
the protein molecular ion peak. 

 Two-dimensional chromatofocusing liquid separations were also combined with RP 
HPLC–ESI TOF MS analysis to separate and analyze proteins from human breast epi-
thelial whole cell lysates (Chong et al.,  2001) . Because isoelectric point separation was 
now achieved using an LC column, throughput was remarkably improved. Top-Down 
LC-MS methodologies have been successfully applied to differential studies of pre-
malignant and malignant human breast cell lines (Chong et al.,  2001)  as well as epithe-
lial ovarian carcinoma (Kachman et al.,  2002) .  

  4.2.5 Top-Down Fourier Transform Ion Cyclotron Resonance MS (FT-
ICR-MS) Analysis 

 The advent of high mass resolving power and accuracy afforded by FT-ICR-MS has 
enabled the direct study of proteins, with or without prior LC separation, with impres-
sive results (Kelleher et al.,  1999) . ESI has been coupled with FT-ICR to enable accurate 
mass assignments for intact proteins as well as large fragments of proteins whose 
masses easily sum to those of the intact parent. Identified proteins or protein fragments 
of interest can be directly sequenced using low energy collisional induced dissociation 
(CID), electron capture dissociation (ECD), as well as infrared multi-photon dissocia-
tion (IRMPD) (McLafferty,  2001 ; Reid and McLuckey,  2002) . In order to achieve these 
ends, a number of data processing improvements were required. 
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 While ESI has the ability to produce multiply charged ions, bringing large mole-
cules down to a mass ( m ) to charge ( z ) ratio amenable to FT-ICR analysis, it also 
provides a fundamental disadvantage because determined mass becomes ambiguous 
unless charge can be firmly established. For pure compounds or for low mw species 
that only form up to three multiply charged ions, the latter is easily achieved by 
using a simple algorithm that uses multiple peaks in the same mass with different 
charge states. However, for complex mixtures of large peptides and proteins, a great 
number of multiple charge envelopes will overlap, making this straight forward 
approach fail. The high resolving power of FT-ICR allows for direct, unambiguous 
determination of charge state, based upon the incremental  m / z  difference for a given 
isotopic distribution. The latter was leveraged to create a pattern recognition based, 
automatic charge state assignment algorithm from deconvoluted isotopic envelopes, 
allowing on-the-fly determination of protein profiles, even for complex mixtures 
(Senko et al.,  1995) . Later a new computer algorithm known as THRASH (Thorough 
High Resolution Analysis of Spectra by Horn) was developed to further accelerate 
protein signal deconvolution and identification. THRASH combines a subtractive 
peak finding routine to locate possible isotopic clusters with a Fourier transform/
Patterson method for primary charge determination. A least-squares fitting to a the-
oretically derived isotopic abundance distribution was then used for final  m / z  deter-
mination. Further, a new signal to noise calculation procedure was devised for the 
accurate determination of baseline and background noise (Horn et al.,  2000b) . In 
terms of deriving de novo protein sequence from ESI FT-ICR generated ECD frag-
mented proteins, McLafferty and coworkers developed an algorithm to convert frag-
ment ion mass values into most probable protein sequence (Horn et al.,  2000a) . The 
algorithm has been successful in deriving a sequence from proteins as large as 10 
kDa in size. 

 Top Down FT-ICR-MS measurements have been effectively performed in the study 
of  Bacillus cerus  T spores (Demirev et al.,  2001) , proteins of thiamine biosynthesis (Ge 
et al.,  2002) , as well as human lung cancer cell lines (Yan et al.,  2005) . When combined 
with size exclusion – nano LC separation, a number of biomarkers distinguishing stage 
III/IV epithelial ovarian carcinoma from postmenopausal age matched controls were 
highlighted (Bergen et al.,  2003) . 

 Among the previously discussed Top Down approaches, FT-ICR arguably repre-
sents the most exciting and promising advancement. However, several challenges 
remain. FT-ICR-MS instrumentation is exquisitely expensive and challenging to 
competently operate, making the likelihood of broad-based adaptation low without 
significant burden reduction. Further, because of  m / z  range restrictions, Top-Down 
FT-ICR approaches must be inherently linked with electrospray ionization. As 
such, quantitative results will be invariably affected by competitive ion suppres-
sion, placing high requirements upon chromatographic resolution and retention 
time reproducibility. Further, sequence determination of large ESI formed ions is 
greatly dependent upon charge state (Reid and McLuckey,  2002 ; Yan et al.,  2005) . 
As such, advanced algorithms for automated charge state selection and distillation 
of multiple MS/MS analysis to create composite sequence determination are still 
required.   
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  4.3 Bottom-Up Methodologies 

  4.3.1 Shotgun LC-MS and LC-MS/MS Analysis 

 Shotgun LC-MS and LC-MS/MS analysis has emerged as a popular approach to cat-
alogue proteomes of interest as well as a means to discover protein based biomarkers. 
Protein populations are irreversibly reduced prior to global digestion with an enzyme of 
known specificity. In most cases, trypsin is employed. In few instances, proteins are 
initially fractionated using IEX, isoelectric focusing, or affinity chromatography prior 
to global digestion. The resultant highly complex peptide pool is then subjected to LC-
MS/MS analysis. Initial studies often focused upon specific proteomes of modest com-
plexity and employed a single stage of LC separation (RP HPLC). The human urinary 
proteome was evaluated by combining low flow rate gradient HPLC with ESI quadru-
pole TOF MS and MS/MS analysis (Davis et al.,  2001b) . In all about 200 proteins were 
identified during a 24 h analytical period.  

  4.3.2 MudPIT: Towards Higher Shotgun Resolution 

 In order to address the extensive peptide complexity created in global digestion 
schemes, a group of researchers originated what is to date the most widely adapted 
method for shotgun proteomics known as multidimensional protein identification tech-
nology (MudPIT) (Wolters et al.,  2001) . MudPIT is a multidimensional LC method that 
integrates SCX and RP resin in a single, biphasic column. As is the case with many 
landmark advancements, variations on a common theme emerge, and today many 
researchers combine a two-phase separation scheme using distinct SCX and RP col-
umns. For example, an automated SCX exchange – gradient RP HPLC–MS/MS system 
was used to evaluate complex peptide digestion mixtures. Investigators noted greater 
than 40% increase in the number of peptide and protein detections when compared to a 
RP LC control (Davis et al.,  2001a) . For the purpose of this review, we will not distin-
guish between integrated and distinct MudPIT analysis. 

 Since its introduction, MudPIT analysis has been extended towards the investigation 
of whole proteomes, cellular organelles, protein complexes (Paoletti et al.,  2004 ; 
Washburn,  2004) , membrane bound proteins (Wolters,  2004) , and plant proteomes 
(Park,  2004) . More recently, MudPIT has been used to monitor changes in global pro-
tein expression patterns in cells and tissue as a function of developmental, physiologic 
and disease processes (Kislinger and Emili,  2005) . In terms of cancer research, MudPIT 
has been applied to the study of epithelial ovarian carcinoma (Somiari et al.,  2005) , 
silenced p53 effectors (Benzinger et al.,  2005) , lung micro-vascular endothelial cells 
(Durr et al.,  2004) , serine protease inhibitors (Chen et al.,  2005) , pancreatic carcinoma 
(Mauri et al.,  2005)  and breast cancer(Jessani et al.,  2005 ; Somiari et al.,  2005) . 

 Unlike most Top-Down approaches, MudPIT analysis provides a large number of 
protein identifications as part of its de facto operation. Frequently hundreds to thou-
sands of putative identifications and measured peptide signals are generated in a single 
analysis, making the task of data interpretation and quality assurance challenging, to say 
the least. Towards this end, an advanced data management program known as Pep-
Miner has been developed (Beer et al.,  2004) . Pep-Miner functions by clustering similar 
spectra from multiple LC-MS/MS runs. The major effect is a marked reduction in the 
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huge amounts of data to a more manageable size, allowing for convenient storage and 
post-processing of acquired spectra. In one study Pep-Miner was applied to a MudPIT 
analysis of lung cancer cells, reducing an initial 517,000 spectra to 20,900 clusters 
while identifying 2,518 peptides derived from 830 proteins (Beer et al.,  2004) . 

 A major computational effort has been focused upon improving the confidence in 
reported peptide identifications. SEQUEST (Yates et al.,  1995)  is one of the most 
broadly used automated peptide identification tools. SEQUEST functions to correlate 
un-interpreted tandem mass spectra of modified peptides produced under low-energy 
collision conditions, with amino acid sequences in a protein database. Observed peptide 
fragmentation patterns in the tandem mass spectra are used to directly search and fit 
linear amino acid sequences into the data base. However, confidence in the identified 
peptides has been shown to be dependent upon spectral quality. Recently, work has been 
directed towards the creation of two different pre-processing approaches to assess spec-
tral quality prior to SEQUEST identification: binary classification, which predicts 
whether or not SEQUEST will be able to make an identification; and statistical regres-
sion, which predicts a more universal quality metric involving the number of b- and y-
ion peaks (Bern et al.,  2004) . Another algorithm, known as Logistic Identification of 
Peptides (LIP), has been developed and reportedly achieves high sensitivity and selec-
tivity for peptide classifications when compared to manually verified gold standards. 
The LIP index is a weighted average of SEQUEST output variables based on logistic 
regression models (Higdon et al.,  2004) . Neural networks and specific statistical models 
have also been applied to SEQUEST mining results in order to normalize reported 
scores with respect to peptide composition and length. The investigators reported an 
improved sensitivity and specificity of peptide identification compared to the standard 
SEQUEST filtering procedure (Razumovskaya et al.,  2004) . 

 The overall implications of potentially false positive identifications from database 
mining experiments of large tandem MS experiments are discussed in Cargile et al. 
 (2004) . The authors indicate significant false positive identification rates, even when 
previously suggested probability score thresholds have been applied. Other researchers 
have evaluated several protein identification programs with respect to search selectivity 
and sensitivity (Chamrad et al.,  2004) . 

 Even with present software advancements, the analyst is advised to manually verify 
putative protein identities from shotgun studies. Clearly manual inspection is impracti-
cal on a global level, sustaining pressure to improve quality assurance routines for shot-
gun proteome inventory studies. However, in the realm of biomarker discovery, 
differential algorithms can be applied between cohorts to identify a finite subset of 
markers. Under such circumstances, manual verification is not an egregious task.  

  4.3.3 Quantitative Challenges in Shotgun Analysis 

 As is the case for any protein differential display regimen, shotgun differential pro-
teomic studies need to address both qualitative and quantitative figures of merit. 
Towards this end, a computer program called RelEx, which uses a least-squares regres-
sion for the calculation of peptide ion current ratios from MS derived ion chromato-
grams, has been created (MacCoss et al.,  2003)  

 In an effort to constrain quantitative error, quantitative Bottom-Up studies have used 
specific labeling motifs. Isotope Coded Affinity Tags (ICAT) was introduced as an 
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approach to further improve quantitative accuracy and concurrent sequence identifica-
tion of individual proteins within complex mixtures (Gygi et al.,  1999) . Briefly, ICAT 
tags are biotin containing isotopic mass tags with specific reactivity for reduced 
cysteine. Globally digested protein pools are labeled with different ICAT tags after 
which cysteine containing peptides are extracted using avidin beads. Differentially 
labeled populations are recombined for simultaneous analysis using LC-MS/MS. 
Initially the approach was used to compare protein expression within  Saccharomyces 
cerevisiae . Later ICAT was used to illustrate differences between mRNA abundance and 
protein expression in the same yeast (Aebersold et al.,  2000) . Subsequently, ICAT was 
extended to the analysis of native and campthothecin-treated cortical neurons (Yu et al., 
 2002) , quantitative profiling of LNCap prostate cancer cells (Meehan and Sadar,  2004) , 
breast cancer (Pawlik et al.,  2006) , and the identification of androgen co-regulated pro-
tein networks of human prostate cancer cells (Wright et al.,  2004) . Several reviews 
examining stable isotope affinity tags have been authored (Tao and Aebersold,  2003 ; 
Wright and Aebersold,  2003 ; Zhou et al.,  2004a) . 

 One complication of the ICAT labeling scheme is that the covalently linked tag 
causes a measurable difference in ion fragmentation resulting in additional burden for 
automated sequence interpretation. Studies comparing low energy CID fragmentation 
patterns of peptides labeled with the ICAT reagent to those of unmodified peptides 
revealed the formation of ions attributed to the modified Cys peptide as well as those 
unique to the labeling reagent (Borisov et al.,  2002) . Further, since labeling is dependent 
upon the presence of Cys in the studied peptide, the majority of a given protein’s cover-
age is discarded, often with great risk of missing key posttranslational modifications. 

 Another quantitative labeling motif with more universal peptide coverage than 
ICAT is Isobaric Tags for Relative and Absolute Quantitation (iTRAQ™) (Chong et 
al.,  2006) . The iTRAQ method uses a multiplexed set of four isobaric reagents spe-
cifically reactive for primary amines, thus theoretically labeling every peptide from a 
protein digested by a c-terminal lysine or arginine specific protease (i.e., Trypsin or 
endo-Lys-C). Resultant peptides are identical in mass and single ms analysis mode, 
but generate highly specific tandem MS signatures. In terms of cancer research, 
iTRAQ has been used to study breast cancer(Overall and Dean,  2006)  as well as 
endometrial carcinoma(DeSouza et al.,  2005) . A specific software program known as 
I-Tracker has been developed to facilitate relative and absolute quantitative studies 
(Shadforth et al.,  2005) . 

 Recent work has compared the quantitative performance of ICAT, DIGE, and iTRAQ 
using a six-protein mixture, a reconstituted protein mixture (BSA spiked into human 
plasma devoid of six abundant proteins), and complex HCT-116 cell lysates as the sam-
ples (Wu et al.,  2006) . All three techniques yielded quantitative results with reasonable 
accuracy when the six-protein or the reconstituted protein mixture was used. In DIGE, 
accurate quantification was sometimes compromised due to co-migration or partial co-
migration of proteins. The iTRAQ method was found to be more susceptible to errors 
in precursor ion isolation, which could be aggravated with increasing sample complex-
ity. The quantification sensitivity of each method was estimated by the number of pep-
tides detected for each protein. In this regard, the global-tagging iTRAQ technique was 
more sensitive than the cysteine-specific cICAT method, which in turn was as sensitive 



108 Weinberger, Boschetti

as, if not more sensitive than, the DIGE technique. Protein profiling on HCT-116 and 
HCT-116 p53 −/− cell lysates displayed limited overlapping among proteins identified 
by the three methods, suggesting the complementary nature of these methods.   

  4.4 Protein Identification and Characterization 
 The analytical and computational challenges of mass spectrometry biomarker discov-

ery and mass spectrometry protein identification are inextricably linked. To fully appre-
ciate this inter-relationship, one needs to consider the basic approaches to pattern-based 
biomarker discovery and the inherent requirement for protein identification. For regard-
less of the discovery approach, diagnostic proteins should be well characterized by 
confidently confirming identity, and establishing precise primary sequence as well as all 
salient post-translational modifications (PTMs). In this section, we present a modest 
over-view of MS protein identification methods. 

 As previously noted, regardless of the biomarker discovery scheme, statistically vali-
dated diagnostic candidates must be identified in terms of their primary amino acid 
sequence and exhibited PTMs. Nowadays, protein identification and characterization is 
almost universally achieved using single or tandem mass spectrometry in combination 
with computational algorithms. 

  4.4.1 Peptide Mass Fingerprinting 

 With the continued growth of protein sequence data bases as well as the emergence 
of cDNA databases, it became possible to derive peptide sequence and protein identity 
by correlating MS measurements with theoretical peptide fragments of a previously 
known sequence. Henzel  et al.  introduced a computer algorithm, later coined Fragfit, 
for the automated identity determination of proteins separated by 2-D gels (Henzel 
et al.,  1993 ; Arnott et al.,  1996) . Peptides were generated by reduction, alkylation, and 
tryptic digestion and then analyzed via MALDI TOF. Fragfit functioned by searching 
an existing protein sequence database for multiple peptides of individual proteins that 
match the measured masses. In a parallel effort, Mann and coworkers created routines 
to correlate MS results to protein identities found within the protein databases (Mann 
et al.,  1993)  

 Today, the process of identifying proteins based upon single MS measurements of 
specific proteolytic fragments searched against protein or cDNA databases is generi-
cally referred to as peptide mass fingerprinting (PMF). High throughput (HT) PMF 
analysis is frequently performed in hyphenated 2-D gel MALDI MS analysis. 
Alternatively several in-gel digestions are queued up for automated analysis using LC 
ESI MS. As was the case in shotgun experiments, HT PMF studies generate a tremen-
dous amount of data, creating corresponding challenges in insuring quality in protein 
identifications. Accordingly, computer algorithms directed towards improving protein 
identification from PMF studies have been created.  

  4.4.2 Sequencing and Protein ID via MS/MS 

 While PMF can often provide initial protein identification, in cases in which insuffi-
cient protein purification is achieved, or in studies with limited peptide coverage, sub-
stantial irregular peptide cleavage, and/or PTM’s, PMF algorithms generally fail to 
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provide a confident and complete list of all proteins found in the original sample. 
Consequently, tandem MS analysis is relied upon as the gold standard for establishing 
the peptide primary sequence, PTM, and protein identification. In 1990, pioneering 
work for today’s modern peptide MS (n)  analysis was performed by Cooks and Stafford 
using a quadrupole ion trap mass spectrometer (QIT MS) (Kaiser et al.,  1990) . A 
number of small peptides were ionized using Cs + surface ionization, injected into the 
trap, mass selected, and then activated by low energy CID, resulting in dissociation. 
Product ions were mass selectively ejected and then analyzed to determine the primary 
sequence. Tandem MS data on sub-femtomole levels of gramicidin S was demonstrated. 
In the same year, Van Berkel and others combined ESI with QIT single and multiple MS 
analysis to demonstrate low energy CID fragmentation and peptide sequencing (Van 
Berkel et al.,  1990) . One year later, one-line capillary RP LC was combined with ESI 
QIT MS analysis (McLuckey et al.,  1991) . In addition to ESI, MALDI generated ions 
were also analyzed using QIT MS (Qin and Chait,  1995) . Today, the majority of tandem 
ms experiments are performed using on-line capillary RP HPLC with ESI ion trap 
devices. Sequences are automatically processed and protein identification conferred 
using various algorithms such as SEQUEST. 

 Other tandem MS schemes currently used for peptide sequence determination include 
the ESI tandem quadrupole TOF MS analyzers (Shevchenko et al.,  1997) , ESI FTICR 
MS (Wu et al.,  1995) , MALDI post source decay (PSD) analysis (Kaufman et al.,  1993) , 
MALDI quadrupole TOF analysis (Krutchinksy et al.,  1998) , MALDI TOF–TOF MS 2  
analysis (Bienvenut et al.,  2002 ; Juhasz et al.,  2002 ; Yergey et al.,  2002) , and MALDI 
QIT–TOF MS analysis (Ding et al.,  1999) .    

  5 CONCLUSIONS  

 In spite of all the technological progress made to date, clinical proteomic studies are 
still challenged in a number of important dimensions. Perhaps most critical, is the abil-
ity to effectively detect low copy number proteins in a relatively straight-forward man-
ner. Even with current improvements in protein fractionation and analytical detection, 
the practical lower limit of detection remains in the attomole range, making detection at 
trace levels difficult, to say the least. Without substantial advancements in this area, it 
will remain a true challenge to detect early signs of protein “leakage” into biological 
fluids such as blood and urine that are pathognomonic of the early onset of disease. 

 Concomitant advancements in the dynamic range of qualitative and quantitative detec-
tion are also required. In fact, in some cases, the goals of maximizing dynamic range and 
analytical sensitivity can pose some interesting choices in terms of compromise and 
trade-off. Often, a given analytical platform has a fixed dynamic range of response. The 
latter is usually due to fundamental limitations in the physical generation of signal, or in 
the down-stream processing of acquired electronic signatures. As one digs deeper into 
the dirt, it becomes easy to loose the ability to accurately detect and quantify major con-
stituents. Indeed, the old adage of the “forest through the trees” certainly applies. 

 Instrument access and automation also pose an interesting dilemma. Modern pro-
teomic research devices have greatly benefited from advancements in engineering and 
automation, making them accessible and easy to use in the hands of the veritable novice 
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or the aspiring translational researcher. Even today, automated mass spectrometric, pro-
tein microarray, electrophoretic, and chromatographic devices still require a reasonable 
level of savvy so that the devices are appropriately used. Indeed, it is now easier than 
ever before to generate large volumes of data and results that often evoke feelings of 
elation, particularly when studying diseases with significant morbidity and mortality, 
such as cancer. The translational researcher is best served by developing a practical 
understanding of each platform’s operating principles. Moreover, broadly adopted, peer 
review standard protocols and controls need to be employed to insure that experimental 
results truly reflect significant clinical findings and are not the direct consequence of 
unknown or uncontrolled artifacts of the employed analytical regimen. 

 Clinical specimen collection and processing remains an area of concern in proteom-
ics research. Most clinical samples are acquired using protocols that have effectively 
evolved since the dawn of clinical chemistry. These protocols have matured in response 
to existing assay requirements as well as financial pressures exerted by the healthcare 
industry. In many cases, sample collection and storage introduce buffering and stabiliz-
ing media that thwart effective proteomic analysis. Furthermore, the practice of drawing 
blood or collecting urine is so diverse, that artifactual proteomic signatures can be cre-
ated, making the differentiation of sample origin possible when employing multivariate 
analysis. Clearly, standards for proteomic clinical sample collection and storage need to 
be broadly adapted, if multi-site validation of putative biomarkers can be routinely real-
ized. Moreover, these new proteomic compatible protocols need to be practical in terms 
of their scope and financial impact to the health care enterprise, for any broadly adapted 
proteomic assay will need to be financially achievable.      
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  ABSTRACT 

 Tumors develop through the combined processes of genetic instability and selection, 
resulting in clonal expansion of cells that have accumulated the most advantageous set of 
genetic aberrations. These genetic instabilities manifest themselves as a series of genetic 
alterations, including discrete mutations and chromosomal aberrations. With the human 
genome deciphered, high-throughput technologies are advancing studies to link genome-
wide gene expression and mutation profiles with biological and disease phenotypes. Recent 
advances in comprehensive genomic characterization present an unprecedented opportunity 
for advancing the treatment of cancer, but many challenges remain to be overcome before 
we can fully exploit genomic markers/targets for cancer prediction, diagnosis, treatment and 
prognostics. Here, we review recent developments in comprehensive genomic characteri-
zation at the DNA level, and consider some of the challenges that remain for defining the 
precise genomic portrait of tumors. We then offer some potential solutions that may help 
overcome these challenges.  

  Key Words:   Loss of heterozygosity ,  Comparative genomic hybridization ,  Spectral 
 karyotyping ,  Multicolor fluorescence in situ hybridization ,  Tiling array ,  SNP array , 
 Personalized therapies     

  1 INTRODUCTION  

 Molecular understanding of genomic aberrations can have significant clinical value 
in diagnosis, treatment and prognostics of cancer. Four decades ago, there was the mile-
stone discovery of the Philadelphia chromosome (a translocation between chromosome 
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9 and 22, which fuses the Bcr gene and the Abl tyrosine kinase gene) (Nowell and 
Hungerford,  1960)  as the primary genetic change in chronic myelogenous leukemia 
(CML). This led to one of the first effective targeted therapies for cancer: treatment of 
CML with the tyrosine kinase inhibitor imatinib (Gleevec). Since then, many exciting 
clinical advances have been made based on our increasing knowledge of the tumor 
genome. The completion of the human genome project (Lander et al.,  2001 ; Venter 
et al.,  2001)  now makes it possible to systematically query the cancer genome in ways 
that were hitherto impossible. Microarrays designed to analyze targeted genomic 
regions relevant to various cancers are being developed. For example, in chronic lym-
phocytic leukemia (CLL), efforts are being made to optimize therapeutic options based 
on specific genomic aberrations (Schwaenen et al.,  2004 ; Stilgenbauer and Dohner, 
2005). Associations between genomic aberrations with disease prognosis have been 
found for a variety of tumor types, including prostate cancer (Paris et al.,  2004) , breast 
cancer (Callagy et al.,  2005) , gastric cancer (Weiss et al.,  2004) , head and neck cancer 
(Rosin et al.,  2000)  and lymphoma (Martinez-Climent et al.,  2003 ; Rubio-Moscardo 
et al.,  2005) . Many more studies are in progress or near completion. These findings will 
provide a new paradigm for cancer treatment that is fundamentally guided by a genomic 
perspective of the disease (reviewed in Futreal et al.,  2004 ; Mundle and Sokolova,  2004 ; 
Avivi and Rowe,  2005 ; Granville and Dennis,  2005 ; Jeffrey et al.,  2005) . 

 A critical biological difficulty confronting the identification and eventual transla-
tion of genomic markers/targets for cancer prediction, diagnostics, treatment and 
prognostics is distinguishing the genomic aberrations driving malignant cell growth 
from those that are byproducts of abnormal proliferation (Zhou et al.,  2006) . Among 
these key processes are germline variations that lead to hereditary cancer predisposi-
tions, the acquisition of transforming DNA or RNA sequences from cancer viruses, 
somatic mutations in the cancer genome, and epigenetic mechanisms (such as DNA 
methylation or histone modification) that promote oncogenesis by modifying cancer-
related genes. Somatic genomic alterations such as point mutations, genomic amplifi-
cations or deletions, loss of allelic heterozygosity, and chromosomal translocations 
are believed to play a central role in the development of most solid tumors (Weir 
et al.,  2004) . A variety of high-throughput genetic and molecular technologies have 
been developed and enable the identification of a broad range of genetic abnormali-
ties, including the analysis of chromosome karyotyping, loss of heterozygosity 
(LOH), comparative genomic hybridization (CGH), digital karyotyping (DK) (Wang 
et al.,  2002) , fluorescence in situ hybridization (FISH), restriction landmark genome 
scanning (RLGS) (Imoto et al.,  1994) , representational difference analysis (RDA) 
(Lisitsyn and Wigler,  1993) , and statistical inference of chromosomal changes from 
gene expression data (Crawley and Furge, 2002 ; Zhou et al.,  2004a ,  2005) . The recent 
development of multicolor staining-based cytogenetic techniques such as multicolor 
fluorescence in situ hybridization (M-FISH) and spectral karyotyping (SKY) have 
further improved the ability to analyze the tumor genome (Liehr et al.,  2002) . 
However, none of the existing genomic techniques can capture all these genetic 
changes in a single analysis (Fig.  1 ; reviewed in Albertson et al.,  2003 ; Zhou et al., 
 2006) . This represents a major obstacle to the comprehensive analysis of tumor 
genomes and their relationship to clinical phenotypes.  
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 In this chapter, we survey the recent technological advances in the characterization 
of tumor genomes at the DNA level and consider some of the major challenges that 
remain in defining genomic markers/targets for cancer prediction, diagnostics, treat-
ment and prognostics. We also identify potential solutions that may overcome these 
outstanding challenges to improve the diagnosis and treatment of solid tissue 
malignancies.  

  2 TECHNICAL OVERVIEW OF THE WIDELY USED GENOMIC 
APPROACHES  

  2.1 Systematic Copy Number Analysis 
 CGH was developed to survey gene copy number abnormalities (amplifications and 

deletions) across a whole genome (Kallioniemi et al.,  1992) . In a typical CGH analysis, 
differentially labeled test/disease and reference genomic DNAs are cohybridized to 
normal metaphase chromosomes to generate fluorescence ratios along the length of 
chromosomes that provide a cytogenetic representation of DNA copy number variation. 
This was the first effective approach to scanning the entire genome for variations in 
DNA content (Pinkel and Albertson,  2005a , b) . However, chromosome-based CGH has 
a limited mapping resolution (~10–20-Mb). Array-based CGH is a second-generation 
approach in which fluorescence ratios on microarrayed DNA elements provide a locus-
by-locus measure of gene copy number variation (Pinkel et al.,  1998 ; Ishkanian et al., 
 2004)  (Fig.  2 ). Although this approach can potentially increase mapping resolution, 
most array CGH methods have utilized large genomic clones (e.g., bacterial artificial 

  Fig. 1.    Detection and mapping of chromosomal abnormalities using different genomic and cytogenetic 
approaches.  A , polyploid;  B , aneuploid;  C , gross deletion;  D , interstitial deletion;  E , microdeletion; 
 F , reciprocal translocation;  G , nonreciprocal translocation;  H , double minutes;  I , HSR;  J , distributed 
insertion;  K , somatic recombination;  L , duplication and loss (adapted from Zhou et al.,  2006 ; with 
kind permission of Future Drugs Ltd) (See Color Plates)       
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chromosomes, (BACs)) which limit spatial sensitivity. In addition, large genomic clones 
also suffer from reduced specificity due to the inclusion of common repeats (e.g.,  Alu  
and long interspersed nuclear elements – LINEs), redundant sequences (e.g., low copy 
repeats, LCRs), also known as segmental duplications), and segments of extensive 
sequence similarity (pseudogenes or paralogous genes) (Mantripragada et al.,  2004) . 

  Fig. 2.    A typical BAC array-based CGH result on a CLL sample where a dye-swap experiment was 
performed. CGH was performed using array with BAC clones representing genomic regions that are 
commonly involved in CLL (( A ) raw data, ( B ) normalized, and ( C ) combined data). A deletion of the 
13q14 region was observed. ( D ) Targeted FISH analysis with DNA probes specific to 13q14 ( red ) 
confirmed this submicroscopic deletion (abnormal cell (Ab) with loss of one red signal when com-
pared to the normal cell (NL)) (See Color Plates)       
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Recently, several additional higher-density tools for CGH analysis have become availa-
ble with the completion of the human genome sequence. These include cDNA array-
based CGH (Pollack et al.,  1999 ; Zhou et al.,  2004b) , oligonucleotide array-based CGH 
(Lucito et al.,  2003 ; Brennan et al.,  2004) , tiling array-based CGH (Ishkanian et al., 
 2004) , and copy number analysis using high-density SNP microarrays (Bignell et al., 
 2004 ; Zhao et al.,  2004 ,  2005 ; Zhou et al.,  2004d) . Tiling and SNP array-based 
approaches have drawn the most attention due to their high resolution. Tiling arrays 
have the potential to resolve small (gene level) gains and losses (resolution 40-kb) that 
might be missed by marker-based genomic arrays which contain a large number of gaps 
due to the distance between the targeted probes (Ishkanian et al.,  2004 ; Davies et al., 
 2005) . It is conceivable that even higher-resolution tiling arrays will become available 
in the future, providing an opportunity to map genomic alterations at close to base pair 
resolution. The SNP array-based approach provides the unique advantage of concurrent 
CGH and LOH analysis, which is discussed in further detail below (Zhao et al.,  2004 ; 
Zhou et al.,  2004d) .   

  2.2 Systematic Allelic Imbalance Analysis 
 Chromosomal aberrations include segments of allelic imbalance identifiable by LOH 

at the polymorphic loci, which can be used to identify regions harboring tumor suppres-
sor genes. Allelic losses, which are caused by mitotic recombination, gene conversion, 
or nondisjunction cannot be detected by CGH and thus require LOH analysis for their 
identification. This approach is “favored” by the Knudson two-hit hypothesis (Knudson, 
 1971 ,  1996)  for hunting tumor suppressor genes. The discovery of the first tumor sup-
pressor gene, RB1 (Friend et al.,  1986) , followed the Knudson two-hit hypothesis that 
tumor suppressor genes are inactivated by a recessive mutation in one allele followed 
by the loss of the other wild-type allele, which can be detected by LOH. Traditionally, 
polymorphic markers, such as restriction fragment length polymorphisms (RFLPs) and 
microsatellite markers, have been used to detect LOH through allelotypic comparisons 
of DNA from a cancer sample and a matched normal sample (Vogelstein et al.,  1989) . 
However, this approach is tedious, labor intensive, and requires a large amount of sam-
ple DNA, allowing only a modest number of markers to be screened. High-density 
whole genome allelotyping cannot be readily performed. The mapping of the human 
genome has allowed for the identification of millions of SNP loci(  http://www.ncbi.nlm.
nih.gov/SNP/    ), which makes them ideal markers for various genetic analyses, including 
LOH. Because of their abundance, even spacing, and stability across the genome, SNPs 
have significant advantages over RFLPs and microsatellite markers as a basis for high-
resolution whole genome allelotyping with accurate copy number measurements. High-
density oligonucleotide arrays have recently been generated to support large-scale 
high-throughput SNP analysis (Wang et al.,  1998) . It is now possible to genotype over 
500,000 SNP markers using the Affymetrix Mapping 500K SNP oligonucleotide array. 
LOH patterns generated by SNP array analysis have a high degree of concordance with 
previous microsatellite analyses of the same cancer samples (Lindblad-Toh et al.,  2000) . 
Additionally, shared regions of LOH from SNP arrays can cluster lung cancer samples 
into subtypes (Janne et al.,  2004) , and distinct patterns of LOH are found to associate 
with clinical features in primary breast, bladder, head and neck and prostate tumors 
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(Hoque et al.,  2003 ; Lieberfarb et al.,  2003 ; Wang et al.,  2004 ; Zhou et al.,  2004c , d) . 
One unique advantage of this SNP array-based approach is that the intensity of sample 
hybridization to the array probes can also be used to infer copy number changes (similar 
to CGH) (Fig.  3 ) (Bignell et al.,  2004 ; Zhao et al.,  2004 ; Zhou et al.,  2004d) . This 
unique feature has been explored by algorithms implemented in several independent 
bioinformatics/statistical software packages, including dChipSNP (Zhao et al.,  2004)  
and Copy Number Analysis Tool (Huang et al.,  2004) . The use of these novel analytic 
tools to analyze data from high-density SNP arrays now allows the analysis of DNA 
copy number to be combined with LOH analysis to distinguish copy number gains, 
copy number neutral loss of heterozygosity, and copy number losses, to comprehen-
sively map the configuration of tumor genomes (Zhao et al.,  2004) .   

  2.3 Cytogenetic-Based Approaches: Old Techniques with New Twists 
 Cytogenetics has flourished since the introduction of chromosome-banding tech-

niques in 1969 (Caspersson et al.,  1969a , b) . One major drawback of these approaches 
is the requirement for in vitro culture and metaphase preparation of the cells of interest, 
which limits its application to studies of solid cancers. Nevertheless, cytogenetic 
approaches continue to play an important role in genomic profiling because they facili-
tate direct visualization of chromosomal abnormalities. These cytogenetic techniques 
also complement CGH and LOH by providing information on chromosomal structural 
rearrangements that are not resolved by DNA copy number analyses. For example, 
translocations are one of the most common genomic abnormalities in cancer (Futreal 
et al.,  2004) , but they cannot be detected by CGH or LOH. An experienced cytogeneticist, 
however, can readily detect many forms of chromosomal translocations using classical 
cytogenetic techniques, such as karyotyping (chromosome banding). A karyotype anal-
ysis usually involves blocking cells in mitosis, and microscopically viewing condensed 
chromosomes stained with Giemsa dye, which stains regions of chromosomes that are 
rich in the base pairs Adenine (A) and Thymine (T) to produce a dark band. Karyotype 
analysis is performed over 500,000 times per year in the U.S. and Canada as part of the 
standard clinical test for prenatal and postnatal screening, as well as for the diagnosis 
of cancers — hematological malignancies in particular. However, many cancer cells 
have complex karyotypes that are difficult to interpret (as illustrated in Fig.  1 ). Recently, 
several new labeling techniques have been introduced in the field of molecular cytoge-
netics, including spectral karyotyping (SKY), multiple fluorescence in situ hybridiza-
tion (M-FISH), cross-species color banding (Rx-FISH), color-changing karyotyping 
(CCK) (Henegariu et al.,  1999) , and multicolor chromosome banding. These techniques 
permit the simultaneous viewing of all chromosomes in different colors, and thus 
considerably improve the detection of subtle rearrangements. For example, both SKY 
and M-FISH use a combinatorial labeling scheme with spectrally distinguishable fluor-
ochromes. The chromosome-specific probe pools (chromosome painting probes) are 
generated from flow cytometry-sorted chromosomes and then amplified and fluorescently 
labeled by degenerate oligonucleotide-primed polymerase chain reaction. With the 
introduction of these techniques in 1996 (Liyanage et al.,  1996 ; Schrock et al.,  1996 ; 
Speicher et al.,  1996) , the comprehensive analysis of complex chromosomal rearrangements 
present in tumor karyotypes was greatly improved (Fig.  4 ).   
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  Fig. 3.    Concurrent analysis of LOH and CNA using high-density SNP array. The LOH regions and 
the CNA regions were detected and demarcated as described previously (Lin et al.,  2004 ; Zhao et al., 
 2004 ; Zhou et al.,  2004c , d) . The LOH and CNA patterns for chromosome 9 were shown for nine cell 
lines: normal cells (n1, n2, and n3), trisomy cells (trisomy 9, trisomy 18, and trisomy 21, with an extra 
copy of 9pter > q13, 18, 21, respectively) and deletion cells (del(7), del(9), and del(10), with deletions 
at 7pter > q34, 9pter > p21, 10qter > p11, respectively). Each column represents one sample, and each 
row represents a SNP marker. Color code for LOH profiling ( right panel ):  blue  = LOH;  light green  = 
retained;  gray  = uninformative;  white  = no call. Copy numbers ( left panel ) were represented by dif-
ferent intensity of  red colors  as indicated in the figure (adapted from Zhou et al.,  2004d ; with kind 
permission of Springer Science and Business Media) (See Color Plates)       
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  Fig. 4.    Comprehensive cytogenetic characterization of the abnormal bone-marrow cells from an acute 
myeloid leukemia (AML) patient. ( A ) Standard trypsin Giemsa-banding technique-based karyotype 
analysis. ( B ) M-FISH was performed using Abbott-Vysis SpectraVysion assay. The hyperdiploid karyo-
type of this CML patient has numerous complex structural rearrangements. The simultaneous karyotype 
analysis and M-FISH analysis clearly depicted the complex nature of the genomic anomalies (See Color 
Plates)       
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  2.4 Comprehensive Genomic Approaches 
 A central objective in cancer research is to comprehensively delineate the complex 

genomic aberrations that shape tumor cell behavior and clinical outcomes. One potential 
approach to this problem would be to combine molecular genetic technologies such as 
CGH or LOH with molecular cytogenetic analyses for comprehensive screening of 
genomic alterations. Each of these techniques has its own unique advantages, as well as 
individual limitations which motivate efforts to combine multiple approaches as shown 
in Fig.  5 . In this example, the SNP array-based LOH and CGH analyses provide a high-
resolution mapping of copy number abnormalities, but offer little information on chro-
mosomal structure/spatial changes (e.g., translocations, the most common class of 

  Fig. 5.    Comprehensive genomic analyses of a myelodysplastic syndrome (MDS) using SNP array-
based approach and complementary cytogenetic approaches. ( A ) Three MDS cases were analyzed 
with a 10K SNP mapping array. The LOH regions were detected and demarcated as described (Lin 
et al.,  2004 ; Zhao et al.,  2004 ; Zhou et al.,  2004c , d) . The LOH patterns for chromosome 1, 5, 7, 14 
are shown. ( B ) The karyotype for Case 1 is presented. In Case 1, SNP array-based LOH demonstrated 
no loss of chromosome 14 material and a more extensive 5q deletion than interpreted by the karyotype. 
( C ) Whole chromosome paint (WCP) of chromosome 14, identified two signals for chromosome 14 
( red ), one normal 14 and the other chromosome 14 translocated to 5q close to the pericentromeric 
region. Together with the results from ( A ) and ( B ), these data indicate a karyotype of 44,XX,del(1)
(p32p36),der(5)t(5;14)(q13;q11.2),-7[20] for Case 1 (adapted from Zhou et al.,  2006   ; with kind per-
mission of Future Drugs Ltd) (See Color Plates)       
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somatic mutation registered in the cancer-gene census; Futreal et al.,  2004) . On the other 
hand, modern cytogenetic techniques provide a clear picture of the gross chromosomal 
structure/spatial alterations, but have limited resolution. This is illustrated in Fig.  5 , 
where concurrent cytogenetic and SNP array-based LOH analysis were performed on 
three genomic samples from myelodysplastic syndrome (MDS). Two of the three cases 
exhibited concordant results between karyotyping and SNP array-based LOH. However 
for Case 1, as shown in Fig.  5 a, the SNP array-based approach identified the loss of 
chromosome arm 5q, but failed to identify the translocation of chromosome 14 to chro-
mosome 5 at the pericentromeric region. This translocation was identified by karyotyp-
ing and further confirmed by whole chromosome paint (Fig.  5 b,  c ). These results 
illustrate the advantage of a multimodal approach to tumor genome analysis that com-
bines the complementary strengths of array-based and cytogenetic approaches.  

 Recent technical advances in microarray-based gene expression analysis provide 
opportunities to significantly improve the diagnosis, treatment and prognostic staging 
of cancer. This continuing development of microarray-based expression analysis and 
the large public depositories of microarray data have motivated new efforts to extract 
additional biological information from these data in addition to the static RNA tran-
script levels. One such attempt involves inferring chromosomal structural changes from 
spatially linked alterations in microarray expression data. Several array CGH studies 
have shown a genome-wide correlation of gene expression with copy number altera-
tions and have proved useful in individual amplicon refinement (Pollack et al.,  2002 ; 
Wolf et al.,  2004) . For example, through tissue microarray FISH and RT-PCR, a mini-
mally amplified region around ERBB2 (Her2) was identified in a large number of breast 
tumors; in addition, gene amplification was found to be correlated with increased gene 
expression in a subset of those samples (Kauraniemi et al.,  2003) . Recently, several 
groups have observed that chromosomal alterations can lead to regional gene expression 
biases in human tumors and tumor-derived cell lines (Phillips et al.,  2001 ; Virtaneva 
et al.,  2001 ; Crawley and Furge,  2002 ; Zhou et al.,  2004a ,  2005) . A recent study also 
demonstrated the correlation between SNP array-based LOH profiles and expression 
profiles (Wang et al.,  2004) . These studies suggest that a fraction of gene expression 
values (15–25%) are regulated in concordance with chromosomal DNA content 
(Phillips et al.,  2001 ; Virtaneva et al.,  2001 ; Crawley and Furge,  2002 ; Zhou et al., 
 2004a ,  2005) . Several statistical methods have been developed and have shown promis-
ing results for detecting DNA copy number abnormalities based on differential gene 
expression (Crawley and Furge,  2002 ; Myers et al.,  2004 ; Zhou et al.,  2004a ,  2005) . As 
shown in Fig.  6 , one recently developed statistical model successfully identified a 
cytogenetically confirmed 10p chromosomal deletion based on the microarray expres-
sion data, and substantially increased the precision with which the boundaries of that 
deletion were mapped to a region between 10p14 and 10p12 (Zhou et al.,  2005) . A key 
discovery using the high-resolution microarray-based analysis was that only a small 
interstitial region of 10p was deleted, with much of the 10pter-proximal region intact 
and only the segments between 10p12 and 10p14 showing marked abnormality. These 
results were further confirmed by subtelomere FISH, showing that it is feasible to use 
microarray differential expression data to identify significant DNA copy number abnor-
malities, and that RNA-based gene expression analyses are concordant with DNA-based 
measures of chromosomal structural alteration. The development of bioinformatics 
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techniques for “reverse inference” of DNA alterations from RNA expression data offers 
a new approach for genomic profiling that can provide crossvalidation of functional 
genomic alterations at multiple biological levels when combined with DNA-based 
approaches such as CGH and LOH.  

 Additional functional genomic information can be derived from microarray gene 
expression data using bioinformatic analyses of upstream transcription factor dynamics. 
Several tools have recently been developed to identify aberrant transcription factor 
activity based on sequence similarities in the promoters of large groups of genes show-
ing altered expression (Frith et al.,  2004 ; Cole et al.,  2005) . Aberrant transcription factor 
activity plays a central role in many solid tumors, and reverse inference of such altera-
tions from microarray gene expression data provides another mechanism for crossvali-
dating the results of structural genomic surveys suggesting that a particular transcription 
control pathway might be altered in a tumor.   

  3 RELEVANCE TO CANCER THERAPIES  

 Oncologists have long sought targeted therapies for cancer that focus on the specific 
genetic lesions present in an individual patient’s tumor. The implementation of this 
concept requires precise characterization of the disease as well as knowledge of the 
patient’s background (e.g., genetic and environmental characteristics). For tumors with 
a relatively narrow range of critical genetic defects (e.g., acute promyelocytic leukemia 
and chronic phase chronic myeloid leukemia), the development and deployment of tar-
geted therapies has been more easily accomplished than in more complex and hetero-
geneous tumor types (e.g., breast cancer, and non-small-cell lung cancer — NSCLC). 
The emergence of rapid, high-resolution genome analysis tools provides an opportunity 
to tackle these more heterogeneous malignancies at both the levels of basic research 
(e.g., defining pathogenetic mechanisms) and clinical treatment selection (e.g., deter-
mining which patients are suitable for therapies targeting a particular growth-control 
pathway). The following are a few successful examples of targeted therapies for cancers 
and the continuing developments in the field. 

 A prime case of such a relationship between genetic features and patient care is the 
CLL. CLL is a clinically heterogeneous disease characterized by the accumulation of 
malignant CD5 + B cells. It is the most common type of leukemia in adults, accounting 
for up to 25% of all newly diagnosed leukemia. Some patients with CLL follow a nonag-
gressive course and often do not require treatment, while others exhibit a rapid progres-
sion. One major recent advance has been the identification of molecular and genetic 
prognostic factors including cytogenetic characteristics (11q deletion), mutational status 
(e.g., mutations in the immunoglobulin heavy-chain variable genes), gene expression 
markers (e.g., CD38 and ZAP-70) and some serum markers, that can be used in early-
stage patients to identify those likely to progress rapidly (Stilgenbauer and Dohner, 
2005). This affords the opportunity to tailor management for patients based on the pre-
dictable aggressiveness of their disease. Molecular and genetic findings are thus increas-
ingly influencing management decisions in CLL and ultimately in drug discovery. 

 Another good example of using genetic characterizations to guide drug development 
and its deployment is the CML. Several efforts are being made to design drugs that tar-
get the BCR–ABL fusion protein that results from a specific chromosomal abnormality 



  Fig. 6.    Mapping the boundaries of chromosomal deletion by differential expression. ( A ) Affymetrix 
Human Genome U133 Plus 2.0 array was used to generate expression profiles for del(10) cells 
(GM03047) and matching control. Underexpressed transcripts in del(10) cells were identified using 
Affymetrix Microarray Suite 5.0, with decreased transcription declared when change  p  value was 
<0.002.   The transcripts were ordered according to sequence on chromosome 10, with  red bars  indicat-
ing the transcription start site of genes identified as significantly underexpressed in del(10) cells rela-
tive to a tissue-matched normal control cell. ( B ) As detailed in our recent study (Zhou et al.,  2004a ,  2005) , 
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found in CML patients. One such example is  Imatinib  (Norvatis Oncology) which has 
successfully controlled the progression of CML in most patients (Druker et al.,  2001 ; 
O’Brien et al.,  2003) . However, it does not appear to cure the disease, as the relapse rate 
after 4.5½years is overall about 16% and higher in patients with advanced stages of the 
disease. Patients seem to develop resistance to this drug as the cancer cells mutate in 
such a way that the BCR—ABL protein is no longer recognized as a target by the drug. 
As such, a variety of CML clinical studies that are looking at combining drugs such as 
AMN107 (Bristol Myers Squibb) and imatinib are underway (Shah et al.,  2004 ; Burgess 
et al.,  2005) . Other approaches are examining a combination of therapies with drugs that 
target other molecules in the pathway affected by BCR—ABL. Thus tests will be devel-
oped that can detect which BCR—ABL mutations develop so that treatment strategies 
can be tailored to each patient. 

 Increased knowledge of the mechanistic properties of malignant growth has facili-
tated the development of molecular-based therapies that can act on specific targets. 
Mutations in the epidermal growth factor receptor (EGFR) have been identified in 
NSCLC cells, and over expression of the EGFR and its ligands is a common feature of 
many cancers. As such, EGFR has become an attractive target for various antitumor 
drug development strategies. Anti-EGFR antibodies and EGFR tyrosine kinase inhibi-
tors have shown efficacy in treating patients with advanced NSCLC, who have failed in 
previous therapy regimens (Arteaga,  2003 ; Lynch et al.,  2004) . These findings support 
the use of targeted agents for improving the clinical outcomes and quality of life in 
patients with advanced NSCLC. It is widely predicted that molecular targeted therapy 
for lung cancer will evolve away from the use of single agents to the use of Combinational 
therapy. Currently, researchers know of at least four genes that may be important in lung 
cancer when mutated:  EGFR ,  HER2 ,  RAS , and  BRAF  (Shigematsu and Gazdar,  2006) . 
Identifying patients with mutations in these genes (as well as novel target genes) and 
using that knowledge to target all the abnormal proteins encoded by these mutated 
genes is a very promising approach. 

Fig. 6. (continued) a single breakpoint model allowing differential density of underexpression was fit 
by maximum likelihood. The log likelihood associated with breakpoints at each ordinal position on 
chromosome 10 is plotted ( black line ) with the maximum likelihood value serving as the estimated 
origin of Copy Number Abnormality.  Gray lines  map ordinal positions of each assayed transcript to its 
chromosomal location. Significant change in the prevalence of underexpressed transcripts was identi-
fied at ordered transcript 224, 28.1 Mb from 10pter, agrees with previously defined the origin of dele-
tion by cytogenetic analyses. ( C ) To determine whether deletion extended to the  p -terminus, transcripts 
1–223 were rescanned and a second significant change in the prevalence of underexpressed transcripts 
was identified at ordered transcript 85, 12.2 Mb from 10pter. ( D ) No significant change in the preva-
lence of underexpressed transcripts was identified in the region ranging from ordered transcript 224 to 
10qter. Together with the results from panel ( B ), these data indicate a single partial deletion of chromo-
some 10p spanning the region between 10p14–10p12. ( E ) Subtelomere fluorescence in situ hybridiza-
tion (FISH) verified results from the maximum likelihood expression-based analysis by confirming that 
the 10p deletion was interstitial with the intact subtelomere regions. Probes used are 10ptel006 (10pter 
probe,  green ); 10qtel24 (10qter probe,  red ); PML (15q22 probe,  aqua ); and AFMA224XHI (15qter 
probe,  yellow ). Two normal signals for both 10p and 10q subtelomeres were clearly identified.  Inset : 
G-banded chromosome 10 of del(10) cell showing the deletion of  p  arm of the chromosome 10 
(adapted from Zhou et al.,  2005 ; with kind permission of BMJ Publishing Group) (See Color Plates)       
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 In summary, advances in genome-wide profiling techniques will play a key role in 
the expansion of personalized therapy for cancer. The genome-wide assay technologies 
outlined above are part of the growing number of “top-down” approaches that provide 
comprehensive genomic profiles that can be correlated with biological/clinical status or 
functional aspects of tumors. In the near future, these analyses will help guide clinical 
treatment decisions, and in the long term, they may substantially advance our funda-
mental understanding of tumor progression. More traditional “bottom-up” studies (so-
called basic studies), focused on individual genes or proteins, will continue to provide 
details that are not glimpsed by the top-down/global approaches. Conversely, focused 
studies may be misinterpreted due to the lack of global information. Thus, the integra-
tion of bottom-up and top-down information will play a critical role in defining the 
functional pathogenesis of cancer and shape its treatment. Integration of top-down and 
bottom-up analyses may also speed up the identification of interventions that might 
ameliorate malignant cell growth (e.g., selecting drugs that target growth aberrations 
downstream of those arising from defined sites of genetic damage).     
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  ABSTRACT 

 Over the past decades, improvements in therapies have exposed a marked clinical hetero-
geneity among leukemias, and the identification of clonal karyotypic abnormalities has 
revealed morphologically similar leukemias as biologically heterogeneous hematopoietic 
disorders. In an attempt to define relevant entities biologically and clinically, current know-
ledge of morphologic, immunophenotypic, genetic and clinical features has been incorporated 
in a new WHO leukemia classification. Nevertheless, many of the newly-defined leukemia 
classes are still characterized by considerable heterogeneity, suggesting additional disease 
subtypes at the molecular level. Ultimately, an ideal classification system would be based 
on the underlying molecular genetic and epigenetic pathological mechanisms, which are 
reflected in aberrant gene expression. Recently, surveying leukemic gene expression patterns 
on a genomic scale has become feasible using DNA microarray technology. The combina-
tion of expression profiling methods with innovative bioinformatics analyses represents a 
powerful approach to gain novel insights into leukemogenesis, to investigate drug respon-
siveness, and to predict clinical outcome in leukemias. While many challenges remain 
ahead, we will outline how gene expression profiling might significantly contribute to a 
refined molecular taxonomy of leukemias. Furthermore, in combination with other whole 
genome approaches, we expect novel therapeutic targets as well as new therapies to be 
identified and improved prediction of drug response and clinical outcome to enable risk-
adapted individualized treatment strategies for leukemia patients.  
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  1 INTRODUCTION  

  1.1 Leukemias: Historical Aspects 
 In 1845 Bennett and Virchow independently published two reports describing the first 

cases of leukemia (Bennett,  1845 ; Virchow,  1845) , and Virchow was the first to call the 
disease “leukemia,” or “white blood” (Virchow,  1845) . Since then, advances in biochem-
istry, cytogenetics, cytochemistry, immunology, and subsequently molecular biology have 
led to the recognition of many different malignant hematopoietic diseases in the twentieth 
century (Hoffbrand and Fantini,  1999) . During the past three decades, a dramatic expansion 
of our understanding of the hematopoietic system has revealed that leukemias demonstrate 
extraordinary morphologic, biologic, and clinical heterogeneity. Therefore, clinically-
relevant classification systems that reflect the underlying tumor biology are needed.  

  1.2 Classification of Leukemias 
 Classification of leukemias is broadly related to the cell of origin (e.g., myeloid or 

lymphoid) as well as to the rapidity of the clinical course (e.g., acute or chronic), but 
over the past several years modern categorizations have identified specific leukemia 
subtypes on the basis of morphologic, immunophenotypic, genetic and clinical features. 
In an attempt to define biologically and clinically relevant leukemia entities, the current 
World Health Organization (WHO) incorporated this knowledge into a novel classifica-
tion of tumors of hematopoietic and lymphoid tissues (Harris et al.,  1999 ; Vardiman 
et al.,  2002)  (summarized in Table  1  ). The result is a more sophisticated classification that 

 Table 1 

  WHO classification of tumors of hematopoietic and lymphoid tissues  

 Acute leukemias  Chronic leukemias 

 Myeloid leukemias 
  AML with recurrent genetic abnormalities  

 AML with t(8;21)(q22;q22), ( AML1/ETO ) 
 AML with inv(16)(p13q22), ( CBFβ/MYH11 ) 
 AML with t(15;17)(q22;q12), ( PML/RARα ) 
 AML with 11q23 ( MLL ) abnormalities 

  Myeloproliferative diseases  
 Chronic myelomonocytic leukemia 
 Atypical chronic myeloid leukemia 
 Juvenile myelomonocytic leukemia 

  AML with multilineage dysplasia    Chronic myeloproliferative diseases  
 CML with t(9;22)(q34;q11), ( BCR/ABL ) 

  AML, therapy related   Chronic neutrophilic leukemia 
 Chronic eosinophilic leukemia 

  AML not otherwise categorized  

 Lymphoid leukemias 
  Precursor B-cell neoplasms    Mature B-cell neoplasms  

 Precursor B-ALL  CLL 
 Burkitt leukemia  B-cell prolymphocytic leukemia 

 Hairy cell leukemia 
  Precursor T-cell neoplasms    Mature T-cell neoplasms  

 Precursor T-ALL  T-cell prolymphocytic leukemia 
 T-cell granular lymphocytic leukemia 
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for example divides acute myeloid leukemias (AML) into four large subclasses (AML 
with recurrent cytogenetic abnormalities, AML with multilineage dysplasia, therapy 
related AML, and AML not otherwise categorized), which are themselves further 
subdivided into several distinct AML subtypes. However, for many myeloid leukemia 
subtypes there is no specific genetic or pathogenic event discovered as yet. And even 
within well-defined AML subgroups, like cases with t(8;21)(q22;q22) or inv(16)((p13q22), 
considerable clinical heterogeneity is observed (Schlenk et al.,  2004) . Therefore, several 
molecularly distinct subtypes may exist within the same cytogenetic category, and to 
further refine the current classification of leukemias a deeper molecular understanding 
of these diseases is needed.      

  1.3 Cytogenetics and Molecular Genetics 
 The invention of chromosomal banding techniques heralded a new era for inves-

tigating leukemia biology. Chronic myelogenous leukemia (CML) was the first malignancy 
in which a recurring chromosomal abnormality, the Philadelphia chromosome (Nowell 
and Hungerford,  1960) , was found to result from a translocation of genetic material 
from one chromosome to another [t(9;22)] (Rowley,  1973) . A decade later the fusion 
gene resulting from this translocation,  BCR-ABL  (de Klein et al.,  1982) , was shown to 
be responsible for the myeloproliferation observed in CML (Konopka et al.,  1985 ; 
Shtivelman et al.,  1985) . Since then, the discovery of well over 100 chromosome trans-
locations, and the identification of a number of recurring chromosomal gains and losses 
in leukemic cells, have transformed our understanding of the genetic mechanisms 
involved in leukemogenesis (Rowley,  1999) . 

 Recent advances in molecular genetics have shown that the expression of a single 
fusion gene, e.g.,  RUNX1-CBFA2T1  or  CBFB-MYH11 , resulting from t(8;21) or inv(16), 
respectively, can block myeloid differentiation, but does not by itself cause leukemia 
(Okuda et al.,  1998 ; Castilla et al.,  1999) . However, constitutively activated signaling 
molecules, such as FLT3 or RAS family members, can induce a myeloproliferative 
phenotype (Kelly et al.,  2002 ; Chan et al.,  2004) . Today, there are further lines of 
evidence arguing for a multi-step pathogenesis of leukemia, and many pathogenetically 
relevant mutations have been identified both in myeloid (Frohling et al.,  2005 ; Licht and 
Sternberg,  2005)  and lymphoid (Armstrong and Look,  2005 ; Pui and Evans,  2006)  
malignancies.  

  1.4 Treatment Options: Novel Drugs 
 The development of combination therapies of cytotoxic drugs with or without stem-cell 

transplantation has increased the cure rate of leukemia (Brenner and Pinkel,  1999) , espe-
cially in childhood acute lymphoblastic leukemia (ALL) with an overall cure rate of over 
80% (Pui and Evans,  2006) . However, despite the optimal use of cytotoxic drugs in com-
bination with a stringent application of current prognostic factors for risk-directed therapy, 
cure rates for adults remain much lower, signaling a need for new targeted therapies. 

 Acute promyelocytic leukemia (APL) was the first human leukemia to be successfully 
treated with a molecularly targeted agent, all-trans retinoic acid (ATRA), that specifi-
cally targets the transforming potential of the fusion gene product, PML-RARA, resulting 
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from the t(15;17) (Huang et al.,  1988) . Likewise, CML was the first disorder in which 
a small molecule inhibitor had been designed to specifically target the molecular defect 
caused by  BCR-ABL  (Buchdunger et al.,  1996 ; Druker et al.,  1996) . Since then, many 
new drugs have been shown to be active against leukemias, including additional tyro-
sine kinase inhibitors (e.g., FLT3 inhibitors like PKC412), farnesyltransferase inhibitors 
(e.g., tipifarnib), demethylating agents (e.g., decitabine), histone deacetylase inhibitors 
(e.g., valproic acid), and monoclonal antibodies (e.g., the anti-CD33 antibody gemtuzumab 
ozogamicin) (Tallman,  2005) , which are currently being investigated in clinical treat-
ment trials. While novel treatment approaches are currently being developed, improved 
risk stratifications which reflect the biological and clinical heterogeneity of the disease 
are also needed to guide efficient patient management.  

  1.5 Prognostic Factors 
 Cytogenetics represents one of the most powerful prognostic factors in leukemias. In 

AML, patients are assigned into risk-groups based on the underlying leukemia karyo-
type (Grimwade et al.,  1998 ; Slovak et al.,  2000 ; Byrd et al.,  2002) . Recently, the iden-
tification of novel molecular markers has permitted the further dissection of existing 
prognostic subclasses, like for example the large group of AML patients presenting with 
normal karyotype disease (Frohling et al.,  2005 ; Licht and Sternberg,  2005) . In this 
AML group internal tandem duplications (ITD) of the  FLT3  gene (Frohling et al., 
 2002) , partial tandem duplications (PTD) of the  MLL  gene (Dohner et al.,  2002) , as well 
as mutations of  CEBPA  (Frohling et al.,  2004)  and  NPM1  (Dohner et al.,  2005)  are of 
prognostic relevance, as are the expression levels of  EVI1  (Barjesteh van Waalwijk van 
Doorn-Khosrovani et al.,  2003)  and  BAALC  (Baldus et al.,  2003) . Similarly, in chronic 
lymphoid leukemias (CLL) cytogenetic aberrations confer important markers (Dohner 
et al.,  2000 ; Stilgenbauer et al.,  2002)  that provide prognostic information in addition 
to the immunoglobulin variable heavy chain gene ( V  

 
H

 
 ) mutational status (Krober et al., 

 2002 ; Dighiero,  2005) . However, despite such recent progress, for many leukemia 
subtypes there is still no commonly accepted risk stratification as leukemogenic mecha-
nisms are not yet fully understood.   

  2 ONCOGENESIS: INSIGHTS INTO LEUKEMIA BIOLOGY  

  2.1 Class Prediction in Leukemias 
  2.1.1 Gene Expression Profiling in Leukemias 

 Today, genomics offer a range of experimental approaches to capture the molecular 
variation underlying the biological and clinical heterogeneity of leukemias. Of these 
novel technologies, genome-wide gene expression profiling (GEP) based on DNA 
microarrays represents one of the most powerful tools (Liotta and Petricoin,  2000 ; 
Ramaswamy and Golub,  2002) . The utility and promise of DNA microarrays for the 
study of human malignancies was first demonstrated in an analysis of AML and ALL 
samples (Golub et al.,  1999) . In this seminal study by Golub et al., leukemia became an 
early test case to demonstrate the potential of gene-expression profiling based classi-
fication of tumors. An unsupervised class discovery method (self-organizing maps) 
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recognized the distinction between AML and ALL without previous knowledge of these 
classes, and a supervised class predictor, derived from neighborhood analysis and 
applied using a weighted voting procedure, assigned the class of new leukemia cases 
with high accuracy and predictive strength (Golub et al.,  1999) . Unexpectedly, many of 
the discriminatory genes were not markers of hematopoietic lineage, but encoded 
critical genes related to cancer pathogenesis, thereby suggesting that genes useful for 
cancer classification may also provide insight into cancer biology.  

  2.1.2 Gene Expression Patterns Associated with Recurrent 
Cytogenetic Aberrations 

 Since the publication of this groundbreaking work, DNA microarray technology has 
contributed significantly to the field of leukemia research (Staudt,  2003 ; Ebert and 
Golub,  2004) . First, it was shown that AML cases with trisomy 8 differ from cases with 
normal cytogenetics based on a gene dosage effect for genes located on chromosome 8 
(Virtaneva et al.,  2001) . Similar gene dosage effects have since been found for other 
chromosomal gains and losses in AML (Schoch et al.,  2005 ; Rucker et al.,  2006) , as 
well as in other leukemias, e.g., CLL (Haslinger et al.,  2004) . 

 Using supervised analytical approaches, Yeoh et al. were the first to describe that in 
childhood ALL, distinct expression profiles identify prognostically important leukemia 
subtypes, including T-ALL,  E2A-PBX1 ,  BCR-ABL ,  TEL-AML1 ,  MLL  rearrangement, 
and ALL with a hyperdiploid karyotype (>50 chromosomes) (Yeoh et al.,  2002) . 
Confirmed by subsequent studies in both childhood and adult ALL (Armstrong et al., 
 2002 ; Ross et al.,  2003 ; Fine et al.,  2004) , gene expression based discrimination could 
also be demonstrated for cytogenetically defined AML subgroups, including cases with 
inv(16), t(8;21), t(15;17) and t(11q23)/ MLL  (Schoch et al.,  2002 ; Debernardi et al., 
 2003 ; Kohlmann et al.,  2003 ; Bullinger et al.,  2004 ; Ross et al.,  2004 ; Valk et al.,  2004)  
(Fig.  1  ). Importantly, these distinct biologically meaningful gene signatures can also be 
used to accurately predict the respective cytogenetically defined leukemia subgroups 
(Ross et al.,  2004 ; Haferlach et al.,  2005) , and the classifiers generated from pediatric 
leukemia samples can be used to accurately classify adult leukemia cases exhibiting the 
same genetic aberrations (Kohlmann et al.,  2004 ; Ross et al.,  2004) . Based on the 
robustness of these signatures with regard to technical aspects of specimen sampling 
and target preparation (Mitchell et al.,  2004 ; Kohlmann et al.,  2005) , GEP may provide 
a useful alternative approach for the diagnosis of known leukemia subgroups with high 
accuracy (Haferlach et al.,  2005 ; Kern et al.,  2005) .   

  2.1.3 Gene Expression Patterns Associated with Molecular Genetic Aberrations 

 While the first GEP studies of CLL demonstrated a homogeneous phenotype irres-
pective of the  V  

 
H

 
  mutational status (Klein et al.,  2001 ; Rosenwald et al.,  2001) , supervised 

analyses revealed in both studies a  V  
 
H

 
  mutation-associated expression pattern leading 

to the identification of a clinically important surrogate marker for the  V  
 
H

 
  mutational 

status, ZAP-70 (see also Sect. 4.1.2) (Rosenwald et al.,  2001) . 
 Since then, molecular genetic aberration-associated gene expression patterns have 

also been described in AML for  FLT3  ITDs (Bullinger et al.,  2004 ; Lacayo et al.,  2004 ; 
Valk et al.,  2004 ; Neben et al.,  2005) ,  CEBPA  (Valk et al.,  2004) , and  NPM1  mutations 
(Alcalay et al.,  2005 ; Verhaak et al.,  2005) . Supervised analyses have also identified 
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significant patterns correlating with centrosome aberrations (Neben et al.,  2004) . 
However, in contrast to translocations involving the  MLL  gene, which exhibit a distinct 
gene expression signature (Armstrong et al.,  2002) , no characteristic pattern has been 
identified for cases with  MLL  PTD in large studies (Bullinger et al.,  2004 ; Ross et al., 
 2004) . This suggests that cases with  MLL  PTD might be more heterogeneous at a 
molecular level and quite distinct from AML with t(11q23). Likewise, no signature has 
yet been associated with AML cases with  NRAS  mutations (Neben et al.,  2005) , high-
lighting that not all genetic alterations in leukemia result in definably altered gene 

  Fig. 1.     Gene-expression signatures of leukemia cytogenetic classes. Shown is a “heat map” representa-
tion of selected genes identified by supervised analysis whose expression is significantly correlated with 
specific AML cytogenetic aberrations, here including inv(16), t(8;21), t(15;17) and t(9;11). Gene-
expression levels are depicted in gray-scale, where  darker shades  indicate higher expression levels. The 
analysis shown was performed using significance analysis of microarrays (SAM) (Tusher et al., 2001) 
using publicly available microarray data (Bullinger et al., 2004). Gene-expression signatures such as 
these can be used to classify the cytogenetic group of new specimens with high accuracy. The  arrow  
indicates a specimen characterized as “normal karyotype” by cytogenetics, but for which RT-PCR sub-
sequently identified the diagnostic  CBFB-MYH11  fusion transcript characteristic of inv(16) cases       
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expression patterns. Possible explanations might be that the respective mutations affect 
signaling pathways at a post-transcriptional level (i.e., without altering mRNA levels), 
or that the associated expression patterns are subtle and/or masked by additional under-
lying pathogenic mechanisms.   

  2.2 Class Discovery in Leukemias 
 By applying unsupervised analytical approaches to gene expression data, novel clini-

cally-significant subtypes of cancer can be identified. The first gene-expression based 
discovery of new clinically-relevant tumor subclasses, diffuse large B-cell lymphoma 
(DLBCL), was again reported for a hematologic malignancy, (Alizadeh et al.,  2000) . 
Using hierarchical cluster analysis, Alizadeh et al. identified two molecularly distinct 
DLBCL subtypes characterized by patterns indicative of different stages of B-cell differen-
tiation. These patterns have since been identified in independent studies, and their clinical 
importance has been validated as well (Rosenwald et al.,  2002 ; Shipp et al.,  2002) . 

 Besides the pivotal work by Golub et al.  (1999) , one of the first studies, demonstrating 
the potential of GEP based class discovery in leukemia, examined therapy-related AML 
(t-AML) cases (Qian et al.,  2002) . The authors identified t-AML subgroups displaying 
a common pattern typical of arrested differentiation in early progenitor cells, but each 
t-AML subgroup also exhibited a characteristic gene expression signature providing 
new insights in the biology of t-AML (Qian et al.,  2002) . 

 In a recent study of 285 AML patients, Valk et al. identified 16 clusters (subgroups) 
of AML specimens by unsupervised cluster analysis of gene-expression patterns (Valk 
et al.,  2004) . Specimens with favorable cytogenetics generally exhibited homogeneous 
clustering, while novel clusters were often characterized by high frequencies of specific 
molecular alterations, like for example two clusters (their clusters #1 and #16) which 
both harbored mainly cases with t(11q23)/ MLL  abnormalities. However, Valk et al. also 
observed molecular variation within “homogenously grouped” classes, like cases with 
an inv(16) or a t(8;21), when they included more than the original 2,856 probe sets in 
their unsupervised analysis (Valk et al.,  2004) . 

 Accordingly, in our own studies of AML we have detected considerable molecular 
heterogeneity within the cytogenetically well-characterized t(8;21) and inv(16) groups, with 
each class being separated into mainly two groups based on unsupervised clustering using 
6,283 genes (Bullinger et al.,  2004) . Since the primary translocation/inversion events them-
selves are not sufficient for leukemogenesis (Okuda et al.,  1998 ; Castilla et al.,  1999) , 
distinct patterns of gene expression within each of these t(8;21) and inv(16) subgroups may 
suggest alternative cooperating mutations/deregulated pathways leading to transformation. 

 Interestingly, cases with normal karyotype in our study also segregated mainly into two 
distinct groups (Fig.  2  ), each of which included a small number of cases from other 
cytogenetic classes (Bullinger et al.,  2004) .  FLT3  aberrations were more prevalent in one 
subgroup, while FAB (French American British) M4/M5 morphologic subtypes were 
more highly represented in the other subgroup. Notably, Kaplan-Meier analysis identified 
a statistically significant difference in overall survival between the two subclasses 
(Bullinger et al.,  2004) . In agreement with these results, Valk et al. identified normal 
karyotype-predominated clusters associated with  FLT3  ITD, as well as a cluster including 
mainly specimens from patients with AML of subtype M4 or M5 (Valk et al.,  2004) .  
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 In addition, the Valk et al. study (Valk et al.,  2004)  revealed a distinctive cluster associ-
ated with increased  EVI1  expression and poor treatment outcome, and another cluster also 
associated with shorter survival times included cases with a variety of known adverse 
cytogenetic markers, such as monosomies 7 and 5, and the translocation t(9;22) (Valk 
et al.,  2004) . The leukemic cells of these patients displayed a signature similar to CD34 + 
cell samples, suggesting that these leukemic cells might be resistant to therapy, like CD34 
+ hematopoietic progenitors. These initial studies clearly demonstrate the power of GEP 
for the discovery of novel leukemia subtypes (Bullinger and Valk,  2005) .   

  3 DRUG RESPONSIVENESS  

  3.1 Gene Expression Based Analysis of Drug Effects in Leukemia 
  3.1.1 Molecular Signatures of Retinoic Acid Treatment 

 Monitoring the effects of treatment with all-trans retinoic acid (ATRA) in APL 
derived cell lines was one of the first applications of DNA microarray technology in 
leukemias (Tamayo et al.,  1999) . In NB4 cells, ATRA was found to induce  UBE1  (ubiq-
uitin-activating enzyme E1-like) over-expression, triggering the apoptosis of APL cells 

  Fig. 2.     Discovery of new molecular subtypes of leukemia. Shown are the results of an unsupervised 
principal components analysis (PCA) displaying a projection of the three principal components of 
variable gene expression for AML specimens with normal karyotype. PCA identifies two novel subgroups 
of normal karyotype AML cases (indicated by  black and gray dots , respectively) based on distinct 
patterns of genes expression. Group II cases exhibit more frequent myelomonocytic differentiation, 
while group I cases more often harbor  FLT3  mutations and are associated with shorter overall survival. 
Data are from (Bullinger et al., 2004)       
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and the degradation of the  PML-RARA  fusion gene product (Tamayo et al.,  1999 ; 
Kitareewan et al.,  2002) . Other ATRA-regulated genes in NB4 included members of the 
tumor necrosis (TNF) pathway, suggesting that this pathway might intersect with ATRA 
signaling (Park et al.,  2003 ; Witcher et al.,  2003) . ATRA and TNF together led to 
increased NF-κB activity followed by a synergistic induction of NF-κB target genes 
(Witcher et al.,  2003) . This supports the idea that ATRA primes cells are more suscep-
tible to the differentiation effects of other pathways. Interestingly, there is an enrichment 
of NF-kB binding sites in the promoters of ATRA target genes, further supporting a role 
for this pathway in regulating cell survival in response to ATRA (Meani et al.,  2005) .  

  3.1.2 Sensitivity of CML to Imatinib Mesylate 

 Genome-wide DNA microarray technology has also been used successfully to eval-
uate the sensitivity of CML to imatinib mesylate (Kaneta et al.,  2002 ; Ohno and 
Nakamura,  2003 ; Tipping et al.,  2003) , which targets the ABL kinase activity of the 
BCR-ABL fusion. Using a cell line model, differentially-expressed genes correlated with 
imatinib mesylate resistance could be identified, suggesting that alternative pathways 
might maintain viability and promote growth independently of BCR-ABL (Tipping 
et al.,  2003) . Furthermore, in an analysis of 18 specimens from CML patients, responders 
could be clearly separated from non-responders based on the expression patterns of only 
a few genes (Kaneta et al.,  2002 ; Ohno and Nakamura,  2003) . Though examination of 
larger sample sets will be required to validate these findings, gene expression patterns 
associated with imatinib resistance might help to guide treatment decisions in CML.  

  3.1.3 Fludarabine Response Signature in CLL 

 The purine analog fludarabine is a component of current standard treatment regimens 
for B cell CLL. While fludarabine can induce apoptosis in CLL cells in vitro, a number 
of molecular mechanisms might contribute to its observed cytotoxicity. Using GEP, 
Rosenwald et al. have recently investigated the molecular consequences of fludarabine 
treatment of CLL patient samples (Rosenwald et al.,  2004) . Both in vitro and in vivo 
fludarabine exposure resulted in a consistent “response signature” characterized by p53 
target genes and genes involved in DNA repair. Functional analyses in isogenic p53 
wild-type and null lymphoblastoid cell lines provided further evidence that many of the 
fludarabine response signature genes were also p53 target genes. These findings provide 
a molecular explanation for the drug resistance and the aggressive clinical course often 
seen in p53 mutated CLL patients, and further suggest the importance of only treating 
patients that warrant therapy, as fludarabine treatment might have the potential to select 
p53 mutant CLL cells (Rosenwald et al.,  2004) .  

  3.1.4 In Vitro Response to L-Asparaginase 

 L-asparaginase is an important component of most treatment regimens for ALL, and 
both in vitro and in vivo resistance to L-asparaginase has been associated with poor 
long-term outcome (Pui and Evans,  2006) . A better molecular understanding of the 
resistance mechanisms may provide for improved management of ALL patients. In 
vitro exposure to L-asparaginase in cell lines and pediatric ALL samples followed by 
GEP, revealed the increased expression of tRNA synthetases, solute transporters, acti-
vating transcription factors, and CCAAT/enhancer binding protein family members 
(Fine et al.,  2005) . These changes appear to reflect a consistent coordinated response to 
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asparagine starvation in both cell lines and clinical samples, which is independent of 
asparagine synthetase base-line expression levels. Therefore, targeting particular genes 
involved in the response to amino acid starvation in ALL cells may provide a novel way 
to overcome L-asparaginase resistance (Fine et al.,  2005) .   

  3.2 Prediction of Drug Responsiveness in Leukemia 
  3.2.1 Gene Expression Based Chemosensitivity Prediction 

 The first genomics-based approach to the prediction of drug response was the devel-
opment of an algorithm for classification of cell line chemosensitivity based on gene 
expression profiles (Staunton et al.,  2001) . Using expression patterns of 60 human 
cancer cell lines (the NCI-60 panel), for which the chemosensitivity profiles of thou-
sands of chemical compounds had been determined, the authors were able to generate 
gene expression-based classifiers to predict sensitivity or resistance for 232 compounds. 
Evaluation on independent data sets demonstrated that a substantial number of the 
expression-based classifiers performed accurately, indicating that genomic approaches 
to chemosensitivity prediction are feasible (Staunton et al.,  2001) .  

  3.2.2 Chemosensitivity Prediction in Leukemia 

 To illuminate the distinct nature of cellular responses provoked by chemotherapeutic 
agents, Cheok et al. profiled gene expression in childhood ALL cells before and after in 
vivo treatment with methotrexate and mercaptopurine given either alone or in combina-
tion (Cheok et al.,  2003) . A signature consisting of 124 genes accurately discriminated 
among the randomly assigned treatments in 60 patients. The signature, which included 
genes involved in apoptosis, mismatch repair, cell cycle control and stress response, 
exhibited differences in cellular response to drug combinations versus single agents, 
and indicated that different ALL subtypes share common pathways of genomic response 
to the same treatment. 

 In a subsequent study testing for in vitro sensitivity to prednisolone, vincristine, aspar-
aginase, and daunorubicin, William Evans’ group identified differentially expressed 
genes in drug-sensitive and drug-resistant ALL leukemia cells from 173 children 
(Holleman et al.,  2004) . Based on the gene-expression patterns that differed according to 
sensitivity or resistance to the four drugs, the authors created a combined gene-expression 
score of resistance, which was shown to be of prognostic relevance in childhood ALL 
(see also Sect.  4.1.3 ).   

  3.3 Drug Discovery 
  3.3.1 Applications of GEP in Drug Discovery 

 DNA microarray technology plays an integral part in the drug target discovery proc-
ess, and provides a valuable tool for the optimization and clinical validation of novel 
compounds. GEP aids in the initial identification and prioritization of potential thera-
peutic targets such as those with relevant patterns of differential expression. Subsequently 
expression profiling assists in drug discovery and toxicology, where various bioinfor-
matics approaches can be used to deduce the mechanism of action of new drugs as well 
as off-target effects from expression profiles (Gerhold et al.,  2002) . While it is important 
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to consider the limitations of interpreting drug responses through measurements of 
mRNA abundance alone, expression profiling nonetheless provides a useful tool in phar-
macogenomics, promising a better characterization of patient populations and a better 
prediction of prognosis and drug response (Walgren et al.,  2005) .  

  3.3.2 Anti-leukemic Drug Discovery Based 
on Responsiveness Signatures 

 Recently, a gene expression-based high-throughput screening approach was described 
using microarrays to screen for chemical compounds with differentiation-inducing activity 
in AML (Stegmaier et al.,  2004) . Following definition and validation of a five-gene differ-
entiation signature derived from microarray data, a high throughput screening method 
using multiplexed RT-PCR, single base extension reaction and MALDI-TOF (matrix-
assisted laser desorption/ionization time-of flight) mass spectrometry, was designed to 
detect the five-gene pattern. Treatment of HL-60 cells with 1,739 different compounds 
revealed eight chemicals that reliably induced the differentiation signature (Stegmaier et al., 
 2004) . Among these, DAPH1 (4,5-dianilinophthalimide) has been reported to inhibit 
epidermal growth factor receptor (EGFR) kinase activity (Buchdunger et al.,  1994) . 

 In a subsequent study the authors showed that the Food and Drug Administration 
(FDA)—approved EGFR inhibitor gefitinib similarly promoted the differentiation of 
AML cell lines and primary patient—derived AML blasts in vitro (Stegmaier et al., 
 2005) . However, the analyzed AML cells did not express EGFR suggesting an EGFR-
independent mechanism of gefitinib induced differentiation. Thus, this high-throughput 
procedure proved successful for the systematic identification of clinically useful com-
pounds for which the key targets are not yet known.    

  4 PREDICTION OF CLINICAL OUTCOME  

  4.1 Identification of Surrogate Markers for Known Prognostic Factors 
  4.1.1 Signatures Predictive of “Favorable” and “Unfavorable” 

Cytogenetics 

 As mentioned above, GEP allows the identification and prediction of specific signa-
tures correlated with “favorable-risk” cytogenetic aberrations like for example AML 
cases with inv(16), t(8;21), or t(15;17) (Bullinger et al.,  2004 ; Valk et al.,  2004 ; 
Haferlach et al.,  2005) , or B cell precursor ALL cases with t(12;21), or hyperdiploidy 
(more than 50 chromosomes per leukemia cell) (Yeoh et al.,  2002 ; Ross et al.,  2003) . 
Similarly, “unfavorable-risk” cytogenetics subgroups, as well as prognostically relevant 
molecular genetic aberrations can be predicted (Bullinger and Valk,  2005) .  

  4.1.2 ZAP-70, Clinical Implementation of a Surrogate Marker 
Identified by GEP 

 Among the surrogate markers identified by GEP ZAP-70 represents the first to be 
clinically implemented. Coding for a tyrosine kinase essential for T cell signaling but 
not expressed in normal B cells,  ZAP-70  exhibited fivefold higher expression levels in 
patients with unmutated  V  

 
H

 
  genes compared to those with mutated genes, and was the 

best discriminator between the two groups (Rosenwald et al.,  2001) . Recently, several 
studies have validated the clinical usefulness of this novel marker (Orchard et al.,  2004 ; 
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Rassenti et al.,  2004) , especially as the expression of ZAP-70 can readily be measured 
at the protein level by flow cytometry, which is commonly available in large clinical 
centers specialized for leukemia treatment.  

  4.1.3 Prediction of Treatment Resistance 

 Recently, the expression of differentially-expressed genes in leukemias sensitive or 
resistant to chemotherapeutic agents has been shown to be significantly and indepen-
dently associated with treatment outcome in ALL, and results have been confirmed in 
an independent set of patients treated with the same therapies (Holleman et al.,  2004 ; 
Lugthart et al.,  2005) . Similarly, Heuser et al. were able to identify a characteristic gene-
expression pattern associated with resistance to chemotherapy in AML, which was an 
independent prognostic factor and could be used to predict outcome in an independent 
test set of AML patients, and in multivariate analysis (Heuser et al.,  2005) . Comparison 
of refractory patients and those who responded to induction chemotherapy also led to 
the identification of prognostic genes in adult T cell ALL (Chiaretti et al.,  2004) . 
Furthermore, expression profiling has been used to predict minimal residual disease 
(MRD) in leukemias with high accuracy. Hypothesizing that treatment resistance 
reflects an intrinsic feature of ALL cells, which can be predicted before treatment, Cario 
et al. profiled expression of ALL samples with high MRD load (Cario et al.,  2005) . 
Compared with MRD negative samples, a prognostic signature distinguishing resistant 
from sensitive ALL samples could be defined.   

  4.2 Identification of Prognostic Signatures 
  4.2.1 Supervised Approaches 

 The pivotal study of Golub et al. was also the first to apply supervised analysis to 
explore genes predictive of response to chemotherapy (Golub et al.,  1999) . Although 
not statistically significant, candidates with potential biological significance in AML 
patients with treatment failure included over-expressed  HOXA9 , a gene known to be 
expressed in a subset of AML cases (Dorsam et al.,  2004) , and recently associated with 
 NPM1  mutations (Alcalay et al.,  2005) . Using a supervised approach in childhood 
AML, a prognostic signature was generated by comparing patients with a good and poor 
outcome (Yagi et al.,  2003) ; however, in an independent data set the respective gene 
expression pattern did not allow a significant risk stratification (Ross et al.,  2004) . 

 In CML, comparing CD34 + cells from patients with an “aggressive” and an “indolent” 
clinical course led to the identification of novel markers,  CD7  and  PR-3  (proteinase 3), 
as predictors of longer survival in CML patients (Yong et al.,  2006) . While these 
findings await validation by independent studies, it is important to note that these results 
were derived from samples from the “pre-imatinib” era; therefore the reported signature 
will also need to be evaluated in CML patients treated with imatinib.  

  4.2.2 Semi-supervised Methods to Predict Patient Outcome 

 A limitation of strictly supervised approaches to outcome prediction is that, survival 
and survival time, because they are impacted by many things other then the tumor cells 
themselves, are likely to be very noisy surrogates for the underlying prognostically 
relevant tumor subclasses. On the opposite side, strictly unsupervised analyses of leukemias 
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are driven largely by cytogenetic groupings of already known prognostic value. 
Therefore, to discover gene-expression signatures with additional prognostic value, we 
applied a novel semi-supervised strategy which combines the strengths of supervised 
and unsupervised approaches (Bair and Tibshirani,  2004) . The idea was to use the subset 
of genes correlating with survival time in a supervised clustering of specimens, to reveal 
the underlying prognostically relevant tumor subtypes, and then to build a predictor for 
these subtypes (Fig.  3  ). Applying this approach to a cohort of AML patients, we defined 
and validated a 133 gene signature as a significant independent outcome predictor, both 
across all cytogenetic classes and within the large subset of clinically-important AML 
cases with normal karyotype (Bullinger et al., 2004). This signature was also recently 
validated in an independent set of 68 AML cases with normal karyotype using a different 
microarray platform (Marcucci et al.,  2006) .   

  4.2.3 Integrative Approaches to Outcome Prediction 

 Recently, Glinsky et al.  (2005)  integrated expression signatures from murine models 
of prostate cancer progression and of BMI1-driven stem cell self-renewal to define an 
11-gene signature predictive of clinical outcome in human prostate cancer, as well as ten 
other human cancer types including AML. This study highlights the likelihood that many 
different gene sets are likely to emerge, which both capture important underlying biology 

  Fig. 3.     Semi-supervised approach for leukemia outcome prediction. ( A ) Schematic overview of a 
supervised clustering strategy. AML specimens are randomized into separate training and test sets. In 
the training set, genes whose expression correlates with survival are used to cluster samples into 
favorable and unfavorable outcome classes. An optimal gene-expression predictor is constructed for 
these outcome classes, and is then validated by predicting outcomes in the independent test set. 
( B ) Evaluation of outcome predictor. Kaplan-Meier survival analysis of the independent test set vali-
dates the gene-expression classifier (here comprising 133 genes) as a significant predictor of overall 
survival. Data are from (Bullinger et al., 2004)       
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and provide prognostic information. This study also underscores the importance of the 
public-availability of microarray data sets with associated clinical annotation, which will 
be instrumental in evaluating the various proposed prognostic signatures. 

 While this and the other above-mentioned findings are definitely encouraging, further 
validation of results in larger cohorts and in independent studies are clearly required 
before clinical implementation becomes feasible in leukemias.    

  5 CONCLUSIONS  

  5.1 GEP: An Important New Facet to Study Leukemias 
 In the past several years, hematologic malignancies have been an attractive area of 

study using genomic approaches like DNA microarray technology (Ramaswamy and 
Golub,  2002 ; Staudt,  2003 ; Ebert and Golub,  2004) , and GEP has contributed an impor-
tant new facet to the exploration of leukemias (Bullinger et al.,  2005 ; Chiaretti et al., 
 2005 ; Kern et al.,  2005) . The existing knowledge in hematopoiesis and leukemia genetics 
has also guided gene expression data interpretation, thereby facilitating the generation 
of biologically meaningful hypotheses. 

 In the future, this technology will further contribute to a comprehensive molecular 
leukemia classification. Characteristic expression patterns will support individualiza-
tion of cancer treatment and help to individually discern cases with high probability of 
resistance to therapy or a high relapse risk. Improved risk-adapted management of 
leukemia patients will also be supplemented by novel therapeutics developed with the 
aid of DNA microarray technology. Ultimately, a single microarray assay might be 
sufficient to adequately diagnose leukemias, predict their course, and enable individualized 
treatment strategies.  

  5.2 Validation of Microarray Data 
 Relating gene expression patterns to patient outcome provides increased challenges 

for translating initial research findings into robust diagnostics validated to be of clinical 
benefit. However, to prevent unsuccessful validation attempts the initial study should 
already be based on sophisticated algorithms including for example, a multiple random 
validation strategy, as results might otherwise be overoptimistic (Michiels et al.,  2005) . 
Furthermore, there remain unresolved data analysis issues that merit further research 
but which if appropriately addressed may facilitate validation of findings, e.g., the 
examination of intersections between sets of findings (Allison et al.,  2006) . 

 Although reported classifiers often show a seemingly impressive accuracy for 
predicting outcome, besides internal split-sample validation and cross validation, there 
are many reasons to demand external validation based on truly independent data, and 
the objective of this external validation should be to determine whether using a prognostic 
classifier results in patient benefit (Simon,  2005) .  

  5.3 Future Challenges: Integration of Whole Genome Approaches 
 While primary analyses have begun to decipher the molecular heterogeneity of leukemia, 

an outstanding challenge for the future will be the integration of DNA microarray 
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technology and other whole genome approaches to validate the numerous biologic 
hypotheses suggested by gene expression data. Integrative analyses that evaluate the 
leukemia transcriptome in the context of other data sources, such as SNP (single nucleotide 
polymorphism) arrays, array comparative genome hybridization (array CGH), tiling 
arrays, promoter arrays, and proteomics, will allow the extraction of additional biological 
insights from the data. Novel integrative computational and analytical approaches 
include meta-analysis, functional enrichment analysis, transcriptional network analysis 
and integrative model system analysis (Rhodes and Chinnaiyan,  2005) . However, a 
prerequisite for a successful integration will be to define a common language for commu-
nicating genomic profiles across diverse experimental systems, as well as the development 
of integrative bioinformatics solutions for sharing and analyzing such profiles.       
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  1 INTRODUCTION  

 The practice of personalized medicine has been an objective of physicians for centuries. 
Attempts at tailoring therapy to the individual patient can be found in the day-to-day 
approach to the treatment of many diseases. For example, the choice of antibiotics to 
treat bacterial pneumonia depends on the age of the patient, the comorbidities, and 
the most likely infectious agent based on their exposure history. Similarly, the choice of 
the most appropriate antihypertensive agent depends on the patient’s age, race, renal 
function, and other comorbidities. In the setting of treating cancer with chemotherapy, the 
aim of personalized medicine would be to maximize efficacy and minimize toxicity. 
In other words, personalized medicine would provide the oncologist with the neces-
sary tools to decide when to treat a patient and with what agent(s). Such an approach 
has been brought closer to practical application by the science of pharmacogenomics 
(Rioux,  2000 ; Lenz,  2003) . 

 Rather than trying to individualize therapy based on broad clinical and environmental 
characteristics as described above, pharmacogenomics uses novel genomic technologies 
to elucidate the influence of a patient’s genetic make-up on the variability in individual 
response to drugs (McLeod and Yu,  2003) . Various technologies have been developed 
to identify genetic variability between patients and elucidate a genetic signature or pro-
file that can be used to tailor therapy and move away from the “one size fits all” 
approach. In this chapter, we will discuss the role of pharmacogenomics in the clinical 
management of colorectal cancer to illustrate the concept of personalized medicine. As 
we review the current data on molecular markers and their predictive or prognostic role, 
we will also highlight some of the pitfalls and limitations that need to be overcome as 
we progress in our quest for personalized medicine.  
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  2 PERSONALIZED MEDICINE IN THE TREATMENT 
OF METASTATIC COLORECTAL CANCER  

  2.1 The Current Reality in the Clinical Management 
of Metastatic Colorectal Cancer 

 The last decade has witnessed a significant evolution in the treatment of metastatic 
colorectal cancer (mCRC). The incorporation of novel cytotoxic chemotherapeutic 
agents such as oxaliplatin and irinotecan, as well as novel targeted agents such as 
bevacizumab (BV) and cetuximab (CB), has resulted in a significant survival benefit 
for patients with mCRC (Tournigand et al.,  2004 ; Hurwitz et al.,  2004 ; Cunningham 
et al.,  2003) . The median survival has increased from 12 months with 5-fluorouracil 
(5-FU) and leucovorin (LV) to over 24 months with the more recent combination 
therapies. The standard approach to the treatment of mCRC involves the sequencing 
of several active regimens that include both cytotoxic and targeted agents. The com-
binations of 5-FU, LV, oxaliplatin and BV (FOLFOX/BV) or 5-FU, LV, irinotecan 
and BV (FOLFIRI/BV) are both effective frontline choices for the majority of 
patients with response rates surpassing 50% (Venook et al.,  2006 ; Hochster et al., 
 2006) . If a patient is known to have progression of disease on frontline therapy, 
several second and third line therapeutic options exist. The choice of second and 
third line therapies depends on the aim of treatment, the type of first line therapy, 
and the toxicity profile of the different chemotherapeutic options. While it is beyond 
the scope of this chapter to discuss the clinical algorithm of the treatment of mCRC, 
we will highlight the potential role of pharmacogenomics in influencing the choice 
of therapy. Specifically, we will review the current data about the predictive molecular 
markers of efficacy and toxicity and how they may be incorporated in the treatment 
approach to mCRC.  

  2.2 Predictive Markers of Efficacy 
  2.2.1 5-FU (Fig.  1 ) 

 5-FU remains an essential component of most combination chemotherapy regimens 
used in the treatment of mCRC. However, new combinations that do not include 5-FU 
have become available and may offer a superior therapeutic option if a patient has 
genetic markers of resistance to 5-FU. Such combinations include irinotecan and 
oxaliplatin (IROX) or irinotecan and cetuximab, with or without bevacizumab 
(Goldberg et al.,  2004 ; Saltz et al.,  2005) . The enzymes involved in 5-FU metabolism 
have been evaluated for their role in affecting the probability of response to 5-FU 
based therapy (Rich et al.,  2004) . Thymidine phosphorylase (TP) and thymidine 
kinase (TK) produce fluorodeoxyuridine monophosphate (FdUMP) which forms a 
stable ternary complex with thymidilate synthase (TS) and folic acid, resulting in 
inhibition of DNA synthesis. The inhibition of TS deprives the cell from its sole de 
novo source of thymidine. Dihydropyrimidine dehydrogenase (DPD) is involved in 
the catabolism of 5-FU and its elimination.   
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  2.2.2 TS 

 Several molecular mechanisms that affect the expression of the TS gene have been 
found to influence the probability of response to 5-FU based therapy. These molecular 
mechanisms include increased expression at the RNA or protein level, the number 28-
base pair (bp) repeats in the 5′ promoter region, deletions in the 3′ tail region, and single 
nucleotide polymorphisms (SNPs) within the 28-bp repeats in the 5′ region.  

  2.2.3 TS Gene Expression 

 Leichman et al.  (1997)  demonstrated a significant inverse relationship between 
intratumoral TS gene expression and response to infusional 5-FU in a retrospective 
study of 46 patients with mCRC. The median TS mRNA level of responders was 1.9 
× 10 −3  vs. the mRNA level of 5.6 × 10 −3  in nonresponders. The median survival for 

  Fig. 1.     5-Fluorouracil or its prodrugs, such as capecitabine, continue to play a central role in the treatment 
of GI malignancies. The enzymes involved in 5-FU metabolism have been evaluated for their role in 
affecting the probability of response to 5-FU based therapy. Thymidine phosphorylase (TP) and 
thymidine kinase (TK) produce FdUMP which forms a stable ternary complex with TS and folic acid 
resulting in inhibition of DNA synthesis. OPRT is responsible for the conversion of 5-FU to FUMP 
which is subsequently phosphorylated to the active metabolite FUTP. FUTP incorporates into RNA, 
disrupting normal RNA processing and function. Dihydropyrimidine dehydrogenase (DPD) is 
responsible for the catabolism of 5-FU and its elimination.  FUMP  fluorouridine monophosphate, 
 FUTP  fluorouridine triphosphate,  FUH2  dihydrofluorouracil,  FBAL  fluoro-β-alanine,  FdUMP  
fluorodeoxyuridine monophosphate,  dUMP  deoxyuridine monophosphate,  dTMP  deoxythymidine 
monophosphate,  OPRT  orotate phosphoribosyltransferase       
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patients with intratumoral TS mRNA level ≤3.5 × 10 −3  was 13.6 months as compared 
to 8.2 months in patients with a level <3.5 × 10 −3  ( p  = 0.02). Similarly, increased TS 
expression at the protein level as evaluated by immunohistochemical staining (IHC), 
has been correlated with increased resistance to infusional 5-FU based therapy in 108 
patients with mCRC. Patients with positive IHC for TS had an objective response rate 
(RR) of 15 vs. 30% in patients with negative IHC for TS (HR 2.0; 95% CI: 3.5–1.2; 
 p  < 0.04) (Paradiso et al.,  2000) .  

  2.2.4 TS Gene Polymorphisms 

 The evaluation of gene expression at the RNA level depends on a special technology 
that utilizes laser capture microdissection to separate tumor cells from normal mucosa, 
followed by RNA isolation, cDNA preparation and subsequent quantitation of the relevant 
genes using a fluorescence-based real-time detection (Bonner et al.,  1997) . The use of 
IHC to evaluate gene expression at the protein level is limited by the quality of the anti-
bodies used and the level of experience of the laboratory, and is labor intensive. 
Genomic polymorphisms which can be evaluated using peripheral blood and PCR tech-
nology may offer a potentially cheaper and more efficient alternative to gene expression 
analysis. Polymorphisms that affect the activity or function of an enzyme critical for the 
efficacy of a drug may be associated with clinical outcome and serve as predictors of 
response (McLeod and Yu,  2003) . This concept is highlighted well with the example of 
the 28-bp repeat sequence in the 5′ terminal regulatory region of the TS gene. In a 
retrospective study of 52 patients with metastatic CRC, TS gene expression levels were 
3.6 times higher in patients who were homozygous for the triple repeat (3R/3R) 28-bp 
sequence compared to those homozygous for the double repeat variant (2R/2R) ( p  = 
0.004). Patients homozygous for the double repeats (2R/2R) showed a significantly bet-
ter response rate to 5-FU compared to those homozygous for the triple repeats (3R/3R) 
(50 vs. 9%;  p  = 0.04) (Pullarkat et al.,  2001) . Kawakami et al.  (2001)  reported higher 
TS protein expression levels with the 3R/3R genotype, which suggested improved trans-
lational efficiency as a potential mechanistic explanation for the genotype-dependent 
difference in expression. A prospective study of 102 patients with metastatic CRC 
treated with 5-FU revealed that the 2R/2R genotype conferred the longest survival 
(median survival of 19 months for 2R/2R, 10 months for 2R/3R and 14 months for 
3R/3R;  p  = 0.025). All three groups had similar objective response rates (Etienne et al., 
 2002) . The other polymorphisms in the TS gene such as a 6-bp deletion in the 3′ region 
and a G to C SNP have been identified but their clinical significance awaits further 
evaluation (Mandola et al.,  2003 ,  2004)   

  2.2.5 Is the Response to 5-FU Dependent on TS Only? 

 As highlighted previously, the metabolism and mechanism of action of 5-FU are 
influenced by several genes, including TS, DPD, and TP. In a study of 38 patients with 
metastatic CRC treated with 5-FU and leucovorin, the range of pretreatment intratu-
moral expression levels of TP was much narrower among the responding (16-fold) vs. 
the nonresponding patients (205-fold). None of the patients with a TP level over 18 
responded ( p  = 0.037) (Mandola et al.,  2003) . These results appear to be inconsistent 
with in vitro data that showed a correlation between increased TP levels and increased 
sensitivity to 5-FU. This apparent inconsistency may be due to the fact that TP is an 
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angiogenic factor, also known as platelet-derived endothelial cell growth factor. The 
angiogenic role of TP is likely to be more relevant in vivo where higher TP levels may 
be markers of more aggressive tumors with higher invasive and malignant potential 
(Allen and Johnston,  2005) . In another retrospective study of 33 patients with mCRC 
treated with 5-FU based therapy, the range of DPD expression was narrower among 
responding patients (0.60 × 10 −3  to 2.5 × 10 −3 , 4.2-fold) compared with that of the non-
responders (0.2 × 10 −3  to 16 × 10 −3 , 80-fold). In the same study, there was no correlation 
between the expression of TS and that of DPD, suggesting that the two genes are inde-
pendently regulated. Several patients with DPD levels below the cutoff value of 2.5 × 
10 −3  were nonresponders and had elevated TS levels. The patients who had low levels 
of both TS and DPD had a RR of 92%. When the expression level of TP was included 
in the analysis, all the responders could be identified by low expression of all three 
genes. Nonresponders had at least one gene with high expression values (Salonga et al., 
 2000) . These data suggest that the predictive power of TS expression for clinical out-
come can be improved by the incorporation of other independent response determinants 
involved in the metabolism of 5-FU.  

  2.2.6 How Far Are We from Being Able to Predict Response 
to 5-FU in the Clinic? 

 Being able to determine which patients should receive 5-FU as part of their therapy 
for mCRC based on the current molecular determinants of response would constitute a 
critical step towards the application of the concept of personalized medicine. However, 
the incorporation of the molecular data discussed above into clinical practice requires 
validation in a prospective fashion as well as a better understanding of the complexity 
of TS gene expression control and its interaction with other genes in the metabolism of 
5-FU. One of the criticisms of the data about the predictive value of TS expression is 
that it is derived in a retrospective manner and in small groups of patients. Recently, the 
Medical Research Council (MRC) investigators attempted to address this issue by 
conducting an exploratory analysis of 13 molecular markers in relation to the clinical 
outcome of 846 patients with mCRC treated with 5-FU, 5-FU and irinotecan, or 5-FU 
and oxaliplatin in a prospective clinical trial (FOCUS). In the test set of 846 patients, 
high TS level expression by IHC and tumor grade were significantly associated with 
failure-free survival (FFS). However, in the validation set of 449 patients, there was no 
statistically significant association between TS level and FFS. When an exploratory 
analysis was preformed on both the test and validation sets combined, high TS expres-
sion by IHC remained significantly associated with reduced FFS (Richman et al.,  2006) . 
The lack of correlation between TS expression and FFS in the validation set may be 
related to the choice of FFS as a surrogate for clinical outcome when evaluating a predic-
tive marker such as TS. FFS is influenced by the number of patients who fail treatment 
secondary to toxicity and not only progression. Furthermore, the source of tissue utilized 
to perform the IHC evaluation may impact the degree of TS expression and its clinical 
outcome. Several investigators have demonstrated that TS expression by IHC in the pri-
mary tumor site does not fully correlate with TS expression in other metastatic sites 
(Aschele et al.,  2000 ; Corsi et al.,  2002) . Simultaneously, clinical outcome correlated 
with TS expression at the metastatic site and not at the primary site. Other methodological 
pitfalls include the method used to evaluate TS gene expression. While IHC does not 
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require complex technology and is cheap, the use of RT-PCR to quantify gene expres-
sion at the RNA level is quantitative and less subject to variation based on technique and 
the reader’s interpretation. As we move into the age of prospective validation of molec-
ular predictors, it is important that the methods used to assess TS gene expression be 
standardized, the cutoff points for RNA expression be uniform, and the statistical design 
be appropriate to capture the significance of an association without a high degree of 
false negativity or positivity. Furthermore, in the case of TS, the evaluation of gene 
expression levels in conjunction with the polymorphisms in the untranslated regions 
may result in a better assessment of the predictive value of the gene.  

  2.2.7 Molecular Predictors of Response to Oxaliplatin 
and Irinotecan 

 The use of combination chemotherapy is standard in the approach to treatment of 
mCRC. As a consequence, the ability to predict the response to one combination vs. 
another requires that we identify predictors of response to oxaliplatin and irinotecan 
which are combined with 5-FU. Being able to predict response to combinations like 
FOLFOX and FOLFIRI could allow us to improve the probability of response to front-
line chemotherapy. Choosing the “right” treatment for a patient can have several clinical 
advantages. For example, a patient who is symptomatic from widely mCRC could 
achieve more immediate palliation prior to worsening of the performance status which 
could lead to missing the window of opportunity for treatment. In patients who have 
limited metastatic disease to the liver or lung, being able to choose the most effective 
regimen could increase the chances of cure by down-staging the disease and allowing 
for subsequent resection of the metastases, which could translate into a cure.  

  2.2.8 Oxaliplatin 

 Oxaliplatin (Eloxatin, Sanofi-Aventis) is a platinum analog that inhibits DNA synthe-
sis through the formation of intrastrand DNA adducts (Simpson et al.,  2003) . The 
diaminocyclohexane moiety, which distinguishes oxaliplatin from other platinum com-
pounds, is thought to enhance its cytotoxicity through the formation of bulkier adducts. 
Several intracellular mechanisms are involved in the inherited or acquired resistance to 
oxaliplatin. In addition to the balance of cellular uptake vs. efflux, increased detoxifica-
tion and DNA repair have been found to influence the sensitivity to oxaliplatin. The 
excision repair crosscomplementation group 1 enzyme (ERCC1), XRCC1, and the 
xeroderma pigmentosum group (XPD) are all members of the nucleotide excision repair 
(NER) pathway involved in the repair of DNA damage induced by the formation of 
platinum-DNA adducts. An increased ability to repair DNA damage through the NER 
pathway is thought to lead to increased resistance to platinum drugs (Kweekel et al., 
 2005) . Elevated mRNA levels of ERCC1 were found to be associated with a 4.2-fold 
increased risk of death (95% CI: 1.4, 13.3;  p  = 0.008) in a group of patients with mCRC 
treated with FOLFOX as second line therapy (Shirota et al.,  2001) . Genomic polymor-
phisms of ERCC1, XPD and XRCC1 have been found to be associated with the proba-
bility of response to second line chemotherapy with FOLFOX in patients with mCRC. 
A polymorphism in exon 10 of XRCC1 causing an arginine to glycine (Gln) substitution 
is thought to result in decreased ability for repair of DNA damage by DNA adducts. The 
presence of at least one Gln allele has been associated with fivefold increased risk to 
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fail 5-FU/oxaliplatin therapy (Stoehlmacher et al.,  2001) . An A to C substitution in exon 
23 of the XPD gene leads to a lysine (Lys) to glutamine (Gln) substitution. In patients 
treated with FOLFOX, the presence of one or more Gln alleles resulted in a lower RR 
(10 vs. 24% in patients with Lys/Lys) (Park et al.,  2001) . Glutathione-S-transferase P1 
(GSTP1) belongs to a family of enzymes that catalyze the conjugation of reduced 
glutathione, thereby protecting cellular macromolecules from damage caused by carci-
nogenic and chemotherapeutic agents (Srivastava et al.,  1999) . A polymorphism leading 
to an isoleucine to valine substitution at position 313 leads to decreased enzymatic 
activity of the GSTP1–105Val variant. Among 107 metastatic CRC patients treated with 
FOLFOX, the homozygous Val/Val genotype appeared to be correlated with improved 
survival as compared to the Val/Ile or Ile/Ile genotypes (25 vs. 13 vs. 9.6 months;  p  < 
0.001) (Stoehlmacher et al.,  2002) . However, these results are in contrast to the study 
by McLeod et al.  (2003)  who could not confirm an association between this GSTP1 
polymorphism and oxaliplatin-based chemotherapy. The most recent genetic polymor-
phism to be associated with clinical outcome of 5-FU and oxaliplatin is the SCN1A 
polymorphism of a neuronal voltage-gated sodium channel (VGSC), which was evalu-
ated in a group of 173 patients with mCRC treated with 5-FU and oxaliplatin after failure 
of 5-FU or 5-FU and irinotecan. Patients with SCN1A T1067A SNP T/T genotype 
showed a significantly better response rate (21.9% [23/105] vs. 11.3% [5/44];  p  = 0.02), 
time to progression (4.6 vs. 3.4 months;  p  = 0.02) and OS (12.3 vs. 8 months;  p  = 0.002) 
compared to patients with the T/A genotype (Nagashima et al.,  2006) . 

 At the clinical application level, it is unlikely that response to a combination chemo-
therapeutic regimen would depend on one gene or one pathway only. Therefore, it is 
imperative to identify more comprehensive genetic signatures or profiles that would 
account for the multiple genes involved and that would separate responders from non-
responders. In this context, Stoehlmacher et al.  (2004)  were able to separate patients 
with mCRC who were treated with FOLFOX into three groups using a combination 
analysis of favorable genotypes from polymorphisms in XPD-751, ERCC1–118, 
GSTP1–105 and TS-3′ untranslated region. Patients possessing two or more favorable 
genotypes survived a median of 17.4 months compared with 5.4 months in patients with 
no favorable genotype. Patients with one favorable genotype had an intermediate survival 
of 10.2 months. Daud et al.  (2006)  are performing a phase II study that randomizes 
patients with metastatic CRC to capecitabine, irinotecan and bevacizumab vs. capecitab-
ine, oxaliplatin and bevacizumab. Patient responses in the two groups will be correlated 
with molecular analysis of liver biopsies, and a U133A gene chip will be used to 
develop a microarray classifier for treatment responders and nonresponders.  

  2.2.9 Irinotecan 

 Irinotecan is a prodrug that is activated by carboxylesterase (CES) into SN38 which 
achieves its antitumor effect by inhibiting DNA topoisomerase I, an enzyme involved in 
the relaxation of supercoiled DNA. SN38 is metabolized in the human liver by UGT1A1 
to an inactive compound SN38G (Mathijssen et al.,  2001) . UGT1A1 polymorphisms are 
thought to predict toxicity to irinotecan, a subject which will be discussed in more detail 
subsequently. Other members of the UGT1A family are involved in the metabolism of 
irinotecan including hepatic UGT1A6 and UGT1A9 and extrahepatic UGT1A7. 
UGT1A7 is expressed in the gastrointestinal tract and may influence the disposition 
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of SN38 within the gut. In a phase II study of 67 patients with mCRC treated with 
 capecitabine and irinotecan, low enzyme activity UGT1A7 genotypes, UGT1A7*2/*2 
(six patients) and UGT1A7*3/*3 (seven patients), were significantly associated with 
improved response probability (85 vs. 44% in patients with other genotypes;  p  = 0.013). 
A similar finding was noted with UGT1A9–118 (dT) 

9/9
  genotype (RR of 74% with 

UGT1A9–118 (dT) 
9/9

  vs. 43% in patients with other genotypes). The UGT1A9–118 
(dT) 

10
  allele has been associated with 2.6-fold greater transcriptional activity than the 

−118 (dT) 
9
  allele in vitro. These data would suggest that the UGT1A9–118 (dT) 

9/9
  

genotype results in lower UGT1A9 activity and therefore higher levels of the active 
metabolite SN-38 and lower levels of SN-38G (Carlini et al.,  2005) . 

 Preliminary data from a retrospective study with 33 metastatic CRC patients suggest 
that gene expression levels of ERCC1, GSTP1, epidermal growth factor receptor (EGFR) 
and multidrug resistance (MDR1) may be associated with response to irinotecan-based 
therapy (Yang et al.,  2005) . These data need to be validated in larger cohorts. 

 At this point, FOLFOX and FOLFIRI are thought to have equivalent efficacy in the 
frontline treatment of mCRC (Tournigand et al.,  2004) . The available data on molecular 
predictors of efficacy are limited by the retrospective nature of the studies, the small 
numbers of patients, and the need for a better understanding of the functional signifi-
cance of several of the polymorphisms involved. Several ongoing studies are evaluating 
some of these markers as well as others in a prospective manner. At the same time, the 
continuously changing landscape of the treatment of mCRC presents a challenge to our 
ability to be able to validate molecular markers. This challenge is due to the evolution 
of the treatment combinations and the incorporation of targeted agents such as bevaci-
zumab and cetuximab into the treatment algorithm. Efforts are ongoing to identify 
molecular predictors of response to bevacizumab and cetuximab.   

  2.3 Molecular Predictors of Toxicity 
 When treating patients with mCRC, the ability to predict toxicity to specific drugs 

may influence the choice of therapy with the hope of minimizing side effects and 
preserving quality of life. The prolongation in overall survival afforded by the new 
therapeutic combinations is accompanied by an increased risk of toxicity, which is par-
tially related to the longer exposure to the drugs in question. Sixty two percent of 
patients with mCRC treated with FOLFOX on clinical trial N9741 had to discontinue 
treatment for reasons other than progression. Among those patients, 53% discontinued 
treatment due to toxicity, including neurotoxicity, myelosuppression and hypersensitivity. 
As a result, the time to treatment failure (TTF) which accounts for treatment failure for 
reasons other than disease progression was shorter than the time to tumor progression 
(TTP) (5.8 vs. 9.2 months) (Green et al.,  2005) . This example highlights the importance 
of tailoring the treatment to the individual patient in a way that minimizes toxicity while 
not compromising efficacy. We discuss examples of potential predictive markers of 
toxicity to 5-FU, irinotecan and oxaliplatin later. 

  2.3.1 5-FU 

 The number of repeats (2R vs. 3R) of a 28-bp sequence in the 5′UTR of TS has been 
found to correlate with TS expression as discussed above. The 3R allele is associated 
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with increased TS expression, which is the main target of 5-FU. In a group of 52 
patients with mCRC treated with bolus 5-FU and LV, grade 2 or more adverse events 
were reported in all patients with the 2R/2R genotype and in 14 out of 41 patients with 
a 3R allele ( p  < 0.0001, simple logistic regression analysis). In the same study, a SNP 
(G→A) in exon 3 of orotate phosphoribosyltransferase (OPRT) was found to be associ-
ated with the risk of toxicity. OPRT is responsible for the conversion of 5-FU to fluorou-
ridine monophosphate (FUMP), which is subsequently phosphorylated to the active 
metabolite fluorouridine triphosphate (FUTP). The G to A mutation is thought to 
increase the activity of OPRT, which leads to higher levels of the active metabolite 
FUTP. All 20 patients with G213A allele experienced adverse events of more than grade 
2 compared to 5 out of 32 without G213A allele ( p  < 0.0001, simple logistic regression 
analysis) (Ichikawa et al.,  2003) . 

 DPD is an enzyme that accounts for about 80% of the catabolism of 5-FU. A G to A 
mutation in the invariant GT splice donor site flanking exon 14 (IVS14+1G>A) is 
thought to lead to decreased DPD activity and consequently severe, potentially lethal 
toxicity (Van Kuilenburg et al.,  2001) .  

  2.3.2 Irinotecan 

 As noted previously, UGT1A1 is involved in the glucoronidation of SN38, the active 
metabolite of irinotecan, to SN38G, the inactive metabolite. Polymorphisms that 
decrease the activity of UGT1A1 would subsequently be expected to increase the 
exposure to SN38, and potentially worsen the risk of toxicity. A 2-bp (TA) insertion in 
the TATA box in the promoter region of UGT1A1 leads to 7 TA repeats instead of 6 and 
results in the variant allele UGT1A1*28. UGT1A1*28 leads to decreased protein 
expression of UGT1A1 and increased risk of neutropenia with irinotecan in patients 
homozygous for the 7 TA repeats (Iyer et al.,  2002 ; Innocenti et al.,  2004) . These data 
resulted in a drug label change for irinotecan that incorporated the UGT1A1 molecular 
assay information. However, the same polymorphism did not predict the risk of toxicity 
in patients who received bolus 5-FU/LV and irinotecan (IFL) in the clinical trial N9741 
which randomized patients with mCRC to FOLFOX vs. IFL vs. the combination of iri-
notecan and oxaliplatin (IROX). Statistically significant associations were found 
between the 7/7 genotype and the risk of grade 4 neutropenia in the patients treated with 
IROX ( p  = 0.004) and in all patients ( p  = 0.007) (McLeod et al.,  2006) . Part of the 
explanation for the failure of the 7/7 genotype to predict toxicity in patients treated with 
IFL is the low frequency of the 7/7 genotype. Another reason may be the fact that sev-
eral other enzymes play a role in the transport and metabolism of irinotecan and SN-38 
and should be incorporated into the toxicity prediction algorithm. Furthermore, the 
clinical impact of identifying patients with the UGT1A1 7/7 genotype is limited as it 
was found to reduce the risk of grade 4 neutropenia from 18 to 17% only in the same 
study. Multiple efforts are ongoing to develop a more comprehensive assessment of the 
risk of toxicity with irinotecan. For example, Innocenti et al.  (2005)  examined the role 
of several transporters involved in the metabolism of irinotecan along with UGT1A1. 
The superfamily of ATP-binding cassette (ABC) transporters is responsible for the 
elimination of irinotecan and its metabolites through biliary and intestinal excretion. 
ABCC2 has been found to have at least six SNPs. The organic anion transporter 
polypeptide-1B1 (OATP-1B1), also known as SLCO1B1, is found at the basolateral 
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membrane of hepatocytes and transports SN-38 from blood into liver. Twelve haplotypes 
of ABCC2 were identified and haplotype 4 was correlated with SN-38G/SN-38 AUC 
ratio ( p  < 0.0001). SLCO1B1*5 (521T>C) CT and CC genotypes had a higher irinote-
can AUC compared to TT genotype ( p  = 0.0001). This difference is attributed to 
reduced transport function of the SLCO1B1*5 variant. Using a multivariate model, 
SLCO1B1, ABCC2 and UGT1A1 gene variants along with total bilirubin were associ-
ated with the risk of neutropenia in this retrospective study of 65 patients. Once again, 
such data highlight the importance of the interplay among several genetic variations in 
determining toxicity to a drug.  

  2.3.3 Oxaliplatin 

 Chronic peripheral sensory neuropathy is a dose-limiting toxicity of oxaliplatin, with 
grade 3 neuropathy, being reported in as many as 50% of patients who reached doses 
over 1,000 mg/m −2  (Cersosimo,  2005) . Recently, GSTP1 I105V polymorphism was 
found to be associated with early onset of oxaliplatin-induced neurotoxicity. In a retro-
spective evaluation of 299 patients who received FOLFOX on Intergroup study N9741, 
four genetic variants in genes involved in detoxification and DNA repair were evaluated 
for their potential role as predictors of susceptibility to oxaliplatin mediated neuropathy. 
Patients with the GSTP1 C/C polymorphism (equivalent to the Val/Val genotype noted 
above) were more likely to discontinue FOLFOX due to neuropathy than patients with 
T/T (23.7 vs. 9.2%) or with C/T (10%;  p  = 0.039). The cumulative dose to onset of 
neuropathy was lower for patients with the C/C polymorphism as compared to the T/T 
or C/T patients ( p  = 0.05) (Grothey et al.,  2005) . More recently, polymorphisms in the 
neuronal VGSCs were assessed for their role in predicting oxaliplatin toxicity. In a pro-
spective study of 152 patients with mCRC treated with infusional 5-FU and oxaliplatin, 
the SCN1A T1067A SNP T/T genotype showed a significant association with a lower 
risk of grade 3/4 toxicity ( p  = 0.002) (Nagashima et al.,  2006) . These preliminary data 
offer hope of the possibility of being able to determine which patients are at increased 
risk for oxaliplatin-related peripheral neuropathy but need to be validated in other pro-
spective studies. With regard to clinical applicability, being able to determine if a patient 
is at increased risk for peripheral neuropathy would influence the treating physician to 
choose an irinotecan-based combination as the frontline regimen or to minimize the 
total dose of oxaliplatin administered by using a “stop-and-go” approach to therapy as 
illustrated in the OPTIMOX 1 and 2 studies (Maindrault-Goebel et al.,  2006) .    

  3 PERSONALIZED MEDICINE IN THE ADJUVANT TREATMENT 
OF COLORECTAL CANCER  

 The objective of adjuvant chemotherapy is to reduce the risk of recurrence of a can-
cer after curative therapy, most commonly surgery, via the inhibition of micrometas-
tases. FOLFOX has become the standard adjuvant treatment for patients with stage III 
colon cancer (Wolmark et al.,  2005 ; De Gramont et al.,  2005) . However, there is con-
troversy about the use of adjuvant chemotherapy in all patients with stage II colon can-
cer. The concern is about exposing patients with a low risk of recurrence to chemotherapy 
and potential toxicity unnecessarily. Prognostic molecular markers that help predict 
tumor behavior as well as host/tumor interactions could be helpful in risk stratification 
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and in restriction of treatment to patients who would derive the most benefit. It is 
beyond the scope of this chapter to review the entire body of data related to prognostic 
markers for colorectal cancer. However, we will use the example of TS and microsatel-
lite instability to illustrate the possibility of individualizing adjuvant chemotherapy for 
colon cancer patients. TS expression has been shown to have prognostic value with low 
intratumoral levels predicting longer survival (Johnston et al.,  1994 ; Lenz et al.,  1998) . 
More recently, low TS expression assessed by immunohistochemistry in tumors from 
1,326 patients with stage II and III CRC was found to be a statistically valid independ-
ent prognostic factor. While the prognostic value of TS has been established, its role in 
predicting benefit from adjuvant 5-FU based chemotherapy has been somewhat contro-
versial, possibly because of the small patient numbers and the difference in the method-
ology used to assess the expression level (IHC vs. RT-PCR) (Johnston et al.,  2005 ; 
Popat et al.,  2004) . Several recent and ongoing studies attempt to address this issue. For 
example, in a series of 121 consecutive patients with II and III colon cancer in Korea 
treated with oral 5-FU therapy (doxifluridine), patients with 3R/3R TS genotype had 
shorter survival than patients with 2R/2R genotype (53 vs. 80%;  p  = 0.0481) (Suh et al., 
 2005) . Even though these data are consistent with the studies that show a higher level 
of TS expression with the 3R/3R genotype, other publications highlight the complexity 
of the prognostic role of TS polymorphisms. Dotor et al.  (2006)  examined the prognos-
tic value of 3 TS gene polymorphisms in a prospective cohort of 129 patients with CRC. 
The patients received adjuvant bolus 5-FU plus levamisol for 1 year or bolus 5-FU and 
leucovorin for 6 months as adjuvant therapy depending on the date of enrollment. The 
TS enhancer region was evaluated for the presence of 2R or 3R 28-bp repeats and for 
the functional G>C SNP present in the second repeat of 3R alleles. In addition, the 
TS1494del6 genotype was evaluated to determine the presence or absence of a 6-bp 
deletion polymorphism which is associated with decreased intratumoral TS levels. 
Haplotype and mutational analyses of the TS gene were also performed. The TSER 
3R/3R genotype was associated with better prognosis ( p  = 0.02). SNP genotyping of the 
3R alleles did not manifest any significant association with clinical outcome. The pres-
ence of the −6 bp allele in the tumor was associated with a reduced risk of death. 
Haplotype analysis revealed that patients with the 3R/−6 bp haplotype showed a signifi-
cant OS benefit compared with patients with the 2R/+6 bp haplotype. The apparent 
contradiction in the prognostic value of the 28-bp repeats between the two studies is 
likely to be multifactorial. Potential explanations include the fact that the relationship 
between the number of 28-bp repeats and TS expression has to be better elucidated. 
Furthermore, the choice of the predictive marker has to be consistent with the mecha-
nism of action of the drug. In the study by Dotor et al., patients were treated with bolus 
5-FU, while TS has a role as a potential predictive marker in patients treated with infu-
sional 5-FU. The different modes of administration affect the mechanism of action of 
5-FU, with the infusional mode resulting in TS inhibition whereas the bolus administra-
tion is thought to act by incorporation into RNA (Sobrero et al.,  1997 ; Matsusaka et al., 
 2003) . Therefore, TS expression may not be the most appropriate marker for patients 
treated with bolus 5-FU. 

 MSI is present in about 15% of CRCs and reflects the inactivation of mismatch repair 
(MMR) genes. Analysis of pooled data from published studies by Popat et al. reveals 
that CRCs with high MSI have a better prognosis (HR 0.65, 95% CI: 0.59–0.71). MSI 
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tumors appeared to derive no benefit from adjuvant 5-FU but the data are limited with 
HR of 1.24 and a 95% CI of 0.72–2.14 (Popat et al.,  2005) . While there is general 
 agreement about the positive prognostic impact of deficient MMR or high MSI, it 
remains unclear whether patients with deficient MMR benefit from chemotherapy. Two 
recent studies suggest that the benefit of adjuvant 5-FU based chemotherapy is restricted 
to MMR competent tumors (Jover et al.,  2006 ; Lanza et al.,  2006) . The role of MMR or 
MSI status in predicting benefit from chemotherapy needs to be evaluated further with 
the current standard adjuvant chemotherapy combination of 5-FU/LV and oxaliplatin. 
The irinotecan-based combination, FOLFIRI, failed to show superiority over 5-FU/LV 
in the adjuvant treatment of patients with CRC in several clinical trials. However, 
patients with high MSI tumors may benefit from adjuvant chemotherapy with 5-FU/LV 
and irinotecan as shown in early results from CALGB 89803 (Bertagnolli et al.,  2006) . 
If these findings are validated, they would provide strong support for the concept of 
personalized medicine and will result in the incorporation of irinotecan in the adjuvant 
treatment of a subset of patients with CRC with tumors expressing high MSI. 

 Several other genes have been evaluated for their prognostic role in stage II and III 
colon cancer. It is likely that the most accurate prognostic assessment will depend on 
more than one gene in one pathway. To address this issue, there are multiple attempts 
to develop a molecular signature that can be used for molecular staging of patients 
with stage II and III colon cancer. The goal is to achieve better risk stratification to 
avoid over or under treating of patients. Eschrich et al.  (2005)  used a 32,000 cDNA 
microarray to evaluate 78 human colon cancer specimens and correlated the results 
with survival. The authors identified a set of 43 core genes which was 90% accurate in 
predicting a 36-month overall survival, and was better than Duke’s staging ( p  = 0.03878). 
Johnston et al.  (2006)  used another method to determine a prognostic genetic signature. 
They developed a disease-specific microarray for colorectal cancer using a high-
throughput transcriptome-based approach that encodes over 52,500 transcripts 
expressed in normal and diseased colorectal tissue. Using this approach, a gene signa-
ture containing 48 genes demonstrated 100% accuracy in the prediction of recurrence 
in 32 patients with stage II CRC. These studies and others offer both great promise 
and significant challenge. Many technical issues need to be simplified and standard-
ized. For example, microarrays still require microdissection, a process that is not 
widely available or easy to perform. At the same time, while arrays result in a molecular 
profile, they do not reveal the functional significance of the genes or pathways 
involved. On the other hand, a candidate gene approach may lead to important genes 
being overlooked or missed. As the scientific community attempts to address these 
issues and many others, prospective validation of these techniques and signatures is 
imperative prior to their application in the clinic.  

  4 HOW DO WE BRING THE CONCEPT OF PERSONALIZED 
MEDICINE TO THE DAILY PRACTICE OF ONCOLOGY? (FIG.  2 )  

 In a discussion of several abstracts during the tumor biology oral presentation session 
at the annual meeting of the American Society of Clinical Oncology, Dr. Carmen 
Allegra’s outline suggested developmental milestones for clinical markers. Phase 1A 
studies represent the first clinical investigation of a marker using retrospective 
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data and tissues and retrospectively determined “cut-points.” Phase 1B studies are 
 retrospective ones that refute or support initial studies. Phase II studies represent a 
prospective validation of findings from phase 1A and 1B studies; they may still use 
retrospective tissue but must have predefined marker cut-points/gene sets and have 
adequate power. In other terms, this is consistent with the concept of a test set. Phase 
III studies consist of a prospective demonstration of clinical benefit through the use 
of the marker for therapeutic decision making. Multiple investigators are now involved 
in studies that are designed to prospectively demonstrate the superiority of molecu-
larly chosen therapy over the standard approach. A current study by McLeod et al. 
 (2005)  assigns patients with T3 and T4 rectal cancer to 5-FU vs. irinotecan-based 
chemotherapy based on the likelihood of response to 5-FU. Patients homozygous for 
the 3R repeats in the 5′UTR region of TS are considered “bad risk” patients and are 
assigned to receive irinotecan and radiation, whereas the 2R/3R and 2R/2R patients 
receive 5-FU and radiation. Preliminary results in the 13 “bad risk” patients with 
3R/3R genotype who received irinotecan and radiation reveal 85% down-staging with 
62% pathologically complete response rate. Such provocative data need to be validated 
in a randomized setting, but they still serve to illustrate the potential advantage of 
tailored therapy. One of the favored clinical trials designs to determine the relevance 
of a marker is illustrated in a study that assigned patients with nonsmall cell lung 
cancer to treatment on a control arm (docetaxel and cisplatin) vs. a genotypic arm. In 
the latter arm, patients with high ERCC1 levels who are expected to be platinum 
resistant received gemcitabine and docetaxel, whereas patients with low ERCC1 
expression received docetaxel and cisplatin. The final results of this study are pend-
ing, but preliminary ones reveal a significant role for ERCC1 in predicting response 
and therefore influencing the choice of therapy (Rosell et al.,  2005) .  

 As we move into the future, the benefits of the tools used to individualize therapy 
should extend beyond the predictive and prognostic markers. For instance, if a molecular 
marker identifies the risk of extrahepatic metastases in patients with CRC, a clinical trial 
could be designed with the aim of determining whether patients with elevated expression 
of the marker should undergo resection of the liver metastases for cure. The implication 
is that molecular markers could lead to a change in the endpoints of clinical trials. Drug 
development is another field that should benefit from the field of pharmacogenomics. If 
a genetic marker of resistance to a drug is identified, the gene involved could represent 
the ideal target for drug development to overcome the resistance. Similarly, a better 
understanding of the mechanism of resistance to specific drugs in patients could provide 
support for more rational therapeutic combinations.  

  5 CONCLUSION  

 Personalized medicine in the treatment of colorectal cancer will be of great benefit 
to patients as it allows the treating physician to tailor the treatment in a manner that 
maximizes benefit or response and minimizes toxicity. It will also allow patients to 
avoid being exposed to treatment that is not needed in the adjuvant setting based on 
better risk stratification. However, applying these concepts in the clinic requires a large 
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coordinated effort involving molecular biology, informatics and well designed clinical 
trials. Ongoing and planned studies promise to bring us closer to this reality.      
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    10   PIK3CA  Gene Alterations 
in Human Cancers       
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  ABSTRACT 

 Mutations or amplification of the chromosomal region containing the  PIK3CA  gene, 
coding for the p110α catalytic subunit of class IA of PI3K, were described in diverse tumor 
models. In this review, we will focus on the localization and type of  PIK3CA  mutations and 
their association with signaling pathways and cellular effects in different tumor types.  

  Key Words:   PI3K PIK3CA ,  PI3K signaling ,   PIK3CA  mutations ,   PIK3CA  amplification , 
 Cancer ,  AKT ,  PTEN ,  BRAF ,  KRAS ,  Kinase ,  Molecular targets ,    

  1 PHOSPHOINOSITOL 3-KINASE (PI3K): OVERVIEW  

 PI3-kinases were first identified as an 85-kDa phosphoproteins whose appearance 
correlated with a phosphatidylinositol kinase activity in immunoprecipitates from a 
number of polyoma middleT mutants (Domin and Waterfield,  1997) . They are nowadays 
defined as lipid kinases responsible for the phosphorylation of inositol lipids at the 
3′ position of the inositol ring, and to generate 3-phosphoinositides PtdIns(3)P, 
PtdIns(3,4)P2 and PtdIns(3,4,5)P3 (Vanhaesebroeck and Waterfield,  1999 ; Katso et al., 
 2001 ; Vivanco and Sawyers,  2002) . 

 The molecular cloning of PI3K demonstrated that PI3-kinases are part of a large and 
complex family of proteins that contain three classes (I, II, III) and are defined on the 
basis of their primary structure, regulation and in vitro lipid substrate specificity (Domin 
and Waterfield,  1997 ; Wymann and Pirola,  1998 ; Vanhaesebroeck and Waterfield,  1999 ; 
Katso et al.,  2001 ; Vivanco and Sawyers,  2002) . 

 Class I PI3K forms a heterodimeric complex, composed by a catalytic subunit and an 
adaptor/regulatory subunit which renders the complex responsive to ligand stimulation 
(Domin and Waterfield,  1997 ; Wymann and Pirola,  1998 ; Vanhaesebroeck and Waterfield, 
 1999 ; Katso et al.,  2001 ; Vivanco and Sawyers,  2002) . In vitro, class I PI3K can use as 
substrate both PtdIns(4)P and PtdIns(4,5)P 

2
 , but in vivo, they preferentially catalyze the 
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conversion of PtdIns(4,5)P 
2
  to PtdIns(3,4,5)P 

3
  (Domin and Waterfield,  1997 ; Katso et al., 

 2001) . This class of PI3K can be segregated into two subclasses, IA and IB, based on 
structural and functional differences (Domin and Waterfield,  1997 ; Wymann and Pirola, 
 1998 ; Katso et al.,  2001) . Subclass IA, which transmit signals from tyrosine kinase recep-
tors (RTK) and RAS proteins, are heterodimeric proteins having a p110 (α, β, δ) catalytic 
subunit associated with a p85 (α or β), a p55 (α or γ), or a p50 α adaptor/regulatory sub-
unit (Wymann and Pirola,  1998 ; Katso et al.,  2001) . Catalytic subunits are characterized 
by an N-terminal p85-binding domain, a RAS-binding domain, a protein-kinase-C 
homology-2 (C2) domain, a helical and a kinase domain in the C-terminus of the protein 
(Katso et al.,  2001)  (Fig.  1 ).  

 All class IA adaptor/regulatory subunits have two SH2 domains that bind specifically 
to phosphorylated tyrosine residues in receptor proteins, as well as in other signaling 
proteins (Wymann and Pirola,  1998 ; Katso et al.,  2001) . The main function of the regu-
latory subunits is to recruit the p110 catalytic subunit to tyrosine phosphorylated proteins 
at the plasma membrane, where p110 catalytic subunit phosphorylates its lipid substrates 
(Katso et al.,  2001) . The interaction between p85 and p110 inhibits the catalytic activity 
of p110; however, this inhibition is released upon interaction between the SH2 domains 
of p85 and tyrosine phosphorylated peptides. Thus, recruitment of p110 to the membrane 
by p85 has two effects on p110 (Wymann and Pirola,  1998 ; Yu et al.,  1998a , b) . First, p110 
is brought in proximity to the inositol lipid substrates, and second, the catalytic activity of 
p110 is enhanced as p85 binds to tyrosine kinase receptors or other tyrosine phosphory-
lated adaptors (Yu et al.,  1998a , b) . Because p85 affects the activity of p110, as well as its 
subcellular localization, p85 is more accurately described as a regulatory subunit than as 
an adaptor subunit (Wymann and Pirola,  1998 ; Yu et al.,  1998a , b) . 

 Upon activation of PI3K, phosphorylated lipids are produced at the cell membrane 
and contribute to the recruitment and activation of various signaling components 
(Domin and Waterfield,  1997 ; Wymann and Pirola,  1998 ; Vanhaesebroeck and 
Waterfield,  1999 ; Katso et al.,  2001 ; Vivanco and Sawyers,  2002) . 

 Of particular interest is the serine/threonine kinase AKT/PKB that is a crucial kinase 
involved in the PI3K pathway. Once activated, PI3K generates phosphatidylinositol-3,4,5-
trisphosphate (PIP(3)), that is essential for the translocation of AKT/PKB to the plasma 
membrane where it is phosphorylated and activated by phosphoinositide-dependent 
kinase-1 (PDK-1) and possibly other kinases. Activated AKT/PKB phosphorylates and 
regulates the function of many cellular proteins responsible for maintenance and regula-
tion of cell homeostasis such as GSK-3, MDM2, mTOR, IKK, proteins of the Forkhead 
family, BAD, Caspase 9 and AFX (Domin and Waterfield,  1997 ; Wymann and Pirola, 
 1998 ; Cantley and Neel,  1999 ; Vanhaesebroeck and Waterfield,  1999 ; Katso et al.,  2001 ; 
Vivanco and Sawyers,  2002 ; Osaki et al.,  2004b ; Samuels and Ericson,  2006) . 

 Additionally, PI3K has been shown to regulate the activity of other cellular targets, 
such as the serum and glucocorticoid-inducible kinase (SGK), the small GTP-binding 

  Fig. 1.     PI3K catalytic subunits domains.  p85 BD  p85-binding domain,  RAS BD  RAS-binding domain, 
 C2  protein-kinase-C homology-2 (C2) domain,  Helical  helical domain,  Kinase  kinase domain       
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proteins RAC1 and CDC42 and protein-kinase-C (PKC) in an AKT-independent 
manner. However the mechanisms underlying the activation of these targets are 
poorly characterized (Vivanco and Sawyers,  2002) . Figure  2  summarizes the pathways 
activated by PI3K.  

 Negative regulation of PI3K—AKT pathway is mainly accomplished by the dual 
function lipid and protein phosphatase PTEN (phosphatase and tensin homologue deleted 

  Fig. 2.     Class IA PI3K activation, signaling and effects. Subclass IA PI3K is composed by heterodimeric 
proteins having a p85 regulatory subunit associated with a p110 catalytic subunit. In normal cells, 
subclass IA PI3K pathway is activated by stimulation of receptor tyrosine kinases (RTK) through the 
association of p85 subunit with an adaptor protein (schematically represented by  ad ) or active forms of 
RAS proteins that bind specifically to the RAS-binding domain of p110 subunit. At the cell membrane, 
active PI3K converts PIP 

2
  into PIP 

3
  through phosphorylation of PIP 

2
 . The phosphorylated lipids are 

essential for the translocation of the serine/threonine kinase AKT to the plasma membrane where it is 
phosphorylated and activated by phosphoinositide-dependent kinases (PDK). Activated AKT phospho-
rylates and regulates the function of many cellular proteins responsible for maintenance and regulation 
of cell homeostasis. Additionally, PI3K regulates the activity of the serum and glucocorticoid-inducible 
kinase (SGK), the small GTP-binding proteins RAC1 and CDC42 and protein-kinase-C (PKC) in an 
AKT-independent manner. Negative regulation of PI3K—AKT pathway is mainly accomplished by 
PTEN (phosphatase and tensin homologue deleted on chromosome 10), which exerts its inhibitory effect 
through the dephosphorylation of phosphoinositide products of PI3K       
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on chromosome 10), which was originally identified as a tumor suppressor and is 
frequently affected by germline and somatic mutations in human cancers (Cantley and 
Neel,  1999) . PTEN exerts its inhibitory effect in the PI3K—AKT pathway through the 
dephosphorylation of phosphoinositide products of PI3K that hamper the activation of 
AKT (Maehama and Dixon,  1999) . 

 A disturbed activation of the PI3K—AKT pathway has been associated with the 
development of diseases such as diabetes mellitus, autoimmunity and cancer. This 
pathway plays an important role in cell homeostasis as it is involved in the regulation 
of cell proliferation, adhesion, motility, survival, and differentiation. It has been 
shown that PI3K—AKT pathway can interfere with cytoskeleton rearrangements, and 
intracellular trafficking (Domin and Waterfield,  1997 ; Wymann and Pirola,  1998 ; 
Cantley and Neel,  1999 ; Vanhaesebroeck and Waterfield,  1999 ; Katso et al.,  2001 ; 
Hill and Hemmings,  2002 ; Vivanco and Sawyers,  2002 ; Osaki et al.,  2004b ; Samuels 
and Ericson,  2006) . 

 Genetic aberrations that lead to a gain in PI3K signaling are commonly observed in 
human cancers. Recently, much attention has been given to the gene encoding for 
p110α catalytic subunit —  PIK3CA  — due to the increasing evidence of its role in the 
carcinogenesis process.  

  2 PI3K SIGNALING AND CANCER  

 Genetic alterations that lead to a gain in PI3K signaling are (1) activating mutations 
of p85, (2) mutations in tyrosine kinase receptors, (3) loss of function of PTEN by 
mutation or transcriptional downregulation, (4) AKT activation by amplification, 
overexpression or increased phosphorylation, and (5) p110α gain of function due to 
amplification, and overexpression or somatic mutations (Vivanco and Sawyers,  2002 ; 
Osaki et al.,  2004b ; Bader et al.,  2005) . 

 Mutations in the regulatory subunit of PI3K — p85 — have been identified in human 
tumor samples from the colon and ovary (Philp et al.,  2001) , which produce deletions 
in the inter-SH2 region of p85 subunit and lead to PI3K activation, presumably by 
releasing the p85–p110 complex from negative regulation, bypassing the normal role of 
RTKs signaling in PI3K activation (Vivanco and Sawyers,  2002) . 

 Activating mutations in RTKs themselves provide additional, although less direct, 
evidence of the importance of the PI3K—AKT pathway in human cancer. As an example, a 
truncated variant of the epidermal growth factor receptor (EGFR) lacking the extracellular 
domain potently activates the PI3K—AKT signaling (Vivanco and Sawyers,  2002) . 

  PTEN , the major downregulator of the PI3K pathway, is inactivated in many tumor 
types such as endometrium, brain, prostate, ovary, breast, thyroid, head and neck, 
kidney, lung, melanoma, gastric, lung, lymphomas, hepatocellular carcinomas and renal 
cell carcinomas (Ali et al.,  1999 ; Vivanco and Sawyers,  2002) . Somatic mutations in the 
 PTEN  gene are frequently found in a variety of sporadic human tumors in which 
the wild-type allele of the gene is inactivated mostly by deletions, thus conforming to 
the classical paradigm of tumor suppressor genes (Ali et al.,  1999) . The absence of 
functional  PTEN  in cancer cells leads to the constitutive activation of downstream 
components of the PI3K pathway including the AKT and mTOR kinases (Sansal 
and Sellers,  2004) . In model organisms, inactivation of these kinases can reverse the 
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effects of  PTEN  loss. These data raise the possibility that drugs targeting these kinases, 
or PI3K itself, may have significant therapeutic activity in  PTEN -null cancers (Sansal 
and Sellers,  2004) . 

 Alterations in the activation state of AKT due to amplification, overexpression or 
overactivation were observed in ovarian, breast, and thyroid cancers and represent an 
important mechanism of PI3K pathway activation (Vivanco and Sawyers,  2002 ; Bader 
et al.,  2005) . 

 The p100α catalytic subunit of PI3K is encoded by the  PIK3CA  gene. The  PIK3CA  
gene is located in chromosome 3q26.3 (Volinia et al.,  1994) , and comprises 20 exons 
predicting a 1,068-amino acid protein. It has been demonstrated by several authors that 
the  PIK3CA  gene is deregulated in several tumor models. Samuels et al.  (2004)  
performed a large-scale sequence analysis of 117 exons encoding the predicted kinase 
domains of eight PI3K and eight PI3K-like genes in 35 colorectal cancers, and found 
that  PIK3CA  gene was the only one harboring somatic mutations. Subsequently, all the 
coding exons of  PIK3CA  gene were analyzed by Samuels and colleagues in 199 
additional colorectal cancers. Mutations were observed in a total of 74 colorectal 
tumors (32%) (Samuels et al.,  2004) . Following this work, numerous authors aimed at 
determining the frequency and role of  PIK3CA  gene mutations in other tumor models. 

 Mutations of  PIK3CA  in human tumors are somatic, cancer-specific and hetero-
zygous (Bachman et al.,  2004 ; Broderick et al.,  2004 ; Campbell et al.,  2004 ; Samuels 
and Velculescu,  2004 ; Samuels et al.,  2004 ,  2005 ; Lee et al.,  2005 ; Samuels and Ericson, 
 2006) . They are mostly missense mutations; no truncating or nonsense mutations have 
been identified, but a few cases of in-frame deletions and insertions have been detected 
(Bader et al.,  2005) . Rare cases of double mutations, in which two amino acid residues 
are altered, have also been reported (Lee et al.,  2005 ; Saal et al.,  2005) . The cancer-
specific mutations found in  PIK3CA  are not randomly distributed along the coding 
sequence (Bader et al.,  2005) . The majority of mutations (85%) cluster in exons 9 and 
20, which encode the catalytic and kinase domains of p110α protein, respectively; these 
two exons being considered mutational hotspots of  PIK3CA  gene (Broderick et al., 
 2004 ; Campbell et al.,  2004 ; Samuels and Velculescu,  2004 ; Samuels et al.,  2004 ,  2005 ; 
Bader et al.,  2005 ; Oda et al.,  2005 ; Samuels and Ericson,  2006) . This nonrandomness 
is indicative of selection for mutations that confer an advantage, and act as dominant 
oncoproteins (Samuels et al.,  2004 ,  2005 ; Bader et al.,  2005 ; Samuels and Ericson, 
 2006) , as it is in the case of activating mutations of  KRAS  and  BRAF  genes. 

 Besides the clustering of mutations in exons 9 and 20, they also associate with specific 
codons, namely, codons 542 and 545 in exon 9 and codon 1,047 in exon 20 (Ma et al., 
 2000 ; Bachman et al.,  2004 ; Broderick et al.,  2004 ; Campbell et al.,  2004 ; Osaki et al., 
 2004b ; Samuels et al.,  2004 ; Buttitta et al.,  2005 ; Garcia-Rostan et al.,  2005 ; Lee 
et al.,  2005 ; Levine et al.,  2005 ; Oda et al.,  2005 ; Saal et al.,  2005 ; Velho et al.,  2005 ; 
Wang et al.,  2005 ; Wu et al.,  2005b ; Li et al.,  2006) . Regarding the amino acid change 
within these codons, E542K, E545K and H1047R (Ma et al.,  2000 ; Bachman et al., 
 2004 ; Broderick et al.,  2004 ; Campbell et al.,  2004 ; Osaki et al.,  2004b ; Samuels 
et al.,  2004 ; Buttitta et al.,  2005 ; Garcia-Rostan et al.,  2005 ; Lee et al.,  2005 ; Levine et al., 
 2005 ; Oda et al.,  2005 ; Saal et al.,  2005 ; Velho et al.,  2005 ; Wang et al.,  2005 ; Wu 
et al.,  2005b ; Li et al.,  2006)  are the most frequent alterations found, resulting in a change 
of charge from negative to strongly positive residues (Levine et al.,  2005) . 



178 Velho et al.

 The crystal structure of PIK3CA has not yet been described. Levine et al.  (2005)  
attempted to model the structure of PIK3CA protein based on the well-known structure of 
the highly homologous PIK3CG protein. Based on this, E542K and E545K seem to be 
localized on the exposed surface of the molecule and the changes in charge caused by these 
alterations may affect protein—protein or other intermolecular interactions (Levine et al., 
 2005) . H1047R is located within the kα11 helix, which lies on two sides of the activation 
loop of  PIK3CA . Mutations in the activation loop have been shown to affect the specificity 
of lipid substrates and access to the catalytic core of PIK3CA (Levine et al.,  2005) . 

 Amplification of  PIK3CA  gene represents another mechanism of activation of PI3K 
pathway. Its occurrence was demonstrated in several tumor types such as ovarian cancer 
(Iwabuchi et al.,  1995 ; Shayesteh et al.,  1999 ; Campbell et al.,  2004) , cervical cancer 
(Ma et al.,  2000 ; Zhang et al.,  2002 ; Bertelsen et al.,  2005) , head and neck squamous 
cell carcinomas (HNSCCs) (Woenckhaus et al.,  2002 ; Pedrero et al.,  2005) , nasopharyn-
geal tumors (Or et al.,  2005) , lung tumors (Massion et al.,  2002 ,  2004)  and gastric 
carcinomas (Byun et al.,  2003) , among others. Amplification of  PIK3CA  gene is generally 
associated with increased  PIK3CA  expression, PI3K activity and activation of AKT, 
supporting an oncogenic role of  PIK3CA  amplification (Wu et al.,  2005a , b) . 

  2.1 PIK3CA Gene Alterations in Distinct Tumor Models 
 The occurrence of mutations and amplification of  PIK3CA  gene in several types of 

cancer implies that this pathway may be a valuable target for the development of novel 
therapies for these cancers. Mutations of  PIK3CA  gene and alternative mechanisms of 
activating PI3K signaling (namely amplification or PTEN loss) appear to be mutually 
exclusive (Byun et al.,  2003 ; Saal et al.,  2005) . We will describe below, the alterations 
of PI3K pathway in diverse tumor models. 

  2.1.1 Brain Tumors 

 Mutations of  PIK3CA  gene were studied in brain tumor types, such as glioblastomas, 
anaplastic oligodendroglioma, medulloblastoma, anaplastic astrocytoma, low-grade 
astrocytoma and ependymoma. 

 The frequency of  PIK3CA  mutations found was not very high. In general, brain 
tumors are mutated in about 5% of the cases (Broderick et al.,  2004) . The higher rate of 
mutations was found in anaplastic oligodendroglioma (14%) (Broderick et al.,  2004) . 
Glioblastomas harbor  PIK3CA  mutations in 5–7% of the tumors analyzed (Broderick 
et al.,  2004) . This frequency is lower than the one previously found by Samuels et al. 
 (2004)  (27%). This difference could be explained by an increased incidence of 
mutations in nonhotspot exons or it may also depend on the selection of samples. In 
medulloblastomas  PIK3CA  mutations were found in a frequency ranging from 0 to 5% 
(Broderick et al.,  2004) . Three percent of anaplastic astrocytomas were seen to be 
mutated in  PIK3CA  gene, while no mutations were identified in low-grade astrocytomas 
and ependymomas, suggesting that  PIK3CA  mutations occur lately in brain carcino-
genesis (Broderick et al.,  2004) .  PIK3CA  mutations in brain tumors occur only in 
tumors that do not carry  PTEN  mutations (Broderick et al.,  2004) . 

 The frequency of  PIK3CA  amplification in brain tumors is still very controversial. 
While some authors claim to find  PIK3CA  amplification frequently in medulloblastomas 
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and glioblastomas (Hui et al.,  2001 ; Mizoguchi et al.,  2004 ; Tong et al.,  2004) , others 
were not able to confirm these results by assessing different series for amplification of 
the  PIK3CA  gene (Knobbe and Reifenberger,  2003 ; Broderick et al.,  2004) .  

  2.1.2 Head and Neck Squamous Cell Carcinomas 

  PIK3CA  gene amplification is a frequent early event in HNSCCs (Woenckhaus et al., 
 2002 ; Pedrero et al.,  2005) .  PIK3CA  gene amplification was found in premalignant 
lesions with a frequency (39%) that did not differ significantly from that of advanced 
tumors (37%). 

 Association studies between the presence of  PIK3CA  amplification and the clinico-
pathological features of HNSCCs did not reach any statistical significance (Pedrero 
et al.,  2005) . 

 In contrast to what is found in other tumor models, in HNSCCs  PIK3CA  gene ampli-
fication does not correlate with p110α protein overexpression, pointing to other mecha-
nisms distinct from gene amplification to explain the pattern of p110α expression in 
HNSCC. A possible explanation is the one postulated by West et al.  (2003)  who have 
demonstrated how nicotinic activation of AKT depends upon PI3K and specific 
nicotinic acetylcholine receptors (nAchRs) in lung carcinoma, a tobacco-related tumor 
such as HNSCC. However, the mechanism of coupling of nAchRs to the PI3K/AKT 
pathway is unknown (West et al.,  2003 ; Pedrero et al.,  2005) .  

  2.1.3 Barrett’s Adenocarcinomas 

 Barrett’s adenocarcinomas develop from a myriad of genetic alterations. These 
genetic alterations include mutations and allelic losses of tumor suppressor genes such 
as  p16   INK4A  ,  p53 ,  APC ,  Rb  among others (Blount et al.,  1991 ; Huang et al.,  1992 ; 
Gonzalez et al.,  1997 ; Wong et al.,  2001) . In addition, several cellular oncogenes, 
including the  PIK3CA  gene, were found to be amplified in this tumor model (Miller 
et al.,  2003) .  PIK3CA  gene was found to be amplified in 5.7% of Barrett’s adenocarci-
nomas and its amplification was correlated with a specific profile of the tumors. It was 
significantly correlated with an early tumor stage, small tumor size at the time of resec-
tion and the absence of nodal involvement, with all amplifications occurring in stage I 
and IIA tumors (Miller et al.,  2003) . These tumors were also at low tumor-node-metas-
tasis (TNM) stage (Miller et al.,  2003) .  

  2.1.4 Nasopharyngeal Tumors 

 Copy number gains/amplification of  PIK3CA  loci were found in 75% of primary 
nasopharyngeal carcinomas (NPCs), while no  PIK3CA  mutations were detected in this 
type of primary tumors. These observations suggest that copy number gains, instead of 
mutations, may be a common mechanism for activation of  PIK3CA  in tumorigenesis in 
this type of tumors (Or et al.,  2005) .  

  2.1.5 Lung Tumors 

  PIK3CA  mutations occur rarely in lung tumors (Samuels et al.,  2004 ; Lee et al., 
 2005) . On the other hand, amplification of the  PIK3CA  gene was found to be a common 
event in this tumor model. The  PIK3CA  was amplified in 70% of squamous carcinomas, 
38% of large cell carcinomas, 19% of adenocarcinomas, and 67% of small cell lung 
cancers (Massion et al.,  2002 ,  2004) . In lung tumors,  PIK3CA  gene copy number did 
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not have prognostic significance (Massion et al.,  2002 ,  2004) . In preinvasive lesions, 
amplification of the  PIK3CA  was associated with severe dysplasia. These observations 
suggest frequent and early involvement of the PI3-kinase pathway in lung cancer 
(Massion et al.,  2002 ,  2004) .  

  2.1.6 Breast Cancer 

 Several studies were aimed at  PIK3CA  mutation screening in breast cancer. The 
frequency of mutations ranges from 18 to 40% (Bachman et al.,  2004 ; Campbell et al., 
 2004 ; Lee et al.,  2005 ; Li et al.,  2006) . These studies place the  PIK3CA  gene as the most 
frequently mutated gene in breast cancer (Levine et al.,  2005) . A lower frequency (8%) 
was found by Samuels et al.  (2004) , but only 12 cases were studied. Another possibility 
to explain this low frequency might be the grade status of the tumors used. In a study 

in 20.6% of the tumors (Wu et al.,  2005b) . 
 The status of estrogen and progesterone receptors (ER/PR), as well as the presence 

or absence of Her-2/neu amplification, are independent determinants of breast cancer 
prognosis, as well as predictors of response to targeted therapy (Clemons and Goss, 
 2001 ; Ross et al.,  2004) . Opposing results have been obtained regarding the association 
between  PIK3CA  mutations and these clinicopathologic markers. While in some studies 
no associations between  PIK3CA  mutation status and age at diagnosis, estrogen/proges-
terone, Her-2/neu or nodal status was found (Bachman et al.,  2004 ; Campbell et al., 
 2004 ; Levine et al.,  2005) , in others a strong association between  PIK3CA  mutations, 
lymph node status, ER and PR positivity and ERBB2 overexpression was obtained and 
these correlations improved only when stage II tumors were analyzed (Saal et al.,  2005) . 
Li et al.  (2006)  found that mutations at  PIK3CA  were associated with larger tumor size, 
and positive estrogen and progesterone receptor status, and occur more frequently in 
tumors with well-differentiated histology. Furthermore, patients with  PIK3CA  muta-
tions showed significantly worse survival, particularly those with positive estrogen 
receptor expression or nonamplified ERBB2 (Li et al.,  2006) .  PIK3CA  mutation was an 
independent factor for worse survival in breast cancer patients with nonamplified 
ERBB2 (Li et al.,  2006) . 

 Regarding the histological type of breast tumors, some authors claim that  PIK3CA  
mutations did not correlate with the histological type (ductal/lobular) of breast cancers 
(Bachman et al.,  2004 ; Campbell et al.,  2004 ; Levine et al.,  2005) , while others postu-
late that in primary invasive breast tumors, mutations of  PIK3CA  gene are more frequently 
found in lobular, less frequent in ductal and uncommon in medullary, mucinous, and 
papillary tumors (Buttitta et al.,  2005) . 

 In the ductal type, the frequency of  PIK3CA  mutations estimated for intraductal 
breast carcinomas is 13%, while 31% of invasive ductal carcinomas harbor  PIK3CA  
mutations (Wu et al.,  2005b) , suggesting that  PIK3CA  mutations could confer invasive 
potential to the cancer cells. 

  PIK3CA  mutations in breast cancer were found to be mutually exclusive with the loss 
of  PTEN  (a repressor of PI3K pathway) (Saal et al.,  2005) . 

 Somatic mutations, rather than gain of gene copy number of  PIK3CA , are the 
frequent genetic alterations that contribute to human breast cancer progression (Wu 
et al.,  2005b) . Although amplification of  PIK3CA  is not a frequent event in breast 

where all the breast tumors analyzed were high grade,  PIK3CA  mutations were found 
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tumorigenesis (Bachman et al.,  2004 ; Levine et al.,  2005 ; Wu et al.,  2005b) , the obser-
vation of AKT2 amplification and  PIK3CA  mutation in breast cancers implicate the 
PI3K—AKT pathway among the most important molecular mechanisms underlying 
sporadic breast cancer, described so far (Levine et al.,  2005) .  

  2.1.7 Gastric Cancer 

 In gastric cancer,  PIK3CA  mutations were identified in 4–11% of the cases (Lee et 
al.,  2005 ; Li et al.,  2005 ; Velho et al.,  2005) . A higher frequency was found by Samuels 
et al.  (2004)  (25%), but this study was performed in a small series of tumors ( n  = 12). 
In gastric carcinomas, the mismatch repair status of the tumors is an important parameter 
to consider when determining the frequency of  PIK3CA  mutations.  PIK3CA  mutations 
seem to occur preferentially in the context of microsatellite instability (MSI), rather 
than in microsatellite stable (MSS) gastric carcinomas. In our work (Velho et al.,  2005) , 
no mutations of  PIK3CA  gene were found in 21 mismatched repair proficient tumors. 
According to our data, Li et al.  (2005)  found a single case from 73 MSS gastric carci-
nomas analyzed, to be a mutation at  PIK3CA . The mutational distribution of  PIK3CA  
in gastric cancer is similar to the one observed for  KRAS , which is mutated only in the 
MSI subset (Brennetot et al.,  2003) . It is likely that  PIK3CA  mutations do not represent 
an important oncogenic event for the development/progression of MSS gastric carcinomas, 
analogous to what is observed for  KRAS  and  BRAF  mutations in mismatched repair 
proficient gastric carcinomas (Brennetot et al.,  2003 ; Oliveira et al.,  2003) . In MSI gastric 
carcinomas we found  PIK3CA  mutations in 19.2% of the cases (Velho et al.,  2005) . 
Further, we verified that  PIK3CA  and  KRAS  mutations were mutually exclusive events 
in MSI gastric carcinogenesis (Velho et al.,  2005) . These findings are not surprising 
since PI3K may function as a downstream effector of the RAS pathway (Wymann and 
Pirola,  1998 ; Katso et al.,  2001) . It has been demonstrated that genes involved in the 
same signaling pathway may manifest mutations in cancer cells in a mutually exclusive 
manner, presumably due to the lack of selective growth advantage in having a second 
hit in the already altered pathway (Li et al.,  2005) . In gastric cancer,  PIK3CA  alterations 
were found in both early and advanced specimens (Lee et al.,  2005) , which could 
indicate an important role in the development of this tumor type. 

 Genomic amplification of  PIK3CA  was found to occur in 36.4% of gastric tumors 
and it was strongly associated with increased expression of  PIK3CA  transcript and 
elevated levels of phosphor-AKT (Byun et al.,  2003) . Moreover,  PIK3CA  amplification 
was predominantly detected in tumors with no  PTEN  alterations, suggesting that loss of 
 PTEN  and activation of  PIK3CA  genes are mutually exclusive events in gastric tumori-
genesis (Byun et al.,  2003) . 

 Amplification of  PIK3CA  gene was examined in several gastric cancer cell lines 
(Byun et al.,  2003)  and showed to be present in 60% of them (Byun et al.,  2003) . 
Crossing the result of  PIK3CA  amplification in gastric cancer cell lines with data from 
the literature concerning the microsatellite status of these cell lines it is interesting to 
note that some cell lines bearing  PIK3CA  amplification are considered microsatellite 
stable (Yao et al.,  2004) . This observation suggests a possible role for the activation of 
PI3K pathway, through  PIK3CA  amplification, in MSS gastric cancer. Microsatellite 
instable tumors are more prone to the accumulation of mutations in repetitive and 
nonrepetitive sequences (Ionov et al.,  1993 ; Philp et al.,  2000) , thus,  PIK3CA  mutations 
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may represent an event restricted to MSI gastric cancer. These considerations need to 
be clarified in order to better understand the pattern and role of  PIK3CA  alterations in 
this type of tumors.  

  2.1.8 Colon Cancer 

 Several studies were performed in order to clarify the incidence of  PIK3CA  
mutations in colon cancer. The frequency of mutations found in this tumor model 
ranges from 10 to 32% (Campbell et al.,  2004 ; Samuels et al.,  2004 ; Velho et al.,  2005) . 
The higher frequency of mutations (32%) was found when a higher number of exons 
were analyzed (Samuels et al.,  2004) . However, this fact may not be the main reason for 
this discrepancy since 85% of the mutations cluster in the hotspot exons (9 and 20) 
(Ma et al.,  2000 ; Bachman et al.,  2004 ; Broderick et al.,  2004 ; Campbell et al.,  2004 ; 
Osaki et al.,  2004b ; Samuels et al.,  2004 ; Buttitta et al.,  2005 ; Garcia-Rostan et al., 
 2005 ; Lee et al.,  2005 ; Levine et al.,  2005 ; Oda et al.,  2005 ; Saal et al.,  2005 ; Velho 
et al.,  2005 ; Wang et al.,  2005 ; Wu et al.,  2005b ; Li et al.,  2006) . 

 In premalignant colorectal lesions only 2 of 76 cases harbored mutations in the 
gene indicating that  PIK3CA  mutations arise late in colorectal tumorigenesis (Samuels 
et al.,  2004) . 

 Fifteen percent of sporadic colon carcinoma has microsatellite instability due to 
mismatched repair deficiency (Ionov et al.,  1993 ; Philp et al.,  2000) . Two studies have 
analyzed the relationship between microsatellite instability and mutations in  PIK3CA  
gene in colon cancer.  PIK3CA  mutations were identified in a similar frequency in both 
MSI and MSS colon cancer, suggesting that  PIK3CA  mutations may play a role in the 
development/progression of both subsets of colorectal carcinomas (Samuels et al., 
 2004 ; Velho et al.,  2005) . 

 The same studies have correlated the presence of  PIK3CA  mutations with the 
presence of  KRAS/BRAF  mutations, since it is well known that MAPkinase pathway is 
involved in sporadic MSI and MSS colorectal carcinoma (Oliveira et al.,  2003 ; Deng 
et al.,  2004 ; Domingo et al.,  2004) . We found (Velho et al.,  2005) , in colon cancer, that 
 PIK3CA  mutations were significantly more frequent in cases harboring mutations in 
 KRAS  or  BRAF  than in cases negative for  KRAS  or  BRAF  mutations. There was no 
difference between the occurrence of concomitant  PIK3CA/KRAS  or  BRAF  mutations 
between MSI and MSS colorectal cancers (Velho et al.,  2005) . These findings suggest 
that these two pathways may operate simultaneously and synergistically in colorectal 
carcinogenesis and that MSI and MSS colon tumors may trigger the same pathways 
during their development. 

 In colorectal cancer, amplification of  PIK3CA  gene seems not to be a common 
mechanism of activation in this tumor model (Samuels et al.,  2004) .  PIK3CA  mutations 
and PTEN protein deregulation were found to be mutually exclusive events in colorectal 
neoplasias (Frattini et al.,  2005) .  

  2.1.9 Hepatocellular Carcinomas 

 In hepatocellular carcinomas (HCC)  PIK3CA  mutations were identified in 35.6% of 
73 samples analyzed (Lee et al.,  2005) . Fifty percent of the cases displayed the same 
frameshift mutation (3204_3205insA) (Lee et al.,  2005) . The 3204_3205insA mutation 
was never described in any type of cancer analyzed for  PIK3CA  mutation (Lee et al.,  2005) . 
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It changes the last C-terminal amino acid (N1068K) in the PIK3CA protein and creates 
three additional amino acids in the protein (Lee et al.,  2005) . Whether this mutation has 
oncogenic activity and how it contributes to tumorigenesis remains to be elucidated. 
Another frequent  PIK3CA  mutation found in hepatocellular carcinomas in the work of 
Lee et al.  (2005)  was the missense mutation A1634C. Campbell et al. (2005)  wrote 
about this mutation as the result of the amplification of pseudogene on chromosome 22 
that has an almost exact match with  PIK3CA  exons 9 to 13. In another study aiming at 
identifying the frequency of  PIK3CA  hotspot mutations in HCC, carried out in Japanese 
samples, no mutations were observed (Tanaka et al.,  2005) . In addition, they found 
abnormally migrating waves near the end of exon 9 in the PCR chromatograms. PCR 
amplification and subsequent cloning and sequencing revealed that this chromatograms 
contained two distinct sequences, the wild-type p110α sequence and another sequence 
corresponding to chromosome 22q11.2 (Tanaka et al.,  2005) . Therefore, the frequency 
of  PIK3CA  mutations found by Lee et al.  (2005)  in hepatocellular carcinomas is not 
expected to be as high as it was previously found. Lee et al.  (2005)  analyzed not only 
hepatocellular carcinomas but also a wider range of common human cancers and found 
the A1634C mutation only in hepatocellular carcinomas. This result questions whether 
an unspecific PCR would occur specifically in a fraction of hepatocellular carcinomas, 
and not in other tumor models.  

  2.1.10 Thyroid Tumors 

 In thyroid tumors,  PIK3CA  gene mutations seem not to be a frequent event in benign 
thyroid adenomas, PTC (papillary thyroid carcinomas), FTC (follicular thyroid carcino-
mas) and medullary thyroid tumors (Wu et al.,  2005a) . With respect to the anaplastic 
variant of thyroid cancer (ATC), opposing results were obtained regarding the frequency 
of  PIK3CA  mutations. In the work of Wu et al.  (2005a)  no mutations in the  PIK3CA  
gene were observed, while in the work of Garcia-Rostan et al.  (2005)  mutations were 
frequently observed in this variant of thyroid cancer. 

 Amplification on  PIK3CA  gene was found in FTC, PTC, adenomas, MTC (para-
follicular C cell-derived medullary thyroid cancer), and in ATC where it appears to be 
more frequently observed (Liu et al.,  2005 ; Wu et al.,  2005a) .  

  2.1.11 Ovarian Cancer 

 Mutations in the  PIK3CA  gene occur at a low frequency in ovarian tumors. Four to 
12% of ovarian cancers harbor mutations in  PIK3CA  gene (Campbell et al.,  2004 ; 
Levine et al.,  2005 ; Wang et al.,  2005) . 

 No association was identified regarding  PIK3CA  mutations and patient age or 
survival, or stage and grade of the tumors (Levine et al.,  2005) . The distribution of the 
mutations between the histological subtypes of ovarian cancer seems not to reach a 
consensus. They were found in endometrioid, clear cell, serous, mucinous and undiffe-
rentiated subtypes (Campbell et al.,  2004 ; Levine et al.,  2005 ; Wang et al.,  2005) , 
although, among the literature, mutations of  PIK3CA  gene appear to be more frequent 
in the endometrioid, clear cell and serous histological subtypes (Campbell et al.,  2004 ; 
Levine et al.,  2005) . One study described a strong association between  PIK3CA  muta-
tions in endometrioid and clear cell histological subtypes (Campbell et al.,  2004) , while 
other studies do not report such an association (Levine et al.,  2005) . When advanced 
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ovarian tumors were analyzed,  PIK3CA  mutations were detected more commonly in 
low-grade and in mucinous or clear cell tumors (Wang et al.,  2005) . 

 Amplification of the chromosomal region 3q26 which harbors  PIK3CA  gene has 
been reported to be a common event in ovarian tumors (Iwabuchi et al.,  1995 ; Shayesteh 
et al.,  1999 ; Campbell et al.,  2004) . It is more frequently found in low-grade and 
low-stage tumors and thus may act as an early event in ovarian cancer development 
(Iwabuchi et al.,  1995 ; Campbell et al.,  2004) . 

 The association between  PIK3CA  gene amplification and the histologic subtype of 
ovarian cancer (serous, endometrioid, clear cell, mucinous and undifferentiated) was 
analyzed by Campbell et al.  (2004)  but no association was found between the two 
parameters. 

 In ovarian cancer, mutations of  PIK3CA  and amplification of  PIK3CA  gene are 
alternative alterations in ovarian cancers (Shayesteh et al.,  1999 ; Campbell et al.,  2004 ; 
Wang et al.,  2005) .  

  2.1.12 Endometrial Carcinoma 

 Endometrial carcinoma is the most common malignancy of the female genital tract 
(Kanamori et al.,  2001) . 

 The incidence of  PIK3CA  mutations in endometrial cancers is one of the highest 
among all types of cancers analyzed. About 36% of endometrial carcinomas harbor 
 PIK3CA  mutations (Oda et al.,  2005) . Amplification of the  PIK3CA  locus was also 
detected in endometrial carcinomas (Oda et al.,  2005) . Mutations in the  PTEN  gene were 
found to occur in about 30–50% of endometrial carcinomas and is what makes the  PTEN  
gene one of the most commonly mutated genes in this type of carcinomas (Risinger 
et al.,  1997 ; Tashiro et al.,  1997 ; Di Cristofano and Pandolfi,  2000) . Furthermore, activa-
tion of the PI3K/AKT pathway caused by the loss of  PTEN  was shown to be involved in 
the mechanism of endometrial carcinogenesis (Kanamori et al.,  2001) . 

 Simultaneous mutations in the  PIK3CA  and  PTEN  genes have been thought to be 
mutually exclusive, as reported in breast carcinoma, glioblastomas and colorectal 
cancers (Broderick et al.,  2004 ; Frattini et al.,  2005 ; Saal et al.,  2005) . The same is not 
true for endometrial carcinomas where the coexistence of the two mutational events was 
observed in 26% of the tumors (Oda et al.,  2005) . 

 In endometrial carcinomas,  PIK3CA  mutations seems not to be associated with the 
histologic grade, International Federation of Gynecology and Obstetrics (FIGO) stage, 
lymph node metastasis, and estrogen/progesterone receptor status of the tumors (Oda 
et al.,  2005) .  

  2.1.13 Cervical Tumors 

 Cervical carcinomas show a recurrent pattern of cytogenetic instability where a gain 
of the long arm of chromosome 3 is commonly observed (Bertelsen et al.,  2005) . A 
possible oncogene in this region is  PIK3CA  at 3q26.3 (Bertelsen et al.,  2005) . Gain of 
 PIK3CA  gene copy number is frequently observed in cervical tumors and is clearly 
accompanied by phosphorylation of AKT (Ma et al.,  2000 ; Zhang et al.,  2002 ; Bertelsen 
et al.,  2005) . 

 In cervical cancer, cell lines harboring amplified  PIK3CA  showed increased 
expression of  PIK3CA  (p110α) which was subsequently associated with high kinase 
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activity (Ma et al.,  2000) . In addition, transformation phenotypes in these lines, including 
increased cell growth and decreased apoptosis, were found to be significantly affected 
by the treatment with specific PI3-kinase inhibitors, suggesting that increased expres-
sion of  PIK3CA  in cervical cancer may result in promoting cell proliferation and 
reducing apoptosis (Ma et al.,  2000) . These evidences support that  PIK3CA  is an 
oncogene in cervical cancer and  PIK3CA  amplification may be linked to cervical 
tumorigenesis (Ma et al.,  2000) .   

  2.2 Functional Studies 
 The high incidence of nonrandom  PIK3CA  mutations detected across different types 

of tumors strongly suggests a functional significance in tumorigenesis (Kang et al., 
 2005a) . No truncating mutations were observed and 85% of alterations occurred in two 
small clusters in the helical and kinase domains. This is similar to what is observed for 
activating mutations in other oncogenes, such as  RAS ,  BRAF ,  CTNNB1 , and members 
of the tyrosine kinome. The positions of the mutations imply that they are likely to 
increase kinase activity (Samuels et al.,  2004)  and the affected residues are highly con-
served evolutionarily (Samuels et al.,  2004) . All these observations suggest an onco-
genic role for  PIK3CA  alterations in human cancers .  

 Functional studies were done by several authors with the purpose of understanding the 
role of  PIK3CA  mutations in tumorigenesis (Fig.  3 ). In vitro studies employing transfec-
tion of chicken embryo fibroblasts (CEFs) (Kang et al.,  2005a) , NIH 3T3 cells (Ikenoue 
et al.,  2005) , human mammary epithelial (Isakoff et al.,  2005 ; Zhao et al.,  2005)  or 
colorectal cancer cell lines (CRC cell lines) (Samuels et al.,  2005)  were done. In vivo 
experiments using mice were also selected as experimental systems to test the functional 
significance of  PIK3CA  mutations in cancer (Samuels et al.,  2005 ; Zhao et al.,  2005) . 
These studies demonstrated that the most frequent  PIK3CA  mutants (E542K, E545K and 
H1047R) and some other mutants that have been reported in the p85-binding domain 
(R38H and G106V), C2 domain (C420R and E453Q) and in the kinase domain (M1043I) 
have higher lipid kinase activity than the wild-type protein (Ikenoue et al.,  2005 ; Isakoff 
et al.,  2005 ; Kang et al.,  2005a ; Samuels et al.,  2005 ; Zhao et al.,  2005) . 

 Furthermore, these mutants were shown to harbor increased transforming potential 
and morphological changes characteristic of cancer cells such as loss of contact inhibi-
tion (Ikenoue et al.,  2005) , anchorage- and growth factor-independent proliferation 
(Ikenoue et al.,  2005 ; Isakoff et al.,  2005 ; Kang et al.,  2005a ; Zhao et al.,  2005) . The 
mutations E545K and H1047R were shown to confer in addition to the previously 
described effects, resistance to apoptosis (Samuels et al.,  2005) . 

  Fig. 3.      PIK3CA  mutations that were submitted to functional studies within the different domains of 
p110 catalytic subunit of PI3K       
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 Another interesting observation was that CRC cell lines and mammary epithelial cell 
lines harboring  PIK3CA  mutations are able to induce tumor formation in vivo (Samuels 
et al.,  2005 ; Zhao et al.,  2005) . When  PIK3CA  mutant CRC cell lines were injected in 
mice, tumor cells were able to migrate and invade the adjacent tissue layers, and give 
rise to metastases (Samuels et al.,  2005) . This ability of inducing metastases was only 
found in CRC cell lines and not on mammary epithelial cell lines (Zhao et al.,  2005) . 
The different abilities in the formation of metastasis between these distinct tumor cell 
models may indicate that  PIK3CA  mutations may have different effects regarding 
metastasis formation depending on the tumor type. 

 Concerning the downstream pathways activated by mutant  PIK3CA  (R38H, G106V, 
C420R, E453Q, E542K, E545K, M1043I and H1047R) it was determined that all these 
mutations highly activate AKT signaling (Ikenoue et al.,  2005 ; Isakoff et al.,  2005 ; 
Kang et al.,  2005a ; Samuels et al.,  2005 ; Zhao et al.,  2005) , with the exception of R38H 
that exhibit only a slight increase of the phospho-AKT levels (Ikenoue et al.,  2005 ; Zhao 
et al.,  2005) . Curiously, the AKT downstream targets that are activated following its 
phosphorylation in  PIK3CA  mutant cells differ according to the experimental system 
used. When  PIK3CA  mutant CEFs or NIH 3T3 cells are used as a model, the targets of 
active AKT seem to be TOR, p70S6 kinase and 4E-binding protein 1, which suggests 
the involvement of aberrant protein translation control in PI3K-induced oncogenic 
transformation (Ikenoue et al.,  2005 ; Kang et al.,  2005a) . On the other hand, when 
mutant  PIK3CA  CRC cell lines are studied, the downstream effectors of active AKT are 
FKHR and FKHRL1 proteins (Samuels et al.,  2005) . The inhibition of forkhead tran-
scription factors by active AKT is thought to confer resistance to apoptosis in CRC cell 
lines by inhibiting the transcription of proapoptotic genes (Osaki et al.,  2004b ; Samuels 
et al.,  2005) . As it is hypothesized by Samuels et al.  (2005) , these differences on the 
targets of AKT activation may depend on the cell type, species, or experimental system 
analyzed. Additional experiments need to be brought about to address which pathways 
are targeted upon PIK3CA activation in order to discern the role of oncogenic  PIK3CA  
in human tumors. The mechanism by which mutations in  PIK3CA  gene lead to constitu-
tive activation of p110α subunit is not clear. 

 Oncogenic activation of p110α catalytic subunit of PI3K is not due to an increase of 
binding affinity to p85 regulatory subunit with concomitant protein stabilization. The 
evidences to support this assumption are (1) the two p85-binding mutants that were 
studied (R38H and G106V) displayed modest reductions of binding affinity to p85 
(Ikenoue et al.,  2005) ; (2) from all the mutations analyzed, R38H was the less effective 
in activating the downstream effector of PI3K, AKT (Ikenoue et al.,  2005 ; Zhao et al., 
 2005) ; and (3) cells with  PIK3CA  mutants that completely abolish p85-binding domain 
display increased PI3K activity (Ikenoue et al.,  2005 ; Zhao et al.,  2005) . 

 Mutations in  PIK3CA  gene affecting the C2 domain could cause a permanent anchor-
age of p110α catalytic subunit to the cell membrane. However, membrane anchoring of 
p110α by myristoylation resulted in a much lower level of PI3K activity compared with 
the E545K and H1047R mutations (Zhao et al.,  2005) . 

 H1047R mutation is located near the activation loop in the catalytic domain of 
PIK3CA and is likely to affect the specificity or affinity of p110α towards the lipid 
substrate of PI3K (Bader et al.,  2005) . Moreover, mutations in the helical domain of 
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 PIK3CA  may cause a change in enzyme conformation and possibly disrupt its ability to 
interact with a still unknown regulator protein (Bader et al.,  2005) .  

  2.3 Clinical and Therapeutic Implications of PIK3CA Alterations 
 The occurrence of mutations and amplification of  PIK3CA  gene in several types of 

cancer and the frequent clustered mutations within  PIK3CA  implies that this pathway 
makes an attractive molecular marker for early detection of cancers or for monitoring 
tumor progression, and a promising therapeutic target for the development of specific 
inhibitors of p110α subunit. 

 There are some inhibitors of PI3K pathway that have been extensively used in in vitro 
and in vivo studies, such as wortmannin and LY294002, which inhibit the catalytic 
activity of p110 subunits of PI3K (Vivanco and Sawyers,  2002 ; Osaki et al.,  2004a ; 
Samuels and Velculescu,  2004) . These compounds were shown to inhibit cell prolifera-
tion and/or induce apoptosis in cancer cells via inhibition of PI3K—AKT pathway and 
also play a role in enhancing the effectiveness of radio- or chemotherapy (Sarkaria 
et al.,  1998 ; Ng et al.,  2000 ; Osaki et al.,  2004a , b ; Kim et al.,  2006) . These inhibitors 
may also be applied to mutant forms of  PIK3CA , considering that the transforming 
potential of  PIK3CA  mutants can still be inhibited by broadly acting PI3K inhibitors 
such as LY294002 (Samuels et al.,  2005) . Despite their efficacy towards inhibition of 
active PI3K pathway, such inhibitors have the disadvantage of nonselectivity (Kim et 
al.,  2006) . PI3K is ubiquitously present in many mammalian cells (Kim et al.,  2006) , 
thus the use of wortmannin and LY294002 may be toxic to the cells that do not display 
any alteration of the pathway. The lack of stability of wortmannin and the lack of sol-
ubility of LY294002 are additional reasons that hampered further clinical studies of 
these agents (Kim et al.,  2006) . 

 Another possibility of therapy is the use of inhibitors of the downstream targets of 
PI3K pathway. As it was shown,  PIK3CA  mutations lead to an increase in the phospho-
rylation of AKT with its concomitant activation (Ikenoue et al.,  2005 ; Isakoff et al., 
 2005 ; Kang et al.,  2005b ; Samuels et al.,  2005 ; Zhao et al.,  2005) . The repression of the 
activation of AKT represents an attractive possibility of inhibiting the PI3K pathway, 
although, no small AKT inhibitors have been established yet (Osaki et al.,  2004a) . 

 Further, the inhibition of PI3K—AKT target genes may represent a fighting chance. 
mTOR is an example of this possibility. Some inhibitors of mTOR are under preclinical 
and clinical investigations (Kim et al.,  2006) . It is the case of rapamycin, and its deriva-
tives (Rad001, CCI-779, and AP23573) (Chan,  2004) , that were shown to work as potent 
radiosensitizers of endothelial cells in vitro and led to improved tumor-growth delay of 
glioma xenografs in vivo (Kim et al.,  2006) . Moreover, it was demonstrated that in 
CEFs bearing  PIK3CA  mutations commonly found in human cancers, mTOR was a 
target for activation, and a key player in the transforming potential of these mutant cells 
(Kang et al.,  2005b) . Treatment of these cells with rapamycin interferes with the onco-
genicity induced by the cancer-derived mutant  PIK3CA  (Kang et al.,  2005b) . Together, 
these results imply that inhibition of the downstream targets may be a valuable approach 
to indirectly block the oncogenic ability of the active PI3K—AKT pathway. However, 
it should be taken in account that the downstream effectors of PI3K that are activated 
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upon deregulation of the pathway may depend on the cell type or tumor model. If such 
inhibitors become a reality then, it would be important to access the active target to be 
silenced for each tumor. 

 The best option to prevent the transforming capability of mutant  PIK3CA  is to 
employ specific inhibitors for the p110α subunit. Patent specifications which described 
inhibitors of PI3K, including compounds that exhibit some selectivity for individual 
p110 catalytic isoforms have been published (Ward et al.,  2003 ; Ward and Finan,  2003) . 
Imidazopyridine derivatives are claimed to exhibit excellent PI3K inhibitory activity, 
especially against p110α, although no isoforms selectivity data are provided (Ward 
et al.,  2003) . Quinolone and pyridopyrimidine compounds, closely related to LY294002, 
are approximately 100-fold more potent against α/β isoforms compared to δ isoforms 
(Ward et al.,  2003) . 

 In the future, the development, if possible, of inhibitors that target specifically the 
mutant forms of  PIK3CA  would be of particular interest. By this way the toxicity of 
the already known inhibitors would be overcome since only  PIK3CA  mutant cancer 
cells would be affected by the action of the inhibitor.       
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