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Preface to the Second Edition

This book remains concerned with the use of statistics in an area of study known as clinical
pharmacology but contains updates and is an enhancement to the first edition. With the
increasing size, duration, and cost of drug and biological development, increased attention
is being paid to clinical pharmacology research with a corresponding increase in attention
to the use of statistics. This second edition covers the relevant topics of the original edition
but also addresses several recent developments in the field, namely:

An additional chapter on adaptive bioequivalence studies and sample size re-estimation -
Chapter 6.

Scaled Average Bioequivalence - Chapter 7 is now dedicated to this topic.

An additional chapter on Bioequivalence and topics related to Clinical Pharmacology in
Vaccines - Chapter 12.

The focus of this second edition remains those areas of statistics which we regard as most
important from a practical perspective in day-to-day clinical pharmacology and related
work. It is not intended to be comprehensive but to provide a starting point for those
engaged in research. In writing this book we have taken from our own experiences of
working in the biopharmaceutical industry. To emphasize this, each chapter begins with a
brief vignette from Scott’s experiences updated from the first edition (when appropriate)
for more recent experiences. All the sets of data in the book are taken from real trials unless
otherwise indicated.

Following a chapter devoted to biopharmaceutical development and clinical pharmacol-
ogy, describing the general role of statistics, we start with several chapters wholly devoted
to the study of bioequivalence – a topic where successful studies are required for regulatory
approval. The aim was that this should be, to a large extent, self-contained and mostly at
a level that was accessible to those with some statistical background and experience.

In Part II, following a chapter on special topics, we develop two more specialized aspects
of bioequivalence testing involving sample size re-estimation followed by a chapter on scaled
average bioequivalence.

The statistical tools developed in Parts I and II are useful for other topics – namely,
general safety testing, testing for pro-arrythmic potential, population pharmacokinetics and
dose selection. These and other related topics are covered in Part III of the book.

The book concludes in Part IV with a chapter on vaccines.
A suggested course outline may be found on the website accompanying this edition. As

with the first edition, data and code used in the examples throughout the book are also
available for download at the book’s website.

The bibliography (and citations in text) have been updated in this edition to include
recent publications on relevant topics. Computing code has been added and enhanced to
address the emerging practical needs of statisticians for application to clinical trial simu-
lations and study design, and computing code was updated to address analysis procedure

xxiii
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updates in the SAS software used for some analyses. The text from the first edition has
been revised, updated, and corrected as appropriate.
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1

Drug Development and Clinical Pharmacology

Introducing Drug Development
It was anti-climactic when I left the company where I had worked for many years. I

drove away, seeing the sign and the building where I had worked in the rear-view mirror. It
was January in Pennsylvania, and the solid gray sky and freezing temperature reminded me
of when work there had started.. . .

Fourteen years earlier, it was the depths of winter, and I drove up to Philadelphia to
begin working in the clinical pharmacology unit for SmithKline Beecham Pharmaceuticals
Research and Development as a brand new biostatistician, only four days out of school. The
unit is gone now, and the name of the company has changed. The folks working in clinical
pharmacology still do the same thing though — studies to bring new drug products to market
and to optimise the use of drugs which are already there.

It was pretty confusing when I walked into our offices. Fresh from school, I thought the
toughest part of my day was finding a parking space in West Philadelphia, but little did
I know that much more fun was soon to come. Clinicians were wandering around doing
clinical things, and scientists and nurses were rushing around with findings, lab samples,
and dosing schedules. In the midst of all this, subjects were showing up for their studies,
and getting their physical exams and being dosed.

We (the clinical pharmacology statistics group) consisted of three people then (my boss,
another statistician, and me). My boss had been there for two years, and the other statis-
tician had joined a month or two before. We were located right alongside the clinical staff,
the subjects in the trials, and the laboratory personnel. It was nice to start out as a new
statistician co-located with the people whom I’d work with on studies as it gave me a very
practical understanding of the implications of what ‘really happens’ in the clinic, and we
hope to convey that experience in this book.

I also caught the worst case influenza that I had ever had (prior to having children — I
have had worse since) when one of the subjects vomited while I was passing by the clinic on
the way to my office, so after a couple years, you will prefer an office in another building.

My boss showed me my desk and my (desktop) computer. She then sent me a dataset
analyzed by a statistician at a contract research organization (the dataset is reproduced in
Chapter 3). These contract research organizations are businesses hired by drug companies
to do research and/or analyses for them (i.e., on contract).

It was a collection of times in a cross-over study (see Chapters 2 and 3). She asked that
I verify their findings from a nonparametric analysis (because nobody else could, the thought
was the contract research organization had done it wrong).

This brought several issues to mind: To what do these times correspond? What is this
for? What treatments were these subjects on? Where is the rest of the study data and the
protocol? What is a cross-over study (we had studied those in school, but not like this)?
What is a nonparametric analysis, and which one did they use? When is lunch?

Statistically speaking, I probably should have asked the last question first. That is the
first thing you need to sort out in drug development. If I had it to do over again, I would
have taken a longer break before starting work too.

3
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More important, however, is asking how such data fit into drug development, what are
we trying to do with them, and what depends on the outcome? By the end of this book, you
will be able to analyze these data, design studies to generate such data, and know the ins
and outs of where, when, and how such data impact drug development.

. . . Fourteen years later, it was good to reminisce, but I was not sorry to leave my former
company. I am not sure of the cause-and-effect relationship (or even sure if there is one),
but over the course of years, it is clear that companies can begin to take their employees for
granted and that, vice versa, employees can begin to become cynical about their company.
When a company begins taking one for granted or one notes a cynical personal attitude
appearing with regard to working there, it is time to make a change. One should write a
book, take up a worthy cause, change jobs — in brief, do something! One should never, ever
just sit marking time.

1.1 Aims of this Book

The main purpose of this book is to provide statisticians and other personnel in clini-
cal pharmacology and drug development, teachers, and students with the methods needed
to design, analyze, and interpret bioequivalence trials; when, how, and why these studies
are performed as part of drug development; and to motivate the proposed methods using
real-world examples. The topic is a vast one and encompasses ethics, recruitment, ad-
ministration, clinical operations, and regulatory issues. Some of these aspects will have a
statistical component, but it must be borne in mind throughout this book that the statis-
tical features of the design and analysis constitute only one aspect of the role of clinical
pharmacology.

Once the foundations of clinical pharmacology drug development, regulatory applica-
tions, and the design and analysis of bioequivalence trials are established, we will move to
related topics in clinical pharmacology involving the use of cross-over designs. These include
(but are not limited to) safety studies in Phase I, dose-response trials, drug interaction tri-
als, food-effect and combination trials, QTc and other pharmacodynamic equivalence trials,
dose-proportionality trials, and vaccine trials.

We have tried to maintain a practical perspective and to avoid those topics that are of
largely academic interest. Throughout the book we have included examples of SAS code
[1073] so that the analyses we describe can be immediately implemented using the SAS
statistical analysis system. In particular, we have made extensive use of the proc mixed

procedure in SAS [795].
In each chapter, we will begin with the practical utility, objectives, and real-world ex-

amples of the topic under discussion. This will be followed by statistical theory and appli-
cations to support development of the area under study. Technical theory and code (where
extensive) will be included in technical appendices to each chapter. Each topic will include
worked examples to illustrate applications of the statistical techniques and their interpre-
tation, and to serve as problems for those situations where this book serves as the basis for
course work.
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1.2 Biopharmaceutical Development

Biopharmaceutical development is the process of changing someone’s mind. To clarify,
industrialized nations today have (pretty much uniformly) created governmental “watch-
dog” bureaucracies to regulate the use of biopharmaceutical products (drugs, biologics, and
vaccines) in human beings. These groups were created in response to historical events in
a variety of settings where such products, which were unsafe, ineffective, or poorly made,
were used in human populations. Such regulatory agencies are meant to protect public
health by ensuring that marketed products are safe, benefit the patients taking them, and
are manufactured to standards of high quality (so when one takes one pill, for example, it
is the same as the next, and the next, etc.).

The regulatory agencies one will frequently hear about when working in biopharmaceu-
tical development are listed in Table 1.1.

TABLE 1.1
Selected Regulatory Authorities

Nation Agency

Australia Therapeutic Goods Administration (TGA)

Canada Therapeutic Products Directorate (TPD)

China State Food and Drug Administration (SFDA)

European Union European Agency for the
Evaluation of Medical Products (EMEA)

Japan Ministry of Health and Welfare (MHW)

United States of America Food and Drug Administration (FDA)

These regulatory agencies are, in general, gigantic in size and the scope of their activities.
They employ hundreds if not thousands of people worldwide — clinicians, physicians, nurses,
epidemiologists, statisticians, and a variety of other personnel. Regulatory agencies are
charged with specific roles to protect the public health. Under the assumptions that all
drugs, biologics, and vaccines are unsafe, or will not benefit the patients taking them, or
cannot be manufactured to high quality standards, these people are charged with finding the
few biopharmaceutical products that are safe, will benefit patients, and are manufactured
to high quality.

What is usually not mentioned in the charters and laws establishing these agencies are
that they are also to do this as quickly as possible (people who are sick do not like to wait)
without sacrificing safety on a shoestring budget. It is a challenging job.

We will typically refer to biopharmaceutical products as “drugs” for simplicity. Tech-
nically, drugs are small-molecule chemical products that have been shown to be of some
benefit to public health, can be safely administered, and can be manufactured to high qual-
ity. Large-molecule products (e.g., insulin) known as “biologics” are being developed and
marketed on a more routine basis. Vaccines have a long history of use in this context for
the prevention of disease [918]. For simplicity, we will refer to drug development for the
remainder of this chapter. However, these concepts apply to vaccines.

The job of any sponsor (or drug company) is to show regulators that benefit, safety,
and quality are present and to get their drug to patients needing it as soon as possible
thereafter. In essence, drug companies are charged with changing the regulators’ minds
(i.e., proving them wrong). They must show that their product is safe, effective, and made
to high-quality standards.
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FIGURE 1.1
Critical Path in Drug Development

Sponsors (e.g., drug companies) develop drugs on what has been termed the critical
path [377]; see Figure 1.1.

A drug is generally discovered in the context of basic science — in that it causes a
biological response in vitro (in a lab setting) which is thought to have the potential to provide
benefit. Following an extensive battery of in vitro, animal, and manufacturing testing, and
following regulatory review, it is administered to humans (a first-time-in-humans study) in
a clinic. Clinical pharmacology work begins then, and extensive human and animal testing
follows to evaluate safety and medical utility in parallel with scale-up of manufacturing to
provide large amounts of drug substance. If all this is successful, a data package is filed
with the regulatory agency where a sponsor wishes to market the product.

Generally, from the time a drug enters the clinic to the time it is approved by regulators
and ready to market, 10.4 years on average elapse [261]. The cost is also substantial, with
estimates ranging from 0.8 to 1.7 billion dollars being spent in research and development
to bring one new product to market [377]. Of the drugs which clear the various hurdles
to human testing, only one in ten will be approved for the marketplace, failing for reasons
of lack of efficacy (benefit), unacceptable safety profile, poor manufacturing, or lack of
economic benefit.

What is done over this 10-plus years and a billion dollars? In a nutshell, a drug is
developed by finding a dose or set of doses which produce the desired beneficial response
(like lowering blood pressure: a surrogate marker or predictor of cardiac benefit) without
producing an undesirable response (e.g., nausea, vomiting). One also has to be able to make
the product (manufacture it) to a standard of high quality, and in a consistent manner [1355].
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1.3 Clinical Pharmacology

Clinical pharmacology is the study of drugs in humans [30]. It blends the science of labora-
tory assessment of chemicals with the clinical and medicinal art of their application. Many
textbooks are devoted to the proper study of clinical pharmacology, and we shall dwell only
on those aspects which will be important for the subsequent chapters of this book.

First, some concepts. The study of pharmacokinetics (PK) is defined as “movements
of drugs within biological systems, as affected by uptake, distribution, binding, elimination
and biotransformation; particularly the rates of such movements [1186]”. In layman’s terms,
PK is what the body does to a drug (as opposed to what a drug does to the body, which
we’ll cover later).

When a tablet of a drug is taken orally, in general, it reaches the stomach and begins
to disintegrate and is absorbed (A). When dissolved into solution in the stomach acid, the
drug is passed on to the small intestine [1058]. In the small intestine, many things can
happen. Some of the drug will pass right on through and be eliminated (E) from the body.
Some will be metabolized (M) into a different substance right in the intestine, and some
drug will be picked up by the body and distributed (D) into the body through the portal
circulation. This last bit of drug substance passes through the liver first, where it is often
metabolized (M). The remainder passes through the liver and reaches the bloodstream where
it is circulated throughout the body. Pharmacokinetics is thus the study of ADME [30].

This process, however, is difficult to measure. Modern technology provides many options
(e.g., one might tag a molecule using a radio-label and follow the progress of the molecule
using X-ray imaging and similar techniques); however, the most common means is to mea-
sure how much drug substance is put into the body (i.e., dose) and how much drug reaches
the systemic circulation by blood sampling. Figure 1.2 provides a typical plasma concen-
tration profile (vertical axis) versus time (horizontal axis) for a dose of drug administered
orally to an individual at 0 hours.

As the drug is absorbed and distributed, the plasma concentration rises and reaches a
maximum (called the Cmax or maximum concentration). Plasma levels then decline until
the body completely eliminates the drug. The overall exposure to the drug is measured
by computing the area under the plasma concentration curve (AUC). AUC is derived in
general by computing the area for each triangle or quadrangle as appropriate to each time
point and then adding them up.

This is known as the trapezoidal rule [30] and, following the principles given in Chapter
8 of [30], AUC is derived for each triangle or quadrangle by taking the sum of the expression

AUCii−1 =
1

2
[Cti + Cti−1

](ti − ti−1)

where i = 1, 2, 3, ... and ti is the time at which concentration Cti is observed. Specifically,
this type of approach to summarization of data is called a noncompartmental analysis. No
rate or elimination assumptions are made about how the drug enters into and exits the
bloodstream. Concentrations are just summarized using various measures of the observed
data. In practice, this sort of calculation and others that are described have been automated
into a number of commercial software packages used in practice. We therefore do not dwell
further upon noncompartmental analysis topics here.

The points on the concentration versus time curve are derived based upon measurement
by an assay. These assays have performance limits including the limit of detection (LOD, the
point below which the assay cannot detect a concentration), the lower limit of quantification
(LLOQ, the point below which the concentration may not reliably be quantified), and the



8 Bioequivalence and Statistics in Clinical Pharmacology, Second Edition

Time (h)

D
ru

g
 C

o
n
ce

n
tr

a
ti
o
n
 i
n
 b

lo
o
d
 o

r 
p
la

sm
a

(e
.g

.,
 n

g
/M

L
)

0 2412

0

100

Time of dosing
(e.g., 8AM)

Tmax

Cmax

AUC

FIGURE 1.2
Plasma Concentration (ng/mL) versus Time (h)

upper limit of quantification (ULOQ, the point above which the concentration may not
reliably be quantified). In the context of AUC(0-t), the t is the last time point at which a
concentration above or equal to the LLOQ is observed.

To conclude, some summary measures [1058] for the plasma concentration versus time
curve are derived as

• AUC(0-t) (i.e., Area under the curve from time zero to t where t is the time of last
quantifiable concentration),

• Cmax (maximum concentration),

• Tmax (time of maximum concentration),

• T 1
2

(half-life of drug substance), and

AUC(0−∞) = AUC(0− t) +
Ct
λ

(1.1)

where Ct is the last quantifiable concentration at time t and λ is -2.303 times the slope
of the terminal phase of the loge-concentration time curve. See [1192] for other summary
measures. More details of techniques used in the derivation of the AUC may be found
in [1376]. We could also fit a model to summarize a plasma concentration curve and will
develop the methods used for doing so in a later chapter.
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The endpoint AUC(0−∞) is less frequently used in regulatory applications, as there is
error associated with the extrapolation after the last quantified time point, and there is no
scientifically valid way to verify the extrapolation, as the assay is not quantified below the
LLOQ. Therefore AUC(0-t) is used as the standard endpoint, in general.

Turning back now to what is happening with the drug itself, once a drug is ingested,
the substance (or active metabolite) passes through the blood and hopefully reaches a site
of action, thereupon provoking what is termed a pharmacodynamic (PD) response in the
body. This response is measured by looking at a biomarker or a surrogate marker.

Biomarkers are “a characteristic that is objectively measured and evaluated as an indi-
cator of normal biological processes, pathogenic processes, or pharmacologic responses to
a therapeutic intervention” [82]. In contrast, a surrogate marker is “a biomarker that is
intended to substitute for a clinical endpoint. A surrogate endpoint is expected to predict
clinical benefit (or harm or lack of benefit or harm) based on epidemiologic, therapeutic,
pathophysiologic, or scientific evidence” [82]. Alternative definitions exist, for example, “a
laboratory measurement or physical sign that is used in therapeutic trials as a substitute for
a clinically meaningful endpoint that is a direct measure of how a patient feels, functions,
or survives and is expected to predict the effect of therapy”, [1219].

For example, blood pressure [1219] can be considered as a surrogate marker for clinical
benefit, as numerous clinical studies have shown that lowering blood pressure improves pa-
tient survival (i.e., decreases the rate of mortality seen in patients with high blood pressure).
HDL (high density lipoprotein) cholesterol is a biomarker. Increasing HDL was thought to
have therapeutic cardiac benefit [1181], but findings from clinical studies have not borne it
out as a valid surrogate marker.

Large numbers of biomarkers are used in early-phase clinical development to character-
ize the pharmacodynamic and clinical effects of drug treatment. The purpose of clinical
development at this early stage is to provide a safe and potentially effective range of doses
to be fully evaluated for safety and efficacy to regulatory standards in later-phase trials
(Phases II and III). Generally, biomarkers are qualitatively evaluated for their predictive
value in supporting later-phase development. However, recent developments highlight the
need to apply quantitative tools to biomarker data to enhance their utility in support of
company decisions regarding the prediction of subsequent surrogate marker and clinical
outcome measures [757].

Surrogate markers have been used to support successful regulatory applications in drug
development [1219]. Criteria for demonstrating that an endpoint is a surrogate marker
for clinical outcome are not well established [82, 757, 1219]; however, some qualitative
principles have been repeatedly discussed. These principles are “Biological Plausibility,
Success in Clinical Trials, Risk-Benefit, and Public Health Considerations” [1219].

It should be noted, however, that, at the same time as a drug is giving a “good” PD
response, the drug (or a metabolic by-product) may attach itself to a different site of action,
thereby provoking unwanted side effects. The study of pharmacodynamics, is in layman’s
terms, “what the drug does to the body.”

In combination, dose, PK, and PD relationships contain the necessary and sufficient
information we need to begin convincing people that use of a drug is worthwhile and to
learn about the behavior of a drug product. This is sometimes also referred to as the
dose-exposure-response (DER) relationship [372, 621, 1139].

How do we go about developing drugs under this approach to clinical pharmacology?
Early-stage development should focus on learning about the compound, understanding its
safety and efficacy in patients by means of varying dose and measuring PK and PD. Once
sufficient confidence is reached that the compound does what is beneficial and is safe enough
to dose, sponsors begin conducting large confirmatory trials. These are trials designed to
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convince regulatory authorities that the drug is safe to use in the marketplace and will be
of public benefit. A more comprehensive review may be found in [1142].

Let us revisit our earlier discussion of drug development (Figure 1.1) in light of what we
now know about clinical pharmacology and to break down the critical path of clinical drug
development in more detail. Prior to the first-in-human study in clinic, in vitro and animal
preclinical experimentation should establish a range of safe doses for study in humans.
Doses are then selected for introduction into clinical studies in humans [1027].

Clinical development of a drug product, with the exception of only the most toxic
products targeted for the treatment of cancer, then initiates with the study of the drug
product in normal healthy male volunteers in what is known as Phase I. These studies are
typically small, well controlled, data intensive, dose escalating, and placebo controlled (we
will get into this in a later chapter).

In this stage of human drug development, the primary objective of a clinical study is to
determine a safe range of doses and dosing regimens (e.g., once-a-day or twice-a-day) for
later dosing in studies involving patients with the disease state under study. Dose and dosing
regimen are examined with respect to their impact on the pharmacokinetics of the drug
product. Additionally, should biomarker or surrogate markers be present to characterize
the activity of the drug in normal healthy volunteers, these data are characterized relative
to dose and PK.

By the end of Phase I, dose-finding studies in normal healthy volunteers or patient studies
(e.g., for oncology compounds) should provide a range of safe (and potentially efficacious)
doses for further study in patients, an initial description of pharmacokinetic exposure levels
and/or biomarker/surrogate marker levels at each dose to facilitate choice of dose, dose
titration, dosing intervals for Phase II studies, and the development of initial models for use
in pharmacokinetic-pharmacodynamic modelling for both desirable and undesirable effects.

Subsequent Phase II clinical studies in patients establish the minimum starting and
maximum effective dose as well as the maximum tolerated dose in patients with the disease
state using pharmacodynamic endpoints or surrogate markers of therapeutic response. Dose
titration and the length of time needed to see an effect (desirable or undesirable) are also
established. In these studies, models relating dose to PK and to PD are developed to
understand the mechanism of the drug’s action and to search for relevant covariates (e.g.,
age or gender) to control later Phase II or Phase III confirmatory trial designs [621].

Dose-finding studies in Phase II in the target population should establish the therapeu-
tic window by identifying a minimum effective starting dose (the lowest dose yielding a
desirable effect), a maximum effective dose (the dose beyond which further escalation lacks
further desirable benefit), and a maximum tolerated dose (the dose beyond which there
is an unacceptable increase in undesirable effects) in the target population. In addition,
these studies should identify the time interval needed to see an effect (desirable and/or
undesirable) and reasonable, response-guided, titration steps along with the time intervals
at which to dose titrate, to develop updated pharmacokinetic-pharmacodynamic models for
both desirable and undesirable effects in the population of interest, and to identify potential
covariates to be studied for dose adjustment in Phase III (e.g., age, gender).

Once a dose or set of efficacious doses are chosen from Phase II trials and the character-
istics of Figure 1.2 are mapped out, confirmatory Phase III trials are performed to support
regulatory acceptance. These trials, in large numbers of patients with the disease under
study, should characterize the risk relative to benefit in clinical use of the compound. These
studies in Phase III should be used to establish the risk:benefit ratio and pharmacokinetic-
pharmacodynamic relationship (if any) for doses chosen to be in the therapeutic window
established in Phase II.

Additional clinical pharmacology studies will also be conducted in Phase III to deter-
mine how to dose the drug in patients with particular health problems (like kidney disease)
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and for patients taking a variety of concomitant medications. Additionally, clinical phar-
macology studies will be done to confirm that new formulations of drug product are equiv-
alent to those used in clinical development when scale-up of the manufacturing process
for mass production occurs. These are bioequivalence studies and will be the subject of
Chapters 2–7.

1.4 Statistics in Clinical Pharmacology

What is a statistic? It is numerical information about a given object or event. This
information is derived from a sample (a study or trial) of a population (as it would often
be impossible to collect information from an entire large population that is too numerous
for exhaustive measurement). On its own, a statistic is just a number. However, decisions
are made based on statistics, and that is where statistical sciences come into play.

James Bernoulli described nine “general rules dictated by common sense” [499] (see
Chapter 15 on Bernoulli’s Ars Conjectandi, 1713) for making decisions based on statistics,
and most statisticians follow these (in principle):

1. One must not use conjecture (i.e., use statistics) in cases where complete certainty
is obtainable.

2. One must search for all possible arguments or evidence concerning the case (i.e.,
show due diligence).

3. One must take into account both arguments for and against the case.

4. For a judgment about general events, general arguments are sufficient; for indi-
vidual events, however, special and individual arguments have to be taken into
account.

5. In case of uncertainty, action should be suspended until more information is at
hand; however, if circumstances permit no delay, the action that is most suitable,
safe, wise, and probable should be chosen.

6. That which can be useful on some occasion and harmful on no occasion is to be
preferred to that which is useful and harmful on no occasion.

7. The value of human actions must not be judged by their outcome.

8. In our judgments we must be wary of attributing more weight to a thing than
its due and of considering something that is more probable than another to be
absolutely certain.

9. Absolute certainty occurs only when the probability nearly equals the whole cer-
tainty (i.e., when the probability of some event is equal to one, such that we know
it will occur).

Statisticians are applied mathematicians. In drug development, these people are re-
sponsible for quantifying the uncertainty inherent in the scientific and regulatory process of
developing new drug products. The focus of our discussion will be on the techniques statis-
ticians apply to the design and analysis of clinical pharmacology trials, but statisticians are
involved in a variety of other topics associated with drug development (see [434] for more
details).

As any statistic is derived from a sample, there is always uncertainty involved in its use.
There is always a chance that the sample and the statistic derived from it got something
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“wrong” relative to the truth of the situation. Statisticians and the art of statistics are
therefore employed in drug development to ensure that the probability of a “wrong answer”
is quantified and understood so that the implications can be considered.

Consider the main topic of this book, bioequivalence. At certain times in drug devel-
opment, drug companies must show that a new formulation of drug (i.e., a new capsule
or tablet) is equivalent to an old formulation. It is assumed (i.e., the hypothesis) that the
formulations are not equivalent, and a study must be performed to generate data to show
that they are.

Obviously it is completely impossible to assess every new tablet and compare each one
to each and every old tablet to ensure high quality is present. It would take forever and
be too time consuming to even contemplate, and even if we could devise a test to ensure
that each and every tablet is exactly the same as each and every old one, we are more
interested in whether the two formulations will give us the same results when patients take
them anyway. So it may not matter if they are not exactly the same.

Therefore, a clinical study is used to do the job. Data are generated in the study, and
statistics are derived to compare the results of the new formulation to the old formulation.
When the data come in, we use them to decide whether we have sufficient evidence to throw
out our hypothesis (that the formulations are not equivalent) and that we have sufficient
data to conclude they are.

We approach this topic like a regulator would — i.e., assume that they are not equiv-
alent until data shows that they are. The two formulations may in fact (i.e., in truth) be
equivalent, but until we have conclusive data to show that, it is best to err on the side of
caution.

When the data come in, they will give us information to conclude whether the drugs are
equivalent or not. We can make two errors in this situation (see Table 1.2). We can conclude
from the data that they are equivalent, when in fact they are not (a Type 1 error), or we
could conclude that the formulations are not equivalent when in fact they are (a Type 2
error). Bernoulli’s second and third principles are applied in this manner, and we will get
into the application of the other Bernoulli principles in this setting later in the book.

Statisticians use tools to design and analyze studies to ensure that the probabilities of
a Type 1 or 2 error are controlled and held at a quantified rate of occurrence. These tools
are randomization, replication, blocking, blinding, and modelling, and their definition and
specific application will be discussed in great detail in later chapters. Application of these
tools enables those using the statistics (i.e., the drug companies and regulators) to know
the implications of their decision on whether the two formulations are equivalent or not and
to make a reasoned decision on whether to provide the new formulation to the patients who
need it.

TABLE 1.2
Potential Errors When Interpreting Bioequivalence Data

The Truth
Formulations are Formulations
NOT equivalent ARE equivalent

Statistics Formulations are Right answer! Wrong answer
from study NOT equivalent (Type 2 error)
show that

or that Formulations Wrong answer Right answer!
ARE equivalent (Type 1 error)
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A few words here on blinding and randomization are necessary, as these design factors
are too often taken for granted in clinical trials, ignoring their purpose and importance.

Blinding [588] of a clinical trial is defined as disguising of the treatment given to a
study’s subject to ensure that subsequent observations (either by the subject, study staff,
and laboratory measurements) are not biased by knowledge of the treatment assignment.
The level of the blind may be Open label (subjects and study staff know the treatment
administered), Single blind (subjects do not know the treatment), Double blind (Subjects
and study staff do not know the treatment), and sometimes “Triple” blind (subjects, study
staff, and sponsor staff such as those in the laboratory or assessing safety data do not know
the treatment assignment). This is done to ensure that the study’s results are not biased
by knowledge of the treatment given to a particular subject and is common practice (where
possible and practical) in modern clinical trials.

Randomization is another step taken to ensure unbiased results. Subjects are randomly
assigned to treatment groups to eliminate sources of bias due to treatment allocation (also,
unknown sources of bias). Its application is typically viewed as a common sense requirement
— one would not play cards (for money and items of significance) without shuffling the deck.
By randomising (in clinical trials), one ensures that the effects of treatment are not biased by
other factors (e.g., subjective investigator judgment, subject disease status) and unknown
things which could occur during a study (a mishap at the lab, for example). Beyond this,
however, there are statistical reasons why randomisation must be done [737, 738, 1043,
1337]. In brief, randomization is required to ensure that the probabilities of a Type 1 error
and a Type 2 error are controlled as expected. Use of randomization ensures that these
probabilities can be reliably estimated, and ensures that those using products which were
approved based upon clinical trials are reasonably well protected from false findings.

Not much is 100% certain, and studies like those described above are no exception. It is
not unusual for studies to give misleading (i.e., Type 1 or 2 error) results when one considers
that thousands of clinical trials are performed worldwide each year. Even as small an error
rate as 5% can result in five Type 1 errors when a hundred studies are run. Clinical trials
are only a sample of the truth, and it is unusual for Bernoulli’s ninth principle to ever
have application in biopharmaceutical development. In the context of uncertainty being
present, use of blinding and randomization ensures that clinical trials have quantified value
in protection of human populations and in the company’s intrinsic interests in approval and
use of a pharmaceutical product, satisfying Bernoulli’s seventh principle.

This sort of approach is used often in clinical pharmacology when looking at data from
which one wants to make a regulatory claim of some sort — i.e., to convince a regulator
that there is sufficient basis to grant approval to market for reasons of quality, safety, or
efficacy.

In other, more experimental studies, an inductive approach is used, and dose is varied
in different patient and volunteer populations to estimate the PK and PD properties of the
drug to evaluate its potential safety and efficacy attributes. The focus here is on unbiased
and precise estimation, and less on Type 1 and 2 errors and their impact on decision making.

To quantify this, we will call Θ the set of PK and PD properties we wish to estimate.
Before we conduct clinical trials to characterize Θ, we will have only a rough idea (from
previous experiments) or, at worst, no idea, about what Θ is. Once the study or set of
studies is complete, statistics will be used to quantify Θ based on the data and give the
clinical pharmacologists an understanding of how the various factors involved in Θ behave.

The statistical tools of randomization, replication, blocking, blinding, and modelling are
also used in this situation, but for a different purpose. Here they are applied to ensure that
the statistics give a clear idea about what Θ is (i.e., is not confounded or biased by other
factors) and to meet the desired level of precision in understanding the behavior of Θ. These
sorts of studies are conducted to enhance the drug company’s and regulators’ knowledge of
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the compound’s properties in preparation for confirmatory trials. They do not (except in
unusual circumstances) constitute sufficient evidence to permit regulators to grant market
access. In part, this is due to blinding and randomization not being as rigorously applied
as would be required to precisely control Type 1 and 2 errors.

1.5 Structure of Book

Now that drug development, clinical pharmacology, and the role of statistics have been
discussed, we turn to bioequivalence. We will begin with the history of bioequivalence
and an in-depth discussion of current regulatory requirements. This will be followed by a
lengthy chapter on the design and analysis of bioequivalence trials using 2 × 2 cross-over
designs. Alternative designs for demonstrating bioequivalence will then be discussed and
followed by discussion devoted to special challenges encountered in bioequivalence studies.
Following this we will cover studies where the sample size is re-estimated and potentially
adjusted to ensure a conclusive finding. There follows a discussion of more recent proposals
on alternative means of assessing bioequivalence.

In subsequent chapters, we consider statistical approaches to the design and analysis of
clinical pharmacology experiments to study safety, QTc prolongation, efficacy, population
pharmacokinetics, and vaccines.

Readers not interested in in-depth discussions of statistical theory and applications will
find Chapters 1 and 2 most useful for their research on bioequivalence and statistics in
clinical pharmacology.

Where permitted, data and code for examples used in text may be found on the website
accompanying the book. Users should note that a read-me file on the website is available
to assist in identification of which set of data and code pertains to each example.
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History and Regulation of Bioequivalence

Introducing Bioequivalence
It was a rainy day, and I was looking forward to another day at the Clinical Pharmacology

Unit. We called it “The Unit” for some reason. I think it was a sign of the times in the
1990s. We worked at “The Unit”; people from FDA worked at “The Center”; people with
the CIA probably worked for “The Agency.” It is good that times have changed.

It had been about a year and a half since I started working in statistics in clinical phar-
macology, and I was starting to feel like I knew what was going on when working with
the teams which were making the potential drugs and designing and performing the clinical
pharmacology trials. By this time, I had worked on a couple of submissions to regulatory
agencies (under supervision), had been through a regulatory audit by the FDA (they come
in occasionally to check all the paperwork — as long as you follow your standard operating
procedures and document what you have, this is no problem and nothing to worry about),
and had figured out when lunch was.

I felt like I had it made until a ClinPharm physician and a scientist came into my office
that morning while I was drinking my coffee. We will call them “Lenny” and “Denny”, and
they both looked like they were having a bad day. They were characters. Both of them talked
a lot and at great velocity most of the time, but today they were pretty quiet. They had both
been at work since 6 a.m. (clinical staff usually come in early — I think it gives them more
time to make mischief) and both looked like they would rather be out in the Pennsylvania
thunderstorm that was now cutting loose.

Over the monsoon, Denny filled me in on what the problem was. Lenny just nodded and
groaned occasionally and looked like he wanted to go home and go back to bed. I figured he
brought it on himself coming to work at 6 a.m.

In brief, one of our drugs was in the late stages of drug development. The confirmatory
trials were close to finishing, and the scale-up of manufacturing to make sufficient drug to
supply the marketplace had been completed about three months ago. Everything looked pretty
good — the drug was safe and well tolerated in addition to being efficacious, and we expected
the Regulators to approve it once we submitted it in about six to eight months.

The company had spent a lot of money to buy this product (we had bought it from
whomever had invented it) and to develop it (estimates were in the range of what was
discussed in Chapter 1) in addition to spending about five years in clinical development. It
was a tremendous effort.

The problem was that the new formulation we wanted to mass produce and prepare
to market clearly did not demonstrate bioequivalence to the formulation being used in the
confirmatory clinical trials. It was close, but the bioequivalence study did not fully meet the
regulatory standard. Lenny groaned here, but I just kept drinking my coffee. I was still too
new to know how bad this was. We had a quality issue in the manufacture of the drug.

This essentially meant that, even if the regulators at the FDA approved the product for
safety and efficacy, the company would not be able to market it. We could not (at that time)
confirm that the new formula was of a sufficiently high quality to deliver the same safety
and efficacy results when used in the marketplace as achieved in the confirmatory clinical
trials. When Denny explained that, suddenly my coffee did not taste as good (it was always
pretty bad, actually — it was free, though).

After reminding myself that I knew when lunch was supposed to be and had gotten more
sleep the night before than Lenny and Denny combined (both positive factors in my view
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in this situation), I got a crash course in the history of bioequivalence. We then started
working through the issue of how to get the quality assessment for this drug product back on
track.

2.1 When and How BE Studies Are Performed

Biopharmaceutical statistics traditionally has focused on differentiating between products
(or placebo) to provide new and enhanced treatments for the public’s benefit [1104]. How-
ever, this is generally expensive and time consuming (see Chapter 1) and over time steps
have been taken to reduce costs and to increase supply of pharmaceutical products while
maintaining the potential for innovation. One such example pertains to bioequivalence.

To call something equivalent implies a context or set of criteria for the determination of
equivalence. There are several stakeholders who have a say in choosing such criteria:

• Regulatory and public health considerations: The approach used must protect public
health in that the risk of a false positive (Type 1 error — see Chapter 1 for more details)
market access must be controlled at a predetermined rate.

• Statistical considerations: The approach should be quantifiable, accurate, precise, well
understood, and should be transparent in interpretation.

• Sponsor considerations: Using a well-designed, controlled, and reasonably sized study (or
set of studies), the sponsor should be able to show the criteria have been met with a
quantified chance of success (Type 2 error — see Chapter 1 for more details).

Bioequivalence (BE) studies are performed to demonstrate that different formulations
or regimens of drug product are similar to each other in terms of their therapeutic benefit
(efficacy) and nontherapeutic side-effects (safety). They play a key and pivotal role in the
drug development process by ensuring that, when a patient switches to a new formulation
in the marketplace, safety and efficacy will be maintained. Primarily, these studies are used
in the study of solid oral dosage forms (i.e., drugs administered as a tablet or capsule when
ingested), and this chapter will be confined to discussion of this type of drug product.

When the new and old formulations use exactly the same substance (i.e., are pharma-
ceutically equivalent [59]), why do these studies need to be done? It is a known fact that
rate and extent of bioavailability (i.e., how much drug gets into the bloodstream and is
available at the site of action after one takes a dose — see Chapter 1) can be affected by
very small changes in formulation. Factors like the constituent content of the formula, small
changes to the lining of the formula, and by compaction into tablet (versus administration
as a capsule), for example, may result in big changes in bioavailability. See [762] and [37]
for examples.

Many changes are made to the formulation while Phases I and II of drug development
are ongoing in clinic prior to it being approved for market access. Prior to submission
to regulatory agencies and while the trials are ongoing, drug companies commonly check
that these changes in formulation do not drastically change bioavailability by what are
known as relative bioavailability studies. These studies are primarily used by pharmaceutical
sponsors of new drug entities to ensure that the formulation to be used in Phase II or in
later confirmatory trials is sufficiently similar to that used in Phase I drug development
and are not performed to the high requirements of true bioequivalence trials. When one
wants access to the marketplace for a new formulation, a higher standard is to be met.
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The bioequivalence study is used to demonstrate that the formulation used in Phase III
confirmatory clinical trials is sufficiently similar to the final commercial formulation to be
marketed following approval.

Bioequivalence studies are primarily used by pharmaceutical sponsors of new drug en-
tities who have conducted pivotal confirmatory trials with a specific formulation of a drug
therapy but need market access for a more commercially suitable formulation (i.e., that
can be mass produced). BE studies can be viewed as providing necessary and sufficient
reassurance to regulators that the formulation to be marketed is the same as that used in
the clinical confirmatory trials without the need to repeat the development program or to
perform a therapeutic equivalence study in patients with clinical endpoints [609]. Obvi-
ously, it is impossible to repeat a drug development program with a new formulation when
it is expected to last over 10 years and cost approximately a billion dollars. Such an effort
is not sustainable even with modern industrial power.

Bioequivalence studies must also be performed following substantial postmarketing for-
mulation alteration. They are also used by what is termed the “generic” pharmaceutical
industry to gain market access for formulations of established drug therapies when the
patent of the original sponsor’s formulation expires. When the original sponsors themselves
perform a formulation change (for instance, change the site of manufacture) following ap-
proval, they often also must do a bioequivalence study to convince regulators that the new
formula is safe and effective to market.

Multiple companies may produce and market similar formulations to the original mar-
keted product following patent expiration, provided they can demonstrate bioequivalence
to the original product. Generic substitution has thus provided a means of supplying the
market with inexpensive, efficacious, and safe drug products without the need to repeat an
entire clinical and clinical pharmacology development package following patent expiration.

We have now addressed when these studies are done, and we now turn to how the
studies are performed. Bioequivalence studies are conducted to meet documented, legislated
regulatory standards, and cross-over study designs [652], [1113] are typically used to study
bioequivalence. The design and application of such studies will be discussed at length in
Chapter 3 but are summarized briefly here.

Bioequivalence studies are usually conducted in male and female healthy volunteer sub-
jects. Each individual subject is administered two formulations (T=Test or R=Reference)
in one of two sequences of treatments (e.g., RT and TR); see Table 2.1. R is the “standard”
and T is the “new” formulation.

Each administration is separated by a washout period appropriate to the drug under
study; see Table 2.2. This washout period consists of five half-lives between administra-
tions. Half-life is determined by looking at the elimination (after Cmax) part of the PK

TABLE 2.1
Schematic Plan of a 2× 2 Cross-Over Study

Sequence Period Number of
Group Subjects

1 Washout 2
1(RT) R — T n/2
2(TR) T — R n/2

R=Reference, T=Test
n =total number of subjects
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TABLE 2.2
Example of a Random Allocation of Sequences to Subject in a 2× 2 Cross-Over Design

Washout period
Subject Sequence Period 1 of 5 half-lives Period 2

1 TR T — R
2 RT R — T
3 RT R — T
. . . ... .
. . . ... .
. . . ... .
n TR T — R

concentration versus time curve (see Figure 1.2) and is simply the length of time it takes
the body to eliminate one-half of the amount of whatever drug is in the body at any given
time. In general, if five half-lives go by, little to no drug should be left in the systemic
circulation.

Such a design is termed a 2 × 2 cross-over [652] and is a type of design typically ap-
plied in bioequivalence trials. Of the potential list of designs (alternatives are discussed in
Chapter 5) for application in bioequivalence trials, by far the most common is the 2 × 2
cross-over design (with sequences RT, TR). A potential complication for this design is that
the effect of a formulation given in the first period may last into the second period, i.e., the
washout period is inadequate. In the presence of such carry-over effects, the interpretation
of the statistics from such trials are known to be complicated [1114, 1115]. When an ade-
quate washout period is included, carry-over effects are generally considered to be negligible
([237, 1115, 1388, 1389]). Let’s go through the 2× 2 BE design in a bit more detail.

The dose of drug substance in each formulation is pharmaceutically equivalent, and
typically the formulations are not blinded (i.e., not disguised to the patient or investigator).
It obviously would be difficult for a subject or clinician to bias or influence a subject’s PK
levels by knowing what treatment the subject received (one presumably cannot change one’s
PK by just thinking about it). Clinical staff do confirm that each subject has taken their
pill(s) as randomly assigned, and those subjects who subsequently throw up their pill are
excluded from analysis (for example, see [373]).

Random allocation of subject to sequence is done here to ensure that time-related effects
(i.e., period to period differences in blood sampling timings or laboratory handling of the
samples, for example) can be accounted for in the analysis and are not confounded with
the estimate for the difference between formulations. This is an example of the practice of
randomization and is one of the tools used to ensure bias does not creep into the study.
Blood samples will be collected at predetermined, regular intervals prior to and following
each dose of formulation [373] to generate the concentration versus time curves described
in Chapter 1.

Each subject serves as their own control (i.e., we can compare T to R on each subject).
This is referred to as blocking and ensures that a precise measurement of the difference in
formulations can be made. We will develop the model used for doing this in Chapter 3.

Replication (i.e., the number of patients assigned to each sequence) is chosen to ensure
that the regulatory standards for demonstrating bioequivalence can be met. This topic will
be discussed further in Chapters 3 and 5.

To demonstrate equivalence in plasma concentration profiles, rate and extent of bioavail-
ability of the drug substance in plasma must be sufficiently similar so as to meet the
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regulatory standard for showing that exposure of the body to the drug substance is the
same between formulations [59]. For this purpose, Cmax (rate) and AUC (extent) are typ-
ically used as summary measures for the plasma concentration curves and are required to
be demonstrated as equivalent under preset decision rules to achieve regulatory approval.
As discussed in Chapter 1, AUC(0-t) is generally used, and we neglect the (0-t) in the
following without loss of generality. The other pharmacokinetic endpoints discussed in
Chapter 1 provide supporting information but do not directly impact approvability of the
new formulation.

AUC and Cmax are looked at in this situation as surrogate markers [82] for clinical
efficacy and safety. For example, if Cmax increases too much with the new formulation,
this could lead to unwanted side effects. On the other hand, if it decreases too much,
the drug may not be effective in treating the illness. Similar arguments apply to AUC.
Hence the quality of manufacturing assessment focuses on ensuring these do not change
“too much” in the new formulation. The definition of “too much” is quite involved and will
be the subject of the next section.

Looking more closely at the endpoints we are concerned with, the pharmacokinetic
endpoints AUC and Cmax are generally assumed to be what is referred to as log-normally
distributed. A distribution is a mathematical description of the state of nature from which
individual observations (like AUC and Cmax collected in our BE studies) arise. What
follows is a nontechnical description of distribution theory relating to bioequivalence. Those
interested in the specifics of distributional theory in this setting should review [229].

An example of a normal distribution is plotted in Figure 2.1. The density of the dis-
tribution is on the vertical axis and the corresponding AUC values are on the horizontal
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Normal Distribution (Mean = 1, SD = 1)
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axis. For a given interval on the horizontal axis, the area under the curve is the probability
of observing the AUC values in that interval. The larger the area of the density, the more
likely are we to observe the values in the given interval. The frequency of occurrence of a
lot of data in nature is well described by such a distribution. The bulk of the distribution
is centered around a parameter known as the mean (µ, the measure of centrality) and is
spread out to a certain extent described by the standard deviation (σ, a measure of spread).
Half of the distribution falls above µ, and half falls below. Obviously, we do not know a
priori what the values of µ and σ are, so we collect data and estimate them using statistics.

The role of a statistician is to use randomization, replication, blocking, and blinding
[561] in study design and proper application of models to ensure that the statistics for the
parameters we are interested in are accurate and precise.

A great variety of statistical tools have been developed over the last 100 to 200 years
[499, 500] to precisely model the behavior of such normally distributed data. However, it
is not uncommon for actual data not to behave themselves! AUC and Cmax data are two
such examples.

Let us look at Figure 2.1 again to determine why we cannot use it directly here. Note
that negative AUC or Cmax values are allowed to occur! Obviously, it doesn’t make sense
to use this distribution directly to describe AUC or Cmax data. One cannot physiologically
have a negative blood concentration level, nor therefore a negative AUC. This situation is
just not possible. The lowest they can go is 0.

Statisticians (e.g., [104]) have devised a variety of ways to mathematically “transform”
non-normal data such that they can be modelled using the plethora of powerful tools in-
volving the normal distribution which are available [732].

Westlake [1323] determined that AUC and Cmax data were consistent with a log-normal
distribution (see [660, 730, 873] for more details). This essentially means that the data are
skewed such that AUC and Cmax observations must always be greater than or equal to 0.
See Figure 2.2.

Mathematically, this is useful and quite convenient. If AUC and Cmax are log-normal
in distribution, by taking the natural logarithm of AUC and Cmax (i.e., by taking a math-
ematical transformation), the resulting log-transformed AUC and Cmax are normally dis-
tributed. Hence the name — if one takes the log of a log-normal variable like AUC or Cmax,
the resulting log-variable is normal in distribution.

To clarify, we take AUC as described in Figure 2.2 and recognize that the distribution is
skewed and log-normally distributed. We then take the natural logarithm of the AUC values,
and we get the distribution of logAUC plotted in Figure 2.3. Note that, in Figure 2.3, the
horizontal axis denotes the natural logarithm of AUC (which is denoted mathematically as
ln- or loge-transformed AUC), which we refer to as logAUC (not AUC as in Figures 2.1
and 2.2). It is permissible for logAUC or logCmax data to have a negative value, as we can
always transform their value (by exponentiating) back to their original distribution where
the data are always greater than or equal to 0.

To be specific, if AUC is log-normally distributed with mean exp(µ + (1/2)σ2) and
variance exp(2µ+ σ2)(exp(σ2)− 1), then logAUC is normally distributed with mean µ and
variance σ2 [228, 229]. This will become important later in the book as we begin modelling
AUC and Cmax data.

There have been debates centered around whether AUC and Cmax are the best endpoints
to use for the assessment of bioequivalence. Some findings indicate that AUC and Cmax are
not always sufficient to completely demonstrate bioequivalence [729, 1031, 1192]; however,
international regulatory authorities have depended on these endpoints since the early 1990s.
Pharmacodynamic data or safety data may be required for some drug products (for an
example, see [845]). Those interested in looking further into metrics for bioequivalence will
find [338] and [302] informative.
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Recall that AUC is held by international regulators [148, 300, 555] to be a standard
measure for extent of bioavailability. Cmax as a measure of rate of bioavailability has been
found to be confounded with extent of bioavailability in studies [43] and is known to not
characterize the rate of bioavailability particularly well in some situations [148].

Cmax is obviously dependent on the a priori choice of blood sampling scheme. It is
known to be generally more variable than AUC and is sometimes problematic in the assess-
ment of bioequivalence [127, 1254]. Regardless of this, however, Cmax has been held to be
more reliable in the eyes of regulators than several alternatives [91].

Other measures of rate of absorption have been proposed in the literature, such as
Direct Curve Metrics [840] and Cmax/AUC [325], and indirect metrics [1038]. However,
simulation-based assessment of alternatives has demonstrated such measures to be less
desirable than the use of Cmax to date [1250, 1251]. Recent work in alternative measures
of absorption rate such as Partial AUCs [330] is ongoing in response to workshop and
regulatory considerations [958, 1131] but these measures have yet to be accepted as useful
in bioequivalence assessment [40].

Cmax thus seems to be held as the least undesirable measure available at present for
rate of bioavailability [300].

Why did something this complex ever come about? We’ll go into that now.

2.2 Why Are BE Studies Performed?

In the late 1960s and 1970s, advances in chemical engineering increased the capability to
create inexpensive copies of patented drug products (since termed generics). Following
patent expiration, such new formulations could potentially be marketed [1202].

This was desirable from a governmental perspective for public health. Such a practice
would be expected to increase the supply of the products in demand in the marketplace,
and thereby reduce prices for consumers. This offered substantive benefit to public health
(lower costs).

However, when some pharmaceutically equivalent copies of drug products were produced,
reports of therapeutic failure received a great deal of public attention in the United States.
These failures included lack of desired effect (Amitriptyline, Carbamazepine, Glibenclamide,
Oxytetracycline) and undesirable side effects like intoxication (Carbamazepine, Digoxin,
Phenytoin). Development of a set of regulated standards for market access was necessary
[1034],[25]. The FDA was authorized under the 1984 Drug Price Competition and Patent
Term Restoration Act to create an approval process for generic drug products.

The years following revealed increasing trends in market access for generic products
[1202]. For approval to market, the FDA decided to require a bioequivalence study for
market access with prespecified decision rules for acceptability based on the data collected.
Such studies were also required for extension of patent protection for innovators seeking to
maintain market exclusivity [608].

2.3 Deciding When Formulations Are Bioequivalent

The FDA initially proposed Decision Rules (sometimes referred to as uniformity require-
ments) to assess bioequivalence such as the 80/20 and 75/75 rule. The 75/75 rule was defined
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such that 75% of subjects’ individual ratios of Test to Reference, AUC or Cmax, values must
be greater than or equal to the value of 0.75 for bioequivalence to be demonstrated.

While the 75/75 rule would protect against a lack of efficacy associated with decreased
plasma concentrations, it obviously would not protect against undesirable side-effects po-
tentially brought about by increased concentrations from a new formulation. Additionally,
Haynes [549] established, using simulation studies, that the proposed 75/75 uniformity re-
quirement was highly dependent on the magnitude of within-subject variation. Finally,
individual ratios are confounded with period effects. As these effects are known to fre-
quently appear as significant in cross-over studies in normal healthy volunteers [1089], due,
for example, to changes in assay procedures between periods, use of the 75/75 rule criteria
for bioequivalence assessment was quickly observed to be inappropriate for a large variety
of drug products and was dismissed from regulatory practice.

Another idea proposed for testing bioequivalence was to simply test to see whether the
formulations were different, and if the test did not demonstrate a significant difference of
20%, then one would accept bioequivalence. This was the 80/20 rule. Let µT (µR) denote
the mean value of logAUC or logCmax, for T (R). Under these criteria, the study first must
not have rejected the hypothesis H0 that

H0 : µT = µR (2.1)

versus

H1 : µT 6= µR. (2.2)

The estimator, µ̂T − µ̂R, of µT −µR, has certain statistical properties (described in the next
chapter). These may be used to derive a test statistic and p-value to assess the above null
hypothesis H0.

A p-value is a statistic measuring how convincing is the evidence in the data in favor of
H0. Traditionally, if its value is less than 0.05, the hypothesis H0 is rejected in favor of its
alternative H1.

Additionally, the study must have had a sufficient number of subjects to rule out the
occurrence of a Type 2 error at the rate of 20% when planned to detect a clinically important
difference. The use of such a procedure (known as post hoc power calculation, where power
equals 1 minus the probability of a Type 2 error) is inappropriate in this context for a
variety of reasons [566]. However, the clinically relevant difference was determined to be
ln 1.25 = 0.2231 on the loge scale (a 20% difference on the natural scale). See [40] for details
on how this value was chosen by the FDA.

Criticisms of the 80/20 approach to bioequivalence are obvious. Absence of evidence of
a significant difference does not imply evidence of absence (for more discussion see [647]).
The goal of a bioequivalence study is to generate data to confirm that a difference is not
present, not to confirm there is one. One could presumably demonstrate BE under the
80/20 rule by running a poorly conducted trial!

The statistical community had been aware, for some time, of better methods to test the
hypothesis of equivalence of two treatments relative to a preset, clinically relevant goalpost.
Cox [227] related Fieller’s theorem [405] for the ratio of two normally distributed means to
the conditional distributions used to obtain similar regions based on traditional Neyman–
Pearson theory (for the testing of hypotheses; see also [808]). Alteration of the traditional
hypothesis tested in clinical trials (Equations (2.1) and (2.2)) to a framework appropriate
for equivalence testing was introduced in [290]. In this paper, Dunnett and Gent [290]
compared two binomial samples relative to a prespecified goalpost ∆ to assess equivalence
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of the responses to treatment. Westlake ([1321–1323]; for summary of work performed in
the 1970s see [1324]) applied similar concepts to the analysis of bioequivalence trials.

In brief, when a bioequivalence study is conducted, the confidence interval for the dif-
ference in µT − µR is derived using a model appropriate to the data and the study design.
If the confidence interval falls within prespecified goalposts, the formulations are declared
bioequivalent. Implementation of the approaches proposed by Westlake [1321–1323] to the
question of bioequivalence was initially assessed by Schuirmann [1087] at the FDA and the
approaches were subsequently adopted as the regulatory standard of choice.

This procedure was designated the “two one-sided testing procedure” (known as the
“TOST”).

To clarify, one hypotheses that the AUC and Cmax data in the new formulation are “too
low” (H01) relative to the reference formulation or also that they are “too high” (H02). If
both hypotheses are rejected by the data in favor of their alternatives (H11, H12), then the
new formulation is deemed to be bioequivalent to the reference formulation.

To be specific, under this approach to inference, the usual null hypothesis was reformu-
lated to correspond to the structure of testing the question of bioequivalence:

H01 : µT − µR≤−∆ (2.3)

versus the alternative
H11 : µT − µR>−∆

and
H02 : µT − µR≥∆ (2.4)

versus the alternative
H12 : µT − µR<∆

Inference was based on the use of the central t-distribution using a model in a ran-
domized, two-period cross-over design. Summaries of the implementation of such a TOST
procedure may be found in [951] and [1190].

The goalpost ∆ was again chosen to be equal to ln 1.25 = 0.2231 (corresponding to a
20% range on the natural scale). Schuirmann subsequently refined his work in a publication
in 1987 [1088]. For each of the hypotheses H01 and H02 it was determined that the FDA
wanted no more than a 5% chance of a Type 1 error. Recall that this means that the FDA
wanted no more than a 5% chance that a study would demonstrate bioequivalence when in
truth the formulations were not bioequivalent. Examples of the application of the TOST
procedure are given in Chapter 3.

Operationally, the TOST corresponds to showing that a 90% confidence interval for
µT − µR is contained in the interval − ln 1.25 to ln 1.25.

Blackwelder [84] and Anderson and Hauck [21] published similar work. These ideas were
further developed in [525] and [1045], and general approaches to the question of statistical
inference were subsequently summarized under the framework of fiducial probability and
inference in [945]. Practical considerations in the design and Type 2 error properties and
sample size of such studies were further developed in [1089].

The two one-sided testing procedure was easy to implement for nearly any cross-over
study design and had the benefit of being easily interpretable in practice. As described
in the last section, its regulatory and public health, statistical, and sponsor considerations
were well understood.

The confidence interval provides a plausible range of values within which the true dif-
ference in formulation means can be expected to fall [526]. Note that often the results are
exponentiated to the natural scale following analysis. On the natural scale, the interval
0.80–1.25 is used to assess whether the formulations are bioequivalent for AUC and Cmax.
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The ranges of plausible values as expressed by the confidence intervals were used to
assess the degree of equivalence or comparability. Type 1 error was termed “consumer”
or “regulator” risk — i.e., the risk to the regulator and consumer in making an incorrect
decision, i.e., allowing market access when the application in fact should not be approved.
Although often the subject of debate, the choice of ∆ = ln 1.25 gave regulators an easy
standard under which to assess the results of such studies.

Randomization to sequence and definition of a washout period sufficient to negate poten-
tial residual (i.e., carry-over) effects from the previous period were established as desirable
properties in bioequivalence study design. The times at which blood samples were taken
was noted as being very important for proper consideration and definition of Cmax, and
period effects were noted as being a “recurrent phenomenon” in cross-over designs (due to
changes in sample storage, environmental conditions, or assay bias between periods). The
use of prospectively designed, randomized cross-over designs was established as the norm
for bioequivalence assessment.

Regulatory agencies have little direct interest in the Type 2 error properties of bioequiv-
alence studies under the TOST procedure (this is typically referred to as “sponsor’s risk” in
this context). The regulator’s primary concern is with the significance level at which bioe-
quivalence can be concluded and with ensuring that the design of such studies ensures an
unbiased comparison of formulations. Under Schuirmann’s TOST procedure, the confidence
level (α) was set at 5% per test for an overall study-wise Type 1 error rate of up to 5% [352].

The FDA recommended this in the 1992 guidance [352] and thus specified that subjects
must be randomized to sequence. A general linear model (see Chapter 3) would be fitted to
the loge-transformed AUC and Cmax for demonstration of bioequivalence in a two-period
cross-over design. Between- and within-subject variances were assumed to be homogeneous
across formulations, and AUC and Cmax data were assumed to be log-normally distributed.
In practical terms, under the 1992 FDA Guidance, equivalence was demonstrated if the 90%
confidence interval (calculated using a linear model appropriate to the study design) for
exp(µT − µR) was contained in the interval 0.80–1.25. Different models should be applied
if the study design differs from a two-period cross-over design to construct the confidence
intervals for µT − µR.

The FDA encouraged those conducting bioequivalence studies to conduct single-dose
studies at the maximal dose to be marketed in healthy normal subjects and to ensure an
adequate washout period between study periods. AUC and Cmax were designated as the
primary endpoints of interest to assess extent and rate of absorption, respectively, in the
1992 FDA Guidance.

2.4 Potential Issues with TOST Bioequivalence

This average bioequivalence approach (so-called because it pertains to the equivalence of
the means of the test and reference formulations) has safeguarded public health since its
adoption [40]. However, it was not without issues.

For narrow therapeutic index drugs (for which a slight change in dose or exposure can
cause a large alteration in response to treatment), bioequivalence is regarded as particularly
problematic under the average bioequivalence approach [58]. Such drugs, e.g., digoxin and
warfarin [216], generally exhibit low within-subject variability (i.e., within-subject coeffi-
cients of variation less than 10%). Under the average bioequivalence approach, it is possible
[985] to demonstrate bioequivalence of means even in the presence of small but statistically
significant changes in means — i.e., as the limits of the confidence interval for the ratio of
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formulation means fall within 0.80 to 1.25, bioequivalence is demonstrated; however, some
confidence intervals will not contain the value 1 and thus are slightly (but significantly)
different while still being bioequivalent. Such small changes in mean test to reference rate
and extent of exposure are potentially clinically meaningful in a small proportion of patients
[40], and some have advocated [25] special equivalence definitions for narrow therapeutic
index products whereby such drugs would be held to a stricter regulatory standard (e.g.,
equivalence limits corresponding to a 10% range on the loge scale, 0.90 to 1.11).

When issues with average bioequivalence are found for a particular product (e.g., [646]),
FDA typically issues a special biopharmaceutical guidance on demonstrating bioequivalence
for that particular product to safeguard patients. For example, reports of therapeutic failure
for the product Clozapine, an antipsychotic, were published [343]. Clozapine was granted
market access following “non-standard” bioequivalence studies mandated by FDA under
biowaivers applied for by the manufacturers due to the fact that normal healthy volunteers
may not be safely exposed to any dose but the lowest of Clozapine. Reports of therapeutic
failure followed in the United States where uncontrolled switching in-clinic was allowed,
resulting in significant costs, as this condition requires hospitalization. FDA subsequently
required the manufacturers of the generic formulations to perform a better bioequivalence
study to maintain market access and developed drug-specific guidance on the topic of Cloza-
pine bioequivalence. Examples of such drug-specific guidance include Potassium-Chloride
[350], Metaproterenol and Albuterol [351], Cholestyramine [353], Phenytoin [354], Clozapine
[357], and Topical Dermatologics [355].

High-variability products (with within-subject standard deviations in excess of 0.30 [87]),
require sample sizes in excess of 30 subjects in order to have less than a 10% to 20% chance
of a Type 2 error. Some have argued [874, 875] that small changes in rate and extent of
exposure for such products are not clinically meaningful and have advocated allowance of a
less strict regulatory standard — e.g., equivalence limits corresponding to a 30% equivalence
range on the loge scale, i.e., 0.70 to 1.43 on the natural scale. As an alternative, equivalence
limits could be widened based upon the within-subject variability observed in the study
[90, 874, 875, 1079] allowing such drug products easier market access. We will discuss such
approaches further in Chapter 7.

The concept of switchability of formulations for the individual patient is not addressed by
the average bioequivalence criterion [615]. Population means are compared, and variation
between individual subjects (or patients) is factored out of the variation used to assess the
distance between population means, as described above. Peace [977], Anderson and Hauck
[22], Hauck and Anderson [528], and Welleck [1311] introduced the concept of individual
bioequivalence. Under this approach, the question, asked is “Can I safely and effectively
switch my patient from their current formulation to another?”

Average bioequivalence is a special case of what in [528] is termed population bioequiva-
lence. This type of bioequivalence addresses the question, “Can I safely and effectively start
my patient on the currently approved formulation or another?” Differences in variation be-
tween formulations should also be considered when determining whether a formulation will
be equally effective and safe when administering the commercial formulation of a new drug
product relative to that used in clinical trials in Phase III. It is not clear in this context
whether comparison of within-subject variances or total variances (so termed as the sum of
between- and within-subject variance for a given formulation) is the appropriate variance
for comparison between formulations, and arguments [487, 529] have been offered for both
in this context.

Techniques for comparing within-subject variances in a two-period cross-over (under
the assumption that between-subject variances across formulations are homogeneous) had
been developed in [991] and [891]. Alternatively, the total variances between formulations
(between- plus within-subject variance) can be compared using a similar procedure.
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Most techniques for assessment of the equality of variances assume that variance compo-
nents are independent [36, 121], a condition not met in the correlated data encountered in
cross-over trials. Bristol [113, 114] developed practical maximum likelihood techniques for
comparing within-subject variances in this context based on techniques discussed in [832].
Cornell [223] derived nonparametric tests of dispersion for the two-period cross-over design.
Chow and Liu [196] described similar procedures, and [1293] and [494, 495] described similar
procedures in publications. These techniques reduce to different transformations to assess
unequal marginal scales in a bivariate normal population [692], and such comparisons were
also addressed in work in [78], [297], [857], and [48]. More recent work is published in [751].

Comparisons of total- or within-subject variance between formulations can be accom-
plished using such procedures; however, it is known [1388, 1389] that variance components
are ill-characterized in cross-over studies of the size usually performed. Increasing sample
size [1389] can improve the precision of estimated variance components; however, it is un-
usual for such studies to be performed except in the case of highly variable drug products
[1388].

Moreover, while such procedures are theoretically and statistically viable, they are highly
dependent [1271] on the choice of estimation procedure. Estimates for between-subject vari-
ance can be negative under a method-of-moments based procedure or maximum-likelihood
procedure [114]. Such estimates may be positively biased [334] when using a restricted-
maximum-likelihood based estimation procedure as would be expected in a procedure
constrained in the likelihood to only permit estimates greater than or equal to zero for
between-subject variances and correlation constrained to lie in the range [-1, 1] (see refer-
ences [241, 652, 961, 1271]).

We will not discuss the comparison of variances further in this book, as such techniques
are not applied in the regulatory assessment of bioequivalence. Those interested in further
information on the topic should read information on this topic in [196] and the publications
noted above.

Consideration of these individual and population bioequivalence ideas (and sundry oth-
ers) led the FDA to form a bioequivalence working group in the mid-1990s. This body
(composed of FDA representatives from clinical, scientific, and statistical disciplines) was
tasked with determining whether a public health risk under the average bioequivalence
approach could exist [870] and if so to determine a method or methods to evaluate bioe-
quivalence in a manner to protect the public health. A description of the ideas under
discussion may be found in [19, 20, 23, 165–167, 483, 529, 957] but will not be discussed
further here.

After considering the public comments on the preliminary draft 1997 guidance [358],
the FDA reissued two draft guidances on the topic of bioequivalence in August 1999 ([362,
363] replacing the draft guidance issued in 1997). These two guidances described when
to perform a relative bioavailability, population, or individual bioequivalence study [362]
for drug products in solution, suspensions, aerosols and for topical administration and for
the more usual immediate-release and modified-release orally administered drug products.
General guidance for study design (discussed earlier in this chapter) was provided.

The FDA acknowledged in the new draft guidance [362] that narrow therapeutic index
drugs should be held to a stricter equivalence criterion than the usual 20% range required
in the existing FDA guidance [352]. For these drug products, a 10% range on the loge scale
(corresponding to an equivalence range of 0.90–1.11 on the natural scale) was required.
However, this requirement was removed in the final revised FDA guidance [373].

The second draft guidance from the FDA [363] described in more detail the study de-
sign, model, and approach to statistical inference for average, population, and individual
bioequivalence relative to the 1997 draft guidance, but departed from the original approach
only in minor respects. Requirements for power and sample size were described in more
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detail in this draft guidance relative to the original 1997 draft guidance; however, the main
departure was in the model used for statistical inference.

The FDA followed up in 2000 [366] with the introduction of the “Biopharmaceutical
Classification System.” Orally administered drug products are categorized based upon in
vitro testing into classes I, II, III, or IV. Class I compounds, known as highly soluble
and permeable in that they are quick to dissolve when ingested and are absorbed directly
into the body quickly, are exempt from the requirements of demonstrating bioequivalence
in a clinical study and only must demonstrate that in vitro dissolution profiles for the
formulations under study are equivalent. The choice of reference product is of importance
in this setting [1180]. Under the BCS guidance, only Class II, III, and IV drugs are required
to demonstrate in vivo bioequivalence before being granted market access. A study of the
impact of this approach is given in [221].

The FDA guidance [367] finalized in October 2000 indicated that the agency would
adopt the 2000 guidances [366, 367] as final. However, following additional discussion at
the 2001 Pharmaceutical Sciences Advisory Committee, the FDA provided revised final
guidance [373] which removed the potential for using population and individual bioequiv-
alence for market access. It is possible that in the future the use of these criteria will be
reinvestigated if the FDA determines that there is a need for such based upon observations
of the marketplace.

2.5 Current International Regulation

To summarise, the debate on how to do bioequivalence trials culminated in 1987 [1088]
when Schuirmann’s two one-sided testing method for a regulatory set goalpost of ln 1.25
was introduced using the pharmacokinetic measures of AUC and Cmax as surrogate markers
for efficacy and safety by the FDA.

In general, the AUC and Cmax refer to the parent compound being administered (not
any metabolites produced in the body). However, under unusual circumstances, it may
be important to measure metabolite AUC and Cmax also for the assessment of average
bioequivalence. See [629] and [631] for more details.

The design of choice was determined to be a randomized, 2 × 2, two-period cross-over
in normal healthy volunteers to isolate and quantify any differences in formulation, and
regulatory risk was set at 5% per test. The design and analysis of cross-over studies had
been extensively developed by this time [652, 1113], and statistical considerations in power
and sample size were described in [260].

For long half-life drugs (where the wash-out period would be so long that a cross-over
design is not feasible), a parallel group design where subjects are randomized to receive one
or the other formulation may be applied.

This approach was formalized in the 1992 FDA Guidance [352] and applied to both pre-
and post-marketing approvals for changes in formulation. Average bioequivalence quickly
became an international standard, with most nations utilizing the FDA’s 1992 guidance or
slight modifications to the approach.

This procedure was adopted as the standard method by European [308] and Canadian
[140, 141] regulatory authorities subsequent to finalization of the US FDA guidance in 1992
[148, 1193].

Japan [634], China [183], and Australia [33] also follow this procedure (with minor
changes in study design or decision rules) for the assessment of bioequivalence.
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To date, the vast majority of products which have utilized this approach have not been
observed to have marketplace failures in terms of their safety and efficacy profiles (see [40] for
more details). Average bioequivalence testing of δ = µT − µR has thus been established de
facto as a surrogate marker for public safety based primarily upon observation, consistency
of knowledge, and replication of findings of the application of the FDA guidance [352]
and less upon quantified, scientific assessment of biological plausibility and strength of
association.

Average bioequivalence did, however, have the potential for issues in implementation
with regard to the regulatory, statistical, and sponsor considerations discussed earlier in this
chapter. One potential difficulty was regulatory in nature. The approach was concerned
with testing only the formulation means and did not contain any explicit criteria pertaining
to individual subjects, and it was felt that the inclusion of criteria relating to variation
might address such points. Another potential area of difficulty involved both regulatory
and sponsor considerations. The regulatory limits of 20% were also questioned, as they
might be too large for low variability products with a narrow therapeutic index, and the
20% acceptance limits created a practical difficulty for sponsors due to the large sample
sizes needed to ensure a high probability of success for high variability products.

The FDA addressed the issue presented by low variability drugs by tightening the range
in some instances, and it was known alternative designs [1271] and mixed modelling ap-
proaches [689] could be used to demonstrate average bioequivalence to address sponsors’
considerations for highly variable drug products.

The FDA opened the discussion on the resolution of the theoretical “individual subjects
switchability” issue with the publication of the 1997 preliminary draft guidance [358] and
significant international debate followed. This debate resolved in 2003 [373] with a decision
to continue using average bioequivalence.

Average bioequivalence in practice has been “harmonized” to assess the difference in
means between formulations in a relatively standard fashion throughout most of the world
today [245].

Recently, the FDA and EMEA both proposed that specific study designs and/or testing
procedures be used in certain cases for what is termed highly variable drugs [243, 440].
These “scaled average bioequivalence” approaches (SABE) are not the same mathematically
and statistically, and those adopting the approach should plan to consult with the local
regulatory authority to ensure acceptability prior to performing the clinical trial. These
approaches will be discussed further in Chapter 7.

Readers interested in more information on the USA FDA’s perspective will find the
review article [1393] of interest. This review article also covers perspectives on unusual
products such as inhaled and complex (i.e., combination) drug products.

2.6 Some Practical Notes

In most cases, multiple AUC endpoints are derived in bioequivalence datasets. In general,
if half-life (T 1

2
, see Chapter 1) can be estimated, it will be used to calculate AUC(0-∞)

as described in Equation (1.1). However, if insufficient concentration data are captured
during elimination of the drug, half-life may not be subject to estimation, and therefore
AUC(0-t) will be used in statistical evaluation. Recall that, in this context, t denotes the
last quantifiable concentration during the period in which samples are captured.

The t in AUC(0-t) may differ across periods for any given subject. In datasets where
marked differences between the last quantifiable time t are present between periods and
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half-life cannot be estimated, it may be preferable to consider an endpoint like AUC(0-t′).
Here, t′ denotes the last quantifiable concentration time in common across periods for a
given subject.

The decision about which AUC endpoint is primary and which will provide supportive
information should be made prior to analysis to prevent the introduction of bias into in-
terpretation of the data [1113]. It is unusual for AUC(0-t′) to be used, as most BE studies
are designed to ensure sufficient samples are taken during elimination to ensure half-life
can be estimated. FDA guidance [373] recommends that both AUC(0-t) and AUC(0-∞) be
provided in submissions.

In cases where multiple “peaks” in blood concentration are observed, it is common
practice for the first [373] to be chosen as Cmax, with the corresponding time relative to
dose being Tmax. The value of Tmax is highly dependent on the choice of sampling times.
Its use in bioequivalence studies is that of an endpoint providing supportive information.
Some nations [140, 141] require that Tmax be analyzed as if it were normally distributed.
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Testing for Average Bioequivalence

Introduction
There is nothing like a little pressure to brighten up one’s day, and this one was no

exception. I had arrived as usual at the clinical pharmacology unit and was at work preparing
a study design proposal when my boss walked into my office.

She had run up the stairs. My office by this time (about two years after I had hired on)
was one floor up and well away from my clinical colleagues, who tended to be a bit noisy
and nosy. The first was no problem (get some earplugs), but the second is irritating for a
working statistician. They were always stopping by for just a “peek” at the data, but they
were full of questions. Answer one and at least a dozen more pop out. After about two
years, one figures out that a little distance is not a bad thing (and no peeking).

After she got her breath back, she told me that one of my colleagues from Pharmacokinet-
ics had a bioequivalence dataset that needed to be looked at Stat (an expression the clinicians
used all the time). I’m guessing that Stat in clinician-speak means “run the tests as soon
as humanly possible.” I guess they like to think that we sit around twiddling our thumbs
unless they shout Stat repeatedly.

There is one certainty in drug development and statistics that one can depend on: the
data are always late. There are always reasons that someone wanted to know the findings
yesterday. Sometimes it is even a good reason!

Like the subject of statistics itself, after you get used to it, it does not bother you too
much.

In any event, it was 10:30, and the results were needed by lunchtime. After making
sure she meant a late lunch (she did not), I hastily pulled the code you will see later in this
chapter, grabbed the data, and went to work.

We did have a late lunch that day, by the way. Analysis of bioequivalence data is not
as simple as pressing a button.

3.1 Background

In the previous chapter we briefly introduced the 2× 2 cross-over trial and the TOST (two
one-sided testing) procedure. In this chapter we will describe in some detail how data
obtained from a 2 × 2 trial can be used to test for Average Bioequivalence (ABE). To
illustrate the analyses, we will use the data given in Table 3.1.

It can be seen that data were collected on 32 subjects; 17 received the formulations in
the order RT and 15 in the order TR. The original design of the trial planned for an equal
number of subjects in each group. However, it is usual for such studies to over-enroll to
ensure that an adequate number complete the trial (without having to go to the trouble of
replacing dropouts). In this case, some of the subjects did not turn up to participate in the
trial. We will discuss other such practical issues of the planning of trials in a subsequent
chapter.

Before we proceed to test for ABE, we will explore the data graphically. The main reason
for using a cross-over design is to make comparisons between the two formulations “within”
each subject and as a result to eliminate any between-subject variability. Figure 3.1 is a

31
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TABLE 3.1: Example 3.1

Sequence RT

AUC Cmax
Period Period

Subject 1 2 1 2
1 2849 2230 499 436
4 2790 2864 733 416
5 2112 1744 344 48
8 1736 1882 342 437
9 1356 1175 357 240
11 1775 1585 442 286
16 2997 2237 425 332
17 1973 1778 423 407
19 1454 1297 256 348
21 2469 2023 392 480
24 1584 1855 316 373
25 4004 2449 465 625
28 1944 1593 502 326
29 1175 1147 248 221
31 1696 1801 390 350
34 1737 1655 425 319
36 2040 2199 464 384

Sequence TR

Subject 1 2 1 2
2 2025 2000 438 361
3 2090 1826 535 558
6 2006 1881 443 681
7 2202 1935 446 481
10 1838 1602 310 340
12 1898 2504 323 331
15 1129 1036 308 243
18 2014 1938 552 427
20 1900 1730 355 401
22 1763 1472 213 177
23 1678 1336 487 412
26 2271 2389 422 731
27 1986 1857 560 461
30 2519 1941 537 400
35 1560 1629 463 372

R=Reference, T=Test
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FIGURE 3.1
Example 3.1: Subject Profiles Plot

subject-profiles plot ([652], Ch. 2) and displays the between-subject variability and the
difference in response between the two formulations within each subject. The left panel
displays the logAUC values and the right panel the logCmax values.

As explained in the previous chapter, the analysis is done on the natural log-transformed
data; hence, most of the figures in this chapter will use that scale of measurement. The
subject-profiles plot is constructed for each sequence by first plotting on the vertical axis, for
each subject, the Period 1 and Period 2 responses against the values 1 and 2, respectively,
and then joining the two responses with a line. In our plot we have replaced the axis labels
for Period 1 and Period 2 with the corresponding treatment labels, so that the treatment
ordering within each sequence is evident. The distance between the periods (i.e., between
the R and T labels) on the horizontal axis is a matter of taste.

The expected large variation over the subjects is very evident from the vertical spread of
the points in the plot. If the two formulations were identical and there were no variation in
the two responses from a subject, then the plot would consist of parallel lines in a “ladder-
like” pattern. If, in addition, there were no period effect, the lines would be horizontal: if
there were a period effect, all the lines would either slope upward or all the lines would slope
downward. In Figure 3.1, within a sequence, some lines go up as the formulation changes
within a subject and other lines go down. It is not possible at this preliminary stage of
analysis to determine whether the within-patient variability is just random noise or due to
a true difference between the two formulations or between the two periods.

Another useful plot is the paired-agreement plot (see [491]). Here the test response is
plotted against the reference response for each subject. Figure 3.2 shows, for simulated sets
of data, the patterns that might be seen in such a plot. These patterns correspond to (i)
no difference between the two responses on a subject (Identity), (ii) a period difference in
the absence of a formulation difference (Period difference), (iii) a formulation difference in
the absence of a period difference (Formulation difference), and finally (iv) when there is
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FIGURE 3.2
Examples of Patterns in a Paired-Agreement Plot

both a period difference and a formulation difference. To emphasize the underlying pattern
in each plot, we have removed the within-subject variability.

For Example 3.1, the paired-agreement plots for logAUC and logCmax are shown in
Figure 3.3. The patterns in the plots suggest there is a period difference but no formulation
difference. In addition, we can see larger within-subject variation in the logCmax values.

In order to make a proper determination of any differences in response between formula-
tions, we need to specify a statistical linear model that will allow for any systematic effects
that we believe are present in the data a priori. These systematic (fixed) effects are identi-
fied during the design phase of the trial and in our case are the sequence, formulation, and
period effects. In the previous chapter, reference was briefly made to so-called carry-over
effects. If the effect of the formulation given in the first period is still present at the start of
the second period, then we refer to that effect as the (first-order) carry-over effect of that
formulation. If a long enough washout period is used to separate the two active periods (5
half-lives is recommended) then there should not be any pharmacological carry-over from
the first period to the second.

Models will now be developed to generate summary statistics which account for these
factors, characterize the distribution of the difference in formulation means, and to allow
us to better assess the noise in the data. The essential feature of the TOST procedure is
the calculation of a 90% confidence interval for µT − µR, the mean difference between the
formulations on the log scale. To calculate this confidence interval, we need an estimate of
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Example 3.1: Paired-Agreement Plots

µT −µR, and this can be done by specifying a statistical (linear) model for the logAUC and
logCmax values observed on the subjects.

3.2 Linear Model for 2× 2 Data

In order to define the linear model, let yijk denote the response (i.e., logAUC or logCmax)
in period j on subject k in sequence group i, where i = 1, 2, j = 1, 2, k = 1, 2, . . . , ni,
and ni is the number of subjects in group i. The total number of subjects in the trial is
n = n1 + n2. The systematic effects we anticipate are due to the periods and formulations.
As the subjects are allocated randomly to the two groups, there should be no sequence effect
(i.e., a significant difference in mean response between the two sequence groups). However,
it is traditional to include such an effect and we will do so here. The notation we will use
is that µ denotes the overall mean response, τR and τT are the formulation effects, π1 and
π2 are the period effects, and γ1 and γ2 are the sequence effects. The fixed effects model
(i.e., the systematic effects) for each of the four group-by-period response combinations is
displayed in Table 3.2.

TABLE 3.2
Fixed Effects in the Linear Model for the 2× 2 Design

Group Period 1 Period 2
1(RT) µ+ τR + π1 + γ1 µ+ τT + π2 + γ1

2(TR) µ+ τT + π1 + γ2 µ+ τR + π2 + γ2
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TABLE 3.3
Fixed Effects: Alternative Parametrization for the 2× 2 Design

Group Period 1 Period 2
1(RT) µR + π1 + γ1 µT + π2 + γ1

2(TR) µT + π1 + γ2 µR + π2 + γ2

As we will explain later, the difference in carry-over effects, if any, between the formu-
lations is aliased with (i.e., completely mixed up with) any difference between the sequence
effects, so including sequence effects in our model does have some potential benefits, which
we will explore later. As regards the parameters themselves, they are all defined with ref-
erence to an overall mean response parameter µ. The result of moving from R to T, for
example, is to cause an increase or a decrease in response relative to the overall mean. Con-
sequently, as it is only the size of the increase or decrease that needs to be accounted for, two
different formulation parameters, τR and τT , are not needed. To remove this redundancy,
a constraint is typically applied such as τR + τT = 0. The result of this is that we can refer
to µR = µ + τR and µT = µ + τT as the means for formulations R and T, respectively.
This alternative parametrization is displayed in Table 3.3. For exactly the same reasons,
a constraint is also placed on the period and sequence parameters, e.g., π1 + π2 = 0 and
γ1 + γ2 = 0. The choice of constraint is not unique and we could have chosen τR = 0
and π1 = 0, for example. What is important to remember is that, although the choice of
constraint is arbitrary, the difference µT − µR is uniquely identified.

Coming now to the “random-effects” part of our model, we need to allow for the variation
between patients that was so evident in Figures 3.1 and 3.3 and for any “residual” random
variation that is unexplained by the rest of the terms in the model. This is done by
introducing two random variables: ξk(i), to allow for variation between subjects, and εijk,
to allow for unexplained variation between the two responses on the same subject. The
random effects are displayed in Table 3.4 for a typical subject k in Group 1(RT) and for a
typical subject k′ in Group 2(TR). Dropping the distinction between k and k′, we assume
that ξk(i) and εijk are independent random variables such that E(ξk(i)) = 0, Var(ξk(i)) = σ2

B ,
E(εijk) = 0, and Var(εijk) = σ2

W , where σ2
B is the between-subject variance and σ2

W is the
within-subject variance. E denotes the expected value (i.e., population mean) for a given
parameter, and Var denotes its variance. We also assume that the ξk(i) are independent
among themselves and that the εijk are independent among themselves.

The complete model for yijk is then

yijk = µd[i,j] + πj + γi + ξk(i) + εijk, (3.1)

where d[i, j] = R or T and identifies the formulation in period j of sequence i.
We note that the variance of a response on subject k in group i in period j is

σ2 = Var(yijk) = Var(ξk(i) + εijk) = σ2
B + σ2

W . (3.2)

TABLE 3.4
Random Effects in the Linear Model for the 2× 2 Design

Group Period 1 Period 2

1(RT) ξk(1) + ε11k ξk(1) + ε12k

2(TR) ξk′(2) + ε21k′ ξk′(2) + ε22k′



Testing for Average Bioequivalence 37

The covariance between two responses on the same subject is

Cov(yi1k, yi2k) = Cov(ξk(i) + εi1k, ξk(i) + εi2k) =

Cov(ξk(i), ξk(i)) = Var(ξk(i)) = σ2
B .

Hence, the correlation between two responses on the same subject is

ρ = Corr(yi1k, yi2k) =
σ2
B

σ2
B + σ2

W

. (3.3)

Returning now to the estimation of µT − µR, let ȳij. = 1
nij

∑nij
k=1 yijk denote the mean

response of the subjects in period j in sequence group i.

For Group 1: E(ȳ11. − ȳ12.) = π1 − π2 + µR − µT .

For Group 2: E(ȳ21. − ȳ22.) = π1 − π2 + µT − µR.

Hence,

E

{
1

2
[(ȳ21. − ȳ22.)− (ȳ11. − ȳ12.)]

}
= µT − µR. (3.4)

This expression in (3.4) is a key fundamental finding in working with cross-over designs and
should be emphasized. By taking the difference across periods within sequence, and then
combining the data across sequences, the result is an unbiased expression for the finding
that is of key interest, the difference between formulations.

That is,

µ̂T − µ̂R =
1

2
(ȳ21. − ȳ22. − ȳ11. + ȳ12.) (3.5)

and

Var(µ̂T − µ̂R) =
1

4

[
σ2
W

n1
+
σ2
W

n1
+
σ2
W

n2
+
σ2
W

n2

]
=
σ2
W

2

[
1

n1
+

1

n2

]
. (3.6)

If n1 = n2 = n/2, then

Var(µ̂T − µ̂R) =
σ2
W

2

[
2

n
+

2

n

]
=

2σ2
W

n
. (3.7)

If σ̂2
W is an estimate of σ2

W on n− 2 degrees of freedom (d.f.) and t0.95(n− 2) is the upper
95% percentile of the t−distribution on n− 2 d.f., the 90% confidence interval for µT − µR
is

µ̂T − µ̂R ± t0.95(n− 2)

√
σ̂2
W

2

[
1

n1
+

1

n2

]
. (3.8)

The groups-by-periods means for Example 3.1 are given in Table 3.5.
Finally, we display a plot that is directly linked to the linear model and displays informa-

tion on both the formulation difference within subjects and their variability. In this “Mean
Differences versus Totals” plot we plot for each subject k in Group i, the mean difference
dik = (yi1k − yi2k)/2 against the total tik = yi1k + yi2k (see [652] and [491]). The resulting
plot is given in Figure 3.4, where open symbols are used for the subjects in Group 1. The
two large diamonds on each plot indicate the position of the centroids [(t̄1., d̄1.), (t̄2., d̄2.)].
The vertical difference between the centroids within a plot is the value of µ̂T − µ̂R. We can
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TABLE 3.5
Example 3.1: Groups-by-Periods Means (sample size in parentheses)

logAUC
Group Period 1 Period 2 Mean
1(RT) ȳ11. = 7.60(17) ȳ12. = 7.50(17) ȳ1.. = 7.55
2(TR) ȳ21. = 7.55(15) ȳ22. = 7.48(15) ȳ2.. = 7.51
Mean ȳ.1. = 7.58 ȳ.2. = 7.49 ȳ... = 7.53

logCmax
1(RT) ȳ11. = 5.99(17) ȳ12. = 5.91(17) ȳ1.. = 5.95
2(TR) ȳ21. = 6.02(15) ȳ22. = 5.99(15) ȳ2.. = 6.01
Mean ȳ.1. = 6.01 ȳ.2. = 5.95 ȳ... = 5.98

see that, for both logAUC and logCmax, the centroids are close together, suggesting that T
and R might be ABE. The solid and dashed lines in each plot give the positions of the convex
hulls, one for each group. The convex hull connects the “outermost” points in a group, and
is a useful way of displaying the variation in the dik and tik. There is an impression that
variability is higher in Group 1 for both logAUC and logCmax. The usefulness of plotting
the subject totals is that the difference t̄1.− t̄2. is an estimate of the difference in the carry-
effects of T and R (see [652], Chapter 2). For BE trials with an adequate washout period,
this difference should be zero. Testing for a difference in carry-over effects in the RT/TR
design is problematic, and we do not recommend it. We say more on carry-over effects in
Section 3.4.
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Example 3.1: Mean Differences versus Totals Plot
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3.3 Applying the TOST Procedure

The SAS code to fit Model (3.1) and calculate the 90% confidence interval is given in the
following boxes. An edited version of the output produced is given in the boxes immediately
following the SAS code. The results of applying the TOST procedure are given in Table 3.6.

The ABE limits are (-0.2231, 0.2231) on the log scale and (0.8, 1.25) on the original
scale. Clearly the confidence intervals for both AUC and Cmax are well with the ABE
limits and so T and R can be declared equivalent based on the ABE criterion.

A graphical representation of the results is given in Figure 3.5, where the density of the
normal distribution based on the fitted mean and standard error for each of logAUC and
logCmax are plotted along with the ABE limits. Both densities are well within the limits,
indicating that T and R are average bioequivalent. It is also apparent that the density for
logCmax is wider than that for logAUC, indicating that Cmax is a more variable metric
than AUC in this particular trial.

We note that the estimated correlation between the two responses on the same subject
can be estimated from the SAS output. For logAUC σ̂2

B = 0.052 and appears under the out-
put heading of Covariance Parameter Estimates in the row labelled SUBJECT(SEQUENCE).
For logAUC, σ̂2

W = 0.011 and appears in the row labelled Residual. The estimated corre-
lation coefficient for logAUC is then ρ̂logAUC = 0.052/(0.052 + 0.011) = 0.83. For logCmax
the corresponding value is ρ̂logCmax = 0.045/(0.045 + 0.038) = 0.54. There is a higher level
of total variability for logCmax as compared to logAUC, as was already concluded from
Figures 3.3 and 3.4.

ABE Example 3.1 — SAS proc mixed Code:

data ABEexample1;

input subject sequence$

formulation$ period AUC CMAX;

logauc=log(AUC);

logcmax=log(CMAX);

datalines;

1 RT R 1 2849 499

1 RT T 2 2230 436

. . . . . .

. . . . . .

. . . . . .

35 TR R 2 1629 372

35 TR T 1 1560 463

;

run;

proc mixed data=ABEexample1;

class sequence subject period

formulation;

model logauc=sequence period

formulation/ddfm=kenwardroger;

random subject(sequence);

lsmeans formulation/pdiff cl alpha=0.1;

estimate ’ABE for logAUC’ formulation -1 1;

run;
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ABE Example 3.1 — SAS proc mixed Code, continued:

proc mixed data=ABEexample1;

class sequence subject period formulation;

model logcmax=sequence period formulation/

ddfm=kenwardroger;

random subject(sequence);

lsmeans formulation/pdiff cl alpha=0.1;

estimate ’ABE for logCmax’ formulation -1 1;

run;

ABE Example 3.1 — Edited SAS Output:

Log AUC

Covariance Parameter Estimates

Cov Parm Estimate

SUBJECT(SEQUENCE) 0.0516

Residual 0.0110

Standard

Effect Estimate Error DF

T-R -0.0166 0.0263 30

Alpha Lower Upper

0.1 -0.0612 0.0280

ABE Example 3.1 — Edited SAS Output:

Log Cmax

Covariance Parameter Estimates

Estimate SUBJECT(SEQUENCE) 0.04528

Residual 0.03835

Standard

Effect Estimate Error DF

T-R -0.0269 0.0490 30

Alpha Lower Upper

0.1 -0.1102 0.0563

TABLE 3.6
Example 3.1: TOST Procedure Results

Endpoint µ̂T − µ̂R 90% Confidence Interval
AUC -0.0166 (-0.0612, 0.0280)
Cmax -0.0269 (-0.1102, 0.0563)

Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval
AUC 0.98 (0.94, 1.03)
Cmax 0.97 (0.90, 1.06)
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Example 3.1: Fitted Normal Densities for µ̂T − µ̂R

As a final summary we display the confidence intervals on the natural scale alongside a
plot of the ratios T:R for each of AUC and Cmax in Figure 3.6. We note that, for Cmax
especially, there are many subjects that have ratios outside the ABE limits of (0.8, 1.25).
This example highlights that fact that, to be equivalent on the ABE criterion, it is only
necessary to show that the means of T and R do not differ to a significant extent.

Before leaving this section, we demonstrate that the confidence interval testing approach
we have used is equivalent to the alternative version of the TOST procedure that requires
the testing of two one-sided hypotheses:

H01 : µT − µR≤−∆ (3.9)

versus the alternative
H11 : µT − µR>−∆

and
H02 : µT − µR≥ ∆ (3.10)

versus the alternative
H12 : µT − µR< ∆.

Here, it will be recalled, ∆ = ln(1.25) = 0.2231.
We first consider logAUC. The value of the t-statistic for testing (3.9) is t01 = (−0.0166+

∆)/0.0263 = 7.86 on 30 d.f. and the value for testing (3.10) is t02 = (−0.0166−∆)/0.0263 =
−9.12 on 30 d.f. Clearly both of these null hypotheses would be rejected at the 5% level
on a one-sided test. For logCmax, the story is similar, with a value of 4.00 for testing (3.9)
and a value of -5.10 for testing (3.10), both on 30 d.f.
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Example 3.1: 90% Confidence Intervals for exp(µ̂T − µ̂R)

3.4 Carry-Over, Sequence, and Interaction Effects

We now return to consider the other potential effects that might be present in our data,
namely, carry-over and formulation-by-period interaction. The nature of the carry-over
effects was described in the Introduction, so we do not repeat that here. The interaction
effect, however, is something we have not yet considered. Our current Model (3.1) assumes
that the difference between µT and µR is the same in Period 2 as it is in Period 1. This is
the situation when there is no formulation-by-period interaction. The presence of such an
interaction implies that the size of the formulation difference in Period 1 is not the same as
its size in Period 2. Figure 3.7 contains four examples of a groups-by-periods plot ([652],
Ch. 2) which displays the four group-by-period means ȳ11., ȳ12., ȳ21., and ȳ22.. They are
given in two versions and each for the cases of no-interaction and interaction. Let us look
first at the Version 1 plots. If we assume for the moment that there is no random variation,
i.e., the plotted points refer to the true mean values, then the upper left-hand plot is a case
where there is no interaction and as a consequence the lines cross at a point midway between
Period 1 and Period 2. The lower left-hand plot is a case where there is interaction, and the
lines cross at a position that is not midway between the two period labels. Deciding quickly
if the crossing point is midway or not may not be easy and so Version 2 offers an alternative.
Here the points are in the same positions, but an alternative way of connecting them has
been used. If the lines are parallel, then there is no interaction. Readers can decide which
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FIGURE 3.7
Groups-by-Periods Plot

version, if any, they find useful. In all the upper plots a period effect is evident that gives
a lower response in Period 2. In the presence of random variation, we will not see parallel
lines even in the absence of any interaction: a statistical test of significance will be required
to determine if there is any evidence of an interaction.

If this is the case, then the fixed effects part of our model, as displayed in Table 3.2, needs
to be enlarged to that given in Table 3.7, where there are four new (interaction) parameters
(τπ)d[i,j],j , i = 1, 2, j = 1, 2 and where d[i, j] = R or T . (Note that we have omitted the
sequence parameters for reasons which will be explained shortly.) The inclusion of these
parameters implies that a response observed in Group i, Period j under formulation R or
T is not just the sum of the individual effects of formulation d[i, j] and period j. However,

TABLE 3.7
Fixed Effects Model Including Interactions for a 2× 2 Design

Group Period 1 Period 2
1(RT) µR + π1 + (τπ)R1 µT + π2 + (τπ)T2

2(TR) µT + π1 + (τπ)T1 µR + π2 + (τπ)R2
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TABLE 3.8
Fixed Effects Model Including Interactions for a 2× 2 Design: After Applying Constraints

Group Period 1 Period 2
1(RT) µR − π + (τπ) µT + π + (τπ)
2(TR) µT − π − (τπ) µR + π − (τπ)

TABLE 3.9
Fixed Effects Model Including Carry-Over Effects for a 2× 2 Design

Group Period 1 Period 2
1(RT) µR + π1 µT + π2 + λR
2(TR) µT + π1 µR + π2 + λT

as already mentioned in Section 3.2, our linear model is over-parameterized and we need
to apply constraints to remove the redundancy. The constraints on the formulation and
period parameters have already been described. For the interaction parameters, we assume
(τπ)R1 = (τπ) = −(τπ)R2 = −(τπ)T1 = (τπ)T2. The model containing the interaction
parameters is displayed in Table 3.8. From this table it is also clear that the sequence
parameter for Sequence 1(−γ) and the interaction parameter (τπ) are interchangeable in
Group 1 and (γ) and −(τπ) are interchangeable in Group 2. Hence, the statistical test for
a group difference is identical to the test for a nonzero formulation-by-period interaction.
In this situation we say that the sequence and interaction effects are aliased. The same can
be said about the carry-over difference. To see this we need to apply a different constraint
to the four interaction parameters (recall the choice of constraint is arbitrary). Table
3.9 displays the model with carry-over effects. There is no carry-over effect in Period 1
and λR(λT ) denotes the carry-over effect of formulation R(T ). If we apply the constraint
λR = −λ = −λT , then the model is as displayed in Table 3.10. If we return to Table 3.7
and apply the constraints (τπ)R1 = (τπ)T1 = 0, (τπ)R2 = −λ, and (τπ)T2 = λ, we will
reproduce Table 3.10. In other words, the carry-over effects and the interaction effects are
aliased.

We may now be tempted to test for a nonzero formulation-by-period interaction (or
carry-over difference or group difference). However, such a test is pointless and has undesir-
able side effects. The reasons why this is the case were first given by [427] and subsequently
described and discussed thoroughly by Senn (see [1103], [1104], [1114], [1115]), for example)
and [652]. We therefore do not consider or recommend such testing for trials that use the
RT/TR design.

TABLE 3.10
Fixed Effects Model Including Carry-Over Effects for a 2× 2 Design: After Applying Con-
straints

Group Period 1 Period 2
1(RT) µ− τ − π µ+ τ + π − λ
2(TR) µ+ τ − π µ− τ + π + λ
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Example 3.1: Groups-by-Periods Plot

For completeness we show, in Figure 3.8, the groups-by-periods plots for Example 3.1,
where the style of Version 1 has been used. Although there is a suggestion of an interaction,
it is unlikely that such a small effect, if in fact it is present, could be detected against a
background of large between-subject variability. In addition, we have already cautioned
against testing for such an interaction. In terms of ABE, although the logCmax means
in Period 2 show more of a difference between R and T than the other comparisons, this
difference is itself not large.

3.5 Checking Assumptions Made about the Linear Model

No statistical analysis of data is complete without some checks on the assumptions that were
made when the model was specified. Our model, it will be recalled, is as defined in (3.1).
The main assumptions were that, after allowing for the systematic (i.e., fixed) effects, the
between-subject variability and the within-subject variability can be modelled by normal
distributions. A simple graphical test of whether a set of values is a sample from a normal
distribution is the normal probability (or Q-Q) plot. The values of most interest to us are
the within-subject residuals, i.e., the estimates of the εijk. We will denote the residual
for the kth subject in sequence i and period j as rijk. It is defined as rijk = yijk − ŷijk,
where ŷijk is the value our model predicts (using our given data) for the response of the kth
subject in sequence i and period j. Because our model measures everything relative to the
grand mean (µ), the two residuals on the same subject add to zero, i.e., (ri1k + ri2k = 0).
Hence, when testing the residuals for normality, we need only use the residuals from one of
the periods.
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FIGURE 3.9
Example 3.1: Normal Probability Plots

Figure 3.9 displays the Q-Q plots for the studentized residuals corresponding to logAUC
and logCmax. Identified on the plots are the two most extreme residuals in each plot. The
studentized residuals are the raw residuals (rijk) divided by their estimated standard error.
The standardization is necessary because Var(rijk) is not a constant. If the plotted data are
truly normally distributed, the plotted points should lie on or close to a straight line. We
can see that this is mostly true in Figure 3.9, except for the logAUC values of two subjects
(12 and 25). A more formal test of normality is one due to Shapiro and Wilk [1135]. For
logAUC the p-value for this test is 0.497 and for logCmax it is 0.314. There is no evidence
to suggest the studentized residuals are not normally distributed. The responses with the
largest studentized residuals (in absolute value) may be outliers. These are values that are
typically greater than 3. There is no evidence that our extreme residuals are outliers.

3.6 Power and Sample Size for ABE in the 2× 2 Design

In order for an ABE trial to meet its objectives, it should have a good chance of deciding
that T and R are average bioequivalent when that is, in fact, the true state of nature.
Expressed in statistical terminology, the trial must have sufficient power to reject the two
null hypotheses of non-equivalence when T and R are average bioequivalent. Power is the
probability of rejecting the two null hypotheses when they are false and is usually chosen
to be 0.90. Mathematically, power equals 1 minus the probability of a Type 2 error.

No adjustment is made for multiplicity of endpoints AUC and Cmax [531], and the larger
variance of logAUC or logCmax is typically used in the power sample size calculations. It is
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generally the case that logCmax is more variable than logAUC, as illustrated in the previous
example. Practical issues in determining the sample size of ABE trials are considered in
more detail in Chapter 5.

As already explained, when using the TOST procedure to determine ABE, we test each
of the following two null hypotheses at a significance level of α, where ∆ = ln 1.25. If both
are rejected, we conclude that, for the metric being used (logAUC or logCmax), T and R
are ABE.

H01 :µT − µR ≤ −∆

H02 :µT − µR ≥ ∆.

In practice, as we have seen, it is convenient to do this using a 100(1 − 2α)% two-sided
confidence interval.

However, in order to calculate the power of the TOST procedure, we will stay within the
hypothesis testing framework. The power will be calculated for a 2× 2 cross-over trial with
n/2 subjects in each sequence group. In this case, if δ = µT −µR and Var(δ̂) = 2σ2

W /n, the

t-statistics for testing each of H01 and H02 are, respectively, tL = (δ̂ + ∆)/
√

2σ̂2
W /n and

tU = (δ̂ −∆)/
√

2σ̂2
W /n, and each has (n− 2) degrees of freedom.

Both hypotheses are rejected if tL > t1−α,n−2 and −tU > t1−α,n−2, where t1−α,n−2 is
the upper (1− α) percentile of the central t-distribution on n− 2 degrees of freedom.

For given values of n, α, σW , and δp, where δp is a value of δ for which the power is
to be calculated, the power function of the TOST procedure can be written (see [856], for
example) as

Π(n, δp, σW , α) =

∫ L

0

g(x, δp)χn−2(x)dx,

where

g(x, δ) = Φ [−Xt+ b(∆ + δ)] + Φ [−Xt+ b(∆− δ)]− 1,

Φ [.] is the cumulative distribution function of the standard normal distribution, n is the
total sample size, t = t1−α,n−2/

√
n− 2, i = 1, 2, σW is the assumed within-subject standard

deviation, b =
√

(n/2)/σW , X =
√

(n− 2)σ̂W /σW has a χ distribution with (n−2) degrees
of freedom, χn−2(x) denotes the density of the χ distribution with n−2 degrees of freedom,
and L =

√
n∆/[σW (

√
2t)].

We note that this is not the first time that such a formula has been presented or discussed.
See, for example, [1314], [986], [1145] and [1146].

The power can be conveniently calculated using the R package PowerTOST [728]. The
functions power.TOST and sampleN.TOST in this package can be used to calculate the
power and sample size, respectively. Both functions take as input the within-subject co-
efficient of variation, CV , rather than the within-subject standard deviation, σW , where
σW =

√
( log(1 + CV 2)), i.e., CV =

√
( exp(σ2

W ) − 1). For example, if δp = log(0.95),
α = 0.05, and CV = 0.23 (σW = 0.2270), the power for n = 32 can be calculated by using
the following code, which returns a power value of 0.9044.
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power.TOST(alpha=0.05,logscale=TRUE,theta1=0.8,

theta2=1.25,theta0=0.95,CV=0.23,

n=32,design="2x2",method="exact",

robust=FALSE)

If a sample size is needed to achieve a desired power (e.g., 0.9), then this can be obtained
from the following code, which returns a value of 32.

sampleN.TOST(alpha=0.05,targetpower=0.9,

logscale=TRUE,theta0=0.95,theta1=0.8,

theta2=1.25,CV=0.23,design="2x2",

method="exact",robust=FALSE,print=TRUE,

details=FALSE,imax=100)

These functions have been used to calculate the values displayed in Tables 3.11 and 3.12.
Table 3.11 gives the sample size to achieve a power of 0.8 or 0.9 for values of the

true ratio of 0.90, 0.95, and 1, and for values of CV% ranging from 5% to 100%, where
CV% = 100CV .

Table 3.12 gives the corresponding actual powers for the sample sizes in Table 3.11. We
note that, for low values of the CV, the actual powers exceed the nominal ones.

TABLE 3.11
Sample Sizes to Achieve Powers of 0.8 or 0.9 for Ratios of 0.9, 0.95, and 1.00

Power=0.80 Power=0.90
Ratios Ratios

CV% 0.90 0.95 1.00 0.90 0.95 1.00

5 6 4 4 6 4 4
10 12 8 6 14 8 8
15 22 12 10 30 16 12
20 38 20 16 50 26 20
25 56 28 24 78 38 28
30 80 40 32 108 52 40
35 106 52 42 146 70 52
40 134 66 54 186 88 66
45 166 82 66 230 110 82
50 202 98 80 278 132 100
55 238 116 94 328 156 118
60 276 134 108 382 182 136
65 316 154 124 438 208 156
70 358 174 140 494 234 176
75 400 194 156 554 262 196
80 444 214 172 614 290 218
85 488 236 190 674 320 238
90 532 258 206 734 348 260
95 576 278 224 796 378 282

100 620 300 240 858 406 304
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TABLE 3.12
Power Values Corresponding to the Sample Sizes in Table 3.11

Power=0.80 Power=0.90
Ratios Ratios

CV% 0.90 0.95 1.00 0.90 0.95 1.00
5 0.95 0.90 0.96 0.95 0.90 0.96

10 0.85 0.92 0.87 0.90 0.92 0.98
15 0.81 0.83 0.84 0.91 0.93 0.92
20 0.82 0.83 0.83 0.90 0.92 0.92
25 0.80 0.81 0.84 0.91 0.91 0.90
30 0.81 0.82 0.82 0.90 0.90 0.91
35 0.81 0.81 0.81 0.90 0.90 0.90
40 0.80 0.81 0.81 0.90 0.90 0.90
45 0.80 0.81 0.81 0.90 0.90 0.90
50 0.80 0.80 0.81 0.90 0.90 0.91
55 0.80 0.80 0.81 0.90 0.90 0.91
60 0.80 0.80 0.80 0.90 0.90 0.90
65 0.80 0.80 0.81 0.90 0.90 0.90
70 0.80 0.80 0.81 0.90 0.90 0.90
75 0.80 0.80 0.80 0.90 0.90 0.90
80 0.80 0.80 0.80 0.90 0.90 0.90
85 0.80 0.80 0.80 0.90 0.90 0.90
90 0.80 0.80 0.80 0.90 0.90 0.90
95 0.80 0.80 0.80 0.90 0.90 0.90

100 0.80 0.80 0.80 0.90 0.90 0.90

3.7 Example in Which Test and Reference Are Not ABE

You may recall in the Introduction to Chapter 2 that Lenny and Denny, the Clinical Phar-
macology physician and scientist, were concerned about a particular set of data from a BE
trial. These data are given in Table 3.13.

We can see that data has been collected on 49 subjects. Some subjects have missing
data points (see Subjects 28 and 46, for example). Before modelling the data, we should
understand why these subjects did not produce PK data. In the case of Subject 28, the PK
concentrations were too low to produce a quality AUC value, and Subject 46 similarly did
not get much drug on board after taking each dose. Subject 35 decided not to participate
in the trial and thus had no data.

The subject profiles plots for these data are given in Figure 3.10, where we have included
only those subjects that had two data points for either logAUC or logCmax. We can see
clearly that for one subject (4 in sequence TR) there is a dramatic change from T to R for
both logAUC and logCmax. This subject had particularly low AUC and Cmax values in
Period 1, which, though unusual, were quite genuine. We will therefore leave the data for
this subject in the set to be analyzed.
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The paired-agreement plots are given in Figure 3.11 and do not suggest that there is a
significant difference between T and R, although there may be a period difference.

Before we can continue to fit a linear model to the (log-transformed) data, we must
decide what to do with the data from those subjects who did not provide a value in both
periods. The most precise comparison of T and R is based on the difference of two values
on the same subject. Such a comparison is not possible for those subjects with only a single
value. If, however, there are two such subjects and one has a value only on T and the
other has a value only on R, then a between-subject comparison of T and R is possible by
taking the difference of these two single values. However, the precision of such a comparison
will be low because the between-subject variation, as we can see from Figure 3.10, is much
higher than the within-subject variability. Because we have assumed the subject effects ξik
are random variables, these between-subject comparisons can be recovered in the analysis
if we fit what is known as a mixed model. A full explanation of mixed models is beyond
the scope of the present chapter and so we will proceed to analyze the subset of data from
those subjects who provided values on both T and R. We will consider mixed models in
more detail in Chapter 5. However, the recovery of between-subject information on the
comparison of T and R is unlikely to make much difference to the results, and so nothing of
significance will be lost by ignoring the data on those subjects who provided only a single
value. To justify this assertion, we will also report the results of fitting the mixed model to
the complete dataset, but, as already mentioned, a full explanation of how this was done
will have to wait until Chapter 5.

TABLE 3.13: Example 3.2

Sequence RT
AUC Cmax

Period Period
Subject 1 2 1 2

1 58.160 79.340 2.589 2.827
3 69.680 85.590 2.480 4.407
5 121.840 . 5.319 .
8 208.330 377.150 9.634 11.808
10 17.220 14.230 1.855 1.121
11 1407.900 750.790 13.615 6.877
13 20.810 21.270 1.210 1.055
15 . 8.670 0.995 1.084
18 203.220 269.400 7.496 9.618
20 386.930 412.420 16.106 12.536
21 47.960 33.890 2.679 2.129
24 22.700 32.590 1.727 1.853
26 44.020 72.360 3.156 4.546
27 285.780 423.050 8.422 11.167
31 40.600 20.330 1.900 1.247
32 19.430 17.750 1.185 0.910
36 1048.600 1160.530 18.976 17.374
37 107.660 82.700 5.031 6.024
39 469.730 928.050 6.962 14.829

R=Reference, T=Test
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TABLE 3.13: Example 3.2 (continued)

Sequence RT

AUC Cmax
Period Period

Subject 1 2 1 2

43 14.950 20.090 0.987 2.278
44 28.570 28.470 1.105 1.773
45 379.900 411.720 12.615 13.810
47 126.090 46.880 6.977 2.339
50 75.430 106.430 4.925 4.771

Sequence TR

Subject 1 2 1 2

2 150.120 142.290 5.145 3.216
4 36.950 5.000 2.442 0.498
6 24.530 26.050 1.442 2.728
7 22.110 34.640 2.007 3.309
9 703.830 476.560 15.133 11.155
12 217.060 176.020 9.433 8.446
14 40.750 152.400 1.787 6.231
16 52.760 51.570 3.570 2.445
17 101.520 23.490 4.476 1.255
19 37.140 30.540 2.169 2.613
22 143.450 42.690 5.182 3.031
23 29.800 29.550 1.714 1.804
25 63.030 92.940 3.201 5.645
28 . . 0.531 0.891
29 56.700 21.030 2.203 1.514
30 61.180 66.410 3.617 2.130
33 1376.020 1200.280 27.312 22.068
34 115.330 135.550 4.688 7.358
38 17.340 40.350 1.072 2.150
40 62.230 64.920 3.025 3.041
41 48.990 61.740 2.706 2.808
42 53.180 17.510 3.240 1.702
46 . . 1.680 .
48 98.030 236.170 3.434 7.378
49 1070.980 1016.520 21.517 20.116

R=Reference, T=Test
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The groups-by-periods means for Example 3.2 are given in Table 3.14 and plotted in
Figure 3.12. The pattern is similar for both logAUC and logCmax, although there is a
larger difference between T and R in the second period for logAUC.

The mean differences versus totals plot is given in Figure 3.13. For logAUC there is a
noticeable vertical separation of the centroids, suggesting a possible lack of ABE.

The results of applying the TOST procedure are given in Table 3.15. We can see that
the upper limit of the 90% confidence interval for logAUC (and of course AUC) is above
the upper boundary for ABE. Therefore, even though ABE is not contradicted when the
logCmax data are used, T and R are judged to have failed the FDA criteria for ABE.

The fitted normal densities corresponding to the TOST results are given in Figure 3.14.
We can see a large part of the density for logAUC extends to the right of the ABE limit
and is consistent with the lack of ABE found by the TOST procedure.

As with our previous example, we look at the normal probability plots to check on our
assumptions. These are given in Figure 3.15.

There is very strong evidence that the studentized residuals from the model for logAUC
are not normally distributed. The p-value from the Shapiro–Wilk test is 0.012 for logAUC
and 0.407 for logCmax. This confirms the visual indication that studentized residuals for
logAUC are not normally distributed. The largest studentized residual for logAUC is 3.341,
from subject 4. This is unusually large in a sample of size 45 from the standard normal
distribution and the data value corresponding to this residual is an “outlier” — i.e., a value
that is unusual relative to the fitted model. As already noted, this is a subject with a very
large drop in value for both logAUC and logCmax over the two periods. Subject 14 has a
large increase in both logAUC and logCmax between the periods.

An alternative analysis that does not depend on the assumption that the data are
normally distributed is available and we will illustrate this (nonparametric analysis) in the
next section. It should be noted, however, that regulatory approval may not be obtained if
nonparametric methods are used unless this set of analyses are pre-specified in the protocol
and if the Type 1 error rate is adjusted for multiple analyses. Those interested in more
information on this topic should consult [732].

TABLE 3.14
Example 3.2: Groups-by-Periods Means (sample size in parentheses)

logAUC
Group Period 1 Period 2 Mean
1(RT) ȳ11. = 4.55(22) ȳ12. = 4.60(22) ȳ1.. = 4.57
2(TR) ȳ21. = 4.43(22) ȳ22. = 4.28(22) ȳ2.. = 4.35

Mean ȳ.1. = 4.49 ȳ.2. = 4.43 ȳ... = 4.46
logCmax

1(RT) ȳ11. = 1.33(23) ȳ12. = 1.36(23) ȳ1.. = 1.34
2(TR) ȳ21. = 1.27(23) ȳ22. = 1.19(23) ȳ2.. = 1.23

Mean ȳ.1. = 1.30 ȳ.2. = 1.27 ȳ... = 1.29
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TABLE 3.15
Example 3.2: TOST Procedure Results

Endpoint µ̂T − µ̂R 90% Confidence Interval
logAUC (45 subjects) 0.0970 (-0.0610, 0.2550)
logCmax (47 subjects) 0.0508 (-0.0871, 0.1887)

Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval
AUC (45 subjects) 1.10 (0.94, 1.29)
Cmax (47 subjects) 1.05 (0.92, 1.21)

Last, we report the results that are obtained by fitting a mixed model to the com-
plete dataset. These are displayed in Table 3.16 and lead to the same conclusions as
were obtained from the data using only those subjects with values in both Period 1 and
Period 2.
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Example 3.2: Fitted Normal Densities for µ̂T − µ̂R
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Example 3.2: Normal Probability Plots

TABLE 3.16
Example 3.2: TOST Procedure Results (all subjects)

Endpoint µ̂T − µ̂R 90% Confidence Interval
logAUC 0.0940 (-0.0678, 0.2482)
logCmax 0.0468 (-0.0907, 0.1843)
Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval

AUC 1.09 (0.93, 1.28)
Cmax 1.05 (0.91, 1.20)

3.8 Nonparametric Analysis

On occasion, in bioequivalence or relative bioavailability studies, there may be a need to
analyze unusual endpoints beyond those usually assessed such as logAUC and logCmax.
Examples of such endpoints are

1. The ratio Cmax/AUC [325] — an alternative measure of the rate of exposure

2. Partial AUC [330] — an alternative measure of absorption

3. λ (see Equation 1.1, Chapter 1) — a measure of excretion.
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Endpoints like these are difficult to assess using models like those introduced up to now,
as they are unlikely to be normally distributed. For example, the ratio Cmax/AUC is the
ratio of two log-normally distributed variables. Even though it may be possible to derive
approximate or exact formulae for the distributions of such endpoints, it is unclear how
this would directly benefit the sponsors of such studies or patients. These endpoints are
currently viewed as supportive only, and exact quantification of their Type 1 or 2 error rates
is not of immediate concern in a regulatory filing.

However, there are statistical procedures available to analyze such (non-normal) data.
These procedures are termed “nonparametric” in that they do not assume a particular para-
metric form (e.g., normal or log-normal) for the endpoint of interest. The nonparametric
analysis for the 2× 2 cross-over was first described by [705] and later illustrated by [222] in
the context of evaluating bioavailability data. An excellent review of nonparametric meth-
ods for the analysis of cross-over trials is given by [1263]. See also [1189] and [538]. For a
more extensive coverage of the methods covered in this section see [1198].

Such nonparametric analyses should only be utilized when (i) an endpoint is grossly
non-normal or (ii) an endpoint cannot be transformed to an endpoint that is normally
distributed or (iii) sample size does not permit the application of the central limit theorem.
Such an endpoint is Tmax, which is often used to support parametric analysis findings from
the analysis of logAUC and logCmax.

Obviously, the interpretation of nonparametric analysis from a regulatory perspective
is overshadowed by global regulatory recommendations (see Chapter 2) on provision of
adequate sample size to support parametric interpretation. Such nonparametric techniques
are generally of interest to sponsors only when small sample sizes are employed and, even
then, only when analyzing Tmax or unusual endpoints. If there is evidence that the log-
transformed data from an ABE trial are such that it would be unreasonable to assume
that they are normally distributed, then the usual two one-sided t-tests (as used in the
TOST procedure), can be replaced by Wilcoxon rank-sum tests, or equivalently by Mann–
Whitney U-tests. As with normal data, these nonparametric tests are based on within-
subject differences.

To illustrate the nonparametric tests, we will use the Tmax values recorded on the
subjects in Example 3.1. These are given in Table 3.17.

In order to make a comparison between the parametric and nonparametric procedures,
we will first analyze the logTmax values as if they were normally distributed (i.e., on
the assumption the Tmax values are log-normally distributed). Although there are no
regulatory guidelines on what must be done to determine if T and R are ABE, we will
apply the same regulatory hurdles that apply to logAUC and logCmax. In other words,
we will apply the usual TOST procedure to logTmax. The results of doing this, along
with the back-transformed values, are given in Table 3.18. Applying the familiar regulatory
guidelines, T and R cannot be deemed to be ABE, as the upper 90% confidence limit for
µT − µR, on the logTmax scale, exceeds 0.2231 (and, of course, the upper 90% confidence
limit on the Tmax scale exceeds 1.25).

However, we need to check that the assumption that the residuals from our usual lin-
ear model (3.1) for logTmax are normally distributed is reasonable. Figure 3.16 displays
the histogram of the studentized residuals and a normal probability plot. The studentized
residuals look like they can be assumed to be normally distributed. The p-value for the
Shapiro–Wilk test for normality is 0.7044, which also gives some assurance that the stu-
dentized residuals have a normal distribution. However, a closer inspection of the normal
probability plot in Figure 3.16 reveals horizontal bands of residuals, a feature most unlikely
to occur if the residuals were normally distributed. Also, of course, the nature of the Tmax
variable itself indicates that logTmax will not be normally distributed. The concentra-
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tions are only taken at a set of predetermined times, and so Tmax is an inherently discrete
random variable.

A further warning sign is that, when Model (3.1) was fitted using PROC MIXED,
the estimate of σ̂2

B (not shown) was zero, indicating some instability in the REML fitting
procedure for these data. The values in Table 3.18 were therefore calculated using the
results of fitting Model (3.1) under the assumption that the subject parameters were fixed
rather than random effects. Of course, for a complete dataset like that in Table 3.17, with
two values of Tmax for every subject, we should get the same TOST results regardless of
whether the subject parameters are fixed or random. The fact that we do not is another
indication that a more robust analysis procedure should be used for these data.

When data are log-normal or normal in distribution, it is known that, in most cases, the
probability of a Type 2 error is increased when using a nonparametric procedure relative
to the parametric procedures discussed in earlier sections [533].

TABLE 3.17: Example 3.1: Tmax

Subject Sequence Period Formulation Tmax LogTmax
1 RT 1 R 0.50 -0.693
1 RT 2 T 0.50 -0.693
4 RT 1 R 0.50 -0.693
4 RT 2 T 1.00 0.000
5 RT 1 R 1.50 0.405
5 RT 2 T 0.25 -1.386
8 RT 1 R 1.00 0.000
8 RT 2 T 0.50 -0.693
9 RT 1 R 0.25 -1.386
9 RT 2 T 1.50 0.405
11 RT 1 R 0.50 -0.693
11 RT 2 T 1.00 0.000
16 RT 1 R 1.50 0.405
16 RT 2 T 2.00 0.693
17 RT 1 R 1.50 0.405
17 RT 2 T 1.00 0.000
19 RT 1 R 1.50 0.405
19 RT 2 T 0.50 -0.693
21 RT 1 R 0.50 -0.693
21 RT 2 T 0.50 -0.693
24 RT 1 R 1.00 0.000
24 RT 2 T 0.50 -0.693
25 RT 1 R 1.00 0.000
25 RT 2 T 0.25 -1.386
28 RT 1 R 1.00 0.000
28 RT 2 T 1.50 0.405
29 RT 1 R 1.00 0.000
29 RT 2 T 1.50 0.405
31 RT 1 R 0.50 -0.693

R=Reference, T=Test
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TABLE 3.17: Example 3.1: Tmax (continued)

Subject Sequence Period Formulation Tmax LogTmax

31 RT 2 T 1.50 0.405
34 RT 1 R 0.50 -0.693
34 RT 2 T 1.50 0.405
36 RT 1 R 0.50 -0.693
36 RT 2 T 1.00 0.000

2 TR 1 T 1.00 0.000
2 TR 2 R 1.00 0.000
3 TR 1 T 0.50 -0.693
3 TR 2 R 0.50 -0.693
6 TR 1 T 1.00 0.000
6 TR 2 R 0.50 -0.693
7 TR 1 T 1.00 0.000
7 TR 2 R 0.25 -1.386
10 TR 1 T 1.50 0.405
10 TR 2 R 1.00 0.000
12 TR 1 T 1.00 0.000
12 TR 2 R 1.00 0.000
15 TR 1 T 0.50 -0.693
15 TR 2 R 1.50 0.405
18 TR 1 T 1.00 0.000
18 TR 2 R 0.50 -0.693
20 TR 1 T 1.00 0.000
20 TR 2 R 0.50 -0.693
22 TR 1 T 2.00 0.693
22 TR 2 R 4.02 1.391
23 TR 1 T 0.50 -0.693
23 TR 2 R 0.50 -0.693
26 TR 1 T 0.50 -0.693
26 TR 2 R 0.25 -1.386
27 TR 1 T 0.50 -0.693
27 TR 2 R 1.00 0.000
30 TR 1 T 0.50 -0.693
30 TR 2 R 1.00 0.000
35 TR 1 T 0.50 -0.693
35 TR 2 R 1.00 0.000

R=Reference, T=Test

To derive the equivalent of the TOST procedure based on a nonparametric approach, we
use the Hodges–Lehmann point estimate and confidence interval for µT − µR [565]. These
can be calculated using tables (see [547]), by asymptotic approximation or from software
for exact testing such as StatXact [234]. Here we will illustrate the approach that uses the
asymptotic approximation.
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FIGURE 3.16
Example 3.1: Studentized Residuals for Tmax

It will be recalled that the estimate of δ = µT−µR was obtained previously by comparing
the mean period difference from sequence Group 2 with the mean period difference from
sequence Group 1:

δ̂ = µ̂T − µ̂R =
1

2
([ȳ21. − ȳ22.]− [ȳ11. − ȳ12.]).

The robust estimate of δ is based on similar reasoning, but uses the median rather than the
mean.

In order to construct a robust equivalent of the 90% confidence interval used in the
TOST procedure, we first calculate for each subject the difference between the logTmax
values in Periods 1 and 2 (i.e., yi1k − yi2k, for i = 1, 2 and k = 1, 2, . . . , ni).

Let us label the period differences, y11k−y12k, in sequence Group 1 as Xi, i = 1, 2, . . . , n1

and the differences, y21k − y22k, in sequence Group 2 as Yj , j = 1, 2, . . . , n2. In Example
3.1, n1 = 17 and n2 = 15.

TABLE 3.18
Example 3.1: TOST Procedure Results for Tmax

Endpoint µ̂T − µ̂R 90% Confidence Interval
logTmax 0.0553 (-0.2021, 0.3126)

Tmax 1.0569 ( 0.8170, 1.3670)
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To calculate the point estimate, we first form the n1 × n2 differences Yj − Xi, for

i = 1, 2, . . . , n1 and j = 1, 2, . . . , n2. The point estimate δ̂ is then half the value of the
median of these differences. To obtain the median, the differences are ordered from smallest
to largest. To save space, we do not give the list of these ordered differences here. If n1×n2

is odd and equals 2p+1, say, the median is the (p+1)th ordered difference. If n1×n2 is even
and equals 2p, say, the median is the average of the pth and (p+ 1)th ordered differences.
For Example 3.1, n1n2 = 255 and therefore the median is the 128th ordered difference,
which is 0, i.e., δ̂ = 0/2.

To obtain a symmetric two-sided confidence interval for δ, with confidence coefficient
1− α, we must first obtain an integer, which we will denote by Cα. To get this we use the
critical values of the distribution of the Wilcoxon rank-sum test statistic [573], which can
be obtained by approximation when n1 and n2 are large (i.e., larger than 12) or from Table
A.6 of [573] when n1 and n2 are small. The Wilcoxon rank-sum test can be considered a
nonparametric form of the usual t-test for comparing two independent samples. The rank-
sum test uses the ranks of the data rather than the data themselves. We will say more about
this test after describing and illustrating the nonparametric form of the TOST procedure.

To obtain Cα when n1 and n2 are small (i.e., ≤ 12), we first obtain the value w(α/2, n1, n2)
from Table A.6. This value is such that, on the null hypothesis of no difference in central
location between the two samples under consideration, P[W ≥ w(α/2, n1, n2)] = α/2,
where W is the rank-sum statistic. The value of Cα is then obtained by noting that
[n2(2n1 + n2 + 1)/2] − Cα + 1 = w(α/2, n1, n2). On the null hypothesis, Cα is the largest
integer such that

P

[(
n2(n2 + 1)

2
+ Cα

)
≤W ≤

(
n2(2n1 + n2 + 1)

2
− Cα

)]
≥ 1− α,

where n1 > n2.
For large n1 and n2, the integer Cα may, according to Hollander and Wolfe, be approx-

imated by

Cα =
n1n2

2
− zα/2

[
n1n2(n1 + n2 + 1)

12

] 1
2

,

where zα/2 is the upper (1− α/2) point of the standard normal distribution.

The (1−α) confidence interval is the 1
2 (δL, δU ), where δL is the Cαth ordered difference

and δU is the (n1n2 + 1− Cα)th ordered difference.
Taking z0.05 = 1.645, we get Cα = 84. That is, the 90% confidence interval is obtained

by taking δL as the 84th ordered difference and δU as the 172nd ordered difference. The
resulting 90% confidence interval for δ is (−0.2027, 0.3466). The back-transformed interval
is (0.82, 1.41). These are quite similar to those obtained previously, (-0.2021, 0.3126) and
(0.82, 1.37), respectively, indicating some robustness of the parametric approach when the
sample sizes are relatively large.

The Wilcoxon rank-sum test assumes that the endpoint (logTmax in our case) is ex-
pressed on an interval (or metric) scale, so that the same shift on the scale has the same
interpretation regardless of its location. Further assumptions made in using this test in-
clude randomization of subjects to the groups with random sampling from the same family
of distributions with differences between groups only being for location.

To calculate the test statistic, the period differences are ranked, where the ranking is
done in terms of the total number of subjects, not separately for each group. Let Ri = [the
sum of the ranks of group i], i = 1, 2. Under the null hypothesis that µT = µR,

E[R1] = n1(n1 + n2 + 1)/2

E[R2] = n2(n1 + n2 + 1)/2
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and
Var[R1] = Var[R2] = n1n2(n1 + n2 + 1− T )/12,

where T is a correction for ties.
If there are no ties, then T = 0. If there are v tied sets, with ts ties in the sth set, where

s = 1, 2, . . . , v, then

T =

∑v
s=1 ts(t

2
s − 1)

[(n1 + n2)(n1 + n2 − 1)]
.

An asymptotic test of the null hypothesis can be based on either R1 or R2. For R1 we
calculate

z =
R1 − E[R1]

(Var[R1])
1
2

and compare it with the standard normal distribution. Statistical software, such as proc

npar1way in SAS, will do the necessary calculations for this test and produce exact P-values
for small n1 and n2.

In order to apply the nonparametric equivalent of the TOST procedure, we use the mean
difference, (Period 1 − Period 2)/2, for each subject. In the analysis we (i) add log(1.25)
to the mean differences in Group 2 and apply the Wilcoxon rank-sum test and (ii) subtract
log(1.25) from the mean differences in Group 2 and apply the test. The P-values from the
exact and asymptotic tests are very similar (0.021 when adding and 0.120 when subtracting,
for the exact test) and are not very different from the t-test (0.038 and 0.138). Indeed the
conclusions are the same; based on logTmax, T and R are not ABE.
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BE Studies with More Than Two Periods

Introduction
Denny walked into my office one day after the reports for Example 3.2 came out looking

like he had been run over by a bus and dragged over hot coals. He had been (figuratively)
when he reviewed the findings with senior management. They obviously did not like the
implications for getting together a marketable formulation in time for filing with the FDA.

Nobody ever comes to see you when you release findings they like. That annoyed me
when I first started on the job, but after a while I realized it gave one more time to enjoy
the moment.

Do take time out to enjoy the good moments on the job. Given the success rate of drugs in
clinical development (see Chapter 1), statisticians should expect to be the bearer of bad news
on the majority of occasions in their working life. This is ok if you are in an organization
that recognizes that failure is far more common in drug development than success, but if you
are not, grow a thick skin about such matters, or think about changing jobs. Be careful not
to get cynical, though. It is an easy trap to fall into and causes one to not enjoy anything
(because you always think about the bad thing that is probably right around the corner and
guard against keeping your hopes up). Probabilistically speaking, there will be good moments
on the job, and one should maintain one’s equanimity so that one can enjoy them.

The question Denny posed to me was simple on the surface — can we explore these data
to see if there was any possibility of a follow-up bioequivalence trial being successful?

Note the careful use of the word “we.” When a clinician uses “we” with a statistician,
it is the royal “we” which can be usually translated as meaning “you.”

I told him that yes, I could, but given the findings of Example 3.2, my intuition told
me that it was going to be pretty unlikely and that he had better prepare his folks for that
message. I would run some programs and get back to him with a quantitative assessment
next week. He wanted it sooner, but I told him no.

I got through to Denny on three of four points here (which is pretty good all things
considered). He recognized that I would do the work by next week and that the success of a
follow-up study was going to be low, but the idea that he should warn his folks went in one
ear and out the other. Maybe clinicians like surprises — I gave up on trying to figure that
one out long ago.

Statisticians should also recognize one other truth in drug development which people
tend not to mention when they are hiring you. One would think that statisticians would
recognize this fact (i.e., we are trained to count), but it seems like it gets by a lot of us. The
fact is statisticians are outnumbered in drug development! There are a lot more scientists,
clinicians, etc., who need our expertise than there are time or personnel to deliver it.

Hence, an option one sometimes considers as a biostatistician is to go with one’s intu-
ition and not spend the time quantifying precisely questions like that posed by Denny. We
encourage people not to make the choice to opt out of applying statistical expertise in such
situations. It is important to the patients who will be using such medications that we get it
right. If worse comes to worse, we recommend taking the time to train the scientists and
clinicians to do such work themselves.

63
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4.1 Background

Although the RT/TR design is often the design of choice when testing for ABE, there are
situations in which a design with more than two periods is needed. These include

• The drugs to be compared are highly variable;

• Carry-over effects cannot be entirely ruled out due to long half-life, poor metabolism, or
other factors inhibiting elimination.

By definition, a drug that is highly variable has a large within-subject variance σ2
W (for

logAUC or logCmax). Typically this is taken to mean that σ2
W ≥ 0.09 for R. Consequently,

the estimate of µT − µR will also have a large variance unless many subjects are enrolled.
As large ABE trials are unattractive for ethical, statistical, and financial reasons, a better
alternative is needed. If more than two periods can be used, then suitable alternative designs
are available. The regulatory guidance recommends using four-period, two-sequence designs
such as RTRT/TRTR when highly variable drugs are compared.

However, if the time available for the trial does not permit four periods to be used, then
a three-period design, with sequences such as RTT/TRR, can be used. We will review and
compare these designs in the next section. In Section 4.5 we will review and compare the
various four-period designs. In each of these sections we will illustrate the analysis of data
and give an example of at least one such trial.

ABE trials are not confined to comparing Test and Reference. Sometimes two alternative
versions of Test or Reference are included, leading to the need for designs for three or four
formulations. For example, in a confirmatory trial, a 300 mg Test tablet was given either (i)
as 3×100 mg tablets or (ii) as a 200 mg tablet plus a 100 mg tablet. This was because, in
the early stages of the confirmatory trial, only the 3×100 mg version was available. Later, a
200 mg tablet became available. The commercial formulation of the drug was to be a single
300 mg tablet, and this had to be shown to be ABE to the versions used in the confirmatory
trial. A trial with four formulations might arise when both a high and a low dose of Test
are to be compared to a high and low dose of Reference. Examples of both of these types
of design will be given in Section 4.6. The datasets for each example are given in Section
4.10.

4.2 Three-Period Designs

As already discussed, the need for extra periods usually arises when the drugs being com-
pared are highly variable. Adding an extra period to the RT/TR design is a simple way
of increasing the number of responses collected from each subject. In addition, as we shall
see, a suitably chosen three-period design can give some protection against the occurrence
of (unequal) carry-over effects of T and R.

Here we will only consider designs with two sequences and the only three choices worth
considering (see [652], Ch. 3) are the following, where the rows are the sequences and the
columns are the periods. We assume that there are n/2 subjects assigned to each sequence:

1. R T T 2. R T R 3. R R T

T R R T R T T T R
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TABLE 4.1
Expectations of ȳij. for Design 1

Group Period
1 2 3

1 RTT γ1 + π1 + τR γ1 + π2 + τT + λR γ1 + π3 + τT + λT
2 TRR γ2 + π1 + τT γ2 + π2 + τR + λT γ2 + π3 + τR + λR

The question now arises as to which one of these should be used. If there are no
(differential) carry-over effects, then the three designs are equivalent and any one may be
used; the regulatory guidelines express a preference for the RTR/TRT design. However,
if differential carry-over effects (i.e., λT 6= λR) cannot be ruled out, then the first design,
RTT/TRR, is preferred, as we will shortly demonstrate.

However, before doing this, let us consider the estimation of δ = µT − µR. As an
illustration, we will do this for the first design given above, RTT/TRR.

Let ȳij. denote the mean of the response (logAUC or logCmax) in period j of sequence
group i, where, as already stated, there are n/2 subjects in each group. Using an obvious
extension of the notation used in Chapter 3, the expectations of the six group-by-period
means are given in Table 4.1.

For our illustrative design, the estimator of δ is

δ̂ = (−2ȳ11. + ȳ12. + ȳ13. + 2ȳ21. − ȳ22. − ȳ23.)/4 (4.1)

and Var[δ̂] = 3σ2
W /(2n). It is easily confirmed that this is an unbiased estimator:

E[−2ȳ11. + ȳ12. + ȳ13.] = −2(γ1 + π1 + τR) + (γ1 + π2 + τT + λR)

+ (γ1 + π3 + τT + λT )

= −2π1 + π2 + π3 − 2τR + 2τT + λR + λT

and
E[−2ȳ21. + ȳ22. + ȳ23.] = −2π1 + π2 + π3 − 2τT + 2τR + λR + λT .

Taking the second expression away from the first leaves 4(τT − τR).
The unbiased estimator of λT − λR is

̂λT − λR = (−ȳ12. + ȳ13. + ȳ22. − ȳ23.)/2, (4.2)

which again can be easily confirmed. The variance of this estimator is 2σ2
W /n.

An interesting and important property of the these two estimators is that they have a
covariance of zero, which, for normally distributed data, implies they are independent. In
other words, if we were to drop the carry-over parameters from the above model, we would
get the same estimator of δ as given in (4.1).

We now return to answer the question of which design out of the three possibilities given
above is preferred. To compare the designs, it is useful to use the concept of efficiency, which
is more fully explained in Section 4.9, the Technical Appendix. Defining δ = µT − µR, as
before, efficiency is the ratio of Var(δ̂) in the design under consideration to the value this
variance would take in an “ideal” design. In the ideal design the effects of subjects, periods,
and carry-over effects can be removed from the estimate of δ. Therefore, in the ideal design,
the estimate of δ, using logAUC, for example, would simply be the difference ȳT − ȳR, where
ȳT (ȳR) is the mean of all the logAUC values of T (R). If T and R each occurred r times in
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the design, then Var(ȳT − ȳR) = 2σ2
W /r = 4σ2

W /(3n), as r = 3n/2. Such a design may not

exist, and its use is merely to provide a lower bound on Var(δ̂) that may be used as a point
of reference when comparing designs. Efficiency is usually expressed as a percentage, so a
fully efficient design has a value of 100%. In the presence of differential carry-over effects,
the efficiency of the first design is (4σ2

W /3n)/(3σ2
W /2n)× 100 = 88.9%. The efficiencies of

the other designs can be calculated similarly (see Section 4.9) and are 22.2% and 66.7%,

respectively. In addition, as already noted, the correlation between δ̂ and ̂λT − λR in the
first design is zero, whereas in the second and third designs it is 0.87 and 0.50, respectively.
In other words, the first design is not only highly efficient in the presence of differential
carry-over effects, but is such that the estimator of δ is the same whether or not carry-over
effects are entered into the model for the data. Consequently, there is no disadvantage in
using this design even if differential carry-over effects are anticipated or cannot be avoided.

4.2.1 Examples of Analysis of BE Trials with Three Periods

Example 4.1
The data in Tables 4.25 and 4.26 are from a trial that used the sequences RTT and TRR.
Figure 4.1 shows the corresponding subject profiles plots. The most noteworthy feature in
these plots is that, although the between-subject variability is high for both metrics, it is
much lower for logCmax compared to logAUC. In addition, the maximum value in each
period for logCmax is much lower than the corresponding maximum for logAUC. There is
a suggestion for Sequence 2 that the values of R are higher on average than those of T, but
this feature is not so evident in Sequence 1. We can also identify a subject in Sequence 2
who only provided two logAUC values.

lo
g

A
U

C
-2

0
2

4
6

8
1

0

R T T T R R
Sequence 1 Sequence 2

logAUC

lo
g

C
m

a
x

-2
0

2
4

6
8

1
0

R T T T R R
Sequence 1 Sequence 2

logCmax

FIGURE 4.1
Example 4.1: Subject Profiles Plot
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TABLE 4.2
Example 4.1: Group-by-Period Means (sample size in parentheses)

logAUC

Group Period 1 Period 2 Period 3 Mean

1(RTT) ȳ11. = 4.35(46) ȳ12. = 4.36(45) ȳ13. = 4.60(43) ȳ1.. = 4.43
2(TRR) ȳ21. = 4.66(47) ȳ22. = 4.88(47) ȳ23. = 4.92(47) ȳ2.. = 4.82

Mean ȳ.1. = 4.51 ȳ.2. = 4.63 ȳ.3. = 4.77 ȳ... = 4.63

logCmax

1(RTT) ȳ11. = 1.18(47) ȳ12. = 1.10(47) ȳ13. = 1.46(45) ȳ1.. = 1.24
2(TRR) ȳ21. = 1.39(48) ȳ22. = 1.60(48) ȳ23. = 1.64(48) ȳ2.. = 1.54

Mean ȳ.1. = 1.29 ȳ.2. = 1.35 ȳ.3. = 1.55 ȳ... = 1.40

The group-by-period means are given in Table 4.2, where, because of the missing data, we
have indicated the number of subjects who provided data for each mean. These are plotted
in Figure 4.2, where the lower line in each plot refers to Sequence RTT and the upper line to
Sequence TRR. Despite the difference in absolute size of the logAUC and logCmax means,
there is a similar pattern of formulation differences within each period for both metrics. The
only other notable feature is that the means for Sequence 2 are consistently higher than
the corresponding means for Sequence 1. To get a graphical impression of the similarity
or otherwise of the means of R and T, we can use a version of the mean differences versus
totals plot that was used in Chapter 3 for the RT/TR design. In this alternative version of
the plot, we replace the within-subject mean difference with a within-subject contrast for
the kth subject in sequence group i: dik = −(2yi1k − yi2k − yi3k)/4. From Equation (4.1),

we can see that δ̂ = d̄1. − d̄2.. Instead of the subject totals, we arbitrarily use the mean of
each subject, so that we can plot the subject contrasts against the subject means. If the
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Example 4.1: Groups-by-Periods Plot
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TABLE 4.3
Example 4.1: TOST Procedure Results

log scale
Endpoint µ̂T − µ̂R 90% Confidence Interval
logAUC -0.0270 (-0.1395, 0.0855)
logCmax -0.0557 (-0.1697, 0.0583)

back-transformed
Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval

AUC 0.97 (0.87, 1.09)
Cmax 0.95 (0.84, 1.06)

contrasts are plotted on the vertical axis, any separation of the groups along this axis is
indicative of a lack of equivalence. The resulting plots are given in Figure 4.3. It should be
noted that only subjects who have a complete set of three values are included in the plots.
As in Chapter 3, we also include the centroids and the convex hulls. From this plot there
appears to be little separation of the centroids in the vertical direction. It seems likely that
T and R are average bioequivalent.

Of course, to determine if T and R are sufficiently similar to each other to be declared
ABE, we must apply the TOST procedure. The results are given in Table 4.3, where
subjects have been fitted as fixed effects. We can see that T and R are clearly average
bioequivalent.

Example 4.2
The data in Tables 4.27 and 4.28 are from a trial that also used the sequences RTT and
TRR. The corresponding subject profiles are given in Figure 4.4. Relatively large between-
subject variation is evident, with perhaps a higher variance on the logAUC scale. It is not
clear if, on average, T is giving higher or lower values than R.

The group-by-period means are given in Table 4.4, where, because of the missing data,
we have again indicated the number of subjects who provided data for each mean. These
are plotted in Figure 4.5, where the upper line in each plot refers to Sequence RTT. Even
allowing for the difference in absolute size of the logAUC and logCmax means, there is a
different pattern of formulation differences within each period for the two metrics. There
appears to be more of a difference between the formulations on the logAUC scale. The
only other notable feature is that the means for Sequence 1 are consistently higher than the
corresponding means for Sequence 2.

A better impression of the difference, if any, between T and R is obtained from a plot of
the subject contrasts against the subject means. For Example 4.2, this is given as Figure
4.6. There is a clear separation of the convex hulls for both metrics, suggesting a lack
of bioequivalence. In addition, there is clearly more variability in the plotted points from
Sequence 2 as compared to Sequence 1.

The results of applying the TOST procedure to these data are given in Table 4.5. Insuf-
ficient evidence was present to conclude that T and R are ABE for both AUC and Cmax.
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Example 4.1: Subject Contrasts versus Means Plot
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TABLE 4.4
Example 4.2: Group-by-Period Means (sample size in parentheses)

logAUC

Group Period 1 Period 2 Period 3 Mean

1(RTT) ȳ11. = 4.30(37) ȳ12. = 4.11(38) ȳ13. = 4.21(38) ȳ1.. = 4.21
2(TRR) ȳ21. = 3.67(33) ȳ22. = 3.83(34) ȳ23. = 3.95(35) ȳ2.. = 3.82

Mean ȳ.1. = 4.01 ȳ.2. = 3.98 ȳ.3. = 4.08 ȳ... = 4.02

logCmax

1(RTT) ȳ11. = 1.13(39) ȳ12. = 1.03(39) ȳ13. = 1.05(39) ȳ1.. = 1.07
2(TRR) ȳ21. = 0.77(35) ȳ22. = 0.88(35) ȳ23. = 1.02(35) ȳ2.. = 0.89

Mean ȳ.1. = 0.96 ȳ.2. = 0.96 ȳ.3. = 1.04 ȳ... = 0.98

TABLE 4.5
Example 4.2: TOST Procedure Results

Endpoint µ̂T − µ̂R 90% Confidence Interval
logAUC -0.1719 (-0.2630, -0.0809)
logCmax -0.1299 (-0.2271, -0.0327)
Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval

AUC 0.84 (0.77, 0.92)
Cmax 0.88 (0.80, 0.97)
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Example 4.2: Groups-by-Periods Plot
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FIGURE 4.6
Example 4.2: Subject Contrasts versus Means Plot

4.3 Within-Subject Variability

It is clear that each of our possible designs for three periods has T repeated in one sequence
and R repeated in the other. It is therefore possible to separately estimate the within-
subject variance of T and the within-subject variance of R. We will denote these by σ2

WT

and σ2
WR, respectively. Let us concentrate on the design that has sequences RTT and

TRR. Suppose we want an estimate of σ2
WT for the logAUC values. A simple method

of estimation uses only the subjects who have a logAUC value on both occurrences of T.
Suppose we denote these values by y12k and y13k for such a subject k in the first sequence
group. Then Var(y12k− y13k) = 2σ2

WT . To estimate this variance, we first construct the set
of differences y12k − y13k and then estimate the variance of the differences. The estimate
so obtained, and divided by 2, gives σ̂2

WT . A similar process can be used to calculate σ̂2
WR

using the appropriate subjects in the second sequence group. In a 2× 2 cross-over a similar
procedure is used to calculate σ̂2

W under the assumption that σ2
WT = σ2

WR = σ2
W [652].

Doing this for Example 4.1, we get, for logAUC, σ̂2
WR = 0.168 and σ̂2

WT = 0.396, and
for logCmax, σ̂2

WR = 0.214 and σ̂2
WT = 0.347.

For Example 4.2, the corresponding values for logAUC are σ̂2
WR = 0.168, σ̂2

WT = 0.065,
and for logCmax they are σ̂2

WR = 0.201 and σ̂2
WT = 0.087.

In both examples, σ̂2
WR > 0.09 for each metric, indicating that the Reference formula-

tions are highly variable.
In Chapter 5 we will give an alternative method of estimation.
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4.4 Robust Analyses for Three-Period Designs

The model assumed for our data (logAUC or logCmax) is as given in (3.1) in Chapter 3:

yijk = µd[i,j] + πj + γi + ξk(i) + εijk.

This makes some strong assumptions about the variance and covariance structure of the
repeated measurements on each subject. In particular, it assumes that the variance of
each repeated measurement is the same and that the covariance between any two repeated
measurements is the same, i.e.,Var(yijk) = σ2

B + σ2
W and

Cov(yi1k, yi2k) = Cov(yi1k, yi3k) = Cov(yi2k, yi3k) = σ2
B .

If there is any doubt that these assumptions are unlikely to be true, an alternative, robust,
analysis is possible. The analysis is robust in the sense that the only assumptions made
are that the responses from different subjects are independent, the two groups of subjects
are a random sample from the same statistical population, and that the period, treatment,
and other effects act additively. The analysis for the sequences RTT and TRR uses the
same subject contrasts that were used to construct the subject contrasts versus means plot:
dik = −(2yi1k− yi2k− yi3k)/4, where it will be recalled that δ̂ = d̄1.− d̄2.. The assumptions
made in the analysis are then those referring to dik: the values from different subjects are
independent, the values in each group are a random sample from the same statistical pop-
ulation, and finally the only difference, if any, between the groups is a shift in the value of
the mean (or median).

Having calculated the values of dik (for those patients who provided three repeated mea-
surements), the TOST analysis uses the 90% confidence interval based on the t-distribution
or, if the data are very non-normal, the Hodges–Lehmann version of the confidence interval.

For the kth subject in Group 1, k = 1, 2, . . . , n1, we define d1k = −(2y11k−y12k−y13k)/4
in Group 1 and d2k = −(2y21k − y22k − y23k)/4 in Group 2. If σd

2 = Var[d1k] = Var[d2k],
then

Var[δ̂] = σ2
d

[
1

n1
+

1

n2

]
.

To estimate σd
2 we use the usual pooled estimator

sp
2 =

(n1 − 1)s2
1 + (n2 − 1)s2

2

(n1 + n2 − 2)
,

where s2
1 is the sample variance of d1k and s2

2 is the sample variance of d2k. To construct
the 90% confidence interval for δ we use that fact that, when δ = 0,

t =
d̄1. − d̄2.[

s2
p(

1
n1

+ 1
n2

)
] 1

2

has the t-distribution with (n1 + n2 − 2) degrees of freedom. It will be noted that the
degrees of freedom for the usual TOST interval, based on subjects with all three repeated
measurements, is 2(n1 +n2)− 3, as compared to (n1 +n2− 2) for the robust method. Even
so, this loss of degrees of freedom rarely has a major effect on the conclusions.
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For the data in Example 4.1, n1 = 42, n2 = 46 for logAUC, and d̄1. = −0.0850,
d̄2. = −0.1215 and δ̂ = −0.0365. Further, s2

1 = 0.1191, s2
2 = 0.0917, and s2

p = 0.1048.
Based on the t-distribution with 86 degrees of freedom, the TOST 90% confidence is (-
0.1514, 0.0783). If the usual analysis (of yijk) is done, the corresponding interval is (-0.1516,
0.0785), based on the t-distribution with 173 degrees of freedom. The robust interval is a
little wider but, in this case at least, the conclusions are the same. For logCmax the robust
confidence interval is (-0.1712, 0.0651) on 91 degrees of freedom, as compared to the usual
interval of (-0.1685, 0.0623) on 183 degrees of freedom.

For the data in Example 4.2, n1 = 35, n2 = 32 for logAUC and the robust interval is
(-0.2880, -0.0897) on 65 d.f. and the usual interval is (-0.2800, -0.0977) on 131 d.f. For
logCmax, n1 = 39, n2 = 35 and the robust interval is (-0.2359, -0.0239) on 72 d.f. and the
usual interval is (-0.2271, -0.0327) on 145 d.f. Again, the conclusions from both approaches
are the same.

An alternative confidence interval that does not rely on the t-distribution is the Hodges–
Lehmann point confidence interval described in Chapter 3. In the notation of that chapter,
we let Xk = d2k and Yk = d1k. The resulting confidence intervals for Example 4.1 are
(-0.1196, -0.0731) for logAUC and (-0.1679, 0.0394) for logCmax. For Example 4.2, the cor-
responding intervals are (−0.2635,−0.0771) for logAUC and (-0.2042, -0.0071) for logCmax.
The conclusions obtained above are not changed for either example. The Hodges–Lehmann
confidence intervals can also be constructed using StatXact. For Example 4.1 these are
(-0.1199, 0.0734) for logAUC and (-0.1683, 0.0410) for logCmax. For Example 4.2 these are
(-0.2635, -0.0771) and (-0.2049, -0.0070), respectively.

4.5 Four-Period Designs

4.5.1 Choice of Design

As already mentioned, four-period designs are recommended by the FDA when the reference
drug is highly variable (i.e., σ2

W > 0.09). If we discard the sequences RRRR and TTTT,
then there are seven different two-sequence designs and they are

1. R R T T 2. R T R T 3. R T T R

T T R R T R T R T R R T
4. R T R R 5. R R T R 6. R T T T

T R T T T T R T T R R R

and

7. R R R T

T T T R

The efficiencies of these designs are given in Table 4.6. In the presence of unequal carry-
over effects, only Designs 1 and 3 are worth consideration [652]. It is worth noting that the
design recommended by the FDA is Design 2. In the absence of a difference in carry-over
effects, Designs 1, 2, and 3 are equally, and fully, efficient.
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TABLE 4.6
Efficiencies of Designs 1 through 7

Design Adjusted for Carry-Over Unadjusted for Carry-Over
1 90.91 100.00
2 18.18 100.00
3 90.91 100.00
4 54.55 75.00
5 54.55 75.00
6 72.73 75.00
7 66.67 75.00

4.5.2 Examples of Data Analysis for Four-Period Designs

Example 4.3
The data in Table 4.29 are from a trial with four periods that used the sequences RTTR
and TRRT. This trial was quite small, with 8 subjects in Group 1 and 9 in Group 2. The
subject profiles plots for logAUC and logCmax are given in Figure 4.7. From this plot it is
difficult to discern if T and R are ABE. The group-by-period means are given in Table 4.7
and are plotted in Figure 4.8. These seem to indicate that T and R are ABE.

The subject contrasts plots are given in Figure 4.9 and reveal a difference in the centroids,
particularly for logCmax, although the actual size of the difference is relatively small. There
is also some evidence that there is more variability in the logAUC contrasts for the subjects
on sequence TRRT. To clarify matters regarding ABE, we refer to the results of the TOSTs
given in Table 4.8, where the fixed-subjects models have been fitted. The evidence is in favor
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Example 4.3: Subject Profiles Plot
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TABLE 4.7
Example 4.3: Group-by-Period Means (sample size in parentheses)

logAUC
Group Period 1 Period 2 Period 3 Period 4 Mean

1(RTTR) ȳ11. = 8.94(8) ȳ12. = 8.99(8) ȳ13. = 8.96(8) ȳ14. = 8.91(8) ȳ1.. = 8.95
2(TRRT) ȳ21. = 8.83(9) ȳ22. = 8.80(9) ȳ23. = 8.85(9) ȳ24. = 8.89(8) ȳ2.. = 8.84

Mean ȳ.1. = 8.88 ȳ.2. = 8.89 ȳ.3. = 8.91 ȳ.4. = 8.90 ȳ... = 8.89
logCmax

1(RTTR) ȳ11. = 7.02(8) ȳ12. = 7.00(8) ȳ13. = 6.98(8) ȳ14. = 7.08(8) ȳ1.. = 7.02
2(TRRT) ȳ21. = 6.83(9) ȳ22. = 7.02(9) ȳ23. = 7.06(9) ȳ24. = 7.02(8) ȳ2.. = 6.98

Mean ȳ.1. = 6.92 ȳ.2. = 7.01 ȳ.3. = 7.02 ȳ.4. = 7.05 ȳ... = 7.00

of concluding that T and R are ABE, although for logCmax the lower end of the confidence
interval is close to the lower boundary of -0.2231 (on the log scale). The robust and Hodges–
Lehmann exact confidence intervals are (-0.0080, 0.0811) and (-0.0148, 0.0834), respectively,
for logAUC and (-0.1786, 0.0038) and (-0.2001, 0.0073), respectively, for logCmax.
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Example 4.3: Groups-by-Periods Plot
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FIGURE 4.9
Example 4.3: Subject Contrasts versus Means Plot

TABLE 4.8
Example 4.3: TOST Procedure Results

Endpoint µ̂T − µ̂R 90% Confidence Interval

logAUC 0.0352 (-0.0044, 0.0748)
logCmax -0.0963 (-0.1881, 0.0045)
Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval

AUC 1.04 (1.00, 1.08)
Cmax 0.91 (0.83, 1.00)
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Example 4.4: Subject Profiles Plot

Example 4.4
The data in Tables 4.30 and 4.31 are from another four-period design, but this time the
sequences used were RTRT and TRTR. The subject profiles plots are given in Figure 4.10.
The large number of subjects per group makes it difficult to discern much from this plot,
other than the relatively large between-subject variation. The group-by-period means are
given in Table 4.9 and plotted in Figure 4.11. The picture is clearer now, with a suggestion
that for logCmax T and R might not be ABE. The subject contrasts versus means plot is

TABLE 4.9
Example 4.4: Group-by-Period Means (sample size in parentheses)

logAUC
Group Period 1 2 3 4 Mean

1 ȳ11. = 5.80(27) ȳ12. = 6.00(27) ȳ13. = 5.80(26) ȳ14. = 5.85(26) ȳ1.. = 5.86
2 ȳ21. = 5.84(27) ȳ22. = 5.81(27) ȳ23. = 6.04(26) ȳ24. = 5.91(26) ȳ2.. = 5.90

Mean ȳ.1. = 5.82 ȳ.2. = 5.91 ȳ.3. = 5.92 ȳ.4. = 5.88 ȳ... = 5.88
logCmax

1 ȳ11. = 3.63(27) ȳ12. = 4.26(27) ȳ13. = 3.69(26) ȳ14. = 4.09(26) ȳ1.. = 3.91
2 ȳ21. = 3.96(27) ȳ22. = 3.82(27) ȳ23. = 4.26(26) ȳ24. = 3.76(26) ȳ2.. = 3.95

Mean ȳ.1. = 3.79 ȳ.2. = 4.04 ȳ.3. = 3.97 ȳ.4. = 3.93 ȳ... = 3.93
Group 1=RTRT; 2=TRTR
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FIGURE 4.11
Example 4.4: Groups-by-Periods Plot

given in Figure 4.12, where it is clear there is a relatively large vertical gap in the centroids
for logCmax. This is confirmed from the TOST results given in Table 4.10, where the lower
bound of the 90% confidence interval for logCmax is a long way above 0.2231, the upper
regulatory limit. The robust and Hodges–Lehmann confidence intervals for logAUC are
(0.0311, 1758) and (0.0256, 0.1630), respectively. The corresponding intervals for logCmax
are (0.2685, 0.5623) and (0.2681, 0.5626). There is very strong evidence that T and R are
not ABE.

TABLE 4.10
Example 4.4: TOST Procedure Results

Endpoint µ̂T − µ̂R 90% Confidence Interval
logAUC 0.1002 (0.0289, 0.1715)
logCmax 0.4140 (0.2890, 0.5389)

Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval
AUC 1.11 (1.03, 1.19)
Cmax 1.51 (1.34, 1.71)
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FIGURE 4.12
Example 4.4: Subject Contrasts versus Means Plot

4.6 Designs with More Than Two Treatments

As already mentioned in the Introduction, designs for more than two treatments may be
used to show bioequivalence, but these are less common than those for two treatments.
Examples 4.5 and 4.6, below are examples where three and four treatments, respectively,
were used.

Example 4.5. Trial with Three Treatments
In this trial there were two “reference” formulations, R and S, where R was a dose made up of
three 100 mg tablets and S was a dose made up of a 200 mg tablet and a 100 mg tablet. The
test formulation was a single 300 mg tablet. Two reference formulations were used because
the 200 mg tablet was not available in the early stages of the confirmatory trial when the
3× 100 mg dose was used. The aim of the trial was to show that T and R were ABE and
T and S were ABE. The subjects in the trial were randomly allocated to the six sequences:
RST, RTS, SRT, STR, TRS, and TSR. The data from this trial are given in Tables 4.32, 4.33,
and 4.34. This design is known as a Williams design (see [652], Chapter 4) and is balanced for
carry-over effects. In the presence of carry-over effects the variance of any pairwise difference
between the formulations is (5σ2

W )/(12r), where r is the number of replications of the
complete set of six sequences. In the absence of carry-over effects this variance is (σ2

W )/(3r),
which is also the variance in an ideal design. Hence, the efficiency of the Williams design
for three formulations is 80% in the presence of carry-over effects and 100% in the absence
of carry-over effects. Of course, we do not expect to see any differential carry-over effects
and, as we shall see, there is no suggestion from the data that such effects need concern us.

The subject profiles plots are given in Figures 4.13, 4.14, and 4.15. Large between-
subject variation is evident and there is a suggestion that S gives a higher response than
R or T. The group-by-period means are given in Table 4.11 and are plotted in Figure 4.16.
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Example 4.5: Subject Profiles Plot: Sequences 1 and 2

lo
g

A
U

C
5

6
7

8
9

1
0

S R T S T R
Sequence 3 Sequence 4

logAUC

lo
g

C
m

a
x

5
6

7
8

9
1

0

S R T S T R
Sequence 3 Sequence 4

logCmax

FIGURE 4.14
Example 4.5: Subject Profiles Plot: Sequences 3 and 4



BE Studies with More Than Two Periods 81

lo
g

A
U

C
5

6
7

8
9

1
0

T R S T S R
Sequence 5 Sequence 6

logAUC

lo
g

C
m

a
x

5
6

7
8

9
1

0
T R S T S R
Sequence 5 Sequence 6

logCmax

FIGURE 4.15
Example 4.5: Subject Profiles Plot: Sequences 5 and 6

TABLE 4.11
Example 4.5: Group-by-Period Means (sample size in parentheses)

logAUC

Group Period 1 Period 2 Period 3 Mean

1(RST) ȳ11. = 8.14(8) ȳ12. = 8.61(8) ȳ13. = 8.27(8) ȳ1.. = 8.34
2(RTS) ȳ21. = 8.23(11) ȳ22. = 8.45(11) ȳ23. = 8.51(11) ȳ2.. = 8.40
3(SRT) ȳ31. = 8.69(11) ȳ32. = 8.37(11) ȳ33. = 8.50(11) ȳ3.. = 8.52
4(STR) ȳ41. = 8.49(10) ȳ42. = 8.25(10) ȳ43. = 8.00(10) ȳ4.. = 8.25
5(TRS) ȳ51. = 8.42(10) ȳ52. = 8.50(10) ȳ53. = 8.75(10) ȳ5.. = 8.55
6(TSR) ȳ61. = 8.43(10) ȳ62. = 8.54(10) ȳ63. = 8.23(10) ȳ6.. = 8.40

Mean ȳ.1. = 8.41 ȳ.2. = 8.45 ȳ.3. = 8.38 ȳ... = 8.41

logCmax

1(RST) ȳ11. = 6.55(9) ȳ12. = 7.23(9) ȳ13. = 6.94(8) ȳ1.. = 6.91
2(RTS) ȳ21. = 6.74(11) ȳ22. = 7.07(11) ȳ23. = 7.16(11) ȳ2.. = 6.99
3(SRT) ȳ31. = 7.29(11) ȳ32. = 6.82(11) ȳ33. = 7.13(11) ȳ3.. = 7.08
4(STR) ȳ41. = 6.99(10) ȳ42. = 6.85(10) ȳ43. = 6.46(10) ȳ4.. = 6.77
5(TRS) ȳ51. = 6.91(11) ȳ52. = 6.97(11) ȳ53. = 7.37(10) ȳ5.. = 7.07
6(TSR) ȳ61. = 6.97(10) ȳ62. = 7.17(10) ȳ63. = 6.79(10) ȳ6.. = 6.98

Mean ȳ.1. = 6.92 ȳ.2. = 7.01 ȳ.3. = 6.98 ȳ... = 6.97
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FIGURE 4.16
Example 4.5: Groups-by-Periods Plot

There is a clear ordering within all but one of the periods, with S giving the highest mean
response and R the lowest. To determine if each of T and R and T and S are ABE, we
use the TOST procedure for each difference and the results are given in Table 4.12. Note
that we do not adjust for multiple testing, as we require both pairs to be ABE (across both
the AUC and Cmax endpoints and two one-sided tests [1314]). We can conclude that T is

TABLE 4.12
Example 4.5: TOST Procedure Results

T-R
Endpoint µ̂T − µ̂R 90% Confidence Interval
logAUC 0.1505 (0.0865, 0.2145)
logCmax 0.2618 (0.1747, 0.3489)

T-S
Endpoint µ̂T − µ̂S 90% Confidence Interval
logAUC -0.1888 (-0.2532, -0.1243)
logCmax -0.2044 (-0.2921, -0.1167)

T-R
Endpoint exp(µ̂T − µ̂R) 90% Confidence Interval

AUC 1.16 (1.09, 1.24)
Cmax 1.30 (1.19, 1.42)

T-S
Endpoint exp(µ̂T − µ̂S) 90% Confidence Interval

AUC 0.83 (0.78, 0.88)
Cmax 0.82 (0.75, 0.89)
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Example 4.6: Subject Profiles Plot: Sequences 1 and 2

not ABE to R and S. The ordering of the formulation means is, as noted from the previous
plots, that S gives a significantly higher response than T, which in turn is significantly
higher than R.

Example 4.6. Trial with Four Treatments
In this trial the test formulation could be given as a low or a high dose. Hence, it was nec-
essary to compare these with low and high doses, respectively, of the reference formulation.
The four formulations were labelled A, B, C, and D, where A is the Reference, Low dose,
B is the Test, Low dose, C is the Reference, High dose, and D is the Test, High dose. The
comparisons of interest were therefore B-A and D-C. A Williams design for four periods was
used in the trial with sequences ADBC, BACD, CBDA, and DCAB. The efficiency of this
design is 90.91% in the presence of differential carry-over effects and 100% in their absence.

The data from this trial are given in Tables 4.35 to 4.38 and the subject profiles plots
are given in Figures 4.17 and 4.18. The large changes in the plots occur when moving from
a low to a high dose and vice versa. Within a dose there seems relatively good agreement
between T and R. The group-by-period means are given in Table 4.13 and are plotted in
Figure 4.19, where it will be noted that the symbols for A and C are the circle and triangle,
respectively, and the symbols for B and D are the vertical and diagonal crosses, respectively.
The large difference between the means values for the two doses (circle and triangle versus
vertical and diagonal cross) is clearly displayed, as is the relatively small difference between
T and R within doses (circle versus triangle and vertical versus diagonal cross). At first
sight, at least, it appears the T and R are ABE at each dose. The results of the TOST
procedure are given in Table 4.14, and these confirm the conclusions made from the plots.
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FIGURE 4.18
Example 4.6: Subject Profiles Plot: Sequences 3 and 4

TABLE 4.13
Example 4.6: Group-by-Period Means (sample size in parentheses)

logAUC

Group Period 1 Period 2 Period 3 Period 4 Mean
1(ADBC) ȳ11. = 6.19(7) ȳ12. = 8.17(7) ȳ13. = 6.01(7) ȳ14. = 8.17(7) ȳ1.. = 7.14
2(BACD) ȳ21. = 6.10(7) ȳ22. = 5.89(7) ȳ23. = 7.95(7) ȳ24. = 7.84(7) ȳ2.. = 6.95
1(CBDA) ȳ11. = 7.99(7) ȳ12. = 5.76(7) ȳ13. = 7.87(7) ȳ14. = 5.81(7) ȳ1.. = 6.86
2(DCAB) ȳ21. = 7.98(7) ȳ22. = 7.89(7) ȳ23. = 5.74(7) ȳ24. = 5.78(7) ȳ2.. = 6.85

Mean ȳ.1. = 7.06 ȳ.2. = 6.93 ȳ.3. = 6.90 ȳ.4. = 6.90 ȳ... = 6.95
logCmax

1(ADBC) ȳ11. = 4.54(7) ȳ12. = 6.61(7) ȳ13. = 4.39(7) ȳ14. = 6.64(7) ȳ1.. = 5.54
2(BACD) ȳ21. = 4.41(7) ȳ22. = 4.24(7) ȳ23. = 6.37(7) ȳ24. = 6.29(7) ȳ2.. = 5.33
1(CBDA) ȳ11. = 6.42(7) ȳ12. = 4.20(7) ȳ13. = 6.41(7) ȳ14. = 4.26(7) ȳ1.. = 5.32
2(DCAB) ȳ21. = 6.39(7) ȳ22. = 6.39(7) ȳ23. = 4.13(7) ȳ24. = 4.03(7) ȳ2.. = 5.23

Mean ȳ.1. = 5.44 ȳ.2. = 5.36 ȳ.3. = 5.33 ȳ.4. = 5.30 ȳ... = 5.36
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FIGURE 4.19
Example 4.6: Groups-by-Periods Plot

TABLE 4.14
Example 4.6: TOST Procedure Results

B-A
Endpoint µ̂B − µ̂A 90% Confidence Interval
logAUC 0.0047 (-0.0544, 0.0638)
logCmax -0.0355 (-0.1171, 0.0461)

D-C
Endpoint µ̂D − µ̂C 90% Confidence Interval
logAUC -0.0362 (-0.0953, 0.0230)
logCmax -0.0301 (-0.1117, 0.0515)

B-A
Endpoint exp(µ̂B − µ̂A) 90% Confidence Interval

AUC 1.00 (0.95, 1.07)
Cmax 0.97 (0.89, 1.05)

D-C
Endpoint exp(µ̂D − µ̂C) 90% Confidence Interval

AUC 0.96 (0.91, 1.02)
Cmax 0.97 (0.89, 1.05)
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4.7 Adjusting for Multiple Testing

As discussed in Chapter 2, by design, multiple tests are performed to assess bioequivalence
using the two one-sided testing procedure. A question often asked is, “Does one need to
adjust the TOST (or equivalently the 90% confidence intervals) for multiple tests within a
study?”

The sources of multiple tests in bioequivalence are many. Multiple endpoints (AUC,
Cmax) are always involved in bioequivalence testing. Also, for example, in studies like
Examples 4.5 and 4.6, when more than one test or reference formulation is present, then
there may be multiple comparisons of interest across these two endpoints.

To review, in the standard bioequivalence study with only one test and one reference
fromulation, the endpoints ln-AUC and ln-Cmax, separately, are tested using the following
null hypotheses:

H01 : µT − µR≤− ln 1.25 (4.3)

OR
H02 : µT − µR≥ ln 1.25 (4.4)

where µT and µR are the means of ln-transformed AUC or Cmax data for test and reference
formulations, respectively, versus

H11 : µT − µR > − ln 1.25 (4.5)

AND
H12 : µT − µR < ln 1.25 (4.6)

Both null hypotheses must be rejected for ln-AUC and for ln-Cmax for average bioe-
quivalence to be demonstrated. The terms “or” and “and” are very important here, as they
correspond to the statistical terms

⋃
for union and

⋂
for intersection, respectively.

Within a study, the global null hypothesis for the two one-sided tests across ln-AUC
and ln-Cmax become

H0 : H01A

⋃
H02A

⋃
H01C

⋃
H02C (4.7)

where H01A, H02A denote the application of the two one-sided tests to A = ln-AUC,
H01C , H02C denote the application of the two one-sided tests to C = ln-Cmax, and where⋃

denotes the union of these null hypotheses. If all null hypotheses are rejected, then one
has shown

H1 : H11A

⋂
H12A

⋂
H11C

⋂
H12C (4.8)

where H11A, H12A denote the alternative hypotheses for the two one-sided tests to A = ln-
AUC, H11C , H12C denote the alternative hypotheses for the two one-sided tests to C = ln-
Cmax, and where

⋂
denotes the intersection of these alternative hypotheses.

This approach has been termed the intersection-union test [273] and is protective of
type 1 error [1314] at the desired level of 5%, but all four individual null hypotheses must
be rejected in order for bioequivalence to be demonstrated. The traditional α-level of 5%
(yielding 90% confidence intervals) is not typically adjusted, as the study must reject all null
hypotheses and given the findings of [531]. In brief, no adjustment is generally applied for
the multiple endpoints AUC and Cmax in bioequivalence testing, as an intersection-union
testing procedure is being applied across these two endpoints.

However, what does one do to adjust for multiple tests when a test formulation is
compared to multiple reference formulations (e.g., Example 4.5)? What does one do when
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a high dose is compared to a low dose for a reference and a test formulation (e.g., Example
4.6) in the same study?

What is to be done depends upon the situation. In Example 4.5, multiple reference
formulations were used in Phase 3 and the to-be-marketed formulation needed to be shown
to be bioequivalent to both of them to support market access, so the equations became

H0 : H(T : R)01A

⋃
H(T : R)02A

⋃
H(T : R)01C

⋃
H(T : R)02C

⋃
H(T : S)01A

⋃
H(T : S)02A

⋃
H(T : S)01C

⋃
H(T : S)02C

where H(T : R)01A, for example, denotes the application of the first two one-sided tests to
A = ln-AUC when comparing formulation T to formulation R. If all null hypotheses are
rejected, then one has shown

H1 : H(T : R)11A

⋂
H(T : R)12A

⋂
H(T : R)11C

⋂
H(T : R)12C

⋂
H(T : S)11A

⋂
H(T : S)12A

⋂
H(T : S)11C

⋂
H(T : S)12C .

All comparisons did need to succeed to link the to-be-marketed formulation to the
reference formulations. Similarly, in Example 4.6, both the low dose and the high dose
were both required to be bioequivalent between formulations. In such circumstances, an
α-adjustment is not needed, as the testing procedure being used is an extension to the
intersection-union test, and the traditional 90% confidence intervals may be used to support
a claim of bioequivalence.

If, however, AUC and Cmax must succeed for only one set of the comparisons of interest
(T:R or T:S in Example 4.5, for example), then this would create a subtly different testing
problem:

H0 : (H(T : R)01A

⋃
H(T : R)02A

⋃
H(T : R)01C

⋃
H(T : R)02C)

⋂
(H(T : S)01A

⋃
H(T : S)02A

⋃
H(T : S)01C

⋃
H(T : S)02C)

versus the alternative hypothesis

H1 : (H(T : R)11A

⋂
H(T : R)12A

⋂
H(T : R)11C

⋂
H(T : R)12C)

⋃
(H(T : S)11A

⋂
H(T : S)12A

⋂
H(T : S)11C

⋂
H(T : S)12C)

This sort of testing procedure is known as a union-intersection test [273]. To preserve
the overall study-wise type 1 error rate at the desired 5%, the individual two one-sided
tests for all comparisons of interest should have their individual levels adjusted to a level
lower than 5%. To be precise, this test would be termed an intersection-union test for each
comparison of interest contained within an overall union-intersection test.

Numerous ways may be used to do this [273], but for simplicity the conservative Bonfer-
roni adjustment is recommended. For example, consider the situation where there was only
one reference formulation used in Phase 3, but it is desired to allow for multiple test formu-
lations to be marketed following approval. This would be a Williams square bioequivalence
study (as in Example 4.6, sequences ADBC, BACD, CBDA and DCAB), for example, with
formulation A being the reference formulation, and formulations B, C, and D being test
formulations. If any of B, C, or D showed equivalence to A, then that particular test for-
mulation would be allowed market access. As there are three comparisons of interest, the
5% α usually applied to each two one-sided test would need to be lowered to 0.05

3 =1.67%
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to protect the overall false-positive rate of the study at the level desired by regulators. To
do so, one would derive 96.67% confidence intervals instead of the standard 90% confidence
intervals for AUC and for Cmax for all the comparisons of interest, B:A, C:A, and D:A.
If AUC and Cmax were observed to be bioequivalent using the more stringent α-level for
only one comparison of interest (for example, B:A succeeds but not C:A or D:A), one could
conclude that formulation B was bioequivalent to A.

One might question how one would power such a study, as multiple correlated tests across
multiple correlated endpoints are involved. We will develop simulation for this purpose in
Chapter 5. Readers interested in an approximate solution may also wish to consider the
approach described in [918].

4.8 Nonparametric Analyses of Tmax

There are a number of alternative approaches to developing a distribution-free or nonpara-
metric analysis of data from cross-over trials with three or more treatments. The simplest
and most familiar is an extension of the nonparametric analysis of the design with two
treatments and sequences: TR/RT. This can only be applied to a subset of designs and
is based on a stratified analysis for two treatments, resulting in the Van Elteren test (see
[1113], for example). The particular designs to which this approach is applicable are those
that have embedded within them a suitable set of RT/TR designs. We will illustrate such
sets for three treatments in the following subsections. For arbitrary designs, confidence
intervals can be derived using bootstrap sampling.

The most common need for a nonparametric analysis of bioequivalence data is in the
analysis of Tmax. In the following subsections we will analyze Tmax data collected in the
trials described in Examples 4.5 and 4.6.

4.8.1 Three Treatments

The data in Tables 4.15, 4.16, and 4.17 are the Tmax values collected in the trial described
in Example 4.5. The design is displayed again in Table 4.18. It can be seen that the six
sequences have been arranged into three strata. Stratum I includes the two sequences that
contain the TR/RT design in Periods 1 and 2, stratum II includes the two sequences that
contain the TR/RT design in Periods 1 and 3, and finally stratum III includes the two
sequences that contain the TR/RT design in Periods 2 and 3. Within each stratum, T
and R can be compared using the Wilcoxon rank-sum test, as described in Section 3.8 of
Chapter 3. In particular, the Wilcoxon rank-sum and its variance for each stratum can be
calculated. An overall test of T versus R can then be obtained by taking a weighted average
of the three rank sums and dividing it by the square root of an estimate of the variances of
the weighted average to produce a test statistic. This will be illustrated shortly. A defining
characteristic of the parent design is that the pair of sequences in each stratum has T and
R in matching periods: 1 and 2 in Stratum I, 1 and 3 in Stratum II and 2 and 3 in Stratum
III. This is so that the period effect can be eliminated from the treatment comparison.

To compare T and S, a different arrangement of the design will be needed, as shown
in Table 4.19. It can be seen that the sequences in each stratum are a different selection
from those used when comparing T and R. At once we can see some disadvantages of this
approach: a design containing the appropriate stratification must be available and a new
arrangement of sequences is needed for each individual treatment comparison. A general
approach applicable to an arbitrary design will be described later.
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TABLE 4.15: Example 4.5: Tmax, Williams Design for Three
Treatments

Sequence TRS Sequence RTS

Period Period
Subject 1 2 3 Subject 1 2 3

6 4.00 4.00 2.65 2 3.00 3.00 3.00
12 4.00 4.02 3.02 11 2.97 2.00 2.98
17 2.98 3.98 3.98 16 4.00 3.00 3.00
19 3.98 1.50 2.50 20 3.00 2.02 2.50
29 3.02 3.98 4.00 27 2.00 3.98 2.50
32 2.00 1.98 3.00 31 2.48 1.50 1.48
42 3.00 4.00 2.02 40 1.97 1.50 1.53
46 3.00 3.98 2.98 43 4.02 3.98 3.03
49 1.98 2.50 1.52 53 2.50 3.98 3.00
60 1.50 3.98 3.00 59 3.00 3.00 3.98

61 4.00 2.00 4.00

R=3× 100mg, S=200mg + 100mg, T=Test

TABLE 4.16: Example 4.5: Tmax, Williams Design for Three
Treatments

Sequence TSR Sequence RST
Period Period

Subject 1 2 3 Subject 1 2 3
4 2.50 2.98 3.02 9 2.98 2.50 2.50
7 2.48 2.50 3.97 13 2.00 2.98 1.50
14 2.98 3.00 3.00 21 2.52 2.50 1.55
23 1.00 2.98 3.00 28 2.50 2.98 2.97
26 4.05 2.98 6.00 33 2.97 1.52 1.02
36 2.98 3.98 3.00 44 4.00 4.00 3.97
39 4.08 4.00 3.98 50 3.98 4.00 4.00
48 1.03 2.00 2.02 58 3.00 4.00 2.48
54 2.48 2.50 2.50
56 1.50 1.98 2.48

R=3× 100mg, S=200mg + 100mg, T=Test

TABLE 4.17: Example 4.5: Tmax, Williams Design for Three
Treatments

Sequence STR Sequence SRT
Period Period

Subject 1 2 3 Subject 1 2 3
5 2.50 1.98 2.55 1 2.50 4.02 3.00
10 1.48 1.50 2.50 8 1.98 1.98 4.00
18 3.00 2.50 2.50 15 1.48 2.50 3.98
22 4.02 3.02 4.02 24 3.00 4.00 4.02
30 4.10 3.02 3.98 25 2.48 3.00 2.98

R=3× 100mg, S=200mg + 100mg, T=Test
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TABLE 4.17: Example 4.5: Tmax, Williams Design for Three
Treatments (continued)

Sequence STR Sequence SRT
Period Period

Subject 1 2 3 Subject 1 2 3
34 4.12 4.00 3.98 35 2.97 3.98 2.50
37 2.98 1.48 4.02 41 3.03 3.05 3.98
47 2.50 3.00 4.00 45 1.53 4.03 3.03
52 3.00 4.00 2.52 51 3.02 6.00 2.52
55 3.00 3.98 2.48 57 3.00 3.98 3.00

62 2.98 4.00 2.50

R=3× 100mg, S=200mg + 100mg, T=Test

Bioequivalence testing is based on the 90% confidence for the Test versus Reference
comparison (on the log scale). However, to motivate and explain the construction of the
confidence interval, we first start with the construction of the statistic for testing the null
hypothesis that the mean treatment difference is zero. We will do this first for a single
stratum and then give the generalization.

TABLE 4.18
Williams Design for Three Treatments: Stratified for Comparing T and R

Stratum Group Period 1 Period 2 Period 3

I 1 T R S
I 2 R T S
II 3 T S R
II 4 R S T
III 5 S T R
III 6 S R T

TABLE 4.19
Williams Design for Three Treatments: Stratified for Comparing T and S

Stratum Group Period 1 Period 2 Period 3
I 1 T R S
I 6 S R T
II 5 S T R
II 3 T S R

III 2 R T S
III 4 R S T

4.8.1.1 Single Stratum

The test statistic is Q, as used by Tudor and Koch [1263] for stratified samples and where
the variate is the within-stratum ranks of the responses. We first define Q for a single
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stratum and show its equivalence to the Wilcoxon rank-sum test. In the process we will
also show how the Wilcoxon rank sum can be expressed in terms of U-statistics; this will
be useful when we consider the calculation of a confidence interval for the difference of T
and R.

For a single stratum we assume that there are two sequences, TR and RT, with T and
R in corresponding periods in the two sequences. In addition, we assume that the period 1
to period 2 differences have been calculated and ranked (over the total set of differences).
Then

Q =
[R̄1 − R̄2]2

V̂ar(R̄1 − R̄2)
=

n1n2

n1+n2
(R̄1 − R̄2)2

σ2
R

, (4.9)

where R̄i =
∑ni
k=1Rik/ni, ni is the number of ranks in sequence i, i = 1, 2, Rik, k =

1, 2, . . . , ni are the ranks for that sequence and

σ2
R =

∑2
i=1

∑ni
k=1(Rik − R̄)2

(n1 + n2 − 1)
.

On the null hypothesis that the distributions of T and R are equal, Q has an asymptotic
chi-squared distribution on 1 degree of freedom.

Let W1 =
∑n1

k=1R1k denote the rank-sum in the first sequence. We will now show that
(4.9) is the square of the Wilcoxon rank-sum test statistic. The numerator of this statistic
is

W1 − E(W1) = W1 −
n1(n2 + n1 + 1)

2
=

n1R̄1 −
n1(n2 + n1 + 1)

2
= n1(R̄1 − R̄),

where R̄ = (
∑2
i=1

∑ni
k=1Rik)/(n1 + n2) = (n1 + n2 + 1)/2. In addition, as R̄1 − R̄ =

R̄1 − (n1R̄1+n2R̄2)
n1+n2

, we have

W1 −
n1(n2 + n1 + 1)

2
=
n1n2(R̄1 − R̄2)

n1 + n2
.

In the absence of ties,

Var(W1) =
n1n2(n1 + n2 + 1)

12
.

Returning now to Equation (4.9),

σ2
R =

(n1 + n2)(n1 + n2 + 1)

12
=
n1 + n2

n1n2
Var(W1).

Hence,

Q =
[W1 − E(W1)]

2

Var(W1)
. (4.10)

To illustrate this we consider the first stratum in Table 4.18 and first calculate the test
statistic in more conventional ways. The calculations are done on the log-scale. Using
StatXact, for example, and using asymptotic inference, the Wilcoxon rank-sum test statistic
is -1.6922, which is asymptotically N(0, 1) on the null hypothesis. Using SAS PROC FREQ to
calculate the corresponding Cochran–Mantel–Haenszel statistic with modified ridit scores,
the test statistic is 2.8636 (= 1.69222), which is asymptotically chi-squared on 1 d.f. under
the null hypothesis. The corresponding two-sided P-value is 0.0906.
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To calculate Q, as defined in (4.10), we note that R̄1 = 8.6, R̄2 = 13.1818, n1 = 10,
n2 = 11, and σ2

R = 38.40. Hence, Q = [(10 × 11)(8.60 − 13.1818)2]/38.40 = 2.8636. In the
following we will use the form of the test statistic defined in Equation (4.9).

Before moving on, it is useful to demonstrate one further way of calculating the numera-
tor of the test statistic. Let dik denote the kth period difference in sequence i, i = 1, 2. The
n1n2 differences defined as w{k,k′} = d1k−d2k′ , where k = 1, 2, . . . , n1 and k′ = 1, 2, . . . , n2,
are known as the Walsh differences. Let sj denote a weight for stratum j, where j = 1, 2, 3.
For the moment we are dealing with only one stratum, so we set s1 = 1. For comparison
with later equations we will keep s1 in the following formulae, even though it is unnecessary
for the case of a single stratum. We will use d to denote the shift difference between the
distributions of d1k and d2k′ .

The rank-sum for group i can be written as

Ui =
∑

{wk,k′> d}

s1 + 0.5
∑

{wk,k′= d}

s1. (4.11)

Further, as U1 + U2 = n1n2 and Ui = Wi − ni(ni + 1)/2,√
n1n2

n1 + n2
(R̄1 − R̄2) =

U1 − U2

2
,

where R̄i = Wi/ni. Finally,

U1 − U2

2
=

∑
{wk,k′>d}

s1 + 0.5
∑

{wk,k′= d}

s1 − 0.5n1n2s1.

The Wilcoxon rank-sum test statistic can then be expressed as

W (d) =

∑
{wk,k′> d} s1 + 0.5

∑
{wk,k′= d} s1 − 0.5 n1n2 s1√
n1n2

(n1+n2)σR
. (4.12)

Rearranging Equation (4.12) gives

W (d)

√
n1n2

(n1 + n2)
σR + 0.5n1n2s1 =

∑
{wk,k′> d}

s1 + 0.5
∑

{wk,k′= d}

s1. (4.13)

Solving Equation (4.13) with W (d) = 0 gives the median of the Walsh differences (-0.293),
and this is (twice) the estimate of δ.

Solving Equation (4.13) with W (δ) = ±1.645 gives the positions of the Walsh differences
that correspond to (twice) the lower and upper 90% confidence bounds for δ.

For the first stratum,

1.645

√
n1n2

(n1 + n2)
σR + 0.5n1n2s1 = 23.33 + 55 = 78.3.

The 79th value in the ordered set of Walsh differences (not shown) is 0.0. For the lower
bound we take the −23.33 + 55 = 31.67, i.e., the 31st ordered difference, which is -0.629.
The 90% confidence interval for δ is therefore (-0.314, 0.000). If we take the limits for
bioequivalence to be (-0.223, 0.223) as for AUC and Cmax, then there is clear evidence that
T and R are not bioequivalent when Tmax is used as the metric.

For the remaining two strata the estimate and confidence intervals for δ are, respectively,
[-0.463, -0.247, -0.098] and [-0.289, -0.143, 0.007]. Again there is strong evidence of a lack
of equivalence.
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TABLE 4.20
Period Differences for Comparing T and R: Stratum I

Subject Difference Difference (log scale) Stratum Group Rank

6 0.00 0.000 I 1 11
12 -0.02 -0.005 I 1 9
17 -1.00 -0.289 I 1 4
19 2.48 0.976 I 1 21
29 -0.96 -0.276 I 1 7
32 0.02 0.010 I 1 14
42 -1.00 -0.288 I 1 5
46 -0.98 -0.283 I 1 6
49 -0.52 -0.233 I 1 8
60 -2.48 -0.976 I 1 1

2 0.00 0.000 I 2 11
11 0.97 0.395 I 2 17
16 1.00 0.288 I 2 16
20 0.98 0.396 I 2 18
27 -1.98 -0.688 I 2 2
31 0.98 0.503 I 2 19
40 0.47 0.273 I 2 15
43 0.04 0.010 I 2 13
53 -1.48 -0.465 I 2 3
59 0.00 0.000 I 2 11
61 2.00 0.693 I 2 20

TABLE 4.21
Period Differences for Comparing T and R: Stratum II

Subject Difference Difference (log scale) Stratum Group Rank

4 -0.52 -0.190 II 1 6.0
7 -1.49 -0.470 II 1 4.0
14 -0.02 -0.007 II 1 9.5
23 -2.00 -1.099 II 1 1.0
26 -1.95 -0.393 II 1 5.0
36 -0.02 -0.007 II 1 9.5
39 0.10 0.025 II 1 13.0
48 -0.99 -0.674 II 1 2.0
54 -0.02 -0.008 II 1 8.0
56 -0.98 -0.503 II 1 3.0

9 0.48 0.176 II 2 14.0
13 0.50 0.288 II 2 16.0
21 0.97 0.486 II 2 17.0
28 -0.47 -0.172 II 2 7.0
33 1.95 1.069 II 2 18.0
44 0.03 0.008 II 2 12.0
50 -0.02 -0.005 II 2 11.0
58 0.52 0.190 II 2 15.0
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TABLE 4.22
Period Differences for Comparing T and R: Stratum III

Subject Difference Difference (log scale) Stratum Group Rank

5 -0.57 -0.253 III 1 9
10 -1.00 -0.511 III 1 3
18 0.00 0.000 III 1 11
22 -1.00 -0.286 III 1 6
44 -0.96 -0.276 III 1 7
34 0.02 0.005 III 1 12
37 -2.54 -0.999 III 1 1
47 -1.00 -0.288 III 1 5
52 1.48 0.462 III 1 17
55 1.50 0.473 III 1 20

1 1.02 0.293 III 2 16
8 -2.02 -0.703 III 2 2
15 -1.48 -0.465 III 2 4
24 -0.02 -0.005 III 2 10
25 0.02 0.007 III 2 13
35 1.48 0.465 III 2 18
41 -0.93 -0.266 III 2 8
45 1.00 0.285 III 2 15
51 3.48 0.867 III 2 21
57 0.98 0.283 III 2 14
62 1.50 0.470 III 2 19

TABLE 4.23
Components of the Stratified Test for Comparing T and R

Statistic Stratum I Stratum II Stratum III
Patients in (10,11) (10,8) (10,11)

Each Sequence
Rank-Sum in Each (86, 145) (61, 110) (91, 140)

Sequence(W )
E(W ) (110,121) (95,76) (110,121)

W − E(W ) (-24,24) (-34,34) (-19,19)
Estimated
Variance 38.40 28.471 38.50

of Test Statistic

Weight 0.045 0.053 0.045
Rank-Sum Statistic -1.692 -3.022 -1.338
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4.8.1.2 Multiple Strata

The extension of the Wilcoxon rank-sum test statistic to multiple strata is

W =

∑q
i=1 siWi√∑q

i=1 s
2
i Var(Wi)

=

∑q
i=1 siWi√∑q

i=1 s
2
i
ni1ni2
ni1+ni2

σ2
iR

, (4.14)

where Wi is the rank-sum statistic for the ith single stratum, Var(Wi) is its variance, si is
the weight for the ith stratum, σ2

iR is the variance of the ranks in the ith stratum, and nij is
the number of ranks in sequence group j in stratum i. We will use the weights suggested by
Lehmann [754], si = 1/(ni1 + ni2 + 1), which give the Van-Elteren test statistic. However,
for our purposes we require the corresponding 90% confidence interval. In a way similar to
that described for a single stratum, we can write the numerator of (4.14) as

q∑
i=1

∑
{wik,ik′> d}

si + 0.5

q∑
i=1

∑
{wik,ik′= d}

si − 0.5

q∑
i=1

ni1ni2si. (4.15)

Rearranging Equation (4.14), we get

W (d)

√√√√ q∑
i=1

s2
i

ni1ni2
ni1 + ni2

σ2
iR + 0.5

q∑
i=1

ni1ni2si

=

q∑
i=1

∑
{wik,ik′> d}

si + 0.5

q∑
i=1

∑
{wik,ik′= d}

si . (4.16)

As before, we set W (d) = 0 and solve to get the estimator of 2d. Setting W (d) = ±1.645
gives the positions of the Walsh differences that correspond to (twice) the lower and upper

90% confidence bounds for δ. For T versus R, δ̂ = 0.192 with confidence interval (0.136,

0.279) and for T versus S δ̂ = 0.054 with confidence interval (-0.005, 0.145).
In summary, there is evidence that T and R are not equivalent but T is equivalent to S.

Bootstrap estimation of confidence intervals
An alternative method of getting a nonparametric estimate of the 90% confidence interval
for µT − µR is to use bootstrapping. (See Chapter 5 for a more detailed explanation of the
bootstrap.) The method as applied here is to resample with replication from the 60 sets
of triples (the three repeated measurements on each subject) and to calculate an estimate
of µT − µR from each resample. If this is done a large number of times, say 1000 times, a
distribution of the estimator is generated. The 5% and 95% quantiles of this distribution
provide a 90% confidence interval for µT−µR. The median of this distribution is an estimate
of µT −µR. There will usually be a choice of estimator to use. Here we have taken the least
squares estimator obtained by fitting a linear model with terms for subjects, period, and
treatments. The distributions for µT − µR and µT − µS obtained from 1000 resamples are
given in Figure 4.20. The quantiles and medians obtained are (0.0889, 0.1811, 0.2670) for
µT −µR and (-0.0363, 0.0481, 0.1253) for µT −µR. The conclusions obtained are consistent
with those obtained from the nonparametric method. The only difference of note is that the
lower limits of the bootstrap confidence intervals differ a little from those obtained earlier.
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FIGURE 4.20
Example 4.5: Histograms of Bootstrap Distribution of Estimates

4.8.2 Four Treatments

The data in Table 4.39 are the Tmax values obtained in the trial described in Example
4.6. The comparisons of interest were B versus A and D versus C. It is clear from the
design of this trial that the sequences cannot be grouped in a way that would allow the
nonparametric approach described in the last subsection to be applied. However, we can
use the bootstrapping approach. The 90% confidence intervals and medians so obtained
are: (-0.2724, -0.0628, 0.1604) for µB−µA and (-0.1062, 0.0703, 0.2554) for µD−µC . There
is clear evidence of a lack of equivalence for both sets of treatments.
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4.9 Technical Appendix: Efficiency

4.9.1 Theory and Illustration

We assume that our model for the response includes terms for a general mean, fixed subject
effects, periods, formulations, and carry-over effects. Let the responses, e.g., logAUC, be
stored in a random vector y which is assumed to have mean vector Xβ and variance-
covariance matrix σ2

W I. Here X is a design matrix with elements that are either 0 or 1, β
is a vector of unknown subject, period, formulation, and carry-over parameters, and I is
the identity matrix with row and column dimension equal to that of y. The parameters are
estimated by ordinary least squares:

β̂ = (XTX)−1XTY,

with
V(β̂) = σ2

W (XTX)−1.

We assume that any redundant parameters have been removed and XTX is of full rank. This
can be achieved, for example, by removing one subject parameter, one period parameter,
one formulation parameter and one carry-over parameter. If the design is for n subjects
with n of them randomly allocated to each of the two sequences RTT and TRR, there will
be (1 + n − 1 + 1 + 1 + 1 = n + 3) parameters. However, we do not need to work with
this many parameters to calculate the efficiency. Jones and Kenward [652] show that this
can be done using the corresponding design with one subject allocated to each sequence.
In other words, we put parameters in the model for sequences instead of subjects. We will
illustrate this in the following.

The efficiency of a design compares (1) the variance of the estimated difference between
two formulations in the given design to (2) the corresponding variance in an ideal design
with the same formulation replication and the same within-subject variance σ2

W . The ideal
design is such that it would completely eliminate the effects of subjects, periods, and carry-
over effects from the estimation of the formulation comparison. For example, suppose that
T and R each occur r times in the ideal design. The estimate of the formulation difference
is ȳT − ȳR and its variance is VI = 2σ2

W /r. This is used as the benchmark for other designs.
For the particular cross-over design under consideration, e.g., one with sequences RTT

and TRR, and using the particular parametrization given above, the treatment parameter,
τ2 corresponds to the difference between T and R. The variance of this difference is the
diagonal element of σ2

W (XTX)−1 that occurs in the position corresponding to τ2 in the
vector of parameters. We will give an example of locating this element below. Let us call
this element VC = σ2aC .

The efficiency of the cross-over design for the T-R difference is then the percentage:

E = 100× VI
VC

= 100× 2

r × aC
.

Efficiency cannot exceed 100%.
As an example, consider the design with sequences RTT and TRR and n/2 subjects per

sequence. Suppose we want to allow for a difference in carry-over effects and put these into
our model. For the basic calculations we assume n = 2, then scale down the variances and
covariances according to the true value of n. The design matrix for the model with sequence,
period, formulation, and carry-over effects is as follows, where redundant parameters have
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been removed:

X =


1 0 0 0 0 0
1 0 1 0 1 0
1 0 0 1 1 1
1 1 0 0 1 0
1 1 1 0 0 1
1 1 0 1 0 0

.

The columns in this matrix refer to the general mean, Sequence 2, Periods 2 and 3, Formu-
lation T, and the carry-over of T, respectively. Although there is no carry-over effect in the
first period, we must include a “dummy” parameter to represent this missing effect if we are
to construct the X matrix. Our way of doing this is to let the carry-over parameter for T
do “double duty” by also taking on the role of this dummy parameter. As long as there are
period effects in the model, there is no confusion because the dummy parameter is aliased
with the parameter for Period 1 and effectively gets removed correctly in the analysis. The
inverse matrix, from which the variances are taken or calculated, is

σ2
W (XTX)−1 =

σ2
W

4


4 −2 2 −2 −2 0
−2 3 0 0 1 0
−2 0 5 3 0 −2
−2 0 3 5 0 −2
−2 1 0 0 3 0

0 0 −2 −2 0 4

.

This inverse is for a design with one subject per sequence. To get the correct value of a
variance of a comparison of means, we divide the elements of this inverse by the number
of responses used in calculating the means. For example, when there are n/2 subjects per
sequence, the variance of the estimate of T-R, adjusted for carry-over, is (3σ2

W /4)/(n/2),
i.e., aC = (3/4)/(n/2) = 3/(2n), and the variance of the corresponding estimated carry-over
difference is σ2

W /(n/2), i.e., aC = 2/n. The required elements of σ2
W (XTX)−1 are those in

the fifth and sixth positions along the diagonal because the parameters that refer to T-R
and the carry-over difference are in these positions, respectively, in the vector β. Because
the (5,6)th element of σ2

W (XTX)−1 is zero, these two estimates are uncorrelated. We are
now in a position to calculate the efficiency of the T-R comparison. As each formulation
occurs 3n/2 times in the design, VI = 4/3n and hence

E = 100× 2

r × aC
= 100× 2

(3n/2)(3/2n)
= 100× 8

9
= 88.9%.

Although we are not usually interested in the efficiency of the carry-over comparison, we will
calculate it for completeness and as a further illustration. Traditionally, the replication for
each carry-over effect is taken to be that of the corresponding formulation, e.g., 3n/2 in the
above design. However, as there are no carry-over effects in the first period, this replication
is strictly too large. However, we will stick with the traditional approach. Hence, the
efficiency of the comparison of the carry-over effects of T and R is

E = 100× 2

r × aC
= 100× 2

(3n/2)(2/n)
= 100× 2

3
= 66.7.

We note that the efficiencies for an arbitrary cross-over design can be calculated using the
GenStat statistical analysis system via the procedure XOEFFICIENCY [653].
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TABLE 4.24
Efficiencies of Three Alternative Designs

Design Formulation Carry-over Correlation
T-R T-R (Formulation, Carry-over)

1. RTT/TRR 88.9 66.7 0.00
2. RTR/TRT 22.2 16.7 0.87
3. RRT/TTR 66.7 16.7 0.50

4.9.2 Comparison of Three Alternative Designs for Three Periods

Here we compare three alternative designs that could be used to compare T and R in a
bioequivalence trial. These are

1. R T T 2. R T R 3. R R T

T R R T R T T T R .

The efficiencies of the formulation and carry-over comparisons are given in Table 4.24,
where we have also included the correlation between the estimators of the formulation and
carry-over differences. A major advantage of the first design is that the estimator of the
formulation difference does not change if the carry-over parameter is left out of the model,
as the correlation is zero. Hence, this design provides some robustness against the presence
of a carry-over difference, which, although unexpected, cannot always be ruled out entirely.

4.10 Tables of Data

TABLE 4.25: Example 4.1: Sequence RTT

Sequence RTT
AUC Cmax

Period Period
Subject 1 2 3 1 2 3

104 37.27 62.18 44.09 2.207 2.901 2.073
105 82.870 24.780 24.700 6.123 1.462 1.468
106 47.800 32.880 124.310 2.586 1.203 6.972
107 88.390 30.850 192.450 4.326 1.589 8.687
108 180.50 108.71 200.57 8.459 5.011 9.104
111 50.59 33.53 100.58 3.133 1.814 7.159
113 634.140 914.900 - 7.154 12.354 8.207
115 420.300 205.740 - 20.221 11.746 -
117 582.260 736.820 784.960 9.819 12.035 17.973
118 45.420 - 70.690 1.636 0.852 1.895
120 437.610 586.470 405.950 9.111 11.708 10.539

R=Reference, T=Test
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TABLE 4.25: Example 4.1: Sequence RTT (continued)

Sequence RTT

AUC Cmax
Period Period

Subject 1 2 3 1 2 3

121 22.830 13.720 15.750 1.167 0.506 0.756
123 64.58 35.54 65.11 2.949 1.831 2.989
126 15.15 22.35 21.71 0.902 1.234 1.495
128 30.220 27.400 33.190 1.632 0.921 1.221
130 12.420 71.380 62.270 0.636 4.433 4.408
133 39.010 89.410 59.890 1.854 4.091 2.235
136 24.470 42.660 42.390 1.441 2.997 3.070
137 13.840 21.730 41.690 0.846 1.202 2.380
138 28.040 10.970 42.720 1.045 0.629 2.337
139 264.890 243.660 276.540 13.913 9.160 10.632
141 - - - 0.355 0.237 0.444
142 227.010 8.080 521.640 11.638 0.655 23.115
147 71.100 16.770 44.080 3.489 1.013 2.434
150 29.660 76.030 60.120 1.439 5.327 4.626
153 1737.430 1416.780 1336.790 21.715 22.405 16.726
154 440.830 163.920 282.290 25.232 6.205 11.416
155 53.830 48.090 78.280 1.715 1.239 2.470
160 41.580 259.550 113.840 2.087 11.067 4.379
161 327.530 210.820 453.230 6.741 3.742 10.083
162 45.570 30.130 83.960 1.876 1.230 6.274
164 142.000 146.630 124.380 5.982 5.288 5.456
168 15.230 31.890 71.680 1.020 1.459 4.637
170 76.490 82.700 114.290 4.224 4.131 6.619
173 87.330 51.370 96.460 5.726 2.431 4.939
174 787.890 737.740 338.520 31.224 23.271 12.711
175 1239.480 1819.440 2232.290 24.013 30.484 43.224
177 29.190 36.580 79.590 1.971 2.296 4.243
179 10.130 16.990 9.820 1.029 1.371 0.718
181 257.590 423.890 224.070 9.964 15.005 6.776
182 51.770 27.630 26.090 3.797 2.312 1.741
184 73.750 90.810 - 2.555 3.242 -
185 49.320 124.000 85.710 1.471 4.079 4.743
186 6.060 28.820 87.630 0.311 1.651 4.870
190 82.780 164.560 213.980 3.889 7.376 7.012
191 98.860 99.020 75.480 4.599 2.969 2.388
194 21.290 46.300 15.410 1.513 2.741 1.411

R=Reference, T=Test



BE Studies with More Than Two Periods 101

TABLE 4.26: Example 4.1: Sequence TRR

Sequence TRR

AUC Cmax
Period Period

Subject 1 2 3 1 2 3
101 12.260 16.190 11.340 0.511 0.688 0.533
102 397.980 267.630 487.550 13.270 7.933 12.952
103 243.810 141.700 198.440 16.771 6.926 9.257
109 182.520 112.340 225.940 8.816 4.921 6.911
110 559.640 533.980 867.750 21.398 19.728 19.909
112 40.020 89.490 20.350 2.568 5.222 0.992
114 - - 34.810 0.872 0.337 1.558
116 69.380 214.200 193.620 3.543 8.911 5.900
119 68.080 47.190 84.590 2.673 1.501 4.187
122 181.950 259.400 396.260 5.841 10.642 19.245
124 5.820 17.260 25.720 0.347 1.241 1.175
125 39.310 35.660 40.430 2.288 1.786 2.589
127 146.870 319.910 141.860 5.772 10.780 6.768
129 712.110 549.520 459.260 16.116 13.171 10.648
131 2277.520 3726.580 3808.790 18.448 34.145 41.876
132 1278.060 1103.460 1012.040 18.779 17.086 13.170
134 103.320 138.780 170.440 4.974 5.349 8.128
135 21.930 75.290 42.300 1.622 4.791 3.228
140 77.990 104.080 66.860 3.043 5.210 2.625
143 27.210 47.190 25.340 1.170 2.405 1.698
144 296.090 163.310 387.490 10.730 6.443 13.790
145 82.600 247.710 92.940 3.363 9.128 5.311
146 18.010 241.700 205.390 1.011 10.183 9.865
148 123.270 268.090 128.170 4.985 8.893 5.880
149 52.460 201.680 421.550 2.457 6.945 32.983
151 29.830 20.660 24.550 1.691 1.186 1.313
152 414.990 247.580 419.530 14.735 9.851 12.724
156 213.240 87.550 178.660 7.510 2.793 5.323
157 13.580 7.160 10.940 0.496 0.459 0.756
158 172.250 211.290 206.990 7.330 5.667 9.804
159 1161.730 2280.790 1552.490 27.604 45.495 27.220
163 57.260 48.650 89.010 2.691 2.877 6.631
165 350.950 755.270 711.180 7.034 13.040 11.002
166 36.79 41.75 35.39 1.861 2.75 2.784
167 11.57 3.31 - 1.055 0.326 0.296
171 28.440 61.400 25.500 1.246 3.146 1.016
172 1150.280 759.030 1105.080 15.677 15.215 20.192
176 69.630 24.020 26.110 3.971 1.234 0.948
178 179.76 190.89 299.5 4.909 5.374 10.014
180 14.23 22.44 23.70 1.088 1.783 1.733
183 295.690 304.030 277.670 11.125 9.916 10.649
187 34.180 45.140 58.670 1.870 3.055 4.654
188 50.380 87.620 16.460 2.317 4.658 0.719

R=Reference, T=Test
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TABLE 4.26: Example 4.1: Sequence TRR (continued)

Sequence TRR
AUC Cmax

Period Period
Subject 1 2 3 1 2 3

189 104.08 123.08 129.00 3.73 4.109 6.018
192 17.19 40.01 55.36 1.994 2.786 3.716
193 131.570 156.120 130.480 7.191 12.207 7.532
195 1323.070 1305.500 2464.820 12.897 24.767 27.650
196 654.320 783.530 444.440 12.347 26.041 18.975

R=Reference, T=Test

TABLE 4.27: Example 4.2: Sequence RTT

Sequence RTT
AUC Cmax

Period Period
Subject 1 2 3 1 2 3

1 1158.06 1073.74 748.58 15.44 11.93 14.12
4 520.75 410.53 437.96 13.59 9.17 8.85
5 11.44 13.29 14.31 0.70 0.80 0.92
6 - 28.87 19.44 0.68 1.19 1.44
9 51.76 23.75 35.23 2.48 1.20 1.97
10 - 8.93 5.85 0.35 0.79 0.46
15 25.80 27.91 51.47 1.42 1.78 3.24
16 1633.77 1127.82 1267.52 20.18 35.76 16.24
18 105.03 15.61 18.03 5.87 0.81 0.93
19 1635.06 1562.78 1936.28 20.91 18.53 17.17
22 168.29 337.16 227.49 5.82 10.45 5.45
23 3.23 7.84 4.86 0.28 0.64 0.54
25 44.81 12.22 24.56 2.73 0.78 1.53
28 15.54 24.71 29.74 0.91 1.01 1.33
29 48.69 17.61 35.34 3.66 1.22 1.71
32 134.01 204.85 81.73 5.26 7.51 2.91
34 48.15 17.59 20.08 3.60 1.21 1.15
35 39.22 13.58 19.21 5.27 0.99 1.57
36 805.16 602.79 698.12 20.15 12.13 13.05
37 52.97 55.85 44.97 3.46 4.31 2.70
38 23.07 - 39.34 1.02 2.09 1.31
42 46.99 59.85 60.41 2.33 3.54 2.90
47 43.37 50.40 85.98 2.06 2.73 4.02
48 12.25 9.59 11.70 0.72 0.80 0.39
49 15.47 13.90 19.09 0.80 1.04 0.94
50 54.21 93.00 121.17 1.71 3.90 4.77
53 38.92 32.07 61.57 2.78 1.94 3.05
55 947.92 707.40 696.01 11.72 9.97 9.34
57 37.40 78.42 85.38 1.91 4.13 3.55
62 64.95 66.42 91.42 2.74 3.78 5.06

R=Reference, T=Test
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TABLE 4.27: Example 4.2: Sequence RTT (continued)

Sequence RTT
AUC Cmax

Period Period
Subject 1 2 3 1 2 3

63 9.38 10.95 18.37 1.16 0.77 1.32
67 132.73 128.11 135.28 10.58 5.92 5.56
68 140.46 97.09 153.54 8.52 6.03 7.50
70 366.38 300.67 275.54 13.50 13.41 11.15
71 48.65 40.87 - 2.96 3.08 3.02
73 544.33 617.22 554.04 11.07 13.69 13.11
75 16.69 9.65 13.68 1.90 0.57 1.16
79 60.85 41.24 39.05 2.25 1.76 2.91
80 38.90 61.10 40.88 2.24 3.68 2.50

R=Reference, T=Test

TABLE 4.28: Example 4.2: Sequence TRR

Sequence TRR

AUC Cmax
Period Period

Subject 1 2 3 1 2 3

2 17.28 30.30 83.53 1.20 2.23 5.25
3 11.63 16.20 18.23 0.75 1.34 1.27
7 78.03 42.64 148.29 3.80 1.28 5.11
8 6.61 19.83 7.18 0.64 1.22 1.06
11 14.68 16.74 25.73 1.06 1.74 2.89
12 119.77 211.51 148.04 5.07 9.11 4.78
13 36.26 34.02 50.11 2.59 2.29 2.93
14 59.06 94.61 54.46 4.84 5.79 3.03
17 17.47 39.47 31.08 1.41 2.94 2.49
20 1082.90 1497.28 2011.67 21.62 29.04 29.89
24 47.84 46.22 68.04 3.10 3.16 4.48
26 - 19.24 20.01 0.59 1.08 1.54
27 26.30 15.45 88.92 2.15 1.20 4.78
30 23.94 54.15 55.25 1.47 3.07 2.09
31 21.90 18.72 15.20 1.02 1.08 1.02
33 20.20 28.40 44.84 1.52 1.44 2.59
39 59.06 87.12 148.31 2.93 3.50 6.57
40 79.04 31.79 64.29 4.87 1.65 2.93
41 139.30 74.26 92.94 6.96 4.53 5.36
43 503.28 389.44 547.82 10.86 9.53 10.44
45 50.24 52.74 57.02 2.15 2.66 2.32
46 29.35 41.32 33.12 2.02 2.14 1.79
51 - 20.66 8.13 1.25 2.67 0.53
52 26.95 50.10 26.56 1.67 2.74 1.37
54 19.48 12.62 18.78 1.32 0.64 1.30
56 20.27 - 10.64 1.71 0.65 0.94

R=Reference, T=Test
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TABLE 4.28: Example 4.2: Sequence TRR (continued)

Sequence TRR
AUC Cmax

Period Period
Subject 1 2 3 1 2 3

61 14.57 49.60 58.36 1.06 2.34 2.97
64 56.74 61.83 97.05 3.62 3.12 4.82
65 103.19 187.82 188.43 5.65 8.45 8.41
69 13.12 32.13 18.02 0.94 2.11 0.99
72 14.90 16.00 11.85 1.17 0.94 0.66
74 24.60 39.14 53.98 1.31 2.42 3.63
76 7.50 4.80 12.06 0.52 0.44 1.50
77 828.00 565.73 1085.51 13.37 7.32 14.84
78 33.99 47.96 35.15 2.65 3.17 2.04

R=Reference, T=Test

TABLE 4.29: Example 4.3: Replicate Design

Sequence RTTR

AUC Cmax
Period Period

Sub 1 2 3 4 1 2 3 4

1 10671 12772 13151 11206 817 1439 1310 1502
4 7588 8980 8408 7654 823 1133 1065 1095
6 8389 7949 7735 7616 1347 691 949 1153
7 5161 6601 5479 4764 1278 991 1124 1040
9 7399 7873 8153 7211 1547 1361 1380 1485
10 5660 4858 5347 5076 1088 982 995 796
15 6937 7905 6550 7515 953 1065 830 1247
16 11473 9698 10355 10365 1368 1281 1083 1418

Sequence TRRT
AUC Cmax

Period Period

Sub 1 2 3 4 1 2 3 4
2 6518 6068 5996 5844 1393 1372 1056 1310
3 4939 5728 5760 6313 1481 1377 1529 781
5 7653 8022 10721 8043 709 1035 1571 1342
8 8864 8026 6776 6995 1516 1242 1090 1048
11 8503 7730 8228 8032 999 908 1183 1129
12 7043 6007 7737 6262 679 1220 776 1258
13 5701 5767 5942 7757 822 869 921 947
14 8684 7858 7924 9219 615 1451 1389 1279
18 5210 5120 5420 - 668 842 1176 -

R=Reference, T=Test
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TABLE 4.30: Example 4.4: Replicate Design

Sequence RTRT

AUC Cmax
Period Period

Sub 1 2 3 4 1 2 3 4
1 812.60 1173.70 889.10 620.10 99.85 204.09 170.94 112.78
3 545.10 542.90 - - 67.69 41.73 - -
5 400.00 223.80 173.70 289.70 40.05 25.17 24.48 86.49
6 102.10 185.30 42.00 88.30 28.76 24.83 9.27 10.89
10 304.50 351.50 520.20 335.70 34.35 52.26 142.92 58.48
12 176.10 710.70 409.50 645.50 18.94 161.34 118.89 246.57
15 562.40 490.40 504.70 675.90 28.35 98.50 78.22 140.54
17 207.50 271.60 173.70 240.50 19.18 94.92 21.39 65.45
18 571.30 705.20 619.00 633.60 66.63 134.69 78.10 78.51
21 536.10 595.20 445.50 521.50 42.11 37.82 39.87 116.79
24 449.90 860.40 606.80 577.20 32.53 276.86 118.65 156.33
25 192.50 220.10 233.10 227.00 21.96 38.97 22.26 54.16
28 568.10 321.10 338.30 403.60 110.87 55.64 50.06 84.60
29 735.60 634.50 1244.20 641.90 50.08 58.79 181.53 144.26
31 307.40 481.80 346.60 369.70 87.21 88.75 90.07 132.92
34 292.90 431.00 448.50 267.80 18.07 33.37 21.48 20.87
35 217.20 332.20 103.00 127.50 18.69 174.55 17.06 32.01
39 368.30 292.60 446.10 222.30 52.59 57.88 48.58 47.24
40 193.70 202.80 255.20 244.30 29.30 78.33 21.72 49.27
44 102.00 282.50 245.60 286.20 22.14 63.50 9.38 16.30
46 223.60 645.40 349.00 507.40 27.02 167.28 20.35 121.92
48 615.80 732.10 620.90 665.20 60.94 100.47 26.17 98.08
49 898.40 924.90 398.30 828.30 164.01 180.01 25.21 97.02
50 410.40 329.20 449.40 442.10 59.70 43.65 102.47 40.00
53 332.40 273.60 525.30 293.30 39.96 56.47 42.11 38.75
54 185.20 222.90 182.10 194.10 18.34 16.09 21.50 9.57
57 180.60 174.70 102.90 117.00 9.10 58.44 12.74 18.33

R=Reference, T=Test

TABLE 4.31: Example 4.4: Replicate Design

Sequence TRTR
AUC Cmax

Period Period
Sub 1 2 3 4 1 2 3 4

2 216.30 338.00 502.80 398.60 29.06 50.48 35.15 55.71
4 632.60 520.00 716.70 860.40 91.25 43.86 168.78 61.04
7 596.00 659.30 543.80 662.90 257.10 79.04 127.92 81.80
8 402.40 359.80 590.80 444.30 136.27 158.86 148.97 82.41
9 456.70 378.40 477.50 407.90 65.48 87.84 64.57 58.01
11 500.70 323.00 416.30 525.10 31.49 37.07 80.90 33.62
13 160.60 218.00 170.10 124.60 29.61 43.15 27.71 13.11
16 756.00 606.80 477.40 626.80 168.76 174.94 117.31 52.18

R=Reference, T=Test
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TABLE 4.31: Example 4.4: Replicate Design (continued)

Sequence TRTR
AUC Cmax

Period Period
Sub 1 2 3 4 1 2 3 4
19 511.90 549.70 388.20 141.00 32.23 70.06 32.15 43.11
20 124.00 91.90 113.30 59.50 9.34 11.74 49.23 18.42
22 239.70 265.10 445.90 433.20 38.02 16.79 38.58 83.82
23 609.60 371.60 511.30 432.70 199.07 52.14 118.47 72.04
26 764.40 508.80 757.80 449.40 74.24 35.76 39.27 36.28
27 151.90 194.80 - - 19.00 20.61 - -
30 429.10 391.80 316.90 335.10 31.85 74.88 54.88 19.18
32 409.00 514.60 763.10 406.50 30.86 70.84 208.20 65.25
33 271.00 221.00 296.50 463.70 86.01 41.85 67.86 79.81
36 290.80 208.60 243.70 489.80 38.27 40.31 31.56 20.64
37 297.20 502.00 320.40 334.30 49.81 66.64 17.80 25.94
38 163.80 232.10 636.90 434.90 34.56 16.37 114.30 29.58
42 534.10 243.10 418.40 441.90 136.00 33.75 104.12 35.03
43 355.10 415.20 382.70 334.00 64.55 34.04 52.37 41.67
45 320.50 233.90 331.70 260.50 26.35 37.20 76.26 24.60
47 504.50 289.90 550.70 244.20 118.91 49.27 166.61 35.86
52 237.00 505.00 496.30 580.60 30.55 63.90 39.17 40.75
55 246.90 620.90 678.30 752.20 42.20 106.69 150.52 115.15
56 235.40 190.40 318.30 248.40 39.15 13.79 122.03 62.32

R=Reference, T=Test

TABLE 4.32: Example 4.5: Williams Design for Three Treatments

Sequence RST
AUC Cmax

Period Period
Subject 1 2 3 1 2 3

9 4089 7411 5513 906 1711 1510
13 2077 3684 2920 504 845 930
21 2665 3113 2263 506 809 543
28 3029 5157 4190 563 1263 759
33 4941 4502 3014 1095 1253 1015
44 2173 4571 3350 366 1341 779
50 - - 3900 602 1291 1314
58 6555 11351 8895 1229 2138 2144
67 4045 7865 - 1025 2668 -

Sequence RTS
AUC Cmax

Period Period
Subject 1 2 3 1 2 3

2 3457 6556 4081 776 2387 1355
11 5560 4558 4396 1801 1440 1327
16 3676 5385 5358 544 1556 1776
R=3× 100mg, S=200mg + 100mg, T=Test
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TABLE 4.32: Example 4.5: Williams Design for Three Treatments
(continued)

Sequence RST
AUC Cmax

Period Period
Subject 1 2 3 1 2 3

20 8636 9750 9892 2238 2256 2277
27 2753 2736 3955 572 593 1142
31 4782 4812 4024 1078 1224 1010
40 2636 2791 2394 546 587 442
43 3011 4544 6587 558 998 1418
53 2685 5335 7454 530 1160 1764
59 4841 5934 6624 1416 1302 1517
61 2392 2947 3779 644 744 1144

R=3× 100mg, S=200mg + 100mg, T=Test

TABLE 4.33: Example 4.5: Williams Design for Three Treatments

Sequence SRT

AUC Cmax
Period Period

Subject 1 2 3 1 2 3

1 7260 6463 8759 1633 1366 2141
8 3504 3011 2501 959 557 697
15 6641 1987 3233 1586 364 633
24 4368 4327 2966 991 748 1001
25 8016 7146 9154 2045 1891 2545
35 7749 4188 3425 1855 757 758
41 8961 8737 11312 1722 1313 2705
45 4537 2633 3723 999 604 1075
51 5658 4904 5077 1539 1227 1490
57 5194 2432 4472 1810 686 1149
62 5787 7069 6530 1461 1995 1236

Sequence STR

AUC Cmax
Period Period

Subject 1 2 3 1 2 3
5 4250 3487 2891 945 1041 788
10 4839 3064 2582 1051 991 782
18 6317 5175 3123 1432 1184 647
22 3527 3484 2580 656 734 531
30 2717 2743 1625 637 760 463
34 4709 3212 3840 1022 661 609
37 5256 4070 2505 1194 974 432
47 5840 5213 5213 1329 1477 1039
52 4622 2889 2692 1027 562 422
55 8671 6814 4260 2251 1561 1045

R=3× 100mg, S=200mg + 100mg, T=Test
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TABLE 4.34: Example 4.5: Williams Design for Three Treatments

Sequence TRS

AUC Cmax
Period Period

Subject 1 2 3 1 2 3
6 6709 5893 5346 1292 1154 1098
12 7026 6134 9520 1417 1207 2312
17 9249 5535 9965 2232 913 2887
19 4664 2998 6592 1103 547 2113
29 5547 7319 8331 1288 1506 1884
32 3500 5611 5394 852 1259 1308
42 4367 5827 8863 736 1135 2288
46 3020 3989 3739 643 660 841
49 - - 6092 1556 1895 1854
60 3125 4728 3199 594 1317 731
63 2204 2927 - 495 770 -

Sequence TSR
AUC Cmax

Period Period
Subject 1 2 3 1 2 3

4 4006 4879 3817 1326 1028 1052
7 6924 4674 4183 1475 994 1142
14 6027 6497 5048 1106 1914 1358
23 2642 3178 2496 461 589 561
26 3064 3534 2302 754 1508 419
36 9882 13881 6881 2054 3042 1207
39 1422 2375 1559 316 555 427
48 6029 4114 3625 2261 1097 1038
54 5429 7513 4589 1369 2068 1384
56 6779 7447 6504 1279 1994 1091

R=3× 100mg, S=200mg + 100mg, T=Test

TABLE 4.35: Example 4.6: Williams Design for Four Treatments

Sequence ADBC
AUC Cmax

Period Period
Sub 1 2 3 4 1 2 3 4

2 484 4190 509 4055 108.4 818.0 105.2 914.4
4 584 4134 450 3520 115.0 848.3 90.4 929.8
10 475 3596 350 2809 85.4 550.4 68.0 588.7
15 419 3430 454 3527 66.7 851.1 87.3 772.8
19 504 3635 429 4286 89.1 622.7 67.7 696.3
20 549 2727 314 3565 97.5 729.9 66.0 933.5
25 428 3174 389 3246 101.9 839.9 89.1 589.9

A=Reference Low, B=Test Low, C=Reference High, D=Test High
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TABLE 4.36: Example 4.6: Williams Design for Four Treatments

Sequence BACD

AUC Cmax
Period Period

Sub 1 2 3 4 1 2 3 4
3 454 409 3571 3167 62.5 65.5 568.2 567.6
7 944 382 2830 2784 93.3 103.4 796.1 730.1
11 370 397 2399 1550 101.6 55.8 586.0 327.5
12 412 346 3010 2848 117.1 69.1 444.4 567.5
17 405 328 2574 2264 70.8 70.2 518.4 495.4
21 354 349 3249 2942 50.6 57.5 572.9 567.4
26 371 329 2427 2667 105.4 72.4 681.9 600.5

A=Reference Low, B=Test Low, C=Reference High, D=Test High

TABLE 4.37: Example 4.6: Williams Design for Four Treatments

Sequence CBDA
AUC Cmax

Period Period
Sub 1 2 3 4 1 2 3 4

6 3163 413 3069 345 689.1 94.6 652.1 58.2
8 3410 307 3009 370 554.6 61.5 675.1 87.2
9 3417 352 2975 376 686.6 56.8 606.0 59.8
14 3327 332 2826 350 629.1 86.0 718.8 87.1
18 2223 208 1759 232 563.2 67.7 584.1 74.0
22 2368 257 2104 274 540.2 50.5 464.1 59.2
28 3020 414 3022 419 652.7 59.3 607.2 79.1

A=Reference Low, B=Test Low, C=Reference High, D=Test High

TABLE 4.38: Example 4.6: Williams Design for Four Treatments

Sequence DCAB
AUC Cmax

Period Period

Sub 1 2 3 4 1 2 3 4
1 2942 2525 278 359 563.6 658.1 55.6 73.0
5 2740 2634 338 306 565.7 580.3 71.7 53.7
13 2897 2538 313 331 833.4 562.5 96.6 78.6
16 4513 4058 484 434 859.4 745.2 88.9 70.0
23 2095 1987 233 199 388.1 471.6 54.2 25.2
24 3218 2705 365 367 635.6 643.3 66.3 62.1
27 2525 2672 238 316 471.2 557.0 29.4 51.4

A=Reference Low, B=Test Low, C=Reference High, D=Test High
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TABLE 4.39: Example 4.6: Tmax, Williams Design for Four Treat-
ments

ADBC BACD
Period Period

Sub 1 2 3 4 Sub 1 2 3 4
2 1.00 1.98 1.05 1.52 3 1.00 0.50 0.52 0.52
4 1.02 1.00 0.57 0.55 7 1.48 0.45 0.53 0.53
10 0.50 1.95 1.02 1.02 11 0.52 1.98 1.45 1.48
15 1.00 0.48 0.48 0.50 12 0.50 0.60 1.47 1.50
19 0.50 1.00 1.45 1.00 17 0.98 1.03 1.00 1.00
20 0.97 0.95 0.48 0.48 21 0.50 1.50 0.48 1.48
25 0.53 0.48 0.47 1.47 26 0.50 0.98 0.50 1.00

CBDA DCAB
Period Period

Sub 1 2 3 4 Sub 1 2 3 4
6 0.57 0.50 1.02 0.98 1 0.98 0.48 1.03 0.50
8 1.03 1.02 1.00 0.55 5 0.48 0.48 0.50 0.50
9 0.50 0.48 0.55 1.45 13 0.52 1.02 0.50 0.48
14 0.98 0.48 0.52 0.53 16 0.48 1.00 1.02 0.98
18 0.95 0.97 0.48 1.00 23 0.97 0.95 0.98 3.97
22 0.47 0.95 0.48 1.00 24 1.00 0.97 1.00 1.50
28 1.00 0.48 0.52 0.53 27 3.00 1.50 1.48 1.98

A=Reference Low, B=Test Low, C=Reference High, D=Test High
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Dealing with Special BE Challenges

or What one can do when some things that can go wrong, do go wrong. . .
In business, there is always a lot of talk about challenges and opportunities. These are

really the same thing — a demanding task that requires a greater than normal commitment
to see through to completion. In “business-speak,” when something goes wrong and has to
be fixed or changed, this type of thing is typically viewed as a “challenge.” A challenge is an
opportunity that one does not want to work on, as it has some sort of negative connotation
associated with it. In contrast, an opportunity is a challenge that one does want to work
on, as it has some sort of positive connotation. It is all a matter of one’s perspective on the
event in question. Either way, however, statistically speaking, it is probably going to require
a lot of work.

When the FDA denies a claim of bioequivalence, there is a great deal of consternation
at any given sponsoring company. Everyone usually knows such an event is coming, but it
is like getting a big bill requiring immediate payment in the mail — if it came in tomorrow
(or even better next week or next month), that would be preferable. My company was no
exception, and our senior executives met quickly in one such instance to determine what to
do. It was decided to repeat the study “right away” (with some design enhancements). This
was definitely referred to from the get-go as a “challenge to the organization.”

On top of the dismay among the staff working on the project associated with not having
our bioequivalence claim approved, this “right away” action by senior executives generally
represents an even greater challenge (and caused even more tangible consternation) among
the staff who actually have to do this job. It is advisable not to tell a senior executive
that something is impossible (if one values one’s job), but often things like this can be very
difficult if not impossible.

A human clinical trial of a drug product must have a written protocol (plan for the
study) which must be unconditionally approved following review by an independent ethics
review committee prior to any subject or patient being screened or dosed. If it involves a
new chemical or biologic entity, this entity must be appropriately registered with the local
regulatory agency of the appropriate government(s) if required; there is a lot of paperwork
involved with these things. In addition, any human volunteer or patient involved in a trial
must read and sign an informed consent before being enrolled in a trial and must be screened
to ensure they are physically and mentally capable of taking part in the clinical trial. There
are contracts with the site that must be reviewed by procurement and legal functions within
the sponsoring company prior to signoff, and usually someone who is completely critical
to at least one step in this process is on vacation, blissfully unaware of what is going on,
until contacted at an inconvenient moment by an extremely stressed person tasked with the
“challenge” of tracking them down.

Thus, when something like the above study is to be done “right away,” that means the
protocol, paperwork, and trial facilities for the study have to have been written and assembled
and submitted several days or weeks ago in order to get the study started as soon as possible.
No one can reasonably be deemed a fortune teller and do such a thing in advance; hence,
long hours and long days are the usual result of a challenge to try to have such a trial up
and running “Stat.”

Senior executives are also the people responsible for resources at most companies and
are often very surprised when they find out how long things really take. The good ones come
down and lend a hand until the crisis is past, and we received a lot of senior-level attention
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on this occasion. Everything that could be done was done (in the space of three weeks), and
the trial was good to go on the following Monday. However, we were all so busy working
that we forgot to look out the window, an important omission on this occasion.

We finalized the protocol following ethics board review, completed all the regulatory pa-
perwork, and finalized all the contracts. Then we all took a long deep breath and went home
for the weekend to recover. Unfortunately, it rained all weekend, as a hurricane was passing
through the Caribbean and eastern USA.

We returned to work Monday morning (this was in the days before cell phones and
laptops, so work-related communications did not happen, so much, on the weekends) to
discover that, despite our best efforts, the trial would not start as desired by our senior
executive team. The hurricane had disrupted the shipping of supplies to the site, and we
would have to reschedule. We had to delay the trial and resulting regulatory file dates. Some
things just cannot be designed into or accounted for in models of bioequivalence trials.

Many other matters, however, can be controlled in design or modelled afterward to assess
impact using technologies developed in the 20th century. In this chapter, we describe several
such topics and methods for doing so. We hope that readers who find themselves in a
“challenging” BE situation find these topics useful.

5.1 Restricted Maximum Likelihood Modelling

The first topic to be considered is that of modelling of pharmacokinetic data using maximum
likelihood approaches.

The likelihood is the probability of observing the sample of data obtained in the trial,
and is, given these data, a function of a set of specified parameters. For BE testing, the
parameters of interest are the formulation, period, and sequence effects and any within- or
between-subject variances.

In trials where subjects get repeated exposure to a formulation, i.e., where the design
includes sequences such as RTTR and TRRT, it is possible to estimate σ2

BT , σ2
BR, the

between-subject variances of T and R, respectively, and the within-subject variances of T
and R, σ2

WT , σ2
WR, respectively.

The method of maximum likelihood (ML) determines the parameter estimates to be
those values of the parameters that give the maximum of the likelihood. Restricted max-
imum likelihood estimation (REML) is a form of ML estimation that uses an iterative
procedure where within each iteration there are two steps. A simplified description of
REML is as follows. Using a first guess or estimate of the parameter values, the procedure
keeps the values of the variance parameters fixed and estimates the formulation, period, and
sequence effects. This is the first step. The residuals from this model are then calculated
and used to reestimate the variance parameters. This is the second step. These steps are
repeated until the values of the parameters do not change from one iteration to the next.
The “Restricted” in the name of the method arises because, within each step, one set of
parameters is fixed while the other set is estimated by maximizing the likelihood under the
restriction imposed by the fixed set of parameters.

The usefulness of REML is that it can be used to estimate the between- and within-
subject variances. The estimates so obtained are informative for the interpretation of the
data, particularly when bioequivalence between T and R is not demonstrated. A second,
and less important, property of REML is that it can be used when the dataset is incomplete,
i.e., when a complete set of logAUC or logCmax is not obtained from each subject. We
illustrated such an analysis in Chapter 3. There, it will be recalled, the REML results were
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very similar to the results obtained from an analysis that used just those subjects that had
a complete set of values. For more information on the properties of REML when the trial
has a relatively small number of subjects, see [652].

Some regulatory agencies are not interested in the variance components, as their focus
for inference is the mean difference between formulations, and such agencies may require
that only fixed effects be fitted in the model [319].

However, even for such agencies, when a trial fails to show bioequivalence it is of inter-
est to determine which factors (i.e., a difference in formulation means, unexpectedly high
variability, or both) led to such a circumstance, and REML models may be used to explore
data in such a context and in the presence of missing data. The use of REML models is also
important in the context of scaled average bioequivalence, and we review the application of
such methods in a subsequent chapter.

REML has quite a long history ([118, 514, 740, 961] and has been particulary useful
for the analysis of repeated measurements ([652, 699, 881, 1271]). Readers interested in
application in the bioequivalence setting should see [967], [970], and [1339].

Obviously, given its iterative nature, REML estimation cannot be done by hand. SAS
code to perform these analyses is given in the box below.

For standard two-, three-, and four-period designs such as those found in Examples 3.1,
3.2, 4.5, and 4.6 (i.e., those where no formulation adminstration is replicated), analysis code
may be found on the website in exam1.sas to exam4.sas, respectively. Some proc mixed

code for Example 4.5 exam3.sas7bdat is included here for illustration purposes:

proc mixed data=my.exam3

method=reml ITDETAILS maxiter=200;

class sequence subject period formula;

model lnauct=sequence period formula

/ddfm=KENWARDROGER;

random subject(sequence);

estimate ’T-R’ formula -1 0 1

/cl alpha=0.10;

estimate ’T-S’ formula 0 -1 1

/cl alpha=0.10;

run;

Kenward and Roger’s [689] denominator degrees of freedom are specified to ensure the
correct degrees of freedom are used and that a good estimate of the standard error of µ̂T−µ̂R
is obtained.

Estimates relevant to ABE testing may be found in Table 5.1 for AUC and Cmax on
the log scale.

It will be recalled that, while Example 3.1 demonstrated bioequivalence, Example 3.2 did
not (see Chapter 3) due to reasons discussed later in this chapter. In Example 4.5, formula-
tion T was not equivalent to R or S, with results indicative of a potentially bioinequivalent
new formulation. In Example 4.6, bioequivalence was demonstrated at both high and low
doses of drug product.

We have provided two additional datasets, exam5.sas7bdat and exam6.sas7bdat, on
the website that were obtained from trials that used the sequences (RTTR/TRRT) and
(RTRT/TRTR), respectively. FDA-recommended code to analyze these [369] may be found
in exam5.sas and exam6.sas, respectively. The proc mixed code for exam5 is given in the
box below. The AUC and Cmax data for exam6 are given in Table 5.4, where we consider
other interesting features of these data.
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proc mixed data=my.exam5

method=reml ITDETAILS maxiter=200;

class sequence subject period formula;

model lnauct=sequence period formula

/ddfm=KENWARDROGER;

random formula/type=FA0(2) subject=subject;

repeated/group=formula subject=subject;

estimate ’T-R’ formula -1 1/CL ALPHA=0.1;

run;

Here, as before, the procedure mixed is called in SAS and estimates of the test and
reference formulations differences are again computed using the estimate statement. Note,
however, that different specifications are included for the random and repeated statements
(cf., [369]). These are used, as the replication of treatments within each subject permits
the estimation of between- and within-subject variances for each formulation.

The random statement specifies that a particular choice for the variance structure should
be assumed for σ2

BT and σ2
BR (Factor Analytic [1073]) and that the variance associated with

subject-by-formulation interaction,

σ2
D = σ2

BT + σ2
BR − 2ρσBTσBR,

should be derived, where ρ is the between-subject correlation between the formulations.
Estimates of these may be found in Table 5.2.

The repeated statement specifies that within-subject variance estimates should be de-
rived for T and R formulations separately.

Average bioequivalence was demonstrated for exam5 with no evidence of a subject-by-
formulation interaction (σ̂D of 0.03 for AUC and 0.02 for Cmax). Test and reference for-
mulations were equivalent for AUC in exam6 with no evidence of a subject-by-formulation

TABLE 5.1
REML Results from PROC MIXED for Standard Bioequivalence Designs

Example Dataset Endpoint µ̂T − µ̂R 90% CI σ̂2
W

3.1 exam2 logAUC(0−∞) -0.0166 -0.0612, 0.0280 0.0110
logAUC(0− t) -0.0167 -0.0589, 0.0256 0.0099

logCmax -0.0269 -0.1102, 0.0563 0.0384

3.2 exam1 logAUC(0−∞) 0.0940 -0.0678, 0.2482 0.1991
logCmax 0.0468 -0.0907, 0.1843 0.1580

4.5 exam3 logAUC(0− t) T −R = 0.1497 0.0859, 0.2136 0.0440
T − S = −0.1912 -0.2554, -0.1270

logCmax T −R = 0.2597 0.1726, 0.3468 0.0846
T − S = −0.2088 -0.2964, -0.1212

4.6 exam4 logAUC(0−∞) B −A = 0.0047 -0.0545, 0.0638 0.0177
D − C = −0.0362 -0.0953, 0.0230

logCmax B −A = −0.0355 -0.1171, 0.0461 0.0336
D − C = −0.0301 -0.1117, 0.0515

B, D, T = Test Formulations
A, C, R, S = Reference Formulations
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TABLE 5.2
REML Results from PROC MIXED for Chapter 5 Examples of Replicate Designs

Dataset Endpoint µ̂T − µ̂R 90% CI σ̂D σ̂2
Wi

exam5 logAUC(0−∞) 0.0357 0.0130, 0.0583 0.03 R = 0.0065

T = 0.0117
RTTR/TRRT logCmax -0.0918 -0.1766, -0.0070 0.02 R = 0.0404

T = 0.0587

exam6 logAUC(0− t) 0.1004 0.0294, 0.1714 0.04 R = 0.1202

T = 0.0756
RTRT/TRTR logAUC(0− t′) 0.1043 0.0326, 0.1760 0.02 R = 0.1212

T = 0.0818
logCmax 0.4120 0.2948, 0.5292 0.21 R = 0.3063

T = 0.2689

T = Test Formulation
R = Reference Formulation

interaction. Note that, for Cmax in dataset exam6, however, in addition to a large in-
crease in mean rate of exposure for the test formulation (0.4120, definitely indicative of
bioinequivalence), there was evidence of a subject-by-formulation interaction, as indicated
by σ̂D = 0.21 (making it even more difficult to demonstrate bioequivalence, as the confi-
dence intervals will be wider by a factor directly proportional to this value). The data in
exam6 had other aspects making it interesting statistically, and we will consider this dataset
in more detail later in the chapter.

5.2 Failing BE and the DER Assessment

For some drug products, even if one tries time and time again to demonstrate bioequiva-
lence, it may be that it just cannot be done. A common misconception is that this means
the test and reference formulations are “bioinequivalent,” in that they deliver different phar-
macokinetic profiles causing different pharmacodynamic response. This is not necessarily
the case.

An example of a potentially bioinequivalent test product is presented in Figure 5.1.
The important thing to note is that the measure of centrality in addition to the bulk of the
distribution falls outside the average bioequivalence confidence limit for logAUC. Implicitly,
for a product to demonstrate bioequivalence, its true measure of centrality must fall within
the limits. Otherwise, it will be next to impossible (or a Type 1 error) for such a product
to demonstrate bioequivalence. In this case, the estimated µT − µR tells us that it is most
unlikely we will ever be able to demonstrate bioequivalence.

Contrast this with the fitted normal densities of Example 3.2 in Chapter 3. Here the
measure of centrality lies within the average bioequivalence acceptance limits, but slightly
too much of the distribution lies outside to conclude the test and reference formulations
are bioequivalent. These formulations are not bioinequivalent, but insufficient evidence has
been provided to show that they are.
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FIGURE 5.1
A Potentially Bioinequivalent Test and Reference Product: Fitted Normal Densities for
µ̂T − µ̂R

Formulations may fail to show bioequivalence for several reasons:

1. The estimated µT − µR lies too far from zero,

2. Variation is greater than expected, resulting in too wide a confidence interval for
µT − µR,

3. Insufficient sample size is used (also yielding too wide a confidence interval for
µT − µR),

4. Or some combination of these.

In Example 3.2 of Chapter 3, all three factors combine to contribute to the failure to
demonstrate bioequivalence. The difference in formulation means, µ̂T − µ̂R, was estimated
to be approximately 0.1 for logAUC (on the natural scale, 1.1) while the study had been
designed under the assumption that µT −µR would be no greater than ±0.05. Also, σ̂W was
estimated to be approximately 0.45, while the sample size had been chosen in expectation
of a σW of 0.3. The combination of these two factors in combination with the a priori
choice of sample size resulted in a failure to demonstrate bioequivalence. However, given the
observed magnitude of these factors, a better designed follow-up study might be able to show
bioequivalence successfully. Some might refer to the study as having been “underpowered,”
implying that insufficient sample size was utilized; however, all three factors contributed to
the failure to demonstrate bioequivalence.
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Insufficient sample size can result in confidence intervals that are wide in bioequivalence
trials, making it difficult to demonstrate bioequivalence. Note, however, that in such failed
trials the confidence interval is quite informative [526]. In the case of a failed bioequivalence
trial, the confidence interval may be regarded as expressing a plausible range of values for
the true µT − µR. In the case of Example 3.2, the confidence interval for AUC (recall this
is exp(µ̂T − µ̂R)) was (0.94–1.29) with the probability of any given value of exp(µT − µR)
decreasing as it becomes further away from 1.1. It is possible therefore that, if we repeated
the trial using the same design and sample size, we would observe exp(µ̂T − µ̂R) of as low
as 0.94 and as high as 1.29! Indeed, in a previous relative bioavailability study (of similar
design but lower sample size), an estimate of 0.95 for exp(µ̂T − µ̂R) had been observed.

Note that, in Example 3.2, as a 2× 2 cross-over design was used, hence σWT = σWR =
σW . These variances are confounded in this design, and we can neither test nor estimate
whether σWT = σWR = σW . If a replicate design had been used, it would be possible
to separately model the magnitude of intra-subject and inter-subject variation for each
formulation. Such a design and analysis might be desirable if we suspected, for instance, that
the new formulation resulted in more intra-subject variation than the reference formulation.

Failure to demonstrate bioequivalence is therefore different but related to bioinequiv-
alence. Only in cases where sample size is very large and point estimates for δ lie out-
side the acceptance bounds would one definitely conclude bioinequivalence was observed.
Bioinequivalence is thus quite rare, but failure to demonstrate bioequivalence can occur
quite often. In the latter case, it is generally possible to repeat the study or use a more
powerful design to attempt to successfully demonstrate bioequivalence.

Turning now to the implications of failure to demonstrate bioequivalence, successful
demonstration is not always necessary in regulatory science to secure approval of a new
product. For certain new agents, rate and extent of exposure can change in a new formula-
tion relative to that used in clinical trials. For a new product’s first regulatory application
(i.e., a product invented by the sponsor representing a new chemical or biological entity’s
first New Drug Application at the FDA, for example), a drug might not need to clearly
demonstrate bioequivalence to the full regulatory standard. The FDA’s guidance on this
follows:

Where the test product generates plasma levels that are substantially above those of the
reference product, the regulatory concern is not therapeutic failure, but the adequacy
of the safety database from the test product. Where the test product has levels that are
substantially below those of the reference product, the regulatory concern becomes ther-
apeutic efficacy. When the variability of the test product rises, the regulatory concern
relates to both safety and efficacy, because it may suggest that the test product does
not perform as well as the reference product, and the test product may be too variable
to be clinically useful.

Proper mapping of individual dose-response or concentration-response curves is useful
in situations where the drug product has plasma levels that are either higher or lower
than the reference product and are outside usual BE limits. In the absence of individual
data, population dose-response or concentration-response data acquired over a range of
doses, including doses above the recommended therapeutic doses, may be sufficient to
demonstrate that the increase in plasma levels would not be accompanied by additional
risk. Similarly, population dose- or concentration-response relationships observed over a
lower range of doses, including doses below the recommended therapeutic doses, may be
able to demonstrate that reduced levels of the test product compared to the reference
product are associated with adequate efficacy. In either event, the burden is on the
sponsor to demonstrate the adequacy of the clinical trial dose-response or concentration-
response data to provide evidence of therapeutic equivalence. In the absence of this
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evidence, failure to document BE may suggest the product should be reformulated,
the method of manufacture for the test product be changed, and/or the BE study be
repeated. [373]

If bioequivalence has not been demonstrated for a new product, the task then is to model
exposure’s (AUC, Cmax) relationship to efficacy and safety in patients using the reference
formulation’s clinical data. If therapeutic equivalence can be shown for such an exercise,
then approval may be obtained. In the knowledge of the extent to which the test formulation
changes exposure (measured in a bioequivalence study or studies), one may simulate what
change of the magnitude observed for AUC and Cmax for the test formulation would be
produced in terms of patient response in clinical use.

We refer to this type of modelling and simulation procedure as the DER (Dose-Exposure-
Response) assessment. Modelling of bioequivalence data was covered in Chapters 3 and 4.
We will develop the basic ideas behind simulation in the next section.

This simulation-based procedure provides regulators with a technique to assess whether
the issue in manufacturing poses a risk to the patients using the new product. Note,
however, that the DER assessment is limited in scope of application to only new (i.e.,
innovative) products. Existing marketed products may not apply such a procedure and
must demonstrate average bioequivalence to have access to the market (in most cases).
There are always exceptions to such a rule, but such exceptions are very rare.

Bear in mind that regulators use average bioequivalence testing as a tool for measuring
manufacturing quality. It is not the only tool which may be applied (see Chapter 2), and
the extent of the rigor in its application is dependent on how many people are using the
product in the marketplace.

For a new innovator product, relatively few patients (only those volunteering for clin-
ical trials, see Chapter 2) will have received the drug. However, when a drug is allowed
marketplace access by regulators, the number of patients exposed to the drug increases
exponentially. Small changes in the PK for a new innovator product may not result in
increased risk to patients in the marketplace using the drug for the first time, and this
is studied using the DER assessment. Regulators therefore are free to use their informed
judgment in permitting market access for these innovative products.

When a manufacturer makes changes to a marketed formulation or multiple companies
begin to market new formulations (at the innovator’s patent expiration), there is little room
for such judgment. Many people are presumed to be at risk, and the regulators must ensure
that, when the patients use the new formulations, their safety and efficacy are protected.
When millions of people are using a drug, even a very small change in exposure for a small
percentage of patients may result in many people being placed at risk.

Conservative application of the average bioequivalence standard is therefore the rule
once an approved drug is on the market, and regulators have little to no freedom to change
bioequivalence limits. With few exceptions [40], rigorous application of the 0.80–1.25 limits
has protected public health and individual patients using new formulations.

The rationale for this regulatory conservatism is well documented. Hauck et al. [537]
showed that allowing wider than the usual acceptance limits (0.80–1.25) allowed larger
changes in rate of exposure. This change could result in a less acceptable safety profile
for a new formulation (i.e., more undesirable side effects) than the reference formulation.
Anderson and Hauck [23] showed that rigorous application of the ABE acceptance criteria
protects public health when multiple new formulations enter the marketplace at patent
expiration.

Application of the DER assessment is therefore limited in scope to innovator products
entering the market for the first time. We now turn to the topic of simulation in order to
develop how one goes about a DER assessment.
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5.3 Simulation

We introduce simulation here to develop the concepts behind its use and application in
clinical pharmacology research. A full discussion of the topic is beyond the scope of this
work, and we refer those interested in more information to [1], [97], [501], [570], [640], [980],
[1063], [1319], and [1395].

Simulation can be thought of as a means of creating datasets using a computer without
going to the trouble of actually doing a study and collecting observations.

This approach assumes we know the truth about the parameters in which we are inter-
ested. In bioequivalence, for example, we might assume we know the true values of µT , µR,
σ2
B , σ2

W , and the magnitude of any period and sequence effects. A random data generator
can then be used in SAS, for example, to simulate PK data.

For example purposes, assume a bioequivalence study has failed, showing a 10% decrease
in the new formulation AUC relative to the reference formulation. An AUC of at least 175
is needed for the product to be efficacious in killing bacteria, and concern might exist that,
if a patient were switched from the reference to the new formulation in the marketplace,
the product might fail to demonstrate efficacy. The reference product had an average AUC
of 200 (µR = ln 200), and the new formulation was observed to have an average AUC of
180 (µT = ln 180). We know from previous experience that between-subject variance for
logAUC is 0.18 with a within-subject variance of 0.09.

SAS code (an example of such code may be found on the website accompanying this
book) can then be used to generate simulated PK data for simulated subjects. Here we
set µT = ln 180, µR = ln 200, σ2

B = 0.18, and σ2
W = 0.09. Period and sequence effects are

presumed to be null, but are easy to include if desired. LogAUC data for 2500 simulated
subjects for the reference and the new test product are output in an SAS dataset called
DER.

In statistics, such simulations are used often in working practice. Simulated data are
generated and plugged into various methods of analysis under consideration to assess the
properties of the statistics being considered. Statisticians may use such techniques to as-
sess the degree of bias (the degree to which δ̂ 6= δ, for example) and precision ((δ̂ − δ)2,
for example). Statisticians also use such techniques to evaluate “what if” scenarios. For
example, the presence of two or three subjects with very unusual data points may easily be
included in a simulation to assess their impact on the probability of demonstrating average
bioequivalence.

Other branches of clinical pharmacology use simulation for other purposes — e.g., the
DER assessment described in the last section. Response data are collected and used to
develop models to relate exposure to response (see Chapter 11). In our example, we would
evaluate the number of subjects achieving an efficacious response (AUC > 175) on the refer-
ence formulation and of these subjects assess how many subsequently showed an efficacious
response on the test formulation. In this simulation, 73.7% of those having an efficacious
response to the reference formulation also had an efficacious response to the test formula-
tion. Note that these findings might also lead one to wish to increase the dose, as a good
percentage of those studied on the reference formulation (40%) did not reach efficacious
levels! However, one might be constrained in that an AUC greater than 300 (for example)
might be associated with an undesirable side-effect. Consideration of such is left to the
reader.

In practice in bioequivalence trials, simulation is not often used. Most modern companies
have manufacturing well under control by the time of a regulatory application. Bioinequiv-



122 Bioequivalence and Statistics in Clinical Pharmacology, Second Edition

alence is quite infrequent, and failed bioequivalence studies are becoming rare with the
advent of customization and automation in drug development manufacturing.

This is a simplistic modelling and simulation example, but the concepts may be applied
in more complex situations.

Clinical pharmacologists work with statisticians to develop such models and use simu-
lations to predict what might be observed in future trials. This is a powerful tool; however,
we need to have a care to monitor the assumptions being made in such an exercise. Results
are highly dependent on the chosen model parameters, and life has a way of being more
complex than any simple model can hope to describe.

5.4 Data-Based Simulation

The first data exploration technique we will consider is a technique some attribute to R.A.
Fisher [500] and developed in great detail in an excellent book by Efron and Tibshirani
[294]. We encourage readers interested in application of this technique to explore these and
other books [1132] and publications (e.g., [1133, 1134]) on the topic.

In this section, we will dwell on the application of the bootstrap in bioequivalence.
The reader will note its utility as a general data exploration tool, and it will become very
handy in our exploration of other clinical pharmacology data.

The bootstrap is “a computer based method for assigning measures of accuracy to
statistical estimates” [294]. Essentially, we recognize that the sample of observed data from
any clinical trial is only a sample from a far larger population (which we obviously cannot
sample exhaustively — it is too big). Additionally, the observed data from each subject
is a sample of what we would see if we studied that subject again and again. We could
even drill down further and look at each individual period’s results for each subject as a
sample of what we would see if we repeated each period within each subject again and
again. However, for this section, we will choose to apply the bootstrap at the subject level,
maintaining the actual number of subjects observed within each sequence in accordance
with recent draft guidance on the topic [358].

Bootstrapping is accomplished by randomly sampling, with replication, from the original
dataset of n subjects. One picks a subject at random from the dataset, includes that data
in the analysis dataset, replaces the subject, picks again, replaces the subject, etc., until
one has a new dataset with n subjects. The same subject may appear in the bootstrap
dataset more than once.

One does this a large number of times to accumulate a set of r bootstrap datasets.
The number r is arbitrary but should be pretty large, in general, at least r ≥ 1000. The
chosen method of analysis is then applied to each of the r bootstrap datasets, and a record
of each of the r fitted sets of parameters is kept. For any given parameter, the r sets of
estimates may be used to estimate moments of the parameter of interest such as its mean
and variance.

Obviously, one cannot bootstrap this set of r datasets by hand, and application of
this technique was constrained until modern computing power became available in the
1980s–1990s. Some modern software packages offer automated bootstrapping routines, and
bootstrapping is easily accomplished in SAS via use of the MACRO SAS language.

An SAS macro used for this purpose may be found on the website accompanying this
book. Bootstrap samples are generated by calling the SAS macro bootstrp from a chosen
dataset. Note that a seed value is input. This is a random number chosen to tell SAS where
to begin sampling and allows one to reproduce the results if the program needs to be rerun.
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TABLE 5.3
Number of Successful BE Trials

Dataset Comparison AUC Cmax Overall
exam1.sas7bdat T-R 41% 67% 38%
exam2.sas7bdat T-R 100% 99% 99%
exam3.sas7bdat T-R 61% 0% 0%
exam3.sas7bdat T-S 16% 5% 4%
exam3.sas7bdat S-R 0% 0% 0%
exam4.sas7bdat B-A 100% 98% 98%
exam4.sas7bdat D-C 100% 100% 100%
exam6.sas7bdat T-R 88% 0% 0%

If a seed is not provided, SAS uses the clock to automatically determine where to start.
The bootstrp macro then samples from the dataset in the manner described above and
outputs datasets r = 1 to nrep where nrep is the number of r bootstrap datasets desired.
The number chosen in the examples is r=nrep=2000.

One then derives the statistic of interest for each bootstrap dataset. For exam1 – 6

we will estimate the 90% confidence interval for µT − µR for the purposes of providing an
example, though any statistic may be treated in this manner. For this exercise, we will be
interested in estimating the proportion of cases among the bootstraps where a conclusion
of BE may be made.

Following some data manipulations, the output bootstrap datasets are then each used
to estimate a 90% confidence interval for µT − µR using proc mixed, as shown in Chapter
3. If the confidence interval falls within ∓ ln 1.25 for both lnAUC and lnCmax then an
overall “success” is registered for that bootstrap dataset.

We can see that it is unlikely a repeat of the study in Example 3.2 (exam1.sas7bdat)
would be successful. See Table 5.3. Overall only 38% of bootstrapped datasets resulted in
a conclusion of bioequivalence. While the percentage of Cmax datasets being bioequivalent
was relatively high (at 67%), only 41% of bootstrapped data sets were successful for AUC.

One could also use this tool to evaluate “what if” scenarios, e.g., what if we changed
the sample size to n = 20 subjects? One could also run the bootstrap procedure repeatedly
to obtain a confidence interval for the odds of a successful repeat of a bioequivalence trial.
This sort of exercise is left to the reader.

As a caution, we advise that, when using complex models like those currently employed
in bioequivalence testing, users of the bootstrap should take care to ensure that their find-
ings are robust to the incidence of non-convergence in the bootstrapped datasets. Note
that the REML model used to examine exam5.sas7bdat failed to converge in SAS when
bootstrapped on a very large number of occasions due to the issues involving the magnitude
of variances described in [967]. Therefore, results should be interpreted with caution and
are not presented in Table 5.3. The analysis for exam6.sas7bdat also failed to converge on
a very limited number of occasions (less than 4% of the bootstraps for AUC, and less than

1% for Cmax). Modification to SAS code (see �bootstrap exam1 – 4.sas) may be necessary
to ensure enough computer memory is available to run the model repeatedly or to ensure
the model converges adequately.

We note that, while the bootstrap is a nice, easy-to-implement data exploration tool
given modern computing power, it is important to note that bootstrap sampling introduces
randomness into the results. This randomness has implications. In some cases [970], cov-
erage probability of confidence intervals generated using the bootstrap may be lower than
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expected, leading to an increased possibility of a Type 1 error (see Chapter 1). Therefore,
while it is a useful tool for exploring data, caution should be applied when using any findings
for making claims in regulatory submissions. Those doing so should be prepared to ensure
regulators that the risk of a Type 1 error is maintained at a level acceptable to the public’s
health.

Although not utilized here, we further note that the bootstrap is a very powerful tool
for model validation [510].

5.5 Carry-Over

When carry-over is mentioned in bioequivalence studies, it refers to the occurrence of a
nonzero plasma concentration of drug in a sample prior to dosing. As such, it complicates
the analysis of bioequivalence data by aliasing or biasing the assessment of changes between
formulations. A washout period (of at least five half-lives) is employed to prevent such
occurrences.

Carry-over is very unusual but not unknown in bioequivalence studies and can arise
from a variety of factors. Some are

1. Long-half-life drugs (with inadequate, too short, washout duration),

2. Serendipitous inclusion in the trial of subjects who poorly metabolize or eliminate
the drug,

3. Random occurrences (possibly due to assay problems).

Statistical tests are available to test for carry-over and to evaluate its impact on these
changes in formulation means [652]; however, in keeping with comments made in Chapter
3, and previous findings [1113], we do not recommend that those analyzing data from
bioequivalence studies carry out statistical tests for the presence of carry-over ([652, 1114,
1115]). We will therefore confine discussion to practical issues and analyses that may be
considered when pre-dose concentrations are detected. This would signal that carry-over
was present in the bioequivalence design, and we assume that statistical tests will not be
used to assess its impact in keeping with [1114, 1115], and [652].

As a practical matter, even if a more than adequate washout is used, there will be in-
stances where pre-dose concentrations in periods after the first are non-null. The example
to be considered was a drug that had been on the market for so long that its development
predated pharmacokinetic assessment! The plant where the formulation had been manu-
factured (for many, many years) was closing, and the machinery that made the drug was
packed and shipped to another site to continue manufacture, but the people who ran the
machines at the old site retired. Therefore, the job was to prove that manufacturing at the
new site by the new people but old equipment was to the same quality as the old (closed)
site by use of a bioequivalence study.

In designing this bioequivalence study, the complete lack of pharmacokinetic data was
problematic. On this occasion we had no basis on which to decide the length of a sufficient
washout period, and there was insufficient time to run a pilot study. At risk, the study was
designed based on an educated guess about what washout was needed from pharmacody-
namic action of the product, but it turned out our guess undershot the needed duration.
The example represents a worst-case scenario in that many pharmacokinetic profiles (for
27 subjects of 54 participating) were identified as having pre-dose concentrations in excess
of the pharmacokinetic assay’s lower limit of detection. AUC and Cmax data are listed in
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Table 5.4 for this replicate design. AUC and Cmax values marked with a C denote those
where a pre-dose plasma concentration was non-zero and in excess of the pharmacokinetic
assay’s lower limit of quantification.

TABLE 5.4: Example 5.1: AUC and Cmax Data from a Replicate
Cross-Over Study Design with Test and Reference Formulations
and Carry-Over (C)

Subject Seq Period 1 Period 2 Period 3 Period 4

AUC
1 RTRT 812.6 1173.7C 889.1 620.1
2 TRTR 216.3 338 502.8C 398.6
3 RTRT 545.1 542.9C . .
4 TRTR 632.6 520C 716.7C 860.4C
5 RTRT 400 223.8C 173.7 289.7C
6 RTRT 102.1 185.3 42 88.3
7 TRTR 596 659.3 543.8 662.9
8 TRTR 402.4 359.8 590.8 444.3
9 TRTR 456.7 378.4 477.5 407.9C
10 RTRT 304.5 351.5C 520.2C 335.7C
11 TRTR 500.7 323C 416.3C 525.1C
12 RTRT 176.1 710.7 409.5 645.5
13 TRTR 160.6 218 170.1 124.6
15 RTRT 562.4 490.4C 504.7 675.9
16 TRTR 756 606.8 477.4 626.8
17 RTRT 207.5 271.6 173.7 240.5
18 RTRT 571.3 705.2 619 633.6
19 TRTR 511.9 549.7 388.2 141
20 TRTR 124 91.9 113.3 59.5
21 RTRT 536.1 595.2 445.5 521.5C
22 TRTR 239.7 265.1C 445.9 433.2
23 TRTR 609.6 371.6C 511.3 432.7C
24 RTRT 449.9 860.4C 606.8 577.2C
25 RTRT 192.5 220.1 233.1 227
26 TRTR 764.4 508.8 757.8 449.4
27 TRTR 151.9 194.8 . .
28 RTRT 568.1 321.1 338.3 403.6C
29 RTRT 735.6 634.5C 1244.2C 641.9
30 TRTR 429.1 391.8C 316.9 335.1C
31 RTRT 307.4 481.8 346.6C 369.7C
32 TRTR 409 514.6C 763.1C 406.5C
33 TRTR 271 221 296.5 463.7
34 RTRT 292.9 431C 448.5 267.8C
35 RTRT 217.2 332.2 103 127.5
36 TRTR 290.8 208.6 243.7 489.8
37 TRTR 297.2 502 320.4 334.3
38 TRTR 163.8 232.1 636.9 434.9
39 RTRT 368.3 292.6C 446.1 222.3C

R=Reference, T=Test
C=Carry-Over Concentration at Baseline
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TABLE 5.4: Example 5.1: AUC and Cmax Data from a Replicate
Cross-Over Study Design with Test and Reference Formulations
and Carry-Over (C) (continued)

Subject Seq Period 1 Period 2 Period 3 Period 4

40 RTRT 193.7 202.8 255.2 244.3
42 TRTR 534.1 243.1 418.4 441.9
43 TRTR 355.1 415.2 382.7 334
44 RTRT 102 282.5C 245.6 286.2C
45 TRTR 320.5 233.9 331.7 260.5
46 RTRT 223.6 645.4 349 507.4C
47 TRTR 504.5 289.9 550.7C 244.2
48 RTRT 615.8 732.1C 620.9 665.2C
49 RTRT 898.4 924.9C 398.3 828.3C
50 RTRT 410.4 329.2 449.4 442.1
52 TRTR 237 505C 496.3 580.6C
53 RTRT 332.4 273.6 525.3 293.3
54 RTRT 185.2 222.9 182.1 194.1
55 TRTR 246.9 620.9C 678.3 752.2C
56 TRTR 235.4 190.4 318.3 248.4
57 RTRT 180.6 174.7 102.9 117

Cmax

1 RTRT 99.85 204.09C 170.94 112.78
2 TRTR 29.06 50.48 35.15C 55.71
3 RTRT 67.69 41.73C . .
4 TRTR 91.25 43.86C 168.78C 61.04C
5 RTRT 40.05 25.17C 24.48 86.49C
6 RTRT 28.76 24.83 9.27 10.89
7 TRTR 257.1 79.04 127.92 81.8
8 TRTR 136.27 158.86 148.97 82.41
9 TRTR 65.48 87.84 64.57 58.01C
10 RTRT 34.35 52.26C 142.92C 58.48C
11 TRTR 31.49 37.07C 80.9C 33.62C
12 RTRT 18.94 161.34 118.89 246.57
13 TRTR 29.61 43.15 27.71 13.11
15 RTRT 28.35 98.5C 78.22 140.54
16 TRTR 168.76 174.94 117.31 52.18
17 RTRT 19.18 94.92 21.39 65.45
18 RTRT 66.63 134.69 78.1 78.51
19 TRTR 32.23 70.06 32.15 43.11
20 TRTR 9.34 11.74 49.23 18.42
21 RTRT 42.11 37.82 39.87 116.79C
22 TRTR 38.02 16.79C 38.58 83.82
23 TRTR 199.07 52.14C 118.47 72.04C
24 RTRT 32.53 276.86C 118.65 156.33C
25 RTRT 21.96 38.97 22.26 54.16
26 TRTR 74.24 35.76 39.27 36.28
27 TRTR 19 20.61 . .
28 RTRT 110.87 55.64 50.06 84.6C

R=Reference, T=Test
C=Carry-Over Concentration at Baseline
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TABLE 5.4: Example 5.1: AUC and Cmax Data from a Replicate
Cross-Over Study Design with Test and Reference Formulations
and Carry-Over (C) (continued)

Subject Seq Period 1 Period 2 Period 3 Period 4

29 RTRT 50.08 58.79C 181.53C 144.26
30 TRTR 31.85 74.88C 54.88 19.18C
31 RTRT 87.21 88.75 90.07C 132.92C
32 TRTR 30.86 70.84C 208.2C 65.25C
33 TRTR 86.01 41.85 67.86 79.81
34 RTRT 18.07 33.37C 21.48 20.87C
35 RTRT 18.69 174.55 17.06 32.01
36 TRTR 38.27 40.31 31.56 20.64
37 TRTR 49.81 66.64 17.8 25.94
38 TRTR 34.56 16.37 114.3 29.58
39 RTRT 52.59 57.88C 48.58 47.24C
40 RTRT 29.3 78.33 21.72 49.27
42 TRTR 136 33.75 104.12 35.03
43 TRTR 64.55 34.04 52.37 41.67
44 RTRT 22.14 63.5C 9.38 16.3C
45 TRTR 26.35 37.2 76.26 24.6
46 RTRT 27.02 167.28 20.35 121.92C
47 TRTR 118.91 49.27 166.61C 35.86
48 RTRT 60.94 100.47C 26.17 98.08C
49 RTRT 164.01 180.01C 25.21 97.02C
50 RTRT 59.7 43.65 102.47 40
52 TRTR 30.55 63.9C 39.17 40.75C
53 RTRT 39.96 56.47 42.11 38.75
54 RTRT 18.34 16.09 21.5 9.57
55 TRTR 42.2 106.69C 150.52 115.15C
56 TRTR 39.15 13.79 122.03 62.32
57 RTRT 9.1 58.44 12.74 18.33

R=Reference, T=Test
C=Carry-Over Concentration at Baseline

The average contribution of the nonzero pre-dose concentrations in these subjects rel-
ative to the magnitude of Cmax observed in that period was only 1.5%. Thus, for the
majority of subjects the presence of carry-over could be deemed negligible as a practical
matter. However, two subjects had concentrations of approximately 5.25% and 5.05% rel-
ative to the Cmax observed in that period. For the purpose of this example, Subject 1
(Period 2, pre-dose concentration of 10.7) and Subject 10 (Period 3, pre-dose concentration
of 7.2) will be deemed to have had such observed data. Results of such magnitude would
lead one to consider whether this could have an impact on inference.

Regulatory guidance is quite clear on how to handle such data. The FDA guidance [373]
recommends that

If the pre-dose concentration is less than or equal to 5 percent of Cmax value in that
subject, the subject’s data without any adjustments can be included in all pharmacoki-
netic measurements and calculations. If the predose value is greater than 5 percent of
Cmax, the subject should be dropped from all BE study evaluations.
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TABLE 5.5
Example 5.1: Adjusted Cmax and AUC Data for Subjects 1 and 10

Subject Period Adj. AUC(0-t) Adj. Cmax
1 2 1045.3 193.39
10 3 433.8 135.72

Europe’s guidance is a little more specific [319]:

If there are any subjects for whom the pre-dose concentration is greater than 5% of the
Cmax value for that subject in that period, the statistical analysis should be performed
with the data from that subject for that period excluded.

These guidances tacitly assume that the occurrence of carry-over of sufficient magnitude
to impact inference is random, in line with recent publications on the topic ([652, 1114,
1115]). Indeed, even in the worst-case scenario of carry-over described above, only two
subjects had concentrations of such magnitude, and exclusion of Subjects 1 and 10 and/or
the data in the particular periods of interest does not materially affect statistical inference.
Confirmation of this finding is left to the reader using the SAS code introduced earlier.

This approach has the benefit of simplicity, and, given the sparsity of the occurrence
of relevant carry-over, it is expected that its application will suit most circumstances. We
will dwell on an alternative approach for (rare) situations when such might not be suitable.
Additionally, the handling of such data by non-FDA and European regulatory bodies, for
example, is not standardized in guidance, and other agencies might request other approaches
to analysis.

We will consider adjustment of data for pre-dose concentrations where the magnitude is
sufficient to warrant concern. Consider Subjects 1 and 10 in the example. As the pre-dose
concentration has been assayed, it is reasonable to presume that the effect on subsequent
observed plasma concentrations is additive relative to the dose received in the period under
study, as drug on board pre-dose is simply in the process of being eliminated from the
body. One could “slice” a portion of the concentration data from the pharmacokinetic
concentration versus time profile and estimate an adjusted Cmax and AUC for use in
analysis. For Example 5.1, these data are presented in Table 5.5.

These adjusted data were derived by subtracting the pre-dose concentration from Cmax
and by removing an estimated area from the AUC. For the purposes of this example, the
t in AUC(0-t) was defined as occurring at 24 hours post dose, and the area “sliced” from
the full AUC was derived according to the equations of Chapter 1 consistent with a half-life
of 24 hours. In more complex pharmacokinetic profiles, other calculations might be more
appropriate. The changes in the data introduced by “slicing” adjustment did not impact
statistical inference (confirmation of this is left to the reader) relative to statistical analysis
including their original data.

Data manipulation in such a manner may have two unintended effects on bioequivalence
testing. It certainly introduces more variation into our model, as adjustment using “slicing”
does not take into account the error implicit in pharmacokinetic measurement (due to assay
and within-subject variability).

Additionally, data manipulation may introduce bias, as only some data for subjects in
certain periods were adjusted. Note in the example above, subjects with very low pre-dose
concentrations were present but were neglected, as their values were minimal (around 1.5%
of Cmax), and only data for certain periods were adjusted (see Subject 10). As average
bioequivalence is a within-subject assessment (each subject serves as their own control),
if a subject experiences carry-over sufficient to warrant adjustment in one session, it is
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more appropriate to adjust all sessions for any relevant pre-dose concentrations for a given
subject regardless of magnitude. In the case of the above example, one should consider
adjusting data for Subject 10 in Periods 2 and 4 even though pre-dose concentrations in
those sessions were only approximately 1.5% of Cmax. Alternatively, if the FDA “data-
reduction” approach [373] is used, all of the subject’s pharmacokinetic data should be
excluded from analysis to avoid the introduction of bias or increased variation.

Those using such adjustment techniques should be explicit about what adjustments were
made and the process followed. Regulatory acceptance of such a procedure is unknown and
falls outside the scope of current international guidance (other than the FDA’s, cf. [373],
where an alternative procedure described above is recommended).

Note also that, while not recommended in bioequivalence testing, statistical models for
the assessment of differential carry-over in bioequivalence testing in cross-over designs [652]
may detect such “slicing” of the data as a factor consistent with the statistical detection of
carry-over from such data. Therefore, further care is recommended if such models and data
manipulation are applied.

5.6 Optional Designs

The most common study design applied to bioequivalence testing is the 2×2 design, already
described in great detail. In cases where one dosing regimen is to be marketed relative to
the multiple formulations used in confirmatory trials (e.g., a 300 mg dose is to be marketed
but must be confirmed as bioequivalent to a 200 mg tablet with a 100 mg tablet and to
three 100 mg tablets), it may be necessary to extend this design to consider more than two
regimens in a BE trial. Other trials might include four periods if bioequivalence was to
be evaluated between two formulations at a low and at a higher dose, for example. Such
is required by certain nations [141] when dose proportionality (discussed in a subsequent
chapter) is not demonstrated.

Such designs are simply an extension of the 2×2 design introduced in Chapter 2 and may
be analyzed in straightforward fashion as described in Chapters 3 and 4 and [652] and [1113].
We will refer to them as standard bioequivalence cross-over designs. For bioequivalence
testing, the same model in SAS is typically utilized to analyze the data as that introduced in
Chapter 3 with appropriate modifications for the number of sequences (s = 1, 2, 3...), periods
(p = 1, 2, 3...), and treatments. In SAS, the call to proc mixed, the class statement, the
model statement, and the random statement are all the same. The estimate statement
changes to accommodate the comparisons of interest.

An additional alternative design has already been mentioned, the replicate design. It is
particularly useful for studying bioequivalence of highly variable drugs. A highly variable
drug is defined as a drug with a within-subject CVW (coefficient of variation) of greater
than 30%. The coefficient of variation of a variate is the ratio, expressed as a percentage,
of the standard deviation of the variate to its mean. For BE testing we note that σ2

W =
ln(CV 2

W + 1), i.e.,
CVW =

√
eσ

2
W − 1.

In a replicate cross-over design (see Chapter 4), each subject receives each formulation twice.
Eligible subjects are randomized to one of two treatment sequences, e.g., TRTR or RTRT.
Thus, each subject is studied in four periods and receives each formulation twice over the
course of the study. Similar to the two-period cross-over design described previously, a
washout period adequate to the drug under study (at least five half-lives) separates each of
the four treatment periods.
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Formulation means are estimated with measurement and sampling error in cross-over
designs. Replication of measurement within each subject reduces sampling error by a factor
equivalent to the number of replications. For example, in a standard cross-over design,
the variance of an individual’s mean response on i =T (or R) is σ2

Bi + σ2
Wi where σ2

Bi is
the inter-subject variance and σ2

Wi is the intra-subject (i.e., sampling error) variance. In a
replicate design, the variance of an individual’s mean response is σ2

Bi+ (σ2
Wi/2). Therefore,

where high intra-subject variability is of concern, the replicate design will provide more
precise estimates of the true individual response.

For a low-variability product, replication does not improve precision dramatically, as
σ2
Wi contributes little to the magnitude of the above expression; however, for a high vari-

ability product, replication more precisely defines the range over which an individual’s mean
response may vary. Such measurement is also more accurate, as replicate measurement and
the derivation of corresponding means converges to the true (and unknown) mean under the
central limit theorem with increasing replication [1283]. Such measurement may thus allow
for better scrutiny of outliers ([1341, 1342]), but as the comparison of formulation means is
of direct concern in the success of average bioequivalence studies, the desirability of such
improvement in accuracy and precision is immediately apparent as a practical matter.

The number of subjects required to demonstrate average bioequivalence can be reduced
by up to 50% using a replicate design relative to the sample size of a 2× 2 cross-over trial.
Note that the overall number of doses studied, however, remains similar to a 2×2 cross-over
and that the study will be of about twice the duration with twice the blood sampling for
each individual subject.

Experience indicates that, although it is theoretically possible to perform a bioequiva-
lence trial with more than four periods, such is rarely utilized. Application of such a trial is
not generally limited by logistics (how many subjects can be brought in, length of stay, etc.)
but by how much blood can be drawn from a human volunteer in a given time interval! FDA
guidance [373] recommends that 12–18 blood samples per subject per period be taken to
characterize the PK versus time profile and to derive appropriate estimates of AUC, Cmax,
and the other endpoints of interest. A blood collection of 500 mL across the length of a study
is the usual limit applied to blood sampling for a human volunteer, and subjects should not
have donated blood or plasma for approximately two months prior to being in a study.

Bioequivalence trials must also collect blood samples for purposes other than PK assess-
ment. Such blood sampling for safety assessment (laboratory assessment of liver function,
for example) from each volunteer at screening, during the trial, and follow-up in addition
to PK sampling limits how much blood can ethically be taken without compromising the
safety of volunteers in a given time interval. If this amount is exceeded, this could not only
pose a danger to volunteers but also would change the amount of blood available in the
circulation and potentially impact the ADME properties of PK measurement (defeating the
purpose of collecting it).

We now have an extensive range of options for deciding what type of study design can
be applied in a bioequivalence study. These options are applied depending on how many
subjects are required to have a good chance of success in demonstrating bioequivalence and
the extent of clinical resources. A general algorithm for designing average bioequivalence
trials is described below.

Algorithm 5.1: Planning a Bioequivalence Study [966]

1. Determine the number of formulations (and doses) to be studied for bioequivalence.
2. Calculate the sample size for a standard cross-over (i.e., a non-replicate 2× 2, three-
or four-period) design. The details of how to perform sample size calculations will be
discussed in the next section.
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3. Consider available clinical resources.
4. For products with low to moderate intra-subject variation (CVW < 30%) where ad-
equate resources are available, use the standard cross-over design.
5. For highly variable products, where sample size exceeds available resources, consider
a replicate cross-over design and reassess sample size. If resources are adequate, use the
replicate design.
6. For situations where resources are still too limited to achieve desired power, or in
situations where one is very uncertain of the magnitude of intra-subject variation (or
other critical assumptions), apply a group-sequential design.

Group sequential designs are a further extension of the designs already discussed. These
offer the potential for additional resource savings in bioequivalence designs ([482, 535]).
A group sequential design consists of one or more interim analyses, at which point the
sponsor can decide to stop the trial with concrete evidence of success or failure or to carry
on. Well known in the statistics community [978], such designs are easy and straightforward
to implement in practice in this setting and are becoming more common in regulated drug
and biological development [394].

A group sequential design approach could be used in cases where there is significant
uncertainty about estimates of variability. That is, based on previous data, there is a
fairly wide range of estimates, such that choosing a lower estimate might result in an
underpowered study and choosing a higher estimate might result in an overpowered study,
which in either case is a waste of resources. As such, the group sequential design allows
one to conduct an interim look with a sample size that provides reasonable power based on
a lower (or optimistic) estimate of variability and the final sample size based on a higher
(or less optimistic) estimate of variability. Similarly, if uncertainty in the true ratio of
bioavailability is of concern, an interim look might be planned based upon sample size
required to provide bioequivalence based on the optimistic estimate, with the final look
providing conclusive results should this not be the case.

Lastly, a group-sequential design may be applied if it is undesirable to complete a large
study due to resource constraints. Some choice of samples for interim analysis may be
chosen (based on clinical feasibility) to facilitate an interim look. The probability of success
may be quantified at that stage, and, if results are inconclusive, the study can continue to
completion.

The two aspects of a group-sequential design that help determine the probability of
stopping early are the alpha-spending function to control the overall Type 1 error rate
of the study and the decision rule(s) for stopping at an interim analysis. There are many
Type 1 error spending functions and decision rules to choose from, but only those relevant to
two-stage group-sequential design for a bioequivalence trial will be discussed in this chapter.

The Type 1 error rate, as previously discussed, was set by regulators at 5% per test for
bioequivalence studies and is defined as the probability of a false-positive outcome, or, in
the case of bioequivalence trials, declaring two formulations are bioequivalent when they
are not in truth. Unlike a fixed sample size trial, where there is only one analysis, a group-
sequential trial may have multiple analyses. When data from a fixed sample size trial are
analyzed repeatedly during the trial, the overall Type 1 error rate becomes inflated if each
look is conducted at the same test level. For example, if two bioequivalence test procedures
are conducted (each at the usual 5% level), the overall Type 1 error rate, the probability
of a false positive on the first or second test, is 8% (instead of 5%); if three are conducted,
the overall rate is 11%; and so on [1325].

As such, to control the overall Type 1 error rate of the study, the Type 1 error rate at each
analysis must be some value less than the desired overall Type 1 error rate. In a two-stage
group-sequential bioequivalence trial, the Type 1 error is typically divided equally between
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the two analyses. A simple, but conservative, method is the Bonferroni adjustment, which
results in an error rate of 2.5% per two one-sided test [i.e., 95% confidence interval (CI)]
at each look, but the resulting overall error rate slightly less than 5%. Another alternative,
suggested in [994], is to set the error rate at the two analyses at 2.94% (i.e., approximately
94% CI) at each look, resulting in an overall error rate of approximately 5%.

Note that application of such a group-sequential design in bioequivalence testing is not
the norm and is in fact discouraged by some guidance [33]. If it is applied, it is expected that
most regulators will prefer the position expressed in [33] such that a conservative adjustment
(i.e., the Bonferroni procedure) should be applied. For a standard cross-over design with
two looks at the data, 95% confidence intervals would be derived at each look.

The decision rule for stopping early (at the first look) should contain both a rule for
stopping early when bioequivalence is clearly demonstrated and a rule for futility when
bioequivalence is not expected to be demonstrated. For example, one might define the
following rule:

1. If the test formulation is demonstrated to be BE at the interim look (i.e., the
95% CIs for AUC and Cmax are contained in 0.80–1.25), then success has been
achieved. Stop the study.

2. If exp(µ̂T − µ̂R) for AUC or Cmax are not in the range 0.80–1.25, then further
study is likely to be futile, and the study should be stopped.

3. Otherwise, continue to the final look.

In the next section, we will consider the calculations which go into deriving a sample
size in more detail, and discuss several practical issues impacting the choice of sample size.
In the remainder of this section, two other important issues will be discussed: derivation of
the variance estimates to be used in bioequivalence sample size calculation, and the length
of the washout period.

As discussed in Chapter 1, from the time Phase I starts with the first-time-in-humans
study to the time in drug development when one would need to do a bioequivalence study,
there is extensive study of pharmacokinetics. In general, AUC, Cmax, and the other PK
endpoints are derived in multiple clinical pharmacology studies, resulting in a plethora of
estimates for σ2

W of AUC and Cmax. Each of these study-specific estimates for σ2
W may be

regarded as independent under the assumption that subjects participating in a given trial
do not participate in the other trials.

When independent variability estimates are available across several studies (here studies
are denoted i = 1, 2, ...), based on the properties of the chi-squared distribution, a method of
pooling data across studies is readily available. In brief, a pooled estimate of within-subject
variation (σ̂2

PW ) for σ2
W is derived as

σ̂2
PW =

∑
i(ni − si)σ̂2

Wi∑
i(ni − si)

,

where ni−si is the respective d.f. (equal to the sample size ni less the number of sequences si
in trial i) for the within-subject variability estimate σ̂2

Wi from trial i based on the properties
of the chi-squared distribution. These pooled estimates of variation for AUC and Cmax will
be utilized in the sample size calculations performed in the next section.

Drugs where no such variability estimates exist for use in calculations are very unusual
in the modern pharmaceutical industry, especially for those sponsors who conduct the con-
firmatory clinical trials and clinical pharmacology programs themselves. Even for drug
products where no such in-house data are available, there are a variety of other sources of
information (e.g., Physician’s Desk Reference, Summary Basis for Approval, etc.) which
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likely will contain some information on PK variability for use in study design. In the rare
event that data are not available, the FDA guidance [373] does make mention of running a
pilot study of 6–12 subjects in a cross-over design to estimate variability. Those applying
such a technique should ensure that AUC and Cmax data from the pilot study are not pooled
with the subsequent confirmatory bioequivalence trial to avoid impacting the Type 1 error
rate. Alternatively, a group-sequential analysis plan as described above could be applied.

Estimates of mean and variance for half-life T 1
2

should also be available across the i trials
and can be regarded as independent from one another across trials under the same set of
assumptions. One could also pool these estimates to determine an overall mean half-life to
define the length of washout period; however, we recommend against such a practice given
the importance of an adequate washout in the design of such trials and the interpretation
of resulting data.

A key assumption in a cross-over design is that, all else being equal, pharmacology and
physiology are stable throughout the length of the trial in any given volunteer. This is why
normal healthy volunteers are dosed in bioequivalence trials — to prevent the occurrence
of or potential for changing disease state from confounding the assessment of any difference
in formulations. Therefore, after giving drug and altering (actually causing) PK to be
measurable by means of our endpoints AUC and the rest, the washout is utilized to bring
back blood concentrations to basal (i.e., null) level, ensure any impact of the drug on the
body is negligible, and allow the normal healthy volunteers’ bodies to return to “normal”
with respect to blood lost to sampling. They then receive the next formulation in the next
period, and so on.

As we have seen in Chapter 3, if concentrations do carry over through the washout
period and into the next period (checked via collection of a blood sample prior to dosing),
these carry-over effects confound to some extent the interpretation of differences between
formulations. We therefore encourage readers to be over-cautious in the choice of washout
period duration in bioequivalence. It should be at least five times the average mean half-
life (across studies) and should be extended longer if significant within-subject variation is
observed in T 1

2
. Readers interested in a more quantitative definition of the upper limit of

mean T 1
2

may wish to consider the application of a prediction interval (see, for example,

Chapter 2 of [907] for more details), but we will not dwell further on this issue here.
For drugs with extremely long half-lives, a parallel group design [373] may be employed.

In a parallel group design, subjects are randomized to receive either formulation T (Test)
or R (Reference) in a single period and are not crossed over. Such studies are quite unusual
in bioequivalence testing and will not be discussed further here. Readers interested in such
an approach should see [196] and [1314]. Another design in the statistical literature that
is sometimes considered is the “partial”-replicate design. This is simply a replicate design
with the fourth period removed. Although understood statistically ([198, 617]), this type
of design was seldom applied in bioequivalence testing. These designs are being more often
used due to emerging regulatory guidance on scaled average bioequivalence and will be
discussed later.

5.7 Determining Trial Size

Anyone can run a computer program to calculate how many subjects are needed for a BE
study. The actual calculation for determining a sample size is the easiest part of what a
statistician does in helping a team design a bioequivalence trial. The calculation itself (see
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Chapter 3) is straightforward (see Chapter 3, [985], [258], [260], [196], [1113], and [652] for
background). The more complex part of the job is to ensure that an adequate interface
occurs between Statistics and Clinical to ensure the design and sample size are appropriate
to the needs of the study.

The first question one should ask Clinical in designing a bioequivalence trial is, “How
many formulations and doses need to be involved?” This will help determine the number
of periods (2, 3, or 4) to be applied in the study, and thereafter the number of sequences of
treatment administration. This number of sequences is critical, as it (with n, the number
of subjects) will define the degrees of freedom associated with the comparison between
formulation means. As sample size is generally small in bioequivalence studies (n ≤ 30
subjects), an imprecise understanding of the degrees of freedom can lead to an imprecise
understanding of the power of a trial and its probability of success.

It is assumed for the purposes of this discussion that within-subject variability estimates
are available, for both AUC and Cmax, to determine the trial size. For this purpose
the larger of the two pooled estimates is of primary interest in calculations, for obvious
reasons (i.e., power will be greater, or alternatively the probability of a Type 2 error will be
lower, for the endpoint with smaller variation). However, the degree of this increase should
be estimated using appropriate code (just switching the estimate of variability) to ensure
adequate overall power for the study, as it is known [918] that

Power ≥ PAUC + PCmax − (2− 1)

where PAUC is the estimate of power for AUC and PCmax is the estimate of power for Cmax.
In the event that the overall power falls below the desired level, sample size may be increased
to compensate, resulting in the desired level of power. For example, if power for Cmax is
0.90, and for AUC 0.95, the resulting overall study power is at least 0.9 + 0.95− 1 = 0.85.

The next question to ask Clinical is, “How many beds does clinical have, and how many
subjects can be scheduled?” (also known as, “How many spots are available?”). Once the
extent of those clinical resources has been determined (see Algorithm 5.1), the calculation
may be carried out using the code given in Chapter 3 to determine power (recall this is
1 minus the probability of a Type 2 error) for the given potential sample size range in a
standard 2× 2 cross-over design.

If this sample size is too large, alteration of the R code given in Chapter 3 may be
applied to determine sample size for a two-sequence replicate design (with adjustment of
design parameters as appropriate to the study design chosen). This does double the length
of the study, but about the sample size. For example halves

sampleN.TOST(alpha=0.05,targetpower=0.9,

logscale=TRUE,theta0=0.95,theta1=0.8,

theta2=1.25,CV=0.23,design="2x2x4",

method="exact",robust=FALSE,print=TRUE,

details=FALSE,imax=100)

For a two-stage group-sequential design (i.e., two looks), the Type 1 error rate (the
parameter a in the above code) should be reset to 0.025 for the Bonferroni adjustment
to determine power for the first look. At the second look, the estimate of the variance
(parameter s) should also be adjusted for having assessed the variance at the first look in
accordance with the findings of [636]. Essentially the variance at the end of the trial is
weighted for the relative contribution of degrees of freedom at each look.

We now have a determination of power (probability of success) for our trial for a range
of potential sample sizes. However, note that we are NOT DONE YET! It is important
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that a sensitivity assessment be carried out to ensure that the power of the trial is not
overly influenced by any of our assumptions regarding certain parameters. Additionally,
the sample size should ensure that power is sufficient relative to a pre-specified level of
random dropouts.

Sensitivity of study outcome to random increases in variability should always be con-
sidered by the statistician when providing a sample size estimate. Variation greater than
expected will result in less precision (wider than expected confidence intervals) and a drop
in power for the study. Some authors [482] recommend derivation of a confidence interval
for σ2

W for use in sample size calculations with regard to sensitivity analysis, and the authors
have found this to be a valuable approach to this issue.

Residual estimates of variability derived from our i studies on the natural logarithmic
scale may be considered to be distributed as a chi-squared distribution with degrees of
freedom equal to the sum of degrees of freedom associated with the estimates of variability
such that ∑

i

(ni − si)σ̂2
PW

σ2
W

∼ χ2∑
i ni−si

.

Then a (1− α)100% upper confidence bound for σ2
W across trials is

σ̂2
PW

∑
i(ni − si)

χ2∑
i ni−si

(α)

where χ2∑
i ni−si

(α) is the α quartile of a chi-squared distribution with
∑
i ni − si degrees

of freedom.
The next important factor to consider is whether the true bioavailability of the test

formulation is the same as the reference formulation. Often this (parameter ratio in our
code) will randomly differ slightly from unity. Indeed, for highly variable drugs, it is possible
for the estimate of the ratio to randomly fall above unity in one trial, and in a follow-up trial
of the same formulations to randomly fall below unity! As such, it is not a bad idea to allow
for some wobble in the ratio of bioavailability, and FDA guidance generally recommends
that sensitivity analyses consider ratios between 0.95 and 1.05.

It is not unusual for subjects to randomly drop out of a trial due to a variety of issues.
Food poisoning-induced emesis, the flu, and a family outing are all examples of random
reasons why a subject may not participate in a given session of a trial. As the term “volun-
teer” implies, subjects have the option to withdraw their consent to participate at any time
and are not required to give a reason should they choose not to do so. Such missingness at
random in data is easily accommodated by REML modelling but does represent a potential
loss in power to the trial, as information of such subjects (sometimes termed “lost to follow
up”) will not be collected in that period. To compensate, a random dropout rate of 5–10%
is generally assumed, and the bioequivalence trial over-enrolls to ensure a sufficient number
of subjects complete the trial.

Dosing of subjects at the maximum tolerated dose may also result in dropouts over
the course of the study; however, it is important to differentiate the “random” dropouts
described above from such a potentially systematic dropout rate related to formulation. If
a new formulation is less well tolerated than the reference formulation, this may appear in
the dataset as an increase in the dropout rate or in adverse event rate on that formulation
relative to the reference formulation. Bioequivalence trials are generally not powered to
assess the potential for such effects, and we will consider how to assess safety in clinical
pharmacology cross-over designs in a later chapter.

One example of this is emesis. Handling of data under this event is treated as a special
case in guidance, and may result in data from a subject experiencing this event not being
used at all. FDA guidance calls for the following assessment when emesis occurs:
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TABLE 5.6
Example: Variability Estimates for Use in Designing a Bioequivalence Study

Study d.f. σ̂W
1 14 0.23
2 10 0.28
3 10 0.35
4 8 0.15
5 14 0.2
6 24 0.22

We recommend that data from subjects who experience emesis during the course of a
BE study for immediate-release products be deleted from statistical analysis if vomiting
occurs at or before 2 times median Tmax. In the case of modified-release products, the
data from subjects who experience emesis any time during the labeled dosing interval
can be deleted. [373]

We now turn to an example of determining a sample size. It was required that two new
formulations (S and T) be demonstrated as bioequivalent to the clinical trials formulation
(denoted R). We planned to use a three-period, six-sequence bioequivalence design and
30–50 spots were expected to be available in the clinical pharmacology unit.

Table 5.6 lists the estimates of within-subject variability available at that time from
previous studies for use in sample size calculations.

Our overall pooled estimate of within-subject standard deviation (σW ) across studies
is σ̂PW = 0.24 with an upper 50% confidence bound of 0.28. We have at least 30 spots
available and as many as 50, and will run the calculations for n = 30 and n = 48 (recall n
must be a multiple of the number of sequences, 6).

Our power for n = 30 is 94% and for n = 48 99%, and under Algorithm 5.1, we conclude
that this design will be adequate.

For the sensitivity analysis, we first assess the impact of increased variation up to
0.28 standard deviations. Power for n = 30 is 82% and for n = 48 97%. The authors’
rule of thumb is that at least 80% power should be maintained under random changes in
assumptions.

Second, we assess the impact of a change in relative bioavailability to 0.95 instead of
unity. Power for n = 30 is 85% and for n = 48 96%.

We assess the impact on power if we are very unlucky and variation increases to 0.28
standard deviations along with a decrease in true bioavailability to 0.95. Power for n = 30
is 73% and for n = 48 90%. This last scenario is pretty unlikely, but it does not hurt to
check.

Last, the drug was well tolerated at the maximum dose, so over-enrollment on the order
of 5% is likely called for, so we would over-enroll one or two subjects to ensure that the
minimum desired number complete the study.

In this situation, an n of 30–36 subjects should provide at least 90% power (most likely)
and approximately 80% power if the assumptions are not too grossly violated.

It is possible to design and implement studies that incorporate adaptive sample sizing,
and this topic may be found in the next chapter. We now turn to the topic of outliers.
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5.8 What Outliers Are and How to Handle Their Data

Although not explicitly stated in regulatory bioequivalence guidance (see Chapter 2), there
is a very great distinction between an outlier in a statistical sense and in a regulatory sense.

In statistical training, outliers are generally introduced as a topic related to assessment
of model fit (see, for example, [907] Chapters 2 and 5). An outlier is defined as a residual
that has large value — i.e., the model does not fit the data point well. Various statistical
procedures and tests have been devised over the years to identify such outliers. In general, if
the absolute residual value corrected for variation (termed “studentized residual”) is greater
than 2 or 3 (depending on how conservative one is), then a data point may be termed a
statistical outlier.

In terms of statistical impact, an outlier (or set of outliers) may impact the estimate δ̂
(by influencing its position relative to 0) or inflate the estimate of within-subject variance
σ̂2
W (resulting in a wider than expected confidence interval) or both. These effects on either

of these parameters implicitly make it more difficult to demonstrate average bioequivalence.
The previous section provides a quantitative means of determining the potential impact on
power (the probability of a successful BE trial).

This statistical assessment is a purely quantitative approach — providing an objective
assessment of whether or not a data point is unusual. Statistical science rarely goes further
— i.e., to describe what should be done with such data points. In reporting of BE trials,
it is usual for statistical results to be presented with and without the outlying data points
to determine if the outlier influences the results. This, however, leaves one in a practical
quandary — which analysis is to be believed?

Outliers may not be excluded from a bioequivalence data set on statistical grounds alone.
From a regulatory review perspective, handling of such data is very difficult, and the FDA
and other regulatory agencies require that such data be looked at quite carefully.

If an outlier is the result of a protocol deviation (for example, the subject drank far too
much water or chewed up the pill instead of just swallowing it), then deleting the outlier
from the dataset may be justified [373]. However, if evidence of such a deviation does not
exist, regulators assume that the cause of the outlier is either product failure (maybe the
tablet dissolved in some strange manner) or due to a subject-by-formulation interaction (for
example, the new formulation might be more bioavailable than the reference formulation in
certain subjects). Admittedly, it may also just be a random event, and there is generally
no way to differentiate to which of the three categories a given outlier belongs. Average
bioequivalence studies are not designed to assess individual product differences but only to
compare the formulations means.

In this context, whether an outlier is a product failure, a subject-by-formulation inter-
action, or a random event is immaterial. These are confounded, and final inference with
regard to bioequivalence (and regulatory approval) is based on the full dataset (i.e., includ-
ing the outliers). If observations are deleted, it is the sponsor’s responsibility to provide a
rationale to convince the regulators that such is appropriate.

On a practical level, this essentially means in practice that there is no such thing as
an outlier in a bioequivalence dataset, and while we recommend that statisticians always
check the assumptions of their model, in this context there is little utility in spending too
much time worrying about outliers’ impact on the findings. The authors have never seen
an instance where a protocol violation has resulted in regulators deeming the deletion of
a data point as acceptable; however, the authors have seen many instances where outliers
from one to two subjects have resulted in a conclusion that bioequivalence was not demon-
strated. Example 3.2 (Chapter 3) could be viewed as an example of this. From the data
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it was impossible to rule out that product failure, a subject-by-formulation interaction, or
just a random occurrence of an outlying data point were involved. This generally results in
a follow-up BE trial (of similar design) being done, as was described in the prologue to this
chapter.

As the impact of outliers cannot be controlled after the study is completed, the best
way to deal with them is to acknowledge that they can happen at random and to protect
the study’s power for random appearance of outliers at the design stage. To do so, it is
recommended that bioequivalence studies be powered at 90% and that such trials have
at least 80% power under potential inflation of the variability estimate and for potential
changes in δ of up to 5%.

5.9 Bayesian BE Assessment

The approach to statistics thus far described is deductive in that we collect data to test a
specific hypothesis or set of hypotheses. We use observed data to derive statistics to test
specific facts in which we are interested. Statistics are used to quantify the probability that
the data collected are consistent with our predetermined hypotheses.

For bioequivalence testing, one could denote the probability of observed data given the
hypotheses conditions as

p(y|H01, H02) (5.1)

where y denotes the observed data, and H01, H02 refer to the two one-sided hypotheses of
interest for the difference between formulation means (see Equations (12.5) and (12.6)).
This direct, deductive approach to statistics enjoys a very long history [500] and is the
most often referred to approach in biopharmaceutical statistics. It is referred to as direct
probability assessment, as it deals “directly” with the observed data to draw conclusions.

However, this is not the only way to consider looking at data. One might approach data
in an inductive manner. In this case, we have a predetermined (rough) idea of the state
of nature, and we collect data to give us a more precise idea of this state. This approach
is inductive in that we assume we know what is happening or will happen, and data are
collected to reinforce the point. This approach to statistics also enjoys a long history and
was developed in the late 1700s and early 1800s by Bayes and Laplace [500]. It is referred
to as indirect probability assessment, as it deals “indirectly” with the observed data to
draw conclusions about the unknown parameters of interest. In average bioequivalence
testing, for example, δ = µT − µR, the true (unknown) difference in formulation means is
the parameter of most interest.

In biopharmaceutical statistics, indirect probability assessment is not employed as of-
ten as direct probability assessment. The reason is quite obvious, given a brief rereading
of Chapter 1. When making regulatory claims, it is the sponsor’s burden to prove to a
regulator’s satisfaction that the drug is safe, efficacious, and can be manufactured to good
quality. The regulator’s presumption is that it is not safe, efficacious, nor of good quality
until sufficient data are provided to prove otherwise. Therefore, the application of indirect
probability assessment is of limited practical utility in regulated bioequivalence testing. In-
direct probability assessment is also deemed subjective in that one must make assumptions
regarding the conditions being studied.

Note, however, that, when one is not working in a confirmatory setting but is exploring
clinical development of a compound (as described in Chapter 1), an inductive approach to
statistics adds much value. Under such circumstances, the sponsor is working under the
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assumption that a drug is reasonably safe, efficacious, and of good quality and wishes to
collect data to design and study the drug in confirmatory clinical trials. For example, one
might perform trials in clinical development to determine the best tolerated and effective
dose to subsequently be used in a confirmatory trial. In such a setting, it is not necessary
to demonstrate to regulators that such is the case, but only to provide sufficient evidence
to satisfy internal decision makers in the sponsoring company. Use of Bayesian inference
offers substantial benefit in terms of data exploration (see [110]). Here we will include a
brief discussion on indirect probability assessment in bioequivalence for completeness and
to introduce concepts to be used later.

In mathematical terms, we first acknowledge we have some idea of what is happening or
will happen with the difference in formulation means (expressed as p(δ)). We again collect
data from the BE study and calculate a probability; however, here we are interested in the
probability of the conditions for δ given the observed data, which we denote as

p(δ|y)

rather than the probability of observing the data given a hypothetical set of conditions.
Note there is no explicitly stated hypothesis in this indirect probability setting.

The derivation of an indirect probability may be extremely complex mathematically, and
this was a practical bar to the implementation of such approaches to data analysis until
recently. Modern computing software has rendered this complexity manageable. Recent
developments in Markov chain Monte Carlo-based methods known as Gibbs sampling (e.g.,
WINBUGS at http://www.mrc-bsu.cam.ac.uk/software/bugs/, last accessed 9 June 2015)
were developed in the late 1980s and 1990s [461] to implement indirect probability assess-
ment in a straightforward fashion. The SAS procedure proc mcmc is now also available
to implement such methods [652]. We will now consider an example in bioequivalence to
illustrate the concepts; further illustration of these methods for normal data models may
be found in [446].

One first assumes a functional form for p(δ) and then derives

p(δ|y) =
p(y|δ)p(δ)
p(y)

. (5.2)

This expression indicates that the probability in which we are interested (p(δ|y)) is equal
to the probability of the data given the possible values of µT − µR = δ multiplied by our
initial idea about the properties of the situation (p(δ)) divided by the overall probability
that one would observe the data (p(y)). Note that the expression p(y|δ) is very similar
to Equation (5.1). Under certain conditions, inductive and deductive reasoning will yield
similar findings statistically, and we will observe such in this example.

We now turn to the example utilizing the AUC and Cmax data found in Example 3.1.
WINBUGS and SAS code for this analysis is provided in [652] and is not reproduced here.

This model assumes we know very little about the true values of the unknown parameters
of interest (here, µT − µR). In Table 5.7 we choose to present medians and 90% confidence
intervals. The median is a statistic derived by taking the value in the distribution where
50% of data falls above and 50% of data falls below the value. In keeping with the findings
of Laplace [500], the posterior median is the most appropriate measure of centrality for a
distribution when using indirect probability assessment.

The findings of Table 5.7 should seem very familiar. If we review these findings relative
to the analyses of Chapter 3, we will find that they are very similar. This is generally the
case if one uses a noninformative prior distribution, as the weight introduced by this term
into Equation (5.2) is minor.

http://www.mrc-bsu.cam.ac.uk/software/bugs/
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TABLE 5.7
Statistics for δ and σ2

W Inverse Probabilities Given AUC and Cmax Data Observed in
Example 3.1

Parameter Median δ (90% BCI) median σ2
W

AUC -0.0166 (-0.0614, 0.0286) 0.0114
Cmax -0.0270 (-0.1121, 0.0588) 0.0410

BCI = Bayesian Confidence Interval
5th and 95th Quartiles of p given observed data

The key problem with the regulatory application of indirect probability assessment in
this setting is this dependence on the assumptions of the prior distributions. For example, if
one makes a minor change to the model (assumes, for example, that delta has a distribution
with different moments, such as a standard deviation of 1), the distribution of p(δ|y) may
sometimes change dramatically. The extent of such a change depends upon the weight of
this term in Equation (5.2) relative to the weight of the observed data. In this example, such
is not the case, but changes in the assumptions for smaller datasets can result in a different
inference, complicating regulatory interpretation when using such a method ([964, 965]).
We leave sensitivity analysis to assess this potential to the reader.



6

Adaptive Bioequivalence Trials

Introduction
One of the things not taught in school is deciding when to fight a battle and when to let

people figure it out for themselves. Of their own volition, many people are content to remain
as they are, working as they have always done, doing as they are told, collecting their pay
at regular intervals, and going home on time to other activities. Of course, there is also a
proportion of people who do not do that and work to continuously (or periodically) improve
how they do business — e.g. faster, lower cost, more efficient, etc. This puts the folks who
do not enhance the way they do business in a difficult position — they have to work harder
to keep up (which conflicts with one of their aims), and when they are forced to innovate,
generally by economic or management pressure, one can be certain they will not like it.

For example, at one point, early in my career, I was asked to develop an approach to
dose-finding using Bayesian statistics for a group working in Phase 1 development. It was
an interesting project, and after about a year of research, we were ready to roll the project
out to the scientists, nurses, and physicians for alpha-testing (where we essentially get a
couple of folks to try it out). My boss and the professor, with whom we had collaborated
on the project, decided jointly that the professor should be the one to introduce the business
unit concerned to the concept.

I will never forget how shabbily and poorly the people in this unit treated the professor’s
presentation and the product we had put together for their potential use. The request for a
few people to pilot the Bayesian approach was denied, vociferously, and quite nastily. The
professor and I were a bit stunned coming out of the meeting, but one of the best scientists
stopped by to remind us later that day that “Columbus did not get the funding to discover
America in a day.” He recommended we pursue the project further and come back when the
group was more receptive.

It really puzzled me at the time how this audience could be so hostile. But there was
more to this than one perceived at first glance. I found out later that this group had been
developing their own software program for data storage and basic statistical analysis. They
had paid a great deal of money to have it developed, based on the way they had been doing
things for years. Several highly influential people had a vested interest in making sure it
came to fruition and was deemed “completed” (i.e., if it did not, their bonus would suf-
fer). Incorporation of any new idea (no matter how good) would hold up completion. Thus
Bayesian statistics was a no-go.

In reality, this is frequently how politics are in business and in science, but it is a mistake
to ignore innovation. There are always folks with a vested interest in doing things as they
are right now. The business unit above kept doing business the way they always had, right up
until the business environment became more competitive, and there was a drive to cut costs.
Then their unit and its home-grown software program proved to be too expensive to maintain.

6.1 Background

In Chapters 3 to 5 we described how to test for average bioequivalence (ABE) using the two
one-sided testing (TOST) procedure [1088]. As this procedure is used after the trial has
been completed, its power is entirely dependent on the assumptions made at the planning
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stage. If any of these assumptions are wrong, e.g., the assumed CV is too small, then there
is a risk that ABE will not be shown at the end of the trial.

As will also be recalled, the regulatory requirement is that ABE has to be shown for
both AUC and Cmax for the Test formulation to be declared bioequivalent to the Reference
formulation. To simplify the following presentation, we will use only one of these metrics
in our descriptions of the tests of hypotheses and the sample size re-estimation methods.
The metric with the larger CV will usually be used to sample size the trial and typically
this will be Cmax. Although there are two metrics, there is no inflation of the Type I error
rate caused by the multiple testing of both AUC and Cmax, because both metrics have to
be significant when using the TOST procedure.

However, if ABE is not shown at the end of the trial, and the estimated CV is larger
than was assumed at the planning stage, then there is a temptation to continue the trial by
recruiting additional subjects. ABE is then tested by applying the TOST procedure, a sec-
ond time, to the combined dataset (i.e., using the data from both the original and additional
subjects). This is done in the hope that applying the TOST procedure to the enlarged trial
dataset will now result in ABE being declared. However, this approach does not preserve
the Type I error rate of the TOST procedure when applied to each of AUC and Cmax.

An approach that does guarantee preserving the Type I error rate at its nominal value
will be described in the next section. This approach allows for a preplanned unblinded
sample size re-estimation step, embedded within a standard group-sequential design. The
new testing procedure employs the weighted normal inverse combination of p-values test
[46, 753], a test which we will refer to as the standard combination test. We will also
introduce a robust version of this test, that we refer to as the maximum combination test
[856]. In the subsequent sections we will illustrate the application of the standard and
maximum combination tests. We will then describe the properties of our approach that
combines these tests with a sample size re-estimation step and compare these with those of
some previously published sample size re-estimation methods [888, 1000, 1363].

In most sections we will also refer to some example R code to do the necessary calculations.

6.2 Two-Stage Design for Testing for ABE

Here we assume that the design of the study is a 2 × 2 cross-over trial in two stages, with
n1 subjects in the first stage. At the end of the first stage, the TOST procedure is used
to test for ABE based on unblinded estimates of the within-subject CV and geometric
mean ratio (GMR) of Test to Reference formulations. The significance levels used in the
TOST procedure at the end of each stage will be α1 and α2, respectively, where, typically,
α1 = α2 < α.

If ABE is shown, then the trial is stopped. If ABE is not shown, then a decision to
continue the trial or not is made (see below for how this is decided). If the trial continues,
the sample size is re-estimated using the unblinded data from the first stage. We assume
that the re-estimated size of the second stage is n2. A schematic plan of this design is given
in Table 6.1.

As noted in the previous section, for regulatory purposes the interim decision must be
based on both AUC and Cmax. If ABE can be declared for both, then the trial can be
stopped after the first stage. If ABE is not shown for both of AUC and Cmax, then the
sample size re-estimation will be based on the metric with the larger CV, which is typically
Cmax. If ABE is shown for one metric but not the other, then the decision to continue or
stop will be made on the basis of the metric that failed ABE. In this situation, only this
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TABLE 6.1
Schematic Plan of Two-Stage Design

Stage 1 Interim Stage 2
Analysis

n1 subjects Stop n2 ≥ 0 subjects
or Continue

n1/2 Sample size n2/2
per group re-estimation per group

metric needs to be tested a second time at the end of the trial. Obviously, this is also the
metric used in the sample size re-estimation.

We will assume that n1 = N/2, where N is the total sample size calculated at the
planning stage. For precision, we will also assume that the TOST procedure uses a nominal
significance level of α = 0.05 and that the initial total sample size is calculated to achieve a
power of 1− β = 0.8 to show ABE. This calculation is done under the assumption that the
expected (or planning) difference of means on the log-scale is δ = δp, where δ = µT − µR
and CV takes some particular value. The initial sample size is conveniently calculated using
the function power.TOST in the R package PowerTOST [728]. Some example R code to
do these calculations is given in Section 6.11.1.

If ABE is not shown at the end of the first stage, then the power of the TOST procedure,
based only on the first stage, is calculated using α1, the estimated CV, n1, and δp. If this
power is lower than 0.8, the sample size re-estimation is done and the trial continues into
a second stage. If not, then it is decided that the power of the first stage was high enough
to make the decision to stop. This is what is done in Method B of [1000], for example.
The size of the second stage is n2. These decisions are summarized in Table 6.2. In our
approach, at the end of the second stage, the combination test or its robust version, the
maximum combination test, is used in conjunction with the TOST procedure to test for
ABE. Note that the value of α2 (and α1) will depend on the type of test used at the end of
the second stage.

The new methodology in Sections 6.5, 6.6, and 6.7 rely heavily on [856].

TABLE 6.2
Decisions at the End of the First Stage

ABE shown at end of first stage? Interim decision
Yes Stop
No If power to show ABE based

on α1, n1, and estimated CV from
first stage ≥ 0.8, then stop

No If power to show ABE based
on α1, n1, and estimated
CV from first stage < 0.8, then
re-estimate total sample size
based on the estimated CV from
the first stage
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6.3 TOST Using the Standard Combination Test

In the standard TOST procedure the two null hypotheses H01 and H02, defined in Equations
(2.3) and (2.4) in Chapter 2, are tested at the end of the trial and provide p-values p1 and
p2, respectively. If both p-values are less than the nominal level α, then ABE is declared. In
the two-stage design, the TOST procedure is applied both at the end of the first stage and,
if the trial continues, at the end of the second stage. The p-values for hypotheses H01 and
H02, obtained from the TOST procedure at the end of the first stage, will be denoted by
p11 and p12, respectively, and the corresponding p-values obtained at the end of the second
stage will be denoted by p21 and p22. We emphasize that p21 and p22 are obtained using
only the data from the second stage. The TOST procedure at the end of the trial uses the
standard combination test.

In the standard combination test ([46, 753]), a weighted average of transformed p-values
from stages 1 and 2 is used as the test statistic. When used in conjunction with the TOST
procedure, for pre-specified weights, w and 1− w (0 < w < 1), the test statistic at the end
of stage 2 for H01 is

Z01 =
√
wΦ−1 (1− p11) +

√
1− wΦ−1 (1− p21) ,

where Φ−1(.) is the inverse of the cumulative standard normal distribution, and for H02 the
test statistic is

Z02 =
√
wΦ−1 (1− p12) +

√
1− wΦ−1 (1− p22) .

It is very important that the weights (w and 1 − w) are pre-specified before the trial
begins. With pre-specified weights, the resulting test guarantees control of the Type I error
rate at its nominal level, regardless of any modification, e.g., a re-estimation of the sample
size, that is done as a result of the interim analysis. Under their respective null hypotheses,
both Z01 and Z02 are standard normal random variables.

To simplify the notation we will use

Z11 = Φ−1 (1− p11) , Z21 = Φ−1 (1− p21)

and
Z12 = Φ−1 (1− p12) , Z22 = Φ−1 (1− p22) .

For H01 the test statistic at the end of the second stage is

Z01 =
√
wZ11 +

√
1− wZ21,

and for H02 the test statistic at the end of the second stage is

Z02 =
√
wZ12 +

√
1− wZ22.

As already noted, in the two-stage design we assume that at the end of the first stage the
hypotheses H01 and H02 are tested using the usual TOST procedure at a significance level
α1 < α. If the trial continues to a second stage, we assume that the two hypotheses will be
tested again at level α2. As in the usual TOST procedure, both null hypotheses must be
rejected to declare ABE.

For given choices of α1 and α, the critical value, zα2 , for the combination test of H01 at
the end of the second stage can be obtained by using the following equation:

P (Z11 < zα1
∩ Z01 < zα2

) ≥ 1− α

where zαi = Φ−1(1− αi), i = 1, 2.
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Noting that Z11 and Z01 are bivariate standard normal random variables with correlation√
w, the above integral equation can easily be solved using function pmvnorm in the R

package mvtnorm [452]. Some example code to do this is given in Section 6.11.2, where, for
simplicity, we will assume that α1 = α2. For w = 0.5, α1 = α2 = 0.0304 and zα1

= zα2
=

1.8754; for w = 0.25, α1 = α2 = 0.0277 and zα1
= zα2

= 1.9163.
The values of α1, α2, zα1

, and zα2
obtained for H01 will also be used to test H02.

We note that, when α1 = α2, the significance levels of the sequential tests are the same
as for a standard group-sequential trial with an interim analysis at information fraction w
and using a Pocock-type α-spending function.

6.4 Example of Using the Standard Combination Test

Here we will illustrate the use of the standard combination test to test for ABE in a two-
stage design.

At the planning stage it is assumed that the CV of log(Cmax), in percentage terms, is
23% and the ratio, on the natural scale, of the true means of Test and Reference is 0.95.
Initially, a single-stage design without an interim analysis is considered, and a sample size
that gives a power of 0.8 is required. Under these assumptions, and taking α = 0.05, the
function sampleN.TOST in the R library PowerTOST [728] gives a sample size of N = 24
to achieve a power of 0.8067. This value of N is, in fact, for a fixed design. For a group-
sequential design, without a sample size re-estimation, the power would not be 0.8067, but
a bit smaller. Section 6.11.1 gives some example R code to calculate the sample size and
power of the TOST procedure.

However, there is some doubt as to the true value of the CV: it could be as large as
30%. If this is the case, then a trial with N = 24 gives a power of only 0.5577 and so a two-
stage design with a sample size re-estimation at the interim is planned. If the assumption
of CV = 23% is correct, and it is decided that the interim will be halfway through the
trial, it makes sense to make the planned number of subjects in each stage equal to 12.
Given this decision, it is reasonable to take w = 0.5 as the weight that will be used for the
standard combination test. This is an important decision, as it is based on an expectation
that n1 = n2, which may not be correct. In the next section we will see how to mitigate
against an incorrect choice for w. The critical value of the standard combination test and
corresponding significance level are 1.87542 and 0.03037, respectively. As already noted,
some example R code to calculate these values is given in Section 6.11.2.

We proceed assuming n1 = 12, α = 0.05, w = 0.5, α1 = α2 = 0.0304, β = 0.2, and
δp = log(0.95).

The first stage of the trial with a total of 12 subjects is completed and the observed
within-subject differences for each sequence group are given in Table 6.3. The unblinded
estimates from this first stage are δ̂ = 0.0331, σ̂ = 0.3574, and ĈV = 36.91%. The estimated
GMR is exp(0.0331) = 1.034. Some example R code to simulate data for the first stage is
given in Section 6.11.3 and code to estimate the parameters, test statistics, and p-values for
the first stage is given in Section 6.11.4.

The TOST statistics for H01 and H01 are, respectively

T1 =
(δ̂ − log(0.8))

stderr
= 1.7565
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TABLE 6.3
Simulated Cmax Data for First Stage of a Two-Stage Design

Subject Group 1 (RT) Subject Group 2 (TR)
1 0.1095 7 0.7758
2 -0.6888 8 -0.3118
3 0.0292 9 0.2005
4 -0.0326 10 -0.6748
5 0.6775 11 -0.1591
6 -0.6688 12 -0.0069

and

T2 =
(log(1.25)− δ̂)

stderr
= 1.3022,

where stderr = 0.1459. The respective p-values, on 10 degrees of freedom, are 0.0548 and
0.1110, and these are each compared to α1 = 0.0304. Clearly, ABE has not been achieved
at the interim.

We therefore proceed to consider if a second stage is needed. This depends on whether
the achieved power for the first stage is less than 0.80, our pre-defined power requirement to
declare ABE. Using the estimated CV of 36.91% and assuming a true ratio of means of 0.95,
the achieved power of the first stage is, using PowerTOST, 0.0183, for α1 = 0.0304. As this
is less than 0.80, we will continue. If it had been 0.80 or higher, we would have accepted
the decision made at the interim (i.e., ABE not achieved) as final and stopped. Some R
code to make the decision as to whether to stop or continue is given in Section 6.11.5.

The new total sample size of the trial (N ′) is calculated using the estimated CV, the
assumed true ratio of 0.95, and a significance level of α2 = 0.0304. Here we will use the
standard sample size calculation obtained from PowerTOST. This is N ′ = 68, with an
achieved power of 0.8081. Thus, the second-stage sample size, n2 = N ′ − n1, is (68 −
12) = 56. Some example R code to re-estimate the sample size is also given in Section
6.11.5. In Section 6.7 we will describe and illustrate a more advanced sample size calculation
based on conditional power and conditional Type I error rates. However, for the purpose
of illustrating the analysis of the two-stage design with a sample size re-estimation, the
standard sample size calculation is sufficient for now.

The trial is extended and the additional data are given in Table 6.4. Some example R
code to simulate data for the second stage is given in Section 6.11.6.

The unblinded estimates from the second stage are δ̂ = −0.1118, σ̂ = 0.3415, and
ĈV = 35.17%. The estimated GMR is exp(−0.1118) = 0.8942.

The TOST statistics for H01 and H02, on 54 degrees of freedom, are respectively,

T1 =
(δ̂ − log(0.8))

stderr
= 1.7248

and

T2 =
(log(1.25)− δ̂

stderr
= 5.1907,

where stderr = 0.0645. The respective p-values are 0.0451 and 1.6255×10−6. Some example
R code to estimate the parameters for the second stage and calculate the TOST statistics
is given in Section 6.11.7.
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TABLE 6.4
Simulated Cmax Data for Second Stage of a Two-Stage Design

Subject Group 1 (RT) Subject Group 2 (TR)
13 -0.1536 41 0.6286
14 0.1128 42 0.0137
15 0.3096 43 -0.1762
16 1.4555 44 1.0213
17 0.1030 45 -0.4475
18 -0.3317 46 0.3559
19 0.0536 47 -0.3835
20 0.3641 48 -0.0042
21 0.4193 49 -0.1826
22 -0.0716 50 -0.4234
23 -0.1361 51 -0.4085
24 -0.3981 52 -0.2508
25 -0.3934 53 -0.4037
26 -0.0876 54 -0.3587
27 0.1541 55 -0.5949
28 0.5964 56 0.6090
29 -0.6216 57 0.4746
30 -0.2219 58 -0.6212
31 -0.2395 59 0.6777
32 0.8597 60 -0.1294
33 0.5992 61 0.0008
34 -0.0238 62 -0.4009
35 0.3881 63 -0.9945
36 0.2083 64 -0.9417
37 -0.1400 65 0.8338
38 0.3870 66 -0.5862
39 0.0437 67 -0.0480
40 0.5645 68 0.2778

To calculate the standard combination test, we need the component z-statistics. From
the first stage these are

Z11 = Φ−1 (1− 0.0548) = 1.6004, Z12 = Φ−1 (1− 0.1110) = 1.2211

and from the second stage these are:

Z21 = Φ−1 (1− 0.0451) = 1.6939, Z22 = Φ−1
(
1− 1.6255× 10−6

)
= 4.6543.

With w = 0.5, the standard combination tests for each of the hypotheses, H01 and H02,
are, respectively,

Z01 =
√
wZ11 +

√
1− wZ21 = 2.3294,

and
Z02 =

√
wZ12 +

√
1− wZ22 = 4.1546.

These z-statistics are compared to 1.8754, the upper 1 − α2 percentile of the standard
normal distribution.
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Clearly both tests are significant and ABE can be declared for Cmax based on the
enlarged trial.

Some example R code that applies the standard combination test is given in Section
6.11.8.

A limitation of the standard combination test is that it requires the weight w to be pre-
specified. One way to lessen the dependence on the choice of weight is to use the maximum
combination test, which we describe and illustrate in the next section.

6.5 Maximum Combination Test

A potential disadvantage of the standard combination test is its dependence on the choice
of weight w. Ideally, the ratio w : (1−w) should equal n1 : n2, the ratio of the sample sizes
of the first and second stages. As the final value of n2 is unknown at the planning stage,
it is difficult to ensure the correct choice of w. If the trial goes as planned, and no sample
size re-estimation is needed, then we expect n1 = n2 = N/2. If a sample size re-estimation
is needed, then we would expect n2 > n1. One way out of this dilemma is to pre-specify
two sets of weights, where one set would have w = 0.5 and the other would have w < 0.5,
e.g., w = 0.25, and apply the TOST procedure with the weight that gives the largest power
to reject H01 and H02. Choosing values of w < 0.5 gives more weight to the data in the
second stage. However, if we use two sets of weights, we must modify the significance levels
of the test. This modification of the standard combination test was first introduced in [856]
and we closely follow the derivation given there.

Suppose the two pre-specified sets of weights are (w, 1−w) and (w∗, 1−w∗), respectively.
At the end of the second stage we construct the standard combination test for each set of
weights.

For H01, for example, the two test statistics at the end of the second stage will be
Z01 =

√
wZ11 +

√
(1− w)Z21 and Z∗01 =

√
w∗Z11 +

√
(1− w∗)Z21. The test statistic that

gives the larger power is, of course, the larger of Z01 and Z∗01. We therefore define the
maximum combination test statistic as Zmax = max(Z01, Z

∗
01).

Assuming that the null hypothesis, H01, is true, we must solve the following equation
for given values of α1 and α to obtain the critical value, zmax, that controls the Type I error
rate:

P ({Z11 < zα1
} ∩ {Z01 < zmax} ∩ {Z∗01 < zmax}) = 1− α.

The equation can be simplified if, as in our example, we use equal critical values for both
stages.

In order to solve this equation, we note that Z11, Z01, and Z∗01 are trivariate normal
with covariance (correlation) matrix 1

√
w
√
w∗√

w 1 ρ√
w∗ ρ 1


where ρ =

√
ww∗ +

√
(1− w)(1− w∗).

In a way similar to that used for the standard combination test, this integral equation
can be solved with the aid of function pmvnorm in the R package mvtnorm [452]. Some
example R code to calculate the critical values is given in Section 6.11.9. We will denote
the solution as zmax. For our chosen example values of w = 0.5, w∗ = 0.25, and α = 0.05,
zmax = 1.9374, corresponding to a nominal level of αmax = 1 − Φ(zmax) = 0.0264. We



Adaptive Bioequivalence Trials 149

note that zmax is not normally distributed. Of course, the same reasoning will apply to the
maximum combination test for H02 and the same value of zmax will be obtained. In the
next section we will illustrate the use of the maximum combination test using our example
first-stage dataset.

6.6 Using the Maximum Combination Test

In this section we will assume that the trial was planned with the aim of using the maximum
combination test. The data obtained at the end of the first stage will still be those given in
Table 6.3. As we are to use the maximum combination test at the end of the second stage,
we must modify both how we test the null hypotheses at the end of the first stage and how
we re-estimate the sample size for second stage. This is because the significance level for
the TOST procedure at the end of the first and second stages will change from 0.0304 to
the nominal level of 0.0264.

The TOST p-values from the first stage, it will be recalled, were 0.0548 and 0.1110.
Compared to the significance level of 0.0264, neither of these is significant. As the power of
the first stage, using the revised significance level, is only 0.0140, we continue to re-sample
size the second stage. Using the revised significance level, the increased total sample size is
N ′ = 70. That is, n2 = 58, a slight increase compared to the sample size using the standard
combination test. Some example R code that re-estimates the sample size based on the
maximum combination test is given in Section 6.11.10. Some example R code to calculate
the power of the first stage, using the significance level of the maximum combination test,
is given in Section 6.11.11.

To provide an example dataset for the second stage when using the maximum combi-
nation test, we keep the data from Table 6.4 and add data for two additional subjects, to
give a second-stage dataset for 58 subjects. The augmented dataset is given in Table 6.5.
Some example R code that provides data for the second stage is given in Section 6.11.12.

The unblinded estimates from the second stage are δ̂ = −0.1196, σ̂ = 0.3428, and
ĈV = 35.31%. The estimated GMR is exp(−0.1196) = 0.8873. Some example R code to
estimate the parameters and TOST statistics is given in Section 6.11.13.

The TOST statistics for H01 and H02, on 58 degrees of freedom, arem respectively,

T1 =
(δ̂ − log(0.8))

stderr
= 1.6270

and

T2 =
(log(1.25)− δ̂

stderr
= 5.3849,

where stderr = 0.0636. The respective p-values are 0.0547 and 7.4294× 10−7.
To calculate the standard combination test, we need the component z-statistics. From

the first stage these are
Z11 = 1.6004, Z12 = 1.2211

and from the second stage these are

Z21 = 1.6011, Z22 = 4.8131.
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TABLE 6.5
Simulated Cmax Data for Second Stage of a Two-Stage Design when Using Maximum
Combination Test

Subject Group 1 (RT) Subject Group 2 (TR)
13 -0.1536 41 0.6286
14 0.1128 42 0.0137
15 0.3096 43 -0.1762
16 1.4555 44 1.0213
17 0.1030 45 -0.4475
18 -0.3317 46 0.3559
19 0.0536 47 -0.3835
20 0.3641 48 -0.0042
21 0.4193 49 -0.1826
22 -0.0716 50 -0.4234
23 -0.1361 51 -0.4085
24 -0.3981 52 -0.2508
25 -0.3934 53 -0.4037
26 -0.0876 54 -0.3587
27 0.1541 55 -0.5949
28 0.5964 56 0.6090
29 -0.6216 57 0.4746
30 -0.2219 58 -0.6212
31 -0.2395 59 0.6777
32 0.8597 60 -0.1294
33 0.5992 61 0.0008
34 -0.0238 62 -0.4009
35 0.3881 63 -0.9945
36 0.2083 64 -0.9417
37 -0.1400 65 0.8338
38 0.3870 66 -0.5862
39 0.0437 67 -0.0480
40 0.5645 68 0.2778
69 0.8517 70 0.1783

With w = 0.5, the standard combination tests for each of the hypotheses, H01 and H02,
are, respectively,

Z01 = 2.2638, Z02 = 4.2669,

and for w∗ = 0.20, respectively,

Z∗01 = 2.1868, Z∗02 = 4.7789.

For H01, Z1
max = max(Z01, Z

∗
01) = 2.2638 and for H02, Z2

max = max(Z02, Z
∗
02) = 4.7789.

These z-statistics are compared to zmax=1.9374, as noted above.
Clearly both tests are significant and ABE can be declared for Cmax.
Some example R code that applies the maximum combination test is given in Section

6.11.14.
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6.7 Conditional Errors and Conditional Power

Previously, in the sample size re-estimation step we used the standard power calculation
for the TOST procedure as implemented in PowerTOST. Also, the significance thresholds
for the second stage depended on whether the standard or maximum combination test was
used (i.e., on either zα2

or zmax). In doing this we ignored any information available from
the first stage that could be used to modify the significance level for the second stage and
any information on the remaining power that has to be achieved in the second stage.

Let us first consider the significance level to be used at the end of the second stage for
the null hypothesis H01 using the standard combination test with weight w.

The standard combination test can be written as a test on the second-stage data given
the p-values obtained in the first stage. For H01, the conditional error rate of this test is
αc1 = P (Z21 > zα2

| p11 and H01 true).
To obtain αc1, we first note that the Type I error rate of the standard combination test

for H01 is
Pr(
√
wZ11 +

√
1− wZ21 > zα2 |H01 true).

As shown in [856], this expression can be rearranged to give

αc1 = 1− Φ

(
1√

1− w
(zα2 −

√
wZ11)

)
.

Similarly, for H02, it can be shown that

αc2 = 1− Φ

(
1√

1− w
(zα2

−
√
wZ12)

)
.

Hence, for a given value of n2, ABE can be declared at the end of the second stage if the
TOST statistics for the second-stage only are such that T21 > tn2−2,αc1

and T22 > tn2−2,αc2
.

Some example R code to calculate these conditional errors is given in Section 6.11.15.
Using this property, and for a given value of n2, the power of the second stage (and

hence the power of the standard combination test) can be calculated using the non-central
bivariate t-distribution, by integrating over the rejection region of the two one-sided tests.
Some example R code that calculates the power for a given value of n2 using the function
pmvt in library mvtnorm is given in Section 6.11.16.

To illustrate the calculation of the adjusted significance levels for the standard com-
bination test, we recall that Z11 = 1.6004 and zα2

= 1.8754. Hence for w = 0.5, αc1 =
1− Φ (1.0519) = 0.1464. Similarly, using Z12 = 1.2211, αc2 = 0.0762.

For n2 = 38, for example, the R code in Section 6.11.16 gives a conditional power of
0.8170 for the second stage to reject H01, assuming αc1 = 0.1464 and αc2 = 0.0762. For
n2 = 36, the conditional power is 0.7965.

However, when calculating n2 to achieve a certain level of power for the final tests of
H01 and H02, we should also take account of the estimated power achieved in the first
stage, as this may reduce the number of subjects needed for the second stage. Using the
estimated CV from the first-stage data, and given the values of n1, α1, and the assumed
true value of the ratio of means, the estimated power of the first stage can be calculated
using PowerTOST, as previously illustrated in Section 6.4. Let us denote this estimated
power by (1− β̂1).

Further, let us denote the conditional power of the second stage by 1−βc. To derive an
expression for this, we follow the derivation in [856] and define Ri as the event that ABE is
declared at the end of stage i, i = 1, 2. Also, we define R as the event that ABE is declared
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at the end of the trial where R = R1∪R2. Denoting the complement of Ri as R̄i, the power
to declare ABE at the end of the trial is Pr(R) = 1 − β = 1 − Pr(R̄1 ∩ R̄2). In addition,
the conditional power of the second stage can be expressed as 1− βc = Pr(R2|R̄1).

Further, expressing P (R) in an alternative way, we have

Pr(R) = Pr(R1) + Pr(R̄1 ∩R2) = Pr(R1) + Pr(R2|R̄1)Pr(R̄1).

Hence
1− β = (1− β̂1) + (1− βc)β̂1

and

1− βc =
β̂1 − β
β̂1

.

Some example R code to calculate the conditional power is given in Section 6.11.17.
Returning to our example dataset from the first stage, the estimated CV was 36.9112%.

For n1 = 12, δp = 0.95, and α2 = 0.0304, the estimated power of the first stage is (1− β̂1) =
0.0183, giving a conditional power of 1 − βc = 0.7963 for the second stage. Given the
conditional error rates of αc1 = 0.1464 and αc2 = 0.0762 and using the R code in Section
6.11.16, the value of n2 needed to achieve a power of 0.7963 is, as noted above, n2 = 36,
with a power of 0.7965.

With some modifications, the above logic can be applied to the maximum combination
test, to give corresponding expressions for the conditional errors and conditional power. As
shown in [856], for H01, the conditional error, αmax1 , is

αmax1
= 1− Φ{min[(zmax −

√
wZ11)/

√
1− w, (zmax −

√
w∗Z11)/

√
1− w∗]}.

For H02, the conditional error is

αmax2
= 1− Φ{min[(zmax −

√
wZ12)/

√
1− w, (zmax −

√
w∗Z12)/

√
1− w∗]}.

As for the standard combination test, the conditional power of the maximum combination
test can be calculated using the conditional errors αmax1

and αmax2
. Some example R code

to calculate the conditional errors and conditional power of the maximum combination test
is given in Section 6.11.18. The conditional errors are αmax1 = 0.1272 and αmax2 = 0.0644.

The power of the first stage based on ĈV = 36.91% and αmax = 0.0264 is 0.0140, giving a
conditional power of 0.7972 for the second stage.

6.8 Algorithm for Sample Size Re-Estimation

Here we will put all the ideas presented in the previous sections into a single algorithm
that gives the steps in our recommended approach to the design and analysis of a two-stage
design that includes an interim sample size re-estimation step. In the next section we will
compare the properties of this algorithm with Method B of [1000] using a simulation study.

We assume that, if a second stage is required, the maximum combination test will be
used in the final data analysis.

At the planning stage, the sample size, N , for a single-stage 2 × 2 cross-over trial for
ABE is calculated using chosen values of 1 − β, CV, δp, and α for the metric (AUC or
Cmax) of interest. This calculation will use a significance level of α = 0.05 and can be done
using PowerTOST . The number of subjects in the first stage is then n1 = N/2, divided
equally between two sequence groups (RT and TR).
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FIGURE 6.1
Planning and Analysis of First Stage

The first steps in our algorithm are given in Figure 6.1. First, the parameters (CV , α,
β, δp, w, w∗, and αmax) needed for the sample size calculations and significance testing are
specified. Then the sample size is calculated and the first stage design is run. The TOST
procedure using αmax is then applied to the data obtained. Initially we set δp = log(0.95).

The next steps are shown in Figure 6.2 where decisions are made depending on the
result of the TOST procedure and the power achieved at the end of the first stage. As
explained in [856], it is important in the sample size re-estimation calculation that the sign

attached to δp in the calculation is the same as the sign of δ̂. We refer to this alignment of
signs as the adaptive planning step. Assuming that the decision is made to add a second
stage, the conditional errors and conditional power as defined in Section 6.7 are calculated
in preparation for the sample size re-estimation.

These calculations, the sample size re-calculation step, and the running of the second
stage are shown in Figure 6.3. The size of the second stage is n2. We ensure n2 ≥ 4 in
order the there are least 2 degrees of freedom to estimate the variance.

The final steps are shown in Figure 6.4 where the TOST procedure is applied using the
maximum combination test and the final decision regarding ABE is made.

For our example, we give in Table 6.6 the results of each step of the analysis when the
maximum combination test is used and the sample size re-estimation is based on the con-
ditional errors and conditional power. The sample size re-estimation step used conditional
errors of αmax1

= 0.1272 and αmax2
= 0.0644, and the size of the second stage was chosen

to achieve a conditional power of 0.7972. Section 6.11.19 has example R code to re-estimate
the sample size of the second stage. In this situation n2 = 50. The data for the second stage
were then taken from the first 25 subjects in each group as given in Table 6.4. As with the
previous analyses, the final conclusion is that ABE is achieved for the Cmax endpoint.
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FIGURE 6.2
Decisions Made at the End of the First Stage

FIGURE 6.3
Sample Size Re-Estimation

FIGURE 6.4
Analysis at End of Trial
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TABLE 6.6
Summary of Steps in Analysis of a Two-Stage Design, Using the Maximum Combination
Test

Set initial CV = 23%, α = 0.05, δp = log(0.95),
parameters 1− β = 0.8, w = 0.5, w∗ = 0.25, αmax = 0.0264
Calculate sample α = 0.05, N = 24, n1 = N/2 = 12
size for first stage

Interim analysis of δ̂ = 0.0331, ĈV = 36.91%,
first-stage data T1 = 1.7565, T2 = 1.3022,

df = 10, αmax = 0.0264,
p11 = 0.0548, p12 = 0.1110,
Z11 = 1.6004, Z12 = 1.2211

Decision after ABE not declared, achieved power = 0.0140,
first stage decision = continue to second stage

Achieved power, 1− β̂1 = 0.0140
conditional power, 1− βc = 0.7972
conditional error rates αmax1

= 0.1272, αmax2
= 0.0644

Sample size δ̂ > 0, hence δp = −log(0.95), n2 = 50
re-estimation
with adaptive planning

Analysis of δ̂ = −0.0982, ĈV = 36.39%,
second-stage data T1 = 1.7710, T2 = 4.5560,
(using first 25 subjects df = 48, αmax = 0.0264,
in each group of simulated p21 = 0.0414, p22 = 1.7947× 10−5,
data in Table 6.4) Z21 = 1.7341, Z22 = 4.1324
Maximum Z01 = 2.3578, Z02 = 3.7856,
combination test Z∗01 = 2.3019, Z∗02 = 4.1894,

Z1
max = 2.3578, Z2

max = 4.1894, zmax = 1.9374
Decision at end Z1

max ≥ zmax and Z2
max ≥ zmax

of trial ABE achieved

6.9 Operating Characteristics

The previous section described an algorithm based on the maximum combination test, adap-
tive planning, conditional error rates, and conditional power. The steps in this algorithm
are repeated in the flow diagram given in Figure 6.5. We note from this figure that the algo-
rithm allows a stop of the trial after the interim analysis for either success (ABE declared)
or futility (failure to declare ABE at the end of the first stage but the estimated power of
the first stage is at least 0.80). If we continue, then the total sample size is re-estimated
using the estimated CV from the first stage. We know this will not inflate the Type I error
rate above its nominal level of 5%, but it is of interest to learn about the sample sizes
produced by the algorithm and the level of power achieved at the end of the trial. We will
do this using a simulation exercise.



156 Bioequivalence and Statistics in Clinical Pharmacology, Second Edition

FIGURE 6.5
Flow Diagram for the Method of Maurer et al. [856]

Before we do that, however, we briefly describe a different sample size re-estimation
algorithm that has been published in the literature (Method B of [1000]). The flow diagram
for this algorithm is given in Figure 6.6.

We note some similarities between the flow diagrams, e.g., the stop for futility, but
also some important differences. The major difference is that the algorithm described in
Figure 6.6 cannot guarantee to control the Type I error rate at or below its nominal level
of 5%. This is because the analysis of the second stage involves pooling the data from both
stages and applying the TOST procedure to this combined dataset. Also, the sample size
re-estimation step uses the standard sample size calculation (e.g., as given by PowerTOST )
to re-sample size the whole trial (and not directly the second stage). In addition, adaptive

FIGURE 6.6
Flow Diagram for Method B of Potvin et al. [1000]
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planning, conditional error rates, and conditional power are not used in the calculations.
Of course, the conservatism of the TOST procedure may limit the amount of inflation of
the Type I error rate, but this inflation cannot be entirely removed. From a regulatory
perspective, this is clearly undesirable, as the false positive rate cannot be controlled (with
certainty) at its nominal level and the actual amount of inflation is unknown in general.
We note that four algorithms were described by [1000], with Methods B and C having
similar properties and Method C being recommended. However, in [888] Method D was
recommended when the true ratio of means is 0.90 and not 0.95. Method D is a variation
on Method C where the significance level of the TOST procedure at the end of the trial is
reduced slightly. Both papers reported the results of a simulation exercise to estimate the
Type I error rate and power of each method. The results reported in [888] demonstrate
that the Type I error rate can be inflated (between 0.0522 and 0.0547) for Methods B and
C. The new algorithm described in this chapter ensures that the Type I error rate is not
inflated whatever the value of the ratio.

Given its similarity, we will compare the operating characteristics of the algorithm pro-
posed in this chapter with Method B of [1000]. By operating characteristics we mean
simulation-generated metrics such as the achieved Type I error rate, the achieved power to
declare ABE at the end of the trial, and the average total sample size. We will also use
the same configuration of simulation scenarios considered by [1000], which consists of all
combinations of n1 = (12, 24, 36, 48, 60) and CV = (10, 20, . . . , 90, 100). Note that here the
values of n1 and CV do not depend on each other: we have just chosen a grid of values to use
in the simulation exercise. When calculating the sample size, we always assume δp = 0.95
for the planned value of the true ratio. Each of the combinations of n1 and CV was also
run with simulated data that were generated under the assumption that the true ratio of
means was either 0.95 or 1.25. The latter ratio was used to assess the Type I error rate. We
could, of course, have used 0.80 for this latter ratio and obtained equivalent results to when
the ratio is 1.25. For our algorithm we will use w = 0.50 and w∗ = 0.25 for the maximum
combination test.

In each simulation, the value of the ratio of means (0.95 or 1.25) was chosen and the
values of n1 and CV were fixed to one of the 50 combinations described above. Then
a million trial datasets for this set of values were simulated and the new algorithm and
Method B of [1000] applied. The results were then summarized by counting the number of
times ABE was declared at the end of either the first or second stages. When expressed as
a proportion out of the total number of simulated trials, this gives an estimate of power (if
the ratio = 0.95) or Type I error rate (if the ratio = 1.25). In addition, the final sample size
of each trial was recorded, and the average sample size over the total number of simulations
was calculated. To maintain comparability with the results of [1000], we put a very large
upper limit (N = 4000) on the allowed total sample size. In practice, of course, an upper
limit on the total sample size will be imposed by practical constraints. We will consider
such a situation later in this section.

Table 6.7 shows the simulation-based estimates of the power to declare ABE when using
Method B of [1000]. These values are also plotted in Figure 6.7, where each solid point
shows the power achieved at a particular pair of values of n1 and CV. To aid the visual
interpretation of the plot, we have joined these discrete points by lines. So, for example,
the solid line is for n1 = 12 and the points on it are the powers achieved for CV = 10,
20, . . . , 100. We can see that for n1 = 12 the power is below 0.80 for all CV values larger
than 20. A similar pattern is observed for n1 = 24 (the line with short dashes), except that
the power drops below 0.8 after CV = 40. Generally speaking, Method B of [1000] fails to
ensure that the achieved power of the trial is greater or equal to the desired value of 0.8
over the whole range of values of n1 and CV.
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TABLE 6.7
Simulation-Based Estimates of Power for Method B When True Ratio = 0.95

CV% n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60
10 0.98 1.00 1.00 1.00 1.00
20 0.84 0.88 0.95 0.99 1.00
30 0.78 0.83 0.84 0.86 0.90
40 0.75 0.80 0.82 0.83 0.83
50 0.73 0.78 0.80 0.82 0.82
60 0.73 0.77 0.79 0.80 0.81
70 0.72 0.77 0.78 0.79 0.80
80 0.72 0.77 0.78 0.79 0.79
90 0.72 0.77 0.78 0.79 0.79

100 0.72 0.77 0.78 0.79 0.79

FIGURE 6.7
Simulation-Based Power Estimates for Method B when True Ratio = 0.95
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TABLE 6.8
Simulation-Based Estimates of Power for Algorithm that Uses the Maximum Combination
Test (w = 0.5, w∗ = 0.25) When True Ratio = 0.95

CV% n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60
10 0.98 1.00 1.00 1.00 1.00
20 0.85 0.88 0.95 0.99 1.00
30 0.81 0.83 0.83 0.85 0.89
40 0.80 0.83 0.83 0.83 0.82
50 0.80 0.83 0.83 0.83 0.83
60 0.80 0.83 0.83 0.83 0.84
70 0.79 0.83 0.84 0.84 0.84
80 0.79 0.83 0.84 0.84 0.84
90 0.79 0.83 0.84 0.84 0.84

100 0.79 0.83 0.84 0.84 0.84

Table 6.8 shows the simulation-based estimates of the power to declare ABE when using
the algorithm based on adaptive planning, conditional error rates, conditional power, and
the maximum combination test. These values are also plotted in Figure 6.8. We see that,
apart from some values for n1 = 12, the powers are all above 0.8, as required. The remaining
values for n1 = 12 are only slightly below 0.8.

Of some importance is the average sample size needed to achieve or exceed the target
power. The average sample sizes for each of the two methods are given in Tables 6.9 and
6.10, respectively. The differences (rounded) in the sample sizes are displayed in Table 6.11.
Clearly there is a price to pay if the desired target power is to be achieved, but this is
moderate for low values of CV and high n1. A poor choice of n1, when the true CV is high,
requires a large final sample size to compensate. However, this is a logical consequence of
correctly requiring that the target power is maintained.

The final sample size is also of importance when the null hypothesis is true, i.e., when
the true ratio is 0.8 or 1.25. Large sample sizes under this scenario are clearly undesirable.
Tables similar to those above, but obtained under the null hypothesis, reveal similar sample
sizes for Method B of [1000] and slightly larger sample sizes for the alternative algorithm
presented here (see Table 6.12). Clearly, it is desirable to stop trials going into a second
stage if the evidence for ABE is weak (i.e., when it is more likely that the null hypothesis
is true). Some form of futility rule is therefore desirable, and we consider some possibilities
next.

Although both Method B and the current method allow stopping after the first stage if
ABE is not declared and the estimated power from the first stage is 0.8 or greater, we can
increase the chance of stopping if we introduce an additional futility rule. An example of
such a rule is given by [1363] in their update of the methods first introduced in [1000]. This
futility rule is based on an optimization algorithm and depends on the size of the assumed
CV and which of their Methods E and F is used. To see the effect of using such a rule,
we have chosen a stand-alone futility rule that is independent of the method used and the
size of the CV. The rule is to stop the trial after the interim analysis if the 90% confidence
interval for the true ratio of Test to Reference is totally outside the limits of (0.95, 1.05).

Table 6.13 gives the simulation-based stopping rates under the assumptions of the null
hypothesis (true ratio = 0.8, as in [1363]) when the maximum combination test algorithm
is used with w = 0.5 and w∗ = 0.25. These results are for an extreme situation and are a
good test of the futility rule. We can see that the chance of stopping is clearly related to the
precision of estimation of the confidence interval, with large n1 or small CV increasing the
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FIGURE 6.8
Simulation-Based Power Estimates for Maximum Combination Test (w = 0.5, w∗ = 0.25)
when True Ratio = 0.95

chance of stopping. The corresponding average final sample sizes are given in Table 6.14.
The values in this table when compared with those in Table 6.12 show that the futility rule
is effective in stopping the trial and saving sample size, especially when n1 is large. The
achieved Type I error rates are also of some interest and these are plotted in Figure 6.9.
We can see that the use of the futility bound has introduced some conservatism into the
error rates. This is not unexpected given that the impact of the futility bound should be to
reduce the number of trials going into the second stage that would erroneously pass ABE
at the end of the trial.

Of equal interest is how the futility rule performs when ABE is very likely to be declared,
e.g., when the true ratio = 0.95. The stopping rates in this situation are given in Table
6.15 and can be seen to be about 0.05 or less. The average sample sizes in this situation
are given in Table 6.16 and can be seen to be comparable to or smaller than those given in
Table 6.10, which are for the situation when the futility rule is not used. In addition, the
power is not too adversely affected by applying the futility rule, as can be seen in Figure
6.10. In fact, the use of the futility rule has ensured that the achieved powers for n1 > 12
are closer to 0.8.
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TABLE 6.9
Average Total Sample Sizes for Method B When True Ratio = 0.95

CV% n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60
10 12.02 24.00 36.00 48.00 60.00
20 20.64 24.62 36.00 48.00 60.00
30 46.35 39.87 40.73 48.90 60.06
40 78.92 76.05 67.19 63.98 67.40
50 117.32 116.93 112.56 102.29 95.37
60 160.83 160.54 159.85 154.95 144.01
70 207.51 207.49 207.45 206.50 201.56
80 256.83 256.73 256.71 256.74 255.62
90 307.42 307.52 307.38 307.38 307.29

100 358.76 358.88 358.69 358.76 358.74

TABLE 6.10
Average Total Sample Sizes for Maximum Combination Test (w = 0.5, w∗ = 0.25) When
True Ratio = 0.95

CV% n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60
10 12.05 24.00 36.00 48.00 60.00
20 21.13 24.78 36.01 48.00 60.00
30 50.60 40.76 40.89 49.04 60.10
40 92.42 81.14 69.29 64.42 67.33
50 143.94 131.72 120.24 106.64 97.27
60 204.06 188.63 177.83 166.34 151.67
70 270.07 251.36 239.27 228.91 217.46
80 340.88 318.40 304.14 293.24 282.97
90 414.34 388.95 371.62 359.27 349.13

100 489.79 461.15 441.47 427.36 415.83

TABLE 6.11
Difference in Average Total Sample Sizes for the Two Methods When True Ratio = 0.95

CV% n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60

10 0.02 0.00 0.00 0.00 0.00
20 0.50 0.16 0.01 0.00 0.00
30 4.25 0.89 0.16 0.14 0.04
40 13.50 5.09 2.09 0.44 -0.07
50 26.62 14.80 7.68 4.36 1.90
60 43.22 28.08 17.98 11.39 7.65
70 62.56 43.86 31.82 22.41 15.89
80 84.05 61.67 47.44 36.50 27.35
90 106.92 81.43 64.24 51.90 41.84

100 131.03 102.27 82.78 68.61 57.09
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TABLE 6.12
Average Total Sample Sizes for Maximum Combination Test (w = 0.5, w∗ = 0.25) When
True Ratio = 0.80

CV% n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60
10 12.38 24.00 36.00 48.00 60.00
20 34.98 30.06 36.12 48.00 60.00
30 70.31 70.89 64.75 58.49 61.34
40 114.48 120.49 119.96 114.94 107.91
50 167.39 175.04 180.27 179.86 175.60
60 228.47 234.61 242.46 247.67 247.71
70 295.22 299.64 307.08 314.81 320.35
80 366.20 368.16 374.63 382.81 391.11
90 440.73 439.80 444.76 452.08 460.56

100 515.83 512.96 516.22 522.45 530.63

TABLE 6.13
Stopping Rates When the Maximum Combination Test Is Used and the Futility Rule is
Applied after the First Stage When True Ratio = 0.80

CV% n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60
10 0.97 1.00 1.00 1.00 1.00
20 0.52 0.84 0.96 0.99 1.00
30 0.29 0.53 0.71 0.83 0.90
40 0.19 0.35 0.49 0.61 0.70
50 0.14 0.25 0.36 0.45 0.53
60 0.12 0.20 0.28 0.35 0.42
70 0.11 0.17 0.23 0.29 0.34
80 0.09 0.14 0.19 0.24 0.29
90 0.09 0.13 0.17 0.21 0.25

100 0.08 0.12 0.15 0.19 0.22

TABLE 6.14
Average Total Sample Sizes for Maximum Combination Test (w = 0.5, w∗ = 0.25) When
True Ratio = 0.80 and Futility Rule Applied

CV% n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60

10 12.04 24.00 36.00 48.00 60.00
20 22.36 24.89 36.01 48.00 60.00
30 51.34 41.56 41.63 49.14 60.10
40 91.87 78.06 68.83 65.62 68.13
50 141.39 124.53 112.96 103.47 97.54
60 198.71 178.23 165.08 154.14 144.10
70 261.05 236.95 221.84 210.16 199.64
80 328.59 299.97 282.59 269.16 258.12
90 397.92 365.88 345.92 330.66 318.53

100 468.74 433.37 410.74 393.88 380.07
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FIGURE 6.9
Simulation-Based Type I Error Rate Estimates for Maximum Combination Test (w =
0.5, w∗ = 0.25) when True Ratio = 0.80 and Futility Rule Applied

We said earlier that in practice there will be a limit on the total sample size. This
will be due to budget and time constraints. As an example, we consider applying an
upper limit equal to four times the size of the first stage in addition to the futility bound
already discussed. Table 6.17 gives the achieved average total sample sizes when both
limits are enforced. The rightmost column gives the sample size (Ns) needed for a single-
stage design to achieve a power of 0.80 for the corresponding value of the CV. Table 6.18
gives the simulation-based powers corresponding to the average samples sizes in Table 6.17.
Obviously, when the sample size is allowed to equal or exceed the planned sample size, a
power of 0.80 or higher is achieved. If the re-estimated total sample size is greater than
4n1, it is clearly sensible to stop the trial after the first stage.
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TABLE 6.15
Stopping Rates When the Maximum Combination Test Is Used and the Futility Rule Is
Applied after the First Stage When True Ratio = 0.95

CV% n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60
10 0.03 0.03 0.03 0.03 0.03
20 0.03 0.03 0.03 0.03 0.03
30 0.03 0.03 0.03 0.03 0.03
40 0.04 0.03 0.03 0.03 0.03
50 0.04 0.04 0.03 0.03 0.03
60 0.04 0.04 0.03 0.03 0.03
70 0.04 0.04 0.04 0.03 0.03
80 0.04 0.04 0.04 0.04 0.03
90 0.05 0.04 0.04 0.04 0.04

100 0.05 0.04 0.04 0.04 0.04

Finally, we revisit the choice of weights for the maximum combination test. All our
previous results were for the case where w = 0.50 and w∗ = 0.25. Tables 6.19 and 6.20
give, respectively, the simulation-based power and average sample size for the algorithm
that uses the maximum combination test in conjunction with conditional error rates and
conditional power, for weights w = 0.40 and w∗ = 0.20. Here we have not enforced any
limit on the sample size or used a futility boundary.

TABLE 6.16
Average Total Sample Sizes for Maximum Combination Test (w = 0.5, w∗ = 0.25) When
True Ratio = 0.95 and Futility Rule Applied

CV% n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60
10 12.05 24.00 36.00 48.00 60.00
20 20.74 24.73 36.01 48.00 60.00
30 49.01 39.56 40.37 48.90 60.09
40 88.96 77.90 66.78 62.73 66.30
50 138.11 125.87 115.03 102.33 93.77
60 195.16 179.55 169.56 158.64 144.98
70 257.81 238.66 227.46 217.90 207.27
80 325.05 301.62 288.26 278.28 269.23
90 395.14 367.49 351.77 340.27 331.07

100 466.38 435.53 417.05 403.71 393.43
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FIGURE 6.10
Simulation-Based Power Estimates for Maximum Combination Test (w = 0.5, w∗ = 0.25)
when True Ratio = 0.95 and Futility Rule Applied

TABLE 6.17
Average Total Sample Sizes for Maximum Combination Test (w = 0.5, w∗ = 0.25) When
True Ratio = 0.95, Futility Rule and Maximum Sample Size Limit (nmax = 4n1) Applied

n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60
CV% nmax = 48 nmax = 96 nmax = 144 nmax = 192 nmax = 240 Ns

10 12.05 24.00 36.00 48.00 60.00 8
20 20.57 24.73 36.01 48.00 60.00 20
30 38.39 39.48 40.37 48.90 60.09 40
40 44.89 70.75 66.49 62.73 66.30 66
50 46.17 87.90 106.69 101.45 93.69 98
60 46.41 92.25 130.42 146.98 142.87 134
70 46.42 93.02 137.92 173.68 190.48 174
80 46.39 93.12 139.53 183.45 217.69 214
90 46.36 93.05 139.78 185.97 228.82 258

100 46.34 92.99 139.74 186.41 232.30 300

Ns = planned sample size (for single stage) to achieve power of at least 0.8.
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TABLE 6.18
Simulation-Based Estimates of Power for Maximum Combination Test (w = 0.5, w∗ = 0.25)
When True Ratio = 0.95, Futility Rule and Maximum Sample Size Limit (nmax = 4n1)
Applied

n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60

CV% nmax = 48 nmax = 96 nmax = 144 nmax = 192 nmax = 240
10 0.98 1.00 1.00 1.00 1.00
20 0.84 0.88 0.95 0.99 1.00
30 0.73 0.82 0.83 0.85 0.89
40 0.51 0.78 0.81 0.81 0.81
50 0.26 0.68 0.79 0.81 0.81
60 0.08 0.52 0.72 0.79 0.81
70 0.02 0.36 0.61 0.73 0.78
80 0.00 0.21 0.49 0.65 0.74
90 0.00 0.10 0.37 0.55 0.67

100 0.00 0.03 0.26 0.46 0.59

Comparing these tables with Tables 6.8 and 6.10, we can see that almost identical power
is achieved for all combinations of CV and n1, but there is a saving in average sample size
for most CV values greater than 50. For CV values lower than 50, there is either no or a
very slight increase in average sample size. This suggests that, when the true CV is large,
a choice of w and w∗ that gives more weight to the second stage is beneficial.

TABLE 6.19
Simulation-Based Estimates of Power for Algorithm That Uses the Maximum Combination
Test (w = 0.40, w∗ = 0.20) and True Ratio = 0.95

CV% n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60
10 0.98 1.00 1.00 1.00 1.00
20 0.85 0.88 0.95 0.99 1.00
30 0.80 0.83 0.83 0.85 0.89
40 0.80 0.82 0.83 0.82 0.82
50 0.79 0.82 0.83 0.83 0.83
60 0.79 0.82 0.83 0.83 0.83
70 0.79 0.83 0.83 0.83 0.83
80 0.79 0.83 0.83 0.84 0.83
90 0.79 0.82 0.83 0.84 0.84

100 0.79 0.82 0.83 0.84 0.84
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TABLE 6.20
Average Total Sample Sizes for Maximum Combination Test (w = 0.40, w∗ = 0.20) and
True Ratio = 0.95

CV% n1 = 12 n1 = 24 n1 = 36 n1 = 48 n1 = 60
10 12.05 24.00 36.00 48.00 60.00
20 21.39 24.82 36.01 48.00 60.00
30 50.45 41.25 41.14 49.09 60.11
40 90.69 81.44 70.18 65.10 67.70
50 140.08 130.37 120.75 107.92 98.40
60 196.80 185.09 176.62 167.03 153.33
70 259.47 245.01 235.59 227.70 218.05
80 326.46 309.01 297.65 289.34 281.64
90 395.73 375.51 362.58 352.75 344.77

100 466.55 443.97 428.96 417.61 408.79

6.10 Conclusions

We have seen that a sample size re-estimation after the first stage can be beneficial in recov-
ering power that might otherwise have been lost. The new algorithm described in this chap-
ter has the strong advantage that it ensures that the Type I error rate is not inflated above
its nominal level while preserving the desired level of power. Some robustness to the choice of
weights is possible by using the new maximum combination test. Indeed, more than two sets
of weights could be used, although this is probably unnecessary in the present setting of test-
ing for ABE. For situations where ABE is unlikely to be shown, futility rules at the interim
analysis can be beneficial in stopping failed trials and saving sample size. For situations
where it might turn out that the true (but unknown) CV is much larger than expected, giv-
ing even more weight to the second stage can be beneficial in terms of reducing sample size.

6.11 Technical Appendix: R code

6.11.1 Power and sample size for single-stage design

library(mvtnorm)

library(PowerTOST)

##########################################################

## example code for chapter on adaptive two-stage designs

##########################################################

##########################################################

## Warning: this code comes without any guarantee that

## it is correct and does as it is intended to.

## Use of it is at own risk.

##########################################################
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##########################################################

##########################################################

## sample size and power calculations for a single stage

## design

##########################################################

##########################################################

##########################################################

## ABE limits (on ratio scale)

theta1=0.8

theta2=1.25

## assumed true ratio of Test to Reference

theta0=0.95

## significance level

alpha=0.05

## planned power

power.min=0.8

## assumed true CV (%)

CV=23 # for example

## sample size calculation for CV=23, alpha=0.05 and

## target power=0.8

sampleN.TOST(alpha=alpha,targetpower=power.min,

logscale=TRUE,theta0=theta0,theta1=theta1,

theta2=theta2, CV=CV/100,design="2x2",

method="exact",robust=FALSE,print=TRUE,

details=FALSE,imax=100)

## sample size calculation for CV=30, alpha=0.05 and

## target power=0.8

CV=30 # for example

sampleN.TOST(alpha=0.05,targetpower=power.min,

logscale=TRUE,theta0=theta0,theta=theta1,

theta2=theta2,CV=CV/100,design="2x2",

method="exact",robust=FALSE,print=TRUE,

details=FALSE,imax=100)

#####################################################

##power calculation for n.planned=24, CV=23 and

## alpha=0.05

## assumed true CV (%)

CV=23 # for example

n.planned=24

power.TOST(alpha=alpha,logscale=TRUE,theta1=theta1,

theta2=theta2,theta0=theta0,CV=CV/100,
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n=n.planned,design="2x2",method="exact",

robust=FALSE)

CV=30 # for example

n.planned=24

power.TOST(alpha=alpha,logscale=TRUE,theta1=theta1,

theta2=theta2,theta0=theta0,CV=CV/100,

n=n.planned,design="2x2",method="exact",

robust=FALSE)

####################################################

6.11.2 Critical values for standard combination test

####################################################

####################################################

## critical values for the standard

## combination test

####################################################

####################################################

####################################################

## choice of weight for standard combination test

####################################################

w1=0.5 # for example

w2=1-w1

####################################################

## this version assumes that the same alpha is

## used in both stages but the choice of weights

## need not be w1=w2=0.5

####################################################

###################

## set parameters #

###################

## true ratio of Test to Reference

## (for simulating data)

true.BE.ratio=0.95 # for example

## true CV (%)

CV=30 # for example

## overall significance level

alpha=0.05

####################################################

## significance level for standard combination

## test at end of stages 1 and 2

####################################################

## chosen to be equal here
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##(see directly below for code to do calculations)

####################################################

## alpha.stage.1=0.03037 # for weight = 0.5

## alpha.stage.2=0.03037

## z.crit.stage.1=1.87542

## z.crit.stage.2=1.87542

####################################################

####################################################

## correlation matrix for bivariate normal

####################################################

corr=diag(1,2,2)

corr[1,2]=sqrt(w1)

corr[2,1]=corr[1,2]

####################################################

## function to solve for critical value

## (equal alphas in stages 1 and 2)

####################################################

f <- function (x)(pmvnorm(lower=rep(-Inf,2),

upper=c(x,x),mean=rep(0,2),corr=corr,

abseps=0.0000001)-(1-alpha))

####################################################

####################################################

## get critical value of standard

## combination test

####################################################

z.crit.stage.1=uniroot(f, c(0, 5),

tol=0.0000000001)$root

####################################################

## convert this to a significance level

####################################################

alpha.stage.1=1-pnorm(z.crit.stage.1)

z.crit.stage.2=z.crit.stage.1

alpha.stage.2=alpha.stage.1

####################################################

####################################################

## critical value for z-test first and

## second stages (weight w1)

####################################################

print(c("weight = ",w1,"alpha stage 1 =

",alpha.stage.1,"z.crit.stage.1 = ",z.crit.stage.1))
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6.11.3 Simulation of data for first stage and application of
TOST at interim

###################################################

###################################################

## simulate data (within-subject differences)

## for first stage, estimate model parameters,

## apply TOST procedure and

## calculate achieved power of first stage

####################################################

####################################################

## size of stage

n.stage.1=12

## true CV (%)

CV=30

## true sigma

true.sigma=sqrt(log(1+(CV/100)^2))

## true ratio

true.BE.ratio=0.95

## true delta

true.delta=log(true.BE.ratio)

diff.11=rnorm(n.stage.1/2,-true.delta,sqrt(2)*true.sigma)

diff.12=rnorm(n.stage.1/2, true.delta,sqrt(2)*true.sigma)

####################################################

## simulated data for first stage in book example

####################################################

data.first=matrix(c(

0.1095, 0.7758,

-0.6888, -0.3118,

0.0292, 0.2005,

-0.0326, -0.6748,

0.6775, -0.1591,

-0.6688, -0.0069),nrow=6,byrow=TRUE)

diff.11=data.first[,1]

diff.12=data.first[,2]

6.11.4 Application of TOST at interim

####################################################

## estimate of mean difference

delta.hat.stage.1=(mean(diff.12)-mean(diff.11))/2

## unblinded estimate of variance

errdf.stage.1=n.stage.1-2

var.hat.stage.1=0.5*((n.stage.1/2-1)*var(diff.11) +

(n.stage.1/2-1)*var(diff.12))/errdf.stage.1

CV.hat.stage.1=sqrt(exp(var.hat.stage.1)-1)

sigma.hat.stage.1=sqrt(var.hat.stage.1)
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#########################################################

print(delta.hat.stage.1)

print(exp(delta.hat.stage.1))

print(var.hat.stage.1)

print(sqrt(var.hat.stage.1))

print(CV.hat.stage.1)

#######################################################

## standard error of treatment difference on log scale

stderr.stage.1=sqrt(2*var.hat.stage.1/n.stage.1)

#######################################################

print(stderr.stage.1)

##########################################################

## test statistics for stage 1

T1.stage.1=(delta.hat.stage.1 - log(0.8))/stderr.stage.1

T2.stage.1=(log(1.25) - delta.hat.stage.1)/stderr.stage.1

##########################################################

print(c(T1.stage.1,T2.stage.1))

#################################################

## p-values for stage 1 (based on t-tests)

p.val.T1.stage.1=1-pt(T1.stage.1,errdf.stage.1)

p.val.T2.stage.1=1-pt(T2.stage.1,errdf.stage.1)

##################################################

print(c(p.val.T1.stage.1,p.val.T2.stage.1))

##################################################

## convert these into z-statistics

## to use in combination test

##################################################

Z1.stage.1=qnorm(1-p.val.T1.stage.1)

Z2.stage.1=qnorm(1-p.val.T2.stage.1)

##########################################

print(c(Z1.stage.1,Z2.stage.1))

###############################################################

## TOST for first stage using z-statistics and z critical value

## based on alpha.stage.1

###############################################################

# can null hypothesis be rejected at left side?

z.nrejlow.stage.1 = (Z1.stage.1 >= z.crit.stage.1)

## can null hypothesis be rejected at right side?

z.nrejupp.stage.1 = (Z2.stage.1 >= z.crit.stage.1)

## can reject null hypothesis at both sides?, i.e., ABE accepted

z.nABE.passed.stage.1 = (z.nrejlow.stage.1 & z.nrejupp.stage.1)

## print if pass ABE (TRUE) or not (FAIL)

print(z.nABE.passed.stage.1)

#################################################################
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6.11.5 Decision at interim and sample size re-estimation

######################################################

## achieved power of first stage

## for standard combination test with weight = 0.5

######################################################

alpha.stage.1=0.0304

planned.BE.ratio=0.95

power.abe.stage.1=power.TOST(

alpha=alpha.stage.1,

logscale=TRUE,theta1=theta1,

theta2=theta2,theta0=planned.BE.ratio,

CV=CV.hat.stage.1,n=n.stage.1,design="2x2",

method="exact",robust=FALSE)

print(power.abe.stage.1)

######################################################

## stop trial if fail ABE and futile at interim

######################################################

## set default values to be updated later

stop.at.stage.1.abe=0 # stop for ABE, 0 = FALSE

stop.at.stage.1.fut=0 # stop for futility, 0 = FALSE

if(z.nABE.passed.stage.1==FALSE)

{

## if power at first stage is >= power.min then stop

if(power.abe.stage.1 >= power.min)

{

new.n.final.stage.1=n.stage.1

power.abe.final.stage.1=power.abe.stage.1

stop.at.stage.1.fut=1

}

}

#######################################################

## stop trial if pass ABE at interim for alpha.stage.1

#######################################################

if(z.nABE.passed.stage.1==TRUE)

{

stop.at.stage.1.abe=1

new.n.final.stage.1=n.stage.1

power.abe.final.stage.1=power.abe.stage.1

}

print(c(stop.at.stage.1.fut,stop.at.stage.1.abe))

if(stop.at.stage.1.fut==0 & stop.at.stage.1.abe==0)

{

print("decision is to continue to second stage")

}
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if(stop.at.stage.1.fut!=0 | stop.at.stage.1.abe!=0)

{

print("decision is to stop after first stage")

}

#######################################################

## assume here that decision is to continue to

## stage 2 and re-sample size

#######################################################

#############################

## sample size re-estimation

#############################

nmax=4000

n.planned=24

n.increase=n.planned

power.abe.increase=power.TOST(alpha=alpha.stage.1,

logscale=TRUE,

theta1=theta1,theta2=theta2,

theta0=planned.BE.ratio,

CV=CV.hat.stage.1,n=n.increase,

design="2x2",

method="exact",robust=FALSE)

repeat

{

n.increase=n.increase+2

power.abe.increase=power.TOST(alpha=alpha.stage.1,

logscale=TRUE,

theta1=theta1,

theta2=theta2,

theta0=planned.BE.ratio,

CV=CV.hat.stage.1,n=n.increase,

design="2x2",

method="exact",robust=FALSE)

if(power.abe.increase>=power.min |

n.increase>=nmax) {break}

} #end of repeat loop

n.final.stage.1=n.increase

new.n.stage.2=n.final.stage.1-n.stage.1

power.abe.final.stage.1=power.abe.increase

print(c(new.n.stage.2,n.final.stage.1,

power.abe.final.stage.1))

6.11.6 Simulation of data for second stage

#####################################################

#####################################################

## simulation of second-stage data and application

## of TOST using the standard combination test
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#####################################################

#####################################################

#####################################################

## simulate data for second stage

#####################################################

diff.21=rnorm(new.n.stage.2/2,-true.delta,sqrt(2)*true.sigma)

diff.22=rnorm(new.n.stage.2/2, true.delta,sqrt(2)*true.sigma)

#####################################################

## below are the simulated data for second stage

## in the book example

#####################################################

data.second=matrix(c(

-0.1536, 0.6286,

0.1128, 0.0137,

0.3096, -0.1762,

1.4555, 1.0213,

0.1030, -0.4475,

-0.3317, 0.3559,

0.0536, -0.3835,

0.3641, -0.0042,

0.4193, -0.1826,

-0.0716, -0.4234,

-0.1361, -0.4085,

-0.3981, -0.2508,

-0.3934, -0.4037,

-0.0876, -0.3587,

0.1541, -0.5949,

0.5964, 0.6090,

-0.6216, 0.4746,

-0.2219, -0.6212,

-0.2395, 0.6777,

0.8597, -0.1294,

0.5992, 0.0008,

-0.0238, -0.4009,

0.3881, -0.9945,

0.2083, -0.9417,

-0.1400, 0.8338,

0.3870, -0.5862,

0.0437, -0.0480,

0.5645, 0.2778),nrow=28,byrow=TRUE)

diff.21=data.second[,1]

diff.22=data.second[,2]

new.n.stage.2=2*length(diff.21)
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6.11.7 Estimation and TOST for second stage

#####################################################

#####################################################

## Estimation and TOST for second stage

## using the standard combination test

#####################################################

#####################################################

#####################################################

## df for second stage

errdf.stage.2=new.n.stage.2-2

#####################################################

#####################################################

## estimate parameters

#####################################################

delta.hat.stage.2=(mean(diff.22)-mean(diff.21))/2

## unblinded estimate of variance

var.hat.stage.2=0.5*((new.n.stage.2/2-1)*var(diff.21)+

(new.n.stage.2/2-1)*var(diff.22))/

errdf.stage.2

CV.hat.stage.2=sqrt(exp(var.hat.stage.2)-1)

######################################################

print(delta.hat.stage.2)

print(exp(delta.hat.stage.2))

print(var.hat.stage.2)

print(sqrt(var.hat.stage.2))

print(CV.hat.stage.2)

##########################################################

## standard error of treatment difference for stage 2 only

stderr.stage.2=sqrt(2*var.hat.stage.2/new.n.stage.2)

##########################################################

print(stderr.stage.2)

##########################################################

## one-sided t-test values for stage 2

T1.stage.2=(delta.hat.stage.2 - log(0.8))/stderr.stage.2

T2.stage.2=(log(1.25) - delta.hat.stage.2)/stderr.stage.2

##########################################################

print(T1.stage.2)

print(T2.stage.2)

## p-values for stage 2

p.val.T1.stage.2=1-pt(T1.stage.2,errdf.stage.2)

p.val.T2.stage.2=1-pt(T2.stage.2,errdf.stage.2)

##########################################################

print(p.val.T1.stage.2)

print(p.val.T2.stage.2)
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##########################################################

## convert these into z-statistics

## for use in the combination test

##########################################################

Z1.stage.2=qnorm(1-p.val.T1.stage.2)

Z2.stage.2=qnorm(1-p.val.T2.stage.2)

##########################################################

print(Z1.stage.2)

print(Z2.stage.2)

##########################################################

6.11.8 Application of the standard combination test

##########################################################

##########################################################

## application of the standard combination test

## for weight = 0.5

##########################################################

##########################################################

w1=0.5

w2=1-w1

##########################################################

alpha.stage.2=0.03037

z.crit.stage.2=1.87542

##########################################################

##########################################################

## z-statistics

##########################################################

Z1=sqrt(w1)*Z1.stage.1 + sqrt(w2)*Z1.stage.2

Z2=sqrt(w1)*Z2.stage.1 + sqrt(w2)*Z2.stage.2

##########################################################

print(Z1)

print(Z2)

##########################################################

## test for ABE using combination test

##########################################################

## reject null hypothesis at left side?

nrejlow.comb = (Z1 >= z.crit.stage.2)

## reject null hypothesis at right side?

nrejupp.comb = (Z2 >= z.crit.stage.2)

## reject null hypothesis at both sides?, i.e.,

## is ABE accepted?

nABE.passed.comb = (nrejlow.comb & nrejupp.comb)

## print if pass ABE (TRUE) or not (FAIL)

print(nABE.passed.comb)

##########################################################
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6.11.9 Critical values for maximum combination test

##########################################################

##########################################################

## calculation of critical values for

## maximum combination test

##########################################################

##########################################################

##########################################################

## set up what is needed for trivariate normal

## calculations to get critical value for maximum

## combination test (assuming equal alpha levels for

## each stage)

##########################################################

##########################################################

# choice of weights

##########################################################

w1=0.5

w2=1-w1

w1.star=0.25

w2.star=1-w1.star

##########################################################

## correlation matrix for trivariate normal

##########################################################

rho=sqrt(w1*w1.star) + sqrt(w2*w2.star)

corr=diag(1,3,3)

corr[1,2]=sqrt(w1)

corr[1,3]=sqrt(w1.star)

corr[2,1]=corr[1,2]

corr[3,1]=corr[1,3]

corr[2,3]=rho

corr[3,2]=corr[2,3]

#########################################################

## function uses in uniroot to solve for critical value

## of maximum combination test

#########################################################

#########################################################

f <- function (x)(pmvnorm(lower=rep(-Inf,3),

upper=c(x,x,x), mean=rep(0,3),corr=corr,

abseps=0.0000001)-(1-alpha))

#########################################################

## get critical value of robust combination test for

## Z.max.1 and Z.max.2

z.crit.max=uniroot(f, c(0, 5),tol=0.0000000001)$root

#########################################################

alpha.max= 1-pnorm(z.crit.max)

#########################################################
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## critical value for z.max test

#########################################################

print(c("alpha.max = ",round(alpha.max,5),

"z.crit.max = ", round(z.crit.max,5)))

#########################################################

6.11.10 Sample size re-estimation using the maximum
combination test

##########################################################

##########################################################

## sample size re-estimation for

## maximum combination test

##########################################################

##########################################################

nmax=4000

n.increase=n.planned

power.abe.increase=power.TOST(alpha=alpha.max,

logscale=TRUE,

theta1=theta1,theta2=theta2,

theta0=planned.BE.ratio,

CV=CV.hat.stage.1,n=n.increase,

design="2x2",

method="exact",robust=FALSE)

repeat

{

n.increase=n.increase+2

power.abe.increase=power.TOST(alpha=alpha.max,

logscale=TRUE,

theta1=theta1,

theta2=theta2,

theta0=planned.BE.ratio,

CV=CV.hat.stage.1,n=n.increase,

design="2x2",

method="exact",robust=FALSE)

if(power.abe.increase>=power.min |

n.increase>=nmax) {break}

} #end of repeat loop

n.final.stage.1=n.increase

new.n.stage.2=n.final.stage.1-n.stage.1

power.abe.final.stage.1=power.abe.increase

print(c(new.n.stage.2,n.final.stage.1,

power.abe.final.stage.1))
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6.11.11 Power of first stage using the maximum
combination test

####################################################

####################################################

## power for a given first stage sample size,

## using the adjusted alpha levels

## for the maximum combination test

####################################################

####################################################

## first stage sample size

n.stage.1=12

planned.BE.ratio=0.95

alpha.max=0.0264

power.planned.alpha.max=power.TOST(

alpha=alpha.max,

logscale=TRUE,theta1=theta1,

theta2=theta2,theta0=planned.BE.ratio,

CV=CV.hat.stage.1,n=n.stage.1,design="2x2",

method="exact",robust=FALSE)

print(power.planned.alpha.max)

6.11.12 Simulation of data for second stage when
maximum combination test is used

#########################################################

#########################################################

## second-stage data for the book example that uses the

## maximum combination test and a sample size

## re-estimation that does not make use of conditional

## errors and conditional power

#########################################################

#########################################################

#########################################################

## use these data

#########################################################

data.second.max=matrix(0,29,2)

data.second.max[1:28,]=data.second[1:28,]

data.second.max[29,]=c( 0.8517, 0.1783)

diff.21=data.second.max[,1]

diff.22=data.second.max[,2]

new.n.stage.2=2*length(diff.21)

########################################################

## second-stage data for book example when

## using the maximum combination test and

## sample size re-estimation is based on conditional

## errors and conditional power

#########################################################
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#########################################################

data.second.max=matrix(0,25,2)

data.second.max[1:25,]=data.second[1:25,]

diff.21=data.second.max[,1]

diff.22=data.second.max[,2]

new.n.stage.2=2*length(diff.21)

##################################

6.11.13 Estimation and TOST for second stage when
maximum combination test is used

#########################################################

#########################################################

## TOST using the maximum combination test

#########################################################

#########################################################

#########################################################

## df for second stage

errdf.stage.2=new.n.stage.2-2

#########################################################

#########################################################

## estimate parameters

#########################################################

delta.hat.stage.2=(mean(diff.22)-mean(diff.21))/2

## unblinded estimate of variance

var.hat.stage.2=0.5*((new.n.stage.2/2-1)*var(diff.21) +

(new.n.stage.2/2-1)*var(diff.22))/

errdf.stage.2

CV.hat.stage.2=sqrt(exp(var.hat.stage.2)-1)

#########################################################

print(delta.hat.stage.2)

print(exp(delta.hat.stage.2))

print(var.hat.stage.2)

print(sqrt(var.hat.stage.2))

print(CV.hat.stage.2)

##########################################################

## standard error of treatment difference for stage 2 only

stderr.stage.2=sqrt(2*var.hat.stage.2/new.n.stage.2)

##########################################################

print(stderr.stage.2)

##########################################################

## one-sided t-test values for stage 2

T1.stage.2=(delta.hat.stage.2 - log(0.8))/stderr.stage.2

T2.stage.2=(log(1.25) - delta.hat.stage.2)/stderr.stage.2

##########################################################

print(T1.stage.2)

print(T2.stage.2)
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## p-values for stage 2

p.val.T1.stage.2=1-pt(T1.stage.2,errdf.stage.2)

p.val.T2.stage.2=1-pt(T2.stage.2,errdf.stage.2)

##########################################################

print(p.val.T1.stage.2)

print(p.val.T2.stage.2)

##########################################################

## convert these into z-statistics

## for use in the combination test

##########################################################

Z1.stage.2=qnorm(1-p.val.T1.stage.2)

Z2.stage.2=qnorm(1-p.val.T2.stage.2)

##########################################################

print(Z1.stage.2)

print(Z2.stage.2)

##########################################################

6.11.14 Apply maximum combination test

############################################################

w=0.5

w.star=0.25

##################################################

## get z-statistics

############################################################

print(c(Z1.stage.1,Z2.stage.1))

print(c(Z1.stage.2,Z2.stage.2))

Z1.w=sqrt(w)*Z1.stage.1 + sqrt(1-w)*Z1.stage.2

Z2.w=sqrt(w)*Z2.stage.1 + sqrt(1-w)*Z2.stage.2

Z1.w.star=sqrt(w.star)*Z1.stage.1 + sqrt(1-w.star)*Z1.stage.2

Z2.w.star=sqrt(w.star)*Z2.stage.1 + sqrt(1-w.star)*Z2.stage.2

print(c(Z1.w,Z2.w))

print(c(Z1.w.star,Z2.w.star))

Z1.max=max(Z1.w,Z1.w.star)

Z2.max=max(Z2.w,Z2.w.star)

print(c(Z1.max,Z2.max))

#######################################################

## test for ABE using maximum combination test

#######################################################

## reject null hypothesis at left side?

nrejlow = (Z1.max >= z.crit.max)

## reject null hypothesis at right side?

nrejupp = (Z2.max >= z.crit.max)

## reject null hypothesis at both sides?, i.e., is ABE accepted?
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z.passed = (nrejlow & nrejupp)

print(z.passed)

########################################################

6.11.15 Conditional errors for second stage

#########################################################

w1=0.5

w2=1-w1

## critical value for combination tests

#z.crit.stage.2=1.9374 # maximum comb test

z.crit.stage.2=1.87542 # standard comb test

#########################################################

#########################################################

## values for H_{01}

#########################################################

## calculate value within Phi function

#########################################################

val.1=(z.crit.stage.2 - sqrt(w1)*Z1.stage.1)/sqrt(w2)

#########################################################

## conditional error at interim

#########################################################

alpha.c.1=1-pnorm(val.1)

print(alpha.c.1)

#########################################################

## critical value for t-test for second stage t-test

#errdf=54 # standard combination test

errdf=48 # maximum combination test

t.crit.1=qt((1-alpha.c.1),errdf)

print(t.crit.1)

#########################################################

#########################################################

## values for H_{02}

#########################################################

#########################################################

## calculate value within Phi function

#########################################################

val.2=(z.crit.stage.2 - sqrt(w1)*Z2.stage.1)/sqrt(w2)

#########################################################

## conditional error at interim

#########################################################

alpha.c.2=1-pnorm(val.2)

print(alpha.c.2)

#########################################################

#########################################################

## critical value for t-test for second stage t-test

errdf=54 # standard combination test

errdf=48 # maximum combination test

t.crit.2=qt((1-alpha.c.2),errdf)
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print(t.crit.2)

#########################################################

6.11.16 Power of second stage using conditional errors

#########################################################

#########################################################

## conditional power function for given value (n)

## of second-stage sample size using function pmvt

## in library mvtnorm

#########################################################

#########################################################

#########################################################

## parameters for mvtnorm

#########################################################

#sigma.hat.stage.1 = 0.3574

#alpha.c.1 = 0.1272 # for maximum combination test

#alpha.c.2 = 0.0644 # for maximum combination test

alpha.c.1 = 0.1464 # for standard combination test

alpha.c.2 = 0.0762 # for standard combination test

planned.BE.ratio=0.95

delta=log(planned.BE.ratio)

Delta=log(1.25)

corr <- c(1, -1, -1, 1)

corr <- matrix(corr, ncol =2)

#########################################################

Power <- function(n2)(

pmvt(

lower = c(qt(1-alpha.c.1, n2-2),

qt(1-alpha.c.2, n2-2)),

upper = c(Inf,Inf),

delta = c((delta+Delta) /

(sigma.hat.stage.1*sqrt(2/n2)),

(Delta-delta) /

(sigma.hat.stage.1*sqrt(2/n2))),

df = n2-2, corr = corr) )

#########################################################

#########################################################

## power of second-stage for given value of n2

#########################################################

n2=38

power.n2=Power(n2)[1]

print(power.n2)

##############################################
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6.11.17 Conditional power at interim

##################################################

##################################################

## conditional power at interim

##################################################

##################################################

planned.beta=1-power.min

alpha.stage.1=0.0304 # standard combination test

#################################################

## power for first stage based on alpha.stage.1

#################################################

power.abe.stage.1=power.TOST(alpha=alpha.stage.1,

logscale=TRUE,theta1=theta1,

theta2=theta2,theta0=planned.BE.ratio,

CV=CV.hat.stage.1,n=n.stage.1,

design="2x2",method="exact",

robust=FALSE)

print(power.abe.stage.1)

beta.1.hat=1-power.abe.stage.1

cond.power=(beta.1.hat-planned.beta)/beta.1.hat

print(cond.power)

################################################

6.11.18 Conditional errors for maximum combination test

w2=1-w1

w2.star=1-w1.star

#################################################################

## power for first stage,using the adjusted alpha levels

## for the maximum combination test

##################################################################

## first stage sample size

n.stage.1=12

## df for TOST at interim

errdf.stage.1=n.stage.1-2

## power of planned trial (using alpha from standard combination test)

planned.BE.ratio=0.95

power.abe.stage.1.max=power.TOST(alpha=alpha.max,logscale=TRUE,

theta1=theta1,theta2=theta2,theta0=planned.BE.ratio,

CV=CV.hat.stage.1,n=n.stage.1,design="2x2",

method="exact",robust=FALSE)

print(power.abe.stage.1.max)
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################################################

beta.1.hat=1-power.abe.stage.1.max

################################################

################################################

## calculate value within Phi function

############################################################

val.11=(z.crit.max - sqrt(w1)*Z1.stage.1)/sqrt(w2)

val.12=(z.crit.max - sqrt(w1.star)*Z1.stage.1)/sqrt(w2.star)

val.min=min(val.11,val.12)

###########################################################

################################################

## conditional error at interim based on

## maximum combination test

################################################

alpha.c.1.max=1-pnorm(val.min)

print(alpha.c.1.max)

################################################

################################################

## calculate values within Phi function

############################################################

val.21=(z.crit.max - sqrt(w1)*Z2.stage.1)/sqrt(w2)

val.22=(z.crit.max - sqrt(w1.star)*Z2.stage.1)/sqrt(w2.star)

val.min=min(val.21,val.22)

############################################################

################################

## conditional error at interim

################################

alpha.c.2.max=1-pnorm(val.min)

print(alpha.c.2.max)

################################

####################################

## conditional power at interim

################################################

planned.beta=1-power.min

cond.power=(beta.1.hat-planned.beta)/beta.1.hat

print(cond.power)

################################################

6.11.19 Sample size for maximum combination test using
conditional errors

#########################################################

#########################################################

## conditional power function for given value (n2)

## and conditional errors for maximum combination test

## of second-stage sample size using function pmvt
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## in library mvtnorm

#########################################################

#########################################################

#########################################################

## parameters for mvtnorm

#########################################################

#planned.BE.ratio=0.95

planned.BE.ratio=1/0.95 # adaptive planning

delta=log(planned.BE.ratio)

Delta=log(1.25)

corr <- c(1, -1, -1, 1)

corr <- matrix(corr, ncol =2)

#########################################################

Power <- function(n2)(

pmvt(

lower = c(qt(1-alpha.c.1.max, n2-2),

qt(1-alpha.c.2.max, n2-2)),

upper = c(Inf,Inf),

delta = c((delta+Delta) /

(sigma.hat.stage.1*sqrt(2/n2)),

(Delta-delta) /

(sigma.hat.stage.1*sqrt(2/n2))),

df = n2-2, corr = corr) )

#########################################################

#########################################################

## power of second-stage for given value of n2

#########################################################

n2=38

power.n2=Power(n2)[1]

print(power.n2)

n2=40

power.n2=Power(n2)[1]

print(power.n2)

n2=48

power.n2=Power(n2)[1]

print(power.n2)

n2=50

power.n2=Power(n2)[1]

print(power.n2)
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Scaled Average Bioequivalence Testing

Introduction
A few years later, I was asked to attend a meeting in Hilton Head, South Carolina,

where bioequivalence was one of the topics of discussion. There were presentations by sev-
eral statisticians from the FDA, academia, and industry on the topic. I regarded this as
somewhat of a pain — there was a lot of work to do, I had a date that weekend, and I could
not see where flying off to Hilton Head was going to be helpful to anyone at all. Plus I had
a cold, and flying on the puddle jumpers one takes to Hilton Head with a head cold is a bad
idea....

My boss, however, said I had to go. It was expected that I would attend (and eventually
participate in) such conferences as a matter of professional development, representing the
company and the discipline of statistics (etc., etc.). Also, she did not have time to go. So I
dutifully packed my bags and headed down. One of the reasons I had gone to work was that
I was tired of sitting through lectures, but I left secure in the knowledge that at least maybe
I could possibly play golf while down there.

When the conference was over, I came back and reported on the upcoming new FDA
proposals about assessing bioequivalence. I was still pretty new to the company and industry
at this point, so how bioequivalence testing was done did not really bother me one way or
the other. As long as I knew what to do with the data and how to design the studies, I was
holding up my end. The FDA was planning to issue a draft guidance on the topic later that
year. I did not get to play golf, and the puddle jumpers made my cold worse. My doctor
did not even want to see me and prescribed antibiotics.

The reaction I received after sharing what I had heard at the conference was kind of
like the reaction one gets when accidently knocking over a bees’ nest — the bees are very
surprised, kind of annoyed, do not like it, and may be less than friendly. My boss was very
surprised by the information I brought back and, to be blunt, did not believe me. I argued
about it with her for a while, showed her my notes, and pointed out that if she did not like
the message, it was not my fault as I was just reporting what I had heard. In the end, I
had her invite one of the local academic statisticians who had given a talk at the meeting to
come to “the Unit” to discuss the upcoming FDA proposals.

If she did not believe me, I figured she would believe him. It is amazing how often this
type of thing happens in industry (the inviting of external people to make a point). I have
had to do this type of thing several times since then. You may know exactly what is going
on for a particular issue, but very often people at the company want to hear it themselves
from someone else external to the company before they will believe that they really have to
do anything about it. It has been pointed out that we have to pay these people to come talk
to us (i.e., this approach is not really cost effective), but that is how business is often done.

After the external academician came in and spoke with us, my boss believed me, and
there was a great deal of discussion at the company about the possible implications of this
proposal (nobody knew) and when it would come into effect (no one knew that either). In
the end, my boss asked that I go down to Washington, DC, with her the following winter
after the draft guidance was issued [358] for a special FDA Advisory Board meeting on the
topic. These are meetings of experts (external to the FDA) on a particular topic who advise
the FDA on how to protect public health.

In the end, this resulted in my spending the next approximately five years working on
this area of bioequivalence, doing extensive research and presenting at various meetings here,
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there, and everywhere on the topic and its implications for public health. It was important
and also interesting research, and I saw most of the airports in North America (and beyond).

The lessons of this experience are

1. Conference attendance (even if one is not presenting a paper or poster) is actually
important. It keeps one on the cutting edge at work.

2. In the modern world, it is not enough to just do your day job. Working folks
should engage in research that benefits them professionally at their company and
also externally.

3. All that said, five years of research is a long time and a lot of research. Be careful
what conferences you choose to attend.

7.1 Background

As discussed in greater detail in Chapter 2, in the late 1990s, the US Food and Drug Ad-
ministration (FDA) considered switching to newer techniques for bioequivalence assessment,
known as individual bioequivalence and population bioequivalence. It was eventually de-
cided that these particular approaches would not proceed, but their development did lead
to what is known as scaled average bioequivalence.

Individual bioequivalence was to be assessed using the following aggregate statistic [358]:

(µT − µR)2 + σ2
D + σ2

WT − σ2
WR

max(0.04, σ2
WR)

(7.1)

where µT and µR are the means of ln-transformed AUC or Cmax data for test and refer-
ence formulations, respectively, σ2

D is the variance associated with subject-by-formulation
interaction, and σ2

WT and σ2
WR are the within-subject variances for the test and reference

formulations, respectively. The derivation of such estimates is discussed in Chapter 5.
Because the within-subject variance of each formulation cannot be separately estimated

from between-subject variance estimates in most two-period cross-over designs of the form
(TR, RT), a replicate design (see Chapters 4 and 5) was generally required for individual
bioequivalence assessment [358].

This individual bioequivalence approach was abandoned by the FDA following debate
(see Chapter 2) for a number of reasons. However, theoretical issues remained with certain
classes of drug (which individual bioequivalence was in part attempting to address). Highly
variable drugs, and also narrow therapeutic index drugs, have been the subject of debate at
various times, as it was thought that the 0.80–1.25 average bioequivalence acceptance range
was too stringent (in the former case), requiring “large” trials, and might be too wide, not
protecting public health in the latter case.

The threshold for declaring a drug’s ln-AUC and ln-Cmax to be highly variable is gen-
erally set at an approximate threshold for σWR > 0.3 as a rule of thumb, making the
identification of a highly variable drug straightforward. Precisely stated, a highly variable
drug is one in which σW ≥ 0.294 corresponding to an intra-subject coefficient of variation

of at least 30%. Recall that CVW =
√
eσ

2
W − 1, as discussed in Chapter 5. Earlier pro-

posals had considered an intra-subject coefficient of variation of 25% (a natural-log scale
within-subject SD of 0.2462) as highly variable [90].

Examples of narrow therapeutic drugs are digoxin and warfarin — a small change in
dose or exposure can result in a large change in safety and efficacy. Narrow therapeutic
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index drugs generally exhibit low levels of within-subject variability but are not identified
as narrow therapeutic index drugs by their variability estimates alone.

In the middle years of the 2000 decade, the FDA and the European regulatory agency
(EMEA) devoted further attention to such products. They arrived at different testing
approaches for highly variable drugs, and we will study each approach in subsequent sections
of this chapter. First we will study a general approach to scaled average bioequivalence using
a standard 2× 2 bioequivalence design.

This approach advocates the scaling (i.e., widening) of the acceptance limits (tradition-
ally ± ln 1.25 for average bioequivalence) for reference product intra-subject variation in
excess of a coefficient of variation (CV) of 30% for highly variable drugs and will be re-
ferred to as scaled average bioequivalence (SABE). In essence, an acceptance value greater
than ln 1.25 would be used (depending on the observed variability) to determine bioequiv-
alence. As with average bioequivalence, AUC and Cmax are the endpoints of interest and
are ln transformed for analysis.

In most publications and guidance on these topics, narrow therapeutic index drugs were
not to be held to a stricter standard than the traditional average bioequivalence acceptance
limits ∓ ln 1.25 (see, for example, [358], [373]); however, this may be reconsidered by reg-
ulators, as evidenced by [244, 319, 339, 793] when circumstances warrant. In this chapter,
we will not discuss narrowing (i.e., lowering) the acceptance limit from the traditional ac-
ceptance limit ln 1.25, but in theory, the methods discussed hereafter for scaling for highly
variable drugs are readily applicable to such an exercise.

Tothfalusi and Endrenyi [1246] provide an excellent review of the scaled average bioe-
quivalence topic, expanding on their consideration of the topic in [1245], and review the
state of the topic in [336, 337]. In essence, scaled average bioequivalence may be viewed as
a special case of individual bioequivalence where σ2

WT = σ2
WR = σ2

W and σ2
D = 0.

As such, the statistic of interest becomes

(µT − µR)2 + σ2
D + σ2

WT − σ2
WR

max(0.04, σ2
WR)

=
(µT − µR)2 + 0 + σ2

W − σ2
W

max(0.04, σ2
W )

(7.2)

reducing to
(µT − µR)2

σ2
W

. (7.3)

Note that, in the denominator of this expression (7.3), max(0.04) is not included, as it
was in individual bioequivalence testing. This is in keeping with the description of [1246].
For drugs with low to moderate variability (σW < 0.294), the traditional average bioequiv-
alence tests (see previous chapters) are used [1246].

For high variation drugs, the two one-sided tests then become

H01 :
µT − µR
σW

≤− η (7.4)

versus the alternative

H11 :
µT − µR
σW

>− η

and

H02 :
µT − µR
σW

≥η (7.5)

versus the alternative

H12 :
µT − µR
σW

<η.
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The observed difference in means µ̂T − µ̂R is assessed relative to (i.e., divided by)
the observed within-subject standard deviation σ̂W — hence scaled average bioequivalence
(SABE).

The scaled average bioequivalence acceptance criteria η is a pre-defined regulatory ac-
ceptance criteria. Values of η discussed in the literature range from ±0.7 to ±1.1 versus the
traditional average bioequivalence limits of ± ln 1.25 = ±0.223. As with individual bioe-
quivalence and population bioequivalence, acceptance criteria would to some extent still be
design dependent — in that running a “dirty” study (i.e., a poorly controlled study) would
yield higher variability, making it easier to demonstrate scaled average bioequivalence.

As with average bioequivalence, in a 2× 2 cross-over, this scaled average bioequivalence
two one-sided test procedure may be assessed using a confidence interval. Tothfalusi and
Endrenyi [1246] stated that

[t0.05(λ, n− 2), t0.95(λ, n− 2)]

is a 90% confidence interval for µT−µR
σW

where tα denotes the α quartile of a noncentral t

distribution with noncentrality parameter λ =
(µ̂T−µ̂R)

√
n/2

σ̂W
with n− 2 degrees of freedom

(n being the overall sample size of the study).
If these limits lie between −η

√
n/2 and η

√
n/2, then scaled average bioequivalence is

demonstrated.
Consider Example 3.1 from Chapter 3. The statistics of interest may be derived by

entering the appropriate values into the following SAS code. We utilize η = 0.795 for the
purposes of this example.

data sabe_auc;

eta=0.795;n=32;d=-0.01655;s2=0.01100;

lambda=(d*((n/2)**(0.5)))/(s2**0.5);

t_05=TINV(0.05,30,lambda);

t_95=TINV(0.95,30,lambda);

ll=-eta*((n/2)**(0.5));ul=eta*((n/2)**(0.5));

run;

proc print data=sabe_auc noobs;

var ll t_05 t_95 ul;run;

data sabecmax;

eta=0.795;n=32;d=-0.02694;s2=0.03835;

lambda=(d*((n/2)**(0.5)))/(s2**0.5);

t_05=TINV(0.05,30,lambda);

t_95=TINV(0.95,30,lambda);

ll=-eta*((n/2)**(0.5));ul=eta*((n/2)**(0.5));

run;

proc print data=sabecmax noobs;

var ll t_05 t_95 ul;run;

In this analysis of Example 3.1, the lower limits of interest are -2.37 and -2.28, and the
upper limits are 1.04 and 1.12 for ln-AUC and ln-Cmax, respectively, indicating that scaled
average bioequivalence was demonstrated, as these fall within the limits (-3.18 and 3.18).

Individual bioequivalence was initially proposed for assessment using the bootstrap [358].
Thereafter, an approximation procedure was developed by Hyslop et al. ([616, 617]) (not
requiring the bootstrap) and subsequently adopted in FDA guidance [369]. Interested read-
ers should also see [1245] for more information on extension of the Hyslop et al. procedure
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as applied to scaled average bioequivalence testing. We will consider the Hyslop et al. pro-
cedure as applied in the approach adopted by the FDA for scaled average bioequivalence
testing in a subsequent section.

Equation (7.3) is also interesting in a more purely statistical sense. If all variance terms
are assumed to be homogeneous across formulations (i.e., σ2

BT = σ2
BR = σ2

B and σ2
WT =

σ2
WR = σ2

W ) and subject-by-formulation variance is assumed to be negligible (σ2
D = 0),

an alternative expression for the distance between the distribution of responses between
formulations reduces to ([34, 281])

(µT − µR)2

σ2
(7.6)

where σ2 = σ2
B + σ2

W . This expression (7.6) is the Kullback–Leibler divergence [726] — a
measure of the discrepancy between test and reference formulation distributions.

This is the concept that regulators are really interested in assessing — i.e., are the ln-
AUC and ln-Cmax distributions of the test and reference formulations the same (within
acceptable limits), accounting for each subject as their own control? However, statistical
science and regulatory science are not switchable or interchangeable, especially when one
factors in other sciences, including medical science and pharmacology. Therefore, regulatory
agencies have introduced approaches which are a slight variation on these general approaches
to scaled average bioequivalence, consistent with their local regulatory needs and expert
opinions concerning the protection of public health.

For example, the Canadian regulatory authority takes a very practical attitude toward
such highly variable products and only requires that the point estimate exp(µ̂T − µ̂R) fall
in the interval 0.80–1.25 for Cmax ([140, 141]).

We now turn to the statistics and study designs used for scaled average bioequivalence
testing implemented in Europe by the EMEA followed by those of the FDA. Each will
consider the conditions under which scaled average bioequivalence may be applied, describe
the model and procedure to be used for testing with application to a dataset, and end with
a discussion of sample size requirements for testing. These sections are followed by a general
discussion of some issues with the practical application of scaled average bioequivalence.

7.2 Scaled Average Bioequivalence in Europe

Comprehensive reviews of the European bioequivalence guidance [319] are given in [440,
890, 1268]. In this section, we will consider only the elements of the guidance specifically
relating to the statistics of scaled average bioequivalence.

To review, the traditional two one-sided testing procedure tests have been used for some
time to test for average bioequivalence. The endpoints ln-AUC and ln-Cmax, separately,
are tested using these null hypotheses:

H01 : µT − µR≤− ln 1.25 (7.7)

or
H02 : µT − µR≥ ln 1.25 (7.8)

where µT and µR are the means of ln-transformed AUC or Cmax data for test and reference
formulations, respectively. Both null hypotheses must be rejected for ln-AUC and for ln-
Cmax for average bioequivalence to be demonstrated. To meet the European requirements,
a sample size of n ≥ 12 subjects should be used in the study.
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The European bioequivalence guidance [319] allows for the modification of the traditional
average bioequivalence null hypotheses for ln-Cmax (only) to be

H01 :
µT − µR
σWR

≤− 0.76 (7.9)

or

H02 :
µT − µR
σWR

≥0.76 (7.10)

where σ2
WR is the within-subject variance of the reference formulation, and when

1. such is clinically justified,

2. under specific conditions regarding the observed variability (discussed in the fol-
lowing),

3. where this is specified in the protocol,

4. and where a partial replicate (a three-period design with sequences RRT, RTR,
TRR) or replicate design (a four-period design with sequences such as RTRT,
TRTR) is used such that an estimate for σWR is obtained in n ≥ 12 subjects.

Both null hypotheses (Equations (7.9) and (7.10)) must be rejected for ln-Cmax for
scaled average bioequivalence to be demonstrated under this guidance [319]. The traditional
two one-sided tests (Equations (7.7) and (7.8)) must also be rejected for ln-AUC to conclude
that the study is successful.

The guidance implies that the observed within-subject standard deviation for the refer-
ence formulation for ln-Cmax must have a history of observed high variability σ̂WR ≥ 0.294
and must be observed to do so in the study without undue influence from outliers (for more
on outliers, see Chapter 5).

As a practical matter, then, if the 90% confidence intervals for µ̂T − µ̂R = δ̂ fall within
the acceptance boundaries − ln 1.25, ln 1.25 as traditionally done for ln-AUC and within the
scaled acceptance boundaries of −0.76(σ̂WR), 0.76(σ̂WR) for ln-Cmax, then scaled average
bioequivalence is successfully demonstrated under the European approach.

Certain caveats to the scaled average bioequivalence two one-sided hypothesis tests for
ln-Cmax are applied. If σ̂WR > 0.4723, then σWR is set to 0.4723 in the null hypotheses
for ln-Cmax. This choice of limit (0.4723) appears to be based upon constraint to allow for
widening of acceptance criteria to correspond to 50% CVw but no farther. For example,
if, for ln-Cmax σ̂WR = 0.48, then the 90% confidence interval for µT − µR = δ should fall
within the limits ±0.76(0.4723) NOT ±0.76(0.48) to declare scaled average bioequivalence.

Last, if scaled average bioequivalence is used, 0.80 < eδ̂ < 1.25 must also be shown for
Cmax in the study.

In effect, this allows for widening of the acceptance criteria from ∓ ln 1.25 up to a maxi-
mum of ∓ ln 1.4319 for ln-Cmax based on observed reference formulation variability, subject
to caveats that there is prior clinical justification, previous observation of high variability,
pre-specification of the testing procedure in the study protocol, actual observation of high
variability, and an acceptable observed point estimate for ln-Cmax. For clarity again, none
of this applies to ln-AUC. That endpoint must meet the traditional average bioequiva-
lence acceptance criteria. If the observed estimate for within-subject reference formulation
standard deviation σ̂WR < 0.294 in the study for ln-Cmax, then the traditional average
bioequivalence testing approach is also used to test ln-Cmax.

The European guidance also requires that a certain set of models be used for analysis
([319, 322]). The fixed effect model of interest in the guidance is described in Chapters 3
and 4, and so will not be discussed further here. We will explore these using the data of
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Chapter 4, Example 4.4, using SAS code. These data and code may also be found on the
website. For the comparison of the reference formulation to test formulation to derive a
90% confidence interval for µT − µR, the code to fit the desired model is ([322]):

proc glm data=four;

class formula subject period sequence;

model ln_auc=sequence subject(sequence) period

formula;

test h=sequence e=subject(sequence);

lsmeans formula/adjust=t pdiff=control("R") CL

ALPHA=0.1;

run;

proc glm data=four;

class formula subject period sequence;

model ln_cmax=sequence subject(sequence) period

formula;

test h=sequence e=subject(sequence);

lsmeans formula/adjust=t pdiff=control("R") CL

ALPHA=0.1;

run;

This model is the same as that utilized in Chapters 3 and 4 for complete datasets.
The within-subject variability estimate obtained from the model and used to estimate the
confidence interval is assumed to be homogeneous across formulations (i.e., σ2

WR = σ2
WT =

σ2
W ). Where there is missing data, however, no imputation method is used to recover

information (see Chapter 5 and [652] for more information). Hence results using proc glm

may differ from proc mixed in datasets with missing data, but match for complete datasets.
This particular data set has missing data, and readers may explore the difference between
application of a fixed effect model relative to a mixed effect model using the data and code
on the website.

The rationale for the preference for use of proc glm in this guidance versus proc mixed

is described in detail in [322]. To summarize, as only the 90% confidence interval for µT−µR
and σ2

WR for ln-Cmax are of interest in this setting for formal bioequivalence hypothesis
testing, the guidance focuses consideration of potential models to estimate only the specific
parameters that are needed for inference to simplify data interpretation. The use of this
particular fixed effect model should be stated in the protocol to meet European requirements
([319]).

Readers may verify that the estimates of δ̂ (90% CI) are 0.1002 (0.0289, 0.1715) for
ln-AUC and 0.4140 (0.2890, 0.5389) for ln-Cmax using the data for Example 4.4 and code
on the website. Clearly, average bioequivalence is not demonstrated for ln-Cmax, and we
can already tell that scaled average bioequivalence for ln-Cmax is not possible as the point

estimate for eδ̂ > 1.25.
However, to formally evaluate scaled average bioequivalence for ln-Cmax, an estimate

for σWR is needed. The estimate of variability for the reference formulation for ln-Cmax is
to be obtained using the following code ([322]):
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data var;set four;

if formula=’R’;run;

proc glm data=var;

class subject period sequence;

model ln_cmax=sequence subject(sequence) period;

run;

The resulting mean squared error parameter is the estimate for σ̂2
WR, and here it is

0.3097 such that σ̂WR is 0.5565, which is clearly a highly variable finding. This estimate is
used to determine the scaled average bioequivalence acceptance region for ln-Cmax. In this
setting, the null hypotheses would then be constrained to

H01 :
µT − µR
0.4723

≤− 0.76 (7.11)

or

H02 :
µT − µR
0.4723

≥0.76 (7.12)

as σ̂WR = 0.5565 > 0.4723, and the acceptance region for ln-Cmax would therefore be the
90% confidence interval falling within ±0.76(0.4723) = ∓0.3589.

As H02 is not rejected for ln-Cmax, with the upper 90% confidence bound falling above
0.3589, scaled average bioequivalence is not demonstrated.

The required sample sizes to achieve the European scaled average bioequivalence require-
ment for ln−Cmax may be found in [1249] and are reproduced with the kind permission
of Professor Endrenyi in Tables 7.1 and 7.2 for partial replicate (three-period) and repli-
cate (four-period) designs, respectively. Readers should note that SAS code for sample size
derivations to determine the number of subjects required for ln-AUC using the traditional
average bioequivalence approach is given in Chapter 5.

So, to design a European scaled average bioequivalence study, estimates of δ and of σ2
W

are required for ln-AUC and of δ and of σ2
WR are required for ln-Cmax. We will use the

estimates from Example 4.4 for illustrative purposes. Using the desired European model,
the resulting estimates are δ̂ = 0.1002 and σ̂2

W = 0.0984 for ln-AUC and δ̂ = 0.4140 and
σ̂2
WR = 0.3097 for ln-Cmax. It should be noted that ln-AUC is also highly variable in this

example given the definition currently in use; however, the European guidance explicitly
requires that bioequivalence for ln-AUC be demonstrated using the traditional average
bioequivalence approach [319].

The CVWR for Cmax is estimated as:

CVWR =
√
e0.3097 − 1 = 60.3%.

For the purposes of this illustrative sample size derivation, we will assume that the δ̂ ob-
served in Example 4.4 for ln-AUC and ln-Cmax were mistaken and apply a δ = 0 for
uniformity across endpoints. This corresponds to a GMR (see Tables 7.1 and 7.2) of e0 = 1.
In practice one would assume this would vary by at least 5% (see Chapter 5), but we will
neglect that aspect for this example.

From Tables 7.1 and 7.2, we see that n = 41 subjects are required for scaled average
bioequivalence testing of ln-Cmax using a three-period design (with sequences RRT, RTR,
TRR) for 90% power and that n = 29 subjects are required for scaled average bioequivalence
testing using a four-period replicate design (with sequences RTRT, TRTR) for 90% power.
As more periods are required for the three-period design, it is likely that the replicate design
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would be applied. As such, we need to confirm that the sample size of n = 29 is adequate
for average bioequivalence testing of ln-AUC based on the variability estimate and applying
a replicate design. This is left as a exercise for interested readers (note that modification
to the code given in Chapter 5 should be applied), and it is found that at least 90% power
is provided for ln-AUC using the above design assumptions.

We now turn to the FDA alternative proposal for scaled average bioequivalence testing.

TABLE 7.1: Sample Sizes for the European Scaled Average Bioe-
quivalence Requirements in Three-Period Studies

GMR
CVWR 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

80% Power
30% 194 53 27 22 26 45 104 >201
35% 127 51 29 25 29 45 84 >201
40% 90 44 29 27 30 42 68 139
45% 77 40 29 27 29 37 57 124
50% 75 40 30 28 30 37 53 133
55% 81 42 32 30 32 40 56 172
60% 88 46 36 33 36 44 63 >201
65% 99 53 40 37 40 50 71 >201
70% 109 58 45 41 45 56 80 >201
75% 136 67 50 46 50 62 89 >201
80% 144 72 54 51 55 68 97 >201

90% Power

30% >201 74 36 28 36 62 147 >201
35% 181 70 39 32 39 63 117 >201
40% 130 61 38 33 39 57 94 >201
45% 132 55 37 33 38 51 85 >201
50% 158 55 39 34 38 51 84 >201
55% 178 59 41 37 41 53 97 >201
60% 199 64 45 41 46 60 112 >201
65% >201 72 51 46 51 67 125 >201
70% >201 82 57 52 57 76 141 >201
75% >201 93 66 58 64 85 161 >201
80% >201 100 70 63 71 93 176 >201

CV: Coefficient of variation; GMR: Ratio of geometric means
Reproduced with permission from [1249] Table A1

TABLE 7.2: Sample Sizes for the European Scaled Average Bioe-
quivalence Requirements in Four-Period Studies

GMR
CVWR 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

80% Power
30% 127 35 19 15 18 30 68 >201
35% 88 34 20 18 20 31 57 140
40% 64 31 20 18 20 28 47 98

CV: Coefficient of variation; GMR: Ratio of geometric means

Reproduced with permission from [1249] Table A2
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TABLE 7.2: Sample Sizes for the European Scaled Average Bioe-
quivalence Requirements in Four-Period Studies (continued)

GMR
CVWR 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
45% 57 29 21 19 21 27 41 90
50% 54 28 22 20 21 27 38 100
55% 55 30 23 21 23 28 40 116
60% 60 32 25 23 25 31 44 124
65% 74 37 28 26 28 33 49 155
70% 78 40 31 28 31 38 55 167
75% 85 45 34 32 34 42 61 186
80% 95 50 38 35 37 46 66 >201

90% Power
30% 180 49 25 19 24 42 95 >201
35% 123 48 27 22 27 43 80 >201
40% 93 42 26 23 26 39 66 165
45% 90 40 27 24 27 37 59 181
50% 102 39 27 25 27 36 60 >201
55% 123 41 29 26 29 38 63 >201
60% 139 45 32 29 31 41 71 >201
65% 159 51 36 32 35 46 81 >201
70% 172 55 40 36 40 52 97 >201
75% 195 62 43 39 44 58 106 >201
80% >201 69 49 45 49 62 113 >201

CV: Coefficient of variation; GMR: Ratio of geometric means

Reproduced with permission from [1249] Table A2

7.3 Scaled Average Bioequivalence in the USA

Detailed summaries of the background for the FDA’s approach to scaled average bioequiv-
alence testing may be found in [242, 243]. To summarize, highly variable findings were
observed in 11% of average bioequivalence studies submitted in the USA to the Office of
Generic Drugs of the FDA from 2003 to 2005. For these highly variable studies, to meet
the standard average bioequivalence requirements, sample sizes were increased in standard
2×2 bioequivalence designs by 15 to 23 subjects on average (depending upon whether AUC
or Cmax or both were highly variable) relative to the sample sizes used for lower variability
products. Most of the highly variable drugs were subject to extensive first-order metabolism
(i.e., the liver modifies the drug extensively as it is absorbed through the gut wall to aid in
excretion — see Chapter 1), but they are approved as safe and effective drugs by the FDA
(and presumably have been marketed and followed for safety and efficacy for some time
prior to patent expiration). The FDA therefore viewed it as a matter of public interest to
develop a scaled average bioequivalence procedure to ensure availability of (less expensive)
generic versions of highly variable drugs by decreasing the burden of proof on the sponsors
of such generic versions. An FDA working group was formed to study the approaches to do
so.
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The FDA’s working group [497, 498] considered the approach adopted in European guid-
ance but recommended a different procedure be used which does not restrict the application
of scaled average bioequivalence testing to ln-Cmax alone but allows for ln-AUC testing as
well. As in the European procedure, this procedure accounts for the observed variability of
σ2
WR. For ln-AUC and for ln-Cmax separately, the following null hypothesis is to be tested:

H0 :
δ2

σ2
WR

≥θ (7.13)

where δ = µT − µR is the difference in formulation means and σ2
WR is the within-subject

reference formulation variance. Here θ = (ln(1.25))2

0.252 = 0.797 based upon [497], and the
denominator appears to be chosen based on the findings in [90].

Expression (7.13) is generally reparameterized to

H0 : δ2 − θ(σ2
WR)≥0 (7.14)

for the purposes of application of the methods developed in [616] to derive a confidence

interval using the method-of-moments estimates δ̂ and σ̂2
WR. An approximate 95% upper

confidence bound is derived for δ2 − θ(σ2
WR) [616], and if these upper bounds fall below 0

for both ln-AUC and ln-Cmax, then scaled average bioequivalence is demonstrated.
Application of the method of [616] to derive an approximate 95% upper bound may be

found in the appendix to [1245]. In brief, upper 95% confidence bounds are derived for δ2

and for −θ(σ2
WR) which are referred to here as UBδ and UBσ based upon the observed

ln-AUC and for ln-Cmax separately. An approximate 95% confidence upper bound for the
expression δ2 − θ(σ2

WR) is then

δ̂2 − θ(σ̂2
WR) +

√
(UBδ − δ̂2)2 + (UBσ − (−θ(σ̂2

WR)))2.

The FDA recommends [243] that a partial replicate design (sequences RRT, RTR, TRR)
be used, but a replicate design (sequences RTRT, TRTR) may also be applied. A minimum
of 24 subjects is required to meet the FDA’s requirements.

It should be noted that, as with the European approach, certain caveats are applied.

Those being that 0.80 < eδ̂ < 1.25 must be shown for AUC and for Cmax, and if σ̂WR <
0.294 is observed in the study for ln-AUC or for ln-Cmax, then the standard average bioe-
quivalence testing procedure using the mixed model specified in Chapter 5 [243, 395] is
to be applied for that endpoint. Evidence of previous highly variable findings should be
provided to the FDA when the protocol is submitted [395] as a basis for the use of the
scaled average bioequivalence testing method, and this testing procedure must be stated in
the study protocol.

SAS code for this approach in partial replicate and replicate designs may be found in
[391, 395] and also is available on the website for replicate designs. We will apply the
approach using the data from Example 4.4.

For ln-AUC, the estimate for δ̂ is 0.1046 with 90% CI of (0.0311, 0.1780) and for−θ(σ̂2
WR)

it is −0.0940 with 95% upper confidence bound of −0.0697. The resulting approximate 95%
confidence bound for testing expression (7.14) is therefore

0.0109− 0.0940 +
√

(0.17802 − 0.0109)2 + (−0.0697 + 0.0940)2 = −0.0511.

Using the code available on the website, readers may confirm that the resulting approximate
95% confidence bound for testing expression (7.14) for ln-Cmax is 0.0827. So, using the
data from Example 4.4, it was found that scaled average bioequivalence was demonstrated
for AUC, but, as with the European approach, not for Cmax.
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The required sample size, to achieve the FDA scaled average bioequivalence requirement
for ln-AUC and/or ln-Cmax may be found in [1249] and are reproduced with the kind
permission of Professor Endrenyi in Tables 7.3 and 7.4 for partial replicate (three-period)
and replicate (four-period) designs, respectively.

So, to design a USA scaled average bioequivalence study, estimates of δ and of σ2
WR

are required for ln-AUC and ln-Cmax. We will use the estimates from Example 4.4 for
illustrative purposes. These may be found in the previous section, and we will also apply
the other assumptions made there for the purposes of this example (i.e., δ = 0).

As Cmax has the larger estimate of variability, it will primarily determine the sample
size. From Tables 7.3 and 7.4, we see that n = 30 subjects are required for scaled average
bioequivalence testing using a three-period design (with sequences RRT, RTR, TRR) for
90% power and that n = 22 subjects are required for scaled average bioequivalence testing
using a four-period replicate design (with sequences RTRT, TRTR) for 90% power. Note
that the minimum number of subjects required by the FDA is 24.

Preliminary information on the success of this scaled average approach to testing for
bioequivalence may be found in [244]. It also appears that the FDA has implemented a
post-marketing surveillance system to ensure that efficacy and safety of generic products
approved using this approach are monitored [1393].

We now turn to some additional observations on these testing procedures.

TABLE 7.3: Sample Sizes for the Scaled Average Bioequivalence
Requirements of the FDA in Three-Period Studies

GMR
CVWR 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

80% Power
30% 145 45 24 21 24 39 82 >201
35% 74 37 24 22 25 34 54 109
40% 60 33 24 22 24 31 47 104
45% 59 31 23 22 24 29 43 116
50% 66 30 24 22 23 28 41 133
55% 80 30 24 22 24 28 44 172
60% 88 31 24 23 24 30 50 >201
65% 98 32 25 24 25 31 53 >201
70% 106 35 26 25 26 31 62 >201
75% 136 38 27 26 27 34 70 >201
80% 144 40 29 27 29 37 76 >201

90% Power

30% >201 65 33 26 32 55 122 >201
35% 106 51 32 28 32 47 77 186
40% 99 45 31 28 31 43 68 >201
45% 128 43 30 28 30 40 69 >201
50% 158 45 31 28 30 40 79 >201
55% 178 50 31 28 31 42 96 >201
60% 199 54 33 30 34 50 112 >201
65% >201 61 35 32 36 53 125 >201
70% >201 68 39 34 37 61 141 >201
75% >201 80 43 37 41 68 161 >201
80% >201 83 48 41 47 75 176 >201

CV: Coefficient of variation; GMR: Ratio of geometric means
Reproduced with permission from [1249] Table A3
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TABLE 7.4: Sample Sizes for the Scaled Average Bioequivalence
Requirements of the FDA in Four-Period Studies

GMR
CVWR 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20

80% Power
30% 96 30 17 15 17 27 55 200
35% 54 26 18 16 18 24 39 79
40% 43 24 18 16 17 22 33 72
45% 44 23 18 16 17 21 32 82
50% 45 22 17 17 17 21 31 99
55% 52 22 18 17 17 21 31 116
60% 58 23 18 17 18 21 34 124
65% 74 24 19 18 18 22 36 155
70% 75 24 19 18 19 23 44 167
75% 81 26 20 19 20 24 47 186
80% 95 29 21 20 20 25 51 >201

90% Power
30% 152 44 23 18 22 38 81 >201
35% 80 38 23 20 23 34 55 128
40% 70 32 22 20 22 30 48 158
45% 84 32 22 20 22 30 49 181
50% 102 32 23 20 22 30 54 >201
55% 123 34 23 21 22 31 61 >201
60% 139 38 24 22 24 33 71 >201
65% 159 44 26 23 25 35 81 >201
70% 172 46 26 24 27 43 97 >201
75% 195 53 29 26 29 48 106 >201
80% >201 60 33 28 31 51 113 >201

CV: Coefficient of variation; GMR: Ratio of geometric means
Reproduced with permission from [1249] Table A4

7.4 Discussion and Cautions

Expanding the traditional average bioequivalence limits has been studied previously using
simulation in the context of protection of public health. It was reported in [537] that

It seems difficult to justify expanding the general BE limit to 70%/143% for Cmax,
for either fasting or fed BE studies, in the average bioequivalence approach without an
adequate scientific or clinical rationale other than intra-subject variability.

Demonstrating average bioequivalence for a highly variable drug is harder, but it is do-
able by using replicate and group-sequential designs [966] (see also Chapter 5). The benefit
that one achieves by taking such an established approach is that average bioequivalence
is internationally accepted (see Chapter 2), but in addition, very importantly, the average
bioequivalence method is known to be protective of public health when multiple generic
versions enter the marketplace [23]. Generally, when generic formulations are approved
and given market access, the original marketer stops marketing the original formulation as
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the demand decreases with increasing supply. Patients may be routinely switched from a
generic formulation to alternative generic formulations in an uncontrolled manner driven
by marketplace availability and pricing when they routinely fill their prescription at the
pharmacy.

Obviously, at the time of this publication, an international standard is not in place for
scaled average bioequivalence. Generic to generic switching has not been extensively studied
for the scaled average bioequivalence approaches.

We recommend that those using such scaled average bioequivalence approaches consult
the regulatory bodies where application for market access is to be requested to ensure the
acceptability of whatever approach is proposed, obviously prior to study initiation. We
also recommend that those using such approaches ensure their sponsoring company clearly
understands that an international standard is not yet available (as of the time of this
publication).

Several authors have commented on the undesirable statistical properties of the Eu-
ropean and USA scaled average bioequivalence methods (in particular the caveats and
constraints associated with their application), and those interested in more information will
find [675, 676, 905, 976, 1207, 1249, 1354] of interest. We will not comment further here
except to note that we believe post-marketing safety and efficacy monitoring is wise for
products which are approved using such scaled average bioequivalence approaches.
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Clinical Pharmacology Safety Studies

Introduction
One day, out of seemingly nowhere, I received a very strange request from a clinical

scientist. We will call her Betty, and she asked if I could round off a confidence interval.
My immediate response was, ‘No. Why would anyone want to do that?’

In essence, we had derived an upper bound in a drug interaction trial of 1.2538 for AUC.
Evaluation of this value relative to the acceptance level of 1.25 showed that it was higher
than 1.25. We could not conclude the two treatments were equivalent. Pretty elementary.
Betty wanted to round it off, so she could claim equivalence had been demonstrated.

I told her no, and left it at that. Such would misrepresent the data, and the statistics
underlying the upper bound could not support “rounding it off.” Clearly, as the value was
higher than 1.25, the null hypothesis had not been rejected, and it was out of the realm
of possibility. To my mind it was also a matter of professional integrity, and I was a bit
surprised that anyone would ask such a thing. The less I said, the better off we would both be.

However, I was still new on the job, and did not know that some people will not take
no for an answer, even if it is a matter of professional integrity. So began one of my
most important “learning experiences” on the job. “Learning experiences” are a business
euphemism for an experience no one in their right mind wants any part of, but you are
stuck with it because you work there.

Rounding off turned out to be really, very important to Betty and the physician for whom
she worked, and a major disagreement at the company developed. Peoples’ egos became
involved, and everyone who had even only a nebulous stake in this (or a potentially related)
issue felt compelled to comment. Academic experts were paid and consulted. Opinions were
sought from the FDA on the topic. Many internal meetings on the topic were held, and
(despite their best efforts to avoid it) several senior vice presidents had to be consulted and
in the end backed us up: “No rounding.”

Years later FDA guidance [373] was issued saying the same thing, but, as is often the
case, such business precedes regulatory guidance by many years.

Guess who was at the center of this argument? It was a rough experience (for what I
still feel was a ridiculous request), but I learned a lot from interacting with such people on
such a thing and from watching how they and many other people behaved. If I had it to do
over again, I would have followed a different approach to dealing with such people. I call it
the “Nurse” approach in honor of the people whom I saw do it.

We had a drug intended for the treatment of hypertension (high blood pressure) which
caused migraines if given at high doses. We discovered this in the first study in man (which
is designed for this purpose, see Section 8.1), and carefully worked out at which dose the
problem started. These were bad migraines — the throwing-up kind. The study team wanted
to stop the study, but a chief medic said to continue. The rationale was that they wanted to
explore more doses before going to the next study.

There was no point in continuing. The study had defined the maximum tolerated dose,
completing its objective. We were at an impasse with the medic involved. We discussed the
ethical issue of continuing (i.e., not), but were told headache and emesis were not a serious
enough side effect to warrant not exploring further. Egos began to become involved. Senior
vice presidents were again getting phone calls.

This came to an abrupt stop, and the nurses put a stop to it. I am told that they told
chief medic that, if he wanted to continue, he’d have to come down and clean up the vomit

205



206 Bioequivalence and Statistics in Clinical Pharmacology, Second Edition

himself. The study ended the next day. That was not the official reason logged in the study
file, and it is hearsay, but I think it is probably true.

The moral of the story is that, when you are asked to do something you consider inap-
propriate, put the person who is asking in your shoes. When they will actually have to get
their own hands (or shoes) dirty to do such a thing and take personal accountability for it,
you will be surprised at how the pressure to do so suddenly lets up. If not, then try “No”.

When exploring safety, it is important that we get it right for the sake of each and every
patient who will take the product. Everyone has a stake in this assessment. Even the people
who develop and sell drugs may themselves have to take them one day! All drugs have
side-effects and should be presumed to be unsafe if used incorrectly. Some side-effects can
be very serious and life-threatening.

The role of clinical pharmacology safety studies is to define how the body handles the
drug such that side-effects can be predicted in a rational, scientific manner. This assessment
determines how the drug should be used correctly to treat the condition under study. Every
decimal point matters. Do not cut any corners which would compromise patients’ safety,
and ensure your findings represent the data accurately, so that the people using the drug can
make a fully informed decision.

8.1 Background

All other things considered, it is comparatively easy to tell when a drug is efficacious. The
drug should change something about the body or its characteristics for the better, making
people live longer or healthier or both. A drug that does not offer such benefit (referred to
as medical utility or efficacy, see Chapter 2) would presumably not be approved for sale to
a human population. The problem in drug development is to detect, observe, and ensure
that the change is to the benefit of patients.

Drugs that are unsafe, producing unwanted, nonbeneficial side-effects, presumably should
not be approved. This, however, constitutes a more complex issue (and one that is still
evolving). The difficulty is how to deduce how and when a drug is safe. In contrast to effi-
cacy assessment, in safety assessment the problem is to assess and ensure that no clinically
relevant change in the health status of patients results from use of the drug beyond the
decreased health status associated with natural factors (like aging, for example).

This problem initially seems similar to bioequivalence testing in that the desired outcome
is to test for no change in the potential for hazard relative to control agent (say another drug
in the same class) or placebo. The problem is different in that in bioequivalence testing,
we understand and have a historical basis for the assessment of the potential for hazard
using pharmacokinetics as a surrogate marker; i.e., if AUC goes down too much in a new
formulation, efficacy may be lost, and if Cmax goes up too much, side-effects may appear.

In safety testing for new drugs, though, we do not know what the potential for hazard
actually is in a human population! The relationship of rate and extent of exposure needs
to be established relative to unknown (but presumably present) side-effects before such an
assessment is valid scientifically.

Our working assumption is initially that the drug is not safe when given at any dose
in any formulation under any circumstances to any human population. As a practical
matter, it is also important to recognize that we will never be able to demonstrate the
alternative to this assumption, i.e., that the drug is safe at any dose in any formulation
under all circumstances when given to any person. All drugs are potentially toxic if used
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incorrectly; however, some may be used at appropriate, carefully selected, and studied doses
in controlled circumstances to treat diseases in particular populations.

Following preclinical safety assessment to ensure that the new drug is not toxic at low
doses (discussed in greater detail in the next section), clinical pharmacology safety assess-
ment of a new drug product usually starts with giving the drug in very low doses and
placebo to a robust, healthy population — normal healthy volunteers. The rationale for
doing so is that if the new drug causes unexpected side-effects, healthy people are most
likely to recover. It is relatively easy to monitor them closely, and any side-effects identified
will not be confounded with disease (as normal healthy volunteers should not have any).
Some patients may eventually be willing to tolerate side-effects if their underlying disease is
treatable, but one cannot really assess that potential until one knows what the side-effects
are! Sometimes, however, it is impossible to dose normal healthy volunteers (e.g., it is
unethical to give a cytotoxic oncology agent to a normal healthy person). For such drugs,
clinical pharmacology safety assessment begins in patients with the condition under study.

Dosing starts with very low doses, well under the no adverse effect level (NOAEL) seen
in the most sensitive preclinical species, and slowly the dose is increased in these initial
safety studies until

1. Side-effects are observed (e.g., nausea, headache, changes in laboratory values),
or

2. Rate (Cmax) or extent (AUC) of exposure approach the NOAEL.

The intent of these small (generally cross-over [852, 853]), well-controlled, cautious de-
signs is to carefully assess evidence of the potential of the drug to cause a hazard to people
taking the drug. Note, however, that absence of evidence is NOT evidence of absence [647].
If side-effects are not observed and dosing is halted with exposures near the NOAEL, the
potential for significant hazard still exists (even if remote). If a side-effect is observed, its
relationship to exposure and dose may then be quantified. Additionally, once a potential
hazard is identified, safety may be assessed relative to other agents used for treating the
population for which the drug is intended.

The role of statistics in this setting is different from bioequivalence testing. Here, statis-
tics are used to quantify the unknown relationship of unwanted side-effects to dose and
exposure while dose is varied over the course of the study. A non-null relationship of dose
or exposure to a safety endpoint demonstrates the statistical potential for hazard [621].
Note, however, that statistical potential does not necessarily imply that the drug is unsafe
and should not be used or developed. Its benefits (efficacy) may outweigh the presence of
these side-effects, but that is up to the clinicians, regulators, and patients who will be using
the drug to determine. Statistics provide an impartial assessment in this setting to aid
them in making this determination. All drugs are unsafe; some are useful under carefully
controlled circumstances (to limit the risks involved).

Regulators do have requirements for formally studying (i.e., the size of the safety
database) and how to look at safety for approval to market (see, for example, [396], [505]);
however, that is not the topic here. Clinical pharmacology safety studies are used to study
safety in preparation for subsequent studies in clinical development.

Once the relationship of dose and exposure to safety is understood, clinical pharmacology
studies are then performed to assess under what circumstances it is safe to administer the
drug. For example, one would study what happens when the drug is given with and without
food or with and without another drug.

In this chapter, we will explore commonly used statistical methods for clinical phar-
macology assessment of dose and assessments of certain circumstances to determine if and
when the drug can be dosed with a reasonable expectation of safety while treating a dis-
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ease. Such studies limit but do NOT eliminate the potential for hazard when using a drug.
Hazards cannot be eliminated with 100% certainty, as we know from Chapter 1.

Note that “reasonable expectation” is not well defined in regulatory guidance. Safety
is currently an emerging scientific topic (e.g., [626]). Whether a drug is safe (or not) is
subjective. Physicians, patients, regulators, and drug-makers all have different opinions on
the topic.

Operationally, and usually, statistics are derived post hoc — after the study has ended.
Decisions about what dose to give in these studies and how to dose titrate are made by
clinical personnel. The role of statistics is to assess and precisely quantify the relationship
of dose to pharmacokinetics and dose to safety endpoints once the study is completed.

In some situations ([946, 962, 1139, 1142, 1143]), quantitative interactive models may be
used to assist clinical personnel in selecting doses “on-line,” and we will consider an example
in the next section. This is by no means an exhaustive list of work on this topic, and readers
may wish to examine recent publications on the topic (e.g., [1232], [282], and [1329, 1332]).
These procedures use models to predict what effects will be observed at different doses to
aid in clinical decision making. However, the final decision about what dose is used is the
physician’s responsibility and the subject’s or patient’s responsibility before taking a drug.

Safety assessment in clinical pharmacology and drug development is a rapidly evolving
science. It has not always done well in the rush to get drugs to needy patient populations.
Historically [1222], over-dosing is common as a result, and there have been numerous cir-
cumstances where the approved dose of drug has been reduced once the drug has been on
the market for a time. It has been said [979] that in the 20th century drugs were presumed
to be safe until shown otherwise. However, increasing attention from regulatory agencies is
being applied to this area in light of recent safety risks [1121], and major refinements and
improvements in how we test for safety in clinical studies may be expected in the coming
years.

Some areas (e.g., pharmacokinetics in pregnancy) have not been well studied [718], and
we encourage those engaging in what limited research there is in such areas to take advantage
of modelling techniques (e.g., this chapter as a starting point) to maximize the information
from such limited data sources.

8.2 First-Time-in-Humans

The administration of a drug to humans for the first time generates a great deal of excite-
ment in the sponsoring organization and is an exciting time for everyone involved. New
therapies offer potential benefit to numerous patients. Before such a drug can be admin-
istered, however, it must undergo an extensive battery of in vitro and in vivo preclinical
testing. In certain nations (e.g., USA, Europe), first-time-in-humans study protocols and
their supporting preclinical information must also be submitted to and approved by the
relevant regulatory authorities (see [356] for an example).

Regulators will, in general, desire to review the following items prior to administration
of a new drug to humans [356]:

1. The first-time-in-humans (FTiH) study protocol,

2. Information on the chemistry, manufacturing, and control/stability of the drug
manufacturing process,

3. Information on preclinical pharmacology and toxicology in vitro and in vivo stud-
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ies (containing, at a minimum, an integrated summary of animal toxicology study
findings and the study protocols), and

4. Any human experience with the investigational drug (e.g., if studies were carried
out in a different nation).

We now turn to consideration of the FTiH trial design, conduct, and analysis and will not
discuss these regulatory requirements further here.

In contrast to bioequivalence trials (the objective of which is to confirm equivalence of
different formulations), the objective of FTiH and other Phase I trials is to learn [1142]
about the safety, pharmacokinetic, and pharmacodynamic properties of the drug being
studied. The application of statistics to this topic of drug development is fundamentally
different from that used in the confirmatory setting of bioequivalence, though the study
designs, conduct, and models used in such studies are similar.

The approach to data analysis and interpretation is typically inductive (see Chapter 5)
in that those performing FTiH and Phase 1 studies have a “rough” idea of how the drug
will behave (from the preclinical testing described previously). Studies are performed and
data are collected to reinforce this “rough” idea. The role of statistics in this setting is
to employ the tools discussed previously (Chapter 1: randomization, replication, blinding,
blocking, and modelling) to ensure the estimates provided by such studies are accurate and
precise.

It would be desirable if the preclinical findings were perfectly predictive of what one
would observe in humans for a new drug, but this is not always the case. There are
interspecies differences which preclude such a possibility (for example, see Chapter 31 [30]).
George Box stated that, “To find out what happens to a system when you interfere with
it you have to interfere with it (not just observe it)” [105], and the assumption made for
any new drug is that it will cause undesirable side-effects (hereafter referred to as adverse
events, AEs) that are dose and exposure dependent, in that the higher the dose or exposure,
the more likely such an AE will occur.

An adverse experience (AE) is any untoward medical occurrence in a patient or clinical
investigation subject, temporally associated with the use of a medicinal product, whether or
not considered related to the medicinal product. Such events are frequently characterized
as

1. Mild: An event that is easily tolerated by the subject, causing minimal discomfort
and not interfering with everyday activities.

2. Moderate: An event that is sufficiently discomforting to interfere with normal
everyday activities.

3. Severe: An event that prevents normal everyday activities.

A severe AE is an AE that is noticed and alarming (e.g., severe nausea or emesis), but does
not necessarily require cessation of treatment (the disease under study, like cancer, might
make such an event tolerable though undesirable).

In contrast, a serious AE (SAE) is “an event that is fatal, life-threatening, requires
in-patient hospitalization or prolongs hospitalization, results in persistent or significant
disability, or results in congenital anomaly or birth defect” (Chapter 14 [95]). Observation
of such an SAE in a FTiH study would generally halt dosing for all subjects being studied
and must be reported quickly to relevant regulatory authorities.

In FTiH trials, dose is increased as knowledge is gained of the drug’s properties until
a “potential for hazard” is observed. “Potential for hazard” in this context denotes the
observation of conditions where it is possible for an adverse reaction to drug treatment to
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occur or the actual observation of a serious or severe AE. A dose just lower than this dose
is defined as the maximum tolerated dose (MTD) [621].

Statistical proof of hazard (i.e., a p-value less than 0.05 for a comparison of H0 : µD −
µP ≤ 0 where µD denotes the mean effect at a dose and µP denotes the mean effect on
placebo [540]) may or may not be obtained in such studies. Determination of the MTD
is often driven more by clinical judgment and less by statistical analysis given the limited
numbers of subjects exposed to a drug in such studies. If the drug-induced rate of an
adverse experience in the population is p for a particular dose, then the chance one sees
at least one such event in n subjects exposed to a dose of drug in a study is 1 − (1 − p)n.
As FTiH trials typically involve only a small number of patients or subjects (sample sizes
per dose ranging from n = 6 to 10), p must be relatively large in order to observe an AE
in the trial. For example, if p = 0.1 (the proportion of subjects experiencing, for example,
a headache caused by a drug at a dose) and n = 6 subjects are studied at this dose, the
probability of observing at least one subject with a headache in the trial is only 0.47 at this
dose.

For a rare side-effect (drug-induced neutropenia, for example), with a p = 0.01, the
probability of observing such an event in a FTiH trial is only 0.06 with n = 6. Thus FTiH
trials are geared toward detection of non-rare side-effects. If the drug causes a side-effect
in less than 5% to 10% of people at a given dose, it is most unlikely that such trials will
observe such an event.

Cross-over designs are generally employed for the purposes of informative dose-escalation
in FTiH and Phase I studies, as such designs are known to be more informative and provide
better information than alternative designs [1139] and expose only a limited number of
subjects to the (potentially) harmful agent. See Table 8.1, for example. Dosing is conducted
in separate cohorts, sequentially, with results from each dose being reviewed prior to the
next dose being administered in the next period. Periods are separated by a washout
sufficient to ensure no drug is on board when the next dose is given (generally at least one
week to allow for pharmacokinetic washout and review of data).

TABLE 8.1
Schematic Plan of a First-Time-in-Humans Cross-Over Study

Subject Period Period Period Period
1 2 3 4

Cohort 1
1 P D1 D2 D3
2 D1 P D2 D3
3 D1 D2 P D3
4 D1 D2 D3 P

Cohort 2
5 P D4 D5 D6
6 D4 P D5 D6
7 D4 D5 P D6
8 D4 D5 D6 P

Cohort 3
9 P D7 D8 D9

......
P=Placebo; D1=Lowest Dose

D2=2nd lowest dose; etc.
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Placebo is administered to serve as a control for evaluation of any AEs observed, and
subjects are randomly assigned to the period in which they receive it. Subjects are generally
kept blinded as to whether they have received drug or placebo in order to ensure that safety
reporting and assessment of severity are unbiased by knowledge of treatment.

Depending on the NOAEL and properties of the drug under study, shorter cross-over
designs (i.e., two-period or three-period designs) may be employed. For particularly toxic
drugs, oncology trials of cytotoxic agents are generally conducted using a parallel group
design where cohorts of patients are randomized to increasing doses of drug (Chapter 1
[95]). We will consider an example later in this chapter but will first focus attention on
how to model data from a typical trial. Such techniques also apply to the shorter cross-over
designs described above.

Preclinical pharmacology and toxicology data are used to choose the FTiH starting
doses. The preclinical pharmacology and toxicology studies should identify a no-effect dose
and a no-adverse-effect exposure level in multiple preclinical species. Allometric scaling
([371, 1027], Chapter 8 [95]) is then applied to estimate a safe starting dose. In essence,
allometric scaling uses the NOAEL and accounts for differences in weight and physiology
between species to yield a range of doses expected to be safe in humans. The NOAEL in
the most sensitive species (i.e., the lowest NOAEL) is defined as the upper limit of human
exposure (AUC and Cmax, as previously).

Once a presumed safe range of doses is estimated, an algebraic dose escalation scheme
(1x, 2x, 3x, 4x, etc.), geometric dose escalation scheme (1x, 2x, 4x, 8x, etc.), or Fibonacci
scheme (Chapter 1 [95] and Chapter 31 [30]) is used to determine the next dose to administer
in the next period or cohort of subjects. The choice of dose escalation scheme is pre-specified
in the study protocol. The choice of next dose may be reduced (but not increased) relative
to the intended, protocol-specified, scheme depending on the results from the previous dose.

Subjects or patients participating in FTiH studies are monitored very closely for the
occurrence of AEs. Subjects are generally required to stay in bed for at least 4 hours
following a dose, and continuous monitoring of vital signs is not unusual for a period of at
least 24 hours following each dose. The population enrolled into a FTiH study is generally
composed of male healthy volunteers, as females are known to be more prone to drug-induced
toxicity [880]. Full discussion on inclusion and exclusion criteria for subjects enrolled in
FTiH trials may be found in Chapter 1 [95] and Chapter 31 [30] and will not be discussed
further here.

Operationally, each cohort of subjects is brought into a clinic on a weekly basis. Follow-
ing an overnight fast, the dose chosen (or placebo) is administered at roughly 8 a.m., and
safety, pharmacokinetic, and pharmacodynamic (if any) measurements are taken prior to
dosing and at regular intervals thereafter. These data are then used by the study team (com-
posed at minimum of a physician, nurse, statistician, and pharmacokineticist) to support
the decision on which dose to give next (or whether to halt or delay the next administra-
tion). The key responsibility for determination of which dose to administer next (if any)
is a medical purview, and the statistician and pharmacokineticist are expected to provide
analyses and simulations to support this medical determination if required. The statistical
and pharmacostatistical approach to data analysis in this setting is exploratory (see Chap-
ter 14 [95]). Data are modelled periodically during the study to provide an accurate and
precise description of what observations have been collected to date and are used to predict
which effects may be observed at future doses ([1, 501]; Chapter 18 [30]).

We first consider pharmacokinetic data generated in a typical FTiH trial. One property
of such log-normal pharmacokinetic data is that variation increases with exposure [1324].
To model this behavior, a “power” model is generally utilized [1167]. Doses are increased
until average exposure (AUC and/or Cmax) is observed to approach the NOAEL or some
multiple of the NOAEL’s value (e.g., one-tenth). For this type of design, the power model
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is
yik = (α+ ξk) + β(ld) + εik,

where α is the overall mean pharmacokinetic response at a unit dose (logDose, ld = 0)
known in statistics as the population intercept, ξk is the random-intercept accounting for
each subject (k) as their own control, β is the slope parameter of interest regressed on
logDose (parameter ld), and εik denotes within-subject error, as described in Chapter 3, for
each log-transformed AUC or Cmax (yik) in period i. Note that period effects are assumed
to be minor relative to the magnitude of effect of logDose in this analysis and are confounded
with dose. Typical data arising from such a design are listed in Table 8.2 and plotted in
Figure 8.1.

TABLE 8.2: Example 8.2.1: AUC and Cmax Data from a Cross-
Over First-Time-in-Humans Study Design

Subject Period Dose AUC Cmax
1 2 15 666.06 307.1
1 3 45 1701.49 524.2
1 4 100 4291.86 1684.2
2 1 5 144.63 70.1
2 3 45 956.84 390.9
2 4 100 2121.55 522.0
3 1 5 187.88 55.6
3 2 15 406.06 210.1
3 4 100 2712.69 864.6
4 1 5 111.12 53.7
4 2 15 313.21 155.8
4 3 45 1006.57 548.7
6 1 5 152.64 96.3
6 3 45 1164.88 520.7
6 4 100 3025.78 1509.1
7 2 15 641.89 233.6
7 3 45 2582.20 713.0
7 4 100 4836.58 1583.7
8 1 5 420.42 212.7
8 2 15 908.93 339.3
8 4 100 8194.40 2767.2
9 1 100 3544.28 947.0
9 2 150 5298.14 778.9
9 3 200 6936.13 1424.4
10 1 100 5051.23 1713.3
10 3 200 11881.12 3543.8
10 4 250 16409.81 4610.1
12 2 150 7460.82 2143.2
12 3 200 8995.97 3708.4
12 4 250 10479.14 2604.0
14 1 100 2134.17 1664.5
14 2 150 3294.38 932.4
14 4 250 5332.19 1276.3
15 2 150 3189.74 976.2
15 3 200 4643.52 1300.7
15 4 250 4652.96 810.1
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TABLE 8.2: Example 8.2.1: AUC and Cmax Data from a Cross-
Over First-Time-in-Humans Study Design (continued)

Subject Period Dose AUC Cmax
16 1 100 3357.67 1134.8
16 2 150 4305.17 856.8
16 3 200 8886.62 1914.2
17 1 5 378.75 155.1
17 2 15 915.95 307.2
17 3 45 2830.42 532.8
18 1 100 1912.93 596.3
18 2 150 2684.00 602.6
18 4 250 3971.27 1792.2
19 1 100 8446.20 2110.6
19 3 200 17004.51 2766.3
19 4 250 21097.81 7313.4

Note that variation at the 150 mg dose in Example 8.2.1 (see Figure 8.1) appears to
decrease relative to the 100 mg dose. This is a feature of the cross-over nature of the design
and is observed due to the fact that the subjects administered the 150 mg dose are not
always the same ones administered the 100 mg dose. To account for each subject as their
own control, the power model is utilized to provide a population dose to pharmacokinetic
response curve. This statistical relationship provides an estimate of the magnitude of a
typical individual’s exposure when administered a dose. Once a subject’s exposure has been
measured for a given dose, this individual’s dose to pharmacokinetic relationship may be
quantified to provide an individual assessment of potential hazard relative to the NOAEL,

logDose

lo
g
A

U
C

2 3 4 5

5
6

7
8

9
1
0

FIGURE 8.1
Estimated logDose versus logAUC Curve with Individual Data Points from Example 8.2.1
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and we will consider how to do so later in this chapter. SAS code to model AUC and
Cmax data from such trials is below. Doses are increased until the population dose to
pharmacokinetic curve approaches the NOAEL or until a severe or serious AE is observed.

First-time-in-humans PK SAS proc mixed Analysis Code Example 8.2.1 and 8.2.2

proc mixed method=reml data=pk1_ftih;

class subject;

model lnauc=lndose/

s ddfm=kenwardroger cl alpha=.1;

random intercept/subject=subject;

run;

SAS proc mixed output provides the estimates required to derive the dose to AUC or
Cmax curve plotted in Figure 8.1. SAS output (not shown) estimates of parameters are
given in Table 8.3.

TABLE 8.3
Parameter Estimates from Example 8.2.1

Endpoint α̂ β̂ σ̂2
W

AUC 3.75 0.96 0.01
Cmax 3.20 0.83 0.09

The parameter α in this example is the estimated logAUC (or logCmax) associated with
a dose of 1 mg (ld = 0). The estimated population dose to pharmacokinetic response curve
is calculated as

AUC = eα̂+β̂(ld).

To solve for the dose expected to yield exposure at the NOAEL (the MTD), one exponen-
tiates the above equation at AUC = NOAEL after solving for ld:

MTD = e
ln(NOAEL)−α̂

β̂ .

The bootstrap (see Chapter 5 and [510]) may be used to derive a confidence interval for the
MTD if desired.

In our second example (Example 8.2.2, see Table 8.4) we consider a PK dataset where
exposure relative to a predetermined NOAEL was of concern. Dosing was to be halted if
mean AUC was in excess of 2400 ng.h/mL or Cmax exceeded 880 ng/mL (the NOAEL).

TABLE 8.4: Example 8.2.2: AUC and Cmax Data from a Cross-
Over First-Time-in-Humans Study Design

Subject Dose AUC Cmax
1 1 611 80.3
1 5 842 103.1
1 10 1600 167.3
2 1 1052 112.7
2 5 1584 164.7
2 10 2809 273.8
3 1 1139 98.0
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TABLE 8.4: Example 8.2.2: AUC and Cmax Data from a Cross-
Over First-Time-in-Humans Study Design (continued)

Subject Dose AUC Cmax
3 5 1896 162.6
3 10 2531 167.9
4 1 989 89.0
4 5 1604 177.6
4 10 1817 212.8
5 1 1275 114.2
5 5 2282 173.7
6 1 947 77.7
6 5 1698 138.0
6 10 2278 240.5
7 1 603 92.3
7 5 1289 149.5
7 10 1987 225.5
8 1 867 86.4
8 5 1263 130.7
8 10 2494 276.3

Estimates of the parameters of interest may be found in Table 8.5. Here it was observed
that exposure approached the NOAEL for AUC at the 10 mg dose and dosing was halted
accordingly. See Figure 8.2.

Individual fitted means at each dose with 90% confidence intervals may be derived easily
in SAS proc mixed. A statement outp=pred is added to the model statement after the / to
output the dataset pred containing the relevant values. Estimated responses at other doses
may be obtained by entering a missing value for the observation desired for that subject.
Code to perform such analyses are provided on the website accompanying this book, and
consideration is left as an exercise for interested readers.

In normal healthy volunteer studies, severe AEs are unusual, and SAEs are very unusual.
Observation of an SAE should halt all dosing in a study and requires regulatory scrutiny
of the event. Dose escalation is halted if severe AEs are observed. However, it is unusual
for either SAEs or severe AEs to be observed in such trials. Most often dose escalation is
halted when mean exposure approaches the NOAEL (as seen in the example above). Dosing
for any given individual is halted if their exposure data approaches a higher than expected
factor of the NOAEL.

In contrast, FTiH studies for cytotoxic agents are performed in refractory patient pop-
ulations, and the goal of the study is to identify a dose causing a dose-limiting toxicity
(DLT, an SAE) with X% frequency (often 30%). This is referred to as the dose expected
to cause an X% response, abbreviated EDX . The assumption is that, for such an agent
to be efficacious, it must approach toxic levels. Three patients are dosed with a low dose,

TABLE 8.5
Parameter Estimates from Example 8.2.2

Endpoint β̂ σ̂2
W

AUC 0.38 0.02
Cmax 0.36 0.03
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FIGURE 8.2
Estimated Dose versus AUC Curve (90% CI) with Individual Data Points from Example
8.2.2

and their responses to treatment are observed. If no DLTs are observed, another group
of three patients receives the next higher dose, and their responses are observed. If one
DLT is observed, another three patients are dosed at the same dose to provide reassurance
that the DLT was dose related. If so, the dose is reduced is subsequent patients to refine
the definition of the MTD. Once at least one DLT is observed in a group of patients and
confirmed in a second cohort of three patients, the dose is reduced in subsequent patients
to identify a well-tolerated dose producing DLTs in approximately the desired percentage
of patients. See Table 8.6. Note that one patient did not report for dosing in the third dose
group, so only two patients were dosed.

TABLE 8.6: Example 8.2.3: Dose Limiting Toxicity Data from a
First-Time-in-Humans Trial

Subject Dose(mg) DLT

1 1 0
101 1 0
2 1 0
3 2 0

102 2 0
4 2 0

103 4 0
5 4 0

DLT=1 DLT Observed
DLT=0 DLT not Observed
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TABLE 8.6: Example 8.2.3: Dose Limiting Toxicity Data from a
First-Time-in-Humans Trial (continued)

Subject Dose(mg) DLT
6 6 0

104 6 0
7 6 0
8 8 0

105 8 1
106 8 0
107 8 0
9 8 0
10 8 0
108 10 0
11 10 0
12 10 0
109 12.5 0
110 12.5 0
13 12.5 0
111 16 0
112 16 0
14 16 0
15 16 0
113 21 1
114 21 1
16 21 1
17 18 0
18 18 0
19 18 0

115 18 0
20 18 0
116 18 0
21 18 1
22 18 0
23 18 1
117 18 0
118 18 0
24 18 1
25 18 1
26 18 0
119 18 0
DLT=1 DLT Observed

DLT=0 DLT not Observed

DLTs are denoted as occurring (1) or not occurring (0) for each individual patient in
Table 8.6. Note that these studies are not placebo controlled and are generally conducted
open-label or with only the patients blinded to treatment. Such DLT data is considered as
“binomial” data (denoting a 0 or 1 response), and the proportion of DLTs as a function of
dose may be modelled using a technique known as logistic regression.



218 Bioequivalence and Statistics in Clinical Pharmacology, Second Edition

To do so, the proportion (P ) is defined such that

P =
1

1 + e−(α+β(ld))

where β is the slope of a regression of ln(P/1 − P ) = L (known as a logit-transformation)
on logDose such that L = α+ β(ld). The parameter α is the intercept at ld = 0.

Analysis is straightforward using proc genmod in SAS as follows (see code below). One
calls the dataset (specifying in a DESCENDING statement that SAS should model the proba-
bility that DLT is 1) and instructs SAS to model the DLTs as a function of logDose. The
statement dist=b informs SAS that DLT is a binomial endpoint, and link=logit specifies
that a logit transformation should be used.

First-Time-in-Humans DLT SAS proc genmod Analysis Code Example 8.2.3

proc genmod data=dlt1 DESCENDING;

model dlt=lndose/dist=b

link=logit cl alpha=0.1;

run;

SAS output (not listed) yielded an estimate of -10.5083 for α and 3.3846 for β for
Example 8.2.3. This yields the dose-response curve for the proportion of DLTs of Figure 8.3.

We can see that the EDX is approximately

e
ln(X/1−X)−α̂

β̂ .

For example, the estimated ED30 is 17.4 mg in this analysis.
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Estimated Proportion of DLTs versus logDose from Example 8.2.3
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Note that variation is not taken into account (though it could be) in the calculation of
the EDX . A simple means to do so is to bootstrap the dataset (see Chapter 5) and derive
the EDX in each bootstrapped dataset. The 5th and 95th percentiles of the bootstrapped
datasets for EDX serve as a 90% confidence interval for our estimate of EDX in this case
the estimated confidence interval from 1000 bootstraps was 14.1 to 25.4 mg. SAS code to
perform this analysis is provided on the website accompanying this book.

Similar procedures may be used to model adverse events in cross-over trials. See [652]
for additional details on such techniques. However, given the relative infrequency of AEs
in normal healthy volunteer FTiH studies, we do not discuss such application further here.

Intuitively, the use of interactive modelling techniques would seem to add value for such
studies. Such techniques utilize data as they are collected, and the models described above,
to provide clinicians with an assessment of the safety profile for their choice of future doses.
Several techniques have been developed but are infrequently utilized in FTiH studies, as
experience with them is limited (Chapter 1 [95]). An overview of techniques to aid in
decision making in this setting may be found in [1329]. See the Technical Appendix for an
example of code to perform interactive assessments of PK data in FTiH studies. Those using
such interactive techniques are cautioned that “All models are wrong, but some are useful”
[107] and should note that the use of such techniques supplements, but in no way should
substitute for, clinical conduct, experience, and expertise. Choice of dose is ultimately a
clinical responsibility.

At the end of the FTiH study, the single dose MTD [621] should have been defined.
This MTD will possibly be based on observed nonserious AEs, but most likely will be based
on observed human exposure levels relative to the NOAEL defined in preclinical studies.
These studies should definitely provide data to reinforce ideas on the properties of the
drug’s pharmacokinetics with dose in relation to the NOAEL. In some cases, evidence of
pharmacodynamic activity will also be observed, and we will consider methods for modelling
of such data in a later chapter.

Note that the MTD, once defined in this study, is not a constant. As knowledge about the
drug accumulates while drug development progresses, it can (and most likely will) change,
as can the NOAEL. We now turn to the next study, which typically occurs in Phase I.

8.3 Sub-Chronic Dosing Studies

Following the FTiH study, a sub-chronic (sometimes referred to as a “repeat” dosing) study
is performed. The main intent of this trial is to confirm that the MTD defined in the
FTiH trial holds true upon repeated administration. In this study again, pharmacokinetic
and safety data are most of interest, though pharmacodynamic data may be collected if
appropriate. Level of blinding (open-label, single-blind, etc.) and choice of population are
generally the same as in the FTiH trial. It is unusual for such trials to involve the dosing of
patients with the disease for which the treatment is intended. Most often, normal healthy
volunteers are dosed for this purpose as in the FTiH trial.

Eligible subjects are randomized to receive either placebo or a dose of drug up to the
MTD defined in the FTiH trial. Each dose is administered to 9 to 12 subjects in a cross-over
fashion. In the first period, a single dose is given, and pharmacokinetic measurements are
collected out to at least five half-lives. Following this, in the second period, subjects receive
the same dose at regular, repeated intervals for at least five half-lives, and pharmacokinetic
measurements are taken following the last dose over the sampling interval. Following an
evaluation of the data collected in the first cohort of 9 to 12 subjects (see Table 8.7), the
next highest dose is administered for the next cohort up to the MTD identified in the FTiH



220 Bioequivalence and Statistics in Clinical Pharmacology, Second Edition

TABLE 8.7
Schematic Plan of a Sub-Chronic Dosing Cross-Over Study

Subject Period Period
1 2

Cohort 1
1 D1 RD1
2 P RP
3 D1 RD1
4 D1 RD1
5 P RP
6 D1 RD1
7 D1 RD1
8 P RP
9 D1 D1

Cohort 2

11 MTD RMTD
12 MTD RMTD
13 P RP
14 MTD RMTD
15 P RP
16 MTD RMTD
17 MTD RMTD
18 P RP
19 MTD RMTD

P=Single Dose of Placebo
RP=Repeated Doses of Placebo

D1=Single Dose of Well-Tolerated Dose
RD1=Repeated Doses to Steady State

MTD=Single Dose of MTD
RMTD=Repeated Doses of MTD to Steady State

trial. The placebo treatment is included to provide a control group for the purposes of
safety assessment comparisons, and we will consider an example later where effects were
observed in liver function.

The first order of analysis is to assess whether clearance is the same after the single
dose and after repeated doses. The dose of drug divided by AUC defines a pharmacokinetic
parameter known as Clearance (Cl). More precisely, for an orally dosed drug,

Cls =
F (dose)

AUC(0−∞)
,

following a single dose of drug (subscript s), denoting the volume of blood cleared of drug
in a unit of time for a single dose. The parameter F is absolute bioavailability (discussed in
Chapter 11). When such a drug is dosed repeatedly to steady state, the pharmacokinetic
collections on the final dosing day provide an estimate for

Clss =
F (dose)

AUC(0− τ)
,
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where τ is the frequency of dosing (24 h if dosed once a day, 12 h if dosed twice a day) and the
subscript ss denotes steady state. Steady state concentrations are achieved when the rate of
drug being eliminated from the body equals the amount of drug dosed (e.g., dose/hour). In
general, this occurs when the drug is dosed repeatedly for at least five half-lives at regular
intervals (see Chapters 1 and 2 for a definition of pharmacokinetic half-life).

If Cls = CLss or equivalently in this setting AUC(0− τ) = AUC(0−∞) for all doses,
then the drug has the property of stationarity of clearance. This property is desirable, as
it makes the drug very easy to dose. All else being equal, one can be started on a dose
estimated to achieve safe and effective drug concentrations, and these concentrations may be
maintained by simply taking the same dose at regular intervals. In contrast, if AUC(0− τ)
is larger than AUC(0 −∞), then the starting dose might need to be reduced to maintain
safe concentrations relative to the NOAEL over time when dosing repeatedly.

Our first example (8.3.1 in Table 8.8) consists of AUC and Cmax data from a sub-chronic
dosing study where nine subjects received a dose of either 5, 10, or 20 mg in the first period
(accompanying placebo treated subjects are omitted from this discussion as they did not
contribute pharmacokinetic data). In the second period, these subjects received the same
dose of drug once a day for seven days. On day seven, pharmacokinetic measurements were
taken just prior to last the last dose and over the next 24 hours.

TABLE 8.8: Example 8.3.1: AUC and Cmax Data from a Sub-
Chronic Dosing Cross-Over Study Design

Subject Dose AUC(0− inf) AUC(0− τ) Cmax Cmax
S SS S SS

47 5 2.81 5.11 0.267 0.423
48 5 6.31 8.13 0.415 0.620
49 5 7.26 8.01 0.468 0.627
50 5 3.60 6.67 0.410 0.480
52 5 6.82 7.38 0.356 0.591
53 5 1.76 5.17 0.225 0.390
54 5 6.11 8.16 0.471 0.569
55 5 6.09 6.23 0.409 0.483
57 5 2.10 3.36 0.316 0.316
60 10 9.33 11.22 0.820 0.962
61 10 7.31 8.21 0.624 0.723
62 10 9.57 20.85 0.625 1.861
64 10 15.62 16.48 0.798 1.169
65 10 5.56 6.79 0.493 0.574
66 10 11.81 18.08 0.576 1.303
69 10 7.23 10.51 0.723 0.883
71 10 8.35 13.97 0.583 1.056
72 10 5.70 13.80 0.585 1.157
95 20 12.92 30.35 1.514 2.220
99 20 26.05 53.11 2.009 3.902
102 20 23.12 38.61 1.562 2.517
104 20 12.32 29.33 1.002 2.219
105 20 16.35 26.20 1.181 1.844
106 20 20.21 29.47 1.360 1.893
107 20 13.53 27.55 0.970 1.965
108 20 7.70 19.97 0.744 1.447
110 20 14.22 35.91 0.988 2.322

S=Single Dose, SS=Steady State
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For this type of design, the power model is

yjk = (α+ ξk) + β1(ld) + φj + β2(ld(φj)) + εjk,

where β1 is the slope parameter of interest regressed on logDose (parameter ld), α and ξk are
defined as in Section 8.2, φj denotes the day being studied (j denotes repeat or single dose),
β2 is the slope regressed on logDose on each study day (to account for potential heterogeneity
between days within-subjects), and εjk denotes within-subject error as described in Chapter
3 for each logAUC or logCmax (yjk). If repeat dosing does not impact logAUC or logCmax,
then φ and β2 should be zero. Under those circumstances, the model reduces to the same
form used in Section 8.2.

Implementation in SAS is straightforward. proc mixed is called, and subject and day
are specified as classifications. Each endpoint (logAUC or logCmax) is then modelled as a
function of logDose, day, and the interaction between logDose and day. Subject is specified
as the random intercept, as was done previously using the random statement, and desired
estimates for the mean effect at each day are output using the lsmeans statement. Note that
an at statement is included in each lsmeans statement to instruct SAS to derive estimates
at the appropriate choices of logDose (corresponding to doses of 5, 10, and 20) and compare
these between days.

Sub-Chronic Pharmacokinetic Data Analysis 8.3.1 — SAS proc mixed Code:

proc mixed data=pk method=reml;

class subject day;

model lnauc=lndose day lndose*day

/ddfm=kenwardroger s cl alpha=0.1;

random intercept/subject=subject;

lsmeans day/at lndose=1.6094 diff cl alpha=0.1;

lsmeans day/at lndose=2.3026 diff cl alpha=0.1;

lsmeans day/at lndose=2.9957 diff cl alpha=0.1;

run;

proc mixed data=pk method=reml;

class subject day;

model lncmax=lndose day lndose*day

/ddfm=kenwardroger s cl alpha=0.1;

random intercept/subject=subject;

lsmeans day/at lndose=1.6094 diff cl alpha=0.1;

lsmeans day/at lndose=2.3026 diff cl alpha=0.1;

lsmeans day/at lndose=2.9957 diff cl alpha=0.1;

run;

SAS output (not shown) estimates of parameters may be found in Table 8.9. The
parameters α̂ are the common intercept (response at logDose of zero following repeated

dosing), and φ̂ is adjustment to this response following a single dose. The sum of α̂ + φ̂
should approximately coincide with the intercept obtained from the FTiH trial, all else being
equal (i.e., if formulation or other factors like the pharmacokinetic assay have not changed
between trials). The MTD relative to the NOAEL for repeat dosing may be derived as

e
lnNOAEL−α̂

β̂1+β̂2

in this design. Confidence intervals for the MTD may again be derived using the bootstrap.
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TABLE 8.9
Parameter Estimates from Example 8.3.1

Endpoint α̂ β̂1 φ̂ β̂2 σ̂2
W

AUC -0.035 0.93 -0.035 0.23 0.04
Cmax -2.43 0.87 -0.02 0.21 0.03

The assessment of stationarity of clearance is accomplished using the findings of the
lsmeans statements, and relevant outputs may be found in Table 8.10 for logAUC. It
was observed that clearance was clearly not stationary for this drug, as AUC(0 − τ) was
significantly larger than AUC(0−∞), and accumulation appears to increase with increasing
dose. Results on the natural scale may be obtained by exponentiating the findings below.
The assessment for Cmax is left as an exercise for interested readers.

In our second example, we turn to modelling of the properties of the pharmacokinetic
concentration versus time curve. In this study, modelling of this curve generally initiates, as
the data are rich compared to that collected in later patient studies (where sparse sampling
schemes may be employed, see [365]). To clarify, subsequent studies in patients may not
be able to employ an extensive pharmacokinetic data collection, as done in Phase I, as it
is not convenient to keep patients in-clinic for the lengthy period needed to collect a full
pharmacokinetic profile. The profile is modelled in the sub-chronic dosing studies so that
pharmacokinetic profiles can be simulated for a patient population when sparse collections
are obtained in subsequent studies.

In the sub-chronic dosing study, each subject receiving an active dose of drug (not
placebo) should contribute a drug concentration in plasma versus time profile, as shown in
Table 8.11 for Subject 47. Additional data from this study may be found in conc.sas7bdat

on the website accompanying this book.
We will choose here to utilize SAS for the nonlinear mixed effect modelling of such

data; however, several other statistical packages are readily available (SPLUS, NONMEM,
WINNONLIN, PKBUGS, etc., [1048]) and may be used for this purpose. The models
employed are nonlinear (as obviously the concentration over time is not linear) and mixed
effect in that each subject has an individual profile. Readers interested in more details
should see [1379] and [1271].

For this type of design, we will model the available pharmacokinetic data using what is
known as a one-compartment [30] nonlinear mixed effect model for the purposes of illustra-
tion based on the SAS procedure described in [1073] for proc nlmixed. Interested readers
may use the data in conc.sas7bdat on the website accompanying this book to evaluate
alternative models. This model assumes that drug is absorbed into the body according to
rate kai (where i denotes subject) and is eliminated from the body according to rate kei.

TABLE 8.10
Stationarity of Clearance Assessment from Example 8.3.1

Dose logDose logAUC(0-τ)-logAUC(0-∞) 90% CI
5 1.61 0.34 (0.19, 0.49)
10 2.30 0.50 (0.40, 0.59)
20 3.00 0.66 (0.51, 0.81)
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TABLE 8.11
Pharmacokinetic Concentration Data from Subject 47 of conc.sas7bdat following a Single
Dose of 5 mg

Subject Dose Time Conc.
ng/mL

47 5 0 .
47 5 0.25 0.117
47 5 0.5 0.221
47 5 0.75 0.266
47 5 1 0.267
47 5 1.5 0.232
47 5 2 0.19
47 5 4 0.178
47 5 6 0.125
47 5 8 0.138
47 5 10 0.145
47 5 12 0.126
47 5 16 0.079
47 5 24 0.051
47 5 36 .
47 5 48 .
47 5 72 .
47 5 96 .

Concentration cit at time t for subject i is modelled as follows:

cit = (e−keit − e−kait) keikai(Dose)
Cli(kai − kei)

+ εit,

where εit represents within-subject residual error, Cli is the clearance for subject i assumed
to be of the form eβ1+b1i , with β1 being an unknown constant adjusted for each subject as
appropriate to b1i. Similarly, kai is considered to be a function of the form eβ2+b2i , and
kei is considered to be a function of the form eβ3+b3i . The parameters b1i, b2i, and b3i are
considered to be independent random normal variables with null mean and some nonzero
variance in similar fashion to the REML methods described for bioequivalence in Chapter 5.

Implementation in SAS is straightforward. First the data should be sorted by subject
to accommodate SAS requirements. The SAS procedure proc nlmixed is then called, and,
following the specification of starting values, the equation described above is specified. Note
that here we have assumed concentration is normally distributed. It may be more appro-
priate to model concentration as log-normally distributed, and this can be accomplished
by a log-transformation in a data step. Similarly, instead of modelling concentration as a
function of dose, logDose may be more appropriate.
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FIGURE 8.4
Estimated Concentration versus Time (h) Profile from Phase I Concentration Data in
conc.sas7bdat

Nonlinear Mixed Effect Pharmacokinetic Data Analysis of Phase 1 Concentration Data in
conc.sas7bdat - SAS proc nlmixed Code:

proc sort data=my.conc;

by subject dose time;run;

proc nlmixed data=my.conc;

parms beta1=0.4 beta2=1.5 beta3=-2 s2b1=0.04

s2b2=0.02 s2b3=0.01 s2=0.25;

cl = exp(beta1+b1);

ka = exp(beta2+b2);

ke = exp(beta3+b3);

pred=dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/

(cl*(ka-ke));

model conc ~ normal(pred,s2);

random b1 b2 b3 ~ normal([0,0,0],[s2b1,0,

s2b2,0,0,s2b3]) subject=subject;

predict pred out=pred;

run;

In this code, s2b1, s2b2, and s2b3 are the variances associated with bi1, bi2, and bi3,
respectively. The parameter s2 is the estimate of within-subject variance. Estimated pa-
rameters may be found in Table 8.12, and a plot of the estimated concentrations for each
dose versus time may be found in Figure 8.4.
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TABLE 8.12
Estimated PK Model Parameters from Phase I Concentration Data in conc.sas7bdat

Parameter Estimate 95% CI
β1 0.35 0.23,0.47
β2 1.46 1.30,1.63
β3 -2.47 -2.58,-2.36

s2b1 0.04 0.01,0.08
s2b2 0.03 -0.02,0.09
s2b3 0.01 -0.01,0.02
s2 0.011 0.009,0.013

Predicted concentrations from the model are output to a dataset pred using the state-
ment predict pred out=pred; in the above code. These values may be used to construct
residual plots for each subject and across subjects to assess model fit using the following
SAS code. Some evidence of poor model fit is evident at low concentrations; however,
overall, the model appears to provide an adequate description of the data.

Nonlinear PK Analysis Model Diagnostic Code:

proc sort data=pred;

by subject dose time;run;

data pred;set pred;

st_resid=(conc-Pred)/StdErrPred;

run;

proc rank data=pred normal=blom out=nscore;

var st_resid;

ranks nscore;

data nscore;

set nscore;

label nscore="Normal Score";

label stres="Residual";

label pred="Predicted Value";

run;

proc plot vpercent=50 data=nscore;

plot st_resid*pred/vref=0;

plot st_resid*nscore;

run;

In subsequent studies, when limited concentration data are collected from patients at a
given time on a given dose, these data can be used with the model findings above to simulate
a population pharmacokinetic profile. This can then be used to assess the exposure levels in
that patient population relative the NOAEL, and we will discuss how such assessments may
be done in Chapter 11. Similar models are used to characterize the concentrations after
repeat dosing. Clearance is differentiated between single and repeat dosing as appropriate
to the findings of the stationarity of clearance assessment.

We now consider findings of alanine aminotransferase (ALT) elevation which were ob-
served in a repeat dose trial. ALT elevations are potentially indicative of liver injury and
were monitored each day in this study. Such elevations can occur spontaneously and unpre-
dictably, in response to strenuous exercise, for instance. Of concern here, however, was that
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TABLE 8.13
ALT Data from Subject 4 of liver.sas7bdat

Subject Period Dose Day ALT
4 2 50 1 13

2 13
3 16
4 15
5 18
6 24
7 25
8 29
9 34
10 36
11 34
12 33
13 45
14 43

these elevations were presumed to be drug induced. Although the ALT returned to baseline
upon cessation of treatment (data not shown), it was of interest to model the behavior
of ALT with dose over time to provide clinical with a means of designing a monitoring
plan in subsequent studies. For this assessment, we will treat ALT as being log-normally
distributed and model it as a function of logDose.

Data from Subject 4 (who received 50 mg) may be found in Table 8.13. The data
for the remaining subjects may be found in the dataset liver.sas7bdat on the website
accompanying this book. For this subject we see little indication of a response to drug
treatment until day 5, whereupon the ALT begins to increase.

For this type of design, the power model for ALT is an extension of the model used for
pharmacokinetic data earlier in this section:

yjk = α+ φj + β1(ld) + β2(ld(φj)) + εjk,

where φj denotes the day being studied (j denotes days 1 to 14) for each logALT (yjk).
If dosing does not impact logALT, then β1 and β2 should be zero. We presume that ALT
responses from day to day within a subject are related to each other, with the degree of
correlation decreasing with increasing time between days, and will partition this aspect of
variance associated with φj from the within-subject variation εjk in our model.

Here, proc mixed is called, and subject and day are specified as class variables. The
endpoint of interest (logALT) is then modelled as a function of logDose, day, and the
interaction between logDose and day. The correlation between days is partitioned from
the within-subject variance using a repeated statement specifying that the correlation
occurs within each subject. The desired estimates for the mean effect at each day are
output using the lsmeans statement. Note that an at statement is again included in each
lsmeans statement to instruct SAS to derive estimates at the appropriate choices of logDose
(corresponding to doses of approximately zero to 3000).
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Sub-Chronic ALT Data Analysis of liver.sas7bdat - SAS proc mixed Code:

proc mixed data=liver;

class subject day;

model lnalt=day lndose day*lndose

/DDFM=KENWARDROGER S outp=out;

repeated day/type=AR(1) subject=subject;

lsmeans day/at lndose=-11.5129 CL alpha=0.01;

lsmeans day/at lndose=3.91 CL alpha=0.01;

lsmeans day/at lndose=4.61 CL alpha=0.01;

lsmeans day/at lndose=5.01 CL alpha=0.01;

lsmeans day/at lndose=5.52 CL alpha=0.01;

lsmeans day/at lndose=6.21 CL alpha=0.01;

lsmeans day/at lndose=6.62 CL alpha=0.01;

lsmeans day/at lndose=6.91 CL alpha=0.01;

lsmeans day/at lndose=7.60 CL alpha=0.01;

lsmeans day/at lndose=8.01 CL alpha=0.01;

ods output LSMeans=my.means1;

run;

In this dataset, for this population (recall these are normal healthy volunteers), sta-
tistically significant logDose related (p = 0.0415) increases in ln-ALT were observed, and
these changes increased with increasing dose (p = 0.0024). The estimates of ALT elevation
for the 50 mg (logDose of 3.91) and the 3000 mg dose (logDose of 8.01) are presented in
Table 8.14, exponentiated back to the original scale.

TABLE 8.14: Estimated ALT Data (based on liver.sas7bdat)
from the Sub-Chronic Dosing Study Design

Dose Day Est. ALT 90% CI

50 1 15.5 12.9,18.5
50 2 14.9 12.5,17.9
50 3 15.2 12.7,18.2
50 4 17.1 14.3,20.5
50 5 20.9 17.5,25.1
50 6 25.4 21.2,30.5
50 7 28.3 23.6,33.9
50 8 29.4 24.5,35.2
50 9 30.1 25.1,36.1
50 10 31.1 26.0,37.3
50 11 31.1 26.0,37.3
50 12 29.5 24.6,35.3
50 13 30.6 25.5,36.6
50 14 31.5 26.2,37.7

3000 1 15.4 12.3,19.2
3000 2 14.9 11.9,18.6
3000 3 15.2 12.1,18.9
3000 4 17.3 13.9,21.7
3000 5 22.1 17.7,27.7
3000 6 27.9 22.3,34.8
3000 7 31.8 25.5,39.8
Upper Limit of Normal ALT=34
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TABLE 8.14: Estimated ALT Data (based on liver.sas7bdat)
from the Sub-Chronic Dosing Study Design (continued)

Dose Day Est. ALT 90% CI
3000 8 33.3 26.6,41.6
3000 9 34.4 27.5,43.1
3000 10 35.4 28.3,44.2
3000 11 34.9 27.9,43.7
3000 12 32.6 26.1,40.8
3000 13 33.5 26.8,41.9
3000 14 34.5 27.5,43.2
Upper Limit of Normal ALT=34

For the 50 mg dose, we see ALT elevations beginning on day 4 and continuing throughout
the dosing interval. Potentially hazardous elevations may be expected seven days after
beginning dosing (when the 90% upper bound crosses the upper limit of normal). ALT
elevations were slightly greater as dose was increased to 3000 mg and potentially hazardous
ALT elevations were encountered a day sooner.

Models similar to these may be used to test for proof of safety (see Chapter 9) and to
model the behavior of pharmacodynamic effects (see Chapter 10). We now turn to another
safety topic.

8.4 Food Effect Assessment and Drug-Drug Interactions (DDIs)

Following the studies described in the previous two sections, the maximum tolerated dose
should have been identified when a single dose of drug has been given and when a dose
of drug is given repeatedly. By that point, drug developers should have a good handle on
what the body does to the drug in isolation.

Note that what has not been done at this point is as important as what has been learned.
Drug development at this stage should have confirmed that the potential for hazard when
taking the drug is low when given at certain doses over a period of limited duration. If a
potential hazard with dose has been identified, it may be necessary to explicitly study the
drug to provide “proof of safety” under a variety of potential clinical uses; see Chapter 9
for one such example.

Other preclinical and clinical studies later in development will be needed if the drug is
to be given chronically for longer intervals. Additionally, the behavior of the drug in people
with disease and different ethnicity (Chapter 11) has not yet been established.

However, no one actually takes a drug in isolation. Patients are expected to take the drug
with food on occasion and may be expected to take it while taking other agents (whether or
not the label precludes such [1222]). In this context, alcohol is an agent; over-the-counter
vitamins and pharmaceuticals are other examples of agents, etc. How the body handles the
drug when coadministered under such circumstances is the subject of this section.

As we know (Chapter 2), when a drug is taken it undergoes absorption, distribution,
and metabolism and is eventually eliminated from the body (ADME). Dosing a drug with
food may impact how the drug is absorbed. Dosing of a drug with other agents can impact
distribution and, more frequently, metabolism. This can slow down or speed up elimination
of the drug substance from the body. If elimination is decreased, exposure to drug may
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increase to the point where it is not well tolerated. Alternatively, if elimination is enhanced,
the dose of drug may not be sufficient to cause an efficacious response.

Lack of a meaningful pharmacokinetic difference when a drug product is administered
with and without food or with and without a concomitantly administered agent or med-
ication can often be assessed using the results of small cross-over studies and applying a
TOST approach [1191]. Rate of bioavailability as measured by Cmax is held, under this
approach, to be a surrogate marker for safety for drugs in the marketplace. Comparable
or decreased mean Cmax following administration with or without food or a concomitantly
administered medication is indicative of similar safety hazards to that when dosed alone.
Increases in mean Cmax are potentially suggestive of a less acceptable safety profile for the
drug under study. Similarly, comparable mean AUC following administration with or with-
out food or a concomitantly administered medication are indicative of safety and efficacy
in that condition. The magnitude of decrease or increase in exposure can be used to adjust
the dosing strategy for the drug product under study.

As with bioequivalence, pharmacokinetics serve as a tool for assessing safety in this
context. Such a assessment limits the potential for hazard established in the first-time-in-
humans and sub-chronic dosing studies, but does not eliminate it entirely.

We first consider an example of a cross-over study assessing the potential for dosing
with a meal to impact exposure (food effect). This is followed by two examples of drug
interaction trials.

Dosing of a drug product with a meal can change absorption of the drug substance by
[370]

1. Delaying gastric emptying,

2. Stimulating bile flow,

3. Changing gastrointestinal pH,

4. Increasing splanchnic blood flow,

5. Changing luminal metabolism,

6. Causing physical or chemical interactions with the formulation or drug substance

The effect of food on absorption is typically studied using an open-label, randomized,
2 × 2 cross-over trial in normal healthy volunteers. See Chapter 3 and [370] for details.
Subjects (normal healthy volunteers) are randomized to receive one of two sequences of
treatment regimens. Subjects receive a dose of drug following an overnight fast, are washed
out for five half-lives, and then receive the same dose of drug following a meal, or vice-versa.

Note the change in terminology in this section to regimen instead of formulation. In
a food effect study, the formulation is the same; only the conditions of dosing (with or
without a meal) are changed. The use of the descriptor regimen denotes that the dose
of drug under study is the same, but study conditions are altered to study the ADME
properties. In Example 8.4.1 (below), regimens A and B denote dosing without (regimen
A) and with (regimen B) a meal. As with bioequivalence testing, absence of a food effect
is concluded if the 90% confidence intervals for AUC and Cmax µB − µA fall within the
standard bioequivalence acceptance limits of − ln 1.25, ln 1.25 [370].

We now turn to an example of such testing for food effect. In this trial (Example 8.4.1),
20 normal healthy volunteers were randomly assigned to sequences AB and BA, and AUC
and Cmax were measured following dosing in each period Table 8.15.
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TABLE 8.15: Example 8.4.1: AUC and Cmax Data from a 2 × 2
Food Effect Cross-Over Study Design

Subject Seq AUC AUC Cmax Cmax
A B A B

1 AB 5836 8215 1953 1869
2 BA 9196 9895 1769 2446
3 AB 7809 7222 3409 1501
4 BA 6443 18864 1916 4232
5 BA 5875 5911 1884 2087
6 AB 9937 6186 2807 1743
7 BA 10275 9135 2532 2736
8 AB 4798 6211 1912 1541
9 BA 8940 9810 1939 2216
10 AB 10739 14734 1908 3645
11 AB 10549 10937 4042 2120
12 BA 8374 10853 3702 2001
13 BA 16510 13205 3411 2840
14 AB 7534 5648 2119 1684
15 AB 9473 13407 4194 3074
16 BA 5118 9399 2294 1538
17 AB 4686 7504 1487 1839
18 BA 6122 11027 1857 2063
19 AB 14059 15765 3142 3120
20 BA 6841 8104 1883 1954

A=Fasted Dose, B=Fed Dose

Data were analyzed using the procedures of Chapter 3 based on the following proc

mixed code.

Food Effect Example 8.4.1 — SAS proc mixed Code:

proc mixed data=pk_food;

class sequence subject period regimen;

model logauc=sequence period regimen/

ddfm=kenwardroger;

random subject(sequence);

lsmeans regimen/pdiff cl alpha=0.1;

estimate ’Food Effect for logAUC’ regimen -1 1;

run;

proc mixed data=pk_food;

class sequence subject period regimen;

model logcmax=sequence period regimen/

ddfm=kenwardroger;

random subject(sequence);

lsmeans regimen/pdiff cl alpha=0.1;

estimate ’Food Effect for logCmax’ regimen -1 1;

run;
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Food Effect Example 8.4.1 — SAS proc mixed Code:

proc mixed data=pk_food;

class sequence subject period regimen;

model tmax=sequence period regimen/

ddfm=kenwardroger;

random subject(sequence);

lsmeans regimen/pdiff cl alpha=0.1;

estimate ’Food Effect for Tmax’ regimen -1 1;

run;

Dosing with food significantly (p = 0.0363) increased the extent of exposure (AUC) to
this drug product by approximately 20%, with an estimate of food effect (µB−µA) of 0.1788
(90% confidence interval 0.0417, 0.3158) on the log-scale. Although rate of exposure (Cmax)
was not significantly changed (p = 0.4142), lack of food effect could not be concluded, as
the estimate of food effect was -0.0758 (90% confidence interval -0.2330, 0.0814) on the
log-scale. Tmax was significantly prolonged following dosing with a meal (data may be
found on the website accompanying this book), with food effect estimated to be 1.7 h (90%
confidence interval 1.28 h, 2.11 h).

From these data, it is possible to conclude that dosing with food affects the absorption of
this drug product, increasing the overall exposure to drug (AUC) and delaying its maximal
concentration. These changes do not likely present a hazard to patients using the drug,
as Cmax was not increased following a meal, and the increase in AUC was not deemed
clinically relevant (requiring a change in dose to correct).

We now turn to the statistical assessment of drug interactions. Drugs can interact
with each other in a number of ways involving the ADME properties [30, 95]. As with
food effects, absorption may be impacted; however, the most common interaction relates
to how the liver metabolizes the drug substances. Metabolic inhibition denotes that one
drug prevents the metabolism of the other, usually resulting in increased exposure to the
substance. Alternatively, drugs may have no effect on each other or a drug might induce
the metabolism of the other, indicating that metabolism activity is enhanced in the body,
likely leading to decreased exposure to drug.

Note that metabolism is only one way that drugs can interact. Other examples in-
clude protein binding interactions, transporter interaction, etc. See [95] Chapter 2 and [30]
Chapter 14 for more details. In this section, we will discuss the topic of drug interactions,
focusing on those introduced by the CYP450 liver enzyme system for simplicity; however,
the clinical and statistical assessments used are similar to the other interaction types.

The CYP450 (cytochrome P450) enzyme family is responsible for the majority of
metabolic drug interactions known to occur [364]. This type of drug metabolism is focused
in the body’s liver, and the liver uses multiple subfamily enzyme systems to metabolize drug
products after they are ingested and as they circulate through the blood. The subfamilies
include, in decreasing order of importance and frequency [95]

1. 3A4,

2. 2C9,

3. 2A6,

4. 2C8, 2E1,

5. 1A2,

6. 2B6,

7. 2D6, 2C19, etc.
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Inhibition or induction of drugs metabolized by these systems may result in changed ex-
posure levels, presumably and potentially putting the safety of patients at risk. Clinical
studies are used to assess this potential.

In vitro testing [359] may preclude or enhance the need to do such a study. The predictive
value of such in vitro testing for drug metabolism by the CYP450 family has become
increasingly accurate and reliable in recent years, and generally, clinical drug interaction
trials are only conducted when an in vitro system identifies a particular subfamily as being of
potential concern. Such concern may arise if the new drug inhibits or induces the metabolism
of other drugs by a certain subfamily or if the new drug is itself metabolized by a particular
subfamily — the route for which may be inhibited or induced by another product.

To assess the potential changes in exposure, a steady state randomized or non-randomized
cross-over design is most often used. In general, subjects are dosed to steady state with one
product alone (Regimen A in the following examples), and in the alternative regimen are
dosed to steady state with the potential metabolic inhibitor or inducer in tandem (Regimen
B). AUC, Cmax, and other pharmacokinetic endpoints are derived at appropriate times
following dosing to evaluate the potential changes in exposure [364].

Non-randomized cross-over designs (see Example 8.4.3 below) may be used if washout
of the probe drug (i.e., the drug being probed for a potential interaction) is long or if an
extended dosing period is necessary to achieve steady state exposure. It should be noted
that it is possible to administer several probe drugs at the same time to evaluate multiple
pathways of metabolism at once. These are known as “cocktail” drug interaction trials. See
[1137] for an example.

Our first drug interaction example is a randomized cross-over study in 20 normal healthy
volunteers where a probe drug’s metabolism was inhibited when given with a new drug at
steady state. The increase in exposure was studied to determine whether coadministration
represented a risk to patients using the probe drug. SAS code to analyze such data is the
same as that applied in Chapter 3 and may be found below Table 8.16.

TABLE 8.16: Example 8.4.2: AUC and Cmax Data from a 2 × 2
Drug Interaction Cross-Over Study Design for Metabolic Inhibition

Subject Seq AUC AUC Cmax Cmax
A B A B

1 BA 21.9 28.1 2.16 2.27
2 AB 17.9 14.8 1.63 1.39
3 BA 14.8 22.2 1.21 2.38
4 AB 19.4 17.0 1.59 1.64
6 AB 28.2 28.2 2.77 2.84
7 AB 25.3 17.1 1.98 1.84
8 BA 24.0 25.4 1.71 1.90
10 AB 27.8 33.2 2.68 2.57
11 BA 17.0 20.6 1.98 2.49
12 AB 19.3 23.6 2.37 3.29
14 AB 29.9 27.5 2.43 2.22
15 AB 20.5 22.3 1.92 2.04
16 BA 24.3 29.9 2.26 2.83
17 BA 27.5 32.5 1.92 2.27
18 AB 16.9 17.4 1.66 1.91
19 AB 33.1 39.0 3.39 2.88

A=Probe Drug
B=Probe Drug Plus a Metabolic Inhibitor
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TABLE 8.16: Example 8.4.2: AUC and Cmax Data from a 2 × 2
Drug Interaction Cross-Over Study Design for Metabolic Inhibition
(continued)

Subject Seq AUC AUC Cmax Cmax
A B A B

20 BA 14.7 22.1 1.63 2.66
21 BA 29.3 43.2 2.46 3.79
22 AB 23.3 31.6 3.06 2.57
23 BA 23.1 24.3 2.66 2.56

A=Probe Drug
B=Probe Drug Plus a Metabolic Inhibitor

Inhibitor Drug Interaction Example 8.4.2 — SAS proc mixed Code:

proc mixed data=pk_inhi;

class sequence subject period regimen;

model logauc=sequence period regimen/

ddfm=kenwardroger;

random subject(sequence);

lsmeans regimen/pdiff cl alpha=0.1;

estimate ’DDI Effect for logAUC’ regimen -1 1;

run;

proc mixed data=pk_inhi;

class sequence subject period regimen;

model logcmax=sequence period regimen/

ddfm=kenwardroger;

random subject(sequence);

lsmeans regimen/pdiff cl alpha=0.1;

estimate ’DDI Effect for logCmax’ regimen -1 1;

run;

Dosing with the metabolic inhibitor significantly changed AUC and Cmax of the probe
drug (p = 0.0056 and 0.0094, respectively). Adminstration with the metabolic inhibitor
increased the extent of exposure (AUC) to this drug product by approximately 13% with
an estimate of interaction (µB−µA) of 0.1254 (90% confidence interval 0.0563, 0.1946) on the
log-scale. The maximal concentration (Cmax) was also increased by 13% with an effect size
of 0.1245 (90% confidence interval 0.0503, 0.1987) on the log-scale. Other data (Tmax, etc.)
measured in this study may be found on the website accompanying this book. Interested
readers should note that C24 (the concentration of probe drug 24 hours following dosing)
and renal clearance (CLR) were significantly altered by combination dosing; however, Tmax
was not.

Our second drug interaction example is a non-randomized cross-over study in 20 normal
healthy volunteers where a probe drug’s metabolism was induced when given with a new
drug at steady state. The decrease in exposure was studied to determine whether coad-
ministration represented a risk to patients using the probe drug. SAS code to analyze such
data are similar to that applied in Chapter 3 and may be found below. Note that this
was a non-randomized cross-over study, so period and sequence effects are confounded with
regimen (and were not fitted in the model). This type of design is acceptable [364] when
period effects can be expected to be small relative to the effect of the regimen Table 8.17.
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TABLE 8.17: Example 8.4.3: AUC and Cmax Data from a Drug
Interaction Cross-Over Study Design for Metabolic Induction

Subject Seq AUC AUC Cmax Cmax
A B A B

1 AB 37.73 9.38 3.84 2.75
2 AB 18.22 5.07 2.74 0.97
3 AB 10.30 5.75 1.87 1.98
4 AB 22.11 4.32 4.32 1.15
5 AB 16.31 5.83 3.24 1.15
6 AB 20.47 6.80 3.23 1.32
7 AB 16.02 3.32 1.71 0.72
8 AB 10.73 3.38 1.99 1.07
9 AB 13.93 3.72 1.92 0.97
10 AB 24.32 4.25 2.99 0.59
11 AB 31.67 6.82 3.03 1.01
12 AB 10.97 3.40 2.03 0.48
13 AB 55.49 7.72 4.90 2.20
14 AB 13.65 4.16 1.73 0.65
15 AB 23.97 6.13 3.27 1.78
16 AB 14.07 2.65 2.65 0.50
17 AB 6.51 2.59 1.32 0.91
18 AB 19.60 3.32 3.07 0.56
19 AB 18.80 2.96 2.83 0.66
20 AB 28.25 3.32 3.11 0.69

A=Probe Drug
B=Probe Drug Plus a Metabolic Inducer

Inducer Drug Interaction Example 8.4.3 — SAS proc mixed Code:

proc mixed data=pk_indu;

class subject regimen;

model logauc=regimen/ddfm=kenwardroger;

random subject;

lsmeans regimen/pdiff cl alpha=0.1;

estimate ’DDI Effect for logAUC’ regimen -1 1;

run;

proc mixed data=pk_indu;

class subject regimen;

model logcmax=regimen/ddfm=kenwardroger;

random subject;

lsmeans regimen/pdiff cl alpha=0.1;

estimate ’DDI Effect for logCmax’ regimen -1 1;

run;

Dosing with the metabolic inducer significantly changed AUC and Cmax of the probe
drug (p < 0.0001 for both endpoints). Adminstration with the metabolic inducer decreased
the extent of exposure (AUC) to this drug product by approximately 75%, with an estimate
of interaction (µB − µA) of -1.4199 (90% confidence interval -1.5686, -1.2713) on the log-
scale. The maximal concentration (Cmax) was also decreased by 63%, with an effect size
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of -0.9996 (90% confidence interval -1.1883, -0.8109) on the log-scale. Other data (half-life,
Tmax, etc.) measured in this study may be found on the website accompanying this book.
Interested readers should note that half-life was significantly altered by combination dosing;
however, Tmax was not.

While a combination of dosing with these products may be presumed to be safe (as
exposure was decreased), it may not be desirable. Changes in exposure of this magnitude
might lead to the probe drug being inefficacious, and alternative dosing strategies might
need to be employed to ensure adequate probe drug is available in the body to succeed in
establishing an effective treatment.

The sample size required to have sufficient power for food effect designs and TOST
assessment [370] is derived according to the procedures developed in Chapter 3. In drug
interaction trials, regulatory guidance [321, 397] calls for TOST assessment relative to the
traditional bioequivalence acceptance limits of − ln1.25 to ln1.25 as an option. More com-
monly, no-effect boundaries are predetermined by means of assessing how much change in
exposure would necessitate a change in dose for the probe drug to be safe and efficacious.
These limits need not be symmetric, and R code provided in previous chapters may be
modified to address this situation.

Lower and upper acceptance limits are not always available from the literature, and
even if they are, regulators may not agree with whatever the sponsor defines. Under such
circumstances, an estimation approach [661] can be useful when the magnitude of no-effect
boundaries are not known and the main study objective is to provide evidence of what
the potential value, or range of values, may be, or when the sample size is in part set by
feasibility, and we wish to provide an idea of the precision the trial is likely to provide for
the drug interaction effect of interest.

In such cases, the intent is to provide an estimate of the expected width or precision of
the plausible range of values as expressed by a confidence interval. This will help satisfy our
expectation with regard to acceptability and applicability of study results in the knowledge
that “The confidence interval can be thought of as the set of true but unknown differences
that are statistically compatible with the observed difference” [475].

Then, as described in Chapter 3, Equation (3.8), a 90% confidence interval for µT − µR
is

µ̂T − µ̂R ± t0.95(n− 2)

√
2σ̂2

W

n
,

when the sample size in each sequence is equal and n is the overall sample size. For the
purposes of this discussion, we presume a standard 2× 2 cross-over is used, but alteration
for alternative designs is easily accomplished and is left as an exercise for the interested
reader. Consider

wδ = t0.95(n− 2)

√
2σ̂2

W

n
.

This function provides a precision estimate for the true mean difference. Goodman and
Berlin [475] note that use of a method like that proposed above should be exercised with
caution, as, in a situation where the study design is truly intended to support a test of
hypothesis, the approach corresponds to a test using only 50% power when precision is equal
to the difference of interest. Similarly, in situations where a TOST equivalence approach is
intended, the method presented in this equation corresponds to a two one-sided hypothesis
test with 50% power when precision is equal to the equivalence range of interest.
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Sample Size Code for Precision in DDI Studies:

data a;

* total number of subjects

(needs to be a multiple of number

of sequences, seq);

n=20; seq=2;

* significance level;

a=0.05;

* variance of difference of two observations

on the log scale;

* sigmaW = within-subjects standard deviation;

sigmaW=0.2; s=sqrt(2)*sigmaW;

* error degrees of freedom for cross-over

with n subjects in total

assigned equally to seq sequences;

n2=n-seq;

run;

data b; set a;

* calculate precision;

t=tinv(1-a,n2);

SE=s/(sqrt(n));

* precision on log-scale;

w=t*SE;

* precision on natural-scale;

exp_w=(exp(t*SE)-1)*100;

run;

proc print data=b; run;

In this case, the precision on the natural scale would be calculated as 12%, indicating
that the confidence limits will lie about that far from the point estimate for the difference
in means. If greater precision is desired, the sample size may be increased, or decreased if
lesser precision is needed.

Note that this expression of precision denotes that the limits of the 90% confidence
interval for the ratio of geometric means will lie within 12% of that ratio. Increasing the
sample size lowers this percentage, i.e., improving precision. Decreasing the sample size
increases this percentage, i.e., providing poorer precision. There is no regulatory guidance
on what degree of precision is required in such designs. It is the purview of the sponsor to
determine this number and its expression. One could, for example, use w on the natural-
logarithmic scale as the precision measurement of interest.

In some cases, such a pharmacokinetic safety assessment will not suffice, and a more
rigorous assessment of safety may be called for to protect patients using the drug. Under
such circumstances, often a specific biomarker is of interest. Such an example — QTc —
will be considered in the next chapter.
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8.5 Dose Proportionality

In developing drugs, sponsoring companies spend a great deal of time and energy mapping
pharmacokinetic exposure to drug (concentration in blood, AUC, Cmax, etc.) with clinical
outcomes relating to safety and efficacy. When working in a clinical setting, physicians do
not often have access to pharmacokinetic data from their patients. In practice, therefore,
they vary doses in their patients to cause clinical benefit, and limit dosing to ensure un-
desirable side-effects (e.g., nausea, emesis) do not occur. Consider a situation where one
administers a dose sure to be efficacious, but observes an unacceptable side-effect (e.g.,
nausea). Dose proportionality, the subject of this section, helps one determine which lower
dose should next be tried to improve tolerability while still attaining efficacy.

In the previous studies discussed in this chapter, an understanding of the dose to expo-
sure to safety relationship will have been established. One of the things prescribers need to
know is how much exposure changes when the dose is changed, so that in changing doses for
a given patient, they can balance a change in dose with desirable outcomes and undesirable
side-effects.

When one increases the dose of a drug product, this does not necessarily result in
a proportional change in exposure. There are physiologic, biologic, and chemical limits
to how much drug substance the body will absorb, distribute, metabolize, and excrete.
However, over the therapeutic dose range (the maximum effective and tolerated dose less
the minimum effective dose), it is important to know that, if one, say, doubles the dose,
then double the rate and extent of exposure results — and vice versa [1167].

The assessments of rate and extent of exposure in the first-time-in-humans and sub-
chronic dosing studies will yield a good practical understanding of the shape of the dose-
to-exposure relationship (as described in previous sections). However, assessments of dose
proportionality in the first-time-in-humans study are confounded with period effects. These
effects are known to occur in pharmacokinetic studies and may impact inference [1089].
Assessments of dose proportionality in the sub-chronic dosing study are generally under-
powered for robust statistical assessment as the study is parallel group. While knowledge
gained from these studies, in general, is adequate for clinical development, for approval at
regulatory agencies (in preparation for giving the drug to large populations), a more robust
study may be done to confirm that the shape of the dose-to-exposure relationship is well
understood.

In some situations, therefore, a confirmatory dose proportionality study is performed
just prior to regulatory filing with the final to-be-marketed formulation. Many different
models may be used to examine dose proportionality [1167]. This section will focus on the
application of the power model (described in Section 8.2) for this assessment. In this setting,
we will assume a randomized cross-over design is used to assess dose proportionality, with
at least three doses in the therapeutic range being considered. Normal healthy volunteers
receive a dose of drug after an overnight fast, with administration of each dose separated by
a washout period of at least five half-lives using a Williams square design (see Chapter 4).

There is some incentive for pharmaceutical companies to perform such a confirmatory
dose proportionality study. If dose proportionality is demonstrated, then regulatory agencies
typically only require that bioequivalence be demonstrated at the highest dosing strength if
another formulation is developed subsequently. Regulators have found that to do otherwise
results in undesirable results (e.g., [1356]). If dose proportionality is not present, one may
be required to demonstrate bioequivalence for a new formulation at each dosing strength if
a new formulation is developed [966], and that can be challenging.
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FIGURE 8.5
Dose-to-Exposure (AUC or Cmax) Relationship for β from 0.8 to 1.2

For this type of confirmatory dose proportionality design, the model is

yijk = α+ β(ld) + πj + γi + ξk(i) + εijk,

where α, β, and logDose (ld) are as previously described, πj and γi identify the period j
of sequence i, ξk(i) is the random intercept accounting for each subject within sequence as
their own control, and εijk denotes within-subject error as described in Chapter 3 for each
log-transformed AUC or Cmax (yijk).

When one exponentiates both sides of this equation, AUC or Cmax = c(dβ) where c is
a value composed of the exponentiated sum of estimates of sequence, subject, and period
fixed effects, plus residual error, and d is dose. When β = 1, the drug is dose proportional
as AUC or Cmax = cd. When one wishes to change the dose, it is easy to predict what
AUC or Cmax will result. If β 6= 1, one can still predict what AUC or Cmax will result
from changing the dose, but the calculation is more complex (as the relationship of dose to
the exposure endpoint, AUC or Cmax, is nonlinear).

Consider the possible shape of the resulting dose-to-exposure curves in Figure 8.5.
For β = 1, a truly dose proportional relationship is observed. For any unit change in

dose, a unit change in AUC results, i.e., doubling the dose results in twice the AUC. If
β > 1, a greater than dose proportional response is seen (doubling the dose results in a
greater than doubling in AUC), and if β < 1, a less than dose proportional response in
exposure is observed (doubling the dose results in less than a doubling in AUC).

Smith et al. [1166] showed that it is obvious to think of dose proportionality as an
equivalence problem. This implies that the structure for testing dose proportionality is

H01 : β ≤ 1− t
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versus
H11 : β > 1− t

or
H02 : β ≥ 1 + t

versus
H12 : β < 1 + t,

similar to the TOST used in bioequivalence testing. A systematic review in [1148] also
found this to be a reasonable approach.

However, there is currently no set regulatory standard for the equivalence region. Smith
et al. [1166] recommend that t be defined as

t = ln θ/ ln r

where θ is the minimal change in exposure beyond which one may want to adjust to maintain
safe exposure levels, and r is the ratio of the maximum tolerated or effective dose to be
used in the study to the minimum effective dose.

In the following example, θ = 1.5, as it was felt for this drug that a 50% increase in
exposure might necessitate a decrease in dose. The therapeutic dose range was 1 − 8 mg,
and r = 8 accordingly. Therefore t = 0.195, and the hypotheses to be tested were

H01 : β ≤ 0.805

versus
H11 : β > 0.805

or
H02 : β ≥ 1.195

versus
H12 : β < 1.195.

When the parameter β lies between 0.805 and 1.195 (with sufficient confidence), this pro-
cedure judges the data adequate to support a claim of dose proportionality.

As with bioequivalence testing, a mixed model is used to assess the magnitude of β and
to derive 90% confidence intervals. If the 90% confidence interval for β lies within 1− t to
1 + t, for both AUC and Cmax, dose proportionality is demonstrated.

In Example 8.5.1, a randomized cross-over study in 28 normal healthy volunteers was
performed to assess dose proportionality and the effect of food. SAS code to analyze such
data are similar to that applied in Chapter 3 and may be found below Table 8.18.

TABLE 8.18: Example 8.5.1: AUC and Cmax Data from a Ran-
domized Dose Proportionality Cross-Over Study

Subject Seq AUC AUC AUC Cmax Cmax Cmax
A B C A B C

1 DCAB 352 746 3408 66.6 208.4 687.2
4 BACD 440 842 2560 88.9 162.6 504.0
5 CBDA 249 552 2856 66.7 124.0 601.6
6 DCAB 318 628 2560 68.9 114.4 495.2
7 ADBC 528 814 3888 98.5 177.8 826.4
8 BACD 512 1122 4680 82.8 204.8 684.8

A=1mg; B=2mg; C=8mg; D=8mg with a meal
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TABLE 8.18: Example 8.5.1: AUC and Cmax Data from a Ran-
domized Dose Proportionality Cross-Over Study (continued)

Subject Seq AUC AUC AUC Cmax Cmax Cmax
A B C A B C

9 DCAB 329 750 2720 67.0 180.0 510.4
10 ADBC 374 688 2432 65.7 142.8 448.0
11 CBDA 282 994 4680 76.4 191.0 586.4
13 BACD 324 674 2584 82.1 168.8 610.4
14 CBDA 284 636 3176 61.5 108.0 532.0
15 ADBC 372 666 3200 82.8 169.4 792.0
16 DCAB 304 578 2272 67.1 123.8 440.8
17 CBDA 171 400 1696 48.0 90.2 463.2
18 DCAB 489 1054 3752 91.5 190.6 735.2
20 ADBC 267 526 1896 59.9 141.0 540.8
21 ADBC 292 620 2392 65.6 107.6 332.8
22 BACD 299 580 2488 79.2 126.8 649.6
23 DCAB 392 918 3152 64.1 291.0 615.2
24 CBDA 363 646 3448 87.3 177.2 715.2
25 ADBC 728 896 3232 75.2 130.6 571.2
27 CBDA 348 806 3360 75.5 131.0 560.8
28 DCAB 287 568 2440 69.7 146.2 578.4
29 BACD 283 620 2320 79.4 151.2 502.4
30 CBDA 246 590 2472 78.2 87.6 637.6
31 ADBC 429 786 3264 114.1 186.0 785.6
32 BACD 308 704 2616 81.0 155.2 671.2
33 BACD 462 1132 3656 85.7 174.4 656.8

A=1mg; B=2mg; C=8mg; D=8mg with a meal

Dose Proportionality Assessment Example 8.5.1 — SAS proc mixed Code:

proc mixed method=reml data=pk_dp;

class subject sequence period;

model lnauc=sequence period lndose/

s ddfm=kenwardroger cl alpha=.1;

random intercept/subject=subject(sequence);

run;

proc mixed method=reml data=pk_dp;

class subject sequence period;

model lncmax=sequence period lndose/

s ddfm=kenwardroger cl alpha=.1;

random intercept/subject=subject(sequence);

run;

The estimates for β were 1.0218 and 0.9879 for logAUC and Cmax, respectively, with
90% confidence intervals contained well within 0.805 to 1.195. Therefore, dose proportion-
ality was demonstrated. Interested readers may find data for Tmax from this study and
AUC and Cmax data for the assessment of food effects (Regimen D compared to Regimen
C) on the website accompanying this book. Tmax was not significantly changed by altering
the dose of drug, and food did not affect the AUC and Cmax of this drug.
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Determination of sample size for such a cross-over study is similar to the procedure used
in bioequivalence testing [1126]. As these assessments are typically now added on to studies
for multiple purposes (for example, food effect and dose proportionality may be assessed in
the same study), we recommend that simulations be conducted (see Chapter 5) to study
the power in such situations. Alternatively, the approach discussed in [918] may be used to
approximate study power for multi-purpose designs.

8.6 Technical Appendix

This technical appendix provides an example of interactive Bayesian modelling of pharma-
cokinetic data in a first-time-in-humans trial. In Table 8.19, mean AUC and Cmax estimates
from a preclinical species are presented.

TABLE 8.19
Exposure Estimates from a Preclinical Species

Dose Estimated AUC Estimated Cmax
5 mg/kg 2790 880

100 mg/kg 29,600 7600

Techniques to use these values to predict human AUC and Cmax are discussed in Chap-
ter 30 [30] and will not be discussed further here. For the purposes of illustration, here it is
assumed that only human weight needs be taken into account in predicting human exposure
levels, and these estimates (assuming a 50 kg human) are provided in Table 8.20.

TABLE 8.20
Exposure Estimates for a 50 kg Human from a Preclinical Species

Dose Estimated AUC Estimated Cmax

5 mg 139,500 44,000
100 mg 1,480,000 380,000

We wish to use these data to derive estimates for α and β as discussed in Section 8.2;
however, at this stage we have these two unknown parameters and only two data points.
For pharmacokinetic data, it is possible to make the assumption that, when the dose is
very small (0.0001), the resulting AUC or Cmax will be very small (0.0001). This yields
three data points for two unknown parameters, and a simple regression may be performed
to provide prior distributions for α and β. SAS code to perform this analysis may be found
on the website accompanying this book. Other means (e.g., expert elicitation) may also be
used to derive such estimates for α and β, and we refer interested readers to an excellent
review in [442].

In this case, it is estimated that α̂ ∼ N(3.43, 0.52) and β̂ ∼ N(1.36, 0.0081) where
N denotes the normal distribution with (mean, variance) from a regression of logAUC on
logDose. We utilize the mean estimates for these parameters in the code below, but assume
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that the variance associated with them is very wide (reflecting the uncertainty inherent in
allometric scaling calculations).

Example 8.2.2 AUC data were analyzed in WINBUGS using the following computer
code (based on the code from the RATS WINBUGS example):

Interactive Bayesian First-Time-in-Humans WINBUGS Analysis Code for Example 8.2.2

model

{for( i in 1 : N )

{

for( j in 1 : T )

{

Y[i , j] ~ dnorm(mu[i , j],tau.c)

mu[i , j] <- alpha[i] + beta[i] * x[j]

}

alpha[i] ~ dnorm(alpha.c,alpha.tau)

beta[i] ~ dnorm(beta.c,beta.tau)

}

tau.c ~ dgamma(0.001,0.001)

sigma <- 1 / sqrt(tau.c)

alpha.c ~ dnorm(3.43,1.0E-6)

alpha.tau ~ dgamma(0.001,0.001)

beta.c ~ dnorm(1.36,1.0E-6)

beta.tau ~ dgamma(0.001,0.001)

lnmtd <- (7.78-alpha.c)/(beta.c)

mtd <- exp(lnmtd)

}

This model may be used interactively as data are collected to estimate individual re-
sponses (monitoring mu[i , j]) and the MTD.

As with the original analysis, attention is focused on the MTD relative to the NOAEL
(2400 for illustration purposes). The MTD in this analysis is estimated as 13.8 mg (using
the median posterior density of 100,000 iterations after a burn-in of 1000 iterations). A
Bayesian 90% confidence interval for the MTD is 8.4 to 25.7 mg. Similar analyses may be
performed for Cmax, and this is left as an exercise for the reader.
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QTc

Introduction
No one can be expected to pay 100% attention to 100% of the issues and data encountered

in clinical pharmacology 100% of the time, so one should be forgiven for not recognizing
immediately that QTc is a critical endpoint in drug development.

My boss stepped in one day to alert me to the fact that I now had a new project. We were
developing an anti-arrythmia drug. There were a number of ongoing clinical pharmacology
trials that were delivering data, and results would be needed “Stat” to enable the company
to make an investment decision.

I was used to this by this time. No one ever came by and said we had plenty of time
to get a job done, with no rush, and that senior management was happy to wait as long as
we needed to get the job done properly at our convenience (i.e., without interfering with all
the other work we had to do). I was hopeful at that time that maybe one day I would get a
project like that, but that has happened exactly one time since then.

In any event, arrythmia denotes an irregular heartbeat. Some are benign, but some
are fatal, and the drug we were developing was intended to prevent its occurrence. To do
so, my boss informed me that the drug would impact the ECG. I nodded sagely, and after
she left I looked it up in my trusty medical dictionary. ECG denotes an electrocardiogram
— a tracing of the electrical activity of the heart over time (we will see a typical one
later in this chapter). What I was expecting when the data came in, therefore, was a lot
of ECG tracings from which I would measure amplitude, trough to trough time intervals,
and other summary measures to statistically describe the activity following dosing with our
drug relative to placebo. These would obviously be related to the aortas and ventricles I
remembered from 8th grade anatomy, so this should not have been too bad.

What I received, however, was a dataset of alphabet soup with numbers. There were
measurements taken for PR, QRS, QT, RR, QTc, QTcB, QTcF, QTcI (to name a few)
in addition to text fields describing T-wave morphology. All of these were measured in
triplicate following dosing with placebo and our drug in a pretty large number of patients at
many times over the course of a day. There was not an ECG to be seen, nor any ventricles.
It was a completely unidentifiable mass of unbelievable gobbledygook seemingly produced by a
team of junior medics with slide rules, protractors, and way too much time on their hands.
I found out later it was done by senior medics and had been done this way since the 1920s.

My guess (which turned out later to be correct) was that these endpoints (PR, etc.)
were measuring time relative to the voltage of the heart. But in this instance my medical
dictionary let me down. QTc was not in there.

This left me with three options to try to figure out what was going on:

1. Ask my statistical colleagues (they did not know, or said they did not, as they did
not want to talk about it).

2. Go downstairs and talk to Denny about what this stuff was (since the report was
needed yesterday), but the problem with talking to Denny was that he would want
to know about the data for a couple of other projects I was working on, and I did
not want to field twenty questions when all I needed was one answer.

3. Go to lunch.

245
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After lunch, I talked to Denny and got a crash course on the heart and electrocardiology.
QTc turned out to be very important, not only for this drug, but also as a general issue in
drug development. We will devote this chapter to QTc, as it is now an important issue in
clinical pharmacology assessments of drug safety for all drug products.

9.1 Background

An electrocardiogram (ECG) measures the electrical activity of the heart over time. Usually,
eight “leads” or electrical monitors are placed on a patient’s upper torso and back along
certain predetermined vectors out from the heart. These leads then monitor the electrical
output of the heart to construct a graph of the polarization and depolarization of different
parts of the heart during a beat. See Figure 9.1. This pattern is repeated over and over
again while the heart beats.

The different parts of the ECG are denoted by letters and referred to as “waves” and
“complexes.” For instance, the first “bump” is referred to as the P-wave. The nadir of the
first dip begins the QRS-complex, and the wave immediately following this complex is the
T-wave. In some ECGs, there is a following wave known as the U-wave, but this is unusual
in normal healthy volunteers.

On the ECG tracing, the QT interval is defined as the amount of time between the
initiation of the QRS complex and the conclusion of the T-wave. QT interval duration is
measured in milliseconds (msec), by computer algorithm, and measures of how long it takes
the heart to repolarize and prepare for its next beat. The longer it takes to repolarize, the
more time between beats, and the less oxygen gets to cells.

QT duration is dependent upon gender, age, health status, menstrual cycle, and a great
number of other factors. QT changes naturally over the course of the day, and QT duration
can be prolonged by food and is changed by exercise. Some drugs prolong the QT interval
(i.e., delay the heart’s ability to repolarize). If QT is prolonged sufficiently in humans,

FIGURE 9.1
A Typical 12-Lead ECG Interval
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potentially fatal cardiac arrhythmias can result. Torsades de pointes, most often referred
to in connection with QT, as these are known to be related, is a malignant ventricular
arrhythmia known to occur infrequently in individuals who are genetically predisposed to
this condition and sometimes in response to drug therapy [1008].

Prolongation of the QTc interval has been observed to be related to increased risk of
torsades de pointes in an exponential fashion [894]. The QT interval is highly correlated
with how fast the heart is beating overall (measured by determining RR, the length of time
between one R on the ECG and the next R). Therefore, in measuring QT, the interval
is usually corrected to derive a QTc (QT interval corrected for heart rate). Common
corrections were developed by Fridericia [432] and Bazett [54], and many authors have
published on better ways to correct for heart rate in recent years, e.g., [265]. Bazett’s
correction has been observed to overcorrect QTc at some heart rates ([971, 1022, 1203]) and
is not generally used for the purposes of safety assessment described in this chapter. We
will not dwell further here on the application of correction factors in this setting, and will
utilize Fridericia’s correction (QT is corrected by division of the cube-root of RR such that
QTcF = QT

RR1/3 ) in subsequent discussion, as it appears unrelated to heart rate according
to recent reports [1022], [1203].

QTc prolongation is a necessary but not sufficient condition for occurrence of and has
a qualitative relationship to clinical arrhythmias [626]. One must, by definition, have a
prolonged QTc just prior to the occurrence of torsades de pointes, but a prolonged QTc
can occur without the occurrence of torsades de pointes. In general, a prolonged QTc in a
patient with several other risk factors [15] may result in torsades de pointes. Prolongation
from baseline (usually taken first thing in the morning) in an individual greater than 60
msec or an absolute value of QTc beyond 500 msec is deemed a clinical safety signal [626].

Drugs known to prolong the QTc interval have been responsible for killing people. This
potential was observed for Terfenadine [577], [1005]-[1006], Cisapride [1359], and other
examples [1222]. Terfenadine and Cisapride were approved and marketed compounds when
the deaths due to the drugs occurred. The potential for this effect was identified only after
the drugs were marketed to a large number of patients, and these and several other drugs
were withdrawn from the market to protect patient safety [1222]. This highlighted the need
for thorough assessment of the potential for QTc prolongation prior to approval.

New drugs, and potentially existing drugs seeking new indications, must study and rule
out the potential for prolongation of QTc [626]. This thorough study will rule out the
presence of a QT/QTc prolongation, or inform how much monitoring for QTc potential
will be necessary to establish safety to market in confirmatory trials. Mean prolongation of
QTc in excess of 5 to 8 msec will merit greater scrutiny in confirmatory trials. Prolongation
greater than 20 msec will likely result in refusal to market unless the benefit of the drug
product far outweighs the risk of QTc prolongation and clinical arrythmia (e.g., for an
oncology agent).

Even if such a product were approved, it would likely have stringent warnings and
requirements limiting its use to patients where benefit clearly outweighs risk. However,
such labelling has been observed to be ineffective in the past at protecting patients in the
marketplace [1222].

Now that the reasons behind assessment of QTc prolongation have been developed, we
turn to discussion of how to model data from a thorough QTc study. This will be followed
by a section on design of thorough QTc studies, and last we will consider how to interpret
the results of such trials.
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9.2 Modelling of QTc Data

To illustrate an approach to the modelling of QTc data, we will consider some data from a
previous trial. Normal healthy volunteers are generally [626] the population dosed in such
studies, as it is felt that QTc prolongation observed in that population does not pose a
great risk, and findings are readily applicable to patient populations.

Fridericia’s correction to the QT interval was used, and the study was a fully randomized
cross-over design. The objective of the trial was to detect changes in QTc induced by the
study drug over and above those introduced by a control agent, and ECGs were manually
over-read by a qualified, blinded cardiologist.

In our example dataset, three single-dose regimens (C, D, E) were studied relative to
placebo control (Regimen F). Regimen E was a known mild prolonger of the QTc interval
(included to serve as a positive control), and regimens C and D were a therapeutic and supra-
therapeutic dose of a moderate QTc prolonging agent. Forty-one subjects were included
in the example dataset, and QTc was measured in triplicate at baseline (time 0) and over
the course of the day at set times following dosing. Triplicate (three ECGs) measurements
were averaged at each time of ECG sampling (i.e., 0, 0.5,1, 1.5, 2.4, 4, etc.) for inclusion in
analysis, and samples out to four hours post dose were included in the example dataset for
ease of presentation and discussion.

Consider some of the first subject’s QTc data as listed in Table 9.1 of Example 9.1
below.

Unlike bioequivalence, where only one AUC or Cmax observation was of interest in each
period, in this setting the pattern of QTc response within and across periods is of interest.
Such repeated-measures, time-series data are inherently more complex to model. However,
many methods are available to do so.

The analysis of such repeated-measures data arising in cross-over studies with baseline
control is described in [691]. This analysis accounts for each subject as their own control,
the correlation between measurements within-period, and accounts for baseline, period, and
regimen effects. SAS code is given in [691] and may be found for application to this data
on the website.

To describe the pattern of overall response to treatment, the model-adjusted means are
output (along with their correlation and variance-covariance matrix) in the mixed procedure

TABLE 9.1
First Subject’s Data in Example 9.1

Subject Regimen Time(h) QTc(msec)
1 C 0.0 358
1 C 0.5 356
1 C 1.0 361
1 C 1.5 362
1 C 2.5 354
1 C 4.0 355
1 D 0.0 373
1 D 0.5 381
1 D 1.0 389

......
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FIGURE 9.2
Mild and Moderate QTc Prolongation (n = 41) in Example 9.1

lsmeans and ODS statements. The mixed procedure accounts for effects as described above
and provides adjusted mean estimates for use in describing the average effect of treatment.
These are plotted for Example 9.1 in Figure 9.2.

The adjusted mean estimates derived from the mixed model are known as “BLUP”
in that they are denoted as Best Linear Unbiased Predictors. They are asymptotically
unbiased estimators for the behavior of mean QTc in the population being studied, and, as
with bioequivalence, will serve to compare the properties of the different treatments.

In Figure 9.2, mild (Regimen E) and moderate degrees of prolongation (Regimen C)
relative to Regimen F (placebo) are observed with slightly greater prolongation being ob-
served at the supra-therapeutic dose of the drug being studied (Regimen D). In this context,
“mild” refers to a QTc prolongation that does not begin until some time after a dose of
drug is administered and which rapidly dissipates over time. “Moderate” QTc prolongation,
in contrast, denotes a QTc prolongation that begins rapidly after a dose is administered
and is maintained over a substantial part of the dosing interval. Both mild and moderate
prolongation refer to effect sizes greater than zero but less than the ICH E14 [626] level of
probable concern for causing torsades de pointes of 20 msec [1222].

As we begin considering statistical methods to compare these responses, we should
consider one other important issue in the modelling of repeated-measures data. That is,
that the mean responses within a regimen and across regimens are correlated given the
nature of the cross-over study design and repeated-measures ECG data. As these adjusted
means are derived from a cross-over trial, the adjusted means between regimens are also
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TABLE 9.2
Mean Changes (90% CI) between Regimens Following a Single Dose in Example 9.1 (n = 41)

Comparison Time Difference 90%CI

C-F 0.5 4.3347 (2.0800,6.5894)
1 7.7805 (5.0546,10.5063)

1.5 5.2887 (2.3696,8.2077)
2.5 2.9160 (-0.09164,5.9236)
4 4.2413 (1.1931,7.2894)

D-F 0.5 6.7032 (4.4579,8.9485)
1 10.4697 (7.7514,13.1880)

1.5 7.4574 (4.5451,10.3696)
2.5 6.2239 (3.2259,9.2219)
4 5.7655 (2.7288,8.8023)

C = Therapeutic Dose
D = Supra-Therapeutic Dose

F = Placebo

correlated. Therefore, when we begin comparing treatments, we can account for the fact
that adjusted means between treatments are correlated and that adjusted means are also
correlated across time.

These comparisons account for the correlation between regimens at each individual time
(i.e., that Regimen C is correlated with Regimen F at time 0.5, for example); however, they
do not account for the correlation between means across the time interval of ECG sampling
(that the means at time 0.5 h are correlated with the means at time 1 h, etc.). It is up to
the user, however, to determine which means of controlling the Type 1 and 2 error rates
should be employed, and SAS does not automatically do so. To begin the discussion on this
topic, we first consider the results (not adjusted for correlation across time) as presented in
Table 9.2.

In Example 9.1, it is observed that moderate and statistically significant (note lower 90%
confidence bounds exceed zero) QTc prolongation is observed in Regimens C and D within a
half-hour of dosing and remains prolonged out to four hours post dosing. Now that models
and simple statistical procedures to compare data between regimens have been developed,
we discuss statistical procedures to control the Type 1 and 2 error rates in testing for QTc
prolongation.

9.3 Interpreting QTc Modelling Findings

As with bioequivalence testing, in the context of QTc testing, we are interested in confirming
that a difference in treatments is not present. It is presumed that the drug of interest does
prolong QTc until it is demonstrated not to be the case. The hypotheses of interest are
therefore similar to bioequivalence testing, and the burden of proof remains on the sponsor
of the study to demonstrate that QTc prolongation does not occur.

Here we are generally interested in confirming that QTc is not prolonged following dosing
over an appropriate period of time when the drug could cause such an effect. The model
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estimates described in the last section will be used to test for an effect over the appropriate
ECG sampling interval. In this setting the null hypothesis for comparison of the test drug
(T, at either the therapeutic or supra-therapeutic dose) relative to placebo (P) is

H0 : µTi − µPi ≥ ∆ (9.1)

for at least one i where i denotes ECG samples collected over the relevant times of sampling
and ∆ is a predetermined, reasonable no-effect goalpost (defined in [626]). This hypothesis
is to be tested against the alternative hypothesis

H1 : µTi − µPi < ∆ (9.2)

for all i in the sampling interval. This is another application of the intersection-union test
[1314].

Performing this test is simple and straightforward. One simply derives the comparisons
of interest between treatments using SAS as described in the last section (Table 9.2) and
evaluates the magnitude of the upper bound of the 90% confidence intervals over the relevant
interval of sampling relative to the chosen ∆. The level of ∆ in [626] was a subject of much
debate when [626] was being developed; however, if we choose 8–10 msec for discussion
purposes, we see that the null hypothesis is not rejected for the mild and moderate QTc
prolongers of Example 9.1, as the upper confidence bounds fall above those levels.

This is not terribly unexpected given the nature [1314] of the testing procedure being
used. As we know from bioequivalence testing, Type 1 and 2 errors can occur in testing of
such situations.

The Truth

Trt is NOT Safe Trt IS Safe
Statistics Eq. (9.1) NOT Right answer! Wrong answer
from study Rejected (Type 2 error)
show that (Trt NOT Safe)

Eq. (9.1) IS Wrong answer Right answer!
Rejected (Type 1 error)
(Trt IS Safe)

To prove that a treatment is safe under this approach, it must be shown that it is safe
over the entire sampling interval. The intersection-union test is known to protect against
Type 1 errors at a very conservative level (i.e., less than or equal to the desired level of 5%).
This makes the occurrence of a Type 1 error infrequent, a desirable property of such a testing
procedure. The risks associated with admitting to the marketplace a drug that prolongs
QTc were discussed in Section 9.1, and it is clear that regulators should be concerned (and
conservative) with control of the Type 1 error rate.

The potential for a Type 2 error is best controlled in design. Techniques for doing so
are

1. Increase the sample size (n),

2. Increase the number of ECGs collected at each time point (r)

Both these actions result in smaller confidence intervals about the model estimates of effect,
increasing the precision of the study, yielding more confidence in the understanding of the
exact properties of the treatment.



252 Bioequivalence and Statistics in Clinical Pharmacology, Second Edition

In practice, a combination of both is done as appropriate to the treatment under study.
We could most likely prevent the occurrence of a Type 2 error by increasing the sample
size to n = 30 to 40 subjects or equivalently by increasing the number of ECGs collected
at each timepoint from r = 1 to r = 3 to 4 ECGs (working to reject Equation (9.1) with a
∆ = 10 msec). In working practice, sponsors of such trials get very depressed when a Type
2 error occurs, so they generally do both.

Note that sample sizes and ECG sampling under this approach also detect even mild
and moderate degrees of QTc prolongation as shown in Example 9.1.

ICH E14 [626] goes into a great deal of complex detail on how to demonstrate that
a drug does not affect QTc. To rule out that QTc prolongation occurs for a particular
treatment, it must be shown that, in comparing the study drug to placebo at therapeutic
and supra-therapeutic doses,

the largest time-matched mean difference (baseline-subtracted) for the QTc interval is
around 5 msec or less, with a one-sided 95% confidence interval that excludes an effect
> 10 msec [626].

To perform this procedure one would inspect Table 9.2 for the maximum difference in
adjusted means and then use an appropriate statistical procedure to construct a confidence
interval on this quantity, accounting for its correlation to all the other comparisons at
other ECG sampling times. Mathematically, this procedure is quite complex. In practice,
however, it turns out to be equivalent [1314] to the intersection-union test when using the
SAS repeated-measures cross-over model described in [691].

The high degree of correlation in QTc data over time also suggests that the intersection-
union testing procedure is not terribly conservative in terms of the type 1 error rate. The
estimate of autoregressive correlation (a measure of how related data are across time for
individual subjects) was 0.9 in the Placebo data of Example 9.1 (a value of 1 would indicate
perfect correlation). So, although slightly conservative in its control of Type 1 errors,
intersection-union testing will likely meet regulatory, sponsor, and statistical considerations
for testing of safety for the issue of QTc prolongation.

Up to now, we have discussed comparisons of a given treatment with a control. However,
in trials performing thorough QTc assessments, it is not unusual for multiple doses and a
positive control treatment to be employed [626]. See Example 9.1 where supra-therapeutic
and therapeutic doses were employed. As the number of doses increases, so too does the
possibility of a Type 1 or 2 error. To control these probabilities, one should follow the
principles of proof of safety testing described by Hauschke and Hothorn [540] for this setting
[971]. A predefined testing procedure should be used to logically order statistical tests to
mitigate the probability of a Type 1 error. One (step-up) procedure is as follows:

1. Compare the therapeutic dose to placebo. If Equation (9.1) is rejected in favor
of Equation 9.2, then the therapeutic dose is acceptable (proof of safety has been
demonstrated) and proceed to Step 2; otherwise, stop and conclude that safety
has not been demonstrated at the therapeutic dose and the supra-therapeutic
dose.

2. Compare the supra-therapeutic dose to placebo. If Equation (9.1) is rejected in
favor of Equation (9.2) for the supra-therapeutic dose, then the supra-therapeutic
dose is acceptable (proof of safety has been demonstrated); otherwise, stop and
conclude that safety has not been demonstrated at the supra-therapeutic dose
but was at the therapeutic dose.
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Another (step-down) procedure is as follows:

1. Compare the supra-therapeutic dose to placebo. If Equation (9.1) is rejected in
favor of Equation (9.2) for the supra-therapeutic dose, then the supra-therapeutic
dose and the therapeutic doses are acceptable (proof of safety has been demon-
strated); otherwise, conclude that safety has not been demonstrated at the supra-
therapeutic dose but conduct additional testing at the therapeutic dose by pro-
ceeding to Step 2.

2. Compare the therapeutic dose to placebo. If Equation (9.1) is rejected in fa-
vor of Equation (9.2), then the therapeutic dose is acceptable (proof of safety
has been demonstrated); otherwise, stop and conclude that safety has not been
demonstrated at the therapeutic dose and the supra-therapeutic dose.

A sequentially rejecting procedure [540] is appropriate for application under the assump-
tion that QTc prolongation increases with dose. This relationship has been observed for
most drugs known to prolong the QTc interval [1222]. The role of the positive control (if
any) in this context is discussed later in this section.

Alternatives to the intersection-union test are available. Such statistical testing proce-
dures control Type 1 error at the precise level of 5% while minimizing the probability of a
Type 2 error based upon correlations observed in the data. One such technique is Westfall’s
SimIntervals approach [1317] based upon [1127] and [219] using an SAS program available
in [1318]. As the regulatory acceptance of such an approach is unknown, however, we do not
discuss it further here. Note that the bootstrap may also be useful in this context [1320].

Turning now to an additional consideration, it should be noted that ICH E14 [626] also
recommends that a positive control be used to confirm that the study has the potential
to pick up mild to moderate QTc prolongation. Example 9.1 included such a randomized
positive control (Regimen E), and we now consider how one might assess such data.

Such a test for positive control prolongation is not consistent with the intersection-
union test previously described. This constitutes a union-intersection test [273] where we
are interested in confirming that significant prolongation is observed at some time following
the dose of positive control relative to placebo. The model estimates described in the last
section will be used to test for an effect over the appropriate ECG sampling interval or, if
pre-specified in the protocol, at specific times (for example, around Tmax). In this setting
the null hypothesis for comparison of the positive control (PC) relative to placebo (P) is

H0 : µPCi − µPi ≤ φ (9.3)

for all i where i denotes ECG samples collected over the relevant times of sampling and
φ is a predetermined, reasonable no-effect goalpost (suggested as 5 msec in [1391]). This
hypothesis is to be tested against the alternative hypothesis

H1 : µPCi − µPi > φ (9.4)

for at least one i in the sampling interval of interest.
As is well known [273], this multiple testing approach results in an inflated probability of

rejecting the null hypothesis of interest, and one must adjust the Type 1 error rate for each
i comparison to maintain the overall Type 1 error rate at the level desired by regulators.
Considering the positive control data of Example 9.1 and adjusting the confidence intervals
using the simple Bonferroni approach [273], we find that the null hypothesis is not rejected,
as all lower bounds fall below 5 msec. However, several bounds fall above 0, showing that
statistically significant prolongation can be detected. The choice of 5 msec in [1391] is
somewhat debatable, and those designing such studies should consult with regulators to
ensure they meet the local requirement for the positive control comparison (if any).
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In practice, one should also consider alternative testing procedures such as [61], but
there are many such procedures (see [273] for an excellent summary). One would not need
to adjust the Type 1 error rate if one pre-specified in the protocol the time of testing (e.g.,
at or around observed Tmax).

9.4 Design of a Thorough QTc Study in the Future

The objectives of thorough QTc studies in the future will be to

1. Confirm that the new drug does not prolong QTc to a clinically relevant extent
(Equation (9.1)), or

2. Measure the extent to which a drug prolongs QTc.

Given the potential risks induced when QTc is prolonged, it is expected that such com-
pounds will likely be screened out of consideration early in drug development, and that in
most cases the first objective will be the primary objective of most trials.

In either case, however, QTc will be measured at baseline and over a 24-hour sampling
period following dosing with the therapeutic dose of study drug, a supra-therapeutic dose of
study drug, placebo, and possibly a positive control (e.g., Moxifloxacin, an antibiotic known
to prolong QTc.) As with bioequivalence testing, normal healthy volunteers will generally
be used as the study population [626].

When selecting a design to assess Equation (9.1), a cross-over design will likely be the
most sensitive and efficient in providing data to assess the null hypothesis. If a drug truly
has no effect on QTc, then one would not expect carry-over effects to be an issue in the
use of cross-over designs for the trial. If, however, there is suspicion that the drug may
prolong QTc and the drug has a long-half life, then a parallel group trial may also be used
to test Equation (9.1) to avoid the potential for carry-over to confound interpretation of
the results.

The simulation code discussed in Chapter 5 is readily adaptable to this situation, and we
recommend that those designing such studies engage in simulation experimentation based
on previous data from their own protocols and labs and whatever statistics and model they
choose to employ to determine sample size.

When using cross-over designs, it should be noted that period effects occur in such
thorough QTc assessments, and treatments should be fully randomized throughout the
study periods to ensure that period effects are not confounded with treatment effects. Period
effects can be induced by small period-to-period differences when using a manual over-reader
for the ECGs, and it is expected that computer algorithmic measurement is less prone to
such effects.

Computer algorithmic measurement is not perfect, however. It is known to be conser-
vative in its assessment of the end of the T-wave, erring on the side of caution to ensure
that individual QTc values of potential concern (QTc > 500 msec) are captured. Computer
algorithmic measurement is held [626] to be biased in such individual value assessment;
however, as the analyses conducted as described in Sections 9.2 to 9.3 account for baseline
QTc and each subject as their own control, it would not be expected that such measure-
ment bias introduced by using a computer algorithm would impact statistical inference for
Equation (9.1).

Thorough QTc evaluations will generally be conducted in late Phase II or in parallel
with the confirmatory trials for regulatory submission. Such trials cannot be conducted
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unless one has a good idea of the therapeutic and supra-therapeutic doses for the drug of
interest, and firm knowledge of these is generally not available until one has demonstrated
proof-of-concept and done some work in dose-finding in patients.

The choice of ∆ has been noted as worthy of further discussion in the draft ICH E14
guidance [626] and has been defined as 8 msec for the purposes of opening the discussion.
It was originally proposed as 5 msec, then changed to 7.5 in ICH discussions, before taking
on the value of 8 msec. Dependence on choice of endpoint was highlighted in [971]. In the
final Step 4 guidance [626], 10 msec was defined as the ∆.

Throughout this chapter we have used 90% confidence intervals to describe the QTc data.
However, readers will note that Section 9.3’s assessment of proof of safety is primarily driven
by inspection of only the upper bound of the confidence interval. We have chosen to employ
these confidence intervals to recognize that regulation [626] on this topic is imperfect. As
discussed previously, the choice of ∆ is ill-defined, and QTc is a necessary but not sufficient
condition for the development of torsades de pointes. As discussed in Chapter 1 (Bernoulli’s
Principle 8), we should not attribute more weight to such a matter than its due and should
view the safety assessments made from the statistics for QTc with some level of caution.
ICH E14 [626] is simply a tool being used to protect the public. It is thought that, had this
been done, people would not have died. The reader should recall that, as per discussion in
Chapter 1, in reality, complete certainty of safety cannot be achieved by such safety testing.

In such a context, the 90% confidence intervals serve a dual purpose. They provide the
basis for the QTc safety assessment (using the upper bound), but should mild or moderate
prolongation be observed, the lower confidence bound and point estimate serve to place this
effect size in context and to evaluate its statistical significance and probability of hazard
[540].

A positive control does not add value in a thorough QTc evaluation when testing for
a new treatment’s safety at therapeutic and supra-therapeutic doses relative to placebo.
However, its inclusion does add value if a statistically significant prolongation is observed
(i.e., the lower bound of the CI is nonnegative). In drugs known to prolong QTc, the
positive control’s inclusion in a thorough assessment serves as a method to construct ‘ ‘no
worse than” statistical tests.

Consider the comparison of Regimen D to E in Example 9.1 as described in Table 9.3.
In Table 9.3, we see that QTc was prolonged more than the positive control after the

supra-therapeutic dose early in the sampling interval, appeared similar in the middle of the
sampling, and was slightly lower than the positive control at 4 hours post dose. Although
we cannot conclude that the new drug poses no risk of QTc prolongation, the statistically

TABLE 9.3
Mean Changes (90% CI) between Test Drug and Positive Control Following a Single Dose
in Example 9.1 (n = 41)

Comparison Time Difference 90%CI
D-E 0.5 4.7463 (2.4999,6.9926)

1 3.1356 (0.4160,5.8552)
1.5 1.4963 (-1.4173,4.4100)
2.5 -0.4471 (-3.4465,2.5523)
4 -2.3138 (-5.3519,0.7244)

D = Supra-therapeutic Dose
E = Dose of Positive Control
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significant hazard introduced by dosing with the new drug at supra-therapeutic and thera-
peutic doses (2 to 5 msec immediately following dosing) does not appear markedly dissimilar
to that produced by the positive control later in the day.

As techniques in clinical pharmacology safety assessment have now been reviewed, we
turn to the assessment of efficacy and mechanism of action for drug products.

Those interested in further reading on this QTc topic may wish to consider [102, 1258],
and [1259].
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Clinical Pharmacology Efficacy Studies

Introduction
In the later years of my career in clinical pharmacology, I was transferred to a strategic

job on a committee which oversaw early clinical development of drugs in humans. A big
part of this job was managing the interactions of the biostatistics and data management
organization with a bunch of “data-happy” clinicians. This adjective data-happy refers to
medics who love to collect data and want someone to analyze it until, as they say, the data
pleads for mercy. Most often it is the statistician involved who ends up pleading for an
end to the analysis. Data seldom speaks for themselves; someone usually has to interpret
them. It is beneficial when working with such data-happy people to train them to perform
such exploratory statistical analyses themselves. Such an action tends to cure their state of
“data-happiness” quite effectively.

To clarify, clinical pharmacologists are paid, and in many cases earn their higher ed-
ucational degree, developing new markers of clinical activity. As with QTc (described in
Chapter 9), these take on the attributes of alphabet soup, in most cases, with the addition
of numbers where the pharmacologists run out of letters — for example, CRP, IL8, IL5,
LDL, VLDL, VLDL1, VLDL2, etc. Unlike statisticians, in general, they do not seem to
have thought to introduce Greek letters; instead they just add more letters and numbers. My
personal belief is that this is because the word-processing software packages they most use
make it difficult to use Greek letters....

In any event, the point of measuring such markers in humans, and describing their
behavior over time and relative to dose, is to detect the clinical effect of drugs on the body.
This obviously is of great potential benefit. If one can measure such activity in the body, and
if such activity is predictive of clinical outcomes (like stroke or myocardial infarction), then
one could, in theory, predict the efficacy of drugs early in drug development! Even if it is not
directly predictive, such knowledge should, in theory, allow one to improve understanding of
how a drug works. Such knowledge of method of action is hoped to be beneficial.

My data-happy clinicians were always excited about such endpoints, and often wondered
why I was not. They usually put it down to, “Statisticians are just not interested in the
science of such matters....” In truth, I was interested, but after many years in clinical
pharmacology, I had made a conscious decision not to get excited about (or too involved in)
such data-happy clinical things because:

1. There is a lot more involved in predicting clinical outcomes than just showing that
a marker is correlated to clinical outcome, and

2. One comes to realize that efficacy is all well and good, but safety comes first (and,
as we saw in Chapter 8, is an evolving topic).

If one cannot find a safe and well-tolerated dose range (which is what early phase devel-
opment is all about), then it really does not matter how efficacious the drug is. In my
experience, most drugs fail in drug development because one cannot achieve a dose that is
high enough such that the drug works without untoward side-effects, not because the drug
does not work.

All this said, evaluation of drug efficacy and method of action data is an important part
of clinical pharmacology, and this chapter will cover some methods for modelling the behavior

257



258 Bioequivalence and Statistics in Clinical Pharmacology, Second Edition

of such data. We first briefly review some topics related to nomenclature, assumptions, and
the statistics employed for this purpose.

10.1 Background

Traditional statisticians often fail to recognize the “learning” nature of clinical pharmacol-
ogy drug development. Some have suggested that this is due to the traditional techniques
inherent in how statistical science is taught at many universities. Students are taught by
rote to test pre-determined hypotheses using direct, confirmatory methods (like those em-
ployed in bioequivalence testing). Few assumptions about the data are made, and one in
essence achieves a positive or negative outcome.

Clinical pharmacology assessments of efficacy, however, focus on learning about a com-
pound and its properties in humans, not confirming that it has or does not have activity. In
the eyes of a drug developer, a compound may be presumed to have some level of efficacy
in humans. The effect may not be clinically relevant, but that is another separate issue to
be determined and studied later in drug development.

First, a drug developer should learn whether the compound does roughly what one ex-
pects in humans. This approach lends itself to indirect statistical assessment (see Bayesian
discussion in Chapter 5). In this chapter, we will use commonly applied traditional mod-
elling methods and supplement them with application of a basic Bayesian program to illus-
trate the use of such procedures.

As described in Chapter 2, in drug development, one should first define a safe and
well-tolerated dose range in normal healthy volunteers ([621, 1142]). Traditionally, ad hoc
assessment of drug activity occurs in Phase I sub-chronic dosing studies. One presumes
that dose and exposure have some relationship to outcome, and applies models to quantify
this expectation.

Lack of a quantified relationship in markers of human activity in Phase I is not unex-
pected. This can occur for many reasons, such as low sample size, lack of relevant markers
of pharmacodynamic activity in a normal healthy population, or lower exposures in nor-
mal healthy volunteers relative to that to be applied in patients with the disease to be
treated. As described in Chapter 8, cross-over designs (randomized or non-randomized) are
traditionally applied to enhance the information gained from such trials.

Once a safe and well-tolerated dose range has been defined in Phase I studies, a pilot
study is usually conducted with the new drug in a small group of patients (Phase IIa). This
study is sometimes referred to as providing Proof-of-Concept [1142] in that it is expected to
provide drug developers with some confidence in their notion that the drug will work. Again,
one presumes that dose and exposure have some relationship to pharmacologic markers
of drug activity (like blood pressure, for example), and models are applied to quantify
this relationship. Unless the disease state is markedly unstable over the length of dosing
(usually limited to a month in Phase IIa due to the toxicology coverage), randomized or
non-randomized cross-over designs are again the designs of choice in this setting, as they
provide better information ([1139, 1140]) to build the models under consideration. Sample
size is limited so that if the drug proves to be unsafe in the patient population, dosing and
the drug’s development can be halted in a timely fashion.

ICH [621] and FDA [372] guidance on the topic calls for parallel group trials to assess
such information in light of concerns with carry-over effects confounding the assessment of
treatment [652]. However, such a position is logically inconsistent from a drug developer’s
perspective. In Phase IIa, developers work on the assumption that the drug has some level
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of activity. Detection of a carry-over effect in a placebo-controlled cross-over trial would
constitute a positive finding, as the drug would have some pharmacodynamic activity to be
“carried over”!

The information desired at this stage of development is not confirmatory, and those
seeking a yes or no solution to questions relating to developing a drug (sometimes known as
a go or no-go decision in business) are likely to be disappointed. Limited scientific evidence
of clinical efficacy and understanding of method of action are generated. This information
serves to modify the level of confidence a sponsor has in the likely success of a compound,
hopefully (but not necessarily) in a positive manner. Often, due in part to the small sample
sizes in Phase IIa, many proof of concept studies are inconclusive in a traditional statistical
sense [625]. Expert judgment is usually called for in interpretation of the results.

In terms of statistics, one should establish a quantitative relationship between dose or
exposure with a pharmacologic effect using a model. Many assumptions are made. For
example:

1. That dose and exposure are related to the marker.

2. That the relationship between dose and exposure with the marker of interest can
be expressed in a mathematical model.

3. That markers of pharmacologic activity in patients substitute for assessments of
longer term clinical benefit.

4. That pharmacokinetics in plasma can predict the concentrations at the site of
pharmacodynamic action.

The model(s) to be explored need not be prespecified in such exploratory, learning trials.
One generally would choose to dose a limited number of patients (in the interest of their
safety) with a range of doses and placebo, measure the marker of pharmacodynamic activ-
ity, and apply models to the data in a systematic, parsimonious manner to quantify the
relationship of dose to the marker of interest with some degree of desired precision.

As with the study of pharmacokinetics, such models are developed over the course of
drug development to help with the dosing of subsequent larger numbers of patients. Of
interest is maintaining the exposure levels in a safe and well-tolerated range while achieving
exposure levels of drug sufficient to treat or cure the disease condition.

Clinical pharmacologists can (and some do) overestimate the value of such exploratory
data. These data are NOT confirmatory of efficacy in a regulatory, market-access sense
[621]. As discussed in Chapter 2, regulators in general presume that a drug is not efficacious
until shown otherwise. Such findings as those described above are interesting and aid
regulators in determining which dose is most appropriate for initiating and treating patients
([372, 466, 621]); however, a confirmatory trial is one in which the hypotheses to be tested are
stated in advance and intended to provide firm, conclusive evidence of safety and efficacy
[625] for a dose and dosing regimen [621]. The statistical procedures to test for success
or failure of the drug to provide benefit are prespecified [625], and a determination of a
positive (or negative) outcome is straightforward. Readers interested in more details about
the design and analysis of confirmatory clinical trials should see [434] and [211] for excellent
summaries.

The benefits of applying exploratory clinical pharmacology techniques are tangible [866,
1026], improving the information gained from drug development for drug labelling and
marketing while speeding study completion and subsequently (presumably) regulatory ap-
proval. Shortfalls of these procedures result from lack of education, validation, and analytic
tools and procedures for their application ([501, 980]). One key shortcoming, highlighted
in [1026], pertains to lack of knowledge of the predictive value of the pharmacodynamic
marker for clinical effect (in future studies), and we now turn to further discussions on the
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characterization of pharmacodynamic response prior to discussing the data, models, and
statistics used in such techniques.

As discussed in Chapter 2, “biomarkers” or biological markers are endpoints which are
“a physical sign or laboratory measurement that occurs in association with a pathological
process and that has a putative diagnostic and/or prognostic utility” ([82, 758]). This
essentially means that a biomarker is an endpoint we can measure in clinical pharmacology
trials (like those described in Phases I and IIa) and presumably has something to do with
the disease we are studying and are hoping will be impacted (for the better) by the drug
being developed.

In contrast, surrogate markers ([82, 758]) are a subset of the biomarkers that can serve
as a substitute [1219] for a clinically meaningful endpoint. These clinical endpoints (also
sometimes called outcomes) are a measure of how a patient with the disease to be treated
“feels, functions, or survives” [758]. Lesko and Atkinson [758] further subdivide the category
of clinical endpoints into

1. Ultimate outcome — a clinical endpoint such as survival, survival time, onset of
serious morbidity, or symptomatic response that captures the benefits and risks
of therapeutic intervention.

2. Intermediate endpoints — a clinical endpoint that is not the ultimate outcome
but is nonetheless of real clinical benefit.

Clinical pharmacology assessments of efficacy focus mainly on biomarker assessment
with some limited assessments of surrogate markers in relation to dose and concentration
in plasma. Where possible, the concentration of drug at the site of action may be probed.
Measurement of clinical endpoints usually requires lengthy studies and significant invest-
ment. Therefore, such studies are generally not undertaken in modern drug development
until sufficient confidence is generated by biomarker and surrogate marker data to reassure
sponsors that the investment is worth the risk. Clinical pharmacology studies therefore do
not provide direct assurance of safety and efficacy in clinical endpoints.

Establishing a biomarker as a surrogate marker is not a simple process. Temple [1219]
describes several criteria that must be assessed, studied, and validated before such can
occur:

1. Biological plausibility including (but not limited to) consistent, extensive, and
quantitative epidemiologic evidence, credible animal models, well-understood dis-
ease pathogenesis, drug mechanism of action, and surrogacy relatively late on the
biological path.

2. Success in clinical trials including (but not limited to) showing that the effect on
the surrogate has predicted outcomes with other drugs of the same pharmacologic
class and in several other classes of drug.

3. Risk benefit and public health considerations including (but not limited to) seri-
ous or life-threatening illness with no alternative therapies.

Few endpoints would be expected to fulfill such criteria for surrogacy [418], but one
thing that is very clear from the above criteria is that “A correlate does not a surrogate
make [418]”.

Some elements of defining a biomarker as a surrogate endpoint are statistical, and we
refer interested readers to Prentice’s classical work on the topic [1007] and an excellent
comprehensive summary [134].

For the purposes of further discussion in this chapter, we will assume that the drug of
interest has been shown to impact biomarkers in animal models and that there is reason
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to believe dosing with drug will translate into similar pharmacodynamic effects on rele-
vant human biomarkers. Further discussion will therefore focus on modelling of the drug,
concentration, and biomarker relationship. As in previous chapters, we will focus on the
application of commonly used techniques using clinical data from previous trials. We first
consider data generated in Phase I sub-chronic dosing studies followed by consideration of
data from patients in Phase IIa.

10.2 Sub-Chronic Dosing

The design of sub-chronic dosing studies is described in Chapter 8. In addition to the
safety assessments conducted during such trials, a plethora of data on pharmacodynamic
endpoints is sometime collected to elucidate the mechanism of action of the drug being stud-
ied. These data may consist of laboratory, gene expression, or protein expression endpoints,
for example.

All these pharmacodynamic data are presumably correlated with each other in one way
or another. Their interrelationship may be defined in a cascade manner, in that drug treat-
ment impacts one biological mechanism, which impacts another, which impacts another,
causing responses along the way. Responses may also result from parallel biological pro-
cessing of drug, in that drug treatment impacts multiple mechanisms of action in parallel,
e.g., one in the heart and one in the liver at roughly the same time perhaps. Several
techniques are available to assess whether treatment has an effect in such large datasets
([893, 898]), and we will utilize one commonly used technique (see Ch. 31 of [881]) in this
section to test for treatment effects over time in sub-chronic dosing trials using a dataset of
gene expression data before and after treatment with drug or with placebo.

See Table 10.1. Here subjects were randomly assigned to a regimen (placebo or drug
treatment), had their biomarker endpoints measured on day -3, and were then dosed for
14 days with the regimen to which they were assigned with another biomarker assessment
occurring on the last day of dosing (day 12).

This was a very simple sub-chronic dosing study, and looked at only one dose and
placebo. In general, more doses are included in such studies, allowing for more sophisticated
assessment of dose-response [621]. For this dataset, a simple model may be used to describe
the data:

Yijk = Γj + Υk + Ωjk + Σijk

where Yijk is the matrix (data arranged in columns by endpoint) of observations for the
endpoints of interest, Γj is a matrix which denotes day -3 or 12, Υk is placebo or drug treat-
ment, and Ωjk denotes day-by-regimen interaction, with Σijk denoting residual variability.
Here we are interested in the significance of the Ωjk, as this would signal that the regimens
are behaving differently across time in some manner for at least one endpoint.

The element of Ωjk (and the other matrices) are arranged to correspond to the endpoint
to which they relate. For example, for the data in Table 10.1,

Ωjk =
ωL11 ωL12 ωL21 ωL22

ωM11 ωM12 ωM21 ωM22

ωN11 ωN12 ωN21 ωN22

ωO11 ωO12 ωO21 ωO22

ωP11 ωP12 ωP21 ωP22
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TABLE 10.1
Example 10.2.1: Pharmacodynamic Biomarker Data from an Exploratory Sub-Chronic Dos-
ing Study

Subject Day Regimen L M N O P
102 -3 P 7.67 7.95 9.47 10.17 4.65
102 12 P 6.77 7.50 8.89 9.60 4.47
103 -3 D 7.60 7.69 9.60 9.41 5.04
103 12 D 7.33 7.91 9.39 9.39 5.11
104 -3 D 7.61 7.58 9.60 8.93 5.32
104 12 D 7.36 8.02 9.86 9.70 5.46
201 -3 P 6.00 7.24 8.56 8.99 3.87
201 12 P 6.66 7.52 8.88 9.60 4.38
202 -3 D 8.04 8.35 9.46 9.75 5.26
202 12 D 7.32 7.74 9.36 9.10 4.85
204 -3 D 6.83 7.53 8.75 8.82 4.67
204 12 D 6.79 7.54 8.75 8.74 4.84
205 -3 P 7.33 7.81 9.27 9.52 5.15
205 12 P 7.06 7.49 8.98 8.96 4.32
208 -3 P 7.36 7.71 9.29 9.81 5.23
208 12 P 7.43 7.86 9.48 9.32 5.23
209 -3 D 7.60 7.83 9.70 9.68 5.23
209 12 D 6.70 7.64 8.90 9.07 4.44
210 -3 D 6.76 7.69 8.86 9.05 5.12
210 12 D 6.65 7.66 8.61 9.32 4.91
211 -3 P 7.15 7.91 9.73 10.22 5.26
211 12 P 7.29 7.98 9.20 10.17 5.11
213 -3 P 6.76 7.82 9.41 9.44 5.03
213 12 P 7.50 7.95 9.37 9.38 5.18

P=Placebo; D=Dose of Drug for 14 Days

for endpoint L, M, N, O, and P in each row, respectively, where, for example, ωL11 denotes
the mean effect of treatment with drug on day -3 and ωL12 denotes the mean effect of
treatment with drug on day 12, and so on.

We are interested in testing the null hypothesis:

ωL11 = ωL12 = ωL21 = ωL22,

ωM11 = ωM12 = ωM21 = ωM22,

ωN11 = ωN12 = ωN21 = ωN22,

ωO11 = ωO12 = ωO21 = ωO22,

ωP11 = ωP12 = ωP21 = ωP22

versus the alternative that at least one of the ωjk differs from the others for at least one of
the endpoints.

Computation of estimates for the elements of the various matrices (like Ωjk) is a complex
topic beyond the scope of this book. See [893] and [898] for a description. SAS automatically
performs some of these calculations [1073] using a procedure similar to proc mixed known
as proc glm. Code to do so for this study is as follows.
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Sub-Chronic Exploratory Multivariate Data Analysis 10.2.1 — SAS proc glm Code:

proc glm data=my.sc1a;

class day regimen;

model L M N O P = day

regimen regimen*day;

MANOVA h=day regimen regimen*day;

run;

Here proc glm is called and directed to assess data from the permanent dataset my.sc1a
(available on the website accompanying this book). The class statement again specifies
the descriptive variables of the model, and the model statement specifies that endpoints L,
M, N, O, and P (a subset of those available, included here for simplicity) be modelled as a
function of day, regimen, and day-by-regimen interaction. The MANOVA statement specifies
that SAS should construct tests to assess whether the study days are different (pooling
across regimens), whether the regimens are different (pooling across study days), and (most
of interest) whether response to treatment is different between regimens over time, testing
the null hypothesis described above for these endpoints simultaneously.

Selected SAS outputs appear as follows:

Sub-Chronic Exploratory Multivariate Data Analysis 10.2.1 — Selected SAS proc glm

Output:
MANOVA Test Criteria and Exact F Statistics for

the Hypothesis of No Overall DAY*REGIMEN Effect

H = Type III SSCP Matrix for DAY*REGIMEN

E = Error SSCP Matrix

Statistic F Value Num DF Den DF Pr > F

Wilks’Lambda 0.94 5 16 0.4801

Based on the p-value for day-by-regimen interaction (p = 0.4801), there is very little
evidence to suggest that treatment with drug impacts the biomarkers considered here (end-
points L, M, N, O, and P) over the course of 14 days of treatment. This is not unexpected
in Phase I drug development, as described in the previous section. At worst, such data are
valuable in that they provide variability estimates for use in better sizing subsequent trials.
At best, one may see some evidence of treatment effects that would also aid in designing
more definitive trials later in drug development.

The downside of utilization of a multivariate statistical procedure as described above is
that it is known [881] to be less powerful (prone to false negatives) than univariate methods
(which we will now discuss). However, such an approach serves as a handy tool for rapid
assessment of whether there is value in extensive data mining of a large pharmacodynamic
dataset. It should be noted that such multivariate methods have been developed for use in
cross-over designs; however, they are not much utilized (e.g., [1269]).

Another way of examining such multivariate data is to use a univariate testing proce-
dure which accounts for multiple endpoints. Pairwise comparisons are constructed between
regimens (for example) for each endpoint. As is well known, Type I error becomes inflated
if and when one does not take into account the number of comparisons. To protect the
experiment-wise error rate, adjustment should be made.

A full discussion of this topic is beyond the scope of this book, and we advise those
considering such procedures to see the excellent summary in [273]. Such approaches to
adjust for multiple endpoints and comparisons are readily implemented in modern software,
and in this case, the SAS procedure proc multtest may be used as follows.
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Sub-Chronic Exploratory Multiple Testing Data Analysis 10.2.1 — SAS proc multtest

Code:
proc multtest data=my.sc1a

bootstrap nsample=10000;

by day;

class regimen;

test mean(L M N O P);

contrast "Regimen" 1 -1;

run;

Here the resampling approach of [1316] is applied by invoking bootstrap in the call
to proc multtest, specifying the number of bootstrap samples in the nsample. Selected
output is as follows.

Sub-Chronic Exploratory Multiple Testing Data Analysis 10.2.1 — Selected SAS proc

multtest Output from Day 12:

p-Values

Variable Contrast Raw Bootstrap

L Regimen 0.6451 0.9551

M Regimen 0.7793 0.9916

N Regimen 0.9741 0.9999

O Regimen 0.2101 0.4836

P Regimen 0.4991 0.8584

We see that the multiple testing approach yields findings of non-significance between
regimens similar to the multivariate approach described above. Used in tandem, these
approaches are useful for data mining and understanding large datasets. Trend tests have
been developed for such multivariate datasets to consider, for example, dose-response testing
[523].

For single (hopefully pre-specified in the protocol) endpoints, a more powerful approach,
a dose-response analysis, will now be discussed. Here, low density lipoprotein, LDL, was
measured (decreasing this surrogate marker results in clinical benefit [311]), before and
after sub-chronic treatment with a randomly assigned dose of drug or placebo in each
normal healthy volunteer subject. The objective of modelling in this case was to as-
sess whether there was evidence of a response to dose in this population (normal healthy
volunteers).

TABLE 10.2: Example 10.2.2: Dose, Pharmacokinetic, and Low
Density Lipoprotein Data from a Sub-Chronic Dosing Study

Baseline Post-TrtSubject Dose AUC Cmax
LDL LDL

56 0 0.00 0.000 2.18 2.22
63 0 0.00 0.000 3.53 4.47
67 0 0.00 0.000 2.85 3.01
73 0 0.00 0.000 1.37 1.74
74 0 0.00 0.000 2.71 2.26

AUC and Cmax assumed 0 if Dose was 0
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TABLE 10.2: Example 10.2.2: Dose, Pharmacokinetic, and Low
Density Lipoprotein Data from a Sub-Chronic Dosing Study
(continued)

Baseline Post-TrtSubject Dose AUC Cmax
LDL LDL

86 0 0.00 0.000 2.93 2.78
87 0 0.00 0.000 2.80 3.09
91 0 0.00 0.000 2.40 2.59
94 0 0.00 0.000 5.33 5.36
100 0 0.00 0.000 2.04 2.32
103 0 0.00 0.000 3.31 3.21
112 0 0.00 0.000 1.92 2.05
47 5 5.11 0.423 3.03 2.89
48 5 8.13 0.620 2.59 1.95
49 5 8.01 0.627 2.05 1.72
50 5 6.67 0.480 3.06 2.66
52 5 7.38 0.591 4.01 2.80
53 5 5.17 0.390 3.27 3.52
54 5 8.16 0.569 3.25 3.35
55 5 6.23 0.483 2.52 2.38
57 5 3.36 0.316 2.14 2.14
60 10 11.22 0.962 3.98 3.13
61 10 8.21 0.723 1.70 1.78
62 10 20.85 1.861 2.96 2.05
64 10 16.48 1.169 2.28 2.54
65 10 6.79 0.574 3.09 3.64
66 10 18.08 1.303 2.13 1.77
69 10 10.51 0.883 2.15 1.78
71 10 13.97 1.056 3.45 2.98
72 10 13.80 1.157 2.77 2.25
95 20 30.35 2.220 2.47 1.88
99 20 53.11 3.902 2.31 1.88
102 20 38.61 2.517 3.13 2.93
104 20 29.33 2.219 3.68 4.27
105 20 26.20 1.844 3.20 3.10
106 20 29.47 1.893 3.16 3.40
107 20 27.55 1.965 3.35 3.18
108 20 19.97 1.447 1.84 1.98
110 20 35.91 2.322 3.44 3.36

AUC and Cmax assumed 0 if Dose was 0

Previous experience indicated that LDL was log-normally distributed in normal healthy
volunteers, so, in a manner similar to pharmacokinetic analysis, this endpoint was log-
transformed for analysis following correction for baseline (in this case, simply by taking
the ratio of posttreatment LDL to baseline LDL). Only a limited response was expected in
normal healthy volunteers, and for the purposes of this example, a power model was utilized
of the form

yk = α+ β(ld) + εk
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where β is the slope parameter of interest regressed on logDose (parameter ld) for the log-
transformed ratio of posttreatment LDL to baseline LDL for each subject k. Note that we
do not have repeated measurements within a subject, so there is no term denoting each
subject as their own control or denoting the repeated measures. This is often the case in
Phase I designs, as such pharmacodynamic assessments are (relatively) expensive and are of
limited value due to the normal healthy population being studied and the expected portfolio
attrition rates.

In this case, the power model was selected for use, as normal healthy volunteers in
general do not have high LDL values, and therefore may be expected to show only a limited
response to treatment (if at all). To include the placebo data (null dose) in the power model,
the dose needs to be set to a value greater than 0 prior to log-transform such as 0.000001
using SAS statements such as those following in a data step (see also dose response.sas

on the website accompanying this book):

if dose=0 then dose=0.000001;

In general, one would build such a nonlinear dose-response model after first investigating
the fit of a linear dose-response model ([510, 881, 907, 1104]). In this case, the fit of a linear
model is poor and indicative of heterogeneous variance. We leave confirmation of this
point to the reader and encourage readers interested in more details of model building to
investigate the above references. SAS code for this analysis is

Sub-Chronic Dose Response Data Analysis 10.2.2 — SAS proc mixed Code:

title ’Log-Ratio Power Model’;run;

proc mixed data=sc2a;

class subject;

model ldlchg=lndose/s cl ddfm=kenwardroger

outp=out outpm=predmean;

run;

proc print noobs data=predmean;

where subject<10;

var dose alpha pred lower upper;

run;

Here the log-transformed ratio of posttreatment to baseline LDL is fitted versus logDose.
Residuals are output to an SAS dataset out for use in assessing model fit (not shown), and
predicted mean values are output to an SAS dataset predmean. To derive estimates of
dose-response, one includes “dummy” subjects (in this case, subjects 1 to 9 corresponding
to doses of 0 to 80 mg, see dose response.sas) with dosing information in the analysis
data, set but with no data on LDL response. As no LDL data are available for these
“dummy” subjects, they are not included in model fitting, but SAS provides estimates of
effect for these subjects in the predmean dataset. Selected SAS output is as follows.
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Sub-Chronic Dose Response Data Analysis 10.2.2 — Selected SAS proc mixed Output:

The Mixed Procedure

Solution for Fixed Effects

Effect Estimate Pr > |t|

Intercept -0.06567 0.0104

lndose -0.00854 0.0086

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

lndose 1 37 7.71 0.0086

DOSE Alpha Pred Lower Upper

0 0.05 0.05226 -0.03131 0.13584

5 0.05 -0.07941 -0.13290 -0.02592

10 0.05 -0.08533 -0.14109 -0.02957

20 0.05 -0.09125 -0.14951 -0.03299

30 0.05 -0.09471 -0.15453 -0.03489

40 0.05 -0.09716 -0.15813 -0.03620

60 0.05 -0.10062 -0.16326 -0.03799

80 0.05 -0.10308 -0.16693 -0.03923

In this case, we observed that LDL (adjusted for baseline) decreases with increasing
logDose (estimate of -0.00854 for β with p = 0.0086). The values Pred, Lower, and Upper

may be exponentiated to estimate dose-response in LDL (adjusted for baseline) on the
original scale, resulting in the findings of Table 10.3.

Here we observe that dosing in normal healthy volunteers resulted in decreases of 8 to
10% in LDL (adjusted for baseline). This is promising data (in terms of effect on a surrogate
marker in Phase I). However, overinterpretation of such data is not recommended. Data
from normal healthy volunteers can only predict clinical outcomes under carefully controlled
circumstances.

Here, these findings should increase confidence in the drug’s potential to be useful in
the clinic, but such data are not definitive (as patients with disease have not yet been
assessed). Pairwise testing between mean responses (for example, direct comparison of 5,
10, and 20 mg to placebo), as is often done in Phase II–III dose-response testing [712], is

TABLE 10.3
LDL Dose-Response (Ratio Relative to Baseline LDL) with 95% Confidence Intervals in
Sub-Chronic Dosing Study Example 10.2.2

Dose Estimated Effect 95% CI
0 1.05 0.97− 1.15
5 0.92 0.88− 0.97
10 0.92 0.87− 0.97
20 0.91 0.86− 0.97
40 0.91 0.85− 0.96
60 0.90 0.85− 0.96
80 0.90 0.85− 0.96
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not recommended here, as such analyses are typically misleading in trials of such limited
sample size.

Note that sample size selection is driven by safety considerations in such designs (see
Chapter 8).

Models such as the above may also be useful to provide a preliminary check for associa-
tion between pharmacokinetic and pharmacodynamic responses. In this case, steady state
AUC and Cmax did not appear to be related to baseline-adjusted LDL changes (p = 0.8026
and p = 0.6549 for logAUC and logCmax, respectively). Absence of a significant relation-
ship may not preclude that such an association exists [647]. As described previously, such
an observation may occur due to low sample size and may be related to not having a model
accounting for all relevant biologic information. In this particular case, for example, it was
thought that the drug worked in the liver such that plasma pharmacokinetics were not
predictive of concentrations at the site of action. Plasma concentrations in the liver may
be modelled by extending the findings of Chapter 11 to allow for another compartment.
As shown in Chapter 8, dose and AUC are to some extent confounded and their use in
a model simultaneously is therefore of questionable validity [1024], potentially leading to
model overspecification [907].

We now turn to modelling and interpretation of data in clinical pharmacology studies
of patient populations.

10.3 Phase IIa and the Proof of Concept

For purposes of illustration, assume that a proof-of-concept trial was desired to test whether
the LDL response in normal healthy volunteers described in the last section would result in
clinical benefit when given to patients. LDL was again to be used as a surrogate marker of
clinical benefit for the purposes of this trial.

Recall that about a 10% decrease in LDL was observed in normal healthy volunteers.
When dosing in patients, it might be expected that approximately twice this magnitude
would be observed, as

1. Patients with disease would be recruited with higher LDL (than the subjects in
Phase I), allowing more of an effect of drug to be observed,

2. Dosing in patients was planned to be of at least twice the duration of Phase I,
and

3. Animal efficacy data indicated that drug would be more effective than observed
in the Phase I sub-chronic dosing study.

The proof-of-concept Phase IIa trial was designed in a standard [625] pessimistic fashion
under the assumption (null hypothesis) that the drug would have no effect on LDL. The
alternative to be tested was that treatment with drug would result in a 20% decrease
(accounting for baseline) relative to placebo.

Patients with high LDL (who are not already taking some form of medication) are not
easy to find. This resulted in a lengthy trial duration to recruit only 15 patients in a 2× 2
cross-over design. LDL data from this trial may be found in Table 10.4. After a baseline
LDL assessment in each session, patients were dosed with a drug expected to lower LDL
level (or placebo) for 6 weeks.
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TABLE 10.4: Example 10.3.1: Low-Density Lipoprotein Data from
a Proof-of-Concept Study

Subject Sequence Per Reg Post-Trt Baseline Analysis
LDL LDL Endpoint

2472 PA 1 P 101 98 0.031
2472 PA 2 A 89 110 -0.212
2530 AP 1 A 140 159 -0.132
2530 AP 2 P 146 151 -0.034
2535 PA 1 P 100 86 0.150
2535 PA 2 A 106 82 0.257
2540 PA 1 P 163 135 0.182
2540 PA 2 A 139 143 -0.027
2544 PA 1 P 160 147 0.086
2544 PA 2 A 99 123 -0.220
2546 AP 1 A 85 103 -0.186
2546 AP 2 P 81 92 -0.126
2548 AP 1 A 106 115 -0.077
2548 AP 2 P 96 111 -0.139
2549 PA 1 P 125 142 -0.128
2549 PA 2 A 116 126 -0.083
2560 PA 1 P 155 178 -0.140
2560 PA 2 A 108 151 -0.331
2562 PA 1 P 104 124 -0.170
2562 PA 2 A 97 104 -0.077
2650 AP 1 A 128 139 -0.087
2650 AP 2 P 132 124 0.061
2659 PA 1 P 120 108 0.102
2659 PA 2 A 101 116 -0.143
2668 PA 1 P 151 128 0.167
2668 PA 2 A 128 163 -0.241
2712 AP 1 A 120 124 -0.032
2712 AP 2 P 108 139 -0.251
2755 PA 1 P 132 147 -0.111
2755 PA 2 A 132 151 -0.137

A=Drug Treatment; P=Placebo
Endpoint=Natural-log of Post-Trt LDL to Baseline LDL

The SAS code used to analyze the analysis endpoint of Table 10.4 is the same as that
used to analyze 2× 2 cross-over studies in Chapter 3 and is not reproduced here. Readers
interested in the code may find it on the website accompanying this book.

The findings (n = 15) indicated that treatment with the drug lowered LDL by only
approximately 7% relative to placebo (the effect size on the log-scale was -0.07177 with a
90% confidence interval of -0.1544 to 0.01090). As the upper bound of the 90% confidence
interval exceeded zero, the null hypothesis (that the drug does not significantly change LDL
relative to placebo) was not rejected. This would therefore be regarded as a “failed” study.
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However, the findings provide some useful information ([526, 697]):

1. The bulk of the confidence interval falls to the left of null; therefore, while we
cannot conclude that this dose of drug is effective, it suggests the potential for
increased doses of drug to provide significant benefit.

2. The maximum expected mean effect of this dose of drug is a 14% decrease in
LDL (corresponding to the exponentiated lower confidence limit) with the effect
size most likely falling around 7%. Such a small decrease might be desirable (and
clinically relevant) in some patient population.

Thus, while failing to reject the null hypotheses, the study has provided some degree of
useful information.

The above approach is a traditional one, and, should it be successful (as this example
was not), it clearly increases confidence that the drug will be efficacious even against a
pessimistic level of opinion concerning the drug’s merits. Such studies need not be designed
to provide such a yes-or-no answer, however. Moreover, planning a traditional hypothesis
testing approach, like that described here, requires a long time. One would probably wait
to analyze the data until the full (n = 15) complement of patients complete the study.

A Bayesian analysis (described in Chapter 5) provides a ready alternative to the tra-
ditional analysis described above. Here, we may take explicit account that an effect size
of approximately 10% is our expectation and express it as a prior distribution for delta

(the effect size of treatment with drug relative to placebo). WINBUGS code to perform a
Bayesian analysis is the same as that utilized for bioequivalence testing in Chapter 5.

With data from only eight patients, such a Bayesian analysis (see Table 10.5) provides
the following expectations regarding the effect size on the log-transformed scale and original
scale.

From this Bayesian analysis (based on the 90th percentile), we can conclude (with only
n = 8) that the drug has approximately a 90% probability of reducing LDL relative to
placebo. Conversely, there is a lesser chance (approximately 10%) that the drug treatment
is the same or worse than placebo. The effect size with this dose of drug is unlikely (less
than a 5% chance, based on the 5th percentile) to be greater than a 17% decrease and is
most unlikely (less than a 2.5% chance, based on the 2.5th percentile) to reach the desired
decrease level of 20% in posttreatment LDL relative to placebo.

If one looks closely, this is about the same amount of information one could glean from
the traditional analysis and design described above, except that this Bayesian analysis ap-
proach, if used, only takes half as many patients and half the time as the original study.
Bayesian design and analysis plans such as these can be very useful tools to increase a spon-
sor’s confidence in the properties of a compound without requiring long resource-intensive

TABLE 10.5
LDL Effect Size (Ratio Relative to Baseline LDL) from a Bayesian Statistical Analysis of a
Proof-of-Concept Study Example 10.3.1 (n = 8)

Trt:Pbo 2.5 PTL 5 PTL Median 90 PTL 97.5 PTL
Baseline

Adj
Effect Size

ln-Scale -0.2141 -0.1878 -0.07697 0.006284 0.05994
Original-Scale 0.8073 0.8288 0.9259 1.006 1.062

PTL=Percentile of the Bayesian Posterior Distribution
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studies. Such an approach is useful for internal decision making; however, use in a regula-
tory setting when wishing to make a claim about the properties of a drug (for the reasons
discussed in Chapter 2) is of questionable validity.

An unstated reason why one often does not utilize such an approach to design and
analysis is the wish to publish data from such studies. Akin to the approach to data
interpretation taken by regulators, most scientific journals would question the application
of such a Bayesian approach closely, as such techniques are only now becoming widely used
and have been the matter of some historical debate. A group-sequential approach (described
in Chapter 5) may be used if a journal-acceptable approach is desired. Here, interested
readers will observe that such a group-sequential approach provides approximately the same
information as the Bayesian analysis.

We now turn to consideration of extensions of dose-response modelling involving
pharmacokinetic-pharmacodynamic modelling [1143]. With the publication of [621] and
[372], applications of such techniques are becoming more frequent in drug development.
Typically, what is done is to develop a nonlinear mixed effect models [790] for pharmacoki-
netics in an effect compartment ([1143], a hypothesized part of the body where pharmaco-
dynamic effect is thought to be induced by drug treatment) and then relate that to a model
of pharmacodynamic activity using a statistical model [828].

Specialized software is generally needed for such an activity. Several packages are de-
scribed in [1170]. See also [1048] for a review of some data comparisons between available
software packages. For the purposes of illustrating the principles involved, we will make use
of a dataset involving dose, pharmacokinetics, and some data on QTc using SAS from a
longitudinal, repeated-measures proof-of-concept study. Other software programs may also
be used to model this data (e.g., SPLUS, PKBUGS, NONMEM, NONLINMIX), and we
invite interested readers to make use of the data available on the website accompanying this
book to do so.

The data used in the following examples for PK-PD modelling are quite extensive.
Measurement of QTc was taken over a period of eight days to assess the properties of the
compound under study (utilizing doses up to 120 mg) with pharmacokinetic assessment to
measure plasma concentration taken at regular intervals. See Tables 10.6 and 10.7. The
full data sets may be found on the website accompanying this book.

TABLE 10.6: Example 10.3.2: QTc Data from One Subject in a
Proof-of-Concept Study

Subject Dose(mg) Day Time(h) QTc(msec)

1 80 1 0 393
1 80 1 0.5 394
1 80 1 1 399
1 80 1 1.5 400
1 80 1 2 416
1 80 1 3 418
1 80 1 4 396
1 80 1 6 402
1 80 1 8 405
1 80 1 10 393
1 80 1 12 390
1 80 1 18 388
1 80 2 0 406
1 80 2 3 413
1 80 2 12 386
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TABLE 10.6: Example 10.3.2: QTc Data from One Subject in a
Proof-of-Concept Study (continued)

Subject Dose(mg) Day Time(h) QTc(msec)
1 80 2 15 421
1 80 3 0 421
1 80 3 3 425
1 80 3 12 394
1 80 3 15 420
1 80 4 0 427
1 80 4 3 430
1 80 4 12 384
1 80 4 15 417
1 80 5 0 425
1 80 5 3 435
1 80 5 12 398
1 80 5 15 415
1 80 6 0 409
1 80 6 3 434
1 80 6 12 388
1 80 6 15 418
1 80 7 0 420
1 80 7 3 409
1 80 7 12 398
1 80 7 15 410
1 80 8 0 407
1 80 8 0.5 411
1 80 8 1 432
1 80 8 1.5 443
1 80 8 2 455
1 80 8 3 460
1 80 8 4 428
1 80 8 6 419
1 80 8 8 382
1 80 8 10 404
1 80 8 12 388
1 80 8 18 384
1 80 8 24 409
1 80 8 36 384
1 80 8 48 388

TABLE 10.7: Example 10.3.2: Plasma Pharmacokinetic-
Pharmacodynamic Data from One Subject in a Proof-of-Concept
Study

Subject Day Time(h) QTc(msec) Conc.(ng/mL)

1 1 0 393 .
1 1 0.5 394 .
1 1 1 399 8.15
1 1 1.5 400 7.89
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TABLE 10.7: Example 10.3.2: Plasma Pharmacokinetic-
Pharmacodynamic Data from One Subject in a Proof-of-Concept
Study (continued)

Subject Day Time(h) QTc(msec) Conc.(ng/mL)
1 1 2 416 7.56
1 1 3 418 5.43
1 1 4 396 3.58
1 1 6 402 .
1 1 8 405 .
1 1 10 393 .
1 1 12 390 .
1 1 18 388 .
1 1 24 . .
1 8 0 407 2.53
1 8 0.5 411 5.26
1 8 1 432 13.9
1 8 1.5 443 14.72
1 8 2 455 17.12
1 8 3 460 12.81
1 8 4 428 9.39
1 8 6 419 5.83
1 8 8 382 3.09
1 8 10 404 .
1 8 12 388 .
1 8 18 384 .
1 8 24 409 .
1 8 36 384 .
1 8 48 388 .

We will first build a dose-response model for these data and then will supplement it
with a discussion of how to build a PK-PD model for the data to illustrate the concepts
involved.

The data in Table 10.6 are consistent with repeated-measures data. As such, it can be
modelled simply using a model of the form

yijk = α+ φj + τk + (interactions) + β1(dose) + εijk,

where α is the common intercept, φj adjusts for study day j, τk adjusts for each time k,
β1 denotes the slope of dose-response. The terms of the error term εijk are constructed
recognizing that QTc responses (yijk) are correlated across time within each day for each
subject (i). The interactions (not described here) are combinations of the dose, day, and
time information to study whether response to a dose of the drug is dependent on the day
and time of sampling. In SAS such a model can be implemented in proc mixed as
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Dose-Response Repeated Measures Data Analysis of Example 10.3.2 — SAS proc mixed

Code:
proc mixed data=my.poc2 method=reml;

class subject day time;

model qtc=dose day time

day*time dose*day dose*time

/DDFM=KENWARDROGER outp=out;

repeated time/type=AR(1) subject=subject*day;

lsmeans day*time/at dose=0 CL ALPHA=0.1;

lsmeans day*time/at dose=25 CL ALPHA=0.1;

lsmeans day*time/at dose=80 CL ALPHA=0.1;

lsmeans day*time/at dose=120 CL ALPHA=0.1;

lsmeans day*time/at dose=200 CL ALPHA=0.1;

ods output LSMeans=my.lsmeans;

run;

This model indicates (outputs not shown) that a significant, linear dose-response rela-
tionship was observed for QTc (p < 0.0001) and that the response changed over the course
of eight days (p < 0.0001) and over times of ECG sampling (p < 0.0001). The lsmeans

statements output the expected responses at various doses to a dataset called my.lsmeans

for further assessment, and the dataset out may be used to assess model fit, as described
in previous chapters. Here the model fit as assessed by residuals appeared adequate, and
Table 10.8 gives the expected responses on placebo (dose of 0 mg) on day 1 and day 8, for
example.

TABLE 10.8: QTc Response on Placebo on Days 1 and 8 in a Proof-
of-Concept Study from Modelling of Dose-QTc Data in Example
10.3.2

Day Time(h) Dose Mean QTc 95% CI

1 0 0 398 (390,405)
1 0.5 0 396 (388,405)
1 1 0 392 (384,400)
1 1.5 0 398 (390,406)
1 2 0 397 (389,405)
1 3 0 400 (392,407)
1 4 0 398 (390,406)
1 6 0 395 (387,403)
1 8 0 399 (391,407)
1 10 0 398 (390,407)
1 12 0 401 (394,409)
1 18 0 409 (401,418)
8 0 0 394 (386,402)
8 0.5 0 391 (382,399)
8 1 0 398 (389,406)
8 1.5 0 398 (390,406)
8 2 0 396 (388,405)
8 3 0 395 (388,403)
8 4 0 394 (386,402)
8 6 0 392 (383,400)
8 8 0 386 (378,395)
8 10 0 390 (381,398)
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TABLE 10.8: QTc Response on Placebo on Days 1 and 8 in a Proof-
of-Concept Study from Modelling of Dose-QTc Data in Example
10.3.2 (continued)

Day Time(h) Dose Mean QTc 95% CI
8 12 0 392 (384,400)
8 18 0 394 (385,402)
8 24 0 391 (382,400)
8 36 0 389 (380,398)
8 48 0 393 (384,403)

In addition to confirming that a dose-response is evident, providing overall positive
evidence of efficacy for the compound [621] (though we do not yet know which dose is
best in terms of safety), the model’s findings in terms of response on placebo are very
important. These will figure prominently as we develop models for concentration to QTc
response relationships. For the purposes of this example, we neglect the development of a
pharmacokinetic compartment model. Readers interested in doing so should see Chapter
11 for more details. In this example, plasma concentration is therefore assumed to be the
effect compartment where pharmacodynamic effect is caused by drug action.

The first step taken in modelling such data (see Chapter 4 of [108]) is to assess whether
a linear relationship exists between concentration and response. This can easily be ac-
commodated using the above SAS code (replacing dose with concentration). Eliminating
nonsignificant terms, we use the following SAS model to examine the relationship of con-
centration to QTc where the term pt denotes subject and the term pkp c is concentration.

Concentration Response Repeated Measures Data Analysis — SAS proc mixed Code:

proc mixed data=poc2pkpd method=reml;

class pt_ day time;

model qtc=pkp_c time

/DDFM=KENWARDROGER outp=out S;

repeated time/type=AR(1) subject=pt_*day;

run;

Model fit may again be examined using the dataset out and was observed to be adequate
(not shown). Concentration was a significant (p < 0.0001) linear predictor of QTc with a
slope of 0.38. This indicates that, as drug concentration in blood increases, so too does
QTc.

If the fit was not adequate, any number of other potential nonlinear models may be
fitted [907]. However, by far the favorite model used in PK-PD research is the Emax model
(named for one of the parameters used in the model). Boxtel et al. [108] described these
models in great detail, and we shall dwell only on simple examination of Day 8 QTc and
concentration data using such a model. Interested readers may apply other models using
the data on the website and may find Chapter 15 of [108] helpful for additional background
materials on PK-PD modelling in cardiac repolarization.

The Emax model is described as [108]

E =
Emax(C)

EC50 + C
+ E0,

where E is the effect being modelled, E0 is the effect observed without any drug present, C
is the concentration of drug in the effect compartment, EC50 is the concentration needed



276 Bioequivalence and Statistics in Clinical Pharmacology, Second Edition

to cause a 50% response, and Emax is the maximum effect that can occur with drug
treatment. This is a nonlinear (in concentration) additive model. If concentration is not
related to effect, Emax and EC50 would be zero.

Here, we are interested in assessing the following model:

QTcij(Effect) =
Emaxi ∗ C
EC50i + C

+ E0 + εij

on Day 8, where the subscript i denotes subject, j denotes time, and εij is the usual term
for residual error. Such a model is easily implemented in proc nlmixed in SAS as

Emax Concentration Response Data Analysis Example 10.3.2 — SAS proc nlmixed

Code:
proc nlmixed data=pkpd2;

parms beta1=4.6 beta2=5.57 s2b1=1

s2b2=1 s2=400;

emax = exp(beta1+b1);

ec50 = exp(beta2+b2);

pred=((emax*pkp_c)/(pkp_c+ec50))+e0;

model qtc ~ normal(pred,s2);

random b1 b2 ~ normal([0,0],[s2b1,0,

s2b2]) subject=pt_;

predict pred out=pred;

run;

*Model fit assessment;

data pred;set pred;

st_resid=(qtc-Pred)/StdErrPred;

run;

proc rank data=pred normal=blom out=nscore;

var st_resid;

ranks nscore;

data nscore;

set nscore;

label nscore="Normal Score";

label stres="Residual";

label pred="Predicted Value";

run;

proc plot vpercent=50 data=nscore;

plot st_resid*pred/vref=0;

plot st_resid*nscore;

run;

Here proc nlmixed is called and applied to a dataset denoted as pkpd2 where the
placebo modelling results of the dose-response model (Table 10.8) have been used to describe
E0. In general, it is more desirable for each subject to provide such an assessment so that
more informative models may be fitted [1139], but that is obviously not possible with this
data as subjects were not crossed over to Placebo. Starting values must be specified for
the parameters of interest (beta1 and beta2, their variances, and the residual variance).
As both Emax and EC50 must be positive, the exponential function is used to allow their
estimated values to be such and to accommodate subject-specific adjustment, as appropriate
to the data, for each parameter. The predicted values pred are output for assessment of
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model fit using residual plots using the above code (results not shown), which appeared
adequate.

The model indicated that both Emax (p < 0.0001) and EC50 (p < 0.0001) were im-
portant in describing the QTc response. The estimates of Emax and EC50 were 86.8 msec
(95% CI of 74.7–101) and 26.7 ng/mL (95% CI of 12.6–56.2), respectively.

One should be careful with the interpretation of such a model in early phase trials. If
we assume a basal QTc of approximately 400 msec in keeping with Table 10.8, one might
be tempted to interpret this model as indicative that the maximum prolongation in QTc
possible with this drug would be approximately 500 msec by looking at the magnitude of
the upper bound of Emax. However, Emax is in this case design dependent. Dosing was
terminated at the 120 mg dose in this study, as prolongation was approaching a QTc of
500 msec (known, see Chapter 9, to be a level associated with a potentially fatal cardiac
arrythmia). Note that the linear model predicts no such plateau in effect. Models such as
these should be interpreted in tandem and developed further as drug development progresses
from Phase II to file and beyond.

Proof-of-concept, in spite of deficiencies in application in a business setting, is a “living”
topic, and new approaches become available regularly. Those interest in more information
may find [826] and [122] of interest for further research.
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Population Pharmacokinetics

Introduction
I was sitting in my office one day minding my own business (i.e., staring out the window)

when I received a call from one of our clinical research scientists. I refer to it as resting one’s
eyes — staring out the window, that is. After staring at statistical outputs of a computer
screen all day, it is good to dwell on distance for just a moment or two — if for no other
reason than to keep your eyes from going bad.

If anyone gives you a hard time about it, hand them a stack of statistical outputs needing
sorting out, review, and interpretation, and ask them to come back to you in two to three
hours if they still really have a problem with it. They will not likely come back, and it is
possible you will never see them again.

The scientist had received a message from one of our company’s offices in the Far East
(South Korea), requesting assistance with a statistical issue. It related to one of our key
drug projects and was, to paraphrase, “How does one go about statistically analyzing phar-
macokinetic data? We just did a study and do not know what to do with the data.”

I was tempted to tell her I did not know either (and to call someone else), but I knew
I could not get away with that.... It was my drug project; I did know how to analyze
pharmacokinetic data, and even if I referred her to someone else in the company, eventually
the question would make its way back to me. I was the one with the Western pharmacokinetic
data to which they would wish (even though they did not know it yet) to compare these new
data. I must admit I was tempted, though.

What started off as a seeming annoyance turned into a very interesting project as we
began looking at the data that had been generated in South Korea, and we will discuss the
statistical assessment of population pharmacokinetics at some length in this chapter. This
information is generally used on the label of new drug products to ensure they are used safely
and effectively in different populations. Some aspects also may impact regulatory approval
of drugs.

11.1 Population and Pharmacokinetics

Beginning in the latter half of the 20th century (as computational tools became available
to support its development), the study of extent and rate of exposure began and has since
become the norm in drug development. This study is targeted toward achieving an under-
standing of the differences in the way disease-bearing patients’ bodies handle a drug once a
dose is taken. It is hoped that this understanding will aid in the determination and control
of safe and effective dosage regimens. Most pharmacokinetic methods applied in pharma-
ceutical development are non-compartmental (see Chapter 2) in that the concentration of
drug in plasma or blood over time is expressed as a summary measure (e.g., AUC or Cmax).

The model-based study of population pharmacokinetics is, however, a relatively recent
innovation in drug development and is more of an art than a science at this time. Such
techniques apply models to describe the population-specific behavior of concentration in
plasma or blood as a function of dose over time. The relationship of concentration to
population-specific factors is observational.

279
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Dose is varied among populations, and the resulting pharmacokinetic measurements are
quantified using models. Except in selected studies (discussed later in this chapter for the
purposes of model validation), control of population-specific factors is not all that robust.
Such studies are designed for other purposes (e.g., safety evaluation), and pharmacokinetic
data are collected in case this can help explain any findings of concern (or benefit). While
the dose is controlled, and can therefore be considered to affect or cause study outcomes,
population and demographic factors are not as robustly controlled and can be termed to
be associated with or related to study outcomes, not a direct cause. The purpose of this
chapter is to describe procedures used to study this association between population and
pharmacokinetics.

We will not review this topic in great detail and refer interested readers to summaries of
this topic in [30], [95], [365], and [828]. Instead we will utilize the pharmacokinetic concen-
tration data from Section 8.3 to review concepts in population pharmacokinetic modelling
to enable an understanding of the statistical issues involved in this topic of drug develop-
ment. We will continue to use the first-order compartmental model introduced in Section
8.3, as its properties lend themselves to transparent interpretation. More complex models,
however, are likely to improve model fit, and we encourage interested readers to examine
conc.sas7bdat (found on the website accompanying this book) to do so.

Statistically, the study of population pharmacokinetics may be viewed as a modelling
exercise. Pharmacostatistical modelling follows several stages in this setting:

1. Model building based on the rich concentration data obtained from limited num-
bers of subjects in Phase I,

2. Statistical and practical model assessment,

3. Model application as sparse concentration data are obtained in large numbers
of patients in Phases II and III,

4. Utilization of model estimates for labelling purposes.

We will briefly review the building and statistical assessment of an example model as
illustrated in Section 8.3. Recall the concentration data for Subject 47 presented in Table
8.11 (Section 8.3). These data (and data from the other 26 subjects in conc.sas7bdat)
were used to develop a pharmacostatistical model to describe the concentration versus time
profile (see Figure 8.4 and Table 8.12). Readers will recall that model diagnostics revealed
that concentrations appeared to be underestimated at low and high concentrations in this
model. We now examine the practical implications of this in more detail.

From the first-order model, it is easy to derive model-based estimates for Tmax, Cmax,
and AUC with accompanying confidence intervals and to compare them to the non-
compartmental estimates derived using the standard techniques described in Chapter 2.
SAS code for doing so in this model may be found below. Details of the derivations may be
found in the Technical Appendix to this chapter. For the purposes of this example, we will
examine how the model-estimated AUC differs from the non-compartmental-derived AUC.
Similar procedures may be used to examine Cmax, and we encourage interested readers
to use the code found on the website accompanying this book to do so. Intuitively, if the
model is accurate, the estimates of AUC and Cmax from the model should approximate
those found using non-compartmental methods of derivation.

The SAS code below utilizes the model of Section 8.3 to derive estimates of AUC. The
code then outputs these AUC values (with confidence intervals) and compares them to
the non-compartmental-derived AUCs (see Table 11.1). It was found that the estimated
AUCs from the model were approximately 20% lower than those derived using the non-
compartmental analysis (based on the findings for the ratio of non-compartmental AUC to
model-based AUC).
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Derivation of Tmax, Cmax, and AUC from Nonlinear Mixed Effect Pharmacokinetic Data
Analysis of conc.sas7bdat — SAS proc nlmixed Code:

proc nlmixed data=my.conc;

parms beta1=0.4 beta2=1.5 beta3=-2 s2b1=0.04

s2b2=0.02 s2b3=0.01 s2=0.25;

cl = exp(beta1+b1);

ka = exp(beta2+b2);

ke = exp(beta3+b3);

auc=dose/cl;

tmax=(log(ka)-log(ke))/(ka-ke);

pred=dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/

(cl*(ka-ke));

cmax=dose*ke*ka*(exp(-ke*tmax)-exp(-ka*tmax))/

(cl*(ka-ke));

model conc ~ normal(pred,s2);

random b1 b2 b3 ~ normal([0,0,0],[s2b1,0,

s2b2,0,0,s2b3]) subject=subject;

predict auc out=auc;

predict cmax out=cmax;

predict tmax out=tmax;

run;

The explanation for this discrepancy in estimates, in this manufactured example, is as
follows. Interested readers will recall that in theory (see Section 8.3)

AUC =
F (Dose)

Cl
,

where F denotes the ratio of absolute bioavailability. No basis for the derivation of this
F is present in this dataset (as no intravenous route of administration was included in
the study). In science, such “fudge factors” are often employed while learning about the
science to account for differences in model estimates to actual observations (e.g., Einstein’s
cosmological constant [133]), and we will utilize this procedure here for the purposes of
illustration. In practice, input from a pharmacokineticist should be sought to determine
what procedure for adjustment should be used or if another model should be built and
assessed. For the purpose of illustration, we adjust the model-estimated AUC by a factor
of 1.2 using the following SAS code accordingly:

auc=1.2*dose/cl;.

Based on the model parameters and our rough estimate for F , we now have a model-
based means of constructing accurate AUC estimates from concentration data (for illustra-
tion purposes). Subsequent Phase I studies collect more concentration data to enhance the
understanding of the model, and at the end of Phase I, a more robust model should have
been developed relating clearance (etc.) and dose to AUC and Cmax. It should be expected
that the building of a model and statistical and practical assessment of its properties is an
iterative and collegial process. Such models are built by statisticians and pharmacokineti-
cists in consultation with disease area experts and their medical colleagues. Those building
and assessing such models should bear in mind George Box’s statement “All models are
wrong, but some are useful” [107]. The idea is to build and assess a parsimonious model
describing the data adequately. Adequacy of model fit and performance is to some extent
subjective.
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TABLE 11.1
Estimated AUC Parameters from conc.sas7bdat

Subject Dose Model Model Non-Comp Model Diff. Ratio
AUC Low B. AUC Upper B.

47 5 3.24 2.29 2.81 4.18 0.43 0.87
48 5 4.36 3.24 6.31 5.48 -1.95 1.45
49 5 4.80 3.59 7.26 6.00 -2.46 1.51
50 5 3.51 2.54 3.60 4.48 -0.09 1.03
52 5 4.23 3.10 6.82 5.37 -2.59 1.61
53 5 2.85 1.96 1.76 3.75 1.09 0.62
54 5 4.83 3.62 6.11 6.05 -1.28 1.26
55 5 3.93 2.87 6.09 5.00 -2.16 1.55
57 5 3.24 2.30 2.10 4.18 1.14 0.65
60 10 7.63 6.16 9.33 9.11 -1.70 1.22
61 10 6.45 5.12 7.31 7.78 -0.86 1.13
62 10 7.16 5.71 9.57 8.60 -2.41 1.34
64 10 8.45 6.83 15.62 10.07 -7.17 1.85
65 10 5.58 4.25 5.56 6.91 0.02 1.00
66 10 6.34 4.90 11.81 7.78 -5.47 1.86
69 10 7.36 5.93 7.23 8.80 0.13 0.98
71 10 6.68 5.30 8.35 8.07 -1.67 1.25
72 10 6.02 4.74 5.70 7.31 0.32 0.95
95 20 13.65 11.44 12.92 15.86 0.73 0.95
99 20 19.56 16.45 26.05 22.67 -6.49 1.33
102 20 18.32 15.60 23.12 21.05 -4.80 1.26
104 20 11.91 9.94 12.32 13.87 -0.41 1.03
105 20 13.16 11.05 16.35 15.27 -3.19 1.24
106 20 15.43 13.03 20.21 17.83 -4.78 1.31
107 20 11.12 9.19 13.53 13.05 -2.41 1.22
108 20 9.53 7.64 7.70 11.42 1.83 0.81
110 20 12.22 10.19 14.22 14.25 -2.00 1.16

Turning now from these topics, we consider the application of a model to emerging
clinical pharmacokinetic data obtained in Phase II and III patient studies. Such data are
generally more sparse than Phase I data (in that a full pharmacokinetic profile sufficient
for estimation of AUC and Cmax is not obtained); however, these sparse collections are
generally obtained in a far larger number of patients than were exposed to the drug in
Phase I. Selected data for three subjects may be found in Table 11.2. The full simulated
dataset may be found in simulate.sas7bdat on the website accompanying this book.

These data are concentrations from 3 of 100 simulated patients. Note that the number
of concentrations obtained is limited relative to the normal healthy volunteer data (Ta-
ble 8.11). Using the model developed in Phase I, we use the above SAS code to derive
parameter and AUC estimates for each subject. The same code as above is used except
that the starting values are based on the findings from the Phase I model in Table 8.12
using a PARMS statement of: parms beta1=0.35 beta2=1.46 beta3=-2.47 s2b1=0.04

s2b2=0.03 s2b3=0.007 s2=0.01;

Code for this purpose may be found in poppk.sas on the website accompanying this
book. Model diagnostics may be applied (although not done for the purposes of this ex-
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TABLE 11.2
Selected Sparse Concentration Data from Patient Studies

Subject Dose Time Concentration
1 5 1 0.21
1 5 3 0.18
1 5 6 0.13
1 5 14 0.05
40 10 1 1.10
40 10 3 0.95
40 10 6 0.74
40 10 14 0.38
90 20 2 0.79
90 20 5 0.62
90 20 8 0.48
90 20 18 0.20

ample), and if model fit is poor, alternative models may be built and assessed. Parameter
estimates may be found in Table 11.3 (note slight differences from the Phase I estimated
parameters in Table 8.12), and resulting AUC estimates for selected patients may be found
in Table 11.4.

As shown in Table 11.4, the estimates of AUC (and the other parameters) have un-
certainty (error) associated with their estimation. In SAS, a Bayesian algorithm [1073]
is applied to characterize this uncertainty. In theory, the bootstrap may also be applied
(in addition to its use as a model diagnostic to assess model performance) to provide an
estimate for the uncertainty of the estimate.

We turn now to the utilization of these estimates from the model. The first goal is to
use the estimated AUCs to confirm their position relative to the NOAEL in this population.
The estimated AUCs are plotted against dose in Figure 11.1 and are well below the NOAEL
(not plotted).

Similar procedures may be done for the estimated Cmax, and we leave this as an exercise
for interested readers.

The second goal of population pharmacokinetic analysis is to assess the estimated pa-
rameters (in this case we will use clearance) relative to factors which may influence their

TABLE 11.3
Estimated Population PK Parameters from Sparse Population Data

Parameter Estimate 95% CI
β1 0.45 0.39,0.52
β2 1.47 1.11,1.83
β3 -2.44 -2.48,-2.39

s2b1 0.10 0.08,0.11
s2b2 0 . . .
s2b3 0.03 0.02,0.04
s2 0.0003 0.0002,0.0004
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TABLE 11.4
Selected Estimates for AUC from Sparse Concentration Data Obtained in Patient Studies

Subject Dose AUC 95% CI
1 5 3.00 2.37,3.63
40 10 17.10 16.03,18.17
90 20 13.09 12.17,14.01

magnitude. Examples include dose and demographic factors such as age, gender, weight,
body mass index, ethnicity, and creatinine clearance (a measure of renal function). Basic
statistical tools are often used to enable assessment of whether changes in these factors in-
fluence the magnitude of the estimated population pharmacokinetic parameters; see Figure
11.2.

Figure 11.2 is a plot of the estimated clearance (from the model) versus dose expressed
using a standard descriptive statistical procedure known as a boxplot. The box encloses
the 75th and 25th percentiles of the observed data, and the line in the box is the median
of the observed data. The upper and lower lines extend to the 90th and 10th percentiles,
respectively, with data outside these indicated using points so their status as outliers can
be assessed.

In Figure 11.2, we observe that clearance appears related to dose. This relationship may
be further quantified by regressing the estimated clearance on dose to assess whether the
relationship is linear or nonlinear. Multiple linear regression may be performed to assess
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FIGURE 11.1
Estimated AUCs versus Dose from a Simulated Population Pharmacokinetic Study
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FIGURE 11.2
Boxplot of Estimated Clearance versus Dose from a Simulated Population Pharmacokinetic
Study

the simultaneous relationship of other (i.e., demographic) factors [907]. We will not dwell
further on such assessments here and refer interested readers to discussion in Chapter 11 of
[95] for more details.

Such model-based population pharmacokinetic assessments are used to guide dosing in
patients where well-controlled clinical designs are not possible (e.g., [378]) due to ethical
or practical constraints. Additionally, this information will be used in labelling for the
drug product [365] to ensure dosing of patients in the marketplace is appropriate to their
demography and concurrent-disease states.

Exposure levels above the NOAEL or exposure levels related to a demographic factor
which may be impacted by a concurrent-disease state may be the subject of specific clini-
cal pharmacology studies to assess the relationship of exposure to disease or demography.
Following a brief discussion of the determination and estimation of absolute bioavailability,
we turn to several examples of such studies.

11.2 Absolute and Relative Bioavailability

As described in Chapter 1, when a drug is taken orally, it is absorbed and distributed into
the body, metabolized at various sites within the body, and eventually eliminated from
systemic circulation. This process is termed ADME, and the availability of drug at the site
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of action within the body is presumably mediated by the rates at which the various facets
of ADME are performed by the body.

Consider, however, a drug that is injected or administered intravenously. Once admin-
istered, the drug is distributed to the systemic circulation from the site of entry and does
not undergo first-pass metabolism. As the injected drug product circulates throughout
the body, it is metabolized and eliminated. Equation (11.1) in the Technical Appendix is
appropriate for such a product. This is termed 100% bioavailable, as an injected product
by definition reaches the circulation intact at the time of dosing. Most oral products have
different levels of bioavailability, as some drugs pass straight through the intestinal tract
and are eliminated, and some drugs (like the example of the previous section) can be very
rapidly absorbed in the intestinal tract. To account for this in equations like (11.1), param-
eters such as F can be introduced to account for the differential mode of administration
(Chapter 8, [95]).

Description of absorption pharmacokinetics is a lengthy topic, and we will not discuss
all aspects of its assessment. Instead, we will discuss a commonly used method to assess
absolute bioavailability F using data from a cross-over clinical pharmacology trial. Such a
trial need not always be performed in drug development. In certain circumstances, F can
be determined by other means (see Chapter 8, [95]).

Absolute bioavailability F is a measure of the percentage of drug absorbed after oral
administration relative to that in the body after administration by an intravenous route
(hereafter denoted IV). This parameter F can be estimated by giving an IV dose and an
oral dose of drug in a cross-over study to normal healthy volunteers and comparing their
resulting AUCs.

The same approach to study design is used as in the typical bioequivalence study;
however, here we do not desire to demonstrate equivalence in AUC but only to estimate F
to a given degree of precision. Usually, the dose of drug administered IV and orally in such
trials will differ depending on the properties of the compound to ensure that exposure levels
remain safe. For example, a drug poorly absorbed after oral adminstration might have a
reduced dose when administered IV to ensure concentrations remain below the NOAEL.
Therefore, the AUCs are dose normalized (i.e., divided by dose) prior to analysis to ensure
that an appropriate basis for comparison is obtained.

Table 11.5 contains data from a typical cross-over trial to estimate absolute bioavail-
ability. In this case, 2 mg of drug was administered intravenously over an hour or 4 mg of
drug was administered orally in a cross-over trial in n = 12 normal healthy subjects, and
dose-normalized AUC values were derived following each administration.

The dose-normalized data of Table 11.5 were analyzed according to the methods of
Chapter 3 (SAS code may be found on the website accompanying this book), and an estimate
of µO − µIV with a 90% confidence interval was constructed (where µO and µIV denote
the adjusted mean logAUC following oral and IV administration, respectively). As with
bioequivalence, these are exponentiated to provide an estimate of F . In this case F̂ was
0.99 with 90% confidence bounds of 0.91 to 1.07.

Information provided by the models of this and the previous section and Chapter 8 are
necessary but not always sufficient for complete understanding of the ADME properties
of a drug. To complete the scientific understanding of ADME properties, a single dose,
cross-over mass-balance (see Chapter 5, [95]) study is often performed in an extremely
small number of normal healthy volunteers (n = 2 to 4 total). In such trials, subjects are
administered a radio-labelled dose of drug, and blood and other bodily excretions (urine,
feces) are collected and assessed for the presence of a radio-labelled substance. In another
session, a standard dose of drug is given to serve as a control for the amount of drug (and
radio-label) found in blood in the other session. Pharmacokinetic data from such a trial are
generally not analyzed statistically (given the low sample size) but are used qualitatively
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TABLE 11.5
Dose-Normalized (DN) AUC from an Absolute Bioavailability Cross-Over Trial

Subject DN-AUC DN-AUC
IV Oral

1 751 818
2 897 694
3 900 954
4 537 469
5 656 665
6 665 681
7 772 578
8 930 869
9 884 1055
10 556 506
11 1029 1078
12 727 946

to confirm the scientific understanding of the ADME properties of drug products. As such,
we do not consider their statistical properties here.

During the early stages of drug development, many changes are made to formulation.
These may be minor (changing the color) but can be major (e.g., changing from a capsule
to a tablet). Guidance [373] does not require that a bioequivalence trial be performed, but
sponsoring companies will wish to confirm that AUC is similar in the new formulation to
ensure that the understanding of absolute bioavailability gained in previous experimentation
is robust to the change in formulation.

As with absolute bioavailability studies, bioequivalence need not be demonstrated, and
such relative bioavailability trials are performed to provide the desired level of precision in
the ratio of AUC in the new formulation to the old. Study design and data analysis follow
the same principles of those used in bioequivalence testing as described in Chapter 3 and
will not be discussed further here.

11.3 Age and Gender Pharmacokinetic Studies

As described in Section 11.1, population pharmacokinetic models will be used to relate
clearance and other pharmacokinetic parameters relative to age and gender. Such models,
however, are handicapped with decreasing confidence as findings are extrapolated beyond
the observed data [907].

For example, clinical trials of a new drug product may only be done in adults (ages 18
years to 50 years, perhaps). The models of Section 11.1 will allow for extrapolation to lower
and higher ages (down to zero and up to, say, 100+ years perhaps); however, the confidence
in the model predictions decreases as distance from the observed age range increases. Of
interest, then, would be how exposure will actually behave in very young people or perhaps
very old people. Age pharmacokinetic studies are designed to go and check. As noted,
estimates will be available from the population pharmacokinetic model, and often a limited
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TABLE 11.6
AUC and Cmax Data from a Pediatric (PED) and Adult (ADT) Bioavailability Trial

Subject Age AUC Cmax

201 PED 1510 88.6
202 PED 883 52.5
203 PED 1650 92.0
204 PED 1015 56.0
205 PED 1556 84.0
206 PED 1412 84.8
207 PED 1353 83.0
208 PED 1443 96.4
209 PED 1299 68.1
210 PED 560 33.5
101 ADT 1284 70.3
102 ADT 1391 73.5
103 ADT 873 50.2
104 ADT 1211 62.2
105 ADT 1233 74.1
106 ADT 1172 60.4
108 ADT 1172 60.4
109 ADT 1336 75.3
110 ADT 1348 76.8
112 ADT 1419 82.9

pharmacokinetic study is performed to assess whether these model estimates are dependable.
These small age (and gender) studies are, in essence, model-validation tools.

Consider the data in Table 11.6 from a study where pediatric patient pharmacokinetics
were assessed for such a purpose. Ten pediatric and ten adult subjects received a single
dose of drug, and their plasma concentrations were measured in the usual fashion over time.

Note that age, weight, and height were expected to differ between the two age groups, but
these were not related to clearance and concentration in the population pharmacokinetic
models (data not shown). Weight, height, and kidney and liver function all differ also
(hopefully for the better in the younger people).

The study was performed to assess whether exposure in juveniles was consistent with this
finding. The resulting findings are observational. Demographic characteristics will differ
between groups, and the adult subjects are included, not for purposes of direct comparison,
but to serve as a control back to the model used in the population pharmacokinetic mod-
elling population. Their inclusion serves as a control if unexpected findings are observed
to determine if the model or some facet of the study (e.g., assay) explains the observed
difference.

The objective of statistical analysis in such a setting is to estimate exposure levels with
a desired level of precision and compare to the NOAEL, calibrating back to estimates from
the population pharmacokinetic models. SAS code commonly used to do so follows.
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Age AUC Assessment Example — SAS proc mixed Code:

proc mixed method=reml data=age;

class subject age;

model lnauc=age/

s ddfm=kenwardroger cl alpha=.1;

lsmeans age/cl alpha=0.1;

repeated /group=age subject=subject;

ods output LSMeans=auc;

run;

As previously, a REML model is used to characterize the mean AUC and Cmax of
such data. As this is a parallel group trial, the model simply calls for characterization of
logAUC relative to age, with mean effect in each age group output in the lsmeans and ods

statements. The repeated statement specifies that a variance estimate should be provided
for each age group separately, as it may be unrealistic to expect variation to be the same
in the pediatric population relative to the adult population.

Exponentiating the estimated means and 90% confidence intervals back to the natural
scale, it was found that mean AUC in the adult subjects was 1234 (1138–1338) and in the
pediatric subjects 1214 (1000–1474). These estimates were as expected from the population
pharmacokinetic modelling and served to reassure those using the drug that the choice of
dose in this population was safe relative to the NOAEL.

Similar to pediatric subjects, for elderly people, it will often be of interest to assess the
findings of population pharmacokinetic models in this manner. As before, weight, height,
and kidney and liver function all differ too (probably for the worse in the older people).
We omit further discussion on this topic here, as the principles and analyses are similar to
those used in the pediatric population.

A particularly important facet of the application of population pharmacokinetic data
pertains to assessment of the relationship of gender to exposure levels. In population
pharmacokinetic models, interpretation of gender’s relationship to exposure is often not
straightforward. Confounding with other demographic factors is significant — i.e., weight
and height. In general, to obtain a good handle on whether exposure is gender related, a
single-dose study of exposure levels relative to NOAEL is done early in drug development
(usually just after the sub-chronic dosing study is completed, see Section 8.3) in Phase I.
Inclusion of females of child-bearing potential in drug development studies is contingent
on genotoxicology findings, as fetal development can be impaired or terminated by such
products. Effort is made to weight match male and female volunteers from the different
populations where possible.

Consider the AUC and Cmax data from a gender trial in Table 11.3. Here 18 males (M)
and females (F) were given a single dose of drug, and their pharmacokinetics were measured
in the usual fashion.

TABLE 11.7: AUC and Cmax Data from a Gender Bioavailability
Trial

Subject Dose Gender AUC Cmax

1 1 M 354 68.4
2 1 M 219 50.5
3 1 M 228 36.5
4 1 M 216 55.6
5 1 M 405 74.6
6 1 M 306 55.5
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TABLE 11.7: AUC and Cmax Data from a Gender Bioavailability
Trial (continued)

Subject Dose Gender AUC Cmax
13 1 F 704 90.0
14 1 F 375 52.3
15 1 F 534 83.7
16 1 F 434 59.2
17 1 F 565 59.8
18 1 F 484 84.0
25 2 M 602 151.5
26 2 M 762 165.6
27 2 M 728 134.6
28 2 M 934 116.6
29 2 M 560 121.2
30 2 M 408 86.9
38 2 F 871 196.3
39 2 F 1104 216.0
40 2 F 777 80.1
41 2 F 592 109.7
42 2 F 728 122.5
49 5 M 2295 553.5
50 5 M 1743 307.8
51 5 M 1646 483.4
52 5 M 1523 281.4
53 5 M 1782 534.4
54 5 M 1906 375.0
61 5 F 1676 211.8
62 5 F 1493 266.7
63 5 F 2597 328.1
64 5 F 2396 242.3
65 5 F 1656 455.4
66 5 F 1355 288.8

As with the pediatric trial described above, statistical analysis of the pharmacokinetic
data is geared toward providing estimates which may be used to calibrate the population
pharmacokinetic findings. SAS code for this purpose follows.

Gender AUC Assessment Example — SAS proc mixed Code:

proc mixed method=reml data=gender;

class subject dose gender;

model lnauc=dose gender dose*gender/

s ddfm=kenwardroger cl alpha=.1;

lsmeans dose*gender/cl alpha=0.1;

repeated /group=gender subject=subject;

ods output LSMeans=auc;

run;

Again, variability is allowed to differ between genders using a repeated statement,
and mean logAUC is output from the lsmeans and ods statements. Exponentiating these
findings back to the normal-scale, the estimates given in Table 11.8 were found.
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TABLE 11.8
Mean AUC Findings from a Gender Bioavailability Trial

Dose Gender Mean AUC 90% CI
1 Female 506 426− 600
2 Female 797 661− 962
5 Female 1808 1523− 2146
1 Male 279 235− 332
2 Male 644 541− 766
5 Male 1800 1514− 2142

Relative to the population pharmacokinetic model findings (based up to this time on
data from male subjects only), we see in Table 11.8 that, while mean AUC in females still
falls below the NOAEL (greater than 2000 ng.h/mL for this drug at this time), average
exposure in females was dramatically greater in this dataset at lower doses than would be
expected from the models of male data.

Findings such as these would prompt the sponsor to reinterrogate the population phar-
macokinetic model building and assessment procedures, and the concentration data of the
gender trial would be utilized for this purpose. Using such techniques, it was determined
that, unexpectedly, clearance was related to weight (data not shown). This enabled the team
to adapt their population pharmacokinetic model to take this into account. For example, in
the SAS code of Section 11.1, beta1 might be defined as a function of weight where relevant
parameters are determined from model-based regression of weight on estimated clearance.

Assessment of Cmax in age and gender trials is left as an exercise for interested readers,
and SAS code to perform such analysis may be found on the website accompanying this
book.

11.4 Ethnicity

Consideration of ethnicity’s impact upon pharmacokinetics has long been a topic of dis-
cussion and was recently commented on in international regulatory guidance [624]. This
ICH-E5 guidance [624] was intended to provide a framework for evaluating ethnic factors
on a drug’s efficacy and safety profile in drug development. However, the guidance has not
been implemented in the local ICH regions (USA, Europe, and Japan), and there is still a
great deal of question about how to interpret the guidance (e.g., [379], [909], [24], [1260]).

In most cases, the reality is that, if one wants to obtain local market approval and
access, then a local randomized, blinded, well-controlled clinical trial is required. Whether
one needs to perform an outcome study or a “bridging” study (using a surrogate marker)
then becomes the question of concern.

ICH-E5 [624] makes the implicit assumption that registration of a drug in a new region
involves new registration for a new ethnic population, and we will follow this convention
in this section. As described in ICH-E5, the first of two primary requirements for a sub-
mission package is that the data requirements for registration in the new region be met
— i.e., that clinical trial methodology, recordkeeping, protocol compliance and drug ac-
countability, and informed patient consent must be acceptable in the new region [624]. The
minimal data package, consisting of either data from the original region and/or data from
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the new region, should include an adequate characterization of the pharmacokinetics (PK),
pharmacodynamics (PD), dose response, efficacy, and safety of the drug (see Chapter 1
for more details). At least pharmacokinetics [914], and preferably pharmacodynamics and
dose response, should also be characterized in an ethnic population that is relevant to the
new region [624] but not necessarily resident in the new region [915] (i.e., if one wants to
market a drug in Japan, one has to study its properties in Japanese patients or in patients
of Japanese descent).

The second requirement is the demonstration of the ability to extrapolate findings from
any data from the original region to the population of the new region. It is easier to
extrapolate from one region to another if the new medication is “ethnically insensitive,” i.e.,
unlikely to behave differently in different populations. Ethnic sensitivity can be categorized
into two components, intrinsic (genetic) and extrinsic (environmental), either or both of
which may impact bioavailability and hence the appropriate dose and response relationship
[624].

A “bridging” study, as its name implies, is designed to allow one to bridge from the
original region’s data in the original population to the new region with its new population.
It is a [624]

....supplemental study performed in the new region to provide pharmacodynamic or
clinical data on efficacy, safety, dosage, and dose regimen in the new region that will
allow extrapolation of the foreign clinical data to the new region...

The degree of ethnic sensitivity will determine whether a study is necessary and the
design of such a study (e.g., PK only, PK/PD only, in what population, etc.). ICH-E5
[624] describes several characteristics of drug products which would make such a product
“ethnically insensitive.” These are [624]

1. Linear pharmacokinetics
2. A flat response curve for both efficacy and safety in the range of the recommended
dosage and dose regimen (this may mean the medicine is well tolerated)
3. A wide therapeutic dose range (again an indicator of good tolerability)
4. Minimal metabolism or metabolism distributed among multiple pathways
5. High bioavailability, thus less susceptibility to dietary absorption effects
6. Low potential for protein binding
7. Little potential for drug-drug, drug-diet, and drug-disease interactions
8. Nonsystemic mode of action
9. Little potential for inappropriate use

It is rare for a drug to meet all nine conditions which would make it ethnically insensitive
and result in only minimal data requirements to enter new regions and markets (e.g., such
as Asia). In any event, ethical and cultural considerations regarding drug use in Asia are
slightly different than other international regions, and consideration should first be given
to such matters (regardless of the outcome of this checklist) when designing a bridging
program [1215].

Statistical approaches to bridging are in early stages of development, and no interna-
tional consensus is yet available on how ethnicity bridging programs should be designed and
the data analyzed. See [682], [1151], [1072], [803], [199], [804], [969], and [805] for a descrip-
tion of some methods which are publicly available. We will not discuss these approaches
further here, as they are, in general, intended for application to bridging study data to con-
firm these are sufficient to permit market access. We turn to practical pharmacology-based
ethnicity assessment in population pharmacokinetics and the statistics involved. These
pharmacology assessments are usually carried out in drug development prior to the initiation
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of a bridging program and should constitute the major basis for the approach to its design.

We assume as in previous sections of this chapter that a population pharmacokinetic
model has been developed (as in Section 11.1) describing concentration as a function of time
and physiologic parameters (e.g., clearance, absorption constant(s), elimination constant(s),
etc.) As described in Section 11.1, some of these physiologic parameters may be related to
demography (e.g., weight, height, gender, etc).

When dosing a new population, it is to be expected that demographic factors may
be different. As with the population pharmacokinetic assessment of gender, significant
confounding with ethnicity can often be expected. For example, in the dataset which
follows, Western subjects were on average heavier than South Korean subjects. The working
assumption, in the absence of information, made in the early stages of model development
is that the functional form of the model is the same for both populations; however, in reality
the magnitude of parameters (e.g., clearance) may be dependent upon ethnicity in some,
as yet unknown, way.

Once a population pharmacokinetic model is proposed and estimates are available for
differences in pharmacokinetics between populations related to demographic factors, the
logical next step is to conduct a validation exercise via a small focused pharmacokinetic
study. Selected data from such a study in South Korean subjects are presented along with
corresponding data (at the same doses) observed in Western subjects. The full data in
Table 11.9 set may be found on the website accompanying this book.

TABLE 11.9: AUC and Cmax Data from a Population Pharma-
cokinetic Assessment of South Korean and Western Subjects

Dose Ethnicity Subject AUC Cmax Weight Height Age
(mg) (ng.h/mL) (ng/mL) (kg) (cm) (yrs.)

2 K A01 1228 195.2 65.0 170 20
2 K A02 1003 193.9 65.0 172 20
2 K A03 1063 165.8 75.0 175 27
2 K A04 906 215.2 64.0 172 22
2 K A07 811 215.6 76.0 177 21
2 K A08 928 167.5 82.0 187 21
2 K A09 1401 136.4 65.0 178 29
2 K A11 1099 206.1 59.0 168 26
2 W 1 746 208.4 73.7 177 28
2 W 1 734 137.7 71.7 175 28
2 W 11 994 190.9 58.7 180 20
2 W 12 552 125.7 87.6 179 38
2 W 13 675 168.7 59.5 163 36
2 W 13 566 104.9 63.6 175 26
2 W 14 637 108.0 91.7 180 28
2 W 15 666 169.4 70.7 162 30
2 W 15 728 167.2 78.0 176 32
2 W 16 578 123.8 76.2 173 36

.......
4 K B01 1763 345.6 64.0 174 21
4 K B02 1638 302.4 68.0 178 25

K= South Korean; W = Western
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TABLE 11.9: AUC and Cmax Data from a Population Phar-
macokinetic Assessment of South Korean and Western Subjects
(continued)

Dose Ethnicity Subject AUC Cmax Weight Height Age
(mg) (ng.h/mL) (ng/mL) (kg) (cm) (yrs.)

4 K B03 1894 345.8 66.0 171 25
4 K B06 2125 373.2 69.0 182 26
4 K B07 2289 466.4 63.0 170 26
4 K B08 1380 336.9 68.0 181 25
4 K B10 1557 257.2 80.0 180 23
4 K B11 3035 335.2 57.0 169 24
4 W 1 1637 362.0 76.3 180 27
4 W 10 2109 371.0 71.3 181 30
4 W 104 1468 308.0 76.1 185 51
4 W 109 999 249.0 85.0 178 56
4 W 11 1012 174.0 109.0 200 25
4 W 115 1273 275.0 69.4 175 31
4 W 116 1322 302.0 74.6 168 22
4 W 2 1388 319.0 68.3 175 26
4 W 391 989 174.1 91.1 176 27

.......
8 K C01 4890 709.2 64.0 176 19
8 K C02 3641 737.7 65.0 167 28
8 K C04 7211 981.7 63.0 175 22
8 K C06 3382 421.4 68.0 182 21
8 K C07 5459 1009.0 59.0 171 28
8 K C08 3077 769.6 71.0 179 28
8 K C11 4144 820.0 73.0 177 24
8 K C12 4263 673.0 61.0 180 21
8 W 1 3404 687.1 73.7 177 28
8 W 1 2942 563.6 80.5 184 26
8 W 10 3596 550.4 79.5 173 26
8 W 10 2148 462.0 76.3 182 32
8 W 100 2572 718.0 73.2 175 54
8 W 106 1997 428.0 96.8 186 43
8 W 11 4677 586.1 58.7 180 20
8 W 11 1278 320.0 96.1 178 29
8 W 112 3023 467.0 80.9 173 49
8 W 113 2959 575.0 69.8 170 53

.......
K= South Korean; W = Western

The code used to analyze such data is similar to that used in the previous section. In
this setting, it may be desirable to conduct a model-building assessment (see Chapter 2 of
[907] and Chapters 2 and 4 of [510]) to determine which factors are significantly related
to the endpoint under study. Accordingly, in the example that follows, weight (wt) was
included as a covariate.
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Ethnicity AUC Assessment Example — SAS proc mixed Code:

proc mixed data=pk method=reml maxiter=200 scoring=50;

class subject race;

model lnauc=race lndose wt

/s ddfm=kenwardroger cl alpha=.1 outp=out;

lsmeans race/CL ALPHA=0.1 DIFF=CONTROL("W");

repeated /group=race subject=subject;

ods output LSMeans=auc;

run;

For logAUC, the resulting model estimates are presented in Table 11.10. AUC was
observed to be significantly related to ethnicity and weight, and was linearly related to
dose. In terms of the impact of ethnicity, we can conclude from these data that weight,
by itself, does not explain all of the differences in pharmacokinetics between Koreans and
Westerners. The concentration data supporting this assessment would be used to rebuild the
population pharmacokinetic model, allowing for other parameters to be related to ethnicity.

TABLE 11.10
Estimated Population Parameters from Evaluation of logAUC as a Function of Ethnicity,
logDose, and Weight

Parameter Estimate 95% CI
Ethnicity 0.28 0.19, 0.36
logDose 1.00 0.94, 1.05
Weight -0.01 -0.02, -0.00

In this case, it was determined that South Koreans metabolized the drug slightly differ-
ently than Westerners (via a different CYP450 pathway, see Chapter 8). Alteration of the
elimination rate constant to account for this ethnicity-related difference resulted in adequate
model fit (data not shown).

Cmax was also observed to be higher in South Koreans than in the Western population.
The analysis of these data is left as an exercise for interested readers and may be done using
code on the website accompanying this book.

In combination with the full data package from the original region, data such as the
above can serve as the basis for approval in some nations. However, several nations also
require that the concentration to effect relationship (see Chapter 10) be studied and be
shown to be unrelated to ethnicity. In theory, the model-based approach used should be
similar.

11.5 Liver Disease

Liver disease or hepatic impairment can be caused by a number of factors. Diseases like
hepatitis can cause injury to the liver and impair its function. Injury may also be chem-
ically induced (cirrhosis via alcohol) and drug induced. In this section, we consider the
pharmacokinetics of a drug in the body when patients have liver disease.
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Severity of liver disease is typically measured by the Child–Pugh score [374], and sub-
sequently categorized as healthy, mild, moderate, or severe liver function impairment, de-
pending on the extent of damage to the liver and impairment of its function. If a drug is
eliminated (in the ADME sense) by metabolism or excretion (into bile) in the liver, the
drug would be expected to accumulate in the plasma. Decreased clearance of drug by the
liver [30] implies increased AUC and Cmax, and, as these increase the likelihood of adverse
events associated with exposure (relative to the NOAEL), would also be expected to in-
crease. Therefore, it is important to understand the magnitude of increased exposure in
patients with impaired hepatic function to determine [30] if it is necessary to reduce the
dose in such patients or potentially to contraindicate the use of the drug.

We again assume that a population pharmacokinetic model has been developed from
Phase I data. In tandem with this, a mass-balance radio-label ADME trial will generate
information on the role of the liver in excretion and metabolism of the drug in plasma.
If the liver plays only a minor role in elimination of the drug from the body ([30, 374]),
then regulatory guidance suggests that study in patients with hepatic impairment is not
required. However, if the role of the liver cannot be precisely determined, then a small
pharmacokinetic study is generally performed to confirm the validity of the model’s findings.
In practice, the radio-label ADME study is expensive and takes a long time, so it is general
practice to perform a small pharmacokinetic trial as described in the following.

Patients with hepatic impairment are enrolled and administered a single dose of drug in
the standard clinical pharmacology sampling paradigm, and their plasma concentrations are
summarized as AUC, Cmax, etc. [374]. In tandem, depending on the results of population
pharmacokinetic assessment for the demographic factors involved, race, age, and weight
range-matched volunteers are enrolled as a control group, administered the same single
dose, and pharmacokinetics are measured. As with previous population pharmacokinetic
modelling exercises, the objective of the trial is to estimate the pharmacokinetics in each
group to assess the performance of the population pharmacokinetic model, not to compare
the groups (“normal” and “hepatic impaired”).

AUC and Cmax data from such a trial may be found in Table 11.11. In this case,
population pharmacokinetic modelling of the impact of reduced clearance due to hepatic
impairment led the team working on this drug to be confident that increased extent of
exposure would occur in hepatic impaired patients. The model, however, was imprecise
in terms of the extent to which exposure would be increased, with estimates ranging from
little effect to approximately eight to ten times the exposure in normal healthy volunteers.
The study was performed using a low dose to enhance the understanding of the impact of
moderate hepatic impairment. The lower dose was used to ensure exposure levels would
remain well below the NOAEL.

TABLE 11.11: Pharmacokinetic Data from a Clinical Pharmacol-
ogy Hepatic Impairment Trial

Subject Group AUC Cmax
(ng.h/mL) (ng/mL)

100 HEALTHY 2572 718
101 HEPATIC 2862 374
102 HEPATIC 5225 302
103 HEPATIC 3709 441

HEALTHY (No Liver Disease)
HEPATIC (Moderate Liver Disease)
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TABLE 11.11: Pharmacokinetic Data from a Clinical Pharmacol-
ogy Hepatic Impairment Trial (continued)

Subject Group AUC Cmax
(ng.h/mL) (ng/mL)

104 HEPATIC 3866 258
105 HEPATIC 2675 382
106 HEALTHY 2911 504
107 HEPATIC 4321 439
108 HEPATIC 5801 434
109 HEALTHY 2701 466
110 HEALTHY 2374 606
111 HEPATIC 3023 409
112 HEALTHY 3023 467
113 HEALTHY 2344 449
114 HEALTHY 2544 386
115 HEPATIC 3352 343
116 HEALTHY 2802 422
117 HEPATIC 2768 422
118 HEPATIC 2489 554
119 HEALTHY 3715 385
120 HEPATIC 3740 488
121 HEALTHY 2088 487
122 HEALTHY 2038 474
123 HEALTHY 1703 592
124 HEPATIC 2711 301
201 HEPATIC 3164 349
202 HEPATIC 1998 303
203 HEPATIC 4270 316
204 HEPATIC 5501 773
205 HEALTHY 1983 553
206 HEALTHY 3494 728
207 HEALTHY 3962 478
208 HEALTHY 3106 493
209 HEPATIC 2897 432
210 HEALTHY 1598 392

HEALTHY (No Liver Disease)
HEPATIC (Moderate Liver Disease)

Code to analyze such data is provided below and is very similar to that used in previous
model validity exercises. In cases where data are collected from mild and severe liver
impairment patients, the groupings may be changed to accommodate this, or the Child–
Pugh scores themselves can be used to examine the correlation between scores and the
pharmacokinetics. We will consider such an approach in the next section, using renal
impairment data.
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Hepatic Impairment AUC Assessment Example — SAS proc mixed Code:

proc mixed method=reml data=liver;

class subject group;

model lnauc=group/s

ddfm=kenwardroger cl alpha=.1;

lsmeans group/cl alpha=0.1;

repeated /group=group subject=subject;

ods output LSMeans=auc;

run;

For logAUC, the resulting back-transformed model estimates are presented in Table
11.12. AUC was increased (as expected) in the hepatic impaired patients. Assessment of
Cmax is left as an exercise for interested readers, and may be performed using code on the
website accompanying this book.

TABLE 11.12
Estimated Population Parameters from Evaluation of logAUC as a Function of Group

Group Estimated Mean AUC 90% CI
HEALTHY 2653 2296, 2861
HEPATIC 3433 3045, 3869

HEALTHY (No Liver Disease)
HEPATIC (Moderate Liver Disease)

According to the suggestion in regulatory guidance [374], if a doubling in extent of
exposure is observed relative to the levels used to achieve efficacy while maintaining safety
in the normal patient population, the dose in hepatic-impaired patients should be adjusted
downward. If exposures cannot be kept clear of the NOAEL, one would presumably not
wish to expose patients to such a risk and might contraindicate. If desired, a no-effect claim
may be established if a two one-sided test (similar to that used for average bioequivalence)
with a clinically relevant threshold is set up a priori in the protocol [374], but we omit
discussion of such an approach here, as inference and labelling based on such trials most
often utilize expert clinical assessment of estimated model parameters without such formal
statistical testing.

11.6 Kidney Disease

Most drugs are eliminated unchanged by the kidney or by metabolism in the liver [360]. As
with hepatic impairment, renal impairment can be caused by a variety of factors, and we
will not discuss these further here. As age increases, this also results in impaired functioning
of the kidney.
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For drugs which are eliminated from circulation by the kidney, impaired function is
expected to result in decreased clearance [30]. Decreased clearance would be expected to
result in increased exposure, and, as with hepatic impairment, this may result in increased
likelihood of adverse experiences.

Creatinine clearance (CLcr) is a parameter often used to describe renal function [360].
This endpoint may be derived as [360]

CLcr =
(140− age(yrs))weight(kg)

72(serum− creatinine(mg/dL))
.

This formula is multiplied by 0.85 for female subjects and represents steady-state renal
function. Severity of impairment is typically characterized using these values [360]:

1. Healthy (CLcr > 80 mL/min),

2. Mild (CLcr from 50–80 mL/min),

3. Moderate (CLcr from 30–50 mL/min),

4. Severe (CLcr < 30 mL/min), and

5. ESRD (requiring dialysis).

While building a population pharmacokinetic model (see Section 11.1), the impact of
renal function (assessed using creatinine clearance) on estimated parameters for plasma
clearance will generally be assessed. As with hepatic impairment, if there is good scien-
tific evidence to support this being minor (i.e., renal clearance plays only a small role in
elimination and metabolism of the drug), then one need not study the issue further in drug
development [360]. Note that this involves some degree of subjectivity; hence, in practice, a
study is generally done to validate the understanding from the population pharmacokinetic
model.

Design of such a trial is similar to the other validation exercises discussed in this chapter.
Roughly equal numbers of subjects in each renal impairment severity class are recruited and
given a single dose of drug with a typical clinical pharmacology pharmacokinetic sampling
scheme performed. One may also study the ends of the impairment spectrum (severe versus
healthy) before enrolling mild and moderates [360].

Often mentioned in the context of renal impairment is the importance of protein binding
and consideration of (and derivation of) unbound concentrations and estimates of rate and
extent of exposure. Drug molecules bound to protein in plasma are not active and are often
removed from circulation by the kidney. Drug not bound to protein is typically the active
component which, reaching the site of action, is presumed to elicit a pharmacodynamic
response in the body (see Chapters 1 and 2). As protein binding may be impacted by
kidney function, typically one blood sample is collected in such studies for each subject
to estimate the degree of drug protein binding. If the degree of binding is pronounced
(greater than 80%), the unbound concentration is used to derive an estimate of unbound
AUC (AUCu) and unbound Cmax (Cmaxu) by straightforward multiplication. An example
dataset may be found in Table 11.13. Note that, in this experiment, 60 mL/min was
used as the cut-off between mild and moderate renal impairment as it pre-dated the [360]
guidance.
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TABLE 11.13: Pharmacokinetic Data from a Clinical Pharmacol-
ogy Renal Impairment Trial

Group Subject CLcr AUC Cmax AUCu Cmaxu
(ng.h/mL) (ng/mL) (ng.h/mL) (ng/mL)

HEALTHY 107 105 1523 407 1.68 0.448
HEALTHY 116 87 2426 409 3.40 0.573
HEALTHY 117 92 3919 341 . .
HEALTHY 126 105 3351 606 . .
HEALTHY 127 90 1851 474 2.78 0.711
HEALTHY 128 101 3487 444 5.23 0.666
HEALTHY 130 84 3719 592 7.44 1.184
HEALTHY 131 82 3046 400 4.87 0.640
HEALTHY 138 96 3282 474 4.59 0.664
HEALTHY 215 94 2823 424 4.80 0.721
HEALTHY 218 81 2765 584 3.59 0.759
HEALTHY 219 100 1860 377 3.91 0.792
MILD 102 67 2635 392 4.48 0.666
MILD 110 72 2321 320 . .
MILD 113 68 4498 440 7.65 0.748
MILD 115 68 2727 460 4.09 0.690
MILD 118 67 3226 681 4.52 0.953
MILD 121 66 2653 401 4.51 0.682
MILD 122 73 6710 458 11.41 0.779
MILD 123 69 3991 507 6.39 0.811
MILD 124 65 2304 347 3.23 0.486
MILD 207 64 3254 455 4.88 0.683
MILD 208 71 3364 670 4.37 0.871
MILD 210 61 2271 476 3.18 0.666
MILD 212 74 3137 500 6.59 1.050
MILD 216 64 1560 323 2.18 0.452
MILD 217 71 2235 374 3.80 0.636
MODERATE 105 33 2375 495 3.80 0.792
MODERATE 106 49 3658 389 5.85 0.622
MODERATE 108 44 6638 710 13.28 1.420
MODERATE 111 53 2167 427 3.03 0.598
MODERATE 112 48 3445 517 4.82 0.724
MODERATE 114 46 3670 565 6.61 1.017
MODERATE 120 57 3108 440 5.59 0.792
MODERATE 125 58 3959 599 6.33 0.958
MODERATE 132 55 2211 286 3.76 0.486
MODERATE 133 53 3138 442 5.02 0.707
MODERATE 134 54 3003 572 3.90 0.744
MODERATE 135 53 4187 469 . .
MODERATE 202 51 2627 337 3.68 0.472
MODERATE 203 54 2718 474 3.81 0.664

HEALTHY (No Renal Disease; CLcr> 80)
MILD (Mild Renal Disease; 60 <CLcr≤ 80)

MODERATE (Moderate Renal Disease; 30 <CLcr≤ 60)
SEVERE (Severe Renal Disease; CLcr≤ 30)
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TABLE 11.13: Pharmacokinetic Data from a Clinical Pharmacol-
ogy Renal Impairment Trial (continued)

Group Subject CLcr AUC Cmax AUCu Cmaxu
(ng.h/mL) (ng/mL) (ng.h/mL) (ng/mL)

MODERATE 204 55 3410 558 5.12 0.837
MODERATE 205 55 3314 405 4.97 0.608
MODERATE 209 58 2105 352 2.53 0.422
MODERATE 213 43 2520 504 3.53 0.706
SEVERE 101 15 2290 230 . .
SEVERE 103 22 2825 262 . .
SEVERE 104 17 2427 370 4.13 0.629
SEVERE 109 22 2704 527 4.06 0.791
SEVERE 119 23 2237 395 6.04 1.067
SEVERE 129 18 1490 233 2.53 0.396
SEVERE 136 27 1407 329 2.67 0.625
SEVERE 137 21 3415 447 6.83 0.894
SEVERE 201 24 2325 404 . .
SEVERE 206 6 1675 259 5.36 0.829
SEVERE 211 19 1974 329 4.15 0.691
SEVERE 214 22 2705 526 7.03 1.368

HEALTHY (No Renal Disease; CLcr> 80)
MILD (Mild Renal Disease; 60 <CLcr≤ 80)

MODERATE (Moderate Renal Disease; 30 <CLcr≤ 60)
SEVERE (Severe Renal Disease; CLcr≤ 30)

Code to analyze such data is provided below and is very similar to that used in previous
model validity exercises. Variability is allowed to change with group using the repeated

statement, and the relationship of the pharmacokinetic endpoint of interest (in this example,
AUC) is modelled on the logscale as a function of creatinine clearance. The estimate state-
ments are used to output estimates of mean AUC at various levels of creatinine clearance.

Renal Impairment AUC Assessment Example — SAS proc mixed Code:

proc mixed method=reml data=renal;

class subject group;

model lnauc=clcr/s

ddfm=kenwardroger cl alpha=.1 outp=out;

estimate ’80’ intercept 1 clcr 80/cl alpha=0.1;

estimate ’70’ intercept 1 clcr 70/cl alpha=0.1;

estimate ’60’ intercept 1 clcr 60/cl alpha=0.1;

estimate ’50’ intercept 1 clcr 50/cl alpha=0.1;

estimate ’40’ intercept 1 clcr 40/cl alpha=0.1;

estimate ’30’ intercept 1 clcr 30/cl alpha=0.1;

estimate ’20’ intercept 1 clcr 20/cl alpha=0.1;

estimate ’10’ intercept 1 clcr 10/cl alpha=0.1;

repeated /group=group subject=subject;

ods output Estimates=outest;

run;
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TABLE 11.14
Estimated Population Parameters from Evaluation of logAUC as a function of Creatinine
Clearance

Creatinine Clearance Estimated Mean AUC 90% CI
80 2953 2651,3289
70 2869 2625,3136
60 2787 2580,3011
50 2708 2506,2926
40 2631 2406,2878
30 2557 2293,2851
20 2484 2177,2835
10 2413 2062,2825

For AUC, the resulting back-transformed model estimates are presented in Table 11.14.
No relationship between creatinine clearance and AUC was observed in the renally im-
paired patients. Analysis of Cmax and unbound AUC and Cmax are left as an exercise
for interested readers and may be performed using code on the website accompanying this
book.

Generally, a log-linear relationship of total and unbound AUC and Cmax with creatinine
clearance is observed. If not, transformation of creatinine clearance using a power model
generally suffices to adequately describe the data. As such a model has already been de-
scribed in the context of dose proportionality (see Chapter 8), this is not discussed further
here.

As with hepatic impairment, based on these findings, the population pharmacokinetic
model may be rebuilt, if appropriate. Dose is typically adjusted in renally impaired patients
to achieve concentrations that are expected to be safe and effective. Labelling statements
based on data like those described above provide the basis for the selection of dose adjust-
ment or contraindication. [360].

11.7 Technical Appendix

Models such as

cit = (e−keit − e−kait) keikai(Dose)
Cli(kai − kei)

+ εit (11.1)

may be used to easily derive estimates for Tmax, Cmax, and AUC. We provide one such
example here based on the estimated parameters from the fitted model.

To derive Tmax, take the first derivative of ĉit (the fitted model) with respect to t. The
resulting equation is

dĉit
dt

=
k̂aik̂ei(Dose)

Ĉli(k̂ai − k̂ei)
(−k̂eie−k̂eit + k̂aie

−k̂ait).

Setting this equal to zero and solving for t yields an estimate for Tmax of

Tmax =
ln k̂ai − ln k̂ei

k̂ai − k̂ei
.
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An estimate for Cmax may be derived by taking the predicted concentration at this time
point:

Cmax = (e−k̂eiTmax − e−k̂aiTmax)
k̂eik̂ai(Dose)

Ĉli(k̂ai − k̂ei)
.

To derive AUC(0 −∞), take the integral from zero to infinity of ĉit with respect to time
(t): ∫ ∞

0

ĉitdt =
k̂aik̂ei(Dose)

Ĉli(k̂ai − k̂ei)

∫ ∞
0

(e−k̂eit − e−k̂ait)dt.

Integration yields

k̂aik̂ei(Dose)

Ĉli(k̂ai − k̂ei)
( 1

k̂ei
− 1

k̂ai

)
=
Dose

Ĉli
.

As stated in Chapter 8, we chose here to utilize SAS for the nonlinear mixed effect
modelling of data; however, several other statistical packages are readily available (SPLUS,
NONMEM, WINNONLIN, PKBUGS, etc., [1048]) and may be used for this purpose. Read-
ers interested in more details of these software packages should see [1379] and [1271].
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Vaccine Trials

Introduction
One of my senior supervisors asked a very good question one March. He asked, “Why

are you still doing this?” The question was not directed solely at me. It was asked in the
context of an introduction before a team building exercise (to develop a culture to promote
entrepreneurial spirit, collegiality, and a good work ethic, etc.). The question from my
senior supervisor stumped me — why was I still doing this?

That got me thinking. I did the math and figured out that I had been doing clinical trial
statistics for 20 years! That was sort of surprising, as I had only intended to do this for
a while until something more interesting came along. It occurred to me that maybe to find
something more interesting, I had better go look for it.

So while thinking and praying and talking to my wife (not necessarily in that order),
I figured I’d best have a talk with my mentor later that same March at a conference we
were both attending in Brazil. Bob was in his 60s and had retired from the clinical trials
business after 30 years. He and I had a lot of time to talk as we shuttled back and forth
from the conference, as the hotel where we were staying was some way from the conference
site. He told me the happiest he’d ever been on the job was in giving his time to his old
alma mater and seeing the bright enthusiastic students that came out of the school. The
students and professors (or some of them) were deeply appreciative of his efforts, but he
confided in me that he got a lot more out of it than they did. It was rewarding and made
him feel good about all he had done in his career and was doing. Bob reassured me that
a successful career in industry is a balance between putting up with petty annoyances while
accomplishing objectives that serve the common good and one’s own objectives.

Bob had never touched the savings from his 30 years in industry, as he still consulted
during his retirement not only for companies making vaccines but also folks like the World
Health Organization. He and I were working together on some new analyses for a paper that
we were planning. At the close of conference dinner, he saved a seat for me, and while we
watched the show, I told him that I now “got” why FDA’s vaccines reviewing division was
so insistent on randomized studies with pre-specified hypothesis tests (as the many, many
clinical trials reported at the conference with the exception of four, one of which Bob and
I worked on, were non-randomized). He laughed uproariously and said good and that the
whole thing was worth it.

I departed Thursday morning to return to the USA after we rode the bus back to the
conference hotel from the dinner Wednesday night, fully expecting we would be in touch
back in the USA on Monday morning to wrap up the analyses being planned for our paper,
but Bob never came back from the conference. He was found in his room on Friday morning
by the hotel staff after attending the remainder of the conference on Thursday. He had a
heart condition and had previously survived several heart attacks.

I miss Bob. He answered my senior supervisor’s question among many others, while
including me in his life and work, out of his own kindness. If one is lucky, one comes
across at least one person like that at least once in a lifetime. They are gifts from God. If
you do encounter such a treasure, I encourage you to pay attention, listen, and to pass it on.

307
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12.1 Brief Introduction to Vaccine Research and Development

The following section is a brief overview of vaccine development and associated data of
interest needed to discuss vaccine studies relating to clinical pharmacology. Readers inter-
ested in a more general discussion of statistics in vaccine development may wish to see [156]
and [733].

Developing a vaccine for the market is similar in many respects to developing a drug.
As with drugs, a vaccine is developed by showing regulators that it is safe (when used as
recommended), that it works (when used as recommended), and that it is manufactured to
high quality standards. Where development differs from drugs originates with the approach
to disease management. A vaccine is a biological construct that improves the body’s natural
immunity to a disease — see, for example, [1136] — thereby enhancing the body’s natural
ability to prevent infection and disease. Diseases are, in general, caused by viruses and
bacteria infecting the body, and for simplicity, these are referred to as disease vectors in the
following discussion and sections.

To begin, it should be recognized that, historically, disease has killed far more people
than wars have. For example, prior to its eradication via vaccination, smallpox caused
approximately 300,000,000 deaths [936] in the 20th century alone. The disease vectors we
are concerned with in making a vaccine are not typically killed by antibiotics, or if they are,
it takes a long time and a lot of doses.

On its own, a disease vector does nothing but sit there waiting for a susceptible person
to happen by, become exposed, and infect. When introduced into a susceptible organism
for example, a viral disease vector infects cells, and then uses these infected cells to multiply
[936].

A virus contacts a cell and attaches to its surface at a receptor (for example, measles
attaches at a receptor known as CD46). The virus infects the cell by passing through the
cell’s plasma membrane (phagocytosis) and entering the cell’s interior. Then the virus’
nucleic acid expresses its genes, replicates its genome, and produces replicas which, when
mature, exit the cell and begin to infect more cells.

Viral disease then results and may happen in many ways [936]. The virus itself may be
toxic to cells, resulting in cell death. The virus may alter the cell’s function — for example,
the cell may be inhibited from making a hormone the body needs to grow or function. The
immune system of the body (tasked with destroying such viruses) may need to do so by
destroying the infected cells, thereby damaging tissues, organs (etc.) that are critical to the
body’s function.

Most disease vectors result in acute infections [936]. The incubation period for many
viruses varies from 2 days to 3 weeks — e.g., the virus infects the body, spreads via the
blood or nervous system, and causes damage. It is thereafter destroyed by the immune
system (resulting in subsequent immunity) or causes the destruction of the organism (death).
Chronic infection, by contrast, is when the immune system does not completely remove the
virus (e.g., human immunodeficiency virus) and subsequent recrudescence occurs, followed
by death of the organism.

Avoidance of exposure to a disease vector, hand-washing (with soap and in clean water),
along with the immune system are the chief means of defense against disease vectors. The
immune system recognizes antigens (proteins produced in cells when disease vectors repli-
cate), and upon recognition, responds with specific and nonspecific factors to kill the disease
vector. Nonspecific factors are produced all the time by the body — e.g., lymphoid cells,
macrophages, complement factors. These float around in the blood, and “eat” or disable
any disease vector they recognize. Specific factors are also introduced to the body by prior
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infection/recovery or by vaccination. These result in antibodies which the body creates
automatically in the immune system and/or in cell-mediated immunity when exposed to a
disease vector [936].

Vaccines have been produced historically in a few ways. Attentuation is performed by
taking a disease vector and passing it through an animal and tissue culture or tissue culture
alone which removes or reduces the ability of the vector to cause disease. The vaccine then
results in the body’s immune system being primed to produce a response (e.g., antibodies)
but not in disease. These are known as “live” vaccines. Measles vaccines were produced
using this method.

Vaccines are also produced by chemically killing the disease vector. Administration of
vaccines made this way obviously cannot cause disease (as a dead disease vector cannot
replicate) but primes the body’s immune system to recognize and respond to it. The Salk
polio vaccine is an example of this.

Traditionally, vaccines have been used to prevent disease, e.g., smallpox. Lately, vaccines
are being developed to treat existing diseases, e.g., cancer, Alzheimer’s, even addiction to
nicotine. Most of the remainder of this chapter will be in reference to preventative vaccines,
but the concepts may be readily extended to treatment vaccines.

Turning now to discussion of endpoints, the body generates antibodies (among other
things) in response to infection. Immunoglobulin is a protein of interest and has several
classes: IgG, IgM, IgA, etc. Of these, IgG (immunoglobulin protein type G) is the protein
most of interest in vaccination.

Antibody concentration denotes how much antibody is present in a serum sample of
given size. For example IgG may be expressed in units such as µg/mL. Antibody titers
are a more complex way of expressing the amount of antibody: “measure of the antibody
amount in a serum sample, expressed as the reciprocal of the highest dilution of the sample”
that “results a certain assay read-out” [918]. That is, a serum sample is diluted 1:8 (8 parts
water or other neutral substance is added to the sample). Dilution continues 1:16, 1:32,
1:64, 1:128, etc., and an antigen (antibody-producing substance) is added. Each dilution is
then assayed to see if a reaction occurs.

Let us suppose that we are interested in the titer which results in 50% killing of a given
disease vector. We take serum samples from subjects after vaccination in a study, produce
the dilutions for each subject’s serum sample, add a precise amount of disease vector to each
and every dilution, and see how much each titer of the sample kills. For example, consider
the following results for a given subject’s sample: 1:8 kills 100%, 1:16 kills 75%, 1:32 kills
50%, 1:64 kills 25%, 1:128 kills 0%. The titer we’d be interested in is 1:32. Titers obviously
have no units — they are divided out by dilution, and the titer is typically referred to by
the inverse dilution. That is 1:32 is analyzed as a data point with value 32.

Concentrations and titers are log-normally distributed [732] and are analyzed in very
similar fashion to pharmacokinetic data [72]. A caution of particular note to vaccines —
concentrations and titers are produced using biologic assays, and such assays have specifi-
cations. These are the lower limit of quantification (LLOQ, we can trust numbers above
this point), the lower limit of detection (LLOD, below here one does not get a finding
consistently), and the upper limit of quantification (ULOQ, beyond which the assay can-
not generate a consistent finding). Thus such data are not really normally distributed after
natural-log transformation, but the central limit theorem protects us (within reason). When
it does not, there are approaches to dealing with missing data; those interested may wish
to review [766, 942, 1095, 1383].

As with drugs, safety data collected in vaccine studies are generally binary, repeated
measures; i.e., one has (1) or does not have (0) a safety reaction of given type at a given
visit or time interval of reporting. Statistically of interest is 100(p̂) where p̂ = r/n where
r is the number of events designated 1 and n is the number of subjects. We can use a
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variety of analysis techniques [280] on these data, ranging from application of the binomial
distribution to Fisher’s exact test to more sophisticated methods as described in Chapter
8. We will consider common methods used for analysis in vaccine development in the next
section.

There are a few types of adverse events which are of particular interest following vac-
cination. Local reactions are events that are sometimes known as reactogenicity. Vaccines
are typically given by injection, and local reactions relate to safety observations at the site
of injection (or in the immediate vicinity). These events include things like

1) Tenderness (None, Mild, Significant, Any),

2) Induration=Swelling (None, Mild, Moderate, Severe, Any),

3) Erythema=Reddening (None, Mild, Moderate, Severe, Any).

Systemic events are adverse events typically related to the immune response to vaccine,
such as

1) Fever (None, 38–39◦C, 39–40◦C, >40◦C, Any),

2) Decreased appetite,

3) Irritability,

4) Increased/decreased sleep,

5) Hives,

6) Use of medication to treat or prevent symptoms (i.e., fever), etc.

Local reactions and systemic events are binary, repeated measures data, and the percentage
of the observed number of events amongst the subjects potentially experiencingat a given
time interval (and maybe duration) are the data of most interest. These are typically
presented as percentagesin reporting.

There are other types of vaccine data. Carriage data and outcome data are two examples.
Carriage studies assess whether a subject is carrying the disease vector (i.e., infected) at a
given visit. See, for example, [32, 235, 236, 299]. Vaccine efficacy studies assess whether
disease itself is observed at a given visit. Both types of data are generally treated as
binary, repeated measures data. These types of event data will involve comprehensive
algorithms for endpoint definition (typically in the study protocol and statistical analysis
plan). Measurement will involve microbiology measurement (e.g., cultures) and results will
involve categories (e.g., serogroups [71]). Those interested in more information on carriage
and efficacy studies for vaccines should review [503, 504, 918]. The analysis of such data
is beyond the scope of this chapter, and we will confine our attention to immunogenicity
and to safety data in the following sections, as these are the most pertinent to clinical
pharmacology trials in vaccines.

Studies in Phase I through IV vaccine development follow the same paradigm of devel-
opment as discussed for drugs in Chapter 1. As our emphasis is upon clinical pharmacology
vaccine trials, we first discuss Phase I vaccine studies before turning to vaccine proof-of-
concept studies. We will then discuss concomitant vaccination studies and lot consistency
studies, ending with a brief discussion of cross-over study designs in vaccine development.
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12.2 Phase I Vaccine Studies

As discussed in Chapter 1, clinical development of a product, with the exception of only
the most toxic products targeted for the treatment of cancer, initiates with the study of the
product in normal healthy adult male volunteers in what is known as Phase I. These studies
are typically small, well controlled, data intensive, dose escalating, and placebo controlled.
The primary objective of these studies for vaccines is to determine a safe dose and dosing
regimen (e.g., once a month for three months) for later dosing in studies involving subjects
who may be exposed to the disease vector of concern.

Dose and dosing regimen for the vaccine are examined with respect to their impact on
immunogenicity and on safety, in particular with regard to local reactions and systemic
events. The goal is to identify a dose and dosing regimen resulting in desired antibody
levels without the occurrence of unacceptable side-effects. Side-effects like local reactions
or systemic events may be tolerable even if significantly higher than placebo, depending
upon the disease vector of concern — for example, the Measles-Mumps-Rubella vaccine is
well known to result in fever in some recipients following vaccination; however, the benefit
in terms of preventing disease outweighs the risk. Dosing in adult volunteers is generally
followed by studies in children or the elderly, depending upon the disease vector being
considered.

Like drugs, by the end of such studies in Phase I, dose-finding studies in normal healthy
volunteers should provide a safe (and potentially efficacious) dose and dosing regimen for
further studies in subjects at risk, an initial description of immunogenicity and safety to
support the choice of dose and regimen, and provide seed data for the powering of Phase II
and III studies.

Also considered during Phase I is the use of an adjuvant. These are substances included
in the vaccine which are used to enhance the body’s immune response to a given dose
of vaccine and are often associated with increased reactions compared to un-adjuvanted
vaccines. At this stage in Phase 1, there will be some preclinical knowledge of whether
the adjuvant enhanced immunogenicity in preclinical (non-human) species, but the dose of
the adjuvant must also be studied in parallel with studying the dose and dosing regimen
of vaccine. The use of factorial study designs [561] is readily applicable in this context, as
multiple doses of vaccine, adjuvant, and schedule are potential factors.

However, study designs for vaccines in Phase I are constrained in that dose escalation
procedures must be followed, as discussed in Chapter 8. That is, for example, consider a
vaccine with two potential doses (D1 = Low, D2 = High), two potential doses of adjuvant
(A1 = Low, A2 = High), and two potential schedules (S1 = once per month for three
months, S2 = once a week for three weeks). The D1 : A1 : S1 combination would need to
be studied to ensure subject safety (relative to placebo) before initiating combinations like
D2 : A1 : S1, D1 : A1 : S2, etc. At each stage, eligible subjects are randomly assigned to
either the desired combination or to placebo.

Ignoring schedule for a moment, and assuming there is only one dose of an adjuvant to
consider (denoted A1 if administered), then an example of the design of a Phase I study
could appear as given in Table 12.1. That is, in the first stage, 12 subjects would be
randomly assigned to receive a low dose of vaccine (n = 9) or placebo (n = 3). If acceptable
safety data are observed, then an additional 12 subjects would be randomly assigned to
receive a low dose of vaccine with adjuvant (n = 9) or placebo (n = 3) in parallel with
another 12 subjects who would be randomly assigned to receive a middle dose of vaccine
(n = 9) or placebo (n = 3), and so forth, depending upon the observed safety findings.

Such studies are difficult to double blind, but this obstacle may be overcome by use
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TABLE 12.1
Schematic Plan of a Phase I Study

Stage Dose Adjuvant N (Vaccinated) N (Placebo)
1 Low 9 3
2 Low A1 9 3
2 Middle 9 3
3 Middle A1 9 3
3 High 9 3
4 High A1 9 3

of an unblinded pharmacy with the use of double dummy administrations (e.g., saline
injections) where warranted. It is recommended that at least single blinding be applied,
as local reactions and systemic events are self-reported by the subject, typically in modern
studies using an electronic diary which is filled out by each subject each day for a period
of time following vaccination. Of particular concern, at each stage, is that care should be
taken to ensure that protocol-specified subject inclusion and exclusion criteria are rigorously
applied. If these are allowed to change over time, then the analysis of vaccine dose, adjuvant,
and schedule may be confounded by changes in population factors, potentially biasing the
results. For example, if younger subjects are enrolled at higher doses relative to lower doses,
dose would be confounded with age in the data analysis.

Generally, at this stage of vaccine development, only small batches of vaccine and ad-
juvant are made. This limits the potential sample size of such studies (in addition to the
ethical requirements of Phase I to expose only small numbers of subjects to potential risk).
Once dose, adjuvant, and schedule are identified in Phase I, larger batches of clinical grade
material are developed to enable powered studies.

Sample size may be varied at each stage during the trial as specified in protocol. For
example, it may be thought (based upon pre-clinical data) that the lower doses will not
result in desired immunogenicity. Once studied, then the higher doses may be studied using
larger numbers of subjects to more precisely define the safety and immunogenicity profile.
In the example given in Table 12.1, one would do so by, for example, randomizing 12:4
vaccine:placebo in the middle dose groups, and perhaps 18:6 in the high dose groups. This
sort of approach is not unusual [473] and is increasingly becoming the norm in Phase I
development.

Consider a three-dose, one-adjuvant, placebo-controlled Phase I design with fevers ob-
served, as shown in Table 12.2. Note that there are 18 subjects receiving placebo in this
design, and it is not unusual to pool their data in practice for analysis.

For a given dose group, the observed frequency of an event is defined as p̂ = r/n where r
is the number of events, and n is the sample size in that group. The Clopper–Pearson lower

and upper confidence bounds [213] are r(fl)
r(fl)+(n−r+1) and (r+1)(fu)

(n−r)+(r+1)fu
, respectively, where

fl is the 2.5th percentile of the F -distribution with 2r and 2(n− r + 1) degrees of freedom
and fu is the 97.5th percentile of the f -distribution with 2(r + 1) and 2(n − r) degrees of
freedom.

One can apply SAS code as given below to derive 95% confidence bounds for the pro-
portion of fevers in each dose group.
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TABLE 12.2
Number of Fevers Observed in Each Dose Group in a Phase I Study

Dose Adjuvant Fever N
1 1 0 9
1 0 1 9
10 1 4 9
10 0 3 9
100 1 3 9
100 0 9 9
0 0 0 18

Adjv=1 denotes present, 0 absent

data prev_ct;set mock;

prev=r/n;

prev_pct=100*prev;

df1=2*r;df2=2*(n-r+1);df3=2*(r+1);df4=2*(n-r);

f_l=finv(0.025,df1,df2);f_u=finv(0.975,df3,df4);

run;

data prev_ct;set prev_ct;

if r=0 then f_l=1;if r=n then f_u=1;

prev_l=100*(r*f_l)/((r*f_l)+(n-r+1));

prev_u=100*((r+1)*f_u)/((n-r)+((r+1)*f_u));

run;

Clopper–Pearson confidence intervals are termed exact intervals, as they are based di-
rectly on the binomial distribution. “Exact” is a misnomer and denotes that the coverage
probability of the confidence interval is at least 95% — it may well be higher. Thus such
an exact interval may be overly wide. By contrast, the classical normal approximation may
be too narrow (i.e., less than 95% coverage rate). As the normal approximation is held to
be too narrow, we will only discuss exact approaches here.

Consider the findings of Table 12.3. Note the overlap of confidence intervals with the
exception of the highest dose (no adjuvant) and placebo. Note the counterintuitive result
— the fever rate is higher at the high dose with no adjuvant than with adjuvant. Such
observations are not unusual when the n is low.

A few useful asides. The “rule of 3” is a simple way of stating an approximate 95%
confidence interval for p in the special case that no events have been observed. The rule of
3 interval is approximately (0, 3/n). Also, keeping in mind that overlap of half the length of
one arm corresponds approximately to statistical significance at p = 0.05 can be helpful for
a quick appreciation of tables and figures that display confidence intervals by group, when
p-values are not reported [232]. The key (understated) assumption in the use of this rule of
thumb is independence. This can only be assumed for each randomized dose group relative
to placebo in Phase I vaccine studies, as such studies are dose escalating (i.e., from low to
high doses). Strictly speaking, therefore, statistical inference in such studies focusses upon
the effect of each dose relative to placebo.
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TABLE 12.3
Findings from a Phase I Study

Dose Adjuvant Fevers % 95% LB 95% UB
1 1 0.0 0.0 33.6
1 0 11.1 0.3 48.2
10 1 44.4 13.7 78.8
10 0 33.3 7.5 70.1
100 1 33.3 7.5 70.1
100 0 100.0 66.4 100.0
0 0 0.0 0.0 18.5

Adjv=1 denotes present

We can also easily formally compare the proportions between dose groups and placebo
using a variety of procedures such as Fisher’s exact test. To compare the observed proportion
of fevers at the middle dose to placebo, SAS code to do so is

Title ’Middle Dose:Pbo’;run;

data middle;input group $ category $ Count @@;

cards;

A yes 7 A no 11 B yes 0 B no 18

;

proc freq data=middle order=data;weight count;

tables category*group/chisq;run;

This results in a Fisher’s exact p-value of 0.0076, indicating that the two dose groups
differ significantly in their rate of observed fevers, with the middle dose being significantly
higher than placebo. The low dose does not result in a significant difference, but the high
dose group clearly is even more significant relative to placebo. These analyses are left as
an exercise for interested readers.

To determine whether the difference is clinically important, one may wish to examine
confidence intervals for the difference in the observed proportions. A large number of
statistical approaches are available to do so — see [1071]. The Chan and Zhang approach
[154] is often used and may be implemented in StatXact using SAS code as follows:

Title ’Middle Dose:Pbo’;run;

proc binomial data = middle

max_time=30 gamma = 0.000001

out = ex_diff;

riskdiff / ex one;

po group;

ou category;

weight count;

run;

This results in a point estimate and 95% confidence interval comparing the proportion of
fevers observed for the middle dose of 0.3889 (0.1545, 0.6425), again indicating that the two
dose groups differ significantly in their rate of observed fevers, with the middle dose being
significantly higher than placebo but also providing a plausible range of values for the true
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FIGURE 12.1
Model Estimates for Proportion of Events (Fevers) versus Dose in a Phase I Study

effect size. Interested readers may find that the low dose compared to placebo results in a
point estimate and 95% confidence interval of 0.0556 (-0.1328, 0.2736) and 0.6667 (0.4074,
0.8666) for the high dose.

As discussed in Chapter 8, the proportion (p) can be defined such that

p =
1

1 + e−(α+β(ld))

where β is the slope of a regression of ln(p/1 − p) = L (known as a logit-transformation)
on logDose such that L = α+ β(ld). Using proc genmod in SAS as was done in Chapter 8,
SAS output (not listed) yielded an estimate (95% CI) of -2.33 (-3.64, -1.02) for α̂ and 0.69
(0.29, 1.08) for β for the above example, yielding estimated proportions of fevers with dose
as given in Figure 12.1.

Data are sparse in Phase I, so it is likely that adjuvant and placebo must be neglected
in such a model to get the model to fit. More formal testing approaches among the doses
[273] may be employed but are not frequently needed in Phase I, as the usual assumptions
around independence among the doses does not apply. One is not testing confirmatory
hypotheses in Phase I as one is learning. As data accumulates across Phase I studies, it is
desirable to use the principles of meta-analysis [1326] to study differences between doses,
and such is becoming the norm in later phases of development during submission (e.g.,
[1233]). However, such meta-analysis is beyond the scope of this chapter.

In the next section, we discuss analyses pertaining to proof-of-concept concerning im-
munogenicity data. We therefore will not discuss this data here.

At the end of Phase I, it is to be expected that the dose, adjuvant, and schedule for
the vaccine have been identified, and in particular that administration meets the desired
target profile for safety (so far). The next step is to move to Phase II studies in the target
population and establish proof-of-concept (PoC). Historically, the transition probability of
success from Phase I to Phase II is approximately 64% [264]. Acceptable safety with some
evidence of immunogenicity is all that needs to be seen, so the bar to progression into Phase
II is not very high.
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12.3 Proof-of-Concept and Phase II

As dose, adjuvant, and schedule have been identified in Phase I, vaccine development in
terms of manufacturing scales up to allow for larger studies. Hence, between Phase I and
II, there is usually a formulation change. Phase II studies, and in particular the proof-of-
concept study or studies, have a triple purpose — first to assess whether the safety and
immunogenicity results of the dose, adjuvant, and schedule identified in Phase I still hold
true, but also to generate sufficient data in the target population to support investment
decisions, and also to allow for the design of Phase III confirmatory studies.

The design of Phase II studies in vaccines is almost always a randomized, parallel group,
double blinded, longitudinal study. Safety data is collected after each vaccine administra-
tion, and immunogenicity data is collected approximately 1 month after the primary series
of vaccination. Some vaccines are given in only one dose, but for most vaccines (e.g., polio
vaccines, for example), multiple doses are given over time, and immunogenicity is assessed
following the last dose. Subjects from the target population (for example, infants or the
elderly or an at-risk population) are randomized to receive the vaccine (according to the
dose, adjuvant, and schedule identified in Phase I) or placebo (or a positive control vaccine
if one is available).

The proof-of-concept study should be designed to meet a pre-identified immunogenicity
target as follows:

The Truth

Vaccine does Vaccine does
NOT meet target meet target

Stats Vaccine does Right answer! Wrong answer
from NOT meet target (Type 2 error)

the study Vaccine does Wrong answer Right answer!
show that meet target (Type 1 error)

In this case, both the Type 1 (false positive, α) and 2 (false negative, β — note that
power equals 1− β) errors are risks the sponsor carries in making an investment decision.
As the data generated in Phase II will form the basis of power calculations for Phase
III, regulators will be involved in review of the findings, and, additionally under modern
legislation, sponsors are required to publish their data. Therefore, while more latitude is
given at this stage of development in terms of the choice of α and β, sponsors do not have
full freedom to choose any level desired. It is most usual in practice to set α = 0.05, but
it is common for the sponsor to carry increased risk of a false negative at this stage of
development (0.2 < β < 0.3 are not uncommon.)

For the purposes of this section, we will assume that one primary immunogenicity end-
point has been chosen for the purposes of powering the proof-of-concept study. Multistrain
and disease vaccines are becoming common with emerging technology, and we will discuss
powering for such multiple vaccine endpoints later in this chapter.

As discussed earlier, for immunogenicity data, antibody and titer data are held to be
log-normally distributed. For the purpose of this example, it is assumed that it was desired
that the 4-fold response rate for vaccine for Strain 1 significantly exceeds that of placebo
(three other strains were also assessed as secondary endpoints). In practice, additional
criteria may be desired; for example, the lower bound of the estimate for the difference in
response rate between vaccine and placebo might need to exceed 20% to achieve the desired
target.
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SAS code like the following may be used to power such a study:

proc power;

twosamplefreq test=fisher

alpha = 0.05

PROPORTIONDIFF = 0.5, 0.6, 0.7, 0.8

REFPROPORTION= 0.05

power = 0.8

npergroup = .;

run;

A low 5% placebo response rate was assumed along with vaccine increasing response
rates from 50 to 80%. Type 1 error was set at 5%, and the desired Type 2 error rate was
defined as 20%. Readers may verify using the above code that, to meet the immunogenicity
objective, only n = 8−16 subjects per group were required. However, as will be seen in the
following example, a larger sample size was selected to mitigate the risk of a Type 2 error
in addition to providing a safety database sufficient for regulators to endorse progression to
larger Phase III confirmatory studies.

Anonymous baseline and post-vaccination titer data from a randomized, double blinded,
placebo controlled proof-of-concept trial may be found on the website accompanying the
book and are shown in Table 12.4. We will study the Strain 1 titer data as the primary
endpoint for the proof-of-concept assessment.

SAS code is available on the website accompanying this book to calculate geometric mean
titers and to compare Vaccine to Placebo, accounting for baseline. As shown in Table 12.4,
while comparable at baseline, following vaccination, higher geometric titers were observed
in the vaccine group relative to placebo. Inspection of the raw data shows that, in both
groups, titers above the assay lower limit of quantification were observed for some subjects
at baseline. This is consistent with the disease vector under study in that in this population
some subjects will have been exposed to infection that did not cause disease. The geometric
mean ratio for Vaccine to Placebo following vaccination was 20.4 with a 95% confidence
interval (10.1, 41.1) accounting for baseline titer in the mixed model. Clearly a statistically
significant increase in geometric mean titers was observed following vaccination.

Geometric mean fold rises [918] may be easily calculated from the summary statistics;
however, it should be noted that their use in interpretation of data (for example, post- as
compared to pre-vaccination) is not favored by regulatory agencies in part due to findings
of [72]. When examining post-vaccination to pre-vaccination data, it is more usual to
dichotomize the data into a binary endpoints, typically by use of a 4-fold rise indicator
endpoint (e.g., those subjects experiencing a 4 times or greater antibody level or titer
post-vaccination relative to their pre-vaccination level are denoted as a 1, otherwise 0).
Those subjects with pre-vaccination data less than the assay lower limit of quantification
(LLOQ) should show 4 times the LLOQ level or greater following vaccination to be denoted

TABLE 12.4
Strain 1 Pre-vaccination and Post-vaccination Geometric Mean Titres (GMT) from Proof-
of-Concept Vaccine Trial

Strain Treatment Pre-Vax GMT Post-Vax GMT
1 Vaccine 2.73 50.57
1 Control 2.13 2.53
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responders. This is common practice, but those using such approaches are well advised to be
aware of the decrease in study power resulting from dichotomization of continuous data [402].

After dichotomization, the same approaches to analyzing binary safety data as described
in the previous section may then be applied to the resulting binary immunogenicity data.
SAS code is available on the website accompanying this book to allow interested readers to
do so. For Strain 1, there was one 4-fold responder who received placebo (n = 36), and for
vaccinated subjects, there were 54 4-fold responders (n = 71). The observed difference in
the proportion of 4-fold responders between vaccinated and placebo subjects was therefore
73.3% (Fisher’s exact p < 0.0001) with a 95% confidence interval of (58.2%, 83.7%) derived
using [154].

Along with understanding of the geometric means by group, these types of responder
data are generally sufficient to achieve proof-of-concept (i.e., support investment decisions)
by defining the normal level of response and how many subjects’ immune systems clearly
demonstrated that the vaccine causes an immunogenic reaction. This assumes that the
safety profile remains the same as Phase I, but as that aspect was discussed in the previous
section, we will not revisit it here.

Increasingly, where multiple disease strain vectors are involved in a single vaccine, di-
chotomization to 0 (did not respond to any or did not respond to all strains) or 1 (responded
to all strains) is also being considered as a regulatory endpoint. Additional data for three
strains are available in the dataset used as an example in this section (available on the
website) for those readers interested in exploring this type of analysis.

Following the proof-of-concept study (or studies), confidence will have been generated
that the vaccine will meet the sponsor’s desired target profile. This will then lead to a
decision on whether or not to invest further in large Phase III confirmatory studies to reach
the marketplace. Even if a vaccine has demonstrated proof-of-concept, a decision to invest
may not be made for reasons such as competing projects (with higher priority), insufficient
expectation of return on investment, competitive landscape (e.g., another sponsor has a
vaccine that will precede the sponsor’s vaccine to market), among other reasons.

The data will also inform end of Phase II meetings with regulators in the USA (known
as Scientific Advice meetings in the European Union). Findings will also define to some
extent the confirmatory studies and data required for approval to market. These meetings
occur after completion of Phase II (assuming a positive investment decision) and when
all relevant data are available for regulatory review. More or less, this is where the major
Western regulatory bodies give the go-ahead (or their views) on Phase III protocols. Similar
procedures are used in Japan. Specific questions are asked of the regulators to seek their
opinions on key issues for Phase III. Their opinion is informed based on a summary of
findings from Phases I and II.

Topics discussed at these meetings cover everything from study design, to adequacy of
the safety database, to particulars of the immunogenicity and efficacy assessments, to how
the lab will run the assays, how randomization will be performed, etc. Essentially, this is
the last chance to ask for regulatory input prior to the the implementation of Phase III and
the resulting pre-submission meetings (which occur after Phase III findings are available for
review but prior to actual submission of all the relevant clinical study reports).

The chance of success decreases in this phase of development. Going from Phase II to III
is harder — there are more hurdles to surmount. The transition probability is historically
about 39% [264]. One needs to see the right dose, acceptable safety, acceptable regimen (i.e.,
scheduling) with clear evidence of immunogenicity (and potentially some demonstration of
efficacy), a positive decision to invest by the sponsor, plus regulatorys’ views, so the bar to
progression is higher.

The data generated in Phase II is from the desired target population. For the powering of
Phase III studies, we therefore recommend that simulations be performed to understand the
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various implications of regulatory feedback relative to Phase III study design and analysis
planning. We now turn to consideration of lot consistency studies.

12.4 Lot Consistency

Lot consistency is the demonstration by the vaccine’s manufacturer that the vaccine can be
manufactured over and over again. Vaccines are more “grown” than “made,” and, similar
to the genesis of clinical bioequivalence testing for drugs, experience has led regulators to
believe that consistency based on technical specifications need not ensure consistent clinical
responses.

Lots of vaccine are made in sequential basis at various sites. Manufacturers must take
three large (generally manufacturing scale) sequentially made lots and compare their im-
munogenicity properties in a clinical trial. The interest is in confirming that the lots are
essentially the same to prove that the manufacturer has the production under control. This
makes the approach to design and analysis an equivalence problem [734], very similar to
bioequivalence testing.

The null hypothesis is that the lots are not the same, and sufficient clinical data are to
be collected to reject this hypothesis.

The Truth

Lots are Lots
NOT equivalent ARE equivalent

Stats Lots are Right answer! Wrong answer
from NOT equivalent (Type 2 error)

the study Lots Wrong answer Right answer!
show that ARE equivalent (Type 1 error)

Type 1 error is again termed regulatory risk (i.e., risk for regulators that lots are deemed
equivalent and approved for marketing when in fact they are not). Type 2 error in this study
is also called sponsor’s risk (i.e., risk for the sponsor that they cannot conclude equivalence
when in fact the lots are equivalent).

Assume (for now) that the vaccine gives one antibody response, and we derive a geomet-
ric mean (µL) for each lot to describe its properties. Under this approach to inference, the
usual null hypothesis to find differences was reformulated to correspond to the structure of
testing the question of lot equivalence:

H01 : µL − µL′≤−∆ (12.1)

versus the alternative
H11 : µL − µL′>−∆

OR
H02 : µL − µL′≥∆ (12.2)

versus the alternative
H12 : µL − µL′<∆

for all combinations across lots L = 1–3 where L 6= L′.
So the situation is a bit more complex than that usually encountered in bioequivalence

testing in that all three two one-sided null hypotheses (Lot 1–2, 1–3, and 2–3 for Equations
12.1 and 12.2) must be rejected in order to conclude that the lots 1, 2, and 3 are equivalent.
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If three manufacturing lots are shown to be equivalent (i.e., not too large and not to small
for all responses of interest), then the manufacturing process is confirmed as stable at that
point in time. Periodic manufacturing inspections are carried out by regulatory agencies
subsequently to ensure that this state of control is not allowed to deteriorate. Major changes
in site of manufacture are not really encouraged by regulators, and may trigger additional
such studies following approval.

The primary objective of such a trial is “To demonstrate that the immune responses
induced by 3 lots of vaccine are equivalent when measured 1 month after the vaccination reg-
imen.” There are often a plethora of secondary objectives — e.g., concomitant vaccination,
safety relative to a control, etc.

The study design itself is parallel group (to lot), randomized (to lot), and double blind.
A randomized control group may also be included for the purpose of confirmatory immuno-
genicity or for safety comparisons (see the previous sections of this chapter). Inclusion
and exclusion criteria are standardized, and, following the required number of vaccinations,
blood samples for immunogenicity assay are collected 14–42 days (usually a month) follow-
ing the last vaccination.

Randomization and dosing are matters to monitor closely. Eligible subjects will be ran-
domly assigned to one of the lots (or control if included), and these regimens are designated
L1, L2, L3, or C for lot 1, lot 2, lot 3, or control, respectively, in the following materials. If
a sequence of vaccinations is being applied (i.e., 2–3 doses separated by a period of time), it
is important to ensure that the subject receives the right lot at each individual vaccination.
Most interactive randomization systems are not designed with this in mind, and statisticians
should take steps in the protocol to ensure it is done correctly, as it is obviously undesirable
that a subject who is randomized to, say, L1 to get L2 at one dose (as that comparison would
then be biased toward the alternative). Obviously if a subject receives more than 1 lot in
such a circumstance, they are not strictly evaluable as randomized and can be excluded
from the inferential population, if designated in the protocol and statistical analysis plan.

The model to be used is very simple for only one endpoint. The response to each lot
is viewed as ln(yLi) = α+ τL + εi where ln(yLi) is the natural-log of the response variable
(IgG, etc.) for lot L = 1 − 3 subject i = 1 − nL, α + τL = µL denotes the mean response
across subjects i = 1−nL of lot L =1–3, and εi is the residual variance where V ar(εi) = σ2.
Note that this model assumes a common between-subject variance across lots. While this is
frequently done, we can be more specific such that ln(yLi) = α+τL+εLi with V ar(εLi) = σ2

L.
There may be reason to do this, as we will consider in the following example.

In reality as a practical matter, there is usually more than one endpoint. The response
to each lot is then viewed as ln(yLji) = αj + τLj + εji where ln(yLji) is the natural-log
of the response variable (IgG, etc.) for lot L subject i = 1 − nL for response variable j,
αj + τLj = µLj denotes the mean response across subjects i = 1 − nL in lot L, and εji is
the residual variance where V ar(εji) = σ2

j for response variable j.
This model describes the mean response for each variable j in each lot. The interest is

then to test for equivalence using the two one-sided tests as follows.

H01 : µLj − µL′j≤−∆ (12.3)

versus the alternative
H11 : µLj − µL′j>−∆

OR
H02 : µLj − µL′j≥∆ (12.4)

versus the alternative
H12 : µLj − µL′j<∆

for all combinations across lots L = 1–3 for each response variable j where L 6= L′.
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Each of the two one-sided testing procedures must be successfully rejected across all j
endpoints and all three lots for equivalence to be demonstrated.

The two one-sided testing approach for lot consistency (as with bioequivalence) is an
intersection-union test (IUT). There are L × (j) two one-sided tests, and the global null
hypothesis is

H0 :
⋃
j

TOSTj

versus alternative
H1 :

⋂
j

TOSTj

As such, the experimentwise true Type 1 error rate is conservatively controlled, as described
in Section 4.7.

In lot consistency, unlike bioequivalence, regulators require that α = 0.05
2 = 0.025 for

each one-sided test, and 95% confidence intervals will be used for inference. The acceptance
criteria, ∆, is also in part a criteria determined by regulators. In theory, one would look at
how much antibody must change in order for protection of the vaccine to wane and take some
percentage of that to set this criterion [743]. However, at this point in vaccine development,
confirmatory trials will not have been done, nor in general will longitudinal studies to look
at antibody over time have been done. We fall back on precedent in such situations, and in
general ∆ = ln(2) = 0.6931 has historically been used. Where one wants to be extra sure, a
requirement of ∆ = ln(1.5) = 0.4055 may be applied. This criterion should be included in
the lot consistency protocol and reviewed by regulators before initiating the clinical trial.

In practice, as with bioequivalence, most sponsors do not actually construct the t-tests
for the TOST and derive p-values. Most sponsors construct 95% confidence intervals for
this purpose. If all the lower and upper bounds of the lot to lot confidence intervals fall
within −∆,∆ for all j endpoints, then the two null hypotheses are successfully rejected
each time, and equivalence is demonstrated.

A dataset based on a lot consistency study containing n = 200 randomized, double-
blinded subjects per lot (overall n = 600) with IgG measured 1 month following vaccination
for four serotypes (A–D) may be found on the website accompanying this book. The lot
consistency acceptance criteria is ∆ = 0.6931. For one subject in each of lot groups 1, 2,
and 3, for example, the ln-IgG data were

subject group serotype lnigg

1 1 A 0.47990

1 1 B -0.48936

1 1 C 0.75303

1 1 D 1.28451

201 2 A 0.38591

201 2 B -0.82267

201 2 C 0.95563

201 2 D 1.23691

401 3 A -0.34689

401 3 B -0.39631

401 3 C 0.22147

401 3 D 0.39233

We first will assume that between-subject variance is homogeneous across lots and per-
form analysis using the following SAS code:
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proc mixed data=trialf method=reml

ITDETAILS maxiter=200;

by serotype;

class group;

model lnigg=group;

estimate ’1-2’ group 1 -1 0/cl alpha=0.05;

estimate ’1-3’ group 1 0 -1/cl alpha=0.05;

estimate ’2-3’ group 0 1 -1/cl alpha=0.05;

ods output Estimates=test;

run;

For serotype A, we observe that our estimate for σ2
A = 0.7794:

Covariance Parameter

Estimates

Cov Parm Estimate

Residual 0.7794

The test for a group effect finds that at least one of the lots significantly differs from
the others (p = 0.0266):

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

group 2 597 3.65 0.0266

However, lot consistency was demonstrated for serotype A as the confidence intervals
fall within the acceptance limits:

Estimates

Label Lower Upper

L1-L2 -0.2965 0.05024

L1-L3 -0.05814 0.2886

L2-L3 0.06501 0.4118

Recall that (−∆,∆) = (−0.6931, 0.6931) is the acceptance region.

Note that the standard error for all lot comparisons is the same and is
√

2(σ2)
n =√

2(0.7794)
200 = 0.08828.

Estimates

Standard

Label Estimate Error DF

L1-L2 -0.1231 0.08828 597

L1-L3 0.1152 0.08828 597

L2-L3 0.2384 0.08828 597
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There is not clear guidance on whether to allow for heterogeneous variance between-
lots, but as a statistical matter as far back as Satterthwaite [1074, 1075], there has been
capability to do this.

We now allow for differing between-subject variance across lots (repeated/group=group),
but importantly must use Satterthwaite’s formulae (DDFM=SATTERTH) to derive the appro-
priate degrees of freedom using the following SAS code:

proc mixed data=trialf method=reml

ITDETAILS maxiter=200;

by serotype;

class group;

model lnigg=group/DDFM=SATTERTH;

repeated /group=group;

estimate ’L1-L2’ group 1 -1 0/cl alpha=0.05;

estimate ’L1-L3’ group 1 0 -1/cl alpha=0.05;

estimate ’L2-L3’ group 0 1 -1/cl alpha=0.05;

ods output Estimates=test;

run;

The between-subject variance is is allowed to differ across lots. For serotype A, we
observe that our estimates are

Covariance Parameter Estimates

Cov Parm Group Estimate

Residual group 1 0.7835

Residual group 2 0.7453

Residual group 3 0.8094

Note that the average of these is 0.7794.
The test for a group effect still finds that at least one of the lots significantly differs from

the others (p = 0.0266):

Type 3 Tests of Fixed Effects

Num Den

Effect DF DF F Value Pr > F

group 2 393 3.66 0.0266

Note that the denominator degrees of freedom is changed.
Lot consistency was still demonstrated for serotype A, as the confidence intervals fall

within the acceptance limits

Estimates

Label Lower Upper

L1-L2 -0.2950 0.04873

L1-L3 -0.06020 0.2907

L2-L3 0.06506 0.4117
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The standard error differs between lot comparisons, as does the degrees of freedom:

Estimates

Standard

Label Estimate Error DF

L1-L2 -0.1231 0.08743 398

L1-L3 0.1152 0.08925 398

L2-L3 0.2384 0.08817 397

Interested readers may perform these analyses for serotypes B–D using the data and code
on the website. Overall, from this analysis, we can conclude that these lots are consistent.

Alternative approaches to inference do exist. Wiens’ [1335] approach to analysis is
slightly different in that it tries to reduce the data across lots by the use of an order
statistic. One derives the minimum of

∆− |µ̂Lj − µ̂L′j |
SELj−L′j

across all lot L 6= L′ combinations and for all j endpoints and compares it to the 100(1− α
2 )

percentile of the normal distribution [918, Ch. 6.5.2].
However, the findings of [1314, Ch. 7] showed that such an order statistic turns out to

be equivalent to the intersection-union test. Plus, as a practical matter, if one fails, one
wants to know which lot and endpoint was at fault, so a global test isn’t really useful, and
one ends up doing the intersection-union test as a practical matter anyway.

The above example uses all available immunogenicity data. However, it is not unusual for
protocol violations to occur in practice — for example, a subject might receive a prohibited
vaccine in error during the study. Such subjects would be excluded from the per-protocol
(sometimes known as evaluable) immunogenicity data prior to unblinding. For vaccines, usu-
ally, regulatory agencies require that the per-protocol data be the primary basis for inference
[581]; however, they also in general want an all-available analysis done and any discrepancies
(if any) brought to light. In contrast, for safety assessment, it is desired to err on the side
of caution. This dataset would include anyone who receives at least one dose of a vaccine.

An additional caution is that the staff doing the assays for immunogenicity and safety
assessments should be blinded to lot as a matter of good clinical practice. Documentation
of any protocol violations and exclusions from per-protocol datasets should be in place prior
to unblinding the trial. This applies as a general rule to all Phase II and III studies.

A reasonable question remains: how does one sample size a study for multiple compar-
isons across endpoints and across different lots? Under the IUT, an equation-based approach
is available and will be illustrated using an example. For sample sizing, first assume there
is one antibody (j = 1) to consider. For this one endpoint, where µL − µL′ can vary up to
0.3, we apply code as follows:

title "One Endpoint";run;

proc power;

twosamplemeans test=equiv_diff

alpha=0.025

lower=-0.6931 upper=0.6931

stddev=1.17

meandiff=0,0.3

power=0.8,0.9

npergroup=.

;run;
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Here ∆ = ln(2), α = 0.05 (so 95% confidence intervals are to constructed in analysis
corresponding to each test of the TOST at 2.5%, σ2 = 1.38 so σ =

√
1.38 = 1.17 is the

between-subject standard deviation assumed to be homogeneous across lots, and 80–90%
power is desired.

Selected outputs look like

Computed N Per Group

Mean Nominal Actual N Per

Diff Power Power Group

0.0 0.8 0.801 61

0.0 0.9 0.905 76

0.3 0.8 0.803 141

0.3 0.9 0.901 188

Lot µL − µL′ does not have to be precisely 0 to be equivalent, so it is safer to assume
some sort of random differences in response will be observed when determining sample size,
and 0.3 will be utilized in the following derivations. In this case, n = 188 per lot would be
needed for the study to have at least 90% power for one of the lot-to-lot comparisons.

Using the formula from [918, p. 45], and noting that there are three lot-to-lot compar-
isons of interest,

Power ≥
3∑

L=1

Pj − (3− 1) = 3(0.901)− 2 = 0.703

where Pj is the estimate of power for endpoint j = 1 in each of the three (correlated)
lot-to-lot comparisons. Obviously, the overall power of the study should not be this low, so
the individual comparisons’ power must be adjusted upwards to compensate as follows:

title "One Endpoint";run;

proc power;

twosamplemeans test=equiv_diff

alpha=0.025

lower=-0.6931 upper=0.6931

stddev=1.17

meandiff=0.3

power=0.965

npergroup=.

;run;

Then, when increasing the desired power by (0.901/3 = 0.965, SAS output (not shown)
derives the estimated power as 0.966 with n = 254 per lot, and, accounting for the three
lot-to-lot comparisons, the overall study power would be

Power ≥
3∑

L=1

Pj − (3− 1) = 3(0.966)− 2 = 0.898.

Turning now to a more realistic situation, for six endpoints j = 1-6 where µL − µL′
can vary up to 0.3 and σ2

j=1−6 = 0.74, 0.58, 0.56, 0.74, 0.73, 1.38, we apply code as follows.
The desired power 0.983 again is derived by taking the minimum desired overall power and
dividing by the reciprocal of the number of endpoints (i.e., 0.91/6 = 0.9826).
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title "J=6 Endpoints";run;

proc power;

twosamplemeans test=equiv_diff

alpha=0.025

lower=-0.6931 upper=0.6931

stddev=0.86,0.76,0.75,0.86,0.85,1.17

meandiff=0.3

power=0.9826

npergroup=.

;run;

First, we need to get in the right vicinity of the desired sample size for an individual lot-
to-lot across these j = 1-6 multiple endpoints, and then we will account for the additional
impact of additional lot-to-lot comparisons. It is seen that in the selected output below
that n = 295 per lot are required for the most variable endpoint j = 6:

Computed N Per Group

Std Actual N Per

Index Dev Power Group

1 0.86 0.983 160

2 0.76 0.983 125

3 0.75 0.983 122

4 0.86 0.983 160

5 0.85 0.983 156

6 1.17 0.983 295

The expected powers for all j = 1-6 endpoints at n = 295 per group are needed to
perform an accurate overall power derivation for the study as follows:

title "J=6 Endpoints";run;

proc power;

twosamplemeans test=equiv_diff

alpha=0.025

lower=-0.6931 upper=0.6931

stddev=0.86,0.76,0.75,0.86,0.85,1.17

meandiff=0.3

power=.

npergroup=295

;run;

The estimates for power arising for each endpoint j = 1-6 are as follows.

Computed Power

Std

Index Dev Power

1 0.86 >.999

2 0.76 >.999

3 0.75 >.999

4 0.86 >.999

5 0.85 >.999

6 1.17 0.983
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So, using the [918] approach above to derive overall power based upon n = 295 per lot,
we find that, for an individual lot-to-lot comparison,

PowerL ≥
6∑
j=1

Pj − (6− 1) = 5(0.999) + 0.983− 5 = 0.978,

and as we have three lot-to-lot comparisons of interest to account for,

Power ≥
3∑

L=1

PowerL − (3− 1) = 3(0.978)− 2 = 0.934.

As with bioequivalence studies, power should be constrained to be greater than 90%
in lot consistency studies, as it is a show stopper (i.e., major review issue) if control of
manufacturing is not demonstrated. Simulation (see Section 5.3) may easily be used to
verify such power and sample size estimates, and we encourage interested readers to make
use of the SAS code available on the website to do so. An example may be found in [770].

We now turn to a topic very much akin to drug-drug interaction studies (see Section
8.4). These are concomitant vaccination studies used to study whether vaccines can be
administered at the same time.

12.5 Concomitant Vaccination

Vaccines are usually administered via injection, and going to a physician’s office or a vaccine
clinic requires time and resources. Generally, when one is vaccinated, one may receive
more than one vaccine at a time to ensure protection as soon as possible for vulnerable
populations. Recommended scheduling from the CDC (Centers for Disease Control and
Prevention, USA) may be found in [16]. Other nations adapt such schedules to their own
specific populations’ needs.

For example, around the age of 1 year the CDC recommends that toddlers receive vac-
cinations for hepatitis B, haemophilus influenza type b, pneumococcal influenza, measles,
mumps, rubella, varicella, hepatitis A, and meningitis! Obviously, one cannot and should
not give all these vaccinations at once, and in practice, the schedule is staggered to ensure
that the required number of vaccines and doses are administered over time. Before reason-
able recommendations can be made, regulators must be shown data to give them confidence
that giving vaccines together (for example, hepatitis A, pneumococcal, and varicella vac-
cines at age 1) do not interfere with each other in terms of priming the body’s immune
system to respond to a disease vector.

Registration and regulation of vaccines are done “locally.” By local, we mean that a
dossier is submitted to a particular regulatory agency for a particular nation (or set of
nations, e.g., Europe). The local regulatory agency reviews and approves (or modifies or
refuses) the application for access to market with respect to their specific population. As
local regulators are involved, local requirements will come into play. For example, some
regulatory agencies (e.g., Japan) require that vaccinations be given at separate visits unless
a clinical trial has been done in their population to confirm “lack of interference.” Others
will accept foreign data.

Generally, regulators assume their population is not the same as others studied else-
where, unless epidemiology has confirmed that the population response to disease and/or
vaccine is similar enough to neglect. As this is rarely the case, clinical trials to confirm
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lack of interference when vaccines are given together (concomitantly) must be done locally.
For example, if Japan’s PMDA wants to confirm that a given new vaccine does not impact
MMR (measles, mumps, and rubella) antibody generation, then the study must be done in
Japanese toddlers.

In such studies, it is desired to confirm that giving vaccines together results in antibody
levels for each vaccine that are the same as if each vaccine was given alone. Moreover,
vaccines do have local and systemic side-effects, and it is desired to confirm that these are
the same when given together versus separately. The same thing applies to the adverse
event profile. Essentially, lack of interference corresponds to showing regulators that, in
their population, the vaccines are safe and effective when used together.

These studies can be done in Phase II or Phase III. They may be done in Phase II to
enable a pivotal study in Phase III in a particular region’s population (by reducing the
requirement that dosing of the new vaccine be done independently of any others in that
region). If used in Phase III, they are used in tandem with pivotal studies to allow for local
market access following approval, and in support of recommending bodies.

To be more specific, objectives for a concomitant vaccination study may be

1) To demonstrate that the immune responses induced by the influenza vaccine (or what-
ever the concomitant vaccine of interest) when administered concomitantly with the test
vaccine (influenza+test) are equivalent to the immune responses induced by influenza
vaccine alone.

2) To demonstrate that the immune responses induced by the test vaccine when admin-
istered concomitantly with the influenza vaccine (influenza+test) are equivalent to the
immune responses induced by test vaccine alone.

Comparisons of interest are therefore influenza+test:influenza alone for influenza im-
mune responses, and influenza+test:test alone for test vaccine immune responses. We use
influenza vaccine here for the purpose of this example, but in principle, any of the many
vaccines that are recommended could be used here.

Although not explicitly stated as a primary objective, as a practical matter it is the
case that safety comparisons of interest are of important magnitude. Vaccines are generally
given to healthy populations, and an unacceptable side-effect profile (e.g., fever, soreness)
could result in practitioners not administering the vaccines together even if warranted by
lack of interference. We have studied safety previously, however, and here will therefore
confine our attention to the immune responses.

For the concomitant vaccine (e.g., influenza), there will generally be guidance on what
level of continuous response is required for efficacy (either in the product’s label or in
regulatory guidance). For example, for influenza, one must look at the proportion of subjects
achieving at least a 4-fold increase in the post-vaccination hemagglutination inhibition assay
(HAI) titer (i.e., seroconversion) for each influenza virus subtype. As such levels are not
generally defined at this stage for the test vaccine, one generally will use the geometric
mean concentration (or titer as the case may be) to establish equivalence, as was done in
the previous section to assess lot consistency.

The test and concomitant vaccines will not look alike. Therefore, there will be a need
for a double dummy for both vaccines (i.e., a placebo). This makes the desired randomized
arms of the study look like

Group 1: influenza vaccine + test vaccine.

Group 2: influenza vaccine (+ test placebo).

Group 3: (influenza placebo +) test vaccine.
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TABLE 12.5
Schematic Plan of a Concomitant Vaccination Study

Group Period 1 Period 2
1 F+T FP+TP
2 F+TP FP+T
3 FP+T F+TP

F: influenza vaccine; FP: placebo for influenza
T: test vaccine; TP: placebo for test

Note that group 3 will need to have an influenza catch-up when the subjects come
in to get their post-vaccination blood samples (one can’t leave people unprotected from
the influenza). See Table 12.5. This means for the purpose of blinding one must give an
influenza “shot” and a “test” shot in each period.

Periods 1 and 2 are generally separated by one month to allow for immunogenicity blood
sampling just prior to the period 2 vaccinations to study the responses to the vaccines given
in period 1. The time between is not a wash-out period in the traditional sense as discussed
previously but is intended to be sufficient time to ensure the body mounts the desired
immune response to vaccination. A blood sample is collected prior to vaccination in each
study period to define baseline response (period 1) and post-vaccination 1 response (e.g.,
for 4-fold endpoints) prior to vaccination in period 2. A blood sample is not taken following
vaccinations in period 2, as within-subject comparisons are not of interest.

This is referred to as a randomized, double blind, double dummy cross-over design.
Note that period 2 for group 2 is the same as period 1 for group 3. One may be tempted
to economize and measure the test immune response in group 2 following vaccination in
period 2, but it is important to beware of carry-over effects (and period effects and direct
by carry-over interaction). Use of such a reduced design is only appropriate if period and
carry-over effects can be assumed to be negligible.

Sample size need not be equal between groups 1, 2, and 3 as we will see later. Indeed,
given what we know about dichotomizing data, it will not come as surprise that group 1
and 2 need to be larger than group 3 in general. However, inclusion and exclusion criteria
must be uniformly applied, and personnel doing the assays for the influenza and the test
vaccine immune responses should be blinded to group to ensure no bias is introduced.

In general, immune responses to test placebo (TP) and to influenza placebo (FP) are
not of interest (as both will generally be below the limit of quantification for the assays
involved). Equivalence is of interest in both settings, and we return to the TOST for
inference.

We will refer to the acceptance region for the concomitant vaccine as ∓Θ. Recall that
the data for the concomitant vaccine will in general be dichotomized (0, 1) where 0 denotes
a non-response (in the context of influenza, a less than 4-fold increase in titer from baseline)
and 1 denotes a response (e.g., for influenza, a 4-fold increase in titer from baseline). The
number of responses in a given group i are binomial distributed, with pi being the unknown
parameter of interest (estimated as ri/ni in each group where ri is the number of responding
subjects and ni is the number of subjects from group i = 1− 2).

The interest is then to test for equivalence in the proportion of responders.

H01 : p1j − p2j≤−Θj (12.5)

versus the alternative
H11 : p1j − p2j>−Θj
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OR
H02 : p1j − p2j≥Θj (12.6)

versus the alternative
H12 : p1j − p2j<Θj

for each response variable j in groups 1 and 2. Θ may be made specific to endpoint j (e.g.,
different criteria for different vaccine responses to combination vaccines like Tdap or MMR).
In our case, for influenza, regulators require Θj = 0.1 for each of the 4-fold HAI responses
(j = 1-3). As equivalence must be shown for all j responses, Type 1 error is controlled
conservatively by the intersection-union testing procedure as discussed in Section 4.7.

A formula for deriving the sample size per group for independent proportions is given
in Formula 12.12 of [666]. Input parameters are α, β, Θ, and expected values of p1 and p2.
Here we desire α = 0.05, β = 0.03, Θ = 0.1, and expected values of p1 = 0.5 and p2 = 0.5.
Resulting sample size is n = 853 per group (in groups 1 and 2) using the following SAS
code. Note that power 1−β = 1− 0.03 = 0.97 is adjusted upwards as the influenza vaccine
generates three (or more) types of antibodies to provide overall study-wise power of at least
90% (i.e., 0.973 > 0.90).

data julious_2009;

*formula 12.12 for 3 independent antibodies;

power=0.97;beta=1-power;b_2=1-(beta/2);

alpha=0.05;a_2=1-(alpha/2);

z_a=quantile(’NORMAL’,a_2);

z_b=quantile(’NORMAL’,b_2);

p_1=0.5;p_2=0.5;p_avg=(p_1+p_2)/2;

s_1=(p_1*(1-p_1))+(p_2*(1-p_2));

part1=z_a*(sqrt(s_1));

s_2=2*p_avg*(1-p_avg);

part2=z_b*(sqrt(s_2));

num=(part1+part2)**2;

theta=0.1;den=theta**2;npergroup=num/den;

run;

Recall that we needed n = 251 per group for the test vaccine (see the previous section),
so group 3 need only have that number of subjects. However, as shown, for influenza we
need n = 853 per group, and groups 1 and 2 need to be larger. It is fine to use unequal
sample sizes in study design, e.g., a 3:3:1 ratio for groups 1:2:3, respectively. This should
be specified in the protocol, and if lab procedures for assay are adapted accordingly (not
recommended), special care must be taken to ensure the blind is maintained.

Using the data of this design, 4-fold responder and non-responder influenza data in
groups 1 and 2 are given in Table 12.6.

An exact procedure to derive a confidence interval p1 − p2 should be specified in the
protocol in practice; here we will apply the Chan and Zhang approach [154] discussed pre-
viously in this chapter. Interested readers may use the code given earlier in this chapter to
verify that equivalence may be concluded for HAI1, HAI2, and HAI3, as the 95% confidence
intervals for p̂1 − p̂2 for all endpoints fall within the interval -0.10, 0.10. Note that a sta-
tistically significant decrease was observed for HAI2, but this is not unexpected given the
sample size involved. As in bioequivalence testing, equivalence may be demonstrated even
if a statistically significant difference is observed provided the confidence limits fall within
the acceptance interval.
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TABLE 12.6
Data from a Concomitant Influenza Vaccination Study

Group Type Responder Non-Responder N
1 HAI1 436 417 853
2 HAI1 428 425 853
1 HAI2 504 349 853
2 HAI2 549 304 853
1 HAI3 685 168 853
2 HAI3 687 166 853

1: influenza vax + test vax
2: influenza vax + test placebo

Comparisons of geometric means were described in the previous section. Here we will
simply note the findings from comparison of groups 1 to 3 on the ln-transformed scale
for each of four serotypes (A–D). The estimates, and lower and upper findings denote the
difference between groups 1 and 3 on the ln-scale and the corresponding lower and upper
95% confidence bounds, respectively. Equivalence may not be concluded for serotype C
based upon an acceptance range of ∆ = ∓0.6931. The point estimate and lower confidence
bound for serotype C fell below the acceptance boundary.

serotype Estimate Lower Upper Probt

A -0.2404 -0.4073 -0.0736 0.0048

B 0.1244 -0.0307 0.2795 0.1157

C -0.7321 -0.8838 -0.5804 <.0001

D -0.0030 -0.1744 0.1685 0.9729

While equivalence was demonstrated for the test vaccine when given concomitantly
with influenza vaccine for the influenza vaccine responses, it appears administration of
influenza vaccine decreases the test vaccine antibody response to serotype C when given
concomitantly. Depending on how important serotype C is, the label for the test product
may designate that these vaccines should not be given together. If this was an enabling
study for Phase III, in all likelihood they would not be given together, as the sponsor will
not be interested in diminishing the effect of the test vaccine in the pivotal trials needed
for registration. That approach would likely carry into the label if the vaccine is approved
thereafter for marketing.

12.6 Cross-Over Trials in Vaccines

As discussed in earlier chapters, in a cross-over study, subjects are randomized to a sequence
of treatments over time, with repeated measurements being taken after each treatment. The
benefits of within-subject estimation of treatment effects are well known [652, 1113] but may
be underutilized in some settings due to the presence of carry-over effects. That is, the effect
of a prior treatment remains with the subject while evaluating the effect of a subsequent
treatment.
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TABLE 12.7
Schematic Plan of a Balaam Design Cross-Over Study

Sequence Period Number of
Group Subjects

1 Washout 2
1(AA) A — A n1

2(AB) A — B n2

3(BA) B — A n3

4(BB) B — B n4

A=Regimen 1, B=Regimen 2

These carry-over effects are typically regarded as nuisances (see Chapter 5), and cross-
over designs have been developed to ensure treatment effects are not confounded with
carry-over effects [652] among other parameters. However, the potential for differential
carry-over effects complicates design, and in some instances has led to recommendations to
use simpler (parallel group) designs in biopharmaceutical development (see, for example,
[621], [735]) when a washout period [1102] cannot be used to confirm the assumption that
carry-over effects are negligible relative to treatment effects.

A Balaam design [652] is one example of a design developed to ensure carry-over effects
are not confounded with treatment and period effects. In such a design subjects are random-
ized to one of four sequences of treatment administration. We will denote these sequences
as AA, AB, BA, and BB (see Table 12.7) where A denotes one treatment and B the other.
The administration of each treatment is separated by a wash-out period appropriate to the
products under study. While within-subject estimates of treatment effect are only possible
in the AB and BA sequences, the application of the AA and BB sequences serve to allow
for the estimation of carry-over effects in combination with treatment and period effects.

The value of Balaam’s design rests on the assumption that there is no carry-over-by-
treatment interaction, i.e., that carry-over from the first administration of A and from B in
the AA and BB sequences is the same as in the change-over sequences [652].

For vaccines, such cross-over studies may be done to identify the potential for “boosting”
immune response, identifying opportune time of re-vaccination, and/or for the identification
of potential alternative dosing regimens (when multiple vaccines of differing mechanism
and/or coverage are available) among other reasons. Carry-over for vaccines (and in such
designs) is obviously not only assumed but is also desired. As such, application of cross-over
designs is infrequent but not unknown (e.g., [125]).

An in-depth discussion of the mechanisms of vaccine carry-over effects is beyond the
scope of this section. We recommend the reader consult [686] and [918] for an introduction
to these topics. For our purposes here, it should be recognized that carry-over from a
vaccine can result from multiple mechanisms — e.g., antibody may remain in the body
for an extended period of time and/or elements within the body’s immune system may
be primed to recognize and mount an immune response to antigens even if limited or no
circulating antibody remains present, or both.

Mean natural-logarithm (ln) transformed antibody titer data from such a Balaam de-
sign are plotted for six antibody types in Figure 12.2. Pre-vaccination and post-vaccination
blood samples were obtained in this design in both study periods. Antibody titer data were
combined across two randomized, double blind, clinical studies in the same nation with
identical inclusion and exclusion criteria (healthy subjects aged 60–64 years at time of first
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FIGURE 12.2
Mean ln-Transformed Titer Data by Vaccine Sequence versus Time Matrix Plot for Anti-
body Types 1–6 for Periods 1 and 2, prior to and 1 Month following Vaccination

vaccination), controls (e.g., allowance for concomitant vaccination, assays), and vaccina-
tion/sampling schedules and materials. Time between vaccinations varied by a minimum
of one to a maximum of four years across the studies. The total sample size was n = 1113
subjects (n = 284 for sequence AA, n = 404 for sequence AB, n = 236 for sequence BA,
n = 189 for sequence BB). The time between vaccinations is referred to as a wash-out, and,
as a practical matter, a lengthy time period is generally used between such vaccinations
to ensure an appropriate immune response is provoked by the body and can be provoked
in subsequent vaccinations. Also, as a practical matter, vaccinations in adults typically
can occur at roughly one year intervals as a maximum (i.e., when undertaking an annual
physical exam).

In practice, estimates and confidence intervals from analysis on the ln-transformed scale
are typically exponentiated (back-transformed) to describe the data (or to test for non-
inferiority, super-efficacy, etc.) We focus on the statistics here and neglect such alternative
presentations without loss of generality. All results in this section are presented on the
ln-scale.

A traditional vaccine statistical analysis of such continuous repeated measures, cross-
over data is described in [918]. In brief, comparisons are first constructed between regimens
by period to compare vaccine response following each vaccination. See Table 12.8. The
vaccines (A and B) are compared directly in the first period (A-B) following vaccination
and thereafter between sequences following repeated vaccinations.
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TABLE 12.8
Example: Traditional Analysis of Differences in Mean ln-Titer between Vaccine Groups and
Following Sequences of Dosing from a Cross-Over Vaccine Trial

Type A-B Period 1 AA-BA Period 2 AA-BB Period 2
(p-value) (p-value) (p-value)

1 0.37(0.0006) 0.98(<0.0001) 0.77(<0.0001)
2 0.56(<0.0001) 0.25(0.0997) 0.49(0.0014)
3 2.31(<0.0001) 0.67(0.0005) 2.90(<0.0001)
4 0.88(<0.0001) 1.34(<0.0001) 1.08(<0.0001)
5 0.62(<0.0001) 0.65(<0.0001) 0.42(0.0015)
6 0.15(0.2367) 0.85(<0.0001) 0.58(0.0004)

A: New Vaccine; B: Original Vaccine
H0: Mean Difference between Groups (or Sequence) = 0

Period 2 Comps. AA-AB, BA-BB, etc. on File

Two of the potential comparisons of interest in period 2 between sequences are given in
Table 12.8 to conserve space. In the period 2 assessments, carry-over is assumed to exist,
but it is not estimated. The comparisons by period are not confounded with period effects
(as analysis is within period); however, the analysis of period 2 data is confounded in that
treatment and carry-over are both involved in the resulting estimates across sequences.

The traditional analysis becomes more complex thereafter. In general practice [918],
period 2 data are compared to period 1 data, and comparisons of interest are constructed
between sequences. Period effects [652] are assumed to be null (by default) in such an
analysis. This is a strong assumption, and, as we will see, it is problematic when period
effects are directly estimated later in this report. See Table 12.9. Carry-over and treatment
remain confounded when comparing sequences of vaccine administration in this assessment.

Finally, in part to attempt to account for carry-over, pre-vaccination titers may be
taken into account. See Table 12.10. Pre-vaccination ln-titers were subtracted from post-
vaccination in each study period and then compared across periods between sequences.

TABLE 12.9
Example: Traditional Analysis of Period 2-1 ln-Titer Following Sequences of Dosing from
a Cross-Over Vaccine Trial

Type AA-BA Period 2-1 AA-BB Period 2-1
(p-value) (p-value)

1 0.87(<0.0001) 0.31(0.0257)
2 -0.06(0.6658) 0.20(0.1721)
3 -1.31(<0.0001) 0.62(0.0005)
4 0.29(0.0574) 0.43(0.0053)
5 0.26(0.0186) -0.03(0.8036)
6 0.85(<0.0001) 0.66(<0.0001)

A: New Vaccine; B: Original Vaccine
H0: Mean Difference between Sequences = 0

Period 2-1 Comps. AA-AB, BA-BB, etc. on File



Vaccine Trials 335

TABLE 12.10
Example: Traditional Analysis of Pre-Vaccination Adjusted Differences in Period 2-1 for
ln-Titer between Sequences of Dosing from a Cross-Over Vaccine Trial

Type AA-BA AA-BB
(p-value) (p-value)

1 0.81(0.0008) -0.36(0.1410)
2 -0.38(0.2891) -0.41(0.2852)
3 -2.74(<0.0001) -1.66(<0.0001)
4 -0.68(0.0516) -0.38(0.2872)
5 -0.16(0.5039) -0.47(0.0490)
6 1.27(0.0001) 0.66(0.0492)

A: New Vaccine; B: Original Vaccine
H0: Mean Difference between Ratios across Periods between Sequences = 0

Period 2-1 Comps. AA-AB, BA-BB, etc. on File

Beyond the overly complex nature of interpretation of such multiple data analyses, these
approaches highlight the need for analysis of such data accounting properly for period and
carry-over effects for a quantitative understanding of the characteristics of each vaccine and
repeated administration. A modelling approach based on [652] will now be described for
this purpose.

The model chosen for application here for each type of ln-titer yijk, separately, is derived
from [652] and is

yijk = µd[i,j] + πj + λd[i,1] + ξk(i) + εijk, (12.7)

where d[i, j] = R or T and identifies the vaccine in period (πj , j = 1 − 2) with potential
carry-over λd,1 = λA or λB from period 1. We assume that ξk(i) and εijk are independent
random variables such that E(ξk(i)) = 0, V ar(ξk(i)) = σ2

B , E(εijk) = 0 and V ar(εijk) = σ2
W ,

where σ2
B is the between-subject variance and σ2

W is the within-subject variance. E denotes
the expected value (i.e., population mean) for a given parameter, and V ar denotes its
variance. We also assume that the ξk(i) are independent among themselves and that the
εijk are independent among themselves. SAS code is given in [652] and is not reproduced
here.

The p-values in Table 12.11 denote the tests of model parameters for treatment effects
µA = µB , carry-over effects λA = λB , and period effects π1 = π2 in columns 2 through 4,
respectively. The estimates of effect correspond to µA − µB , λA − λB , π1 − π2 in columns
2 through 4, respectively.

Additional models may be easily explored. For example, baseline may be added as a
period-specific covariate following the principles described in [691, Section 4.2] with SAS
code given in the appendix to said paper, and we discuss the application of such a model
later in this section.

At best, the traditional analysis findings of Tables 12.8–12.10 should be regarded as
a supplement to Figure 12.2 and permits additional qualitative assessments. One could
conclude from the plot (and Tables 12.8 and 12.9) that vaccine A provides a similar or greater
response relative to vaccine B for some of these endpoints (types 1–6). Administration of
vaccine A prior to vaccine B results in a higher response whether one gives vaccine A or B in
the second period. Finally, administration of sequence AA results in higher average ln-titer
relative to BB for all types. The magnitude of treatment effects relative to carry-over effects
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TABLE 12.11
Example: Model-Based Cross-Over and Carry-Over Analysis of ln-Titer from a Cross-Over
Vaccine Trial

Type Vaccine A-B Carry-over A-B Period 1-2
(p-value) (p-value) (p-value)

1 -0.08(0.2182) 0.69(<0.0001) -0.12(0.0599)
2 0.24(0.0003) 0.39(0.0001) 0.34(<0.0001)
3 1.70(<0.0001) 1.19(<0.0001) -0.45(<0.0001)
4 0.51(<0.0001) 0.72(<0.0001) -0.27(0.0002)
5 0.17(0.0016) 0.33(<0.0001) 0.00(0.9841)
6 -0.05(0.4724) 0.83(<0.0001) -0.30(<0.0001)

A: New Vaccine; B: Original Vaccine

is unclear, and no potential for other confounders is taken into direct account (unless an
observer is very astute).

Inspection of pre-vaccination average ln-titers in Figure 12.2 is sufficient to suggest that
a carry-over effect is present and differentiable between vaccines (as is indeed desired).

The findings of Table 12.9 are very challenging to interpret in this context. Reference to
Figure 12.2 aids somewhat in interpretation. When vaccine B is administered in period 1,
average ln-titers return closer to basal levels prior to vaccination in period 2. This results
in a larger baseline subtracted value in period 2 if vaccine B was given first in period 1.
As a generalization, then, once one is vaccinated with vaccine A, ln-titers are maintained
higher, and there is therefore less “boosting” with a subsequent dose of either vaccine due
to greater carry-over.

Assessments of significance in Tables 12.8–12.10 may therefore be misleading, as the
p-values are confounded between multiple effects (treatment, period, and carry-over.) They
serve to indicate that something statistically significant is happening, but an accurate and
precise analysis is needed to pick out which are the key contributing factors for a given
comparison of interest.

The traditional approach is admittedly quite complex. However, more importantly, it
is non-quantitative with respect to the effects of interest in such a design space. That is,
treatment, period, sequence, and carry-over effects are in part confounded in these analyses
unless strong assumptions are made regarding period effects in particular. The assumption
of null period effects is quite unsafe — if for no other reason than findings from other
therapy areas [1089].

Period effects should be expected in such vaccine trials due to the duration of wash-
out, in combination with other factors, making an assumption of null unlikely. This is not
surprising if considered carefully. As is well known, immunity among populations varies
over time naturally and in response to outbreaks of disease. Moreover, when a significant
part of a population is vaccinated, herd immunity may develop. Additionally, changes will
likely be made to an assay over the course of years (e.g., reagents must be changed upon
expiration or when amounts run out). It would also be surprising if clinical conditions could
be maintained with an exactness necessary to nullify period effects (e.g., staff changes are
to be expected over the years of such vaccine trials). If nothing else, the shipping company
taking blood samples to the lab may change between period 1 and 2 (with potentially
different storage conditions). All such potential factors may of themselves contribute to a
period effect. Therefore, vaccine cross-over designs should expect and protect against their
occurrence by design.
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The need for a model-based approach such as [652] seems justified given the complex,
confounded findings of traditional analysis. In this example, it is found that a single model
can supply all of the information required by multiple analyses of the same dataset. This is
true, however, if and only if one is willing to set up the experimental conditions to permit
it. If one were not permitted to administer the BB sequence, for example, due to ethical
concerns with re-administration of the B vaccine, then a proper quantitative understanding
of such data is not possible.

Conclusions with regard to the effect of vaccination with A-B are altered when ac-
counting for period effects and carry-over. Type 1 changes from statistically significant to
non-significant for comparison of treatment effects of vaccine A to B. This is probably real
given the more accurate and precise nature of the within-subject comparison. This finding
is not of concern, as the effect is still non-inferior relative to vaccine B (data on file).

Notably, period effects were significant for all types except for 1 and 5. The magnitude
relative to traditional estimates of A-B from period 1 are interesting. With the exception
of type 5, the absolute effect appears to be quite a percentage of the traditional estimate of
the treatment effect (see Table 12.8).

Carry-over is significant across all types 1–6 and supports that dosing with Vaccine A
results in benefit in terms of higher maintenance of ln-titers over time for these endpoints.

Baseline-adjusted model-based assessment (as described in [691]) improves the precision
of the model but does not change any of the fundamental conclusions as regards treatment,
period, and carry-over effects (data on file).

In summary, the purpose of this section was to give an example of a model-based ap-
proach to see whether it resulted in findings which represented an improvement over the
traditional method(s). A “simple” [1102] approach to carry-over was adopted to assess
whether this was possible and, if so, whether value was added by taking such an approach.
More precise methods are available [1106]. While such carry-over models have been the
subject of debate in the study of drugs, we are not aware of previous quantitative com-
parative reports in the area of vaccines using a Balaam design. Especially in a therapy
area like vaccines, where wash-out may not be physiologically possible given priming of the
body’s immune system, we deem it important to account where possible for an effect like
carry-over, even if the approach taken is not precisely consistent with the body’s processes
and mechanisms involved in generating immune responses.

As a practical matter, therefore, period effects should be expected in vaccine cross-over
trials and estimated in analysis. Carry-over effects also should be accounted for in design
and in modelling of vaccine cross-over data by default, in some manner, as they are desired
and expected. It should be noted that the simple model applied in this section should not
be regarded as adequate in all such situations. It is a starting point to understanding such
data, in combination with the pre-vaccination titers, and should be viewed as useful for
developing a quantitative understanding of the data.
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Epilogue

Final Words
Many people in business and medicine regard statistics as at best a nuisance, or as

a challenging (frequently incomprehensible) and therefore best ignored subject (whenever
possible), or at worst as an hinderance to science. Even Einstein liked to say that “God
doesn’t gamble.” [133].

In the short term while making biopharmaceuticals, we cannot operate with complete
certainty and have to depend upon statistics as a guide to making safe, effective, quality
products. In clinical biopharmaceutical development, statistics are used to quantify and
manage the uncertainties associated with human use of biopharmaceuticals — not to elimi-
nate uncertainty. If statistics are not used well, the trend toward increased length and cost
in biopharmaceutical development [377] will continue.

Clinical pharmacology and many aspects of biopharmaceutical development are evolving,
and will continue to do so. These changes are good, as they would be expected to improve the
biopharmaceuticals that are produced for the people who need them. Changes in medicine
and science such as these represent new challenges for statisticians, but the raw materials
to meet the needs of the science are available. Change is not so bad once one gets used to
it. The same can be said of statistics.

We hope that our readers have found this second edition useful as a starting point for
making some of the concepts associated with statistics in clinical pharmacology more trans-
parent. To conclude this work, we wish all our past, present, and future readers good luck
with their research.
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